ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4d6d88a774b9ca67d63d15799ff8c1c2fef85b
#!/usr/bin/env python #------------------------------------------------------------------------------ # Copyright 2015 Esri # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ # Import ArcPy site-package and os modules # import arcpy import os import sys, traceback import time from datetime import datetime from datetime import date ## ====================================================== ## Read in parameters ## ====================================================== featClass = arcpy.GetParameterAsText(0) ## ====================================================== ## Read geoname file and insert feature ## ====================================================== try: arcpy.AddMessage("Checking input feature class " + featClass + "...") hasError = 0 # ====================================================== # Get shape type and check if point # ====================================================== desc = arcpy.Describe(featClass) arcpy.AddMessage("Geometry Check: Make sure input feature class geometry is point...") if desc.shapeType.upper() != "POINT": arcpy.AddError("Error: Input feature class does not have geometry type of point") hasError = hasError + 1 # ====================================================== # Get list of fields and check if required fields exists # ====================================================== fields = arcpy.ListFields(featClass) arcpy.AddMessage("Field Check: Make sure input feature class has correct geonames fields...") geonameFields = ["RC", "UFI", "UNI", "LAT", "LONG", "DMS_LAT", "DMS_LONG", "MGRS", "JOG", "FC", \ "DSG", "PC", "CC1", "ADM1", "POP", "ELEV", "CC2", "NT", "LC", "SHORT_FORM", \ "GENERIC", "SORT_NAME_RO", "FULL_NAME_RO", "FULL_NAME_ND_RO", "SORT_NAME_RG", \ "FULL_NAME_RG", "FULL_NAME_ND_RG", "NOTE", "MODIFY_DATE", "COUNTRYCODE1", \ "COUNTRYNAME1", "ADM1CODE", "ADM1NAMEALL", "ADM1NAME", "ADM1CLASSALL", \ "ADM1CLASS", "PLACENAME", "DSGNAME", "USER_FLD", \ "DISPLAY", "NAME_RANK", "NAME_LINK", "TRANSL_CD", "NM_MODIFY_DATE", \ "POINT_X", "POINT_Y", "F_EFCTV_DT", "F_TERM_DT"] numMissing = 0 for geonameField in geonameFields: found = 0 for field in fields: if geonameField.upper() == field.name.upper(): found = 1 break if found == 0: numMissing = numMissing + 1 arcpy.AddError("Error: Input feature class is missing field: " + geonameField) if numMissing > 0: hasError = hasError + 1 # ====================================================== # Check if input has any features # ====================================================== if sys.version_info[0] > 2: numCount = int(arcpy.GetCount_management(featClass).getOutput(0)) else: numCount = long(arcpy.GetCount_management(featClass).getOutput(0)) arcpy.AddMessage("Feature Count Check: Make sure input feature class does not have any features...") if numCount > 0: arcpy.AddError("Error: Input feature class has " + str(numCount) + " features.") hasError = hasError + 1 # ====================================================== # Check if input coordinate system is WGS1984 # ====================================================== SR = desc.spatialReference arcpy.AddMessage("Spatial Reference Check: Make sure input feature class is 'GCS_WGS_1984'...") if SR.name.upper() != "GCS_WGS_1984": arcpy.AddError("Error: Spatial Reference is " + SR.name) hasError = hasError + 1 if hasError > 0: result = "FALSE" else: result = "TRUE" # Set Output parameter (required so that script # tool output can be connected to other model tools) arcpy.SetParameter(1, result) except: # Get the traceback object tb = sys.exc_info()[2] tbinfo = traceback.format_tb(tb)[0] # Concatenate information together concerning the error into a message string pymsg = "PYTHON ERRORS:\nTraceback info:\n" + tbinfo + "\nError Info:\n" + str(sys.exc_info()[1]) msgs = "ArcPy ERRORS:\n" + arcpy.GetMessages() + "\n" # Return python error messages for use in script tool or Python Window arcpy.AddError(pymsg) arcpy.AddError(msgs)
py
1a4d6dc32db6c5de12dda31910696ee748fce8fa
class Solution: def decode(self, encoded: List[int], first: int) -> List[int]: return [first] + [first:=first^i for i in encoded]
py
1a4d709be8d2ecf9ca8bcb5304d46db8d4d6618f
print('A frese é palíndromo?') frase = str(input('Escreva uma frase sem pontuação e acentos: ')).strip().upper() palavras = frase.split() junto = ''.join(palavras) inverso = '' for letra in range(len(junto) - 1, -1, -1): inverso += junto[letra] print('O inverso de {} é {}'.format(junto, inverso)) if junto == inverso: print('A frase é PALÍNDROMO') else: print('A frase NÃO É PALÍNDROMO')
py
1a4d716825eb76db8da4220528de0132a17e0c4e
# Generated by Django 3.0.7 on 2020-06-26 11:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0002_post_featured'), ] operations = [ migrations.AddField( model_name='author', name='profile_picture', field=models.ImageField(blank=True, upload_to=''), ), ]
py
1a4d719dfff2de86d93c0e5f8e4d14c15f6966e3
# -*- coding: utf-8 -*- """This is a generated class and is not intended for modification! TODO: Point to Github contribution instructions """ from datetime import datetime from infobip.util.models import DefaultObject, serializable from infobip.api.model.sms.nc.lookup.Network import Network from infobip.api.model.sms.Error import Error from infobip.api.model.sms.Status import Status class NCResponseDetails(DefaultObject): @property @serializable(name="ported", type=bool) def ported(self): return self.get_field_value("ported") @ported.setter def ported(self, ported): self.set_field_value("ported", ported) def set_ported(self, ported): self.ported = ported return self @property @serializable(name="roaming", type=bool) def roaming(self): return self.get_field_value("roaming") @roaming.setter def roaming(self, roaming): self.set_field_value("roaming", roaming) def set_roaming(self, roaming): self.roaming = roaming return self @property @serializable(name="mccMnc", type=unicode) def mcc_mnc(self): return self.get_field_value("mcc_mnc") @mcc_mnc.setter def mcc_mnc(self, mcc_mnc): self.set_field_value("mcc_mnc", mcc_mnc) def set_mcc_mnc(self, mcc_mnc): self.mcc_mnc = mcc_mnc return self @property @serializable(name="roamingNetwork", type=Network) def roaming_network(self): return self.get_field_value("roaming_network") @roaming_network.setter def roaming_network(self, roaming_network): self.set_field_value("roaming_network", roaming_network) def set_roaming_network(self, roaming_network): self.roaming_network = roaming_network return self @property @serializable(name="portedNetwork", type=Network) def ported_network(self): return self.get_field_value("ported_network") @ported_network.setter def ported_network(self, ported_network): self.set_field_value("ported_network", ported_network) def set_ported_network(self, ported_network): self.ported_network = ported_network return self @property @serializable(name="to", type=unicode) def to(self): return self.get_field_value("to") @to.setter def to(self, to): self.set_field_value("to", to) def set_to(self, to): self.to = to return self @property @serializable(name="imsi", type=unicode) def imsi(self): return self.get_field_value("imsi") @imsi.setter def imsi(self, imsi): self.set_field_value("imsi", imsi) def set_imsi(self, imsi): self.imsi = imsi return self @property @serializable(name="servingMSC", type=unicode) def serving_m_s_c(self): return self.get_field_value("serving_m_s_c") @serving_m_s_c.setter def serving_m_s_c(self, serving_m_s_c): self.set_field_value("serving_m_s_c", serving_m_s_c) def set_serving_m_s_c(self, serving_m_s_c): self.serving_m_s_c = serving_m_s_c return self @property @serializable(name="error", type=Error) def error(self): return self.get_field_value("error") @error.setter def error(self, error): self.set_field_value("error", error) def set_error(self, error): self.error = error return self @property @serializable(name="originalNetwork", type=Network) def original_network(self): return self.get_field_value("original_network") @original_network.setter def original_network(self, original_network): self.set_field_value("original_network", original_network) def set_original_network(self, original_network): self.original_network = original_network return self @property @serializable(name="status", type=Status) def status(self): return self.get_field_value("status") @status.setter def status(self, status): self.set_field_value("status", status) def set_status(self, status): self.status = status return self
py
1a4d71d2f9118dc666f79551649a96142da8a5f2
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainmenu.ui', # licensing of 'mainmenu.ui' applies. # # Created: Mon Jun 24 09:49:11 2019 # by: pyside2-uic running on PySide2 5.12.4 # # WARNING! All changes made in this file will be lost! from PySide2 import QtCore, QtGui, QtWidgets class Ui_MainMenu(object): def setupUi(self, MainMenu): MainMenu.setObjectName("MainMenu") MainMenu.resize(800, 600) self.gridLayout = QtWidgets.QGridLayout(MainMenu) self.gridLayout.setObjectName("gridLayout") self.cancelButton = QtWidgets.QPushButton(MainMenu) font = QtGui.QFont() font.setPointSize(16) self.cancelButton.setFont(font) self.cancelButton.setObjectName("cancelButton") self.gridLayout.addWidget(self.cancelButton, 5, 3, 1, 1) self.selectButton = QtWidgets.QPushButton(MainMenu) font = QtGui.QFont() font.setPointSize(16) self.selectButton.setFont(font) self.selectButton.setObjectName("selectButton") self.gridLayout.addWidget(self.selectButton, 5, 1, 1, 1) spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem, 5, 2, 1, 1) self.titleLable = QtWidgets.QLabel(MainMenu) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.titleLable.sizePolicy().hasHeightForWidth()) self.titleLable.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(20) self.titleLable.setFont(font) self.titleLable.setTextFormat(QtCore.Qt.AutoText) self.titleLable.setAlignment(QtCore.Qt.AlignCenter) self.titleLable.setObjectName("titleLable") self.gridLayout.addWidget(self.titleLable, 1, 1, 1, 3) spacerItem1 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.gridLayout.addItem(spacerItem1, 6, 1, 1, 3) spacerItem2 = QtWidgets.QSpacerItem(20, 10, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.gridLayout.addItem(spacerItem2, 2, 1, 1, 3) spacerItem3 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.gridLayout.addItem(spacerItem3, 0, 1, 1, 3) spacerItem4 = QtWidgets.QSpacerItem(20, 10, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) self.gridLayout.addItem(spacerItem4, 4, 1, 1, 3) spacerItem5 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem5, 1, 0, 5, 1) spacerItem6 = QtWidgets.QSpacerItem(20, 20, QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem6, 1, 4, 5, 1) self.taskList = QtWidgets.QListView(MainMenu) font = QtGui.QFont() font.setPointSize(12) self.taskList.setFont(font) self.taskList.setObjectName("taskList") self.gridLayout.addWidget(self.taskList, 3, 1, 1, 3) self.retranslateUi(MainMenu) QtCore.QMetaObject.connectSlotsByName(MainMenu) def retranslateUi(self, MainMenu): MainMenu.setWindowTitle(QtWidgets.QApplication.translate("MainMenu", "BehaviorTaskMasterMenu", None, -1)) self.cancelButton.setText(QtWidgets.QApplication.translate("MainMenu", "Cancel", None, -1)) self.selectButton.setText(QtWidgets.QApplication.translate("MainMenu", "Select", None, -1)) self.titleLable.setText(QtWidgets.QApplication.translate("MainMenu", "Task Selection", None, -1))
py
1a4d72a4da1f53c1e1e4d6ca40390010398ff404
# Copyright 2010 New Relic, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import string import re import threading from newrelic.packages import requests from newrelic.core.internal_metrics import internal_count_metric try: import queue except ImportError: import Queue as queue _logger = logging.getLogger(__name__) VALID_CHARS_RE = re.compile(r'[0-9a-zA-Z_ ./-]') class CommonUtilization(object): METADATA_URL = '' HEADERS = None EXPECTED_KEYS = () VENDOR_NAME = '' TIMEOUT = 0.4 @classmethod def record_error(cls, resource, data): # As per spec internal_count_metric( 'Supportability/utilization/%s/error' % cls.VENDOR_NAME, 1) _logger.warning('Invalid %r data (%r): %r', cls.VENDOR_NAME, resource, data) @classmethod def _fetch(cls, q): # Create own requests session and disable all environment variables, # so that we can bypass any proxy set via env var for this request. session = requests.Session() session.trust_env = False try: resp = session.get( cls.METADATA_URL, timeout=cls.TIMEOUT, headers=cls.HEADERS) resp.raise_for_status() except Exception as e: resp = None _logger.debug('Unable to fetch %s data from %r: %r', cls.VENDOR_NAME, cls.METADATA_URL, e) q.put(resp) @classmethod def fetch(cls): q = queue.Queue() t = threading.Thread( target=cls._fetch, name="UtilizationDetect/{}".format(cls.VENDOR_NAME), args=(q,), ) t.daemon = True t.start() try: return q.get(timeout=cls.TIMEOUT + 0.1) except queue.Empty: _logger.debug('Timeout waiting to fetch %s data from %r', cls.VENDOR_NAME, cls.METADATA_URL) @classmethod def get_values(cls, response): if response is None: return try: j = response.json() except ValueError: _logger.debug('Invalid %s data (%r): %r', cls.VENDOR_NAME, cls.METADATA_URL, response.text) return return j @classmethod def valid_chars(cls, data): if data is None: return False for c in data: if not VALID_CHARS_RE.match(c) and ord(c) < 0x80: return False return True @classmethod def valid_length(cls, data): if data is None: return False b = data.encode('utf-8') valid = len(b) <= 255 if valid: return True return False @classmethod def normalize(cls, key, data): if data is None: return try: stripped = data.strip() if (stripped and cls.valid_length(stripped) and cls.valid_chars(stripped)): return stripped except: pass @classmethod def sanitize(cls, values): if values is None: return out = {} for key in cls.EXPECTED_KEYS: metadata = values.get(key, None) if not metadata: cls.record_error(key, metadata) return normalized = cls.normalize(key, metadata) if not normalized: cls.record_error(key, metadata) return out[key] = normalized return out @classmethod def detect(cls): response = cls.fetch() values = cls.get_values(response) return cls.sanitize(values) class AWSUtilization(CommonUtilization): EXPECTED_KEYS = ('availabilityZone', 'instanceId', 'instanceType') METADATA_URL = '%s/2016-09-02/dynamic/instance-identity/document' % ( 'http://169.254.169.254' ) VENDOR_NAME = 'aws' class AzureUtilization(CommonUtilization): METADATA_URL = ('http://169.254.169.254' '/metadata/instance/compute?api-version=2017-03-01') EXPECTED_KEYS = ('location', 'name', 'vmId', 'vmSize') HEADERS = {'Metadata': 'true'} VENDOR_NAME = 'azure' class GCPUtilization(CommonUtilization): EXPECTED_KEYS = ('id', 'machineType', 'name', 'zone') HEADERS = {'Metadata-Flavor': 'Google'} METADATA_URL = 'http://%s/computeMetadata/v1/instance/?recursive=true' % ( 'metadata.google.internal') VENDOR_NAME = 'gcp' @classmethod def normalize(cls, key, data): if data is None: return if key in ('machineType', 'zone'): formatted = data.strip().split('/')[-1] elif key == 'id': formatted = str(data) else: formatted = data return super(GCPUtilization, cls).normalize(key, formatted) class PCFUtilization(CommonUtilization): EXPECTED_KEYS = ('cf_instance_guid', 'cf_instance_ip', 'memory_limit') VENDOR_NAME = 'pcf' @staticmethod def fetch(): cf_instance_guid = os.environ.get('CF_INSTANCE_GUID') cf_instance_ip = os.environ.get('CF_INSTANCE_IP') memory_limit = os.environ.get('MEMORY_LIMIT') pcf_vars = (cf_instance_guid, cf_instance_ip, memory_limit) if all(pcf_vars): return pcf_vars @classmethod def get_values(cls, response): if response is None or len(response) != 3: return values = {} for k, v in zip(cls.EXPECTED_KEYS, response): if hasattr(v, 'decode'): v = v.decode('utf-8') values[k] = v return values class DockerUtilization(CommonUtilization): VENDOR_NAME = 'docker' EXPECTED_KEYS = ('id',) METADATA_FILE = '/proc/self/cgroup' DOCKER_RE = re.compile(r'([0-9a-f]{64,})') @classmethod def fetch(cls): try: with open(cls.METADATA_FILE, 'rb') as f: for line in f: stripped = line.decode('utf-8').strip() cgroup = stripped.split(':') if len(cgroup) != 3: continue subsystems = cgroup[1].split(',') if 'cpu' in subsystems: return cgroup[2] except: # There are all sorts of exceptions that can occur here # (i.e. permissions, non-existent file, etc) pass @classmethod def get_values(cls, contents): if contents is None: return value = contents.split('/')[-1] match = cls.DOCKER_RE.search(value) if match: value = match.group(0) return {'id': value} @classmethod def valid_chars(cls, data): if data is None: return False hex_digits = set(string.hexdigits) valid = all((c in hex_digits for c in data)) if valid: return True return False @classmethod def valid_length(cls, data): if data is None: return False # Must be exactly 64 characters valid = len(data) == 64 if valid: return True return False class KubernetesUtilization(CommonUtilization): EXPECTED_KEYS = ('kubernetes_service_host', ) VENDOR_NAME = 'kubernetes' @staticmethod def fetch(): kubernetes_service_host = os.environ.get('KUBERNETES_SERVICE_HOST') if kubernetes_service_host: return kubernetes_service_host @classmethod def get_values(cls, v): if v is None: return if hasattr(v, 'decode'): v = v.decode('utf-8') return {'kubernetes_service_host': v}
py
1a4d73857ab609a68cd92153069bf078cf909bf3
#!/usr/bin/env python # Copyright 2014 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from collections import namedtuple import coverage import json from mock import DEFAULT from mock import MagicMock import os from os import path, sys import platform import shutil import subprocess import tempfile import unittest # Requires python-coverage and python-mock. Native python coverage # version >= 3.7.1 should be installed to get the best speed. TEST_WORKSPACE = path.join(tempfile.gettempdir(), "test-v8-run-perf") V8_JSON = { "path": ["."], "binary": "d7", "flags": ["--flag"], "main": "run.js", "run_count": 1, "results_regexp": "^%s: (.+)$", "tests": [ {"name": "Richards"}, {"name": "DeltaBlue"}, ] } V8_NESTED_SUITES_JSON = { "path": ["."], "flags": ["--flag"], "run_count": 1, "units": "score", "tests": [ {"name": "Richards", "path": ["richards"], "binary": "d7", "main": "run.js", "resources": ["file1.js", "file2.js"], "run_count": 2, "results_regexp": "^Richards: (.+)$"}, {"name": "Sub", "path": ["sub"], "tests": [ {"name": "Leaf", "path": ["leaf"], "run_count_x64": 3, "units": "ms", "main": "run.js", "results_regexp": "^Simple: (.+) ms.$"}, ] }, {"name": "DeltaBlue", "path": ["delta_blue"], "main": "run.js", "flags": ["--flag2"], "results_regexp": "^DeltaBlue: (.+)$"}, {"name": "ShouldntRun", "path": ["."], "archs": ["arm"], "main": "run.js"}, ] } V8_GENERIC_JSON = { "path": ["."], "binary": "cc", "flags": ["--flag"], "generic": True, "run_count": 1, "units": "ms", } Output = namedtuple("Output", "stdout, stderr, timed_out") class PerfTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.base = path.dirname(path.dirname(path.abspath(__file__))) sys.path.append(cls.base) cls._cov = coverage.coverage( include=([os.path.join(cls.base, "run_perf.py")])) cls._cov.start() import run_perf from testrunner.local import commands global commands global run_perf @classmethod def tearDownClass(cls): cls._cov.stop() print "" print cls._cov.report() def setUp(self): self.maxDiff = None if path.exists(TEST_WORKSPACE): shutil.rmtree(TEST_WORKSPACE) os.makedirs(TEST_WORKSPACE) def tearDown(self): if path.exists(TEST_WORKSPACE): shutil.rmtree(TEST_WORKSPACE) def _WriteTestInput(self, json_content): self._test_input = path.join(TEST_WORKSPACE, "test.json") with open(self._test_input, "w") as f: f.write(json.dumps(json_content)) def _MockCommand(self, *args, **kwargs): # Fake output for each test run. test_outputs = [Output(stdout=arg, stderr=None, timed_out=kwargs.get("timed_out", False)) for arg in args[1]] def execute(*args, **kwargs): return test_outputs.pop() commands.Execute = MagicMock(side_effect=execute) # Check that d8 is called from the correct cwd for each test run. dirs = [path.join(TEST_WORKSPACE, arg) for arg in args[0]] def chdir(*args, **kwargs): self.assertEquals(dirs.pop(), args[0]) os.chdir = MagicMock(side_effect=chdir) subprocess.check_call = MagicMock() platform.system = MagicMock(return_value='Linux') def _CallMain(self, *args): self._test_output = path.join(TEST_WORKSPACE, "results.json") all_args=[ "--json-test-results", self._test_output, self._test_input, ] all_args += args return run_perf.Main(all_args) def _LoadResults(self, file_name=None): with open(file_name or self._test_output) as f: return json.load(f) def _VerifyResults(self, suite, units, traces, file_name=None): self.assertEquals([ {"units": units, "graphs": [suite, trace["name"]], "results": trace["results"], "stddev": trace["stddev"]} for trace in traces], self._LoadResults(file_name)["traces"]) def _VerifyErrors(self, errors): self.assertEquals(errors, self._LoadResults()["errors"]) def _VerifyMock(self, binary, *args, **kwargs): arg = [path.join(path.dirname(self.base), binary)] arg += args commands.Execute.assert_called_with( arg, timeout=kwargs.get("timeout", 60)) def _VerifyMockMultiple(self, *args, **kwargs): expected = [] for arg in args: a = [path.join(path.dirname(self.base), arg[0])] a += arg[1:] expected.append(((a,), {"timeout": kwargs.get("timeout", 60)})) self.assertEquals(expected, commands.Execute.call_args_list) def testOneRun(self): self._WriteTestInput(V8_JSON) self._MockCommand(["."], ["x\nRichards: 1.234\nDeltaBlue: 10657567\ny\n"]) self.assertEquals(0, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js") def testOneRunWithTestFlags(self): test_input = dict(V8_JSON) test_input["test_flags"] = ["2", "test_name"] self._WriteTestInput(test_input) self._MockCommand(["."], ["Richards: 1.234\nDeltaBlue: 10657567"]) self.assertEquals(0, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js", "--", "2", "test_name") def testTwoRuns_Units_SuiteName(self): test_input = dict(V8_JSON) test_input["run_count"] = 2 test_input["name"] = "v8" test_input["units"] = "ms" self._WriteTestInput(test_input) self._MockCommand([".", "."], ["Richards: 100\nDeltaBlue: 200\n", "Richards: 50\nDeltaBlue: 300\n"]) self.assertEquals(0, self._CallMain()) self._VerifyResults("v8", "ms", [ {"name": "Richards", "results": ["50.0", "100.0"], "stddev": ""}, {"name": "DeltaBlue", "results": ["300.0", "200.0"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js") def testTwoRuns_SubRegexp(self): test_input = dict(V8_JSON) test_input["run_count"] = 2 del test_input["results_regexp"] test_input["tests"][0]["results_regexp"] = "^Richards: (.+)$" test_input["tests"][1]["results_regexp"] = "^DeltaBlue: (.+)$" self._WriteTestInput(test_input) self._MockCommand([".", "."], ["Richards: 100\nDeltaBlue: 200\n", "Richards: 50\nDeltaBlue: 300\n"]) self.assertEquals(0, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["50.0", "100.0"], "stddev": ""}, {"name": "DeltaBlue", "results": ["300.0", "200.0"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js") def testNestedSuite(self): self._WriteTestInput(V8_NESTED_SUITES_JSON) self._MockCommand(["delta_blue", "sub/leaf", "richards"], ["DeltaBlue: 200\n", "Simple: 1 ms.\n", "Simple: 2 ms.\n", "Simple: 3 ms.\n", "Richards: 100\n", "Richards: 50\n"]) self.assertEquals(0, self._CallMain()) self.assertEquals([ {"units": "score", "graphs": ["test", "Richards"], "results": ["50.0", "100.0"], "stddev": ""}, {"units": "ms", "graphs": ["test", "Sub", "Leaf"], "results": ["3.0", "2.0", "1.0"], "stddev": ""}, {"units": "score", "graphs": ["test", "DeltaBlue"], "results": ["200.0"], "stddev": ""}, ], self._LoadResults()["traces"]) self._VerifyErrors([]) self._VerifyMockMultiple( (path.join("out", "x64.release", "d7"), "--flag", "run.js"), (path.join("out", "x64.release", "d7"), "--flag", "run.js"), (path.join("out", "x64.release", "d8"), "--flag", "run.js"), (path.join("out", "x64.release", "d8"), "--flag", "run.js"), (path.join("out", "x64.release", "d8"), "--flag", "run.js"), (path.join("out", "x64.release", "d8"), "--flag", "--flag2", "run.js")) def testOneRunStdDevRegExp(self): test_input = dict(V8_JSON) test_input["stddev_regexp"] = "^%s\-stddev: (.+)$" self._WriteTestInput(test_input) self._MockCommand(["."], ["Richards: 1.234\nRichards-stddev: 0.23\n" "DeltaBlue: 10657567\nDeltaBlue-stddev: 106\n"]) self.assertEquals(0, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": "0.23"}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": "106"}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js") def testTwoRunsStdDevRegExp(self): test_input = dict(V8_JSON) test_input["stddev_regexp"] = "^%s\-stddev: (.+)$" test_input["run_count"] = 2 self._WriteTestInput(test_input) self._MockCommand(["."], ["Richards: 3\nRichards-stddev: 0.7\n" "DeltaBlue: 6\nDeltaBlue-boom: 0.9\n", "Richards: 2\nRichards-stddev: 0.5\n" "DeltaBlue: 5\nDeltaBlue-stddev: 0.8\n"]) self.assertEquals(1, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["2.0", "3.0"], "stddev": "0.7"}, {"name": "DeltaBlue", "results": ["5.0", "6.0"], "stddev": "0.8"}, ]) self._VerifyErrors( ["Test Richards should only run once since a stddev is provided " "by the test.", "Test DeltaBlue should only run once since a stddev is provided " "by the test.", "Regexp \"^DeltaBlue\-stddev: (.+)$\" didn't match for test " "DeltaBlue."]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js") def testBuildbot(self): self._WriteTestInput(V8_JSON) self._MockCommand(["."], ["Richards: 1.234\nDeltaBlue: 10657567\n"]) self.assertEquals(0, self._CallMain("--buildbot")) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "Release", "d7"), "--flag", "run.js") def testBuildbotWithTotal(self): test_input = dict(V8_JSON) test_input["total"] = True self._WriteTestInput(test_input) self._MockCommand(["."], ["Richards: 1.234\nDeltaBlue: 10657567\n"]) self.assertEquals(0, self._CallMain("--buildbot")) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, {"name": "Total", "results": ["3626.49109719"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "Release", "d7"), "--flag", "run.js") def testBuildbotWithTotalAndErrors(self): test_input = dict(V8_JSON) test_input["total"] = True self._WriteTestInput(test_input) self._MockCommand(["."], ["x\nRichards: bla\nDeltaBlue: 10657567\ny\n"]) self.assertEquals(1, self._CallMain("--buildbot")) self._VerifyResults("test", "score", [ {"name": "Richards", "results": [], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) self._VerifyErrors( ["Regexp \"^Richards: (.+)$\" " "returned a non-numeric for test Richards.", "Not all traces have the same number of results."]) self._VerifyMock(path.join("out", "Release", "d7"), "--flag", "run.js") def testRegexpNoMatch(self): self._WriteTestInput(V8_JSON) self._MockCommand(["."], ["x\nRichaards: 1.234\nDeltaBlue: 10657567\ny\n"]) self.assertEquals(1, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": [], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) self._VerifyErrors( ["Regexp \"^Richards: (.+)$\" didn't match for test Richards."]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "run.js") def testOneRunGeneric(self): test_input = dict(V8_GENERIC_JSON) self._WriteTestInput(test_input) self._MockCommand(["."], [ "RESULT Infra: Constant1= 11 count\n" "RESULT Infra: Constant2= [10,5,10,15] count\n" "RESULT Infra: Constant3= {12,1.2} count\n" "RESULT Infra: Constant4= [10,5,error,15] count\n"]) self.assertEquals(1, self._CallMain()) self.assertEquals([ {"units": "count", "graphs": ["test", "Infra", "Constant1"], "results": ["11.0"], "stddev": ""}, {"units": "count", "graphs": ["test", "Infra", "Constant2"], "results": ["10.0", "5.0", "10.0", "15.0"], "stddev": ""}, {"units": "count", "graphs": ["test", "Infra", "Constant3"], "results": ["12.0"], "stddev": "1.2"}, {"units": "count", "graphs": ["test", "Infra", "Constant4"], "results": [], "stddev": ""}, ], self._LoadResults()["traces"]) self._VerifyErrors(["Found non-numeric in test/Infra/Constant4"]) self._VerifyMock(path.join("out", "x64.release", "cc"), "--flag", "") def testOneRunTimingOut(self): test_input = dict(V8_JSON) test_input["timeout"] = 70 self._WriteTestInput(test_input) self._MockCommand(["."], [""], timed_out=True) self.assertEquals(1, self._CallMain()) self._VerifyResults("test", "score", [ {"name": "Richards", "results": [], "stddev": ""}, {"name": "DeltaBlue", "results": [], "stddev": ""}, ]) self._VerifyErrors([ "Regexp \"^Richards: (.+)$\" didn't match for test Richards.", "Regexp \"^DeltaBlue: (.+)$\" didn't match for test DeltaBlue.", ]) self._VerifyMock( path.join("out", "x64.release", "d7"), "--flag", "run.js", timeout=70) # Simple test that mocks out the android platform. Testing the platform would # require lots of complicated mocks for the android tools. def testAndroid(self): self._WriteTestInput(V8_JSON) # FIXME(machenbach): This is not test-local! platform = run_perf.AndroidPlatform platform.PreExecution = MagicMock(return_value=None) platform.PostExecution = MagicMock(return_value=None) platform.PreTests = MagicMock(return_value=None) platform.Run = MagicMock( return_value=("Richards: 1.234\nDeltaBlue: 10657567\n", None)) run_perf.AndroidPlatform = MagicMock(return_value=platform) self.assertEquals( 0, self._CallMain("--android-build-tools", "/some/dir", "--arch", "arm")) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) def testTwoRuns_Trybot(self): test_input = dict(V8_JSON) test_input["run_count"] = 2 self._WriteTestInput(test_input) self._MockCommand([".", ".", ".", "."], ["Richards: 100\nDeltaBlue: 200\n", "Richards: 200\nDeltaBlue: 20\n", "Richards: 50\nDeltaBlue: 200\n", "Richards: 100\nDeltaBlue: 20\n"]) test_output_no_patch = path.join(TEST_WORKSPACE, "results_no_patch.json") self.assertEquals(0, self._CallMain( "--outdir-no-patch", "out-no-patch", "--json-test-results-no-patch", test_output_no_patch, )) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["100.0", "200.0"], "stddev": ""}, {"name": "DeltaBlue", "results": ["20.0", "20.0"], "stddev": ""}, ]) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["50.0", "100.0"], "stddev": ""}, {"name": "DeltaBlue", "results": ["200.0", "200.0"], "stddev": ""}, ], test_output_no_patch) self._VerifyErrors([]) self._VerifyMockMultiple( (path.join("out", "x64.release", "d7"), "--flag", "run.js"), (path.join("out-no-patch", "x64.release", "d7"), "--flag", "run.js"), (path.join("out", "x64.release", "d7"), "--flag", "run.js"), (path.join("out-no-patch", "x64.release", "d7"), "--flag", "run.js"), ) def testWrongBinaryWithProf(self): test_input = dict(V8_JSON) self._WriteTestInput(test_input) self._MockCommand(["."], ["x\nRichards: 1.234\nDeltaBlue: 10657567\ny\n"]) self.assertEquals(0, self._CallMain("--extra-flags=--prof")) self._VerifyResults("test", "score", [ {"name": "Richards", "results": ["1.234"], "stddev": ""}, {"name": "DeltaBlue", "results": ["10657567.0"], "stddev": ""}, ]) self._VerifyErrors([]) self._VerifyMock(path.join("out", "x64.release", "d7"), "--flag", "--prof", "run.js") def testUnzip(self): def Gen(): for i in [1, 2, 3]: yield i, i + 1 l, r = run_perf.Unzip(Gen()) self.assertEquals([1, 2, 3], list(l())) self.assertEquals([2, 3, 4], list(r()))
py
1a4d73dacfb39d5783f24b4c1808eca1d7dac06f
