filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_14825
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from io import BytesIO from test_framework.test_framework import SthcoinTestFramework from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTransaction, CTxOut, MAX_BLOCK_BASE_SIZE, ) from test_framework.script import ( hash160, CScript, OP_0, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, bytes_to_hex_str, hex_str_to_bytes, wait_until, ) class MempoolAcceptanceTest(SthcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex', '-reindex', # Need reindex for txindex '-acceptnonstdtxn=0', # Try to mimic main-net ]] * self.num_nodes def skip_test_if_missing_module(self): self.skip_if_no_wallet() def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 wait_until(lambda: node.getblockcount() == 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22'])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = node.listunspent()[0] # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, allowhighfees=True) node.generate(1) self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = 0.00000700 raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): 0.3 - fee}], ))['hex'] tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size = 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=bytes_to_hex_str(tx.serialize()), allowhighfees=True) # take original raw_tx_0 tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) self.log.info('A transaction with missing inputs, that never existed') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, allowhighfees=True) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, allowhighfees=True) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with no outputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex']))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A really large transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * (MAX_BLOCK_BASE_SIZE // len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with negative output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue = 21000000 * COIN + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large sum of output values') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = 21000000 * COIN self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with duplicate inputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('Some nonstandard transactions') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A timelocked transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) if __name__ == '__main__': MempoolAcceptanceTest().main()
the-stack_0_14826
from collections import Counter from collections import OrderedDict players = ['Mike', 'Chris', 'Arnold'] standings = OrderedDict([(player, Counter()) for player in players]) print('standings:', standings) standings['Mike']['game_played'] += 1 standings['Mike']['score'] = 2 standings['Mike']['game_played'] += 1 standings['Mike']['score'] = 3 standings['Arnold']['game_played'] += 1 standings['Arnold']['score'] = 5 standings['Chris']['game_played'] += 1 standings['Chris']['score'] = 5 rank = 1 print("standings.items:", standings.items()) standings_with_index = enumerate(standings.items()) print("standings.items.enum:", standings_with_index) ranks = [(-counter['score'], counter['games_played'], i, name) for i, (name, counter) in enumerate(standings.items())] print("ranks", ranks) print("Winner: {}".format(sorted(ranks)[rank - 1][3]))
the-stack_0_14829
import io import re import six from boto3.session import Session from botocore.config import Config AWS_ACCESS_KEY = 'AKIAJXFC3JRVYNIHX2UA' AWS_ACCESS_SECRET_KEY = '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' S3_BUCKET_NAME_PATTERN = re.compile(r'^[a-z0-9][a-z0-9\-]{1,61}[a-z0-9]$') S3_KEY_PATTERN = re.compile(r'^[a-zA-Z0-9][a-zA-Z0-9\-./_]{3,253}[a-zA-Z0-9]$') class S3Error(AssertionError): pass def get_client(): session = Session(aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET_KEY) return session.client('s3', config=Config(signature_version='s3v4')) def validate_bucket_name(bucket): if not S3_BUCKET_NAME_PATTERN.match(bucket) or '--' in bucket: raise S3Error('invalid bucket name {}'.format(bucket)) def validate_key_name(key): if not S3_KEY_PATTERN.match(key): raise S3Error('invalid s3 key name {}'.format(key)) def validate_content(content): if content is None: raise S3Error('no content to upload') if not isinstance(content, bytes) and not hasattr(content, 'read'): raise S3Error('content is neither a string nor a file like object, content={}'.format(content)) def download(bucket, key): """ always returns a byte string """ validate_bucket_name(bucket) validate_key_name(key) client = get_client() # do a buffered download bytes_io = io.BytesIO() client.download_fileobj(bucket, key, bytes_io) # hope that stuff is not too big, and just return content return bytes_io.getvalue() def download_file(bucket, key, filename): """ always returns a byte string """ validate_bucket_name(bucket) validate_key_name(key) client = get_client() client.download_file(bucket, key, filename) def upload(bucket, key, content, extra_agrs): """replace if key exists""" # validate_content(content) validate_bucket_name(bucket) validate_key_name(key) client = get_client() if extra_agrs: client.put_object(Body=content, Bucket=bucket, Key=key, ContentType=extra_agrs['ContentType']) else: client.put_object(Body=content, Bucket=bucket, Key=key) def delete(bucket, key): validate_bucket_name(bucket) validate_key_name(key) client = get_client() client.delete_object(Bucket=bucket, Key=key) def modify_metadata(): from api.models import S3Upload client = get_client() for s3_upload in S3Upload.objects.filter(folder='uploads/pod').filter(id__gte=34783).order_by('-id'): try: s3_obj = client.get_object(Bucket=s3_upload.bucket, Key=s3_upload.key()) client.put_object(Body=s3_obj['Body'].read(), Bucket=s3_upload.bucket, Key=s3_upload.key(), ContentType='image/jpeg') print(s3_upload.id) except: print(s3_upload.filename)
the-stack_0_14830
"""Declarative scaffolding for frameworks""" import collections import uuid import warnings __all__ = ["ModelMetaclass", "Field", "TypeDefinition", "TypeEngine", "DeclareException"] __version__ = "0.9.12" missing = object() # These engines can't be cleared _fixed_engines = collections.ChainMap() class DeclareException(Exception): """ Custom exception for cases where raising a built-in exception would be ambiguous (whether it was thrown by declare or a bound function) """ pass class TypeEngineMeta(type): """ Factory for :class:`~TypeEngine` so that each engine is init'd only once. This is necessary since if :meth:`~TypeEngine.__new__` returns an instance of the class, the :meth:`~TypeEngine.__init__` method will be called. """ engines = _fixed_engines.new_child() def __call__(cls, namespace, *args, **kwargs): engine = TypeEngineMeta.engines.get(namespace) if engine is None: engine = cls.__new__(cls) TypeEngineMeta.engines[namespace] = engine cls.__init__(engine, namespace, *args, **kwargs) return engine @classmethod def clear_engines(metaclass): """Clear all non-fixed engines""" metaclass.engines.clear() class TypeEngine(object, metaclass=TypeEngineMeta): """ Collection of bound :class:`~TypeDefinition` for a given namespace. TypeEngines are unique by namespace:: assert TypeEngine("foo") is TypeEngine("foo") This makes it easier for groups of components to use a single engine to translate values by type. By default :meth:`~TypeEngine.load` and :meth:`~TypeEngine.dump` require a reference to the typedef used to convert values. A custom Engine could use the :class:`~TypeDefinition` attributes ``python_type`` and ``backing_type`` to find the correct typedef from the set of available typedefs and automatically convert to the necessary format. """ def __init__(self, namespace="global", *args, **kwargs): self.namespace = namespace self.unbound_types = set() self.bound_types = {} @classmethod def unique(cls): """Return a unique type engine (using uuid4)""" namespace = str(uuid.uuid4()) return TypeEngine(namespace) def register(self, typedef): """ Add the typedef to this engine if it is compatible. After registering a :class:`~TypeDefinition`, it will not be bound until :meth:`~TypeEngine.bind` is next called. Nothing will happen when register is called with a typedef that is pending binding or already bound. Otherwise, the engine will ensure it is compatible with the type using :meth:`~TypeEngine.is_compatible` before adding it to the set of unbound types. Parameters ---------- typedef : :class:`~TypeDefinition` The typedef to register with this engine Raises ------ exc : :class:`ValueError` If :meth:`~TypeEngine.is_compatible` is falsey """ if typedef in self.bound_types: return if not self.is_compatible(typedef): raise ValueError("Incompatible type {} for engine {}".format( typedef, self)) if typedef not in self.unbound_types: self.unbound_types.add(typedef) typedef._register(self) def bind(self, **config): """ Bind all unbound types to the engine. Bind each unbound typedef to the engine, passing in the engine and :attr:`config`. The resulting ``load`` and ``dump`` functions can be found under ``self.bound_types[typedef]["load"]`` and ``self.bound_types[typedef]["dump"], respectively. Parameters ---------- config : dict, optional Engine-binding configuration to pass to each typedef that will be bound. Examples include floating-point precision values, maximum lengths for strings, or any other translation constraints/settings that a typedef needs to construct a load/dump function pair. """ while self.unbound_types: typedef = self.unbound_types.pop() try: load, dump = typedef.bind(self, **config) self.bound_types[typedef] = { "load": load, "dump": dump } except Exception: self.unbound_types.add(typedef) raise def load(self, typedef, value, **kwargs): """ Return the result of the bound load method for a typedef Looks up the load function that was bound to the engine for a typedef, and return the result of passing the given `value` and any `context` to that function. Parameters ---------- typedef : :class:`~TypeDefinition` The typedef whose bound load method should be used value : object The value to be passed into the bound load method **kwargs : kwargs Context for the value being loaded Returns ------- loaded_value : object The return value of the load function for the input value Raises ------ exc : :class:`KeyError` If the input typedef is not bound to this engine Example ------- .. code-block:: python class Account(TypeDefinition): prefix = "::account" def load(self, value, **context): return value + Account.prefix def dump(self, value, **context): return value[:-len(Account.prefix)] typedef = Account() engine = TypeEngine("accounts") engine.register(typedef) engine.bind() assert engine.dump(typedef, "Jill::account") == "Jill" """ try: bound_type = self.bound_types[typedef] except KeyError: raise DeclareException( "Can't load unknown type {}".format(typedef)) else: # Don't need to try/catch since load/dump are bound together return bound_type["load"](value, **kwargs) def dump(self, typedef, value, **kwargs): """ Return the result of the bound dump method for a typedef Looks up the dump function that was bound to the engine for a typedef, and return the result of passing the given `value` and any `context` to that function. Parameters ---------- typedef : :class:`~TypeDefinition` The typedef whose bound dump method should be used value : object The value to be passed into the bound dump method **kwargs : kwargs Context for the value being dumped Returns ------- dumped_value : object The return value of the dump function for the input value Raises ------ exc : :class:`KeyError` If the input typedef is not bound to this engine Example ------- .. code-block:: python class Account(TypeDefinition): prefix = "::account" def load(self, value, context): return value + Account.prefix def dump(self, value, context): return value[:-len(Account.prefix)] typedef = Account() engine = TypeEngine("accounts") engine.register(typedef) engine.bind() assert engine.load(typedef, "Jill") == "Jill::account" """ try: bound_type = self.bound_types[typedef] except KeyError: raise DeclareException( "Can't dump unknown type {}".format(typedef)) else: # Don't need to try/catch since load/dump are bound together return bound_type["dump"](value, **kwargs) def is_compatible(self, typedef): # pragma: no cover """ Returns ``true`` if the typedef is compatible with this engine. This function should return ``False`` otherwise. The default implementation will always return ``True``. """ return True def __contains__(self, typedef): return typedef in self.bound_types _fixed_engines["global"] = TypeEngine("global") class TypeDefinition: """ Translates between python types and backend/storage/transport types A single TypeDefinition can be used for multiple TypeEngines, by implementing :meth:`~TypeDefinition.bind` and returning different (load, dump) function tuples for each engine. For TypeDefinitions that are loaded/dumped the same for every engine, just implement :meth:`~TypeDefinition._load` and :meth:`~TypeDefinition._dump`. """ python_type = None backing_type = None def bind(self, engine, **config): """ Return a pair of (load, dump) functions for a specific engine. Some Types will load and dump values depending on certain config, or for different :class:`~TypeEngine`. By default, this function will return the functions :meth:`~TypeDefinition.load` and :meth:`~TypeDefinition._dump`. The default :meth:`~TypeDefintion._load` and :meth:`~TypeDefintion._dump` functions simply return the input value. Parameters ---------- engine : :class:`~TypeEngine` The engine that will save these load, dump functions config : dictionary Optional configuration for creating the functions. Returns ------- (load, dump) : (func, func) tuple Each function takes a value and context, and returns a single value """ return self._load, self._dump def _register(self, engine): """Called when the type is registered with an engine.""" pass def _load(self, value, **kwargs): """ Engine-agnostic load function. Implement this method for any TypeDefinition whose load function does not depend on the TypeEngine being used to load it. NOTE: This will not be available at runtime - TypeDefinitionMetaclass hides the reference at runtime to reduce the chance of incorrectly using an engine-agnostic load method when the TypeDefinition prefers an engine-specific load method. By default, returns :attr:`value` unchanged. """ return value def _dump(self, value, **kwargs): """ Engine-agnostic dump function. Implement this method for any TypeDefinition whose dump function does not depend on the TypeEngine being used to dump it. NOTE: This will not be available at runtime - TypeDefinitionMetaclass hides the reference at runtime to reduce the chance of incorrectly using an engine-agnostic dump method when the TypeDefinition prefers an engine-specific dump method. By default, returns :attr:`value` unchanged. """ return value def subclassof(obj, classinfo): """Wrap issubclass to only return True/False""" try: return issubclass(obj, classinfo) except TypeError: return False def instanceof(obj, classinfo): """Wrap isinstance to only return True/False""" try: return isinstance(obj, classinfo) except TypeError: # pragma: no cover # No coverage since we never call this without a class, # type, or tuple of classes, types, or such typles. return False class Field: def __init__(self, *, typedef=None, **kwargs): self._model_name = None if typedef is None: self.typedef = typedef else: if subclassof(typedef, TypeDefinition): typedef = typedef() if instanceof(typedef, TypeDefinition): self.typedef = typedef else: raise TypeError(("Expected {} to be None, instance of " "TypeDefinition, or subclass of" "TypeDefinition".format(typedef))) super().__init__(**kwargs) @property def model_name(self): """Name of the model's attr that references self""" return self._model_name @model_name.setter def model_name(self, value): if self._model_name is not None: raise AttributeError("{} model_name already set to '{}'".format( self.__class__.__name__, self._model_name)) self._model_name = value def set(self, obj, value): if self._model_name is None: raise AttributeError("Can't set field without binding to model") obj.__dict__[self._model_name] = value def get(self, obj): if self._model_name is None: raise AttributeError("Can't get field without binding to model") try: return obj.__dict__[self._model_name] except KeyError: raise AttributeError("'{}' has no attribute '{}'".format( obj.__class__, self._model_name)) def delete(self, obj): if self._model_name is None: raise AttributeError("Can't delete field without binding to model") try: del obj.__dict__[self._model_name] except KeyError: raise AttributeError("'{}' has no attribute '{}'".format( obj.__class__, self._model_name)) # Descriptor Protocol # To override, use set, get, delete above # https://docs.python.org/3.4/howto/descriptor.html def __set__(self, obj, value): self.set(obj, value) def __get__(self, obj, type=None): if obj is None: return self return self.get(obj) def __delete__(self, obj): self.delete(obj) def index(objects, attr): """ Generate a mapping of a list of objects indexed by the given attr. Parameters ---------- objects : :class:`list`, iterable attr : string The attribute to index the list of objects by Returns ------- dictionary : dict keys are the value of each object's attr, and values are from objects Example ------- class Person(object): def __init__(self, name, email, age): self.name = name self.email = email self.age = age people = [ Person('one', '[email protected]', 1), Person('two', '[email protected]', 2), Person('three', '[email protected]', 3) ] by_email = index(people, 'email') by_name = index(people, 'name') assert by_name['one'] is people[0] assert by_email['[email protected]'] is people[1] """ with warnings.catch_warnings(): warnings.simplefilter("ignore") return {getattr(obj, attr): obj for obj in objects} class ModelMetaclass(type, TypeDefinition): """ Track the order that ``Field`` attributes are declared, and insert a Meta object (class) in the class """ @classmethod def __prepare__(mcs, name, bases): """Returns an OrderedDict so attribute order is preserved""" return collections.OrderedDict() def __new__(mcs, name, bases, attrs): """Add a container class `Meta` to the class""" Meta = attrs.get('Meta', missing) if Meta is missing: class Meta: pass attrs['Meta'] = Meta if not isinstance(Meta, type): raise TypeError("Expected `Meta` to be a class object") cls = super().__new__(mcs, name, bases, attrs) # Load and index fields by name # ---------------------------------------------------------- fields = [] for name, attr in attrs.items(): if isinstance(attr, Field): fields.append(attr) # This will raise AttributeError if the field's # name is already set with warnings.catch_warnings(): warnings.simplefilter("ignore") attr.model_name = name Meta.fields_by_model_name = index(fields, 'model_name') Meta.fields = fields return cls
the-stack_0_14831
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack LLC. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """RequestContext: context for requests that persist through all of nova.""" import copy import uuid from nova.openstack.common import local from nova.openstack.common import log as logging from nova.openstack.common import timeutils from nova import policy LOG = logging.getLogger(__name__) def generate_request_id(): return 'req-' + str(uuid.uuid4()) class RequestContext(object): """Security context and request information. Represents the user taking a given action within the system. """ def __init__(self, user_id, project_id, is_admin=None, read_deleted="no", roles=None, remote_address=None, timestamp=None, request_id=None, auth_token=None, overwrite=True, quota_class=None, user_name=None, project_name=None, service_catalog=None, instance_lock_checked=False, **kwargs): """ :param read_deleted: 'no' indicates deleted records are hidden, 'yes' indicates deleted records are visible, 'only' indicates that *only* deleted records are visible. :param overwrite: Set to False to ensure that the greenthread local copy of the index is not overwritten. :param kwargs: Extra arguments that might be present, but we ignore because they possibly came in from older rpc messages. """ if kwargs: LOG.warn(_('Arguments dropped when creating context: %s') % str(kwargs)) self.user_id = user_id self.project_id = project_id self.roles = roles or [] self.is_admin = is_admin if self.is_admin is None: self.is_admin = policy.check_is_admin(self.roles) self.read_deleted = read_deleted self.remote_address = remote_address if not timestamp: timestamp = timeutils.utcnow() if isinstance(timestamp, basestring): timestamp = timeutils.parse_strtime(timestamp) self.timestamp = timestamp if not request_id: request_id = generate_request_id() self.request_id = request_id self.auth_token = auth_token self.service_catalog = service_catalog self.instance_lock_checked = instance_lock_checked # NOTE(markmc): this attribute is currently only used by the # rs_limits turnstile pre-processor. # See https://lists.launchpad.net/openstack/msg12200.html self.quota_class = quota_class self.user_name = user_name self.project_name = project_name if overwrite or not hasattr(local.store, 'context'): self.update_store() def _get_read_deleted(self): return self._read_deleted def _set_read_deleted(self, read_deleted): if read_deleted not in ('no', 'yes', 'only'): raise ValueError(_("read_deleted can only be one of 'no', " "'yes' or 'only', not %r") % read_deleted) self._read_deleted = read_deleted def _del_read_deleted(self): del self._read_deleted read_deleted = property(_get_read_deleted, _set_read_deleted, _del_read_deleted) def update_store(self): local.store.context = self def to_dict(self): return {'user_id': self.user_id, 'project_id': self.project_id, 'is_admin': self.is_admin, 'read_deleted': self.read_deleted, 'roles': self.roles, 'remote_address': self.remote_address, 'timestamp': timeutils.strtime(self.timestamp), 'request_id': self.request_id, 'auth_token': self.auth_token, 'quota_class': self.quota_class, 'user_name': self.user_name, 'service_catalog': self.service_catalog, 'project_name': self.project_name, 'instance_lock_checked': self.instance_lock_checked, 'tenant': self.tenant, 'user': self.user} @classmethod def from_dict(cls, values): return cls(**values) def elevated(self, read_deleted=None, overwrite=False): """Return a version of this context with admin flag set.""" context = copy.copy(self) context.is_admin = True if 'admin' not in context.roles: context.roles.append('admin') if read_deleted is not None: context.read_deleted = read_deleted return context # NOTE(sirp): the openstack/common version of RequestContext uses # tenant/user whereas the Nova version uses project_id/user_id. We need # this shim in order to use context-aware code from openstack/common, like # logging, until we make the switch to using openstack/common's version of # RequestContext. @property def tenant(self): return self.project_id @property def user(self): return self.user_id def get_admin_context(read_deleted="no"): return RequestContext(user_id=None, project_id=None, is_admin=True, read_deleted=read_deleted, overwrite=False)
the-stack_0_14832
#import dependencies from bs4 import BeautifulSoup as bs from splinter import Browser import os import pandas as pd import time import requests import urllib from urllib.request import urlopen, urlretrieve from urllib.parse import urljoin from urllib.parse import urlsplit from splinter import Browser from selenium import webdriver from selenium.webdriver.firefox.firefox_binary import FirefoxBinary import time from bs4 import BeautifulSoup as yourVariable #preparation steps: import pymongo #install flask from flask import Flask, render_template # setup mongo connection (MongoDB Compass to python) conn = "mongodb://localhost:27017" # the default port for MongoDB client = pymongo.MongoClient(conn) #to connect to Mongo database via db = client.name_of_database (it'll be created if absent) # connect to mongo db and collection db = client.hemispheresDB collection = db.collection ### NASA Mars News ##Connecting to Mars Space News Site site url_space = "https://spacenews.com/segment/news" # Retrieve page with the requests module response = requests.get(url_space) def scrape(): from webdriver_manager.chrome import ChromeDriverManager executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=True) # Create BeautifulSoup object; parse with 'lxml' from bs4 import BeautifulSoup as bs soup = bs(response.text, 'lxml') mars_dict = {} #find the latest articles, search for a title results = soup.find_all('div', class_='article-item__top') for result in results: title = result.find('a', class_='title').text # Extract title text, save it into variable news_title = soup.title.text mars_dict['a_title'] = news_title paragraphs = soup.find_all("div", class_="article-meta") for paragraph in paragraphs: news_paragraph = paragraph.find('p', class_='post-excerpt').text mars_dict['b_paragraph'] = news_paragraph from webdriver_manager.chrome import ChromeDriverManager executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=True) #Visit the url for the Featured Space Image site (https://spaceimages-mars.com), assign the url string to a variable space_image = "https://spaceimages-mars.com" browser.visit(space_image) time.sleep(2) from urllib.parse import urlsplit base_url = "{0.scheme}://{0.netloc}/".format(urlsplit(space_image)) #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, "html.parser") # Create BeautifulSoup object; parse with 'parser' from bs4 import BeautifulSoup as bs #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, 'html.parser') soup = bs(urlopen(space_image)) for img in soup.find_all('img'): featured_image_url = urljoin(space_image, img['src']) file_name = img['src'].split('/')[-1] urlretrieve(featured_image_url, file_name) mars_dict['c_featured_image'] = featured_image_url mars_dict['d_featured_image_name'] = file_name ### Mars Facts url_facts = 'https://galaxyfacts-mars.com/' time.sleep(2) table = pd.read_html(url_facts) facts_table = table[0] facts_table.columns = ["Description", "Mars", "Earth"] facts_table.set_index("Description", inplace=True) mars_dict["e_Mars_data_table"] = facts_table.to_html() ### Mars Hemispheres mars_hemispheres_list = [] #Visit the url for Mars Hemispheres site (https://marshemispheres.com/), assign the url string to a variable hemisphere_images = "https://marshemispheres.com/" browser.visit(hemisphere_images) from urllib.parse import urlsplit base_url = "{0.scheme}://{0.netloc}/".format(urlsplit(space_image)) #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, "html.parser") # Create BeautifulSoup object; parse with 'parser' from bs4 import BeautifulSoup as bs #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, 'html.parser') #Visit the url for Mars Hemispheres site (https://marshemispheres.com/), assign the url string to a variable hemisphere_images = "https://marshemispheres.com/" browser.visit(hemisphere_images) mars_hemispheres_list = [] soup = bs(urlopen(hemisphere_images)) for i in range (4): time.sleep(5) #to create a loop # locate tag h3 (corresponding hemispheres) images = browser.find_by_tag("h3") # click on each image to get url images[i].click() # separate url html = browser.html soup = bs(html, "html.parser") # search for HD image url_hemisphere = soup.find("img", class_="wide-image")["src"] # looking for image title img_title = soup.find("h2",class_="title").text # get image url img_url = "https://marshemispheres.com/"+ url_hemisphere # store the results into dictionary dictionary={"title":img_title,"img_url":img_url} # append the dictionary into mars hemisheres list mars_hemispheres_list.append(dictionary) browser.back() mars_dict['f_Mars_hemispheres_list'] = mars_hemispheres_list return mars_dict
the-stack_0_14834
# -*- coding: utf-8 -*- """ flask-rstblog ~~~~~~~~~~~~~ :copyright: (c) 2011 by Christoph Heer. :license: BSD, see LICENSE for more details. """ import os from datetime import date from jinja2 import FileSystemLoader from flask import Flask, render_template from flaskrst.modules import manager from flaskrst.templating import inject_navigation class Flask(Flask): def create_global_jinja_loader(self): template_path = os.path.join(self.config.get('SOURCE', ''), "_templates") builtin_templates = os.path.join(self.root_path, self.template_folder) return FileSystemLoader([template_path, builtin_templates]) def create_app(source=None, config=None): app = Flask("flaskrst") # Set default config values app.config.setdefault('MODULES', {}) app.config.setdefault('STYLESHEETS', []) app.config.setdefault('FEEDS', []) # Load config if config: app.config.from_pyfile(config) config_loaded = True # maybe there is a file declared by env elif 'FLASK_RST_CONFIG' in os.environ: app.config.from_envvar('FLASK_RST_CONFIG') config_loaded = True # no config loaded try again later after source setting else: config_loaded = False # Set source path if source: app.config['SOURCE'] = source elif 'FLASK_RST_SOURCE' in os.environ: app.config['SOURCE'] = os.environ['FLASK_RST_SOURCE'] else: # Use current working directory as source app.config['SOURCE'] = os.getcwd() # If no config already loaded than is a config maybe in source path if not config_loaded: config_path = os.path.join(app.config['SOURCE'], 'config.py') app.config.from_pyfile(config_path, silent=True) # Set path of static folder if 'STATIC_FOLDER' in app.config: app.static_folder = app.config['STATIC_FOLDER'] else: # Is a static folder called _static in source path? source_static_folder = os.path.join(app.config['SOURCE'], "_static") if os.path.isdir(source_static_folder): app.static_folder = source_static_folder # Load flask-rst modules manager.init_app(app) manager.load_from_config() # Add some jinja globals and context processors app.jinja_env.globals['date'] = date app.context_processor(inject_navigation) @app.errorhandler(404) def page_not_found(error): return render_template('404.html'), 404 return app
the-stack_0_14836
from copy import deepcopy from typing import Optional from warnings import warn import numpy from catsim import cat from catsim.simulation import Estimator, Selector from sklearn.linear_model import LogisticRegression def _fit_log_reg( items, administered_items, response_vector, use_discriminations=True, # use_guess_slip=True, log_reg=None, ): if log_reg is None: log_reg = LogisticRegression(C=float("inf")) X = items[administered_items][:, 1, numpy.newaxis] sample_weight = None if use_discriminations: sample_weight = items[administered_items, 0] # if use_guess_slip: # response_vector = [ # slip if resp else guess # for resp, (guess, slip) in zip( # response_vector, items[administered_items, 2:4] # ) # ] log_reg.fit(X, response_vector, sample_weight=sample_weight) return log_reg """ def _set_log_reg(mean, scale): coef = 1 / scale _log_reg.intercept_ = -mean * coef _log_reg.coef_ = coef """ def _log_reg_scale(log_reg): return -1 / log_reg.coef_[0, 0] class LogisticEstimator(Estimator): """Estimator that uses a hill-climbing algorithm to maximize the likelihood function :param precision: number of decimal points of precision :param verbose: verbosity level of the maximization method """ def __init__( self, use_discriminations=True # , return_scale=False, # , use_guess_slip=True ): super().__init__() self._use_discriminations = use_discriminations # self._use_guess_slip = use_guess_slip # self._return_scale = return_scale def estimate( self, index: int = None, items: numpy.ndarray = None, administered_items: list = None, response_vector: list = None, est_theta: float = None, **kwargs, ) -> float: """Returns the theta value that minimizes the negative log-likelihood function, given the current state of the test for the given examinee. :param index: index of the current examinee in the simulator :param items: a matrix containing item parameters in the format that `catsim` understands (see: :py:func:`catsim.cat.generate_item_bank`) :param administered_items: a list containing the indexes of items that were already administered :param response_vector: a boolean list containing the examinee's answers to the administered items :param est_theta: a float containing the current estimated proficiency :returns: the current :math:`\\hat\\theta` """ items, administered_items, response_vector, est_theta = self._prepare_args( return_items=True, return_response_vector=True, return_est_theta=True, index=index, items=items, administered_items=administered_items, response_vector=response_vector, est_theta=est_theta, **kwargs, ) assert items is not None assert administered_items is not None assert response_vector is not None assert est_theta is not None if len(set(response_vector)) == 1: return cat.dodd(est_theta, items, response_vector[-1]) log_reg = _fit_log_reg( items, administered_items, response_vector, use_discriminations=self._use_discriminations, # use_guess_slip=self._use_guess_slip, ) # y = mx + c, max entropy when y = 0 => x = -c / m theta = -log_reg.intercept_[0] / log_reg.coef_[0, 0] return theta # return theta, _log_reg_scale(log_reg) def _all_future_scales( log_reg, items, administered_items, response_vector, next_choice ): res = numpy.zeros((items.shape[0],)) for item in items[:, 1].argsort(): log_reg = _fit_log_reg( items, administered_items + [item], response_vector + [next_choice], use_discriminations=True, log_reg=log_reg, ) scale = abs(_log_reg_scale(log_reg)) res[item] = scale return res class MinExpectedScaleSelector(Selector): """ Owens 1977, """ def select( self, index: int = None, items: numpy.ndarray = None, administered_items: list = None, est_theta: float = None, response_vector: list = None, **kwargs, ) -> Optional[int]: """Returns the index of the next item to be administered. :param index: the index of the current examinee in the simulator. :param items: a matrix containing item parameters in the format that `catsim` understands (see: :py:func:`catsim.cat.generate_item_bank`) :param administered_items: a list containing the indexes of items that were already administered :param est_theta: a float containing the current estimated proficiency :returns: index of the next item to be applied or `None` if there are no more items in the item bank. """ items, administered_items, response_vector, est_theta = self._prepare_args( return_items=True, return_response_vector=True, return_est_theta=True, index=index, items=items, administered_items=administered_items, response_vector=response_vector, est_theta=est_theta, **kwargs, ) assert items is not None assert administered_items is not None assert response_vector is not None assert est_theta is not None def default(): # Fall back to max info ordered_items = self._sort_by_info(items, est_theta) valid_indexes = self._get_non_administered( ordered_items, administered_items ) return valid_indexes[0] if len(administered_items) > 0 and len(set(response_vector)) >= 2: log_reg = LogisticRegression(C=float("inf"), warm_start=True) log_reg_before = _fit_log_reg( items, administered_items, response_vector, use_discriminations=True, log_reg=log_reg, ) if _log_reg_scale(log_reg_before) <= 0: return default() log_reg.tol = 0.05 neg_prob, pos_prob = log_reg_before.predict_proba( items[:, 1, numpy.newaxis] ).T else: return default() # TODO: Can instead use Dodd's like logic to find expected scale even when there is only one class # min_theta = min(items[:, 1]) # max_theta = max(items[:, 1]) # _set_log_reg( # est_theta, min(max_theta - est_theta, est_theta - min_theta) # ) working_log_reg = deepcopy(log_reg) false_scales = _all_future_scales( working_log_reg, items, administered_items, response_vector, False ) working_log_reg = deepcopy(log_reg) true_scales = _all_future_scales( working_log_reg, items, administered_items, response_vector, True ) organized_items = [ x for x in numpy.array( [ pp * ts + np * fs for np, pp, fs, ts in zip( neg_prob, pos_prob, false_scales, true_scales ) ] ).argsort() if x not in administered_items ] if len(organized_items) == 0: warn("There are no more items to apply.") return None return organized_items[0]
the-stack_0_14837
# weather.py ''' # Configuration The weather module reads from the weather.yaml file stored in bobbit's configuration directory and expects the following values: default: This is the default zip code ''' import logging import re import aiohttp.client_exceptions # Metadata NAME = 'weather' ENABLE = True USAGE = '''Usage: ![weather|forecast] <zipcode> Given a zipcode, this returns the current weather or the daily forecast for that location. Examples: > !weather # Default location > !forecast 46556 # Specific zip code ''' WEATHER_RX = r'^!weather\s*(?P<zipcode>\d{5})*$' FORECAST_RX = r'^!forecast\s*(?P<zipcode>\d{5})*$' # Constants ZIPCODE = { '#nd-cse' : 46556, # Notre Dame, IN '#ndlug' : 46556, # Notre Dame, IN '#lug' : 46556, # Notre Dame, IN '#uwec-cs': 54702, # Eau Claire, WI } DEFAULT_ZIPCODE = None WEATHER_GOV_URL = 'https://forecast.weather.gov' # Functions async def retrieve_weather_data(bot, zipcode): url = WEATHER_GOV_URL + '/zipcity.php' params = { 'inputstring': zipcode } async with bot.http_client.get(url, params=params) as response: try: text = await response.text() xml_url = re.findall(r'<a href="(MapClick[^"]+dwml)"', text)[0] json_url = WEATHER_GOV_URL + '/' + xml_url.replace('dwml', 'json') logging.debug('JSON URL: %s', json_url) except IndexError as e: logging.warning('Unable to get weather data: %s', e) return {} async with bot.http_client.get(json_url) as response: try: return await response.json() except aiohttp.client_exceptions.ContentTypeError: logging.warning('Unable to get weather data: %s', response.text) return {} def get_location(data): location = data['location']['areaDescription'] for prefix in re.findall(r'(\d+ Miles [ENSW]+)', location): location = location.replace(prefix, '') return location.strip()[:-3] + ", " + location.strip()[-2:] # Commands async def weather(bot, message, zipcode=None): zipcode = zipcode or ZIPCODE.get(message.channel, DEFAULT_ZIPCODE) data = await retrieve_weather_data(bot, zipcode) if not data: return message.with_body('No results') location = get_location(data) current = data['currentobservation'] return message.with_body(bot.client.format_text( '{bold}Weather{bold} for {bold}{location}{bold}: {temp}°F, {weather}', location = location, temp = current['Temp'].strip(), weather = current['Weather'].strip(), )) async def forecast(bot, message, zipcode=None): zipcode = zipcode or ZIPCODE.get(message.channel, DEFAULT_ZIPCODE) data = await retrieve_weather_data(bot, zipcode) if not data: return message.with_body('No results') location = get_location(data) text = data['data']['text'] return message.with_body(bot.client.format_text( '{bold}Forecast{bold} for {bold}{location}{bold}: {bold}Today{bold}: {today} {bold}Tonight{bold}: {tonight}', location = location, today = text[0].strip(), tonight = text[1].strip(), )) # Register def register(bot): global DEFAULT_ZIPCODE config = bot.config.load_module_config('weather') DEFAULT_ZIPCODE = config.get('default', ZIPCODE['#lug']) return ( ('command', WEATHER_RX , weather), ('command', FORECAST_RX, forecast), ) # vim: set sts=4 sw=4 ts=8 expandtab ft=python:
the-stack_0_14841
''' The actual saltkey functional code ''' # Import python modules import os import shutil import sys import logging # Import salt modules import salt.crypt import salt.utils import salt.utils.event log = logging.getLogger(__name__) class Key(object): ''' The object that encapsulates saltkey actions ''' def __init__(self, opts): self.opts = opts self.event = salt.utils.event.SaltEvent(opts['sock_dir'], 'master') self.colors = salt.utils.get_colors( not bool(self.opts.get('no_color', False)) ) def _keys(self, key_type, full_path=False): ''' Safely return the names of the unaccepted keys, pass True to return the full key paths. Returns a set. ''' ret = set() subdir = '' if key_type == 'pre': subdir = 'minions_pre' elif key_type == 'rej': subdir = 'minions_rejected' elif key_type == 'acc': subdir = 'minions' dir_ = os.path.join(self.opts['pki_dir'], subdir) if not os.path.isdir(dir_): err = ('The {0} directory is not present, ensure that ' 'the master server has been started').format(subdir) self._log(err, level='error') sys.exit(42) keys = os.listdir(dir_) if full_path: for key in keys: ret.add(os.path.join(dir_, key)) else: ret = set(keys) return ret def _log(self, message, level=''): if hasattr(log, level): log_msg = getattr(log, level) log_msg(message) if not self.opts['quiet']: print(message) def _list_pre(self, header=True, printer=None): ''' List the unaccepted keys ''' if header == True: self._log('{0}Unaccepted Keys:{1}'.format( self.colors['LIGHT_RED'], self.colors['ENDC'] )) keys = self._keys('pre') if printer is None: for key in sorted(keys): output = '{0}{1}{2}'.format( self.colors['RED'], key, self.colors['ENDC'] ) self._log(output) else: printer(list(keys)) def _list_accepted(self, header=True, printer=None): ''' List the accepted public keys ''' if header == True: self._log('{0}Accepted Keys:{1}'.format( self.colors['LIGHT_GREEN'], self.colors['ENDC'] )) keys = self._keys('acc') if printer is None: for key in sorted(keys): self._log('{0}{1}{2}'.format( self.colors['GREEN'], key, self.colors['ENDC'] )) else: printer(list(keys)) def _list_rejected(self, header=True, printer=None): ''' List the unaccepted keys ''' if header == True: self._log('{0}Rejected:{1}'.format( self.colors['LIGHT_BLUE'], self.colors['ENDC'] )) keys = self._keys('rej') if printer is None: for key in sorted(keys): self._log('{0}{1}{2}'.format( self.colors['BLUE'], key, self.colors['ENDC'] )) else: printer(list(keys)) def _list(self, name): ''' List keys ''' printout = self._get_outputter() if 'json_out' in self.opts and self.opts['json_out']: printout.indent = 2 if name in ('pre', 'un', 'unaccept', 'unaccepted'): self._list_pre(header=False, printer=printout) elif name in ('acc', 'accept', 'accepted'): self._list_accepted(header=False, printer=printout) elif name in ('rej', 'reject', 'rejected'): self._list_rejected(header=False, printer=printout) elif name in ('all',): if printout is not None: keys = { 'rejected': list(self._keys('rej')), 'accepted': list(self._keys('acc')), 'unaccepted': list(self._keys('pre')), } printout(keys) else: self._list_pre(printer=printout) self._list_accepted(printer=printout) self._list_rejected(printer=printout) else: err = ('Unrecognized key type "{0}". Run with -h for options.' ).format(name) self._log(err, level='error') def _get_outputter(self): get_outputter = salt.output.get_outputter if self.opts['raw_out']: printout = get_outputter('raw') elif self.opts['json_out']: printout = get_outputter('json') elif self.opts['yaml_out']: printout = get_outputter('yaml') else: printout = None # use default color output return printout def _print_key(self, name): ''' Print out the specified public key ''' keys = self._keys('pre', True).union(self._keys('acc', True)) for key in sorted(keys): if key.endswith(name): with open(key, 'r') as kfn: self._log(kfn.read()) def _print_all(self): ''' Print out the public keys, all of em' ''' self._log('{0}Unaccepted keys:{1}'.format( self.colors['LIGHT_RED'], self.colors['ENDC'] )) for key in sorted(self._keys('pre', True)): self._log(' {0}{1}{2}'.format( self.colors['RED'], os.path.basename(key), self.colors['ENDC'] )) with open(key, 'r') as kfn: self._log(kfn.read()) self._log('{0}Accepted keys:{1}'.format( self.colors['LIGHT_GREEN'], self.colors['ENDC'] )) for key in sorted(self._keys('acc', True)): self._log(' {0}{1}{2}'.format( self.colors['GREEN'], os.path.basename(key), self.colors['ENDC'] )) with open(key, 'r') as kfn: self._log(kfn.read()) self._log('{0}Rejected keys:{1}'.format( self.colors['LIGHT_BLUE'], self.colors['ENDC'] )) for key in sorted(self._keys('pre', True)): self._log(' {0}{1}{2}'.format( self.colors['BLUE'], os.path.basename(key), self.colors['ENDC'])) with open(key, 'r') as kfn: self._log(kfn.read()) def _accept(self, key): ''' Accept a specified host's public key ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() pre = os.listdir(minions_pre) if key not in pre: err = ('The key named {0} does not exist, please accept an ' 'available key').format(key) #log.error(err) self._log(err, level='error') sys.exit(43) shutil.move(os.path.join(minions_pre, key), os.path.join(minions_accepted, key)) eload = {'result': True, 'act': 'accept', 'id': key} self.event.fire_event(eload, 'key') self._log( 'Key for {0} accepted.'.format(key), level='info' ) def _accept_all(self): ''' Accept all keys in pre ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() for key in os.listdir(minions_pre): self._accept(key) def _delete_key(self, delete=None): ''' Delete a key ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() if delete is None: delete = self.opts['delete'] pre = os.path.join(minions_pre, delete) acc = os.path.join(minions_accepted, delete) rej = os.path.join(minions_rejected, delete) if os.path.exists(pre): os.remove(pre) self._log('Removed pending key {0}'.format(delete), level='info') if os.path.exists(acc): os.remove(acc) self._log('Removed accepted key {0}'.format(delete), level='info') if os.path.exists(rej): os.remove(rej) self._log('Removed rejected key {0}'.format(delete), level='info') def _delete_all(self): ''' Delete all keys ''' for dir in ("acc", "rej", "pre"): for key in self._keys(dir): self._delete_key(key) def _reject(self, key): ''' Reject a specified host's public key ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() pre = os.listdir(minions_pre) if key not in pre: err = ('The host named {0} is unavailable, please accept an ' 'available key').format(key) self._log(err, level='error') sys.exit(43) shutil.move(os.path.join(minions_pre, key), os.path.join(minions_rejected, key)) self._log('{0} key rejected.'.format(key), level='info') def _reject_all(self): ''' Reject all keys in pre ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() for key in os.listdir(minions_pre): self._reject(key) def _check_minions_directories(self): minions_accepted = os.path.join(self.opts['pki_dir'], 'minions') minions_pre = os.path.join(self.opts['pki_dir'], 'minions_pre') minions_rejected = os.path.join(self.opts['pki_dir'], 'minions_rejected') for dir_ in [minions_accepted, minions_pre, minions_rejected]: if not os.path.isdir(dir_): err = ('The minions directory {0} is not present, ensure ' 'that the master server has been started'.format(dir_)) self._log(err, level='error') sys.exit(42) return minions_accepted, minions_pre, minions_rejected def run(self): ''' Run the logic for saltkey ''' if self.opts['gen_keys']: salt.crypt.gen_keys( self.opts['gen_keys_dir'], self.opts['gen_keys'], self.opts['keysize']) return if self.opts['list']: self._list(self.opts['list']) elif self.opts['list_all']: self._list('all') elif self.opts['print']: self._print_key(self.opts['print']) elif self.opts['print_all']: self._print_all() elif self.opts['accept']: self._accept(self.opts['accept']) elif self.opts['accept_all']: self._accept_all() elif self.opts['reject']: self._reject(self.opts['reject']) elif self.opts['reject_all']: self._reject_all() elif self.opts['delete']: self._delete_key() elif self.opts['delete_all']: self._delete_all() else: self._list('all')
the-stack_0_14842
# Copyright (c) AIRBUS and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import random from enum import Enum from typing import Any, Dict, List, Optional, Union import numpy as np from skdecide.discrete_optimization.generic_tools.do_mutation import Mutation from skdecide.discrete_optimization.generic_tools.ea.deap_wrappers import ( generic_mutate_wrapper, ) from skdecide.discrete_optimization.generic_tools.ea.ga import ( DeapCrossover, DeapMutation, DeapSelection, ObjectiveHandling, ) from skdecide.discrete_optimization.generic_tools.result_storage.result_storage import ( ResultStorage, ) class ParametersGa: mutation: Union[Mutation, DeapMutation] = None crossover: DeapCrossover = None selection: DeapSelection = None encoding: str = None objective_handling: ObjectiveHandling = None objectives: Union[str, List[str]] = None objective_weights: List[float] = None pop_size: int = None max_evals: int = None mut_rate: float = None crossover_rate: float = None tournament_size: float = None deap_verbose: bool = False def __init__( self, mutation, crossover, selection, encoding, objective_handling, objectives, objective_weights, pop_size, max_evals, mut_rate, crossover_rate, tournament_size, deap_verbose, ): self.mutation = mutation self.crossover = crossover self.selection = selection self.encoding = encoding self.objective_handling = objective_handling self.objectives = objectives self.objective_weights = objective_weights self.pop_size = pop_size self.max_evals = max_evals self.mut_rate = mut_rate self.crossover_rate = crossover_rate self.tournament_size = tournament_size self.deap_verbose = deap_verbose @staticmethod def default_rcpsp(): return ParametersGa( mutation=DeapMutation.MUT_SHUFFLE_INDEXES, crossover=DeapCrossover.CX_PARTIALY_MATCHED, selection=DeapSelection.SEL_TOURNAMENT, encoding="rcpsp_permutation", objective_handling=ObjectiveHandling.AGGREGATE, objectives=["makespan"], objective_weights=[-1], pop_size=100, max_evals=10000, mut_rate=0.1, crossover_rate=0.9, tournament_size=5, deap_verbose=False, ) class ParametersAltGa: mutations: List[Union[Mutation, DeapMutation]] = None crossovers: List[DeapCrossover] = None selection: DeapSelection = None encodings: List[str] = None objective_handling: ObjectiveHandling = None objectives: Union[str, List[str]] = None objective_weights: List[float] = None pop_size: int = None max_evals: int = None mut_rate: float = None crossover_rate: float = None tournament_size: float = None deap_verbose: bool = False sub_evals: List[int] = None def __init__( self, mutations, crossovers, selection, encodings, objective_handling, objectives, objective_weights, pop_size, max_evals, mut_rate, crossover_rate, tournament_size, deap_verbose, sub_evals, ): self.mutations = mutations self.crossovers = crossovers self.selection = selection self.encodings = encodings self.objective_handling = objective_handling self.objectives = objectives self.objective_weights = objective_weights self.pop_size = pop_size self.max_evals = max_evals self.mut_rate = mut_rate self.crossover_rate = crossover_rate self.tournament_size = tournament_size self.deap_verbose = deap_verbose self.sub_evals = sub_evals @staticmethod def default_mrcpsp(): return ParametersAltGa( mutations=[DeapMutation.MUT_UNIFORM_INT, DeapMutation.MUT_SHUFFLE_INDEXES], crossovers=[DeapCrossover.CX_ONE_POINT, DeapCrossover.CX_PARTIALY_MATCHED], selection=DeapSelection.SEL_TOURNAMENT, encodings=["rcpsp_modes_arrity_fix", "rcpsp_permutation"], objective_handling=ObjectiveHandling.AGGREGATE, objectives=["makespan"], objective_weights=[-1], pop_size=100, max_evals=10000, mut_rate=0.1, crossover_rate=0.9, tournament_size=5, deap_verbose=False, sub_evals=[1000, 1000], ) @staticmethod def default_msrcpsp(): return ParametersAltGa( mutations=[ DeapMutation.MUT_UNIFORM_INT, DeapMutation.MUT_SHUFFLE_INDEXES, DeapMutation.MUT_SHUFFLE_INDEXES, ], crossovers=[ DeapCrossover.CX_ONE_POINT, DeapCrossover.CX_PARTIALY_MATCHED, DeapCrossover.CX_PARTIALY_MATCHED, ], selection=DeapSelection.SEL_TOURNAMENT, # encodings=['modes_arrity_fix', 'priority_list_task', 'priority_worker_per_task_perm'], encodings=[ "modes_arrity_fix_from_0", "priority_list_task", "priority_worker_per_task_perm", ], objective_handling=ObjectiveHandling.AGGREGATE, objectives=["makespan"], objective_weights=[-1], pop_size=100, max_evals=10000, mut_rate=0.1, crossover_rate=0.9, tournament_size=5, deap_verbose=False, sub_evals=[500, 500, 500], )
the-stack_0_14843
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure short_description: create or terminate a virtual machine in azure description: - Creates or terminates azure instances. When created optionally waits for it to be 'running'. version_added: "1.7" options: name: description: - name of the virtual machine and associated cloud service. required: true default: null location: description: - the azure location to use (e.g. 'East US') required: true default: null subscription_id: description: - azure subscription id. Overrides the AZURE_SUBSCRIPTION_ID environment variable. required: false default: null management_cert_path: description: - path to an azure management certificate associated with the subscription id. Overrides the AZURE_CERT_PATH environment variable. required: false default: null storage_account: description: - the azure storage account in which to store the data disks. required: true image: description: - system image for creating the virtual machine (e.g., b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu_DAILY_BUILD-precise-12_04_3-LTS-amd64-server-20131205-en-us-30GB) required: true default: null role_size: description: - azure role size for the new virtual machine (e.g., Small, ExtraLarge, A6). You have to pay attention to the fact that instances of type G and DS are not available in all regions (locations). Make sure if you selected the size and type of instance available in your chosen location. required: false default: Small endpoints: description: - a comma-separated list of TCP ports to expose on the virtual machine (e.g., "22,80") required: false default: 22 user: description: - the unix username for the new virtual machine. required: false default: null password: description: - the unix password for the new virtual machine. required: false default: null ssh_cert_path: description: - path to an X509 certificate containing the public ssh key to install in the virtual machine. See http://www.windowsazure.com/en-us/manage/linux/tutorials/intro-to-linux/ for more details. - if this option is specified, password-based ssh authentication will be disabled. required: false default: null virtual_network_name: description: - Name of virtual network. required: false default: null hostname: description: - hostname to write /etc/hostname. Defaults to <name>.cloudapp.net. required: false default: null wait: description: - wait for the instance to be in state 'running' before returning required: false default: "no" choices: [ "yes", "no" ] aliases: [] wait_timeout: description: - how long before wait gives up, in seconds default: 600 aliases: [] wait_timeout_redirects: description: - how long before wait gives up for redirects, in seconds default: 300 aliases: [] state: description: - create or terminate instances required: false default: 'present' aliases: [] auto_updates: description: - Enable Auto Updates on Windows Machines required: false version_added: "2.0" default: "no" choices: [ "yes", "no" ] enable_winrm: description: - Enable winrm on Windows Machines required: false version_added: "2.0" default: "yes" choices: [ "yes", "no" ] os_type: description: - The type of the os that is gettings provisioned required: false version_added: "2.0" default: "linux" choices: [ "windows", "linux" ] requirements: - "python >= 2.6" - "azure >= 0.7.1" author: "John Whitbeck (@jwhitbeck)" ''' EXAMPLES = ''' # Note: None of these examples set subscription_id or management_cert_path # It is assumed that their matching environment variables are set. - name: Provision virtual machine example azure: name: my-virtual-machine role_size: Small image: b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu_DAILY_BUILD-precise-12_04_3-LTS-amd64-server-20131205-en-us-30GB location: East US user: ubuntu ssh_cert_path: /path/to/azure_x509_cert.pem storage_account: my-storage-account wait: True state: present delegate_to: localhost - name: Terminate virtual machine example azure: name: my-virtual-machine state: absent delegate_to: localhost - name: Create windows machine azure: name: ben-Winows-23 hostname: win123 os_type: windows enable_winrm: True subscription_id: '{{ azure_sub_id }}' management_cert_path: '{{ azure_cert_path }}' role_size: Small image: bd507d3a70934695bc2128e3e5a255ba__RightImage-Windows-2012-x64-v13.5 location: East Asia password: xxx storage_account: benooytes user: admin wait: True state: present virtual_network_name: '{{ vnet_name }}' delegate_to: localhost ''' import base64 import datetime import os import time from urlparse import urlparse from ansible.module_utils.facts import * # TimeoutError AZURE_LOCATIONS = ['South Central US', 'Central US', 'East US 2', 'East US', 'West US', 'North Central US', 'North Europe', 'West Europe', 'East Asia', 'Southeast Asia', 'Japan West', 'Japan East', 'Brazil South'] AZURE_ROLE_SIZES = ['ExtraSmall', 'Small', 'Medium', 'Large', 'ExtraLarge', 'A5', 'A6', 'A7', 'A8', 'A9', 'Basic_A0', 'Basic_A1', 'Basic_A2', 'Basic_A3', 'Basic_A4', 'Standard_D1', 'Standard_D2', 'Standard_D3', 'Standard_D4', 'Standard_D11', 'Standard_D12', 'Standard_D13', 'Standard_D14', 'Standard_D1_v2', 'Standard_D2_v2', 'Standard_D3_v2', 'Standard_D4_v2', 'Standard_D5_v2', 'Standard_D11_v2', 'Standard_D12_v2', 'Standard_D13_v2', 'Standard_D14_v2', 'Standard_DS1', 'Standard_DS2', 'Standard_DS3', 'Standard_DS4', 'Standard_DS11', 'Standard_DS12', 'Standard_DS13', 'Standard_DS14', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5'] from distutils.version import LooseVersion try: import azure as windows_azure if hasattr(windows_azure, '__version__') and LooseVersion(windows_azure.__version__) <= "0.11.1": from azure import WindowsAzureError as AzureException from azure import WindowsAzureMissingResourceError as AzureMissingException else: from azure.common import AzureException as AzureException from azure.common import AzureMissingResourceHttpError as AzureMissingException from azure.servicemanagement import (ServiceManagementService, OSVirtualHardDisk, SSH, PublicKeys, PublicKey, LinuxConfigurationSet, ConfigurationSetInputEndpoints, ConfigurationSetInputEndpoint, Listener, WindowsConfigurationSet) HAS_AZURE = True except ImportError: HAS_AZURE = False from types import MethodType import json def _wait_for_completion(azure, promise, wait_timeout, msg): if not promise: return wait_timeout = time.time() + wait_timeout while wait_timeout > time.time(): operation_result = azure.get_operation_status(promise.request_id) time.sleep(5) if operation_result.status == "Succeeded": return raise AzureException('Timed out waiting for async operation ' + msg + ' "' + str(promise.request_id) + '" to complete.') def _delete_disks_when_detached(azure, wait_timeout, disk_names): def _handle_timeout(signum, frame): raise TimeoutError("Timeout reached while waiting for disks to become detached.") signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(wait_timeout) try: while len(disk_names) > 0: for disk_name in disk_names: disk = azure.get_disk(disk_name) if disk.attached_to is None: azure.delete_disk(disk.name, True) disk_names.remove(disk_name) except AzureException as e: module.fail_json(msg="failed to get or delete disk %s, error was: %s" % (disk_name, str(e))) finally: signal.alarm(0) def get_ssh_certificate_tokens(module, ssh_cert_path): """ Returns the sha1 fingerprint and a base64-encoded PKCS12 version of the certificate. """ # This returns a string such as SHA1 Fingerprint=88:60:0B:13:A9:14:47:DA:4E:19:10:7D:34:92:2B:DF:A1:7D:CA:FF rc, stdout, stderr = module.run_command(['openssl', 'x509', '-in', ssh_cert_path, '-fingerprint', '-noout']) if rc != 0: module.fail_json(msg="failed to generate the key fingerprint, error was: %s" % stderr) fingerprint = stdout.strip()[17:].replace(':', '') rc, stdout, stderr = module.run_command(['openssl', 'pkcs12', '-export', '-in', ssh_cert_path, '-nokeys', '-password', 'pass:']) if rc != 0: module.fail_json(msg="failed to generate the pkcs12 signature from the certificate, error was: %s" % stderr) pkcs12_base64 = base64.b64encode(stdout.strip()) return (fingerprint, pkcs12_base64) def create_virtual_machine(module, azure): """ Create new virtual machine module : AnsibleModule object azure: authenticated azure ServiceManagementService object Returns: True if a new virtual machine and/or cloud service was created, false otherwise """ name = module.params.get('name') os_type = module.params.get('os_type') hostname = module.params.get('hostname') or name + ".cloudapp.net" endpoints = module.params.get('endpoints').split(',') ssh_cert_path = module.params.get('ssh_cert_path') user = module.params.get('user') password = module.params.get('password') location = module.params.get('location') role_size = module.params.get('role_size') storage_account = module.params.get('storage_account') image = module.params.get('image') virtual_network_name = module.params.get('virtual_network_name') wait = module.params.get('wait') wait_timeout = int(module.params.get('wait_timeout')) changed = False # Check if a deployment with the same name already exists cloud_service_name_available = azure.check_hosted_service_name_availability(name) if cloud_service_name_available.result: # cloud service does not exist; create it try: result = azure.create_hosted_service(service_name=name, label=name, location=location) _wait_for_completion(azure, result, wait_timeout, "create_hosted_service") changed = True except AzureException as e: module.fail_json(msg="failed to create the new service, error was: %s" % str(e)) try: # check to see if a vm with this name exists; if so, do nothing azure.get_role(name, name, name) except AzureMissingException: # vm does not exist; create it if os_type == 'linux': # Create linux configuration disable_ssh_password_authentication = not password vm_config = LinuxConfigurationSet(hostname, user, password, disable_ssh_password_authentication) else: #Create Windows Config vm_config = WindowsConfigurationSet(hostname, password, None, module.params.get('auto_updates'), None, user) vm_config.domain_join = None if module.params.get('enable_winrm'): listener = Listener('Http') vm_config.win_rm.listeners.listeners.append(listener) else: vm_config.win_rm = None # Add ssh certificates if specified if ssh_cert_path: fingerprint, pkcs12_base64 = get_ssh_certificate_tokens(module, ssh_cert_path) # Add certificate to cloud service result = azure.add_service_certificate(name, pkcs12_base64, 'pfx', '') _wait_for_completion(azure, result, wait_timeout, "add_service_certificate") # Create ssh config ssh_config = SSH() ssh_config.public_keys = PublicKeys() authorized_keys_path = u'/home/%s/.ssh/authorized_keys' % user ssh_config.public_keys.public_keys.append(PublicKey(path=authorized_keys_path, fingerprint=fingerprint)) # Append ssh config to linux machine config vm_config.ssh = ssh_config # Create network configuration network_config = ConfigurationSetInputEndpoints() network_config.configuration_set_type = 'NetworkConfiguration' network_config.subnet_names = [] network_config.public_ips = None for port in endpoints: network_config.input_endpoints.append(ConfigurationSetInputEndpoint(name='TCP-%s' % port, protocol='TCP', port=port, local_port=port)) # First determine where to store disk today = datetime.date.today().strftime('%Y-%m-%d') disk_prefix = u'%s-%s' % (name, name) media_link = u'http://%s.blob.core.windows.net/vhds/%s-%s.vhd' % (storage_account, disk_prefix, today) # Create system hard disk os_hd = OSVirtualHardDisk(image, media_link) # Spin up virtual machine try: result = azure.create_virtual_machine_deployment(service_name=name, deployment_name=name, deployment_slot='production', label=name, role_name=name, system_config=vm_config, network_config=network_config, os_virtual_hard_disk=os_hd, role_size=role_size, role_type='PersistentVMRole', virtual_network_name=virtual_network_name) _wait_for_completion(azure, result, wait_timeout, "create_virtual_machine_deployment") changed = True except AzureException as e: module.fail_json(msg="failed to create the new virtual machine, error was: %s" % str(e)) try: deployment = azure.get_deployment_by_name(service_name=name, deployment_name=name) return (changed, urlparse(deployment.url).hostname, deployment) except AzureException as e: module.fail_json(msg="failed to lookup the deployment information for %s, error was: %s" % (name, str(e))) def terminate_virtual_machine(module, azure): """ Terminates a virtual machine module : AnsibleModule object azure: authenticated azure ServiceManagementService object Returns: True if a new virtual machine was deleted, false otherwise """ # Whether to wait for termination to complete before returning wait = module.params.get('wait') wait_timeout = int(module.params.get('wait_timeout')) name = module.params.get('name') delete_empty_services = module.params.get('delete_empty_services') changed = False deployment = None public_dns_name = None disk_names = [] try: deployment = azure.get_deployment_by_name(service_name=name, deployment_name=name) except AzureMissingException as e: pass # no such deployment or service except AzureException as e: module.fail_json(msg="failed to find the deployment, error was: %s" % str(e)) # Delete deployment if deployment: changed = True try: # gather disk info results = [] for role in deployment.role_list: role_props = azure.get_role(name, deployment.name, role.role_name) if role_props.os_virtual_hard_disk.disk_name not in disk_names: disk_names.append(role_props.os_virtual_hard_disk.disk_name) except AzureException as e: module.fail_json(msg="failed to get the role %s, error was: %s" % (role.role_name, str(e))) try: result = azure.delete_deployment(name, deployment.name) _wait_for_completion(azure, result, wait_timeout, "delete_deployment") except AzureException as e: module.fail_json(msg="failed to delete the deployment %s, error was: %s" % (deployment.name, str(e))) # It's unclear when disks associated with terminated deployment get detached. # Thus, until the wait_timeout is reached, we continue to delete disks as they # become detached by polling the list of remaining disks and examining the state. try: _delete_disks_when_detached(azure, wait_timeout, disk_names) except (AzureException, TimeoutError) as e: module.fail_json(msg=str(e)) try: # Now that the vm is deleted, remove the cloud service result = azure.delete_hosted_service(service_name=name) _wait_for_completion(azure, result, wait_timeout, "delete_hosted_service") except AzureException as e: module.fail_json(msg="failed to delete the service %s, error was: %s" % (name, str(e))) public_dns_name = urlparse(deployment.url).hostname return changed, public_dns_name, deployment def get_azure_creds(module): # Check module args for credentials, then check environment vars subscription_id = module.params.get('subscription_id') if not subscription_id: subscription_id = os.environ.get('AZURE_SUBSCRIPTION_ID', None) if not subscription_id: module.fail_json(msg="No subscription_id provided. Please set 'AZURE_SUBSCRIPTION_ID' or use the 'subscription_id' parameter") management_cert_path = module.params.get('management_cert_path') if not management_cert_path: management_cert_path = os.environ.get('AZURE_CERT_PATH', None) if not management_cert_path: module.fail_json(msg="No management_cert_path provided. Please set 'AZURE_CERT_PATH' or use the 'management_cert_path' parameter") return subscription_id, management_cert_path def main(): module = AnsibleModule( argument_spec=dict( ssh_cert_path=dict(), name=dict(), hostname=dict(), os_type=dict(default='linux', choices=['linux', 'windows']), location=dict(choices=AZURE_LOCATIONS), role_size=dict(choices=AZURE_ROLE_SIZES), subscription_id=dict(no_log=True), storage_account=dict(), management_cert_path=dict(), endpoints=dict(default='22'), user=dict(), password=dict(no_log=True), image=dict(), virtual_network_name=dict(default=None), state=dict(default='present'), wait=dict(type='bool', default=False), wait_timeout=dict(default=600), wait_timeout_redirects=dict(default=300), auto_updates=dict(type='bool', default=False), enable_winrm=dict(type='bool', default=True), ) ) if not HAS_AZURE: module.fail_json(msg='azure python module required for this module') # create azure ServiceManagementService object subscription_id, management_cert_path = get_azure_creds(module) wait_timeout_redirects = int(module.params.get('wait_timeout_redirects')) if hasattr(windows_azure, '__version__') and LooseVersion(windows_azure.__version__) <= "0.8.0": # wrapper for handling redirects which the sdk <= 0.8.0 is not following azure = Wrapper(ServiceManagementService(subscription_id, management_cert_path), wait_timeout_redirects) else: azure = ServiceManagementService(subscription_id, management_cert_path) cloud_service_raw = None if module.params.get('state') == 'absent': (changed, public_dns_name, deployment) = terminate_virtual_machine(module, azure) elif module.params.get('state') == 'present': # Changed is always set to true when provisioning new instances if not module.params.get('name'): module.fail_json(msg='name parameter is required for new instance') if not module.params.get('image'): module.fail_json(msg='image parameter is required for new instance') if not module.params.get('user'): module.fail_json(msg='user parameter is required for new instance') if not module.params.get('location'): module.fail_json(msg='location parameter is required for new instance') if not module.params.get('storage_account'): module.fail_json(msg='storage_account parameter is required for new instance') if not (module.params.get('password') or module.params.get('ssh_cert_path')): module.fail_json(msg='password or ssh_cert_path parameter is required for new instance') (changed, public_dns_name, deployment) = create_virtual_machine(module, azure) module.exit_json(changed=changed, public_dns_name=public_dns_name, deployment=json.loads(json.dumps(deployment, default=lambda o: o.__dict__))) class Wrapper(object): def __init__(self, obj, wait_timeout): self.other = obj self.wait_timeout = wait_timeout def __getattr__(self, name): if hasattr(self.other, name): func = getattr(self.other, name) return lambda *args, **kwargs: self._wrap(func, args, kwargs) raise AttributeError(name) def _wrap(self, func, args, kwargs): if isinstance(func, MethodType): result = self._handle_temporary_redirects(lambda: func(*args, **kwargs)) else: result = self._handle_temporary_redirects(lambda: func(self.other, *args, **kwargs)) return result def _handle_temporary_redirects(self, f): wait_timeout = time.time() + self.wait_timeout while wait_timeout > time.time(): try: return f() except AzureException as e: if not str(e).lower().find("temporary redirect") == -1: time.sleep(5) pass else: raise e # import module snippets from ansible.module_utils.basic import * if __name__ == '__main__': main()
the-stack_0_14844