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2020 The SymbiFlow Authors. # # Use of this source code is governed by a ISC-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/ISC # # SPDX-License-Identifier: ISC """ Implements routines for converting FPGA interchange capnp files to models. The models are implemented in python in fpga_interchange.logical_netlist and fpga_interchange.physical_netlist. LogicalNetlistBuilder - Internal helper class for constructing logical netlist format. Recommend use is to first construct logical netlist using classes from logical_netlist module and calling Interchange.output_logical_netlist. output_logical_netlist - Implements conversion of classes from logical_netlist module to FPGA interchange logical netlist format. This function requires LogicalNetlist schema loaded, recommend to use Interchange class to load schemas from interchange schema directory, and then invoke Interchange.output_logical_netlist. PhysicalNetlistBuilder - Internal helper class for constructing physical netlist format. output_physical_netlist - Implements conversion of classes from physicla module to FPGA interchange physical netlist format. This function requires PhysicalNetlist schema loaded, recommend to use Interchange class to load schemas from interchange schema directory, and then invoke Interchange.output_interchange. Interchange - Class that handles loading capnp schemas. """ import capnp import capnp.lib.capnp capnp.remove_import_hook() import enum import gzip import os.path from .logical_netlist import check_logical_netlist, LogicalNetlist, Cell, \ CellInstance, Library, Direction from .physical_netlist import PhysicalNetlist, PhysicalCellType, \ PhysicalNetType, PhysicalBelPin, PhysicalSitePin, PhysicalSitePip, \ PhysicalPip, PhysicalNet, Placement from .device_resources import DeviceResources # Flag indicating use of Packed Cap'n Proto Serialization IS_PACKED = False class CompressionFormat(enum.Enum): UNCOMPRESSED = 0 GZIP = 1 # Flag indicating that files are gziped on output DEFAULT_COMPRESSION_TYPE = CompressionFormat.GZIP # Set traversal limit to maximum to effectively disable. NO_TRAVERSAL_LIMIT = 2**63 - 1 NESTING_LIMIT = 1024 # Level 6 is much faster than level 9, but still has a reasonable compression # level. # # From man page: # The default compression level is -6 (that is, biased towards high # compression at expense of speed). # DEFAULT_COMPRESSION = 6 def read_capnp_file(capnp_schema, f_in, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): """ Read file to a capnp object. is_gzipped - bool Is output GZIP'd? is_packed - bool Is capnp file in packed or unpacked in its encoding? """ if compression_format == CompressionFormat.GZIP: f_comp = gzip.GzipFile(fileobj=f_in, mode='rb') if is_packed: return capnp_schema.from_bytes_packed( f_comp.read(), traversal_limit_in_words=NO_TRAVERSAL_LIMIT, nesting_limit=NESTING_LIMIT) else: return capnp_schema.from_bytes( f_comp.read(), traversal_limit_in_words=NO_TRAVERSAL_LIMIT, nesting_limit=NESTING_LIMIT) else: assert compression_format == CompressionFormat.UNCOMPRESSED if is_packed: return capnp_schema.read_packed( f_in, traversal_limit_in_words=NO_TRAVERSAL_LIMIT) else: return capnp_schema.read( f_in, traversal_limit_in_words=NO_TRAVERSAL_LIMIT) def write_capnp_file(capnp_obj, f_out, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): """ Write capnp object to file. is_gzipped - bool Is output GZIP'd? is_packed - bool Should output capnp file be packed or unpacked in its encoding? """ if compression_format == CompressionFormat.GZIP: with gzip.GzipFile( fileobj=f_out, mode='wb', compresslevel=DEFAULT_COMPRESSION) as f: if is_packed: f.write(capnp_obj.to_bytes_packed()) else: f.write(capnp_obj.to_bytes()) else: assert compression_format == CompressionFormat.UNCOMPRESSED if is_packed: capnp_obj.write_packed(f_out) else: capnp_obj.write(f_out) class LogicalNetlistBuilder(): """ Builder class for LogicalNetlist capnp format. The total number of cells, ports, cell instances should be known prior to calling the constructor for LogicalNetlistBuilder. logical_netlist_schema - Loaded logical netlist schema. name (str) - Name of logical netlist. cell_count (int) - Total number of cells in all libraries for this file. port_count (int) - Total number of cell ports in all cells in all libraries for this file. cell_instance_count (int) - Total number of cell instances in all cells in all libraries for this file. property_map (dict) - Root level property map for the netlist. indexed_strings (list of str, optional) - If provided, this string list is used to store strings, instead of LogicalNetlist.strList. This is useful when embedding LogicalNetlist in other schemas. """ def __init__(self, logical_netlist_schema, name, cell_count, port_count, cell_instance_count, property_map, indexed_strings=None): self.logical_netlist_schema = logical_netlist_schema self.logical_netlist = self.logical_netlist_schema.Netlist.new_message( ) self.logical_netlist.name = name if indexed_strings is None: self.own_string_list = True self.string_map = {} self.string_list = [] else: # An external string list is being provided. Use that list (and # update it), and initialize the string_map with that initial list. self.own_string_list = False self.string_list = indexed_strings self.string_map = {} for idx, s in enumerate(self.string_list): self.string_map[s] = idx self.cell_idx = 0 self.cell_count = cell_count self.cell_decls = self.logical_netlist.init("cellDecls", cell_count) self.cells = self.logical_netlist.init("cellList", cell_count) self.port_idx = 0 self.port_count = port_count self.logical_netlist.init("portList", port_count) self.ports = self.logical_netlist.portList self.cell_instance_idx = 0 self.cell_instance_count = cell_instance_count self.logical_netlist.init("instList", cell_instance_count) self.cell_instances = self.logical_netlist.instList self.create_property_map(self.logical_netlist.propMap, property_map) def next_cell(self): """ Return next logical_netlist.Cell pycapnp object and it's index. """ assert self.cell_idx < self.cell_count cell_decl = self.cell_decls[self.cell_idx] cell = self.cells[self.cell_idx] cell_idx = self.cell_idx cell.index = cell_idx self.cell_idx += 1 return cell_idx, cell, cell_decl def get_cell(self, cell_idx): """ Get logical_netlist.Cell pycapnp object at given index. """ return self.logical_netlist.cellList[cell_idx] def next_port(self): """ Return next logical_netlist.Port pycapnp object and it's index. """ assert self.port_idx < self.port_count port = self.ports[self.port_idx] port_idx = self.port_idx self.port_idx += 1 return port_idx, port def next_cell_instance(self): """ Return next logical_netlist.CellInstance pycapnp object and it's index. """ assert self.cell_instance_idx < self.cell_instance_count cell_instance = self.cell_instances[self.cell_instance_idx] cell_instance_idx = self.cell_instance_idx self.cell_instance_idx += 1 return cell_instance_idx, cell_instance def string_id(self, s): """ Intern string into file, and return its StringIdx. """ assert isinstance(s, str) if s not in self.string_map: self.string_map[s] = len(self.string_list) self.string_list.append(s) return self.string_map[s] def finish_encode(self): """ Completes the encoding of the logical netlist and returns root pycapnp object. Invoke after all cells, ports and cell instances have been populated with data. Returns completed logical_netlist.Netlist pycapnp object. """ if self.own_string_list: self.logical_netlist.init('strList', len(self.string_list)) for idx, s in enumerate(self.string_list): self.logical_netlist.strList[idx] = s return self.logical_netlist def create_property_map(self, property_map, d): """ Create a property_map from a python dictionary for this LogicalNetlist file. property_map (logical_netlist.PropertyMap pycapnp object) - Pycapnp object to write property map. d (dict-like) - Dictionary to convert to property map. Keys must be strings. Values can be strings, ints or bools. """ entries = property_map.init('entries', len(d)) for entry, (k, v) in zip(entries, d.items()): assert isinstance(k, str) entry.key = self.string_id(k) if isinstance(v, str): if v[0] == '"' and v[-1] == '"': v = v[1:-1] entry.textValue = self.string_id(v) elif isinstance(v, bool): entry.boolValue = v elif isinstance(v, int): entry.intValue = v else: assert False, "Unknown type of value {}, type = {}".format( repr(v), type(v)) def get_top_cell_instance(self): """ Return the top cell instance from the LogicalNetlist. """ return self.logical_netlist.topInst def output_logical_netlist(logical_netlist_schema, libraries, name, top_instance_name, top_instance, view="netlist", property_map={}, indexed_strings=None): """ Convert logical_netlist.Library python classes to a FPGA interchange LogicalNetlist capnp. logical_netlist_schema - logical_netlist schema. libraries (dict) - Dict of str to logical_netlist.Library python classes. top_level_cell (str) - Name of Cell to instance at top level top_level_name (str) - Name of top level cell instance view (str) - EDIF internal constant. property_map - PropertyMap for top level cell instance """ # Sanity that the netlist libraries are complete and consistent, also # output master cell list. master_cell_list = check_logical_netlist(libraries) # Make sure top level cell is in the master cell list. assert top_instance is None or top_instance.cell_name in master_cell_list # Count cell, port and cell instance counts to enable pre-allocation of # capnp arrays. cell_count = 0 port_count = 0 cell_instance_count = 0 for lib in libraries.values(): cell_count += len(lib.cells) for cell in lib.cells.values(): port_count += len(cell.ports) cell_instance_count += len(cell.cell_instances) logical_netlist = LogicalNetlistBuilder( logical_netlist_schema=logical_netlist_schema, name=name, cell_count=cell_count, port_count=port_count, cell_instance_count=cell_instance_count, property_map=property_map, indexed_strings=indexed_strings) # Assign each python Cell objects in libraries to capnp # logical_netlist.Cell objects, and record the cell index for use with # cell instances later. # # Ports can also be converted now, do that too. Build a map of cell name # and port name to port objects for use on constructing cell nets. cell_name_to_idx = {} ports = {} for library, lib in libraries.items(): library_id = logical_netlist.string_id(library) for cell in lib.cells.values(): assert cell.name not in cell_name_to_idx cell_idx, cell_obj, cell_decl = logical_netlist.next_cell() cell_decl.name = logical_netlist.string_id(cell.name) cell_decl.view = logical_netlist.string_id(cell.view) cell_decl.lib = library_id cell_name_to_idx[cell.name] = cell_idx logical_netlist.create_property_map(cell_decl.propMap, cell.property_map) cell_decl.init('ports', len(cell.ports)) for idx, (port_name, port) in enumerate(cell.ports.items()): port_idx, port_obj = logical_netlist.next_port() ports[cell.name, port_name] = (port_idx, port) cell_decl.ports[idx] = port_idx port_obj.dir = logical_netlist_schema.Netlist.Direction.__dict__[ port.direction.name.lower()] logical_netlist.create_property_map(port_obj.propMap, port.property_map) if port.bus is not None: port_obj.name = logical_netlist.string_id(port_name) bus = port_obj.init('bus') bus.busStart = port.bus.start bus.busEnd = port.bus.end else: port_obj.name = logical_netlist.string_id(port_name) port_obj.bit = None # Now that each cell type has been assigned a cell index, add cell # instances to cells as needed. for lib in libraries.values(): for cell in lib.cells.values(): cell_obj = logical_netlist.get_cell(cell_name_to_idx[cell.name]) # Save mapping of cell instance name to cell instance index for # cell net construction cell_instances = {} cell_obj.init('insts', len(cell.cell_instances)) for idx, (cell_instance_name, cell_instance) in enumerate(cell.cell_instances.items()): cell_instance_idx, cell_instance_obj = logical_netlist.next_cell_instance( ) cell_instances[cell_instance_name] = cell_instance_idx cell_instance_obj.name = logical_netlist.string_id( cell_instance_name) logical_netlist.create_property_map(cell_instance_obj.propMap, cell_instance.property_map) cell_instance_obj.view = logical_netlist.string_id( cell_instance.view) cell_instance_obj.cell = cell_name_to_idx[cell_instance. cell_name] cell_obj.insts[idx] = cell_instance_idx cell_obj.init('nets', len(cell.nets)) for net_obj, (netname, net) in zip(cell_obj.nets, cell.nets.items()): net_obj.name = logical_netlist.string_id(netname) logical_netlist.create_property_map(net_obj.propMap, net.property_map) net_obj.init('portInsts', len(net.ports)) for port_obj, port in zip(net_obj.portInsts, net.ports): if port.instance_name is not None: # If port.instance_name is not None, then this is a # cell instance port connection. instance_cell_name = cell.cell_instances[ port.instance_name].cell_name port_obj.inst = cell_instances[port.instance_name] port_obj.port, port_pyobj = ports[instance_cell_name, port.name] else: # If port.instance_name is None, then this is a cell # port connection port_obj.extPort = None port_obj.port, port_pyobj = ports[cell.name, port.name] # Handle bussed port annotations if port.idx is not None: port_obj.busIdx.idx = port_pyobj.encode_index(port.idx) else: port_obj.busIdx.singleBit = None if top_instance is not None: top_level_cell_instance = logical_netlist.get_top_cell_instance() # Convert the top level cell now that the libraries have been converted. top_level_cell_instance.name = logical_netlist.string_id( top_instance_name) top_level_cell_instance.cell = cell_name_to_idx[top_instance.cell_name] top_level_cell_instance.view = logical_netlist.string_id( top_instance.view) logical_netlist.create_property_map(top_level_cell_instance.propMap, top_instance.property_map) return logical_netlist.finish_encode() class PhysicalNetlistBuilder(): """ Builder class for PhysicalNetlist capnp format. physical_netlist_schema - Loaded physical netlist schema. """ def __init__(self, physical_netlist_schema): self.physical_netlist_schema = physical_netlist_schema def init_string_map(self): self.string_map = {} self.string_list = [] def string_id(self, s): """ Intern string into file, and return its StringIdx. """ assert isinstance(s, str) if s not in self.string_map: self.string_map[s] = len(self.string_list) self.string_list.append(s) return self.string_map[s] def encode(self, phys_netlist): """ Completes the encoding of the physical netlist and returns root pycapnp object. Invoke after all placements, physical cells and physical nets have been added. Returns completed physical_netlist.PhysNetlist pycapnp object. """ self.init_string_map() physical_netlist = self.physical_netlist_schema.PhysNetlist.new_message( ) physical_netlist.part = phys_netlist.part physical_netlist.init('placements', len(phys_netlist.placements)) placements = physical_netlist.placements for idx, placement in enumerate(phys_netlist.placements): placement_obj = placements[idx] placement_obj.cellName = self.string_id(placement.cell_name) placement_obj.type = self.string_id(placement.cell_type) placement_obj.site = self.string_id(placement.site) placement_obj.bel = self.string_id(placement.bel) placement_obj.isSiteFixed = True placement_obj.isBelFixed = True if placement.other_bels: placement_obj.init('otherBels', len(placement.other_bels)) other_bels_obj = placement_obj.otherBels for idx, s in enumerate(placement.other_bels): other_bels_obj[idx] = self.string_id(s) placement_obj.init('pinMap', len(placement.pins)) pin_map = placement_obj.pinMap for idx, pin in enumerate(placement.pins): pin_map[idx].cellPin = self.string_id(pin.cell_pin) pin_map[idx].belPin = self.string_id(pin.bel_pin) if pin.bel is None: pin_map[idx].bel = placement_obj.bel else: pin_map[idx].bel = self.string_id(pin.bel) pin_map[idx].isFixed = True if pin.other_cell_type: assert pin.other_cell_name is not None pin.otherCell.multiCell = self.string_id( pin.other_cell_name) pin.otherCell.multiType = self.string_id( pin.other_cell_type) physical_netlist.init('physNets', len(phys_netlist.nets)) nets = physical_netlist.physNets for idx, net in enumerate(phys_netlist.nets): net_obj = nets[idx] net_obj.name = self.string_id(net.name) net_obj.init('sources', len(net.sources)) for root_obj, root in zip(net_obj.sources, net.sources): root.output_interchange(root_obj, self.string_id) net_obj.init('stubs', len(net.stubs)) for stub_obj, stub in zip(net_obj.stubs, net.stubs): stub.output_interchange(stub_obj, self.string_id) net_obj.type = self.physical_netlist_schema.PhysNetlist.NetType.__dict__[ net.type.name.lower()] physical_netlist.init('physCells', len(phys_netlist.physical_cells)) physical_cells = physical_netlist.physCells for idx, (cell_name, cell_type) in enumerate(phys_netlist.physical_cells.items()): physical_cell = physical_cells[idx] physical_cell.cellName = self.string_id(cell_name) physical_cell.physType = self.physical_netlist_schema.PhysNetlist.PhysCellType.__dict__[ cell_type.name.lower()] physical_netlist.init('properties', len(phys_netlist.properties)) properties = physical_netlist.properties for idx, (k, v) in enumerate(phys_netlist.properties.items()): properties[idx].key = self.string_id(k) properties[idx].value = self.string_id(v) physical_netlist.init('siteInsts', len(phys_netlist.site_instances)) site_instances = physical_netlist.siteInsts for idx, (k, v) in enumerate(phys_netlist.site_instances.items()): site_instances[idx].site = self.string_id(k) site_instances[idx].type = self.string_id(v) physical_netlist.init('strList', len(self.string_list)) for idx, s in enumerate(self.string_list): physical_netlist.strList[idx] = s return physical_netlist def output_physical_netlist(physical_netlist, physical_netlist_schema): builder = PhysicalNetlistBuilder(physical_netlist_schema) return builder.encode(physical_netlist) def first_upper(s): return s[0].upper() + s[1:] def to_logical_netlist(netlist_capnp, strs=None): # name @0 : Text; # propMap @1 : PropertyMap; # topInst @2 : CellInstance; # strList @3 : List(Text); # cellList @4 : List(Cell); # portList @5 : List(Port); # instList @6 : List(CellInstance); if strs is None: strs = [s for s in netlist_capnp.strList] libraries = {} def convert_property_map(prop_map): out = {} for prop in prop_map.entries: key = strs[prop.key] if prop.which() == 'textValue': value = strs[prop.textValue] elif prop.which() == 'intValue': value = prop.intValue else: assert prop.which() == 'boolValue' value = prop.boolValue out[key] = value return out def convert_cell_instance(cell_instance_capnp): prop_map = convert_property_map(cell_instance_capnp.propMap) name = strs[cell_instance_capnp.name] return name, CellInstance( view=strs[cell_instance_capnp.view], cell_name=strs[netlist_capnp.cellDecls[cell_instance_capnp.cell]. name], property_map=prop_map, capnp_name=cell_instance_capnp.cell) for cell_capnp in netlist_capnp.cellList: cell_decl = netlist_capnp.cellDecls[cell_capnp.index] cell = Cell( name=strs[cell_decl.name], capnp_index=cell_capnp.index, property_map=convert_property_map(cell_decl.propMap), ) cell.view = strs[cell_decl.view] for inst in cell_capnp.insts: cell_instance_name, cell_instance = convert_cell_instance( netlist_capnp.instList[inst]) cell.cell_instances[cell_instance_name] = cell_instance for port_idx in cell_decl.ports: port = netlist_capnp.portList[port_idx] port_name = strs[port.name] direction = Direction[first_upper(str(port.dir))] prop_map = convert_property_map(port.propMap) if port.which() == 'bit': cell.add_port( name=port_name, direction=direction, property_map=prop_map) else: assert port.which() == 'bus' cell.add_bus_port( name=port_name, direction=direction, property_map=prop_map, start=port.bus.busStart, end=port.bus.busEnd) for net in cell_capnp.nets: net_name = strs[net.name] cell.add_net( name=net_name, property_map=convert_property_map(net.propMap), ) for port_inst in net.portInsts: port_capnp = netlist_capnp.portList[port_inst.port] port_name = strs[port_capnp.name] if port_inst.busIdx.which() == 'singleBit': idx = None else: assert port_inst.busIdx.which() == 'idx' assert port_capnp.which() == 'bus' bus = port_capnp.bus if bus.busStart <= bus.busEnd: idx = port_inst.busIdx.idx + bus.busStart else: idx = bus.busStart - port_inst.busIdx.idx if port_inst.which() == 'extPort': cell.connect_net_to_cell_port( net_name=net_name, port=port_name, idx=idx) else: assert port_inst.which() == 'inst' instance_name = strs[netlist_capnp.instList[port_inst. inst].name] cell.connect_net_to_instance( net_name=net_name, instance_name=instance_name, port=port_name, idx=idx) library = strs[cell_decl.lib] if library not in libraries: libraries[library] = Library(name=library) libraries[library].add_cell(cell) top_instance_name, top_instance = convert_cell_instance( netlist_capnp.topInst) return LogicalNetlist( name=netlist_capnp.name, property_map=convert_property_map(netlist_capnp.propMap), top_instance_name=top_instance_name, top_instance=top_instance, libraries=libraries) def to_physical_netlist(phys_netlist_capnp): strs = [s for s in phys_netlist_capnp.strList] properties = {} for prop in phys_netlist_capnp.properties: properties[strs[prop.key]] = strs[prop.value] phys_netlist = PhysicalNetlist(phys_netlist_capnp.part, properties) for site_instance in phys_netlist_capnp.siteInsts: phys_netlist.add_site_instance(strs[site_instance.site], strs[site_instance.type]) for physical_cell in phys_netlist_capnp.physCells: phys_netlist.add_physical_cell( strs[physical_cell.cellName], PhysicalCellType[first_upper( str(physical_cell.physType))]) def convert_route_segment(route_segment_capnp): which = route_segment_capnp.which() if which == 'belPin': bel_pin = route_segment_capnp.belPin return PhysicalBelPin( site=strs[bel_pin.site], bel=strs[bel_pin.bel], pin=strs[bel_pin.pin]) elif which == 'sitePin': site_pin = route_segment_capnp.sitePin return PhysicalSitePin( site=strs[site_pin.site], pin=strs[site_pin.pin]) elif which == 'pip': # TODO: Shouldn't be discard isFixed field pip = route_segment_capnp.pip site = strs[pip.site] if pip.which() == 'site' else None return PhysicalPip( tile=strs[pip.tile], wire0=strs[pip.wire0], wire1=strs[pip.wire1], forward=pip.forward, site=site) else: assert which == 'sitePIP' # TODO: Shouldn't be discard isFixed and inverts, isInverting # fields site_pip = route_segment_capnp.sitePIP return PhysicalSitePip( site=strs[site_pip.site], bel=strs[site_pip.bel], pin=strs[site_pip.pin], is_inverting=site_pip.isInverting) def convert_route_branch(route_branch_capnp): obj = convert_route_segment(route_branch_capnp.routeSegment) for branch in route_branch_capnp.branches: obj.branches.append(convert_route_branch(branch)) return obj def convert_net(net_capnp): sources = [] for source_capnp in net_capnp.sources: sources.append(convert_route_branch(source_capnp)) stubs = [] for stub_capnp in net_capnp.stubs: stubs.append(convert_route_branch(stub_capnp)) return PhysicalNet( name=strs[net_capnp.name], type=PhysicalNetType[first_upper(str(net_capnp.type))], sources=sources, stubs=stubs) null_net = convert_net(phys_netlist_capnp.nullNet) assert len(null_net.sources) == 0 phys_netlist.set_null_net(null_net.stubs) for physical_net in phys_netlist_capnp.physNets: net = convert_net(physical_net) phys_netlist.add_physical_net( net_name=net.name, sources=net.sources, stubs=net.stubs, net_type=net.type) for placement_capnp in phys_netlist_capnp.placements: # TODO: Shouldn't be discarding isBelFixed/isSiteFixed/altSiteType placement = Placement( cell_type=strs[placement_capnp.type], cell_name=strs[placement_capnp.cellName], site=strs[placement_capnp.site], bel=strs[placement_capnp.bel], ) for pin_map in placement_capnp.pinMap: # TODO: Shouldn't be discarding isFixed other_cell_name = None other_cell_type = None if pin_map.which() == 'otherCell': other_cell = pin_map.otherCell other_cell_name = strs[other_cell.multiCell] other_cell_type = strs[other_cell.multiType] placement.add_bel_pin_to_cell_pin( bel=strs[pin_map.bel], bel_pin=strs[pin_map.belPin], cell_pin=strs[pin_map.cellPin], other_cell_type=other_cell_type, other_cell_name=other_cell_name) for other_bel in placement_capnp.otherBels: placement.other_bels.add(strs[other_bel]) phys_netlist.add_placement(placement) return phys_netlist class Interchange(): def __init__(self, schema_directory): search_path = [os.path.dirname(os.path.dirname(capnp.__file__))] if 'CONDA_PREFIX' in os.environ: search_path.append( os.path.join(os.environ['CONDA_PREFIX'], 'include')) if 'CAPNP_PATH' in os.environ: search_path.append(os.environ['CAPNP_PATH']) for path in ['/usr/local/include', '/usr/include']: if os.path.exists(path): search_path.append(path) self.references_schema = capnp.load( os.path.join(schema_directory, 'References.capnp'), imports=search_path) self.logical_netlist_schema = capnp.load( os.path.join(schema_directory, 'LogicalNetlist.capnp'), imports=search_path) self.physical_netlist_schema = capnp.load( os.path.join(schema_directory, 'PhysicalNetlist.capnp'), imports=search_path) self.device_resources_schema = capnp.load( os.path.join(schema_directory, 'DeviceResources.capnp'), imports=search_path) def output_logical_netlist(self, *args, **kwargs): return output_logical_netlist( logical_netlist_schema=self.logical_netlist_schema, *args, **kwargs) def output_physical_netlist(self, *args, **kwargs): return output_physical_netlist( physical_netlist_schema=self.physical_netlist_schema, *args, **kwargs) def read_logical_netlist_raw(self, f, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): return read_capnp_file(self.logical_netlist_schema.Netlist, f, compression_format, is_packed) def read_logical_netlist(self, f, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): return to_logical_netlist( read_capnp_file(self.logical_netlist_schema.Netlist, f, compression_format, is_packed)) def read_physical_netlist(self, f, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): return to_physical_netlist( read_capnp_file(self.physical_netlist_schema.PhysNetlist, f, compression_format, is_packed)) def read_physical_netlist_raw(self, f, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): return read_capnp_file(self.physical_netlist_schema.PhysNetlist, f, compression_format, is_packed) def read_device_resources_raw(self, f, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): return read_capnp_file(self.device_resources_schema.Device, f, compression_format, is_packed) def read_device_resources(self, f, compression_format=DEFAULT_COMPRESSION_TYPE, is_packed=IS_PACKED): return DeviceResources( read_capnp_file(self.device_resources_schema.Device, f, compression_format, is_packed))
py
1a4d73f66a2bfb0c653c96cfa5065eb5c0f72623
# Generated by Django 3.0.3 on 2020-08-31 21:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rcsystem', '0041_auto_20200831_2102'), ] operations = [ migrations.AddField( model_name='moviedatabase', name='movie_index', field=models.IntegerField(default=-1), ), ]
py
1a4d744d57eab6852052c157c972655924cc1058
from typing import List import pandas import pytest import math from muller.inheritance import scoring @pytest.fixture def scorer() -> scoring.Score: return scoring.Score(0.03, 0.97, 0.05, weights = [1,1,1,1]) @pytest.fixture def legacy_scorer() -> scoring.LegacyScore: return scoring.LegacyScore(0.05, 0.03, 0.97) @pytest.mark.parametrize( "left,right,expected", [ # nested, unnested, expected_score ([0, 0.2, 0.3, 0.4, 0.5], [0, 0.1, 0.2, 0.3, 0.4], 1), ([0.3, 0.3, 0.3, 0.3, 0.3], [0, 0.1, 0.2, 0.3, 0.4], 1), ([0.3, 0.3, 0.3, 0.3, 0.3], [0.3, 0.4, 0.5, 0.6, 0.7], -1), ([0, .1, .1, .2, .2, .3, .3], [0, .1, .1, .2, .2, .3, .3], math.nan), ([0, .1, .1, .1, .1, .1, .1], [0, 0, 0, 0, 0, .93, 0], math.nan), ([0, .1, .1, .1, .1, .1, .1], [0, 0, 0, 0, 0, .94, .94], math.nan), ([0, .1, .1, .1, .1, .16, .1], [0, 0, 0, 0, 0, 1.0, 0], math.nan), # ([0, .1, .2, .3, .4, .16, .1], [0, 0, 0, 0, 0, 1.0, 0], -1), # ([0, .2, .2, .2, .4, .2, .2], [0, 0, 0, 0, 0, 1.0, 0], -1), ([0, 0, 0, 0.403, 0.489, 0.057, 0.08], [0, 0, 0, 0, 0, 0.2675, 0.326], math.nan), ([0, 0, 0, 0.403, 0.489, 0.057, 0.08], [0, 0, 0, 0.2, 0.2, 0, 0], 1) ] ) def test_greater_score(scorer, left, right, expected): left_series = pandas.Series(left) right_series = pandas.Series(right) result = scorer.calculate_score_greater(left_series, right_series) assert result == expected or (math.isnan(result) and math.isnan(expected)) @pytest.mark.parametrize("left,right,expected", [ ([0, .1, .1, .2, .2, .3, .3], [0, .1, .1, .2, .2, .3, .3], 0), ([0, 0, 0, 0.403, 0.489, 0.057, 0.08], [0, 0, 0, 0, 0, 0.2675, 0.326], 0), ([0, .1, .1, .1, .1, .1, .1], [0, 0, 0, 0, 0, .94, .94], 1), ([0, .1, .1, .1, .1, .1, .1], [0, .9, .9, 1.0, .5, .93, .9], 0), ([0, .1, .2, .3, .3, .2, .1], [0, .9, .9, 1.0, .5, .93, .9], 1), ([0, .1, .1, .3, .5, .5, .2], [0.2, 0.9, 0.85, 0.9, .95, 1.0, 0.9], 1), ([0, 0.5, 0.5, 0.403, 0.489, 0.05, 0.05], [0, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7], 0) ]) def test_calculate_above_fixed_score(scorer, left: List[float], right: List[float], expected: int): # check if two series consistently sum to greater than 1. left = pandas.Series(left) right = pandas.Series(right) result = scorer.calculate_score_above_fixed(left, right) assert result == expected @pytest.mark.parametrize( "left,right,expected", [ # nested, unnested, expected_score ([0, 0.2, 0.3, 0.4, 0.5], [0, 0.1, 0.2, 0.3, 0.4], 1), ([0.3, 0.3, 0.3, 0.3, 0.3], [0, 0.1, 0.2, 0.1, 0.2], 0), ([0.3, 0.2, 0.1, 0.0, 0.0], [0.3, 0.4, 0.5, 0.6, 0.7], -1), ([0, .1, .1, .2, .2, .3, .3], [0, .1, .1, .2, .2, .3, .3], 1), ([0, .1, .1, .2, .2, .3, .3], [0, .1, .1, .2, .2, .4, .3], 1), ([1, .9, .8, .7, .6, .5, .4], [0, .1, .2, .3, .4, .5, .6], -1), ([0, .1, .1, .1, .1, .1, .1], [0, 0, 0, 0, 0, .94, .94], 0), ([0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1.0, 0], 0) ] ) def test_calculate_derivative_score(scorer, left, right, expected): left_series = pandas.Series(left) right_series = pandas.Series(right) result = scorer.calculate_score_derivative(left_series, right_series) assert result == expected @pytest.mark.parametrize( "left, right, expected", [ ([0.1, 0.1, 0.3, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.2, 0.0, 0.0], -1), ([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2],0), ([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], [0.0, 0.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2],0), ([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], [0.0, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8],1), ([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0],0), ] ) def test_calculate_area_score(scorer, left, right, expected): l = pandas.Series(left) r = pandas.Series(right) result = scorer.calculate_score_area(l, r) assert result == expected
py
1a4d749efaee9c237e2670c3aafdccb8c6152a5e
# ------------------------------------------------------------------------------ # Functions to save and restore different data types. # ------------------------------------------------------------------------------ import os # PICKLE import pickle def pkl_dump(obj, name, path='obj'): r"""Saves an object in pickle format.""" if '.p' not in name: name = name + '.pkl' path = os.path.join(path, name) pickle.dump(obj, open(path, 'wb')) def pkl_load(name, path='obj'): r"""Restores an object from a pickle file.""" if '.p' not in name: name = name + '.pkl' path = os.path.join(path, name) try: obj = pickle.load(open(path, 'rb')) except FileNotFoundError: obj = None return obj # NUMPY from numpy import save, load def np_dump(obj, name, path='obj'): r"""Saves an object in npy format.""" if '.npy' not in name: name = name + '.npy' path = os.path.join(path, name) save(path, obj) def np_load(name, path='obj'): r"""Restores an object from a npy file.""" if '.npy' not in name: name = name + '.npy' path = os.path.join(path, name) try: obj = load(path) except FileNotFoundError: obj = None return obj # JSON import json def save_json(dict_obj, path, name): r"""Saves a dictionary in json format.""" if '.json' not in name: name += '.json' with open(os.path.join(path, name), 'w') as json_file: json.dump(dict_obj, json_file) def load_json(path, name): r"""Restores a dictionary from a json file.""" if '.json' not in name: name += '.json' with open(os.path.join(path, name), 'r') as json_file: return json.load(json_file) # NIFTY def nifty_dump(x, name, path): r"""Save a tensor of numpy array in nifty format.""" if 'torch.Tensor' in str(type(x)): x = x.detach().cpu().numpy() if '.nii' not in name: name = name + '.nii.gz' # Remove channels dimension and rotate axis so depth first if len(x.shape) == 4: x = np.moveaxis(x[0], -1, 0) assert len(x.shape) == 3 path = os.path.join(path, name) sitk.WriteImage(sitk.GetImageFromArray(x), path) # OTHERS import functools def join_path(list): r"""From a list of chained directories, forms a path""" return functools.reduce(os.path.join, list)
py
1a4d76e0f38ed7e677f854cfc64d787c7bbb58a9
from celery import shared_task from api.models import Vote @shared_task def refresh_votes(): Vote.objects.all().delete() return "Votes successfully reset"
py
1a4d7759ffa248f90d564c874408b104475b00b6
#!/usr/bin/python3 # -*- coding: UTF-8 -*- from node import Node class V2ray(Node): uuid = '' alterId = 0 network = '' camouflageType = '' camouflageHost = '' camouflagePath = '' camouflageTls = '' def __init__(self, ip, port, remark, security, uuid, alterId, network, camouflageType, camouflageHost, camouflagePath, camouflageTls): super(V2ray, self).__init__(ip, port, remark, security) self.uuid = uuid self.alterId = alterId self.network = network self.camouflageHost = camouflageHost self.camouflagePath = camouflagePath self.camouflageTls = camouflageTls self.camouflageType = camouflageType def formatConfig(self): v2rayConf = { "log" : { "access" : "/var/log/v2ray/access.log", "error":"/var/log/v2ray/error.log", "logLevel": "none" }, "inbounds": [ { "port": 1080, "listen": "127.0.0.1", "protocol": "socks", "settings": { "udp": True }, "tag": "in" } ], "outbounds": [ { "settings" : {}, "protocol":"freedom", "tag" : "direct" }, { "settings" : {}, "protocol":"blackhole", "tag" : "blocked" } ], "routing": { "strategy": "rules", "settings": { "domainStrategy": "AsIs", "rules": [ { "type" : "field", "ip" : [ "geoip:cn", "geoip:private" ], "outboundTag": "direct" }, { "type":"field", "inboundTag":["in"], "outboundTag":"out" } ] } } } if self.network == 'tcp' or self.network == 'auto': # tcp下 v2rayConf['outbounds'].append({ "protocol": "vmess", "settings": { "vnext": [{ "address": self.ip, "port": int(self.port), "users": [ { "id": self.uuid, "alterId" : self.alterId } ] }] }, "streamSettings": { "network": "tcp" }, "tag": "out" }) return v2rayConf elif self.network == 'kcp': # kcp 下 v2rayConf['outbounds'].append({ "protocol": "vmess", "settings": { "vnext": [{ "address": self.ip, "port": int(self.port), "users": [ { "id": self.uuid, "alterId": self.alterId } ] }] }, "streamSettings" : { "network": "kcp", "kcpSettings": { "mtu": 1350, "tti": 50, "uplinkCapacity": 12, "downlinkCapacity": 100, "congestion": False, "readBufferSize": 2, "writeBufferSize": 2, "header": { "type": self.camouflageType, } } }, "tag": "out" }) return v2rayConf elif self.network == 'ws': # ws v2rayConf['outbounds'].append({ "protocol": "vmess", "settings": { "vnext": [{ "address": self.ip, "port": int(self.port), "users": [ { "id": self.uuid, "alterId": self.alterId } ] }] }, "streamSettings": { "network": "ws", "security": self.camouflageTls, "tlsSettings": { "allowInsecure": True, }, "wsSettings" : { "path": self.camouflagePath, "headers" : { "Host": self.camouflageHost } } }, "tag": "out" }) return v2rayConf else: # h2 v2rayConf['outbounds'].append({ "protocol": "vmess", "settings": { "vnext": [{ "address": self.ip, "port": int(self.port), "users": [ { "id": self.uuid, "alterId": self.alterId } ] }] }, "streamSettings": { "network": "ws", "security": self.camouflageTls, "tlsSettings": { "allowInsecure": True, }, "httpSettings": { "path": self.camouflagePath, "host": [ self.camouflageHost ] } }, "tag": "out" }) return v2rayConf 1
py
1a4d7833b6b0d72e2912769bc67c546142a498a8
#!/usr/bin/env python3 ### Eval option 1: onnxruntime import numpy as np import onnxruntime as rt sess = rt.InferenceSession("test.onnx") input_name = sess.get_inputs()[0].name img = np.ones((3, 3)).astype(np.float32) pred_onx = sess.run(None, {input_name: img})[0] print(pred_onx) ### Expected output: """ [[667. 667. 667.] [667. 667. 667.] [667. 667. 667.]] """
py
1a4d78c79fe9226b7cfe1d00fd7ca6dcfbf2d555
''' Created on Apr 4, 2022 @author: mballance ''' from libarl import core from rctgen.impl.ctor import Ctor from rctgen.impl.model_info import ModelInfo from rctgen.impl.type_info import TypeInfo from rctgen.impl.exec_kind_e import ExecKindE from rctgen.impl.exec_group import ExecGroup from rctgen.impl.rt_ctxt import RtCtxt from rctgen.impl.impl_base import ImplBase class ComponentImpl(ImplBase): """Methods added to Component-decorated classes""" @staticmethod async def eval(self, action_t): print("ComponentImpl.eval") ctor = Ctor.inst() ev = ctor.ctxt().mkModelEvaluator() it = ev.eval( self._modelinfo._lib_obj, action_t._typeinfo._lib_obj) print("Iterating...") while it.next(): if it.type() == core.ModelEvalNodeT.Action: action_field = it.action() action = action_field.getFieldData() await action._evalExecTarget(ExecKindE.Body) # print("Action: %s" % str(action)) elif it.type() == core.ModelEvalNodeT.Parallel: # Create a coroutine for each branch # Wait for coroutines to complete pass elif it.type() == core.ModelEvalNodeT.Sequence: # Iterate through each item and dispatch pass print("type: %s" % str(it.type())) @staticmethod def init(self, base, *args, **kwargs): ctor = Ctor.inst() typeinfo = type(self)._typeinfo s = ctor.scope() if s is not None: if s.facade_obj is None: # The field-based caller has created a frame for us s.facade_obj = self elif s.facade_obj is self: s.inc_inh_depth() else: # Need to create a new scope if s._type_mode: raise Exception("Should hit in type mode") s = ctor.push_scope( self, ctor.ctxt().buildModelComponent( typeinfo.lib_obj, type(self).__name__), False) pass pass else: # Push a new scope, knowing that we're not in type mode s = ctor.push_scope( self, ctor.ctxt().buildModelComponent( typeinfo.lib_obj, type(self).__name__), False) self._modelinfo = ModelInfo(self, "<>") self._modelinfo._lib_obj = s._lib_scope print("__init__") # Populate the fields for i,fc in enumerate(typeinfo._field_ctor_l): print("Field: %s" % fc[0]) ctor.push_scope(None, s.lib_scope.getField(i), False) field_facade = fc[1](fc[0]) setattr(self, fc[0], field_facade) ctor.pop_scope() # Invoke the user-visible constructor base(self, *args, *kwargs) if s.dec_inh_depth() == 0: if not ctor.is_type_mode(): # Run the init sequence self._runInitSeq() pass @staticmethod def _runInitSeq(self): typeinfo : TypeInfo = type(self)._typeinfo ctxt = RtCtxt.inst() if ExecKindE.InitDown in typeinfo._exec_m.keys(): exec_g : ExecGroup = typeinfo._exec_m[ExecKindE.InitDown] ctxt.push_exec_group(exec_g) for e in exec_g.execs: e.func(self) ctxt.pop_exec_group() # TODO: Recurse for any component-type fields if ExecKindE.InitUp in typeinfo._exec_m.keys(): exec_g : ExecGroup = typeinfo._exec_m[ExecKindE.InitUp] ctxt.push_exec_group(exec_g) for e in exec_g.execs: e.func(self) ctxt.pop_exec_group() pass @staticmethod def _createInst(cls, name): ret = cls() return ret @classmethod def addMethods(cls, T): ImplBase.addMethods(T) base_init = T.__init__ setattr(T, "__init__", lambda self, *args, **kwargs: cls.init( self, base_init, *args, **kwargs)) setattr(T, "_runInitSeq", cls._runInitSeq) setattr(T, "_createInst", cls._createInst) setattr(T, "eval", cls.eval)
py
1a4d791b85d8ad940a199a0a4446072242b3bd4f