import os import keywords as kw import mechanism_names as mn import mechanism from util import ParseUtil, make_readable_list_of_strings # All parameters and their defaults. PD = {kw.BEHAVIORS: set(), # set of (restricted) strings , REQ kw.STIMULUS_ELEMENTS: set(), # set of (restricted) strings , REQ kw.MECHANISM_NAME: '', # One of the available ones REQ kw.START_V: 0, # Scalar or list of se->b:val or default:val , kw.START_VSS: 0, # Scalar or list of se->se:val or default:val , kw.ALPHA_V: 1, # -"- , kw.ALPHA_VSS: 1, # Scalar or list of se->se:val or default:val , kw.BETA: 1, # -"- , kw.MU: 0, # -"- , kw.DISCOUNT: 1, # Scalar kw.TRACE: 0, # Scalar (number between 0 and 1) kw.U: 0, # Scalar or list of se:val or default:val , kw.LAMBDA: 0, # Scalar or list of se:val or default:val , kw.START_W: 0, # -"- , kw.ALPHA_W: 1, # -"- , kw.BEHAVIOR_COST: 0, # Scalar or list of b:val or default:val , kw.RESPONSE_REQUIREMENTS: dict(), # List of b:se or b:(se1,se2,...) , kw.BIND_TRIALS: 'off', # on or off kw.N_SUBJECTS: 1, # Positive integer kw.TITLE: '', # String (,) kw.SUBPLOTTITLE: '', # String (,) kw.RUNLABEL: '', # String (restricted), for postrocessing only (,) kw.SUBJECT: 'average', # average, all or zero-based index kw.XSCALE: 'all', # all or s1->b1->s2->..., s=se1,se2,... kw.XSCALE_MATCH: 'subset', # subset or exact kw.EVAL_PHASES: 'all', # @post: all or list of phase labels , kw.CUMULATIVE: 'on', # on or off kw.MATCH: 'subset', # subset or exact kw.FILENAME: ''} # valid path REQ def is_parameter_name(name): return name in PD def check_is_parameter_name(name): if not is_parameter_name(name): return f"Internal error: Invalid parameter name '{name}'." return None class Parameters(): def __init__(self): # All parameters and their valuess self.val = dict(PD) # self.got = dict.fromkeys(PD, False) def str_append(self, prop, v_str, variables, phases, all_run_labels, to_be_continued): err = check_is_parameter_name(prop) if err: return err if not self.is_csv(prop): return f"Internal error: Parameter '{prop}' is not of type list." return self.str_set(prop, v_str, variables, phases, all_run_labels, to_be_continued, True) def str_set(self, prop, v_str, variables, phases, all_run_labels, to_be_continued, is_appending=False): """ Parses the specified value (as a string) of the specified parameter and sets the resulting value. The input variables is a Variables object. Returns error message if parsing failed. """ err = check_is_parameter_name(prop) if err: return err # all_phase_labels = phases.labels_set() if prop == kw.BEHAVIORS: return self._parse_behaviors(v_str, variables, is_appending) elif prop == kw.STIMULUS_ELEMENTS: return self._parse_stimulus_elements(v_str, variables, is_appending) elif prop == kw.MECHANISM_NAME: return self._parse_mechanism_name(v_str) elif prop in (kw.START_VSS, kw.ALPHA_VSS): return self._parse_alphastart_vss(prop, v_str, variables, to_be_continued, is_appending) elif prop in (kw.START_W, kw.ALPHA_W, kw.U, kw.LAMBDA): return self._parse_stimulus_values(prop, v_str, variables, to_be_continued, is_appending) elif prop in (kw.BETA, kw.MU, kw.START_V, kw.ALPHA_V): return self._parse_stimulus_response_values(prop, v_str, variables, to_be_continued, is_appending) # Float elif prop in (kw.DISCOUNT, kw.TRACE): v, err = ParseUtil.evaluate(v_str, variables) if err: return err if (v < 0) or (v > 1): return f"Parameter '{prop}' must be a number >=0 and <=1." self.val[prop] = v return None elif prop == kw.BEHAVIOR_COST: return self._parse_behavior_cost(v_str, variables, to_be_continued, is_appending) elif prop == kw.RESPONSE_REQUIREMENTS: return self._parse_response_requirements(v_str, to_be_continued, is_appending) # 'on' or 'off' elif prop in (kw.BIND_TRIALS, kw.CUMULATIVE): v_str_lower = v_str.lower() if v_str_lower not in ('on', 'off'): return "Parameter '{}' must be 'on' or 'off'.".format(prop) self.val[prop] = v_str_lower return None # Positive integer elif prop == kw.N_SUBJECTS: v, err = ParseUtil.parse_posint(v_str, variables) if err: return err if not v: return "Parameter {} must be a positive integer.".format(kw.N_SUBJECTS) self.val[kw.N_SUBJECTS] = v return None # Any nonempty (after strip) string elif prop in (kw.TITLE, kw.SUBPLOTTITLE): if to_be_continued: # Add the removed comma v_str = v_str + "," self.val[prop] = v_str return None # 'average', 'all' or 1-based index elif prop == kw.SUBJECT: return self._parse_subject(v_str, variables) # 'all' or s1->b1->s2->..., s=se1,se2,... elif prop == kw.XSCALE: return self._parse_xscale(v_str, phases) # 'subset' or 'exact' elif prop in (kw.MATCH, kw.XSCALE_MATCH): if v_str.lower() not in ('subset', 'exact'): return "Parameter {} must be 'subset' or 'exact'.".format(prop) self.val[prop] = v_str return None # 'all' or cs-list of phase labels elif prop == kw.PHASES: return self._parse_phases(v_str) # , all_phase_labels) # String (@run-labels) (for postprocessing) elif prop == kw.RUNLABEL: if v_str not in all_run_labels: return "Invalid @RUN-label {}".format(v_str) self.val[kw.RUNLABEL] = v_str return None # Valid path to writable file elif prop == kw.FILENAME: filename = v_str try: file = open(filename, 'w', newline='') except Exception as ex: return str(ex) finally: file.close() try: os.remove(filename) except FileNotFoundError: pass self.val[kw.FILENAME] = filename return None def make_mechanism_obj(self): """ Returns a Mechanism object (None of error) and error message (None if no error). GA = 'ga' SR = 'sr' ES = 'es' QL = 'ql' AC = 'ac' RW = 'rw' MECHANISM_NAMES = (GA, SR, ES, QL, AC, RW) """ mechanism_name = self.val[kw.MECHANISM_NAME] if not mechanism_name: return None, "Parameter 'mechanism' is not specified." self.scalar_expand() if mechanism_name in mn.SR: mechanism_obj = mechanism.StimulusResponse(self) elif mechanism_name in mn.QL: mechanism_obj = mechanism.Qlearning(self) # elif mechanism_name == SARSA: # mechanism_obj = LsMechanism.SARSA(**self.parameters) elif mechanism_name in mn.ES: mechanism_obj = mechanism.EXP_SARSA(self) elif mechanism_name in mn.AC: mechanism_obj = mechanism.ActorCritic(self) elif mechanism_name in mn.GA: mechanism_obj = mechanism.Enquist(self) elif mechanism_name in mn.RW: mechanism_obj = mechanism.OriginalRescorlaWagner(self) else: raise Exception(f"Internal error. Unknown mechanism {mechanism_name}.") return mechanism_obj, None def _parse_behaviors(self, behaviors_str, variables, is_appending): """ Parse the string behaviors_str with comma-separated behavior names and return the corrsponding set of strings. Example: "B1, B2,B123" returns {'B1', 'B2', 'B123'} """ if not is_appending: self.val[kw.BEHAVIORS] = set() behaviors_list = behaviors_str.split(',') for b in behaviors_list: b = b.strip() if len(b) == 0: return "Found empty behavior name." if b in self.val[kw.BEHAVIORS]: return f"The behavior name '{b}' occurs more than once." if b in self.val[kw.STIMULUS_ELEMENTS]: return f"The behavior name '{b}' is invalid, since it is a stimulus element." if variables.contains(b): return f"The behavior name '{b}' is invalid, since it is a variable name." if not b.isidentifier(): return f"Behavior name '{b}' is not a valid identifier." self.val[kw.BEHAVIORS].add(b) return None # No error def _parse_stimulus_elements(self, stimulus_elements_str, variables, is_appending): """ Parse the string stimulus_elements_str with comma-separated stimulus element names and return the corrsponding set of strings. Example: "E1, E2,E123" returns {'E1', 'E2', 'E123'} """ if not is_appending: self.val[kw.STIMULUS_ELEMENTS] = set() stimulus_elements_list = stimulus_elements_str.split(',') for e in stimulus_elements_list: e = e.strip() if len(e) == 0: return "Found empty stimulus element name." if e in self.val[kw.STIMULUS_ELEMENTS]: return f"The stimulus element name '{e}' occurs more than once." if e in self.val[kw.BEHAVIORS]: return f"The stimulus element name '{e}' is invalid, since it is a behavior name." if variables.contains(e): return f"The stimulus element name '{e}' is invalid, since it is a variable name." if not e.isidentifier(): return f"Stimulus element name '{e}' is not a valid identifier." self.val[kw.STIMULUS_ELEMENTS].add(e) return None # No error def _parse_mechanism_name(self, mechanism_name): """ Parse the string mechanism_name with a mechanism name and return the corrsponding string. """ mn_lower = mechanism_name.lower() if mn_lower not in mn.MECHANISM_NAMES: cs_valid_names = ', '.join(sorted(mn.MECHANISM_NAMES)) return "Invalid mechanism name '{}'. ".format(mechanism_name) + \ "Mechanism name must be one of the following: {}.".format(cs_valid_names) self.val[kw.MECHANISM_NAME] = mn_lower return None def _parse_phases(self, v_str): if v_str == 'all': self.val[kw.PHASES] = v_str # list(all_phase_labels) else: phase_labels = ParseUtil.comma_split_strip(v_str) for phase_label in phase_labels: if len(phase_label) == 0: return "Expected comma-separated list of phase labels, found {}".format(phase_labels) # else: # if phase_label not in all_phase_labels: # return "Undefined phase label '{}'.".format(phase_label) self.val[kw.PHASES] = phase_labels return None def _parse_behavior_cost(self, behavior_cost_str, variables, to_be_continued, is_appending): if not self.val[kw.BEHAVIORS]: return f"The parameter 'behaviors' must be assigned before the parameter '{kw.BEHAVIOR_COST}'." # Create and populate the struct with None values if not is_appending: self.val[kw.BEHAVIOR_COST] = dict() for e in self.val[kw.BEHAVIORS]: self.val[kw.BEHAVIOR_COST][e] = None self.val[kw.BEHAVIOR_COST][kw.DEFAULT] = None single_c, _ = ParseUtil.evaluate(behavior_cost_str, variables) if single_c is not None: if is_appending: return "A single value for '{}' cannot follow other values.".format(kw.BEHAVIOR_COST) elif to_be_continued: return "A single value for '{}' cannot be followed by other values.".format(kw.BEHAVIOR_COST) else: for key in self.val[kw.BEHAVIOR_COST]: self.val[kw.BEHAVIOR_COST][key] = single_c self.val[kw.BEHAVIOR_COST].pop(kw.DEFAULT) else: cs = ParseUtil.comma_split(behavior_cost_str) cs = [x.strip() for x in cs] for bc_str in cs: # bc_str is 'e:value' or 'default:value' if bc_str.count(':') != 1: return "Expected 'element:value' or 'default:value' in '{}', got '{}'.".format(kw.BEHAVIOR_COST, bc_str) b, c_str = bc_str.split(':') b = b.strip() c_str = c_str.strip() c, err = ParseUtil.evaluate(c_str, variables) if err: return f"Invalid value '{c_str}' for '{b}' in parameter '{kw.BEHAVIOR_COST}'." if b == kw.DEFAULT: if self.val[kw.BEHAVIOR_COST][kw.DEFAULT] is not None: return "Default value for '{}' can only be stated once.".format(kw.BEHAVIOR_COST) elif b not in self.val[kw.BEHAVIORS]: return f"Error in parameter '{kw.BEHAVIOR_COST}': '{b}' is an invalid behavior name." if self.val[kw.BEHAVIOR_COST][b] is not None: return "Duplicate of {} in '{}'.".format(b, kw.BEHAVIOR_COST) self.val[kw.BEHAVIOR_COST][b] = c if not to_be_continued: # Set the default value for non-set behaviors err = self._set_default_values(kw.BEHAVIOR_COST) if err: return err return None # No error def _parse_stimulus_response_values(self, NAME, sr_str, variables, to_be_continued, is_appending): """ Parse the string sr_str with a value for stimulus-response pairs. Example: "S1->R1: 1.23, S2->R1:3.45, default:1" sets the parameter to {('S1','R1'):1.23, ('S1','R2'):1, ('S2','R1'):3.45, ('S2','R2'):1} under the assumption that behaviors = {'R1', 'R2'} and stimulus_elements = {'S1', 'S2'} """ if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{NAME}'." if not self.val[kw.BEHAVIORS]: return f"The parameter 'behaviors' must be assigned before the parameter '{NAME}'." # Create and populate the struct with None values if not is_appending: self.val[NAME] = dict() for e in self.val[kw.STIMULUS_ELEMENTS]: for b in self.val[kw.BEHAVIORS]: self.val[NAME][(e, b)] = None self.val[NAME][kw.DEFAULT] = None single_v, _ = ParseUtil.evaluate(sr_str, variables) if single_v is not None: if is_appending: return f"A single value for '{NAME}' cannot follow other values." elif to_be_continued: return f"A single value for '{NAME}' cannot be followed by other values." else: for key in self.val[NAME]: self.val[NAME][key] = single_v self.val[NAME].pop(kw.DEFAULT) else: vs = ParseUtil.comma_split(sr_str) vs = [x.strip() for x in vs] for eb_v_str in vs: # eb_v_str is 'e->b:value' or 'default:value' if eb_v_str.count(':') != 1: return f"Expected 'x->y:value' or 'default:value' in '{NAME}', got '{eb_v_str}'." eb, v_str = eb_v_str.split(':') eb = eb.strip() v_str = v_str.strip() v, err = ParseUtil.evaluate(v_str, variables) if err: return f"Invalid value '{v_str}' for '{eb}' in parameter '{NAME}'." if eb == kw.DEFAULT: if self.val[NAME][kw.DEFAULT] is not None: return f"Default value for '{NAME}' can only be stated once." self.val[NAME][kw.DEFAULT] = v elif eb.count('->') == 1: e, b = eb.split('->') if e not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e}' is an invalid stimulus element." if b not in self.val[kw.BEHAVIORS]: return f"Error in parameter '{NAME}': '{b}' is an invalid behavior name." if self.val[NAME][(e, b)] is not None: return f"Duplicate of {e}->{b} in '{NAME}'." self.val[NAME][(e, b)] = v else: return f"Invalid string '{eb}' in parameter '{NAME}'." if not to_be_continued: # Set the default value for non-set stimulus-behavior pairs err = self._set_default_values(NAME) if err: return err return None # No error def _parse_alphastart_vss(self, NAME, vss_str, variables, to_be_continued, is_appending): """ Parse the string vss_str with a start_vss/alpha_vss specification. Example: "S1->S2: 1.23, S2->S1:3.45, default:1" sets the parameter to {('S1','S2'):1.23, ('S2','S1'):3.45, ('S1','S1'):1, ('S2','S2'):1} under the assumption that stimulus_elements = {'S1', 'S2'} """ if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{NAME}'." # Create and populate the struct with None values if not is_appending: self.val[NAME] = dict() for e1 in self.val[kw.STIMULUS_ELEMENTS]: for e2 in self.val[kw.STIMULUS_ELEMENTS]: self.val[NAME][(e1, e2)] = None self.val[NAME][kw.DEFAULT] = None single_vss, _ = ParseUtil.evaluate(vss_str, variables) if single_vss is not None: if is_appending: return f"A single value for '{NAME}' cannot follow other values." elif to_be_continued: return f"A single value for '{NAME}' cannot be followed by other values." else: for key in self.val[NAME]: self.val[NAME][key] = single_vss self.val[NAME].pop(kw.DEFAULT) else: vs = ParseUtil.comma_split(vss_str) vs = [x.strip() for x in vs] for ee_str in vs: # eb_v_str is 'e1->e2:value' or 'default:value' if ee_str.count(':') != 1: return f"Expected 'x->y:value' or 'default:value' in '{NAME}', got '{ee_str}'." ee, v_str = ee_str.split(':') ee = ee.strip() v_str = v_str.strip() v, err = ParseUtil.evaluate(v_str, variables) if err: return f"Invalid value '{v_str}' for '{ee}' in parameter '{NAME}'." if ee == kw.DEFAULT: if self.val[NAME][kw.DEFAULT] is not None: return f"Default value for '{NAME}' can only be stated once." self.val[NAME][kw.DEFAULT] = v elif ee.count('->') == 1: e1, e2 = ee.split('->') if e1 not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e1}' is an invalid stimulus element." if e2 not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e2}' is an invalid stimulus element." if self.val[NAME][(e1, e2)] is not None: return f"Duplicate of {e1}->{e2} in '{NAME}'." self.val[NAME][(e1, e2)] = v else: return f"Invalid string '{ee}' in parameter '{NAME}'." if not to_be_continued: # Set the default value for non-set stimulus-stimulus pairs err = self._set_default_values(NAME) if err: return err return None # No error def _parse_response_requirements(self, v_str, to_be_continued, is_appending): if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{kw.RESPONSE_REQUIREMENTS}'." if not self.val[kw.BEHAVIORS]: return f"The parameter 'behaviors' must be assigned before the parameter '{kw.RESPONSE_REQUIREMENTS}'." if not is_appending: self.val[kw.RESPONSE_REQUIREMENTS] = dict() for b in self.val[kw.BEHAVIORS]: self.val[kw.RESPONSE_REQUIREMENTS][b] = None rrs = ParseUtil.comma_split_sq(v_str) for rr in rrs: if rr.count(':') != 1: return "Expected 'behavior:stimulus_element', got '{}'.".format(rr) b, s = rr.split(':') b = b.strip() s = s.strip() if len(b) == 0 or len(s) == 0: return "Expected 'behavior:stimulus_element', got '{}'.".format(rr) if b not in self.val[kw.BEHAVIORS]: return "Unknown behavior name '{}'.".format(b) if self.val[kw.RESPONSE_REQUIREMENTS][b] is not None: return "Duplication of behavior '{}' in {}.".format(b, kw.RESPONSE_REQUIREMENTS) if '[' in s or ']' in s: if s.count('[') != 1 or s.count(']') != 1 or s[0] != '[' or s[-1] != ']': return "Malformed expression '{}'.".format(s) s = s[1:-1] # Strip the '['and the ']' es = s.split(',') for e in es: e = e.strip() if e not in self.val[kw.STIMULUS_ELEMENTS]: return "Unknown stimulus element '{}'.".format(e) self._response_requirements_add_element(b, e) else: if s not in self.val[kw.STIMULUS_ELEMENTS]: return "Unknown stimulus element '{}'.".format(s) self._response_requirements_add_element(b, s) if not to_be_continued: # For the unrestricted behaviors, add all stimulus elements for b in self.val[kw.RESPONSE_REQUIREMENTS]: if self.val[kw.RESPONSE_REQUIREMENTS][b] is None: self.val[kw.RESPONSE_REQUIREMENTS][b] = set(self.val[kw.STIMULUS_ELEMENTS]) # Check that each stimulus element has at least one feasible response stimulus_elements_in_rr = [] for stimulus_list in self.val[kw.RESPONSE_REQUIREMENTS].values(): stimulus_elements_in_rr.extend(stimulus_list) if set(stimulus_elements_in_rr) != set(self.val[kw.STIMULUS_ELEMENTS]): elements_without_response = set(self.val[kw.STIMULUS_ELEMENTS]) - set(stimulus_elements_in_rr) elements_without_response = list(elements_without_response) elements_without_response.sort() # To make error message testable elements_without_response_str = make_readable_list_of_strings(elements_without_response) err = f"Invalid {kw.RESPONSE_REQUIREMENTS}: " if len(elements_without_response) == 1: return err + f"Stimulus element {elements_without_response_str} has no possible responses." else: return err + f"Stimulus elements {elements_without_response_str} have no possible responses." return None # No error def _response_requirements_add_element(self, b, e): if self.val[kw.RESPONSE_REQUIREMENTS][b] is None: self.val[kw.RESPONSE_REQUIREMENTS][b] = {e} else: self.val[kw.RESPONSE_REQUIREMENTS][b].add(e) def _parse_stimulus_values(self, NAME, stimulus_values, variables, to_be_continued, is_appending): if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{NAME}'." # Create and populate the struct with None values if not is_appending: self.val[NAME] = dict() for e in self.val[kw.STIMULUS_ELEMENTS]: self.val[NAME][e] = None self.val[NAME][kw.DEFAULT] = None single_w, _ = ParseUtil.evaluate(stimulus_values, variables) if single_w is not None: if is_appending: return "A single value for '{}' cannot follow other values.".format(NAME) elif to_be_continued: return "A single value for '{}' cannot be followed by other values.".format(NAME) else: for key in self.val[NAME]: self.val[NAME][key] = single_w self.val[NAME].pop(kw.DEFAULT) else: ws = ParseUtil.comma_split(stimulus_values) ws = [x.strip() for x in ws] for e_w_str in ws: # eb_w_str is 'e:value' or 'default:value' if e_w_str.count(':') != 1: return "Expected 'element:value' or 'default:value' in '{}', got '{}'.".format(NAME, e_w_str) e, w_str = e_w_str.split(':') e = e.strip() w_str = w_str.strip() w, err = ParseUtil.evaluate(w_str, variables) if err: return "Invalid value '{}' for '{}' in parameter '{}'.".format(w_str, e, NAME) if e == kw.DEFAULT: if self.val[NAME][kw.DEFAULT] is not None: return "Default value for '{}' can only be stated once.".format(NAME) elif e not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e}' is an invalid stimulus element." if self.val[NAME][e] is not None: return "Duplicate of {} in '{}'.".format(e, NAME) self.val[NAME][e] = w if not to_be_continued: # Set the default value for non-set stimulus elements err = self._set_default_values(NAME) if err: return err return None # No error def _parse_subject(self, v_str, variables): err = f"Parameter {kw.SUBJECT} must be 'average', 'all', or a positive integer." if v_str.lower() in ('average', 'all'): self.val[kw.SUBJECT] = v_str.lower() else: v, interr = ParseUtil.parse_posint(v_str, variables) if interr: # Parsing error return err + " " + interr if v is None: # Parsing worked, but negative integer return err self.val[kw.SUBJECT] = v - 1 # Zero-based index internally return None def _parse_xscale(self, xscale, phases): if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{kw.XSCALE}'." if not self.val[kw.BEHAVIORS] and self.val[kw.MECHANISM_NAME] not in mn.RW: return f"The parameter 'behaviors' must be assigned before the parameter '{kw.XSCALE}'." if phases.is_phase_label(xscale): pass elif xscale == 'all': pass else: xscale, err = ParseUtil.parse_chain(xscale, self.val[kw.STIMULUS_ELEMENTS], self.val[kw.BEHAVIORS]) if err: return err self.val[kw.XSCALE] = xscale return None def _set_default_values(self, NAME): default_needed = False for key in self.val[NAME]: if key is not kw.DEFAULT and self.val[NAME][key] is None: default_needed = True break if default_needed and self.val[NAME][kw.DEFAULT] is None: return f"Missing default value for parameter '{NAME}'." else: for key in self.val[NAME]: if self.val[NAME][key] is None: self.val[NAME][key] = self.val[NAME][kw.DEFAULT] self.val[NAME].pop(kw.DEFAULT) def get(self, prop): return self.val[prop] def may_end_with_comma(self, prop): return self.is_csv(prop) or prop in (kw.TITLE, kw.SUBPLOTTITLE, kw.RUNLABEL) def is_csv(self, prop): return prop in (kw.BEHAVIORS, kw.STIMULUS_ELEMENTS, kw.BETA, kw.MU, kw.LAMBDA, kw.START_V, kw.START_VSS, kw.START_W, kw.ALPHA_V, kw.ALPHA_VSS, kw.ALPHA_W, kw.BEHAVIOR_COST, kw.U, kw.RESPONSE_REQUIREMENTS, kw.PHASES) def scalar_expand(self): """ Expand dict-parameters that are defined by scalar. If defined as dict, check that keys are compatible with stimulus elements and behaviors. """ behaviors = self.val[kw.BEHAVIORS] stimulus_elements = self.val[kw.STIMULUS_ELEMENTS] # Check START_VSS and ALPHA_VSS expected_ss_keys = set() for stimulus_element1 in stimulus_elements: for stimulus_element2 in stimulus_elements: key = (stimulus_element1, stimulus_element2) expected_ss_keys.add(key) for param_name in [kw.START_VSS, kw.ALPHA_VSS]: start_vss = self.val[param_name] if type(start_vss) is dict: if set(start_vss.keys()) != expected_ss_keys: self._raise_match_err(param_name, kw.STIMULUS_ELEMENTS) else: # scalar expand self.val[param_name] = dict() scalar = start_vss for stimulus_element1 in stimulus_elements: for stimulus_element2 in stimulus_elements: key = (stimulus_element1, stimulus_element2) self.val[param_name][key] = scalar expected_sb_keys = set() for stimulus_element in stimulus_elements: for behavior in behaviors: key = (stimulus_element, behavior) expected_sb_keys.add(key) # Check START_V self._scalar_expand_element_behavior(kw.START_V, stimulus_elements, behaviors, expected_sb_keys) # Check ALPHA_V self._scalar_expand_element_behavior(kw.ALPHA_V, stimulus_elements, behaviors, expected_sb_keys) # Check BETA self._scalar_expand_element_behavior(kw.BETA, stimulus_elements, behaviors, expected_sb_keys) # Check MU self._scalar_expand_element_behavior(kw.MU, stimulus_elements, behaviors, expected_sb_keys) expected_s_keys = set() for stimulus_element in stimulus_elements: expected_s_keys.add(stimulus_element) # Check U self._scalar_expand_element(kw.U, stimulus_elements, expected_s_keys) # Check START_W self._scalar_expand_element(kw.START_W, stimulus_elements, expected_s_keys) # Check ALPHA_W self._scalar_expand_element(kw.ALPHA_W, stimulus_elements, expected_s_keys) # Check LAMBDA self._scalar_expand_element(kw.LAMBDA, stimulus_elements, expected_s_keys) # Check BEHAVIOR_COST expected_b_keys = set() for behavior in behaviors: expected_b_keys.add(behavior) behavior_cost = self.val[kw.BEHAVIOR_COST] if type(behavior_cost) is dict: if set(behavior_cost.keys()) != expected_b_keys: self._raise_match_err(kw.BEHAVIOR_COST, kw.BEHAVIORS) else: # scalar expand self.val[kw.BEHAVIOR_COST] = dict() scalar = behavior_cost for behavior in behaviors: self.val[kw.BEHAVIOR_COST][behavior] = scalar def _scalar_expand_element_behavior(self, param_name, stimulus_elements, behaviors, expected_sb_keys): val = self.val[param_name] if type(val) is dict: if set(val.keys()) != expected_sb_keys: self._raise_match_err(param_name, kw.STIMULUS_ELEMENTS, kw.BEHAVIORS) else: # scalar expand self.val[param_name] = dict() scalar = val for stimulus_element in stimulus_elements: for behavior in behaviors: key = (stimulus_element, behavior) self.val[param_name][key] = scalar def _scalar_expand_element(self, param_name, stimulus_elements, expected_s_keys): val = self.val[param_name] if type(val) is dict: if set(val.keys()) != expected_s_keys: self._raise_match_err(param_name, kw.STIMULUS_ELEMENTS) else: # scalar expand self.val[param_name] = dict() scalar = val for stimulus_element in stimulus_elements: self.val[param_name][stimulus_element] = scalar @staticmethod def _raise_match_err(param1, param2, param3=None): if param3: err = f"The parameter '{param1}' does not match '{param2}' and '{param3}'." else: err = f"The parameter '{param1}' does not match '{param2}'." raise Exception(err)
the-stack_0_14845
import socket import threading import codecs from scapy.all import * contentTable = ['porn', 'guns', 'torrent', 'skype'] firstIface = 'eth0' firstIfaceFlows = ['52:54:00:42:84:65'] secondIface = 'eth1' secondIfaceFlows = ['52:54:00:a1:54:c0'] def inOutServer(): global contentTable global firstIface global secondIface inSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3)) inSocket.bind((firstIface, 0)) outSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) outSocket.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1514) outSocket.bind((secondIface, 0)) for index in range(len(contentTable)): contentTable[index] = contentTable[index].encode() while True: pkt = inSocket.recvfrom(1514) try: et = Ether(bytes(pkt[0])) if not et.src in firstIfaceFlows: continue except: continue if TCP in et and Raw in et: if et[IP][TCP].dport == 80: data = et[Raw].load for content in contentTable: if not content in data: continue index = data.find(content) et[Raw].load = data[:index] + b'*' + data[index+len(content):] del et[TCP].chksum del et[IP].ihl del et[IP].len del et[IP].chksum et.show2(dump=True) break outSocket.send(bytes(et)) def outInServer(): global firstIface global secondIface inSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3)) inSocket.bind((secondIface, 0)) outSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) outSocket.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1514) outSocket.bind((firstIface, 0)) while True: pkt = inSocket.recvfrom(1514) try: et = Ether(bytes(pkt[0])) if not et.src in secondIfaceFlows: continue except: continue outSocket.send(bytes(et)) inOut = threading.Thread(target=inOutServer,args=()) outIn = threading.Thread(target=outInServer,args=()) outIn.start() inOut.start() inOut.join()
the-stack_0_14848
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import re from pants.util.contextutil import temporary_dir from pants_test.pants_run_integration_test import PantsRunIntegrationTest class IvyResolveIntegrationTest(PantsRunIntegrationTest): def test_ivy_resolve_gives_correct_exception_on_cycles(self): with temporary_dir(root_dir=self.workdir_root()) as workdir: pants_run = self.run_pants_with_workdir([ 'compile', 'testprojects/src/java/org/pantsbuild/testproject/cycle1'], workdir) self.assert_failure(pants_run) self.assertIn('Cycle detected', pants_run.stderr_data) def test_java_compile_with_ivy_report(self): # Ensure the ivy report file gets generated with temporary_dir(root_dir=self.workdir_root()) as workdir: ivy_report_dir = '{workdir}/ivy-report'.format(workdir=workdir) pants_run = self.run_pants_with_workdir([ 'compile', 'testprojects/src/java/org/pantsbuild/testproject/unicode/main', '--resolve-ivy-report', '--resolve-ivy-outdir={reportdir}'.format(reportdir=ivy_report_dir)], workdir) self.assert_success(pants_run) # Find the ivy report found = False pattern = re.compile('internal-[a-f0-9]+-default\.html$') for f in os.listdir(ivy_report_dir): if os.path.isfile(os.path.join(ivy_report_dir, f)): if pattern.match(f): found = True break self.assertTrue(found, msg="Couldn't find ivy report in {report_dir}" .format(report_dir=ivy_report_dir)) def test_ivy_args(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-args=-blablabla', 'examples/src/scala::' ]) self.assert_failure(pants_run) self.assertIn('Unrecognized option: -blablabla', pants_run.stdout_data) def test_ivy_confs_success(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-confs=default', '--resolve-ivy-confs=sources', '--resolve-ivy-confs=javadoc', '3rdparty:junit' ]) self.assert_success(pants_run) def test_ivy_confs_failure(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-confs=parampampam', '3rdparty:junit' ]) self.assert_failure(pants_run) def test_ivy_confs_ini_failure(self): pants_ini_config = {'resolve.ivy': {'confs': 'parampampam'}} pants_run = self.run_pants([ 'resolve', '3rdparty:junit' ], config=pants_ini_config) self.assert_failure(pants_run)
the-stack_0_14850
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: Apache-2.0 # Copyright 2021 RT Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import rospy from geometry_msgs.msg import Twist from thouzer_msgs.msg import Vel from std_srvs.srv import Trigger, TriggerResponse class CmdVelTwist(object): def __init__(self): rospy.loginfo("cmd_vel remapper start") self._twist_sub = rospy.Subscriber('/cmd_vel', Twist, self.joy_callback, queue_size=1) self._vel_pub = rospy.Publisher('/thouzer/vel', Vel, queue_size=1) def joy_callback(self, msg): vel = Vel() vel.v_mps = msg.linear.x vel.w_degps = math.degrees(msg.angular.z) print(vel) self._vel_pub.publish(vel) if __name__ == '__main__': rospy.wait_for_service('/motor_on') rospy.wait_for_service('/motor_off') rospy.on_shutdown(rospy.ServiceProxy('/motor_off', Trigger).call) rospy.ServiceProxy('/motor_on', Trigger).call() rospy.init_node('thouzer_cmd_vel') logicool_cmd_vel = CmdVelTwist() rospy.spin()
the-stack_0_14856
# qubit number=3 # total number=12 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.cx(input_qubit[0],input_qubit[2]) # number=9 prog.x(input_qubit[2]) # number=10 prog.cx(input_qubit[0],input_qubit[2]) # number=11 prog.x(input_qubit[2]) # number=6 prog.cx(input_qubit[1],input_qubit[0]) # number=7 prog.cx(input_qubit[1],input_qubit[0]) # number=8 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =3962 writefile = open("../data/startQiskit_QC87.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
the-stack_0_14858
# Copyright 2019 The TensorTrade Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import tensortrade.orders.create as create from typing import Union, List, Tuple from itertools import product from gym.spaces import Discrete from tensortrade.actions import ActionScheme from tensortrade.orders import TradeSide, TradeType, Order, OrderListener, risk_managed_order class ManagedRiskOrders(ActionScheme): """A discrete action scheme that determines actions based on managing risk, through setting a follow-up stop loss and take profit on every order. """ def __init__(self, stop_loss_percentages: Union[List[float], float] = [0.02, 0.04, 0.06], take_profit_percentages: Union[List[float], float] = [0.01, 0.02, 0.03], trade_sizes: Union[List[float], int] = 10, trade_type: TradeType = TradeType.MARKET, ttl_in_seconds: int = None, ttl_in_steps: int = None, order_listener: OrderListener = None): """ Arguments: pairs: A list of trading pairs to select from when submitting an order. (e.g. TradingPair(BTC, USD), TradingPair(ETH, BTC), etc.) stop_loss_percentages: A list of possible stop loss percentages for each order. take_profit_percentages: A list of possible take profit percentages for each order. trade_sizes: A list of trade sizes to select from when submitting an order. (e.g. '[1, 1/3]' = 100% or 33% of balance is tradable. '4' = 25%, 50%, 75%, or 100% of balance is tradable.) order_listener (optional): An optional listener for order events executed by this action scheme. """ self.stop_loss_percentages = self.default('stop_loss_percentages', stop_loss_percentages) self.take_profit_percentages = self.default( 'take_profit_percentages', take_profit_percentages) self.trade_sizes = self.default('trade_sizes', trade_sizes) self.trade_type = self.default('trade_type', trade_type) self.ttl_in_seconds = self.default('ttl_in_seconds', ttl_in_seconds) self.ttl_in_steps = self.default('ttl_in_steps', ttl_in_steps) self._order_listener = self.default('order_listener', order_listener) generator = product(self.stop_loss_percentages, self.take_profit_percentages, self.trade_sizes, [TradeSide.BUY, TradeSide.SELL]) self.actions = list(generator) @property def action_space(self) -> Discrete: """The discrete action space produced by the action scheme.""" return Discrete(len(self.actions)) @property def stop_loss_percentages(self) -> List[float]: """A list of order percentage losses to select a stop loss from when submitting an order. (e.g. 0.01 = sell if price drops 1%, 0.15 = 15%, etc.) """ return self._stop_loss_percentages @stop_loss_percentages.setter def stop_loss_percentages(self, stop_loss_percentages: Union[List[float], float]): self._stop_loss_percentages = stop_loss_percentages if isinstance( stop_loss_percentages, list) else [stop_loss_percentages] @property def take_profit_percentages(self) -> List[float]: """A list of order percentage gains to select a take profit from when submitting an order. (e.g. 0.01 = sell if price rises 1%, 0.15 = 15%, etc.) """ return self._take_profit_percentages @take_profit_percentages.setter def take_profit_percentages(self, take_profit_percentages: Union[List[float], float]): self._take_profit_percentages = take_profit_percentages if isinstance( take_profit_percentages, list) else [take_profit_percentages] @property def trade_sizes(self) -> List[float]: """A list of trade sizes to select from when submitting an order. (e.g. '[1, 1/3]' = 100% or 33% of balance is tradable. '4' = 25%, 50%, 75%, or 100% of balance is tradable.) """ return self._trade_sizes @trade_sizes.setter def trade_sizes(self, trade_sizes: Union[List[float], int]): self._trade_sizes = trade_sizes if isinstance(trade_sizes, list) else [ (x + 1) / trade_sizes for x in range(trade_sizes)] def get_order(self, action: int, portfolio: 'Portfolio') -> Order: if action == 0: return None ((exchange, pair), (stop_loss, take_profit, size, side)) = self.actions[action] price = exchange.quote_price(pair) wallet_instrument = pair.base if side == TradeSide.BUY else pair.quote wallet = portfolio.get_wallet(exchange.id, instrument=wallet_instrument) size = (wallet.balance.size * size) size = min(wallet.balance.size, size) if size < 10 ** -pair.base.precision: return None params = { 'step': exchange.clock.step, 'side': side, 'pair': pair, 'price': price, 'size': size, 'down_percent': stop_loss, 'up_percent': take_profit, 'portfolio': portfolio, 'trade_type': self.trade_type, 'ttl_in_seconds': self.ttl_in_seconds, 'ttl_in_steps': self.ttl_in_steps, } order = risk_managed_order(**params) if self._order_listener is not None: order.attach(self._order_listener) def reset(self): pass
the-stack_0_14860
import _plotly_utils.basevalidators class HighlightcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="highlightcolor", parent_name="surface.contours.y", **kwargs ): super(HighlightcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs )
the-stack_0_14866
from pathlib import Path import requests from lxml import etree headers = { 'user-agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.132 Safari/537.36" } meta_url = "https://pypi.org/" search_url = "https://pypi.org/search/?q" def init_save_path(save_path="."): """ 初始化下载环境 """ source_path = Path(save_path) save_path = source_path / 'whls' if not save_path.exists(): save_path.mkdir() return save_path def load_whl_info(packages_path: str): with open(packages_path, "r") as fr: whl_info = fr.read() return whl_info def init_download_packages(whl_info: str): """ 处理输入 """ need_packages = [] package_info = [i.strip() for i in whl_info.split("\n") if i.strip()] whl_name = "" version = "" for i in package_info: whl_name = i if "==" in i: whl_name, version = i.split("==") need_packages.append((whl_name, version)) return need_packages def pypi_spider(save_path, need_packages: list, error_package: list = []): """ pypi镜像包爬虫 need_packages: 需要下载的包 error_package: 下载中出错的包 """ for idx, package_info in enumerate(need_packages, 1): search_content = package_info[0] version = package_info[1] print('需要下载的包信息', package_info) response = requests.get( f'{search_url}={search_content}', headers=headers) html_str = response.content.decode('utf-8') html = etree.HTML(html_str) search_results = html.xpath( '//*[@id="content"]/div/div/div[2]/form/div[3]/ul/*') result_url = '' for result in search_results: result_href = result.xpath('./a/@href')[0] result_name = result.xpath('./a/h3/span[1]')[0].text result_version = result.xpath('./a/h3/span[2]')[0].text if result_name == search_content: result_url = f'{meta_url}{result_href}#files' break elif result_name == search_content.capitalize() and len(result_name) == len(search_content): result_url = f'{meta_url}{result_href}#files' break elif '-' in search_content and search_content.replace('-', '_') == result_name and len(result_name) == len(search_content): result_url = f'{meta_url}{result_href}#files' break if version: result_url = f'{meta_url}{result_href}{version}/#files' print(f'开始准备下载 {result_name} {version}') else: print(f'开始准备下载 {result_name} {result_version}') if not result_url: error_package.append(search_content) continue # get download url response = requests.get(result_url, headers=headers) result_html_str = response.content.decode('utf-8') result_html = etree.HTML(result_html_str) result_download_nodes = result_html.xpath( '//*[@id="files"]/table/tbody/tr') win32_info = None # 相同版本的win32包 for result_download in result_download_nodes: file_type = result_download.xpath( './td[1]/text()')[1].replace(" ", '').replace('\n', '') download_version = result_download.xpath( './td[2]/text()')[1].replace(" ", '').replace('\n', '') download_href = result_download.xpath('./th/a/@href')[0] whl_name = result_download.xpath( './th/a/text()')[0].replace(" ", '').replace('\n', '') whl_size = result_download.xpath( './th/text()')[2].replace(" ", '').replace('\n', '') # 下载版本判断 if download_version == 'cp37' and 'win32' in whl_name: win32_info = (whl_name, download_href) if download_version == 'py2.py3' and 'py2.py3-none-any' in whl_name: # 准确下载python3的版本 break elif download_version == 'cp37' and 'win_amd64' in whl_name: # 准确下载python3.7 win64的版本 # 查看是否有win32的包,并且下载 if win32_info: print(f'{search_content}的win32版本下载链接', win32_info) file_name = save_path / win32_info[0] file_content = requests.get(win32_info[1], headers=headers) with open(file_name.absolute(), 'wb') as f: f.write(file_content.content) break elif 'py3' in download_version or download_version == 'None': # 下载通用版本 break # 下载 file_name = save_path / whl_name file_content = requests.get(download_href, headers=headers) with open(file_name.absolute(), 'wb') as f: f.write(file_content.content) print(f'{search_content}{whl_size} 版本{download_version} 类型{file_type} -- 下载成功') if len(need_packages) == idx: print('此次任务结束') if error_package: print('此次任务下载失败的包如下:') for idx, error_ in enumerate(error_package, 1): print(f'{idx}: {error_}') return error_package def show_help(): print("choose which source you need to download") url_info = """ +++++++++COMMANDS++++++++++ 1:\t\tpypi.org 2:\t\tdouban 3:\t\taliyun +++++++++++++++++++++++++++ """ print(url_info) def main_loop(): packages_path = input(">>> input packages path: ").strip() if not packages_path: print("not found") return whl_info = load_whl_info(packages_path) need_packages = init_download_packages(whl_info) input_path = input(">>> input save path: ").strip() input_path = "." if not input_path else input_path save_path = init_save_path(input_path) show_help() choose = input(">>> ") if choose == "1": pypi_spider(save_path, need_packages) if __name__ == "__main__": main_loop()
the-stack_0_14867
from seleniumbase import BaseCase from ..page_objects.main_page import MainPage as PageObjects class HappyPathTest(BaseCase): def common_actions(self): # Preenche valor para aplicar com 20,00 self.update_text(PageObjects.input_valor_aplicar, '20,00') # Preenche valor que você quer poupar com 20,00 self.update_text(PageObjects.input_valor_investir, '20,00') # Por quanto tempo você quer poupar com 20 self.update_text(PageObjects.input_quanto_tempo, '20') self.click(PageObjects.btn_simular) self.assert_element(PageObjects.table) self.click(PageObjects.btn_repeat_simulation) def test_happy_path_para_voce(self): self.open(PageObjects.url) self.common_actions() # Testar para empresa self.click(PageObjects.radio_btn_empresa) self.common_actions()
the-stack_0_14868
import sys import csv_data import my_perceptron # TWEAKING VARIABLES max_perceptron_iterations = 100 def printResults( data_name, result_unrounded ): print( "RESULTS FOR", data_name.upper() ) print( "{:.2f}% correct prediction on {}\n".format( round( result_unrounded, 2 ), data_name.lower() ) ) def main( argv ): if len( argv ) != 3: print( "Usage: \"python3 perceptron.py <train> <test> <model>\"" ); exit() # Read Data Training_Data = csv_data.Data( argv[ 0 ] ) Testing_Data = csv_data.Data( argv[ 1 ] ) # Create Perceptron perceptron = my_perceptron.Perceptron() print( "\n\nPredictions results with", max_perceptron_iterations, "iterations of learning:\n" ) perceptron.perceptronTrain( Training_Data, max_perceptron_iterations ) resultsPercentage = perceptron.perceptronPredictionResults( Training_Data ) printResults( "Training Data", resultsPercentage ) resultsPercentage = perceptron.perceptronPredictionResultsAndPrintActivations( Testing_Data ) printResults( "Testing Data", resultsPercentage ) perceptron.outputModelToFile( argv[ 2 ] ) print( "Weights and bias recorded for", max_perceptron_iterations, "iterations in", argv[ 2 ], "\n" ); print( "\n\nAlso predictiong results with 50 iterations of learning because I get better percentages:\n" ) perceptron.perceptronTrain( Training_Data, 50 ) resultsPercentage = perceptron.perceptronPredictionResults( Training_Data ) printResults( "Training Data", resultsPercentage ) resultsPercentage = perceptron.perceptronPredictionResults( Testing_Data ) printResults( "Testing Data", resultsPercentage ) print( "Weights and bias of output file will still reflect the", max_perceptron_iterations, "iteration test above.\n\n" ) if __name__=='__main__': main( sys.argv[1:] )
the-stack_0_14871
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from abc import ABC, abstractmethod from typing import Any, Callable, Optional, Union from collections.abc import Mapping, Sequence from collections import namedtuple from copy import deepcopy from distutils.version import LooseVersion import os import torch from torch import nn from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.distributed import gather_all_tensors from pytorch_lightning.metrics.utils import _flatten, dim_zero_cat, dim_zero_mean, dim_zero_sum class Metric(nn.Module, ABC): """ Base class for all metrics present in the Metrics API. Implements ``add_state()``, ``forward()``, ``reset()`` and a few other things to handle distributed synchronization and per-step metric computation. Override ``update()`` and ``compute()`` functions to implement your own metric. Use ``add_state()`` to register metric state variables which keep track of state on each call of ``update()`` and are synchronized across processes when ``compute()`` is called. Note: Metric state variables can either be ``torch.Tensors`` or an empty list which can we used to store `torch.Tensors``. Note: Different metrics only override ``update()`` and not ``forward()``. A call to ``update()`` is valid, but it won't return the metric value at the current step. A call to ``forward()`` automatically calls ``update()`` and also returns the metric value at the current step. Args: compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. default: None """ def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__() self.dist_sync_on_step = dist_sync_on_step self.compute_on_step = compute_on_step self.process_group = process_group self.dist_sync_fn = dist_sync_fn self._to_sync = True self.update = self._wrap_update(self.update) self.compute = self._wrap_compute(self.compute) self._computed = None self._forward_cache = None # initialize state self._reductions = {} self._defaults = {} def add_state( self, name: str, default, dist_reduce_fx: Optional[Union[str, Callable]] = None, persistent: bool = True ): """ Adds metric state variable. Only used by subclasses. Args: name: The name of the state variable. The variable will then be accessible at ``self.name``. default: Default value of the state; can either be a ``torch.Tensor`` or an empty list. The state will be reset to this value when ``self.reset()`` is called. dist_reduce_fx (Optional): Function to reduce state accross mutliple processes in distributed mode. If value is ``"sum"``, ``"mean"``, or ``"cat"``, we will use ``torch.sum``, ``torch.mean``, and ``torch.cat`` respectively, each with argument ``dim=0``. The user can also pass a custom function in this parameter. persistent (Optional): whether the state will be saved as part of the modules ``state_dict``. Note: Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes. However, there won't be any reduction function applied to the synchronized metric state. The metric states would be synced as follows - If the metric state is ``torch.Tensor``, the synced value will be a stacked ``torch.Tensor`` across the process dimension if the metric state was a ``torch.Tensor``. The original ``torch.Tensor`` metric state retains dimension and hence the synchronized output will be of shape ``(num_process, ...)``. - If the metric state is a ``list``, the synced value will be a ``list`` containing the combined elements from all processes. Note: When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow the format discussed in the above note. """ if ( not isinstance(default, torch.Tensor) and not isinstance(default, list) # noqa: W503 or (isinstance(default, list) and len(default) != 0) # noqa: W503 ): raise ValueError( "state variable must be a tensor or any empty list (where you can append tensors)" ) if dist_reduce_fx == "sum": dist_reduce_fx = dim_zero_sum elif dist_reduce_fx == "mean": dist_reduce_fx = dim_zero_mean elif dist_reduce_fx == "cat": dist_reduce_fx = dim_zero_cat elif dist_reduce_fx is not None and not isinstance(dist_reduce_fx, Callable): raise ValueError( "`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', None]" ) if isinstance(default, torch.Tensor): if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): # persistent keyword is only supported in torch >= 1.6.0 self.register_buffer(name, default, persistent=persistent) else: self.register_buffer(name, default) else: setattr(self, name, default) self._defaults[name] = deepcopy(default) self._reductions[name] = dist_reduce_fx @torch.jit.unused def forward(self, *args, **kwargs): """ Automatically calls ``update()``. Returns the metric value over inputs if ``compute_on_step`` is True. """ # add current step with torch.no_grad(): self.update(*args, **kwargs) self._forward_cache = None if self.compute_on_step: self._to_sync = self.dist_sync_on_step # save context before switch self._cache = {attr: getattr(self, attr) for attr in self._defaults.keys()} # call reset, update, compute, on single batch self.reset() self.update(*args, **kwargs) self._forward_cache = self.compute() # restore context for attr, val in self._cache.items(): setattr(self, attr, val) self._to_sync = True self._computed = None return self._forward_cache def _sync_dist(self, dist_sync_fn=gather_all_tensors): input_dict = {attr: getattr(self, attr) for attr in self._reductions.keys()} output_dict = apply_to_collection( input_dict, torch.Tensor, dist_sync_fn, group=self.process_group, ) for attr, reduction_fn in self._reductions.items(): # pre-processing ops (stack or flatten for inputs) if isinstance(output_dict[attr][0], torch.Tensor): output_dict[attr] = torch.stack(output_dict[attr]) elif isinstance(output_dict[attr][0], list): output_dict[attr] = _flatten(output_dict[attr]) assert isinstance(reduction_fn, (Callable)) or reduction_fn is None reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr] setattr(self, attr, reduced) def _wrap_update(self, update): @functools.wraps(update) def wrapped_func(*args, **kwargs): self._computed = None return update(*args, **kwargs) return wrapped_func def _wrap_compute(self, compute): @functools.wraps(compute) def wrapped_func(*args, **kwargs): # return cached value if self._computed is not None: return self._computed dist_sync_fn = self.dist_sync_fn if (dist_sync_fn is None and torch.distributed.is_available() and torch.distributed.is_initialized()): # User provided a bool, so we assume DDP if available dist_sync_fn = gather_all_tensors if self._to_sync and dist_sync_fn is not None: self._sync_dist(dist_sync_fn) self._computed = compute(*args, **kwargs) self.reset() return self._computed return wrapped_func @abstractmethod def update(self) -> None: # pylint: disable=E0202 """ Override this method to update the state variables of your metric class. """ pass @abstractmethod def compute(self): # pylint: disable=E0202 """ Override this method to compute the final metric value from state variables synchronized across the distributed backend. """ pass def reset(self): """ This method automatically resets the metric state variables to their default value. """ for attr, default in self._defaults.items(): current_val = getattr(self, attr) if isinstance(current_val, torch.Tensor): setattr(self, attr, deepcopy(default).to(current_val.device)) else: setattr(self, attr, deepcopy(default)) def __getstate__(self): # ignore update and compute functions for pickling return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute"]} def __setstate__(self, state): # manually restore update and compute functions for pickling self.__dict__.update(state) self.update = self._wrap_update(self.update) self.compute = self._wrap_compute(self.compute)
the-stack_0_14872
#!/usr/bin/python3 #import time import random import imp modl = imp.load_source('ppFunctions', '../00/ppFunctions.py') import os from ppFunctions import * from termcolor import colored, cprint #sleep becouse of loading midi modules print("Are you ready?") time.sleep(1) print_status = lambda x: cprint(x, 'white', 'on_blue') print_help = lambda x: cprint(x, 'red') hit = 0 rounde = 1 done = False generatedList = [] for i in range(stringToMidiNum("c"), stringToMidiNum("c'")+1): if i%12 in blackTonesBase: generatedList.append(i) while True: try: os.system('clear') print_status("Status: round=" + str(rounde) + ", hit=" + str(hit)) print_help("Help: rEPEAT sKIP") playHarmonicNotes(stringToMidiNum("f a c'")) randomNote = random.choice(generatedList) playNote(randomNote) while not done: guessedNote = input("Your input:") if guessedNote == "r": print("Repeating...") playHarmonicNotes(stringToMidiNum("f a c'")) playNote(randomNote) elif guessedNote == "s": print("Skiping...") done = True elif guessedNote not in lilypondTones: print("What? Syntax error!") else: if (lilypondTones[guessedNote] == randomNote%12): print("Yea!") hit += 1 rounde += 1 done = True else: print("Almost!") hit = 0 done = False except (KeyboardInterrupt): print('...Program Stopped Manually!') raise
the-stack_0_14873
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Mypy plugin to provide support for schema objects.""" from __future__ import annotations from typing import * from mypy import exprtotype import mypy.plugin as mypy_plugin from mypy import nodes from mypy import types from mypy import semanal from mypy.plugins import common as mypy_helpers from mypy.server import trigger as mypy_trigger METADATA_KEY = 'edbplugin' AST_BASE_CLASSES = { 'edb.common.ast.base.AST', } STRUCT_BASE_METACLASSES = { 'edb.common.struct.StructMeta', } SCHEMA_BASE_METACLASSES = { 'edb.schema.objects.ObjectMeta', 'edb.schema.types.SchemaCollectionMeta', } def plugin(version: str): return EDBPlugin class EDBPlugin(mypy_plugin.Plugin): def get_base_class_hook(self, fullname: str): if fullname.startswith('edb.'): return self.handle_schema_class def handle_schema_class(self, ctx: mypy_plugin.ClassDefContext): mro = ctx.cls.info.mro mcls = ctx.cls.info.metaclass_type mcls_mro = mcls.type.mro if mcls else [] transformers: List[BaseTransformer] = [] if any(c.fullname in SCHEMA_BASE_METACLASSES for c in mcls_mro): transformers.append( SchemaClassTransformer( ctx, field_makers={'edb.schema.objects.SchemaField'}, ) ) transformers.append( StructTransformer( ctx, field_makers={'edb.schema.objects.Field'}, ) ) elif any(c.fullname in STRUCT_BASE_METACLASSES for c in mcls_mro): transformers.append( StructTransformer( ctx, field_makers={'edb.common.struct.Field'}, ) ) elif any(c.fullname in AST_BASE_CLASSES for c in mro): transformers.append( ASTClassTransformer( ctx, ) ) for transformer in transformers: transformer.transform() class DeferException(Exception): pass class Field(NamedTuple): name: str has_explicit_accessor: bool has_default: bool line: int column: int type: types.Type def to_argument(self) -> nodes.Argument: result = nodes.Argument( variable=self.to_var(), type_annotation=self.type, initializer=None, kind=nodes.ARG_NAMED_OPT if self.has_default else nodes.ARG_NAMED, ) return result def to_var(self) -> nodes.Var: return nodes.Var(self.name, self.type) def serialize(self) -> nodes.JsonDict: return { 'name': self.name, 'has_explicit_accessor': self.has_explicit_accessor, 'has_default': self.has_default, 'line': self.line, 'column': self.column, 'type': self.type.serialize(), } @classmethod def deserialize( cls, api, data: nodes.JsonDict, ) -> Field: return cls( name=data['name'], has_explicit_accessor=data['has_explicit_accessor'], has_default=data['has_default'], line=data['line'], column=data['column'], type=mypy_helpers.deserialize_and_fixup_type(data['type'], api), ) class BaseTransformer: def __init__( self, ctx: mypy_plugin.ClassDefContext, ) -> None: self._ctx = ctx def transform(self): ctx = self._ctx metadata_key = self._get_metadata_key() metadata = ctx.cls.info.metadata.get(metadata_key) if not metadata: ctx.cls.info.metadata[metadata_key] = metadata = {} metadata['processing'] = True if metadata.get('processed'): return try: fields = self._transform() except DeferException: ctx.api.defer() return None metadata['fields'] = {f.name: f.serialize() for f in fields} metadata['processed'] = True def _transform(self) -> List[Field]: raise NotImplementedError def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ) -> Optional[Field]: raise NotImplementedError def _collect_fields(self) -> List[Field]: """Collect all fields declared in a class and its ancestors.""" cls = self._ctx.cls fields: List[Field] = [] known_fields: Set[str] = set() for stmt in cls.defs.body: if not isinstance(stmt, nodes.AssignmentStmt): continue lhs = stmt.lvalues[0] if not isinstance(lhs, nodes.NameExpr): continue sym = cls.info.names.get(lhs.name) if sym is None or isinstance(sym.node, nodes.PlaceholderNode): # Not resolved yet? continue node = sym.node assert isinstance(node, nodes.Var) if node.is_classvar: # Disregard ClassVar stuff continue field = self._field_from_field_def(stmt, lhs, sym) if field is not None: fields.append(field) known_fields.add(field.name) return self._get_inherited_fields(known_fields) + fields def _lookup_type(self, fullname: str) -> types.Type: ctx = self._ctx type_sym = ctx.api.lookup_fully_qualified_or_none(fullname) if type_sym is None: raise DeferException t: types.Type if isinstance(type_sym.node, nodes.TypeInfo): from mypy.typevars import fill_typevars t = fill_typevars(type_sym.node) elif type_sym.type: t = type_sym.type else: ctx.api.fail(f'cannot find {fullname}', ctx.cls) return t def _get_metadata_key(self) -> str: return f'{METADATA_KEY}%%{type(self).__name__}' def _has_explicit_field_accessor(self, fieldname: str) -> bool: cls = self._ctx.cls accessor = cls.info.names.get(f'get_{fieldname}') return accessor is not None and not accessor.plugin_generated def _get_inherited_fields(self, self_fields: Set[str]) -> List[Field]: ctx = self._ctx cls = ctx.cls all_fields: List[Field] = [] known_fields = set(self_fields) for ancestor_info in cls.info.mro[1:-1]: metadata = ancestor_info.metadata.get(self._get_metadata_key()) if metadata is None: continue elif not metadata.get('processed'): raise DeferException ancestor_fields = [] ctx.api.add_plugin_dependency( mypy_trigger.make_wildcard_trigger(ancestor_info.fullname)) for name, data in metadata['fields'].items(): if name not in known_fields: if self._has_explicit_field_accessor(name): data = dict(data) data['has_explicit_accessor'] = True field = Field.deserialize(ctx.api, data) known_fields.add(name) ancestor_fields.append(field) all_fields = ancestor_fields + all_fields return all_fields def _synthesize_init(self, fields: List[Field]) -> None: ctx = self._ctx cls_info = ctx.cls.info # If our self type has placeholders (probably because of type # var bounds), defer. If we skip deferring and stick something # in our symbol table anyway, we'll get in trouble. (Arguably # plugins.common ought to help us with this, but oh well.) self_type = mypy_helpers.fill_typevars(cls_info) if semanal.has_placeholder(self_type): raise DeferException if ( ( '__init__' not in cls_info.names or cls_info.names['__init__'].plugin_generated ) and fields ): mypy_helpers.add_method( ctx, '__init__', self_type=self_type, args=[field.to_argument() for field in fields], return_type=types.NoneType(), ) class BaseStructTransformer(BaseTransformer): def __init__( self, ctx: mypy_plugin.ClassDefContext, field_makers: AbstractSet[str], ) -> None: super().__init__(ctx) self._field_makers = field_makers def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ) -> Optional[Field]: ctx = self._ctx rhs = stmt.rvalue if isinstance(rhs, nodes.CastExpr): rhs = rhs.expr if not isinstance(rhs, nodes.CallExpr): return None fdef = rhs.callee ftype = None if ( isinstance(fdef, nodes.IndexExpr) and isinstance(fdef.analyzed, nodes.TypeApplication) ): # Explicitly typed Field declaration ctor = fdef.analyzed.expr if len(fdef.analyzed.types) > 1: ctx.api.fail('too many type arguments to Field', fdef) ftype = fdef.analyzed.types[0] else: ctor = fdef ftype = None if ( not isinstance(ctor, nodes.RefExpr) or ctor.fullname not in self._field_makers ): return None type_arg = rhs.args[0] deflt = self._get_default(rhs) if ftype is None: try: un_type = exprtotype.expr_to_unanalyzed_type(type_arg) except exprtotype.TypeTranslationError: ctx.api.fail('Cannot resolve schema field type', type_arg) else: ftype = ctx.api.anal_type(un_type) if ftype is None: raise DeferException is_optional = ( isinstance(deflt, nodes.NameExpr) and deflt.fullname == 'builtins.None' ) if is_optional: ftype = types.UnionType.make_union( [ftype, types.NoneType()], line=ftype.line, column=ftype.column, ) assert isinstance(name.node, nodes.Var) name.node.type = ftype return Field( name=name.name, has_explicit_accessor=self._has_explicit_field_accessor(name.name), has_default=deflt is not None, line=stmt.line, column=stmt.column, type=ftype, ) def _get_default(self, call) -> Optional[nodes.Expression]: for (n, v) in zip(call.arg_names, call.args): if n == 'default': return v else: return None class StructTransformer(BaseStructTransformer): def _transform(self) -> List[Field]: fields = self._collect_fields() self._synthesize_init(fields) return fields def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ): field = super()._field_from_field_def(stmt, name, sym) if field is None: return None else: assert isinstance(sym.node, nodes.Var) sym.node.is_initialized_in_class = False name.is_inferred_def = False rhs = stmt.rvalue if not isinstance(rhs, nodes.CastExpr): stmt.rvalue = nodes.CastExpr( typ=field.type, expr=rhs, ) stmt.rvalue.line = rhs.line stmt.rvalue.column = rhs.column return field class SchemaClassTransformer(BaseStructTransformer): def _transform(self) -> List[Field]: ctx = self._ctx fields = self._collect_fields() schema_t = self._lookup_type('edb.schema.schema.Schema') for f in fields: if f.has_explicit_accessor: continue mypy_helpers.add_method( ctx, name=f'get_{f.name}', args=[ nodes.Argument( variable=nodes.Var( name='schema', type=schema_t, ), type_annotation=schema_t, initializer=None, kind=nodes.ARG_POS, ), ], return_type=f.type, ) return fields class ASTClassTransformer(BaseTransformer): def _transform(self) -> List[Field]: fields = self._collect_fields() # NB: __init__ synthesis below brings up a vast number of # typing errors which require AST definitions to be # annotated with defaults properly and the code adjusted # to handle Optional fields (historically we've been # initializing container fields with empty lists/tuples). # self._synthesize_init(fields) return fields def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ) -> Optional[Field]: if sym.type is None: # No type annotation? return None else: has_default = not isinstance(stmt.rvalue, nodes.TempNode) if not has_default: sym.implicit = True return Field( name=name.name, has_default=has_default, line=stmt.line, column=stmt.column, type=sym.type, has_explicit_accessor=False, )
the-stack_0_14875
# code is borrowed from the original repo and fit into our training framework # https://github.com/HuCaoFighting/Swin-Unet/tree/4375a8d6fa7d9c38184c5d3194db990a00a3e912 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from einops import rearrange from timm.models.layers import DropPath, to_2tuple, trunc_normal_ import copy import logging import math from os.path import join as pjoin import numpy as np from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm from torch.nn.modules.utils import _pair from scipy import ndimage class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class PatchExpand(nn.Module): def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.expand = nn.Linear(dim, 2*dim, bias=False) if dim_scale==2 else nn.Identity() self.norm = norm_layer(dim // dim_scale) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution x = self.expand(x) B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C//4) x = x.view(B,-1,C//4) x= self.norm(x) return x class FinalPatchExpand_X4(nn.Module): def __init__(self, input_resolution, dim, dim_scale=4, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.dim_scale = dim_scale self.expand = nn.Linear(dim, 16*dim, bias=False) self.output_dim = dim self.norm = norm_layer(self.output_dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution x = self.expand(x) B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale, c=C//(self.dim_scale**2)) x = x.view(B,-1,self.output_dim) x= self.norm(x) return x class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class BasicLayer_up(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, upsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if upsample is not None: self.upsample = PatchExpand(input_resolution, dim=dim, dim_scale=2, norm_layer=norm_layer) else: self.upsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.upsample is not None: x = self.upsample(x) return x class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformerSys(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 2, 2], depths_decoder=[1, 2, 2, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, final_upsample="expand_first", **kwargs): super().__init__() print("SwinTransformerSys expand initial----depths:{};depths_decoder:{};drop_path_rate:{};num_classes:{}".format(depths, depths_decoder,drop_path_rate,num_classes)) self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.num_features_up = int(embed_dim * 2) self.mlp_ratio = mlp_ratio self.final_upsample = final_upsample # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build encoder and bottleneck layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) # build decoder layers self.layers_up = nn.ModuleList() self.concat_back_dim = nn.ModuleList() for i_layer in range(self.num_layers): concat_linear = nn.Linear(2*int(embed_dim*2**(self.num_layers-1-i_layer)), int(embed_dim*2**(self.num_layers-1-i_layer))) if i_layer > 0 else nn.Identity() if i_layer ==0 : layer_up = PatchExpand(input_resolution=(patches_resolution[0] // (2 ** (self.num_layers-1-i_layer)), patches_resolution[1] // (2 ** (self.num_layers-1-i_layer))), dim=int(embed_dim * 2 ** (self.num_layers-1-i_layer)), dim_scale=2, norm_layer=norm_layer) else: layer_up = BasicLayer_up(dim=int(embed_dim * 2 ** (self.num_layers-1-i_layer)), input_resolution=(patches_resolution[0] // (2 ** (self.num_layers-1-i_layer)), patches_resolution[1] // (2 ** (self.num_layers-1-i_layer))), depth=depths[(self.num_layers-1-i_layer)], num_heads=num_heads[(self.num_layers-1-i_layer)], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:(self.num_layers-1-i_layer)]):sum(depths[:(self.num_layers-1-i_layer) + 1])], norm_layer=norm_layer, upsample=PatchExpand if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers_up.append(layer_up) self.concat_back_dim.append(concat_linear) self.norm = norm_layer(self.num_features) self.norm_up= norm_layer(self.embed_dim) if self.final_upsample == "expand_first": print("---final upsample expand_first---") self.up = FinalPatchExpand_X4(input_resolution=(img_size//patch_size,img_size//patch_size),dim_scale=4,dim=embed_dim) self.output = nn.Conv2d(in_channels=embed_dim,out_channels=self.num_classes,kernel_size=1,bias=False) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} #Encoder and Bottleneck def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) x_downsample = [] for layer in self.layers: x_downsample.append(x) x = layer(x) x = self.norm(x) # B L C return x, x_downsample #Dencoder and Skip connection def forward_up_features(self, x, x_downsample): for inx, layer_up in enumerate(self.layers_up): if inx == 0: x = layer_up(x) else: x = torch.cat([x,x_downsample[3-inx]],-1) x = self.concat_back_dim[inx](x) x = layer_up(x) x = self.norm_up(x) # B L C return x def up_x4(self, x): H, W = self.patches_resolution B, L, C = x.shape assert L == H*W, "input features has wrong size" if self.final_upsample=="expand_first": x = self.up(x) x = x.view(B,4*H,4*W,-1) x = x.permute(0,3,1,2) #B,C,H,W x = self.output(x) return x def forward(self, x): x, x_downsample = self.forward_features(x) x = self.forward_up_features(x,x_downsample) x = self.up_x4(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops logger = logging.getLogger(__name__) class SwinUnet_config(): def __init__(self): self.patch_size = 4 self.in_chans = 3 self.num_classes = 4 self.embed_dim = 96 self.depths = [2, 2, 6, 2] self.num_heads = [3, 6, 12, 24] self.window_size = 7 self.mlp_ratio = 4. self.qkv_bias = True self.qk_scale = None self.drop_rate = 0. self.drop_path_rate = 0.1 self.ape = False self.patch_norm = True self.use_checkpoint = False class SwinUnet(nn.Module): def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False): super(SwinUnet, self).__init__() self.num_classes = num_classes self.zero_head = zero_head self.config = config self.swin_unet = SwinTransformerSys(img_size=img_size, patch_size=config.patch_size, in_chans=config.in_chans, num_classes=self.num_classes, embed_dim=config.embed_dim, depths=config.depths, num_heads=config.num_heads, window_size=config.window_size, mlp_ratio=config.mlp_ratio, qkv_bias=config.qkv_bias, qk_scale=config.qk_scale, drop_rate=config.drop_rate, drop_path_rate=config.drop_path_rate, ape=config.ape, patch_norm=config.patch_norm, use_checkpoint=config.use_checkpoint) def forward(self, x): # print(x.size()) # if x.size()[1] == 1: # x = x.repeat(1,3,1,1) logits = self.swin_unet(x) return logits def load_from(self, pretrained_path): if pretrained_path is not None: print("pretrained_path:{}".format(pretrained_path)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') pretrained_dict = torch.load(pretrained_path, map_location=device) if "model" not in pretrained_dict: print("---start load pretrained modle by splitting---") pretrained_dict = {k[17:]:v for k,v in pretrained_dict.items()} for k in list(pretrained_dict.keys()): if "output" in k: print("delete key:{}".format(k)) del pretrained_dict[k] msg = self.swin_unet.load_state_dict(pretrained_dict,strict=False) # print(msg) return pretrained_dict = pretrained_dict['model'] print("---start load pretrained modle of swin encoder---") model_dict = self.swin_unet.state_dict() full_dict = copy.deepcopy(pretrained_dict) for k, v in pretrained_dict.items(): if "layers." in k: current_layer_num = 3-int(k[7:8]) current_k = "layers_up." + str(current_layer_num) + k[8:] full_dict.update({current_k:v}) for k in list(full_dict.keys()): if k in model_dict: if full_dict[k].shape != model_dict[k].shape: print("delete:{};shape pretrain:{};shape model:{}".format(k,v.shape,model_dict[k].shape)) del full_dict[k] msg = self.swin_unet.load_state_dict(full_dict, strict=False) # print(msg) else: print("none pretrain")
the-stack_0_14877
#!/usr/bin/env python3 import unittest from unittest.mock import patch import numpy as np import pandas as pd from tmc import points from tmc.utils import load, get_stdout, patch_helper module_name="src.subsetting_by_positions" subsetting_by_positions = load(module_name, "subsetting_by_positions") main = load(module_name, "main") ph = patch_helper(module_name) @points('p04-08.1') class SubsettingByPositions(unittest.TestCase): def test_shape_and_columns(self): df = subsetting_by_positions() self.assertEqual(df.shape, (10,2), msg="The returned DataFrame had wrong shape!") #np.testing.assert_array_equal(df.index, range(10), err_msg="Incorrect index") np.testing.assert_array_equal(df.columns, ["Title", "Artist"], err_msg="Incorrect column names") def test_called(self): with patch(ph("subsetting_by_positions"), wraps=subsetting_by_positions) as psbp,\ patch(ph("pd.read_csv"), wraps=pd.read_csv) as prc: main() psbp.assert_called() prc.assert_called() if __name__ == '__main__': unittest.main()
the-stack_0_14878
# Import python libs import new import sys # Import Salt Testing libs from salttesting import skipIf, TestCase from salttesting.helpers import ensure_in_syspath ensure_in_syspath('../../') # wmi and pythoncom modules are platform specific... wmi = new.module('wmi') sys.modules['wmi'] = wmi pythoncom = new.module('pythoncom') sys.modules['pythoncom'] = pythoncom from salttesting.mock import NO_MOCK, NO_MOCK_REASON, Mock, patch, call, ANY if NO_MOCK is False: WMI = Mock() wmi.WMI = Mock(return_value=WMI) pythoncom.CoInitialize = Mock() pythoncom.CoUninitialize = Mock() # This is imported late so mock can do it's job import bonneville.modules.win_status as status @skipIf(NO_MOCK, NO_MOCK_REASON) class TestProcsBase(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) self.__processes = [] def add_process( self, pid=100, cmd='cmd', name='name', user='user', user_domain='domain', get_owner_result=0): process = Mock() process.GetOwner = Mock( return_value=(user_domain, get_owner_result, user) ) process.ProcessId = pid process.CommandLine = cmd process.Name = name self.__processes.append(process) def call_procs(self): WMI.win32_process = Mock(return_value=self.__processes) self.result = status.procs() class TestProcsCount(TestProcsBase): def setUp(self): self.add_process(pid=100) self.add_process(pid=101) self.call_procs() def test_process_count(self): self.assertEqual(len(self.result), 2) def test_process_key_is_pid(self): self.assertSetEqual(set(self.result.keys()), set([100, 101])) class TestProcsAttributes(TestProcsBase): def setUp(self): self._expected_name = 'name' self._expected_cmd = 'cmd' self._expected_user = 'user' self._expected_domain = 'domain' pid = 100 self.add_process( pid=pid, cmd=self._expected_cmd, user=self._expected_user, user_domain=self._expected_domain, get_owner_result=0) self.call_procs() self.proc = self.result[pid] def test_process_cmd_is_set(self): self.assertEqual(self.proc['cmd'], self._expected_cmd) def test_process_name_is_set(self): self.assertEqual(self.proc['name'], self._expected_name) def test_process_user_is_set(self): self.assertEqual(self.proc['user'], self._expected_user) def test_process_user_domain_is_set(self): self.assertEqual(self.proc['user_domain'], self._expected_domain) class TestProcsUnicodeAttributes(TestProcsBase): def setUp(self): unicode_str = u'\xc1' self.utf8str = unicode_str.encode('utf8') pid = 100 self.add_process( pid=pid, user=unicode_str, user_domain=unicode_str, cmd=unicode_str, name=unicode_str) self.call_procs() self.proc = self.result[pid] def test_process_cmd_is_utf8(self): self.assertEqual(self.proc['cmd'], self.utf8str) def test_process_name_is_utf8(self): self.assertEqual(self.proc['name'], self.utf8str) def test_process_user_is_utf8(self): self.assertEqual(self.proc['user'], self.utf8str) def test_process_user_domain_is_utf8(self): self.assertEqual(self.proc['user_domain'], self.utf8str) class TestProcsWMIGetOwnerAccessDeniedWorkaround(TestProcsBase): def setUp(self): self.expected_user = 'SYSTEM' self.expected_domain = 'NT AUTHORITY' self.add_process(pid=0, get_owner_result=2) self.add_process(pid=4, get_owner_result=2) self.call_procs() def test_user_is_set(self): self.assertEqual(self.result[0]['user'], self.expected_user) self.assertEqual(self.result[4]['user'], self.expected_user) def test_process_user_domain_is_set(self): self.assertEqual(self.result[0]['user_domain'], self.expected_domain) self.assertEqual(self.result[4]['user_domain'], self.expected_domain) class TestProcsWMIGetOwnerErrorsAreLogged(TestProcsBase): def setUp(self): self.expected_error_code = 8 self.add_process(get_owner_result=self.expected_error_code) def test_error_logged_if_process_get_owner_fails(self): with patch('salt.modules.win_status.log') as log: self.call_procs() log.warning.assert_called_once_with(ANY) self.assertIn( str(self.expected_error_code), log.warning.call_args[0][0] ) class TestEmptyCommandLine(TestProcsBase): def setUp(self): self.expected_error_code = 8 pid = 100 self.add_process(pid=pid, cmd=None) self.call_procs() self.proc = self.result[pid] def test_cmd_is_empty_string(self): self.assertEqual(self.proc['cmd'], '') #class TestProcsComInitialization(TestProcsBase): # def setUp(self): # call_count = 5 # for _ in range(call_count): # self.call_procs() # self.expected_calls = [call()] * call_count # # def test_initialize_and_uninitialize_called(self): # pythoncom.CoInitialize.assert_has_calls(self.expected_calls) # pythoncom.CoUninitialize.assert_has_calls(self.expected_calls) if __name__ == '__main__': from integration import run_tests run_tests( [ TestProcsCount, TestProcsAttributes, TestProcsUnicodeAttributes, TestProcsWMIGetOwnerErrorsAreLogged, TestProcsWMIGetOwnerAccessDeniedWorkaround, ], needs_daemon=False )
the-stack_0_14880
from PyQt5 import QtWidgets from PyQt5.QtCore import qWarning, Qt from PyQt5.QtWidgets import QWidget, QSplitter from candy_editor.qt.controls.ToolWindowManager.ToolWindowManagerArea import ToolWindowManagerArea class ToolWindowManagerWrapper ( QWidget ): def __init__ ( self, manager ): super ( ToolWindowManagerWrapper, self ).__init__ ( manager ) self.manager = manager self.setWindowFlags ( self.windowFlags () | Qt.Tool ) self.setWindowTitle ( '' ) mainLayout = QtWidgets.QVBoxLayout ( self ) mainLayout.setContentsMargins ( 0, 0, 0, 0 ) self.manager.wrappers.append ( self ) def closeEvent ( self, event ): ''' 关闭时处理所有拥有的ToolWindowManagerArea ''' from .ToolWindowManager import ToolWindowManager toolWindows = [] for widget in self.findChildren ( ToolWindowManagerArea ): toolWindows += widget.toolWindows () self.manager.moveToolWindows ( toolWindows, ToolWindowManager.NoArea ) def saveState ( self ): result = {} if self.layout ().count () > 1: qWarning ('too many children for wrapper') return result if self.isWindow () and self.layout ().count () == 0: qWarning ('empty top level wrapper') return result # result[ 'geometry' ] = str ( self.saveGeometry () ) splitter = self.findChild ( QSplitter ) if splitter: result[ 'splitter' ] = self.manager.saveSplitterState ( splitter ) else: area = self.findChild ( ToolWindowManagerArea ) if area: result[ 'area' ] = area.saveState () elif self.layout ().count () > 0: qWarning ('unknown child') return {} return result def restoreState ( self, data ): if 'geometry' in data: self.restoreGeometry ( data['geometry'] ) if self.layout ().count () > 0: qWarning ('wrapper is not empty') return if 'splitter' in data: self.layout ().addWidget ( self.manager.restoreSplitterState ( data[ 'splitter' ].toMap () ) ) elif 'area' in data: area = self.manager.createArea () area.restoreState ( data[ 'area' ] ) self.layout ().addWidget ( area ) def isOccupied ( self ): return self.layout ().count () > 0
the-stack_0_14881
#Claire Williams & Matthew Rasmussen #1/26/2021 #Moves info from one CSV file to other CSV files #dictionary full of info import csv def make_athletes_table(): '''SOMETHING ''' athlete_dict = {} with open('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: name = row[1] sex = row[2] height = row[4] weight = row[5] if name not in athlete_dict: athlete_dict[name] = [len(athlete_dict) + 1, sex, height, weight] with open('athletes.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in athlete_dict: writer.writerow([athlete_dict[key][0], key, athlete_dict[key][1], athlete_dict[key][2], athlete_dict[key][3]]) return athlete_dict def make_nations_table(): nations_dict = {} with open ('noc_regions.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: noc = row[0] region = row[1] nations_dict[noc] = [len(nations_dict) + 1, region] with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: noc = row[7] team = row[6] if noc not in nations_dict: nations_dict[noc] = [len(nations_dict) + 1, team] with open('nations.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for nation in nations_dict: writer.writerow([nations_dict[nation][0], nation, nations_dict[nation][1]]) return nations_dict def make_games_table(): games_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: game = row[8] year = row[9] season = row[10] city = row[11] if game not in games_dict: games_dict[game] = [len(games_dict) + 1, year, season, city] with open('games.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in games_dict: writer.writerow([games_dict[key][0], games_dict[key][1], games_dict[key][2], games_dict[key][3]]) return games_dict def make_contests_table(): contest_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: contest = row[13] sport = row[12] if contest not in contest_dict: contest_dict[contest] = [len(contest_dict) + 1, sport] with open('contests.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in contest_dict: writer.writerow([contest_dict[key][0], key, contest_dict[key][1]]) return contest_dict def make_athletes_games(athelete_dict, nations_dict, games_dict): athletes_games_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: athlete = row[1] game_name = row[8] noc = row[7] if (athlete, game_name) not in athletes_games_dict: athletes_games_dict[(athlete, game_name)] = [len(athletes_games_dict) + 1, athelete_dict[athlete][0], nations_dict[noc][0], games_dict[game_name][0]] with open('athletes_games.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in athletes_games_dict: writer.writerow(athletes_games_dict[key]) return athletes_games_dict def make_contests_medals(athletes_games_dict, contests_dict): contests_medals_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: athlete = row[1] game_name = row[8] contest = row[13] medal = row[14] contests_medals_dict[len(contests_medals_dict) + 1] = [athletes_games_dict[(athlete, game_name)][0], contests_dict[contest][0], medal] with open('contests_medals.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in contests_medals_dict: writer.writerow([key, contests_medals_dict[key][0], contests_medals_dict[key][1], contests_medals_dict[key][2]]) def main(): athelete_dict = make_athletes_table() nations_dict = make_nations_table() games_dict = make_games_table() contests_dict = make_contests_table() athletes_games_dict = make_athletes_games(athelete_dict, nations_dict, games_dict) make_contests_medals(athletes_games_dict, contests_dict) main()
the-stack_0_14883
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.ops.attention_wrapper.""" # pylint: disable=unused-import,g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: enable=unused-import import collections import functools import numpy as np from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.contrib.seq2seq.python.ops import attention_wrapper as wrapper from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.ops import variable_scope as vs from tensorflow.python.platform import test from tensorflow.python.util import nest # pylint: enable=g-import-not-at-top # for testing AttentionWrapperState = wrapper.AttentionWrapperState # pylint: disable=invalid-name LSTMStateTuple = rnn_cell.LSTMStateTuple # pylint: disable=invalid-name BasicDecoderOutput = basic_decoder.BasicDecoderOutput # pylint: disable=invalid-name float32 = np.float32 int32 = np.int32 array = np.array dtype = np.dtype class ResultSummary( collections.namedtuple('ResultSummary', ('shape', 'dtype', 'mean'))): pass def get_result_summary(x): if isinstance(x, np.ndarray): return ResultSummary(x.shape, x.dtype, x.mean()) return x class AttentionWrapperTest(test.TestCase): def assertAllCloseOrEqual(self, x, y, **kwargs): if isinstance(x, np.ndarray) or isinstance(x, float): return super(AttentionWrapperTest, self).assertAllClose( x, y, atol=1e-3, **kwargs) else: self.assertAllEqual(x, y, **kwargs) def testAttentionWrapperState(self): num_fields = len(wrapper.AttentionWrapperState._fields) # pylint: disable=protected-access state = wrapper.AttentionWrapperState(*([None] * num_fields)) new_state = state.clone(time=1) self.assertEqual(state.time, None) self.assertEqual(new_state.time, 1) def testAttentionWrapperStateShapePropgation(self): batch_size = 5 max_time = 5 num_units = 5 memory = random_ops.random_uniform( [batch_size, max_time, num_units], seed=1) mechanism = wrapper.LuongAttention(num_units, memory) cell = wrapper.AttentionWrapper(rnn_cell.LSTMCell(num_units), mechanism) # Create zero state with static batch size. static_state = cell.zero_state(batch_size, dtypes.float32) # Create zero state without static batch size. state = cell.zero_state(array_ops.shape(memory)[0], dtypes.float32) state = static_state.clone( cell_state=state.cell_state, attention=state.attention) self.assertEqual(state.cell_state.c.shape, static_state.cell_state.c.shape) self.assertEqual(state.cell_state.h.shape, static_state.cell_state.h.shape) self.assertEqual(state.attention.shape, static_state.attention.shape) def _testWithAttention(self, create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=3, alignment_history=False, expected_final_alignment_history=None, attention_layer_size=6, attention_layer=None, name=''): attention_layer_sizes = ( [attention_layer_size] if attention_layer_size is not None else None) attention_layers = ( [attention_layer] if attention_layer is not None else None) self._testWithMaybeMultiAttention( is_multi=False, create_attention_mechanisms=[create_attention_mechanism], expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[attention_mechanism_depth], alignment_history=alignment_history, expected_final_alignment_history=expected_final_alignment_history, attention_layer_sizes=attention_layer_sizes, attention_layers=attention_layers, name=name) def _testWithMaybeMultiAttention(self, is_multi, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths, alignment_history=False, expected_final_alignment_history=None, attention_layer_sizes=None, attention_layers=None, name=''): # Allow is_multi to be True with a single mechanism to enable test for # passing in a single mechanism in a list. assert len(create_attention_mechanisms) == 1 or is_multi encoder_sequence_length = [3, 2, 3, 1, 1] decoder_sequence_length = [2, 0, 1, 2, 3] batch_size = 5 encoder_max_time = 8 decoder_max_time = 4 input_depth = 7 encoder_output_depth = 10 cell_depth = 9 if attention_layer_sizes is not None: # Compute sum of attention_layer_sizes. Use encoder_output_depth if None. attention_depth = sum(attention_layer_size or encoder_output_depth for attention_layer_size in attention_layer_sizes) elif attention_layers is not None: # Compute sum of attention_layers output depth. attention_depth = sum( attention_layer.compute_output_shape( [batch_size, cell_depth + encoder_output_depth]).dims[-1].value for attention_layer in attention_layers) else: attention_depth = encoder_output_depth * len(create_attention_mechanisms) decoder_inputs = array_ops.placeholder_with_default( np.random.randn(batch_size, decoder_max_time, input_depth).astype(np.float32), shape=(None, None, input_depth)) encoder_outputs = array_ops.placeholder_with_default( np.random.randn(batch_size, encoder_max_time, encoder_output_depth).astype(np.float32), shape=(None, None, encoder_output_depth)) attention_mechanisms = [ creator(num_units=depth, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length) for creator, depth in zip(create_attention_mechanisms, attention_mechanism_depths)] with self.session(use_gpu=True) as sess: with vs.variable_scope( 'root', initializer=init_ops.random_normal_initializer(stddev=0.01, seed=3)): attention_layer_size = attention_layer_sizes attention_layer = attention_layers if not is_multi: if attention_layer_size is not None: attention_layer_size = attention_layer_size[0] if attention_layer is not None: attention_layer = attention_layer[0] cell = rnn_cell.LSTMCell(cell_depth) cell = wrapper.AttentionWrapper( cell, attention_mechanisms if is_multi else attention_mechanisms[0], attention_layer_size=attention_layer_size, alignment_history=alignment_history, attention_layer=attention_layer) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) self.assertEqual((batch_size, None, attention_depth), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual((batch_size, None), tuple(final_outputs.sample_id.get_shape().as_list())) self.assertEqual((batch_size, attention_depth), tuple(final_state.attention.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.c.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.h.get_shape().as_list())) if alignment_history: if is_multi: state_alignment_history = [] for history_array in final_state.alignment_history: history = history_array.stack() self.assertEqual( (None, batch_size, None), tuple(history.get_shape().as_list())) state_alignment_history.append(history) state_alignment_history = tuple(state_alignment_history) else: state_alignment_history = final_state.alignment_history.stack() self.assertEqual( (None, batch_size, None), tuple(state_alignment_history.get_shape().as_list())) nest.assert_same_structure( cell.state_size, cell.zero_state(batch_size, dtypes.float32)) # Remove the history from final_state for purposes of the # remainder of the tests. final_state = final_state._replace(alignment_history=()) # pylint: disable=protected-access else: state_alignment_history = () sess.run(variables.global_variables_initializer()) sess_results = sess.run({ 'final_outputs': final_outputs, 'final_state': final_state, 'state_alignment_history': state_alignment_history, }) final_output_info = nest.map_structure(get_result_summary, sess_results['final_outputs']) final_state_info = nest.map_structure(get_result_summary, sess_results['final_state']) print(name) print('Copy/paste:\nexpected_final_output = %s' % str(final_output_info)) print('expected_final_state = %s' % str(final_state_info)) nest.map_structure(self.assertAllCloseOrEqual, expected_final_output, final_output_info) nest.map_structure(self.assertAllCloseOrEqual, expected_final_state, final_state_info) if alignment_history: # by default, the wrapper emits attention as output final_alignment_history_info = nest.map_structure( get_result_summary, sess_results['state_alignment_history']) print('expected_final_alignment_history = %s' % str(final_alignment_history_info)) nest.map_structure( self.assertAllCloseOrEqual, # outputs are batch major but the stacked TensorArray is time major expected_final_alignment_history, final_alignment_history_info) def testBahdanauNormalizedDType(self): for dtype in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dtype, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dtype, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.BahdanauAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, normalize=True, dtype=dtype, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtype, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dtype) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testBahdanauNotNormalized(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052250605), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040092287), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020015112)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0052052638), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.12500001) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauNotNormalized') def testBahdanauNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauAttention, normalize=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.00597103), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040052128), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019996136)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00595117), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, name='testBahdanauNormalized') def testLuongNotNormalized(self): create_attention_mechanism = wrapper.LuongAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongNotNormalized') def testLuongScaledDType(self): # Test case for GitHub issue 18099 for dt in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dt, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dt, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.LuongAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, scale=True, dtype=dt, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dt, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dt) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testLuongScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongAttention, scale=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongScaled') def testNotUseAttentionLayer(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 10), dtype=dtype('float32'), mean=0.117389656), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=4.5999999999999996)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0063607907), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.00323448)), attention=ResultSummary( shape=(5, 10), dtype=dtype('float32'), mean=0.117389656,), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_layer_size=None, name='testNotUseAttentionLayer') def test_safe_cumprod(self): # Create some random test input test_input = np.random.uniform(size=(10, 20)) for axis in [0, 1]: for exclusive in [True, False]: with self.cached_session(): # Compute cumprod with regular tf.cumprod cumprod_output = math_ops.cumprod( test_input, axis=axis, exclusive=exclusive).eval() # Compute cumprod with safe_cumprod safe_cumprod_output = wrapper.safe_cumprod( test_input, axis=axis, exclusive=exclusive).eval() for x, y in zip(cumprod_output.shape, safe_cumprod_output.shape): self.assertEqual(x, y) for x, y in zip(cumprod_output.flatten(), safe_cumprod_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) def test_monotonic_attention(self): def monotonic_attention_explicit(p_choose_i, previous_attention): """Explicitly compute monotonic attention distribution using numpy.""" # Base case for recurrence relation out = [previous_attention[0]] # Explicitly follow the recurrence relation for j in range(1, p_choose_i.shape[0]): out.append((1 - p_choose_i[j - 1])*out[j - 1] + previous_attention[j]) return p_choose_i*np.array(out) # Generate a random batch of choosing probabilities for seq. len. 20 p_choose_i = np.random.uniform(size=(10, 20)).astype(np.float32) # Generate random previous attention distributions previous_attention = np.random.uniform(size=(10, 20)).astype(np.float32) previous_attention /= previous_attention.sum(axis=1).reshape((-1, 1)) # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): recursive_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'recursive').eval() self.assertEqual(recursive_output.ndim, explicit_output.ndim) for x, y in zip(recursive_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Generate new p_choose_i for parallel, which is unstable when p_choose_i[n] # is close to 1 p_choose_i = np.random.uniform(0, 0.9, size=(10, 20)).astype(np.float32) # Create new output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): parallel_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'parallel').eval() self.assertEqual(parallel_output.ndim, explicit_output.ndim) for x, y in zip(parallel_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(parallel_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test hard mode, where probabilities must be 0 or 1 p_choose_i = np.random.choice(np.array([0, 1], np.float32), (10, 20)) previous_attention = np.zeros((10, 20), np.float32) # Randomly choose input sequence indices at each timestep random_idx = np.random.randint(0, previous_attention.shape[1], previous_attention.shape[0]) previous_attention[np.arange(previous_attention.shape[0]), random_idx] = 1 # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): hard_output = wrapper.monotonic_attention( # TensorFlow is unhappy when these are not wrapped as tf.constant constant_op.constant(p_choose_i), constant_op.constant(previous_attention), 'hard').eval() self.assertEqual(hard_output.ndim, explicit_output.ndim) for x, y in zip(hard_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(hard_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test recursively computing attention distributions vs. sampling def sample(p_choose_i): """Generate a sequence of emit-ingest decisions from p_choose_i.""" output = np.zeros(p_choose_i.shape) t_im1 = 0 for i in range(p_choose_i.shape[0]): for j in range(t_im1, p_choose_i.shape[1]): if np.random.uniform() <= p_choose_i[i, j]: output[i, j] = 1 t_im1 = j break else: t_im1 = p_choose_i.shape[1] return output # Now, the first axis is output timestep and second is input timestep p_choose_i = np.random.uniform(size=(4, 5)).astype(np.float32) # Generate the average of a bunch of samples n_samples = 100000 sampled_output = np.mean( [sample(p_choose_i) for _ in range(n_samples)], axis=0) # Create initial previous_attention base case recursive_output = [np.array([1] + [0]*(p_choose_i.shape[1] - 1), np.float32)] # Compute output with TensorFlow function, for both calculation types with self.cached_session(): for j in range(p_choose_i.shape[0]): # Compute attention distribution for this output time step recursive_output.append(wrapper.monotonic_attention( # newaxis is for adding the expected batch dimension p_choose_i[j][np.newaxis], recursive_output[-1][np.newaxis], 'recursive').eval()[0]) # Stack together distributions; remove basecase recursive_output = np.array(recursive_output[1:]) self.assertEqual(recursive_output.ndim, sampled_output.ndim) for x, y in zip(recursive_output.shape, sampled_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), sampled_output.flatten()): # Use a very forgiving threshold since we are sampling self.assertAlmostEqual(x, y, places=2) def testBahdanauMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.002122893), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040002423), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019968653)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.9313523e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050430927) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNotNormalized') def testBahdanauMonotonicNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, normalize=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0025896581), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.73333333)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040013152), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019973689)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00069823361), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.0465225502849) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNormalized') def testBahdanauMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.BahdanauMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testLuongMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicNotNormalized') def testLuongMonotonicScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, scale=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicScaled') def testMultiAttention(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layer_sizes=[3, 4], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testMultiAttentionWithLayerInstances(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layers=[layers_core.Dense(3, use_bias=False), layers_core.Dense(4, use_bias=False)], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testLuongMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.LuongMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testMultiAttentionNoAttentionLayer(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 20), dtype=dtype('float32'), mean=0.115853324533), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=8.6)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.003545674), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0018327223)), attention=ResultSummary( shape=(5, 20), dtype=dtype('float32'), mean=0.11462739855), time=3, alignments=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=(), attention_state=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125))) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( is_multi=True, create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9, 9], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testSingleAttentionAsList(self): create_attention_mechanisms = [wrapper.BahdanauAttention] expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 3), dtype=dtype('float32'), mean=-0.0098485695), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.8)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040023471), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019979973)), attention=ResultSummary( shape=(5, 3), dtype=dtype('float32'), mean=-0.0098808752), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125),) self._testWithMaybeMultiAttention( is_multi=True, # pass the AttentionMechanism wrapped in a list create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9], attention_layer_sizes=[3], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testCustomizedAttention(self): batch_size = 2 max_time = 3 num_units = 2 memory = constant_op.constant([[[1., 1.], [2., 2.], [3., 3.]], [[4., 4.], [5., 5.], [6., 6.]]]) memory_sequence_length = constant_op.constant([3, 2]) attention_mechanism = wrapper.BahdanauAttention(num_units, memory, memory_sequence_length) # Sets all returned values to be all ones. def _customized_attention(unused_attention_mechanism, unused_cell_output, unused_attention_state, unused_attention_layer): """Customized attention. Returns: attention: `Tensor` of shape [batch_size, num_units], attention output. alignments: `Tensor` of shape [batch_size, max_time], sigma value for each input memory (prob. function of input keys). next_attention_state: A `Tensor` representing the next state for the attention. """ attention = array_ops.ones([batch_size, num_units]) alignments = array_ops.ones([batch_size, max_time]) next_attention_state = alignments return attention, alignments, next_attention_state attention_cell = wrapper.AttentionWrapper( rnn_cell.LSTMCell(2), attention_mechanism, attention_layer_size=None, # don't use attention layer. output_attention=False, alignment_history=(), attention_fn=_customized_attention, name='attention') self.assertEqual(num_units, attention_cell.output_size) initial_state = attention_cell.zero_state( batch_size=2, dtype=dtypes.float32) source_input_emb = array_ops.ones([2, 3, 2]) source_input_length = constant_op.constant([3, 2]) # 'state' is a tuple of # (cell_state, h, attention, alignments, alignment_history, attention_state) output, state = rnn.dynamic_rnn( attention_cell, inputs=source_input_emb, sequence_length=source_input_length, initial_state=initial_state, dtype=dtypes.float32) with self.session() as sess: sess.run(variables.global_variables_initializer()) output_value, state_value = sess.run([output, state], feed_dict={}) self.assertAllEqual(np.array([2, 3, 2]), output_value.shape) self.assertAllClose(np.array([[1., 1.], [1., 1.]]), state_value.attention) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.alignments) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.attention_state) if __name__ == '__main__': test.main()