import numpy as np import pytest from numpy.testing import assert_array_equal from landlab import RasterModelGrid from landlab.layers import EventLayers def test_EventLayersMixIn(): grid = RasterModelGrid((4, 4)) assert hasattr(grid, "event_layers") assert grid.event_layers.number_of_layers == 0 assert grid.event_layers.number_of_stacks == 4 def test_setitem_with_scalar(): layers = EventLayers(5) layers.add(1.0, age=3.0) layers.add(2.0, age=4.0) truth = np.array([[3.0, 3.0, 3.0, 3.0, 3.0], [4.0, 4.0, 4.0, 4.0, 4.0]]) assert_array_equal(layers["age"], truth) layers["age"] = 2.0 truth = np.array([[2.0, 2.0, 2.0, 2.0, 2.0], [2.0, 2.0, 2.0, 2.0, 2.0]]) assert_array_equal(layers["age"], truth) def test_set_item_with_1d(): layers = EventLayers(5) layers.add(1.0, age=3.0) layers.add(2.0, age=4.0) truth = np.array([[3.0, 3.0, 3.0, 3.0, 3.0], [4.0, 4.0, 4.0, 4.0, 4.0]]) assert_array_equal(layers["age"], truth) layers["age"] = [4.0, 7.0] truth = np.array([[4.0, 4.0, 4.0, 4.0, 4.0], [7.0, 7.0, 7.0, 7.0, 7.0]]) assert_array_equal(layers["age"], truth) def test_set_item_with_2d(): layers = EventLayers(5) layers.add(1.0, age=3.0) layers.add(2.0, age=4.0) truth = np.array([[3.0, 3.0, 3.0, 3.0, 3.0], [4.0, 4.0, 4.0, 4.0, 4.0]]) assert_array_equal(layers["age"], truth) layers["age"] = [[4.0, 4.0, 4.0, 4.0, 4.0], [7.0, 7.0, 7.0, 7.0, 7.0]] truth = np.array([[4.0, 4.0, 4.0, 4.0, 4.0], [7.0, 7.0, 7.0, 7.0, 7.0]]) assert_array_equal(layers["age"], truth) def test__str__(): layers = EventLayers(5) layers.add(1.0, age=3.0) vals = str(layers) assert vals.splitlines() == [ "number_of_layers: 1", "number_of_stacks: 5", "tracking: age", ] def test__repr__(): layers = EventLayers(5) layers.add(1.0, age=3.0) vals = repr(layers) assert vals == "EventLayers(5)" def test_adding_untracked_layer(): layers = EventLayers(3) layers.add(1.0, type=3.0, size="sand") layers.add([0.0, 0.0, 1.0], type=3.0, size="sand") with pytest.raises(ValueError): layers.add([1.0], type=3.0, size="sand", spam="eggs")
py
1a4d7aa1aa55a0a40706ae6b858695e0c108fbae
data = input() words_to_search = ["Sand", "Water", "Fish", "Sun"] count = 0 for word in words_to_search: count += data.lower().count(word.lower()) print(count)
py
1a4d7b10dacc07dba90b173adb9a433b23255942
#!/usr/bin/env python # -*- coding: utf-8 -*- """Convert references to JSON file.""" from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from __future__ import with_statement import re import os import sys import glob import logging import json from nltk.stem.snowball import SnowballStemmer as Stemmer logging.basicConfig(level=logging.INFO) references = {} readers_references = {} author_references = {} for input_dir in glob.glob(sys.argv[1]+'/[0-9]*'): file_id = input_dir.split('/')[-1].split('.')[0] logging.info("loading author-assigned references from {}".format(file_id)) author_references[file_id] = [] try: with open(input_dir+"/"+file_id+".kwd", 'r', errors='replace') as f: text = f.read() text = text.replace(u"\uFFFD", "\n") text = re.sub(r'\n+', '\n', text).strip() lines = text.split("\n") keyphrases = [] for line in lines: words = line.strip().split() if sys.argv[3] == "stem": stems = [Stemmer('porter').stem(w.lower()) for w in words] keyphrases.append(' '.join(stems)) else: keyphrases.append(' '.join([w.lower() for w in words])) author_references[file_id] = keyphrases except IOError: logging.info("No author-assigned references for {}".format(file_id)) readers_references[file_id] = [] for reader_file in glob.glob(input_dir+'/KEY/*.key'): logging.info("loading reader-assigned references from {}".format(reader_file)) with open(reader_file, 'r', errors='replace') as f: text = f.read() text = text.replace(u"\uFFFD", "\n") text = re.sub(r'\n+', '\n', text).strip() lines = text.split("\n") keyphrases = [] for line in lines: words = line.strip().split() if sys.argv[3] == "stem": stems = [Stemmer('porter').stem(w.lower()) for w in words] keyphrases.append(' '.join(stems)) else: keyphrases.append(' '.join([w.lower() for w in words])) for keyphrase in keyphrases: readers_references[file_id].append(keyphrase) if sys.argv[4] == "author": for doc_id in author_references: references[doc_id] = [[u] for u in set(author_references[doc_id])] elif sys.argv[4] == "reader": for doc_id in readers_references: references[doc_id] = [[u] for u in set(readers_references[doc_id])] else: for doc_id in readers_references: references[doc_id] = [[u] for u in set(readers_references[doc_id])| set(author_references[doc_id])] with open(sys.argv[2], 'w') as o: json.dump(references, o, sort_keys = True, indent = 4)
py
1a4d7b77840b474d09021fda8c72e3d882088636
import os class Config: ''' General configuration parent class ''' QUOTE_API_BASE_URL = 'http://quotes.stormconsultancy.co.uk/random.json' SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://moringa:sijuinigani@localhost/bloggz' UPLOADS_DEFAULT_DEST ='app/static' SIMPLEMDE_JS_IIFE = True SIMPLEMDE_USE_CDN = True @staticmethod def init_app(app): pass # email configurations MAIL_SERVER = 'smtp.googlemail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get("MAIL_USERNAME") MAIL_PASSWORD = os.environ.get("MAIL_PASSWORD") class ProdConfig(Config): ''' Production configuration child class Args: Config: The parent configuration class with General configuration settings ''' SQLALCHEMY_DATABASE_URI = os.environ.get("DATABASE_URL") class TestConfig(Config): # SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://moringa:sijuinigani@localhost/bloggz' pass class DevConfig(Config): SQLALCHEMY_DATABASE_URI = 'postgresql+psycopg2://moringa:sijuinigani@localhost/bloggz' DEBUG = True config_options = { 'development':DevConfig, 'production':ProdConfig, 'test':TestConfig }
py
1a4d7ba51b6bdbcd783b061569afacf2d8071a0c
from sqlalchemy import Column, Integer from database.main import Base, session class CreatureDefaultsSchema(Base): """ This table holds the default values that a creature should have/give at a certain level. The table's contents are as follows: creature_level - the level of the creature which should have these attributes armor - the default amount of armor points a creature of this level should have min_gold_reward - the minimum amount of gold a creature of this level should give max_gold_reward - the maximum amount of gold a creature of this level should give xp_reward - the default amount of experience points a creature of this level should give Example: creature_level, armor, min_gold_reward, max_gold_reward, xp_reward 1, 50, 2, 5, 50 2, 65, 4, 6, 75 etc... A creature of level 1 would drop between 2-5 gold and reward 50 XP on death """ __tablename__ = 'creature_defaults' creature_level = Column(Integer, primary_key=True) armor = Column(Integer) min_gold_reward = Column(Integer) max_gold_reward = Column(Integer) xp_reward = Column(Integer)
py
1a4d7cac2df313f9c2bdc48956e92a53f1fa3644
from setuptools import setup import os VERSION = "0.6" def get_long_description(): with open( os.path.join(os.path.dirname(os.path.abspath(__file__)), "README.md"), encoding="utf8", ) as fp: return fp.read() setup( name="airtable-export", description="Export Airtable data to files on disk", long_description=get_long_description(), long_description_content_type="text/markdown", author="Simon Willison", url="https://github.com/simonw/airtable-export", project_urls={ "Issues": "https://github.com/simonw/airtable-export/issues", "CI": "https://github.com/simonw/airtable-export/actions", "Changelog": "https://github.com/simonw/airtable-export/releases", }, license="Apache License, Version 2.0", version=VERSION, packages=["airtable_export"], entry_points=""" [console_scripts] airtable-export=airtable_export.cli:cli """, install_requires=["click", "PyYAML", "httpx", "sqlite-utils"], extras_require={"test": ["pytest", "pytest-mock"]}, tests_require=["airtable-export[test]"], )
py
1a4d7cf1896cbac8f0b3e69db71b33d0ca2e8a65
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 8 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'attribute_exists': 'bool', 'case_sensitive': 'bool', 'field': 'str', 'operator': 'str', 'type': 'str', 'value': 'str', 'whole_word': 'bool' } attribute_map = { 'attribute_exists': 'attribute_exists', 'case_sensitive': 'case_sensitive', 'field': 'field', 'operator': 'operator', 'type': 'type', 'value': 'value', 'whole_word': 'whole_word' } def __init__(self, attribute_exists=None, case_sensitive=None, field=None, operator=None, type=None, value=None, whole_word=None): # noqa: E501 """SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem - a model defined in Swagger""" # noqa: E501 self._attribute_exists = None self._case_sensitive = None self._field = None self._operator = None self._type = None self._value = None self._whole_word = None self.discriminator = None if attribute_exists is not None: self.attribute_exists = attribute_exists if case_sensitive is not None: self.case_sensitive = case_sensitive if field is not None: self.field = field if operator is not None: self.operator = operator self.type = type if value is not None: self.value = value if whole_word is not None: self.whole_word = whole_word @property def attribute_exists(self): """Gets the attribute_exists of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 For \"custom_attribute\" type criteria. The file will match as long as the attribute named by \"field\" exists. Default is true. # noqa: E501 :return: The attribute_exists of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: bool """ return self._attribute_exists @attribute_exists.setter def attribute_exists(self, attribute_exists): """Sets the attribute_exists of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. For \"custom_attribute\" type criteria. The file will match as long as the attribute named by \"field\" exists. Default is true. # noqa: E501 :param attribute_exists: The attribute_exists of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: bool """ self._attribute_exists = attribute_exists @property def case_sensitive(self): """Gets the case_sensitive of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 If true, the value comparison will be case sensitive. Default is true. # noqa: E501 :return: The case_sensitive of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: bool """ return self._case_sensitive @case_sensitive.setter def case_sensitive(self, case_sensitive): """Sets the case_sensitive of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. If true, the value comparison will be case sensitive. Default is true. # noqa: E501 :param case_sensitive: The case_sensitive of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: bool """ self._case_sensitive = case_sensitive @property def field(self): """Gets the field of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 The name of the file attribute to match on (only required if this is a custom_attribute type criterion). Default is an empty string \"\". # noqa: E501 :return: The field of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: str """ return self._field @field.setter def field(self, field): """Sets the field of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. The name of the file attribute to match on (only required if this is a custom_attribute type criterion). Default is an empty string \"\". # noqa: E501 :param field: The field of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: str """ if field is not None and len(field) > 255: raise ValueError("Invalid value for `field`, length must be less than or equal to `255`") # noqa: E501 if field is not None and len(field) < 0: raise ValueError("Invalid value for `field`, length must be greater than or equal to `0`") # noqa: E501 self._field = field @property def operator(self): """Gets the operator of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 How to compare the specified attribute of each file to the specified value. # noqa: E501 :return: The operator of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: str """ return self._operator @operator.setter def operator(self, operator): """Sets the operator of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. How to compare the specified attribute of each file to the specified value. # noqa: E501 :param operator: The operator of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: str """ self._operator = operator @property def type(self): """Gets the type of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 The type of this criterion, that is, which file attribute to match on. # noqa: E501 :return: The type of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. The type of this criterion, that is, which file attribute to match on. # noqa: E501 :param type: The type of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") # noqa: E501 allowed_values = ["name", "path", "accessed_time", "accessed_before", "accessed_after", "birth_time", "birth_before", "birth_after", "changed_time", "changed_before", "changed_after", "size", "file_type", "posix_regex_name", "user_name", "user_id", "group_name", "group_id", "no_user", "no_group"] # noqa: E501 if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" # noqa: E501 .format(type, allowed_values) ) self._type = type @property def value(self): """Gets the value of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 The value to compare the specified attribute of each file to. # noqa: E501 :return: The value of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. The value to compare the specified attribute of each file to. # noqa: E501 :param value: The value of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: str """ self._value = value @property def whole_word(self): """Gets the whole_word of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 If true, the attribute must match the entire word. Default is true. # noqa: E501 :return: The whole_word of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :rtype: bool """ return self._whole_word @whole_word.setter def whole_word(self, whole_word): """Sets the whole_word of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. If true, the attribute must match the entire word. Default is true. # noqa: E501 :param whole_word: The whole_word of this SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem. # noqa: E501 :type: bool """ self._whole_word = whole_word def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SyncJobPolicyFileMatchingPatternOrCriteriaItemAndCriteriaItem): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a4d7f0211b7d635d21b257a47e07929c8c365e0
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from .tfvc_branch_ref import TfvcBranchRef class TfvcBranch(TfvcBranchRef): """TfvcBranch. :param path: Path for the branch. :type path: str :param _links: A collection of REST reference links. :type _links: :class:`ReferenceLinks <tfvc.v4_1.models.ReferenceLinks>` :param created_date: Creation date of the branch. :type created_date: datetime :param description: Description of the branch. :type description: str :param is_deleted: Is the branch deleted? :type is_deleted: bool :param owner: Alias or display name of user :type owner: :class:`IdentityRef <tfvc.v4_1.models.IdentityRef>` :param url: URL to retrieve the item. :type url: str :param children: List of children for the branch. :type children: list of :class:`TfvcBranch <tfvc.v4_1.models.TfvcBranch>` :param mappings: List of branch mappings. :type mappings: list of :class:`TfvcBranchMapping <tfvc.v4_1.models.TfvcBranchMapping>` :param parent: Path of the branch's parent. :type parent: :class:`TfvcShallowBranchRef <tfvc.v4_1.models.TfvcShallowBranchRef>` :param related_branches: List of paths of the related branches. :type related_branches: list of :class:`TfvcShallowBranchRef <tfvc.v4_1.models.TfvcShallowBranchRef>` """ _attribute_map = { 'path': {'key': 'path', 'type': 'str'}, '_links': {'key': '_links', 'type': 'ReferenceLinks'}, 'created_date': {'key': 'createdDate', 'type': 'iso-8601'}, 'description': {'key': 'description', 'type': 'str'}, 'is_deleted': {'key': 'isDeleted', 'type': 'bool'}, 'owner': {'key': 'owner', 'type': 'IdentityRef'}, 'url': {'key': 'url', 'type': 'str'}, 'children': {'key': 'children', 'type': '[TfvcBranch]'}, 'mappings': {'key': 'mappings', 'type': '[TfvcBranchMapping]'}, 'parent': {'key': 'parent', 'type': 'TfvcShallowBranchRef'}, 'related_branches': {'key': 'relatedBranches', 'type': '[TfvcShallowBranchRef]'} } def __init__(self, path=None, _links=None, created_date=None, description=None, is_deleted=None, owner=None, url=None, children=None, mappings=None, parent=None, related_branches=None): super(TfvcBranch, self).__init__(path=path, _links=_links, created_date=created_date, description=description, is_deleted=is_deleted, owner=owner, url=url) self.children = children self.mappings = mappings self.parent = parent self.related_branches = related_branches
py
1a4d7fe297f4a66875f8ee010524a5a9a9190a2f
import warnings from collections import defaultdict import copy from coffea.nanoevents.schemas.base import BaseSchema, zip_forms from coffea.nanoevents.util import quote class PHYSLITESchema(BaseSchema): """PHYSLITE schema builder - work in progress. This is a schema for the `ATLAS DAOD_PHYSLITE derivation <https://gitlab.cern.ch/atlas/athena/-/blob/release/21.2.108.0/PhysicsAnalysis/DerivationFramework/DerivationFrameworkPhys/share/PHYSLITE.py>`_. Closely following `schemas.nanoaod.NanoAODSchema`, it is mainly build from naming patterns where the "Analysis" prefix has been removed, so the collections will be named Electrons, Muons, instead of AnalysisElectrons, AnalysisMunos, etc. The collection fields correspond to the "Aux" and "AuxDyn" columns. Collections are assigned mixin types according to the `mixins` mapping. All collections are then zipped into one `base.NanoEvents` record and returned. Cross references are build from ElementLink columns. Global indices are created dynamically, using an ``_eventindex`` field that is attached to each collection. """ truth_collections = [ "TruthPhotons", "TruthMuons", "TruthNeutrinos", "TruthTaus", "TruthElectrons", "TruthBoson", "TruthBottom", "TruthTop", ] """TRUTH3 collection names. TruthParticle behavior is assigned to all of them and global index forms for parent/children relations are created for all combinations. """ mixins = { "Electrons": "Electron", "Muons": "Muon", "Jets": "Particle", "TauJets": "Particle", "CombinedMuonTrackParticles": "TrackParticle", "ExtrapolatedMuonTrackParticles": "TrackParticle", "GSFTrackParticles": "TrackParticle", "InDetTrackParticles": "TrackParticle", "MuonSpectrometerTrackParticles": "TrackParticle", } """Default configuration for mixin types, based on the collection name. The types are implemented in the `coffea.nanoevents.methods.physlite` module. """ for _k in truth_collections: mixins[_k] = "TruthParticle" def __init__(self, base_form): super().__init__(base_form) self._form["contents"] = self._build_collections(self._form["contents"]) def _build_collections(self, branch_forms): zip_groups = defaultdict(list) has_eventindex = defaultdict(bool) for key, ak_form in branch_forms.items(): # Normal fields key_fields = key.split("/")[-1].split(".") top_key = key_fields[0] sub_key = ".".join(key_fields[1:]) objname = top_key.replace("Analysis", "").replace("AuxDyn", "") zip_groups[objname].append(((key, sub_key), ak_form)) # add eventindex form, based on the first single-jagged list column if ( not has_eventindex[objname] and "List" in ak_form["class"] and "List" not in ak_form["content"]["class"] ): zip_groups[objname].append( ((key, "_eventindex"), self._create_eventindex_form(ak_form, key)) ) has_eventindex[objname] = True # zip the forms contents = {} for objname, keys_and_form in zip_groups.items(): try: contents[objname] = zip_forms( {sub_key: form for (key, sub_key), form in keys_and_form}, objname, self.mixins.get(objname, None), bypass=True, ) content = contents[objname]["content"] content["parameters"] = dict( content.get("parameters", {}), collection_name=objname ) except NotImplementedError: warnings.warn(f"Can't zip collection {objname}") return contents @staticmethod def _create_eventindex_form(base_form, key): form = copy.deepcopy(base_form) form["content"] = { "class": "NumpyArray", "parameters": {}, "form_key": quote(f"{key},!load,!eventindex,!content"), "itemsize": 8, "primitive": "int64", } return form @property def behavior(self): """Behaviors necessary to implement this schema""" from coffea.nanoevents.methods import physlite return physlite.behavior
py
1a4d80f896cbd819f772d429b26615ea6d6076ca
from .core import start, register_plugin, set_bounds, add_initialization_hook
py
1a4d816bb2babce2f7099777f151edcf6c3489fe
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for version 3 of the zero_out op.""" import tensorflow as tf from tensorflow.examples.adding_an_op import zero_out_op_3 class ZeroOut3Test(tf.test.TestCase): def test(self): result = zero_out_op_3.zero_out([5, 4, 3, 2, 1]) self.assertAllEqual(result, [5, 0, 0, 0, 0]) def testAttr(self): result = zero_out_op_3.zero_out([5, 4, 3, 2, 1], preserve_index=3) self.assertAllEqual(result, [0, 0, 0, 2, 0]) def testNegative(self): with self.assertRaisesOpError("Need preserve_index >= 0, got -1"): self.evaluate(zero_out_op_3.zero_out([5, 4, 3, 2, 1], preserve_index=-1)) def testLarge(self): with self.assertRaisesOpError("preserve_index out of range"): self.evaluate(zero_out_op_3.zero_out([5, 4, 3, 2, 1], preserve_index=17)) if __name__ == "__main__": tf.test.main()
py
1a4d82c1abcf3cc079aeff8bcdd3c3d637f4aeba
from const import GAME_COUNT from game import game, TACTIC_LIST, game_process from itertools import combinations if __name__ == "__main__": t = TACTIC_LIST s = {i:0 for i in t.keys()} for i, j in combinations(t.keys(), r=2): x, y = game_process(t[i], t[j], GAME_COUNT) print(f'{i} vs {j}: +{x}, +{y}') s[i] += x s[j] += y print("----------result----------") print(sorted(s.items(), key=lambda x:(-x[1])))
py
1a4d83d8759c8187d2dbacc6d527caa3b94061df
# -*- coding: utf-8 -*- """ Created on Tue Aug 1 15:07:20 2017 @author: spxrxs """ from __future__ import division import matplotlib.pyplot as plt import numpy as np import astropy.io.fits as fits import matplotlib.cm as cm import os import matplotlib.ticker as ticker from astropy.wcs import WCS import matplotlib.colors from reproject import reproject_interp from astroscrappy import detect_cosmics #getting list of every file in the directory files = os.listdir('/home/user/spxrxs/SupernovaImaging/lcogtdata-20170802-80') print(files) #loading the data for plotting data = np.loadtxt('sn2017ahndata.csv', delimiter = ',', dtype = object) #opening the FITS file whilch all imaags are aligned to hdu1 = fits.open('/home/user/spxrxs/SupernovaImaging/lcogtdata-20170802-80/' + 'coj0m403-kb98-20170302-0140-e91.fits.fz')[1] #loops through every file in teh folder for i in range(len(files)): #opening the file for plotting hdu2 = fits.open('/home/user/spxrxs/SupernovaImaging/lcogtdata-20170802-80/' + files[i])[1] thing, hdu2.data = detect_cosmics(hdu2.data, readnoise=20., gain=1.4, sigclip=5., sigfrac=.5, objlim=6.) times = np.zeros(np.shape(data)[0]) mags = np.zeros(np.shape(data)[0]) dmags = np.zeros(np.shape(data)[0]) k = 0 for j in range(np.shape(data)[0]): if hdu2.header['FILTER'] == data[j,1]: if hdu2.header['MJD-OBS'] >= float(data[j,0]): times[k] = float(data[j,0]) mags[k] = float(data[j,4]) dmags[k] = float(data[j,3]) k +=1 j +=1 times = times[:k] mags = mags[:k] dmags = dmags[:k] array, footprint = reproject_interp(hdu2, hdu1.header) plt.figure() ax1 = plt.subplot2grid((3,3), (0,0), rowspan = 2, colspan = 3) #ax1 = plt.subplot(2,1,1, projection = WCS(hdu1.header)) normalised = np.clip(array, np.nanpercentile(array, 50), np.nanpercentile(array, 99.5)) / np.nanpercentile(array, 40) # normalised =array /np.nanpercentile(array, 25) # sigma = np.sqrt(np.var(normalised)) # final_data = np.clip(normalised - np.nanpercentile(normalised, 25), 1,4) ax1.imshow(np.log(normalised)[200:800,400:1200], norm =matplotlib.colors.Normalize() , cmap = cm.bone ) ax1.spines['right'].set_color('none') ax1.spines['left'].set_color('none') ax1.yaxis.set_major_locator(ticker.NullLocator()) ax1.xaxis.set_major_locator(ticker.NullLocator()) #ax1.coords.grid() #ax1.coords['ra'].set_axislabel('Right Ascension') #ax1.coords['dec'].set_axislabel('Declination') #ax1.set_title(hdu2.header['FILTER']+ ' ' + str(hdu2.header['MJD-OBS'])) ax2 = plt.subplot2grid((3,3), (2,0), rowspan = 1, colspan = 3) plt.errorbar(times -57790, mags, yerr = dmags, fmt = 'o', color = 'red') plt.gca().invert_yaxis() plt.ylim([21,12]) plt.xlim([0, 100]) plt.xlabel('Time (Days)') plt.ylabel('Magnitude') plt.tight_layout() #plt.show() i +=1 print(i) plt.savefig(hdu2.header['FIlTER'] + str(hdu2.header['MJD-OBS']) + 'final' +'.png')
py
1a4d8422a46e942cb21ef5611bae9e390d037924
# ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from ngraph.transformers.passes.passes import GraphPass class VerifyPass(GraphPass): def do_pass(self, computation_decl, **kwargs): self.computation_decl = computation_decl # Make sure they can print. Since this is python there are no compile time checks. for exop in computation_decl.exop_block: str(exop) self.test_read_before_write() def test_read_before_write(self): written_tensors = set() for exop in self.computation_decl.exop_block: for arg in exop.args: tensor = arg.read_view.tensor if tensor.is_persistent is False: if tensor not in written_tensors: raise RuntimeError( 'tensor read before written: {} - {}'.format(exop.name, tensor)) for output_decl in exop.output_decls: if output_decl.tensor_view_decl.tensor.is_persistent is False: written_tensors.add(output_decl.tensor_view_decl.tensor)
py
1a4d84a6ee23463e56984626e4a0a0fc09afa7ea
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import sys import struct from datetime import datetime from Session import Session from IoTDBConstants import * from SessionDataSet import SessionDataSet from thrift.protocol import TBinaryProtocol, TCompactProtocol from thrift.transport import TSocket, TTransport import csv class Importer: def __init__(self, session: Session): self.session = session def align_all_series(self, file, time_format='%Y-%m-%dT%H:%M:%S.%f%z', sg=None): self.session.open(False) try: csvFile = open(file, "r") reader = csv.reader(csvFile) deviceID_lst = [] measurement_lst = [] for line in reader: num_of_series = len(line) - 1 if reader.line_num == 1: for item in line: if item != 'Time': deviceID_lst.append('.'.join(item.split('.')[:-1])) measurement_lst.append(item.split('.')[-1]) else: time = self.__time_to_timestamp(line[0], time_format) for i in range(num_of_series): if line[i + 1] not in ('', ' ', None, "null", "Null"): if sg: deviceID = sg + "." + deviceID_lst[i] else: deviceID = deviceID_lst[i] self.session.insert_str_record(deviceID, time, [measurement_lst[i]], [line[i + 1]]) csvFile.close() except Exception: print("the csv format is incorrect") self.session.close() def align_by_device(self, file, time_format='%Y-%m-%dT%H:%M:%S.%f%z', sg=None): self.session.open(False) try: csvFile = open(file, "r") reader = csv.reader(csvFile) measurement_lst = [] for line in reader: num_of_series = len(line) - 2 if reader.line_num == 1: for item in line: if item != 'Time' and item != 'Device': measurement_lst.append(item) else: time = self.__time_to_timestamp(line[0], time_format) if sg: deviceID = sg + "." + line[1] else: deviceID = line[1] for i in range(num_of_series): if line[i + 2] not in ('', ' ', None, "null", "Null"): self.session.insert_str_record(deviceID, time, [measurement_lst[i]], [line[i + 2]]) csvFile.close() except Exception: print("the csv format is incorrect") self.session.close() @staticmethod def __time_to_timestamp(str_time: str, time_format: str): """str_time: the string representation of date and time with timezone at the end. e.g. '2012-11-01T04:16:13-04:00' time_format: the time format written with format tokens and included the time zone at the end e.g. '%Y-%m-%dT%H:%M:%S%z' """ try: return int(str_time) except TypeError: time = datetime.strptime(''.join(str_time.rsplit(':', 1)), time_format) timestamp = int(datetime.timestamp(time)) return timestamp
py
1a4d86a1c85430aed8df6d9a6fedd2c0929840ed
import json import re from rasa_nlu.model import Interpreter # Custom Components class SemesterExtractor: @staticmethod def process(text): words = text.split(" ") ordinal_values = {"first": 1, "second": 2, "third": 3, "fourth": 4, "fifth": 5, "sixth": 6, "seventh": 7, "eigth": 8} semester = None for word in words: pattern = re.compile(r"\d+(st|nd|rd|th)") if pattern.search(word): semester = int(word[:-2]) for word in words: word = word.lower() pattern = re.compile(r"(first|second|third|fourth|fifth|sixth|seventh|eigth)") if pattern.search(word): semester = ordinal_values[word] if semester != None: data = [{'entity': 'semester', 'value': semester}] return data return semester # End of Custom Components class Data: def __init__(self, text, data): self.text = text self.data = data def __repr__(self): return str(self.data) def get_intent(self): if self.text == "Get Started": return "start" else: return self.data['intent']['name'] def get_confidence(self): return self.data['intent']['confidence'] def get_entities(self): semester_data = SemesterExtractor.process(self.text) if semester_data != None: self.data['entities'] += semester_data return dict(map((lambda x : (x['entity'], x['value'])), self.data['entities'])) class Engine: def __init__(self, models_path = "./models/vardhamanbot/nlu"): self.interpreter = Interpreter.load(models_path) def parse(self, message): message = message.strip(" \n\t\r.") return Data(message, self.interpreter.parse(message))
py
1a4d873a57c6bbf9dfda043cfcd68360d5215db3
from test import support import time import unittest import locale import sysconfig import sys import platform try: import threading except ImportError: threading = None # Max year is only limited by the size of C int. SIZEOF_INT = sysconfig.get_config_var('SIZEOF_INT') or 4 TIME_MAXYEAR = (1 << 8 * SIZEOF_INT - 1) - 1 TIME_MINYEAR = -TIME_MAXYEAR - 1 class TimeTestCase(unittest.TestCase): def setUp(self): self.t = time.time() def test_data_attributes(self): time.altzone time.daylight time.timezone time.tzname def test_time(self): time.time() info = time.get_clock_info('time') self.assertFalse(info.monotonic) self.assertTrue(info.adjustable) def test_clock(self): time.clock() info = time.get_clock_info('clock') self.assertTrue(info.monotonic) self.assertFalse(info.adjustable) @unittest.skipUnless(hasattr(time, 'clock_gettime'), 'need time.clock_gettime()') def test_clock_realtime(self): time.clock_gettime(time.CLOCK_REALTIME) @unittest.skipUnless(hasattr(time, 'clock_gettime'), 'need time.clock_gettime()') @unittest.skipUnless(hasattr(time, 'CLOCK_MONOTONIC'), 'need time.CLOCK_MONOTONIC') def test_clock_monotonic(self): a = time.clock_gettime(time.CLOCK_MONOTONIC) b = time.clock_gettime(time.CLOCK_MONOTONIC) self.assertLessEqual(a, b) @unittest.skipUnless(hasattr(time, 'clock_getres'), 'need time.clock_getres()') def test_clock_getres(self): res = time.clock_getres(time.CLOCK_REALTIME) self.assertGreater(res, 0.0) self.assertLessEqual(res, 1.0) @unittest.skipUnless(hasattr(time, 'clock_settime'), 'need time.clock_settime()') def test_clock_settime(self): t = time.clock_gettime(time.CLOCK_REALTIME) try: time.clock_settime(time.CLOCK_REALTIME, t) except PermissionError: pass if hasattr(time, 'CLOCK_MONOTONIC'): self.assertRaises(OSError, time.clock_settime, time.CLOCK_MONOTONIC, 0) def test_conversions(self): self.assertEqual(time.ctime(self.t), time.asctime(time.localtime(self.t))) self.assertEqual(int(time.mktime(time.localtime(self.t))), int(self.t)) def test_sleep(self): self.assertRaises(ValueError, time.sleep, -2) self.assertRaises(ValueError, time.sleep, -1) time.sleep(1.2) def test_strftime(self): tt = time.gmtime(self.t) for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I', 'j', 'm', 'M', 'p', 'S', 'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'): format = ' %' + directive try: time.strftime(format, tt) except ValueError: self.fail('conversion specifier: %r failed.' % format) # Issue #10762: Guard against invalid/non-supported format string # so that Python don't crash (Windows crashes when the format string # input to [w]strftime is not kosher. if sys.platform.startswith('win'): with self.assertRaises(ValueError): time.strftime('%f') def _bounds_checking(self, func): # Make sure that strftime() checks the bounds of the various parts # of the time tuple (0 is valid for *all* values). # The year field is tested by other test cases above # Check month [1, 12] + zero support func((1900, 0, 1, 0, 0, 0, 0, 1, -1)) func((1900, 12, 1, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, -1, 1, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 13, 1, 0, 0, 0, 0, 1, -1)) # Check day of month [1, 31] + zero support func((1900, 1, 0, 0, 0, 0, 0, 1, -1)) func((1900, 1, 31, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, -1, 0, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 32, 0, 0, 0, 0, 1, -1)) # Check hour [0, 23] func((1900, 1, 1, 23, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, -1, 0, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 24, 0, 0, 0, 1, -1)) # Check minute [0, 59] func((1900, 1, 1, 0, 59, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, -1, 0, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 60, 0, 0, 1, -1)) # Check second [0, 61] self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, -1, 0, 1, -1)) # C99 only requires allowing for one leap second, but Python's docs say # allow two leap seconds (0..61) func((1900, 1, 1, 0, 0, 60, 0, 1, -1)) func((1900, 1, 1, 0, 0, 61, 0, 1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 62, 0, 1, -1)) # No check for upper-bound day of week; # value forced into range by a ``% 7`` calculation. # Start check at -2 since gettmarg() increments value before taking # modulo. self.assertEqual(func((1900, 1, 1, 0, 0, 0, -1, 1, -1)), func((1900, 1, 1, 0, 0, 0, +6, 1, -1))) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 0, -2, 1, -1)) # Check day of the year [1, 366] + zero support func((1900, 1, 1, 0, 0, 0, 0, 0, -1)) func((1900, 1, 1, 0, 0, 0, 0, 366, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 0, 0, -1, -1)) self.assertRaises(ValueError, func, (1900, 1, 1, 0, 0, 0, 0, 367, -1)) def test_strftime_bounding_check(self): self._bounds_checking(lambda tup: time.strftime('', tup)) def test_default_values_for_zero(self): # Make sure that using all zeros uses the proper default # values. No test for daylight savings since strftime() does # not change output based on its value and no test for year # because systems vary in their support for year 0. expected = "2000 01 01 00 00 00 1 001" with support.check_warnings(): result = time.strftime("%Y %m %d %H %M %S %w %j", (2000,)+(0,)*8) self.assertEqual(expected, result) def test_strptime(self): # Should be able to go round-trip from strftime to strptime without # raising an exception. tt = time.gmtime(self.t) for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I', 'j', 'm', 'M', 'p', 'S', 'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'): format = '%' + directive strf_output = time.strftime(format, tt) try: time.strptime(strf_output, format) except ValueError: self.fail("conversion specifier %r failed with '%s' input." % (format, strf_output)) def test_strptime_bytes(self): # Make sure only strings are accepted as arguments to strptime. self.assertRaises(TypeError, time.strptime, b'2009', "%Y") self.assertRaises(TypeError, time.strptime, '2009', b'%Y') def test_strptime_exception_context(self): # check that this doesn't chain exceptions needlessly (see #17572) with self.assertRaises(ValueError) as e: time.strptime('', '%D') self.assertIs(e.exception.__suppress_context__, True) # additional check for IndexError branch (issue #19545) with self.assertRaises(ValueError) as e: time.strptime('19', '%Y %') self.assertIs(e.exception.