the-stack_0_14884
# Copyright 2019 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Training/decoding definition for the speech translation task.""" import itertools import json import logging import os from chainer import training from chainer.training import extensions import numpy as np import torch from espnet.asr.asr_utils import adadelta_eps_decay from espnet.asr.asr_utils import adam_lr_decay from espnet.asr.asr_utils import add_results_to_json from espnet.asr.asr_utils import CompareValueTrigger from espnet.asr.asr_utils import restore_snapshot from espnet.asr.asr_utils import snapshot_object from espnet.asr.asr_utils import torch_load from espnet.asr.asr_utils import torch_resume from espnet.asr.asr_utils import torch_snapshot from espnet.asr.pytorch_backend.asr_init import load_trained_model from espnet.asr.pytorch_backend.asr_init import load_trained_modules from espnet.nets.pytorch_backend.e2e_asr import pad_list from espnet.nets.st_interface import STInterface from espnet.utils.dataset import ChainerDataLoader from espnet.utils.dataset import TransformDataset from espnet.utils.deterministic_utils import set_deterministic_pytorch from espnet.utils.dynamic_import import dynamic_import from espnet.utils.io_utils import LoadInputsAndTargets from espnet.utils.training.batchfy import make_batchset from espnet.utils.training.iterators import ShufflingEnabler from espnet.utils.training.tensorboard_logger import TensorboardLogger from espnet.utils.training.train_utils import check_early_stop from espnet.utils.training.train_utils import set_early_stop from espnet.asr.pytorch_backend.asr import CustomConverter as ASRCustomConverter from espnet.asr.pytorch_backend.asr import CustomEvaluator from espnet.asr.pytorch_backend.asr import CustomUpdater class CustomConverter(ASRCustomConverter): """Custom batch converter for Pytorch. Args: subsampling_factor (int): The subsampling factor. dtype (torch.dtype): Data type to convert. use_source_text (bool): use source transcription. """ def __init__( self, subsampling_factor=1, dtype=torch.float32, use_source_text=False ): """Construct a CustomConverter object.""" super().__init__(subsampling_factor=subsampling_factor, dtype=dtype) self.use_source_text = use_source_text def __call__(self, batch, device=torch.device("cpu")): """Transform a batch and send it to a device. Args: batch (list): The batch to transform. device (torch.device): The device to send to. Returns: tuple(torch.Tensor, torch.Tensor, torch.Tensor) """ # batch should be located in list assert len(batch) == 1 xs, ys, ys_src = batch[0] # get batch of lengths of input sequences ilens = np.array([x.shape[0] for x in xs]) ilens = torch.from_numpy(ilens).to(device) xs_pad = pad_list([torch.from_numpy(x).float() for x in xs], 0).to( device, dtype=self.dtype ) ys_pad = pad_list( [torch.from_numpy(np.array(y, dtype=np.int64)) for y in ys], self.ignore_id, ).to(device) if self.use_source_text: ys_pad_src = pad_list( [torch.from_numpy(np.array(y, dtype=np.int64)) for y in ys_src], self.ignore_id, ).to(device) else: ys_pad_src = None return xs_pad, ilens, ys_pad, ys_pad_src def train(args): """Train with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning("cuda is not available") # get input and output dimension info with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]["input"][0]["shape"][-1]) odim = int(valid_json[utts[0]]["output"][0]["shape"][-1]) logging.info("#input dims : " + str(idim)) logging.info("#output dims: " + str(odim)) # Initialize with pre-trained ASR encoder and MT decoder if args.enc_init is not None or args.dec_init is not None: model = load_trained_modules(idim, odim, args, interface=STInterface) else: model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, STInterface) total_subsampling_factor = model.get_total_subsampling_factor() # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + "/model.json" with open(model_conf, "wb") as f: logging.info("writing a model config file to " + model_conf) f.write( json.dumps( (idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True ).encode("utf_8") ) for key in sorted(vars(args).keys()): logging.info("ARGS: " + key + ": " + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: if args.batch_size != 0: logging.warning( "batch size is automatically increased (%d -> %d)" % (args.batch_size, args.batch_size * args.ngpu) ) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") if args.train_dtype in ("float16", "float32", "float64"): dtype = getattr(torch, args.train_dtype) else: dtype = torch.float32 model = model.to(device=device, dtype=dtype) logging.warning( "num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), sum(p.numel() for p in model.parameters() if p.requires_grad) * 100.0 / sum(p.numel() for p in model.parameters()), ) ) # Setup an optimizer if args.opt == "adadelta": optimizer = torch.optim.Adadelta( model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay ) elif args.opt == "adam": optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) elif args.opt == "noam": from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt( model.parameters(), args.adim, args.transformer_warmup_steps, args.transformer_lr, ) else: raise NotImplementedError("unknown optimizer: " + args.opt) # setup apex.amp if args.train_dtype in ("O0", "O1", "O2", "O3"): try: from apex import amp except ImportError as e: logging.error( f"You need to install apex for --train-dtype {args.train_dtype}. " "See https://github.com/NVIDIA/apex#linux" ) raise e if args.opt == "noam": model, optimizer.optimizer = amp.initialize( model, optimizer.optimizer, opt_level=args.train_dtype ) else: model, optimizer = amp.initialize( model, optimizer, opt_level=args.train_dtype ) use_apex = True else: use_apex = False # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter converter = CustomConverter( subsampling_factor=model.subsample[0], dtype=dtype, use_source_text=args.asr_weight > 0 or args.mt_weight > 0, ) # read json data with open(args.train_json, "rb") as f: train_json = json.load(f)["utts"] with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 # make minibatch list (variable length) train = make_batchset( train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=0, ) valid = make_batchset( valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=0, ) load_tr = LoadInputsAndTargets( mode="asr", load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={"train": True}, # Switch the mode of preprocessing ) load_cv = LoadInputsAndTargets( mode="asr", load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={"train": False}, # Switch the mode of preprocessing ) # hack to make batchsize argument as 1 # actual bathsize is included in a list # default collate function converts numpy array to pytorch tensor # we used an empty collate function instead which returns list train_iter = ChainerDataLoader( dataset=TransformDataset(train, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=args.n_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0], ) valid_iter = ChainerDataLoader( dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.n_iter_processes, ) # Set up a trainer updater = CustomUpdater( model, args.grad_clip, {"main": train_iter}, optimizer, device, args.ngpu, args.grad_noise, args.accum_grad, use_apex=use_apex, ) trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"), ) # Resume from a snapshot if args.resume: logging.info("resumed from %s" % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch if args.save_interval_iters > 0: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu) ) # Save attention weight at each epoch if args.num_save_attention > 0: data = sorted( list(valid_json.items())[: args.num_save_attention], key=lambda x: int(x[1]["input"][0]["shape"][1]), reverse=True, ) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device, subsampling_factor=total_subsampling_factor, ) trainer.extend(att_reporter, trigger=(1, "epoch")) else: att_reporter = None # Save CTC prob at each epoch if (args.asr_weight > 0 and args.mtlalpha > 0) and args.num_save_ctc > 0: # NOTE: sort it by output lengths data = sorted( list(valid_json.items())[: args.num_save_ctc], key=lambda x: int(x[1]["output"][0]["shape"][0]), reverse=True, ) if hasattr(model, "module"): ctc_vis_fn = model.module.calculate_all_ctc_probs plot_class = model.module.ctc_plot_class else: ctc_vis_fn = model.calculate_all_ctc_probs plot_class = model.ctc_plot_class ctc_reporter = plot_class( ctc_vis_fn, data, args.outdir + "/ctc_prob", converter=converter, transform=load_cv, device=device, subsampling_factor=total_subsampling_factor, ) trainer.extend(ctc_reporter, trigger=(1, "epoch")) else: ctc_reporter = None # Make a plot for training and validation values trainer.extend( extensions.PlotReport( [ "main/loss", "validation/main/loss", "main/loss_asr", "validation/main/loss_asr", "main/loss_mt", "validation/main/loss_mt", "main/loss_st", "validation/main/loss_st", ], "epoch", file_name="loss.png", ) ) trainer.extend( extensions.PlotReport( [ "main/acc", "validation/main/acc", "main/acc_asr", "validation/main/acc_asr", "main/acc_mt", "validation/main/acc_mt", ], "epoch", file_name="acc.png", ) ) trainer.extend( extensions.PlotReport( ["main/bleu", "validation/main/bleu"], "epoch", file_name="bleu.png" ) ) # Save best models trainer.extend( snapshot_object(model, "model.loss.best"), trigger=training.triggers.MinValueTrigger("validation/main/loss"), ) trainer.extend( snapshot_object(model, "model.acc.best"), trigger=training.triggers.MaxValueTrigger("validation/main/acc"), ) # save snapshot which contains model and optimizer states if args.save_interval_iters > 0: trainer.extend( torch_snapshot(filename="snapshot.iter.{.updater.iteration}"), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend(torch_snapshot(), trigger=(1, "epoch")) # epsilon decay in the optimizer if args.opt == "adadelta": if args.criterion == "acc": trainer.extend( restore_snapshot( model, args.outdir + "/model.acc.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot( model, args.outdir + "/model.loss.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) elif args.opt == "adam": if args.criterion == "acc": trainer.extend( restore_snapshot( model, args.outdir + "/model.acc.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot( model, args.outdir + "/model.loss.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) # Write a log of evaluation statistics for each epoch trainer.extend( extensions.LogReport(trigger=(args.report_interval_iters, "iteration")) ) report_keys = [ "epoch", "iteration", "main/loss", "main/loss_st", "main/loss_asr", "validation/main/loss", "validation/main/loss_st", "validation/main/loss_asr", "main/acc", "validation/main/acc", ] if args.asr_weight > 0: report_keys.append("main/acc_asr") report_keys.append("validation/main/acc_asr") report_keys += ["elapsed_time"] if args.opt == "adadelta": trainer.extend( extensions.observe_value( "eps", lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][ "eps" ], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("eps") elif args.opt in ["adam", "noam"]: trainer.extend( extensions.observe_value( "lr", lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][ "lr" ], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("lr") if args.asr_weight > 0: if args.mtlalpha > 0: report_keys.append("main/cer_ctc") report_keys.append("validation/main/cer_ctc") if args.mtlalpha < 1: if args.report_cer: report_keys.append("validation/main/cer") if args.report_wer: report_keys.append("validation/main/wer") if args.report_bleu: report_keys.append("main/bleu") report_keys.append("validation/main/bleu") trainer.extend( extensions.PrintReport(report_keys), trigger=(args.report_interval_iters, "iteration"), ) trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": from torch.utils.tensorboard import SummaryWriter trainer.extend( TensorboardLogger( SummaryWriter(args.tensorboard_dir), att_reporter=att_reporter, ctc_reporter=ctc_reporter, ), trigger=(args.report_interval_iters, "iteration"), ) # Run the training trainer.run() check_early_stop(trainer, args.epochs) def trans(args): """Decode with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) model, train_args = load_trained_model(args.model) assert isinstance(model, STInterface) model.trans_args = args # gpu if args.ngpu == 1: gpu_id = list(range(args.ngpu)) logging.info("gpu id: " + str(gpu_id)) model.cuda() # read json data with open(args.trans_json, "rb") as f: js = json.load(f)["utts"] new_js = {} load_inputs_and_targets = LoadInputsAndTargets( mode="asr", load_output=False, sort_in_input_length=False, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={"train": False}, ) if args.batchsize == 0: with torch.no_grad(): for idx, name in enumerate(js.keys(), 1): logging.info("(%d/%d) decoding " + name, idx, len(js.keys())) batch = [(name, js[name])] feat = load_inputs_and_targets(batch)[0][0] nbest_hyps = model.translate( feat, args, train_args.char_list, ) new_js[name] = add_results_to_json( js[name], nbest_hyps, train_args.char_list ) else: def grouper(n, iterable, fillvalue=None): kargs = [iter(iterable)] * n return itertools.zip_longest(*kargs, fillvalue=fillvalue) # sort data if batchsize > 1 keys = list(js.keys()) if args.batchsize > 1: feat_lens = [js[key]["input"][0]["shape"][0] for key in keys] sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i]) keys = [keys[i] for i in sorted_index] with torch.no_grad(): for names in grouper(args.batchsize, keys, None): names = [name for name in names if name] batch = [(name, js[name]) for name in names] feats = load_inputs_and_targets(batch)[0] nbest_hyps = model.translate_batch( feats, args, train_args.char_list, ) for i, nbest_hyp in enumerate(nbest_hyps): name = names[i] new_js[name] = add_results_to_json( js[name], nbest_hyp, train_args.char_list ) with open(args.result_label, "wb") as f: f.write( json.dumps( {"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True ).encode("utf_8") )
the-stack_0_14886
import os import os.path as osp import argparse import pickle import numpy as np from operator import itemgetter import re def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-appstr', type=str, default='unknown') parser.add_argument('-ntask', type=int, default=1, help='number of tasks') parser.add_argument("-bmin", type=int, default=1, help ='minimum value for bandit budget') parser.add_argument("-bmax", type=int, default=8, help ='maximum value for bandit budget') parser.add_argument("-eta", type=int, default=2, help ='base value for bandit structure') parser.add_argument("-Nloop", type=int, default=1, help ='number of bandit loops') parser.add_argument('-expid', type=str, default='0') return parser.parse_args() def main(args): summary = [] my_source = f'./{args.appstr}_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt' save_path = f'./{args.appstr}_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.pkl' GPTuneBand_source = f'./{args.appstr}_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}_parsed.pkl' with open(my_source, "r") as f: line = f.readline() while line: info = line.split() if (info[0] == 'Tuner:' and info[1] == "GPTuneBand"): results = [] tunername = info[1] results.append(tunername) line = f.readline() line = f.readline().split() for _ in range(int(args.ntask)): tid = int(line[1]) line = f.readline().split() line = f.readline() result = pickle.load(open(GPTuneBand_source, "rb")) results.append(result) if int(args.ntask) > 1: line = f.readline().split() summary.append(results) line = f.readline() elif (info[0] == 'Tuner:' and info[1] == "hpbandster"): results = [] tunername = info[1] results.append(tunername) line = f.readline() line = f.readline().split() for _ in range(int(args.ntask)): tid = int(line[1]) line = f.readline().split() task = line[0][7:] line = f.readline().strip(" Os ") data = [[float(y) for y in x.split(", ")] for x in re.split('\[\[|\]\]|\), \(|\(|\)', line) if len(x) > 2] data = [y for y in data if y[1] < float("Inf")] x = [] y = [] pre_fix = 0 max_num = -999 for info in data: if info[0] > max_num: max_num = info[0] for info in data: pre_fix += info[0]/max_num if np.isclose(info[0], max_num): x.append(pre_fix) y.append(info[1]) results.append([tid, task, [x, y]]) if int(args.ntask) > 1: line = f.readline().split() summary.append(results) line = f.readline() else: # GPTune OpenTuner and TPE results = [] tunername = info[1] results.append(tunername) line = f.readline() line = f.readline().split() for _ in range(int(args.ntask)): tid = int(line[1]) line = f.readline().split() task = [x for x in line] line = f.readline().strip(' Os [ ]\n') history = [float(x) for x in re.split('\], \[', line)] x = list(np.arange(1,len(history)+1)) results.append([tid, task, [x,history]]) if int(args.ntask) > 1: line = f.readline().split() summary.append(results) line = f.readline() print(summary[0]) print(summary[1]) print("Results saved to", save_path) pickle.dump(summary, open(save_path, "wb")) if __name__ == "__main__": main(parse_args())
the-stack_0_14887
from api.models.base import Base db = Base.db class Activity(Base): """Model activities available for points.""" __tablename__ = 'activities' activity_type_id = db.Column( db.String, db.ForeignKey('activity_types.uuid'), nullable=False ) added_by_id = db.Column( db.String, db.ForeignKey('users.uuid'), nullable=False ) activity_date = db.Column(db.Date) logged_activities = db.relationship( 'LoggedActivity', back_populates='activity', lazy='dynamic', order_by='desc(LoggedActivity.created_at)' ) activity_type = db.relationship( 'ActivityType', back_populates='activities', uselist=False )
the-stack_0_14890
import cv2 from time import sleep cap = cv2.VideoCapture(0) while True: ret,frame = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Display the resulting frame cv2.imshow('frame',gray) if cv2.waitKey(1) & 0xFF == ord('q'): break sleep(1) cap.release() cv2.destroyAllWindows()
the-stack_0_14893
# gpl author: Ryan Inch (Imaginer) import bpy from bpy.types import Menu from . import utils_core class DynTopoMenu(Menu): bl_label = "Dyntopo" bl_idname = "VIEW3D_MT_sv3_dyntopo" @classmethod def poll(self, context): return utils_core.get_mode() == 'SCULPT' def draw(self, context): layout = self.layout if context.object.use_dynamic_topology_sculpting: layout.row().operator("sculpt.dynamic_topology_toggle", text="Disable Dynamic Topology") layout.row().separator() layout.row().menu(DynDetailMenu.bl_idname) layout.row().menu(DetailMethodMenu.bl_idname) layout.row().separator() layout.row().operator("sculpt.optimize") if context.tool_settings.sculpt.detail_type_method == 'CONSTANT': layout.row().operator("sculpt.detail_flood_fill") layout.row().menu(SymmetrizeMenu.bl_idname) layout.row().prop(context.tool_settings.sculpt, "use_smooth_shading", toggle=True) else: row = layout.row() row.operator_context = 'INVOKE_DEFAULT' row.operator("sculpt.dynamic_topology_toggle", text="Enable Dynamic Topology") class DynDetailMenu(Menu): bl_label = "Detail Size" bl_idname = "VIEW3D_MT_sv3_dyn_detail" def init(self): settings = (("40", 40), ("30", 30), ("20", 20), ("10", 10), ("5", 5), ("1", 1)) if bpy.context.tool_settings.sculpt.detail_type_method == 'RELATIVE': datapath = "tool_settings.sculpt.detail_size" slider_setting = "detail_size" elif bpy.context.tool_settings.sculpt.detail_type_method == 'CONSTANT': datapath = "tool_settings.sculpt.constant_detail_resolution" slider_setting = "constant_detail_resolution" else: datapath = "tool_settings.sculpt.detail_percent" slider_setting = "detail_percent" settings = (("100", 100), ("75", 75), ("50", 50), ("25", 25), ("10", 10), ("5", 5)) return settings, datapath, slider_setting def draw(self, context): settings, datapath, slider_setting = self.init() layout = self.layout # add the top slider layout.row().prop(context.tool_settings.sculpt, slider_setting, slider=True) layout.row().separator() # add the rest of the menu items for i in range(len(settings)): utils_core.menuprop( layout.row(), settings[i][0], settings[i][1], datapath, icon='RADIOBUT_OFF', disable=True, disable_icon='RADIOBUT_ON' ) class DetailMethodMenu(Menu): bl_label = "Detail Method" bl_idname = "VIEW3D_MT_sv3_detail_method_menu" def draw(self, context): layout = self.layout refine_path = "tool_settings.sculpt.detail_refine_method" type_path = "tool_settings.sculpt.detail_type_method" refine_items = (("Subdivide Edges", 'SUBDIVIDE'), ("Collapse Edges", 'COLLAPSE'), ("Subdivide Collapse", 'SUBDIVIDE_COLLAPSE')) type_items = (("Relative Detail", 'RELATIVE'), ("Constant Detail", 'CONSTANT'), ("Brush Detail", 'BRUSH')) layout.row().label(text="Refine") layout.row().separator() # add the refine menu items for item in refine_items: utils_core.menuprop( layout.row(), item[0], item[1], refine_path, disable=True, icon='RADIOBUT_OFF', disable_icon='RADIOBUT_ON' ) layout.row().label(text="") layout.row().label(text="Type") layout.row().separator() # add the type menu items for item in type_items: utils_core.menuprop( layout.row(), item[0], item[1], type_path, disable=True, icon='RADIOBUT_OFF', disable_icon='RADIOBUT_ON' ) class SymmetrizeMenu(Menu): bl_label = "Symmetrize" bl_idname = "VIEW3D_MT_sv3_symmetrize_menu" def draw(self, context): layout = self.layout path = "tool_settings.sculpt.symmetrize_direction" # add the the symmetrize operator to the menu layout.row().operator("sculpt.symmetrize") layout.row().separator() # add the rest of the menu items for item in context.tool_settings.sculpt. \ bl_rna.properties['symmetrize_direction'].enum_items: utils_core.menuprop( layout.row(), item.name, item.identifier, path, disable=True, icon='RADIOBUT_OFF', disable_icon='RADIOBUT_ON' ) classes = ( DynTopoMenu, DynDetailMenu, DetailMethodMenu, SymmetrizeMenu ) def register(): for cls in classes: bpy.utils.register_class(cls) def unregister(): for cls in classes: bpy.utils.unregister_class(cls)
the-stack_0_14894
# # Copyright (c) 2021, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import pytest from PIL import Image from e2e_tests.base import AVAILABLE_CONTAINERS, BaseE2ETest, fake from e2e_tests.utils import generate_image, image_to_png, tmp_context from neptune.new.metadata_containers import MetadataContainer class TestSeries(BaseE2ETest): @pytest.mark.parametrize("container", AVAILABLE_CONTAINERS, indirect=True) def test_log_numbers(self, container: MetadataContainer): key = self.gen_key() values = [random.random() for _ in range(50)] container[key].log(values[0]) container[key].log(values[1:]) container.sync() assert container[key].fetch_last() == values[-1] fetched_values = container[key].fetch_values() assert list(fetched_values["value"]) == values @pytest.mark.parametrize("container", AVAILABLE_CONTAINERS, indirect=True) def test_log_strings(self, container: MetadataContainer): key = self.gen_key() values = [fake.word() for _ in range(50)] container[key].log(values[0]) container[key].log(values[1:]) container.sync() assert container[key].fetch_last() == values[-1] fetched_values = container[key].fetch_values() assert list(fetched_values["value"]) == values @pytest.mark.parametrize("container", AVAILABLE_CONTAINERS, indirect=True) def test_log_images(self, container: MetadataContainer): key = self.gen_key() # images with size between 200KB - 12MB images = list(generate_image(size=2**n) for n in range(8, 12)) container[key].log(images[0]) container[key].log(images[1:]) container.sync() with tmp_context(): container[key].download_last("last") container[key].download("all") with Image.open("last/3.png") as img: assert img == image_to_png(image=images[-1]) for i in range(4): with Image.open(f"all/{i}.png") as img: assert img == image_to_png(image=images[i])
the-stack_0_14898
# Copyright 2016 Mycroft AI, Inc. # # This file is part of Mycroft Core. # # Mycroft Core is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Mycroft Core is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Mycroft Core. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function from adapt.intent import IntentBuilder from mycroft.skills.core import MycroftSkill, intent_handler from mycroft.util.log import getLogger from mycroft.skills.context import * import os import string import re import math __author__ = 'TREE' LOGGER = getLogger(__name__) class MathSkill(MycroftSkill): def __init__(self): super(MathSkill, self).__init__(name="MathSkill") @intent_handler(IntentBuilder("MathStartIntent").require("MathStart").build()) @adds_context('MathContext') def handle_math_start(self, message): self.speak('Please provide the first number.', expect_response=True) @intent_handler(IntentBuilder("FirstNumberIntent").require("Num1").require("MathContext").build()) @adds_context('FirstNumberContext') def handle_first_number(self, message): #utterance = message.data.get('utterance') self.num1 = message.data.get("Num1") self.speak('Please provide the second number.', expect_response=True) print(self.num1) @intent_handler(IntentBuilder("SecondNumberIntent").require("Num2").require("FirstNumberContext").build()) @adds_context('SecondNumberContext') @removes_context('FirstNumberContext') def handle_second_number(self, message): #utterance = message.data.get('utterance') self.num2 = message.data.get("Num2") self.speak('What operation would you like to do', expect_response=True) print(self.num2) @intent_handler(IntentBuilder('CalculateIntent').require('Calculate').require('SecondNumberContext').build()) @adds_context('CalculateContext') @removes_context('SecondNumberContext') def handle_calculate(self, message): utterance = message.data.get('utterance') #print(utterance) if "add" in utterance: self.answer = float(self.num1) + float(self.num2) self.speak('The answer is {}.'.format(self.answer)) elif "multiply" in utterance: self.answer = float(self.num1) * float(self.num2) self.speak('The answer is {}.'.format(self.answer)) elif "divide" in utterance: self.answer = float(self.num1) / float(self.num2) self.speak('The answer is {}.'.format(self.answer)) elif "subtract" in utterance: self.answer = float(self.num1) - float(self.num2) self.speak('The answer is {}'.format(self.answer)) self.speak('Would you like to perform another operation?', expect_response=True) @intent_handler(IntentBuilder('NextCalculationIntent').require('Calculate').require('Num').require('CalculateContext').build()) def handle_next_calculation(self, message): utterance = message.data.get('utterance') self.num = message.data.get("Num") print(utterance) print(self.num) if "add" in utterance: self.answer = float(self.answer) + float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "multiply" in utterance: self.answer = float(self.answer) * float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "x" in utterance: self.answer = float(self.answer) * float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "divide" in utterance: self.answer = float(self.answer) / float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "subtract" in utterance: self.answer = float(self.answer) - float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "square root" in utterance: self.answer = math.sqrt(self.answer) self.speak('The answer is {}.'.format(self.answer)) self.speak('Would you like to perform another operation?', expect_response=True) @intent_handler(IntentBuilder("TangentIntent").require("Tangent").require("Num").build()) def handle_tangent(self, message): utterance = message.data.get('utterance') self.num = message.data.get("Num") number = float(self.num) if "degrees" in utterance: self.answer = math.tan(math.radians(number)) self.speak('The answer is {:f} degrees.'.format(self.answer)) elif "radians" in utterance: self.answer = math.tan(number) self.speak('The answer is {:f} radians.'.format(self.answer)) else: self.answer = math.tan(number) self.speak('The answer is {:f} radians.'.format(self.answer)) def create_skill(): return MathSkill()
the-stack_0_14899
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for building example regressor Estimator models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Standard Imports import tensorflow as tf from tensorflow_model_analysis.eval_saved_model import export from tensorflow_model_analysis.eval_saved_model import util def make_regressor_input_fn(feature_spec): """Train input function. Args: feature_spec: a dictionary mapping feature_name to Tensor or SparseTensor. Returns: A function. """ def _input_fn(): """Example-based input function.""" serialized_examples = [ x.SerializeToString() for x in [ util.make_example(age=1.0, language='english', label=4.0), util.make_example(age=2.0, language='english', label=7.0), util.make_example(age=3.0, language='english', label=10.0), util.make_example(age=4.0, language='english', label=13.0), util.make_example(age=1.0, language='chinese', label=3.0), util.make_example(age=2.0, language='chinese', label=6.0), util.make_example(age=3.0, language='chinese', label=9.0), util.make_example(age=4.0, language='chinese', label=12.0), util.make_example(age=10.0, language='english', label=31.0), util.make_example(age=20.0, language='english', label=61.0), util.make_example(age=30.0, language='english', label=91.0), util.make_example(age=40.0, language='english', label=121.0), util.make_example(age=10.0, language='chinese', label=30.0), util.make_example(age=20.0, language='chinese', label=60.0), util.make_example(age=30.0, language='chinese', label=90.0), util.make_example(age=40.0, language='chinese', label=120.0) ] ] features = tf.io.parse_example( serialized=serialized_examples, features=feature_spec) labels = features.pop('label') return features, labels return _input_fn def make_classifier_input_fn(feature_spec, n_classes=2, label_vocabulary=None): """Train input function. Args: feature_spec: a dictionary mapping feature_name to Tensor or SparseTensor. n_classes: set for multiclass. label_vocabulary: (Optional) Label vocabulary to use for labels. Returns: A function. """ def _input_fn(): """Example-based input function.""" english_label = label_vocabulary[1] if label_vocabulary else 1.0 chinese_label = label_vocabulary[0] if label_vocabulary else 0.0 if n_classes > 2: # For multi-class labels, English is class 0, Chinese is class 1. chinese_label = label_vocabulary[1] if label_vocabulary else 1 english_label = label_vocabulary[0] if label_vocabulary else 0 serialized_examples = [ x.SerializeToString() for x in [ util.make_example(age=1.0, language='english', label=english_label), util.make_example(age=2.0, language='english', label=english_label), util.make_example(age=3.0, language='chinese', label=chinese_label), util.make_example(age=4.0, language='chinese', label=chinese_label) ] ] features = tf.io.parse_example( serialized=serialized_examples, features=feature_spec) labels = features.pop('label') if n_classes > 2 and not label_vocabulary: labels = tf.sparse.to_dense(labels, default_value=-1) return features, labels return _input_fn def make_example(age, language, label=None): example = tf.train.Example() example.features.feature['age'].float_list.value.append(age) example.features.feature['language'].bytes_list.value.append(language) if label: if isinstance(label, list): example.features.feature['label'].int64_list.value.extend(label) else: example.features.feature['label'].float_list.value.append(label) return example def linear_columns(include_label_column=False): """Return feature_columns for linear model.""" language = tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list( key='language', vocabulary_list=('english', 'chinese'))) age = tf.feature_column.numeric_column(key='age', default_value=0.0) features = [age, language] if include_label_column: label = tf.feature_column.numeric_column(key='label', default_value=0.0) features.append(label) return features def dnn_columns(include_label_column=False, n_classes=2): """Return feature_columns for DNN model.""" language = tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='language', vocabulary_list=('english', 'chinese')), dimension=1) age = tf.feature_column.numeric_column(key='age', default_value=0.0) features = [age, language] if include_label_column: label = tf.feature_column.numeric_column(key='label', default_value=0.0) if n_classes > 2: label = tf.feature_column.categorical_column_with_identity( key='label', num_buckets=n_classes) features.append(label) return features def regressor_extra_metrics(features, labels, predictions): return { 'my_mean_prediction': tf.compat.v1.metrics.mean(predictions['predictions']), 'my_mean_age': tf.compat.v1.metrics.mean(features['age']), 'my_mean_label': tf.compat.v1.metrics.mean(labels), 'my_mean_age_times_label': tf.compat.v1.metrics.mean(labels * features['age']), } def classifier_extra_metrics(features, labels, predictions): """Returns extra metrics to use with classifier.""" if 'logistic' in predictions: metrics = { 'my_mean_prediction': tf.compat.v1.metrics.mean(predictions['logistic']), 'my_mean_age': tf.compat.v1.metrics.mean(features['age']), } if labels.dtype != tf.string: metrics.update({ 'my_mean_label': tf.compat.v1.metrics.mean(labels), 'my_mean_age_times_label': tf.compat.v1.metrics.mean(labels * features['age']), }) return metrics # Logistic won't be present in multiclass cases. return { 'mean_english_prediction': tf.compat.v1.metrics.mean(predictions['probabilities'][0]), 'my_mean_age': tf.compat.v1.metrics.mean(features['age']), } def export_model_and_eval_model(estimator, serving_input_receiver_fn=None, eval_input_receiver_fn=None, export_path=None, eval_export_path=None): """Export SavedModel and EvalSavedModel. Args: estimator: Estimator to export. serving_input_receiver_fn: Serving input receiver function. eval_input_receiver_fn: Eval input receiver function. export_path: Export path. If None, inference model is not exported. eval_export_path: Eval export path. If None, EvalSavedModel is not exported. Returns: Tuple of (path to the export directory, path to eval export directory). """ export_path_result = None eval_export_path_result = None if export_path and serving_input_receiver_fn: export_path_result = estimator.export_saved_model( export_dir_base=export_path, serving_input_receiver_fn=serving_input_receiver_fn) if eval_export_path and eval_input_receiver_fn: eval_export_path_result = export.export_eval_savedmodel( estimator=estimator, export_dir_base=eval_export_path, eval_input_receiver_fn=eval_input_receiver_fn, serving_input_receiver_fn=serving_input_receiver_fn) return export_path_result, eval_export_path_result
the-stack_0_14900
# -*- coding:utf-8 -*- # Copyright (c) 2015, Roger Duran. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import division import os from . import base class DF(base.ThreadedPollText): """Disk Free Widget By default the widget only displays if the space is less than warn_space. """ orientations = base.ORIENTATION_HORIZONTAL defaults = [ ('partition', '/', 'the partition to check space'), ('warn_color', 'ff0000', 'Warning color'), ('warn_space', 2, 'Warning space in scale defined by the ``measure`` option.'), ('visible_on_warn', True, 'Only display if warning'), ('measure', "G", "Measurement (G, M, B)"), ('format', '{p} ({uf}{m}|{r:.0f}%)', 'String format (p: partition, s: size, ' 'f: free space, uf: user free space, m: measure, r: ratio (uf/s))'), ('update_interval', 60, 'The update interval.'), ] measures = {"G": 1024 * 1024 * 1024, "M": 1024 * 1024, "B": 1024} def __init__(self, **config): base.ThreadedPollText.__init__(self, **config) self.add_defaults(DF.defaults) self.user_free = 0 self.calc = self.measures[self.measure] def draw(self): if self.user_free <= self.warn_space: self.layout.colour = self.warn_color else: self.layout.colour = self.foreground base.ThreadedPollText.draw(self) def poll(self): statvfs = os.statvfs(self.partition) size = statvfs.f_frsize * statvfs.f_blocks // self.calc free = statvfs.f_frsize * statvfs.f_bfree // self.calc self.user_free = statvfs.f_frsize * statvfs.f_bavail // self.calc if self.visible_on_warn and self.user_free >= self.warn_space: text = "" else: text = self.format.format(p=self.partition, s=size, f=free, uf=self.user_free, m=self.measure, r=(size - self.user_free) / size * 100) return text
the-stack_0_14901
# pylint: disable=no-self-use,invalid-name from __future__ import with_statement from __future__ import absolute_import from __future__ import print_function from collections import defaultdict import pytest import numpy from allennlp.common.checks import ConfigurationError from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary from allennlp.data.fields import TextField, SequenceLabelField from allennlp.data.token_indexers import SingleIdTokenIndexer class TestSequenceLabelField(AllenNlpTestCase): def setUp(self): super(TestSequenceLabelField, self).setUp() self.text = TextField([Token(t) for t in [u"here", u"are", u"some", u"words", u"."]], {u"words": SingleIdTokenIndexer(u"words")}) def test_tag_length_mismatch_raises(self): with pytest.raises(ConfigurationError): wrong_tags = [u"B", u"O", u"O"] _ = SequenceLabelField(wrong_tags, self.text) def test_count_vocab_items_correctly_indexes_tags(self): tags = [u"B", u"I", u"O", u"O", u"O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace=u"labels") counter = defaultdict(lambda: defaultdict(int)) sequence_label_field.count_vocab_items(counter) assert counter[u"labels"][u"B"] == 1 assert counter[u"labels"][u"I"] == 1 assert counter[u"labels"][u"O"] == 3 assert set(counter.keys()) == set([u"labels"]) def test_index_converts_field_correctly(self): vocab = Vocabulary() b_index = vocab.add_token_to_namespace(u"B", namespace=u'*labels') i_index = vocab.add_token_to_namespace(u"I", namespace=u'*labels') o_index = vocab.add_token_to_namespace(u"O", namespace=u'*labels') tags = [u"B", u"I", u"O", u"O", u"O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace=u"*labels") sequence_label_field.index(vocab) # pylint: disable=protected-access assert sequence_label_field._indexed_labels == [b_index, i_index, o_index, o_index, o_index] # pylint: enable=protected-access def test_as_tensor_produces_integer_targets(self): vocab = Vocabulary() vocab.add_token_to_namespace(u"B", namespace=u'*labels') vocab.add_token_to_namespace(u"I", namespace=u'*labels') vocab.add_token_to_namespace(u"O", namespace=u'*labels') tags = [u"B", u"I", u"O", u"O", u"O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace=u"*labels") sequence_label_field.index(vocab) padding_lengths = sequence_label_field.get_padding_lengths() tensor = sequence_label_field.as_tensor(padding_lengths).detach().cpu().numpy() numpy.testing.assert_array_almost_equal(tensor, numpy.array([0, 1, 2, 2, 2])) def test_sequence_label_field_raises_on_incorrect_type(self): with pytest.raises(ConfigurationError): _ = SequenceLabelField([[], [], [], [], []], self.text) def test_class_variables_for_namespace_warnings_work_correctly(self): # pylint: disable=protected-access tags = [u"B", u"I", u"O", u"O", u"O"] assert u"text" not in SequenceLabelField._already_warned_namespaces with self.assertLogs(logger=u"allennlp.data.fields.sequence_label_field", level=u"WARNING"): _ = SequenceLabelField(tags, self.text, label_namespace=u"text") # We've warned once, so we should have set the class variable to False. assert u"text" in SequenceLabelField._already_warned_namespaces with pytest.raises(AssertionError): with self.assertLogs(logger=u"allennlp.data.fields.sequence_label_field", level=u"WARNING"): _ = SequenceLabelField(tags, self.text, label_namespace=u"text") # ... but a new namespace should still log a warning. assert u"text2" not in SequenceLabelField._already_warned_namespaces with self.assertLogs(logger=u"allennlp.data.fields.sequence_label_field", level=u"WARNING"): _ = SequenceLabelField(tags, self.text, label_namespace=u"text2") def test_printing_doesnt_crash(self): tags = [u"B", u"I", u"O", u"O", u"O"] sequence_label_field = SequenceLabelField(tags, self.text, label_namespace=u"labels") print(sequence_label_field)
the-stack_0_14903
from __future__ import annotations from collections import Counter import re import string import numpy as np import pandas as pd import torch from torch.nn.init import xavier_uniform_ from torch.nn import Module, Embedding, Sequential, ELU, Conv1d, Linear, CrossEntropyLoss from torch.nn.functional import avg_pool1d, dropout, relu, softmax from torch.optim import Adam from nlp_pytorch.data.base_dataset import SplitDataset from nlp_pytorch.data.vocab import Vocabulary from nlp_pytorch.train import train, make_train_state def preprocess_text(text): text = " ".join(word.lower() for word in text.split(" ")) text = re.sub(r"([.,!?])", r" \1 ", text) text = re.sub(r"[^a-zA-Z.,!?]+", r" ", text) return text class NewsVectorizer(object): def __init__(self, title_vocab, category_vocab, max_title): self.title_vocab = title_vocab self.category_vocab = category_vocab self.max_vector_len = max_title + 2 def vectorize(self, title, vector_length: int = -1) -> np.array: indices = [self.title_vocab.begin_seq_index] indices.extend(self.title_vocab.lookup_token(token) for token in title.split(" ")) indices.append(self.title_vocab.end_seq_index) if vector_length < 0: vector_length = len(indices) out_vector = np.zeros(self.max_vector_len, dtype=np.int64) out_vector[: len(indices)] = indices out_vector[len(indices) :] = self.title_vocab.mask_index return out_vector @classmethod def from_dataframe(cls, news_df, cutoff=25): category_vocab = Vocabulary() for category in sorted(set(news_df.category)): category_vocab.add_token(category) max_title = 0 word_counts = Counter() for title in news_df.title: title_tokens = title.split(" ") max_title = max(max_title, len(title_tokens)) for token in title_tokens: if token not in string.punctuation: word_counts[token] += 1 title_vocab = Vocabulary() for word, word_count in word_counts.items(): if word_count >= cutoff: title_vocab.add_token(word) return cls(title_vocab, category_vocab, max_title) class NewsDataset(SplitDataset): def __init__(self, news_df: pd.DataFrame, vectorizer) -> None: super().__init__(news_df, vectorizer) @classmethod def load_dataset_and_make_vectorizer(cls, csv_file: str) -> NewsDataset: news_df = pd.read_csv(csv_file) return cls(news_df, NewsVectorizer.from_dataframe(news_df)) def __getitem__(self, index: int): row = self._target_df.iloc[index] title_vector = self.vectorizer.vectorize(row.title) category_index = self.vectorizer.category_vocab.lookup_token(row.category) return { "x_data": title_vector, "y_target": category_index, } def load_glove_from_file(glove_filepath): word_to_index = {} embeddings = [] with open(glove_filepath, "r") as fp: for index, line in enumerate(fp): line = line.split(" ") word_to_index[line[0]] = index embedding_i = np.array([float(val) for val in line[1:]]) embeddings.append(embedding_i) return word_to_index, np.stack(embeddings) def make_embedding_matrix(glove_filepath, words): word_to_idx, glove_embeddings = load_glove_from_file(glove_filepath) embedding_size = glove_embeddings.shape[1] final_embeddings = np.zeros((len(words), embedding_size)) for i, word in enumerate(words): if word in word_to_idx: final_embeddings[i, :] = glove_embeddings[word_to_idx[word]] else: embedding_i = torch.ones(1, embedding_size) xavier_uniform_(embedding_i) final_embeddings[i, :] = embedding_i return final_embeddings class NewsClassifier(Module): def __init__( self, embedding_size, num_embeddings, num_channels, hidden_dim, num_classes, dropout_p, pretrained_embeddings=None, padding_idx=0, ): super().__init__() if pretrained_embeddings is None: self.emb = Embedding( embedding_dim=embedding_size, num_embeddings=num_embeddings, padding_idx=padding_idx ) else: self.emb = Embedding( embedding_dim=embedding_size, num_embeddings=num_embeddings, padding_idx=padding_idx, _weight=pretrained_embeddings, ) self.convnet = Sequential( Conv1d(in_channels=embedding_size, out_channels=num_channels, kernel_size=3), ELU(), Conv1d(in_channels=num_channels, out_channels=num_channels, kernel_size=3, stride=2), ELU(), Conv1d(in_channels=num_channels, out_channels=num_channels, kernel_size=3, stride=2), ELU(), Conv1d(in_channels=num_channels, out_channels=num_channels, kernel_size=3), ELU(), ) self._dropout_p = dropout_p self.fc1 = Linear(num_channels, hidden_dim) self.fc2 = Linear(hidden_dim, num_classes) def forward(self, x_in, apply_activator: bool = False): x_embedded = self.emb(x_in).permute(0, 2, 1) features = self.convnet(x_embedded) remaining_size = features.size(dim=2) features = avg_pool1d(features, remaining_size).squeeze(dim=2) features = dropout(features, p=self._dropout_p) intermediate_vector = relu(dropout(self.fc1(features), p=self._dropout_p)) prediction_vector = self.fc2(intermediate_vector) if apply_activator: prediction_vector = softmax(prediction_vector, dim=1) return prediction_vector def predict_category(title, classifer, vectorizer, max_length, device): title = preprocess_text(title) vectorized_title = torch.tensor(vectorizer.vectorize(title, vector_length=max_length)).to(device) result = classifer(vectorized_title.unsqueeze(0), apply_activator=True) probability_values, indices = result.max(dim=1) predicated_category = vectorizer.category_vocab.lookup_index(indices.item()) return {"category": predicated_category, "probability": probability_values.item()} def compute_accuracy(y_pred, y_target): _, y_pred_indices = y_pred.max(dim=1) n_correct = torch.eq(y_pred_indices, y_target).sum().item() return n_correct / len(y_pred_indices) * 100 def main(num_epochs: int = 100, batch_size: int = 128): args = { "news_csv": "data/news_with_splits.csv", "save_dir": "model_storage/yelp/", "model_state_file": "model.pth", "glove_filepath": "data/glove.6B.100d.txt", "vectorizer_file": "vectorizer.json", "use_glove": False, "embedding_size": 100, "hidden_dim": 100, "num_channels": 100, "learning_rate": 0.001, "num_epochs": num_epochs, "batch_size": batch_size, "early_stopping_criteria": 5, "frequency_cutoff": 25, "dropout_p": 0.1, "cuda": False, } train_state = make_train_state() if torch.cuda.is_available(): args["cuda"] = True args["device"] = torch.device("cuda:0" if args["cuda"] else "cpu") print(args) dataset = NewsDataset.load_dataset_and_make_vectorizer(args["news_csv"]) vectorizer = dataset.vectorizer words = vectorizer.title_vocab._token_to_idx.keys() embeddings = make_embedding_matrix(glove_filepath=args["glove_filepath"], words=words) classifier = NewsClassifier( embedding_size=args["embedding_size"], num_embeddings=len(vectorizer.title_vocab), num_channels=args["num_channels"], hidden_dim=args["hidden_dim"], num_classes=len(vectorizer.title_vocab), dropout_p=args["dropout_p"], pretrained_embeddings=torch.from_numpy(embeddings), ) classifier = classifier.to(args["device"]) classifier.double() loss_func = CrossEntropyLoss() optimizer = Adam(classifier.parameters(), lr=args["learning_rate"]) train(args, train_state, dataset, classifier, optimizer, loss_func, compute_accuracy) return { "train_state": train_state, "args": args, "dataset": dataset, "classifier": classifier, "loss_func": loss_func, "optimizer": optimizer, }
the-stack_0_14904
import os import logging logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] - %(message)s') ld = logging.debug class PartialObservabilityProblem: def __init__(self, dataset_path, num_nodes, T, num_examples_to_generate, test_fraction, validation_fraction, hidden_power_bus_id_list, hidden_voltage_bus_id_list, target_power_bus_id_list, target_voltage_bus_id_list, reference_bus_id, Ns, Nv): """ A data structure that captures the complete description of the partial observability problem in power grids. :param dataset_path: a string specifying the path to the dataset containing the power and voltage recordings (4 csv files). :param num_nodes: number of buses in the grid :param T: number of time-steps in the scope of a single train/test example. The last time step is partially observable :param num_examples_to_generate: number of examples to be drawn at random from the power-voltage records. :param test_fraction: fractional number in [0.0,1.0]. Out of the dataset provided, which fraction of the examples will be put aside as a test set. :param validation_fraction: fractional number in [0.0,1.0]. Out of the training set provided, which fraction of the examples will be put aside as a validation set. :param hidden_power_bus_id_list: a list of bus ids, whose power is not observable at the last time step. :param hidden_voltage_bus_id_list:a list of bus ids, whose voltage is not observable at the last time step. :param target_power_bus_id_list: a list of bus ids, whose power is to be predicted the last time step. :param target_voltage_bus_id_list:a list of bus ids, whose voltage is to be predicted the last time step. :param reference_bus_id: an integer, id of the bus defined as a "slack" or aa reference bus. :param Ns: Number of observable power measurements in the last time step :param Nv: Number of observable voltage measurements in the last time step """ # TODO: add slack bus id as a data member. self.dataset_path = dataset_path self.num_nodes = num_nodes self.T = T self.num_examples_to_generate = num_examples_to_generate self.test_fraction = test_fraction self.validation_fraction = validation_fraction self.hidden_power_bus_id_list = hidden_power_bus_id_list self.hidden_voltage_bus_id_list = hidden_voltage_bus_id_list self.visible_power_bus_id_list = list(sorted(set(range(num_nodes)) - set(hidden_power_bus_id_list)))# complementary to the hidden one self.visible_voltage_bus_id_list = list(sorted(set(range(num_nodes)) - set(hidden_voltage_bus_id_list)))# complementary to the hidden one self.target_power_bus_id_list = target_power_bus_id_list self.target_voltage_bus_id_list = target_voltage_bus_id_list self.reference_bus_id = reference_bus_id self.Ns = Ns self.Nv = Nv # Measurement counts self.num_phasors_per_bus = 2 # there are 2 phasors per bus (S,V) self.num_measurements_per_phasor = 2 # phasors are complex (2 values) self.num_hidden_power_measurements = len(self.hidden_power_bus_id_list) * self.num_measurements_per_phasor self.num_hidden_voltage_measurements = len(self.hidden_voltage_bus_id_list) * self.num_measurements_per_phasor self.num_hidden_measurements = self.num_hidden_power_measurements + self.num_hidden_voltage_measurements self.num_target_power_measurements = len(self.target_power_bus_id_list) * self.num_measurements_per_phasor self.num_target_voltage_measurements = len(self.target_voltage_bus_id_list) * self.num_measurements_per_phasor self.num_target_measurements = self.num_target_voltage_measurements + self.num_target_power_measurements self.num_target_buses = self.num_target_measurements // self.num_phasors_per_bus if self.num_target_power_measurements == 0 else -1 # this value will be available only when no power measurements are seeked. self.num_visible_power_measurements = len(self.visible_power_bus_id_list) * self.num_measurements_per_phasor self.num_visible_voltage_measurements = len(self.visible_voltage_bus_id_list) * self.num_measurements_per_phasor self.num_all_measurements = self.num_nodes * self.num_phasors_per_bus * self.num_measurements_per_phasor self.num_remaining_measurements = self.num_all_measurements - self.num_hidden_measurements # what is left after all the hidden measurements are removed. assert(Ns * self.num_measurements_per_phasor == self.num_visible_power_measurements) assert(Nv * self.num_measurements_per_phasor == self.num_visible_voltage_measurements) assert(self.num_all_measurements == self.num_visible_voltage_measurements + self.num_visible_power_measurements + self.num_hidden_voltage_measurements + self.num_hidden_power_measurements) def set_hidden_measurement_lists_from_Ns_Nv(num_nodes, Ns, Nv, list_bus_id_power_hiding_priority=None, list_bus_id_voltage_hiding_priority=None): """ Returns the list of the hidden power bus ids and a list of hidden voltage ids :param num_nodes: number of buses in the grid :param Ns: Number of observable power measurements in the last time step :param Nv: Number of observable voltage measurements in the last time step :param list_bus_id_power_hiding_priority: list of bus indices which was sorted according to the preferred order of hiding. Index 0 of this list corresponds to the most likely bus to be hidden. :param list_bus_id_voltage_hiding_priority: list of bus indices which was sorted according to the preferred order of hiding. Index 0 of this list corresponds to the most likely bus to be hidden. :return: """ if list_bus_id_power_hiding_priority is None: list_bus_id_power_hiding_priority = list(range(num_nodes)) if list_bus_id_voltage_hiding_priority is None: list_bus_id_voltage_hiding_priority = list(range(num_nodes)) hidden_power_bus_id_list = [] next_busid_to_hide = 0 for bus_id in range(Ns, num_nodes): hidden_power_bus_id_list.append(list_bus_id_power_hiding_priority[next_busid_to_hide]) next_busid_to_hide += 1 hidden_voltage_bus_id_list = [] next_busid_to_hide = 0 for bus_id in range(Nv, num_nodes): hidden_voltage_bus_id_list.append(list_bus_id_voltage_hiding_priority[next_busid_to_hide]) next_busid_to_hide += 1 hidden_power_bus_id_list.sort() hidden_voltage_bus_id_list.sort() return hidden_power_bus_id_list, hidden_voltage_bus_id_list def set_hidden_measurement_lists_from_observability(num_nodes, observability, list_bus_id_hiding_priority=None): """ Returns the list of the hidden power bus ids and a list of hidden voltage ids :param num_nodes: number of buses in the grid :param observability: a fractional number in [0.0, 1.0] which sets the observability degree considered in the problem. :param list_bus_id_hiding_priority: list of bus indices which was sorted according to the preferred order of hiding. Index 0 of this list corresponds to the most likely bus to be hidden. :return: """ if list_bus_id_hiding_priority is None: list_bus_id_hiding_priority = list(range(num_nodes)) observability_step_size = 1 / float(2 * num_nodes) hidden_power_bus_id_list = [] next_busid_to_hide = 0 for observability_step in range(1,num_nodes+1): threshold_for_current_measurement = observability_step * observability_step_size if threshold_for_current_measurement >= observability: hidden_power_bus_id_list.append(list_bus_id_hiding_priority[next_busid_to_hide]) next_busid_to_hide += 1 hidden_voltage_bus_id_list = [] next_busid_to_hide = 0 for observability_step in range(1,num_nodes+1): threshold_for_current_measurement = 0.5 + observability_step * observability_step_size if threshold_for_current_measurement >= observability: hidden_voltage_bus_id_list.append(list_bus_id_hiding_priority[next_busid_to_hide]) next_busid_to_hide += 1 hidden_power_bus_id_list.sort() hidden_voltage_bus_id_list.sort() return hidden_power_bus_id_list, hidden_voltage_bus_id_list def make_str_for_pretty_print_int_list(lst): """ Produce a stirng which neatly prints a list of integers. This is done by compacting the integers into contiguous ranges. for example [0,1,2,3,4,10,11,12] will become "[0..4,10..12]" :param lst: list of integers :return: string """ stri="[" prev=None seq_start_num = None for i,num in enumerate(lst): if prev is None: # Warmup seq_start_num = num stri = stri + str(num) elif prev != num - 1: if seq_start_num != prev: # Previous sequence contained more than 1 number. if seq_start_num == prev-1: stri = stri + ", " + str(prev) else: stri = stri + ".." + str(prev) # Start new sequence stri = stri + ", " + str(num) seq_start_num = num elif i==len(lst)-1: if seq_start_num != num: # Previous sequence contained more than 1 number. if seq_start_num == prev: stri = stri + ", " + str(num) else: stri = stri + ".." + str(num) prev = num stri = stri +"]" return stri def create_partial_observability_problem(dataset_dir, dataset_name, T, Ns, Nv, verbose=True, reverse_bus_hiding_order=False): """ Constructs a setting of a partial observability problem. This function mainly determines the number of nodes and sets the concrete bus ids for being hidden, targeted, etc. All with accordance to the well known data sets and to the observability degree specified as the [0,1] fractional parameter "observability". :param dataset_dir: a directory that contains all the datasets :param dataset_name: a directory name of the dataset :param T: Number of time steps to be observed at :param Ns: Number of observable power measurements in the last time step :param Nv: Number of observable voltage measurements in the last time step :param verbose: boolean - if true then upon the creation of the pop object - its attributes will be printed. :return: """ # Common setting: dataset_path = os.path.join(dataset_dir, dataset_name) if dataset_name == 'solar_smooth_ord_60_downsampling_factor_60': # 4-nodes grid with 10080 recorded time steps num_nodes = 4 reference_bus_id = 3 num_examples_to_generate = 9000 # how many examples will be generated from the existing CSV files (generation is carried out via random T-long time series). test_fraction = 0.1 # fraction of the generated examples that will become a test set. The splitting between the training and test time series is leakage-safe. Namely, no training time series overlaps with test time series. validation_fraction = 0.0 # fraction of the train examples that will become a validation set. Warning: th ecurrent way of splitting the training to validation creates data leakage between the trainin and validation since the time series overlap! # Set the observed bus id lists according to the "observability" parameter in a contiguous manner. # TODO: Make sure that custom id list is synchronized with the following processing (in the neural net etc) bus_hiding_priority_list = [0, 1, 2, 3] bus_hiding_priority_list = list(reversed(bus_hiding_priority_list)) if reverse_bus_hiding_order else bus_hiding_priority_list hidden_power_bus_id_list, hidden_voltage_bus_id_list = set_hidden_measurement_lists_from_Ns_Nv(num_nodes, Ns, Nv, bus_hiding_priority_list, bus_hiding_priority_list) # Target bus ids: # We assume that we only want to estimate all the voltage and none of the powers # as the powers are easily recoverable once the voltages are estimated target_power_bus_id_list = [] target_voltage_bus_id_list = list(range(num_nodes)) # Example for observability=0.45 in the : # hidden_power_bus_id_list = [0] # hidden from input in T-1 (last) time-step # hidden_voltage_bus_id_list = [0, 1, 2, 3] # hidden from input in T-1 (last) time-step # target_power_bus_id_list = [] # target_voltage_bus_id_list = [0, 1, 2, 3] elif dataset_name == 'ieee37_smooth_ord_60_downsampling_factor_60': # 36-nodes grid with 10080 recorded time steps num_nodes = 36 reference_bus_id = 0 num_examples_to_generate = 9000 # how many examples will be generated from the existing CSV files (generation is carried out via random T-long time series). test_fraction = 0.1 # fraction of the generated examples that will become a test set. The splitting between the training and test time series is leakage-safe. Namely, no training time series overlaps with test time series. validation_fraction = 0.0 # fraction of the train examples that will become a validation set. Warning: th ecurrent way of splitting the training to validation creates data leakage between the trainin and validation since the time series overlap! # Set the observed bus id lists according to the "observability" parameter in a contiguous manner. # TODO: Make sure that custom id list is synchronized with the following processing (in the neural net etc) bus_hiding_priority_list = list(reversed(range(num_nodes))) # This creates a topological ordering of the nodes, such that the reference bus (slack bus) is the last to be hidden. bus_hiding_priority_list = list(reversed(bus_hiding_priority_list[:-1]))+[bus_hiding_priority_list[-1]] if reverse_bus_hiding_order else bus_hiding_priority_list hidden_power_bus_id_list, hidden_voltage_bus_id_list = set_hidden_measurement_lists_from_Ns_Nv(num_nodes, Ns, Nv, bus_hiding_priority_list, bus_hiding_priority_list) # Target bus ids: # We assume that we only want to estimate all the voltage and none of the powers # as the powers are easily recoverable once the voltages are estimated target_power_bus_id_list = [] target_voltage_bus_id_list = list(range(num_nodes)) else: raise NameError("Unknown dataset required \"{}\"".format(dataset_name)) pop = PartialObservabilityProblem(dataset_path, num_nodes, T, num_examples_to_generate, test_fraction, validation_fraction, hidden_power_bus_id_list, hidden_voltage_bus_id_list, target_power_bus_id_list, target_voltage_bus_id_list, reference_bus_id, Ns, Nv) if verbose: ld("Created PartialObservabilityProblem scenario:") ld(" Dataset name: {}".format(dataset_name)) ld(" num_nodes: {}".format(num_nodes)) ld(" T: {}".format(T)) ld(" (Ns) number of observable bus powers at time=T-1: {}".format(Ns)) ld(" (Nv) number of observable bus voltages at time=T-1: {}".format(Nv)) ld(" num_examples_to_generate: {}".format(num_examples_to_generate)) ld(" test_fraction: {}".format(test_fraction)) ld(" validation_fraction: {}".format(validation_fraction)) ld(" hidden_power_bus_id_list: {}".format(make_str_for_pretty_print_int_list(hidden_power_bus_id_list))) ld(" hidden_voltage_bus_id_list: {}".format(make_str_for_pretty_print_int_list(hidden_voltage_bus_id_list))) ld(" target_power_bus_id_list: {}".format(make_str_for_pretty_print_int_list(target_power_bus_id_list))) ld(" target_voltage_bus_id_list: {}".format(make_str_for_pretty_print_int_list(target_voltage_bus_id_list))) return pop
the-stack_0_14907
import sys import uuid from dataclasses import dataclass from dataclasses import field from dataclasses import fields from dataclasses import make_dataclass from typing import Dict from typing import get_type_hints from typing import Iterator from typing import List from typing import Union from unittest import mock from unittest import TestCase from xml.etree.ElementTree import QName from tests.fixtures.artists import Artist from tests.fixtures.books import BookForm from tests.fixtures.models import ChoiceType from tests.fixtures.models import Parent from tests.fixtures.models import TypeA from tests.fixtures.models import TypeB from tests.fixtures.models import UnionType from tests.fixtures.series import Country from tests.fixtures.submodels import ChoiceTypeChild from xsdata.exceptions import XmlContextError from xsdata.formats.dataclass.compat import class_types from xsdata.formats.dataclass.models.builders import XmlMetaBuilder from xsdata.formats.dataclass.models.builders import XmlVarBuilder from xsdata.formats.dataclass.models.elements import XmlType from xsdata.models.datatype import XmlDate from xsdata.utils import text from xsdata.utils.constants import return_input from xsdata.utils.constants import return_true from xsdata.utils.namespaces import build_qname from xsdata.utils.testing import FactoryTestCase from xsdata.utils.testing import XmlMetaFactory from xsdata.utils.testing import XmlVarFactory class XmlMetaBuilderTests(FactoryTestCase): def setUp(self): super().setUp() self.builder = XmlMetaBuilder( class_type=class_types.get_type("dataclasses"), element_name_generator=return_input, attribute_name_generator=return_input, ) @mock.patch.object(XmlMetaBuilder, "build_vars") def test_build(self, mock_build_vars): var = XmlVarFactory.create( xml_type=XmlType.ELEMENT, name="foo", qname="{foo}bar", types=(int,) ) mock_build_vars.return_value = [var] result = self.builder.build(Artist, None) expected = XmlMetaFactory.create( clazz=Artist, qname="{http://musicbrainz.org/ns/mmd-2.0#}artist", elements={var.qname: [var]}, ) self.assertEqual(expected, result) mock_build_vars.assert_called_once_with( Artist, "http://musicbrainz.org/ns/mmd-2.0#", return_input, return_input ) @mock.patch.object(XmlMetaBuilder, "build_vars", return_value=[]) def test_build_with_parent_namespace(self, mock_build_vars): result = self.builder.build(Country, "http://xsdata") self.assertEqual(build_qname("http://xsdata", "country"), result.qname) mock_build_vars.assert_called_once_with( Country, "http://xsdata", return_input, return_input ) @mock.patch.object(XmlMetaBuilder, "build_vars", return_value=[]) def test_build_with_no_meta_name_and_name_generator(self, *args): self.builder.element_name_generator = text.snake_case result = self.builder.build(BookForm, None) self.assertEqual("book_form", result.qname) def test_build_block_meta_inheritance(self): @dataclass class Bar: class Meta: name = "bar" @dataclass class Foo(Bar): pass @dataclass class Thug(Bar): class Meta: name = "thug" result = self.builder.build(Foo, None) self.assertEqual("Foo", result.qname) result = self.builder.build(Thug, None) self.assertEqual("thug", result.qname) def test_build_with_no_dataclass_raises_exception(self, *args): with self.assertRaises(XmlContextError) as cm: self.builder.build(int, None) self.assertEqual(f"Type '{int}' is not a dataclass.", str(cm.exception)) def test_build_locates_globalns_per_field(self): actual = self.builder.build(ChoiceTypeChild, None) self.assertEqual(1, len(actual.choices)) self.assertEqual(9, len(actual.choices[0].elements)) self.assertIsNone(self.builder.find_globalns(object, "foo")) def test_build_inner_type_has_no_target_qname(self): actual = self.builder.build(Parent.Inner, None) self.assertIsNone(actual.target_qname) def test_target_namespace(self): class Meta: namespace = "bar" target_namespace = "foo" self.assertEqual("foo", self.builder.target_namespace(None, Meta)) del Meta.target_namespace self.assertEqual("bar", self.builder.target_namespace(None, Meta)) class Module: __NAMESPACE__ = "gl" self.assertEqual("gl", self.builder.target_namespace(Module, Meta)) def test_build_vars(self): result = self.builder.build_vars(BookForm, None, text.pascal_case, str.upper) self.assertIsInstance(result, Iterator) expected = [ XmlVarFactory.create( xml_type=XmlType.ELEMENT, index=1, name="author", qname="Author", types=(str,), required=True, ), XmlVarFactory.create( xml_type=XmlType.ELEMENT, index=2, name="title", qname="Title", types=(str,), required=True, ), XmlVarFactory.create( xml_type=XmlType.ELEMENT, index=3, name="genre", qname="Genre", types=(str,), required=True, ), XmlVarFactory.create( xml_type=XmlType.ELEMENT, index=4, name="price", qname="Price", types=(float,), required=True, ), XmlVarFactory.create( xml_type=XmlType.ELEMENT, index=5, name="pub_date", qname="PubDate", types=(XmlDate,), required=True, ), XmlVarFactory.create( xml_type=XmlType.ELEMENT, index=6, name="review", qname="Review", types=(str,), required=True, ), XmlVarFactory.create( xml_type=XmlType.ATTRIBUTE, index=7, name="id", qname="ID", types=(str,) ), XmlVarFactory.create( xml_type=XmlType.ATTRIBUTE, index=8, name="lang", qname="LANG", types=(str,), init=False, default="en", ), ] result = list(result) self.assertEqual(expected, result) for var in result: self.assertIsNone(var.clazz) def test_build_vars_with_ignore_types(self): result = self.builder.build_vars(TypeB, None, return_input, return_input) self.assertIsInstance(result, Iterator) actual = list(result) self.assertEqual(2, len(actual)) def test_default_xml_type(self): cls = make_dataclass("a", [("x", int)]) self.assertEqual(XmlType.TEXT, self.builder.default_xml_type(cls)) cls = make_dataclass("b", [("x", int), ("y", int)]) self.assertEqual(XmlType.ELEMENT, self.builder.default_xml_type(cls)) cls = make_dataclass( "c", [("x", int), ("y", int, field(metadata=dict(type="Text")))] ) self.assertEqual(XmlType.ELEMENT, self.builder.default_xml_type(cls)) cls = make_dataclass( "d", [("x", int), ("y", int, field(metadata=dict(type="Element")))] ) self.assertEqual(XmlType.TEXT, self.builder.default_xml_type(cls)) with self.assertRaises(XmlContextError) as cm: cls = make_dataclass( "e", [ ("x", int, field(metadata=dict(type="Text"))), ("y", int, field(metadata=dict(type="Text"))), ], ) self.builder.default_xml_type(cls) self.assertEqual( "Dataclass `e` includes more than one text node!", str(cm.exception) ) class XmlVarBuilderTests(TestCase): def setUp(self) -> None: self.builder = XmlVarBuilder( class_type=class_types.get_type("dataclasses"), parent_ns=None, default_xml_type=XmlType.ELEMENT, element_name_generator=return_input, attribute_name_generator=return_input, ) super().setUp() self.maxDiff = None def test_build_with_choice_field(self): globalns = sys.modules[ChoiceType.__module__].__dict__ type_hints = get_type_hints(ChoiceType) class_field = fields(ChoiceType)[0] self.builder.parent_ns = "bar" self.maxDiff = None actual = self.builder.build( 66, "choice", type_hints["choice"], class_field.metadata, True, list, globalns, ) expected = XmlVarFactory.create( index=67, name="choice", types=(object,), factory=list, any_type=True, default=list, xml_type=XmlType.ELEMENTS, elements={ "{bar}a": XmlVarFactory.create( index=1, name="choice", qname="{bar}a", types=(TypeA,), clazz=TypeA, factory=list, namespaces=("bar",), ), "{bar}b": XmlVarFactory.create( index=2, name="choice", qname="{bar}b", types=(TypeB,), clazz=TypeB, factory=list, namespaces=("bar",), ), "{bar}int": XmlVarFactory.create( index=3, name="choice", qname="{bar}int", types=(int,), factory=list, namespaces=("bar",), ), "{bar}int2": XmlVarFactory.create( index=4, name="choice", qname="{bar}int2", types=(int,), derived=True, nillable=True, factory=list, namespaces=("bar",), ), "{bar}float": XmlVarFactory.create( index=5, name="choice", qname="{bar}float", types=(float,), factory=list, namespaces=("bar",), ), "{bar}qname": XmlVarFactory.create( index=6, name="choice", qname="{bar}qname", types=(QName,), factory=list, namespaces=("bar",), ), "{bar}tokens": XmlVarFactory.create( index=7, name="choice", qname="{bar}tokens", types=(int,), tokens_factory=list, derived=True, factory=list, default=return_true, namespaces=("bar",), ), "{foo}union": XmlVarFactory.create( index=8, name="choice", qname="{foo}union", types=(UnionType,), clazz=UnionType, factory=list, namespaces=("foo",), ), "{bar}p": XmlVarFactory.create( index=9, name="choice", qname="{bar}p", types=(float,), derived=True, factory=list, default=1.1, namespaces=("bar",), ), }, wildcards=[ XmlVarFactory.create( index=10, name="choice", xml_type=XmlType.WILDCARD, qname="{http://www.w3.org/1999/xhtml}any", types=(object,), factory=list, default=None, namespaces=("http://www.w3.org/1999/xhtml",), ), ], ) self.assertEqual(expected, actual) def test_build_validates_result(self): with self.assertRaises(XmlContextError) as cm: self.builder.build( 1, "foo", List[int], {"type": "Attributes"}, True, None, None ) self.assertEqual( "Xml type 'Attributes' does not support typing: typing.List[int]", str(cm.exception), ) def test_resolve_namespaces(self): func = self.builder.resolve_namespaces self.builder.parent_ns = "bar" self.assertEqual(("foo",), func(XmlType.ELEMENT, "foo")) self.assertEqual((), func(XmlType.ELEMENT, "")) self.assertEqual(("bar",), func(XmlType.ELEMENT, None)) self.assertEqual((), func(XmlType.ATTRIBUTE, None)) self.assertEqual(("bar",), func(XmlType.WILDCARD, None)) self.assertEqual(("##any",), func(XmlType.WILDCARD, "##any")) self.builder.parent_ns = "" self.assertEqual(("##any",), func(XmlType.WILDCARD, "##targetNamespace")) self.builder.parent_ns = None self.assertEqual(("##any",), func(XmlType.WILDCARD, "##targetNamespace")) self.builder.parent_ns = "p" self.assertEqual(("p",), func(XmlType.WILDCARD, "##targetNamespace")) self.assertEqual(("",), func(XmlType.WILDCARD, "##local")) self.assertEqual(("!p",), func(XmlType.WILDCARD, "##other")) self.assertEqual( ("", "!p"), tuple(sorted(func(XmlType.WILDCARD, "##other ##local"))) ) self.assertEqual( ("foo", "p"), tuple(sorted(func(XmlType.WILDCARD, "##targetNamespace foo"))), ) def test_analyze_types(self): actual = self.builder.analyze_types(List[List[Union[str, int]]], None) self.assertEqual((list, list, (int, str)), actual) actual = self.builder.analyze_types(Union[str, int], None) self.assertEqual((None, None, (int, str)), actual) actual = self.builder.analyze_types(Dict[str, int], None) self.assertEqual((dict, None, (int, str)), actual) with self.assertRaises(XmlContextError) as cm: self.builder.analyze_types(List[List[List[int]]], None) self.assertEqual( "Unsupported typing: typing.List[typing.List[typing.List[int]]]", str(cm.exception), ) def test_is_valid(self): # Attributes need origin dict self.assertFalse( self.builder.is_valid(XmlType.ATTRIBUTES, None, None, (), False, True) ) # Attributes don't support any origin self.assertFalse( self.builder.is_valid(XmlType.ATTRIBUTES, dict, list, (), False, True) ) # Attributes don't support xs:NMTOKENS self.assertFalse( self.builder.is_valid(XmlType.ATTRIBUTES, dict, None, (), True, True) ) self.assertTrue( self.builder.is_valid( XmlType.ATTRIBUTES, dict, None, (str, str), False, True ) ) # xs:NMTOKENS need origin list self.assertFalse( self.builder.is_valid(XmlType.TEXT, dict, None, (), True, True) ) # xs:NMTOKENS need origin list self.assertFalse(self.builder.is_valid(XmlType.TEXT, set, None, (), True, True)) # Any type object is a superset, it's only supported alone self.assertFalse( self.builder.is_valid( XmlType.ELEMENT, None, None, (object, int), False, True ) ) # Type is not registered in converter. self.assertFalse( self.builder.is_valid( XmlType.TEXT, None, None, (int, uuid.UUID), False, True ) ) # init false vars are ignored! self.assertTrue( self.builder.is_valid( XmlType.TEXT, None, None, (int, uuid.UUID), False, False ) )
the-stack_0_14908
import flask import git import local_system import update api_blueprint = flask.Blueprint('api', __name__, url_prefix='/api') @api_blueprint.route('/shutdown', methods=['POST']) def shutdown_post(): try: local_system.shutdown() return _json_success() except local_system.Error as e: return _json_error(str(e)), 200 @api_blueprint.route('/restart', methods=['POST']) def restart_post(): try: local_system.restart() return _json_success() except local_system.Error as e: return _json_error(str(e)), 200 @api_blueprint.route('/update', methods=['POST']) def update_post(): """Updates TinyPilot to the latest version available. This is a slow endpoint, as it is expected to take 2~4 minutes to complete. Returns: A JSON string with two keys: success and error. success: true if successful. error: null if successful, str otherwise. Example of success: { 'success': true, 'error': null, } Example of error: { 'success': false, 'error': 'sudo: /opt/tinypilot-privileged/update: command not found' } """ try: update.update() except update.Error as e: return _json_error(str(e)), 200 return _json_success() @api_blueprint.route('/version', methods=['GET']) def version_get(): """Retrieves the current installed version of TinyPilot. Returns: A JSON string with three keys when successful and two otherwise: success, error and version (if successful). success: true if successful. error: null if successful, str otherwise. version: str. Example of success: { 'success': true, 'error': null, 'version': 'bf07bfe72941457cf068ca0a44c6b0d62dd9ef05', } Example of error: { 'success': false, 'error': 'git rev-parse HEAD failed.', } """ try: return _json_success({"version": git.local_head_commit_id()}) except git.Error as e: return _json_error(str(e)), 200 @api_blueprint.route('/latestRelease', methods=['GET']) def latest_release_get(): """Retrieves the latest version of TinyPilot. Returns: A JSON string with three keys when successful and two otherwise: success, error and version (if successful). success: true if successful. error: null if successful, str otherwise. version: str. Example of success: { 'success': true, 'error': null, 'version': 'bf07bfe72941457cf068ca0a44c6b0d62dd9ef05', } Example of error: { 'success': false, 'error': 'git rev-parse origin/master failed.', } """ try: return _json_success({"version": git.remote_head_commit_id()}) except git.Error as e: return _json_error(str(e)), 200 def _json_success(fields={}): response = { 'success': True, 'error': None, } for k, v in fields.items(): response[k] = v return flask.jsonify(response) def _json_error(message): return flask.jsonify({ 'success': False, 'error': message, })
the-stack_0_14910