__suppress_context__, True) def test_asctime(self): time.asctime(time.gmtime(self.t)) # Max year is only limited by the size of C int. for bigyear in TIME_MAXYEAR, TIME_MINYEAR: asc = time.asctime((bigyear, 6, 1) + (0,) * 6) self.assertEqual(asc[-len(str(bigyear)):], str(bigyear)) self.assertRaises(OverflowError, time.asctime, (TIME_MAXYEAR + 1,) + (0,) * 8) self.assertRaises(OverflowError, time.asctime, (TIME_MINYEAR - 1,) + (0,) * 8) self.assertRaises(TypeError, time.asctime, 0) self.assertRaises(TypeError, time.asctime, ()) self.assertRaises(TypeError, time.asctime, (0,) * 10) def test_asctime_bounding_check(self): self._bounds_checking(time.asctime) def test_ctime(self): t = time.mktime((1973, 9, 16, 1, 3, 52, 0, 0, -1)) self.assertEqual(time.ctime(t), 'Sun Sep 16 01:03:52 1973') t = time.mktime((2000, 1, 1, 0, 0, 0, 0, 0, -1)) self.assertEqual(time.ctime(t), 'Sat Jan 1 00:00:00 2000') for year in [-100, 100, 1000, 2000, 10000]: try: testval = time.mktime((year, 1, 10) + (0,)*6) except (ValueError, OverflowError): # If mktime fails, ctime will fail too. This may happen # on some platforms. pass else: self.assertEqual(time.ctime(testval)[20:], str(year)) @unittest.skipUnless(hasattr(time, "tzset"), "time module has no attribute tzset") def test_tzset(self): from os import environ # Epoch time of midnight Dec 25th 2002. Never DST in northern # hemisphere. xmas2002 = 1040774400.0 # These formats are correct for 2002, and possibly future years # This format is the 'standard' as documented at: # http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap08.html # They are also documented in the tzset(3) man page on most Unix # systems. eastern = 'EST+05EDT,M4.1.0,M10.5.0' victoria = 'AEST-10AEDT-11,M10.5.0,M3.5.0' utc='UTC+0' org_TZ = environ.get('TZ',None) try: # Make sure we can switch to UTC time and results are correct # Note that unknown timezones default to UTC. # Note that altzone is undefined in UTC, as there is no DST environ['TZ'] = eastern time.tzset() environ['TZ'] = utc time.tzset() self.assertEqual( time.gmtime(xmas2002), time.localtime(xmas2002) ) self.assertEqual(time.daylight, 0) self.assertEqual(time.timezone, 0) self.assertEqual(time.localtime(xmas2002).tm_isdst, 0) # Make sure we can switch to US/Eastern environ['TZ'] = eastern time.tzset() self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002)) self.assertEqual(time.tzname, ('EST', 'EDT')) self.assertEqual(len(time.tzname), 2) self.assertEqual(time.daylight, 1) self.assertEqual(time.timezone, 18000) self.assertEqual(time.altzone, 14400) self.assertEqual(time.localtime(xmas2002).tm_isdst, 0) self.assertEqual(len(time.tzname), 2) # Now go to the southern hemisphere. environ['TZ'] = victoria time.tzset() self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002)) # Issue #11886: Australian Eastern Standard Time (UTC+10) is called # "EST" (as Eastern Standard Time, UTC-5) instead of "AEST" # (non-DST timezone), and "EDT" instead of "AEDT" (DST timezone), # on some operating systems (e.g. FreeBSD), which is wrong. See for # example this bug: # http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=93810 self.assertIn(time.tzname[0], ('AEST' 'EST'), time.tzname[0]) self.assertTrue(time.tzname[1] in ('AEDT', 'EDT'), str(time.tzname[1])) self.assertEqual(len(time.tzname), 2) self.assertEqual(time.daylight, 1) self.assertEqual(time.timezone, -36000) self.assertEqual(time.altzone, -39600) self.assertEqual(time.localtime(xmas2002).tm_isdst, 1) finally: # Repair TZ environment variable in case any other tests # rely on it. if org_TZ is not None: environ['TZ'] = org_TZ elif 'TZ' in environ: del environ['TZ'] time.tzset() def test_insane_timestamps(self): # It's possible that some platform maps time_t to double, # and that this test will fail there. This test should # exempt such platforms (provided they return reasonable # results!). for func in time.ctime, time.gmtime, time.localtime: for unreasonable in -1e200, 1e200: self.assertRaises(OverflowError, func, unreasonable) def test_ctime_without_arg(self): # Not sure how to check the values, since the clock could tick # at any time. Make sure these are at least accepted and # don't raise errors. time.ctime() time.ctime(None) def test_gmtime_without_arg(self): gt0 = time.gmtime() gt1 = time.gmtime(None) t0 = time.mktime(gt0) t1 = time.mktime(gt1) self.assertAlmostEqual(t1, t0, delta=0.2) def test_localtime_without_arg(self): lt0 = time.localtime() lt1 = time.localtime(None) t0 = time.mktime(lt0) t1 = time.mktime(lt1) self.assertAlmostEqual(t1, t0, delta=0.2) def test_mktime(self): # Issue #1726687 for t in (-2, -1, 0, 1): try: tt = time.localtime(t) except (OverflowError, OSError): pass else: self.assertEqual(time.mktime(tt), t) # Issue #13309: passing extreme values to mktime() or localtime() # borks the glibc's internal timezone data. @unittest.skipUnless(platform.libc_ver()[0] != 'glibc', "disabled because of a bug in glibc. Issue #13309") def test_mktime_error(self): # It may not be possible to reliably make mktime return error # on all platfom. This will make sure that no other exception # than OverflowError is raised for an extreme value. tt = time.gmtime(self.t) tzname = time.strftime('%Z', tt) self.assertNotEqual(tzname, 'LMT') try: time.mktime((-1, 1, 1, 0, 0, 0, -1, -1, -1)) except OverflowError: pass self.assertEqual(time.strftime('%Z', tt), tzname) @unittest.skipUnless(hasattr(time, 'monotonic'), 'need time.monotonic') def test_monotonic(self): t1 = time.monotonic() time.sleep(0.5) t2 = time.monotonic() dt = t2 - t1 self.assertGreater(t2, t1) # Issue #20101: On some Windows machines, dt may be slightly low self.assertTrue(0.45 <= dt <= 1.0, dt) info = time.get_clock_info('monotonic') self.assertTrue(info.monotonic) self.assertFalse(info.adjustable) def test_perf_counter(self): time.perf_counter() def test_process_time(self): # process_time() should not include time spend during a sleep start = time.process_time() time.sleep(0.100) stop = time.process_time() # use 20 ms because process_time() has usually a resolution of 15 ms # on Windows self.assertLess(stop - start, 0.020) info = time.get_clock_info('process_time') self.assertTrue(info.monotonic) self.assertFalse(info.adjustable) @unittest.skipUnless(hasattr(time, 'monotonic'), 'need time.monotonic') @unittest.skipUnless(hasattr(time, 'clock_settime'), 'need time.clock_settime') def test_monotonic_settime(self): t1 = time.monotonic() realtime = time.clock_gettime(time.CLOCK_REALTIME) # jump backward with an offset of 1 hour try: time.clock_settime(time.CLOCK_REALTIME, realtime - 3600) except PermissionError as err: self.skipTest(err) t2 = time.monotonic() time.clock_settime(time.CLOCK_REALTIME, realtime) # monotonic must not be affected by system clock updates self.assertGreaterEqual(t2, t1) def test_localtime_failure(self): # Issue #13847: check for localtime() failure invalid_time_t = None for time_t in (-1, 2**30, 2**33, 2**60): try: time.localtime(time_t) except OverflowError: self.skipTest("need 64-bit time_t") except OSError: invalid_time_t = time_t break if invalid_time_t is None: self.skipTest("unable to find an invalid time_t value") self.assertRaises(OSError, time.localtime, invalid_time_t) self.assertRaises(OSError, time.ctime, invalid_time_t) def test_get_clock_info(self): clocks = ['clock', 'perf_counter', 'process_time', 'time'] if hasattr(time, 'monotonic'): clocks.append('monotonic') for name in clocks: info = time.get_clock_info(name) #self.assertIsInstance(info, dict) self.assertIsInstance(info.implementation, str) self.assertNotEqual(info.implementation, '') self.assertIsInstance(info.monotonic, bool) self.assertIsInstance(info.resolution, float) # 0.0 < resolution <= 1.0 self.assertGreater(info.resolution, 0.0) self.assertLessEqual(info.resolution, 1.0) self.assertIsInstance(info.adjustable, bool) self.assertRaises(ValueError, time.get_clock_info, 'xxx') class TestLocale(unittest.TestCase): def setUp(self): self.oldloc = locale.setlocale(locale.LC_ALL) def tearDown(self): locale.setlocale(locale.LC_ALL, self.oldloc) def test_bug_3061(self): try: tmp = locale.setlocale(locale.LC_ALL, "fr_FR") except locale.Error: self.skipTest('could not set locale.LC_ALL to fr_FR') # This should not cause an exception time.strftime("%B", (2009,2,1,0,0,0,0,0,0)) class _TestAsctimeYear: _format = '%d' def yearstr(self, y): return time.asctime((y,) + (0,) * 8).split()[-1] def test_large_year(self): # Check that it doesn't crash for year > 9999 self.assertEqual(self.yearstr(12345), '12345') self.assertEqual(self.yearstr(123456789), '123456789') class _TestStrftimeYear: # Issue 13305: For years < 1000, the value is not always # padded to 4 digits across platforms. The C standard # assumes year >= 1900, so it does not specify the number # of digits. if time.strftime('%Y', (1,) + (0,) * 8) == '0001': _format = '%04d' else: _format = '%d' def yearstr(self, y): return time.strftime('%Y', (y,) + (0,) * 8) def test_4dyear(self): # Check that we can return the zero padded value. if self._format == '%04d': self.test_year('%04d') else: def year4d(y): return time.strftime('%4Y', (y,) + (0,) * 8) self.test_year('%04d', func=year4d) def skip_if_not_supported(y): msg = "strftime() is limited to [1; 9999] with Visual Studio" # Check that it doesn't crash for year > 9999 try: time.strftime('%Y', (y,) + (0,) * 8) except ValueError: cond = False else: cond = True return unittest.skipUnless(cond, msg) @skip_if_not_supported(10000) def test_large_year(self): return super().test_large_year() @skip_if_not_supported(0) def test_negative(self): return super().test_negative() del skip_if_not_supported class _Test4dYear: _format = '%d' def test_year(self, fmt=None, func=None): fmt = fmt or self._format func = func or self.yearstr self.assertEqual(func(1), fmt % 1) self.assertEqual(func(68), fmt % 68) self.assertEqual(func(69), fmt % 69) self.assertEqual(func(99), fmt % 99) self.assertEqual(func(999), fmt % 999) self.assertEqual(func(9999), fmt % 9999) def test_large_year(self): self.assertEqual(self.yearstr(12345), '12345') self.assertEqual(self.yearstr(123456789), '123456789') self.assertEqual(self.yearstr(TIME_MAXYEAR), str(TIME_MAXYEAR)) self.assertRaises(OverflowError, self.yearstr, TIME_MAXYEAR + 1) def test_negative(self): self.assertEqual(self.yearstr(-1), self._format % -1) self.assertEqual(self.yearstr(-1234), '-1234') self.assertEqual(self.yearstr(-123456), '-123456') self.assertEqual(self.yearstr(-123456789), str(-123456789)) self.assertEqual(self.yearstr(-1234567890), str(-1234567890)) self.assertEqual(self.yearstr(TIME_MINYEAR + 1900), str(TIME_MINYEAR + 1900)) # Issue #13312: it may return wrong value for year < TIME_MINYEAR + 1900 # Skip the value test, but check that no error is raised self.yearstr(TIME_MINYEAR) # self.assertEqual(self.yearstr(TIME_MINYEAR), str(TIME_MINYEAR)) self.assertRaises(OverflowError, self.yearstr, TIME_MINYEAR - 1) class TestAsctime4dyear(_TestAsctimeYear, _Test4dYear, unittest.TestCase): pass class TestStrftime4dyear(_TestStrftimeYear, _Test4dYear, unittest.TestCase): pass class TestPytime(unittest.TestCase): def setUp(self): self.invalid_values = ( -(2 ** 100), 2 ** 100, -(2.0 ** 100.0), 2.0 ** 100.0, ) @support.cpython_only def test_time_t(self): from _testcapi import pytime_object_to_time_t for obj, time_t in ( (0, 0), (-1, -1), (-1.0, -1), (-1.9, -1), (1.0, 1), (1.9, 1), ): self.assertEqual(pytime_object_to_time_t(obj), time_t) for invalid in self.invalid_values: self.assertRaises(OverflowError, pytime_object_to_time_t, invalid) @support.cpython_only def test_timeval(self): from _testcapi import pytime_object_to_timeval for obj, timeval in ( (0, (0, 0)), (-1, (-1, 0)), (-1.0, (-1, 0)), (1e-6, (0, 1)), (-1e-6, (-1, 999999)), (-1.2, (-2, 800000)), (1.1234560, (1, 123456)), (1.1234569, (1, 123456)), (-1.1234560, (-2, 876544)), (-1.1234561, (-2, 876543)), ): self.assertEqual(pytime_object_to_timeval(obj), timeval) for invalid in self.invalid_values: self.assertRaises(OverflowError, pytime_object_to_timeval, invalid) @support.cpython_only def test_timespec(self): from _testcapi import pytime_object_to_timespec for obj, timespec in ( (0, (0, 0)), (-1, (-1, 0)), (-1.0, (-1, 0)), (1e-9, (0, 1)), (-1e-9, (-1, 999999999)), (-1.2, (-2, 800000000)), (1.1234567890, (1, 123456789)), (1.1234567899, (1, 123456789)), (-1.1234567890, (-2, 876543211)), (-1.1234567891, (-2, 876543210)), ): self.assertEqual(pytime_object_to_timespec(obj), timespec) for invalid in self.invalid_values: self.assertRaises(OverflowError, pytime_object_to_timespec, invalid) @unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support") def test_localtime_timezone(self): # Get the localtime and examine it for the offset and zone. lt = time.localtime() self.assertTrue(hasattr(lt, "tm_gmtoff")) self.assertTrue(hasattr(lt, "tm_zone")) # See if the offset and zone are similar to the module # attributes. if lt.tm_gmtoff is None: self.assertTrue(not hasattr(time, "timezone")) else: self.assertEqual(lt.tm_gmtoff, -[time.timezone, time.altzone][lt.tm_isdst]) if lt.tm_zone is None: self.assertTrue(not hasattr(time, "tzname")) else: self.assertEqual(lt.tm_zone, time.tzname[lt.tm_isdst]) # Try and make UNIX times from the localtime and a 9-tuple # created from the localtime. Test to see that the times are # the same. t = time.mktime(lt); t9 = time.mktime(lt[:9]) self.assertEqual(t, t9) # Make localtimes from the UNIX times and compare them to # the original localtime, thus making a round trip. new_lt = time.localtime(t); new_lt9 = time.localtime(t9) self.assertEqual(new_lt, lt) self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff) self.assertEqual(new_lt.tm_zone, lt.tm_zone) self.assertEqual(new_lt9, lt) self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff) self.assertEqual(new_lt9.tm_zone, lt.tm_zone) @unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support") def test_strptime_timezone(self): t = time.strptime("UTC", "%Z") self.assertEqual(t.tm_zone, 'UTC') t = time.strptime("+0500", "%z") self.assertEqual(t.tm_gmtoff, 5 * 3600) @unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support") def test_short_times(self): import pickle # Load a short time structure using pickle. st = b"ctime\nstruct_time\np0\n((I2007\nI8\nI11\nI1\nI24\nI49\nI5\nI223\nI1\ntp1\n(dp2\ntp3\nRp4\n." lt = pickle.loads(st) self.assertIs(lt.tm_gmtoff, None) self.assertIs(lt.tm_zone, None) if __name__ == "__main__": unittest.main()
py
1a4d87717e6860bb3b9db1f367eb68c56b45e133
""" Low-level serial communication for Trinamic TMCM-140-42-SE controller (used internally for the Thorlabs MFC1) """ import serial, struct, time, collections try: # this is nicer because it provides deadlock debugging information from acq4.util.Mutex import RecursiveMutex as RLock except ImportError: from threading import RLock try: from ..SerialDevice import SerialDevice, TimeoutError, DataError except ValueError: ## relative imports not allowed when running from command prompt, so ## we adjust sys.path when running the script for testing if __name__ == '__main__': import sys, os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from SerialDevice import SerialDevice, TimeoutError, DataError def threadsafe(method): # decorator for automatic mutex lock/unlock def lockMutex(self, *args, **kwds): with self.lock: return method(self, *args, **kwds) return lockMutex COMMANDS = { 'rol': 2, 'ror': 1, 'mvp': 4, 'mst': 3, 'rfs': 13, 'sco': 30, 'cco': 32, 'gco': 31, 'sap': 5, 'gap': 6, 'stap': 7, 'rsap': 8, 'sgp': 9, 'ggp': 10, 'stgp': 11, 'rsgp': 12, 'sio': 14, 'gio': 15, 'calc': 19, 'comp': 20, 'jc': 21, 'ja': 22, 'csub': 23, 'rsub': 24, 'wait': 27, 'stop': 28, 'sco': 30, 'gco': 31, 'cco': 32, 'calcx': 33, 'aap': 34, 'agp': 35, 'aco': 39, 'sac': 29, 'stop_application': 128, 'run_application': 129, 'step_application': 130, 'reset_application': 131, 'start_download': 132, 'stop_download': 133, 'get_application_status': 135, 'get_firmware_version': 136, 'restore_factory_settings': 137, } PARAMETERS = { # negative values indicate read-only parameters 'target_position': 0, 'actual_position': 1, 'target_speed': 2, 'actual_speed': 3, 'maximum_speed': 4, 'maximum_acceleration': 5, 'maximum_current': 6, 'standby_current': 7, 'target_pos_reached': 8, 'ref_switch_status': 9, 'right_limit_switch_status': 10, 'left_limit_switch_status': 11, 'right_limit_switch_disable': 12, 'left_limit_switch_disable': 13, 'minimum_speed': -130, 'acceleration': -135, 'ramp_mode': 138, 'microstep_resolution': 140, 'soft_stop_flag': 149, 'ramp_divisor': 153, 'pulse_divisor': 154, 'referencing_mode': 193, 'referencing_search_speed': 194, 'referencing_switch_speed': 195, 'distance_end_switches': 196, 'mixed_decay_threshold': 203, 'freewheeling': 204, 'stall_detection_threshold': 205, 'actual_load_value': 206, 'driver_error_flags': -208, 'encoder_position': 209, 'encoder_prescaler': 210, 'fullstep_threshold': 211, 'maximum_encoder_deviation': 212, 'power_down_delay': 214, 'absolute_encoder_value': -215, } GLOBAL_PARAMETERS = { 'eeprom_magic': 64, 'baud_rate': 65, 'serial_address': 66, 'ascii_mode': 67, 'eeprom_lock': 73, 'auto_start_mode': 77, 'tmcl_code_protection': 81, 'coordinate_storage': 84, 'tmcl_application_status': 128, 'download_mode': 129, 'tmcl_program_counter': 130, 'tick_timer': 132, 'random_number': -133, } OPERATORS = { 'add': 0, 'sub': 1, 'mul': 2, 'div': 3, 'mod': 4, 'and': 5, 'or': 6, 'xor': 7, 'not': 8, 'load': 9, 'swap': 10, } CONDITIONS = { 'ze': 0, 'nz': 1, 'eq': 2, 'ne': 3, 'gt': 4, 'ge': 5, 'lt': 6, 'le': 7, 'eto': 8, 'eal': 9, 'esd': 12, } STATUS = { 1: "Wrong checksum", 2: "Invalid command", 3: "Wrong type", 4: "Invalid value", 5: "Configuration EEPROM locked", 6: "Command not available", } class TMCMError(Exception): def __init__(self, status): self.status = status msg = STATUS[status] Exception.__init__(msg) class TMCM140(SerialDevice): def __init__(self, port, baudrate=9600, module_addr=1): """ port: serial COM port (eg. COM3 or /dev/ttyACM0) baudrate: 9600 by default module_addr: 1 by default """ self.lock = RLock(debug=True) self.port = port assert isinstance(module_addr, int) assert module_addr > 0 self.module_addr = module_addr self.module_str = chr(module_addr+64) self._waiting_for_reply = False SerialDevice.__init__(self, port=self.port, baudrate=baudrate) @threadsafe def command(self, cmd, type, motor, value): """Send a command to the controller and return the reply. If an error is returned from the controller then raise an exception. """ self._send_cmd(cmd, type, motor, value) return self._get_reply() def rotate(self, velocity): """Begin rotating motor. velocity: -2047 to +2047 negative values turn left; positive values turn right. """ assert isinstance(velocity, int) assert -2047 <= velocity <= 2047 if velocity < 0: direction = 'l' velocity = -velocity else: direction = 'r' self.command('ro'+direction, 0, 0, velocity) def stop(self): """Stop the motor. Note: does not stop currently running programs. """ self.command('mst', 0, 0, 0) def move(self, pos, relative=False, velocity=None): """Rotate until reaching *pos*. pos: The target position relative: If True, then *pos* is interpreted as relative to the current position velocity: Optionally set the target velocity before moving """ assert isinstance(pos, int) assert -2**32 <= pos < 2**32 if velocity is not None: assert isinstance(velocity, int) assert 0 <= velocity < 2048 raise NotImplementedError() type = 1 if relative else 0 self.command('mvp', type, 0, pos) def get_param(self, param): pnum = abs(PARAMETERS[param]) return self.command('gap', pnum, 0, 0)[4] def __getitem__(self, param): return self.get_param(param) def set_param(self, param, value, **kwds): """Set a parameter value. If valus is 'accum' then the parameter is set from the accumulator register. """ pnum = PARAMETERS[param] if pnum < 0: raise TypeError("Parameter %s is read-only." % param) if pnum in (PARAMETERS['maximum_current'], PARAMETERS['standby_current']) and value > 100: if kwds.get('force', False) is not True: raise Exception("Refusing to set current > 100 (this can damage the motor). " "To override, use force=True.") if value == 'accum': self.command('aap', pnum, 0, 0) else: self.command('sap', pnum, 0, value) @threadsafe def set_params(self, **kwds): """Set multiple parameters. The driver is thread-locked until all parameters are set. """ for param, value in kwds.items(): self.set_param(param, value) def __setitem__(self, param, value): return self.set_param(param, value) def get_global(self, param): """Return a global parameter or copy global to accumulator. Use param='gpX' to refer to general-purpose variables. """ if param.startswith('gp'): pnum = int(param[2:]) bank = 2 else: pnum = abs(GLOBAL_PARAMETERS[param]) bank = 0 return self.command('ggp', pnum, bank, 0)[4] def set_global(self, param, value): if param.startswith('gp'): pnum = int(param[2:]) bank = 2 else: pnum = GLOBAL_PARAMETERS[param] bank = 0 if pnum < 0: raise TypeError("Parameter %s is read-only." % param) if value == 'accum': self.command('agp', pnum, bank, 0) else: self.command('sgp', pnum, bank, value) def stop_program(self): """Stop the currently running TMCL program. """ self.command('stop_application', 0, 0, 0) def start_program(self, address=None): """Start running TMCL program code from the given address (in bytes?), or from the current address if None. """ if address is None: self.command('run_application', 0, 0, 0) else: self.command('run_application', 1, 0, address) def start_download(self, address=0): """Begin loading TMCL commands into EEPROM . """ self.command('start_download', 0, 0, address) def stop_download(self): """Finish loading TMCL commands into EEPROM. """ self.command('stop_download', 0, 0, 0) def write_program(self, address=0): return ProgramManager(self, address) def program_status(self): """Return current program status: 0=stop, 1=run, 2=step, 3=reset """ return self.command('get_application_status', 0, 0, 0)[4] def calc(self, op, value): opnum = OPERATORS[op] if opnum > 9: raise TypeError("Operator %s invalid for calc" % op) self.command('calc', opnum, 0, value) def calcx(self, op): opnum = OPERATORS[op] self.command('calcx', opnum, 0, 0) def comp(self, val): self.command('comp', 0, 0, val) def jump(self, *args): """Program jump to *addr* (instruction index). Usage: jump(address) jump(cond, address) Where *cond* may be ze, nz, eq, ne, gt, ge, lt, le, eto, eal, or esd. """ if len(args) == 1: assert isinstance(args[0], int) self.command('ja', 0, 0, args[0]) else: cnum = CONDITIONS[args[0]] self.command('jc', cnum, 0, args[1]) def _send_cmd(self, cmd, type, motor, value): """Send a command to the controller. """ if self._waiting_for_reply: raise Exception("Cannot send command; previous reply has not been " "received yet.") cmd_num = COMMANDS[cmd] assert isinstance(type, int) assert isinstance(motor, int) # Try packing the value first as unsigned, then signed. (the overlapping # integer ranges have identical bit representation, so there is no # ambiguity) try: cmd = struct.pack('>BBBBI', self.module_addr, cmd_num, type, motor, value) except struct.error: cmd = struct.pack('>BBBBi', self.module_addr, cmd_num, type, motor, value) chksum = sum(bytearray(cmd)) % 256 out = cmd + struct.pack('B', chksum) self.write(out) self._waiting_for_reply = True def _get_reply(self): """Read and parse a reply from the controller. Raise an exception if an error was reported. """ if not self._waiting_for_reply: raise Exception("No reply expected.") try: d = self.read(9) finally: self._waiting_for_reply = False d2 = self.readAll() if len(d2) > 0: raise Exception("Error: extra data while reading reply.") parts = struct.unpack('>BBBBiB', d) reply_addr, module_addr, status, cmd_num, value, chksum = parts if chksum != sum(bytearray(d[:-1])) % 256: raise Exception("Invalid checksum reading from controller.") if status < 100: raise TMCMError(status) return parts class ProgramManager(object): def __init__(self, mcm, start=0): self.mcm = mcm self.start = start self.count = 0 def __enter__(self): self.mcm.lock.acquire() self.mcm.start_download(self.start) return self def __exit__(self, *args): # insert an extra stop to ensure the program can't leak # into previously written code. self.mcm.command('stop', 0, 0, 0) self.mcm.stop_download() self.mcm.lock.release() def __getattr__(self, name): self.count += 1 return getattr(self.mcm, name)
py
1a4d87b9392abdeecfb13e1e293e24cf1d3d64ba
# Python 3 - Verifica disponibilidade de sites # verifica conexao com um teste que sempre esta online e armazena log em um arquivo de texto. from urllib.request import Request, urlopen from urllib.error import URLError from datetime import datetime import time class Url(object): def __init__(self, url, nome): self.url = url self.sucesso = 0 self.erro = 0 self.nome = nome self.teste = False # se passou no teste tempo = 120 # verificar a cada quanto tempo, segundos. url0 = Url('http://www.google.com', 'teste') url1 = Url('http://uol.com.br', 'Site 1') url2 = Url('http://baixaki.com.br', 'Site 2') urls = [url0, url1, url2] # Quais vai testar while True: for url in urls: try: response = urlopen(url.url) if response.info(): url.teste = True url.sucesso += 1 else: url.teste = False url.erro += 1 except URLError: url.teste = False url.erro += 1 #print(url.nome + ' - ' + url.teste) if url.nome == 'teste' and not url.teste: # se o teste nao passar, break texto = '\nSem conexao local com a internet.' arq = open('log-status.txt', 'a') arq.write(texto) arq.close() print(texto) break elif url.nome != 'teste': # se nao for o link teste, escreve texto = url.nome + ' - Sucessos: '+ str(url.sucesso) + \ ' - Erros: '+ str(url.erro) + ' - ' + str(datetime.now())+'\n' arq = open('log-status.txt', 'a') arq.write(texto) arq.close() print(texto) time.sleep(1) time.sleep(tempo)
py
1a4d87c38017310b8b2ebc496b16ae301534b6ab
from __future__ import absolute_import from itertools import izip def deassoc(x): """ Turns an array consisting of alternating key-value pairs into a dictionary. Osm2pgsql stores the tags for ways and relations in the planet_osm_ways and planet_osm_rels tables in this format. Hstore would make more sense now, but this encoding pre-dates the common availability of hstore. Example: >>> from raw_tiles.index.util import deassoc >>> deassoc(['a', 1, 'b', 'B', 'c', 3.14]) {'a': 1, 'c': 3.14, 'b': 'B'} """ pairs = [iter(x)] * 2 return dict(izip(*pairs))
py
1a4d87c6234f08ae11f563bbae89f3c9eb1b2f41
# coding=utf-8 from __future__ import print_function, unicode_literals import numpy as np import pandas as pd import json import requests import argparse data = pd.read_csv('/home/purvar/Downloads/location/t_sup_complaint.csv', names=np.arange(27)) # text = data.iloc[:, 11] NER_URL = 'http://api.bosonnlp.com/ner/analysis' # BosonNLP parser = argparse.ArgumentParser() parser.add_argument('--index', type=int, default=100, help='Please input an index') FLAGS, unparsed = parser.parse_known_args() s = [ data.iloc[FLAGS.index, 11] ] #投诉内容位于第十二列 print(s) # s = ['硚口区汉西三路香江家居对面常青国际小区,光头卤店铺24小时抽烟机噪音扰民,\ # 油烟扰民,区局已派第三方检查公司进行检测,投诉人等待测试结果的回复。多次来电,请重点处理。'] data = json.dumps(s) headers = {'X-Token': 'LkwQR-rW.21981.qz7z9JKCk9A9'} resp = requests.post(NER_URL, headers=headers, data=data.encode('utf-8')) for item in resp.json(): for entity in item['entity']: if entity[2] in ['location', 'org_name', 'company_name']: print(''.join(item['word'][entity[0]:entity[1]]), entity[2]) # print(resp.text)
py
1a4d88d5398f256ee90f2f49260551a21f04abd3
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Assemble function for converting a list of circuits into a qobj""" import uuid import copy import logging import warnings from time import time from typing import Union, List, Dict, Optional from qiskit.circuit import QuantumCircuit, Qubit, Parameter from qiskit.exceptions import QiskitError from qiskit.pulse import LoConfig, Instruction from qiskit.assembler.run_config import RunConfig from qiskit.assembler import assemble_circuits, assemble_schedules from qiskit.qobj import QobjHeader, Qobj from qiskit.qobj.utils import MeasLevel, MeasReturnType from qiskit.validation.jsonschema import SchemaValidationError from qiskit.providers import BaseBackend from qiskit.providers.backend import Backend from qiskit.pulse.channels import PulseChannel from qiskit.pulse import Schedule logger = logging.getLogger(__name__) def _log_assembly_time(start_time, end_time): log_msg = "Total Assembly Time - %.5f (ms)" % ((end_time - start_time) * 1000) logger.info(log_msg) # TODO: parallelize over the experiments (serialize each separately, then add global header/config) def assemble(experiments: Union[QuantumCircuit, List[QuantumCircuit], Schedule, List[Schedule]], backend: Optional[Union[Backend, BaseBackend]] = None, qobj_id: Optional[str] = None, qobj_header: Optional[Union[QobjHeader, Dict]] = None, shots: Optional[int] = None, memory: Optional[bool] = False, max_credits: Optional[int] = None, seed_simulator: Optional[int] = None, qubit_lo_freq: Optional[List[int]] = None, meas_lo_freq: Optional[List[int]] = None, qubit_lo_range: Optional[List[int]] = None, meas_lo_range: Optional[List[int]] = None, schedule_los: Optional[Union[List[Union[Dict[PulseChannel, float], LoConfig]], Union[Dict[PulseChannel, float], LoConfig]]] = None, meas_level: Union[int, MeasLevel] = MeasLevel.CLASSIFIED, meas_return: Union[str, MeasReturnType] = MeasReturnType.AVERAGE, meas_map: Optional[List[List[Qubit]]] = None, memory_slot_size: int = 100, rep_time: Optional[int] = None, rep_delay: Optional[float] = None, parameter_binds: Optional[List[Dict[Parameter, float]]] = None, parametric_pulses: Optional[List[str]] = None, init_qubits: bool = True, **run_config: Dict) -> Qobj: """Assemble a list of circuits or pulse schedules into a ``Qobj``. This function serializes the payloads, which could be either circuits or schedules, to create ``Qobj`` "experiments". It further annotates the experiment payload with header and configurations. Args: experiments: Circuit(s) or pulse schedule(s) to execute backend: If set, some runtime options are automatically grabbed from ``backend.configuration()`` and ``backend.defaults()``. If any other option is explicitly set (e.g., ``rep_time``), it will override the backend's. If any other options is set in the run_config, it will also override the backend's. qobj_id: String identifier to annotate the ``Qobj`` qobj_header: User input that will be inserted in ``Qobj`` header, and will also be copied to the corresponding Result header. Headers do not affect the run. shots: Number of repetitions of each circuit, for sampling. Default: 1024 or ``max_shots`` from the backend configuration, whichever is smaller memory: If ``True``, per-shot measurement bitstrings are returned as well (provided the backend supports it). For OpenPulse jobs, only measurement level 2 supports this option. max_credits: Maximum credits to spend on job. Default: 10 seed_simulator: Random seed to control sampling, for when backend is a simulator qubit_lo_freq: List of default qubit LO frequencies in Hz. Will be overridden by ``schedule_los`` if set. meas_lo_freq: List of default measurement LO frequencies in Hz. Will be overridden by ``schedule_los`` if set. qubit_lo_range: List of drive LO ranges each of form ``[range_min, range_max]`` in Hz. Used to validate the supplied qubit frequencies. meas_lo_range: List of measurement LO ranges each of form ``[range_min, range_max]`` in Hz. Used to validate the supplied qubit frequencies. schedule_los: Experiment LO configurations, frequencies are given in Hz. meas_level: Set the appropriate level of the measurement output for pulse experiments. meas_return: Level of measurement data for the backend to return. For ``meas_level`` 0 and 1: * ``single`` returns information from every shot. * ``avg`` returns average measurement output (averaged over number of shots). meas_map: List of lists, containing qubits that must be measured together. memory_slot_size: Size of each memory slot if the output is Level 0. rep_time (int): Time per program execution in seconds. Must be from the list provided by the backend (``backend.configuration().rep_times``). Defaults to the first entry. rep_delay (float): Delay between programs in seconds. Only supported on certain backends (if ``backend.configuration().dynamic_reprate_enabled=True``). If supported, ``rep_delay`` will be used instead of ``rep_time`` and must be from the range supplied by the backend (``backend.configuration().rep_delay_range``). Default is given by ``backend.configuration().default_rep_delay``. parameter_binds: List of Parameter bindings over which the set of experiments will be executed. Each list element (bind) should be of the form {Parameter1: value1, Parameter2: value2, ...}. All binds will be executed across all experiments; e.g., if parameter_binds is a length-n list, and there are m experiments, a total of m x n experiments will be run (one for each experiment/bind pair). parametric_pulses: A list of pulse shapes which are supported internally on the backend. Example:: ['gaussian', 'constant'] init_qubits: Whether to reset the qubits to the ground state for each shot. Default: ``True``. **run_config: Extra arguments used to configure the run (e.g., for Aer configurable backends). Refer to the backend documentation for details on these arguments. Returns: A ``Qobj`` that can be run on a backend. Depending on the type of input, this will be either a ``QasmQobj`` or a ``PulseQobj``. Raises: QiskitError: if the input cannot be interpreted as either circuits or schedules """ start_time = time() experiments = experiments if isinstance(experiments, list) else [experiments] qobj_id, qobj_header, run_config_common_dict = _parse_common_args(backend, qobj_id, qobj_header, shots, memory, max_credits, seed_simulator, init_qubits, rep_delay, **run_config) # assemble either circuits or schedules if all(isinstance(exp, QuantumCircuit) for exp in experiments): run_config = _parse_circuit_args(parameter_binds, backend, meas_level, meas_return, parametric_pulses, **run_config_common_dict) # If circuits are parameterized, bind parameters and remove from run_config bound_experiments, run_config = _expand_parameters(circuits=experiments, run_config=run_config) end_time = time() _log_assembly_time(start_time, end_time) return assemble_circuits(circuits=bound_experiments, qobj_id=qobj_id, qobj_header=qobj_header, run_config=run_config) elif all(isinstance(exp, (Schedule, Instruction)) for exp in experiments): run_config = _parse_pulse_args(backend, qubit_lo_freq, meas_lo_freq, qubit_lo_range, meas_lo_range, schedule_los, meas_level, meas_return, meas_map, memory_slot_size, rep_time, parametric_pulses, **run_config_common_dict) end_time = time() _log_assembly_time(start_time, end_time) return assemble_schedules(schedules=experiments, qobj_id=qobj_id, qobj_header=qobj_header, run_config=run_config) else: raise QiskitError("bad input to assemble() function; " "must be either circuits or schedules") # TODO: rework to return a list of RunConfigs (one for each experiments), and a global one def _parse_common_args(backend, qobj_id, qobj_header, shots, memory, max_credits, seed_simulator, init_qubits, rep_delay, **run_config): """Resolve the various types of args allowed to the assemble() function through duck typing, overriding args, etc. Refer to the assemble() docstring for details on what types of inputs are allowed. Here the args are resolved by converting them to standard instances, and prioritizing them in case a run option is passed through multiple args (explicitly setting an arg has more priority than the arg set by backend) Returns: RunConfig: a run config, which is a standardized object that configures the qobj and determines the runtime environment. Raises: QiskitError: if the memory arg is True and the backend does not support memory. Also if shots exceeds max_shots for the configured backend. Also if the type of shots is not int. """ # grab relevant info from backend if it exists backend_config = None if backend: backend_config = backend.configuration() # check for memory flag applied to backend that does not support memory if memory and not backend_config.memory: raise QiskitError("memory not supported by backend {}" .format(backend_config.backend_name)) # an identifier for the Qobj qobj_id = qobj_id or str(uuid.uuid4()) # The header that goes at the top of the Qobj (and later Result) # we process it as dict, then write entries that are not None to a QobjHeader object qobj_header = qobj_header or {} if isinstance(qobj_header, QobjHeader): qobj_header = qobj_header.to_dict() backend_name = getattr(backend_config, 'backend_name', None) backend_version = getattr(backend_config, 'backend_version', None) qobj_header = {**dict(backend_name=backend_name, backend_version=backend_version), **qobj_header} qobj_header = QobjHeader(**{k: v for k, v in qobj_header.items() if v is not None}) max_shots = getattr(backend_config, 'max_shots', None) if shots is None: if max_shots: shots = min(1024, max_shots) else: shots = 1024 elif not isinstance(shots, int): raise QiskitError( "Argument 'shots' should be of type 'int'") elif max_shots and max_shots < shots: raise QiskitError( 'Number of shots specified: %s exceeds max_shots property of the ' 'backend: %s.' % (shots, max_shots)) dynamic_reprate_enabled = getattr(backend_config, 'dynamic_reprate_enabled', False) if dynamic_reprate_enabled: default_rep_delay = getattr(backend_config, "default_rep_delay", None) rep_delay_range = getattr(backend_config, "rep_delay_range", None) rep_delay = _parse_rep_delay(rep_delay, default_rep_delay, rep_delay_range) else: if rep_delay is not None: rep_delay = None warnings.warn( "Dynamic rep rates not supported on this backend, cannot use rep_delay.", RuntimeWarning, ) # create run configuration and populate run_config_dict = dict(shots=shots, memory=memory, max_credits=max_credits, seed_simulator=seed_simulator, init_qubits=init_qubits, rep_delay=rep_delay, **run_config) return qobj_id, qobj_header, run_config_dict def _parse_pulse_args(backend, qubit_lo_freq, meas_lo_freq, qubit_lo_range, meas_lo_range, schedule_los, meas_level, meas_return, meas_map, memory_slot_size, rep_time, parametric_pulses, **run_config): """Build a pulse RunConfig replacing unset arguments with defaults derived from the `backend`. See `assemble` for more information on the required arguments. Returns: RunConfig: a run config, which is a standardized object that configures the qobj and determines the runtime environment. Raises: SchemaValidationError: If the given meas_level is not allowed for the given `backend`. """ # grab relevant info from backend if it exists backend_config = None backend_default = None if backend: backend_default = backend.defaults() backend_config = backend.configuration() if meas_level not in getattr(backend_config, 'meas_levels', [MeasLevel.CLASSIFIED]): raise SchemaValidationError( ('meas_level = {} not supported for backend {}, only {} is supported' ).format(meas_level, backend_config.backend_name, backend_config.meas_levels) ) meas_map = meas_map or getattr(backend_config, 'meas_map', None) schedule_los = schedule_los or [] if isinstance(schedule_los, (LoConfig, dict)): schedule_los = [schedule_los] # Convert to LoConfig if LO configuration supplied as dictionary schedule_los = [lo_config if isinstance(lo_config, LoConfig) else LoConfig(lo_config) for lo_config in schedule_los] if not qubit_lo_freq and hasattr(backend_default, 'qubit_freq_est'): qubit_lo_freq = backend_default.qubit_freq_est if not meas_lo_freq and hasattr(backend_default, 'meas_freq_est'): meas_lo_freq = backend_default.meas_freq_est qubit_lo_range = qubit_lo_range or getattr(backend_config, 'qubit_lo_range', None) meas_lo_range = meas_lo_range or getattr(backend_config, 'meas_lo_range', None) dynamic_reprate_enabled = getattr(backend_config, 'dynamic_reprate_enabled', False) rep_time = rep_time or getattr(backend_config, 'rep_times', None) if rep_time: if dynamic_reprate_enabled: warnings.warn("Dynamic rep rates are supported on this backend. 