# -*- coding: utf-8 -*- import os import types import logging from socket import AF_INET from socket import AF_INET6 from socket import AF_UNSPEC from itertools import chain from functools import partial from pr2modules import config from pr2modules.config import AF_BRIDGE from pr2modules.netlink import NLMSG_ERROR from pr2modules.netlink import NLM_F_ATOMIC from pr2modules.netlink import NLM_F_ROOT from pr2modules.netlink import NLM_F_REPLACE from pr2modules.netlink import NLM_F_REQUEST from pr2modules.netlink import NLM_F_ACK from pr2modules.netlink import NLM_F_DUMP from pr2modules.netlink import NLM_F_CREATE from pr2modules.netlink import NLM_F_EXCL from pr2modules.netlink import NLM_F_APPEND from pr2modules.netlink.rtnl import RTM_NEWADDR from pr2modules.netlink.rtnl import RTM_GETADDR from pr2modules.netlink.rtnl import RTM_DELADDR from pr2modules.netlink.rtnl import RTM_NEWLINK from pr2modules.netlink.rtnl import RTM_NEWLINKPROP from pr2modules.netlink.rtnl import RTM_DELLINKPROP from pr2modules.netlink.rtnl import RTM_GETLINK from pr2modules.netlink.rtnl import RTM_DELLINK from pr2modules.netlink.rtnl import RTM_NEWQDISC from pr2modules.netlink.rtnl import RTM_GETQDISC from pr2modules.netlink.rtnl import RTM_DELQDISC from pr2modules.netlink.rtnl import RTM_NEWTFILTER from pr2modules.netlink.rtnl import RTM_GETTFILTER from pr2modules.netlink.rtnl import RTM_DELTFILTER from pr2modules.netlink.rtnl import RTM_NEWTCLASS from pr2modules.netlink.rtnl import RTM_GETTCLASS from pr2modules.netlink.rtnl import RTM_DELTCLASS from pr2modules.netlink.rtnl import RTM_NEWRULE from pr2modules.netlink.rtnl import RTM_GETRULE from pr2modules.netlink.rtnl import RTM_DELRULE from pr2modules.netlink.rtnl import RTM_NEWROUTE from pr2modules.netlink.rtnl import RTM_GETROUTE from pr2modules.netlink.rtnl import RTM_DELROUTE from pr2modules.netlink.rtnl import RTM_NEWNEIGH from pr2modules.netlink.rtnl import RTM_GETNEIGH from pr2modules.netlink.rtnl import RTM_DELNEIGH from pr2modules.netlink.rtnl import RTM_SETLINK from pr2modules.netlink.rtnl import RTM_GETNEIGHTBL from pr2modules.netlink.rtnl import RTM_GETNSID from pr2modules.netlink.rtnl import RTM_NEWNETNS from pr2modules.netlink.rtnl import RTM_GETSTATS from pr2modules.netlink.rtnl import TC_H_ROOT from pr2modules.netlink.rtnl import rt_type from pr2modules.netlink.rtnl import rt_scope from pr2modules.netlink.rtnl import rt_proto from pr2modules.netlink.rtnl.req import IPLinkRequest from pr2modules.netlink.rtnl.req import IPBridgeRequest from pr2modules.netlink.rtnl.req import IPBrPortRequest from pr2modules.netlink.rtnl.req import IPRouteRequest from pr2modules.netlink.rtnl.req import IPRuleRequest from pr2modules.netlink.rtnl.req import IPAddrRequest from pr2modules.netlink.rtnl.tcmsg import plugins as tc_plugins from pr2modules.netlink.rtnl.tcmsg import tcmsg from pr2modules.netlink.rtnl.rtmsg import rtmsg from pr2modules.netlink.rtnl import ndmsg from pr2modules.netlink.rtnl.ndtmsg import ndtmsg from pr2modules.netlink.rtnl.fibmsg import fibmsg from pr2modules.netlink.rtnl.ifinfmsg import ifinfmsg from pr2modules.netlink.rtnl.ifinfmsg import IFF_NOARP from pr2modules.netlink.rtnl.ifaddrmsg import ifaddrmsg from pr2modules.netlink.rtnl.ifstatsmsg import ifstatsmsg from pr2modules.netlink.rtnl.iprsocket import IPRSocket from pr2modules.netlink.rtnl.iprsocket import IPBatchSocket from pr2modules.netlink.rtnl.riprsocket import RawIPRSocket from pr2modules.netlink.rtnl.nsidmsg import nsidmsg from pr2modules.netlink.rtnl.nsinfmsg import nsinfmsg from pr2modules.netlink.exceptions import SkipInode from pr2modules.netlink.exceptions import NetlinkError from pr2modules.common import AF_MPLS from pr2modules.common import basestring from pr2modules.common import getbroadcast DEFAULT_TABLE = 254 log = logging.getLogger(__name__) def transform_handle(handle): if isinstance(handle, basestring): (major, minor) = [int(x if x else '0', 16) for x in handle.split(':')] handle = (major << 8 * 2) | minor return handle class RTNL_API(object): ''' `RTNL_API` should not be instantiated by itself. It is intended to be used as a mixin class. Following classes use `RTNL_API`: * `IPRoute` -- RTNL API to the current network namespace * `NetNS` -- RTNL API to another network namespace * `IPBatch` -- RTNL compiler * `ShellIPR` -- RTNL via standard I/O, runs IPRoute in a shell It is an old-school API, that provides access to rtnetlink as is. It helps you to retrieve and change almost all the data, available through rtnetlink:: from pyroute2 import IPRoute ipr = IPRoute() # create an interface ipr.link('add', ifname='brx', kind='bridge') # lookup the index dev = ipr.link_lookup(ifname='brx')[0] # bring it down ipr.link('set', index=dev, state='down') # change the interface MAC address and rename it just for fun ipr.link('set', index=dev, address='00:11:22:33:44:55', ifname='br-ctrl') # add primary IP address ipr.addr('add', index=dev, address='10.0.0.1', mask=24, broadcast='10.0.0.255') # add secondary IP address ipr.addr('add', index=dev, address='10.0.0.2', mask=24, broadcast='10.0.0.255') # bring it up ipr.link('set', index=dev, state='up') ''' def __init__(self, *argv, **kwarg): if 'netns_path' in kwarg: self.netns_path = kwarg['netns_path'] else: self.netns_path = config.netns_path super(RTNL_API, self).__init__(*argv, **kwarg) if not self.nlm_generator: def _match(*argv, **kwarg): return tuple(self._genmatch(*argv, **kwarg)) self._genmatch = self._match self._match = _match def _match(self, match, msgs): # filtered results, the generator version for msg in msgs: if hasattr(match, '__call__'): if match(msg): yield msg elif isinstance(match, dict): matches = [] for key in match: KEY = msg.name2nla(key) if isinstance(match[key], types.FunctionType): if msg.get(key) is not None: matches.append(match[key](msg.get(key))) elif msg.get_attr(KEY) is not None: matches.append(match[key](msg.get_attr(KEY))) else: matches.append(False) else: matches.append(msg.get(key) == match[key] or msg.get_attr(KEY) == match[key]) if all(matches): yield msg # 8<--------------------------------------------------------------- # def dump(self): ''' Iterate all the objects -- links, routes, addresses etc. ''' ## # Well, it's the Linux API, why OpenBSD / FreeBSD here? # # 'Cause when you run RemoteIPRoute, it uses this class, # and the code may be run on BSD systems as well, though # BSD systems have only subset of the API # if self.uname[0] == 'OpenBSD': methods = (self.get_links, self.get_addr, self.get_neighbours, self.get_routes) else: methods = (self.get_links, self.get_addr, self.get_neighbours, self.get_routes, self.get_vlans, partial(self.fdb, 'dump'), partial(self.get_rules, family=AF_INET), partial(self.get_rules, family=AF_INET6)) for method in methods: for msg in method(): yield msg # 8<--------------------------------------------------------------- # # Listing methods # def get_qdiscs(self, index=None): ''' Get all queue disciplines for all interfaces or for specified one. ''' msg = tcmsg() msg['family'] = AF_UNSPEC ret = self.nlm_request(msg, RTM_GETQDISC) if index is None: return ret else: return [x for x in ret if x['index'] == index] def get_filters(self, index=0, handle=0, parent=0): ''' Get filters for specified interface, handle and parent. ''' msg = tcmsg() msg['family'] = AF_UNSPEC msg['index'] = index msg['handle'] = handle msg['parent'] = parent return self.nlm_request(msg, RTM_GETTFILTER) def get_classes(self, index=0): ''' Get classes for specified interface. ''' msg = tcmsg() msg['family'] = AF_UNSPEC msg['index'] = index return self.nlm_request(msg, RTM_GETTCLASS) def get_vlans(self, **kwarg): ''' Dump available vlan info on bridge ports ''' # IFLA_EXT_MASK, extended info mask # # include/uapi/linux/rtnetlink.h # 1 << 0 => RTEXT_FILTER_VF # 1 << 1 => RTEXT_FILTER_BRVLAN # 1 << 2 => RTEXT_FILTER_BRVLAN_COMPRESSED # 1 << 3 => RTEXT_FILTER_SKIP_STATS # # maybe place it as mapping into ifinfomsg.py? # match = kwarg.get('match', None) or kwarg or None return self.link('dump', family=AF_BRIDGE, ext_mask=2, match=match) def get_links(self, *argv, **kwarg): ''' Get network interfaces. By default returns all interfaces. Arguments vector can contain interface indices or a special keyword 'all':: ip.get_links() ip.get_links('all') ip.get_links(1, 2, 3) interfaces = [1, 2, 3] ip.get_links(*interfaces) ''' result = [] links = argv or [0] if links[0] == 'all': # compat syntax links = [0] if links[0] == 0: cmd = 'dump' else: cmd = 'get' for index in links: kwarg['index'] = index result.extend(self.link(cmd, **kwarg)) return result def get_neighbours(self, family=AF_UNSPEC, match=None, **kwarg): ''' Dump ARP cache records. The `family` keyword sets the family for the request: e.g. `AF_INET` or `AF_INET6` for arp cache, `AF_BRIDGE` for fdb. If other keyword arguments not empty, they are used as filter. Also, one can explicitly set filter as a function with the `match` parameter. Examples:: # get neighbours on the 3rd link: ip.get_neighbours(ifindex=3) # get a particular record by dst: ip.get_neighbours(dst='172.16.0.1') # get fdb records: ip.get_neighbours(AF_BRIDGE) # and filter them by a function: ip.get_neighbours(AF_BRIDGE, match=lambda x: x['state'] == 2) ''' return self.neigh('dump', family=family, match=match or kwarg) def get_ntables(self, family=AF_UNSPEC): ''' Get neighbour tables ''' msg = ndtmsg() msg['family'] = family return self.nlm_request(msg, RTM_GETNEIGHTBL) def get_addr(self, family=AF_UNSPEC, match=None, **kwarg): ''' Dump addresses. If family is not specified, both AF_INET and AF_INET6 addresses will be dumped:: # get all addresses ip.get_addr() It is possible to apply filters on the results:: # get addresses for the 2nd interface ip.get_addr(index=2) # get addresses with IFA_LABEL == 'eth0' ip.get_addr(label='eth0') # get all the subnet addresses on the interface, identified # by broadcast address (should be explicitly specified upon # creation) ip.get_addr(index=2, broadcast='192.168.1.255') A custom predicate can be used as a filter:: ip.get_addr(match=lambda x: x['index'] == 1) ''' return self.addr('dump', family=family, match=match or kwarg) def get_rules(self, family=AF_UNSPEC, match=None, **kwarg): ''' Get all rules. By default return all rules. To explicitly request the IPv4 rules use `family=AF_INET`. Example:: ip.get_rules() # get all the rules for all families ip.get_rules(family=AF_INET6) # get only IPv6 rules ''' return self.rule((RTM_GETRULE, NLM_F_REQUEST | NLM_F_ROOT | NLM_F_ATOMIC), family=family, match=match or kwarg) def get_routes(self, family=255, match=None, **kwarg): ''' Get all routes. You can specify the table. There are 255 routing classes (tables), and the kernel returns all the routes on each request. So the routine filters routes from full output. Example:: ip.get_routes() # get all the routes for all families ip.get_routes(family=AF_INET6) # get only IPv6 routes ip.get_routes(table=254) # get routes from 254 table The default family=255 is a hack. Despite the specs, the kernel returns only IPv4 routes for AF_UNSPEC family. But it returns all the routes for all the families if one uses an invalid value here. Hack but true. And let's hope the kernel team will not fix this bug. ''' # get a particular route? if isinstance(kwarg.get('dst'), basestring): return self.route('get', dst=kwarg['dst']) else: return self.route('dump', family=family, match=match or kwarg) # 8<--------------------------------------------------------------- # 8<--------------------------------------------------------------- # # List NetNS info # def _dump_one_ns(self, path, registry): item = nsinfmsg() item['netnsid'] = 0xffffffff # default netnsid "unknown" nsfd = 0 info = nsidmsg() msg = nsidmsg() try: nsfd = os.open(path, os.O_RDONLY) item['inode'] = os.fstat(nsfd).st_ino # # if the inode is registered, skip it # if item['inode'] in registry: raise SkipInode() registry.add(item['inode']) # # request NETNSA_NSID # # may not work on older kernels ( <4.20 ?) # msg['attrs'] = [('NETNSA_FD', nsfd)] try: for info in self.nlm_request(msg, RTM_GETNSID, NLM_F_REQUEST): # response to nlm_request() is a list or a generator, # that's why loop item['netnsid'] = info.get_attr('NETNSA_NSID') break except Exception: pass item['attrs'] = [('NSINFO_PATH', path)] except OSError: raise SkipInode() finally: if nsfd > 0: os.close(nsfd) item['header']['type'] = RTM_NEWNETNS item['header']['target'] = self.target item['event'] = 'RTM_NEWNETNS' return item def _dump_dir(self, path, registry): for name in os.listdir(path): # strictly speaking, there is no need to use os.sep, # since the code is not portable outside of Linux nspath = '%s%s%s' % (path, os.sep, name) try: yield self._dump_one_ns(nspath, registry) except SkipInode: pass def _dump_proc(self, registry): for name in os.listdir('/proc'): try: int(name) except ValueError: continue try: yield self._dump_one_ns('/proc/%s/ns/net' % name, registry) except SkipInode: pass def get_netns_info(self, list_proc=False): ''' A prototype method to list available netns and associated interfaces. A bit weird to have it here and not under `pr2modules.netns`, but it uses RTNL to get all the info. ''' # # register all the ns inodes, not to repeat items in the output # registry = set() # # fetch veth peers # peers = {} for peer in self.get_links(): netnsid = peer.get_attr('IFLA_LINK_NETNSID') if netnsid is not None: if netnsid not in peers: peers[netnsid] = [] peers[netnsid].append(peer.get_attr('IFLA_IFNAME')) # # chain iterators: # # * one iterator for every item in self.path # * one iterator for /proc/<pid>/ns/net # views = [] for path in self.netns_path: views.append(self._dump_dir(path, registry)) if list_proc: views.append(self._dump_proc(registry)) # # iterate all the items # for view in views: try: for item in view: # # remove uninitialized 'value' field # del item['value'] # # fetch peers for that ns # for peer in peers.get(item['netnsid'], []): item['attrs'].append(('NSINFO_PEER', peer)) yield item except OSError: pass # 8<--------------------------------------------------------------- # 8<--------------------------------------------------------------- # # Shortcuts # def get_default_routes(self, family=AF_UNSPEC, table=DEFAULT_TABLE): ''' Get default routes ''' # according to iproute2/ip/iproute.c:print_route() return [x for x in self.get_routes(family, table=table) if (x.get_attr('RTA_DST', None) is None and x['dst_len'] == 0)] def link_lookup(self, **kwarg): ''' Lookup interface index (indeces) by first level NLA value. Example:: ip.link_lookup(address="52:54:00:9d:4e:3d") ip.link_lookup(ifname="lo") ip.link_lookup(operstate="UP") Please note, that link_lookup() returns list, not one value. ''' if set(kwarg) in ({'index', }, {'ifname', }, {'index', 'ifname'}): # shortcut for index and ifname try: for link in self.link('get', **kwarg): return [link['index']] except NetlinkError: return [] else: # otherwise fallback to the userspace filter return [link['index'] for link in self.get_links(match=kwarg)] # 8<--------------------------------------------------------------- # 8<--------------------------------------------------------------- # # Shortcuts to flush RTNL objects # def flush_routes(self, *argv, **kwarg): ''' Flush routes -- purge route records from a table. Arguments are the same as for `get_routes()` routine. Actually, this routine implements a pipe from `get_routes()` to `nlm_request()`. ''' ret = [] for route in self.get_routes(*argv, **kwarg): self.put(route, msg_type=RTM_DELROUTE, msg_flags=NLM_F_REQUEST) ret.append(route) return ret def flush_addr(self, *argv, **kwarg): ''' Flush IP addresses. Examples:: # flush all addresses on the interface with index 2: ipr.flush_addr(index=2) # flush all addresses with IFA_LABEL='eth0': ipr.flush_addr(label='eth0') ''' flags = NLM_F_CREATE | NLM_F_EXCL | NLM_F_REQUEST ret = [] for addr in self.get_addr(*argv, **kwarg): self.put(addr, msg_type=RTM_DELADDR, msg_flags=flags) ret.append(addr) return ret def flush_rules(self, *argv, **kwarg): ''' Flush rules. Please keep in mind, that by default the function operates on **all** rules of **all** families. To work only on IPv4 rules, one should explicitly specify `family=AF_INET`. Examples:: # flush all IPv4 rule with priorities above 5 and below 32000 ipr.flush_rules(family=AF_INET, priority=lambda x: 5 < x < 32000) # flush all IPv6 rules that point to table 250: ipr.flush_rules(family=socket.AF_INET6, table=250) ''' flags = NLM_F_CREATE | NLM_F_EXCL | NLM_F_REQUEST ret = [] for rule in self.get_rules(*argv, **kwarg): self.put(rule, msg_type=RTM_DELRULE, msg_flags=flags) ret.append(rule) return ret # 8<--------------------------------------------------------------- # 8<--------------------------------------------------------------- # # Extensions to low-level functions # def brport(self, command, **kwarg): ''' Set bridge port parameters. Example:: idx = ip.link_lookup(ifname='eth0') ip.brport("set", index=idx, unicast_flood=0, cost=200) ip.brport("show", index=idx) Possible keywords are NLA names for the `protinfo_bridge` class, without the prefix and in lower letters. ''' if (command in ('dump', 'show')) and ('match' not in kwarg): match = kwarg else: match = kwarg.pop('match', None) flags_dump = NLM_F_REQUEST | NLM_F_DUMP flags_req = NLM_F_REQUEST | NLM_F_ACK commands = {'set': (RTM_SETLINK, flags_req), 'dump': (RTM_GETLINK, flags_dump), 'show': (RTM_GETLINK, flags_dump)} (command, msg_flags) = commands.get(command, command) msg = ifinfmsg() if command == RTM_GETLINK: msg['index'] = kwarg.get('index', 0) else: msg['index'] = kwarg.pop('index', 0) msg['family'] = AF_BRIDGE protinfo = IPBrPortRequest(kwarg) msg['attrs'].append(('IFLA_PROTINFO', protinfo, 0x8000)) ret = self.nlm_request(msg, msg_type=command, msg_flags=msg_flags) if match is not None: ret = self._match(match, ret) if not (command == RTM_GETLINK and self.nlm_generator): ret = tuple(ret) return ret def vlan_filter(self, command, **kwarg): ''' Vlan filters is another approach to support vlans in Linux. Before vlan filters were introduced, there was only one way to bridge vlans: one had to create vlan interfaces and then add them as ports:: +------+ +----------+ net --> | eth0 | <--> | eth0.500 | <---+ +------+ +----------+ | v +------+ +-----+ net --> | eth1 | | br0 | +------+ +-----+ ^ +------+ +----------+ | net --> | eth2 | <--> | eth2.500 | <---+ +------+ +----------+ It means that one has to create as many bridges, as there were vlans. Vlan filters allow to bridge together underlying interfaces and create vlans already on the bridge:: # v500 label shows which interfaces have vlan filter +------+ v500 net --> | eth0 | <-------+ +------+ | v +------+ +-----+ +---------+ net --> | eth1 | <--> | br0 |<-->| br0v500 | +------+ +-----+ +---------+ ^ +------+ v500 | net --> | eth2 | <-------+ +------+ In this example vlan 500 will be allowed only on ports `eth0` and `eth2`, though all three eth nics are bridged. Some example code:: # create bridge ip.link("add", ifname="br0", kind="bridge") # attach a port ip.link("set", index=ip.link_lookup(ifname="eth0")[0], master=ip.link_lookup(ifname="br0")[0]) # set vlan filter ip.vlan_filter("add", index=ip.link_lookup(ifname="eth0")[0], vlan_info={"vid": 500}) # create vlan interface on the bridge ip.link("add", ifname="br0v500", kind="vlan", link=ip.link_lookup(ifname="br0")[0], vlan_id=500) # set all UP ip.link("set", index=ip.link_lookup(ifname="br0")[0], state="up") ip.link("set", index=ip.link_lookup(ifname="br0v500")[0], state="up") ip.link("set", index=ip.link_lookup(ifname="eth0")[0], state="up") # set IP address ip.addr("add", index=ip.link_lookup(ifname="br0v500")[0], address="172.16.5.2", mask=24) Now all the traffic to the network 172.16.5.2/24 will go to vlan 500 only via ports that have such vlan filter. Required arguments for `vlan_filter()` -- `index` and `vlan_info`. Vlan info struct:: {"vid": uint16, "flags": uint16} More details: * kernel:Documentation/networking/switchdev.txt * pr2modules.netlink.rtnl.ifinfmsg:... vlan_info One can specify `flags` as int or as a list of flag names: * `master` == 0x1 * `pvid` == 0x2 * `untagged` == 0x4 * `range_begin` == 0x8 * `range_end` == 0x10 * `brentry` == 0x20 E.g.:: {"vid": 20, "flags": ["pvid", "untagged"]} # is equal to {"vid": 20, "flags": 6} Commands: **add** Add vlan filter to a bridge port. Example:: ip.vlan_filter("add", index=2, vlan_info={"vid": 200}) **del** Remove vlan filter from a bridge port. Example:: ip.vlan_filter("del", index=2, vlan_info={"vid": 200}) ''' flags_req = NLM_F_REQUEST | NLM_F_ACK commands = {'add': (RTM_SETLINK, flags_req), 'del': (RTM_DELLINK, flags_req)} kwarg['family'] = AF_BRIDGE kwarg['kwarg_filter'] = IPBridgeRequest (command, flags) = commands.get(command, command) return tuple(self.link((command, flags), **kwarg)) def fdb(self, command, **kwarg): ''' Bridge forwarding database management. More details: * kernel:Documentation/networking/switchdev.txt * pr2modules.netlink.rtnl.ndmsg **add** Add a new FDB record. Works in the same way as ARP cache management, but some additional NLAs can be used:: # simple FDB record # ip.fdb('add', ifindex=ip.link_lookup(ifname='br0')[0], lladdr='00:11:22:33:44:55', dst='10.0.0.1') # specify vlan # NB: vlan should exist on the device, use # `vlan_filter()` # ip.fdb('add', ifindex=ip.link_lookup(ifname='br0')[0], lladdr='00:11:22:33:44:55', dst='10.0.0.1', vlan=200) # specify vxlan id and port # NB: works only for vxlan devices, use # `link("add", kind="vxlan", ...)` # # if port is not specified, the default one is used # by the kernel. # # if vni (vxlan id) is equal to the device vni, # the kernel doesn't report it back # ip.fdb('add', ifindex=ip.link_lookup(ifname='vx500')[0] lladdr='00:11:22:33:44:55', dst='10.0.0.1', port=5678, vni=600) **append** Append a new FDB record. The same syntax as for **add**. **del** Remove an existing FDB record. The same syntax as for **add**. **dump** Dump all the FDB records. If any `**kwarg` is provided, results will be filtered:: # dump all the records ip.fdb('dump') # show only specific lladdr, dst, vlan etc. ip.fdb('dump', lladdr='00:11:22:33:44:55') ip.fdb('dump', dst='10.0.0.1') ip.fdb('dump', vlan=200) ''' kwarg['family'] = AF_BRIDGE # nud -> state if 'nud' in kwarg: kwarg['state'] = kwarg.pop('nud') if (command in ('add', 'del', 'append')) and \ not (kwarg.get('state', 0) & ndmsg.states['noarp']): # state must contain noarp in add / del / append kwarg['state'] = kwarg.pop('state', 0) | ndmsg.states['noarp'] # other assumptions if not kwarg.get('state', 0) & (ndmsg.states['permanent'] | ndmsg.states['reachable']): # permanent (default) or reachable kwarg['state'] |= ndmsg.states['permanent'] if not kwarg.get('flags', 0) & (ndmsg.flags['self'] | ndmsg.flags['master']): # self (default) or master kwarg['flags'] = kwarg.get('flags', 0) | ndmsg.flags['self'] # return self.neigh(command, **kwarg) # 8<--------------------------------------------------------------- # # General low-level configuration methods # def neigh(self, command, **kwarg): ''' Neighbours operations, same as `ip neigh` or `bridge fdb` **add** Add a neighbour record, e.g.:: from pyroute2 import IPRoute from pr2modules.netlink.rtnl import ndmsg # add a permanent record on veth0 idx = ip.link_lookup(ifname='veth0')[0] ip.neigh('add', dst='172.16.45.1', lladdr='00:11:22:33:44:55', ifindex=idx, state=ndmsg.states['permanent']) **set** Set an existing record or create a new one, if it doesn't exist. The same as above, but the command is "set":: ip.neigh('set', dst='172.16.45.1', lladdr='00:11:22:33:44:55', ifindex=idx, state=ndmsg.states['permanent']) **change** Change an existing record. If the record doesn't exist, fail. **del** Delete an existing record. **dump** Dump all the records in the NDB:: ip.neigh('dump') **get** Get specific record (dst and ifindex are mandatory). Available only on recent kernel:: ip.neigh('get', dst='172.16.45.1', ifindex=idx) ''' if (command == 'dump') and ('match' not in kwarg): match = kwarg else: match = kwarg.pop('match', None) flags_dump = NLM_F_REQUEST | NLM_F_DUMP flags_base = NLM_F_REQUEST | NLM_F_ACK flags_make = flags_base | NLM_F_CREATE | NLM_F_EXCL flags_append = flags_base | NLM_F_CREATE | NLM_F_APPEND flags_change = flags_base | NLM_F_REPLACE flags_replace = flags_change | NLM_F_CREATE commands = {'add': (RTM_NEWNEIGH, flags_make), 'set': (RTM_NEWNEIGH, flags_replace), 'replace': (RTM_NEWNEIGH, flags_replace), 'change': (RTM_NEWNEIGH, flags_change), 'del': (RTM_DELNEIGH, flags_make), 'remove': (RTM_DELNEIGH, flags_make), 'delete': (RTM_DELNEIGH, flags_make), 'dump': (RTM_GETNEIGH, flags_dump), 'get': (RTM_GETNEIGH, flags_base), 'append': (RTM_NEWNEIGH, flags_append)} (command, flags) = commands.get(command, command) if 'nud' in kwarg: kwarg['state'] = kwarg.pop('nud') msg = ndmsg.ndmsg() for field in msg.fields: msg[field[0]] = kwarg.pop(field[0], 0) msg['family'] = msg['family'] or AF_INET msg['attrs'] = [] # fix nud kwarg if isinstance(msg['state'], basestring): msg['state'] = ndmsg.states_a2n(msg['state']) for key in kwarg: nla = ndmsg.ndmsg.name2nla(key) if kwarg[key] is not None: msg['attrs'].append([nla, kwarg[key]]) ret = self.nlm_request(msg, msg_type=command, msg_flags=flags) if match: ret = self._match(match, ret) if not (command == RTM_GETNEIGH and self.nlm_generator): ret = tuple(ret) return ret def link(self, command, **kwarg): ''' Link operations. Keywords to set up ifinfmsg fields: * index -- interface index * family -- AF_BRIDGE for bridge operations, otherwise 0 * flags -- device flags * change -- change mask All other keywords will be translated to NLA names, e.g. `mtu -> IFLA_MTU`, `af_spec -> IFLA_AF_SPEC` etc. You can provide a complete NLA structure or let filters do it for you. E.g., these pairs show equal statements:: # set device MTU ip.link("set", index=x, mtu=1000) ip.link("set", index=x, IFLA_MTU=1000) # add vlan device ip.link("add", ifname="test", kind="dummy") ip.link("add", ifname="test", IFLA_LINKINFO={'attrs': [['IFLA_INFO_KIND', 'dummy']]}) Filters are implemented in the `pr2modules.netlink.rtnl.req` module. You can contribute your own if you miss shortcuts. Commands: **add** To create an interface, one should specify the interface kind:: ip.link("add", ifname="test", kind="dummy") The kind can be any of those supported by kernel. It can be `dummy`, `bridge`, `bond` etc. On modern kernels one can specify even interface index:: ip.link("add", ifname="br-test", kind="bridge", index=2345) Specific type notes: ► geneve Create GENEVE tunnel:: ip.link("add", ifname="genx", kind="geneve", geneve_id=42, geneve_remote="172.16.0.101") Support for GENEVE over IPv6 is also included; use `geneve_remote6` to configure a remote IPv6 address. ► gre Create GRE tunnel:: ip.link("add", ifname="grex", kind="gre", gre_local="172.16.0.1", gre_remote="172.16.0.101", gre_ttl=16) The keyed GRE requires explicit iflags/oflags specification:: ip.link("add", ifname="grex", kind="gre", gre_local="172.16.0.1", gre_remote="172.16.0.101", gre_ttl=16, gre_ikey=10, gre_okey=10, gre_iflags=32, gre_oflags=32) Support for GRE over IPv6 is also included; use `kind=ip6gre` and `ip6gre_` as the prefix for its values. ► ipip Create ipip tunnel:: ip.link("add", ifname="tun1", kind="ipip", ipip_local="172.16.0.1", ipip_remote="172.16.0.101", ipip_ttl=16) Support for sit and ip6tnl is also included; use `kind=sit` and `sit_` as prefix for sit tunnels, and `kind=ip6tnl` and `ip6tnl_` prefix for ip6tnl tunnels. ► macvlan Macvlan interfaces act like VLANs within OS. The macvlan driver provides an ability to add several MAC addresses on one interface, where every MAC address is reflected with a virtual interface in the system. In some setups macvlan interfaces can replace bridge interfaces, providing more simple and at the same time high-performance solution:: ip.link("add", ifname="mvlan0", kind="macvlan", link=ip.link_lookup(ifname="em1")[0], macvlan_mode="private").commit() Several macvlan modes are available: "private", "vepa", "bridge", "passthru". Ususally the default is "vepa". ► macvtap Almost the same as macvlan, but creates also a character tap device:: ip.link("add", ifname="mvtap0", kind="macvtap", link=ip.link_lookup(ifname="em1")[0], macvtap_mode="vepa").commit() Will create a device file `"/dev/tap%s" % index` ► tuntap Possible `tuntap` keywords: - `mode` — "tun" or "tap" - `uid` — integer - `gid` — integer - `ifr` — dict of tuntap flags (see ifinfmsg:... tuntap_data) Create a tap interface:: ip.link("add", ifname="tap0", kind="tuntap", mode="tap") Tun/tap interfaces are created using `ioctl()`, but the library provides a transparent way to manage them using netlink API. ► veth To properly create `veth` interface, one should specify `peer` also, since `veth` interfaces are created in pairs:: # simple call ip.link("add", ifname="v1p0", kind="veth", peer="v1p1") # set up specific veth peer attributes ip.link("add", ifname="v1p0", kind="veth", peer={"ifname": "v1p1", "net_ns_fd": "test_netns"}) ► vlan VLAN interfaces require additional parameters, `vlan_id` and `link`, where `link` is a master interface to create VLAN on:: ip.link("add", ifname="v100", kind="vlan", link=ip.link_lookup(ifname="eth0")[0], vlan_id=100) There is a possibility to create also 802.1ad interfaces:: # create external vlan 802.1ad, s-tag ip.link("add", ifname="v100s", kind="vlan", link=ip.link_lookup(ifname="eth0")[0], vlan_id=100, vlan_protocol=0x88a8) # create internal vlan 802.1q, c-tag ip.link("add", ifname="v200c", kind="vlan", link=ip.link_lookup(ifname="v100s")[0], vlan_id=200, vlan_protocol=0x8100) ► vrf VRF interfaces (see linux/Documentation/networking/vrf.txt):: ip.link("add", ifname="vrf-foo", kind="vrf", vrf_table=42) ► vxlan VXLAN interfaces are like VLAN ones, but require a bit more parameters:: ip.link("add", ifname="vx101", kind="vxlan", vxlan_link=ip.link_lookup(ifname="eth0")[0], vxlan_id=101, vxlan_group='239.1.1.1', vxlan_ttl=16) All possible vxlan parameters are listed in the module `pr2modules.netlink.rtnl.ifinfmsg:... vxlan_data`. ► ipoib IPoIB driver provides an ability to create several ip interfaces on one interface. IPoIB interfaces requires the following parameter: `link` : The master interface to create IPoIB on. The following parameters can also be provided: `pkey` : Inifiniband partition key the ip interface is associated with `mode` : Underlying infiniband transport mode. One of: ['datagram' ,'connected'] `umcast` : If set(1), multicast group membership for this interface is handled by user space. Example:: ip.link("add", ifname="ipoib1", kind="ipoib", link=ip.link_lookup(ifname="ib0")[0], pkey=10) **set** Set interface attributes:: # get interface index x = ip.link_lookup(ifname="eth0")[0] # put link down ip.link("set", index=x, state="down") # rename and set MAC addr ip.link("set", index=x, address="00:11:22:33:44:55", name="bala") # set MTU and TX queue length ip.link("set", index=x, mtu=1000, txqlen=2000) # bring link up ip.link("set", index=x, state="up") Keyword "state" is reserved. State can be "up" or "down", it is a shortcut:: state="up": flags=1, mask=1 state="down": flags=0, mask=0 SR-IOV virtual function setup:: # get PF index x = ip.link_lookup(ifname="eth0")[0] # setup macaddr ip.link("set", index=x, # PF index vf={"vf": 0, # VF index "mac": "00:11:22:33:44:55"}) # address # setup vlan ip.link("set", index=x, # PF index vf={"vf": 0, # VF index "vlan": 100}) # the simplest case # setup QinQ ip.link("set", index=x, # PF index vf={"vf": 0, # VF index "vlan": [{"vlan": 100, # vlan id "proto": 0x88a8}, # 802.1ad {"vlan": 200, # vlan id "proto": 0x8100}]}) # 802.1q **update** Almost the same as `set`, except it uses different flags and message type. Mostly does the same, but in some cases differs. If you're not sure what to use, use `set`. **del** Destroy the interface:: ip.link("del", index=ip.link_lookup(ifname="dummy0")[0]) **dump** Dump info for all interfaces **get** Get specific interface info:: ip.link("get", index=ip.link_lookup(ifname="br0")[0]) Get extended attributes like SR-IOV setup:: ip.link("get", index=3, ext_mask=1) ''' if (command == 'dump') and ('match' not in kwarg): match = kwarg else: match = kwarg.pop('match', None) if command[:4] == 'vlan': log.warning('vlan filters are managed via `vlan_filter()`') log.warning('this compatibility hack will be removed soon') return self.vlan_filter(command[5:], **kwarg) flags_dump = NLM_F_REQUEST | NLM_F_DUMP flags_req = NLM_F_REQUEST | NLM_F_ACK flags_create = flags_req | NLM_F_CREATE | NLM_F_EXCL flag_append = flags_create | NLM_F_APPEND commands = {'set': (RTM_NEWLINK, flags_req), 'update': (RTM_SETLINK, flags_create), 'add': (RTM_NEWLINK, flags_create), 'del': (RTM_DELLINK, flags_create), 'property_add': (RTM_NEWLINKPROP, flag_append), 'property_del': (RTM_DELLINKPROP, flags_req), 'remove': (RTM_DELLINK, flags_create), 'delete': (RTM_DELLINK, flags_create), 'dump': (RTM_GETLINK, flags_dump), 'get': (RTM_GETLINK, NLM_F_REQUEST)} msg = ifinfmsg() # ifinfmsg fields # # ifi_family # ifi_type # ifi_index # ifi_flags # ifi_change # msg['family'] = kwarg.pop('family', 0) lrq = kwarg.pop('kwarg_filter', IPLinkRequest) (command, msg_flags) = commands.get(command, command) # index msg['index'] = kwarg.pop('index', 0) # flags flags = kwarg.pop('flags', 0) or 0 # change mask = kwarg.pop('mask', 0) or kwarg.pop('change', 0) or 0 # UP/DOWN shortcut if 'state' in kwarg: mask = 1 # IFF_UP mask if kwarg['state'].lower() == 'up': flags = 1 # 0 (down) or 1 (up) del kwarg['state'] # arp on/off shortcut if 'arp' in kwarg: mask |= IFF_NOARP if not kwarg.pop('arp'): flags |= IFF_NOARP msg['flags'] = flags msg['change'] = mask if 'altname' in kwarg: altname = kwarg.pop("altname") if command in (RTM_NEWLINKPROP, RTM_DELLINKPROP): if not isinstance(altname, (list, tuple, set)): altname = [altname] kwarg["IFLA_PROP_LIST"] = {"attrs": [ ("IFLA_ALT_IFNAME", alt_ifname) for alt_ifname in altname ]} else: kwarg["IFLA_ALT_IFNAME"] = altname # apply filter kwarg = lrq(kwarg) # attach NLA for key in kwarg: nla = type(msg).name2nla(key) if kwarg[key] is not None: msg['attrs'].append([nla, kwarg[key]]) ret = self.nlm_request(msg, msg_type=command, msg_flags=msg_flags) if match is not None: ret = self._match(match, ret) if not (command == RTM_GETLINK and self.nlm_generator): ret = tuple(ret) return ret def addr(self, command, index=None, address=None, mask=None, family=None, scope=None, match=None, **kwarg): ''' Address operations * command -- add, delete, replace, dump * index -- device index * address -- IPv4 or IPv6 address * mask -- address mask * family -- socket.AF_INET for IPv4 or socket.AF_INET6 for IPv6 * scope -- the address scope, see /etc/iproute2/rt_scopes * kwarg -- dictionary, any ifaddrmsg field or NLA Later the method signature will be changed to:: def addr(self, command, match=None, **kwarg): # the method body So only keyword arguments (except of the command) will be accepted. The reason for this change is an unification of API. Example:: idx = 62 ip.addr('add', index=idx, address='10.0.0.1', mask=24) ip.addr('add', index=idx, address='10.0.0.2', mask=24) With more NLAs:: # explicitly set broadcast address ip.addr('add', index=idx, address='10.0.0.3', broadcast='10.0.0.255', prefixlen=24) # make the secondary address visible to ifconfig: add label ip.addr('add', index=idx, address='10.0.0.4', broadcast='10.0.0.255', prefixlen=24, label='eth0:1') Configure p2p address on an interface:: ip.addr('add', index=idx, address='10.1.1.2', mask=24, local='10.1.1.1') ''' if command in ('get', 'set'): return lrq = kwarg.pop('kwarg_filter', IPAddrRequest) flags_dump = NLM_F_REQUEST | NLM_F_DUMP flags_base = NLM_F_REQUEST | NLM_F_ACK flags_create = flags_base | NLM_F_CREATE | NLM_F_EXCL flags_replace = flags_base | NLM_F_REPLACE | NLM_F_CREATE commands = {'add': (RTM_NEWADDR, flags_create), 'del': (RTM_DELADDR, flags_create), 'remove': (RTM_DELADDR, flags_create), 'delete': (RTM_DELADDR, flags_create), 'replace': (RTM_NEWADDR, flags_replace), 'dump': (RTM_GETADDR, flags_dump)} (command, flags) = commands.get(command, command) # fetch args index = index or kwarg.pop('index', 0) family = family or kwarg.pop('family', None) prefixlen = mask or kwarg.pop('mask', 0) or kwarg.pop('prefixlen', 0) scope = scope or kwarg.pop('scope', 0) # move address to kwarg # FIXME: add deprecation notice if address: kwarg['address'] = address # try to guess family, if it is not forced if kwarg.get('address') and family is None: if address.find(":") > -1: family = AF_INET6 mask = mask or 128 else: family = AF_INET mask = mask or 32 # setup the message msg = ifaddrmsg() msg['index'] = index msg['family'] = family or 0 msg['prefixlen'] = prefixlen msg['scope'] = scope kwarg = lrq(kwarg) try: kwarg.sync_cacheinfo() except AttributeError: pass # inject IFA_LOCAL, if family is AF_INET and IFA_LOCAL is not set if family == AF_INET and \ kwarg.get('address') and \ kwarg.get('local') is None: kwarg['local'] = kwarg['address'] # patch broadcast, if needed if kwarg.get('broadcast') is True: kwarg['broadcast'] = getbroadcast(address, mask, family) # work on NLA for key in kwarg: nla = ifaddrmsg.name2nla(key) if kwarg[key] not in (None, ''): msg['attrs'].append([nla, kwarg[key]]) ret = self.nlm_request(msg, msg_type=command, msg_flags=flags, terminate=lambda x: x['header']['type'] == NLMSG_ERROR) if match: ret = self._match(match, ret) if not (command == RTM_GETADDR and self.nlm_generator): ret = tuple(ret) return ret def tc(self, command, kind=None, index=0, handle=0, **kwarg): ''' "Swiss knife" for traffic control. With the method you can add, delete or modify qdiscs, classes and filters. * command -- add or delete qdisc, class, filter. * kind -- a string identifier -- "sfq", "htb", "u32" and so on. * handle -- integer or string Command can be one of ("add", "del", "add-class", "del-class", "add-filter", "del-filter") (see `commands` dict in the code). Handle notice: traditional iproute2 notation, like "1:0", actually represents two parts in one four-bytes integer:: 1:0 -> 0x10000 1:1 -> 0x10001 ff:0 -> 0xff0000 ffff:1 -> 0xffff0001 Target notice: if your target is a class/qdisc that applies an algorithm that can only apply to upstream traffic profile, but your keys variable explicitly references a match that is only relevant for upstream traffic, the kernel will reject the filter. Unless you're dealing with devices like IMQs For pyroute2 tc() you can use both forms: integer like 0xffff0000 or string like 'ffff:0000'. By default, handle is 0, so you can add simple classless queues w/o need to specify handle. Ingress queue causes handle to be 0xffff0000. So, to set up sfq queue on interface 1, the function call will be like that:: ip = IPRoute() ip.tc("add", "sfq", 1) Instead of string commands ("add", "del"...), you can use also module constants, `RTM_NEWQDISC`, `RTM_DELQDISC` and so on:: ip = IPRoute() flags = NLM_F_REQUEST | NLM_F_ACK | NLM_F_CREATE | NLM_F_EXCL ip.tc((RTM_NEWQDISC, flags), "sfq", 1) It should be noted that "change", "change-class" and "change-filter" work like "replace", "replace-class" and "replace-filter", except they will fail if the node doesn't exist (while it would have been created by "replace"). This is not the same behaviour as with "tc" where "change" can be used to modify the value of some options while leaving the others unchanged. However, as not all entities support this operation, we believe the "change" commands as implemented here are more useful. Also available "modules" (returns tc plugins dict) and "help" commands:: help(ip.tc("modules")["htb"]) print(ip.tc("help", "htb")) ''' if command == 'set': return if command == 'modules': return tc_plugins if command == 'help': p = tc_plugins.get(kind) if p is not None and hasattr(p, '__doc__'): return p.__doc__ else: return 'No help available' flags_base = NLM_F_REQUEST | NLM_F_ACK flags_make = flags_base | NLM_F_CREATE | NLM_F_EXCL flags_change = flags_base | NLM_F_REPLACE flags_replace = flags_change | NLM_F_CREATE commands = {'add': (RTM_NEWQDISC, flags_make), 'del': (RTM_DELQDISC, flags_make), 'remove': (RTM_DELQDISC, flags_make), 'delete': (RTM_DELQDISC, flags_make), 'change': (RTM_NEWQDISC, flags_change), 'replace': (RTM_NEWQDISC, flags_replace), 'add-class': (RTM_NEWTCLASS, flags_make), 'del-class': (RTM_DELTCLASS, flags_make), 'change-class': (RTM_NEWTCLASS, flags_change), 'replace-class': (RTM_NEWTCLASS, flags_replace), 'add-filter': (RTM_NEWTFILTER, flags_make), 'del-filter': (RTM_DELTFILTER, flags_make), 'change-filter': (RTM_NEWTFILTER, flags_change), 'replace-filter': (RTM_NEWTFILTER, flags_replace)} if isinstance(command, int): command = (command, flags_make) if command == 'del': if index == 0: index = [x['index'] for x in self.get_links() if x['index'] != 1] if isinstance(index, (list, tuple, set)): return list(chain(*(self.tc('del', index=x) for x in index))) command, flags = commands.get(command, command) msg = tcmsg() # transform handle, parent and target, if needed: handle = transform_handle(handle) for item in ('parent', 'target', 'default'): if item in kwarg and kwarg[item] is not None: kwarg[item] = transform_handle(kwarg[item]) msg['index'] = index msg['handle'] = handle opts = kwarg.get('opts', None) ## # # if kind in tc_plugins: p = tc_plugins[kind] msg['parent'] = kwarg.pop('parent', getattr(p, 'parent', 0)) if hasattr(p, 'fix_msg'): p.fix_msg(msg, kwarg) if kwarg: if command in (RTM_NEWTCLASS, RTM_DELTCLASS): opts = p.get_class_parameters(kwarg) else: opts = p.get_parameters(kwarg) else: msg['parent'] = kwarg.get('parent', TC_H_ROOT) if kind is not None: msg['attrs'].append(['TCA_KIND', kind]) if opts is not None: msg['attrs'].append(['TCA_OPTIONS', opts]) return tuple(self.nlm_request(msg, msg_type=command, msg_flags=flags)) def route(self, command, **kwarg): ''' Route operations. Keywords to set up rtmsg fields: * dst_len, src_len -- destination and source mask(see `dst` below) * tos -- type of service * table -- routing table * proto -- `redirect`, `boot`, `static` (see `rt_proto`) * scope -- routing realm * type -- `unicast`, `local`, etc. (see `rt_type`) `pr2modules/netlink/rtnl/rtmsg.py` rtmsg.nla_map: * table -- routing table to use (default: 254) * gateway -- via address * prefsrc -- preferred source IP address * dst -- the same as `prefix` * iif -- incoming traffic interface * oif -- outgoing traffic interface etc. One can specify mask not as `dst_len`, but as a part of `dst`, e.g.: `dst="10.0.0.0/24"`. Commands: **add** Example:: ip.route("add", dst="10.0.0.0/24", gateway="192.168.0.1") It is possible to set also route metrics. There are two ways to do so. The first is to use 'raw' NLA notation:: ip.route("add", dst="10.0.0.0", mask=24, gateway="192.168.0.1", metrics={"attrs": [["RTAX_MTU", 1400], ["RTAX_HOPLIMIT", 16]]}) The second way is to use shortcuts, provided by `IPRouteRequest` class, which is applied to `**kwarg` automatically:: ip.route("add", dst="10.0.0.0/24", gateway="192.168.0.1", metrics={"mtu": 1400, "hoplimit": 16}) ... More `route()` examples. Blackhole route:: ip.route("add", dst="10.0.0.0/24", type="blackhole") Create a route with metrics:: ip.route('add', dst='172.16.0.0/24', gateway='10.0.0.10', metrics={'mtu': 1400, 'hoplimit': 16}) Multipath route:: ip.route("add", dst="10.0.0.0/24", multipath=[{"gateway": "192.168.0.1", "hops": 2}, {"gateway": "192.168.0.2", "hops": 1}, {"gateway": "192.168.0.3"}]) MPLS lwtunnel on eth0:: idx = ip.link_lookup(ifname='eth0')[0] ip.route("add", dst="10.0.0.0/24", oif=idx, encap={"type": "mpls", "labels": "200/300"}) Create MPLS route: push label:: # $ sudo modprobe mpls_router # $ sudo sysctl net.mpls.platform_labels=1024 ip.route('add', family=AF_MPLS, oif=idx, dst=0x200, newdst=[0x200, 0x300]) MPLS multipath:: idx = ip.link_lookup(ifname='eth0')[0] ip.route("add", dst="10.0.0.0/24", table=20, multipath=[{"gateway": "192.168.0.1", "encap": {"type": "mpls", "labels": 200}}, {"ifindex": idx, "encap": {"type": "mpls", "labels": 300}}]) MPLS target can be int, string, dict or list:: "labels": 300 # simple label "labels": "300" # the same "labels": (200, 300) # stacked "labels": "200/300" # the same # explicit label definition "labels": {"bos": 1, "label": 300, "tc": 0, "ttl": 16} Create SEG6 tunnel encap mode (kernel >= 4.10):: ip.route('add', dst='2001:0:0:10::2/128', oif=idx, encap={'type': 'seg6', 'mode': 'encap', 'segs': '2000::5,2000::6'}) Create SEG6 tunnel inline mode (kernel >= 4.10):: ip.route('add', dst='2001:0:0:10::2/128', oif=idx, encap={'type': 'seg6', 'mode': 'inline', 'segs': ['2000::5', '2000::6']}) Create SEG6 tunnel inline mode with hmac (kernel >= 4.10):: ip.route('add', dst='2001:0:0:22::2/128', oif=idx, encap={'type': 'seg6', 'mode': 'inline', 'segs':'2000::5,2000::6,2000::7,2000::8', 'hmac':0xf}) Create SEG6 tunnel with ip4ip6 encapsulation (kernel >= 4.14):: ip.route('add', dst='172.16.0.0/24', oif=idx, encap={'type': 'seg6', 'mode': 'encap', 'segs': '2000::5,2000::6'}) Create SEG6LOCAL tunnel End.DX4 action (kernel >= 4.14):: ip.route('add', dst='2001:0:0:10::2/128', oif=idx, encap={'type': 'seg6local', 'action': 'End.DX4', 'nh4': '172.16.0.10'}) Create SEG6LOCAL tunnel End.DT6 action (kernel >= 4.14):: ip.route('add', dst='2001:0:0:10::2/128', oif=idx, encap={'type': 'seg6local', 'action': 'End.DT6', 'table':'10'}) Create SEG6LOCAL tunnel End.B6 action (kernel >= 4.14):: ip.route('add', dst='2001:0:0:10::2/128', oif=idx, encap={'type': 'seg6local', 'action': 'End.B6', 'srh':{'segs': '2000::5,2000::6'}}) Create SEG6LOCAL tunnel End.B6 action with hmac (kernel >= 4.14):: ip.route('add', dst='2001:0:0:10::2/128', oif=idx, encap={'type': 'seg6local', 'action': 'End.B6', 'srh': {'segs': '2000::5,2000::6', 'hmac':0xf}}) **change**, **replace**, **append** Commands `change`, `replace` and `append` have the same meanings as in ip-route(8): `change` modifies only existing route, while `replace` creates a new one, if there is no such route yet. `append` allows to create an IPv6 multipath route. **del** Remove the route. The same syntax as for **add**. **get** Get route by spec. **dump** Dump all routes. ''' # 8<---------------------------------------------------- # FIXME # flags should be moved to some more general place flags_dump = NLM_F_DUMP | NLM_F_REQUEST flags_base = NLM_F_REQUEST | NLM_F_ACK flags_make = flags_base | NLM_F_CREATE | NLM_F_EXCL flags_change = flags_base | NLM_F_REPLACE flags_replace = flags_change | NLM_F_CREATE flags_append = flags_base | NLM_F_CREATE | NLM_F_APPEND # 8<---------------------------------------------------- # transform kwarg if command in ('add', 'set', 'replace', 'change', 'append'): kwarg['proto'] = kwarg.get('proto', 'static') or 'static' kwarg['type'] = kwarg.get('type', 'unicast') or 'unicast' kwarg = IPRouteRequest(kwarg) if 'match' not in kwarg and command in ('dump', 'show'): match = kwarg else: match = kwarg.pop('match', None) callback = kwarg.pop('callback', None) commands = {'add': (RTM_NEWROUTE, flags_make), 'set': (RTM_NEWROUTE, flags_replace), 'replace': (RTM_NEWROUTE, flags_replace), 'change': (RTM_NEWROUTE, flags_change), 'append': (RTM_NEWROUTE, flags_append), 'del': (RTM_DELROUTE, flags_make), 'remove': (RTM_DELROUTE, flags_make), 'delete': (RTM_DELROUTE, flags_make), 'get': (RTM_GETROUTE, NLM_F_REQUEST), 'show': (RTM_GETROUTE, flags_dump), 'dump': (RTM_GETROUTE, flags_dump)} (command, flags) = commands.get(command, command) msg = rtmsg() # table is mandatory; by default == 254 # if table is not defined in kwarg, save it there # also for nla_attr: table = kwarg.get('table', 254) msg['table'] = table if table <= 255 else 252 msg['family'] = kwarg.pop('family', AF_INET) msg['scope'] = kwarg.pop('scope', rt_scope['universe']) msg['dst_len'] = kwarg.pop('dst_len', None) or kwarg.pop('mask', 0) msg['src_len'] = kwarg.pop('src_len', 0) msg['tos'] = kwarg.pop('tos', 0) msg['flags'] = kwarg.pop('flags', 0) msg['type'] = kwarg.pop('type', rt_type['unspec']) msg['proto'] = kwarg.pop('proto', rt_proto['unspec']) msg['attrs'] = [] if msg['family'] == AF_MPLS: for key in tuple(kwarg): if key not in ('dst', 'newdst', 'via', 'multipath', 'oif'): kwarg.pop(key) for key in kwarg: nla = rtmsg.name2nla(key) if nla == 'RTA_DST' and not kwarg[key]: continue if kwarg[key] is not None: msg['attrs'].append([nla, kwarg[key]]) # fix IP family, if needed if msg['family'] in (AF_UNSPEC, 255): if key in ('dst', 'src', 'gateway', 'prefsrc', 'newdst') \ and isinstance(kwarg[key], basestring): msg['family'] = AF_INET6 if kwarg[key].find(':') >= 0 \ else AF_INET elif key == 'multipath' and len(kwarg[key]) > 0: hop = kwarg[key][0] attrs = hop.get('attrs', []) for attr in attrs: if attr[0] == 'RTA_GATEWAY': msg['family'] = AF_INET6 if \ attr[1].find(':') >= 0 else AF_INET break ret = self.nlm_request(msg, msg_type=command, msg_flags=flags, callback=callback) if match: ret = self._match(match, ret) if not (command == RTM_GETROUTE and self.nlm_generator): ret = tuple(ret) return ret def rule(self, command, *argv, **kwarg): ''' Rule operations - command — add, delete - table — 0 < table id < 253 - priority — 0 < rule's priority < 32766 - action — type of rule, default 'FR_ACT_NOP' (see fibmsg.py) - rtscope — routing scope, default RT_SCOPE_UNIVERSE `(RT_SCOPE_UNIVERSE|RT_SCOPE_SITE|\ RT_SCOPE_LINK|RT_SCOPE_HOST|RT_SCOPE_NOWHERE)` - family — rule's family (socket.AF_INET (default) or socket.AF_INET6) - src — IP source for Source Based (Policy Based) routing's rule - dst — IP for Destination Based (Policy Based) routing's rule - src_len — Mask for Source Based (Policy Based) routing's rule - dst_len — Mask for Destination Based (Policy Based) routing's rule - iifname — Input interface for Interface Based (Policy Based) routing's rule - oifname — Output interface for Interface Based (Policy Based) routing's rule - uid_range — Range of user identifiers, as a string like "1000:1234" - dport_range — Range of destination ports, as a string like "80-120" - sport_range — Range of source ports, as a string like "80-120" All packets route via table 10:: # 32000: from all lookup 10 # ... ip.rule('add', table=10, priority=32000) Default action:: # 32001: from all lookup 11 unreachable # ... iproute.rule('add', table=11, priority=32001, action='FR_ACT_UNREACHABLE') Use source address to choose a routing table:: # 32004: from 10.64.75.141 lookup 14 # ... iproute.rule('add', table=14, priority=32004, src='10.64.75.141') Use dst address to choose a routing table:: # 32005: from 10.64.75.141/24 lookup 15 # ... iproute.rule('add', table=15, priority=32005, dst='10.64.75.141', dst_len=24) Match fwmark:: # 32006: from 10.64.75.141 fwmark 0xa lookup 15 # ... iproute.rule('add', table=15, priority=32006, dst='10.64.75.141', fwmark=10) ''' if command == 'set': return flags_base = NLM_F_REQUEST | NLM_F_ACK flags_make = flags_base | NLM_F_CREATE | NLM_F_EXCL flags_dump = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_ATOMIC commands = {'add': (RTM_NEWRULE, flags_make), 'del': (RTM_DELRULE, flags_make), 'remove': (RTM_DELRULE, flags_make), 'delete': (RTM_DELRULE, flags_make), 'dump': (RTM_GETRULE, flags_dump)} if isinstance(command, int): command = (command, flags_make) command, flags = commands.get(command, command) if argv: # this code block will be removed in some release log.error('rule(): positional parameters are deprecated') names = ['table', 'priority', 'action', 'family', 'src', 'src_len', 'dst', 'dst_len', 'fwmark', 'iifname', 'oifname'] kwarg.update(dict(zip(names, argv))) kwarg = IPRuleRequest(kwarg) msg = fibmsg() table = kwarg.get('table', 0) msg['table'] = table if table <= 255 else 252 for key in ('family', 'src_len', 'dst_len', 'action', 'tos', 'flags'): msg[key] = kwarg.pop(key, 0) msg['attrs'] = [] for key in kwarg: nla = fibmsg.name2nla(key) if kwarg[key] is not None: msg['attrs'].append([nla, kwarg[key]]) ret = self.nlm_request(msg, msg_type=command, msg_flags=flags) if 'match' in kwarg: ret = self._match(kwarg['match'], ret) if not (command == RTM_GETRULE and self.nlm_generator): ret = tuple(ret) return ret def stats(self, command, **kwarg): ''' Stats prototype. ''' if (command == 'dump') and ('match' not in kwarg): match = kwarg else: match = kwarg.pop('match', None) commands = {'dump': (RTM_GETSTATS, NLM_F_REQUEST | NLM_F_DUMP), 'get': (RTM_GETSTATS, NLM_F_REQUEST | NLM_F_ACK)} command, flags = commands.get(command, command) msg = ifstatsmsg() msg['filter_mask'] = kwarg.get('filter_mask', 31) msg['ifindex'] = kwarg.get('ifindex', 0) ret = self.nlm_request(msg, msg_type=command, msg_flags=flags) if match is not None: ret = self._match(match, ret) if not (command == RTM_GETSTATS and self.nlm_generator): ret = tuple(ret) return ret # 8<--------------------------------------------------------------- class IPBatch(RTNL_API, IPBatchSocket): ''' Netlink requests compiler. Does not send any requests, but instead stores them in the internal binary buffer. The contents of the buffer can be used to send batch requests, to test custom netlink parsers and so on. Uses `RTNL_API` and provides all the same API as normal `IPRoute` objects:: # create the batch compiler ipb = IPBatch() # compile requests into the internal buffer ipb.link("add", index=550, ifname="test", kind="dummy") ipb.link("set", index=550, state="up") ipb.addr("add", index=550, address="10.0.0.2", mask=24) # save the buffer data = ipb.batch # reset the buffer ipb.reset() ... # send the buffer IPRoute().sendto(data, (0, 0)) ''' pass class IPRoute(RTNL_API, IPRSocket): ''' Regular ordinary utility class, see RTNL API for the list of methods. ''' pass class RawIPRoute(RTNL_API, RawIPRSocket): ''' The same as `IPRoute`, but does not use the netlink proxy. Thus it can not manage e.g. tun/tap interfaces. ''' pass
the-stack_0_14912
import numpy as np import time from rllab.misc import logger def rollout(env, policy, path_length, render=False, speedup=None): Da = env.action_space.flat_dim Do = env.observation_space.flat_dim observation = env.reset() policy.reset() observations = np.zeros((path_length + 1, Do)) actions = np.zeros((path_length, Da)) terminals = np.zeros((path_length, )) rewards = np.zeros((path_length, )) agent_infos = [] env_infos = [] t = 0 for t in range(path_length): action, agent_info = policy.get_action(observation) next_obs, reward, terminal, env_info = env.step(action) agent_infos.append(agent_info) env_infos.append(env_info) actions[t] = action terminals[t] = terminal rewards[t] = reward observations[t] = observation observation = next_obs if render: env.render() time_step = 0.05 time.sleep(time_step / speedup) if terminal: break observations[t + 1] = observation path = { 'observations': observations[:t + 1], 'actions': actions[:t + 1], 'rewards': rewards[:t + 1], 'terminals': terminals[:t + 1], 'next_observations': observations[1:t + 2], 'agent_infos': agent_infos, 'env_infos': env_infos } return path def rollouts(env, policy, path_length, n_paths): paths = list() for i in range(n_paths): paths.append(rollout(env, policy, path_length)) return paths class Sampler(object): def __init__(self, max_path_length, min_pool_size, batch_size): self._max_path_length = max_path_length self._min_pool_size = min_pool_size self._batch_size = batch_size self.env = None self.policy = None self.pool = None def initialize(self, env, policy, pool): self.env = env self.policy = policy self.pool = pool def sample(self): raise NotImplementedError def batch_ready(self): enough_samples = self.pool.size >= self._min_pool_size return enough_samples def random_batch(self): return self.pool.random_batch(self._batch_size) def terminate(self): self.env.terminate() def log_diagnostics(self): logger.record_tabular('pool-size', self.pool.size) class SimpleSampler(Sampler): def __init__(self, **kwargs): super(SimpleSampler, self).__init__(**kwargs) self._path_length = 0 self._path_return = 0 self._last_path_return = 0 self._max_path_return = -np.inf self._n_episodes = 0 self._current_observation = None self._total_samples = 0 def sample(self): if self._current_observation is None: self._current_observation = self.env.reset() action, _ = self.policy.get_action(self._current_observation) next_observation, reward, terminal, info = self.env.step(action) self._path_length += 1 self._path_return += reward self._total_samples += 1 self.pool.add_sample( observation=self._current_observation, action=action, reward=reward, terminal=terminal, next_observation=next_observation) if terminal or self._path_length >= self._max_path_length: self.policy.reset() self._current_observation = self.env.reset() self._path_length = 0 self._max_path_return = max(self._max_path_return, self._path_return) self._last_path_return = self._path_return self._path_return = 0 self._n_episodes += 1 else: self._current_observation = next_observation def log_diagnostics(self): super(SimpleSampler, self).log_diagnostics() logger.record_tabular('max-path-return', self._max_path_return) logger.record_tabular('last-path-return', self._last_path_return) logger.record_tabular('episodes', self._n_episodes) logger.record_tabular('total-samples', self._total_samples) class DummySampler(Sampler): def __init__(self, batch_size, max_path_length): super(DummySampler, self).__init__( max_path_length=max_path_length, min_pool_size=0, batch_size=batch_size) def sample(self): pass
the-stack_0_14913
import os from flask import Flask, request, abort, jsonify, json from flask_sqlalchemy import SQLAlchemy from sqlalchemy import exc from flask_cors import CORS import random from flask_migrate import Migrate from models import setup_db, Movies, Actors, db from auth.auth import AuthError, requires_auth def create_app(test_config=None): # create and configure the app app = Flask(__name__) setup_db(app) CORS(app, resources={r'/*': {'origins': '*'}}) migrate = Migrate(app, db) # CORS Headers @app.after_request def after_request(response): response.headers.add('Access-Control-Allow-Headers', 'Content-Type\ ,Authorization, true') response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST\ ,DELETE, OPTIONS') return response def get_all_movies(): movies = [] all_movies = Movies.query.all() for movie in all_movies: movies.append(movie.format()) return movies def get_all_actors(): actors = [] all_actors = Actors.query.all() for actor in all_actors: actors.append(actor.format()) return actors # Error Handler @app.errorhandler(401) def bad_request(error): """ :error handler for error 400 :param error: Unauthorized :return: error: HTTP status code, message: Error description """ return jsonify({ 'success': False, 'error': 401, 'message': ' Unauthorized ' + str(error) }), 401 @app.errorhandler(404) def not_found(error): return jsonify({ 'success': False, 'error': 404, 'message': 'Not Found' }), 404 @app.errorhandler(500) def not_found(error): return jsonify({ 'success': False, 'error': 500, 'message': 'Token Expired or Internal Server error' }), 500 @app.errorhandler(422) def unprocessable_entity(error): return jsonify({ 'success': False, 'error': 422, 'message': 'Unprocessable Entity' }) @app.route('/') def get_greeting(): excited = os.environ['EXCITED'] greeting = "Hello,Your are in public Land" if excited == 'true': greeting = greeting + "!!!!!" return greeting @app.route('/actors', methods=['GET']) @requires_auth('get:actors') def getactors(payload): formated_actors = [] all_actors = Actors.query.all() for actor in all_actors: formated_actors.append(actor.format()) return jsonify({ 'actors': formated_actors, 'total_actors': len(formated_actors), 'success': True }) @app.route('/actors', methods=['GET', 'POST']) @requires_auth('add:actors') def add_actors(payload): if request.get_json().get('actor_age'): body = request.get_json() actor_age = body.get('actor_age') actor_gender = body.get('actor_gender') actor_name = body.get('actor_name') actor = Actors(name=actor_name, age=actor_age, gender=actor_gender) actor.insert() actor_id = actor.id actor_added = Actors.query.filter_by(id=actor_id).first() return jsonify({ 'success': True, 'added_actors': actor_added.format() }) @app.route('/movies', methods=['GET']) @requires_auth('get:movies') def movies_get(payload): formated_movies = [] dictionarize = {} all_movies_with_actor_name = Movies.query.with_entities(Movies.id, Movies.title, Movies. release_date, Actors.name).join(Actors, (Movies.actor_id == Actors.id)).all() for movies in all_movies_with_actor_name: dictionarize['id'] = movies[0] dictionarize['movie_name'] = movies[1] dictionarize['release_date'] = movies[2] dictionarize['actor_name'] = movies[3] formated_movies.append(dict(dictionarize)) return jsonify({ 'movies': formated_movies, 'total_movies': len(formated_movies), 'success': True }) @app.route('/movies', methods=['GET', 'POST']) @requires_auth('add:movies') def movies(payload): if request.get_json().get('movie_name'): body = request.get_json() movie_name = body.get('movie_name') release_date = body.get('release_date') id_actor = body.get('actor_id') movie = Movies(title=movie_name, release_date=release_date, actor_id=id_actor) movie.insert() movie_id = movie.id movie_added = Movies.query.filter_by(id=movie_id).first() return jsonify({ 'success': True, 'added_movie': movie_added.format() }) @app.route('/movies/<int:movie_id>', methods=['PATCH']) @requires_auth('patch:movies') def update_movie_by_id(payload, movie_id): movie_by_id = Movies.query.filter_by(id=movie_id).first() if movie_by_id is None: abort(404) try: if request.get_json().get('new_movie_name') and request.get_json()\ .get('new_release_date'): body = request.get_json() new_title = body.get('new_movie_name') new_release_date = body.get('new_release_date') movie_by_id.title = new_title movie_by_id.release_date = new_release_date except ValueError: try: if request.get_json().get('new_movie_name'): body = request.get_json() new_title = body.get('new_movie_name') movie_by_id.title = new_title except ValueError: try: if request.get_json().get('new_release_date'): body = request.get_json() new_release_date = body.get('new_release_date') movie_by_id.release_date = new_release_date except ValueError: abort(404) movie_by_id.update() all_movies = get_all_movies() return jsonify({ 'success': True, 'all_movies': all_movies }) @app.route('/actors/<int:actor_id>', methods=['PATCH']) @requires_auth('patch:actors') def update_actor_by_id(payload, actor_id): actor_by_id = Actors.query.filter_by(id=actor_id).first() if actor_by_id is None: abort(404) try: if request.get_json().get('new_actor_name') and request.get_json()\ .get('new_actor_age'): body = request.get_json() new_actor_name = body.get('new_actor_name') new_actor_age = body.get('new_actor_age') actor_by_id.name = new_actor_name actor_by_id.age = new_actor_age except ValueError: try: if request.get_json().get('new_actor_name'): body = request.get_json() new_actor_name = body.get('new_actor_name') actor_by_id.name = new_actor_name except ValueError: try: if request.get_json().get('new_actor_age'): body = request.get_json() new_actor_name = body.get('new_actor_age') actor_by_id.age = new_actor_age except ValueError: abort(404) actor_by_id.update() all_actors = get_all_actors() return jsonify({ 'success': True, 'all_actors': all_actors }) @app.route('/movies/<int:movie_id>', methods=['DELETE']) @requires_auth('delete:movies') def delete_movie_by_id(payload, movie_id): movie_by_id = Movies.query.filter_by(id=movie_id).first() if movie_by_id is None: abort(404) movie_by_id.delete() return jsonify({ 'success': True, 'deleted': movie_id }) @app.route('/actors/<int:actor_id>', methods=['DELETE']) @requires_auth('delete:actors') def delete_actor_by_id(payload, actor_id): actor_by_id = Actors.query.filter_by(id=actor_id).first() if actor_by_id is None: abort(404) try: actor_by_id.delete() except exc.IntegrityError: abort(404) return jsonify({ 'success': True, 'deleted': actor_id }) return app app = create_app() if __name__ == '__main__': app.run()
the-stack_0_14915
import os import pytest from pyinsights.cli import run CONFIG_FILEPATH_FOR_TEST = os.getenv('CONFIG_FILEPATH_FOR_TEST') PROFILE_FOR_TEST = os.getenv('PROFILE_FOR_TEST') REGION_FOR_TEST = os.getenv('REGION_FOR_TEST') @pytest.mark.skipif( CONFIG_FILEPATH_FOR_TEST is None, reason='Use AWS Resource' ) class TestPyInsights: @pytest.fixture() def kwargs(self): return { 'profile': PROFILE_FOR_TEST, 'region': REGION_FOR_TEST, 'config': CONFIG_FILEPATH_FOR_TEST } def test_valid_kwargs_with_json_format(self, kwargs): kwargs['format'] = 'json' result = run(kwargs) assert result is True def test_valid_kwargs_with_table_format(self, kwargs): kwargs['format'] = 'table' result = run(kwargs) assert result is True
the-stack_0_14916
"""EESG.py Created by Latha Sethuraman, Katherine Dykes. Copyright (c) NREL. All rights reserved. Electromagnetic design based on conventional magnetic circuit laws Structural design based on McDonald's thesis """ from openmdao.api import Group, Problem, ExplicitComponent,ExecComp,IndepVarComp,ScipyOptimizeDriver import numpy as np from math import pi, cos, sqrt, radians, sin, exp, log10, log, tan, atan import sys, os class EESG(ExplicitComponent): """ Estimates overall mass dimensions and Efficiency of Electrically Excited Synchronous generator. """ def setup(self): # EESG generator design inputs #self.add_input('r_s', val=0.0, units ='m', desc='airgap radius r_s') self.add_input('rad_ag', val=0.0, units ='m', desc='airgap radius') self.add_input('l_s', val=0.0, units ='m', desc='Stator core length l_s') self.add_input('h_s', val=0.0, units ='m', desc='Yoke height h_s') self.add_input('tau_p',val=0.0, units ='m', desc='Pole pitch self.tau_p') self.add_input('machine_rating',val=0.0, units ='W', desc='Machine rating') self.add_input('n_nom',val=0.0, units ='rpm', desc='rated speed') self.add_input('Torque',val=0.0, units ='N*m', desc='Rated torque ') self.add_input('I_f',val=0.0000,units='A',desc='Excitation current') self.add_input('N_f',val=0.0,units='A',desc='field turns') self.add_input('h_ys',val=0.0, units ='m', desc='Yoke height') self.add_input('h_yr',val=0.0, units ='m', desc='rotor yoke height') # structural design variables self.add_input('n_s' ,val=0.0, desc='number of stator arms n_s') self.add_input('b_st' , val=0.0, units ='m', desc='arm width b_st') self.add_input('d_s',val=0.0,units ='m', desc='arm depth d_s') self.add_input('t_ws' ,val=0.0,units ='m', desc='arm depth thickness self.t_wr') self.add_input('n_r' ,val=0.0, desc='number of arms n') self.add_input('b_r' ,val=0.0,units ='m', desc='arm width b_r') self.add_input('d_r' ,val=0.0, units ='m', desc='arm depth d_r') self.add_input('t_wr' ,val=0.0, units ='m', desc='arm depth thickness self.t_wr') self.add_input('R_o',val=0.0, units ='m',desc='Shaft radius') # EESG generator design outputs # Magnetic loading self.add_output('B_symax' ,val=0.0, desc='Peak Stator Yoke flux density B_ymax') self.add_output('B_tmax',val=0.0, desc='Peak Teeth flux density') self.add_output('B_rymax',val=0.0, desc='Peak Rotor yoke flux density') self.add_output('B_gfm',val=0.0, desc='Average air gap flux density B_g') self.add_output('B_g' ,val=0.0, desc='Peak air gap flux density B_g') self.add_output('B_pc',val=0.0, desc='Pole core flux density') # Stator design self.add_output('N_s' ,val=0.0, desc='Number of turns in the stator winding') self.add_output('b_s',val=0.0, desc='slot width') self.add_output('b_t',val=0.0, desc='tooth width') self.add_output('A_Cuscalc',val=0.0, desc='Conductor cross-section mm^2') self.add_output('S',val=0.0, desc='Stator slots') # # Output parameters : Rotor design self.add_output('h_p',val=0.0, desc='Pole height') self.add_output('b_p',val=0.0, desc='Pole width') self.add_output('p',val=0.0, desc='No of pole pairs') self.add_output('n_brushes',val=0.0, desc='number of brushes') self.add_output('A_Curcalc',val=0.0, desc='Rotor Conductor cross-section') # Output parameters : Electrical performance self.add_output('E_s',val=0.0, desc='Stator phase voltage') self.add_output('f',val=0.0, desc='Generator output frequency') self.add_output('I_s',val=0.0, desc='Generator output phase current') self.add_output('R_s',val=0.0, desc='Stator resistance') self.add_output('R_r',val=0.0, desc='Rotor resistance') self.add_output('L_m',val=0.0, desc='Stator synchronising inductance') self.add_output('J_s',val=0.0, desc='Stator Current density') self.add_output('J_f',val=0.0, desc='rotor Current density') self.add_output('A_1',val=0.0, desc='Specific current loading') self.add_output('Load_mmf_ratio',val=0.0, desc='mmf_ratio') # Objective functions and output self.add_output('Mass',val=0.0, desc='Actual mass') self.add_output('K_rad',val=0.0, desc='K_rad') self.add_output('Losses',val=0.0, desc='Total loss') self.add_output('gen_eff',val=0.0, desc='Generator efficiency') # Structural performance self.add_output('u_Ar',val=0.0, desc='Rotor radial deflection') self.add_output('y_Ar',val=0.0, desc='Rotor axial deflection') self.add_output('z_A_r',val=0.0, desc='Rotor circumferential deflection') self.add_output('u_As',val=0.0, desc='Stator radial deflection') self.add_output('y_As',val=0.0, desc='Stator axial deflection') self.add_output('z_A_s',val=0.0, desc='Stator circumferential deflection') self.add_output('u_all_r',val=0.0, desc='Allowable radial rotor') self.add_output('u_all_s',val=0.0, desc='Allowable radial stator') self.add_output('y_all',val=0.0, desc='Allowable axial') self.add_output('z_all_s',val=0.0, desc='Allowable circum stator') self.add_output('z_all_r',val=0.0, desc='Allowable circum rotor') self.add_output('b_all_s',val=0.0, desc='Allowable arm') self.add_output('b_all_r',val=0.0, desc='Allowable arm dimensions') self.add_output('TC1',val=0.0, desc='Torque constraint') self.add_output('TC2',val=0.0, desc='Torque constraint-rotor') self.add_output('TC3',val=0.0, desc='Torque constraint-stator') # Material properties self.add_input('rho_Fes',val=0.0,units='kg*m**-3', desc='Structural Steel density ') self.add_input('rho_Fe',val=0.0,units='kg*m**-3', desc='Magnetic Steel density ') self.add_input('rho_Copper',val=0.0,units='kg*m**-3', desc='Copper density ') # Mass Outputs self.add_output('Copper', val=0.0, units='kg', desc='Copper Mass') self.add_output('Iron', val=0.0, units='kg', desc='Electrical Steel Mass') self.add_output('Structural_mass', val=0.0, units='kg', desc='Structural Mass') # Other parameters self.add_output('Power_ratio',val=0.0, desc='Power_ratio') self.add_output('Slot_aspect_ratio',val=0.0,desc='Stator slot aspect ratio') self.add_output('R_out',val=0.0, desc='Outer radius') # inputs/outputs for interface with drivese self.add_input('shaft_cm',val= np.zeros(3), units='m', desc='Main Shaft CM') self.add_input('shaft_length',val=0.0, units='m', desc='main shaft length') self.add_output('I',val=np.zeros(3),desc='Moments of Inertia for the component [Ixx, Iyy, Izz] around its center of mass') self.add_output('cm', val=np.zeros(3),desc='COM [x,y,z]') #self.declare_partials('*', '*', method='fd', form='central', step=1e-6) def compute(self, inputs, outputs): # Unpack outputs rad_ag = inputs['rad_ag'] l_s = inputs['l_s'] h_s = inputs['h_s'] tau_p = inputs['tau_p'] N_f = inputs['N_f'] I_f = inputs['I_f'] h_ys = inputs['h_ys'] h_yr = inputs['h_yr'] machine_rating = inputs['machine_rating'] n_nom = inputs['n_nom'] Torque = inputs['Torque'] b_st = inputs['b_st'] d_s = inputs['d_s'] t_ws = inputs['t_ws'] n_r = inputs['n_r'] n_s = inputs['n_s'] b_r = inputs['b_r'] d_r = inputs['d_r'] t_wr = inputs['t_wr'] R_o = inputs['R_o'] rho_Fe = inputs['rho_Fe'] rho_Copper = inputs['rho_Copper'] rho_Fes = inputs['rho_Fes'] shaft_cm = inputs['shaft_cm'] shaft_length = inputs['shaft_length'] # Assign values to universal constants g1 = 9.81 # m / s^2 acceleration due to gravity E = 2e11 # N / m^2 young's modulus sigma = 48.373e3 # shear stress mu_0 = pi * 4e-7 # permeability of free space phi = radians(90) # Assign values to design constants h_w = 0.005 b_so = 0.004 # Stator slot opening m = 3 # number of phases q1 = 2 # no of stator slots per pole per phase b_s_tau_s = 0.45 # ratio of slot width to slot pitch k_sfil = 0.65 # Slot fill factor (not used) P_Fe0h = 4 # specific hysteresis losses W / kg @ 1.5 T @50 Hz P_Fe0e = 1 # specific eddy losses W / kg @ 1.5 T @50 Hz rho_Cu = 1.8e-8 * 1.4 # resisitivity of copper k_fes = 0.9 # iron fill factor (not used) y_tau_p = 1 # coil span / pole pitch fullpitch k_fillr = 0.7 # rotor slot fill factor k_s = 0.2 # magnetic saturation factor for iron T = Torque cos_phi = 0.85 # power factor # back iron thickness for rotor and stator t_s = h_ys t = h_yr # Aspect ratio K_rad = l_s / (2 * rad_ag) ###################################################### Electromagnetic design############################################# alpha_p = pi / 2 * .7 # (not used) dia = 2 * rad_ag # air gap diameter # air gap length and minimum values g = 0.001 * dia if(g < 0.005): g = 0.005 r_r = rad_ag - g # rotor radius d_se = dia + 2 * h_s + 2 * h_ys # stator outer diameter (not used) p = np.round(pi * dia / (2 * tau_p)) # number of pole pairs S = 2 * p*q1 * m # number of slots of stator phase winding N_conductors = S * 2 N_s = N_conductors / 2/3 # Stator turns per phase alpha = 180 / S/p # electrical angle (not used) tau_s = pi * dia / S # slot pitch h_ps = 0.1 * tau_p # height of pole shoe b_pc = 0.4 * tau_p # width of pole core h_pc = 0.6 * tau_p # height of pole core h_p = 0.7 * tau_p # pole height b_p = h_p b_s = tau_s * b_s_tau_s # slot width Slot_aspect_ratio = h_s / b_s b_t = tau_s - b_s # tooth width # Calculating carter factor and effective air gap g_a = g K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor g_1 = K_C1 * g # calculating angular frequency om_m = 2 * pi * n_nom / 60 om_e = 60 f = n_nom * p / 60 # Slot fill factor according to air gap radius if (2 * rad_ag>2): K_fills = 0.65 else: K_fills = 0.4 # Calculating Stator winding factor k_y1 = sin(y_tau_p * pi / 2) # chording factor k_q1 = sin(pi / 6) / q1 / sin(pi / 6 / q1) # winding zone factor k_wd = k_y1 * k_q1 # Calculating stator winding conductor length, cross-section and resistance shortpitch = 0 l_Cus = 2 * N_s * (2 * (tau_p - shortpitch / m/q1) + l_s) # length of winding A_s = b_s * (h_s - h_w) A_scalc = b_s * 1000 * (h_s - h_w) * 1000 # cross section in mm^2 A_Cus = A_s * q1 * p * K_fills / N_s A_Cuscalc = A_scalc * q1 * p * K_fills / N_s R_s = l_Cus * rho_Cu / A_Cus # field winding design, conductor lenght, cross-section and resistance N_f = np.round(N_f) # rounding the field winding turns to the nearest integer I_srated = machine_rating / (sqrt(3) * 5000 * cos_phi) l_pole = l_s - 0.05 + 0.120 # 50mm smaller than stator and 120mm longer to accommodate end stack K_fe = 0.95 l_pfe = l_pole * K_fe l_Cur = 4 * p*N_f * (l_pfe + b_pc + pi / 4 * (pi * (r_r - h_pc - h_ps) / p - b_pc)) A_Cur = k_fillr * h_pc * 0.5 / N_f * (pi * (r_r - h_pc - h_ps) / p - b_pc) A_Curcalc = k_fillr * h_pc * 1000 * 0.5 / N_f * (pi * (r_r - h_pc - h_ps) * 1000 / p - b_pc * 1000) Slot_Area = A_Cur * 2 * N_f / k_fillr # (not used) R_r = rho_Cu * l_Cur / A_Cur # field winding current density J_f = I_f / A_Curcalc # calculating air flux density B_gfm = mu_0 * N_f * I_f / (g_1 * (1 + k_s)) # No load air gap flux density B_g = B_gfm * 4*sin(0.5 * b_p * pi / tau_p) / pi # fundamental component B_symax = tau_p * B_g / pi / h_ys # stator yoke flux density L_fg = 2 * mu_0 * p*l_s * 4*N_f**2 * ((h_ps / (tau_p - b_p)) + (h_pc / (3 * pi * (r_r - h_pc - h_ps) / p - b_pc))) # (not used) # calculating no-load voltage and stator current E_s = 2 * N_s * l_s * rad_ag * k_wd * om_m * B_g / sqrt(2) # no-load voltage I_s = (E_s - (E_s**2 - 4 * R_s * machine_rating / m)**0.5) / (2 * R_s) # Calculating stator winding current density and specific current loading A_1 = 6 * N_s * I_s / (pi * dia) J_s = I_s / A_Cuscalc # Calculating magnetic loading in other parts of the machine delta_m = 0 # Initialising load angle # peak flux density in pole core, rotor yoke and stator teeth B_pc = (1 / b_pc) * ((2 * tau_p / pi) * B_g * cos(delta_m) + (2 * mu_0 * I_f * N_f * ((2 * h_ps / (tau_p - b_p)) + (h_pc / (tau_p - b_pc))))) B_rymax = 0.5 * b_pc * B_pc / h_yr B_tmax = (B_gfm + B_g) * tau_s * 0.5 / b_t # Calculating leakage inductances in the stator L_ssigmas = 2 * mu_0 * l_s * N_s**2 / p / q1 * ((h_s - h_w) / (3 * b_s) + h_w / b_so) # slot leakage inductance L_ssigmaew = mu_0 * 1.2 * N_s**2 / p * 1.2 * (2 / 3 * tau_p + 0.01) # end winding leakage inductance L_ssigmag = 2 * mu_0 * l_s * N_s**2 / p / q1 * (5 * (g / b_so) / (5 + 4 * (g / b_so))) # tooth tip leakage inductance L_ssigma = (L_ssigmas + L_ssigmaew + L_ssigmag) # stator leakage inductance # Calculating effective air gap ''' What is the source of this function that combines 1st and 13th powers? Very suspicious... Inputs appear to be in the range of 0.45 to 2.2, so outputs are 180 to 178000 def airGapFn(B, fact): val = 400 * B + 7 * B**13 ans = val * fact sys.stderr.write('aGF: B {} val {} ans {}\n'.format(B, val, ans)) return val At_t = h_s * airGapFn(B_tmax, h_s) At_sy = tau_p * 0.5 * airGapFn(B_symax, tau_p/2) At_pc = (h_pc + h_ps) * airGapFn(B_pc, h_pc + h_ps) At_ry = tau_p * 0.5 * airGapFn(B_rymax, tau_p/2) ''' At_g = g_1 * B_gfm / mu_0 At_t = h_s * (400 * B_tmax + 7 * B_tmax**13) At_sy = tau_p * 0.5 * (400 * B_symax + 7 * B_symax**13) At_pc = (h_pc + h_ps) * (400 * B_pc + 7 * B_pc**13) At_ry = tau_p * 0.5 * (400 * B_rymax + 7 * B_rymax**13) g_eff = (At_g + At_t + At_sy + At_pc + At_ry) * g_1 / At_g L_m = 6 * k_wd**2 * N_s**2 * mu_0 * rad_ag * l_s / pi / g_eff / p**2 B_r1 = (mu_0 * I_f * N_f * 4 * sin(0.5 * (b_p / tau_p) * pi)) / g_eff / pi # (not used) # Calculating direct axis and quadrature axes inductances L_dm = (b_p / tau_p +(1 / pi) * sin(pi * b_p / tau_p)) * L_m L_qm = (b_p / tau_p -(1 / pi) * sin(pi * b_p / tau_p) + 2 / (3 * pi) * cos(b_p * pi / 2 * tau_p)) * L_m # Calculating actual load angle delta_m = (atan(om_e * L_qm * I_s / E_s)) L_d = L_dm + L_ssigma # (not used) L_q = L_qm + L_ssigma # (not used) I_sd = I_s * sin(delta_m) I_sq = I_s * cos(delta_m) # induced voltage E_p = om_e * L_dm * I_sd + sqrt(E_s**2 - (om_e * L_qm * I_sq)**2) # (not used) # M_sf = mu_0 * 8*rad_ag * l_s * k_wd * N_s * N_f * sin(0.5 * b_p / tau_p * pi) / (p * g_eff * pi) # I_f1 = sqrt(2) * (E_p) / (om_e * M_sf) # I_f2 = (E_p / E_s) * B_g * g_eff * pi / (4 * N_f * mu_0 * sin(pi * b_p / 2/tau_p)) # phi_max_stator = k_wd * N_s * pi * rad_ag * l_s * 2*mu_0 * N_f * I_f * 4*sin(0.5 * b_p / tau_p / pi) / (p * pi * g_eff * pi) # M_sf = mu_0 * 8*rad_ag * l_s * k_wd * N_s * N_f * sin(0.5 * b_p / tau_p / pi) / (p * g_eff * pi) L_tot = l_s + 2 * tau_p # Excitation power V_fn = 500 Power_excitation = V_fn * 2*I_f # total rated power in excitation winding Power_ratio = Power_excitation * 100 / machine_rating # Calculating Electromagnetically Active mass L_tot = l_s + 2 * tau_p # (not used) V_Cuss = m * l_Cus * A_Cus # volume of copper in stator V_Cusr = l_Cur * A_Cur # volume of copper in rotor V_Fest = (l_s * pi * ((rad_ag + h_s)**2 - rad_ag**2) - 2 * m*q1 * p*b_s * h_s * l_s) # volume of iron in stator tooth V_Fesy = l_s * pi * ((rad_ag + h_s + h_ys)**2 - (rad_ag + h_s)**2) # volume of iron in stator yoke V_Fert = 2 * p*l_pfe * (h_pc * b_pc + b_p * h_ps) # volume of iron in rotor pole V_Fery = l_pfe * pi * ((r_r - h_ps - h_pc)**2 - (r_r - h_ps - h_pc - h_yr)**2) # volume of iron in rotor yoke Copper = (V_Cuss + V_Cusr) * rho_Copper M_Fest = V_Fest * rho_Fe M_Fesy = V_Fesy * rho_Fe M_Fert = V_Fert * rho_Fe M_Fery = V_Fery * rho_Fe Iron = M_Fest + M_Fesy + M_Fert + M_Fery I_snom = machine_rating / (3 * E_s * cos_phi) ## Optional## Calculating mmf ratio F_1no_load = 3 * 2**0.5 * N_s * k_wd * I_s / (pi * p) # (not used) Nf_If_no_load = N_f * I_f F_1_rated = (3 * 2**0.5 * N_s * k_wd * I_srated) / (pi * p) Nf_If_rated = 2 * Nf_If_no_load Load_mmf_ratio = Nf_If_rated / F_1_rated ## Calculating losses #1. Copper losses K_R = 1.2 P_Cuss = m * I_snom**2 * R_s * K_R P_Cusr = I_f**2 * R_r P_Cusnom_total = P_Cuss + P_Cusr #2. Iron losses ( Hysteresis and Eddy currents) P_Hyys = M_Fesy * (B_symax / 1.5)**2 * (P_Fe0h * om_e / (2 * pi * 60)) # Hysteresis losses in stator yoke P_Ftys = M_Fesy * (B_symax / 1.5)**2 * (P_Fe0e * (om_e / (2 * pi * 60))**2) # Eddy losses in stator yoke P_Fesynom = P_Hyys + P_Ftys P_Hyd = M_Fest * (B_tmax / 1.5)**2 * (P_Fe0h * om_e / (2 * pi * 60)) # Hysteresis losses in stator teeth P_Ftd = M_Fest * (B_tmax / 1.5)**2 * (P_Fe0e * (om_e / (2 * pi * 60))**2) # Eddy losses in stator teeth P_Festnom = P_Hyd + P_Ftd # brushes delta_v = 1 n_brushes = (I_f * 2 / 120) if (n_brushes<0.5): n_brushes = 1 else: n_brushes = np.round(n_brushes) #3. brush losses p_b = 2 * delta_v * (I_f) Losses = P_Cusnom_total + P_Festnom + P_Fesynom + p_b gen_eff = machine_rating * 100 / (Losses + machine_rating) ################################################## Structural Design ######################################################## ## Structural deflection calculations # rotor structure q3 = B_g**2 / 2/mu_0 # normal component of Maxwell's stress #l = l_s # l - stator core length - now using l_s everywhere l_b = 2 * tau_p # end winding length # (not used) l_e = l_s + 2 * 0.001 * rad_ag # equivalent core length # (not used) a_r = (b_r * d_r) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr)) # cross-sectional area of rotor armms A_r = l_s * t # cross-sectional area of rotor cylinder N_r = np.round(n_r) theta_r = pi / N_r # half angle between spokes I_r = l_s * t**3 / 12 # second moment of area of rotor cylinder I_arm_axi_r = ((b_r * d_r**3) - ((b_r - 2 * t_wr) * (d_r - 2 * t_wr)**3)) / 12 # second moment of area of rotor arm I_arm_tor_r = ((d_r * b_r**3) - ((d_r - 2 * t_wr) * (b_r - 2 * t_wr)**3)) / 12 # second moment of area of rotot arm w.r.t torsion R = r_r - h_ps - h_pc - 0.5 * h_yr R_1 = R - h_yr * 0.5 # inner radius of rotor cylinder k_1 = sqrt(I_r / A_r) # radius of gyration m1 = (k_1 / R)**2 c = R / 500 # (not used) u_all_r = R / 10000 # allowable radial deflection b_all_r = 2 * pi * R_o / N_r # allowable circumferential arm dimension # Calculating radial deflection of rotor structure according to Mc Donald's Numer = R**3 * ((0.25 * (sin(theta_r) - (theta_r * cos(theta_r))) / (sin(theta_r))**2) - (0.5 / sin(theta_r)) + (0.5 / theta_r)) Pov = ((theta_r / (sin(theta_r))**2) + 1 / tan(theta_r)) * ((0.25 * R / A_r) + (0.25 * R**3 / I_r)) Qov = R**3 / (2 * I_r * theta_r * (m1 + 1)) Lov = (R_1 - R_o) / a_r Denom = I_r * (Pov - Qov + Lov) # radial deflection % rotor u_Ar = (q3 * R**2 / E / h_yr) * (1 + Numer / Denom) # Calculating axial deflection of rotor structure w_r = rho_Fes * g1 * sin(phi) * a_r * N_r mass_st_lam = rho_Fe * 2*pi * (R + 0.5 * h_yr) * l_s * h_yr # mass of rotor yoke steel W = g1 * sin(phi) * (mass_st_lam + (V_Cusr * rho_Copper) + M_Fert) / N_r # weight of rotor cylinder l_ir = R # length of rotor arm beam at which rotor cylinder acts l_iir = R_1 y_Ar = (W * l_ir**3 / 12 / E / I_arm_axi_r) + (w_r * l_iir**4 / 24 / E / I_arm_axi_r) # axial deflection # Calculating torsional deflection of rotor structure z_all_r = radians(0.05 * R) # allowable torsional deflection z_A_r = (2 * pi * (R - 0.5 * h_yr) * l_s / N_r) * sigma * (l_ir - 0.5 * h_yr)**3 / 3 / E / I_arm_tor_r # circumferential deflection # STATOR structure A_st = l_s * t_s a_s = (b_st * d_s) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)) N_st = np.round(n_s) theta_s = pi / N_st I_st = l_s * t_s**3 / 12 I_arm_axi_s = ((b_st * d_s**3) - ((b_st - 2 * t_ws) * (d_s - 2 * t_ws)**3)) / 12 # second moment of area of stator arm I_arm_tor_s = ((d_s * b_st**3) - ((d_s - 2 * t_ws) * (b_st - 2 * t_ws)**3)) / 12 # second moment of area of rotot arm w.r.t torsion R_st = rad_ag + h_s + h_ys * 0.5 R_1s = R_st - h_ys * 0.5 k_2 = sqrt(I_st / A_st) m2 = (k_2 / R_st)**2 # allowable deflections b_all_s = 2 * pi * R_o / N_st u_all_s = R_st / 10000 y_all = 2 * l_s / 100 # allowable axial deflection z_all_s = radians(0.05 * R_st) # allowable torsional deflection # Calculating radial deflection according to McDonald's Numers = R_st**3 * ((0.25 * (sin(theta_s) - (theta_s * cos(theta_s))) / (sin(theta_s))**2) - (0.5 / sin(theta_s)) + (0.5 / theta_s)) Povs = ((theta_s / (sin(theta_s))**2) + 1 / tan(theta_s)) * ((0.25 * R_st / A_st) + (0.25 * R_st**3 / I_st)) Qovs = R_st**3 / (2 * I_st * theta_s * (m2 + 1)) Lovs = (R_1s - R_o) * 0.5 / a_s Denoms = I_st * (Povs - Qovs + Lovs) R_out = (R / 0.995 + h_s + h_ys) u_As = (q3 * R_st**2 / E / t_s) * (1 + Numers / Denoms) # Calculating axial deflection according to McDonald l_is = R_st - R_o l_iis = l_is l_iiis = l_is # length of rotor arm beam at which self-weight acts mass_st_lam_s = M_Fest + pi * l_s * rho_Fe * ((R_st + 0.5 * h_ys)**2 - (R_st - 0.5 * h_ys)**2) W_is = g1 * sin(phi) * (rho_Fes * l_s * d_s**2 * 0.5) # weight of rotor cylinder W_iis = g1 * sin(phi) * (V_Cuss * rho_Copper + mass_st_lam_s) / 2/N_st w_s = rho_Fes * g1 * sin(phi) * a_s * N_st X_comp1 = W_is * l_is**3 / 12 / E / I_arm_axi_s X_comp2 = W_iis * l_iis**4 / 24 / E / I_arm_axi_s X_comp3 = w_s * l_iiis**4 / 24 / E / I_arm_axi_s y_As = X_comp1 + X_comp2 + X_comp3 # axial deflection # Calculating torsional deflection z_A_s = 2 * pi * (R_st + 0.5 * t_s) * l_s / (2 * N_st) * sigma * (l_is + 0.5 * t_s)**3 / 3 / E / I_arm_tor_s # tangential stress constraints TC1 = T / (2 * pi * sigma) TC2 = R**2 * l_s TC3 = R_st**2 * l_s mass_stru_steel = 2 * (N_st * (R_1s - R_o) * a_s * rho_Fes) # Calculating inactive mass and total mass Structural_mass = mass_stru_steel + (N_r * (R_1 - R_o) * a_r * rho_Fes) Mass = Copper + Iron + Structural_mass I = np.zeros(3) # Calculating mass moments of inertia and center of mass I[0] = (0.50 * Mass*R_out**2) I[1] = (0.25 * Mass*R_out**2 + Mass * l_s**2 / 12) I[2] = I[1] cm = np.zeros(3) cm[0] = shaft_cm[0] + shaft_length / 2. + l_s / 2 cm[1] = shaft_cm[1] cm[2] = shaft_cm[2] outputs['B_symax'] = B_symax outputs['B_tmax'] = B_tmax outputs['B_rymax'] = B_rymax outputs['B_gfm'] = B_gfm outputs['B_g'] = B_g outputs['B_pc'] = B_pc outputs['N_s'] = N_s outputs['b_s'] = b_s outputs['b_t'] = b_t outputs['A_Cuscalc'] = A_Cuscalc outputs['A_Curcalc'] = A_Curcalc outputs['b_p'] = b_p outputs['h_p'] = h_p outputs['p'] = p outputs['E_s'] = E_s outputs['f'] = f outputs['I_s'] = I_s outputs['R_s'] = R_s outputs['L_m'] = L_m outputs['A_1'] = A_1 outputs['J_s'] = J_s outputs['R_r'] = R_r outputs['Losses'] = Losses outputs['Load_mmf_ratio'] = Load_mmf_ratio outputs['Power_ratio'] = Power_ratio outputs['n_brushes'] = n_brushes outputs['J_f'] = J_f outputs['K_rad'] = K_rad outputs['gen_eff'] = gen_eff outputs['S'] = S outputs['Slot_aspect_ratio'] = Slot_aspect_ratio outputs['Copper'] = Copper outputs['Iron'] = Iron outputs['u_Ar'] = u_Ar outputs['y_Ar'] = y_Ar outputs['z_A_r'] = z_A_r outputs['u_As'] = u_As outputs['y_As'] = y_As outputs['z_A_s'] = z_A_s outputs['u_all_r'] = u_all_r outputs['u_all_s'] = u_all_s outputs['y_all'] = y_all outputs['z_all_s'] = z_all_s outputs['z_all_r'] = z_all_r outputs['b_all_s'] = b_all_s outputs['b_all_r'] = b_all_r outputs['TC1'] = TC1 outputs['TC2'] = TC2 outputs['TC3'] = TC3 outputs['R_out'] = R_out outputs['Structural_mass'] = Structural_mass outputs['Mass'] = Mass outputs['cm'] = cm outputs['I'] = I