'rep_delay' will be " "used instead of 'rep_time'.", RuntimeWarning) if isinstance(rep_time, list): rep_time = rep_time[0] rep_time = int(rep_time * 1e6) # convert sec to μs parametric_pulses = parametric_pulses or getattr(backend_config, 'parametric_pulses', []) # create run configuration and populate run_config_dict = dict(qubit_lo_freq=qubit_lo_freq, meas_lo_freq=meas_lo_freq, qubit_lo_range=qubit_lo_range, meas_lo_range=meas_lo_range, schedule_los=schedule_los, meas_level=meas_level, meas_return=meas_return, meas_map=meas_map, memory_slot_size=memory_slot_size, rep_time=rep_time, parametric_pulses=parametric_pulses, **run_config) run_config = RunConfig(**{k: v for k, v in run_config_dict.items() if v is not None}) return run_config def _parse_circuit_args(parameter_binds, backend, meas_level, meas_return, parametric_pulses, **run_config): """Build a circuit RunConfig replacing unset arguments with defaults derived from the `backend`. See `assemble` for more information on the required arguments. Returns: RunConfig: a run config, which is a standardized object that configures the qobj and determines the runtime environment. """ parameter_binds = parameter_binds or [] # create run configuration and populate run_config_dict = dict(parameter_binds=parameter_binds, **run_config) if backend: run_config_dict['parametric_pulses'] = getattr(backend.configuration(), 'parametric_pulses', []) if parametric_pulses: run_config_dict['parametric_pulses'] = parametric_pulses if meas_level: run_config_dict['meas_level'] = meas_level # only enable `meas_return` if `meas_level` isn't classified if meas_level != MeasLevel.CLASSIFIED: run_config_dict['meas_return'] = meas_return run_config = RunConfig( **{k: v for k, v in run_config_dict.items() if v is not None}) return run_config def _parse_rep_delay(rep_delay: float, default_rep_delay: float, rep_delay_range: List[float]) -> float: """Parse and set ``rep_delay`` parameter in runtime config. Args: rep_delay: Initial rep delay. default_rep_delay: Backend default rep delay. rep_delay_range: Backend list defining allowable range of rep delays. Raises: SchemaValidationError: If rep_delay is not in the backend rep_delay_range. Returns: float: Modified rep delay after parsing. """ if rep_delay is None: rep_delay = default_rep_delay if rep_delay is not None: # check that rep_delay is in rep_delay_range if rep_delay_range is not None and isinstance(rep_delay_range, list): if len(rep_delay_range) != 2: raise SchemaValidationError( "Backend rep_delay_range {} must be a list with two entries.".format( rep_delay_range ) ) if not rep_delay_range[0] <= rep_delay <= rep_delay_range[1]: raise SchemaValidationError( "Supplied rep delay {} not in the supported " "backend range {}".format(rep_delay, rep_delay_range) ) rep_delay = rep_delay * 1e6 # convert sec to μs return rep_delay def _expand_parameters(circuits, run_config): """Verifies that there is a single common set of parameters shared between all circuits and all parameter binds in the run_config. Returns an expanded list of circuits (if parameterized) with all parameters bound, and a copy of the run_config with parameter_binds cleared. If neither the circuits nor the run_config specify parameters, the two are returned unmodified. Raises: QiskitError: if run_config parameters are not compatible with circuit parameters Returns: Tuple(List[QuantumCircuit], RunConfig): - List of input circuits expanded and with parameters bound - RunConfig with parameter_binds removed """ parameter_binds = run_config.parameter_binds if parameter_binds or \ any(circuit.parameters for circuit in circuits): # Unroll params here in order to handle ParamVects all_bind_parameters = [QuantumCircuit()._unroll_param_dict(bind).keys() for bind in parameter_binds] all_circuit_parameters = [circuit.parameters for circuit in circuits] # Collect set of all unique parameters across all circuits and binds unique_parameters = {param for param_list in all_bind_parameters + all_circuit_parameters for param in param_list} # Check that all parameters are common to all circuits and binds if not all_bind_parameters \ or not all_circuit_parameters \ or any(unique_parameters != bind_params for bind_params in all_bind_parameters) \ or any(unique_parameters != parameters for parameters in all_circuit_parameters): raise QiskitError( ('Mismatch between run_config.parameter_binds and all circuit parameters. ' + 'Parameter binds: {} ' + 'Circuit parameters: {}').format(all_bind_parameters, all_circuit_parameters)) circuits = [circuit.bind_parameters(binds) for circuit in circuits for binds in parameter_binds] # All parameters have been expanded and bound, so remove from run_config run_config = copy.deepcopy(run_config) run_config.parameter_binds = [] return circuits, run_config
py
1a4d892378837d335fcf55e1424e6aedfa25cbf9
# Copyright 2014: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from rally.common import utils from rally.plugins.openstack.cleanup import base from rally.plugins.openstack.cleanup import manager from tests.unit import test BASE = "rally.plugins.openstack.cleanup.manager" class SeekAndDestroyTestCase(test.TestCase): def setUp(self): super(SeekAndDestroyTestCase, self).setUp() # clear out the client cache manager.SeekAndDestroy.cache = {} def test__get_cached_client(self): api_versions = {"cinder": {"version": "1", "service_type": "volume"}} destroyer = manager.SeekAndDestroy(None, None, None, api_versions=api_versions) cred = mock.Mock() user = {"credential": cred} clients = destroyer._get_cached_client(user) self.assertIs(cred.clients.return_value, clients) cred.clients.assert_called_once_with(api_info=api_versions) self.assertIsNone(destroyer._get_cached_client(None)) @mock.patch("%s.LOG" % BASE) def test__delete_single_resource(self, mock_log): mock_resource = mock.MagicMock(_max_attempts=3, _timeout=10, _interval=0.01) mock_resource.delete.side_effect = [Exception, Exception, True] mock_resource.is_deleted.side_effect = [False, False, True] manager.SeekAndDestroy(None, None, None)._delete_single_resource( mock_resource) mock_resource.delete.assert_has_calls([mock.call()] * 3) self.assertEqual(3, mock_resource.delete.call_count) mock_resource.is_deleted.assert_has_calls([mock.call()] * 3) self.assertEqual(3, mock_resource.is_deleted.call_count) # NOTE(boris-42): No logs and no exceptions means no bugs! self.assertEqual(0, mock_log.call_count) @mock.patch("%s.LOG" % BASE) def test__delete_single_resource_timeout(self, mock_log): mock_resource = mock.MagicMock(_max_attempts=1, _timeout=0.02, _interval=0.025) mock_resource.delete.return_value = True mock_resource.is_deleted.side_effect = [False, False, True] manager.SeekAndDestroy(None, None, None)._delete_single_resource( mock_resource) mock_resource.delete.assert_called_once_with() mock_resource.is_deleted.assert_called_once_with() self.assertEqual(1, mock_log.warning.call_count) @mock.patch("%s.LOG" % BASE) def test__delete_single_resource_excpetion_in_is_deleted(self, mock_log): mock_resource = mock.MagicMock(_max_attempts=3, _timeout=10, _interval=0) mock_resource.delete.return_value = True mock_resource.is_deleted.side_effect = [Exception] * 4 manager.SeekAndDestroy(None, None, None)._delete_single_resource( mock_resource) mock_resource.delete.assert_called_once_with() self.assertEqual(4, mock_resource.is_deleted.call_count) self.assertEqual(5, mock_log.warning.call_count) self.assertEqual(4, mock_log.exception.call_count) def _manager(self, list_side_effect, **kw): mock_mgr = mock.MagicMock() mock_mgr().list.side_effect = list_side_effect mock_mgr.reset_mock() for k, v in kw.items(): setattr(mock_mgr, k, v) return mock_mgr @mock.patch("%s.SeekAndDestroy._get_cached_client" % BASE) def test__publisher_admin(self, mock__get_cached_client): mock_mgr = self._manager([Exception, Exception, [1, 2, 3]], _perform_for_admin_only=False) admin = mock.MagicMock() publish = manager.SeekAndDestroy(mock_mgr, admin, None)._publisher queue = [] publish(queue) mock__get_cached_client.assert_called_once_with(admin) mock_mgr.assert_called_once_with( admin=mock__get_cached_client.return_value) self.assertEqual(queue, [(admin, None, x) for x in range(1, 4)]) @mock.patch("%s.SeekAndDestroy._get_cached_client" % BASE) def test__publisher_admin_only(self, mock__get_cached_client): mock_mgr = self._manager([Exception, Exception, [1, 2, 3]], _perform_for_admin_only=True) admin = mock.MagicMock() publish = manager.SeekAndDestroy( mock_mgr, admin, ["u1", "u2"])._publisher queue = [] publish(queue) mock__get_cached_client.assert_called_once_with(admin) mock_mgr.assert_called_once_with( admin=mock__get_cached_client.return_value) self.assertEqual(queue, [(admin, None, x) for x in range(1, 4)]) @mock.patch("%s.SeekAndDestroy._get_cached_client" % BASE) def test__publisher_user_resource(self, mock__get_cached_client): mock_mgr = self._manager([Exception, Exception, [1, 2, 3], Exception, Exception, [4, 5]], _perform_for_admin_only=False, _tenant_resource=True) admin = mock.MagicMock() users = [{"tenant_id": 1, "id": 1}, {"tenant_id": 2, "id": 2}] publish = manager.SeekAndDestroy(mock_mgr, admin, users)._publisher queue = [] publish(queue) mock_client = mock__get_cached_client.return_value mock_mgr.assert_has_calls([ mock.call(admin=mock_client, user=mock_client, tenant_uuid=users[0]["tenant_id"]), mock.call().list(), mock.call().list(), mock.call().list(), mock.call(admin=mock_client, user=mock_client, tenant_uuid=users[1]["tenant_id"]), mock.call().list(), mock.call().list() ]) mock__get_cached_client.assert_has_calls([ mock.call(admin), mock.call(users[0]), mock.call(users[1]) ]) expected_queue = [(admin, users[0], x) for x in range(1, 4)] expected_queue += [(admin, users[1], x) for x in range(4, 6)] self.assertEqual(expected_queue, queue) @mock.patch("%s.LOG" % BASE) @mock.patch("%s.SeekAndDestroy._get_cached_client" % BASE) def test__gen_publisher_tenant_resource(self, mock__get_cached_client, mock_log): mock_mgr = self._manager([Exception, [1, 2, 3], Exception, Exception, Exception, ["this shouldn't be in results"]], _perform_for_admin_only=False, _tenant_resource=True) users = [{"tenant_id": 1, "id": 1}, {"tenant_id": 1, "id": 2}, {"tenant_id": 2, "id": 3}] publish = manager.SeekAndDestroy( mock_mgr, None, users)._publisher queue = [] publish(queue) mock_client = mock__get_cached_client.return_value mock_mgr.assert_has_calls([ mock.call(admin=mock_client, user=mock_client, tenant_uuid=users[0]["tenant_id"]), mock.call().list(), mock.call().list(), mock.call(admin=mock_client, user=mock_client, tenant_uuid=users[2]["tenant_id"]), mock.call().list(), mock.call().list(), mock.call().list() ]) mock__get_cached_client.assert_has_calls([ mock.call(None), mock.call(users[0]), mock.call(users[2]) ]) self.assertEqual(queue, [(None, users[0], x) for x in range(1, 4)]) self.assertTrue(mock_log.warning.mock_called) self.assertTrue(mock_log.exception.mock_called) @mock.patch("rally.common.utils.name_matches_object") @mock.patch("%s.SeekAndDestroy._get_cached_client" % BASE) @mock.patch("%s.SeekAndDestroy._delete_single_resource" % BASE) def test__consumer(self, mock__delete_single_resource, mock__get_cached_client, mock_name_matches_object): mock_mgr = mock.MagicMock(__name__="Test") resource_classes = [mock.Mock()] task_id = "task_id" mock_name_matches_object.return_value = True consumer = manager.SeekAndDestroy( mock_mgr, None, None, resource_classes=resource_classes, task_id=task_id)._consumer admin = mock.MagicMock() user1 = {"id": "a", "tenant_id": "uuid1"} cache = {} consumer(cache, (admin, user1, "res")) mock_mgr.assert_called_once_with( resource="res", admin=mock__get_cached_client.return_value, user=mock__get_cached_client.return_value, tenant_uuid=user1["tenant_id"]) mock__get_cached_client.assert_has_calls([ mock.call(admin), mock.call(user1) ]) mock__delete_single_resource.assert_called_once_with( mock_mgr.return_value) mock_mgr.reset_mock() mock__get_cached_client.reset_mock() mock__delete_single_resource.reset_mock() mock_name_matches_object.reset_mock() consumer(cache, (admin, None, "res2")) mock_mgr.assert_called_once_with( resource="res2", admin=mock__get_cached_client.return_value, user=mock__get_cached_client.return_value, tenant_uuid=None) mock__get_cached_client.assert_has_calls([ mock.call(admin), mock.call(None) ]) mock__delete_single_resource.assert_called_once_with( mock_mgr.return_value) @mock.patch("rally.common.utils.name_matches_object") @mock.patch("%s.SeekAndDestroy._get_cached_client" % BASE) @mock.patch("%s.SeekAndDestroy._delete_single_resource" % BASE) def test__consumer_with_noname_resource(self, mock__delete_single_resource, mock__get_cached_client, mock_name_matches_object): mock_mgr = mock.MagicMock(__name__="Test") mock_mgr.return_value.name.return_value = True task_id = "task_id" mock_name_matches_object.return_value = False consumer = manager.SeekAndDestroy(mock_mgr, None, None, task_id=task_id)._consumer consumer(None, (None, None, "res")) self.assertFalse(mock__delete_single_resource.called) mock_mgr.return_value.name.return_value = base.NoName("foo") consumer(None, (None, None, "res")) mock__delete_single_resource.assert_called_once_with( mock_mgr.return_value) @mock.patch("%s.broker.run" % BASE) def test_exterminate(self, mock_broker_run): manager_cls = mock.MagicMock(_threads=5) cleaner = manager.SeekAndDestroy(manager_cls, None, None) cleaner._publisher = mock.Mock() cleaner._consumer = mock.Mock() cleaner.exterminate() mock_broker_run.assert_called_once_with(cleaner._publisher, cleaner._consumer, consumers_count=5) class ResourceManagerTestCase(test.TestCase): def _get_res_mock(self, **kw): _mock = mock.MagicMock() for k, v in kw.items(): setattr(_mock, k, v) return _mock def _list_res_names_helper(self, names, admin_required, mock_iter): self.assertEqual(set(names), manager.list_resource_names(admin_required)) mock_iter.assert_called_once_with(base.ResourceManager) mock_iter.reset_mock() @mock.patch("%s.discover.itersubclasses" % BASE) def test_list_resource_names(self, mock_itersubclasses): mock_itersubclasses.return_value = [ self._get_res_mock(_service="fake", _resource="1", _admin_required=True), self._get_res_mock(_service="fake", _resource="2", _admin_required=False), self._get_res_mock(_service="other", _resource="2", _admin_required=False) ] self._list_res_names_helper( ["fake", "other", "fake.1", "fake.2", "other.2"], None, mock_itersubclasses) self._list_res_names_helper( ["fake", "fake.1"], True, mock_itersubclasses) self._list_res_names_helper( ["fake", "other", "fake.2", "other.2"], False, mock_itersubclasses) @mock.patch("%s.discover.itersubclasses" % BASE) def test_find_resource_managers(self, mock_itersubclasses): mock_itersubclasses.return_value = [ self._get_res_mock(_service="fake", _resource="1", _order=1, _admin_required=True), self._get_res_mock(_service="fake", _resource="2", _order=3, _admin_required=False), self._get_res_mock(_service="other", _resource="2", _order=2, _admin_required=False) ] self.assertEqual(mock_itersubclasses.return_value[0:2], manager.find_resource_managers(names=["fake"])) self.assertEqual(mock_itersubclasses.return_value[0:1], manager.find_resource_managers(names=["fake.1"])) self.assertEqual( [mock_itersubclasses.return_value[0], mock_itersubclasses.return_value[2], mock_itersubclasses.return_value[1]], manager.find_resource_managers(names=["fake", "other"])) self.assertEqual(mock_itersubclasses.return_value[0:1], manager.find_resource_managers(names=["fake"], admin_required=True)) self.assertEqual(mock_itersubclasses.return_value[1:2], manager.find_resource_managers(names=["fake"], admin_required=False)) @mock.patch("rally.common.plugin.discover.itersubclasses") @mock.patch("%s.SeekAndDestroy" % BASE) @mock.patch("%s.find_resource_managers" % BASE, return_value=[mock.MagicMock(), mock.MagicMock()]) def test_cleanup(self, mock_find_resource_managers, mock_seek_and_destroy, mock_itersubclasses): class A(utils.RandomNameGeneratorMixin): pass class B(object): pass mock_itersubclasses.return_value = [A, B] manager.cleanup(names=["a", "b"], admin_required=True, admin="admin", users=["user"], superclass=A, task_id="task_id") mock_find_resource_managers.assert_called_once_with(["a", "b"], True) mock_seek_and_destroy.assert_has_calls([ mock.call(mock_find_resource_managers.return_value[0], "admin", ["user"], api_versions=None, resource_classes=[A], task_id="task_id"), mock.call().exterminate(), mock.call(mock_find_resource_managers.return_value[1], "admin", ["user"], api_versions=None, resource_classes=[A], task_id="task_id"), mock.call().exterminate() ]) @mock.patch("rally.common.plugin.discover.itersubclasses") @mock.patch("%s.SeekAndDestroy" % BASE) @mock.patch("%s.find_resource_managers" % BASE, return_value=[mock.MagicMock(), mock.MagicMock()]) def test_cleanup_with_api_versions(self, mock_find_resource_managers, mock_seek_and_destroy, mock_itersubclasses): class A(utils.RandomNameGeneratorMixin): pass class B(object): pass mock_itersubclasses.return_value = [A, B] api_versions = {"cinder": {"version": "1", "service_type": "volume"}} manager.cleanup(names=["a", "b"], admin_required=True, admin="admin", users=["user"], api_versions=api_versions, superclass=utils.RandomNameGeneratorMixin, task_id="task_id") mock_find_resource_managers.assert_called_once_with(["a", "b"], True) mock_seek_and_destroy.assert_has_calls([ mock.call(mock_find_resource_managers.return_value[0], "admin", ["user"], api_versions=api_versions, resource_classes=[A], task_id="task_id"), mock.call().exterminate(), mock.call(mock_find_resource_managers.return_value[1], "admin", ["user"], api_versions=api_versions, resource_classes=[A], task_id="task_id"), mock.call().exterminate() ])
py
1a4d894f58a076d80cd68867b5dc628769b2a9eb
# This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.10 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (3,0,0): new_instancemethod = lambda func, inst, cls: _Poly.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_Poly', [dirname(__file__)]) except ImportError: import _Poly return _Poly if fp is not None: try: _mod = imp.load_module('_Poly', fp, pathname, description) finally: fp.close() return _mod _Poly = swig_import_helper() del swig_import_helper else: import _Poly del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self,name,value): if (name == "thisown"): return self.this.own(value) if hasattr(self,name) or (name == "this"): set(self,name,value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr class SwigPyIterator(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _Poly.delete_SwigPyIterator def __iter__(self): return self SwigPyIterator.value = new_instancemethod(_Poly.SwigPyIterator_value,None,SwigPyIterator) SwigPyIterator.incr = new_instancemethod(_Poly.SwigPyIterator_incr,None,SwigPyIterator) SwigPyIterator.decr = new_instancemethod(_Poly.SwigPyIterator_decr,None,SwigPyIterator) SwigPyIterator.distance = new_instancemethod(_Poly.SwigPyIterator_distance,None,SwigPyIterator) SwigPyIterator.equal = new_instancemethod(_Poly.SwigPyIterator_equal,None,SwigPyIterator) SwigPyIterator.copy = new_instancemethod(_Poly.SwigPyIterator_copy,None,SwigPyIterator) SwigPyIterator.next = new_instancemethod(_Poly.SwigPyIterator_next,None,SwigPyIterator) SwigPyIterator.__next__ = new_instancemethod(_Poly.SwigPyIterator___next__,None,SwigPyIterator) SwigPyIterator.previous = new_instancemethod(_Poly.SwigPyIterator_previous,None,SwigPyIterator) SwigPyIterator.advance = new_instancemethod(_Poly.SwigPyIterator_advance,None,SwigPyIterator) SwigPyIterator.__eq__ = new_instancemethod(_Poly.SwigPyIterator___eq__,None,SwigPyIterator) SwigPyIterator.__ne__ = new_instancemethod(_Poly.SwigPyIterator___ne__,None,SwigPyIterator) SwigPyIterator.__iadd__ = new_instancemethod(_Poly.SwigPyIterator___iadd__,None,SwigPyIterator) SwigPyIterator.__isub__ = new_instancemethod(_Poly.SwigPyIterator___isub__,None,SwigPyIterator) SwigPyIterator.__add__ = new_instancemethod(_Poly.SwigPyIterator___add__,None,SwigPyIterator) SwigPyIterator.__sub__ = new_instancemethod(_Poly.SwigPyIterator___sub__,None,SwigPyIterator) SwigPyIterator_swigregister = _Poly.SwigPyIterator_swigregister SwigPyIterator_swigregister(SwigPyIterator) import OCC.Standard import OCC.gp import OCC.NCollection import OCC.MMgt import OCC.TColgp import OCC.TCollection import OCC.TColStd import OCC.TShort def register_handle(handle, base_object): """ Inserts the handle into the base object to prevent memory corruption in certain cases """ try: if base_object.IsKind("Standard_Transient"): base_object.thisHandle = handle base_object.thisown = False except: pass class poly(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def Catenate(*args): """ * Computes and stores the link from nodes to triangles and from triangles to neighbouring triangles. This tool is obsolete, replaced by Poly_CoherentTriangulation Algorithm to make minimal loops in a graph Join several triangulations to one new triangulation object. The new triangulation is just a mechanical sum of input triangulations, without node sharing. UV coordinates are dropped in the result. :param lstTri: :type lstTri: Poly_ListOfTriangulation & :rtype: Handle_Poly_Triangulation """ return _Poly.poly_Catenate(*args) Catenate = staticmethod(Catenate) def Write(*args): """ * Writes the content of the triangulation <T> on the stream <OS>. If <Compact> is true this is a 'save' format intended to be read back with the Read method. If compact is False it is a 'Dump' format intended to be informative. :param T: :type T: Handle_Poly_Triangulation & :param OS: :type OS: Standard_OStream & :param Compact: default value is Standard_True :type Compact: bool :rtype: void * Writes the content of the 3D polygon <P> on the stream <OS>. If <Compact> is true this is a 'save' format intended to be read back with the Read method. If compact is False it is a 'Dump' format intended to be informative. :param P: :type P: Handle_Poly_Polygon3D & :param OS: :type OS: Standard_OStream & :param Compact: default value is Standard_True :type Compact: bool :rtype: void * Writes the content of the 2D polygon <P> on the stream <OS>. If <Compact> is true this is a 'save' format intended to be read back with the Read method. If compact is False it is a 'Dump' format intended to be informative. :param P: :type P: Handle_Poly_Polygon2D & :param OS: :type OS: Standard_OStream & :param Compact: default value is Standard_True :type Compact: bool :rtype: void """ return _Poly.poly_Write(*args) Write = staticmethod(Write) def Dump(*args): """ * Dumps the triangulation. This is a call to the previous method with Comapct set to False. :param T: :type T: Handle_Poly_Triangulation & :param OS: :type OS: Standard_OStream & :rtype: void * Dumps the 3D polygon. This is a call to the previous method with Comapct set to False. :param P: :type P: Handle_Poly_Polygon3D & :param OS: :type OS: Standard_OStream & :rtype: void * Dumps the 2D polygon. This is a call to the previous method with Comapct set to False. :param P: :type P: Handle_Poly_Polygon2D & :param OS: :type OS: Standard_OStream & :rtype: void """ return _Poly.poly_Dump(*args) Dump = staticmethod(Dump) def ReadTriangulationFromString(self, *args): """ReadTriangulationFromString(poly self, std::string src)""" return _Poly.poly_ReadTriangulationFromString(self, *args) def ReadPolygon3DFromString(self, *args): """ReadPolygon3DFromString(poly self, std::string src)""" return _Poly.poly_ReadPolygon3DFromString(self, *args) def ReadPolygon2DFromString(self, *args): """ReadPolygon2DFromString(poly self, std::string src)""" return _Poly.poly_ReadPolygon2DFromString(self, *args) def ComputeNormals(*args): """ * Compute node normals for face triangulation as mean normal of surrounding triangles :param Tri: :type Tri: Handle_Poly_Triangulation & :rtype: void """ return _Poly.poly_ComputeNormals(*args) ComputeNormals = staticmethod(ComputeNormals) def PointOnTriangle(*args): """ * Computes parameters of the point P on triangle defined by points P1, P2, and P3, in 2d. The parameters U and V are defined so that P = P1 + U * (P2 - P1) + V * (P3 - P1), with U >= 0, V >= 0, U + V <= 1. If P is located outside of triangle, or triangle is degenerated, the returned parameters correspond to closest point, and returned value is square of the distance from original point to triangle (0 if point is inside). :param P1: :type P1: gp_XY :param P2: :type P2: gp_XY :param P3: :type P3: gp_XY :param P: :type P: gp_XY :param UV: :type UV: gp_XY :rtype: float """ return _Poly.poly_PointOnTriangle(*args) PointOnTriangle = staticmethod(PointOnTriangle) def __init__(self): """__init__(Poly self) -> poly""" _Poly.poly_swiginit(self,_Poly.new_poly()) __swig_destroy__ = _Poly.delete_poly poly.ReadTriangulationFromString = new_instancemethod(_Poly.poly_ReadTriangulationFromString,None,poly) poly.ReadPolygon3DFromString = new_instancemethod(_Poly.poly_ReadPolygon3DFromString,None,poly) poly.ReadPolygon2DFromString = new_instancemethod(_Poly.poly_ReadPolygon2DFromString,None,poly) poly_swigregister = _Poly.poly_swigregister poly_swigregister(poly) def poly_Catenate(*args): """ * Computes and stores the link from nodes to triangles and from triangles to neighbouring triangles. This tool is obsolete, replaced by Poly_CoherentTriangulation Algorithm to make minimal loops in a graph Join several triangulations to one new triangulation object. The new triangulation is just a mechanical sum of input triangulations, without node sharing. UV coordinates are dropped in the result. :param lstTri: :type lstTri: Poly_ListOfTriangulation & :rtype: Handle_Poly_Triangulation """ return _Poly.poly_Catenate(*args) def poly_Write(*args): """ * Writes the content of the triangulation <T> on the stream <OS>. If <Compact> is true this is a 'save' format intended to be read back with the Read method. If compact is False it is a 'Dump' format intended to be informative. :param T: :type T: Handle_Poly_Triangulation & :param OS: :type OS: Standard_OStream & :param Compact: default value is Standard_True :type Compact: bool :rtype: void * Writes the content of the 3D polygon <P> on the stream <OS>. If <Compact> is true this is a 'save' format intended to be read back with the Read method. If compact is False it is a 'Dump' format intended to be informative. :param P: :type P: Handle_Poly_Polygon3D & :param OS: :type OS: Standard_OStream & :param Compact: default value is Standard_True :type Compact: bool :rtype: void * Writes the content of the 2D polygon <P> on the stream <OS>. If <Compact> is true this is a 'save' format intended to be read back with the Read method. If compact is False it is a 'Dump' format intended to be informative. :param P: :type P: Handle_Poly_Polygon2D & :param OS: :type OS: Standard_OStream & :param Compact: default value is Standard_True :type Compact: bool :rtype: void """ return _Poly.poly_Write(*args) def poly_Dump(*args): """ * Dumps the triangulation. This is a call to the previous method with Comapct set to False. :param T: :type T: Handle_Poly_Triangulation & :param OS: :type OS: Standard_OStream & :rtype: void * Dumps the 3D polygon. This is a call to the previous method with Comapct set to False. :param P: :type P: Handle_Poly_Polygon3D & :param OS: :type OS: Standard_OStream & :rtype: void * Dumps the 2D polygon. This is a call to the previous method with Comapct set to False. :param P: :type P: Handle_Poly_Polygon2D & :param OS: :type OS: Standard_OStream & :rtype: void """ return _Poly.poly_Dump(*args) def poly_ComputeNormals(*args): """ * Compute node normals for face triangulation as mean normal of surrounding triangles :param Tri: :type Tri: Handle_Poly_Triangulation & :rtype: void """ return _Poly.poly_ComputeNormals(*args) def poly_PointOnTriangle(*args): """ * Computes parameters of the point P on triangle defined by points P1, P2, and P3, in 2d. The parameters U and V are defined so that P = P1 + U * (P2 - P1) + V * (P3 - P1), with U >= 0, V >= 0, U + V <= 1. If P is located outside of triangle, or triangle is degenerated, the returned parameters correspond to closest point, and returned value is square of the distance from original point to triangle (0 if point is inside). :param P1: :type P1: gp_XY :param P2: :type P2: gp_XY :param P3: :type P3: gp_XY :param P: :type P: gp_XY :param UV: :type UV: gp_XY :rtype: float """ return _Poly.poly_PointOnTriangle(*args) class Poly_Array1OfTriangle(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :param Low: :type Low: int :param Up: :type Up: int :rtype: None :param Item: :type Item: Poly_Triangle & :param Low: :type Low: int :param Up: :type Up: int :rtype: None """ _Poly.Poly_Array1OfTriangle_swiginit(self,_Poly.new_Poly_Array1OfTriangle(*args)) def Init(self, *args): """ :param V: :type V: Poly_Triangle & :rtype: None """ return _Poly.Poly_Array1OfTriangle_Init(self, *args) def Destroy(self, *args): """ :rtype: None """ return _Poly.Poly_Array1OfTriangle_Destroy(self, *args) def IsAllocated(self, *args): """ :rtype: bool """ return _Poly.Poly_Array1OfTriangle_IsAllocated(self, *args) def Assign(self, *args): """ :param Other: :type Other: Poly_Array1OfTriangle & :rtype: Poly_Array1OfTriangle """ return _Poly.Poly_Array1OfTriangle_Assign(self, *args) def Set(self, *args): """ :param Other: :type Other: Poly_Array1OfTriangle & :rtype: Poly_Array1OfTriangle """ return _Poly.Poly_Array1OfTriangle_Set(self, *args) def Length(self, *args): """ :rtype: int """ return _Poly.Poly_Array1OfTriangle_Length(self, *args) def Lower(self, *args): """ :rtype: int """ return _Poly.Poly_Array1OfTriangle_Lower(self, *args) def Upper(self, *args): """ :rtype: int """ return _Poly.Poly_Array1OfTriangle_Upper(self, *args) def SetValue(self, *args): """ :param Index: :type Index: int :param Value: :type Value: Poly_Triangle & :rtype: None """ return _Poly.Poly_Array1OfTriangle_SetValue(self, *args) def Value(self, *args): """ :param Index: :type Index: int :rtype: Poly_Triangle """ return _Poly.Poly_Array1OfTriangle_Value(self, *args) def ChangeValue(self, *args): """ :param Index: :type Index: int :rtype: Poly_Triangle """ return _Poly.Poly_Array1OfTriangle_ChangeValue(self, *args) __swig_destroy__ = _Poly.delete_Poly_Array1OfTriangle Poly_Array1OfTriangle.Init = new_instancemethod(_Poly.Poly_Array1OfTriangle_Init,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Destroy = new_instancemethod(_Poly.Poly_Array1OfTriangle_Destroy,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.IsAllocated = new_instancemethod(_Poly.Poly_Array1OfTriangle_IsAllocated,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Assign = new_instancemethod(_Poly.Poly_Array1OfTriangle_Assign,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Set = new_instancemethod(_Poly.Poly_Array1OfTriangle_Set,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Length = new_instancemethod(_Poly.Poly_Array1OfTriangle_Length,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Lower = new_instancemethod(_Poly.Poly_Array1OfTriangle_Lower,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Upper = new_instancemethod(_Poly.Poly_Array1OfTriangle_Upper,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.SetValue = new_instancemethod(_Poly.Poly_Array1OfTriangle_SetValue,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.Value = new_instancemethod(_Poly.Poly_Array1OfTriangle_Value,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle.ChangeValue = new_instancemethod(_Poly.Poly_Array1OfTriangle_ChangeValue,None,Poly_Array1OfTriangle) Poly_Array1OfTriangle_swigregister = _Poly.Poly_Array1OfTriangle_swigregister Poly_Array1OfTriangle_swigregister(Poly_Array1OfTriangle) class Poly_CoherentLink(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * /** * Empty constructor. */ :rtype: None * /** * Constructor. Creates a Link that has no reference to 'opposite nodes'. * This constructor is useful to create temporary object that is not * inserted into any existing triangulation. */ :param iNode0: :type iNode0: int :param iNode1: :type iNode1: int :rtype: None * /** * Constructor, takes a triangle and a side. A link is created always such * that myNode[0] < myNode[1]. Unlike the previous constructor, this one * assigns the 'opposite node' fields. This constructor is used when a * link is inserted into a Poly_CoherentTriangulation structure. * @param theTri * Triangle containing the link that is created * @param iSide * Can be 0, 1 or 2. Index of the node */ :param theTri: :type theTri: Poly_CoherentTriangle & :param iSide: :type iSide: int :rtype: None """ _Poly.Poly_CoherentLink_swiginit(self,_Poly.new_Poly_CoherentLink(*args)) def Node(self, *args): """ * /** * Return the node index in the current triangulation. * @param ind * 0 or 1 making distinction of the two nodes that constitute the Link. * Node(0) always returns a smaller number than Node(1). */ :param ind: :type ind: int :rtype: inline int """ return _Poly.Poly_CoherentLink_Node(self, *args) def OppositeNode(self, *args): """ * /** * Return the opposite node (belonging to the left or right incident triangle) * index in the current triangulation. * @param ind * 0 or 1 making distinction of the two involved triangles: 0 on the left, * 1 on the right side of the Link. */ :param ind: :type ind: int :rtype: inline int """ return _Poly.Poly_CoherentLink_OppositeNode(self, *args) def GetAttribute(self, *args): """ * /** * Query the attribute of the Link. */ :rtype: inline Standard_Address """ return _Poly.Poly_CoherentLink_GetAttribute(self, *args) def SetAttribute(self, *args): """ * /** * Set the attribute of the Link. */ :param theAtt: :type theAtt: Standard_Address :rtype: inline void """ return _Poly.Poly_CoherentLink_SetAttribute(self, *args) def IsEmpty(self, *args): """ * /** * Query the status of the link - if it is an invalid one. * An invalid link has Node members equal to -1. */ :rtype: inline bool """ return _Poly.Poly_CoherentLink_IsEmpty(self, *args) def Nullify(self, *args): """ * /** * Invalidate this Link. */ :rtype: inline void """ return _Poly.Poly_CoherentLink_Nullify(self, *args) __swig_destroy__ = _Poly.delete_Poly_CoherentLink Poly_CoherentLink.Node = new_instancemethod(_Poly.Poly_CoherentLink_Node,None,Poly_CoherentLink) Poly_CoherentLink.OppositeNode = new_instancemethod(_Poly.Poly_CoherentLink_OppositeNode,None,Poly_CoherentLink) Poly_CoherentLink.GetAttribute = new_instancemethod(_Poly.Poly_CoherentLink_GetAttribute,None,Poly_CoherentLink) Poly_CoherentLink.SetAttribute = new_instancemethod(_Poly.Poly_CoherentLink_SetAttribute,None,Poly_CoherentLink) Poly_CoherentLink.IsEmpty = new_instancemethod(_Poly.Poly_CoherentLink_IsEmpty,None,Poly_CoherentLink) Poly_CoherentLink.Nullify = new_instancemethod(_Poly.Poly_CoherentLink_Nullify,None,Poly_CoherentLink) Poly_CoherentLink_swigregister = _Poly.Poly_CoherentLink_swigregister Poly_CoherentLink_swigregister(Poly_CoherentLink) class Poly_CoherentNode(OCC.gp.gp_XYZ): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * /** * Empty constructor. */ :rtype: None * /** * Constructor. */ :param thePnt: :type thePnt: gp_XYZ :rtype: None """ _Poly.Poly_CoherentNode_swiginit(self,_Poly.new_Poly_CoherentNode(*args)) def SetUV(self, *args): """ * /** * Set the UV coordinates of the Node. */ :param theU: :type theU: float :param theV: :type theV: float :rtype: inline void """ return _Poly.Poly_CoherentNode_SetUV(self, *args) def GetU(self, *args): """ * /** * Get U coordinate of the Node. */ :rtype: inline float """ return _Poly.Poly_CoherentNode_GetU(self, *args) def GetV(self, *args): """ * /** * Get V coordinate of the Node. */ :rtype: inline float """ return _Poly.Poly_CoherentNode_GetV(self, *args) def SetNormal(self, *args): """ * /** * Define the normal vector in the Node. */ :param theVector: :type theVector: gp_XYZ :rtype: None """ return _Poly.Poly_CoherentNode_SetNormal(self, *args) def HasNormal(self, *args): """ * /** * Query if the Node contains a normal vector. */ :rtype: inline bool """ return _Poly.Poly_CoherentNode_HasNormal(self, *args) def GetNormal(self, *args): """ * /** * Get the stored normal in the node. */ :rtype: inline gp_XYZ """ return _Poly.Poly_CoherentNode_GetNormal(self, *args) def SetIndex(self, *args): """ * /** * Set the value of node Index. */ :param theIndex: :type theIndex: int :rtype: inline void """ return _Poly.Poly_CoherentNode_SetIndex(self, *args) def GetIndex(self, *args): """ * /** * Get the value of node Index. */ :rtype: inline int """ return _Poly.Poly_CoherentNode_GetIndex(self, *args) def IsFreeNode(self, *args): """ * /** * Check if this is a free node, i.e., a node without a single * incident triangle. */ :rtype: inline bool """ return _Poly.Poly_CoherentNode_IsFreeNode(self, *args) def Clear(self, *args): """ * /** * Reset the Node to void. */ :param &: :type &: Handle_NCollection_BaseAllocator :rtype: None """ return _Poly.Poly_CoherentNode_Clear(self, *args) def AddTriangle(self, *args): """ * /** * Connect a triangle to this Node. */ :param theTri: :type theTri: Poly_CoherentTriangle & :param theA: :type theA: Handle_NCollection_BaseAllocator & :rtype: None """ return _Poly.Poly_CoherentNode_AddTriangle(self, *args) def RemoveTriangle(self, *args): """ * /** * Disconnect a triangle from this Node. */ :param theTri: :type theTri: Poly_CoherentTriangle & :param theA: :type theA: Handle_NCollection_BaseAllocator & :rtype: bool """ return _Poly.Poly_CoherentNode_RemoveTriangle(self, *args) def TriangleIterator(self, *args): """ * /** * Create an iterator of incident triangles. */ :rtype: inline Poly_CoherentTriPtr::Iterator """ return _Poly.Poly_CoherentNode_TriangleIterator(self, *args) def DumpToString(self): """DumpToString(Poly_CoherentNode self) -> std::string""" return _Poly.Poly_CoherentNode_DumpToString(self) __swig_destroy__ = _Poly.delete_Poly_CoherentNode Poly_CoherentNode.SetUV = new_instancemethod(_Poly.Poly_CoherentNode_SetUV,None,Poly_CoherentNode) Poly_CoherentNode.GetU = new_instancemethod(_Poly.Poly_CoherentNode_GetU,None,Poly_CoherentNode) Poly_CoherentNode.GetV = new_instancemethod(_Poly.Poly_CoherentNode_GetV,None,Poly_CoherentNode) Poly_CoherentNode.SetNormal = new_instancemethod(_Poly.Poly_CoherentNode_SetNormal,None,Poly_CoherentNode) Poly_CoherentNode.HasNormal = new_instancemethod(_Poly.Poly_CoherentNode_HasNormal,None,Poly_CoherentNode) Poly_CoherentNode.GetNormal = new_instancemethod(_Poly.Poly_CoherentNode_GetNormal,None,Poly_CoherentNode) Poly_CoherentNode.SetIndex = new_instancemethod(_Poly.Poly_CoherentNode_SetIndex,None,Poly_CoherentNode) Poly_CoherentNode.GetIndex = new_instancemethod(_Poly.Poly_CoherentNode_GetIndex,None,Poly_CoherentNode) Poly_CoherentNode.IsFreeNode = new_instancemethod(_Poly.Poly_CoherentNode_IsFreeNode,None,Poly_CoherentNode) Poly_CoherentNode.Clear = new_instancemethod(_Poly.Poly_CoherentNode_Clear,None,Poly_CoherentNode) Poly_CoherentNode.AddTriangle = new_instancemethod(_Poly.Poly_CoherentNode_AddTriangle,None,Poly_CoherentNode) Poly_CoherentNode.RemoveTriangle = new_instancemethod(_Poly.Poly_CoherentNode_RemoveTriangle,None,Poly_CoherentNode) Poly_CoherentNode.TriangleIterator = new_instancemethod(_Poly.Poly_CoherentNode_TriangleIterator,None,Poly_CoherentNode) Poly_CoherentNode.DumpToString = new_instancemethod(_Poly.Poly_CoherentNode_DumpToString,None,Poly_CoherentNode) Poly_CoherentNode_swigregister = _Poly.Poly_CoherentNode_swigregister Poly_CoherentNode_swigregister(Poly_CoherentNode) class Poly_CoherentTriangle(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * /** * Empty constructor. */ :rtype: None * /** * Constructor. */ :param iNode0: :type iNode0: int :param iNode1: :type iNode1: int :param iNode2: :type iNode2: int :rtype: None """ _Poly.Poly_CoherentTriangle_swiginit(self,_Poly.new_Poly_CoherentTriangle(*args)) def Node(self, *args): """ * /** * Query the node index in the position given by the parameter 'ind' */ :param ind: :type ind: int :rtype: inline int """ return _Poly.Poly_CoherentTriangle_Node(self, *args) def IsEmpty(self, *args): """ * /** * Query if this is a valid triangle. */ :rtype: inline bool """ return _Poly.Poly_CoherentTriangle_IsEmpty(self, *args) def SetConnection(self, *args): """ * /** * Create connection with another triangle theTri. * This method creates both connections: in this triangle and in theTri. You * do not need to call the same method on triangle theTr. * @param iConn * Can be 0, 1 or 2 - index of the node that is opposite to the connection * (shared link). * @param theTr * Triangle that is connected on the given link. * returns * True if successful, False if the connection is rejected * due to improper topology. */ :param iConn: :type iConn: int :param theTr: :type theTr: Poly_CoherentTriangle & :rtype: bool * /** * Create connection with another triangle theTri. * This method creates both connections: in this triangle and in theTri. * This method is slower than the previous one, because it makes analysis * what sides of both triangles are connected. * @param theTri * Triangle that is connected. * returns * True if successful, False if the connection is rejected * due to improper topology. */ :param theTri: :type theTri: Poly_CoherentTriangle & :rtype: bool """ return _Poly.Poly_CoherentTriangle_SetConnection(self, *args) def RemoveConnection(self, *args): """ * /** * Remove the connection with the given index. * @param iConn * Can be 0, 1 or 2 - index of the node that is opposite to the connection * (shared link). */ :param iConn: :type iConn: int :rtype: None * /** * Remove the connection with the given Triangle. * returns * True if successfuol or False if the connection has not been found. */ :param theTri: :type theTri: Poly_CoherentTriangle & :rtype: bool """ return _Poly.Poly_CoherentTriangle_RemoveConnection(self, *args) def NConnections(self, *args): """ * /** * Query the number of connected triangles. */ :rtype: inline int """ return _Poly.Poly_CoherentTriangle_NConnections(self, *args) def GetConnectedNode(self, *args): """ * /** * Query the connected node on the given side. * Returns -1 if there is no connection on the specified side. */ :param iConn: :type iConn: int :rtype: inline int """ return _Poly.Poly_CoherentTriangle_GetConnectedNode(self, *args) def GetConnectedTri(self, *args): """ * /** * Query the connected triangle on the given side. * Returns NULL if there is no connection on the specified side. */ :param iConn: :type iConn: int :rtype: inline Poly_CoherentTriangle * """ return _Poly.Poly_CoherentTriangle_GetConnectedTri(self, *args) def GetLink(self, *args): """ * /** * Query the Link associate with the given side of the Triangle. * May return NULL if there are no links in the triangulation. */ :param iLink: :type iLink: int :rtype: inline Poly_CoherentLink * """ return _Poly.Poly_CoherentTriangle_GetLink(self, *args) def FindConnection(self, *args): """ * /** * Retuns the index of the connection with the given triangle, or -1 if not * found. */ :param &: :type &: Poly_CoherentTriangle :rtype: int """ return _Poly.Poly_CoherentTriangle_FindConnection(self, *args) __swig_destroy__ = _Poly.delete_Poly_CoherentTriangle Poly_CoherentTriangle.Node = new_instancemethod(_Poly.Poly_CoherentTriangle_Node,None,Poly_CoherentTriangle) Poly_CoherentTriangle.IsEmpty = new_instancemethod(_Poly.Poly_CoherentTriangle_IsEmpty,None,Poly_CoherentTriangle) Poly_CoherentTriangle.SetConnection = new_instancemethod(_Poly.Poly_CoherentTriangle_SetConnection,None,Poly_CoherentTriangle) Poly_CoherentTriangle.RemoveConnection = new_instancemethod(_Poly.Poly_CoherentTriangle_RemoveConnection,None,Poly_CoherentTriangle) Poly_CoherentTriangle.NConnections = new_instancemethod(_Poly.Poly_CoherentTriangle_NConnections,None,Poly_CoherentTriangle) Poly_CoherentTriangle.GetConnectedNode = new_instancemethod(_Poly.Poly_CoherentTriangle_GetConnectedNode,None,Poly_CoherentTriangle) Poly_CoherentTriangle.GetConnectedTri = new_instancemethod(_Poly.Poly_CoherentTriangle_GetConnectedTri,None,Poly_CoherentTriangle) Poly_CoherentTriangle.GetLink = new_instancemethod(_Poly.Poly_CoherentTriangle_GetLink,None,Poly_CoherentTriangle) Poly_CoherentTriangle.FindConnection = new_instancemethod(_Poly.Poly_CoherentTriangle_FindConnection,None,Poly_CoherentTriangle) Poly_CoherentTriangle_swigregister = _Poly.Poly_CoherentTriangle_swigregister Poly_CoherentTriangle_swigregister(Poly_CoherentTriangle) class Poly_Connect(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Constructs an algorithm to explore the adjacency data of nodes or triangles for the triangulation T. :param T: :type T: Handle_Poly_Triangulation & :rtype: None """ _Poly.Poly_Connect_swiginit(self,_Poly.new_Poly_Connect(*args)) def Triangulation(self, *args): """ * Returns the triangulation analyzed by this tool. :rtype: Handle_Poly_Triangulation """ return _Poly.Poly_Connect_Triangulation(self, *args) def Triangle(self, *args): """ * Returns the index of a triangle containing the node at index N in the nodes table specific to the triangulation analyzed by this tool :param N: :type N: int :rtype: int """ return _Poly.Poly_Connect_Triangle(self, *args) def Triangles(self, *args): """ * Returns in t1, t2 and t3, the indices of the 3 triangles adjacent to the triangle at index T in the triangles table specific to the triangulation analyzed by this tool. Warning Null indices are returned when there are fewer than 3 adjacent triangles. :param T: :type T: int :param t1: :type t1: int & :param t2: :type t2: int & :param t3: :type t3: int & :rtype: None """ return _Poly.Poly_Connect_Triangles(self, *args) def Nodes(self, *args): """ * Returns, in n1, n2 and n3, the indices of the 3 nodes adjacent to the triangle referenced at index T in the triangles table specific to the triangulation analyzed by this tool. Warning Null indices are returned when there are fewer than 3 adjacent nodes. :param T: :type T: int :param n1: :type n1: int & :param n2: :type n2: int & :param n3: :type n3: int & :rtype: None """ return _Poly.Poly_Connect_Nodes(self, *args) def Initialize(self, *args): """ * Initializes an iterator to search for all the triangles containing the node referenced at index N in the nodes table, for the triangulation analyzed by this tool. The iterator is managed by the following functions: - More, which checks if there are still elements in the iterator - Next, which positions the iterator on the next element - Value, which returns the current element. The use of such an iterator provides direct access to the triangles around a particular node, i.e. it avoids iterating on all the component triangles of a triangulation. Example Poly_Connect C(Tr); for (C.Initialize(n1);C.More();C.Next()) { t = C.Value(); } :param N: :type N: int :rtype: None """ return _Poly.Poly_Connect_Initialize(self, *args) def More(self, *args): """ * Returns true if there is another element in the iterator defined with the function Initialize (i.e. if there is another triangle containing the given node). :rtype: bool """ return _Poly.Poly_Connect_More(self, *args) def Next(self, *args): """ * Advances the iterator defined with the function Initialize to access the next triangle. Note: There is no action if the iterator is empty (i.e. if the function More returns false).- :rtype: None """ return _Poly.Poly_Connect_Next(self, *args) def Value(self, *args): """ * Returns the index of the current triangle to which the iterator, defined with the function Initialize, points. This is an index in the triangles table specific to the triangulation analyzed by this tool :rtype: int """ return _Poly.Poly_Connect_Value(self, *args) __swig_destroy__ = _Poly.delete_Poly_Connect Poly_Connect.Triangulation = new_instancemethod(_Poly.Poly_Connect_Triangulation,None,Poly_Connect) Poly_Connect.Triangle = new_instancemethod(_Poly.Poly_Connect_Triangle,None,Poly_Connect) Poly_Connect.Triangles = new_instancemethod(_Poly.Poly_Connect_Triangles,None,Poly_Connect) Poly_Connect.Nodes = new_instancemethod(_Poly.Poly_Connect_Nodes,None,Poly_Connect) Poly_Connect.Initialize = new_instancemethod(_Poly.Poly_Connect_Initialize,None,Poly_Connect) Poly_Connect.More = new_instancemethod(_Poly.Poly_Connect_More,None,Poly_Connect) Poly_Connect.Next = new_instancemethod(_Poly.Poly_Connect_Next,None,Poly_Connect) Poly_Connect.Value = new_instancemethod(_Poly.Poly_Connect_Value,None,Poly_Connect) Poly_Connect_swigregister = _Poly.Poly_Connect_swigregister Poly_Connect_swigregister(Poly_Connect) class Poly_HArray1OfTriangle(OCC.MMgt.MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :param Low: :type Low: int :param Up: :type Up: int :rtype: None :param Low: :type Low: int :param Up: :type Up: int :param V: :type V: Poly_Triangle & :rtype: None """ _Poly.Poly_HArray1OfTriangle_swiginit(self,_Poly.new_Poly_HArray1OfTriangle(*args)) def Init(self, *args): """ :param V: :type V: Poly_Triangle & :rtype: None """ return _Poly.Poly_HArray1OfTriangle_Init(self, *args) def Length(self, *args): """ :rtype: int """ return _Poly.Poly_HArray1OfTriangle_Length(self, *args) def Lower(self, *args): """ :rtype: int """ return _Poly.Poly_HArray1OfTriangle_Lower(self, *args) def Upper(self, *args): """ :rtype: int """ return _Poly.Poly_HArray1OfTriangle_Upper(self, *args) def SetValue(self, *args): """ :param Index: :type Index: int :param Value: :type Value: Poly_Triangle & :rtype: None """ return _Poly.Poly_HArray1OfTriangle_SetValue(self, *args) def Value(self, *args): """ :param Index: :type Index: int :rtype: Poly_Triangle """ return _Poly.Poly_HArray1OfTriangle_Value(self, *args) def ChangeValue(self, *args): """ :param Index: :type Index: int :rtype: Poly_Triangle """ return _Poly.Poly_HArray1OfTriangle_ChangeValue(self, *args) def Array1(self, *args): """ :rtype: Poly_Array1OfTriangle """ return _Poly.Poly_HArray1OfTriangle_Array1(self, *args) def ChangeArray1(self, *args): """ :rtype: Poly_Array1OfTriangle """ return _Poly.Poly_HArray1OfTriangle_ChangeArray1(self, *args) def GetHandle(self): try: return self.thisHandle except: self.thisHandle = Handle_Poly_HArray1OfTriangle(self) self.thisown = False return self.thisHandle __swig_destroy__ = _Poly.delete_Poly_HArray1OfTriangle Poly_HArray1OfTriangle.Init = new_instancemethod(_Poly.Poly_HArray1OfTriangle_Init,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.Length = new_instancemethod(_Poly.Poly_HArray1OfTriangle_Length,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.Lower = new_instancemethod(_Poly.Poly_HArray1OfTriangle_Lower,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.Upper = new_instancemethod(_Poly.Poly_HArray1OfTriangle_Upper,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.SetValue = new_instancemethod(_Poly.Poly_HArray1OfTriangle_SetValue,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.Value = new_instancemethod(_Poly.Poly_HArray1OfTriangle_Value,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.ChangeValue = new_instancemethod(_Poly.Poly_HArray1OfTriangle_ChangeValue,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.Array1 = new_instancemethod(_Poly.Poly_HArray1OfTriangle_Array1,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle.ChangeArray1 = new_instancemethod(_Poly.Poly_HArray1OfTriangle_ChangeArray1,None,Poly_HArray1OfTriangle) Poly_HArray1OfTriangle_swigregister = _Poly.Poly_HArray1OfTriangle_swigregister Poly_HArray1OfTriangle_swigregister(Poly_HArray1OfTriangle) class Handle_Poly_HArray1OfTriangle(OCC.MMgt.Handle_MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): _Poly.Handle_Poly_HArray1OfTriangle_swiginit(self,_Poly.new_Handle_Poly_HArray1OfTriangle(*args)) # register the handle in the base object if len(args) > 0: register_handle(self, args[0]) DownCast = staticmethod(_Poly.Handle_Poly_HArray1OfTriangle_DownCast) __swig_destroy__ = _Poly.delete_Handle_Poly_HArray1OfTriangle Handle_Poly_HArray1OfTriangle.Nullify = new_instancemethod(_Poly.Handle_Poly_HArray1OfTriangle_Nullify,None,Handle_Poly_HArray1OfTriangle) Handle_Poly_HArray1OfTriangle.IsNull = new_instancemethod(_Poly.Handle_Poly_HArray1OfTriangle_IsNull,None,Handle_Poly_HArray1OfTriangle) Handle_Poly_HArray1OfTriangle.GetObject = new_instancemethod(_Poly.Handle_Poly_HArray1OfTriangle_GetObject,None,Handle_Poly_HArray1OfTriangle) Handle_Poly_HArray1OfTriangle_swigregister = _Poly.Handle_Poly_HArray1OfTriangle_swigregister Handle_Poly_HArray1OfTriangle_swigregister(Handle_Poly_HArray1OfTriangle) def Handle_Poly_HArray1OfTriangle_DownCast(*args): return _Poly.Handle_Poly_HArray1OfTriangle_DownCast(*args) Handle_Poly_HArray1OfTriangle_DownCast = _Poly.Handle_Poly_HArray1OfTriangle_DownCast class Poly_Polygon2D(OCC.MMgt.MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Constructs a 2D polygon defined by the table of points, <Nodes>. :param Nodes: :type Nodes: TColgp_Array1OfPnt2d :rtype: None """ _Poly.Poly_Polygon2D_swiginit(self,_Poly.new_Poly_Polygon2D(*args)) def Deflection(self, *args): """ * Returns the deflection of this polygon. Deflection is used in cases where the polygon is an approximate representation of a curve. Deflection represents the maximum distance permitted between any point on the curve and the corresponding point on the polygon. By default the deflection value is equal to 0. An algorithm using this 2D polygon with a deflection value equal to 0 considers that it is working with a true polygon and not with an approximate representation of a curve. The Deflection function is used to modify the deflection value of this polygon. The deflection value can be used by any algorithm working with 2D polygons. For example: - An algorithm may use a unique deflection value for all its polygons. In this case it is not necessary to use the Deflection function. - Or an algorithm may want to attach a different deflection to each polygon. In this case, the Deflection function is used to set a value on each polygon, and later to fetch the value. :rtype: float * Sets the deflection of this polygon to D :param D: :type D: float :rtype: None """ return _Poly.Poly_Polygon2D_Deflection(self, *args) def NbNodes(self, *args): """ * Returns the number of nodes in this polygon. Note: If the polygon is closed, the point of closure is repeated at the end of its table of nodes. Thus, on a closed triangle, the function NbNodes returns 4. :rtype: int """ return _Poly.Poly_Polygon2D_NbNodes(self, *args) def Nodes(self, *args): """ * Returns the table of nodes for this polygon. :rtype: TColgp_Array1OfPnt2d """ return _Poly.Poly_Polygon2D_Nodes(self, *args) def GetHandle(self): try: return self.thisHandle except: self.thisHandle = Handle_Poly_Polygon2D(self) self.thisown = False return self.thisHandle __swig_destroy__ = _Poly.delete_Poly_Polygon2D Poly_Polygon2D.Deflection = new_instancemethod(_Poly.Poly_Polygon2D_Deflection,None,Poly_Polygon2D) Poly_Polygon2D.NbNodes = new_instancemethod(_Poly.Poly_Polygon2D_NbNodes,None,Poly_Polygon2D) Poly_Polygon2D.Nodes = new_instancemethod(_Poly.Poly_Polygon2D_Nodes,None,Poly_Polygon2D) Poly_Polygon2D_swigregister = _Poly.Poly_Polygon2D_swigregister Poly_Polygon2D_swigregister(Poly_Polygon2D) class Handle_Poly_Polygon2D(OCC.MMgt.Handle_MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): _Poly.Handle_Poly_Polygon2D_swiginit(self,_Poly.new_Handle_Poly_Polygon2D(*args)) # register the handle in the base object if len(args) > 0: register_handle(self, args[0]) DownCast = staticmethod(_Poly.Handle_Poly_Polygon2D_DownCast) __swig_destroy__ = _Poly.delete_Handle_Poly_Polygon2D Handle_Poly_Polygon2D.Nullify = new_instancemethod(_Poly.Handle_Poly_Polygon2D_Nullify,None,Handle_Poly_Polygon2D) Handle_Poly_Polygon2D.IsNull = new_instancemethod(_Poly.Handle_Poly_Polygon2D_IsNull,None,Handle_Poly_Polygon2D) Handle_Poly_Polygon2D.GetObject = new_instancemethod(_Poly.Handle_Poly_Polygon2D_GetObject,None,Handle_Poly_Polygon2D) Handle_Poly_Polygon2D_swigregister = _Poly.Handle_Poly_Polygon2D_swigregister Handle_Poly_Polygon2D_swigregister(Handle_Poly_Polygon2D) def Handle_Poly_Polygon2D_DownCast(*args): return _Poly.Handle_Poly_Polygon2D_DownCast(*args) Handle_Poly_Polygon2D_DownCast = _Poly.Handle_Poly_Polygon2D_DownCast class Poly_Polygon3D(OCC.MMgt.MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * onstructs a 3D polygon defined by the table of points, Nodes. :param Nodes: :type Nodes: TColgp_Array1OfPnt :rtype: None * Constructs a 3D polygon defined by the table of points, Nodes, and the parallel table of parameters, Parameters, where each value of the table Parameters is the parameter of the corresponding point on the curve approximated by the constructed polygon. Warning Both the Nodes and Parameters tables must have the same bounds. This property is not checked at construction time. :param Nodes: :type Nodes: TColgp_Array1OfPnt :param Parameters: :type Parameters: TColStd_Array1OfReal & :rtype: None """ _Poly.Poly_Polygon3D_swiginit(self,_Poly.new_Poly_Polygon3D(*args)) def Deflection(self, *args): """ * Returns the deflection of this polygon :rtype: float * Sets the deflection of this polygon to D. See more on deflection in Poly_Polygon2D :param D: :type D: float :rtype: None """ return _Poly.Poly_Polygon3D_Deflection(self, *args) def NbNodes(self, *args): """ * Returns the number of nodes in this polygon. Note: If the polygon is closed, the point of closure is repeated at the end of its table of nodes. Thus, on a closed triangle the function NbNodes returns 4. :rtype: int """ return _Poly.Poly_Polygon3D_NbNodes(self, *args) def Nodes(self, *args): """ * Returns the table of nodes for this polygon. :rtype: TColgp_Array1OfPnt """ return _Poly.Poly_Polygon3D_Nodes(self, *args) def HasParameters(self, *args): """ * Returns the table of the parameters associated with each node in this polygon. HasParameters function checks if parameters are associated with the nodes of this polygon. :rtype: bool """ return _Poly.Poly_Polygon3D_HasParameters(self, *args) def Parameters(self, *args): """ * Returns true if parameters are associated with the nodes in this polygon. :rtype: TColStd_Array1OfReal """ return _Poly.Poly_Polygon3D_Parameters(self, *args) def ChangeParameters(self, *args): """ * Returns the table of the parameters associated with each node in this polygon. ChangeParameters function returnes the array as shared. Therefore if the table is selected by reference you can, by simply modifying it, directly modify the data structure of this polygon. :rtype: TColStd_Array1OfReal """ return _Poly.Poly_Polygon3D_ChangeParameters(self, *args) def GetHandle(self): try: return self.thisHandle except: self.thisHandle = Handle_Poly_Polygon3D(self) self.thisown = False return self.thisHandle __swig_destroy__ = _Poly.delete_Poly_Polygon3D Poly_Polygon3D.Deflection = new_instancemethod(_Poly.Poly_Polygon3D_Deflection,None,Poly_Polygon3D) Poly_Polygon3D.NbNodes = new_instancemethod(_Poly.Poly_Polygon3D_NbNodes,None,Poly_Polygon3D) Poly_Polygon3D.Nodes = new_instancemethod(_Poly.Poly_Polygon3D_Nodes,None,Poly_Polygon3D) Poly_Polygon3D.HasParameters = new_instancemethod(_Poly.Poly_Polygon3D_HasParameters,None,Poly_Polygon3D) Poly_Polygon3D.Parameters = new_instancemethod(_Poly.Poly_Polygon3D_Parameters,None,Poly_Polygon3D) Poly_Polygon3D.ChangeParameters = new_instancemethod(_Poly.Poly_Polygon3D_ChangeParameters,None,Poly_Polygon3D) Poly_Polygon3D_swigregister = _Poly.Poly_Polygon3D_swigregister Poly_Polygon3D_swigregister(Poly_Polygon3D) class Handle_Poly_Polygon3D(OCC.MMgt.Handle_MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): _Poly.Handle_Poly_Polygon3D_swiginit(self,_Poly.new_Handle_Poly_Polygon3D(*args)) # register the handle in the base object if len(args) > 0: register_handle(self, args[0]) DownCast = staticmethod(_Poly.Handle_Poly_Polygon3D_DownCast) __swig_destroy__ = _Poly.delete_Handle_Poly_Polygon3D Handle_Poly_Polygon3D.Nullify = new_instancemethod(_Poly.Handle_Poly_Polygon3D_Nullify,None,Handle_Poly_Polygon3D) Handle_Poly_Polygon3D.IsNull = new_instancemethod(_Poly.Handle_Poly_Polygon3D_IsNull,None,Handle_Poly_Polygon3D) Handle_Poly_Polygon3D.GetObject = new_instancemethod(_Poly.Handle_Poly_Polygon3D_GetObject,None,Handle_Poly_Polygon3D) Handle_Poly_Polygon3D_swigregister = _Poly.Handle_Poly_Polygon3D_swigregister Handle_Poly_Polygon3D_swigregister(Handle_Poly_Polygon3D) def Handle_Poly_Polygon3D_DownCast(*args): return _Poly.Handle_Poly_Polygon3D_DownCast(*args) Handle_Poly_Polygon3D_DownCast = _Poly.Handle_Poly_Polygon3D_DownCast class Poly_PolygonOnTriangulation(OCC.MMgt.MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Constructs a 3D polygon on the triangulation of a shape, defined by the table of nodes, <Nodes>. :param Nodes: :type Nodes: TColStd_Array1OfInteger & :rtype: None * Constructs a 3D polygon on the triangulation of a shape, defined by: - the table of nodes, Nodes, and the table of parameters, <Parameters>. where: - a node value is an index in the table of nodes specific to an existing triangulation of a shape - and a parameter value is the value of the parameter of the corresponding point on the curve approximated by the constructed polygon. Warning The tables Nodes and Parameters must be the same size. This property is not checked at construction time. :param Nodes: :type Nodes: TColStd_Array1OfInteger & :param Parameters: :type Parameters: TColStd_Array1OfReal & :rtype: None """ _Poly.Poly_PolygonOnTriangulation_swiginit(self,_Poly.new_Poly_PolygonOnTriangulation(*args)) def Deflection(self, *args): """ * Returns the deflection of this polygon :rtype: float * Sets the deflection of this polygon to D. See more on deflection in Poly_Polygones2D. :param D: :type D: float :rtype: None """ return _Poly.Poly_PolygonOnTriangulation_Deflection(self, *args) def NbNodes(self, *args): """ * Returns the number of nodes for this polygon. Note: If the polygon is closed, the point of closure is repeated at the end of its table of nodes. Thus, on a closed triangle, the function NbNodes returns 4. :rtype: int """ return _Poly.Poly_PolygonOnTriangulation_NbNodes(self, *args) def Nodes(self, *args): """ * Returns the table of nodes for this polygon. A node value is an index in the table of nodes specific to an existing triangulation of a shape. :rtype: TColStd_Array1OfInteger """ return _Poly.Poly_PolygonOnTriangulation_Nodes(self, *args) def HasParameters(self, *args): """ * Returns true if parameters are associated with the nodes in this polygon. :rtype: bool """ return _Poly.Poly_PolygonOnTriangulation_HasParameters(self, *args) def Parameters(self, *args): """ * Returns the table of the parameters associated with each node in this polygon. Warning Use the function HasParameters to check if parameters are associated with the nodes in this polygon. :rtype: Handle_TColStd_HArray1OfReal """ return _Poly.Poly_PolygonOnTriangulation_Parameters(self, *args) def GetHandle(self): try: return self.thisHandle except: self.thisHandle = Handle_Poly_PolygonOnTriangulation(self) self.thisown = False return self.thisHandle __swig_destroy__ = _Poly.delete_Poly_PolygonOnTriangulation Poly_PolygonOnTriangulation.Deflection = new_instancemethod(_Poly.Poly_PolygonOnTriangulation_Deflection,None,Poly_PolygonOnTriangulation) Poly_PolygonOnTriangulation.NbNodes = new_instancemethod(_Poly.Poly_PolygonOnTriangulation_NbNodes,None,Poly_PolygonOnTriangulation) Poly_PolygonOnTriangulation.Nodes = new_instancemethod(_Poly.Poly_PolygonOnTriangulation_Nodes,None,Poly_PolygonOnTriangulation) Poly_PolygonOnTriangulation.HasParameters = new_instancemethod(_Poly.Poly_PolygonOnTriangulation_HasParameters,None,Poly_PolygonOnTriangulation) Poly_PolygonOnTriangulation.Parameters = new_instancemethod(_Poly.Poly_PolygonOnTriangulation_Parameters,None,Poly_PolygonOnTriangulation) Poly_PolygonOnTriangulation_swigregister = _Poly.Poly_PolygonOnTriangulation_swigregister Poly_PolygonOnTriangulation_swigregister(Poly_PolygonOnTriangulation) class Handle_Poly_PolygonOnTriangulation(OCC.MMgt.Handle_MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): _Poly.Handle_Poly_PolygonOnTriangulation_swiginit(self,_Poly.new_Handle_Poly_PolygonOnTriangulation(*args)) # register the handle in the base object if len(args) > 0: register_handle(self, args[0]) DownCast = staticmethod(_Poly.Handle_Poly_PolygonOnTriangulation_DownCast) __swig_destroy__ = _Poly.delete_Handle_Poly_PolygonOnTriangulation Handle_Poly_PolygonOnTriangulation.Nullify = new_instancemethod(_Poly.Handle_Poly_PolygonOnTriangulation_Nullify,None,Handle_Poly_PolygonOnTriangulation) Handle_Poly_PolygonOnTriangulation.IsNull = new_instancemethod(_Poly.Handle_Poly_PolygonOnTriangulation_IsNull,None,Handle_Poly_PolygonOnTriangulation) Handle_Poly_PolygonOnTriangulation.GetObject = new_instancemethod(_Poly.Handle_Poly_PolygonOnTriangulation_GetObject,None,Handle_Poly_PolygonOnTriangulation) Handle_Poly_PolygonOnTriangulation_swigregister = _Poly.Handle_Poly_PolygonOnTriangulation_swigregister Handle_Poly_PolygonOnTriangulation_swigregister(Handle_Poly_PolygonOnTriangulation) def Handle_Poly_PolygonOnTriangulation_DownCast(*args): return _Poly.Handle_Poly_PolygonOnTriangulation_DownCast(*args) Handle_Poly_PolygonOnTriangulation_DownCast = _Poly.Handle_Poly_PolygonOnTriangulation_DownCast class Poly_Triangle(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Constructs a triangle and sets all indices to zero. :rtype: None * Constructs a triangle and sets its three indices to N1, N2 and N3 respectively, where these node values are indices in the table of nodes specific to an existing triangulation of a shape. :param N1: :type N1: int :param N2: :type N2: int :param N3: :type N3: int :rtype: None """ _Poly.Poly_Triangle_swiginit(self,_Poly.new_Poly_Triangle(*args)) def Set(self, *args): """ * Sets the value of the three nodes of this triangle to N1, N2 and N3 respectively. :param N1: :type N1: int :param N2: :type N2: int :param N3: :type N3: int :rtype: None * Sets the value of the Indexth node of this triangle to Node. Raises OutOfRange if Index is not in 1,2,3 :param Index: :type Index: int :param Node: :type Node: int :rtype: None """ return _Poly.Poly_Triangle_Set(self, *args) def Get(self, *args): """ * Returns the node indices of this triangle in N1, N2 and N3. :param N1: :type N1: int & :param N2: :type N2: int & :param N3: :type N3: int & :rtype: None """ return _Poly.Poly_Triangle_Get(self, *args) def Value(self, *args): """ * Get the node of given Index. Raises OutOfRange from Standard if Index is not in 1,2,3 :param Index: :type Index: int :rtype: int """ return _Poly.Poly_Triangle_Value(self, *args) def ChangeValue(self, *args): """ * Get the node of given Index. Raises OutOfRange if Index is not in 1,2,3 :param Index: :type Index: int :rtype: int """ return _Poly.Poly_Triangle_ChangeValue(self, *args) __swig_destroy__ = _Poly.delete_Poly_Triangle Poly_Triangle.Set = new_instancemethod(_Poly.Poly_Triangle_Set,None,Poly_Triangle) Poly_Triangle.Get = new_instancemethod(_Poly.Poly_Triangle_Get,None,Poly_Triangle) Poly_Triangle.Value = new_instancemethod(_Poly.Poly_Triangle_Value,None,Poly_Triangle) Poly_Triangle.ChangeValue = new_instancemethod(_Poly.Poly_Triangle_ChangeValue,None,Poly_Triangle) Poly_Triangle_swigregister = _Poly.Poly_Triangle_swigregister Poly_Triangle_swigregister(Poly_Triangle) class Poly_Triangulation(OCC.MMgt.MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Constructs a triangulation from a set of triangles. The triangulation is initialized without a triangle or a node, but capable of containing nbNodes nodes, and nbTriangles triangles. Here the UVNodes flag indicates whether 2D nodes will be associated with 3D ones, (i.e. to enable a 2D representation). :param nbNodes: :type nbNodes: int :param nbTriangles: :type nbTriangles: int :param UVNodes: :type UVNodes: bool :rtype: None * Constructs a triangulation from a set of triangles. The triangulation is initialized with 3D points from Nodes and triangles from Triangles. :param Nodes: :type Nodes: TColgp_Array1OfPnt :param Triangles: :type Triangles: Poly_Array1OfTriangle & :rtype: None * Constructs a triangulation from a set of triangles. The triangulation is initialized with 3D points from Nodes, 2D points from UVNodes and triangles