the-stack_0_14917
from jinja2 import Environment, PackageLoader templates = { 'drawing': 'drawing.xml', 'hyperlink': 'hyperlink.xml', 'insert': 'insert.xml', 'main': 'base.xml', 'p': 'p.xml', 'pict': 'pict.xml', 'r': 'r.xml', 'sectPr': 'sectPr.xml', 'smartTag': 'smart_tag.xml', 'style': 'style.xml', 'styles': 'styles.xml', 'table': 'table.xml', 'tc': 'tc.xml', 'tr': 'tr.xml', } env = Environment( loader=PackageLoader( 'docx2html.tests', 'templates', ), ) class DocxBuilder(object): @classmethod def xml(self, body): template = env.get_template(templates['main']) return template.render(body=body) @classmethod def p_tag(self, text, bold=False): if isinstance(text, str): # Use create a single r tag based on the text and the bold run_tag = DocxBuilder.r_tag(text, bold) run_tags = [run_tag] elif isinstance(text, list): run_tags = text else: run_tags = [self.r_tag(None)] template = env.get_template(templates['p']) kwargs = { 'run_tags': run_tags, } return template.render(**kwargs) @classmethod def r_tag(self, text, is_bold=False, include_linebreak=False): template = env.get_template(templates['r']) kwargs = { 'include_linebreak': include_linebreak, 'text': text, 'is_bold': is_bold, } return template.render(**kwargs) @classmethod def hyperlink_tag(self, r_id, run_tags): template = env.get_template(templates['hyperlink']) kwargs = { 'r_id': r_id, 'run_tags': run_tags, } return template.render(**kwargs) @classmethod def insert_tag(self, run_tags): template = env.get_template(templates['insert']) kwargs = { 'run_tags': run_tags, } return template.render(**kwargs) @classmethod def smart_tag(self, run_tags): template = env.get_template(templates['smartTag']) kwargs = { 'run_tags': run_tags, } return template.render(**kwargs) @classmethod def li(self, text, ilvl, numId, bold=False): if isinstance(text, str): # Use create a single r tag based on the text and the bold run_tag = DocxBuilder.r_tag(text, bold) run_tags = [run_tag] elif isinstance(text, list): run_tags = [] for run_text, run_bold in text: run_tags.append(DocxBuilder.r_tag(run_tags, run_bold)) else: raise AssertionError('text must be a string or a list') template = env.get_template(templates['p']) kwargs = { 'run_tags': run_tags, 'is_list': True, 'ilvl': ilvl, 'numId': numId, } return template.render(**kwargs) @classmethod def table(self, num_rows, num_columns, text): def _tc(cell_value): template = env.get_template(templates['tc']) return template.render(p_tag=cell_value) def _tr(rows, text): tcs = [_tc(next(text)) for _ in range(rows)] template = env.get_template(templates['tr']) return template.render(table_cells=tcs) trs = [_tr(num_rows, text) for _ in range(num_rows)] template = env.get_template(templates['table']) return template.render(table_rows=trs) @classmethod def drawing(self, r_id): template = env.get_template(templates['drawing']) return template.render(r_id=r_id) @classmethod def pict(self, r_id=None): template = env.get_template(templates['pict']) return template.render(r_id=r_id) @classmethod def sectPr_tag(self, p_tag): template = env.get_template(templates['sectPr']) kwargs = { 'p_tag': p_tag, } return template.render(**kwargs) @classmethod def styles_xml(self, style_tags): template = env.get_template(templates['styles']) kwargs = { 'style_tags': style_tags, } return template.render(**kwargs) @classmethod def style(self, style_id, value): template = env.get_template(templates['style']) kwargs = { 'style_id': style_id, 'value': value, } return template.render(**kwargs)
the-stack_0_14919
from discord.ext import commands from cassiopeia import riotapi config: dict = {} def init(bot: commands.Bot, cfg: dict): global config config = cfg[__name__] riotapi.set_region(config["api_region"]) riotapi.set_api_key(config["api_key"]) from .trivia import LoLTrivia bot.add_cog(LoLTrivia(bot))
the-stack_0_14920
from JumpScale9Portal.portal import exceptions import re INT = r"""(?:[+-]?(?:[0-9]+))""" BASE10NUM = r"""(?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))""" NUMBER = r"""(?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))""" BASE16NUM = r"""(?<![0-9A-Fa-f])(?:[+-]?(?:0x)?(?:[0-9A-Fa-f]+))""" BASE16FLOAT = r"""\b(?<![0-9A-Fa-f.])(?:[+-]?(?:0x)?(?:(?:[0-9A-Fa-f]+(?:\.[0-9A-Fa-f]*)?)|(?:\.[0-9A-Fa-f]+)))\b""" POSINT = r"""\b(?:[1-9][0-9]*)\b""" NONNEGINT = r"""\b(?:[0-9]+)\b""" WORD = r"""\b\w+\b""" NOTSPACE = r"""\S+""" SPACE = r"""\s*""" DATA = r""".*?""" GREEDYDATA = r""".*""" QUOTEDSTRING = r"""(?>(?<!\\)(?>"(?>\\.|[^\\"]+)+"|""|(?>'(?>\\.|[^\\']+)+')|''|(?>`(?>\\.|[^\\`]+)+`)|``))""" UUID = r"""[A-Fa-f0-9]{8}-(?:[A-Fa-f0-9]{4}-){3}[A-Fa-f0-9]{12}""" def NAME(val): for i in r"""<>"'""": if i in val: raise exceptions.BadRequest('The name you entered contains invalid characters') if len(val) < 2: raise exceptions.BadRequest('The name cannot be shorter than two characters') return True def IP(val): return sum([x.isdigit() and 0 <= int(x) <= 255 for x in val.split('.')]) == 4 def PASSWORD(val): return 8 <= len(val) <= 60 def USERNAME(val): m = re.match("[a-zA-Z0-9._-]+(?:@[a-zA-Z0-9._-]+)?", val) if 2 < len(val.split('@')[0]) < 40 and m and m.end() == len(val): return True else: raise exceptions.BadRequest('Usernames can only contain alphanumeric characters, dots, dashes, underscores and should be between 2 and 40 characters') def GROUPNAME(val): m = re.match("[a-zA-Z0-9._-]+", val) if 2 < len(val) < 40 and m and m.end() == len(val): return True else: raise exceptions.BadRequest('Groupnames can only contain alphanumeric characters, dots, dashes, underscores and should be between 2 and 40 characters') def EMAIL(val): atpos = val.find('@') dotpos = val.find('.') if atpos == -1 or dotpos == -1: raise exceptions.BadRequest('Invalid Email Address given') elif dotpos < atpos: raise exceptions.BadRequest('Invalid Email Address given')
the-stack_0_14922
#!/usr/bin/env python # coding: utf-8 import logging import os from timeit import default_timer as timer import emmental import torch from emmental.data import EmmentalDataLoader from emmental.learner import EmmentalLearner from emmental.model import EmmentalModel from fonduer import Meta, init_logging from fonduer.candidates import CandidateExtractor, MentionExtractor, MentionFigures from fonduer.candidates.matchers import _Matcher from fonduer.candidates.models import Mention, candidate_subclass, mention_subclass from fonduer.parser.models import Document, Figure, Paragraph, Section, Sentence from PIL import Image from hack.circular_connectors.augment_policy import Augmentation from hack.circular_connectors.config import emmental_config from hack.circular_connectors.scheduler import DauphinScheduler from hack.circular_connectors.task import create_task from hack.circular_connectors.thumbnail_dataset import ThumbnailDataset from hack.utils import parse_dataset # Configure logging for Fonduer logger = logging.getLogger(__name__) TRUE = 1 FALSE = 0 torch.backends.cudnn.deterministic = True # type: ignore torch.backends.cudnn.benchmark = False # type: ignore def main( conn_string, max_docs=float("inf"), parse=False, first_time=False, gpu=None, parallel=4, log_dir=None, verbose=False, ): if not log_dir: log_dir = "logs" if verbose: level = logging.INFO else: level = logging.WARNING dirname = os.path.dirname(os.path.abspath(__file__)) init_logging(log_dir=os.path.join(dirname, log_dir), level=level) session = Meta.init(conn_string).Session() # Parsing logger.info(f"Starting parsing...") start = timer() docs, train_docs, dev_docs, test_docs = parse_dataset( session, dirname, first_time=first_time, parallel=parallel, max_docs=max_docs ) end = timer() logger.warning(f"Parse Time (min): {((end - start) / 60.0):.1f}") logger.info(f"# of train Documents: {len(train_docs)}") logger.info(f"# of dev Documents: {len(dev_docs)}") logger.info(f"# of test Documents: {len(test_docs)}") logger.info(f"Documents: {session.query(Document).count()}") logger.info(f"Sections: {session.query(Section).count()}") logger.info(f"Paragraphs: {session.query(Paragraph).count()}") logger.info(f"Sentences: {session.query(Sentence).count()}") logger.info(f"Figures: {session.query(Figure).count()}") start = timer() Thumbnails = mention_subclass("Thumbnails") thumbnails_img = MentionFigures() class HasFigures(_Matcher): def _f(self, m): file_path = "" for prefix in [ f"{dirname}/data/train/html/", f"{dirname}/data/dev/html/", f"{dirname}/data/test/html/", ]: if os.path.exists(prefix + m.figure.url): file_path = prefix + m.figure.url if file_path == "": return False img = Image.open(file_path) width, height = img.size min_value = min(width, height) return min_value > 50 mention_extractor = MentionExtractor( session, [Thumbnails], [thumbnails_img], [HasFigures()], parallelism=parallel ) if first_time: mention_extractor.apply(docs) logger.info("Total Mentions: {}".format(session.query(Mention).count())) ThumbnailLabel = candidate_subclass("ThumbnailLabel", [Thumbnails]) candidate_extractor = CandidateExtractor( session, [ThumbnailLabel], throttlers=[None], parallelism=parallel ) if first_time: candidate_extractor.apply(train_docs, split=0) candidate_extractor.apply(dev_docs, split=1) candidate_extractor.apply(test_docs, split=2) train_cands = candidate_extractor.get_candidates(split=0) # Sort the dev_cands, which are used for training, for deterministic behavior dev_cands = candidate_extractor.get_candidates(split=1, sort=True) test_cands = candidate_extractor.get_candidates(split=2) end = timer() logger.warning(f"Candidate Extraction Time (min): {((end - start) / 60.0):.1f}") logger.info("Total train candidate:\t{}".format(len(train_cands[0]))) logger.info("Total dev candidate:\t{}".format(len(dev_cands[0]))) logger.info("Total test candidate:\t{}".format(len(test_cands[0]))) fin = open(f"{dirname}/data/ground_truth.txt", "r") gt = set() for line in fin: gt.add("::".join(line.lower().split())) fin.close() # Labeling start = timer() def LF_gt_label(c): doc_file_id = ( f"{c[0].context.figure.document.name.lower()}.pdf::" f"{os.path.basename(c[0].context.figure.url.lower())}" ) return TRUE if doc_file_id in gt else FALSE gt_dev = [LF_gt_label(cand) for cand in dev_cands[0]] gt_test = [LF_gt_label(cand) for cand in test_cands[0]] end = timer() logger.warning(f"Supervision Time (min): {((end - start) / 60.0):.1f}") batch_size = 64 input_size = 224 K = 2 emmental.init(log_dir=Meta.log_path, config=emmental_config) emmental.Meta.config["learner_config"]["task_scheduler_config"][ "task_scheduler" ] = DauphinScheduler(augment_k=K, enlarge=1) train_dataset = ThumbnailDataset( "Thumbnail", dev_cands[0], gt_dev, "train", prob_label=True, prefix=f"{dirname}/data/dev/html/", input_size=input_size, transform_cls=Augmentation(2), k=K, ) val_dataset = ThumbnailDataset( "Thumbnail", dev_cands[0], gt_dev, "valid", prob_label=False, prefix=f"{dirname}/data/dev/html/", input_size=input_size, k=1, ) test_dataset = ThumbnailDataset( "Thumbnail", test_cands[0], gt_test, "test", prob_label=False, prefix=f"{dirname}/data/test/html/", input_size=input_size, k=1, ) dataloaders = [] dataloaders.append( EmmentalDataLoader( task_to_label_dict={"Thumbnail": "labels"}, dataset=train_dataset, split="train", shuffle=True, batch_size=batch_size, num_workers=1, ) ) dataloaders.append( EmmentalDataLoader( task_to_label_dict={"Thumbnail": "labels"}, dataset=val_dataset, split="valid", shuffle=False, batch_size=batch_size, num_workers=1, ) ) dataloaders.append( EmmentalDataLoader( task_to_label_dict={"Thumbnail": "labels"}, dataset=test_dataset, split="test", shuffle=False, batch_size=batch_size, num_workers=1, ) ) model = EmmentalModel(name=f"Thumbnail") model.add_task( create_task("Thumbnail", n_class=2, model="resnet18", pretrained=True) ) emmental_learner = EmmentalLearner() emmental_learner.learn(model, dataloaders) scores = model.score(dataloaders) logger.warning("Model Score:") logger.warning(f"precision: {scores['Thumbnail/Thumbnail/test/precision']:.3f}") logger.warning(f"recall: {scores['Thumbnail/Thumbnail/test/recall']:.3f}") logger.warning(f"f1: {scores['Thumbnail/Thumbnail/test/f1']:.3f}")
the-stack_0_14923
import os import unittest from livestreamer import Livestreamer, PluginError, NoPluginError from livestreamer.plugins import Plugin from livestreamer.stream import * class TestPluginStream(unittest.TestCase): def setUp(self): self.session = Livestreamer() def assertDictHas(self, a, b): for key, value in a.items(): self.assertEqual(b[key], value) def _test_akamaihd(self, surl, url): channel = self.session.resolve_url(surl) streams = channel.get_streams() self.assertTrue("live" in streams) stream = streams["live"] self.assertTrue(isinstance(stream, AkamaiHDStream)) self.assertEqual(stream.url, url) def _test_hls(self, surl, url): channel = self.session.resolve_url(surl) streams = channel.get_streams() self.assertTrue("live" in streams) stream = streams["live"] self.assertTrue(isinstance(stream, HLSStream)) self.assertEqual(stream.url, url) def _test_rtmp(self, surl, url, params): channel = self.session.resolve_url(surl) streams = channel.get_streams() self.assertTrue("live" in streams) stream = streams["live"] self.assertTrue(isinstance(stream, RTMPStream)) self.assertEqual(stream.params["rtmp"], url) self.assertDictHas(params, stream.params) def test_plugin(self): self._test_rtmp("rtmp://hostname.se/stream", "rtmp://hostname.se/stream", dict()) self._test_rtmp("rtmp://hostname.se/stream live=1 num=47", "rtmp://hostname.se/stream", dict(live=True, num=47)) self._test_rtmp("rtmp://hostname.se/stream live=1 qarg='a \'string' noq=test", "rtmp://hostname.se/stream", dict(live=True, qarg='a \'string', noq="test")) self._test_hls("hls://http://hostname.se/playlist.m3u8", "http://hostname.se/playlist.m3u8") self._test_akamaihd("akamaihd://http://hostname.se/stream", "http://hostname.se/stream") if __name__ == "__main__": unittest.main()
the-stack_0_14926
# -*- coding: iso-8859-15 -*- # ================================================================= # # Authors: Tom Kralidis <[email protected]> # Angelos Tzotsos <[email protected]> # # Copyright (c) 2015 Tom Kralidis # Copyright (c) 2015 Angelos Tzotsos # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # ================================================================= import logging import os from sqlalchemy import create_engine, asc, desc, func, __version__, select from sqlalchemy.sql import text from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import create_session from pycsw.core import util LOGGER = logging.getLogger(__name__) class Repository(object): _engines = {} @classmethod def create_engine(clazz, url): ''' SQL Alchemy engines are thread-safe and simple wrappers for connection pools https://groups.google.com/forum/#!topic/sqlalchemy/t8i3RSKZGb0 To reduce startup time we can cache the engine as a class variable in the repository object and do database initialization once Engines are memoized by url ''' if url not in clazz._engines: LOGGER.debug('creating new engine: %s', url) engine = create_engine('%s' % url, echo=False) # load SQLite query bindings # This can be directly bound via events # for sqlite < 0.7, we need to to this on a per-connection basis if engine.name in ['sqlite', 'sqlite3'] and __version__ >= '0.7': from sqlalchemy import event @event.listens_for(engine, "connect") def connect(dbapi_connection, connection_rec): dbapi_connection.create_function( 'query_spatial', 4, util.query_spatial) dbapi_connection.create_function( 'update_xpath', 3, util.update_xpath) dbapi_connection.create_function('get_anytext', 1, util.get_anytext) dbapi_connection.create_function('get_geometry_area', 1, util.get_geometry_area) dbapi_connection.create_function('get_spatial_overlay_rank', 2, util.get_spatial_overlay_rank) clazz._engines[url] = engine return clazz._engines[url] ''' Class to interact with underlying repository ''' def __init__(self, database, context, app_root=None, table='records', repo_filter=None): ''' Initialize repository ''' self.context = context self.filter = repo_filter self.fts = False # Don't use relative paths, this is hack to get around # most wsgi restriction... if (app_root and database.startswith('sqlite:///') and not database.startswith('sqlite:////')): database = database.replace('sqlite:///', 'sqlite:///%s%s' % (app_root, os.sep)) self.engine = Repository.create_engine('%s' % database) base = declarative_base(bind=self.engine) LOGGER.debug('binding ORM to existing database') self.postgis_geometry_column = None schema, table = util.sniff_table(table) self.dataset = type('dataset', (base,), dict(__tablename__=table,__table_args__={'autoload': True, 'schema': schema})) self.dbtype = self.engine.name self.session = create_session(self.engine) temp_dbtype = None if self.dbtype == 'postgresql': # check if PostgreSQL is enabled with PostGIS 1.x try: self.session.execute(select([func.postgis_version()])) temp_dbtype = 'postgresql+postgis+wkt' LOGGER.debug('PostgreSQL+PostGIS1+WKT detected') except Exception as err: LOGGER.debug('PostgreSQL+PostGIS1+WKT detection failed') # check if PostgreSQL is enabled with PostGIS 2.x try: self.session.execute('select(postgis_version())') temp_dbtype = 'postgresql+postgis+wkt' LOGGER.debug('PostgreSQL+PostGIS2+WKT detected') except Exception as err: LOGGER.debug('PostgreSQL+PostGIS2+WKT detection failed') # check if a native PostGIS geometry column exists try: result = self.session.execute("select f_geometry_column from geometry_columns where f_table_name = '%s' and f_geometry_column != 'wkt_geometry' limit 1;" % table) row = result.fetchone() self.postgis_geometry_column = str(row['f_geometry_column']) temp_dbtype = 'postgresql+postgis+native' LOGGER.debug('PostgreSQL+PostGIS+Native detected') except Exception as err: LOGGER.debug('PostgreSQL+PostGIS+Native not picked up: %s', str(err)) # check if a native PostgreSQL FTS GIN index exists result = self.session.execute("select relname from pg_class where relname='fts_gin_idx'").scalar() self.fts = bool(result) LOGGER.debug('PostgreSQL FTS enabled: %r', self.fts) if temp_dbtype is not None: LOGGER.debug('%s support detected' % temp_dbtype) self.dbtype = temp_dbtype if self.dbtype in ['sqlite', 'sqlite3']: # load SQLite query bindings # <= 0.6 behaviour if not __version__ >= '0.7': self.connection = self.engine.raw_connection() self.connection.create_function( 'query_spatial', 4, util.query_spatial) self.connection.create_function( 'update_xpath', 3, util.update_xpath) self.connection.create_function('get_anytext', 1, util.get_anytext) self.connection.create_function('get_geometry_area', 1, util.get_geometry_area) self.connection.create_function('get_spatial_overlay_rank', 2, util.get_spatial_overlay_rank) LOGGER.debug('setting repository queryables') # generate core queryables db and obj bindings self.queryables = {} for tname in self.context.model['typenames']: for qname in self.context.model['typenames'][tname]['queryables']: self.queryables[qname] = {} for qkey, qvalue in \ self.context.model['typenames'][tname]['queryables'][qname].items(): self.queryables[qname][qkey] = qvalue # flatten all queryables # TODO smarter way of doing this self.queryables['_all'] = {} for qbl in self.queryables: self.queryables['_all'].update(self.queryables[qbl]) self.queryables['_all'].update(self.context.md_core_model['mappings']) def _create_values(self, values): value_dict = {} for num, value in enumerate(values): value_dict['pvalue%d' % num] = value return value_dict def query_ids(self, ids): ''' Query by list of identifiers ''' column = getattr(self.dataset, \ self.context.md_core_model['mappings']['pycsw:Identifier']) query = self.session.query(self.dataset).filter(column.in_(ids)) return self._get_repo_filter(query).all() def query_domain(self, domain, typenames, domainquerytype='list', count=False): ''' Query by property domain values ''' domain_value = getattr(self.dataset, domain) if domainquerytype == 'range': LOGGER.debug('Generating property name range values') query = self.session.query(func.min(domain_value), func.max(domain_value)) else: if count: LOGGER.debug('Generating property name frequency counts') query = self.session.query(getattr(self.dataset, domain), func.count(domain_value)).group_by(domain_value) else: query = self.session.query(domain_value).distinct() return self._get_repo_filter(query).all() def query_insert(self, direction='max'): ''' Query to get latest (default) or earliest update to repository ''' column = getattr(self.dataset, \ self.context.md_core_model['mappings']['pycsw:InsertDate']) if direction == 'min': return self._get_repo_filter(self.session.query(func.min(column))).first()[0] # else default max return self._get_repo_filter(self.session.query(func.max(column))).first()[0] def query_source(self, source): ''' Query by source ''' column = getattr(self.dataset, \ self.context.md_core_model['mappings']['pycsw:Source']) query = self.session.query(self.dataset).filter(column == source) return self._get_repo_filter(query).all() def query(self, constraint, sortby=None, typenames=None, maxrecords=10, startposition=0): ''' Query records from underlying repository ''' # run the raw query and get total if 'where' in constraint: # GetRecords with constraint LOGGER.debug('constraint detected') query = self.session.query(self.dataset).filter( text(constraint['where'])).params(self._create_values(constraint['values'])) else: # GetRecords sans constraint LOGGER.debug('No constraint detected') query = self.session.query(self.dataset) total = self._get_repo_filter(query).count() if util.ranking_pass: #apply spatial ranking #TODO: Check here for dbtype so to extract wkt from postgis native to wkt LOGGER.debug('spatial ranking detected') LOGGER.debug('Target WKT: %s', getattr(self.dataset, self.context.md_core_model['mappings']['pycsw:BoundingBox'])) LOGGER.debug('Query WKT: %s', util.ranking_query_geometry) query = query.order_by(func.get_spatial_overlay_rank(getattr(self.dataset, self.context.md_core_model['mappings']['pycsw:BoundingBox']), util.ranking_query_geometry).desc()) #trying to make this wsgi safe util.ranking_pass = False util.ranking_query_geometry = '' if sortby is not None: # apply sorting LOGGER.debug('sorting detected') #TODO: Check here for dbtype so to extract wkt from postgis native to wkt sortby_column = getattr(self.dataset, sortby['propertyname']) if sortby['order'] == 'DESC': # descending sort if 'spatial' in sortby and sortby['spatial']: # spatial sort query = query.order_by(func.get_geometry_area(sortby_column).desc()) else: # aspatial sort query = query.order_by(sortby_column.desc()) else: # ascending sort if 'spatial' in sortby and sortby['spatial']: # spatial sort query = query.order_by(func.get_geometry_area(sortby_column)) else: # aspatial sort query = query.order_by(sortby_column) # always apply limit and offset return [str(total), self._get_repo_filter(query).limit( maxrecords).offset(startposition).all()] def insert(self, record, source, insert_date): ''' Insert a record into the repository ''' try: self.session.begin() self.session.add(record) self.session.commit() except Exception as err: self.session.rollback() raise RuntimeError('ERROR: %s' % str(err.orig)) def update(self, record=None, recprops=None, constraint=None): ''' Update a record in the repository based on identifier ''' if record is not None: identifier = getattr(record, self.context.md_core_model['mappings']['pycsw:Identifier']) xml = getattr(self.dataset, self.context.md_core_model['mappings']['pycsw:XML']) anytext = getattr(self.dataset, self.context.md_core_model['mappings']['pycsw:AnyText']) if recprops is None and constraint is None: # full update LOGGER.debug('full update') update_dict = dict([(getattr(self.dataset, key), getattr(record, key)) \ for key in record.__dict__.keys() if key != '_sa_instance_state']) try: self.session.begin() self._get_repo_filter(self.session.query(self.dataset)).filter_by( identifier=identifier).update(update_dict, synchronize_session='fetch') self.session.commit() except Exception as err: self.session.rollback() raise RuntimeError('ERROR: %s' % str(err.orig)) else: # update based on record properties LOGGER.debug('property based update') try: rows = rows2 = 0 self.session.begin() for rpu in recprops: # update queryable column and XML document via XPath if 'xpath' not in rpu['rp']: self.session.rollback() raise RuntimeError('XPath not found for property %s' % rpu['rp']['name']) if 'dbcol' not in rpu['rp']: self.session.rollback() raise RuntimeError('property not found for XPath %s' % rpu['rp']['name']) rows += self._get_repo_filter(self.session.query(self.dataset)).filter( text(constraint['where'])).params(self._create_values(constraint['values'])).update({ getattr(self.dataset, rpu['rp']['dbcol']): rpu['value'], 'xml': func.update_xpath(str(self.context.namespaces), getattr(self.dataset, self.context.md_core_model['mappings']['pycsw:XML']), str(rpu)), }, synchronize_session='fetch') # then update anytext tokens rows2 += self._get_repo_filter(self.session.query(self.dataset)).filter( text(constraint['where'])).params(self._create_values(constraint['values'])).update({ 'anytext': func.get_anytext(getattr( self.dataset, self.context.md_core_model['mappings']['pycsw:XML'])) }, synchronize_session='fetch') self.session.commit() return rows except Exception as err: self.session.rollback() raise RuntimeError('ERROR: %s' % str(err.orig)) def delete(self, constraint): ''' Delete a record from the repository ''' try: self.session.begin() rows = self._get_repo_filter(self.session.query(self.dataset)).filter( text(constraint['where'])).params(self._create_values(constraint['values'])) parentids = [] for row in rows: # get ids parentids.append(getattr(row, self.context.md_core_model['mappings']['pycsw:Identifier'])) rows=rows.delete(synchronize_session='fetch') if rows > 0: LOGGER.debug('Deleting all child records') # delete any child records which had this record as a parent rows += self._get_repo_filter(self.session.query(self.dataset)).filter( getattr(self.dataset, self.context.md_core_model['mappings']['pycsw:ParentIdentifier']).in_(parentids)).delete( synchronize_session='fetch') self.session.commit() except Exception as err: self.session.rollback() raise RuntimeError('ERROR: %s' % str(err.orig)) return rows def _get_repo_filter(self, query): ''' Apply repository wide side filter / mask query ''' if self.filter is not None: return query.filter(self.filter) return query
the-stack_0_14927
# model settings norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='CascadeEncoderDecoder', num_stages=2, pretrained='open-mmlab://resnet50_v1c', backbone=dict( type='ResNetV1c', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), dilations=(1, 1, 1, 1), strides=(1, 2, 2, 2), norm_cfg=norm_cfg, norm_eval=False, style='pytorch', contract_dilation=True), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=4), decode_head=[ dict( type='FPNHead', in_channels=[256, 256, 256, 256], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=-1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='PointHead', in_channels=[256], in_index=[0], channels=256, num_fcs=3, coarse_pred_each_layer=True, dropout_ratio=-1, num_classes=19, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)) ]) # model training and testing settings train_cfg = dict( num_points=2048, oversample_ratio=3, importance_sample_ratio=0.75) test_cfg = dict( mode='whole', subdivision_steps=2, subdivision_num_points=8196, scale_factor=2)
the-stack_0_14930
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from ax.exceptions.model import ModelError from ax.models.discrete.thompson import ThompsonSampler from ax.utils.common.testutils import TestCase class ThompsonSamplerTest(TestCase): def setUp(self): self.Xs = [[[1, 1], [2, 2], [3, 3], [4, 4]]] # 4 arms, each of dimensionality 2 self.Ys = [[1, 2, 3, 4]] self.Yvars = [[1, 1, 1, 1]] self.parameter_values = [[1, 2, 3, 4], [1, 2, 3, 4]] self.outcome_names = ["x", "y"] # not used for regular TS self.multiple_metrics_Xs = [ [[1, 1], [2, 2], [3, 3], [4, 4]], [[1, 1], [2, 2], [3, 3], [4, 4]], ] # 2 metrics, 4 arms, each of dimensionality 2 self.multiple_metrics_Ys = [[1, 2, 3, 4], [0, 0, 0, 1]] self.multiple_metrics_Yvars = [[1, 1, 1, 1], [1, 1, 1, 1]] def testThompsonSampler(self): generator = ThompsonSampler(min_weight=0.0) generator.fit( Xs=self.Xs, Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, gen_metadata = generator.gen( n=3, parameter_values=self.parameter_values, objective_weights=np.ones(1) ) self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]]) for weight, expected_weight in zip( weights, [3 * i for i in [0.725, 0.225, 0.05]] ): self.assertAlmostEqual(weight, expected_weight, 1) self.assertEqual(len(gen_metadata["arms_to_weights"]), 4) def testThompsonSamplerValidation(self): generator = ThompsonSampler(min_weight=0.01) # all Xs are not the same with self.assertRaises(ValueError): generator.fit( Xs=[[[1, 1], [2, 2], [3, 3], [4, 4]], [[1, 1], [2, 2], [4, 4]]], Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) # multiple observations per parameterization with self.assertRaises(ValueError): generator.fit( Xs=[[[1, 1], [2, 2], [2, 2]]], Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) # these are not the same observations, so should not error generator.fit( Xs=[[[1, 1], [2.0, 2], [2, 2]]], Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) # requires objective weights with self.assertRaises(ValueError): generator.gen(5, self.parameter_values, objective_weights=None) def testThompsonSamplerMinWeight(self): generator = ThompsonSampler(min_weight=0.01) generator.fit( Xs=self.Xs, Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, _ = generator.gen( n=5, parameter_values=self.parameter_values, objective_weights=np.ones(1) ) self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]]) for weight, expected_weight in zip( weights, [3 * i for i in [0.725, 0.225, 0.05]] ): self.assertAlmostEqual(weight, expected_weight, 1) def testThompsonSamplerUniformWeights(self): generator = ThompsonSampler(min_weight=0.0, uniform_weights=True) generator.fit( Xs=self.Xs, Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, _ = generator.gen( n=3, parameter_values=self.parameter_values, objective_weights=np.ones(1) ) self.assertEqual(arms, [[4, 4], [3, 3], [2, 2]]) for weight, expected_weight in zip(weights, [1.0, 1.0, 1.0]): self.assertAlmostEqual(weight, expected_weight, 1) def testThompsonSamplerInfeasible(self): generator = ThompsonSampler(min_weight=0.9) generator.fit( Xs=self.Xs, Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) with self.assertRaises(ModelError): generator.gen( n=3, parameter_values=self.parameter_values, objective_weights=np.ones(1), ) def testThompsonSamplerOutcomeConstraints(self): generator = ThompsonSampler(min_weight=0.0) generator.fit( Xs=self.multiple_metrics_Xs, Ys=self.multiple_metrics_Ys, Yvars=self.multiple_metrics_Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) arms, weights, _ = generator.gen( n=4, parameter_values=self.parameter_values, objective_weights=np.array([1, 0]), outcome_constraints=( # pass in multiples of the same constraint # to ensure that shapes are correct for multiple constraints np.array([[0, 1], [0, 1], [0, 1]]), np.array([[1], [1], [1]]), ), ) self.assertEqual(arms, [[3, 3], [4, 4], [2, 2], [1, 1]]) for weight, expected_weight in zip( weights, [4 * i for i in [0.4, 0.4, 0.15, 0.05]] ): self.assertAlmostEqual(weight, expected_weight, delta=0.15) def testThompsonSamplerOutcomeConstraintsInfeasible(self): generator = ThompsonSampler(min_weight=0.0) generator.fit( Xs=self.multiple_metrics_Xs, Ys=self.multiple_metrics_Ys, Yvars=self.multiple_metrics_Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) with self.assertRaises(ModelError): generator.gen( n=3, parameter_values=self.parameter_values, objective_weights=np.ones(2), outcome_constraints=(np.array([[0, 1]]), np.array([[-10]])), ) def testThompsonSamplerPredict(self): generator = ThompsonSampler(min_weight=0.0) generator.fit( Xs=self.Xs, Ys=self.Ys, Yvars=self.Yvars, parameter_values=self.parameter_values, outcome_names=self.outcome_names, ) f, cov = generator.predict([[1, 1], [3, 3]]) self.assertTrue(np.array_equal(f, np.array([[1], [3]]))) self.assertTrue(np.array_equal(cov, np.ones((2, 1, 1)))) with self.assertRaises(ValueError): generator.predict([[1, 2]])
the-stack_0_14931
"""Basic tests of the Misty VM SCL <[email protected]> Copyright (c) 2020 rerobots, Inc. """ import pytest import mistygrind @pytest.fixture def client(loop, aiohttp_client): yield loop.run_until_complete( aiohttp_client(mistygrind.vm.create_vm()) ) async def test_api_battery(client): resp = await client.get('/api/battery') assert resp.status == 200 payload = await resp.json() assert payload['status'] == 'Success' assert 'chargePercent' in payload['result'] and 'isCharging' in payload['result']
the-stack_0_14932
#! /usr/bin/env python import sys from aubio import source, sink, pvoc, tss if __name__ == '__main__': if len(sys.argv) < 2: print('usage: %s <inputfile> <outputfile_transient> <outputfile_steady>' % sys.argv[0]) sys.exit(1) samplerate = 44100 win_s = 1024 # fft size hop_s = win_s // 8 # block size f = source(sys.argv[1], samplerate, hop_s) g = sink(sys.argv[2], samplerate) h = sink(sys.argv[3], samplerate) pva = pvoc(win_s, hop_s) # a phase vocoder pvb = pvoc(win_s, hop_s) # another phase vocoder t = tss(win_s, hop_s) # transient steady state separation t.set_threshold(0.01) t.set_alpha(3.) t.set_beta(4.) read = hop_s while read: samples, read = f() # read file spec = pva(samples) # compute spectrum trans_spec, stead_spec = t(spec) # transient steady-state separation transients = pva.rdo(trans_spec) # overlap-add synthesis of transients steadstate = pvb.rdo(stead_spec) # overlap-add synthesis of steady states g(transients, read) # write transients to output h(steadstate, read) # write steady states to output del f, g, h # finish writing the files now sys.exit(0) from demo_spectrogram import get_spectrogram from pylab import subplot, show subplot(311) get_spectrogram(sys.argv[1]) subplot(312) get_spectrogram(sys.argv[2]) subplot(313) get_spectrogram(sys.argv[3]) show()
the-stack_0_14933
import re from urllib.parse import urlencode import collections from directory_api_client.client import api_client from directory_constants import choices import directory_components.helpers from ipware import get_client_ip from django.http import Http404 from django.utils import translation from django.urls import reverse from django.utils.html import escape, mark_safe from core import constants from core.constants import HeaderConfig INDUSTRY_CHOICES = dict(choices.INDUSTRIES) def unslugify(slug): return slug.replace('-', ' ').capitalize() def get_language_from_querystring(request): language_codes = translation.trans_real.get_languages() language_code = request.GET.get('language') or request.GET.get('lang') if language_code and language_code in language_codes: return language_code NotifySettings = collections.namedtuple( 'NotifySettings', [ 'company_template', 'support_template', 'investor_template', 'support_email_address', ] ) def get_ga_data_for_page(page_type): return constants.GA_DATA_MAPPING[page_type] def get_paginator_url(filters, url_name): url = reverse(url_name) querystring = urlencode({ key: value for key, value in filters.lists() if value and key != 'page' }, doseq=True) return f'{url}?{querystring}' class SectorFilter: def __init__(self, sectors): self.sectors = sectors def matches(self, opportunity): return any( sector['related_sector'].get('heading') in self.sectors for sector in opportunity.get('related_sectors', []) if sector['related_sector'] and sector['related_sector']['heading'] ) Scale = collections.namedtuple("Scale", "title min max") class ScaleFilter: scales_with_values = [ Scale(title='< £100m', min=1, max=99), Scale(title='£100m - £499m', min=100, max=499), Scale(title='£500m - £999m', min=500, max=999), Scale(title='> £1bn', min=1000, max='None'), Scale(title='Value unknown', min=0, max=0) ] def __init__(self, scale_strings): self.selected_scales = [ scaleFilter for scaleFilter in self.scales_with_values if scaleFilter.title in scale_strings ] def matches(self, opportunity): for scale_chosen in self.selected_scales: if scale_chosen.min == 0 and scale_chosen.max == 0: if not opportunity['scale_value']: return True elif float(opportunity['scale_value']) == 0.00: return True elif scale_chosen.max == 'None': if scale_chosen.min <= float(opportunity['scale_value']): return True elif scale_chosen.max: if scale_chosen.min <= float(opportunity['scale_value']) <= scale_chosen.max: # NOQA return True class MultipleRegionsFilter: def __init__(self, regions): self.regions = regions def matches(self, opportunity): for related_region in opportunity.get('related_regions', []): if related_region['title'] and related_region['title'] in self.regions: return True class SubSectorFilter: def __init__(self, sub_sectors): self.sub_sectors = sub_sectors def matches(self, opportunity): if 'sub_sectors' in opportunity and opportunity['sub_sectors']: for sub_sector in opportunity['sub_sectors']: if sub_sector in self.sub_sectors: return True return False class InvestmentTypeFilter: def __init__(self, investment_types): self.investment_types = investment_types def matches(self, opportunity): if 'investment_type' in opportunity and opportunity['investment_type']: if opportunity['investment_type'] in self.investment_types: return True return False class PlanningStatusFilter: def __init__(self, planning_statuses): self.planning_statuses = planning_statuses def matches(self, opportunity): if 'planning_status' in opportunity and opportunity['planning_status']: if opportunity['planning_status'] in self.planning_statuses: return True return False def filter_opportunities(opportunities, filter_chosen): return [opp for opp in opportunities if filter_chosen.matches(opp)] Sort_by = collections.namedtuple("Sort_by", "title value reverse") class SortFilter: sort_by_with_values = [ Sort_by(title='Opportunity name: A to Z', value='title', reverse=False), Sort_by(title='Opportunity name: Z to A', value='title', reverse=True), Sort_by( title='Scale: Low to High', value='scale_value', reverse=False ), Sort_by(title='Scale: High to Low', value='scale_value', reverse=True) ] def __init__(self, sort_by_filter_chosen): self.sort_by_filter_chosen = next( (sort_by for sort_by in self.sort_by_with_values if sort_by.title == sort_by_filter_chosen), self.sort_by_with_values[0]) def sort_opportunities(opportunities, sort_by_chosen): sort_filter = sort_by_chosen.sort_by_filter_chosen if sort_filter.value == 'title': opportunities.sort( key=lambda x: x['title'], reverse=sort_filter.reverse ) if sort_filter.value == 'scale_value': opportunities.sort( key=lambda x: float(x['scale_value']), reverse=sort_filter.reverse ) return opportunities class CompanyParser(directory_components.helpers.CompanyParser): def serialize_for_template(self): if not self.data: return {} return { **self.data, 'date_of_creation': self.date_of_creation, 'address': self.address, 'sectors': self.sectors_label, 'keywords': self.keywords, 'employees': self.employees_label, 'expertise_industries': self.expertise_industries_label, 'expertise_regions': self.expertise_regions_label, 'expertise_countries': self.expertise_countries_label, 'expertise_languages': self.expertise_languages_label, 'has_expertise': self.has_expertise, 'expertise_products_services': ( self.expertise_products_services_label ), 'is_in_companies_house': self.is_in_companies_house, } def get_results_from_search_response(response): parsed = response.json() formatted_results = [] for result in parsed['hits']['hits']: parser = CompanyParser(result['_source']) formatted = parser.serialize_for_template() if 'highlight' in result: highlighted = '...'.join( result['highlight'].get('description', '') or result['highlight'].get('summary', '') ) # escape all html tags other than <em> and </em> highlighted_escaped = ( escape(highlighted).replace('&lt;em&gt;', '<em>').replace('&lt;/em&gt;', '</em>') ) formatted['highlight'] = mark_safe(highlighted_escaped) formatted_results.append(formatted) parsed['results'] = formatted_results return parsed def get_filters_labels(filters): sectors = dict(choices.INDUSTRIES) languages = dict(choices.EXPERTISE_LANGUAGES) labels = [] skip_fields = [ 'q', 'page', # Prevents duplicates labels not to be displayed in filter list 'expertise_products_services_labels' ] for name, values in filters.items(): if name in skip_fields: pass elif name == 'industries': labels += [sectors[item] for item in values if item in sectors] elif name == 'expertise_languages': labels += [languages[item] for item in values if item in languages] elif name.startswith('expertise_products_services_'): labels += values else: for value in values: labels.append(value.replace('_', ' ').title()) return labels def get_company_profile(number): response = api_client.company.published_profile_retrieve(number=number) if response.status_code == 404: raise Http404(f'API returned 404 for company number {number}') response.raise_for_status() return response.json() def count_data_with_field(list_of_data, field): filtered_list = [item for item in list_of_data if item[field]] return len(filtered_list) def pair_sector_values_with_label(sectors_values): if not sectors_values: return [] return [ pair_sector_value_with_label(value) for value in sectors_values if value in INDUSTRY_CHOICES ] def pair_sector_value_with_label(sectors_value): return {'value': sectors_value, 'label': get_sectors_label(sectors_value)} def get_sectors_label(sectors_value): if not sectors_value: return sectors_value return INDUSTRY_CHOICES.get(sectors_value) def get_case_study_details_from_response(response): parsed = response.json() # `format_company_details` expects `supplier_case_studies` key. parsed['company']['supplier_case_studies'] = [] parsed['sector'] = pair_sector_value_with_label(parsed['sector']) parsed['company'] = CompanyParser( parsed['company'] ).serialize_for_template() return parsed def format_case_study(case_study): case_study_url = reverse( 'find-a-supplier:case-study-details', kwargs={'id': case_study['pk'], 'slug': case_study['slug']}, ) return { **case_study, 'sector': pair_sector_value_with_label(case_study['sector']), 'case_study_url': case_study_url, } def get_case_study(case_study_id): response = api_client.company.published_case_study_retrieve(case_study_id) if response.status_code == 404: raise Http404( "API returned 404 for case study with id %s", case_study_id, ) response.raise_for_status() return get_case_study_details_from_response(response) def get_map_labels_with_vertical_positions(list_of_title_words, middle_x, middle_y): lowest_y = middle_y - ((len(list_of_title_words) - 1) / 2) * 25 labels_with_coordinates = [ {'title': list_of_title_words[i], 'x': str(middle_x), 'y': str((lowest_y + (i * 25)))} for i in range(len(list_of_title_words)) ] return labels_with_coordinates def get_header_config(path): for (pattern, config) in constants.HEADER_SECTION_MAPPING.items(): compiled_pattern = re.compile(pattern) if compiled_pattern.match(path): return config # If no matching URL is found, just return a default config. return HeaderConfig(section=None, sub_section=None) def get_header_section(path): return get_header_config(path).section def get_header_sub_section(path): return get_header_config(path).sub_section def get_sender_ip_address(request): ip, is_routable = get_client_ip(request) return ip or None
the-stack_0_14934
import functools import logging def catch_exception(func): """ A decorator that wraps the passed in function and logs exceptions should one occur """ @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except: # log the exception err = "There was an exception in " err += func.__name__ logging.exception(err) # re-raise the exception raise return wrapper
the-stack_0_14936
import pygame import os import random CAR = pygame.image.load("Car.png") BACKGROUND = pygame.image.load("Road.png") BG_CARS = [ pygame.transform.scale(pygame.image.load("cars/" + vehicle), (100, 100)) for vehicle in os.listdir("cars") ] MAX_CARS = 5 class Game: RANDOM_CARS_COUNT = 0 def __init__(self): pygame.init() self.score = 0 self.window = pygame.display.set_mode((500, 800)) pygame.display.set_caption("Racing AI") self.clock = pygame.time.Clock() self.execute = True def cleanUpCars(self, bg_cars): for c in bg_cars: if c.y >= 800: bg_cars.remove(c) self.RANDOM_CARS_COUNT -= 1 return bg_cars def createNewCars(self, bg_cars): extra = len([car for car in bg_cars if not car.onScreen()]) while self.RANDOM_CARS_COUNT != MAX_CARS + extra: new_car = BackgroundCars(BG_CARS[random.randint(0, 5)], self.window) will_append = True for cars in bg_cars: if cars.collide(new_car) or self.RANDOM_CARS_COUNT == MAX_CARS + extra: will_append = False break if will_append: bg_cars.append(new_car) self.RANDOM_CARS_COUNT += 1 return bg_cars def run(self): car = Car(250, 650, self.window) track = Track(50, self.window) bg_cars = [] self.createNewCars(bg_cars) while self.execute: keys = pygame.key.get_pressed() self.window.fill((0, 255, 0)) for event in pygame.event.get(): if event.type == pygame.QUIT or keys[pygame.K_0]: self.execute = False bg_cars = self.cleanUpCars(bg_cars) bg_cars = self.createNewCars(bg_cars) track.draw() self.score = track.move(self.score) car.draw() for i in random.sample( list(range(self.RANDOM_CARS_COUNT)), self.RANDOM_CARS_COUNT ): bg_cars[i].draw() bg_cars[i].move() if keys[pygame.K_LEFT]: car.x -= car.vel if keys[pygame.K_RIGHT]: car.x += car.vel if keys[pygame.K_UP] and car.y + car.vel >= 250: car.y -= car.vel if keys[pygame.K_DOWN] and car.y + car.vel + car.height <= 750: car.y += car.vel for cars in bg_cars: if cars.collide(car): self.execute = False if car.x < 50 or car.x + car.width > 450: self.execute = False self.clock.tick(60) font = pygame.font.Font('freesansbold.ttf', 32) text = font.render(" Score: " + str(self.score) + " ", True, (255, 0, 0), (0, 0, 0)) textRect = text.get_rect() textRect.center = (400, 50) self.window.blit(text, textRect) pygame.display.update() print("Score:", self.score) pygame.time.wait(100) pygame.quit() class BackgroundCars: def __init__(self, car, window): self.x = random.randint(50, 350) self.y = random.randint(-400, -100) self.vel = 5 self.width = 100 self.height = 100 self.window = window self.car = car def move(self): self.y += self.vel def draw(self): self.window.blit(self.car, (self.x, self.y)) def collide(self, gaddi): playerMask = gaddi.mask() carMask = self.mask() collision = playerMask.overlap(carMask, (self.x - gaddi.x, self.y - gaddi.y)) return bool(collision) def mask(self): return pygame.mask.from_surface(self.car) def onScreen(self): if self.y <= 650: return True return False def __str__(self): return f"y: {self.y} , onScreen: {self.onScreen()}" class Track: def __init__(self, x, window): self.x = x self.y1 = 0 self.y2 = 800 self.vel = 10 self.window = window def move(self, score): self.y1 += self.vel self.y2 += self.vel if self.y1 - 800 > 0: self.y1 = self.y2 - 800 if self.y2 - 800 > 0: self.y2 = self.y1 - 800 return score + 1 def draw(self): self.window.blit(BACKGROUND, (self.x, self.y1)) self.window.blit(BACKGROUND, (self.x, self.y2)) class Car: def __init__(self, x, y, window): self.x = x self.y = y self.vel = 6 self.width = 44 self.height = 100 self.window = window self.car = CAR def move(self): self.y += self.vel def draw(self): self.window.blit(self.car, (self.x, self.y)) def mask(self): return pygame.mask.from_surface(self.car) if __name__ == "__main__": game = Game() game.run()
the-stack_0_14940
#!/usr/bin/env python3 ''' Author: Tom McLaughlin Email: [email protected] Description: DynamoDB tables ''' import os import boto3 from boto3.dynamodb.conditions import Key from .errors import ApiAuthSvcBaseError from . import logging _logger = logging.get_logger(__name__) DDB_TABLE_NAME = os.environ.get('DDB_TABLE_NAME', '') DDB_HASH_KEY = os.environ.get('DDB_HASH_KEY', '') DDB_RANGE_KEY = os.environ.get('DDB_RANGE_KEY', '') class DynamoDBTableBaseError(Exception): '''Base exception class''' class DynamoDBTableCheckItemError(DynamoDBTableBaseError): '''Error checking item existence in dynamoDB''' msg = "Error checking item existence in DynamoDB" def __init__(self, message=msg) -> None: super().__init__(message) class DynamoDBTableGetItemError(DynamoDBTableBaseError): '''Error Getting item in dynamoDB''' msg = "Unable to get item from DynamoDB" def __init__(self, message=msg) -> None: super().__init__(message) class DynamoDBTablePutItemError(DynamoDBTableBaseError): '''Error Putting item in dynamoDB''' msg = "Unable to write item to DynamoDB" def __init__(self, message=msg) -> None: super().__init__(message) class DynamoDBTableQueryItemError(DynamoDBTableBaseError): '''Error querying item in dynamoDB''' msg = "Unable to query item in DynamoDB" def __init__(self, message=msg) -> None: super().__init__(message) class DynamoDBTable: '''DynamoDB Table''' def __init__(self, table_name: str = DDB_TABLE_NAME, hash_key: str = DDB_HASH_KEY, range_key: str = DDB_RANGE_KEY) -> None: self._table_name = table_name self._hash_key = hash_key self._range_key = range_key self._ddb_resoruce = boto3.resource('dynamodb') self._ddb_table = self._ddb_resoruce.Table(self._table_name) @property def table_name(self) -> str: '''DDB table name.''' return self._table_name @property def hash_key(self) -> str: '''DDB table hash key''' return self._hash_key @property def range_key(self) -> str: '''DDB table range key''' return self._range_key def check_item_exists(self, item_id) -> bool: '''Check if item already exists''' try: resp = self._ddb_table.query( Select='COUNT', KeyConditionExpression=Key(self._hash_key).eq(item_id) ) except Exception as e: _logger.exception(e) raise DynamoDBTableCheckItemError return resp.get('Count') > 0 def get_item(self, item_id, range_value, consistent_read=False) -> dict: '''Return an item''' _logger.info(item_id) try: items = self._ddb_table.get_item( Key={ self._hash_key: item_id, self._range_key: range_value }, ConsistentRead=consistent_read ) except Exception as e: _logger.exception(e) raise DynamoDBTableGetItemError return items.get('Items') def put_item(self, item: dict) -> None: '''Put item in DDB''' try: self._ddb_table.put_item( Item=item ) except Exception as e: _logger.exception(e) raise DynamoDBTablePutItemError def query_by_item_id(self, item_id, start_key: dict = {}) -> list: '''query for item''' item_list = [] query_kwargs = { 'KeyConditionExpression': Key(self._hash_key).eq(item_id) } if bool(start_key): query_kwargs['ExclusiveStartKey'] = start_key try: resp = self._ddb_table.query(**query_kwargs) except Exception as e: _logger.exception(e) raise DynamoDBTableQueryItemError item_list += resp.get('Items') if bool(resp.get('LastEvaluatedKey')): item_list += self.query_by_item_id(item_id, resp.get('LastEvaluatedKey')) return item_list
the-stack_0_14941
#!/usr/bin/env pnpython4 # -*- coding: iso-8859-15 -*- # # Read Fairfield SEG-D (Version 1.6) from the Sweetwater experiment. # Write PH5 # # Steve Azevedo, May 2014 # Modified to read SEG-D from 3C's, July 2016 # import os import sys import logging import time import json import re from math import modf import warnings from pyproj import Proj, transform import construct import bcd_py from tables import NaturalNameWarning from ph5.core import experiment, columns, segdreader, segdreader_smartsolo from ph5 import LOGGING_FORMAT warnings.filterwarnings('ignore', category=NaturalNameWarning) PROG_VERSION = "2021.159" LOGGER = logging.getLogger(__name__) MAX_PH5_BYTES = 1073741824 * 100. # 100 GB (1024 X 1024 X 1024 X 2) os.environ['TZ'] = 'GMT' time.tzset() APPEND = 1 # Number of SEG-D events to append to make 1 ph5 event. DAS_INFO = {} MAP_INFO = {} # Current raw file processing F = None # RE for mini files miniPH5RE = re.compile(r".*miniPH5_(\d\d\d\d\d)\.ph5") # -2.5V to 2.5V mV_full_scale = 5000 # 24-bit counts_full_scale = 2**24 def bitweight(db): # where db = 20log(V1,V2) return (mV_full_scale / (10.**(db/20.))) / counts_full_scale dbs = (0, 6, 12, 18, 24, 30, 36) LSB_MAP = {db: bitweight(db) for db in dbs} LSB = LSB_MAP[36] # Manufacturers codes FAIRFIELD = 20 OTHER = 0 def read_manufacture_code(filename): """ read byte 17 for manufacture code""" f = open(filename, 'rb') f.seek(16) byte = f.read(1) swap = True if sys.byteorder == 'big': swap = False bin = construct.BitStruct("BIN", construct.BitField( "field", 8, swapped=swap)) bcd = bin.parse(byte)['field'] if sys.byteorder == 'little': bcd = construct.ULInt64("xxx").build(bcd) else: bcd = construct.UBInt64("xxx").build(bcd) code = bcd_py.bcd2int(bcd, 0, 2) f.close() return code def get_segdreader(filename, manucode): """ get the segdreader from manufacture code infile or from --manufacturers_code argument """ KNOWN_CODE = {20: (segdreader, 'FairField'), 61: (segdreader_smartsolo, 'SmartSolo')} req_code_list = ["%s for %s format" % (k, KNOWN_CODE[k][1]) for k in KNOWN_CODE.keys()] req_code_str = ("Please give flag --manufacturers_code either " ' or '.join(req_code_list)) manu = read_manufacture_code(filename) if manu in KNOWN_CODE.keys(): reader = KNOWN_CODE[manu][0] else: try: if manucode in KNOWN_CODE.keys(): reader = KNOWN_CODE[manucode][0] else: LOGGER.error("manufacturers_code flag {0} is not one of " "the known codes: {1}.\n{2}". format(manucode, KNOWN_CODE.keys(), req_code_str)) raise Exception except IndexError: LOGGER.error("The manufacture code recorded in file {0} is not " "one of the known codes: {1}.\n{2}". format(manucode, KNOWN_CODE.keys(), req_code_str)) raise Exception return reader # # To hold table rows and keys # class Rows_Keys(object): __slots__ = ('rows', 'keys') def __init__(self, rows=None, keys=None): self.rows = rows self.keys = keys def set(self, rows=None, keys=None): if rows is not None: self.rows = rows if keys is not None: self.keys = keys class Index_t_Info(object): __slots__ = ('das', 'ph5file', 'ph5path', 'startepoch', 'stopepoch') def __init__(self, das, ph5file, ph5path, startepoch, stopepoch): self.das = das self.ph5file = ph5file self.ph5path = ph5path self.startepoch = startepoch self.stopepoch = stopepoch class Resp(object): __slots__ = ('lines', 'keys', 't') def __init__(self, t): self.t = t self.update() def update(self): self.lines, self.keys = self.t.read_responses() def match(self, bw, gain): for ln in self.lines: if ln['bit_weight/value_d'] == bw and ln['gain/value_i'] == gain: return ln['n_i'] return -1 def next_i(self): return len(self.lines) class Trace(object): __slots__ = ("trace", "headers") def __init__(self, trace, headers): self.trace = trace self.headers = headers def read_infile(infile): ''' Read list of input SEG-D files from a file ''' global FILES def fn_sort(a, b): return cmp(os.path.basename(a), os.path.basename(b)) try: fh = file(infile) except Exception: LOGGER.warning("Failed to open %s\n" % infile) return while True: line = fh.readline() if not line: break line = line.strip() if not line: continue if line[0] == '#': continue FILES.append(line) FILES.sort(fn_sort) def get_args(): global PH5, FILES, EVERY, NUM_MINI, TSPF, UTM, FIRST_MINI, APPEND,\ MANUFACTURERS_CODE TSPF = False from optparse import OptionParser class MyParser(OptionParser): """ Override format_epilog to allow newlines """ def format_epilog(self, formatter): return self.epilog oparser = MyParser() oparser.usage = "Version: {0} Usage: segdtoph5 [options]".format( PROG_VERSION) oparser.epilog = ( "Notice:\n" "\tData of a Das can't be stored in more than one mini file.\n\n" "\tUpdate astropy package for the lastes leap second table used in " "converting time from GPS to UTC in SmartSolo's:\n" "\t\tconda update astropy\n") oparser.add_option("-r", "--raw", dest="rawfile", help="Fairfield SEG-D v1.6 file.", metavar="raw_file") oparser.add_option("-f", "--file", action="store", dest="infile", type="string", help="File containing list of Fairfield SEG-D\ v1.6 file names.", metavar="file_list_file") oparser.add_option("-n", "--nickname", dest="outfile", help="The ph5 file prefix (experiment nick name).", metavar="output_file_prefix") oparser.add_option("-U", "--UTM", dest="utm_zone", help="Locations in SEG-D file are UTM, --UTM=utmzone." " Zone number and N or S designation" " eg 13N", type='str', default=0, metavar="utm_zone") oparser.add_option("-T", "--TSPF", dest="texas_spc", help="Locations are in texas state plane coordinates.", action='store_true', default=False) oparser.add_option("-M", "--num_mini", help=("Create a given number of miniPH5 files." " Ex: -M 38"), metavar="num_mini", type='int', default=None) oparser.add_option("-S", "--first_mini", help=("The index of the first miniPH5_xxxxx.ph5 " "file of all. Ex: -S 5"), metavar="first_mini", type='int', default=1) oparser.add_option("-c", "--combine", dest="combine", help="Combine this number if SEG-D traces to one\ PH5 trace.", metavar="combine", type='int', default=APPEND) oparser.add_option("-E", "--allevents", action="store_true", dest="all_events", default=False, metavar="all_events") oparser.add_option("--manufacturers_code", dest="manufacturers_code", help="Manufacturers code. Defaults to 20 for Fairfield.\ Most likely will not work for SEG-D written by other\ data loggers,", type='int', default=None) options, args = oparser.parse_args() if options.rawfile and options.infile: oparser.error("argument -f/--file: not allowed with argument -r/--raw") FILES = [] PH5 = None EVERY = options.all_events NUM_MINI = options.num_mini FIRST_MINI = options.first_mini UTM = options.utm_zone TSPF = options.texas_spc APPEND = options.combine MANUFACTURERS_CODE = options.manufacturers_code if options.infile is not None: read_infile(options.infile) elif options.rawfile is not None: FILES.append(options.rawfile) if len(FILES) == 0: raise Exception("No input file given.\n") # Set output file if options.outfile is not None: PH5 = options.outfile else: raise Exception("No outfile (PH5) given.\n") setLogger() def setLogger(): if LOGGER.handlers != []: LOGGER.removeHandler(LOGGER.handlers[0]) # Write log to file ch = logging.FileHandler("segd2ph5.log") ch.setLevel(logging.INFO) # Add formatter formatter = logging.Formatter(LOGGING_FORMAT) ch.setFormatter(formatter) LOGGER.addHandler(ch) def initializeExperiment(): global EX EX = experiment.ExperimentGroup(nickname=PH5) EDIT = True EX.ph5open(EDIT) EX.initgroup() def openPH5(filename): ''' Open PH5 file, miniPH5_xxxxx.ph5 ''' try: if EXREC.ph5.isopen: if EXREC.filename != filename: EXREC.ph5close() else: return EXREC except BaseException: pass exrec = experiment.ExperimentGroup(nickname=filename) exrec.ph5open(True) exrec.initgroup() return exrec def update_index_t_info(starttime, samples, sps): ''' Update info that gets saved in Index_t ''' global DAS_INFO, MAP_INFO ph5file = EXREC.filename ph5path = '/Experiment_g/Receivers_g/' + \ EXREC.ph5_g_receivers.current_g_das._v_name ph5map = '/Experiment_g/Maps_g/' + EXREC.ph5_g_maps.current_g_das._v_name das = ph5path[32:] stoptime = starttime + (float(samples) / float(sps)) di = Index_t_Info(das, ph5file, ph5path, starttime, stoptime) dm = Index_t_Info(das, ph5file, ph5map, starttime, stoptime) if das not in DAS_INFO: DAS_INFO[das] = [] MAP_INFO[das] = [] DAS_INFO[das].append(di) MAP_INFO[das].append(dm) LOGGER.info( "DAS: {0} File: {1} First Sample: {2} Last Sample: {3}".format( das, ph5file, time.ctime(starttime), time.ctime(stoptime))) def update_external_references(): ''' Update external references in master.ph5 to miniPH5 files in Receivers_t ''' global F LOGGER.info("Updating external references...") n = 0 for i in INDEX_T_DAS.rows: external_file = i['external_file_name_s'][2:] external_path = i['hdf5_path_s'] target = external_file + ':' + external_path external_group = external_path.split('/')[3] # Nuke old node try: group_node = EX.ph5.get_node(external_path) group_node.remove() except Exception as e: pass # Re-create node try: EX.ph5.create_external_link( '/Experiment_g/Receivers_g', external_group, target) n += 1 except Exception as e: # pass LOGGER.error("{0}\n".format(e.message)) LOGGER.info("done, {0} das nodes recreated.\n".format(n)) n = 0 for i in INDEX_T_MAP.rows: external_file = i['external_file_name_s'][2:] external_path = i['hdf5_path_s'] target = external_file + ':' + external_path external_group = external_path.split('/')[3] # Nuke old node try: group_node = EX.ph5.get_node(external_path) group_node.remove() except Exception as e: pass # Re-create node try: EX.ph5.create_external_link( '/Experiment_g/Maps_g', external_group, target) n += 1 except Exception as e: # pass LOGGER.error("{0}\n".format(e.message)) LOGGER.info("done, {0} map nodes recreated.\n".format(n)) def get_current_data_only(size_of_data, das=None): ''' Return opened file handle for data only PH5 file that will be less than MAX_PH5_BYTES after raw data is added to it. ''' def sstripp(s): s = s.replace('.ph5', '') s = s.replace('./', '') return s def smallest(): ''' Return the name of the smallest miniPH5_xxxxx.ph5 ''' minifiles = filter(miniPH5RE.match, os.listdir('.')) tiny = minifiles[0] for f in minifiles: if os.path.getsize(f) < os.path.getsize(tiny): tiny = f return tiny das = str(das) newestfile = '' # Get the most recent data only PH5 file or match DAS serialnumber n = 0 for index_t in INDEX_T_DAS.rows: # This DAS already exists in a ph5 file if index_t['serial_number_s'] == das: newestfile = sstripp(index_t['external_file_name_s']) return openPH5(newestfile) # miniPH5_xxxxx.ph5 with largest xxxxx mh = miniPH5RE.match(index_t['external_file_name_s']) if n < int(mh.groups()[0]): newestfile = sstripp(index_t['external_file_name_s']) n = int(mh.groups()[0]) if not newestfile: # This is the first file added return openPH5('miniPH5_{0:05d}'.format(FIRST_MINI)) size_of_exrec = os.path.getsize(newestfile + '.ph5') if NUM_MINI is not None: fm = FIRST_MINI - 1 if (int(newestfile[8:13]) - fm) < NUM_MINI: newestfile = "miniPH5_{0:05d}".format(int(newestfile[8:13]) + 1) else: small = sstripp(smallest()) return openPH5(small) elif (size_of_data + size_of_exrec) > MAX_PH5_BYTES: newestfile = "miniPH5_{0:05d}".format(int(newestfile[8:13]) + 1) return openPH5(newestfile) def getLOG(): ''' Create a open a new and unique header file under Maps_g/Das_g_ /Sta_g_ /Evt_g_ /Hdr_a_ ''' current_das = EXREC.ph5_g_receivers.get_das_name() g = EXREC.ph5_g_maps.newdas('Das_g_', current_das) EXREC.ph5_g_maps.setcurrent(g) try: name = EXREC.ph5_g_maps.nextarray('Hdr_a_') except TypeError: return None log_array = EXREC.ph5_g_maps.newearray( name, description="SEG-D header entries: {0}".format(Das)) return log_array, name def process_traces(rh, th, tr): ''' Inputs: rh -> reel headers th -> first trace header tr -> trace data ''' def get_true_channel(SD): if SD.manufacturer == 'FairfieldNodal': ''' Orientation Code: chan 1 -> N Changed to '1' chan 2 -> E Changed to '2' chan 3 -> Z or chan 1 -> Z ''' # Find channel by mapping to streamer_cable_number if rh.channel_set_to_streamer_cable_map[ th.trace_header.channel_set] \ == 0: true_channel = th.trace_header.channel_set else: true_channel = rh.channel_set_to_streamer_cable_map[ th.trace_header.channel_set] if SD.chan_sets_per_scan >= 3: OM = {1: '1', 2: '2', 3: 'Z'} elif SD.chan_sets_per_scan == 1: OM = {1: 'Z'} else: OM = None if OM is None: orientation_code = true_channel else: orientation_code = OM[true_channel] elif SD.manufacturer == 'SmartSolo': channel_list = ['N', 'E', 'Z'] filename_parts = SD.name().split('.') found_channel = False true_channel = 0 orientation_code = None for p in filename_parts: if p in channel_list: orientation_code = p true_channel = channel_list.index(p) + 1 found_channel = True break if not found_channel: LOGGER.warning( "Neither E, N, nor Z can't be found in filename") return true_channel, orientation_code def get_raw_file_name(SD): filename = SD.name() if SD.manufacturer == 'SmartSolo': channel_list = ['E', 'N', 'Z'] filename_parts = filename.split('.') chanidx = -1 for c in channel_list: try: chanidx = filename_parts.index(c) break except ValueError: pass """ Shorten filename to fit the field: remove 'segd' at the end remove second and decimal of second add . in front of chan to show somethings have been removed Ex: filename: 453005483.1.2021.03.15.16.00.00.000.E.segd => shorten: 453005483.1.2021.03.15.16.00..E """ filename_parts.remove('segd') filename_parts[chanidx] = '.' + filename_parts[chanidx] filename_parts.pop(chanidx - 1) # remove decimal part filename_parts.pop(chanidx - 2) # remove second part filename = '.'.join(filename_parts) return os.path.basename(filename) def process_das(): global LSB ''' ''' p_das_t = {} ''' Das_t receiver_table_n_i response_table_n_i time_table_n_i time/ type_s epoch_l ascii_s micro_seconds_i event_number_i channel_number_i sample_rate_i sample_rate_multiplier_i sample_count_i stream_number_i raw_file_name_s array_name_data_a array_name_SOH_a array_name_event_a array_name_log_a ''' # Check to see if group exists for this das, if not build it das_g, das_t, receiver_t, time_t = EXREC.ph5_g_receivers.newdas( str(Das)) # Build maps group (XXX) EXREC.ph5_g_maps.newdas('Das_g_', str(Das)) if rh.general_header_blocks[0].chan_sets_per_scan == 1: # Single channel p_das_t['receiver_table_n_i'] = 0 # 0 -> Z elif rh.general_header_blocks[0].chan_sets_per_scan >= 3: # 1 (N node) -> 1 (N PH5), 2 (E Node)-> 2 (E PH5), 3 (Z Node) -> 0 # (Z PH5) M = {1: 1, 2: 2, 3: 0} p_das_t['receiver_table_n_i'] = M[get_true_channel(SD)[0]] else: p_das_t['receiver_table_n_i'] = 0 # 0 -> Z LOGGER.warning( "Header channel set: {0}. Check Receiver_t entries!".format( th.trace_header.channel_set)) p_das_t['response_table_n_i'] = None p_das_t['time_table_n_i'] = 0 p_das_t['time/type_s'] = 'BOTH' try: trace_epoch = th.trace_epoch except Exception as e: LOGGER.warning("Failed to read shot epoch: {0}.".format(e.message)) trace_epoch = 0. f, i = modf(trace_epoch / 1000000.) p_das_t['time/epoch_l'] = int(i) p_das_t['time/ascii_s'] = time.ctime(p_das_t['time/epoch_l']) p_das_t['time/micro_seconds_i'] = int(f * 1000000.) p_das_t['event_number_i'] = th.event_number p_das_t['channel_number_i'] = get_true_channel(SD)[0] p_das_t['sample_rate_i'] = SD.sample_rate p_das_t['sample_rate_i'] = SD.sample_rate p_das_t['sample_rate_multiplier_i'] = 1 p_das_t['sample_count_i'] = len(tr) p_das_t['stream_number_i'] = 1 p_das_t['raw_file_name_s'] = get_raw_file_name(SD) p_das_t['array_name_data_a'] = EXREC.ph5_g_receivers.nextarray( 'Data_a_') p_response_t = {} ''' n_i gain/ units_s value_i bit_weight/ units_s value_d response_file_a ''' try: LSB = LSB_MAP[th.preamp_gain_db] n_i = RESP.match(LSB, th.preamp_gain_db) except Exception as e: n_i = 0 p_response_t['gain/units_s'] = 'dB' try: p_response_t['gain/value_i'] = th.preamp_gain_db except Exception as e: LOGGER.warning( "Failed to read trace pre amp gain: {0}.".format(e.message)) p_response_t['gain/value_i'] = 0. p_response_t['gain/units_s'] = 'Unknown' p_response_t['bit_weight/units_s'] = 'mV/count' p_response_t['bit_weight/value_d'] = LSB if n_i < 0: n_i = RESP.next_i() p_response_t['n_i'] = n_i EX.ph5_g_responses.populateResponse_t(p_response_t) RESP.update() p_das_t['response_table_n_i'] = n_i EXREC.ph5_g_receivers.populateDas_t(p_das_t) des = "Epoch: " + str(p_das_t['time/epoch_l']) + \ " Channel: " + str(p_das_t['channel_number_i']) # Write trace data here try: if SD.manufacturer == 'FairfieldNodal': # Convert to counts tr_counts = tr / LSB EXREC.ph5_g_receivers.newarray( p_das_t['array_name_data_a'], tr_counts, dtype='int32', description=des) elif SD.manufacturer == 'SmartSolo': # SmartSolo is recorded by mV EXREC.ph5_g_receivers.newarray( p_das_t['array_name_data_a'], tr, dtype='float32', description=des) except Exception as e: # Failed, leave as float LOGGER.warning( "Could not convert trace to counts. max: {1},\ min {2}\n{0}".format( e.message, tr.max(), tr.min())) p_response_t['bit_weight/value_d'] = 1. EXREC.ph5_g_receivers.newarray( p_das_t['array_name_data_a'], tr, dtype='float32', description=des) update_index_t_info(p_das_t['time/epoch_l'] + ( float(p_das_t['time/micro_seconds_i']) / 1000000.), p_das_t['sample_count_i'], p_das_t['sample_rate_i'] / p_das_t[ 'sample_rate_multiplier_i']) def process_array(): p_array_t = {} def seen_sta(): if line not in ARRAY_T: return False elif Das not in ARRAY_T[line]: return False elif dtime not in ARRAY_T[line][Das]: return False elif chan_set in ARRAY_T[line][Das][dtime]: if not ARRAY_T[line][Das][dtime][chan_set]: return False else: return True ''' deploy_time/ type_s epoch_l ascii_s micro_seconds_i pickup_time/ type_s epoch_l ascii_s micro_seconds_i id_s das/ manufacturer_s model_s serial_number_s notes_s sensor/ manufacturer_s model_s serial_number_s notes_s location/ coordinate_system_s projection_s ellipsoid_s X/ units_s value_d Y/ units_s value_d Z/ units_s value_d description_s channel_number_i description_s sample_rate_i sample_rate_multiplier_i ''' ''' Band Code: 1000 <= G < 5000 250 <= D < 1000 80 <= E < 250 10 <= S < 80 ''' if SD.sample_rate >= 1000: band_code = 'G' elif SD.sample_rate >= 250 and SD.sample_rate < 1000: band_code = 'D' elif SD.sample_rate >= 80 and SD.sample_rate < 250: band_code = 'E' elif SD.sample_rate >= 10 and SD.sample_rate < 80: band_code = 'S' else: band_code = 'X' ''' Instrument Code: Changed from H to P at request from Akram ''' instrument_code = 'P' chan_set, orientation_code = get_true_channel(SD) p_array_t['seed_band_code_s'] = band_code p_array_t['seed_instrument_code_s'] = instrument_code p_array_t['seed_orientation_code_s'] = orientation_code p_array_t['seed_station_name_s'] = Das.split('X')[1] p_array_t['sample_rate_i'] = SD.sample_rate p_array_t['sample_rate_multiplier_i'] = 1 p_array_t['deploy_time/type_s'] = 'BOTH' try: f, i = modf(SD.deploy_epoch) except Exception as e: LOGGER.warning( "Failed to read deploy epoch: {0}.".format( e.message)) f = i = 0. p_array_t['deploy_time/epoch_l'] = int(i) p_array_t['deploy_time/ascii_s'] = time.ctime(int(i)) p_array_t['deploy_time/micro_seconds_i'] = int(f * 1000000.) p_array_t['pickup_time/type_s'] = 'BOTH' try: f, i = modf(SD.pickup_epoch) except Exception as e: LOGGER.warning( "Failed to read pickup epoch: {0}.".format( e.message)) f = i = 0. p_array_t['pickup_time/epoch_l'] = int(i) p_array_t['pickup_time/ascii_s'] = time.ctime(int(i)) p_array_t['pickup_time/micro_seconds_i'] = int(f * 1000000.) p_array_t['id_s'] = Das.split('X')[1] # use manu_code to decide SMARTSOLO dasmodel p_array_t['das/manufacturer_s'] = SD.manufacturer try: if SD.manufacturer == "SmartSolo": p_array_t['das/model_s'] = 'SmartSolo IGU16' elif SD.manufacturer == "FairfieldNodal": if SD.chan_sets_per_scan >= 3: p_array_t['das/model_s'] = "ZLAND 3C" else: p_array_t['das/model_s'] = 'ZLAND 1C' except Exception as e: LOGGER.warning( "Failed to read channel sets per scan: {0}.".format(e.message)) p_array_t['das/model_s'] = 'zland-[13]C' p_array_t['das/serial_number_s'] = Das p_array_t[ 'das/notes_s'] = "manufacturer and model not read from data file." p_array_t['sensor/manufacturer_s'] = 'Geo Space' p_array_t['sensor/model_s'] = 'GS-30CT' p_array_t[ 'sensor/notes_s'] = "manufacturer and model not read from file." if SD.manufacturer == 'FairfieldNodal': if TSPF: p_array_t['location/description_s'] = ( "Converted from Texas State Plane FIPS zone 4202") elif UTM: p_array_t['location/description_s'] = ( "Converted from UTM Zone {0}".format(UTM)) else: p_array_t['location/description_s'] = "Read from SEG-D as is." else: p_array_t['location/description_s'] = "Read from SEG-D as is." p_array_t['location/coordinate_system_s'] = 'geographic' p_array_t['location/projection_s'] = 'WGS84' p_array_t['location/X/units_s'] = 'degrees' p_array_t['location/X/value_d'] = LON p_array_t['location/Y/units_s'] = 'degrees' p_array_t['location/Y/value_d'] = LAT p_array_t['location/Z/units_s'] = 'unknown' try: p_array_t['location/Z/value_d'] = th.ele / 10. except Exception as e: LOGGER.warning( "Failed to read elevation: {0}.".format(e.message)) p_array_t['location/Z/value_d'] = 0. p_array_t['channel_number_i'] = chan_set try: p_array_t['description_s'] = "DAS: {0}, Node ID: {1}".format( Das, SD.id_number) except Exception as e: LOGGER.warning( "Failed to read ID number: {0}.".format( e.message)) try: line = th.line_number if line == -1: line = 1 except Exception as e: LOGGER.warning("Failed to read line number: {0}.".format( e.message)) line = 0 dtime = p_array_t['deploy_time/epoch_l'] if line not in ARRAY_T: ARRAY_T[line] = {} if Das not in ARRAY_T[line]: ARRAY_T[line][Das] = {} if dtime not in ARRAY_T[line][Das]: ARRAY_T[line][Das][dtime] = {} if chan_set not in ARRAY_T[line][Das][dtime]: ARRAY_T[line][Das][dtime][chan_set] = [] if not seen_sta(): ARRAY_T[line][Das][dtime][chan_set].append(p_array_t) elif SD.manufacturer == "SmartSolo": # need to update the row after each trace is readed # because the pickup time will be # updated depend on trace_epoch ARRAY_T[line][Das][dtime][chan_set][-1] = p_array_t def process_reel_headers(): global RH ''' Save receiver record header information in\ Maps_g/Das_g_xxxxxxx/Hdr_a_xxxx file ''' def process(hdr, header_type): ll = [{'FileType': 'SEG-D', 'HeaderType': header_type}, hdr] log_array.append(json.dumps( ll, sort_keys=True, indent=4).split('\n')) log_array, log_name = getLOG() for i in range(len(rh.general_header_blocks)): ht = "General {0}".format(i+1) process(rh.general_header_blocks[i], ht) # Channel set descriptors for i in range(len(rh.channel_set_descriptor)): ht = "Channel Set {0}".format(i + 1) process(rh.channel_set_descriptor, ht) for i in range(len(rh.extended_headers)): ht = "Extended {0}".format(i) process(rh.extended_headers[i], ht) # External header process(rh.external_header, "External Header") # External header shot for i in range(len(rh.external_header_shot)): ht = "External Shot {0}".format(i + 1) process(rh.external_header_shot[i], ht) RH = True def process_trace_header(): ''' Save trace header information in\ Maps_g/Das_g_xxxxxxx/Hdr_a_xxxx file ''' def process(hdr, header_type): global TRACE_JSON ll = [{'FileType': 'SEG-D', 'HeaderType': 'trace', 'HeaderSubType': header_type}, hdr] TRACE_JSON.append(json.dumps( ll, sort_keys=True, indent=4).split('\n')) process(th.trace_header, "Trace Header") for i in range(len(th.trace_header_N)): ht = "Header N-{0}".format(i + 1) process(th.trace_header_N[i], ht) process_das() process_array() if not RH: process_reel_headers() process_trace_header() def write_arrays(SD, Array_t): ''' Write /Experiment_g/Sorts_g/Array_t_xxx ''' lines = sorted(Array_t.keys()) # Loop through arrays/lines for line in lines: name = "Array_t_{0:03d}".format(int(line)) a = EX.ph5_g_sorts.newArraySort(name) das_list = sorted(Array_t[line].keys()) # Loop through das_list for das in das_list: if SD.manufacturer == 'SmartSolo': Array_t[line][das] = combine_array_entries( name, Array_t[line][das]) dtimes = sorted(Array_t[line][das].keys()) # Loop through deploying times for dtime in dtimes: chan_sets = sorted(Array_t[line][das][dtime].keys()) # Loop through channel sets for chan_set in chan_sets: try: for array_t in Array_t[line][das][dtime][chan_set]: columns.populate(a, array_t) except Exception as e: print(e.message) def combine_array_entries(aName, aOfDas): """ :para aName: "Array_t_xxx" to add to warning message :param aOfDas: {dtime: {c:[entry]}} in which each dtime is an entry :return aOnDeployTimes which has the same structure of aOfDas but the times are combined if gap less than 2m """ aOnChannels = {} # {c_i: list of entries according to dtimes' order} dtimes = sorted(aOfDas.keys()) for dtime in dtimes: chan_sets = sorted(aOfDas[dtime].keys()) for c in chan_sets: if c not in aOnChannels: aOnChannels[c] = [] for entry in aOfDas[dtime][c]: aOnChannels[c].append(entry) # same structure of aOfDas but the times are combined if deploy time of # the current entry is exactly the same as the pickup time of the previous # one: # {dtime: {c:[combined entry] } } aOnDeployTimes = {} for c in aOnChannels: prevPickupTime = 0 currDeployTime = 0 dEntries = aOnChannels[c] for d in dEntries: deployTime = d['deploy_time/epoch_l'] if deployTime > prevPickupTime: currDeployTime = deployTime if deployTime not in aOnDeployTimes: aOnDeployTimes[deployTime] = {} if c not in aOnDeployTimes[deployTime]: aOnDeployTimes[deployTime][c] = [d] else: uEntry = aOnDeployTimes[currDeployTime][c][0] msg = "Das %s - %s - station %s - chan %s: " % ( d['das/serial_number_s'], aName, d['id_s'], d['channel_number_i']) msg += "Combine %s" msg += ("entry [%s - %s] into previous entry [%s - %s]" % (d['deploy_time/ascii_s'], d['pickup_time/ascii_s'], uEntry['deploy_time/ascii_s'], uEntry['pickup_time/ascii_s'])) descr = "" if deployTime < prevPickupTime: descr = "overlapping " msg %= descr LOGGER.warning(msg) uEntry['pickup_time/epoch_l'] = d['pickup_time/epoch_l'] uEntry['pickup_time/ascii_s'] = d['pickup_time/ascii_s'] uEntry['pickup_time/micro_seconds_i'] = d['pickup_time/' 'micro_seconds_i'] prevPickupTime = d['pickup_time/epoch_l'] return aOnDeployTimes def writeINDEX(): ''' Write /Experiment_g/Receivers_g/Index_t ''' global DAS_INFO, MAP_INFO, INDEX_T_DAS, INDEX_T_MAP dass = sorted(DAS_INFO.keys()) for das in dass: di = {} mi = {} start = sys.maxsize stop = 0. dm = [(d, m) for d in DAS_INFO[das] for m in MAP_INFO[das]] for d, m in dm: di['external_file_name_s'] = d.ph5file mi['external_file_name_s'] = m.ph5file di['hdf5_path_s'] = d.ph5path mi['hdf5_path_s'] = m.ph5path di['serial_number_s'] = das mi['serial_number_s'] = das if d.startepoch < start: start = d.startepoch if d.stopepoch > stop: stop = d.stopepoch di['time_stamp/epoch_l'] = int(time.time()) mi['time_stamp/epoch_l'] = int(time.time()) di['time_stamp/micro_seconds_i'] = 0 mi['time_stamp/micro_seconds_i'] = 0 di['time_stamp/type_s'] = 'BOTH' mi['time_stamp/type_s'] = 'BOTH' di['time_stamp/ascii_s'] = time.ctime(di['time_stamp/epoch_l']) mi['time_stamp/ascii_s'] = time.ctime(mi['time_stamp/epoch_l']) di['start_time/epoch_l'] = int(modf(start)[1]) mi['start_time/epoch_l'] = int(modf(start)[1]) di['start_time/micro_seconds_i'] = int(modf(start)[0] * 1000000) mi['start_time/micro_seconds_i'] = int(modf(start)[0] * 1000000) di['start_time/type_s'] = 'BOTH' mi['start_time/type_s'] = 'BOTH' di['start_time/ascii_s'] = time.ctime(start) mi['start_time/ascii_s'] = time.ctime(start) di['end_time/epoch_l'] = modf(stop)[1] mi['end_time/epoch_l'] = modf(stop)[1] di['end_time/micro_seconds_i'] = int(modf(stop)[0] * 1000000) mi['end_time/micro_seconds_i'] = int(modf(stop)[0] * 1000000) di['end_time/type_s'] = 'BOTH' mi['end_time/type_s'] = 'BOTH' di['end_time/ascii_s'] = time.ctime(stop) mi['end_time/ascii_s'] = time.ctime(stop) EX.ph5_g_receivers.populateIndex_t(di) EX.ph5_g_maps.populateIndex_t(mi) rows, keys = EX.ph5_g_receivers.read_index() INDEX_T_DAS = Rows_Keys(rows, keys) rows, keys = EX.ph5_g_maps.read_index() INDEX_T_MAP = Rows_Keys(rows, keys) DAS_INFO = {} MAP_INFO = {} def txncsptolatlon(northing, easting): ''' Sweetwater Convert texas state plane coordinates in feet to geographic coordinates, WGS84. ''' # Texas NC state plane feet Zone 4202 sp = Proj(init='epsg:32038') # WGS84, geographic wgs = Proj(init='epsg:4326', proj='latlong') # Texas SP coordinates: survey foot is 1200/3937 meters lon, lat = transform(sp, wgs, easting * 0.30480060960121924, northing * 0.30480060960121924) return lat, lon def utmcsptolatlon(northing, easting): ''' Mount Saint Helens Convert UTM to geographic coordinates, WGS84. ''' # UTM new_UTM = re.split(r'(\d+)', UTM) utmzone = str(new_UTM[1]) if str(new_UTM[2]).upper() == 'N': NS = 'north' elif str(new_UTM[2]).upper() == 'S': NS = 'south' else: NS = 'north' utmc = Proj("+proj=utm +zone="+utmzone+" +"+NS+" +ellps=WGS84") print # WGS84, geographic wgs = Proj(init='epsg:4326', proj='latlong') # lon, lat = transform(utmc, wgs, easting, northing) return lat, lon def get_latlon(manu, th): try: if manu == 'FairfieldNodal': if UTM: # UTM LAT, LON = utmcsptolatlon(th.lat/10., th.lon/10.) elif TSPF: # Texas State Plane coordinates LAT, LON = txncsptolatlon(th.lat/10., th.lon/10.) else: LAT = th.lat / 10. LON = th.lon / 10. elif manu == 'SmartSolo': LAT = th.lat LON = th.lon except Exception as e: LOGGER.warning( "Failed to convert location: {0}.\n".format( e.message)) return LAT, LON def main(): import time then = time.time() from numpy import append as npappend def prof(): global RESP, INDEX_T_DAS, INDEX_T_MAP, SD, EXREC, MINIPH5, Das, SIZE,\ ARRAY_T, RH, LAT, LON, F, TRACE_JSON, APPEND MINIPH5 = None ARRAY_T = {} def get_das(sd, warn=False): if sd.manufacturer == 'FairfieldNodal': # Return line_station or das#[-9:] try: das = "{0}X{1}".format( sd.reel_headers.extended_headers[2].line_number, sd.reel_headers.extended_headers[2].receiver_point) except Exception: try: das = "{0}X{1}".format( sd.reel_headers.external_header.receiver_line, sd.reel_headers.external_header.receiver_point) except Exception: das = "sn" + \ str(sd.reel_headers.general_header_blocks[0]. manufactures_sn) if das == 0: das = "id" + \ str(sd.reel_headers .extended_headers[0].id_number)[-9:] elif sd.manufacturer == 'SmartSolo': line_number = sd.trace_headers.line_number receiver_point = sd.trace_headers.receiver_point if line_number == -1: if warn: LOGGER.warning( "Line number is using invalid default value -1. " "Using 1 instead.") line_number = 1 if receiver_point == -1: if warn: LOGGER.warning( "Receiver point (stationID) is using invalid " "default value -1. Using 1 instead.") receiver_point = 1 das = "{0}X{1}".format(line_number, receiver_point) # das = sd.id_number return das def get_node(sd): # Return node part number, node id, and number of channels pn = None # Part Number id = None # Node ID nc = None # Number of channel sets try: nc = sd.reel_headers.general_header_blocks[0][ 'chan_sets_per_scan'] id = sd.id_number if sd.manufacturer == 'FairfieldNodal': pn = sd.reel_headers.extended_headers[0]['part_number'] except Exception: pass return pn, id, nc try: get_args() except Exception as err_msg: LOGGER.error(err_msg) return 1 initializeExperiment() LOGGER.info("segd2ph5 {0}".format(PROG_VERSION)) LOGGER.info("{0}".format(sys.argv)) if len(FILES) > 0: RESP = Resp(EX.ph5_g_responses) rows, keys = EX.ph5_g_receivers.read_index() INDEX_T_DAS = Rows_Keys(rows, keys) rows, keys = EX.ph5_g_maps.read_index() INDEX_T_MAP = Rows_Keys(rows, keys) for f in FILES: F = f traces = [] TRACE_JSON = [] try: SIZE = os.path.getsize(f) except Exception as e: LOGGER.error("Failed to read {0}, {1}.\ Skipping...\n".format(f, str(e.message))) continue try: segd_reader = get_segdreader(f, MANUFACTURERS_CODE) except Exception: continue SD = segd_reader.Reader(infile=f) LAT = None LON = None RH = False try: SD.process_general_headers() SD.process_channel_set_descriptors() SD.process_extended_headers() SD.process_external_headers() if SD.manufacturer == 'SmartSolo': SD.process_trace_headers() except segdreader.InputsError as e: LOGGER.error( "Possible bad SEG-D file -- {0}".format( "".join(e.message))) continue nleft = APPEND Das = get_das(SD, warn=True) if not Das.isalnum(): LOGGER.error( "DAS %s is not alphanumeric. Can't process." % Das) return 1 part_number, node_id, number_of_channels = get_node(SD) EXREC = get_current_data_only(SIZE, Das) LOGGER.info(":<Processing>: {0}\n".format(SD.name())) LOGGER.info( "Processing: {0}... Size: {1}\n".format(SD.name(), SIZE)) if EXREC.filename != MINIPH5: LOGGER.info("Opened: {0}...\n".format(EXREC.filename)) if node_id is None: node_id_str = '' else: node_id_str = ', Node ID: %s' % node_id LOGGER.info( "DAS: {0}{1}, PN: {2}, Channels: {3}".format( Das, node_id_str, part_number, number_of_channels)) MINIPH5 = EXREC.filename n = 0 trace_index = 0 trace_headers_list = [] while True: if SD.isEOF(): if n != 0: thl = [] chan_set = None t = None new_traces = [] for T in traces: thl.append(T.headers) if chan_set is None: chan_set = T.headers.trace_header.channel_set if chan_set == T.headers.trace_header.channel_set: if isinstance(t, type(None)): t = T.trace else: t = npappend(t, T.trace) else: new_traces.append(T) traces = new_traces process_traces(SD.reel_headers, thl[0], t) if DAS_INFO: writeINDEX() break try: trace, cs = SD.process_trace(trace_index) trace_index += 1 except segdreader.InputsError as e: LOGGER.error("{0}\n".format(F)) LOGGER.error( "Possible bad SEG-D file -- {0}".format( "".join(e.message))) break if not LAT and not LON: LAT, LON = get_latlon(SD.manufacturer, SD.trace_headers) trace_headers_list.append(SD.trace_headers) if n == 0: traces.append(Trace(trace, SD.trace_headers)) n = 1 Das = get_das(SD) else: traces.append(Trace(trace, SD.trace_headers)) if n >= nleft or EVERY is True: thl = [] chan_set = None chan_set_next = None t = None new_traces = [] # Need to check for gaps here! for T in traces: thl.append(T.headers) if chan_set is None: chan_set = T.headers.trace_header.channel_set if chan_set == T.headers.trace_header.channel_set: if isinstance(t, type(None)): t = T.trace else: t = npappend(t, T.trace) else: new_traces.append(T) if chan_set_next is None: chan_set_next =\ T.headers.trace_header.channel_set traces = new_traces process_traces(SD.reel_headers, thl[0], t) if new_traces: nleft = APPEND - len(new_traces) else: nleft = APPEND chan_set = chan_set_next chan_set_next = None if DAS_INFO: writeINDEX() n = 0 trace_headers_list = [] continue n += 1 update_external_references() if TRACE_JSON: log_array, name = getLOG() for line in TRACE_JSON: log_array.append(line) LOGGER.info(":<Finished>: {0}\n".format(F)) write_arrays(SD, ARRAY_T) seconds = time.time() - then try: EX.ph5close() EXREC.ph5close() except Exception as e: LOGGER.warning("{0}\n".format("".join(e.message))) LOGGER.info("Done...{0:b}".format(int(seconds / 6.))) logging.shutdown() prof() if __name__ == '__main__': main()