from Triangles, where coordinates of a 2D point from UVNodes are the (u, v) parameters of the corresponding 3D point from Nodes on the surface approximated by the constructed triangulation. :param Nodes: :type Nodes: TColgp_Array1OfPnt :param UVNodes: :type UVNodes: TColgp_Array1OfPnt2d :param Triangles: :type Triangles: Poly_Array1OfTriangle & :rtype: None """ _Poly.Poly_Triangulation_swiginit(self,_Poly.new_Poly_Triangulation(*args)) def Deflection(self, *args): """ * Returns the deflection of this triangulation. :rtype: float * Sets the deflection of this triangulation to D. See more on deflection in Polygon2D :param D: :type D: float :rtype: None """ return _Poly.Poly_Triangulation_Deflection(self, *args) def RemoveUVNodes(self, *args): """ * Deallocates the UV nodes. :rtype: None """ return _Poly.Poly_Triangulation_RemoveUVNodes(self, *args) def NbNodes(self, *args): """ * Returns the number of nodes for this triangulation. Null if the nodes are not yet defined. :rtype: int """ return _Poly.Poly_Triangulation_NbNodes(self, *args) def NbTriangles(self, *args): """ * Returns the number of triangles for this triangulation. Null if the Triangles are not yet defined. :rtype: int """ return _Poly.Poly_Triangulation_NbTriangles(self, *args) def HasUVNodes(self, *args): """ * Returns true if 2D nodes are associated with 3D nodes for this triangulation. :rtype: bool """ return _Poly.Poly_Triangulation_HasUVNodes(self, *args) def Nodes(self, *args): """ * Returns the table of 3D nodes (3D points) for this triangulation. :rtype: TColgp_Array1OfPnt """ return _Poly.Poly_Triangulation_Nodes(self, *args) def ChangeNodes(self, *args): """ * Returns the table of 3D nodes (3D points) for this triangulation. The returned array is shared. Therefore if the table is selected by reference, you can, by simply modifying it, directly modify the data structure of this triangulation. :rtype: TColgp_Array1OfPnt """ return _Poly.Poly_Triangulation_ChangeNodes(self, *args) def UVNodes(self, *args): """ * Returns the table of 2D nodes (2D points) associated with each 3D node of this triangulation. The function HasUVNodes checks if 2D nodes are associated with the 3D nodes of this triangulation. Const reference on the 2d nodes values. :rtype: TColgp_Array1OfPnt2d """ return _Poly.Poly_Triangulation_UVNodes(self, *args) def ChangeUVNodes(self, *args): """ * Returns the table of 2D nodes (2D points) associated with each 3D node of this triangulation. Function ChangeUVNodes shares the returned array. Therefore if the table is selected by reference, you can, by simply modifying it, directly modify the data structure of this triangulation. :rtype: TColgp_Array1OfPnt2d """ return _Poly.Poly_Triangulation_ChangeUVNodes(self, *args) def Triangles(self, *args): """ * Returns the table of triangles for this triangulation. :rtype: Poly_Array1OfTriangle """ return _Poly.Poly_Triangulation_Triangles(self, *args) def ChangeTriangles(self, *args): """ * Returns the table of triangles for this triangulation. Function ChangeUVNodes shares the returned array. Therefore if the table is selected by reference, you can, by simply modifying it, directly modify the data structure of this triangulation. :rtype: Poly_Array1OfTriangle """ return _Poly.Poly_Triangulation_ChangeTriangles(self, *args) def SetNormals(self, *args): """ * Sets the table of node normals. raises exception if length of theNormals != 3*NbNodes :param theNormals: :type theNormals: Handle_TShort_HArray1OfShortReal & :rtype: None """ return _Poly.Poly_Triangulation_SetNormals(self, *args) def Normals(self, *args): """ :rtype: TShort_Array1OfShortReal """ return _Poly.Poly_Triangulation_Normals(self, *args) def ChangeNormals(self, *args): """ :rtype: TShort_Array1OfShortReal """ return _Poly.Poly_Triangulation_ChangeNormals(self, *args) def HasNormals(self, *args): """ :rtype: bool """ return _Poly.Poly_Triangulation_HasNormals(self, *args) def GetHandle(self): try: return self.thisHandle except: self.thisHandle = Handle_Poly_Triangulation(self) self.thisown = False return self.thisHandle __swig_destroy__ = _Poly.delete_Poly_Triangulation Poly_Triangulation.Deflection = new_instancemethod(_Poly.Poly_Triangulation_Deflection,None,Poly_Triangulation) Poly_Triangulation.RemoveUVNodes = new_instancemethod(_Poly.Poly_Triangulation_RemoveUVNodes,None,Poly_Triangulation) Poly_Triangulation.NbNodes = new_instancemethod(_Poly.Poly_Triangulation_NbNodes,None,Poly_Triangulation) Poly_Triangulation.NbTriangles = new_instancemethod(_Poly.Poly_Triangulation_NbTriangles,None,Poly_Triangulation) Poly_Triangulation.HasUVNodes = new_instancemethod(_Poly.Poly_Triangulation_HasUVNodes,None,Poly_Triangulation) Poly_Triangulation.Nodes = new_instancemethod(_Poly.Poly_Triangulation_Nodes,None,Poly_Triangulation) Poly_Triangulation.ChangeNodes = new_instancemethod(_Poly.Poly_Triangulation_ChangeNodes,None,Poly_Triangulation) Poly_Triangulation.UVNodes = new_instancemethod(_Poly.Poly_Triangulation_UVNodes,None,Poly_Triangulation) Poly_Triangulation.ChangeUVNodes = new_instancemethod(_Poly.Poly_Triangulation_ChangeUVNodes,None,Poly_Triangulation) Poly_Triangulation.Triangles = new_instancemethod(_Poly.Poly_Triangulation_Triangles,None,Poly_Triangulation) Poly_Triangulation.ChangeTriangles = new_instancemethod(_Poly.Poly_Triangulation_ChangeTriangles,None,Poly_Triangulation) Poly_Triangulation.SetNormals = new_instancemethod(_Poly.Poly_Triangulation_SetNormals,None,Poly_Triangulation) Poly_Triangulation.Normals = new_instancemethod(_Poly.Poly_Triangulation_Normals,None,Poly_Triangulation) Poly_Triangulation.ChangeNormals = new_instancemethod(_Poly.Poly_Triangulation_ChangeNormals,None,Poly_Triangulation) Poly_Triangulation.HasNormals = new_instancemethod(_Poly.Poly_Triangulation_HasNormals,None,Poly_Triangulation) Poly_Triangulation_swigregister = _Poly.Poly_Triangulation_swigregister Poly_Triangulation_swigregister(Poly_Triangulation) class Handle_Poly_Triangulation(OCC.MMgt.Handle_MMgt_TShared): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): _Poly.Handle_Poly_Triangulation_swiginit(self,_Poly.new_Handle_Poly_Triangulation(*args)) # register the handle in the base object if len(args) > 0: register_handle(self, args[0]) DownCast = staticmethod(_Poly.Handle_Poly_Triangulation_DownCast) __swig_destroy__ = _Poly.delete_Handle_Poly_Triangulation Handle_Poly_Triangulation.Nullify = new_instancemethod(_Poly.Handle_Poly_Triangulation_Nullify,None,Handle_Poly_Triangulation) Handle_Poly_Triangulation.IsNull = new_instancemethod(_Poly.Handle_Poly_Triangulation_IsNull,None,Handle_Poly_Triangulation) Handle_Poly_Triangulation.GetObject = new_instancemethod(_Poly.Handle_Poly_Triangulation_GetObject,None,Handle_Poly_Triangulation) Handle_Poly_Triangulation_swigregister = _Poly.Handle_Poly_Triangulation_swigregister Handle_Poly_Triangulation_swigregister(Handle_Poly_Triangulation) def Handle_Poly_Triangulation_DownCast(*args): return _Poly.Handle_Poly_Triangulation_DownCast(*args) Handle_Poly_Triangulation_DownCast = _Poly.Handle_Poly_Triangulation_DownCast
py
1a4d89976d36815dc34e878fad55d4977e84d0ed
from tests.unit.dataactcore.factories.staging import DetachedAwardFinancialAssistanceFactory from dataactcore.models.domainModels import CountyCode from tests.unit.dataactvalidator.utils import number_of_errors, query_columns _FILE = 'fabs40_detached_award_financial_assistance_1' def test_column_headers(database): expected_subset = {"row_number", "place_of_performance_code"} actual = set(query_columns(_FILE, database)) assert expected_subset == actual def test_success(database): """ PrimaryPlaceOfPerformanceCode last three digits must be a valid county code when format is XX**###. """ county_code = CountyCode(county_number="123", state_code="NY") det_award_1 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="NY*****") det_award_2 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="00FO333") det_award_3 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="NY**123") det_award_4 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="Ny**123") errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2, det_award_3, det_award_4, county_code]) assert errors == 0 def test_failure(database): """ Test failure for PrimaryPlaceOfPerformanceCode last three digits must be a valid county code when format is XX**###. """ county_code = CountyCode(county_number="123", state_code="NY") det_award_1 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="00**333") det_award_2 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="00**33") det_award_3 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="Ny**124") det_award_4 = DetachedAwardFinancialAssistanceFactory(place_of_performance_code="NA**123") errors = number_of_errors(_FILE, database, models=[det_award_1, det_award_2, det_award_3, det_award_4, county_code]) assert errors == 4
py
1a4d8a0ac81d22bcfc0e44e10abc402d791c6d47
#!/bin/bash/env python import argparse import numpy as np import math from numpy.linalg import inv from numpy import linalg as LA from os.path import basename, expanduser, isfile, join, splitext import socket from matplotlib import pyplot as plt import time from skimage import measure import rospy from sensor_msgs.msg import CompressedImage from geometry_msgs.msg import PoseArray, Point, Pose, Quaternion from duckietown_utils import d8_compressed_image_from_cv_image, logger, rgb_from_ros, yaml_load, get_duckiefleet_root from duckietown_utils import get_base_name, load_camera_intrinsics, load_homography, load_map, rectify from duckietown_utils import load_map, load_camera_intrinsics, load_homography, rectify class Avoider(): '''class to avoid detected obstacles''' def __init__(self, robot_name=''): # Robot name self.robot_name = robot_name # Parameter definitions self.lWidthRobot = 140 # mm self.lWidthLane = 250 # mm # Control parameters self.yAvoidanceMargin = 20 # mm def avoid(self, obstacle_poses_on_track, d_current, theta): print('AvoiderFct') self.d_target = 0 self.d_current = d_current self.theta = theta emergency_stop = 0 if len(obstacle_poses_on_track.poses) == 1: # self.d_robot = self.d_current # self.theta = self.theta_current x_obstacle = obstacle_poses_on_track.poses[0].position.x * 1000 # mm y_obstacle = obstacle_poses_on_track.poses[0].position.y * 1000 # mm r_obstacle = obstacle_poses_on_track.poses[0].position.z * 1000 # mm # print('x_obstacle = ', x_obstacle) # print('y_obstacle = ', y_obstacle) # print('r_obstacle = ', r_obstacle) global_pos_vec = self.coordinatetransform(x_obstacle, y_obstacle, self.theta, self.d_current) # x_global = global_pos_vec[0] y_global = global_pos_vec[1] # print('y_global = ', y_global) # print('abs(y_global) = ', abs(y_global)) # print('lanew = ', self.lWidthLane) # print('robiwidth = ', self.lWidthRobot) # print('margin =', self.yAvoidanceMargin) # print('theta=', self.theta) # print('d_current= ',self.d_current) # Stop if there is no space if (abs(y_global) + self.lWidthLane/2 - abs(r_obstacle)) < (self.lWidthRobot + self.yAvoidanceMargin): print('Emergency Stop') emergency_stop = 1 # React if possible self.d_target = (y_global - (np.sign(y_global) * (self.lWidthRobot / 2 + self.yAvoidanceMargin + abs(r_obstacle))))/1000 # convert to m # print('d_target = ', self.d_target) elif len(obstacle_poses_on_track.poses) > 1: print('Number of obstacles reaching avoid function too high') emergency_stop = 1 targets = [self.d_target, emergency_stop] return targets def coordinatetransform(self, x_obstacle, y_obstacle, theta, d_current): self.theta = theta self.d_current = d_current self.x_obstacle = x_obstacle self.y_obstacle = y_obstacle vector_local = [self.x_obstacle, self.y_obstacle] rot_matrix = [[math.cos(self.theta), -math.sin(self.theta)], [math.sin(self.theta), math.cos(self.theta)]] vector_global = np.dot(rot_matrix, vector_local) + np.array([0, self.d_current]) x_global = vector_global[0] y_global = vector_global[1] return np.array([x_global, y_global])
py
1a4d8a8026a3849f4ae640ef2fdf834441093e13
"""This module contains the ``SeleniumMiddleware`` scrapy middleware""" from importlib import import_module from scrapy import signals from scrapy.exceptions import NotConfigured from scrapy.http import HtmlResponse from selenium.webdriver.support.ui import WebDriverWait from .http import SeleniumRequest class SeleniumMiddleware: """Scrapy middleware handling the requests using selenium""" def __init__(self, driver_name, driver_executable_path, driver_arguments, browser_executable_path): """Initialize the selenium webdriver Parameters ---------- driver_name: str The selenium ``WebDriver`` to use driver_executable_path: str The path of the executable binary of the driver driver_arguments: list A list of arguments to initialize the driver browser_executable_path: str The path of the executable binary of the browser """ webdriver_base_path = f'selenium.webdriver.{driver_name}' driver_klass_module = import_module(f'{webdriver_base_path}.webdriver') driver_klass = getattr(driver_klass_module, 'WebDriver') driver_options_module = import_module(f'{webdriver_base_path}.options') driver_options_klass = getattr(driver_options_module, 'Options') driver_options = driver_options_klass() if browser_executable_path: driver_options.binary_location = browser_executable_path for argument in driver_arguments: driver_options.add_argument(argument) driver_kwargs = { 'executable_path': driver_executable_path, f'{driver_name}_options': driver_options } self.driver = driver_klass(**driver_kwargs) @classmethod def from_crawler(cls, crawler): """Initialize the middleware with the crawler settings""" driver_name = crawler.settings.get('SELENIUM_DRIVER_NAME') driver_executable_path = crawler.settings.get('SELENIUM_DRIVER_EXECUTABLE_PATH') browser_executable_path = crawler.settings.get('SELENIUM_BROWSER_EXECUTABLE_PATH') driver_arguments = crawler.settings.get('SELENIUM_DRIVER_ARGUMENTS') if not driver_name or not driver_executable_path: raise NotConfigured( 'SELENIUM_DRIVER_NAME and SELENIUM_DRIVER_EXECUTABLE_PATH must be set' ) middleware = cls( driver_name=driver_name, driver_executable_path=driver_executable_path, driver_arguments=driver_arguments, browser_executable_path=browser_executable_path ) crawler.signals.connect(middleware.spider_closed, signals.spider_closed) return middleware def process_request(self, request, spider): """Process a request using the selenium driver if applicable""" if not isinstance(request, SeleniumRequest): return None self.driver.get(request.url) for cookie_name, cookie_value in request.cookies.items(): self.driver.add_cookie( { 'name': cookie_name, 'value': cookie_value } ) if request.wait_until: WebDriverWait(self.driver, request.wait_time).until( request.wait_until ) if request.screenshot: request.meta['screenshot'] = self.driver.get_screenshot_as_png() body = str.encode(self.driver.page_source) # Expose the driver via the "meta" attribute request.meta.update({'driver': self.driver}) return HtmlResponse( self.driver.current_url, body=body, encoding='utf-8', request=request ) def spider_closed(self): """Shutdown the driver when spider is closed""" self.driver.quit()
py
1a4d8ae14145e7ba0c9a5750c919be6c6ef324dc
# -*- coding: utf-8 -*- # Copyright (c) 2018, RP and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class TipoTecnologia(Document): pass
py
1a4d8b84d6a7cbcc5237c7d92ea8a57a6229f473
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import sys,argparse from fnmatch import fnmatch from openvino.tools.benchmark.utils.utils import show_available_devices def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def check_positive(value): ivalue = int(value) if ivalue <= 0: raise argparse.ArgumentTypeError(f"{value} is an invalid positive int value") return ivalue class print_help(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): parser.print_help() show_available_devices() sys.exit() def parse_args(): parser = argparse.ArgumentParser(add_help=False) args = parser.add_argument_group('Options') args.add_argument('-h', '--help', action=print_help, nargs='?', default=argparse.SUPPRESS, help='Show this help message and exit.') args.add_argument('-i', '--paths_to_input', action='append', nargs='+', type=str, required=False, help='Optional. ' 'Path to a folder with images and/or binaries or to specific image or binary file.') args.add_argument('-m', '--path_to_model', type=str, required=True, help='Required. Path to an .xml/.onnx/.prototxt file with a trained model or ' 'to a .blob file with a trained compiled model.') args.add_argument('-d', '--target_device', type=str, required=False, default='CPU', help='Optional. Specify a target device to infer on (the list of available devices is shown below). ' 'Default value is CPU. Use \'-d HETERO:<comma separated devices list>\' format to specify HETERO plugin. ' 'Use \'-d MULTI:<comma separated devices list>\' format to specify MULTI plugin. ' 'The application looks for a suitable plugin for the specified device.') args.add_argument('-l', '--path_to_extension', type=str, required=False, default=None, help='Optional. Required for CPU custom layers. ' 'Absolute path to a shared library with the kernels implementations.') args.add_argument('-c', '--path_to_cldnn_config', type=str, required=False, help='Optional. Required for GPU custom kernels. Absolute path to an .xml file with the ' 'kernels description.') args.add_argument('-api', '--api_type', type=str, required=False, default='async', choices=['sync', 'async'], help='Optional. Enable using sync/async API. Default value is async.') args.add_argument('-niter', '--number_iterations', type=check_positive, required=False, default=None, help='Optional. Number of iterations. ' 'If not specified, the number of iterations is calculated depending on a device.') args.add_argument('-nireq', '--number_infer_requests', type=check_positive, required=False, default=None, help='Optional. Number of infer requests. Default value is determined automatically for device.') args.add_argument('-b', '--batch_size', type=int, required=False, default=0, help='Optional. ' + 'Batch size value. ' + 'If not specified, the batch size value is determined from Intermediate Representation') args.add_argument('-stream_output', type=str2bool, required=False, default=False, nargs='?', const=True, help='Optional. ' 'Print progress as a plain text. ' 'When specified, an interactive progress bar is replaced with a multi-line output.') args.add_argument('-t', '--time', type=int, required=False, default=None, help='Optional. Time in seconds to execute topology.') args.add_argument('-progress', type=str2bool, required=False, default=False, nargs='?', const=True, help='Optional. ' 'Show progress bar (can affect performance measurement). Default values is \'False\'.') args.add_argument('-shape', type=str, required=False, default='', help='Optional. ' 'Set shape for input. For example, "input1[1,3,224,224],input2[1,4]" or "[1,3,224,224]" in case of one input size.') args.add_argument('-layout', type=str, required=False, default='', help='Optional. ' 'Prompts how network layouts should be treated by application. ' 'For example, "input1[NCHW],input2[NC]" or "[NCHW]" in case of one input size.') args.add_argument('-nstreams', '--number_streams', type=str, required=False, default=None, help='Optional. Number of streams to use for inference on the CPU/GPU/MYRIAD ' '(for HETERO and MULTI device cases use format <device1>:<nstreams1>,<device2>:<nstreams2> ' 'or just <nstreams>). ' 'Default value is determined automatically for a device. Please note that although the automatic selection ' 'usually provides a reasonable performance, it still may be non - optimal for some cases, especially for very small networks. ' 'Also, using nstreams>1 is inherently throughput-oriented option, while for the best-latency ' 'estimations the number of streams should be set to 1. ' 'See samples README for more details.') args.add_argument('-enforcebf16', '--enforce_bfloat16', type=str2bool, required=False, default=False, nargs='?', const=True, choices=[True, False], help='Optional. By default floating point operations execution in bfloat16 precision are enforced if supported by platform. ' '\'true\' - enable bfloat16 regardless of platform support. ' '\'false\' - disable bfloat16 regardless of platform support.') args.add_argument('-nthreads', '--number_threads', type=int, required=False, default=None, help='Number of threads to use for inference on the CPU, GNA ' '(including HETERO and MULTI cases).') args.add_argument('-pin', '--infer_threads_pinning', type=str, required=False, default='YES', choices=['YES', 'NO', 'NUMA'], help='Optional. Enable threads->cores (\'YES\' is default value), threads->(NUMA)nodes (\'NUMA\') or completely disable (\'NO\')' 'CPU threads pinning for CPU-involved inference.') args.add_argument('-exec_graph_path', '--exec_graph_path', type=str, required=False, help='Optional. Path to a file where to store executable graph information serialized.') args.add_argument('-pc', '--perf_counts', type=str2bool, required=False, default=False, nargs='?', const=True, help='Optional. Report performance counters.', ) args.add_argument('-report_type', '--report_type', type=str, required=False, choices=['no_counters', 'average_counters', 'detailed_counters'], help="Optional. Enable collecting statistics report. \"no_counters\" report contains " "configuration options specified, resulting FPS and latency. \"average_counters\" " "report extends \"no_counters\" report and additionally includes average PM " "counters values for each layer from the network. \"detailed_counters\" report " "extends \"average_counters\" report and additionally includes per-layer PM " "counters and latency for each executed infer request.") args.add_argument('-report_folder', '--report_folder', type=str, required=False, default='', help="Optional. Path to a folder where statistics report is stored.") args.add_argument('-dump_config', type=str, required=False, default='', help="Optional. Path to JSON file to dump IE parameters, which were set by application.") args.add_argument('-load_config', type=str, required=False, default='', help="Optional. Path to JSON file to load custom IE parameters." " Please note, command line parameters have higher priority then parameters from configuration file.") args.add_argument('-qb', '--quantization_bits', type=int, required=False, default=None, choices=[8, 16], help="Optional. Weight bits for quantization: 8 (I8) or 16 (I16) ") args.add_argument('-ip', '--input_precision', type=str, required=False, default='U8', choices=['U8', 'FP16', 'FP32'], help='Optional. Specifies precision for all input layers of the network.') args.add_argument('-op', '--output_precision', type=str, required=False, default='FP32', choices=['U8', 'FP16', 'FP32'], help='Optional. Specifies precision for all output layers of the network.') args.add_argument('-iop', '--input_output_precision', type=str, required=False, help='Optional. Specifies precision for input and output layers by name. Example: -iop "input:FP16, output:FP16". Notice that quotes are required. Overwrites precision from ip and op options for specified layers.') parsed_args = parser.parse_args() return parsed_args
py
1a4d8bf0587baecd1a6afc8ff07efa94b640e322
""" This module provides fundamental solar physical constants. """ import io from astropy.table import Table from astropy.time import Time from sunpy.sun import _constants as _con __all__ = [ 'get', 'find', 'print_all', 'spectral_classification', 'au', 'mass', 'equatorial_radius', 'volume', 'surface_area', 'average_density', 'equatorial_surface_gravity', 'effective_temperature', 'luminosity', 'mass_conversion_rate', 'escape_velocity', 'sfu', 'average_angular_size', 'sidereal_rotation_rate', 'first_carrington_rotation', 'mean_synodic_period' ] constants = _con.physical_constants def get(key): """ Retrieve a constant by key. This is just a short cut into a dictionary. Parameters ---------- key : `str` Key in dictionary in ``constants``. Returns ------- constant : `~astropy.constants.Constant` See Also -------- `~sunpy.sun.constants` : Contains the description of ``constants``, which, as a dictionary literal object, does not itself possess a docstring. Examples -------- >>> from sunpy.sun import constants >>> constants.get('mass') <<class 'astropy.constants.iau2015.IAU2015'> name='Solar mass' value=1.9884754153381438e+30 uncertainty=9.236140093538353e+25 unit='kg' reference='IAU 2015 Resolution B 3 + CODATA 2014'> """ ret = constants[key] ret.__doc__ = ret.name return ret def find(sub=None): """ Return list of constants keys containing a given string. Parameters ---------- sub : `str`, optional Sub-string to search keys for. By default set to `None` and returns all keys. Returns ------- `None`, `list` The matching keys. See Also -------- `~sunpy.sun.constants` : Contains the description of ``constants``, which, as a dictionary literal object, does not itself possess a docstring. """ if sub is None: result = list(constants.keys()) else: result = [key for key in constants if sub.lower() in key.lower()] result.sort() return result def print_all(): """ Provides a table of the complete list of constants. Returns ------- `astropy.table.Table` """ data_rows = [] for key, this_constant in constants.items(): data_rows.append([ key, this_constant.name, this_constant.value, this_constant.uncertainty, str(this_constant.unit), this_constant.reference ]) t = Table(rows=data_rows, names=('key', 'name', 'value', 'uncertainty', 'unit', 'Reference')) return t def _build_docstring(): """Build docstring containing RST-formatted table of constants.""" lines = ['The following constants are available:\n'] rows = [] for key, const in constants.items(): rows.append([key, const.value, const._unit_string, const.name]) table = Table(rows=rows, names=('Name', 'Value', 'Unit', 'Description')) table['Value'].info.format = '14.9g' f = io.StringIO() table.write(f, format='ascii.rst') lines.append(f.getvalue()) return '\n'.join(lines) # Add a table of constants to the docs if __doc__ is not None: __doc__ += _build_docstring() # Spectral class is not included in physical constants since it is not a number #: Spectral classification spectral_classification = 'G2V' au = astronomical_unit = get('mean distance') # The following variables from _gets are brought out by making them # accessible through a call such as sun.volume mass = get('mass') equatorial_radius = radius = get('radius') volume = get('volume') surface_area = get('surface area') average_density = density = get('average density') equatorial_surface_gravity = surface_gravity = get('surface gravity') effective_temperature = get('effective temperature') luminosity = get('luminosity') mass_conversion_rate = get('mass conversion rate') escape_velocity = get('escape velocity') sfu = get('solar flux unit') # Observable parameters average_angular_size = get('average angular size') sidereal_rotation_rate = get('sidereal rotation rate') #: Time of the start of the first Carrington rotation first_carrington_rotation = Time(get('first Carrington rotation (JD TT)'), format='jd', scale='tt') mean_synodic_period = get('mean synodic period')
py
1a4d8c4fe37bf659c3144f76cc0680c974b85cb5
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test Cases to be run for the import module""" IMPLEMENTED_OPERATORS_TEST = [ 'test_random_uniform', 'test_random_normal', 'test_add', 'test_sub', 'test_mul', 'test_div', 'test_neg', 'test_abs', 'test_sum', 'test_tanh', 'test_ceil', 'test_floor', 'test_concat', 'test_sigmoid', 'test_relu', 'test_constant_pad', 'test_edge_pad', 'test_reflect_pad', 'test_reduce_min', 'test_reduce_max', 'test_reduce_mean', 'test_reduce_prod', 'test_squeeze', 'test_unsqueeze', 'test_softmax_example', 'test_softmax_large_number', 'test_softmax_axis_2', 'test_transpose', 'test_globalmaxpool', 'test_globalaveragepool', 'test_slice_cpu', 'test_slice_neg', 'test_squeeze_', 'test_reciprocal', 'test_sqrt', 'test_pow', 'test_exp', 'test_argmax', 'test_argmin', 'test_min', 'test_logical_and', 'test_logical_xor', 'test_logical_not', 'test_logical_or', 'test_clip', 'test_softsign', 'test_reduce_l2', 'test_reduce_log_sum', 'test_reduce_log_sum_exp', 'test_reduce_sum_square' #pytorch operator tests 'test_operator_exp', 'test_operator_maxpool', 'test_operator_params', 'test_operator_permute2' ] BASIC_MODEL_TESTS = [ 'test_AvgPool2D', 'test_BatchNorm', 'test_ConstantPad2d' 'test_Conv2d', 'test_ELU', 'test_LeakyReLU', 'test_MaxPool', 'test_PReLU', 'test_ReLU', 'test_Sigmoid', 'test_Softmax', 'test_softmax_functional', 'test_softmax_lastdim', 'test_Tanh' ] STANDARD_MODEL = [ 'test_bvlc_alexnet', 'test_densenet121', #'test_inception_v1', #'test_inception_v2', 'test_resnet50', #'test_shufflenet', 'test_squeezenet', 'test_zfnet512', 'test_vgg19' ]
py
1a4d8c97937f1c8e26acf9c2215ef9467a7f76fe
import unittest from find_max_indices import find_max_indices from drop_first import drop_first class TestFindMaxIndices(unittest.TestCase): def test_find_max_indices(self): Ms = [[[1, 2, 3], [9, 8, 7, 6], [4, 5]]] expecteds = [(1, (0, 9))] for M, expected in zip(Ms, expecteds): self.assertEqual(expected, find_max_indices(M)) class TestDropFirst(unittest.TestCase): def test_drop_first(self): iterables = [[1, 2, 3]] expecteds = [[2, 3]] for iterable, expected in zip(iterables, expecteds): self.assertEqual(expected, list(drop_first(iterable))) if __name__ == "__main__": unittest.main()
py
1a4d8cde6f4276906811116a71b0a0c5aa61b7f6
from filebeat import BaseTest from beat.beat import INTEGRATION_TESTS import os import unittest import glob import subprocess from elasticsearch import Elasticsearch import json import logging class Test(BaseTest): def init(self): self.elasticsearch_url = self.get_elasticsearch_url() print("Using elasticsearch: {}".format(self.elasticsearch_url)) self.es = Elasticsearch([self.elasticsearch_url]) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("elasticsearch").setLevel(logging.ERROR) self.modules_path = os.path.abspath(self.working_dir + "/../../../../module") self.filebeat = os.path.abspath(self.working_dir + "/../../../../filebeat.test") self.index_name = "test-filebeat-modules" @unittest.skipIf(not INTEGRATION_TESTS or os.getenv("TESTING_ENVIRONMENT") == "2x", "integration test not available on 2.x") def test_modules(self): self.init() modules = os.getenv("TESTING_FILEBEAT_MODULES") if modules: modules = modules.split(",") else: modules = os.listdir(self.modules_path) # generate a minimal configuration cfgfile = os.path.join(self.working_dir, "filebeat.yml") self.render_config_template( template="filebeat_modules.yml.j2", output=cfgfile, index_name=self.index_name, elasticsearch_url=self.elasticsearch_url) for module in modules: path = os.path.join(self.modules_path, module) filesets = [name for name in os.listdir(path) if os.path.isfile(os.path.join(path, name, "manifest.yml"))] for fileset in filesets: test_files = glob.glob(os.path.join(self.modules_path, module, fileset, "test", "*.log")) for test_file in test_files: self.run_on_file( module=module, fileset=fileset, test_file=test_file, cfgfile=cfgfile) def run_on_file(self, module, fileset, test_file, cfgfile): print("Testing {}/{} on {}".format(module, fileset, test_file)) try: self.es.indices.delete(index=self.index_name) except: pass cmd = [ self.filebeat, "-systemTest", "-e", "-d", "*", "-once", "-c", cfgfile, "-modules={}".format(module), "-M", "{module}.*.enabled=false".format(module=module), "-M", "{module}.{fileset}.enabled=true".format(module=module, fileset=fileset), "-M", "{module}.{fileset}.var.paths=[{test_file}]".format( module=module, fileset=fileset, test_file=test_file), "-M", "*.*.prospector.close_eof=true", ] output = open(os.path.join(self.working_dir, "output.log"), "ab") output.write(" ".join(cmd) + "\n") subprocess.Popen(cmd, stdin=None, stdout=output, stderr=subprocess.STDOUT, bufsize=0).wait() # Make sure index exists self.wait_until(lambda: self.es.indices.exists(self.index_name)) self.es.indices.refresh(index=self.index_name) res = self.es.search(index=self.index_name, body={"query": {"match_all": {}}}) objects = [o["_source"] for o in res["hits"]["hits"]] assert len(objects) > 0 for obj in objects: assert obj["fileset"]["module"] == module, "expected fileset.module={} but got {}".format( module, obj["fileset"]["module"]) if not (module == "mysql" and fileset == "slowlog"): # TODO: There are errors parsing the test logs from these modules. assert "error" not in obj, "not error expected but got: {}".format(obj) if module != "auditd" and fileset != "log": # There are dynamic fields in audit logs that are not documented. self.assert_fields_are_documented(obj) if os.path.exists(test_file + "-expected.json"): with open(test_file + "-expected.json", "r") as f: expected = json.load(f) assert len(expected) == len(objects), "expected {} but got {}".format(len(expected), len(objects)) for ev in expected: found = False for obj in objects: if ev["_source"][module] == obj[module]: found = True break if not found: raise Exception("The following expected object was" + " not found: {}".format(obj)) @unittest.skipIf(not INTEGRATION_TESTS or os.getenv("TESTING_ENVIRONMENT") == "2x", "integration test not available on 2.x") def test_prospector_pipeline_config(self): """ Tests that the pipeline configured in the prospector overwrites the one from the output. """ self.init() index_name = "filebeat-test-prospector" try: self.es.indices.delete(index=index_name) except: pass self.wait_until(lambda: not self.es.indices.exists(index_name)) self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*", elasticsearch=dict( host=self.elasticsearch_url, pipeline="estest", index=index_name), pipeline="test", ) os.mkdir(self.working_dir + "/log/") testfile = self.working_dir + "/log/test.log" with open(testfile, 'a') as file: file.write("Hello World1\n") # put pipeline self.es.transport.perform_request("PUT", "/_ingest/pipeline/test", body={ "processors": [{ "set": { "field": "x-pipeline", "value": "test-pipeline", } }]}) filebeat = self.start_beat() # Wait until the event is in ES self.wait_until(lambda: self.es.indices.exists(index_name)) def search_objects(): try: self.es.indices.refresh(index=index_name) res = self.es.search(index=index_name, body={"query": {"match_all": {}}}) return [o["_source"] for o in res["hits"]["hits"]] except: return [] self.wait_until(lambda: len(search_objects()) > 0, max_timeout=20) filebeat.check_kill_and_wait() objects = search_objects() assert len(objects) == 1 o = objects[0] assert o["x-pipeline"] == "test-pipeline"
py
1a4d8d3749ce732b4821e4b87d972c0b4f5dbbf3