the-stack_0_14944
import os import sys def ProcessFile(fileObj): result = "" line = fileObj.readline() #skip to related materials section while not("=Related Material" in line or "= Related Material" in line or "=Manual" in line or "==Manual" in line or "= Manual" in line or "== Manual" in line or line == ""): result += line line = fileObj.readline() while not(line == ""): if not(line[0] == "=" or line[0] == " " or line[0] == "\n" or line[0] == "-"): line = "- " + line result += line line = fileObj.readline() return result # Set the directory you want to start from rootDir = '.' translatedDir = "I:\\github\\translated_files" for dirName, subdirList, fileList in os.walk(rootDir): #print('Found directory: %s' % dirName) for fname in fileList: filePath = dirName + "\\" + fname fileCopyPath = dirName + "\\" + fname if(".remarkup" in filePath): print("processing: " + filePath) fileObj = open(filePath, "r") result = ProcessFile(fileObj) result += " \n " fileObj.close() fileObj = open(fileCopyPath, "w") fileObj.write(result) fileObj.close()
the-stack_0_14945
from django.http import Http404 from django.conf import settings from django.shortcuts import get_list_or_404 from rest_framework.generics import RetrieveAPIView, DestroyAPIView, GenericAPIView from rest_framework.response import Response from client.authentication import ClientSenderIdAuthentication from submission.models import Submission, Sender from submission.constants import ( ACTION_NAME_EMAIL, ACTION_NAME_GOV_NOTIFY_EMAIL, ACTION_NAME_PARDOT, ACTION_NAME_ZENDESK, ) class TestAPIView(GenericAPIView): authentication_classes = [ClientSenderIdAuthentication] def dispatch(self, *args, **kwargs): if not settings.FEATURE_TEST_API_ENABLED: raise Http404 return super().dispatch(*args, **kwargs) class SubmissionsTestAPIView(TestAPIView, DestroyAPIView, RetrieveAPIView): queryset = Submission.objects.all() http_method_names = ('delete', 'get',) @staticmethod def data_and_meta(submission: Submission): return { 'data': dict(submission.data), 'meta': dict(submission.meta), 'is_sent': submission.is_sent, 'form_url': submission.form_url, } def get_submissions(self, email_address): results = [] for submission in self.queryset.all(): if submission.meta['action_name'] == ACTION_NAME_PARDOT: if submission.data['email'] == email_address: results.append(self.data_and_meta(submission)) if submission.meta['action_name'] in [ ACTION_NAME_GOV_NOTIFY_EMAIL, ACTION_NAME_ZENDESK ]: if submission.meta['email_address'] == email_address: results.append(self.data_and_meta(submission)) if submission.meta['action_name'] == ACTION_NAME_EMAIL: if email_address in submission.meta['recipients']: results.append(self.data_and_meta(submission)) return results def get(self, request, *args, **kwargs): email_address = kwargs['email_address'] meta = self.get_submissions(email_address) return Response(meta) if meta else Response(status=404) def delete(self, request, **kwargs): test_email_pattern = r'^test\+(.*)@directory\.uktrade\.io' try: test_submissions = get_list_or_404( Submission, sender__email_address__regex=test_email_pattern, ) for submission in test_submissions: submission.delete() except Http404: try: test_email_actions = get_list_or_404( Submission, meta__recipients__0__regex=test_email_pattern, ) for email_notification in test_email_actions: email_notification.delete() except Http404: try: test_zendesk_actions = get_list_or_404( Submission, meta__email_address__regex=test_email_pattern, ) for zendesk_action in test_zendesk_actions: zendesk_action.delete() except Http404: test_gov_notify_actions = get_list_or_404( Submission, meta__sender__email_address__regex=test_email_pattern, ) for gov_notify_action in test_gov_notify_actions: gov_notify_action.delete() return Response(status=204) class SendersTestAPIView(TestAPIView, DestroyAPIView): queryset = Sender.objects.all() http_method_names = 'delete' def delete(self, request, **kwargs): test_email_pattern = r'^test\+(.*)@directory\.uktrade\.io' test_senders = get_list_or_404( Sender, email_address__regex=test_email_pattern, ) for sender in test_senders: sender.delete() return Response(status=204)
the-stack_0_14948
# code adpated from https://github.com/m-lundberg/simple-pid import time import warnings def _clamp(value, limits): lower, upper = limits if value is None: return None elif (upper is not None) and (value > upper): return upper elif (lower is not None) and (value < lower): return lower return value try: # Get monotonic time to ensure that time deltas are always positive _current_time = time.monotonic except AttributeError: # time.monotonic() not available (using python < 3.3), fallback to time.time() _current_time = time.time warnings.warn('time.monotonic() not available in python < 3.3, using time.time() as fallback') class PID(object): """A simple PID controller.""" def __init__( self, kp=1.0, ki=0.0, kd=0.0, setpoint=0, sample_time=0.01, output_limits=(None, None), auto_mode=True, proportional_on_measurement=False, error_map=None, ): """ Initialize a new PID controller. :param kp: The value for the proportional gain kp :param ki: The value for the integral gain ki :param kd: The value for the derivative gain kd :param setpoint: The initial setpoint that the PID will try to achieve :param sample_time: The time in seconds which the controller should wait before generating a new output value. The PID works best when it is constantly called (eg. during a loop), but with a sample time set so that the time difference between each update is (close to) constant. If set to None, the PID will compute a new output value every time it is called. :param output_limits: The initial output limits to use, given as an iterable with 2 elements, for example: (lower, upper). The output will never go below the lower limit or above the upper limit. Either of the limits can also be set to None to have no limit in that direction. Setting output limits also avoids integral windup, since the integral term will never be allowed to grow outside of the limits. :param auto_mode: Whether the controller should be enabled (auto mode) or not (manual mode) :param proportional_on_measurement: Whether the proportional term should be calculated on the input directly rather than on the error (which is the traditional way). Using proportional-on-measurement avoids overshoot for some types of systems. :param error_map: Function to transform the error value in another constrained value. """ self.kp, self.ki, self.kd = kp, ki, kd self.setpoint = setpoint self.sample_time = sample_time self._min_output, self._max_output = None, None self._auto_mode = auto_mode self.proportional_on_measurement = proportional_on_measurement self.error_map = error_map self._proportional = 0 self._integral = 0 self._derivative = 0 self._last_time = None self._last_output = None self._last_input = None self.output_limits = output_limits self.reset() def __call__(self, input_, dt=None): """ Update the PID controller. Call the PID controller with *input_* and calculate and return a control output if sample_time seconds has passed since the last update. If no new output is calculated, return the previous output instead (or None if no value has been calculated yet). :param dt: If set, uses this value for timestep instead of real time. This can be used in simulations when simulation time is different from real time. """ if not self.auto_mode: return self._last_output now = _current_time() if dt is None: dt = now - self._last_time if (now - self._last_time) else 1e-16 elif dt <= 0: raise ValueError('dt has negative value {}, must be positive'.format(dt)) if self.sample_time is not None and dt < self.sample_time and self._last_output is not None: # Only update every sample_time seconds return self._last_output # Compute error terms error = self.setpoint - input_ d_input = input_ - (self._last_input if (self._last_input is not None) else input_) # Check if must map the error if self.error_map is not None: error = self.error_map(error) # Compute the proportional term if not self.proportional_on_measurement: # Regular proportional-on-error, simply set the proportional term self._proportional = self.kp * error else: # Add the proportional error on measurement to error_sum self._proportional -= self.kp * d_input # Compute integral and derivative terms self._integral += self.ki * error * dt self._integral = _clamp(self._integral, self.output_limits) # Avoid integral windup self._derivative = -self.kd * d_input / dt # Compute final output output = self._proportional + self._integral + self._derivative output = _clamp(output, self.output_limits) # Keep track of state self._last_output = output self._last_input = input_ self._last_time = now return output def __repr__(self): return ( '{self.__class__.__name__}(' 'kp={self.kp!r}, ki={self.ki!r}, kd={self.kd!r}, ' 'setpoint={self.setpoint!r}, sample_time={self.sample_time!r}, ' 'output_limits={self.output_limits!r}, auto_mode={self.auto_mode!r}, ' 'proportional_on_measurement={self.proportional_on_measurement!r},' 'error_map={self.error_map!r}' ')' ).format(self=self) @property def components(self): """ The P-, I- and D-terms from the last computation as separate components as a tuple. Useful for visualizing what the controller is doing or when tuning hard-to-tune systems. """ return self._proportional, self._integral, self._derivative @property def tunings(self): """The tunings used by the controller as a tuple: (kp, ki, kd).""" return self.kp, self.ki, self.kd @tunings.setter def tunings(self, tunings): """Set the PID tunings.""" self.kp, self.ki, self.kd = tunings @property def auto_mode(self): """Whether the controller is currently enabled (in auto mode) or not.""" return self._auto_mode @auto_mode.setter def auto_mode(self, enabled): """Enable or disable the PID controller.""" self.set_auto_mode(enabled) def set_auto_mode(self, enabled, last_output=None): """ Enable or disable the PID controller, optionally setting the last output value. This is useful if some system has been manually controlled and if the PID should take over. In that case, disable the PID by setting auto mode to False and later when the PID should be turned back on, pass the last output variable (the control variable) and it will be set as the starting I-term when the PID is set to auto mode. :param enabled: Whether auto mode should be enabled, True or False :param last_output: The last output, or the control variable, that the PID should start from when going from manual mode to auto mode. Has no effect if the PID is already in auto mode. """ if enabled and not self._auto_mode: # Switching from manual mode to auto, reset self.reset() self._integral = last_output if (last_output is not None) else 0 self._integral = _clamp(self._integral, self.output_limits) self._auto_mode = enabled @property def output_limits(self): """ The current output limits as a 2-tuple: (lower, upper). See also the *output_limits* parameter in :meth:`PID.__init__`. """ return self._min_output, self._max_output @output_limits.setter def output_limits(self, limits): """Set the output limits.""" if limits is None: self._min_output, self._max_output = None, None return min_output, max_output = limits if (None not in limits) and (max_output < min_output): raise ValueError('lower limit must be less than upper limit') self._min_output = min_output self._max_output = max_output self._integral = _clamp(self._integral, self.output_limits) self._last_output = _clamp(self._last_output, self.output_limits) def reset(self): """ Reset the PID controller internals. This sets each term to 0 as well as clearing the integral, the last output and the last input (derivative calculation). """ self._proportional = 0 self._integral = 0 self._derivative = 0 self._integral = _clamp(self._integral, self.output_limits) self._last_time = _current_time() self._last_output = None self._last_input = None
the-stack_0_14950
""" sphinx.builders.texinfo ~~~~~~~~~~~~~~~~~~~~~~~ Texinfo builder. :copyright: Copyright 2007-2021 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import os from os import path from typing import Any, Dict, Iterable, List, Tuple, Union from docutils import nodes from docutils.frontend import OptionParser from docutils.io import FileOutput from sphinx import addnodes, package_dir from sphinx.application import Sphinx from sphinx.builders import Builder from sphinx.config import Config from sphinx.environment.adapters.asset import ImageAdapter from sphinx.errors import NoUri from sphinx.locale import _, __ from sphinx.util import logging, progress_message, status_iterator from sphinx.util.console import darkgreen # type: ignore from sphinx.util.docutils import new_document from sphinx.util.fileutil import copy_asset_file from sphinx.util.nodes import inline_all_toctrees from sphinx.util.osutil import SEP, ensuredir, make_filename_from_project from sphinx.writers.texinfo import TexinfoTranslator, TexinfoWriter logger = logging.getLogger(__name__) template_dir = os.path.join(package_dir, 'templates', 'texinfo') class TexinfoBuilder(Builder): """ Builds Texinfo output to create Info documentation. """ name = 'texinfo' format = 'texinfo' epilog = __('The Texinfo files are in %(outdir)s.') if os.name == 'posix': epilog += __("\nRun 'make' in that directory to run these through " "makeinfo\n" "(use 'make info' here to do that automatically).") supported_image_types = ['image/png', 'image/jpeg', 'image/gif'] default_translator_class = TexinfoTranslator def init(self) -> None: self.docnames = [] # type: Iterable[str] self.document_data = [] # type: List[Tuple[str, str, str, str, str, str, str, bool]] def get_outdated_docs(self) -> Union[str, List[str]]: return 'all documents' # for now def get_target_uri(self, docname: str, typ: str = None) -> str: if docname not in self.docnames: raise NoUri(docname, typ) else: return '%' + docname def get_relative_uri(self, from_: str, to: str, typ: str = None) -> str: # ignore source path return self.get_target_uri(to, typ) def init_document_data(self) -> None: preliminary_document_data = [list(x) for x in self.config.texinfo_documents] if not preliminary_document_data: logger.warning(__('no "texinfo_documents" config value found; no documents ' 'will be written')) return # assign subdirs to titles self.titles = [] # type: List[Tuple[str, str]] for entry in preliminary_document_data: docname = entry[0] if docname not in self.env.all_docs: logger.warning(__('"texinfo_documents" config value references unknown ' 'document %s'), docname) continue self.document_data.append(entry) # type: ignore if docname.endswith(SEP + 'index'): docname = docname[:-5] self.titles.append((docname, entry[2])) def write(self, *ignored: Any) -> None: self.init_document_data() for entry in self.document_data: docname, targetname, title, author = entry[:4] targetname += '.texi' direntry = description = category = '' if len(entry) > 6: direntry, description, category = entry[4:7] toctree_only = False if len(entry) > 7: toctree_only = entry[7] destination = FileOutput( destination_path=path.join(self.outdir, targetname), encoding='utf-8') with progress_message(__("processing %s") % targetname): appendices = self.config.texinfo_appendices or [] doctree = self.assemble_doctree(docname, toctree_only, appendices=appendices) with progress_message(__("writing")): self.post_process_images(doctree) docwriter = TexinfoWriter(self) settings = OptionParser( defaults=self.env.settings, components=(docwriter,), read_config_files=True).get_default_values() # type: Any settings.author = author settings.title = title settings.texinfo_filename = targetname[:-5] + '.info' settings.texinfo_elements = self.config.texinfo_elements settings.texinfo_dir_entry = direntry or '' settings.texinfo_dir_category = category or '' settings.texinfo_dir_description = description or '' settings.docname = docname doctree.settings = settings docwriter.write(doctree, destination) self.copy_image_files(targetname[:-5]) def assemble_doctree(self, indexfile: str, toctree_only: bool, appendices: List[str]) -> nodes.document: # NOQA self.docnames = set([indexfile] + appendices) logger.info(darkgreen(indexfile) + " ", nonl=True) tree = self.env.get_doctree(indexfile) tree['docname'] = indexfile if toctree_only: # extract toctree nodes from the tree and put them in a # fresh document new_tree = new_document('<texinfo output>') new_sect = nodes.section() new_sect += nodes.title('<Set title in conf.py>', '<Set title in conf.py>') new_tree += new_sect for node in tree.traverse(addnodes.toctree): new_sect += node tree = new_tree largetree = inline_all_toctrees(self, self.docnames, indexfile, tree, darkgreen, [indexfile]) largetree['docname'] = indexfile for docname in appendices: appendix = self.env.get_doctree(docname) appendix['docname'] = docname largetree.append(appendix) logger.info('') logger.info(__("resolving references...")) self.env.resolve_references(largetree, indexfile, self) # TODO: add support for external :ref:s for pendingnode in largetree.traverse(addnodes.pending_xref): docname = pendingnode['refdocname'] sectname = pendingnode['refsectname'] newnodes = [nodes.emphasis(sectname, sectname)] # type: List[nodes.Node] for subdir, title in self.titles: if docname.startswith(subdir): newnodes.append(nodes.Text(_(' (in '), _(' (in '))) newnodes.append(nodes.emphasis(title, title)) newnodes.append(nodes.Text(')', ')')) break else: pass pendingnode.replace_self(newnodes) return largetree def finish(self) -> None: self.copy_support_files() def copy_image_files(self, targetname: str) -> None: if self.images: stringify_func = ImageAdapter(self.app.env).get_original_image_uri for src in status_iterator(self.images, __('copying images... '), "brown", len(self.images), self.app.verbosity, stringify_func=stringify_func): dest = self.images[src] try: imagedir = path.join(self.outdir, targetname + '-figures') ensuredir(imagedir) copy_asset_file(path.join(self.srcdir, src), path.join(imagedir, dest)) except Exception as err: logger.warning(__('cannot copy image file %r: %s'), path.join(self.srcdir, src), err) def copy_support_files(self) -> None: try: with progress_message(__('copying Texinfo support files')): logger.info('Makefile ', nonl=True) copy_asset_file(os.path.join(template_dir, 'Makefile'), self.outdir) except OSError as err: logger.warning(__("error writing file Makefile: %s"), err) def default_texinfo_documents(config: Config) -> List[Tuple[str, str, str, str, str, str, str]]: # NOQA """ Better default texinfo_documents settings. """ filename = make_filename_from_project(config.project) return [(config.master_doc, filename, config.project, config.author, filename, 'One line description of project', 'Miscellaneous')] def setup(app: Sphinx) -> Dict[str, Any]: app.add_builder(TexinfoBuilder) app.add_config_value('texinfo_documents', default_texinfo_documents, None) app.add_config_value('texinfo_appendices', [], None) app.add_config_value('texinfo_elements', {}, None) app.add_config_value('texinfo_domain_indices', True, None, [list]) app.add_config_value('texinfo_show_urls', 'footnote', None) app.add_config_value('texinfo_no_detailmenu', False, None) return { 'version': 'builtin', 'parallel_read_safe': True, 'parallel_write_safe': True, }
the-stack_0_14951
import re, textwrap import z3 from .utils import logger from .z3api import z3utils ############################################################################### # Serialize Declarations ############################################################################### def smt_sort_str(sort): assert isinstance(sort, z3.SortRef), \ "Received {} of type {} != SortRef".format(c, type(c).__name__) if z3utils.is_array_sort(sort): return '(Array {} {})'.format(smt_sort_str(sort.domain()), smt_sort_str(sort.range())) else: return sort.name() def smt_const_decl(c): assert isinstance(c, z3.ExprRef), \ "Received {} of type {} != ExprRef".format(c, type(c).__name__) assert c.decl().arity() == 0, \ "Received {} of arity {} != 0 as const decl".format(c, c.decl().arity()) return '(declare-fun {} () {})'.format(c, smt_sort_str(c.decl().range())) def smt_list(ls): return '({})'.format(' '.join(ls)) def smt_fun_decl(f): assert isinstance(f, z3.FuncDeclRef), \ "Received {} of type {} != FuncDeclRef".format(f, type(f).__name__) dom = smt_list([smt_sort_str(f.domain(i)) for i in range(0,f.arity())]) rng = smt_sort_str(f.range()) return '(declare-fun {} {} {})'.format(f, dom, rng) def smt_sort_decl(sort): return '(declare-sort {} 0)'.format(sort) ############################################################################### # Serialize Expression ############################################################################### def translate_head_func_decl(expr): decl = expr.decl() assert isinstance(decl,z3.FuncDeclRef) s = str(decl) if s == '==': return '=' elif z3.is_K(expr): #s == 'K': # Const array => Must include type return '(as const {})'.format(smt_sort_str(decl.range())) elif z3.is_map(expr): # FIXME: Not general enough for data maps? return '(_ map {})'.format(str(z3.get_map_func(expr)).lower()) else: return s.lower() def expr_to_smt2_string(encoding, multi_line = True, indent = ' '): assert isinstance(encoding, z3.ExprRef), \ 'Received {} of type {} for ExprRef serialization'.format(encoding, type(encoding).__name__) if not multi_line: indent = '' pat = re.compile(r'\s+') def smtify(expr, children): if z3.is_var(expr): # TODO: Allow more than one quantified var? assert str(expr)=='Var(0)', \ 'Currently only support for expressions with a single quantified variable' return '_x_' elif z3.is_quantifier(expr): assert expr.num_vars() == 1, \ 'Currently only support for expressions with a single quantified variable' return '{}({} ((_x_ {}))\n{})'.format( 'forall' if expr.is_forall() else 'exists', expr.var_sort(0), children[0] ) else: #print('{!r} with children {!r}'.format(expr, children)) assert z3.is_app(expr) assert isinstance(encoding, z3.ExprRef) # TODO: Improve/simplify the whitespace handling sjoin = '\n' if multi_line else ' ' child_string = sjoin.join(children) if indent: child_string = textwrap.indent(child_string, indent) stripped = pat.sub(' ', child_string) while stripped[0] == ' ': stripped = stripped[1:] if len(stripped) < 20 or not multi_line: rep = stripped else: rep = '\n' + child_string res = '({} {})'.format( translate_head_func_decl(expr), rep) #print('Will return {}'.format(res)) return res def leaf_to_smt(leaf): #print('Leaf: {!r}'.format(leaf)) s = str(leaf) if (s == 'True' or s == 'False'): return s.lower() else: return s return z3utils.expr_fold(encoding, leaf_to_smt, smtify) ############################################################################### # Serialize Complete Encoding ############################################################################### def write_encoding_to_file(file, encoding, structs): with open(file, 'w') as f: f.write(serialize_encoding(encoding, structs)) def serialize_encoding(encoding, structs): assert(isinstance(encoding, z3.ExprRef)) # Const decls consts = z3utils.collect_consts(encoding) ordered = sorted(consts, key=z3utils.by_complexity) const_decls = [smt_const_decl(c) for c in ordered] # Generate sort-based decls based on the sorts for which we have constants sort_decls = [] fun_refs = [] # FIXME: With the lambda backend we declare functions for data structures that aren't used (because they all use the same sort, Int) => Determine based on parsed input instead? for struct in structs: sort = struct.sort if z3utils.contains_sort(consts, sort): if sort.to_declare(): logger.debug('Declaring uninterpreted sort {}'.format(sort)) sort_decls.append(sort) fun_refs += struct.heap_fns() main_decls = ([smt_sort_decl(s) for s in sort_decls] + [smt_fun_decl(f) for f in fun_refs]) # Full list of declarations decls = main_decls + const_decls # use our encoding of the assertion directly for readability smt2_encoding = expr_to_smt2_string(encoding) assertion = '(assert \n {}\n)'.format(smt2_encoding) checks = '(check-sat)\n(get-model)' # TODO: Re-enable set-logic for the quantified backend? logic = '' # '(set-logic AUFLIA)' + '\n' full_encoding = logic + '\n'.join(decls) + '\n' + assertion + '\n' + checks + '\n' return full_encoding
the-stack_0_14954
""" Defines different methods to configure a connection to a Kubernetes cluster. """ import asyncio import base64 import contextlib import copy import datetime import json import logging import os import kubernetes import kubernetes_asyncio from kubernetes_asyncio.client import Configuration from kubernetes_asyncio.config.kube_config import KubeConfigLoader, KubeConfigMerger from kubernetes_asyncio.config.google_auth import google_auth_credentials from kubernetes_asyncio.config.dateutil import parse_rfc3339 logger = logging.getLogger(__name__) tzUTC = datetime.timezone.utc class AutoRefreshKubeConfigLoader(KubeConfigLoader): """ Extends KubeConfigLoader, automatically attempts to refresh authentication credentials before they expire. """ def __init__(self, *args, **kwargs): super(AutoRefreshKubeConfigLoader, self).__init__(*args, **kwargs) self._retry_count = 0 self._max_retries = float("Inf") self.auto_refresh = True self.refresh_task = None self.last_refreshed = None self.token_expire_ts = None def __del__(self): self.auto_refresh = False def extract_oid_expiration_from_provider(self, provider): """ Extracts the expiration datestamp for the provider token Parameters ---------- provider : authentication provider dictionary. Returns ------- expires : expiration timestamp """ parts = provider["config"]["id-token"].split(".") if len(parts) != 3: raise ValueError("oidc: JWT tokens should contain 3 period-delimited parts") id_token = parts[1] # Re-pad the unpadded JWT token id_token += (4 - len(id_token) % 4) * "=" jwt_attributes = json.loads(base64.b64decode(id_token).decode("utf8")) expires = jwt_attributes.get("exp") return expires async def create_refresh_task_from_expiration_timestamp(self, expiration_timestamp): """ Takes an expiration timestamp, and creates a refresh task to ensure that the token does not expire. Parameters ---------- expiration_timestamp : time at which the current authentication token will expire Returns ------- N/A """ # Set our token expiry to be actual expiry - 20% expiry = parse_rfc3339(expiration_timestamp) expiry_delta = datetime.timedelta( seconds=(expiry - datetime.datetime.now(tz=tzUTC)).total_seconds() ) scaled_expiry_delta = datetime.timedelta( seconds=0.8 * expiry_delta.total_seconds() ) self.refresh_task = asyncio.create_task( self.refresh_after( when=scaled_expiry_delta.total_seconds(), reschedule_on_failure=True ), name="dask_auth_auto_refresh", ) self.last_refreshed = datetime.datetime.now(tz=tzUTC) self.token_expire_ts = self.last_refreshed + scaled_expiry_delta async def refresh_after(self, when, reschedule_on_failure=False): """ Refresh kuberenetes authentication Parameters ---------- when : Seconds before we should refresh. This should be set to some delta before the actual token expiration time, or you will likely see authentication race / failure conditions. reschedule_on_failure : If the refresh task fails, re-try in 30 seconds, until _max_retries is exceeded, then raise an exception. """ if not self.auto_refresh: return logger.debug( msg=f"Refresh_at coroutine sleeping for " f"{int(when // 60)} minutes {(when % 60):0.2f} seconds." ) try: await asyncio.sleep(when) if self.provider == "gcp": await self.refresh_gcp_token() elif self.provider == "oidc": await self.refresh_oid_token() return elif "exec" in self._user: logger.warning(msg="Auto-refresh doesn't support generic ExecProvider") return except Exception as e: logger.warning( msg=f"Authentication refresh failed for provider '{self.provider}.'", exc_info=e, ) if not reschedule_on_failure or self._retry_count > self._max_retries: raise logger.warning(msg=f"Retrying '{self.provider}' in 30 seconds.") self._retry_count += 1 self.refresh_task = asyncio.create_task(self.refresh_after(30)) async def refresh_oid_token(self): """ Adapted from kubernetes_asyncio/config/kube_config:_load_oid_token Refreshes the existing oid token, if necessary, and creates a refresh task that will keep the token from expiring. Returns ------- """ provider = self._user["auth-provider"] logger.debug("Refreshing OID token.") if "config" not in provider: raise ValueError("oidc: missing configuration") if (not self.token_expire_ts) or ( self.token_expire_ts <= datetime.datetime.now(tz=tzUTC) ): await self._refresh_oidc(provider) expires = self.extract_oid_expiration_from_provider(provider=provider) await self.create_refresh_task_from_expiration_timestamp( expiration_timestamp=expires ) self.token = "Bearer {}".format(provider["config"]["id-token"]) async def refresh_gcp_token(self): """ Adapted from kubernetes_asyncio/config/kube_config:load_gcp_token Refreshes the existing gcp token, if necessary, and creates a refresh task that will keep the token from expiring. Returns ------- """ if "config" not in self._user["auth-provider"]: self._user["auth-provider"].value["config"] = {} config = self._user["auth-provider"]["config"] if (not self.token_expire_ts) or ( self.token_expire_ts <= datetime.datetime.now(tz=tzUTC) ): logger.debug("Refreshing GCP token.") if self._get_google_credentials is not None: if asyncio.iscoroutinefunction(self._get_google_credentials): credentials = await self._get_google_credentials() else: credentials = self._get_google_credentials() else: # config is read-only. extra_args = " --force-auth-refresh" _config = { "cmd-args": config["cmd-args"] + extra_args, "cmd-path": config["cmd-path"], } credentials = await google_auth_credentials(_config) config.value["access-token"] = credentials.token config.value["expiry"] = credentials.expiry # Set our token expiry to be actual expiry - 20% await self.create_refresh_task_from_expiration_timestamp( expiration_timestamp=config.value["expiry"] ) if self._config_persister: self._config_persister(self._config.value) self.token = "Bearer %s" % config["access-token"] async def _load_oid_token(self): """ Overrides KubeConfigLoader implementation. Returns ------- Auth token """ await self.refresh_oid_token() return self.token async def load_gcp_token(self): """ Override KubeConfigLoader implementation so that we can keep track of the expiration timestamp and automatically refresh auth tokens. Returns ------- GCP access token """ await self.refresh_gcp_token() return self.token class AutoRefreshConfiguration(Configuration): """ Extends kubernetes_async Configuration to support automatic token refresh. Lets us keep track of the original loader object, which can be used to regenerate the authentication token. """ def __init__(self, loader, refresh_frequency=None, *args, **kwargs): super(AutoRefreshConfiguration, self).__init__(*args, **kwargs) # Set refresh api callback self.refresh_api_key_hook = self.refresh_api_key self.last_refreshed = datetime.datetime.now(tz=tzUTC) self.loader = loader # Adapted from kubernetes_asyncio/client/configuration.py:__deepcopy__ def __deepcopy__(self, memo): """ Modified so that we don't try to deep copy the loader off the config """ cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): if k not in ("logger", "logger_file_handler", "loader"): setattr(result, k, copy.deepcopy(v, memo)) # shallow copy loader object result.loader = self.loader # shallow copy of loggers result.logger = copy.copy(self.logger) # use setters to configure loggers result.logger_file = self.logger_file result.debug = self.debug return result def refresh_api_key(self, client_configuration): """ Checks to see if the loader has updated the authentication token. If it has, the token is copied from the loader into the current configuration. This function is assigned to Configuration.refresh_api_key_hook, and will fire when entering get_api_key_with_prefix, before the api_key is retrieved. """ if self.loader.last_refreshed is not None: if ( self.last_refreshed is None or self.last_refreshed < self.loader.last_refreshed ): logger.debug("Entering refresh_api_key_hook") client_configuration.api_key[ "authorization" ] = client_configuration.loader.token self.last_refreshed = datetime.datetime.now(tz=tzUTC) class ClusterAuth(object): """ An abstract base class for methods for configuring a connection to a Kubernetes API server. Examples -------- >>> from dask_kubernetes import KubeConfig >>> auth = KubeConfig(context='minikube') >>> from dask_kubernetes import KubeAuth >>> auth = KubeAuth(host='https://localhost', username='superuser', password='pass') """ async def load(self): """ Load Kubernetes configuration and set as default Raises ------ kubernetes.client.KubeConfigException """ raise NotImplementedError() @staticmethod async def load_first(auth=None): """ Load the first valid configuration in the list *auth*. A single configuration method can be passed. Parameters ---------- auth: List[ClusterAuth] (optional) Configuration methods to attempt in order. Defaults to ``[InCluster(), KubeConfig()]``. """ if auth is None: auth = ClusterAuth.DEFAULT elif isinstance(auth, ClusterAuth): auth = [auth] elif isinstance(auth, list): if not auth: raise kubernetes_asyncio.config.ConfigException( "No authorization methods were provided" ) else: msg = ( "Invalid authorization method provided. See ClusterAuth " "docstring for ways to specify authentication methods" ) raise ValueError(msg) auth_exc = None for auth_instance in auth: try: await auth_instance.load() except ( kubernetes_asyncio.config.ConfigException, kubernetes.config.ConfigException, ) as exc: logger.debug( "Failed to load configuration with %s method: %s", auth_instance.__class__, exc, ) auth_exc = exc else: break else: raise auth_exc class InCluster(ClusterAuth): """Configure the Kubernetes connection from a container's environment. This authentication method is intended for use when the client is running in a container started by Kubernetes with an authorized service account. This loads the mounted service account token and discovers the Kubernetes API via Kubernetes service discovery. """ async def load(self): kubernetes.config.load_incluster_config() kubernetes_asyncio.config.load_incluster_config() class KubeConfig(ClusterAuth): """Configure the Kubernetes connection from a kubeconfig file. Parameters ---------- config_file: str (optional) The path of the kubeconfig file to load. Defaults to the value of the ``KUBECONFIG`` environment variable, or the string ``~/.kube/config``. context: str (optional) The kubeconfig context to use. Defaults to the value of ``current-context`` in the configuration file. persist_config: bool (optional) Whether changes to the configuration will be saved back to disk (e.g. GCP token refresh). Defaults to ``True``. """ def __init__(self, config_file=None, context=None, persist_config=True): self.config_file = config_file self.context = context self.persist_config = persist_config async def load(self): with contextlib.suppress(KeyError): if self.config_file is None: self.config_file = os.path.abspath( os.path.expanduser(os.environ.get("KUBECONFIG", "~/.kube/config")) ) await self.load_kube_config() # Adapted from from kubernetes_asyncio/config/kube_config.py:get_kube_config_loader_for_yaml_file def get_kube_config_loader_for_yaml_file(self): kcfg = KubeConfigMerger(self.config_file) config_persister = None if self.persist_config: config_persister = kcfg.save_changes() return AutoRefreshKubeConfigLoader( config_dict=kcfg.config, config_base_path=None, config_persister=config_persister, ) # Adapted from kubernetes_asyncio/config/kube_config.py:load_kube_config async def load_kube_config(self): # Create a config loader, this will automatically refresh our credentials before they expire loader = self.get_kube_config_loader_for_yaml_file() # Grab our async + callback aware configuration config = AutoRefreshConfiguration(loader) await loader.load_and_set(config) Configuration.set_default(config) class KubeAuth(ClusterAuth): """Configure the Kubernetes connection explicitly. Parameters ---------- host: str The base URL of the Kubernetes host to connect username: str (optional) Username for HTTP basic authentication password: str (optional) Password for HTTP basic authentication debug: bool (optional) Debug switch verify_ssl: bool (optional) Set this to false to skip verifying SSL certificate when calling API from https server. Defaults to ``True``. ssl_ca_cert: str (optional) Set this to customize the certificate file to verify the peer. cert_file: str (optional) Client certificate file key_file: str (optional) Client key file assert_hostname: bool (optional) Set this to True/False to enable/disable SSL hostname verification. Defaults to True. proxy: str (optional) URL for a proxy to connect through """ def __init__(self, host, **kwargs): # We need to create a new configuration in this way, because if we just # instantiate a new Configuration object we will get the default # values. config = type.__call__(kubernetes.client.Configuration) config.host = host for key, value in kwargs.items(): setattr(config, key, value) self.config = config async def load(self): kubernetes.client.Configuration.set_default(self.config) await kubernetes_asyncio.client.Configuration.set_default(self.config) ClusterAuth.DEFAULT = [InCluster(), KubeConfig()]
the-stack_0_14960
#!/usr/bin/env python # coding: utf-8 # # Tutoriel complet Regression lineaire # ## Utilisation de l'intégration continue # ## Collect data using pandas # In[59]: # modules nécessaires pour le notebook import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LinearRegression from sklearn import model_selection from sklearn import metrics # In[60]: # lire le fichier de données #utiliser le param index_col: Column to use as the row labels of the DataFrame df = pd.read_csv('Advertising.csv', index_col=0) df.head() # In[61]: df.describe() # # identification des descripteurs, cible et observations # Quels sont les descripteurs? On a 3 descripteurs dans ce dataset qui sont: # * TV # * Radio # * Newspaper # Quelle est la cible? # * Sales: vente d'un produit # Quelle est la forme ou shape du dataframe? # In[62]: df.shape # On voit que l'on a 200 observations avec 4 colonnes dont 3 sont des descripteurs # # Tracé des relations entre les descripteurs et la cible # In[63]: #utilisation d'une figure avec 3 plots aligné sur une ligne fig, axes = plt.subplots(1,3,sharey=False) df.plot(kind='scatter', x='TV', y='sales', ax=axes[0], figsize=(16,8)) df.plot(kind='scatter', x='radio', y='sales', ax=axes[1], figsize=(16,8)) df.plot(kind='scatter', x='newspaper', y='sales', ax=axes[2], figsize=(16,8)) # On voit au niveau des graphes qu'il existe une certaine relation linéaire entre TV et Sales ainsi que radio et Sales # In[64]: #meme chose mais avec seaborn sns.pairplot(data=df, x_vars=['TV','radio','newspaper'], y_vars='sales', height=7, aspect=0.7) # # Tracé des correlations entre les différents descripteurs et cible # * Cette partie n'a pas encore été faite. # # Développement du modele linear regression # In[65]: cols_predicteurs = ['TV','radio','newspaper'] #predicteurs X = df[cols_predicteurs] y = df.sales # In[66]: #Effectuer la séparation Training-Test X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y , test_size = 0.2, random_state=42) #detail de chacun des sous-dataset print (X_train.shape, y_train.shape) print (X_test.shape, y_test.shape) # In[67]: #estimation des coeeficients du modele lineaire lm = LinearRegression() lm.fit(X_train,y_train) #Afficher les coefficients print(lm.intercept_) print(lm.coef_) # In[68]: #Afficher l'equation list(zip(cols_predicteurs, lm.coef_)) # In[69]: # proceder au test y_pred = lm.predict(X_test) # In[70]: import numpy as np #comparer les valeurs test et prédites test_pred_df = pd.DataFrame( { 'Valeurs test': y_test, 'Valeurs prédites': np.round( y_pred, 2), 'residuels': y_test - y_pred } ) test_pred_df[0:10] # In[71]: # RMSE mse = np.sqrt(metrics.mean_squared_error(y_test, y_pred)) print(np.sqrt(metrics.mean_squared_error(y_test, y_pred))) #Calcul du R-squared r2 = metrics.r2_score(y_test, y_pred) print(r2) # In[72]: # Write scores to a file with open("metrics.txt", 'w') as outfile: outfile.write("MSE: {0:2.1f} \n".format(mse)) outfile.write("R2: {0:2.1f}\n".format(r2)) # In[73]: #Référence: The Elements of Statistical Learning - Hastie, Tibshirani and Friedman, voir https://web.stanford.edu/~hastie/ElemStatLearn/
the-stack_0_14962
# This software may be modified and distributed under the terms # of the MIT license. See the LICENSE file for details. # # PanDA authors: # - Aleksandr Alekseev, [email protected], 2022 # - Paul Nilsson, [email protected], 2022 from abc import ABC, abstractmethod from typing import Iterator, Union import json import logging import socket import ssl from requests.auth import HTTPBasicAuth import requests try: import pylogbeat from logstash_async.utils import ichunked except ImportError: pass logger = logging.getLogger(__name__) class TimeoutNotSet: pass class Transport(ABC): """The :class:`Transport <Transport>` is the abstract base class of all transport protocols. :param host: The name of the host. :type host: str :param port: The TCP/UDP port. :type port: int :param timeout: The connection timeout. :type timeout: None or float :param ssl_enable: Activates TLS. :type ssl_enable: bool :param ssl_verify: Activates the TLS certificate verification. :type ssl_verify: bool or str :param use_logging: Use logging for debugging. :type use_logging: bool """ def __init__( self, host: str, port: int, timeout: Union[None, float], ssl_enable: bool, ssl_verify: Union[bool, str], use_logging: bool, ): self._host = host self._port = port self._timeout = None if timeout is TimeoutNotSet else timeout self._ssl_enable = ssl_enable self._ssl_verify = ssl_verify self._use_logging = use_logging super().__init__() @abstractmethod def send(self, events: list, **kwargs): pass @abstractmethod def close(self): pass class UdpTransport: _keep_connection = False # ---------------------------------------------------------------------- # pylint: disable=unused-argument def __init__(self, host, port, timeout=TimeoutNotSet, **kwargs): self._host = host self._port = port self._timeout = timeout self._sock = None # ---------------------------------------------------------------------- def send(self, events, use_logging=False): # pylint: disable=unused-argument # Ideally we would keep the socket open but this is risky because we might not notice # a broken TCP connection and send events into the dark. # On UDP we push into the dark by design :) self._create_socket() try: self._send(events) finally: self._close() # ---------------------------------------------------------------------- def _create_socket(self): if self._sock is not None: return # from logging.handlers.DatagramHandler self._sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if self._timeout is not TimeoutNotSet: self._sock.settimeout(self._timeout) # ---------------------------------------------------------------------- def _send(self, events): for event in events: self._send_via_socket(event) # ---------------------------------------------------------------------- def _send_via_socket(self, data): data_to_send = self._convert_data_to_send(data) self._sock.sendto(data_to_send, (self._host, self._port)) # ---------------------------------------------------------------------- def _convert_data_to_send(self, data): if not isinstance(data, bytes): return bytes(data, 'utf-8') return data # ---------------------------------------------------------------------- def _close(self, force=False): if not self._keep_connection or force: if self._sock: self._sock.close() self._sock = None # ---------------------------------------------------------------------- def close(self): self._close(force=True) class TcpTransport(UdpTransport): # ---------------------------------------------------------------------- def __init__( # pylint: disable=too-many-arguments self, host, port, ssl_enable, ssl_verify, keyfile, certfile, ca_certs, timeout=TimeoutNotSet, **kwargs): super().__init__(host, port) self._ssl_enable = ssl_enable self._ssl_verify = ssl_verify self._keyfile = keyfile self._certfile = certfile self._ca_certs = ca_certs self._timeout = timeout # ---------------------------------------------------------------------- def _create_socket(self): if self._sock is not None: return # from logging.handlers.SocketHandler self._sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if self._timeout is not TimeoutNotSet: self._sock.settimeout(self._timeout) try: self._sock.connect((self._host, self._port)) # non-SSL if not self._ssl_enable: return # SSL cert_reqs = ssl.CERT_REQUIRED ssl_context = ssl.create_default_context(cafile=self._ca_certs) if not self._ssl_verify: if self._ca_certs: cert_reqs = ssl.CERT_OPTIONAL else: cert_reqs = ssl.CERT_NONE ssl_context.verify_mode = cert_reqs ssl_context.check_hostname = False ssl_context.load_cert_chain(self._certfile, self._keyfile) self._sock = ssl_context.wrap_socket(self._sock, server_side=False) except socket.error: self._close() raise # ---------------------------------------------------------------------- def _send_via_socket(self, data): data_to_send = self._convert_data_to_send(data) self._sock.sendall(data_to_send) class BeatsTransport: _batch_size = 10 # ---------------------------------------------------------------------- def __init__( # pylint: disable=too-many-arguments self, host, port, ssl_enable, ssl_verify, keyfile, certfile, ca_certs, timeout=TimeoutNotSet, **kwargs): timeout_ = None if timeout is TimeoutNotSet else timeout self._client_arguments = dict( host=host, port=port, timeout=timeout_, ssl_enable=ssl_enable, ssl_verify=ssl_verify, keyfile=keyfile, certfile=certfile, ca_certs=ca_certs, **kwargs) # ---------------------------------------------------------------------- def close(self): pass # nothing to do # ---------------------------------------------------------------------- def send(self, events, use_logging=False): client = pylogbeat.PyLogBeatClient(use_logging=use_logging, **self._client_arguments) with client: for events_subset in ichunked(events, self._batch_size): try: client.send(events_subset) except Exception: pass class HttpTransport(Transport): """The :class:`HttpTransport <HttpTransport>` implements a client for the logstash plugin `inputs_http`. For more details visit: https://www.elastic.co/guide/en/logstash/current/plugins-inputs-http.html :param host: The hostname of the logstash HTTP server. :type host: str :param port: The TCP port of the logstash HTTP server. :type port: int :param timeout: The connection timeout. (Default: None) :type timeout: float :param ssl_enable: Activates TLS. (Default: True) :type ssl_enable: bool :param ssl_verify: Activates the TLS certificate verification. If the flag is True the class tries to verify the TLS certificate with certifi. If you pass a string with a file location to CA certificate the class tries to validate it against it. (Default: True) :type ssl_verify: bool or str :param use_logging: Use logging for debugging. :type use_logging: bool :param username: Username for basic authorization. (Default: "") :type username: str :param password: Password for basic authorization. (Default: "") :type password: str :param max_content_length: The max content of an HTTP request in bytes. (Default: 100MB) :type max_content_length: int """ def __init__( self, host: str, port: int, timeout: Union[None, float] = TimeoutNotSet, ssl_enable: bool = True, ssl_verify: Union[bool, str] = True, use_logging: bool = False, #keyfile: Union[bool, str] = True, #certfile: Union[bool, str] = True, **kwargs ): super().__init__(host, port, timeout, ssl_enable, ssl_verify, use_logging) self._username = kwargs.get('username', None) self._password = kwargs.get('password', None) self._max_content_length = kwargs.get('max_content_length', 100 * 1024 * 1024) self.__session = None self._cert = kwargs.get('cert', None) @property def url(self) -> str: """The URL of the logstash pipeline based on the hostname, the port and the TLS usage. :return: The URL of the logstash HTTP pipeline. :rtype: str """ protocol = 'http' if self._ssl_enable: protocol = 'https' return f'{protocol}://{self._host}:{self._port}' def __batches(self, events: list) -> Iterator[list]: """Generate dynamic sized batches based on the max content length. :param events: A list of events. :type events: list :return: A iterator which generates batches of events. :rtype: Iterator[list] """ current_batch = [] event_iter = iter(events) while True: try: current_event = next(event_iter) except StopIteration: current_event = None if not current_batch: return yield current_batch if current_event is None: return if len(current_event) > self._max_content_length: msg = 'The event size <%s> is greater than the max content length <%s>.' msg += 'Skipping event.' if self._use_logging: logger.warning(msg, len(current_event), self._max_content_length) continue obj = json.loads(current_event) content_length = len(json.dumps(current_batch + [obj]).encode('utf8')) if content_length > self._max_content_length: batch = current_batch current_batch = [obj] yield batch else: current_batch += [obj] def __auth(self) -> HTTPBasicAuth: """The authentication method for the logstash pipeline. If the username or the password is not set correctly it will return None. :return: A HTTP basic auth object or None. :rtype: HTTPBasicAuth """ if self._username is None or self._password is None: return None return HTTPBasicAuth(self._username, self._password) def close(self) -> None: """Close the HTTP session. """ if self.__session is not None: self.__session.close() def send(self, events: list, **kwargs): """Send events to the logstash pipeline. Max Events: `logstash_async.Constants.QUEUED_EVENTS_BATCH_SIZE` Max Content Length: `HttpTransport._max_content_length` The method receives a list of events from the worker. It tries to send as much of the events as possible in one request. If the total size of the received events is greater than the maximal content length the events will be divide into batches. :param events: A list of events :type events: list """ self.__session = requests.Session() #print(self._cert) for batch in self.__batches(events): if self._use_logging: logger.debug('Batch length: %s, Batch size: %s', len(batch), len(json.dumps(batch).encode('utf8'))) response = self.__session.post( self.url, headers={'Content-Type': 'application/json'}, json=batch, verify=self._ssl_verify, timeout=self._timeout, auth=self.__auth(), cert=self._cert) #print(response) if response.status_code != 200: self.close() response.raise_for_status() self.close()
the-stack_0_14965
# Copyright 2016-2020 The Matrix.org Foundation C.I.C. # Copyright 2020 Sorunome # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import logging import random from http import HTTPStatus from typing import TYPE_CHECKING, Iterable, List, Optional, Set, Tuple from synapse import types from synapse.api.constants import ( AccountDataTypes, EventContentFields, EventTypes, GuestAccess, Membership, ) from synapse.api.errors import ( AuthError, Codes, LimitExceededError, ShadowBanError, SynapseError, ) from synapse.api.ratelimiting import Ratelimiter from synapse.event_auth import get_named_level, get_power_level_event from synapse.events import EventBase from synapse.events.snapshot import EventContext from synapse.handlers.profile import MAX_AVATAR_URL_LEN, MAX_DISPLAYNAME_LEN from synapse.types import ( JsonDict, Requester, RoomAlias, RoomID, StateMap, UserID, create_requester, get_domain_from_id, ) from synapse.util.async_helpers import Linearizer from synapse.util.distributor import user_left_room from ._base import BaseHandler if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) class RoomMemberHandler(metaclass=abc.ABCMeta): # TODO(paul): This handler currently contains a messy conflation of # low-level API that works on UserID objects and so on, and REST-level # API that takes ID strings and returns pagination chunks. These concerns # ought to be separated out a lot better. def __init__(self, hs: "HomeServer"): self.hs = hs self.store = hs.get_datastore() self.auth = hs.get_auth() self.state_handler = hs.get_state_handler() self.config = hs.config self._server_name = hs.hostname self.federation_handler = hs.get_federation_handler() self.directory_handler = hs.get_directory_handler() self.identity_handler = hs.get_identity_handler() self.registration_handler = hs.get_registration_handler() self.profile_handler = hs.get_profile_handler() self.event_creation_handler = hs.get_event_creation_handler() self.account_data_handler = hs.get_account_data_handler() self.event_auth_handler = hs.get_event_auth_handler() self.member_linearizer: Linearizer = Linearizer(name="member") self.clock = hs.get_clock() self.spam_checker = hs.get_spam_checker() self.third_party_event_rules = hs.get_third_party_event_rules() self._server_notices_mxid = self.config.servernotices.server_notices_mxid self._enable_lookup = hs.config.enable_3pid_lookup self.allow_per_room_profiles = self.config.allow_per_room_profiles self._join_rate_limiter_local = Ratelimiter( store=self.store, clock=self.clock, rate_hz=hs.config.ratelimiting.rc_joins_local.per_second, burst_count=hs.config.ratelimiting.rc_joins_local.burst_count, ) self._join_rate_limiter_remote = Ratelimiter( store=self.store, clock=self.clock, rate_hz=hs.config.ratelimiting.rc_joins_remote.per_second, burst_count=hs.config.ratelimiting.rc_joins_remote.burst_count, ) self._invites_per_room_limiter = Ratelimiter( store=self.store, clock=self.clock, rate_hz=hs.config.ratelimiting.rc_invites_per_room.per_second, burst_count=hs.config.ratelimiting.rc_invites_per_room.burst_count, ) self._invites_per_user_limiter = Ratelimiter( store=self.store, clock=self.clock, rate_hz=hs.config.ratelimiting.rc_invites_per_user.per_second, burst_count=hs.config.ratelimiting.rc_invites_per_user.burst_count, ) # This is only used to get at the ratelimit function. It's fine there are # multiple of these as it doesn't store state. self.base_handler = BaseHandler(hs) @abc.abstractmethod async def _remote_join( self, requester: Requester, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Try and join a room that this server is not in Args: requester remote_room_hosts: List of servers that can be used to join via. room_id: Room that we are trying to join user: User who is trying to join content: A dict that should be used as the content of the join event. """ raise NotImplementedError() @abc.abstractmethod async def remote_knock( self, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Try and knock on a room that this server is not in Args: remote_room_hosts: List of servers that can be used to knock via. room_id: Room that we are trying to knock on. user: User who is trying to knock. content: A dict that should be used as the content of the knock event. """ raise NotImplementedError() @abc.abstractmethod async def remote_reject_invite( self, invite_event_id: str, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """ Rejects an out-of-band invite we have received from a remote server Args: invite_event_id: ID of the invite to be rejected txn_id: optional transaction ID supplied by the client requester: user making the rejection request, according to the access token content: additional content to include in the rejection event. Normally an empty dict. Returns: event id, stream_id of the leave event """ raise NotImplementedError() @abc.abstractmethod async def remote_rescind_knock( self, knock_event_id: str, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """Rescind a local knock made on a remote room. Args: knock_event_id: The ID of the knock event to rescind. txn_id: An optional transaction ID supplied by the client. requester: The user making the request, according to the access token. content: The content of the generated leave event. Returns: A tuple containing (event_id, stream_id of the leave event). """ raise NotImplementedError() @abc.abstractmethod async def _user_left_room(self, target: UserID, room_id: str) -> None: """Notifies distributor on master process that the user has left the room. Args: target room_id """ raise NotImplementedError() @abc.abstractmethod async def forget(self, user: UserID, room_id: str) -> None: raise NotImplementedError() async def ratelimit_multiple_invites( self, requester: Optional[Requester], room_id: Optional[str], n_invites: int, update: bool = True, ) -> None: """Ratelimit more than one invite sent by the given requester in the given room. Args: requester: The requester sending the invites. room_id: The room the invites are being sent in. n_invites: The amount of invites to ratelimit for. update: Whether to update the ratelimiter's cache. Raises: LimitExceededError: The requester can't send that many invites in the room. """ await self._invites_per_room_limiter.ratelimit( requester, room_id, update=update, n_actions=n_invites, ) async def ratelimit_invite( self, requester: Optional[Requester], room_id: Optional[str], invitee_user_id: str, ) -> None: """Ratelimit invites by room and by target user. If room ID is missing then we just rate limit by target user. """ if room_id: await self._invites_per_room_limiter.ratelimit(requester, room_id) await self._invites_per_user_limiter.ratelimit(requester, invitee_user_id) async def _local_membership_update( self, requester: Requester, target: UserID, room_id: str, membership: str, prev_event_ids: List[str], auth_event_ids: Optional[List[str]] = None, txn_id: Optional[str] = None, ratelimit: bool = True, content: Optional[dict] = None, require_consent: bool = True, outlier: bool = False, ) -> Tuple[str, int]: """ Internal membership update function to get an existing event or create and persist a new event for the new membership change. Args: requester: target: room_id: membership: prev_event_ids: The event IDs to use as the prev events auth_event_ids: The event ids to use as the auth_events for the new event. Should normally be left as None, which will cause them to be calculated based on the room state at the prev_events. txn_id: ratelimit: content: require_consent: outlier: Indicates whether the event is an `outlier`, i.e. if it's from an arbitrary point and floating in the DAG as opposed to being inline with the current DAG. Returns: Tuple of event ID and stream ordering position """ user_id = target.to_string() if content is None: content = {} content["membership"] = membership if requester.is_guest: content["kind"] = "guest" # Check if we already have an event with a matching transaction ID. (We # do this check just before we persist an event as well, but may as well # do it up front for efficiency.) if txn_id and requester.access_token_id: existing_event_id = await self.store.get_event_id_from_transaction_id( room_id, requester.user.to_string(), requester.access_token_id, txn_id, ) if existing_event_id: event_pos = await self.store.get_position_for_event(existing_event_id) return existing_event_id, event_pos.stream event, context = await self.event_creation_handler.create_event( requester, { "type": EventTypes.Member, "content": content, "room_id": room_id, "sender": requester.user.to_string(), "state_key": user_id, # For backwards compatibility: "membership": membership, }, txn_id=txn_id, prev_event_ids=prev_event_ids, auth_event_ids=auth_event_ids, require_consent=require_consent, outlier=outlier, ) prev_state_ids = await context.get_prev_state_ids() prev_member_event_id = prev_state_ids.get((EventTypes.Member, user_id), None) if event.membership == Membership.JOIN: newly_joined = True if prev_member_event_id: prev_member_event = await self.store.get_event(prev_member_event_id) newly_joined = prev_member_event.membership != Membership.JOIN # Only rate-limit if the user actually joined the room, otherwise we'll end # up blocking profile updates. if newly_joined and ratelimit: time_now_s = self.clock.time() ( allowed, time_allowed, ) = await self._join_rate_limiter_local.can_do_action(requester) if not allowed: raise LimitExceededError( retry_after_ms=int(1000 * (time_allowed - time_now_s)) ) result_event = await self.event_creation_handler.handle_new_client_event( requester, event, context, extra_users=[target], ratelimit=ratelimit, ) if event.membership == Membership.LEAVE: if prev_member_event_id: prev_member_event = await self.store.get_event(prev_member_event_id) if prev_member_event.membership == Membership.JOIN: await self._user_left_room(target, room_id) # we know it was persisted, so should have a stream ordering assert result_event.internal_metadata.stream_ordering return result_event.event_id, result_event.internal_metadata.stream_ordering async def copy_room_tags_and_direct_to_room( self, old_room_id: str, new_room_id: str, user_id: str ) -> None: """Copies the tags and direct room state from one room to another. Args: old_room_id: The room ID of the old room. new_room_id: The room ID of the new room. user_id: The user's ID. """ # Retrieve user account data for predecessor room user_account_data, _ = await self.store.get_account_data_for_user(user_id) # Copy direct message state if applicable direct_rooms = user_account_data.get(AccountDataTypes.DIRECT, {}) # Check which key this room is under if isinstance(direct_rooms, dict): for key, room_id_list in direct_rooms.items(): if old_room_id in room_id_list and new_room_id not in room_id_list: # Add new room_id to this key direct_rooms[key].append(new_room_id) # Save back to user's m.direct account data await self.account_data_handler.add_account_data_for_user( user_id, AccountDataTypes.DIRECT, direct_rooms ) break # Copy room tags if applicable room_tags = await self.store.get_tags_for_room(user_id, old_room_id) # Copy each room tag to the new room for tag, tag_content in room_tags.items(): await self.account_data_handler.add_tag_to_room( user_id, new_room_id, tag, tag_content ) async def update_membership( self, requester: Requester, target: UserID, room_id: str, action: str, txn_id: Optional[str] = None, remote_room_hosts: Optional[List[str]] = None, third_party_signed: Optional[dict] = None, ratelimit: bool = True, content: Optional[dict] = None, require_consent: bool = True, outlier: bool = False, prev_event_ids: Optional[List[str]] = None, auth_event_ids: Optional[List[str]] = None, ) -> Tuple[str, int]: """Update a user's membership in a room. Params: requester: The user who is performing the update. target: The user whose membership is being updated. room_id: The room ID whose membership is being updated. action: The membership change, see synapse.api.constants.Membership. txn_id: The transaction ID, if given. remote_room_hosts: Remote servers to send the update to. third_party_signed: Information from a 3PID invite. ratelimit: Whether to rate limit the request. content: The content of the created event. require_consent: Whether consent is required. outlier: Indicates whether the event is an `outlier`, i.e. if it's from an arbitrary point and floating in the DAG as opposed to being inline with the current DAG. prev_event_ids: The event IDs to use as the prev events auth_event_ids: The event ids to use as the auth_events for the new event. Should normally be left as None, which will cause them to be calculated based on the room state at the prev_events. Returns: A tuple of the new event ID and stream ID. Raises: ShadowBanError if a shadow-banned requester attempts to send an invite. """ if action == Membership.INVITE and requester.shadow_banned: # We randomly sleep a bit just to annoy the requester. await self.clock.sleep(random.randint(1, 10)) raise ShadowBanError() key = (room_id,) with (await self.member_linearizer.queue(key)): result = await self.update_membership_locked( requester, target, room_id, action, txn_id=txn_id, remote_room_hosts=remote_room_hosts, third_party_signed=third_party_signed, ratelimit=ratelimit, content=content, require_consent=require_consent, outlier=outlier, prev_event_ids=prev_event_ids, auth_event_ids=auth_event_ids, ) return result async def update_membership_locked( self, requester: Requester, target: UserID, room_id: str, action: str, txn_id: Optional[str] = None, remote_room_hosts: Optional[List[str]] = None, third_party_signed: Optional[dict] = None, ratelimit: bool = True, content: Optional[dict] = None, require_consent: bool = True, outlier: bool = False, prev_event_ids: Optional[List[str]] = None, auth_event_ids: Optional[List[str]] = None, ) -> Tuple[str, int]: """Helper for update_membership. Assumes that the membership linearizer is already held for the room. Args: requester: target: room_id: action: txn_id: remote_room_hosts: third_party_signed: ratelimit: content: require_consent: outlier: Indicates whether the event is an `outlier`, i.e. if it's from an arbitrary point and floating in the DAG as opposed to being inline with the current DAG. prev_event_ids: The event IDs to use as the prev events auth_event_ids: The event ids to use as the auth_events for the new event. Should normally be left as None, which will cause them to be calculated based on the room state at the prev_events. Returns: A tuple of the new event ID and stream ID. """ content_specified = bool(content) if content is None: content = {} else: # We do a copy here as we potentially change some keys # later on. content = dict(content) # allow the server notices mxid to set room-level profile is_requester_server_notices_user = ( self._server_notices_mxid is not None and requester.user.to_string() == self._server_notices_mxid ) if ( not self.allow_per_room_profiles and not is_requester_server_notices_user ) or requester.shadow_banned: # Strip profile data, knowing that new profile data will be added to the # event's content in event_creation_handler.create_event() using the target's # global profile. content.pop("displayname", None) content.pop("avatar_url", None) if len(content.get("displayname") or "") > MAX_DISPLAYNAME_LEN: raise SynapseError( 400, f"Displayname is too long (max {MAX_DISPLAYNAME_LEN})", errcode=Codes.BAD_JSON, ) if len(content.get("avatar_url") or "") > MAX_AVATAR_URL_LEN: raise SynapseError( 400, f"Avatar URL is too long (max {MAX_AVATAR_URL_LEN})", errcode=Codes.BAD_JSON, ) effective_membership_state = action if action in ["kick", "unban"]: effective_membership_state = "leave" # if this is a join with a 3pid signature, we may need to turn a 3pid # invite into a normal invite before we can handle the join. if third_party_signed is not None: await self.federation_handler.exchange_third_party_invite( third_party_signed["sender"], target.to_string(), room_id, third_party_signed, ) if not remote_room_hosts: remote_room_hosts = [] if effective_membership_state not in ("leave", "ban"): is_blocked = await self.store.is_room_blocked(room_id) if is_blocked: raise SynapseError(403, "This room has been blocked on this server") if effective_membership_state == Membership.INVITE: target_id = target.to_string() if ratelimit: await self.ratelimit_invite(requester, room_id, target_id) # block any attempts to invite the server notices mxid if target_id == self._server_notices_mxid: raise SynapseError(HTTPStatus.FORBIDDEN, "Cannot invite this user") block_invite = False if ( self._server_notices_mxid is not None and requester.user.to_string() == self._server_notices_mxid ): # allow the server notices mxid to send invites is_requester_admin = True else: is_requester_admin = await self.auth.is_server_admin(requester.user) if not is_requester_admin: if self.config.block_non_admin_invites: logger.info( "Blocking invite: user is not admin and non-admin " "invites disabled" ) block_invite = True if not await self.spam_checker.user_may_invite( requester.user.to_string(), target_id, room_id ): logger.info("Blocking invite due to spam checker") block_invite = True if block_invite: raise SynapseError(403, "Invites have been disabled on this server") if prev_event_ids: return await self._local_membership_update( requester=requester, target=target, room_id=room_id, membership=effective_membership_state, txn_id=txn_id, ratelimit=ratelimit, prev_event_ids=prev_event_ids, auth_event_ids=auth_event_ids, content=content, require_consent=require_consent, outlier=outlier, ) latest_event_ids = await self.store.get_prev_events_for_room(room_id) current_state_ids = await self.state_handler.get_current_state_ids( room_id, latest_event_ids=latest_event_ids ) # TODO: Refactor into dictionary of explicitly allowed transitions # between old and new state, with specific error messages for some # transitions and generic otherwise old_state_id = current_state_ids.get((EventTypes.Member, target.to_string())) if old_state_id: old_state = await self.store.get_event(old_state_id, allow_none=True) old_membership = old_state.content.get("membership") if old_state else None if action == "unban" and old_membership != "ban": raise SynapseError( 403, "Cannot unban user who was not banned" " (membership=%s)" % old_membership, errcode=Codes.BAD_STATE, ) if old_membership == "ban" and action not in ["ban", "unban", "leave"]: raise SynapseError( 403, "Cannot %s user who was banned" % (action,), errcode=Codes.BAD_STATE, ) if old_state: same_content = content == old_state.content same_membership = old_membership == effective_membership_state same_sender = requester.user.to_string() == old_state.sender if same_sender and same_membership and same_content: # duplicate event. # we know it was persisted, so must have a stream ordering. assert old_state.internal_metadata.stream_ordering return ( old_state.event_id, old_state.internal_metadata.stream_ordering, ) if old_membership in ["ban", "leave"] and action == "kick": raise AuthError(403, "The target user is not in the room") # we don't allow people to reject invites to the server notice # room, but they can leave it once they are joined. if ( old_membership == Membership.INVITE and effective_membership_state == Membership.LEAVE ): is_blocked = await self._is_server_notice_room(room_id) if is_blocked: raise SynapseError( HTTPStatus.FORBIDDEN, "You cannot reject this invite", errcode=Codes.CANNOT_LEAVE_SERVER_NOTICE_ROOM, ) else: if action == "kick": raise AuthError(403, "The target user is not in the room") is_host_in_room = await self._is_host_in_room(current_state_ids) if effective_membership_state == Membership.JOIN: if requester.is_guest: guest_can_join = await self._can_guest_join(current_state_ids) if not guest_can_join: # This should be an auth check, but guests are a local concept, # so don't really fit into the general auth process. raise AuthError(403, "Guest access not allowed") # Check if a remote join should be performed. remote_join, remote_room_hosts = await self._should_perform_remote_join( target.to_string(), room_id, remote_room_hosts, content, is_host_in_room ) if remote_join: if ratelimit: time_now_s = self.clock.time() ( allowed, time_allowed, ) = await self._join_rate_limiter_remote.can_do_action( requester, ) if not allowed: raise LimitExceededError( retry_after_ms=int(1000 * (time_allowed - time_now_s)) ) inviter = await self._get_inviter(target.to_string(), room_id) if inviter and not self.hs.is_mine(inviter): remote_room_hosts.append(inviter.domain) content["membership"] = Membership.JOIN profile = self.profile_handler if not content_specified: content["displayname"] = await profile.get_displayname(target) content["avatar_url"] = await profile.get_avatar_url(target) if requester.is_guest: content["kind"] = "guest" remote_join_response = await self._remote_join( requester, remote_room_hosts, room_id, target, content ) return remote_join_response elif effective_membership_state == Membership.LEAVE: if not is_host_in_room: # Figure out the user's current membership state for the room ( current_membership_type, current_membership_event_id, ) = await self.store.get_local_current_membership_for_user_in_room( target.to_string(), room_id ) if not current_membership_type or not current_membership_event_id: logger.info( "%s sent a leave request to %s, but that is not an active room " "on this server, or there is no pending invite or knock", target, room_id, ) raise SynapseError(404, "Not a known room") # perhaps we've been invited if current_membership_type == Membership.INVITE: invite = await self.store.get_event(current_membership_event_id) logger.info( "%s rejects invite to %s from %s", target, room_id, invite.sender, ) if not self.hs.is_mine_id(invite.sender): # send the rejection to the inviter's HS (with fallback to # local event) return await self.remote_reject_invite( invite.event_id, txn_id, requester, content, ) # the inviter was on our server, but has now left. Carry on # with the normal rejection codepath, which will also send the # rejection out to any other servers we believe are still in the room. # thanks to overzealous cleaning up of event_forward_extremities in # `delete_old_current_state_events`, it's possible to end up with no # forward extremities here. If that happens, let's just hang the # rejection off the invite event. # # see: https://github.com/matrix-org/synapse/issues/7139 if len(latest_event_ids) == 0: latest_event_ids = [invite.event_id] # or perhaps this is a remote room that a local user has knocked on elif current_membership_type == Membership.KNOCK: knock = await self.store.get_event(current_membership_event_id) return await self.remote_rescind_knock( knock.event_id, txn_id, requester, content ) elif effective_membership_state == Membership.KNOCK: if not is_host_in_room: # The knock needs to be sent over federation instead remote_room_hosts.append(get_domain_from_id(room_id)) content["membership"] = Membership.KNOCK profile = self.profile_handler if "displayname" not in content: content["displayname"] = await profile.get_displayname(target) if "avatar_url" not in content: content["avatar_url"] = await profile.get_avatar_url(target) return await self.remote_knock( remote_room_hosts, room_id, target, content ) return await self._local_membership_update( requester=requester, target=target, room_id=room_id, membership=effective_membership_state, txn_id=txn_id, ratelimit=ratelimit, prev_event_ids=latest_event_ids, auth_event_ids=auth_event_ids, content=content, require_consent=require_consent, outlier=outlier, ) async def _should_perform_remote_join( self, user_id: str, room_id: str, remote_room_hosts: List[str], content: JsonDict, is_host_in_room: bool, ) -> Tuple[bool, List[str]]: """ Check whether the server should do a remote join (as opposed to a local join) for a user. Generally a remote join is used if: * The server is not yet in the room. * The server is in the room, the room has restricted join rules, the user is not joined or invited to the room, and the server does not have another user who is capable of issuing invites. Args: user_id: The user joining the room. room_id: The room being joined. remote_room_hosts: A list of remote room hosts. content: The content to use as the event body of the join. This may be modified. is_host_in_room: True if the host is in the room. Returns: A tuple of: True if a remote join should be performed. False if the join can be done locally. A list of remote room hosts to use. This is an empty list if a local join is to be done. """ # If the host isn't in the room, pass through the prospective hosts. if not is_host_in_room: return True, remote_room_hosts # If the host is in the room, but not one of the authorised hosts # for restricted join rules, a remote join must be used. room_version = await self.store.get_room_version(room_id) current_state_ids = await self.store.get_current_state_ids(room_id) # If restricted join rules are not being used, a local join can always # be used. if not await self.event_auth_handler.has_restricted_join_rules( current_state_ids, room_version ): return False, [] # If the user is invited to the room or already joined, the join # event can always be issued locally. prev_member_event_id = current_state_ids.get((EventTypes.Member, user_id), None) prev_member_event = None if prev_member_event_id: prev_member_event = await self.store.get_event(prev_member_event_id) if prev_member_event.membership in ( Membership.JOIN, Membership.INVITE, ): return False, [] # If the local host has a user who can issue invites, then a local # join can be done. # # If not, generate a new list of remote hosts based on which # can issue invites. event_map = await self.store.get_events(current_state_ids.values()) current_state = { state_key: event_map[event_id] for state_key, event_id in current_state_ids.items() } allowed_servers = get_servers_from_users( get_users_which_can_issue_invite(current_state) ) # If the local server is not one of allowed servers, then a remote # join must be done. Return the list of prospective servers based on # which can issue invites. if self.hs.hostname not in allowed_servers: return True, list(allowed_servers) # Ensure the member should be allowed access via membership in a room. await self.event_auth_handler.check_restricted_join_rules( current_state_ids, room_version, user_id, prev_member_event ) # If this is going to be a local join, additional information must # be included in the event content in order to efficiently validate # the event. content[ "join_authorised_via_users_server" ] = await self.event_auth_handler.get_user_which_could_invite( room_id, current_state_ids, ) return False, [] async def transfer_room_state_on_room_upgrade( self, old_room_id: str, room_id: str ) -> None: """Upon our server becoming aware of an upgraded room, either by upgrading a room ourselves or joining one, we can transfer over information from the previous room. Copies user state (tags/push rules) for every local user that was in the old room, as well as migrating the room directory state. Args: old_room_id: The ID of the old room room_id: The ID of the new room """ logger.info("Transferring room state from %s to %s", old_room_id, room_id) # Find all local users that were in the old room and copy over each user's state users = await self.store.get_users_in_room(old_room_id) await self.copy_user_state_on_room_upgrade(old_room_id, room_id, users) # Add new room to the room directory if the old room was there # Remove old room from the room directory old_room = await self.store.get_room(old_room_id) if old_room and old_room["is_public"]: await self.store.set_room_is_public(old_room_id, False) await self.store.set_room_is_public(room_id, True) # Transfer alias mappings in the room directory await self.store.update_aliases_for_room(old_room_id, room_id) # Check if any groups we own contain the predecessor room local_group_ids = await self.store.get_local_groups_for_room(old_room_id) for group_id in local_group_ids: # Add new the new room to those groups await self.store.add_room_to_group(group_id, room_id, old_room["is_public"]) # Remove the old room from those groups await self.store.remove_room_from_group(group_id, old_room_id) async def copy_user_state_on_room_upgrade( self, old_room_id: str, new_room_id: str, user_ids: Iterable[str] ) -> None: """Copy user-specific information when they join a new room when that new room is the result of a room upgrade Args: old_room_id: The ID of upgraded room new_room_id: The ID of the new room user_ids: User IDs to copy state for """ logger.debug( "Copying over room tags and push rules from %s to %s for users %s", old_room_id, new_room_id, user_ids, ) for user_id in user_ids: try: # It is an upgraded room. Copy over old tags await self.copy_room_tags_and_direct_to_room( old_room_id, new_room_id, user_id ) # Copy over push rules await self.store.copy_push_rules_from_room_to_room_for_user( old_room_id, new_room_id, user_id ) except Exception: logger.exception( "Error copying tags and/or push rules from rooms %s to %s for user %s. " "Skipping...", old_room_id, new_room_id, user_id, ) continue async def send_membership_event( self, requester: Optional[Requester], event: EventBase, context: EventContext, ratelimit: bool = True, ) -> None: """ Change the membership status of a user in a room. Args: requester: The local user who requested the membership event. If None, certain checks, like whether this homeserver can act as the sender, will be skipped. event: The membership event. context: The context of the event. ratelimit: Whether to rate limit this request. Raises: SynapseError if there was a problem changing the membership. """ target_user = UserID.from_string(event.state_key) room_id = event.room_id if requester is not None: sender = UserID.from_string(event.sender) assert ( sender == requester.user ), "Sender (%s) must be same as requester (%s)" % (sender, requester.user) assert self.hs.is_mine(sender), "Sender must be our own: %s" % (sender,) else: requester = types.create_requester(target_user) prev_state_ids = await context.get_prev_state_ids() if event.membership == Membership.JOIN: if requester.is_guest: guest_can_join = await self._can_guest_join(prev_state_ids) if not guest_can_join: # This should be an auth check, but guests are a local concept, # so don't really fit into the general auth process. raise AuthError(403, "Guest access not allowed") if event.membership not in (Membership.LEAVE, Membership.BAN): is_blocked = await self.store.is_room_blocked(room_id) if is_blocked: raise SynapseError(403, "This room has been blocked on this server") event = await self.event_creation_handler.handle_new_client_event( requester, event, context, extra_users=[target_user], ratelimit=ratelimit ) prev_member_event_id = prev_state_ids.get( (EventTypes.Member, event.state_key), None ) if event.membership == Membership.LEAVE: if prev_member_event_id: prev_member_event = await self.store.get_event(prev_member_event_id) if prev_member_event.membership == Membership.JOIN: await self._user_left_room(target_user, room_id) async def _can_guest_join(self, current_state_ids: StateMap[str]) -> bool: """ Returns whether a guest can join a room based on its current state. """ guest_access_id = current_state_ids.get((EventTypes.GuestAccess, ""), None) if not guest_access_id: return False guest_access = await self.store.get_event(guest_access_id) return bool( guest_access and guest_access.content and guest_access.content.get(EventContentFields.GUEST_ACCESS) == GuestAccess.CAN_JOIN ) async def kick_guest_users(self, current_state: Iterable[EventBase]) -> None: """Kick any local guest users from the room. This is called when the room state changes from guests allowed to not-allowed. Params: current_state: the current state of the room. We will iterate this to look for guest users to kick. """ for member_event in current_state: try: if member_event.type != EventTypes.Member: continue if not self.hs.is_mine_id(member_event.state_key): continue if member_event.content["membership"] not in { Membership.JOIN, Membership.INVITE, }: continue if ( "kind" not in member_event.content or member_event.content["kind"] != "guest" ): continue # We make the user choose to leave, rather than have the # event-sender kick them. This is partially because we don't # need to worry about power levels, and partially because guest # users are a concept which doesn't hugely work over federation, # and having homeservers have their own users leave keeps more # of that decision-making and control local to the guest-having # homeserver. target_user = UserID.from_string(member_event.state_key) requester = create_requester( target_user, is_guest=True, authenticated_entity=self._server_name ) handler = self.hs.get_room_member_handler() await handler.update_membership( requester, target_user, member_event.room_id, "leave", ratelimit=False, require_consent=False, ) except Exception as e: logger.exception("Error kicking guest user: %s" % (e,)) async def lookup_room_alias( self, room_alias: RoomAlias ) -> Tuple[RoomID, List[str]]: """ Get the room ID associated with a room alias. Args: room_alias: The alias to look up. Returns: A tuple of: The room ID as a RoomID object. Hosts likely to be participating in the room ([str]). Raises: SynapseError if room alias could not be found. """ directory_handler = self.directory_handler mapping = await directory_handler.get_association(room_alias) if not mapping: raise SynapseError(404, "No such room alias") room_id = mapping["room_id"] servers = mapping["servers"] # put the server which owns the alias at the front of the server list. if room_alias.domain in servers: servers.remove(room_alias.domain) servers.insert(0, room_alias.domain) return RoomID.from_string(room_id), servers async def _get_inviter(self, user_id: str, room_id: str) -> Optional[UserID]: invite = await self.store.get_invite_for_local_user_in_room( user_id=user_id, room_id=room_id ) if invite: return UserID.from_string(invite.sender) return None async def do_3pid_invite( self, room_id: str, inviter: UserID, medium: str, address: str, id_server: str, requester: Requester, txn_id: Optional[str], id_access_token: Optional[str] = None, ) -> int: """Invite a 3PID to a room. Args: room_id: The room to invite the 3PID to. inviter: The user sending the invite. medium: The 3PID's medium. address: The 3PID's address. id_server: The identity server to use. requester: The user making the request. txn_id: The transaction ID this is part of, or None if this is not part of a transaction. id_access_token: The optional identity server access token. Returns: The new stream ID. Raises: ShadowBanError if the requester has been shadow-banned. """ if self.config.block_non_admin_invites: is_requester_admin = await self.auth.is_server_admin(requester.user) if not is_requester_admin: raise SynapseError( 403, "Invites have been disabled on this server", Codes.FORBIDDEN ) if requester.shadow_banned: # We randomly sleep a bit just to annoy the requester. await self.clock.sleep(random.randint(1, 10)) raise ShadowBanError() # We need to rate limit *before* we send out any 3PID invites, so we # can't just rely on the standard ratelimiting of events. await self.base_handler.ratelimit(requester) can_invite = await self.third_party_event_rules.check_threepid_can_be_invited( medium, address, room_id ) if not can_invite: raise SynapseError( 403, "This third-party identifier can not be invited in this room", Codes.FORBIDDEN, ) if not self._enable_lookup: raise SynapseError( 403, "Looking up third-party identifiers is denied from this server" ) invitee = await self.identity_handler.lookup_3pid( id_server, medium, address, id_access_token ) if invitee: # Note that update_membership with an action of "invite" can raise # a ShadowBanError, but this was done above already. _, stream_id = await self.update_membership( requester, UserID.from_string(invitee), room_id, "invite", txn_id=txn_id ) else: stream_id = await self._make_and_store_3pid_invite( requester, id_server, medium, address, room_id, inviter, txn_id=txn_id, id_access_token=id_access_token, ) return stream_id async def _make_and_store_3pid_invite( self, requester: Requester, id_server: str, medium: str, address: str, room_id: str, user: UserID, txn_id: Optional[str], id_access_token: Optional[str] = None, ) -> int: room_state = await self.state_handler.get_current_state(room_id) inviter_display_name = "" inviter_avatar_url = "" member_event = room_state.get((EventTypes.Member, user.to_string())) if member_event: inviter_display_name = member_event.content.get("displayname", "") inviter_avatar_url = member_event.content.get("avatar_url", "") # if user has no display name, default to their MXID if not inviter_display_name: inviter_display_name = user.to_string() canonical_room_alias = "" canonical_alias_event = room_state.get((EventTypes.CanonicalAlias, "")) if canonical_alias_event: canonical_room_alias = canonical_alias_event.content.get("alias", "") room_name = "" room_name_event = room_state.get((EventTypes.Name, "")) if room_name_event: room_name = room_name_event.content.get("name", "") room_type = None room_create_event = room_state.get((EventTypes.Create, "")) if room_create_event: room_type = room_create_event.content.get(EventContentFields.ROOM_TYPE) room_join_rules = "" join_rules_event = room_state.get((EventTypes.JoinRules, "")) if join_rules_event: room_join_rules = join_rules_event.content.get("join_rule", "") room_avatar_url = "" room_avatar_event = room_state.get((EventTypes.RoomAvatar, "")) if room_avatar_event: room_avatar_url = room_avatar_event.content.get("url", "") ( token, public_keys, fallback_public_key, display_name, ) = await self.identity_handler.ask_id_server_for_third_party_invite( requester=requester, id_server=id_server, medium=medium, address=address, room_id=room_id, inviter_user_id=user.to_string(), room_alias=canonical_room_alias, room_avatar_url=room_avatar_url, room_join_rules=room_join_rules, room_name=room_name, room_type=room_type, inviter_display_name=inviter_display_name, inviter_avatar_url=inviter_avatar_url, id_access_token=id_access_token, ) ( event, stream_id, ) = await self.event_creation_handler.create_and_send_nonmember_event( requester, { "type": EventTypes.ThirdPartyInvite, "content": { "display_name": display_name, "public_keys": public_keys, # For backwards compatibility: "key_validity_url": fallback_public_key["key_validity_url"], "public_key": fallback_public_key["public_key"], }, "room_id": room_id, "sender": user.to_string(), "state_key": token, }, ratelimit=False, txn_id=txn_id, ) return stream_id async def _is_host_in_room(self, current_state_ids: StateMap[str]) -> bool: # Have we just created the room, and is this about to be the very # first member event? create_event_id = current_state_ids.get(("m.room.create", "")) if len(current_state_ids) == 1 and create_event_id: # We can only get here if we're in the process of creating the room return True for etype, state_key in current_state_ids: if etype != EventTypes.Member or not self.hs.is_mine_id(state_key): continue event_id = current_state_ids[(etype, state_key)] event = await self.store.get_event(event_id, allow_none=True) if not event: continue if event.membership == Membership.JOIN: return True return False async def _is_server_notice_room(self, room_id: str) -> bool: if self._server_notices_mxid is None: return False user_ids = await self.store.get_users_in_room(room_id) return self._server_notices_mxid in user_ids class RoomMemberMasterHandler(RoomMemberHandler): def __init__(self, hs: "HomeServer"): super().__init__(hs) self.distributor = hs.get_distributor() self.distributor.declare("user_left_room") async def _is_remote_room_too_complex( self, room_id: str, remote_room_hosts: List[str] ) -> Optional[bool]: """ Check if complexity of a remote room is too great. Args: room_id remote_room_hosts Returns: bool of whether the complexity is too great, or None if unable to be fetched """ max_complexity = self.hs.config.limit_remote_rooms.complexity complexity = await self.federation_handler.get_room_complexity( remote_room_hosts, room_id ) if complexity: return complexity["v1"] > max_complexity return None async def _is_local_room_too_complex(self, room_id: str) -> bool: """ Check if the complexity of a local room is too great. Args: room_id: The room ID to check for complexity. """ max_complexity = self.hs.config.limit_remote_rooms.complexity complexity = await self.store.get_room_complexity(room_id) return complexity["v1"] > max_complexity async def _remote_join( self, requester: Requester, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Implements RoomMemberHandler._remote_join""" # filter ourselves out of remote_room_hosts: do_invite_join ignores it # and if it is the only entry we'd like to return a 404 rather than a # 500. remote_room_hosts = [ host for host in remote_room_hosts if host != self.hs.hostname ] if len(remote_room_hosts) == 0: raise SynapseError(404, "No known servers") check_complexity = self.hs.config.limit_remote_rooms.enabled if check_complexity and self.hs.config.limit_remote_rooms.admins_can_join: check_complexity = not await self.auth.is_server_admin(user) if check_complexity: # Fetch the room complexity too_complex = await self._is_remote_room_too_complex( room_id, remote_room_hosts ) if too_complex is True: raise SynapseError( code=400, msg=self.hs.config.limit_remote_rooms.complexity_error, errcode=Codes.RESOURCE_LIMIT_EXCEEDED, ) # We don't do an auth check if we are doing an invite # join dance for now, since we're kinda implicitly checking # that we are allowed to join when we decide whether or not we # need to do the invite/join dance. event_id, stream_id = await self.federation_handler.do_invite_join( remote_room_hosts, room_id, user.to_string(), content ) # Check the room we just joined wasn't too large, if we didn't fetch the # complexity of it before. if check_complexity: if too_complex is False: # We checked, and we're under the limit. return event_id, stream_id # Check again, but with the local state events too_complex = await self._is_local_room_too_complex(room_id) if too_complex is False: # We're under the limit. return event_id, stream_id # The room is too large. Leave. requester = types.create_requester( user, authenticated_entity=self._server_name ) await self.update_membership( requester=requester, target=user, room_id=room_id, action="leave" ) raise SynapseError( code=400, msg=self.hs.config.limit_remote_rooms.complexity_error, errcode=Codes.RESOURCE_LIMIT_EXCEEDED, ) return event_id, stream_id async def remote_reject_invite( self, invite_event_id: str, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """ Rejects an out-of-band invite received from a remote user Implements RoomMemberHandler.remote_reject_invite """ invite_event = await self.store.get_event(invite_event_id) room_id = invite_event.room_id target_user = invite_event.state_key # first of all, try doing a rejection via the inviting server fed_handler = self.federation_handler try: inviter_id = UserID.from_string(invite_event.sender) event, stream_id = await fed_handler.do_remotely_reject_invite( [inviter_id.domain], room_id, target_user, content=content ) return event.event_id, stream_id except Exception as e: # if we were unable to reject the invite, we will generate our own # leave event. # # The 'except' clause is very broad, but we need to # capture everything from DNS failures upwards # logger.warning("Failed to reject invite: %s", e) return await self._generate_local_out_of_band_leave( invite_event, txn_id, requester, content ) async def remote_rescind_knock( self, knock_event_id: str, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """ Rescinds a local knock made on a remote room Args: knock_event_id: The ID of the knock event to rescind. txn_id: The transaction ID to use. requester: The originator of the request. content: The content of the leave event. Implements RoomMemberHandler.remote_rescind_knock """ # TODO: We don't yet support rescinding knocks over federation # as we don't know which homeserver to send it to. An obvious # candidate is the remote homeserver we originally knocked through, # however we don't currently store that information. # Just rescind the knock locally knock_event = await self.store.get_event(knock_event_id) return await self._generate_local_out_of_band_leave( knock_event, txn_id, requester, content ) async def _generate_local_out_of_band_leave( self, previous_membership_event: EventBase, txn_id: Optional[str], requester: Requester, content: JsonDict, ) -> Tuple[str, int]: """Generate a local leave event for a room This can be called after we e.g fail to reject an invite via a remote server. It generates an out-of-band membership event locally. Args: previous_membership_event: the previous membership event for this user txn_id: optional transaction ID supplied by the client requester: user making the request, according to the access token content: additional content to include in the leave event. Normally an empty dict. Returns: A tuple containing (event_id, stream_id of the leave event) """ room_id = previous_membership_event.room_id target_user = previous_membership_event.state_key content["membership"] = Membership.LEAVE event_dict = { "type": EventTypes.Member, "room_id": room_id, "sender": target_user, "content": content, "state_key": target_user, } # the auth events for the new event are the same as that of the previous event, plus # the event itself. # # the prev_events consist solely of the previous membership event. prev_event_ids = [previous_membership_event.event_id] auth_event_ids = previous_membership_event.auth_event_ids() + prev_event_ids event, context = await self.event_creation_handler.create_event( requester, event_dict, txn_id=txn_id, prev_event_ids=prev_event_ids, auth_event_ids=auth_event_ids, ) event.internal_metadata.outlier = True event.internal_metadata.out_of_band_membership = True result_event = await self.event_creation_handler.handle_new_client_event( requester, event, context, extra_users=[UserID.from_string(target_user)], ) # we know it was persisted, so must have a stream ordering assert result_event.internal_metadata.stream_ordering return result_event.event_id, result_event.internal_metadata.stream_ordering async def remote_knock( self, remote_room_hosts: List[str], room_id: str, user: UserID, content: dict, ) -> Tuple[str, int]: """Sends a knock to a room. Attempts to do so via one remote out of a given list. Args: remote_room_hosts: A list of homeservers to try knocking through. room_id: The ID of the room to knock on. user: The user to knock on behalf of. content: The content of the knock event. Returns: A tuple of (event ID, stream ID). """ # filter ourselves out of remote_room_hosts remote_room_hosts = [ host for host in remote_room_hosts if host != self.hs.hostname ] if len(remote_room_hosts) == 0: raise SynapseError(404, "No known servers") return await self.federation_handler.do_knock( remote_room_hosts, room_id, user.to_string(), content=content ) async def _user_left_room(self, target: UserID, room_id: str) -> None: """Implements RoomMemberHandler._user_left_room""" user_left_room(self.distributor, target, room_id) async def forget(self, user: UserID, room_id: str) -> None: user_id = user.to_string() member = await self.state_handler.get_current_state( room_id=room_id, event_type=EventTypes.Member, state_key=user_id ) membership = member.membership if member else None if membership is not None and membership not in [ Membership.LEAVE, Membership.BAN, ]: raise SynapseError(400, "User %s in room %s" % (user_id, room_id)) if membership: await self.store.forget(user_id, room_id) def get_users_which_can_issue_invite(auth_events: StateMap[EventBase]) -> List[str]: """ Return the list of users which can issue invites. This is done by exploring the joined users and comparing their power levels to the necessyar power level to issue an invite. Args: auth_events: state in force at this point in the room Returns: The users which can issue invites. """ invite_level = get_named_level(auth_events, "invite", 0) users_default_level = get_named_level(auth_events, "users_default", 0) power_level_event = get_power_level_event(auth_events) # Custom power-levels for users. if power_level_event: users = power_level_event.content.get("users", {}) else: users = {} result = [] # Check which members are able to invite by ensuring they're joined and have # the necessary power level. for (event_type, state_key), event in auth_events.items(): if event_type != EventTypes.Member: continue if event.membership != Membership.JOIN: continue # Check if the user has a custom power level. if users.get(state_key, users_default_level) >= invite_level: result.append(state_key) return result def get_servers_from_users(users: List[str]) -> Set[str]: """ Resolve a list of users into their servers. Args: users: A list of users. Returns: A set of servers. """ servers = set() for user in users: try: servers.add(get_domain_from_id(user)) except SynapseError: pass return servers
the-stack_0_14966
import argparse import asyncio from pybecker.becker import Becker async def main(): """Main function""" parser = argparse.ArgumentParser() parser.add_argument('-c', '--channel', required=True, help='channel') parser.add_argument('-a', '--action', required=True, help='Command to execute (UP, DOWN, HALT, PAIR)') parser.add_argument('-d', '--device', required=False, help='Device to use for connectivity') args = parser.parse_args() client = Becker() if args.action == "UP": await client.move_up(args.channel) elif args.action == "HALT": await client.stop(args.channel) elif args.action == "DOWN": await client.move_down(args.channel) elif args.action == "PAIR": await client.pair(args.channel) if __name__ == '__main__': asyncio.run(main())
the-stack_0_14967
"""Adapted from: @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn Licensed under The MIT License [see LICENSE for details] """ from __future__ import print_function import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.autograd import Variable # from data import VOC_ROOT, VOCAnnotationTransform, VOCDetection, BaseTransform # from data import VOC_CLASSES as labelmap import torch.utils.data as data from data import BaseTransform from data.custom import CUSTOM_CLASSES as labelmap from data.custom import customDetection, customAnnotationTransform, CUSTOM_CLASSES, CUSTOM_ROOT # from ssd import build_ssd from ssd_resnet_101_new import build_ssd import sys import os import time import argparse import numpy as np import pickle import cv2 if sys.version_info[0] == 2: import xml.etree.cElementTree as ET else: import xml.etree.ElementTree as ET def str2bool(v): return v.lower() in ("yes", "true", "t", "1") parser = argparse.ArgumentParser( description='Single Shot MultiBox Detector Evaluation') parser.add_argument('--trained_model', default='weights/CUSTOM.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--save_folder', default='eval/', type=str, help='File path to save results') parser.add_argument('--confidence_threshold', default=0.01, type=float, help='Detection confidence threshold') parser.add_argument('--top_k', default=5, type=int, help='Further restrict the number of predictions to parse') parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda to train model') parser.add_argument('--custom_root', default=CUSTOM_ROOT, help='Location of VOC root directory') parser.add_argument('--cleanup', default=True, type=str2bool, help='Cleanup and remove results files following eval') args = parser.parse_args() if not os.path.exists(args.save_folder): os.mkdir(args.save_folder) if torch.cuda.is_available(): if args.cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') if not args.cuda: print("WARNING: It looks like you have a CUDA device, but aren't using \ CUDA. Run with --cuda for optimal eval speed.") torch.set_default_tensor_type('torch.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') annopath = os.path.join(args.custom_root, 'shenhe', 'Annotations', '%s.xml') imgpath = os.path.join(args.custom_root, 'shenhe', 'JPEGImages', '%s.jpg') imgsetpath = os.path.join(args.custom_root, 'shenhe', 'ImageSets', 'Main', '%s.txt') devkit_path = args.custom_root + 'shenhe' dataset_mean = (104, 117, 123) set_type = 'test' class Timer(object): """A simple timer.""" def __init__(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: return self.average_time else: return self.diff def parse_rec(filename): """ Parse a PASCAL VOC xml file """ tree = ET.parse(filename) objects = [] for obj in tree.findall('object'): obj_struct = {} obj_struct['name'] = obj.find('name').text obj_struct['pose'] = obj.find('pose').text obj_struct['truncated'] = int(obj.find('truncated').text) obj_struct['difficult'] = int(obj.find('difficult').text) bbox = obj.find('bndbox') obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1, int(bbox.find('ymin').text) - 1, int(bbox.find('xmax').text) - 1, int(bbox.find('ymax').text) - 1] objects.append(obj_struct) return objects def get_output_dir(name, phase): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ filedir = os.path.join(name, phase) if not os.path.exists(filedir): os.makedirs(filedir) return filedir def get_voc_results_file_template(image_set, cls): # VOCdevkit/VOC2007/results/det_test_aeroplane.txt filename = 'det_' + image_set + '_%s.txt' % (cls) filedir = os.path.join(devkit_path, 'results') if not os.path.exists(filedir): os.makedirs(filedir) path = os.path.join(filedir, filename) return path def write_voc_results_file(all_boxes, dataset): for cls_ind, cls in enumerate(labelmap): print('Writing {:s} VOC results file'.format(cls)) filename = get_voc_results_file_template(set_type, cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(dataset.ids): dets = all_boxes[cls_ind+1][im_ind] if dets == []: continue # the VOCdevkit expects 1-based indices for k in range(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index[1], dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1)) def do_python_eval(output_dir='output', use_07=True): cachedir = os.path.join(devkit_path, 'annotations_cache') aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = use_07 print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) if not os.path.isdir(output_dir): os.mkdir(output_dir) for i, cls in enumerate(labelmap): filename = get_voc_results_file_template(set_type, cls) rec, prec, ap = voc_eval( filename, annopath, imgsetpath % (set_type), cls, cachedir, ovthresh=0.1, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) print('Mean AP = {:.4f}'.format(np.mean(aps))) print('~~~~~~~~') print('Results:') for ap in aps: print('{:.3f}'.format(ap)) print('{:.3f}'.format(np.mean(aps))) print('~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** Python eval code.') print('Results should be very close to the official MATLAB eval code.') print('--------------------------------------------------------------') def voc_ap(rec, prec, use_07_metric=True): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:True). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, cachedir, ovthresh=0.5, use_07_metric=True): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) cachedir: Directory for caching the annotations [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default True) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # cachedir caches the annotations in a pickle file # first load gt if not os.path.isdir(cachedir): os.mkdir(cachedir) cachefile = os.path.join(cachedir, 'annots.pkl') # read list of images with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] if not os.path.isfile(cachefile): # load annots recs = {} for i, imagename in enumerate(imagenames): recs[imagename] = parse_rec(annopath % (imagename)) if i % 100 == 0: print('Reading annotation for {:d}/{:d}'.format( i + 1, len(imagenames))) # save print('Saving cached annotations to {:s}'.format(cachefile)) with open(cachefile, 'wb') as f: pickle.dump(recs, f) else: # load with open(cachefile, 'rb') as f: recs = pickle.load(f) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj['name'] == classname] bbox = np.array([x['bbox'] for x in R]) difficult = np.array([x['difficult'] for x in R]).astype(np.bool) det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {'bbox': bbox, 'difficult': difficult, 'det': det} # read dets detfile = detpath.format(classname) with open(detfile, 'r') as f: lines = f.readlines() if any(lines) == 1: splitlines = [x.strip().split(' ') for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) # sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin, 0.) ih = np.maximum(iymax - iymin, 0.) inters = iw * ih uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) + (BBGT[:, 2] - BBGT[:, 0]) * (BBGT[:, 3] - BBGT[:, 1]) - inters) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R['difficult'][jmax]: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) else: rec = -1. prec = -1. ap = -1. return rec, prec, ap def test_net(save_folder, net, cuda, dataset, transform, top_k, im_size=300, thresh=0.05): num_images = len(dataset) # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in range(num_images)] for _ in range(len(labelmap)+1)] # timers _t = {'im_detect': Timer(), 'misc': Timer()} output_dir = get_output_dir('ssd300_120000', set_type) det_file = os.path.join(output_dir, 'detections.pkl') for i in range(num_images): im, gt, h, w = dataset.pull_item(i) x = Variable(im.unsqueeze(0)) if args.cuda: x = x.cuda() _t['im_detect'].tic() detections = net(x).data detect_time = _t['im_detect'].toc(average=False) # skip j = 0, because it's the background class for j in range(1, detections.size(1)): dets = detections[0, j, :] mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t() dets = torch.masked_select(dets, mask).view(-1, 5) if dets.size(0) == 0: continue boxes = dets[:, 1:] boxes[:, 0] *= w boxes[:, 2] *= w boxes[:, 1] *= h boxes[:, 3] *= h scores = dets[:, 0].cpu().numpy() cls_dets = np.hstack((boxes.cpu().numpy(), scores[:, np.newaxis])).astype(np.float32, copy=False) all_boxes[j][i] = cls_dets print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1, num_images, detect_time)) with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) print('Evaluating detections') evaluate_detections(all_boxes, output_dir, dataset) def evaluate_detections(box_list, output_dir, dataset): write_voc_results_file(box_list, dataset) do_python_eval(output_dir) if __name__ == '__main__': # load net num_classes = len(labelmap) + 1 # +1 for background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data dataset = customDetection(args.custom_root, [('shenhe', set_type)], BaseTransform(300, dataset_mean), customAnnotationTransform()) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation test_net(args.save_folder, net, args.cuda, dataset, BaseTransform(net.size, dataset_mean), args.top_k, 300, thresh=args.confidence_threshold)
the-stack_0_14968
import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.cnn import constant_init, kaiming_init from ..builder import BACKBONES import os from mmdet.ops.CSPOSAModule import CSPOSAModule class ConvStride2(nn.Module): def __init__(self, in_ch, out_ch, kernel_size=3, exp=1, norm_cfg=dict(type='BN', requires_grad=True)): super(ConvStride2, self).__init__() # self.conv1x1 = ConvModule(in_ch, out_ch, kernel_size=1, stride=2, padding=0, # norm_cfg=dict(type='BN', requires_grad=True)) self.conv3x3 = ConvModule(in_ch, out_ch, kernel_size=3, stride=2, padding=1, norm_cfg=norm_cfg) def forward(self, x): # return self.conv1x1(x)+self.conv3x3(x) return self.conv3x3(x) class CSPOSAStage(nn.Module): def __init__(self, in_ch, stage_ch, num_block, kernel_size, conv_type=dict(type="NormalConv", info=dict(norm_cfg=dict(type='BN', requires_grad=True))), conv1x1=True): assert isinstance(conv_type, dict), "conv_type must be string" super(CSPOSAStage, self).__init__() self.Block = nn.Sequential(ConvStride2(in_ch, stage_ch, kernel_size=kernel_size), CSPOSAModule(stage_ch, num_block, conv_type, kernel_size=kernel_size, conv1x1=conv1x1)) def forward(self, x): return self.Block(x) @BACKBONES.register_module() class CSPOSANet(nn.Module): def __init__(self, stem_channels, stage_channels, block_per_stage, conv_type=dict(type="NormalConv", info=dict(norm_cfg=dict(type='BN', requires_grad=True))), num_out=5, kernel_size=3, conv1x1=True ): super(CSPOSANet, self).__init__() if isinstance(kernel_size, int): kernel_sizes = [kernel_size for _ in range(len(stage_channels))] if isinstance(kernel_size, list): assert len(kernel_size) == len(stage_channels), \ "if kernel_size is list, len(kernel_size) should == len(stage_channels)" kernel_sizes = kernel_size else: raise TypeError("type of kernel size should be int or list") assert num_out <= len(stage_channels), 'num output should be less than stage channels!' conv_info = conv_type["info"] norm_cfg = conv_info["norm_cfg"] self.stage_nums = len(stage_channels) self.stem = ConvModule(3, stem_channels, kernel_size=3, stride=2, padding=1, norm_cfg=norm_cfg) '''defult end_stage is the last stage''' self.start_stage = len(stage_channels)-num_out+1 self.stages = nn.ModuleList() self.last_stage = len(stage_channels) in_channel = stem_channels for num_stages in range(self.stage_nums): stage = CSPOSAStage(in_channel, stage_channels[num_stages], block_per_stage[num_stages], kernel_size=kernel_sizes[num_stages], conv_type=conv_type, conv1x1=conv1x1) in_channel = stage_channels[num_stages] # stage = OrderedDict() # for num_layers in range(block_per_stage[num_stages]): # stage.update({'stage_{}_layer{}'.format(num_stages, num_layers):_OSA_stage(in_channel, stage_channels[num_stages], # concat_channels[num_stages], layer_per_block[num_stages])}) # in_channel = concat_channels[num_stages] self.stages.append(stage) def init_weights(self, pretrained=None): if isinstance(pretrained, str): import torch assert os.path.isfile(pretrained), "file {} not found.".format(pretrained) self.load_state_dict(torch.load(pretrained), strict=False) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None') def forward(self, x): tmp = x x = self.stem(x) for i in range(self.start_stage): x = self.stages[i](x) out = [] for i in range(self.start_stage, len(self.stages)): out.append(x) x = self.stages[i](x) out.append(x) return out
the-stack_0_14969
import Eva from collections import defaultdict from cdlib import AttrNodeClustering import networkx as nx from cdlib.utils import convert_graph_formats from cdlib.algorithms.internal.ILouvain import ML2 __all__ = ["eva", "ilouvain"] def eva( g_original: object, labels: dict, weight: str = "weight", resolution: float = 1.0, alpha: float = 0.5, ) -> AttrNodeClustering: """ The Eva algorithm extends the Louvain approach in order to deal with the attributes of the nodes (aka Louvain Extended to Vertex Attributes). It optimizes - combining them linearly - two quality functions, a structural and a clustering one, namely Newman's modularity and purity, estimated as the product of the frequencies of the most frequent labels carried by the nodes within the communities. A parameter alpha tunes the importance of the two functions: an high value of alpha favors the clustering criterion instead of the structural one. **Supported Graph Types** ========== ======== ======== ======== ============== Undirected Directed Weighted Temporal Node Attribute ========== ======== ======== ======== ============== Yes No No No Yes ========== ======== ======== ======== ============== :param g_original: a networkx/igraph object :param labels: dictionary specifying for each node (key) a dict (value) specifying the name attribute (key) and its value (value) :param weight: str, optional the key in graph to use as weight. Default to 'weight' :param resolution: double, optional Will change the size of the communities, default to 1. :param alpha: float, assumed in [0,1], optional Will tune the importance of modularity and purity criteria, default to 0.5 :return: AttrNodeClustering object :Example: >>> from cdlib.algorithms import eva >>> import networkx as nx >>> import random >>> l1 = ['A', 'B', 'C', 'D'] >>> l2 = ["E", "F", "G"] >>> g_attr = nx.barabasi_albert_graph(100, 5) >>> labels=dict() >>> for node in g_attr.nodes(): >>> labels[node]={"l1":random.choice(l1), "l2":random.choice(l2)} >>> communities = eva(g_attr, labels, alpha=0.8) :References: Citraro, S., & Rossetti, G. (2019, December). Eva: Attribute-Aware Network Segmentation. In International Conference on Complex Networks and Their Applications (pp. 141-151). Springer, Cham. .. note:: Reference implementation: https://github.com/GiulioRossetti/Eva/tree/master/Eva """ g = convert_graph_formats(g_original, nx.Graph) nx.set_node_attributes(g, labels) coms, coms_labels = Eva.eva_best_partition( g, weight=weight, resolution=resolution, alpha=alpha ) # Reshaping the results coms_to_node = defaultdict(list) for n, c in coms.items(): coms_to_node[c].append(n) coms_eva = [list(c) for c in coms_to_node.values()] return AttrNodeClustering( coms_eva, g_original, "Eva", coms_labels, method_parameters={ "weight": weight, "resolution": resolution, "alpha": alpha, }, ) def ilouvain(g_original: object, labels: dict) -> AttrNodeClustering: """ The I-Louvain algorithm extends the Louvain approach in order to deal only with the scalar attributes of the nodes. It optimizes Newman's modularity combined with an entropy measure. **Supported Graph Types** ========== ======== ======== ======== ============== Undirected Directed Weighted Temporal Node Attribute ========== ======== ======== ======== ============== Yes No No No Yes ========== ======== ======== ======== ============== :param g_original: a networkx/igraph object :param labels: dictionary specifying for each node (key) a dict (value) specifying the name attribute (key) and its value (value) :return: AttrNodeClustering object :Example: >>> from cdlib.algorithms import ilouvain >>> import networkx as nx >>> import random >>> l1 = [0.1, 0.4, 0.5] >>> l2 = [34, 3, 112] >>> g_attr = nx.barabasi_albert_graph(100, 5) >>> labels=dict() >>> for node in g_attr.nodes(): >>> labels[node]={"l1":random.choice(l1), "l2":random.choice(l2)} >>> id = dict() >>> for n in g.nodes(): >>> id[n] = n >>> communities = ilouvain(g_attr, labels, id) :References: Combe D., Largeron C., Géry M., Egyed-Zsigmond E. "I-Louvain: An Attributed Graph Clustering Method". <https://link.springer.com/chapter/10.1007/978-3-319-24465-5_16> In: Fromont E., De Bie T., van Leeuwen M. (eds) Advances in Intelligent Data Analysis XIV. IDA (2015). Lecture Notes in Computer Science, vol 9385. Springer, Cham """ g = convert_graph_formats(g_original, nx.Graph) nx.set_node_attributes(g, labels) nid = dict() for n in g.nodes(): nid[n] = n algo = ML2(g, labels, nid) coms = algo.findPartition() # Reshaping the results coms_to_node = defaultdict(list) for n, c in coms.items(): coms_to_node[c].append(n) coms_ilouv = [list(c) for c in coms_to_node.values()] return AttrNodeClustering(coms_ilouv, g_original, "ILouvain")
the-stack_0_14973
total = 0 line = input() while line != "NoMoreMoney": current = float(line) if current < 0: print("Invalid operation!") break total += current print(f"Increase: {current:.2f}") line = input() print(f"Total: {total:.2f}")
the-stack_0_14974
import logging from concurrent.futures import ProcessPoolExecutor from functools import partial from typing import Iterable, List import pandas as pd from pyarrow import parquet as pq from feast.constants import DATETIME_COLUMN from feast.feature_set import FeatureSet from feast.type_map import ( pa_column_to_proto_column, pa_column_to_timestamp_proto_column, ) from feast.types import Field_pb2 as FieldProto from feast.types.FeatureRow_pb2 import FeatureRow _logger = logging.getLogger(__name__) GRPC_CONNECTION_TIMEOUT_DEFAULT = 3 # type: int GRPC_CONNECTION_TIMEOUT_APPLY = 300 # type: int FEAST_SERVING_URL_ENV_KEY = "FEAST_SERVING_URL" # type: str FEAST_CORE_URL_ENV_KEY = "FEAST_CORE_URL" # type: str BATCH_FEATURE_REQUEST_WAIT_TIME_SECONDS = 300 KAFKA_CHUNK_PRODUCTION_TIMEOUT = 120 # type: int def _encode_pa_tables( file: str, feature_set: str, fields: dict, ingestion_id: str, row_group_idx: int ) -> List[bytes]: """ Helper function to encode a PyArrow table(s) read from parquet file(s) into FeatureRows. This function accepts a list of file directory pointing to many parquet files. All parquet files must have the same schema. Each parquet file will be read into as a table and encoded into FeatureRows using a pool of max_workers workers. Args: file (str): File directory of all the parquet file to encode. Parquet file must have more than one row group. feature_set (str): Feature set reference in the format f"{project}/{name}". fields (dict[str, enum.Enum.ValueType]): A mapping of field names to their value types. ingestion_id (str): UUID unique to this ingestion job. row_group_idx(int): Row group index to read and encode into byte like FeatureRow protobuf objects. Returns: List[bytes]: List of byte encoded FeatureRows from the parquet file. """ pq_file = pq.ParquetFile(file) # Read parquet file as a PyArrow table table = pq_file.read_row_group(row_group_idx) # Add datetime column datetime_col = pa_column_to_timestamp_proto_column(table.column(DATETIME_COLUMN)) # Preprocess the columns by converting all its values to Proto values proto_columns = { field_name: pa_column_to_proto_column(dtype, table.column(field_name)) for field_name, dtype in fields.items() } # List to store result feature_rows: List[bytes] = [] # Loop optimization declaration(s) field = FieldProto.Field proto_items = proto_columns.items() append = feature_rows.append # Iterate through the rows for row_idx in range(table.num_rows): feature_row = FeatureRow( event_timestamp=datetime_col[row_idx], feature_set=feature_set, ingestion_id=ingestion_id, ) # Loop optimization declaration ext = feature_row.fields.extend # Insert field from each column for k, v in proto_items: ext([field(name=k, value=v[row_idx])]) # Append FeatureRow in byte string form append(feature_row.SerializeToString()) return feature_rows def get_feature_row_chunks( file: str, row_groups: List[int], fs: FeatureSet, ingestion_id: str, max_workers: int, ) -> Iterable[List[bytes]]: """ Iterator function to encode a PyArrow table read from a parquet file to FeatureRow(s). Args: file (str): File directory of the parquet file. The parquet file must have more than one row group. row_groups (List[int]): Specific row group indexes to be read and transformed in the parquet file. fs (feast.feature_set.FeatureSet): FeatureSet describing parquet files. ingestion_id (str): UUID unique to this ingestion job. max_workers (int): Maximum number of workers to spawn. Returns: Iterable[List[bytes]]: Iterable list of byte encoded FeatureRow(s). """ feature_set = f"{fs.project}/{fs.name}" field_map = {field.name: field.dtype for field in fs.fields.values()} func = partial(_encode_pa_tables, file, feature_set, field_map, ingestion_id) with ProcessPoolExecutor(max_workers) as pool: for chunk in pool.map(func, row_groups): yield chunk return def validate_dataframe(dataframe: pd.DataFrame, feature_set: FeatureSet): if "datetime" not in dataframe.columns: raise ValueError( f'Dataframe does not contain entity "datetime" in columns {dataframe.columns}' ) for entity in feature_set.entities: if entity.name not in dataframe.columns: raise ValueError( f"Dataframe does not contain entity {entity.name} in columns {dataframe.columns}" ) for feature in feature_set.features: if feature.name not in dataframe.columns: raise ValueError( f"Dataframe does not contain feature {feature.name} in columns {dataframe.columns}" )
the-stack_0_14976
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: AMPAS # Copyright Academy of Motion Picture Arts and Sciences """ Defines unit tests for *ACES* configuration. """ from __future__ import division import hashlib import os import re import shutil import sys import tempfile import unittest sys.path.append(os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..'))) from aces_ocio.utilities import files_walker from aces_ocio.generate_config import ( ACES_OCIO_CTL_DIRECTORY_ENVIRON, generate_config) __author__ = ( 'Haarm-Pieter Duiker, Thomas Mansencal, Stephen Hill, Kevin Wheatley') __copyright__ = ( 'Copyright (C) 2014-2021 Academy of Motion Picture Arts and Sciences') __license__ = 'Academy of Motion Picture Arts and Sciences License Terms' __maintainer__ = 'Academy of Motion Picture Arts and Sciences' __email__ = '[email protected]' __status__ = 'Production' __all__ = ['REFERENCE_CONFIG_ROOT_DIRECTORY', 'HASH_TEST_PATTERNS', 'UNHASHABLE_TEST_PATTERNS', 'TestACESConfig'] # TODO: Investigate how the current config has been generated to use it for # tests. REFERENCE_CONFIG_ROOT_DIRECTORY = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', '..')) HASH_TEST_PATTERNS = ('\.3dl', '\.lut', '\.csp') UNHASHABLE_TEST_PATTERNS = ('\.icc', '\.ocio') class TestACESConfig(unittest.TestCase): """ Performs tests on the *ACES* configuration. """ def setUp(self): """ Initialises common tests attributes. """ self.__aces_ocio_ctl_directory = os.environ.get( ACES_OCIO_CTL_DIRECTORY_ENVIRON, None) assert self.__aces_ocio_ctl_directory is not None, ( 'Undefined "{0}" environment variable!'.format( ACES_OCIO_CTL_DIRECTORY_ENVIRON)) assert os.path.exists(self.__aces_ocio_ctl_directory) is True, ( '"{0}" directory does not exists!'.format( self.__aces_ocio_ctl_directory)) self.maxDiff = None self.__temporary_directory = tempfile.mkdtemp() def tearDown(self): """ Post tests actions. """ shutil.rmtree(self.__temporary_directory) @staticmethod def directory_hashes(directory, filters_in=None, filters_out=None, flags=0): """ Recursively computes the hashes from the file within given directory. Parameters ---------- directory : str or unicode Directory to compute the file hashes. filters_in : array_like Included patterns. filters_out : array_like Excluded patterns. flags : int Regex flags. Returns ------- dict Directory file hashes. """ hashes = {} for path in files_walker(directory, filters_in=filters_in, filters_out=filters_out, flags=flags): with open(path) as file: digest = hashlib.md5( re.sub('\s', '', file.read())).hexdigest() hashes[path.replace(directory, '')] = digest return hashes def test_ACES_config(self): """ Performs tests on the *ACES* configuration by computing hashes on the generated configuration and comparing them to the existing one. """ self.assertTrue(generate_config(self.__aces_ocio_ctl_directory, self.__temporary_directory)) reference_hashes = self.directory_hashes( REFERENCE_CONFIG_ROOT_DIRECTORY, HASH_TEST_PATTERNS) test_hashes = self.directory_hashes( self.__temporary_directory, HASH_TEST_PATTERNS) self.assertDictEqual(reference_hashes, test_hashes) # Checking that unashable files ('.icc', '.ocio') are generated. unashable = lambda x: ( sorted([file.replace(x, '') for file in files_walker(x, UNHASHABLE_TEST_PATTERNS)])) self.assertListEqual(unashable(REFERENCE_CONFIG_ROOT_DIRECTORY), unashable(self.__temporary_directory)) if __name__ == '__main__': unittest.main()
the-stack_0_14977
from plotly.basedatatypes import BaseTraceHierarchyType import copy class Titlefont(BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self['color'] @color.setter def color(self, val): self['color'] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include *Arial*, *Balto*, *Courier New*, *Droid Sans*,, *Droid Serif*, *Droid Sans Mono*, *Gravitas One*, *Old Standard TT*, *Open Sans*, *Overpass*, *PT Sans Narrow*, *Raleway*, *Times New Roman*. The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self['family'] @family.setter def family(self, val): self['family'] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self['size'] @size.setter def size(self, val): self['size'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'splom.marker.colorbar' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include *Arial*, *Balto*, *Courier New*, *Droid Sans*,, *Droid Serif*, *Droid Sans Mono*, *Gravitas One*, *Old Standard TT*, *Open Sans*, *Overpass*, *PT Sans Narrow*, *Raleway*, *Times New Roman*. size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Titlefont object Sets this color bar's title font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.splom.marker.colorbar.Titlefont color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include *Arial*, *Balto*, *Courier New*, *Droid Sans*,, *Droid Serif*, *Droid Sans Mono*, *Gravitas One*, *Old Standard TT*, *Open Sans*, *Overpass*, *PT Sans Narrow*, *Raleway*, *Times New Roman*. size Returns ------- Titlefont """ super(Titlefont, self).__init__('titlefont') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.splom.marker.colorbar.Titlefont constructor must be a dict or an instance of plotly.graph_objs.splom.marker.colorbar.Titlefont""" ) # Import validators # ----------------- from plotly.validators.splom.marker.colorbar import ( titlefont as v_titlefont ) # Initialize validators # --------------------- self._validators['color'] = v_titlefont.ColorValidator() self._validators['family'] = v_titlefont.FamilyValidator() self._validators['size'] = v_titlefont.SizeValidator() # Populate data dict with properties # ---------------------------------- v = arg.pop('color', None) self.color = color if color is not None else v v = arg.pop('family', None) self.family = family if family is not None else v v = arg.pop('size', None) self.size = size if size is not None else v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs))
the-stack_0_14978
import config import telebot bot = telebot.TeleBot(config.token) @bot.message_handler(commands=['start']) def start_message(message): keyboard = telebot.types.ReplyKeyboardMarkup(True) keyboard.row('Добавить вещь', 'Найти вещь') bot.send_message(message.chat.id, '''Привет! Я помогу тебе обменять что-то ненужное на очень нужное. Чтобы разместить вещь к обмену нажми - “Добавить вещь”. После этого тебе станут доступны вещи других пользователей. Нажми “Найти вещь” и я пришлю тебе фотографии вещей для обмена. Понравилась вещь - пиши “Обменяться”, нет - снова нажимай “Найти вещь”. Нажал “Обменяться”? - если владельцу вещи понравится что-то из твоих вещей, то я пришлю контакты вам обоим.''', reply_markup=keyboard) @bot.message_handler(content_types=['text']) def reply_all_message(message): if message.text == 'Добавить вещь': bot.send_message(message.chat.id, 'Введи название вещи') elif message.text == 'Найти вещь': keyboard = telebot.types.InlineKeyboardMarkup() exchange_button = telebot.types.InlineKeyboardButton(text='Обменяться', url='https://www.google.com/') keyboard.add(exchange_button) img = open('sn.jpg', 'rb') bot.send_photo(message.chat.id, img, 'Кроссовки', reply_markup=keyboard) else: print(f'Упаковываем вещь {message.text} в список юзера {message.chat.username}') if __name__ == '__main__': bot.infinity_polling()
the-stack_0_14979
import Backends import random import numpy as np from .theano_helpers import floatX def create_dropout_masks(route, fname, dimensionality, ks=1000): """ route = path where to create a file fname = filename ks = thousand of masks to create (1e6 masks by default) """ hdf5_backend = Backends.HDF5(route, fname) for i in xrange(ks): mask = random.random_binary_mask( (dimensionality, 1000), np.random.randint(dimensionality, size=1000)) mask = mask.astype(floatX) hdf5_backend.write([], "masks/%d/masks" % i, mask.T) del hdf5_backend def test_dropout_mask_creation(): create_dropout_masks("/tmp", "domask", 5, 2) if __name__ == "__main__": test_dropout_mask_creation()
the-stack_0_14981
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from pandas.api.types import is_string_dtype from pandas.api.types import is_numeric_dtype import re import warnings import multiprocessing as mp import matplotlib.pyplot as plt import time import os import platform from .condition_fun import * from .info_value import * # converting vector (breaks & special_values) to dataframe def split_vec_todf(vec): ''' Create a dataframe based on provided vector. Split the rows that including '%,%' into multiple rows. Replace 'missing' by np.nan. Params ------ vec: list Returns ------ pandas.DataFrame returns a dataframe with three columns {'bin_chr':orginal vec, 'rowid':index of vec, 'value':splited vec} ''' if vec is not None: vec = [str(i) for i in vec] a = pd.DataFrame({'bin_chr':vec}).assign(rowid=lambda x:x.index) b = pd.DataFrame([i.split('%,%') for i in vec], index=vec)\ .stack().replace('missing', np.nan) \ .reset_index(name='value')\ .rename(columns={'level_0':'bin_chr'})[['bin_chr','value']] # return return pd.merge(a,b,on='bin_chr') def add_missing_spl_val(dtm, breaks, spl_val): ''' add missing to spl_val if there is nan in dtm.value and missing is not specified in breaks and spl_val Params ------ dtm: melt dataframe breaks: breaks list spl_val: speical values list Returns ------ list returns spl_val list ''' if dtm.value.isnull().any(): if breaks is None: if spl_val is None: spl_val=['missing'] elif any([('missing' in str(i)) for i in spl_val]): spl_val=spl_val else: spl_val=['missing']+spl_val elif any([('missing' in str(i)) for i in breaks]): spl_val=spl_val else: if spl_val is None: spl_val=['missing'] elif any([('missing' in str(i)) for i in spl_val]): spl_val=spl_val else: spl_val=['missing']+spl_val # return return spl_val # count number of good or bad in y def n0(x): return sum(x==0) def n1(x): return sum(x==1) # split dtm into bin_sv and dtm (without speical_values) def dtm_binning_sv(dtm, breaks, spl_val): ''' Split the orginal dtm (melt dataframe) into binning_sv (binning of special_values) and a new dtm (without special_values). Params ------ dtm: melt dataframe spl_val: speical values list Returns ------ list returns a list with binning_sv and dtm ''' spl_val = add_missing_spl_val(dtm, breaks, spl_val) if spl_val is not None: # special_values from vector to dataframe sv_df = split_vec_todf(spl_val) # value if is_numeric_dtype(dtm['value']): sv_df['value'] = sv_df['value'].astype(dtm['value'].dtypes) # sv_df['bin_chr'] = sv_df['bin_chr'].astype(dtm['value'].dtypes).astype(str) sv_df['bin_chr'] = np.where( np.isnan(sv_df['value']), sv_df['bin_chr'], sv_df['value'].astype(dtm['value'].dtypes).astype(str)) # sv_df = sv_df.assign(value = lambda x: x.value.astype(dtm['value'].dtypes)) # dtm_sv & dtm dtm_sv = pd.merge(dtm.fillna("missing"), sv_df[['value']].fillna("missing"), how='inner', on='value', right_index=True) dtm = dtm[~dtm.index.isin(dtm_sv.index)].reset_index() if len(dtm_sv.index) < len(dtm.index) else None # dtm_sv = dtm.query('value in {}'.format(sv_df['value'].tolist())) # dtm = dtm.query('value not in {}'.format(sv_df['value'].tolist())) if dtm_sv.shape[0] == 0: return {'binning_sv':None, 'dtm':dtm} # binning_sv binning_sv = pd.merge( dtm_sv.fillna('missing').groupby(['variable','value'])['y'].agg([n0, n1])\ .reset_index().rename(columns={'n0':'good','n1':'bad'}), sv_df.fillna('missing'), on='value' ).groupby(['variable', 'rowid', 'bin_chr']).agg({'bad':sum,'good':sum})\ .reset_index().rename(columns={'bin_chr':'bin'})\ .drop('rowid', axis=1) else: binning_sv = None # return return {'binning_sv':binning_sv, 'dtm':dtm} # check empty bins for unmeric variable def check_empty_bins(dtm, binning): # check empty bins bin_list = np.unique(dtm.bin.astype(str)).tolist() if 'nan' in bin_list: bin_list.remove('nan') binleft = set([re.match(r'\[(.+),(.+)\)', i).group(1) for i in bin_list]).difference(set(['-inf', 'inf'])) binright = set([re.match(r'\[(.+),(.+)\)', i).group(2) for i in bin_list]).difference(set(['-inf', 'inf'])) if binleft != binright: bstbrks = sorted(list(map(float, ['-inf'] + list(binright) + ['inf']))) labels = ['[{},{})'.format(bstbrks[i], bstbrks[i+1]) for i in range(len(bstbrks)-1)] dtm.loc[:,'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels) binning = dtm.groupby(['variable','bin'])['y'].agg([n0, n1])\ .reset_index().rename(columns={'n0':'good','n1':'bad'}) # warnings.warn("The break points are modified into '[{}]'. There are empty bins based on the provided break points.".format(','.join(binright))) # binning # dtm['bin'] = dtm['bin'].astype(str) # return return binning # required in woebin2 # return binning if breaks provided #' @import data.table def woebin2_breaks(dtm, breaks, spl_val): ''' get binning if breaks is provided Params ------ dtm: melt dataframe breaks: breaks list spl_val: speical values list Returns ------ DataFrame returns a binning datafram ''' # breaks from vector to dataframe bk_df = split_vec_todf(breaks) # dtm $ binning_sv dtm_binsv_list = dtm_binning_sv(dtm, breaks, spl_val) dtm = dtm_binsv_list['dtm'] binning_sv = dtm_binsv_list['binning_sv'] if dtm is None: return {'binning_sv':binning_sv, 'binning':None} # binning if is_numeric_dtype(dtm['value']): # best breaks bstbrks = ['-inf'] + list(set(bk_df.value.tolist()).difference(set([np.nan, '-inf', 'inf', 'Inf', '-Inf']))) + ['inf'] bstbrks = sorted(list(map(float, bstbrks))) # cut labels = ['[{},{})'.format(bstbrks[i], bstbrks[i+1]) for i in range(len(bstbrks)-1)] dtm.loc[:,'bin'] = pd.cut(dtm['value'], bstbrks, right=False, labels=labels) dtm['bin'] = dtm['bin'].astype(str) binning = dtm.groupby(['variable','bin'])['y'].agg([n0, n1])\ .reset_index().rename(columns={'n0':'good','n1':'bad'}) # check empty bins for unmeric variable binning = check_empty_bins(dtm, binning) # sort bin binning = pd.merge( binning.assign(value=lambda x: [float(re.search(r"^\[(.*),(.*)\)", i).group(2)) if i != 'nan' else np.nan for i in binning['bin']] ), bk_df.assign(value=lambda x: x.value.astype(float)), how='left',on='value' ).sort_values(by="rowid").reset_index(drop=True) # merge binning and bk_df if nan isin value if bk_df['value'].isnull().any(): binning = binning.assign(bin=lambda x: [i if i != 'nan' else 'missing' for i in x['bin']])\ .fillna('missing').groupby(['variable','rowid'])\ .agg({'bin':lambda x: '%,%'.join(x), 'good':sum, 'bad':sum})\ .reset_index() else: # merge binning with bk_df binning = pd.merge( dtm, bk_df.assign(bin=lambda x: x.bin_chr), how='left', on='value' ).fillna('missing').groupby(['variable', 'rowid', 'bin'])['y'].agg([n0,n1])\ .rename(columns={'n0':'good','n1':'bad'})\ .reset_index().drop('rowid', axis=1) # return return {'binning_sv':binning_sv, 'binning':binning} # required in woebin2_init_bin # return pretty breakpoints def pretty(low, high, n): ''' pretty breakpoints, the same as pretty function in R Params ------ low: minimal value low: maximal value n: number of intervals Returns ------ numpy.ndarray returns a breakpoints array ''' # nicenumber def nicenumber(x): exp = np.trunc(np.log10(abs(x))) f = abs(x) / 10**exp if f < 1.5: nf = 1. elif f < 3.: nf = 2. elif f < 7.: nf = 5. else: nf = 10. return np.sign(x) * nf * 10.**exp # pretty breakpoints d = abs(nicenumber((high-low)/(n-1))) miny = np.floor(low / d) * d maxy = np.ceil (high / d) * d return np.arange(miny, maxy+0.5*d, d) # required in woebin2 # return initial binning def woebin2_init_bin(dtm, init_count_distr, breaks, spl_val): ''' initial binning Params ------ dtm: melt dataframe init_count_distr: the minimal precentage in the fine binning process breaks: breaks breaks: breaks list spl_val: speical values list Returns ------ dict returns a dict with initial binning and special_value binning ''' # dtm $ binning_sv dtm_binsv_list = dtm_binning_sv(dtm, breaks, spl_val) dtm = dtm_binsv_list['dtm'] binning_sv = dtm_binsv_list['binning_sv'] if dtm is None: return {'binning_sv':binning_sv, 'initial_binning':None} # binning if is_numeric_dtype(dtm['value']): # numeric variable xvalue = dtm['value'].astype(float) # breaks vector & outlier iq = xvalue.quantile([0.01, 0.25, 0.75, 0.99]) iqr = iq[0.75] - iq[0.25] if iqr == 0: prob_down = 0.01 prob_up = 0.99 else: prob_down = 0.25 prob_up = 0.75 xvalue_rm_outlier = xvalue[(xvalue >= iq[prob_down]-3*iqr) & (xvalue <= iq[prob_up]+3*iqr)] # number of initial binning n = np.trunc(1/init_count_distr) len_uniq_x = len(np.unique(xvalue_rm_outlier)) if len_uniq_x < n: n = len_uniq_x # initial breaks brk = np.unique(xvalue_rm_outlier) if len_uniq_x < 10 else pretty(min(xvalue_rm_outlier), max(xvalue_rm_outlier), n) brk = list(filter(lambda x: x>np.nanmin(xvalue) and x<=np.nanmax(xvalue), brk)) brk = [float('-inf')] + sorted(brk) + [float('inf')] # initial binning datatable # cut labels = ['[{},{})'.format(brk[i], brk[i+1]) for i in range(len(brk)-1)] dtm.loc[:,'bin'] = pd.cut(dtm['value'], brk, right=False, labels=labels)#.astype(str) # init_bin init_bin = dtm.groupby('bin')['y'].agg([n0, n1])\ .reset_index().rename(columns={'n0':'good','n1':'bad'}) # check empty bins for unmeric variable init_bin = check_empty_bins(dtm, init_bin) init_bin = init_bin.assign( variable = dtm['variable'].values[0], brkp = lambda x: [float(re.match('^\[(.*),.+', i).group(1)) for i in x['bin']], badprob = lambda x: x['bad']/(x['bad']+x['good']) )[['variable', 'bin', 'brkp', 'good', 'bad', 'badprob']] else: # other type variable # initial binning datatable init_bin = dtm.groupby('value')['y'].agg([n0,n1])\ .rename(columns={'n0':'good','n1':'bad'})\ .assign( variable = dtm['variable'].values[0], badprob = lambda x: x['bad']/(x['bad']+x['good']) ).reset_index() # order by badprob if is.character if dtm.value.dtype.name not in ['category', 'bool']: init_bin = init_bin.sort_values(by='badprob').reset_index() # add index as brkp column init_bin = init_bin.assign(brkp = lambda x: x.index)\ [['variable', 'value', 'brkp', 'good', 'bad', 'badprob']]\ .rename(columns={'value':'bin'}) # remove brkp that good == 0 or bad == 0 ------ while len(init_bin.query('(good==0) or (bad==0)')) > 0: # brkp needs to be removed if good==0 or bad==0 rm_brkp = init_bin.assign(count = lambda x: x['good']+x['bad'])\ .assign( count_lag = lambda x: x['count'].shift(1).fillna(len(dtm)+1), count_lead = lambda x: x['count'].shift(-1).fillna(len(dtm)+1) ).assign(merge_tolead = lambda x: x['count_lag'] > x['count_lead'])\ .query('(good==0) or (bad==0)')\ .query('count == count.min()').iloc[0,] # set brkp to lead's or lag's shift_period = -1 if rm_brkp['merge_tolead'] else 1 init_bin = init_bin.assign(brkp2 = lambda x: x['brkp'].shift(shift_period))\ .assign(brkp = lambda x:np.where(x['brkp'] == rm_brkp['brkp'], x['brkp2'], x['brkp'])) # groupby brkp init_bin = init_bin.groupby('brkp').agg({ 'variable':lambda x: np.unique(x), 'bin': lambda x: '%,%'.join(x), 'good': sum, 'bad': sum }).assign(badprob = lambda x: x['bad']/(x['good']+x['bad']))\ .reset_index() # format init_bin if is_numeric_dtype(dtm['value']): init_bin = init_bin\ .assign(bin = lambda x: [re.sub(r'(?<=,).+%,%.+,', '', i) if ('%,%' in i) else i for i in x['bin']])\ .assign(brkp = lambda x: [float(re.match('^\[(.*),.+', i).group(1)) for i in x['bin']]) # return return {'binning_sv':binning_sv, 'initial_binning':init_bin} # required in woebin2_tree # add 1 best break for tree-like binning def woebin2_tree_add_1brkp(dtm, initial_binning, count_distr_limit, bestbreaks=None): ''' add a breakpoint into provided bestbreaks Params ------ dtm initial_binning count_distr_limit bestbreaks Returns ------ DataFrame a binning dataframe with updated breaks ''' # dtm removed values in spl_val # total_iv for all best breaks def total_iv_all_breaks(initial_binning, bestbreaks, dtm_rows): # best breaks set breaks_set = set(initial_binning.brkp).difference(set(list(map(float, ['-inf', 'inf'])))) if bestbreaks is not None: breaks_set = breaks_set.difference(set(bestbreaks)) breaks_set = sorted(breaks_set) # loop on breaks_set init_bin_all_breaks = initial_binning.copy(deep=True) for i in breaks_set: # best break + i bestbreaks_i = [float('-inf')]+sorted(bestbreaks+[i] if bestbreaks is not None else [i])+[float('inf')] # best break datatable labels = ['[{},{})'.format(bestbreaks_i[i], bestbreaks_i[i+1]) for i in range(len(bestbreaks_i)-1)] init_bin_all_breaks.loc[:,'bstbin'+str(i)] = pd.cut(init_bin_all_breaks['brkp'], bestbreaks_i, right=False, labels=labels)#.astype(str) # best break dt total_iv_all_brks = pd.melt( init_bin_all_breaks, id_vars=["variable", "good", "bad"], var_name='bstbin', value_vars=['bstbin'+str(i) for i in breaks_set])\ .groupby(['variable', 'bstbin', 'value'])\ .agg({'good':sum, 'bad':sum}).reset_index()\ .assign(count=lambda x: x['good']+x['bad']) total_iv_all_brks['count_distr'] = total_iv_all_brks.groupby(['variable', 'bstbin'])\ ['count'].apply(lambda x: x/dtm_rows).reset_index(drop=True) total_iv_all_brks['min_count_distr'] = total_iv_all_brks.groupby(['variable', 'bstbin'])\ ['count_distr'].transform(lambda x: min(x)) total_iv_all_brks = total_iv_all_brks\ .assign(bstbin = lambda x: [float(re.sub('^bstbin', '', i)) for i in x['bstbin']] )\ .groupby(['variable','bstbin','min_count_distr'])\ .apply(lambda x: iv_01(x['good'], x['bad'])).reset_index(name='total_iv') # return return total_iv_all_brks # binning add 1best break def binning_add_1bst(initial_binning, bestbreaks): if bestbreaks is None: bestbreaks_inf = [float('-inf'),float('inf')] else: if not is_numeric_dtype(dtm['value']): bestbreaks = [i for i in bestbreaks if int(i) != min(initial_binning.brkp)] bestbreaks_inf = [float('-inf')]+sorted(bestbreaks)+[float('inf')] labels = ['[{},{})'.format(bestbreaks_inf[i], bestbreaks_inf[i+1]) for i in range(len(bestbreaks_inf)-1)] binning_1bst_brk = initial_binning.assign( bstbin = lambda x: pd.cut(x['brkp'], bestbreaks_inf, right=False, labels=labels) ) if is_numeric_dtype(dtm['value']): binning_1bst_brk = binning_1bst_brk.groupby(['variable', 'bstbin'])\ .agg({'good':sum, 'bad':sum}).reset_index().assign(bin=lambda x: x['bstbin'])\ [['bstbin', 'variable', 'bin', 'good', 'bad']] else: binning_1bst_brk = binning_1bst_brk.groupby(['variable', 'bstbin'])\ .agg({'good':sum, 'bad':sum, 'bin':lambda x:'%,%'.join(x)}).reset_index()\ [['bstbin', 'variable', 'bin', 'good', 'bad']] # format binning_1bst_brk['total_iv'] = iv_01(binning_1bst_brk.good, binning_1bst_brk.bad) binning_1bst_brk['bstbrkp'] = [float(re.match("^\[(.*),.+", i).group(1)) for i in binning_1bst_brk['bstbin']] # return return binning_1bst_brk # dtm_rows dtm_rows = len(dtm.index) # total_iv for all best breaks total_iv_all_brks = total_iv_all_breaks(initial_binning, bestbreaks, dtm_rows) # bestbreaks: total_iv == max(total_iv) & min(count_distr) >= count_distr_limit bstbrk_maxiv = total_iv_all_brks.loc[lambda x: x['min_count_distr'] >= count_distr_limit] if len(bstbrk_maxiv.index) > 0: bstbrk_maxiv = bstbrk_maxiv.loc[lambda x: x['total_iv']==max(x['total_iv'])] bstbrk_maxiv = bstbrk_maxiv['bstbin'].tolist()[0] else: bstbrk_maxiv = None # bestbreaks if bstbrk_maxiv is not None: # add 1best break to bestbreaks bestbreaks = bestbreaks+[bstbrk_maxiv] if bestbreaks is not None else [bstbrk_maxiv] # binning add 1best break bin_add_1bst = binning_add_1bst(initial_binning, bestbreaks) # return return bin_add_1bst # required in woebin2 # return tree-like binning def woebin2_tree(dtm, init_count_distr=0.02, count_distr_limit=0.05, stop_limit=0.1, bin_num_limit=8, breaks=None, spl_val=None): ''' binning using tree-like method Params ------ dtm: init_count_distr: count_distr_limit: stop_limit: bin_num_limit: breaks: spl_val: Returns ------ dict returns a dict with initial binning and special_value binning ''' # initial binning bin_list = woebin2_init_bin(dtm, init_count_distr=init_count_distr, breaks=breaks, spl_val=spl_val) initial_binning = bin_list['initial_binning'] binning_sv = bin_list['binning_sv'] if len(initial_binning.index)==1: return {'binning_sv':binning_sv, 'binning':initial_binning} # initialize parameters len_brks = len(initial_binning.index) bestbreaks = None IVt1 = IVt2 = 1e-10 IVchg = 1 ## IV gain ratio step_num = 1 # best breaks from three to n+1 bins binning_tree = None while (IVchg >= stop_limit) and (step_num+1 <= min([bin_num_limit, len_brks])): binning_tree = woebin2_tree_add_1brkp(dtm, initial_binning, count_distr_limit, bestbreaks) # best breaks bestbreaks = binning_tree.loc[lambda x: x['bstbrkp'] != float('-inf'), 'bstbrkp'].tolist() # information value IVt2 = binning_tree['total_iv'].tolist()[0] IVchg = IVt2/IVt1-1 ## ratio gain IVt1 = IVt2 # step_num step_num = step_num + 1 if binning_tree is None: binning_tree = initial_binning # return return {'binning_sv':binning_sv, 'binning':binning_tree} # examples # import time # start = time.time() # # binning_dict = woebin2_init_bin(dtm, init_count_distr=0.02, breaks=None, spl_val=None) # # woebin2_tree_add_1brkp(dtm, binning_dict['initial_binning'], count_distr_limit=0.05) # # woebin2_tree(dtm, binning_dict['initial_binning'], count_distr_limit=0.05) # end = time.time() # print(end - start) # required in woebin2 # return chimerge binning #' @importFrom stats qchisq def woebin2_chimerge(dtm, init_count_distr=0.02, count_distr_limit=0.05, stop_limit=0.1, bin_num_limit=8, breaks=None, spl_val=None): ''' binning using chimerge method Params ------ dtm: init_count_distr: count_distr_limit: stop_limit: bin_num_limit: breaks: spl_val: Returns ------ dict returns a dict with initial binning and special_value binning ''' # [chimerge](http://blog.csdn.net/qunxingvip/article/details/50449376) # [ChiMerge:Discretization of numeric attributs](http://www.aaai.org/Papers/AAAI/1992/AAAI92-019.pdf) # chisq = function(a11, a12, a21, a22) { # A = list(a1 = c(a11, a12), a2 = c(a21, a22)) # Adf = do.call(rbind, A) # # Edf = # matrix(rowSums(Adf), ncol = 1) %*% # matrix(colSums(Adf), nrow = 1) / # sum(Adf) # # sum((Adf-Edf)^2/Edf) # } # function to create a chisq column in initial_binning def add_chisq(initial_binning): chisq_df = pd.melt(initial_binning, id_vars=["brkp", "variable", "bin"], value_vars=["good", "bad"], var_name='goodbad', value_name='a')\ .sort_values(by=['goodbad', 'brkp']).reset_index(drop=True) ### chisq_df['a_lag'] = chisq_df.groupby('goodbad')['a'].apply(lambda x: x.shift(1))#.reset_index(drop=True) chisq_df['a_rowsum'] = chisq_df.groupby('brkp')['a'].transform(lambda x: sum(x))#.reset_index(drop=True) chisq_df['a_lag_rowsum'] = chisq_df.groupby('brkp')['a_lag'].transform(lambda x: sum(x))#.reset_index(drop=True) ### chisq_df = pd.merge( chisq_df.assign(a_colsum = lambda df: df.a+df.a_lag), chisq_df.groupby('brkp').apply(lambda df: sum(df.a+df.a_lag)).reset_index(name='a_sum'))\ .assign( e = lambda df: df.a_rowsum*df.a_colsum/df.a_sum, e_lag = lambda df: df.a_lag_rowsum*df.a_colsum/df.a_sum ).assign( ae = lambda df: (df.a-df.e)**2/df.e + (df.a_lag-df.e_lag)**2/df.e_lag ).groupby('brkp').apply(lambda x: sum(x.ae)).reset_index(name='chisq') # return return pd.merge(initial_binning.assign(count = lambda x: x['good']+x['bad']), chisq_df, how='left') # initial binning bin_list = woebin2_init_bin(dtm, init_count_distr=init_count_distr, breaks=breaks, spl_val=spl_val) initial_binning = bin_list['initial_binning'] binning_sv = bin_list['binning_sv'] # return initial binning if its row number equals 1 if len(initial_binning.index)==1: return {'binning_sv':binning_sv, 'binning':initial_binning} # dtm_rows dtm_rows = len(dtm.index) # chisq limit from scipy.special import chdtri chisq_limit = chdtri(1, stop_limit) # binning with chisq column binning_chisq = add_chisq(initial_binning) # param bin_chisq_min = binning_chisq.chisq.min() bin_count_distr_min = min(binning_chisq['count']/dtm_rows) bin_nrow = len(binning_chisq.index) # remove brkp if chisq < chisq_limit while bin_chisq_min < chisq_limit or bin_count_distr_min < count_distr_limit or bin_nrow > bin_num_limit: # brkp needs to be removed if bin_chisq_min < chisq_limit: rm_brkp = binning_chisq.assign(merge_tolead = False).sort_values(by=['chisq', 'count']).iloc[0,] elif bin_count_distr_min < count_distr_limit: rm_brkp = binning_chisq.assign( count_distr = lambda x: x['count']/sum(x['count']), chisq_lead = lambda x: x['chisq'].shift(-1).fillna(float('inf')) ).assign(merge_tolead = lambda x: x['chisq'] > x['chisq_lead']) # replace merge_tolead as True rm_brkp.loc[np.isnan(rm_brkp['chisq']), 'merge_tolead']=True # order select 1st rm_brkp = rm_brkp.sort_values(by=['count_distr']).iloc[0,] elif bin_nrow > bin_num_limit: rm_brkp = binning_chisq.assign(merge_tolead = False).sort_values(by=['chisq', 'count']).iloc[0,] else: break # set brkp to lead's or lag's shift_period = -1 if rm_brkp['merge_tolead'] else 1 binning_chisq = binning_chisq.assign(brkp2 = lambda x: x['brkp'].shift(shift_period))\ .assign(brkp = lambda x:np.where(x['brkp'] == rm_brkp['brkp'], x['brkp2'], x['brkp'])) # groupby brkp binning_chisq = binning_chisq.groupby('brkp').agg({ 'variable':lambda x:np.unique(x), 'bin': lambda x: '%,%'.join(x), 'good': sum, 'bad': sum }).assign(badprob = lambda x: x['bad']/(x['good']+x['bad']))\ .reset_index() # update ## add chisq to new binning dataframe binning_chisq = add_chisq(binning_chisq) ## param bin_nrow = len(binning_chisq.index) if bin_nrow == 1: break bin_chisq_min = binning_chisq.chisq.min() bin_count_distr_min = min(binning_chisq['count']/dtm_rows) # format init_bin # remove (.+\\)%,%\\[.+,) if is_numeric_dtype(dtm['value']): binning_chisq = binning_chisq\ .assign(bin = lambda x: [re.sub(r'(?<=,).+%,%.+,', '', i) if ('%,%' in i) else i for i in x['bin']])\ .assign(brkp = lambda x: [float(re.match('^\[(.*),.+', i).group(1)) for i in x['bin']]) # return return {'binning_sv':binning_sv, 'binning':binning_chisq} # required in woebin2 # # format binning output def binning_format(binning): ''' format binning dataframe Params ------ binning: with columns of variable, bin, good, bad Returns ------ DataFrame binning dataframe with columns of 'variable', 'bin', 'count', 'count_distr', 'good', 'bad', 'badprob', 'woe', 'bin_iv', 'total_iv', 'breaks', 'is_special_values' ''' binning['count'] = binning['good'] + binning['bad'] binning['count_distr'] = binning['count']/sum(binning['count']) binning['badprob'] = binning['bad']/binning['count'] # binning = binning.assign( # count = lambda x: (x['good']+x['bad']), # count_distr = lambda x: (x['good']+x['bad'])/sum(x['good']+x['bad']), # badprob = lambda x: x['bad']/(x['good']+x['bad'])) # new columns: woe, iv, breaks, is_sv binning['woe'] = woe_01(binning['good'],binning['bad']) binning['bin_iv'] = miv_01(binning['good'],binning['bad']) binning['total_iv'] = binning['bin_iv'].sum() # breaks binning['breaks'] = binning['bin'] if any([r'[' in str(i) for i in binning['bin']]): def re_extract_all(x): gp23 = re.match(r"^\[(.*), *(.*)\)((%,%missing)*)", x) breaks_string = x if gp23 is None else gp23.group(2)+gp23.group(3) return breaks_string binning['breaks'] = [re_extract_all(i) for i in binning['bin']] # is_sv binning['is_special_values'] = binning['is_sv'] # return return binning[['variable', 'bin', 'count', 'count_distr', 'good', 'bad', 'badprob', 'woe', 'bin_iv', 'total_iv', 'breaks', 'is_special_values']] # woebin2 # This function provides woe binning for only two columns (one x and one y) dataframe. def woebin2(dtm, breaks=None, spl_val=None, init_count_distr=0.02, count_distr_limit=0.05, stop_limit=0.1, bin_num_limit=8, method="tree"): ''' provides woe binning for only two series Params ------ Returns ------ DataFrame ''' # binning if breaks is not None: # 1.return binning if breaks provided bin_list = woebin2_breaks(dtm=dtm, breaks=breaks, spl_val=spl_val) else: if stop_limit == 'N': # binning of initial & specialvalues bin_list = woebin2_init_bin(dtm, init_count_distr=init_count_distr, breaks=breaks, spl_val=spl_val) else: if method == 'tree': # 2.tree-like optimal binning bin_list = woebin2_tree( dtm, init_count_distr=init_count_distr, count_distr_limit=count_distr_limit, stop_limit=stop_limit, bin_num_limit=bin_num_limit, breaks=breaks, spl_val=spl_val) elif method == "chimerge": # 2.chimerge optimal binning bin_list = woebin2_chimerge( dtm, init_count_distr=init_count_distr, count_distr_limit=count_distr_limit, stop_limit=stop_limit, bin_num_limit=bin_num_limit, breaks=breaks, spl_val=spl_val) # rbind binning_sv and binning binning = pd.concat(bin_list, keys=bin_list.keys()).reset_index()\ .assign(is_sv = lambda x: x.level_0 =='binning_sv') # return return binning_format(binning) def bins_to_breaks(bins, dt, to_string=False, save_string=None): if isinstance(bins, dict): bins = pd.concat(bins, ignore_index=True) # x variables xs_all = bins['variable'].unique() # dtypes of variables vars_class = pd.DataFrame({ 'variable': xs_all, 'not_numeric': [not is_numeric_dtype(dt[i]) for i in xs_all] }) # breakslist of bins bins_breakslist = bins[~bins['breaks'].isin(["-inf","inf","missing"]) & ~bins['is_special_values']] bins_breakslist = pd.merge(bins_breakslist[['variable', 'breaks']], vars_class, how='left', on='variable') bins_breakslist.loc[bins_breakslist['not_numeric'], 'breaks'] = '\''+bins_breakslist.loc[bins_breakslist['not_numeric'], 'breaks']+'\'' bins_breakslist = bins_breakslist.groupby('variable')['breaks'].agg(lambda x: ','.join(x)) if to_string: bins_breakslist = "breaks_list={\n"+', \n'.join('\''+bins_breakslist.index[i]+'\': ['+bins_breakslist[i]+']' for i in np.arange(len(bins_breakslist)))+"}" if save_string is not None: brk_lst_name = '{}_{}.py'.format(save_string, time.strftime('%Y%m%d_%H%M%S', time.localtime(time.time()))) with open(brk_lst_name, 'w') as f: f.write(bins_breakslist) print('[INFO] The breaks_list is saved as {}'.format(brk_lst_name)) return return bins_breakslist def woebin(dt, y, x=None, var_skip=None, breaks_list=None, special_values=None, stop_limit=0.1, count_distr_limit=0.05, bin_num_limit=8, # min_perc_fine_bin=0.02, min_perc_coarse_bin=0.05, max_num_bin=8, positive="bad|1", no_cores=None, print_step=0, method="tree", ignore_const_cols=True, ignore_datetime_cols=True, check_cate_num=True, replace_blank=True, save_breaks_list=None, **kwargs): ''' WOE Binning ------ `woebin` generates optimal binning for numerical, factor and categorical variables using methods including tree-like segmentation or chi-square merge. woebin can also customizing breakpoints if the breaks_list or special_values was provided. The default woe is defined as ln(Distr_Bad_i/Distr_Good_i). If you prefer ln(Distr_Good_i/Distr_Bad_i), please set the argument `positive` as negative value, such as '0' or 'good'. If there is a zero frequency class when calculating woe, the zero will replaced by 0.99 to make the woe calculable. Params ------ dt: A data frame with both x (predictor/feature) and y (response/label) variables. y: Name of y variable. x: Name of x variables. Default is None. If x is None, then all variables except y are counted as x variables. var_skip: Name of variables that will skip for binning. Defaults to None. breaks_list: List of break points, default is None. If it is not None, variable binning will based on the provided breaks. special_values: the values specified in special_values will be in separate bins. Default is None. count_distr_limit: The minimum percentage of final binning class number over total. Accepted range: 0.01-0.2; default is 0.05. stop_limit: Stop binning segmentation when information value gain ratio less than the stop_limit, or stop binning merge when the minimum of chi-square less than 'qchisq(1-stoplimit, 1)'. Accepted range: 0-0.5; default is 0.1. bin_num_limit: Integer. The maximum number of binning. positive: Value of positive class, default "bad|1". no_cores: Number of CPU cores for parallel computation. Defaults None. If no_cores is None, the no_cores will set as 1 if length of x variables less than 10, and will set as the number of all CPU cores if the length of x variables greater than or equal to 10. print_step: A non-negative integer. Default is 1. If print_step>0, print variable names by each print_step-th iteration. If print_step=0 or no_cores>1, no message is print. method: Optimal binning method, it should be "tree" or "chimerge". Default is "tree". ignore_const_cols: Logical. Ignore constant columns. Defaults to True. ignore_datetime_cols: Logical. Ignore datetime columns. Defaults to True. check_cate_num: Logical. Check whether the number of unique values in categorical columns larger than 50. It might make the binning process slow if there are too many unique categories. Defaults to True. replace_blank: Logical. Replace blank values with None. Defaults to True. save_breaks_list: The file name to save breaks_list. Default is None. Returns ------ dictionary Optimal or customized binning dataframe. Examples ------ import scorecardpy as sc import pandas as pd # load data dat = sc.germancredit() # Example I # binning of two variables in germancredit dataset bins_2var = sc.woebin(dat, y = "creditability", x = ["credit.amount", "purpose"]) # Example II # binning of the germancredit dataset bins_germ = sc.woebin(dat, y = "creditability") # Example III # customizing the breakpoints of binning dat2 = pd.DataFrame({'creditability':['good','bad']}).sample(50, replace=True) dat_nan = pd.concat([dat, dat2], ignore_index=True) breaks_list = { 'age.in.years': [26, 35, 37, "Inf%,%missing"], 'housing': ["own", "for free%,%rent"] } special_values = { 'credit.amount': [2600, 9960, "6850%,%missing"], 'purpose': ["education", "others%,%missing"] } bins_cus_brk = sc.woebin(dat_nan, y="creditability", x=["age.in.years","credit.amount","housing","purpose"], breaks_list=breaks_list, special_values=special_values) ''' # start time start_time = time.time() # arguments ## print_info print_info = kwargs.get('print_info', True) ## init_count_distr min_perc_fine_bin = kwargs.get('min_perc_fine_bin', None) init_count_distr = kwargs.get('init_count_distr', min_perc_fine_bin) if init_count_distr is None: init_count_distr = 0.02 ## count_distr_limit min_perc_coarse_bin = kwargs.get('min_perc_coarse_bin', None) if min_perc_coarse_bin is not None: count_distr_limit = min_perc_coarse_bin ## bin_num_limit max_num_bin = kwargs.get('max_num_bin', None) if max_num_bin is not None: bin_num_limit = max_num_bin # print infomation if print_info: print('[INFO] creating woe binning ...') dt = dt.copy(deep=True) if isinstance(y, str): y = [y] if isinstance(x, str) and x is not None: x = [x] if x is not None: dt = dt[y+x] # check y dt = check_y(dt, y, positive) # remove constant columns if ignore_const_cols: dt = check_const_cols(dt) # remove date/time col if ignore_datetime_cols: dt = check_datetime_cols(dt) # check categorical columns' unique values if check_cate_num: check_cateCols_uniqueValues(dt, var_skip) # replace black with na if replace_blank: dt = rep_blank_na(dt) # x variable names xs = x_variable(dt, y, x, var_skip) xs_len = len(xs) # print_step print_step = check_print_step(print_step) # breaks_list breaks_list = check_breaks_list(breaks_list, xs) # special_values special_values = check_special_values(special_values, xs) ### ### # stop_limit range if stop_limit<0 or stop_limit>0.5 or not isinstance(stop_limit, (float, int)): warnings.warn("Incorrect parameter specification; accepted stop_limit parameter range is 0-0.5. Parameter was set to default (0.1).") stop_limit = 0.1 # init_count_distr range if init_count_distr<0.01 or init_count_distr>0.2 or not isinstance(init_count_distr, (float, int)): warnings.warn("Incorrect parameter specification; accepted init_count_distr parameter range is 0.01-0.2. Parameter was set to default (0.02).") init_count_distr = 0.02 # count_distr_limit if count_distr_limit<0.01 or count_distr_limit>0.2 or not isinstance(count_distr_limit, (float, int)): warnings.warn("Incorrect parameter specification; accepted count_distr_limit parameter range is 0.01-0.2. Parameter was set to default (0.05).") count_distr_limit = 0.05 # bin_num_limit if not isinstance(bin_num_limit, (float, int)): warnings.warn("Incorrect inputs; bin_num_limit should be numeric variable. Parameter was set to default (8).") bin_num_limit = 8 # method if method not in ["tree", "chimerge"]: warnings.warn("Incorrect inputs; method should be tree or chimerge. Parameter was set to default (tree).") method = "tree" ### ### # binning for each x variable # loop on xs if (no_cores is None) or (no_cores < 1): all_cores = mp.cpu_count() - 1 no_cores = int(np.ceil(xs_len/5 if xs_len/5 < all_cores else all_cores*0.9)) if platform.system() == 'Windows': no_cores = 1 # ylist to str y = y[0] # binning for variables if no_cores == 1: # create empty bins dict bins = {} for i in np.arange(xs_len): x_i = xs[i] # print(x_i) # print xs if print_step>0 and bool((i+1)%print_step): print(('{:'+str(len(str(xs_len)))+'.0f}/{} {}').format(i, xs_len, x_i), flush=True) # woebining on one variable bins[x_i] = woebin2( dtm = pd.DataFrame({'y':dt[y], 'variable':x_i, 'value':dt[x_i]}), breaks=breaks_list[x_i] if (breaks_list is not None) and (x_i in breaks_list.keys()) else None, spl_val=special_values[x_i] if (special_values is not None) and (x_i in special_values.keys()) else None, init_count_distr=init_count_distr, count_distr_limit=count_distr_limit, stop_limit=stop_limit, bin_num_limit=bin_num_limit, method=method ) # try catch: # "The variable '{}' caused the error: '{}'".format(x_i, error-info) else: pool = mp.Pool(processes=no_cores) # arguments args = zip( [pd.DataFrame({'y':dt[y], 'variable':x_i, 'value':dt[x_i]}) for x_i in xs], [breaks_list[i] if (breaks_list is not None) and (i in list(breaks_list.keys())) else None for i in xs], [special_values[i] if (special_values is not None) and (i in list(special_values.keys())) else None for i in xs], [init_count_distr]*xs_len, [count_distr_limit]*xs_len, [stop_limit]*xs_len, [bin_num_limit]*xs_len, [method]*xs_len ) # bins in dictionary bins = dict(zip(xs, pool.starmap(woebin2, args))) pool.close() # runingtime runingtime = time.time() - start_time if runingtime >= 10 and print_info: # print(time.strftime("%H:%M:%S", time.gmtime(runingtime))) print('Binning on {} rows and {} columns in {}'.format(dt.shape[0], dt.shape[1], time.strftime("%H:%M:%S", time.gmtime(runingtime)))) if save_breaks_list is not None: bins_to_breaks(bins, dt, to_string=True, save_string=save_breaks_list) # return return bins,breaks_list #' @import data.table def woepoints_ply1(dtx, binx, x_i, woe_points): ''' Transform original values into woe or porints for one variable. Params ------ Returns ------ ''' # woe_points: "woe" "points" # binx = bins.loc[lambda x: x.variable == x_i] # https://stackoverflow.com/questions/12680754/split-explode-pandas-dataframe-string-entry-to-separate-rows binx = pd.merge( binx[['bin']].assign(v1=binx['bin'].str.split('%,%')).explode('v1'), binx[['bin', woe_points]], how='left', on='bin' ).rename(columns={'v1':'V1',woe_points:'V2'}) # dtx ## cut numeric variable if is_numeric_dtype(dtx[x_i]): is_sv = pd.Series(not bool(re.search(r'\[', str(i))) for i in binx.V1) binx_sv = binx.loc[is_sv] binx_other = binx.loc[~is_sv] # create bin column breaks_binx_other = np.unique(list(map(float, ['-inf']+[re.match(r'.*\[(.*),.+\).*', str(i)).group(1) for i in binx_other['bin']]+['inf']))) labels = ['[{},{})'.format(breaks_binx_other[i], breaks_binx_other[i+1]) for i in range(len(breaks_binx_other)-1)] dtx = dtx.assign(xi_bin = lambda x: pd.cut(x[x_i], breaks_binx_other, right=False, labels=labels))\ .assign(xi_bin = lambda x: [i if (i != i) else str(i) for i in x['xi_bin']]) # dtx.loc[:,'xi_bin'] = pd.cut(dtx[x_i], breaks_binx_other, right=False, labels=labels) # dtx.loc[:,'xi_bin'] = np.where(pd.isnull(dtx['xi_bin']), dtx['xi_bin'], dtx['xi_bin'].astype(str)) # mask = dtx[x_i].isin(binx_sv['V1']) dtx.loc[mask,'xi_bin'] = dtx.loc[mask, x_i].astype(str) dtx = dtx[['xi_bin']].rename(columns={'xi_bin':x_i}) ## to charcarter, na to missing if not is_string_dtype(dtx[x_i]): dtx.loc[:,x_i] = dtx.loc[:,x_i].astype(str).replace('nan', 'missing') # dtx.loc[:,x_i] = np.where(pd.isnull(dtx[x_i]), dtx[x_i], dtx[x_i].astype(str)) dtx = dtx.replace(np.nan, 'missing').assign(rowid = dtx.index).sort_values('rowid') # rename binx binx.columns = ['bin', x_i, '_'.join([x_i,woe_points])] # merge dtx_suffix = pd.merge(dtx, binx, how='left', on=x_i).sort_values('rowid')\ .set_index(dtx.index)[['_'.join([x_i,woe_points])]] return dtx_suffix def woebin_ply(dt, bins, no_cores=None, print_step=0, replace_blank=True, **kwargs): ''' WOE Transformation ------ `woebin_ply` converts original input data into woe values based on the binning information generated from `woebin`. Params ------ dt: A data frame. bins: Binning information generated from `woebin`. no_cores: Number of CPU cores for parallel computation. Defaults None. If no_cores is None, the no_cores will set as 1 if length of x variables less than 10, and will set as the number of all CPU cores if the length of x variables greater than or equal to 10. print_step: A non-negative integer. Default is 1. If print_step>0, print variable names by each print_step-th iteration. If print_step=0 or no_cores>1, no message is print. replace_blank: Logical. Replace blank values with None. Defaults to True. Returns ------- DataFrame a dataframe of woe values for each variables Examples ------- import scorecardpy as sc import pandas as pd # load data dat = sc.germancredit() # Example I dt = dat[["creditability", "credit.amount", "purpose"]] # binning for dt bins = sc.woebin(dt, y = "creditability") # converting original value to woe dt_woe = sc.woebin_ply(dt, bins=bins) # Example II # binning for germancredit dataset bins_germancredit = sc.woebin(dat, y="creditability") # converting the values in germancredit to woe ## bins is a dict germancredit_woe = sc.woebin_ply(dat, bins=bins_germancredit) ## bins is a dataframe germancredit_woe = sc.woebin_ply(dat, bins=pd.concat(bins_germancredit)) ''' # start time start_time = time.time() ## print_info print_info = kwargs.get('print_info', True) if print_info: print('[INFO] converting into woe values ...') # remove date/time col # dt = rmcol_datetime_unique1(dt) # replace "" by NA if replace_blank: dt = rep_blank_na(dt) # ncol of dt # if len(dt.index) <= 1: raise Exception("Incorrect inputs; dt should have at least two columns.") # print_step print_step = check_print_step(print_step) # bins # if (is.list(bins)) rbindlist(bins) if isinstance(bins, dict): bins = pd.concat(bins, ignore_index=True) # x variables xs_bin = bins['variable'].unique() xs_dt = list(dt.columns) xs = list(set(xs_bin).intersection(xs_dt)) # length of x variables xs_len = len(xs) # initial data set dat = dt.loc[:,list(set(xs_dt) - set(xs))] # loop on xs if (no_cores is None) or (no_cores < 1): all_cores = mp.cpu_count() - 1 no_cores = int(np.ceil(xs_len/5 if xs_len/5 < all_cores else all_cores*0.9)) if platform.system() == 'Windows': no_cores = 1 # if no_cores == 1: for i in np.arange(xs_len): x_i = xs[i] # print xs # print(x_i) if print_step>0 and bool((i+1) % print_step): print(('{:'+str(len(str(xs_len)))+'.0f}/{} {}').format(i, xs_len, x_i), flush=True) # binx = bins[bins['variable'] == x_i].reset_index() # bins.loc[lambda x: x.variable == x_i] # bins.loc[bins['variable'] == x_i] # # bins.query('variable == \'{}\''.format(x_i)) dtx = dt[[x_i]] dat = pd.concat([dat, woepoints_ply1(dtx, binx, x_i, woe_points="woe")], axis=1) else: pool = mp.Pool(processes=no_cores) # arguments args = zip( [dt[[i]] for i in xs], [bins[bins['variable'] == i] for i in xs], [i for i in xs], ["woe"]*xs_len ) # bins in dictionary dat_suffix = pool.starmap(woepoints_ply1, args) dat = pd.concat([dat]+dat_suffix, axis=1) pool.close() # runingtime runingtime = time.time() - start_time if runingtime >= 10 and print_info: # print(time.strftime("%H:%M:%S", time.gmtime(runingtime))) print('Woe transformating on {} rows and {} columns in {}'.format(dt.shape[0], xs_len, time.strftime("%H:%M:%S", time.gmtime(runingtime)))) return dat # required in woebin_plot #' @import data.table ggplot2 def plot_bin(binx, title, show_iv, rot = 0): ''' plot binning of one variable Params ------ binx: title: show_iv: Returns ------ matplotlib fig object ''' # y_right_max y_right_max = np.ceil(binx['badprob'].max()*10) if y_right_max % 2 == 1: y_right_max=y_right_max+1 if y_right_max - binx['badprob'].max()*10 <= 0.3: y_right_max = y_right_max+2 y_right_max = y_right_max/10 if y_right_max>1 or y_right_max<=0 or y_right_max is np.nan or y_right_max is None: y_right_max=1 ## y_left_max y_left_max = np.ceil(binx['count_distr'].max()*10)/10 if y_left_max>1 or y_left_max<=0 or y_left_max is np.nan or y_left_max is None: y_left_max=1 # title title_string = binx.loc[0,'variable']+" (iv:"+str(round(binx.loc[0,'total_iv'],4))+")" if show_iv else binx.loc[0,'variable'] title_string = title+'-'+title_string if title is not None else title_string # param ind = np.arange(len(binx.index)) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence ###### plot ###### fig, ax1 = plt.subplots() ax2 = ax1.twinx() # ax1 p1 = ax1.bar(ind, binx['good_distr'], width, color=(24/254, 192/254, 196/254)) p2 = ax1.bar(ind, binx['bad_distr'], width, bottom=binx['good_distr'], color=(246/254, 115/254, 109/254)) for i in ind: ax1.text(i, binx.loc[i,'count_distr']*1.02, str(round(binx.loc[i,'count_distr']*100,1))+'%, '+str(binx.loc[i,'count']), ha='center') # ax2 ax2.plot(ind, binx['badprob'], marker='o', color='blue') for i in ind: ax2.text(i, binx.loc[i,'badprob']*1.02, str(round(binx.loc[i,'badprob']*100,1))+'%', color='blue', ha='center') # settings # Plot the reference bad rate bad_rate = [np.sum(binx['bad_distr'].values)/(np.sum(binx['good_distr'])+np.sum(binx['bad_distr'].values))]*len(binx) ax2.plot(bad_rate, marker = '_', color = 'black', linestyle = "--", linewidth=2.0) ax2.text(ax2.get_xlim()[1]/2, bad_rate[0] + 0.001 , 'Ref: '+ str(np.round(100*bad_rate[0],2))+ ' %') ax1.set_ylabel('Bin count distribution') ax2.set_ylabel('Bad probability', color='blue') ax1.set_yticks(np.arange(0, y_left_max+0.2, 0.2)) ax1.set_xticklabels(ax1.get_xticklabels(), rotation = rot) ax2.set_yticks(np.arange(0, y_right_max+0.2, 0.2)) ax2.tick_params(axis='y', colors='blue') ax2.grid(False) plt.xticks(ind, binx['bin']) plt.title(title_string, loc='left') plt.legend((p2[0], p1[0]), ('bad', 'good'), loc='upper right') # show plot plt.show() return fig def woebin_plot(bins, x=None, title=None, show_iv=True,orient = 0): ''' WOE Binning Visualization ------ `woebin_plot` create plots of count distribution and bad probability for each bin. The binning informations are generates by `woebin`. Params ------ bins: A list or data frame. Binning information generated by `woebin`. x: Name of x variables. Default is None. If x is None, then all variables except y are counted as x variables. title: String added to the plot title. Default is None. show_iv: Logical. Default is True, which means show information value in the plot title. Returns ------ dict a dict of matplotlib figure objests Examples ------ import scorecardpy as sc import matplotlib.pyplot as plt # load data dat = sc.germancredit() # Example I dt1 = dat[["creditability", "credit.amount"]] bins1 = sc.woebin(dt1, y="creditability") p1 = sc.woebin_plot(bins1) plt.show(p1) # Example II bins = sc.woebin(dat, y="creditability") plotlist = sc.woebin_plot(bins) # # save binning plot # for key,i in plotlist.items(): # plt.show(i) # plt.savefig(str(key)+'.png') ''' xs = x # bins concat if isinstance(bins, dict): bins = pd.concat(bins, ignore_index=True) # good bad distr def gb_distr(binx): binx['good_distr'] = binx['good']/sum(binx['count']) binx['bad_distr'] = binx['bad']/sum(binx['count']) return binx bins = bins.groupby('variable').apply(gb_distr) # x variable names if xs is None: xs = bins['variable'].unique() # plot export plotlist = {} for i in xs: binx = bins[bins['variable'] == i].reset_index() plotlist[i] = plot_bin(binx, title, show_iv ,orient) return plotlist # print basic information in woebin_adj def woebin_adj_print_basic_info(i, xs, bins, dt, bins_breakslist): ''' print basic information of woebinnig in adjusting process Params ------ Returns ------ ''' x_i = xs[i-1] xs_len = len(xs) binx = bins.loc[bins['variable']==x_i] print("--------", str(i)+"/"+str(xs_len), x_i, "--------") # print(">>> dt["+x_i+"].dtypes: ") # print(str(dt[x_i].dtypes), '\n') # print(">>> dt["+x_i+"].describe(): ") print(dt[x_i].describe(), '\n') if len(dt[x_i].unique()) < 10 or not is_numeric_dtype(dt[x_i]): print(">>> dt["+x_i+"].value_counts(): ") print(dt[x_i].value_counts(), '\n') else: dt[x_i].hist() plt.title(x_i) plt.show() ## current breaks print(">>> Current breaks:") print(bins_breakslist[x_i], '\n') ## woebin plotting plt.show(woebin_plot(binx)[x_i]) # plot adjusted binning in woebin_adj def woebin_adj_break_plot(dt, y, x_i, breaks, stop_limit, sv_i, method): ''' update breaks and provies a binning plot Params ------ Returns ------ ''' if breaks == '': breaks = None breaks_list = None if breaks is None else {x_i: eval('['+breaks+']')} special_values = None if sv_i is None else {x_i: sv_i} # binx update bins_adj = woebin(dt[[x_i,y]], y, breaks_list=breaks_list, special_values=special_values, stop_limit = stop_limit, method=method) ## print adjust breaks breaks_bin = set(bins_adj[x_i]['breaks']) - set(["-inf","inf","missing"]) breaks_bin = ', '.join(breaks_bin) if is_numeric_dtype(dt[x_i]) else ', '.join(['\''+ i+'\'' for i in breaks_bin]) print(">>> Current breaks:") print(breaks_bin, '\n') # print bin_adj plt.show(woebin_plot(bins_adj)) # return breaks if breaks == '' or breaks is None: breaks = breaks_bin return breaks def woebin_adj(dt, y, bins, adj_all_var=False, special_values=None, method="tree", save_breaks_list=None, count_distr_limit=0.05): ''' WOE Binning Adjustment ------ `woebin_adj` interactively adjust the binning breaks. Params ------ dt: A data frame. y: Name of y variable. bins: A list or data frame. Binning information generated from woebin. adj_all_var: Logical, whether to show monotonic woe variables. Default is True special_values: the values specified in special_values will in separate bins. Default is None. method: optimal binning method, it should be "tree" or "chimerge". Default is "tree". save_breaks_list: The file name to save breaks_list. Default is None. count_distr_limit: The minimum percentage of final binning class number over total. Accepted range: 0.01-0.2; default is 0.05. Returns ------ dict dictionary of breaks Examples ------ import scorecardpy as sc # load data dat = sc.germancredit() # Example I dt = dat[["creditability", "age.in.years", "credit.amount"]] bins = sc.woebin(dt, y="creditability") breaks_adj = sc.woebin_adj(dt, y="creditability", bins=bins) bins_final = sc.woebin(dt, y="creditability", breaks_list=breaks_adj) # Example II binsII = sc.woebin(dat, y="creditability") breaks_adjII = sc.woebin_adj(dat, "creditability", binsII) bins_finalII = sc.woebin(dat, y="creditability", breaks_list=breaks_adjII) ''' # bins concat if isinstance(bins, dict): bins = pd.concat(bins, ignore_index=True) # x variables xs_all = bins['variable'].unique() # adjust all variables if not adj_all_var: bins2 = bins.loc[~((bins['bin'] == 'missing') & (bins['count_distr'] >= count_distr_limit))].reset_index(drop=True) bins2['badprob2'] = bins2.groupby('variable').apply(lambda x: x['badprob'].shift(1)).reset_index(drop=True) bins2 = bins2.dropna(subset=['badprob2']).reset_index(drop=True) bins2 = bins2.assign(badprob_trend = lambda x: x.badprob >= x.badprob2) xs_adj = bins2.groupby('variable')['badprob_trend'].nunique() xs_adj = xs_adj[xs_adj>1].index else: xs_adj = xs_all # length of adjusting variables xs_len = len(xs_adj) # special_values special_values = check_special_values(special_values, xs_adj) # breakslist of bins bins_breakslist = bins_to_breaks(bins,dt) # loop on adjusting variables if xs_len == 0: warnings.warn('The binning breaks of all variables are perfect according to default settings.') breaks_list = "{"+', '.join('\''+bins_breakslist.index[i]+'\': ['+bins_breakslist[i]+']' for i in np.arange(len(bins_breakslist)))+"}" return breaks_list # else def menu(i, xs_len, x_i): print('>>> Adjust breaks for ({}/{}) {}?'.format(i, xs_len, x_i)) print('1: next \n2: yes \n3: back') adj_brk = input("Selection: ") adj_brk = int(adj_brk) if adj_brk not in [0,1,2,3]: warnings.warn('Enter an item from the menu, or 0 to exit.') adj_brk = input("Selection: ") adj_brk = int(adj_brk) return adj_brk # init param i = 1 breaks_list = None while i <= xs_len: breaks = stop_limit = None # x_i x_i = xs_adj[i-1] sv_i = special_values[x_i] if (special_values is not None) and (x_i in special_values.keys()) else None # if sv_i is not None: # sv_i = ','.join('\'') # basic information of x_i variable ------ woebin_adj_print_basic_info(i, xs_adj, bins, dt, bins_breakslist) # adjusting breaks ------ adj_brk = menu(i, xs_len, x_i) if adj_brk == 0: return while adj_brk == 2: # modify breaks adj_brk == 2 breaks = input(">>> Enter modified breaks: ") breaks = re.sub("^[,\.]+|[,\.]+$", "", breaks) if breaks == 'N': stop_limit = 'N' breaks = None else: stop_limit = 0.1 try: breaks = woebin_adj_break_plot(dt, y, x_i, breaks, stop_limit, sv_i, method=method) except: pass # adj breaks again adj_brk = menu(i, xs_len, x_i) if adj_brk == 3: # go back adj_brk == 3 i = i-1 if i>1 else i else: # go next adj_brk == 1 if breaks is not None and breaks != '': bins_breakslist[x_i] = breaks i += 1 # return breaks_list = "{"+', '.join('\''+bins_breakslist.index[i]+'\': ['+bins_breakslist[i]+']' for i in np.arange(len(bins_breakslist)))+"}" if save_breaks_list is not None: bins_adj = woebin(dt, y, x=bins_breakslist.index, breaks_list=breaks_list) bins_to_breaks(bins_adj, dt, to_string=True, save_string=save_breaks_list) return breaks_list
the-stack_0_14984
# -*- coding: utf-8 -*- from jqdatasdk import auth, query, indicator, get_fundamentals, logout from zvdata.api import get_data from zvdata.utils.pd_utils import df_is_not_null from zvt.api.api import get_finance_factors from zvt.api.common import to_jq_entity_id, to_jq_report_period from zvt.domain import FinanceFactor from zvt.recorders.eastmoney.common import company_type_flag, get_fc, EastmoneyTimestampsDataRecorder, \ call_eastmoney_api, get_from_path_fields from zvt.settings import JQ_ACCOUNT, JQ_PASSWD from zvt.utils.pd_utils import index_df from zvt.utils.time_utils import to_time_str, to_pd_timestamp class BaseChinaStockFinanceRecorder(EastmoneyTimestampsDataRecorder): finance_report_type = None data_type = 1 timestamps_fetching_url = 'https://emh5.eastmoney.com/api/CaiWuFenXi/GetCompanyReportDateList' timestamp_list_path_fields = ['CompanyReportDateList'] timestamp_path_fields = ['ReportDate'] def __init__(self, entity_type='stock', exchanges=['sh', 'sz'], entity_ids=None, codes=None, batch_size=10, force_update=False, sleeping_time=5, default_size=2000, one_shot=False, fix_duplicate_way='add') -> None: super().__init__(entity_type, exchanges, entity_ids, codes, batch_size, force_update, sleeping_time, default_size, one_shot, fix_duplicate_way) auth(JQ_ACCOUNT, JQ_PASSWD) def init_timestamps(self, entity): param = { "color": "w", "fc": get_fc(entity), "DataType": self.data_type } if self.finance_report_type == 'LiRunBiaoList' or self.finance_report_type == 'XianJinLiuLiangBiaoList': param['ReportType'] = 1 timestamp_json_list = call_eastmoney_api(url=self.timestamps_fetching_url, path_fields=self.timestamp_list_path_fields, param=param) if self.timestamp_path_fields: timestamps = [get_from_path_fields(data, self.timestamp_path_fields) for data in timestamp_json_list] return [to_pd_timestamp(t) for t in timestamps] def generate_request_param(self, security_item, start, end, size, timestamps): if len(timestamps) <= 10: param = { "color": "w", "fc": get_fc(security_item), "corpType": company_type_flag(security_item), # 0 means get all types "reportDateType": 0, "endDate": '', "latestCount": size } else: param = { "color": "w", "fc": get_fc(security_item), "corpType": company_type_flag(security_item), # 0 means get all types "reportDateType": 0, "endDate": to_time_str(timestamps[10]), "latestCount": 10 } if self.finance_report_type == 'LiRunBiaoList' or self.finance_report_type == 'XianJinLiuLiangBiaoList': param['reportType'] = 1 return param def generate_path_fields(self, security_item): comp_type = company_type_flag(security_item) if comp_type == "3": return ['{}_YinHang'.format(self.finance_report_type)] elif comp_type == "2": return ['{}_BaoXian'.format(self.finance_report_type)] elif comp_type == "1": return ['{}_QuanShang'.format(self.finance_report_type)] elif comp_type == "4": return ['{}_QiYe'.format(self.finance_report_type)] def record(self, entity, start, end, size, timestamps): # different with the default timestamps handling param = self.generate_request_param(entity, start, end, size, timestamps) self.logger.info('request param:{}'.format(param)) return self.api_wrapper.request(url=self.url, param=param, method=self.request_method, path_fields=self.generate_path_fields(entity)) def get_original_time_field(self): return 'ReportDate' def fill_timestamp_with_jq(self, security_item, the_data): # get report published date from jq q = query( indicator.pubDate ).filter( indicator.code == to_jq_entity_id(security_item), ) df = get_fundamentals(q, statDate=to_jq_report_period(the_data.report_date)) if not df.empty: the_data.timestamp = to_pd_timestamp(df['pubDate'][0]) self.logger.info( 'jq fill {} {} timestamp:{} for report_date:{}'.format(self.data_schema, security_item.id, the_data.timestamp, the_data.report_date)) self.session.commit() def on_finish_entity(self, entity): # fill the timestamp for report published date the_data_list = get_data(data_schema=self.data_schema, provider=self.provider, entity_id=entity.id, order=self.data_schema.timestamp.asc(), return_type='domain', session=self.session, filters=[self.data_schema.timestamp == self.data_schema.report_date, self.data_schema.timestamp >= to_pd_timestamp('2005-01-01')]) if the_data_list: if self.data_schema == FinanceFactor: for the_data in the_data_list: self.fill_timestamp_with_jq(entity, the_data) else: df = get_finance_factors(entity_id=entity.id, columns=[FinanceFactor.timestamp, FinanceFactor.report_date, FinanceFactor.id], filters=[FinanceFactor.timestamp != FinanceFactor.report_date, FinanceFactor.timestamp >= to_pd_timestamp('2005-01-01'), FinanceFactor.report_date >= the_data_list[0].report_date, FinanceFactor.report_date <= the_data_list[-1].report_date, ]) if df_is_not_null(df): index_df(df, index='report_date') for the_data in the_data_list: if (df is not None) and (not df.empty) and the_data.report_date in df.index: the_data.timestamp = df.at[the_data.report_date, 'timestamp'] self.logger.info( 'db fill {} {} timestamp:{} for report_date:{}'.format(self.data_schema, entity.id, the_data.timestamp, the_data.report_date)) self.session.commit() else: # self.logger.info( # 'waiting jq fill {} {} timestamp:{} for report_date:{}'.format(self.data_schema, # security_item.id, # the_data.timestamp, # the_data.report_date)) self.fill_timestamp_with_jq(entity, the_data) def on_finish(self): super().on_finish() logout()
the-stack_0_14985
import numpy as np import pytest from devito.logger import info from devito import norm, configuration from examples.seismic.viscoacoustic import ViscoacousticWaveSolver from examples.seismic import demo_model, setup_geometry, seismic_args def viscoacoustic_setup(shape=(50, 50), spacing=(15.0, 15.0), tn=500., space_order=4, nbl=40, preset='layers-viscoacoustic', kernel='sls', time_order=2, **kwargs): model = demo_model(preset, space_order=space_order, shape=shape, nbl=nbl, dtype=kwargs.pop('dtype', np.float32), spacing=spacing) # Source and receiver geometries geometry = setup_geometry(model, tn) # Create solver object to provide relevant operators solver = ViscoacousticWaveSolver(model, geometry, space_order=space_order, kernel=kernel, time_order=time_order, **kwargs) return solver def run(shape=(50, 50), spacing=(20.0, 20.0), tn=1000.0, space_order=4, nbl=40, autotune=False, preset='layers-viscoacoustic', kernel='sls', time_order=2, **kwargs): solver = viscoacoustic_setup(shape=shape, spacing=spacing, nbl=nbl, tn=tn, space_order=space_order, preset=preset, kernel=kernel, time_order=time_order, **kwargs) info("Applying Forward") rec, p, v, summary = solver.forward(autotune=autotune) return (summary.gflopss, summary.oi, summary.timings, [rec, p, v]) @pytest.mark.skipif(configuration['language'] == 'openacc', reason="see issue #1560") @pytest.mark.parametrize('kernel, time_order, normrec, atol', [ ('sls', 2, 684.385, 1e-2), ('sls', 1, 18.774, 1e-2), ('ren', 2, 677.673, 1e-2), ('ren', 1, 17.995, 1e-2), ('deng_mcmechan', 2, 673.041, 1e-2), ('deng_mcmechan', 1, 18.488, 1e-2), ]) def test_viscoacoustic(kernel, time_order, normrec, atol): _, _, _, [rec, _, _] = run(kernel=kernel, time_order=time_order) assert np.isclose(norm(rec), normrec, atol=atol, rtol=0) @pytest.mark.skipif(configuration['language'] == 'openacc', reason="see issue #1560") @pytest.mark.parametrize('ndim', [2, 3]) @pytest.mark.parametrize('kernel', ['sls', 'ren', 'deng_mcmechan']) @pytest.mark.parametrize('time_order', [1, 2]) def test_viscoacoustic_stability(ndim, kernel, time_order): shape = tuple([11]*ndim) spacing = tuple([20]*ndim) _, _, _, [rec, _, _] = run(shape=shape, spacing=spacing, tn=20000.0, nbl=0, kernel=kernel, time_order=time_order) assert np.isfinite(norm(rec)) if __name__ == "__main__": description = ("Example script for a set of viscoacoustic operators.") parser = seismic_args(description) parser.add_argument("-k", dest="kernel", default='sls', choices=['sls', 'ren', 'deng_mcmechan'], help="Choice of finite-difference kernel") parser.add_argument("-to", "--time_order", default=2, type=int, help="Time order of the equation") args = parser.parse_args() # Preset parameters ndim = args.ndim shape = args.shape[:args.ndim] spacing = tuple(ndim * [10.0]) tn = args.tn if args.tn > 0 else (750. if ndim < 3 else 1250.) preset = 'constant-viscoacoustic' if args.constant else 'layers-viscoacoustic' run(shape=shape, spacing=spacing, nbl=args.nbl, tn=tn, opt=args.opt, space_order=args.space_order, autotune=args.autotune, preset=preset, kernel=args.kernel, time_order=args.time_order)
the-stack_0_14987
import traceback from urllib.parse import urlparse import click import timeago from metaflowbot.cli import action from metaflowbot.message_templates.templates import error_message from metaflowbot.state import MFBState MAX_ARTIFACT_SIZE = 1000 import json import requests def random_joke(): ENDPOINT = r"https://official-joke-api.appspot.com/jokes/programming/random" data = requests.get(ENDPOINT) tt = json.loads(data.text) return tt @action.command(help="Tell me a joke") @click.option("--create-thread/--no-create-thread", help="Will create a new thread") @click.pass_context def joke(ctx, create_thread=False): obj = ctx.obj if create_thread: obj.publish_state(MFBState.message_new_thread(obj.thread)) try: joke = random_joke()[0] setup = joke["setup"] punchline = joke["punchline"] obj.reply( f""" {setup} \n{punchline} """ ) except: traceback.print_exc() my_traceback = traceback.format_exc() err_msg = "Sorry, I couldn't find a joke at the moment :meow_dead:" obj.reply(err_msg, **error_message(my_traceback, message=err_msg))
the-stack_0_14988
""" Network tools to run from the Master """ import logging import socket import salt.utils.files import salt.utils.network import salt.utils.stringutils log = logging.getLogger(__name__) def wollist(maclist, bcast="255.255.255.255", destport=9): """ Send a "Magic Packet" to wake up a list of Minions. This list must contain one MAC hardware address per line CLI Example: .. code-block:: bash salt-run network.wollist '/path/to/maclist' salt-run network.wollist '/path/to/maclist' 255.255.255.255 7 salt-run network.wollist '/path/to/maclist' 255.255.255.255 7 """ ret = [] try: with salt.utils.files.fopen(maclist, "r") as ifile: for mac in ifile: mac = salt.utils.stringutils.to_unicode(mac).strip() wol(mac, bcast, destport) print("Waking up {}".format(mac)) ret.append(mac) except Exception as err: # pylint: disable=broad-except __jid_event__.fire_event( {"error": "Failed to open the MAC file. Error: {}".format(err)}, "progress" ) return [] return ret def wol(mac, bcast="255.255.255.255", destport=9): """ Send a "Magic Packet" to wake up a Minion CLI Example: .. code-block:: bash salt-run network.wol 08-00-27-13-69-77 salt-run network.wol 080027136977 255.255.255.255 7 salt-run network.wol 08:00:27:13:69:77 255.255.255.255 7 """ dest = salt.utils.network.mac_str_to_bytes(mac) sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.sendto(b"\xff" * 6 + dest * 16, (bcast, int(destport))) return True def wolmatch(tgt, tgt_type="glob", bcast="255.255.255.255", destport=9): """ Send a "Magic Packet" to wake up Minions that are matched in the grains cache CLI Example: .. code-block:: bash salt-run network.wolmatch minion_id salt-run network.wolmatch 192.168.0.0/16 tgt_type='ipcidr' bcast=255.255.255.255 destport=7 """ ret = [] minions = __salt__["cache.grains"](tgt, tgt_type) for minion in minions: for iface, mac in minions[minion]["hwaddr_interfaces"].items(): if iface == "lo": continue mac = mac.strip() wol(mac, bcast, destport) log.info("Waking up %s", mac) ret.append(mac) return ret
the-stack_0_14989
#!/usr/bin/python # Copyright 2014 Google. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests for the optimizer. """ import os import re import unittest import encoder import encoder_configuration import optimizer import test_tools class DummyCodec(encoder.Codec): def __init__(self): super(DummyCodec, self).__init__('dummy') self.extension = 'fake' self.option_set = encoder.OptionSet( encoder.IntegerOption('score', 0, 10), encoder.Option('another_parameter', ['yes']), ) def StartEncoder(self, context): return encoder.Encoder(context, encoder.OptionValueSet(self.option_set, "--score=5")) def Execute(self, parameters, rate, videofile, workdir): # pylint: disable=W0613 match = re.search(r'--score=(\d+)', parameters.ToString()) if match: return {'psnr': int(match.group(1)), 'bitrate': 100} else: return {'psnr': -100, 'bitrate': 100} class DummyVideofile(encoder.Videofile): def __init__(self, filename, clip_time): super(DummyVideofile, self).__init__(filename) self.clip_time = clip_time def ClipTime(self): return self.clip_time def Returns1(target_bitrate, result): """Score function that returns a constant value.""" # pylint: disable=W0613 return 1.0 def ReturnsClipTime(target_bitrate, result): # pylint: disable=W0613 return float(result['cliptime']) class TestOptimizer(unittest.TestCase): def setUp(self): self.codec = DummyCodec() self.file_set = None self.cache_class = encoder.EncodingMemoryCache self.score_function = None self.videofile = DummyVideofile('foofile_640_480_30.yuv', clip_time=1) self.optimizer = None def StdOptimizer(self): # This function is not in setup because some tests # do not need it. if not self.optimizer: self.optimizer = optimizer.Optimizer(self.codec, self.file_set, cache_class=self.cache_class) return self.optimizer def EncoderFromParameterString(self, parameter_string): return encoder.Encoder(self.optimizer.context, encoder.OptionValueSet(self.optimizer.context.codec.option_set, parameter_string)) def testInit(self): optimizer.Optimizer(self.codec, self.file_set, cache_class=self.cache_class) def test_AlternateScorer(self): my_optimizer = optimizer.Optimizer(self.codec, self.file_set, cache_class=self.cache_class, score_function=Returns1) my_optimizer.BestEncoding(100, self.videofile).Execute().Store() self.assertAlmostEqual(1, my_optimizer.Score(my_optimizer.BestEncoding(100, self.videofile)), places=4) def test_FirstBestEncodingNoScore(self): my_optimizer = self.StdOptimizer() encoding = my_optimizer.BestEncoding(100, self.videofile) self.assertIsNone(encoding.Result()) def test_BestEncodingOneAlternative(self): my_optimizer = self.StdOptimizer() my_optimizer.BestEncoding(100, self.videofile).Store() encoding = my_optimizer.BestEncoding(100, self.videofile) self.assertEqual(encoding.videofile, self.videofile) def test_BestEncodingExecuteGivesScore(self): my_optimizer = self.StdOptimizer() my_optimizer.BestEncoding(100, self.videofile).Execute().Store() self.assertAlmostEqual(5, my_optimizer.Score( my_optimizer.BestEncoding(100, self.videofile)), places=4) def test_BestEncodingOtherSpeedNoScore(self): my_optimizer = self.StdOptimizer() my_optimizer.BestEncoding(100, self.videofile).Execute().Store() self.assertIsNone(my_optimizer.BestEncoding(200, self.videofile).Result()) def test_BestUntriedEncodingReturnsSomething(self): my_optimizer = self.StdOptimizer() first_encoding = my_optimizer.BestEncoding(100, self.videofile) first_encoding.Execute().Store() other_encoding = my_optimizer.BestUntriedEncoding(100, self.videofile) self.assertTrue(other_encoding) self.assertNotEqual(first_encoding.encoder.parameters.ToString(), other_encoding.encoder.parameters.ToString()) def test_WorksBetterOnSomeOtherClip(self): my_optimizer = self.StdOptimizer() videofile2 = DummyVideofile('barfile_640_480_30.yuv', clip_time=1) # Note - may have to do deterministic generation of these. encoder1 = self.EncoderFromParameterString('--score=5') # Low score encoder2 = self.EncoderFromParameterString('--score=10') # High score # Store 2 scores for the second videofile. encoding = encoder1.Encoding(100, videofile2) encoding.Execute().Store() encoding = encoder2.Encoding(100, videofile2) encoding.Execute().Store() # Store 1 score for the first videofile first_encoding = encoder1.Encoding(100, self.videofile) first_encoding.Execute().Store() # pylint: disable=W0212 second_encoding = my_optimizer._WorksBetterOnSomeOtherClip(first_encoding, 100, self.videofile) self.assertTrue(second_encoding) second_encoding.Execute() self.assertEquals(first_encoding.videofile, second_encoding.videofile) self.assertAlmostEqual(10, my_optimizer.Score(second_encoding), places=4) def test_ShorterParameterListsScoreHigher(self): my_optimizer = self.StdOptimizer() encoder1 = self.EncoderFromParameterString('--score=5') encoder2 = self.EncoderFromParameterString( '--score=5 --another_parameter=yes') encoding1 = encoder1.Encoding(100, self.videofile) encoding1.Execute() encoding2 = encoder2.Encoding(100, self.videofile) encoding2.Execute() self.assertGreater(my_optimizer.Score(encoding1), my_optimizer.Score(encoding2)) def test_EncodingWithOneLessParameter(self): my_optimizer = self.StdOptimizer() my_encoder = self.EncoderFromParameterString('--score=5') first_encoding = my_encoder.Encoding(100, self.videofile) # pylint: disable=W0212 next_encoding = my_optimizer._EncodingWithOneLessParameter(first_encoding, 100, self.videofile, None) self.assertTrue(next_encoding) self.assertEqual(next_encoding.encoder.parameters.ToString(), '') def test_EncodingGoodOnOtherRate(self): self.file_set = optimizer.FileAndRateSet(verify_files_present=False) self.file_set.AddFilesAndRates([self.videofile.filename], [100, 200]) my_optimizer = self.StdOptimizer() my_encoder = self.EncoderFromParameterString('--score=7') my_encoder.Encoding(100, self.videofile).Execute().Store() first_encoder = self.EncoderFromParameterString('--score=8') first_encoding = first_encoder.Encoding(200, self.videofile) first_encoding.Execute().Store() # pylint: disable=W0212 next_encoding = my_optimizer._EncodingGoodOnOtherRate(first_encoding, 200, self.videofile, None) self.assertTrue(next_encoding) self.assertEqual('--score=7', next_encoding.encoder.parameters.ToString()) def test_BestOverallConfiguration(self): self.file_set = optimizer.FileAndRateSet(verify_files_present=False) self.file_set.AddFilesAndRates([self.videofile.filename], [100, 200]) my_optimizer = self.StdOptimizer() # When there is nothing in the database, None should be returned. best_encoder = my_optimizer.BestOverallEncoder() self.assertIsNone(best_encoder) # Fill in the database with all the files and rates. my_encoder = self.EncoderFromParameterString('--score=7') for rate, filename in self.file_set.AllFilesAndRates(): my_encoder.Encoding(rate, encoder.Videofile(filename)).Execute().Store() best_encoder = my_optimizer.BestOverallEncoder() self.assertTrue(best_encoder) self.assertEquals(my_encoder.parameters.ToString(), best_encoder.parameters.ToString()) # Add an incomplete encode. This should be ignored. (self.EncoderFromParameterString('--score=9') .Encoding(100, self.videofile).Execute().Store()) best_encoder = my_optimizer.BestOverallEncoder() self.assertTrue(best_encoder) self.assertEquals(my_encoder.parameters.ToString(), best_encoder.parameters.ToString()) # Complete the set for 'score=9'. This should cause a change. (self.EncoderFromParameterString('--score=9') .Encoding(200, self.videofile).Execute().Store()) best_encoder = my_optimizer.BestOverallEncoder() self.assertTrue(best_encoder) self.assertEquals('--score=9', best_encoder.parameters.ToString()) class TestOptimizerWithRealFiles(test_tools.FileUsingCodecTest): def setUp(self): self.codec = DummyCodec() self.file_set = None self.score_function = None self.videofile = DummyVideofile('foofile_640_480_30.yuv', clip_time=1) self.optimizer = None def EncoderFromParameterString(self, parameter_string): return encoder.Encoder(self.optimizer.context, encoder.OptionValueSet(self.optimizer.context.codec.option_set, parameter_string)) def test_BestOverallConfigurationNotInWorkDirectory(self): other_dir = os.path.join(encoder_configuration.conf.sysdir(), 'multirepo_test') os.mkdir(other_dir) encoder_configuration.conf.override_scorepath_for_test([other_dir]) self.file_set = optimizer.FileAndRateSet(verify_files_present=False) self.file_set.AddFilesAndRates([self.videofile.filename], [100, 200]) self.optimizer = optimizer.Optimizer(self.codec, self.file_set) # When there is nothing in the database, None should be returned. best_encoder = self.optimizer.BestOverallEncoder() self.assertIsNone(best_encoder) # Fill in the database with all the files and rates. other_context = encoder.Context(self.codec, encoder.EncodingDiskCache, scoredir='multirepo_test') my_encoder = self.EncoderFromParameterString('--score=7') other_context.cache.StoreEncoder(my_encoder) my_encoder.context.cache.StoreEncoder(my_encoder) for rate, filename in self.file_set.AllFilesAndRates(): my_encoding = my_encoder.Encoding(rate, encoder.Videofile(filename)) my_encoding.Execute() other_context.cache.StoreEncoding(my_encoding) # The best encoder should now be from the workdir, but the results are # all fetched from the searchpath. best_encoder = self.optimizer.BestOverallEncoder() self.assertTrue(best_encoder) self.assertEquals(my_encoder.parameters.ToString(), best_encoder.parameters.ToString()) one_encoding = best_encoder.Encoding(100, self.videofile) one_encoding.Recover() self.assertTrue(one_encoding.Result()) def test_MultipleOptimizers(self): # Make sure other score directories don't interfere with this test. encoder_configuration.conf.override_scorepath_for_test([]) os.mkdir(os.path.join(encoder_configuration.conf.sysdir(), 'first_dir')) os.mkdir(os.path.join(encoder_configuration.conf.sysdir(), 'second_dir')) one_optimizer = optimizer.Optimizer(self.codec, scoredir='first_dir') another_optimizer = optimizer.Optimizer(self.codec, scoredir='second_dir') self.assertNotEqual(one_optimizer.context.cache.workdir, another_optimizer.context.cache.workdir) # Storing one encoding's score should not affect the other's. one_encoding = one_optimizer.BestEncoding(100, self.videofile) one_encoding.Execute().Store() another_encoding = another_optimizer.BestEncoding(100, self.videofile) self.assertFalse(another_encoding.Result()) another_encoding.Recover() self.assertFalse(another_encoding.Result()) class TestFileAndRateSet(unittest.TestCase): def test_OneFileAddedAndReturned(self): the_set = optimizer.FileAndRateSet(verify_files_present=False) the_set.AddFilesAndRates(['filename'], [100], 'dirname') self.assertEqual([(100, 'dirname/filename')], the_set.AllFilesAndRates()) def test_NoDirName(self): the_set = optimizer.FileAndRateSet(verify_files_present=False) the_set.AddFilesAndRates(['filename'], [100]) self.assertEqual([(100, 'filename')], the_set.AllFilesAndRates()) def test_OneFileMultipleRates(self): the_set = optimizer.FileAndRateSet(verify_files_present=False) the_set.AddFilesAndRates(['filename'], [100, 200], 'dirname') self.assertEqual(set([(100, 'dirname/filename'), (200, 'dirname/filename')]), set(the_set.AllFilesAndRates())) def test_TwoAddCalls(self): the_set = optimizer.FileAndRateSet(verify_files_present=False) the_set.AddFilesAndRates(['filename'], [100, 200], 'dirname') the_set.AddFilesAndRates(['otherfilename'], [200, 300], 'dirname') self.assertEqual(set([(100, 'dirname/filename'), (200, 'dirname/filename'), (200, 'dirname/otherfilename'), (300, 'dirname/otherfilename')]), set(the_set.AllFilesAndRates())) def test_RatesForFile(self): the_set = optimizer.FileAndRateSet(verify_files_present=False) the_set.AddFilesAndRates(['filename'], [100, 200]) the_set.AddFilesAndRates(['otherfilename'], [200, 300]) self.assertEqual(set([100, 200]), set(the_set.AllRatesForFile('filename'))) class TestFileAndRateSetWithRealFiles(test_tools.FileUsingCodecTest): def test_AddMissingFile(self): the_set = optimizer.FileAndRateSet() the_set.AddFilesAndRates(['nosuchfile'], [100]) self.assertFalse(the_set.AllFilesAndRates()) self.assertFalse(the_set.set_is_complete) def test_AddPresentFile(self): the_set = optimizer.FileAndRateSet() file_name = 'file_1024_768_30.yuv' test_tools.MakeYuvFileWithOneBlankFrame(file_name) the_set.AddFilesAndRates([file_name], [100], basedir=encoder_configuration.conf.workdir()) self.assertTrue(the_set.AllFilesAndRates()) self.assertTrue(the_set.set_is_complete) if __name__ == '__main__': unittest.main()
the-stack_0_14990
"""StudentHomepage URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from app01 import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.index), path('login/', views.LoginView.as_view(), name='login'), path('reg/', views.reg, name='reg'), path('logout/', views.logout, name='logout'), path('photo_album/', views.photo_album, name='photo_album'), path('home/', views.home, name='home'), path('school/', views.school, name='school'), path('hobby/', views.Hobby.as_view()), path('admirer/', views.Admirer.as_view()), path('reading_matter/', views.ReadingMatter.as_view()), ]
the-stack_0_14991
# This code gives back JSON file for: # --> only in the documents where this word appears: how many time does the word appears on average import os import json count_file = 0 word_count = 0 word_dic = {} result_dic = {} # This is path of data folder path = '/media/neel/Extra/gigaword_eng_5/data/afp_eng/' # This is path of output file for filename in os.listdir(path): # File count file_add = ("/media/neel/Extra/gigaword_eng_5/word_per_doc/{}.json".format(str(filename))) outfile = open(file_add, "w") count_file += 1 file = open(path+filename,"r") text = file.read().lower() # Fetching only <p> </p> tage data for item in text.split("</p>"): if "<p>" in item: temp_lis = [] data = str(item [ item.find("<p>")+len("<p>") : ]) data = data.replace(',','').replace('.','').replace('"','').replace("'","").replace("(","").replace(")","").replace('\n',' ').replace("-","") temp_lis = data.split(" ") # counting words for word in temp_lis: word_count += 1 try: word_dic[str(word)] = int(word_dic[str(word)]) + 1 except: word_dic[str(word)] = 1 file.close() json.dump(word_dic, outfile) outfile.close() print('done')
the-stack_0_14993
import discord from discord.ext import commands from asyncdagpi import ImageFeatures class Image(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def colors(self, ctx, member:discord.Member=None): if member is None: member = ctx.author url = str(member.avatar_url_as(format="png", size=1024)) img = await self.bot.dag.image_process(ImageFeatures.colors(), url) await ctx.send(file = discord.File(fp=img.image,filename=f"pixel.{img.format}")) @commands.command() async def wanted(self, ctx, member:discord.Member=None): if member is None: member = ctx.author warn_msg = 'the dagpi wanted endpoint has a flaw which makes it very slow to compute' if ctx.author.id in self.bot.owner_ids else 'This may take some time' warn = await ctx.send(warn_msg) url = str(member.avatar_url_as(format="png", size=1024)) img = await self.bot.dag.image_process(ImageFeatures.wanted(), url) try: await warn.delete() except: pass finally: await (commands.Context(prefix=ctx.prefix, message=ctx.message)).send(file = discord.File(fp=img.image,filename=f"pixel.{img.format}")) def setup(bot): bot.add_cog(Image(bot))
the-stack_0_14994
import json from argparse import ArgumentParser from ibm_watson import AssistantV1 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator import dateutil.parser import datetime import time DEFAULT_WCS_VERSION='2018-09-20' DEFAULT_PAGE_SIZE=500 DEFAULT_NUMBER_OF_PAGES=20 def getAssistant(iam_apikey, url, version=DEFAULT_WCS_VERSION): '''Retrieve Watson Assistant SDK object''' authenticator = IAMAuthenticator(iam_apikey) c = AssistantV1( version=version, authenticator=authenticator ) c.set_service_url(url) return c def getLogs(iam_apikey, url, workspace_id, filter, page_size_limit=DEFAULT_PAGE_SIZE, page_num_limit=DEFAULT_NUMBER_OF_PAGES, version=DEFAULT_WCS_VERSION): '''Public API for script, connects to Watson Assistant and downloads all logs''' service = getAssistant(iam_apikey, url, version) return getLogsInternal(service, workspace_id, filter, page_size_limit, page_num_limit) def getLogsInternal(assistant, workspace_id, filter, page_size_limit=DEFAULT_PAGE_SIZE, page_num_limit=DEFAULT_NUMBER_OF_PAGES): '''Fetches `page_size_limit` logs at a time through Watson Assistant log API, a maximum of `page_num_limit` times, and returns array of log events''' cursor = None pages_retrieved = 0 allLogs = [] noMore = False while pages_retrieved < page_num_limit and noMore != True: if workspace_id is None: #all - requires a workspace_id, assistant id, or deployment id in the filter output = assistant.list_all_logs(sort='-request_timestamp', filter=filter, page_limit=page_size_limit, cursor=cursor) else: output = assistant.list_logs(workspace_id=workspace_id, sort='-request_timestamp', filter=filter, page_limit=page_size_limit, cursor=cursor) #Hack for API compatibility between v1 and v2 of the API - v2 adds a 'result' property on the response. v2 simplest form is list_logs().get_result() output = json.loads(str(output)) if 'result' in output: logs = output['result'] else: logs = output if 'pagination' in logs and len(logs['pagination']) != 0: cursor = logs['pagination'].get('next_cursor', None) #Do not DOS the list_logs function! time.sleep(3.0) else: noMore = True if 'logs' in logs: allLogs.extend(logs['logs']) pages_retrieved = pages_retrieved + 1 print("Fetched {} log pages".format(pages_retrieved)) else: return None #Analysis is easier when logs are in increasing timestamp order allLogs.reverse() return allLogs def writeLogs(logs, output_file, output_columns="raw"): ''' Writes log output to file system or screen. Includes three modes: `raw`: logs are written in JSON format `all`: all log columns useful for intent training are written in CSV format `utterance`: only the `input.text` column is written (one per line) ''' file = None if output_file != None: file = open(output_file,'w') print("Writing logs to", output_file) if 'raw' == output_columns: writeOut(file, json.dumps(logs,indent=2)) if file is not None: file.close() return if 'all' == output_columns: writeOut(file, 'Utterance\tIntent\tConfidence\tDate\tLast Visited') for log in logs: utterance = log['request' ]['input']['text'] intent = 'unknown_intent' confidence = 0.0 date = 'unknown_date' last_visited = 'unknown_last_visited' if 'response' in log and 'intents' in log['response'] and len(log['response']['intents'])>0: intent = log['response']['intents'][0]['intent'] confidence = log['response']['intents'][0]['confidence'] dateStr = log['request_timestamp'] date = dateutil.parser.parse(dateStr).strftime("%Y-%m-%d") if 'nodes_visited' in log['response']['output'] and len (log['response']['output']['nodes_visited']) > 0: last_visited = log['response']['output']['nodes_visited'][-1] if 'all' == output_columns: output_line = '{}\t{}\t{}\t{}\t{}'.format(utterance, intent, confidence, date, last_visited) else: #assumed just 'utterance' output_line = utterance writeOut(file, output_line) if output_file != None: file.close() def writeOut(file, message): if file != None: file.write(message + '\n') else: print(message) def create_parser(): parser = ArgumentParser(description='Extracts Watson Assistant logs from a given workspace') parser.add_argument('-c', '--output_columns', type=str, help='Which columns you want in output, either "utterance", "raw", or "all" (default is "raw")', default='raw') parser.add_argument('-o', '--output_file', type=str, help='Filename to write results to') parser.add_argument('-w', '--workspace_id', type=str, help='Workspace identifier') parser.add_argument('-a', '--iam_apikey', type=str, required=True, help='Assistant service iam api key') parser.add_argument('-f', '--filter', type=str, required=True, help='Watson Assistant log query filter') parser.add_argument('-v', '--version', type=str, default=DEFAULT_WCS_VERSION, help="Watson Assistant version in YYYY-MM-DD form.") parser.add_argument('-n', '--number_of_pages', type=int, default=DEFAULT_NUMBER_OF_PAGES, help='Number of result pages to download (default is {})'.format(DEFAULT_NUMBER_OF_PAGES)) parser.add_argument('-p', '--page_limit', type=int, default=DEFAULT_PAGE_SIZE, help='Number of results per page (default is {})'.format(DEFAULT_PAGE_SIZE)) parser.add_argument('-l', '--url', type=str, default='https://gateway.watsonplatform.net/assistant/api', help='URL to Watson Assistant. Ex: https://gateway-wdc.watsonplatform.net/assistant/api') return parser if __name__ == '__main__': ARGS = create_parser().parse_args() service = getAssistant(ARGS.iam_apikey,ARGS.url,ARGS.version) logs = getLogsInternal(service, ARGS.workspace_id, ARGS.filter, ARGS.page_limit, ARGS.number_of_pages) writeLogs(logs, ARGS.output_file, ARGS.output_columns)
the-stack_0_14996
from __future__ import division import numpy as np import seaborn as sns import sys from sys import platform as sys_pf if sys_pf == 'Darwin': import matplotlib matplotlib.use("TkAgg") from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt def normalize(v): norm=np.linalg.norm(v) if norm==0: return v return v/norm def visualize_cluster(No_of_traj, l_no, nrows, ncols, x, y, c, col): Number_of_traj = No_of_traj label_no =l_no counter = 0 alpha = c[label_no] - 1 fig, axes = plt.subplots(nrows, ncols, sharex=True, sharey=True) for row in axes: for cols in range(ncols): if (counter > alpha): break X = x[counter] Y = y[counter] row[cols].plot(X, Y, color=col[int(label_no)]) counter = counter + 1 fig.suptitle('Trajectories of Cluster '+str(label_no), fontsize='large') plt.show() def main(): #loading files ... labels = np.loadtxt('labels.txt', delimiter=',') labelsbefore = np.loadtxt('labelsbefore.txt', delimiter=',') XA = np.loadtxt('XA.txt', delimiter=',') XB = np.loadtxt('XB.txt', delimiter=',') YA = np.loadtxt('YA.txt', delimiter=',') YB = np.loadtxt('YB.txt', delimiter=',') Number_of_traj = np.shape(XA)[0] Number_of_frames = np.shape(XA)[1] col = ['red', 'black', 'blue', 'green', 'cyan'] c = np.zeros( shape=(5), dtype=int) for i in range(139): if (int(labels[i]) == 0) : c[0] += 1 elif (int(labels[i]) == 1) : c[1] += 1 elif (int(labels[i]) == 2) : c[2] += 1 elif (int(labels[i]) == 3) : c[3] += 1 elif (int(labels[i]) == 4) : c[4] += 1 C0x = np.zeros(shape=(c[0],Number_of_frames)) C1x = np.zeros(shape=(c[1],Number_of_frames)) C2x = np.zeros(shape=(c[2],Number_of_frames)) C3x = np.zeros(shape=(c[3],Number_of_frames)) C4x = np.zeros(shape=(c[4],Number_of_frames)) C0y = np.zeros(shape=(c[0],Number_of_frames)) C1y = np.zeros(shape=(c[1],Number_of_frames)) C2y = np.zeros(shape=(c[2],Number_of_frames)) C3y = np.zeros(shape=(c[3],Number_of_frames)) C4y = np.zeros(shape=(c[4],Number_of_frames)) C0xb = np.zeros(shape=(c[0],Number_of_frames)) C1xb = np.zeros(shape=(c[1],Number_of_frames)) C2xb = np.zeros(shape=(c[2],Number_of_frames)) C3xb = np.zeros(shape=(c[3],Number_of_frames)) C4xb = np.zeros(shape=(c[4],Number_of_frames)) C0yb = np.zeros(shape=(c[0],Number_of_frames)) C1yb = np.zeros(shape=(c[1],Number_of_frames)) C2yb = np.zeros(shape=(c[2],Number_of_frames)) C3yb = np.zeros(shape=(c[3],Number_of_frames)) C4yb = np.zeros(shape=(c[4],Number_of_frames)) index = np.zeros( shape=(5), dtype= int) for trajectory in range(139): if (col[int(labels[trajectory])]) == 'red' : C0x[index[0]] = XA[trajectory] C0y[index[0]] = YA[trajectory] C0xb[index[0]] = XB[trajectory] C0yb[index[0]] = YB[trajectory] index[0] +=1 elif (col[int(labels[trajectory])]) == 'black' : C1x[index[1]] = XA[trajectory] C1y[index[1]] = YA[trajectory] C1xb[index[1]] = XB[trajectory] C1yb[index[1]] = YB[trajectory] index[1] +=1 elif (col[int(labels[trajectory])]) == 'blue' : C2x[index[2]] = XA[trajectory] C2y[index[2]] = YA[trajectory] C2xb[index[2]] = XB[trajectory] C2yb[index[2]] = YB[trajectory] index[2] +=1 elif (col[int(labels[trajectory])]) == 'green' : C3x[index[3]] = XA[trajectory] C3y[index[3]] = YA[trajectory] C3xb[index[3]] = XB[trajectory] C3yb[index[3]] = YB[trajectory] index[3] +=1 else : C4x[index[4]] = XA[trajectory] C4y[index[4]] = YA[trajectory] C4xb[index[4]] = XB[trajectory] C4yb[index[4]] = YB[trajectory] index[4] +=1 print (index) visualize_cluster(Number_of_traj, 0, 5, 6, C0xb, C0yb, c, col) visualize_cluster(Number_of_traj, 1, 6, 8, C1xb, C1yb, c, col) visualize_cluster(Number_of_traj, 2, 3, 6, C2xb, C2yb, c, col) visualize_cluster(Number_of_traj, 3, 3, 2, C3xb, C3yb, c, col) visualize_cluster(Number_of_traj, 4, 5, 8, C4xb, C4yb, c, col) for Trajectories in range (Number_of_traj): print (Trajectories, labelsbefore[Trajectories], labels[Trajectories]) if __name__ == "__main__": main()
the-stack_0_14998
import random import numpy as np import sys from domain.make_env import make_env from domain.task_gym import GymTask from neat_src import * class WannGymTask(GymTask): """Problem domain to be solved by neural network. Uses OpenAI Gym patterns. """ def __init__(self, game, paramOnly=False, nReps=1): """Initializes task environment Args: game - (string) - dict key of task to be solved (see domain/config.py) Optional: paramOnly - (bool) - only load parameters instead of launching task? nReps - (nReps) - number of trials to get average fitness """ GymTask.__init__(self, game, paramOnly, nReps) # -- 'Weight Agnostic Network' evaluation -------------------------------- -- # def setWeights(self, wVec, wVal): """Set single shared weight of network Args: wVec - (np_array) - weight matrix as a flattened vector [N**2 X 1] wVal - (float) - value to assign to all weights Returns: wMat - (np_array) - weight matrix with single shared weight [N X N] """ # Create connection matrix wVec[np.isnan(wVec)] = 0 dim = int(np.sqrt(np.shape(wVec)[0])) cMat = np.reshape(wVec,(dim,dim)) cMat[cMat!=0] = 1.0 # Assign value to all weights wMat = np.copy(cMat) * wVal return wMat def getFitness(self, wVec, aVec, hyp, \ seed=-1,nRep=False,nVals=6,view=False,returnVals=False): """Get fitness of a single individual with distribution of weights Args: wVec - (np_array) - weight matrix as a flattened vector [N**2 X 1] aVec - (np_array) - activation function of each node [N X 1] - stored as ints (see applyAct in ann.py) hyp - (dict) - hyperparameters ['alg_wDist'] - weight distribution [standard;fixed;linspace] ['alg_absWCap'] - absolute value of highest weight for linspace Optional: seed - (int) - starting random seed for trials nReps - (int) - number of trials to get average fitness nVals - (int) - number of weight values to test Returns: fitness - (float) - mean reward over all trials """ if nRep is False: nRep = hyp['alg_nReps'] # Set weight values to test WANN with if (hyp['alg_wDist'] == "standard") and nVals==6: # Double, constant, and half signal wVals = np.array((-2,-1.0,-0.5,0.5,1.0,2)) else: wVals = np.linspace(-self.absWCap, self.absWCap ,nVals) # Get reward from 'reps' rollouts -- test population on same seeds reward = np.empty((nRep,nVals)) for iRep in range(nRep): for iVal in range(nVals): wMat = self.setWeights(wVec,wVals[iVal]) if seed == -1: reward[iRep,iVal] = self.testInd(wMat, aVec, seed=seed,view=view) else: reward[iRep,iVal] = self.testInd(wMat, aVec, seed=seed+iRep,view=view) if returnVals is True: return np.mean(reward,axis=0), wVals return np.mean(reward,axis=0)
the-stack_0_15000
from socket import * import threading class RecvThread(threading.Thread): def __init__(self, s, bufsize): if not isinstance(s, socket): raise TypeError super(RecvThread, self).__init__() self.s = s self.bufsize = bufsize def run(self): while True: data = self.s.recv(self.bufsize).decode() if not data: break print(f'\r{data} \n> ', end='') class SendThread(threading.Thread): def __init__(self, s): if not isinstance(s, socket): raise TypeError super(SendThread, self).__init__() self.s = s def run(self): while True: data = input('> ').encode() self.s.send(data)
the-stack_0_15001
from typing import List, Any, Sequence from .util import MLP, ThreadedIterator, SMALL_NUMBER import tensorflow as tf import numpy as np import time import pickle import os import shutil class GGNN(object): @classmethod def default_params(cls): return { 'num_epochs': 1, 'patience': 250, 'learning_rate': 0.001, 'clamp_gradient_norm': 1.0, 'out_layer_dropout_keep_prob': 1.0, 'hidden_size': 200, 'num_timesteps': 4, 'use_graph': True, 'task_ids': [0], 'random_seed': 0, } def __init__(self, data_training, data_testing, params=None, restore_file=None, freeze_graph_model=False, log_dir="./logged_models", cleanup=False): """ Basic GGNN class that needs to be extended for use. :param data_training: data set of PIGs for training [list]. :param data_testing: data set of PIGs for validation [list]. :param params: hyperparameters of the model [dict]. :param restore_file: path to a model that should be restored [str]. :param freeze_graph_model: do not train parameters of graph model (i.e. model is not trained) [bool]. :param log_dir: directory where the model is stored [str]. :param cleanup: clean directory, where the model is stored, before storing it [bool]. """ # Collect parameters store_params = params self.params = self.default_params() if store_params is not None: self.params.update(store_params) # Load data self.max_num_vertices = 0 self.num_edge_types = 0 self.annotation_size = 0 self.train_data = self.load_data(data_training, is_training_data=True) self.valid_data = self.load_data(data_testing, is_training_data=False) self.freeze_graph_model = freeze_graph_model self.restore = restore_file # Safe best models/cleanup previous models if cleanup: shutil.rmtree(log_dir, ignore_errors=True) self.log_dir = log_dir os.makedirs(log_dir, exist_ok=True) # Path to best model self.best_model_file = os.path.join(log_dir, "%s_best_model.pickle" % "_".join([time.strftime("%Y-%m-%d-%H-%M")])) # Build the actual GGNN model config = tf.ConfigProto() config.gpu_options.allow_growth = True self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph, config=config) with self.graph.as_default(): tf.set_random_seed(self.params['random_seed']) self.placeholders = {} self.weights = {} self.ops = {} self.make_model() self.make_train_step() # Restore/initialize variables if restore_file is not None: self.restore_model(restore_file) else: self.initialize_model() @staticmethod def graph_string_to_array(graph_string: str) -> List[List[int]]: """ Returns graph string from string. :param graph_string: graph as string [str]. :return: graph string as array [list]. """ return [[int(v) for v in s.split(' ')] for s in graph_string.split('\n')] def load_data(self, data, is_training_data: bool): """ Loads data :param data: list of graphs [list] A graph = {targets, graph, node_features} :param is_training_data: boolean flag if data is for training or not [bool] :return: raw process graphs [list] A raw process graph = {adjacency_lists [dict], num_incoming_edge per_type [dict], init [list], labels [list]} """ num_fwd_edge_types = 0 for g in data: self.max_num_vertices = max(self.max_num_vertices, max([v for e in g['graph'] for v in [e[0], e[2]]])) num_fwd_edge_types = max(num_fwd_edge_types, max([e[1] for e in g['graph']])) self.num_edge_types = max(self.num_edge_types, num_fwd_edge_types) self.annotation_size = max(self.annotation_size, len(data[0]["node_features"][0])) return self.process_raw_graphs(data, is_training_data) def process_raw_graphs(self, raw_data: Sequence[Any], is_training_data: bool) -> Any: raise Exception("Models have to implement process_raw_graphs!") def make_model(self): """ Makes the GGNN model. :return: none. """ # Create placeholders for the GGNN model self.placeholders['target_values'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None], name='target_values') self.placeholders['target_mask'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None], name='target_mask') self.placeholders['num_graphs'] = tf.placeholder(tf.int32, [], name='num_graphs') self.placeholders['out_layer_dropout_keep_prob'] = tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob') # Start message passing phase (i.e. update of node representations) with tf.variable_scope("graph_mode"): self.prepare_specific_graph_model() if self.params['use_graph']: self.ops['final_node_representations'] = self.compute_final_node_representations() else: self.ops['final_node_representations'] = tf.zeros_like(self.placeholders['initial_node_representation']) # Start readout phase (i.e. mapping of node representations to output self.ops['losses'] = [] for (internal_id, task_id) in enumerate(self.params['task_ids']): with tf.variable_scope("out_layer_task%i" % task_id): with tf.variable_scope("regression_gate"): self.weights['regression_gate_task%i' % task_id] = MLP(2 * self.params['hidden_size'], 1, [], self.placeholders[ 'out_layer_dropout_keep_prob']) with tf.variable_scope("regression"): self.weights['regression_transform_task%i' % task_id] = MLP(self.params['hidden_size'], 1, [], self.placeholders[ 'out_layer_dropout_keep_prob']) # Computes the output of the GGNN model computed_values = self.gated_regression(self.ops['final_node_representations'], self.weights['regression_gate_task%i' % task_id], self.weights['regression_transform_task%i' % task_id]) # Computes the difference diff = self.placeholders['target_values'][internal_id, :] - computed_values # Ignore none comparisons task_target_mask = self.placeholders['target_mask'][internal_id, :] task_target_num = tf.reduce_sum(task_target_mask) + SMALL_NUMBER diff = diff * task_target_mask # Mask out unused values self.ops['accuracy_task%i' % task_id] = tf.reduce_sum(tf.cast(tf.equal(tf.round(computed_values), self.placeholders[ 'target_values'][internal_id, :]), tf.float32)) # Calculate loss (here, normalised mean squared error) task_loss = tf.reduce_sum(tf.square(diff)) / task_target_num # Normalise loss task_loss = task_loss * (1.0 / (self.params['task_sample_ratios'].get(task_id) or 1.0)) self.ops['losses'].append(task_loss) self.ops['loss'] = tf.reduce_sum(self.ops['losses']) def make_train_step(self): """ Performs a training step. :return: none. """ trainable_vars = self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) if self.freeze_graph_model: graph_vars = set(self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="graph_model")) filtered_vars = [] for var in trainable_vars: if var not in graph_vars: filtered_vars.append(var) else: print("Freezing weights of variable %s." % var.name) trainable_vars = filtered_vars optimizer = tf.train.AdadeltaOptimizer(1.0) grads_and_vars = optimizer.compute_gradients(self.ops['loss'], var_list=trainable_vars) clipped_grads = [] for grad, var in grads_and_vars: if grad is not None: clipped_grads.append((tf.clip_by_norm(grad, self.params['clamp_gradient_norm']), var)) else: clipped_grads.append((grad, var)) self.ops['train_step'] = optimizer.apply_gradients(clipped_grads) self.sess.run(tf.local_variables_initializer()) def gated_regression(self, last_h, regression_gate, regression_transform): raise Exception("Models have to implement gated_regression!") def prepare_specific_graph_model(self) -> None: raise Exception("Models have to implement prepare_specific_graph_model!") def compute_final_node_representations(self) -> tf.Tensor: raise Exception("Models have to implement compute_final_node_representations!") def make_minibatch_iterator(self, data: Any, is_training: bool): raise Exception("Models have to implement make_minibatch_iterator!") def run_epoch(self, data, is_training: bool): """ Performs an epoch (i.e. learning iteration). :param data: set of graphs [list]. :param is_training: boolean flag if data is for training or not [bool]. :return: loss [list], accuracies [list], error_ratios [list], instance_per_sec [list]. """ loss = 0 accuracies = [] accuracy_ops = [self.ops['accuracy_task%i' % task_id] for task_id in self.params['task_ids']] start_time = time.time() processed_graphs = 0 batch_iterator = ThreadedIterator(self.make_minibatch_iterator(data, is_training), max_queue_size=5) for step, batch_data in enumerate(batch_iterator): num_graphs = batch_data[self.placeholders['num_graphs']] processed_graphs += num_graphs if is_training: batch_data[self.placeholders['out_layer_dropout_keep_prob']] = self.params[ 'out_layer_dropout_keep_prob'] fetch_list = [self.ops['loss'], accuracy_ops, self.ops['train_step']] else: batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0 fetch_list = [self.ops['loss'], accuracy_ops] result = self.sess.run(fetch_list, feed_dict=batch_data) (batch_loss, batch_accuracies) = (result[0], result[1]) loss += batch_loss * num_graphs accuracies.append(np.array(batch_accuracies)) accuracies = np.sum(accuracies, axis=0) / processed_graphs loss = loss / processed_graphs error_ratios = 1 - accuracies instance_per_sec = processed_graphs / (time.time() - start_time) return loss, accuracies, error_ratios, instance_per_sec def train(self): """ Train the GGNN model. :return: none. """ with self.graph.as_default(): if self.restore is not None: # Epoch resume training _, valid_accs, _, _ = self.run_epoch(self.valid_data, False) best_val_acc = np.sum(valid_accs) best_val_acc_epoch = 0 print("\r\x1b[KResumed operation, initial cum. val. acc: %.5f" % best_val_acc) else: (best_val_acc, best_val_acc_epoch) = (0, 0) for epoch in range(1, self.params['num_epochs'] + 1): print("== Epoch %i" % epoch) # Epoch train train_loss, train_acc, train_errs, train_speed = self.run_epoch(self.train_data, True) accs_str = " ".join(["%i:%.5f" % (id, acc) for (id, acc) in zip(self.params['task_ids'], train_acc)]) errs_str = " ".join(["%i:%.5f" % (id, err) for (id, err) in zip(self.params['task_ids'], train_errs)]) print("\r\x1b[K Train: loss: %.5f | acc: %s | error_ratio: %s | instances/sec: %.2f" % (train_loss, accs_str, errs_str, train_speed)) # Epoch validation valid_loss, valid_accs, valid_errs, valid_speed = self.run_epoch(self.valid_data, False) accs_str = " ".join(["%i:%.5f" % (id, acc) for (id, acc) in zip(self.params['task_ids'], valid_accs)]) errs_str = " ".join(["%i:%.5f" % (id, err) for (id, err) in zip(self.params['task_ids'], valid_errs)]) print("\r\x1b[K Valid: loss: %.5f | acc: %s | error_ratio: %s | instances/sec: %.2f" % (valid_loss, accs_str, errs_str, valid_speed)) val_acc = np.sum(valid_accs) # type: float if val_acc > best_val_acc: # Save best model to self.best_model_file self.save_model(self.best_model_file) print("LOG: (Best epoch so far, cum. val. acc decreased to %.5f from %.5f. Saving to '%s')" % (val_acc, best_val_acc, self.best_model_file)) best_val_acc = val_acc best_val_acc_epoch = epoch elif epoch - best_val_acc_epoch >= self.params['patience']: print("LOG: Stopping training after %i epochs without improvement on validation accuracy." % self.params['patience']) break def save_model(self, model_path: str) -> None: """ Saves the GGNN model. :param model_path: path of GGNN model [str]. :return: none. """ weights_save = {} for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): assert variable.name not in weights_save weights_save[variable.name] = self.sess.run(variable) model_save = {"params": self.params, "weights": weights_save} with open(model_path, 'wb') as out_file: pickle.dump(model_save, out_file, pickle.HIGHEST_PROTOCOL) def initialize_model(self) -> None: """ Initialises the GGNN model. :return: none. """ init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) self.sess.run(init_op) def restore_model(self, path: str) -> None: """ Restores a GGNN model. :param path: path of model [str] :return: none. """ print("Restoring weights from file %s." % path) with open(path, 'rb') as rest_file: data_to_load = pickle.load(rest_file) # Assert that we got the same model configuration assert len(self.params) == len(data_to_load['params']) for (par, par_value) in self.params.items(): # Different task_ids possible if par not in ['task_ids', 'num_epochs']: assert par_value == data_to_load['params'][par] variables_to_initialize = [] with tf.name_scope("restore"): restore_ops = [] used_vars = set() for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES): used_vars.add(variable.name) if variable.name in data_to_load['weights']: restore_ops.append(variable.assign(data_to_load['weights'][variable.name])) else: print('Freshly initializing %s since no saved value was found.' % variable.name) variables_to_initialize.append(variable) for var_name in data_to_load['weights']: if var_name not in used_vars: print('Saved weights for %s not used by model.' % var_name) restore_ops.append(tf.variables_initializer(variables_to_initialize)) self.sess.run(restore_ops)
the-stack_0_15003
import os import logging import boto3 from botocore.exceptions import ClientError from datetime import datetime as dt import json logger = logging.getLogger() logger.setLevel(logging.INFO) TABLE_NAME = "aqa_scores" VIDEO_NAME_KEY = 'videoName' VIDEO_SCORE_KEY = 'videoScore' def handler(event, context): try: logger.info(event) raw_query_str = event["rawQueryString"] if "=" in raw_query_str: video_key = raw_query_str.split("=")[-1] else: logger.error("Something wrong with the HTTP request, no valid query string available.") return None # Get region name associated with this lambda function region = os.environ["AWS_REGION"] video_score = fetch_db_result(region, video_key) return video_score except Exception as e: logger.exceptions(e) raise e def fetch_db_result(region_name, video_key): """Fetch item from DynamoDB of a certain video key :param region_name: string :param video_key: string :return: video_score of DB item with the video_key. If not present, returns None. """ db_client = boto3.client("dynamodb", region_name=region_name) logger.info(f"Getting score for [{video_key}] from table:{TABLE_NAME}...") try: response = db_client.get_item( TableName = TABLE_NAME, Key = {VIDEO_NAME_KEY: { "S": video_key }}, ProjectionExpression= VIDEO_SCORE_KEY, ) logger.info(response) if "Item" in response: score = response["Item"]["videoScore"]["N"] logger.info(f"Score for video [{video_key}]: {score}") else: score = None logger.info(f"Score for video [{video_key}] is not available") return score except ClientError as e: logger.exceptions(e) return None
the-stack_0_15004
import ast import re from abc import ABC, abstractmethod from dataclasses import dataclass from enum import Enum from pathlib import PurePath from typing import Callable, Dict, List, Optional, Sequence, TypeVar, Union from .logging import log from .utils import fmt_path, str_path class ArrowHead(Enum): NORMAL = 0 SEQUENCE = 1 class Ignore: pass class Empty: pass RightSide = Union[str, Ignore, Empty] @dataclass class Transformed: path: PurePath class Ignored: pass TransformResult = Optional[Union[Transformed, Ignored]] @dataclass class Rule: left: str left_index: int name: str head: ArrowHead right: RightSide right_index: int def right_result(self, path: PurePath) -> Union[str, Transformed, Ignored]: if isinstance(self.right, str): return self.right elif isinstance(self.right, Ignore): return Ignored() elif isinstance(self.right, Empty): return Transformed(path) else: raise RuntimeError(f"Right side has invalid type {type(self.right)}") class Transformation(ABC): def __init__(self, rule: Rule): self.rule = rule @abstractmethod def transform(self, path: PurePath) -> TransformResult: pass class ExactTf(Transformation): def transform(self, path: PurePath) -> TransformResult: if path != PurePath(self.rule.left): return None right = self.rule.right_result(path) if not isinstance(right, str): return right return Transformed(PurePath(right)) class ExactReTf(Transformation): def transform(self, path: PurePath) -> TransformResult: match = re.fullmatch(self.rule.left, str_path(path)) if not match: return None right = self.rule.right_result(path) if not isinstance(right, str): return right # For some reason, mypy thinks that "groups" has type List[str]. But # since elements of "match.groups()" can be None, mypy is wrong. groups: Sequence[Optional[str]] = [match[0]] + list(match.groups()) locals_dir: Dict[str, Union[str, int, float]] = {} for i, group in enumerate(groups): if group is None: continue locals_dir[f"g{i}"] = group try: locals_dir[f"i{i}"] = int(group) except ValueError: pass try: locals_dir[f"f{i}"] = float(group) except ValueError: pass result = eval(f"f{right!r}", {}, locals_dir) return Transformed(PurePath(result)) class RenamingParentsTf(Transformation): def __init__(self, sub_tf: Transformation): super().__init__(sub_tf.rule) self.sub_tf = sub_tf def transform(self, path: PurePath) -> TransformResult: for i in range(len(path.parts), -1, -1): parent = PurePath(*path.parts[:i]) child = PurePath(*path.parts[i:]) transformed = self.sub_tf.transform(parent) if not transformed: continue elif isinstance(transformed, Transformed): return Transformed(transformed.path / child) elif isinstance(transformed, Ignored): return transformed else: raise RuntimeError(f"Invalid transform result of type {type(transformed)}: {transformed}") return None class RenamingPartsTf(Transformation): def __init__(self, sub_tf: Transformation): super().__init__(sub_tf.rule) self.sub_tf = sub_tf def transform(self, path: PurePath) -> TransformResult: result = PurePath() any_part_matched = False for part in path.parts: transformed = self.sub_tf.transform(PurePath(part)) if not transformed: result /= part elif isinstance(transformed, Transformed): result /= transformed.path any_part_matched = True elif isinstance(transformed, Ignored): return transformed else: raise RuntimeError(f"Invalid transform result of type {type(transformed)}: {transformed}") if any_part_matched: return Transformed(result) else: return None class RuleParseError(Exception): def __init__(self, line: "Line", reason: str): super().__init__(f"Error in rule on line {line.line_nr}, column {line.index}: {reason}") self.line = line self.reason = reason def pretty_print(self) -> None: log.error(f"Error parsing rule on line {self.line.line_nr}:") log.error_contd(self.line.line) spaces = " " * self.line.index log.error_contd(f"{spaces}^--- {self.reason}") T = TypeVar("T") class Line: def __init__(self, line: str, line_nr: int): self._line = line self._line_nr = line_nr self._index = 0 @property def line(self) -> str: return self._line @property def line_nr(self) -> int: return self._line_nr @property def index(self) -> int: return self._index @index.setter def index(self, index: int) -> None: self._index = index @property def rest(self) -> str: return self.line[self.index:] def peek(self, amount: int = 1) -> str: return self.rest[:amount] def take(self, amount: int = 1) -> str: string = self.peek(amount) self.index += len(string) return string def expect(self, string: str) -> str: if self.peek(len(string)) == string: return self.take(len(string)) else: raise RuleParseError(self, f"Expected {string!r}") def expect_with(self, string: str, value: T) -> T: self.expect(string) return value def one_of(self, parsers: List[Callable[[], T]], description: str) -> T: for parser in parsers: index = self.index try: return parser() except RuleParseError: self.index = index raise RuleParseError(self, description) # RULE = LEFT SPACE '-' NAME '-' HEAD (SPACE RIGHT)? # SPACE = ' '+ # NAME = '' | 'exact' | 'name' | 're' | 'exact-re' | 'name-re' # HEAD = '>' | '>>' # LEFT = STR | QUOTED_STR # RIGHT = STR | QUOTED_STR | '!' def parse_zero_or_more_spaces(line: Line) -> None: while line.peek() == " ": line.take() def parse_one_or_more_spaces(line: Line) -> None: line.expect(" ") parse_zero_or_more_spaces(line) def parse_str(line: Line) -> str: result = [] while c := line.peek(): if c == " ": break else: line.take() result.append(c) if result: return "".join(result) else: raise RuleParseError(line, "Expected non-space character") QUOTATION_MARKS = {'"', "'"} def parse_quoted_str(line: Line) -> str: escaped = False # Points to first character of string literal start_index = line.index quotation_mark = line.peek() if quotation_mark not in QUOTATION_MARKS: raise RuleParseError(line, "Expected quotation mark") line.take() while c := line.peek(): if escaped: escaped = False line.take() elif c == quotation_mark: line.take() stop_index = line.index literal = line.line[start_index:stop_index] try: return ast.literal_eval(literal) except SyntaxError as e: line.index = start_index raise RuleParseError(line, str(e)) from e elif c == "\\": escaped = True line.take() else: line.take() raise RuleParseError(line, "Expected end of string literal") def parse_left(line: Line) -> str: if line.peek() in QUOTATION_MARKS: return parse_quoted_str(line) else: return parse_str(line) def parse_right(line: Line) -> Union[str, Ignore]: c = line.peek() if c in QUOTATION_MARKS: return parse_quoted_str(line) else: string = parse_str(line) if string == "!": return Ignore() return string def parse_arrow_name(line: Line) -> str: return line.one_of([ lambda: line.expect("exact-re"), lambda: line.expect("exact"), lambda: line.expect("name-re"), lambda: line.expect("name"), lambda: line.expect("re"), lambda: line.expect(""), ], "Expected arrow name") def parse_arrow_head(line: Line) -> ArrowHead: return line.one_of([ lambda: line.expect_with(">>", ArrowHead.SEQUENCE), lambda: line.expect_with(">", ArrowHead.NORMAL), ], "Expected arrow head") def parse_eol(line: Line) -> None: if line.peek(): raise RuleParseError(line, "Expected end of line") def parse_rule(line: Line) -> Rule: parse_zero_or_more_spaces(line) left_index = line.index left = parse_left(line) parse_one_or_more_spaces(line) line.expect("-") name = parse_arrow_name(line) line.expect("-") head = parse_arrow_head(line) right_index = line.index right: RightSide try: parse_zero_or_more_spaces(line) parse_eol(line) right = Empty() except RuleParseError: line.index = right_index parse_one_or_more_spaces(line) right = parse_right(line) parse_eol(line) return Rule(left, left_index, name, head, right, right_index) def parse_transformation(line: Line) -> Transformation: rule = parse_rule(line) if rule.name == "": return RenamingParentsTf(ExactTf(rule)) elif rule.name == "exact": return ExactTf(rule) elif rule.name == "name": if len(PurePath(rule.left).parts) > 1: line.index = rule.left_index raise RuleParseError(line, "Expected name, not multiple segments") return RenamingPartsTf(ExactTf(rule)) elif rule.name == "re": return RenamingParentsTf(ExactReTf(rule)) elif rule.name == "exact-re": return ExactReTf(rule) elif rule.name == "name-re": return RenamingPartsTf(ExactReTf(rule)) else: raise RuntimeError(f"Invalid arrow name {rule.name!r}") class Transformer: def __init__(self, rules: str): """ May throw a RuleParseException. """ self._tfs = [] for i, line in enumerate(rules.split("\n")): line = line.strip() if line: tf = parse_transformation(Line(line, i)) self._tfs.append((line, tf)) def transform(self, path: PurePath) -> Optional[PurePath]: for i, (line, tf) in enumerate(self._tfs): log.explain(f"Testing rule {i+1}: {line}") try: result = tf.transform(path) except Exception as e: log.warn(f"Error while testing rule {i+1}: {line}") log.warn_contd(str(e)) continue if not result: continue if isinstance(result, Ignored): log.explain("Match found, path ignored") return None if tf.rule.head == ArrowHead.NORMAL: log.explain(f"Match found, transformed path to {fmt_path(result.path)}") path = result.path break elif tf.rule.head == ArrowHead.SEQUENCE: log.explain(f"Match found, updated path to {fmt_path(result.path)}") path = result.path else: raise RuntimeError(f"Invalid transform result of type {type(result)}: {result}") log.explain(f"Final result: {fmt_path(path)}") return path