# -*- coding: utf-8 -*- import Utils.BlazeFuncs as BlazeFuncs, Utils.Globals as Globals import time, os def Ping(self,data_e): packet = BlazeFuncs.BlazeDecoder(data_e) reply = BlazeFuncs.BlazePacket("0009","0002",packet.packetID,"1000") reply.writeInt("STIM",int(time.time())) self.transport.getHandle().sendall(reply.build().decode('Hex')) def PreAuth(self,data_e): packet = BlazeFuncs.BlazeDecoder(data_e) #preAuth_Response = "86ebee0000873ca30107333030323934008e99330400130119041b1c0607090a82e0070b80e00381e00382e00383e0031485e00386e003901f8ee9ee0101008efba6038efba60501010510636f6e6e49646c6554696d656f75740004393073001664656661756c745265717565737454696d656f75740004383073000b70696e67506572696f6400043230730016766f69704865616473657455706461746552617465000531303030001a786c7370436f6e6e656374696f6e49646c6554696d656f757400043330300000a6ecf40111626174746c656669656c642d332d706300b69bb20000ba1cf0010a63656d5f65615f696400c29b24010100c2c8740103706300c34867010100c6fcf3038b7c3303c33840011e676f7370726f642d716f7330312e727370632d6c68722e65612e636f6d00c33c00009e9102cee840011072732d70726f642d6c68722d6266330000b2ec00000ab34c330501030704616d7300c33840011d676f7370726f642d716f7330312e6d33642d616d732e65612e636f6d00c33c00009e9102cee840011065612d70726f642d616d732d62663300000464667700c33840011d676f7370726f642d716f7330312e6d33642d6466772e65612e636f6d00c33c00009e9102cee84001116d69732d70726f642d6466772d62663300000469616400c33840011d676f7370726f642d716f7330312e6d33642d6961642e65612e636f6d00c33c00009e9102cee840011065612d70726f642d6961642d6266330000046c617800c33840011d676f7370726f642d716f7330312e6d33642d6c61782e65612e636f6d00c33c00009e9102cee840011065612d70726f642d6c61782d6266330000046c687200c33840011e676f7370726f642d716f7330312e727370632d6c68722e65612e636f6d00c33c00009e9102cee840011072732d70726f642d6c68722d6266330000046e727400c33840011d676f7370726f642d716f7330312e6d33642d6e72742e65612e636f6d00c33c00009e9102cee84001116933642d70726f642d6e72742d62663300000473796400c33840011d676f7370726f642d716f7330312e6d33642d7379642e65612e636f6d00c33c00009e9102cee840011065612d70726f642d7379642d6266330000cf6a640085a088d40800cb3ca3010733303032393400cf6972011e426c617a6520332e31352e30382e302028434c2320393434323635290a00" #preAuth_Response = "86ebee0000873ca30107333030323934008e99330400120119041b1c0607090a0b80e00381e00382e00383e0031485e00386e003901f8ee9ee0101008efba6038efba60501010510636f6e6e49646c6554696d656f75740004393073001664656661756c745265717565737454696d656f75740004383073000b70696e67506572696f6400043230730016766f69704865616473657455706461746552617465000531303030001a786c7370436f6e6e656374696f6e49646c6554696d656f757400043330300000a6ecf40111626174746c656669656c642d332d706300b69bb20000ba1cf0010a63656d5f65615f696400c29b24010100c2c8740103706300c34867010100c6fcf3038b7c3303c33840010931302e302e302e3100c33c00009e9102cee84001047a6c6f0000b2ec00000ab34c330501030104616d7300c33840010931302e302e302e3100c33c00009e9102cee84001047a6c6f0000cf6a640085a088d40800cb3ca3010733303032393400cf6972011d5a4c4f7a6520332e31352e30382e302028434c23203833343535362900" #preAuth_Response = "873ca30107333032313233008e993304001688e0030189e003198ae0031b041c0607090a82e007230f80e00382e00383e00384e00386e003901f87e0038efba6038efba6050101111e6173736f63696174696f6e4c697374536b6970496e697469616c5365740002310014626c617a65536572766572436c69656e7449640017474f532d426c617a655365727665722d4246342d50430012627974657661756c74486f73746e616d65001e627974657661756c742e67616d6573657276696365732e65612e636f6d000e627974657661756c74506f7274000634323231300010627974657661756c74536563757265000574727565001863617073537472696e6756616c69646174696f6e557269001c636c69656e742d737472696e67732e78626f786c6976652e636f6d0010636f6e6e49646c6554696d656f75740004393073001664656661756c745265717565737454696d656f7574000436307300136964656e74697479446973706c61795572690011636f6e736f6c65322f77656c636f6d6500146964656e7469747952656469726563745572690019687474703a2f2f3132372e302e302e312f73756363657373000f6e75636c657573436f6e6e656374001868747470733a2f2f6163636f756e74732e65612e636f6d000d6e75636c65757350726f7879001768747470733a2f2f676174657761792e65612e636f6d000b70696e67506572696f640004333073001a757365724d616e616765724d617843616368656455736572730002300016766f69704865616473657455706461746552617465000531303030000c78626c546f6b656e55726e00106163636f756e74732e65612e636f6d001a786c7370436f6e6e656374696f6e49646c6554696d656f757400043330300000973ca3010733303231323300a6ecf40111626174746c656669656c642d342d706300b69bb20000ba1cf0010a63656d5f65615f696400c29b24010100c2c8740103706300c6fcf3038b7c3303c33840012a716f732d70726f642d62696f2d6475622d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee840011162696f2d70726f642d616d732d6266340000b2ec00000ab34c330501030604616d7300c33840012a716f732d70726f642d62696f2d6475622d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee840011162696f2d70726f642d616d732d62663400000467727500c33840012a716f732d70726f642d6d33642d62727a2d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee840010100000469616400c33840012a716f732d70726f642d62696f2d6961642d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee840011162696f2d70726f642d6961642d6266340000046c617800c33840012a716f732d70726f642d62696f2d736a632d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee840011162696f2d70726f642d6c61782d6266340000046e727400c33840012a716f732d70726f642d6d33642d6e72742d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee84001116933642d70726f642d6e72742d62663400000473796400c33840012a716f732d70726f642d62696f2d7379642d636f6d6d6f6e2d636f6d6d6f6e2e676f732e65612e636f6d00c33c00009e9102cee840011162696f2d70726f642d7379642d6266340000cf6a640085a088d408d29b650080ade20400cb3ca3010733303231323300cf69720120426c617a652031332e332e312e382e302028434c232031313438323639290a00" reply = BlazeFuncs.BlazePacket("0009","0007",packet.packetID,"1000") reply.writeBool("ANON", False) reply.writeString("ASRC", "300294") reply.append("8e99330400130119041b1c0607090a82e0070b80e00381e00382e00383e0031485e00386e003901f") reply.writeSStruct("CONF") #CONF STRUCT 1 reply.writeMap("CONF") reply.writeMapData("associationListSkipInitialSet", "1") reply.writeMapData("blazeServerClientId", "GOS-BlazeServer-BF4-PC") reply.writeMapData("bytevaultHostname", "bytevault.gameservices.ea.com") reply.writeMapData("bytevaultPort", "42210") reply.writeMapData("bytevaultSecure", "false") reply.writeMapData("capsStringValidationUri", "client-strings.xboxlive.com") reply.writeMapData("connIdleTimeout", "90s") reply.writeMapData("defaultRequestTimeout", "60s") reply.writeMapData("identityDisplayUri", "console2/welcome") reply.writeMapData("identityRedirectUri", "http://127.0.0.1/success") reply.writeMapData("nucleusConnect", "http://127.0.0.1") reply.writeMapData("nucleusProxy", "http://127.0.0.1/") reply.writeMapData("pingPeriod", "20s") reply.writeMapData("userManagerMaxCachedUsers", "0") reply.writeMapData("voipHeadsetUpdateRate", "1000") reply.writeMapData("xblTokenUrn", "http://127.0.0.1") reply.writeMapData("xlspConnectionIdleTimeout", "300") reply.writeBuildMap() reply.writeEUnion() #END MAP reply.writeString("INST", "battlefield-4-pc") reply.writeBool("MINR", False) reply.writeString("NASP", "cem_ea_id") reply.writeString("PLAT", "pc") reply.writeSStruct("QOSS") #QOSS STRUCT reply.writeSStruct("BWPS") #BWPS STRUCT reply.writeString("PSA ", Globals.serverIP) reply.writeInt("PSP ", 17502) reply.writeString("SNA ", "rs-prod-lhr-bf4") reply.writeEUnion() #END BWPS reply.writeInt("LNP ", 10) reply.append("b34c330501030704616d7300c33840011d676f7370726f642d716f7330312e6d33642d616d732e65612e636f6d00c33c00009e9102cee840011065612d70726f642d616d732d62663300000464667700c33840011d676f7370726f642d716f7330312e6d33642d6466772e65612e636f6d00c33c00009e9102cee84001116d69732d70726f642d6466772d62663300000469616400c33840011d676f7370726f642d716f7330312e6d33642d6961642e65612e636f6d00c33c00009e9102cee840011065612d70726f642d6961642d6266330000046c617800c33840011d676f7370726f642d716f7330312e6d33642d6c61782e65612e636f6d00c33c00009e9102cee840011065612d70726f642d6c61782d6266330000046c687200c33840011e676f7370726f642d716f7330312e727370632d6c68722e65612e636f6d00c33c00009e9102cee840011072732d70726f642d6c68722d6266330000046e727400c33840011d676f7370726f642d716f7330312e6d33642d6e72742e65612e636f6d00c33c00009e9102cee84001116933642d70726f642d6e72742d62663300000473796400c33840011d676f7370726f642d716f7330312e6d33642d7379642e65612e636f6d00c33c00009e9102cee840011065612d70726f642d7379642d6266330000"); reply.writeInt("SVID", 1337) reply.writeEUnion() #END QOSS reply.writeString("RSRC", "302123") reply.writeString("SVER", "Blaze 13.15.08.0 (CL# 9442625)") #reply.append(preAuth_Response) self.transport.getHandle().sendall(reply.build().decode('Hex')) def PostAuth(self,data_e): packet = BlazeFuncs.BlazeDecoder(data_e) reply = BlazeFuncs.BlazePacket("0009","0008",packet.packetID,"1000") #reply.append("c33cc003864cb301010086d8780000bed8780000c2aa64010100c2fcb40000cb0cb40000d29a64000000d25b2503864cb3011b676f7374656c656d657472792e626c617a65332e65612e636f6d0086ebee0000929ce10101009648f400009a9b3401102d47414d452f434f4d4d2f4558504400b2f8c00093d5f2d60cb69bb20000bafbeb010100c2fcb400849c01ce4b390098ea01ce5cf3010b46577065574a3652727000ceb97901b1015eb9caf7d19cb3ddefcb93afaaff818cbbd8e18b9af6ed9bb6b1e8b0a986c6ceb1e2f4d0a9a6a78eb1baea84d3b3ec8d96a4e0c08183868c98b0e0c089e6c6989ab7c2c9e182eed897e2c2d1a3c7ad99b3e9cab1a3d685cd96f0c6b189c3a68d98b8eed091c3a68d96e5dcd59aa5818000cf08f4008b01cf4a6d010844656661756c7400cf6bad011374656c656d657472792d332d636f6d6d6f6e0000d298eb03864cb3010d31302e31302e37382e31353000c2fcb400a78c01ceb9790180013137343830323835302c31302e31302e37382e3135303a383939392c626174746c656669656c642d342d70632c31302c35302c35302c35302c35302c302c300000d72bf003d2dbf00001") #reply.writeInt("UID ", self.GAMEOBJ.PersonaID) #reply.writeEUnion() #END UROP reply.writeSStruct("PSS ") reply.writeString("ADRS", "") reply.writeInt("AMAX", 0) reply.writeInt("OMAX", 0) reply.writeString("PJID", "") reply.writeInt("PORT", 0) reply.writeInt("RPRT", 0) reply.writeInt("TIID", 0) reply.writeEUnion() #END PSS reply.writeSStruct("TELE") reply.writeString("ADRS", "gostelemetry.blaze3.ea.com") reply.writeBool("ANON", False) reply.writeString("DISA", "") reply.writeBool("EDCT", False) reply.writeString("FILT", "-GAME/COMM/EXPD") reply.writeInt("LOC ", 1701729619) reply.writeBool("MINR", False) reply.writeString("NOOK", "") reply.writeInt("PORT", 9988) reply.writeInt("SDLY", 15000) reply.writeString("SESS", "2fj3StGgjcB") reply.writeString("SKEY", "^–âëôÀ“­¯ùú· ¤žïéöш³¶¦Ë¹åäÙ«¦®‹¸ãØÈ‰¦§ŒœºîàÑÃæáä衦†‹’°àÀƒ†Œ˜°âÜ‘³†Ž˜¶Ä±·ì‹±áèÑãÖÌÙ´åØ‘ë²¦‹¸ãØÄ¡£¦Íš¹îØ¡“†Ë²îªÍÒ€€") reply.writeInt("SPCT", 75) reply.writeString("STIM", "Default") reply.writeString("SVNM", "telemetry-3-common") reply.writeEUnion() #END TELE reply.writeSStruct("TICK") reply.writeString("ADRS", "10.10.78.150") reply.writeInt("PORT", 8999) reply.writeString("SKEY", str(self.GAMEOBJ.PersonaID)+",10.10.78.150:8999,battlefield-4-pc,10,50,50,50,50,0,0") reply.writeEUnion() #END TICK reply.writeSStruct("UROP") reply.writeInt("TMOP", 0) reply.writeInt("UID ", self.GAMEOBJ.PersonaID) reply.writeEUnion() #END UROP self.transport.getHandle().sendall(reply.build().decode('Hex')) def UserSettingsLoadAll(self,data_e): packet = BlazeFuncs.BlazeDecoder(data_e) reply = BlazeFuncs.BlazePacket("0009","000c",packet.packetID,"1000") cwd = os.getcwd() path = cwd+"\\Users\\"+self.GAMEOBJ.Name+"\\" f = open(path+'usersettings.txt', 'r') data = f.readline() reply.writeMap("SMAP") reply.writeMapData("cust", str(data)) reply.writeBuildMap() self.transport.getHandle().sendall(reply.build().decode('Hex')) f.close() def GetTelemetryServer(self,data_e): packet = BlazeFuncs.BlazeDecoder(data_e) reply = BlazeFuncs.BlazePacket("0009","0005",packet.packetID,"1000") ''' reply.writeString("ADRS", Globals.serverIP) reply.writeBool("ANON", False) reply.writeString("DISA", "") reply.writeInt("LOC ", 1701729619) reply.writeString("NOOK", "US,CA,MX") reply.writeInt("PORT", 9988) reply.writeInt("SDLY", 15000) reply.writeString("SESS", "2fj3StGgjcB") reply.writeString("SKEY", "daywwdh") reply.writeInt("SPCT", 30) reply.writeString("STIM", "Default") ''' reply.append("864cb3011b676f7374656c656d657472792e626c617a65332e65612e636f6d0086ebee0000929ce10101009648f400009a9b3401102d47414d452f434f4d4d2f4558504400b2f8c00093d5f2d60cb69bb20000bafbeb010100c2fcb400849c01ce4b390098ea01ce5cf3010b46577065574a3652727000ceb979019e015ea8e28687a0ca81a2b087a7eb8bf3e4b3beb38a9af6ed9bb6b1e8b0e1c2848c98b0e0c08183868c98e1ec88a3f3a69899ace08dfba2ac98baf4d895b396ad99b6e4dad0e982ee9896b1e8d48183e78d9ab2e8d4e1d2ccdbaad394808000cf08f4008b01cf4a6d010844656661756c7400cf6bad011374656c656d657472792d332d636f6d6d6f6e00") self.transport.getHandle().sendall(reply.build().decode('Hex')) def FetchClientConfig(self,data_e): packet = BlazeFuncs.BlazeDecoder(data_e) cfid = packet.getVar("CFID") reply = BlazeFuncs.BlazePacket("0009","0001",packet.packetID,"1000") if cfid == "GOSAchievements": print "GOSAchievements" reply.writeMap("CONF") reply.writeMapData("Achievements", "ACH32_00,ACH33_00,ACH34_00,ACH35_00,ACH36_00,ACH37_00,ACH38_00,ACH39_00,ACH40_00,XPACH01_00,XPACH02_00,XPACH03_00,XPACH04_00,XPACH05_00,XP2ACH01_00,XP2ACH04_00,XP2ACH03_00,XP2ACH05_00,XP2ACH02_00,XP3ACH01_00,XP3ACH05_00,XP3ACH03_00,XP3ACH04_00,XP3ACH02_00,XP4ACH01_00,XP4ACH02_00,XP4ACH03_00,XP4ACH04_00,XP4ACH05_00,XP5ACH01_00,XP5ACH02_00,XP5ACH03_00,XP5ach04_00,XP5ach05_00") reply.writeMapData("WinCodes", "r01_00,r05_00,r04_00,r03_00,r02_00,r10_00,r08_00,r07_00,r06_00,r09_00,r11_00,r12_00,r13_00,r14_00,r15_00,r16_00,r17_00,r18_00,r19_00,r20_00,r21_00,r22_00,r23_00,r24_00,r25_00,r26_00,r27_00,r28_00,r29_00,r30_00,r31_00,r32_00,r33_00,r35_00,r36_00,r37_00,r34_00,r38_00,r39_00,r40_00,r41_00,r42_00,r43_00,r44_00,r45_00,xp2rgm_00,xp2rntdmcq_00,xp2rtdmc_00,xp3rts_00,xp3rdom_00,xp3rnts_00,xp3rngm_00,xp4rndom_00,xp4rscav_00,xp4rnscv_00,xp4ramb1_00,xp4ramb2_00,xp5r502_00,xp5r501_00,xp5ras_00,xp5asw_00") reply.writeBuildMap() self.transport.getHandle().sendall(reply.build().decode('Hex')) def UserSettingsSave(self, data_e): packet = BlazeFuncs.BlazeDecoder(data_e) data = packet.getVar("DATA") cwd = os.getcwd() path = cwd+"\\Users\\"+self.GAMEOBJ.Name+"\\" f = open(path+'usersettings.txt', 'w') f.write(data) f.close() reply = BlazeFuncs.BlazePacket("0009","000b",packet.packetID,"1000") self.transport.getHandle().sendall(reply.build().decode('Hex')) def SetUserMode(self, data_e): packet = BlazeFuncs.BlazeDecoder(data_e) mode = packet.getVar("MODE") reply = BlazeFuncs.BlazePacket("0009","001c",packet.packetID,"1000") self.transport.getHandle().sendall(reply.build().decode('Hex')) def ReciveComponent(self,func,data_e): func = func.upper() if func == "0001": print("[UTIL] FetchClientConfig") FetchClientConfig(self,data_e) elif func == "0002": Ping(self,data_e) elif func == "0003": print("[UTIL] SendClientData") elif func == "0004": print("[UTIL] LocalizeStrings") elif func == "0005": print("[UTIL] GetTelemetryServer") GetTelemetryServer(self,data_e) elif func == "0006": print("[UTIL] GetTickerServer") elif func == "0007": print("[UTIL] PreAuth") PreAuth(self,data_e) elif func == "0008": print("[UTIL] PostAuth") PostAuth(self,data_e) elif func == "000A": print("[UTIL] UserSettingsLoad") elif func == "000B": print("[UTIL] UserSettingsSave") UserSettingsSave(self, data_e) elif func == "000C": print("[UTIL] UserSettingsLoadAll") UserSettingsLoadAll(self,data_e) elif func == "000E": print("[UTIL] DeleteUserSettings") elif func == "0014": print("[UTIL] FilterForProfanity") elif func == "0015": print("[UTIL] FetchQOSConfig") elif func == "0016": print("[UTIL] SetClientMetrics") elif func == "0017": print("[UTIL] SetConnectionState") elif func == "0018": print("[UTIL] GetPassConfig") elif func == "0019": print("[UTIL] GetUserOptions") elif func == "001A": print("[UTIL] SetUserOptions") elif func == "001B": print("[UTIL] SuspendUserPing") elif func == "001C": print("[UTIL] SetUserMode") SetUserMode(self,data_e) else: print("[UTIL] ERROR! UNKNOWN FUNC "+func)
py
1a4d8dbe2885ebfe549addb97a1f67a8548a4f12
from __future__ import annotations import itertools from typing import ( TYPE_CHECKING, cast, ) import numpy as np import pandas._libs.reshape as libreshape from pandas._libs.sparse import IntIndex from pandas._typing import Dtype from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.common import ( ensure_platform_int, is_1d_only_ea_dtype, is_bool_dtype, is_extension_array_dtype, is_integer, is_integer_dtype, is_list_like, is_object_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import notna import pandas.core.algorithms as algos from pandas.core.arrays import SparseArray from pandas.core.arrays.categorical import factorize_from_iterable from pandas.core.frame import DataFrame from pandas.core.indexes.api import ( Index, MultiIndex, ) from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_compressed_ids, get_group_index, get_group_index_sorter, ) if TYPE_CHECKING: from pandas.core.arrays import ExtensionArray class _Unstacker: """ Helper class to unstack data / pivot with multi-level index Parameters ---------- index : MultiIndex level : int or str, default last level Level to "unstack". Accepts a name for the level. fill_value : scalar, optional Default value to fill in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN. constructor : object Pandas ``DataFrame`` or subclass used to create unstacked response. If None, DataFrame will be used. Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1, 5, dtype=np.int64), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 Returns ------- unstacked : DataFrame """ def __init__(self, index: MultiIndex, level=-1, constructor=None): if constructor is None: constructor = DataFrame self.constructor = constructor self.index = index.remove_unused_levels() self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.codes[self.level] else 0 # Note: the "pop" below alters these in-place. self.new_index_levels = list(self.index.levels) self.new_index_names = list(self.index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self.removed_level_full = index.levels[self.level] # Bug fix GH 20601 # If the data frame is too big, the number of unique index combination # will cause int32 overflow on windows environments. # We want to check and raise an error before this happens num_rows = np.max([index_level.size for index_level in self.new_index_levels]) num_columns = self.removed_level.size # GH20601: This forces an overflow if the number of cells is too high. num_cells = np.multiply(num_rows, num_columns, dtype=np.int32) if num_rows > 0 and num_columns > 0 and num_cells <= 0: raise ValueError("Unstacked DataFrame is too big, causing int32 overflow") self._make_selectors() @cache_readonly def _indexer_and_to_sort(self): v = self.level codes = list(self.index.codes) levs = list(self.index.levels) to_sort = codes[:v] + codes[v + 1 :] + [codes[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1 :] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer = get_group_index_sorter(comp_index, ngroups) indexer = ensure_platform_int(indexer) return indexer, to_sort @cache_readonly def sorted_labels(self): indexer, to_sort = self._indexer_and_to_sort return [line.take(indexer) for line in to_sort] def _make_sorted_values(self, values: np.ndarray) -> np.ndarray: indexer, _ = self._indexer_and_to_sort sorted_values = algos.take_nd(values, indexer, axis=0) return sorted_values def _make_selectors(self): new_levels = self.new_index_levels # make the mask remaining_labels = self.sorted_labels[:-1] level_sizes = [len(x) for x in new_levels] comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes) ngroups = len(obs_ids) comp_index = ensure_platform_int(comp_index) stride = self.index.levshape[self.level] + self.lift self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift # error: Argument 1 to "zeros" has incompatible type "number"; expected # "Union[int, Sequence[int]]" mask = np.zeros(np.prod(self.full_shape), dtype=bool) # type: ignore[arg-type] mask.put(selector, True) if mask.sum() < len(self.index): raise ValueError("Index contains duplicate entries, cannot reshape") self.group_index = comp_index self.mask = mask self.unique_groups = obs_ids self.compressor = comp_index.searchsorted(np.arange(ngroups)) def get_result(self, values, value_columns, fill_value): if values.ndim == 1: values = values[:, np.newaxis] if value_columns is None and values.shape[1] != 1: # pragma: no cover raise ValueError("must pass column labels for multi-column data") values, _ = self.get_new_values(values, fill_value) columns = self.get_new_columns(value_columns) index = self.new_index return self.constructor(values, index=index, columns=columns) def get_new_values(self, values, fill_value=None): if values.ndim == 1: values = values[:, np.newaxis] sorted_values = self._make_sorted_values(values) # place the values length, width = self.full_shape stride = values.shape[1] result_width = width * stride result_shape = (length, result_width) mask = self.mask mask_all = mask.all() # we can simply reshape if we don't have a mask if mask_all and len(values): # TODO: Under what circumstances can we rely on sorted_values # matching values? When that holds, we can slice instead # of take (in particular for EAs) new_values = ( sorted_values.reshape(length, width, stride) .swapaxes(1, 2) .reshape(result_shape) ) new_mask = np.ones(result_shape, dtype=bool) return new_values, new_mask # if our mask is all True, then we can use our existing dtype if mask_all: dtype = values.dtype new_values = np.empty(result_shape, dtype=dtype) else: dtype, fill_value = maybe_promote(values.dtype, fill_value) new_values = np.empty(result_shape, dtype=dtype) new_values.fill(fill_value) new_mask = np.zeros(result_shape, dtype=bool) name = np.dtype(dtype).name # we need to convert to a basic dtype # and possibly coerce an input to our output dtype # e.g. ints -> floats if needs_i8_conversion(values.dtype): sorted_values = sorted_values.view("i8") new_values = new_values.view("i8") elif is_bool_dtype(values.dtype): sorted_values = sorted_values.astype("object") new_values = new_values.astype("object") else: sorted_values = sorted_values.astype(name, copy=False) # fill in our values & mask libreshape.unstack( sorted_values, mask.view("u1"), stride, length, width, new_values, new_mask.view("u1"), ) # reconstruct dtype if needed if needs_i8_conversion(values.dtype): new_values = new_values.view(values.dtype) return new_values, new_mask def get_new_columns(self, value_columns): if value_columns is None: if self.lift == 0: return self.removed_level._rename(name=self.removed_name) lev = self.removed_level.insert(0, item=self.removed_level._na_value) return lev.rename(self.removed_name) stride = len(self.removed_level) + self.lift width = len(value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(value_columns, MultiIndex): new_levels = value_columns.levels + (self.removed_level_full,) new_names = value_columns.names + (self.removed_name,) new_codes = [lab.take(propagator) for lab in value_columns.codes] else: new_levels = [value_columns, self.removed_level_full] new_names = [value_columns.name, self.removed_name] new_codes = [propagator] # The two indices differ only if the unstacked level had unused items: if len(self.removed_level_full) != len(self.removed_level): # In this case, we remap the new codes to the original level: repeater = self.removed_level_full.get_indexer(self.removed_level) if self.lift: repeater = np.insert(repeater, 0, -1) else: # Otherwise, we just use each level item exactly once: repeater = np.arange(stride) - self.lift # The entire level is then just a repetition of the single chunk: new_codes.append(np.tile(repeater, width)) return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) @cache_readonly def new_index(self): # Does not depend on values or value_columns result_codes = [lab.take(self.compressor) for lab in self.sorted_labels[:-1]] # construct the new index if len(self.new_index_levels) == 1: level, level_codes = self.new_index_levels[0], result_codes[0] if (level_codes == -1).any(): level = level.insert(len(level), level._na_value) return level.take(level_codes).rename(self.new_index_names[0]) return MultiIndex( levels=self.new_index_levels, codes=result_codes, names=self.new_index_names, verify_integrity=False, ) def _unstack_multiple(data, clocs, fill_value=None): if len(clocs) == 0: return data # NOTE: This doesn't deal with hierarchical columns yet index = data.index # GH 19966 Make sure if MultiIndexed index has tuple name, they will be # recognised as a whole if clocs in index.names: clocs = [clocs] clocs = [index._get_level_number(i) for i in clocs] rlocs = [i for i in range(index.nlevels) if i not in clocs] clevels = [index.levels[i] for i in clocs] ccodes = [index.codes[i] for i in clocs] cnames = [index.names[i] for i in clocs] rlevels = [index.levels[i] for i in rlocs] rcodes = [index.codes[i] for i in rlocs] rnames = [index.names[i] for i in rlocs] shape = [len(x) for x in clevels] group_index = get_group_index(ccodes, shape, sort=False, xnull=False) comp_ids, obs_ids = compress_group_index(group_index, sort=False) recons_codes = decons_obs_group_ids(comp_ids, obs_ids, shape, ccodes, xnull=False) if not rlocs: # Everything is in clocs, so the dummy df has a regular index dummy_index = Index(obs_ids, name="__placeholder__") else: dummy_index = MultiIndex( levels=rlevels + [obs_ids], codes=rcodes + [comp_ids], names=rnames + ["__placeholder__"], verify_integrity=False, ) if isinstance(data, Series): dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack("__placeholder__", fill_value=fill_value) new_levels = clevels new_names = cnames new_codes = recons_codes else: if isinstance(data.columns, MultiIndex): result = data for i in range(len(clocs)): val = clocs[i] result = result.unstack(val, fill_value=fill_value) clocs = [v if v < val else v - 1 for v in clocs] return result dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack("__placeholder__", fill_value=fill_value) if isinstance(unstacked, Series): unstcols = unstacked.index else: unstcols = unstacked.columns assert isinstance(unstcols, MultiIndex) # for mypy new_levels = [unstcols.levels[0]] + clevels new_names = [data.columns.name] + cnames new_codes = [unstcols.codes[0]] for rec in recons_codes: new_codes.append(rec.take(unstcols.codes[-1])) new_columns = MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) if isinstance(unstacked, Series): unstacked.index = new_columns else: unstacked.columns = new_columns return unstacked def unstack(obj, level, fill_value=None): if isinstance(level, (tuple, list)): if len(level) != 1: # _unstack_multiple only handles MultiIndexes, # and isn't needed for a single level return _unstack_multiple(obj, level, fill_value=fill_value) else: level = level[0] # Prioritize integer interpretation (GH #21677): if not is_integer(level) and not level == "__placeholder__": level = obj.index._get_level_number(level) if isinstance(obj, DataFrame): if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value) else: return obj.T.stack(dropna=False) elif not isinstance(obj.index, MultiIndex): # GH 36113 # Give nicer error messages when unstack a Series whose # Index is not a MultiIndex. raise ValueError( f"index must be a MultiIndex to unstack, {type(obj.index)} was passed" ) else: if is_1d_only_ea_dtype(obj.dtype): return _unstack_extension_series(obj, level, fill_value) unstacker = _Unstacker( obj.index, level=level, constructor=obj._constructor_expanddim ) return unstacker.get_result( obj._values, value_columns=None, fill_value=fill_value ) def _unstack_frame(obj, level, fill_value=None): if not obj._can_fast_transpose: unstacker = _Unstacker(obj.index, level=level) mgr = obj._mgr.unstack(unstacker, fill_value=fill_value) return obj._constructor(mgr) else: unstacker = _Unstacker(obj.index, level=level, constructor=obj._constructor) return unstacker.get_result( obj._values, value_columns=obj.columns, fill_value=fill_value ) def _unstack_extension_series(series, level, fill_value): """ Unstack an ExtensionArray-backed Series. The ExtensionDtype is preserved. Parameters ---------- series : Series A Series with an ExtensionArray for values level : Any The level name or number. fill_value : Any The user-level (not physical storage) fill value to use for missing values introduced by the reshape. Passed to ``series.values.take``. Returns ------- DataFrame Each column of the DataFrame will have the same dtype as the input Series. """ # Defer to the logic in ExtensionBlock._unstack df = series.to_frame() result = df.unstack(level=level, fill_value=fill_value) return result.droplevel(level=0, axis=1) def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """ def factorize(index): if index.is_unique: return index, np.arange(len(index)) codes, categories = factorize_from_iterable(index) return categories, codes N, K = frame.shape # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_codes = [lab.repeat(K) for lab in frame.index.codes] clev, clab = factorize(frame.columns) new_levels.append(clev) new_codes.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) codes = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex( levels=levels, codes=codes, names=[frame.index.name, frame.columns.name], verify_integrity=False, ) if not frame.empty and frame._is_homogeneous_type: # For homogeneous EAs, frame._values will coerce to object. So # we concatenate instead. dtypes = list(frame.dtypes._values) dtype = dtypes[0] if is_extension_array_dtype(dtype): arr = dtype.construct_array_type() new_values = arr._concat_same_type( [col._values for _, col in frame.items()] ) new_values = _reorder_for_extension_array_stack(new_values, N, K) else: # homogeneous, non-EA new_values = frame._values.ravel() else: # non-homogeneous new_values = frame._values.ravel() if dropna: mask = notna(new_values) new_values = new_values[mask] new_index = new_index[mask] return frame._constructor_sliced(new_values, index=new_index) def stack_multiple(frame, level, dropna=True): # If all passed levels match up to column names, no # ambiguity about what to do if all(lev in frame.columns.names for lev in level): result = frame for lev in level: result = stack(result, lev, dropna=dropna) # Otherwise, level numbers may change as each successive level is stacked elif all(isinstance(lev, int) for lev in level): # As each stack is done, the level numbers decrease, so we need # to account for that when level is a sequence of ints result = frame # _get_level_number() checks level numbers are in range and converts # negative numbers to positive level = [frame.columns._get_level_number(lev) for lev in level] # Can't iterate directly through level as we might need to change # values as we go for index in range(len(level)): lev = level[index] result = stack(result, lev, dropna=dropna) # Decrement all level numbers greater than current, as these # have now shifted down by one updated_level = [] for other in level: if other > lev: updated_level.append(other - 1) else: updated_level.append(other) level = updated_level else: raise ValueError( "level should contain all level names or all level " "numbers, not a mixture of the two." ) return result def _stack_multi_column_index(columns: MultiIndex) -> MultiIndex: """Creates a MultiIndex from the first N-1 levels of this MultiIndex.""" if len(columns.levels) <= 2: return columns.levels[0]._rename(name=columns.names[0]) levs = [ [lev[c] if c >= 0 else None for c in codes] for lev, codes in zip(columns.levels[:-1], columns.codes[:-1]) ] # Remove duplicate tuples in the MultiIndex. tuples = zip(*levs) unique_tuples = (key for key, _ in itertools.groupby(tuples)) new_levs = zip(*unique_tuples) # The dtype of each level must be explicitly set to avoid inferring the wrong type. # See GH-36991. return MultiIndex.from_arrays( [ # Not all indices can accept None values. Index(new_lev, dtype=lev.dtype) if None not in new_lev else new_lev for new_lev, lev in zip(new_levs, columns.levels) ], names=columns.names[:-1], ) def _stack_multi_columns(frame, level_num=-1, dropna=True): def _convert_level_number(level_num, columns): """ Logic for converting the level number to something we can safely pass to swaplevel. If `level_num` matches a column name return the name from position `level_num`, otherwise return `level_num`. """ if level_num in columns.names: return columns.names[level_num] return level_num this = frame.copy() # this makes life much simpler if level_num != frame.columns.nlevels - 1: # roll levels to put selected level at end roll_columns = this.columns for i in range(level_num, frame.columns.nlevels - 1): # Need to check if the ints conflict with level names lev1 = _convert_level_number(i, roll_columns) lev2 = _convert_level_number(i + 1, roll_columns) roll_columns = roll_columns.swaplevel(lev1, lev2) this.columns = roll_columns if not this.columns._is_lexsorted(): # Workaround the edge case where 0 is one of the column names, # which interferes with trying to sort based on the first # level level_to_sort = _convert_level_number(0, this.columns) this = this.sort_index(level=level_to_sort, axis=1) new_columns = _stack_multi_column_index(this.columns) # time to ravel the values new_data = {} level_vals = this.columns.levels[-1] level_codes = sorted(set(this.columns.codes[-1])) level_vals_nan = level_vals.insert(len(level_vals), None) level_vals_used = np.take(level_vals_nan, level_codes) levsize = len(level_codes) drop_cols = [] for key in new_columns: try: loc = this.columns.get_loc(key) except KeyError: drop_cols.append(key) continue # can make more efficient? # we almost always return a slice # but if unsorted can get a boolean # indexer if not isinstance(loc, slice): slice_len = len(loc) else: slice_len = loc.stop - loc.start if slice_len != levsize: chunk = this.loc[:, this.columns[loc]] chunk.columns = level_vals_nan.take(chunk.columns.codes[-1]) value_slice = chunk.reindex(columns=level_vals_used).values else: if frame._is_homogeneous_type and is_extension_array_dtype( frame.dtypes.iloc[0] ): dtype = this[this.columns[loc]].dtypes.iloc[0] subset = this[this.columns[loc]] value_slice = dtype.construct_array_type()._concat_same_type( [x._values for _, x in subset.items()] ) N, K = this.shape idx = np.arange(N * K).reshape(K, N).T.ravel() value_slice = value_slice.take(idx) elif frame._is_mixed_type: value_slice = this[this.columns[loc]].values else: value_slice = this.values[:, loc] if value_slice.ndim > 1: # i.e. not extension value_slice = value_slice.ravel() new_data[key] = value_slice if len(drop_cols) > 0: new_columns = new_columns.difference(drop_cols) N = len(this) if isinstance(this.index, MultiIndex): new_levels = list(this.index.levels) new_names = list(this.index.names) new_codes = [lab.repeat(levsize) for lab in this.index.codes] else: old_codes, old_levels = factorize_from_iterable(this.index) new_levels = [old_levels] new_codes = [old_codes.repeat(levsize)] new_names = [this.index.name] # something better? new_levels.append(level_vals) new_codes.append(np.tile(level_codes, N)) new_names.append(frame.columns.names[level_num]) new_index = MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) result = frame._constructor(new_data, index=new_index, columns=new_columns) # more efficient way to go about this? can do the whole masking biz but # will only save a small amount of time... if dropna: result = result.dropna(axis=0, how="all") return result def get_dummies( data, prefix=None, prefix_sep="_", dummy_na: bool = False, columns=None, sparse: bool = False, drop_first: bool = False, dtype: Dtype | None = None, ) -> DataFrame: """ Convert categorical variable into dummy/indicator variables. Parameters ---------- data : array-like, Series, or DataFrame Data of which to get dummy indicators. prefix : str, list of str, or dict of str, default None String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : str, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix`. dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy-encoded columns should be backed by a :class:`SparseArray` (True) or a regular NumPy array (False). drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. dtype : dtype, default np.uint8 Data type for new columns. Only a single dtype is allowed. Returns ------- DataFrame Dummy-coded data. See Also -------- Series.str.get_dummies : Convert Series to dummy codes. Examples -------- >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 >>> pd.get_dummies(pd.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ from pandas.core.reshape.concat import concat dtypes_to_encode = ["object", "category"] if isinstance(data, DataFrame): # determine columns being encoded if columns is None: data_to_encode = data.select_dtypes(include=dtypes_to_encode) elif not is_list_like(columns): raise TypeError("Input must be a list-like for parameter `columns`") else: data_to_encode = data[columns] # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): if is_list_like(item): if not len(item) == data_to_encode.shape[1]: len_msg = ( f"Length of '{name}' ({len(item)}) did not match the " "length of the columns being encoded " f"({data_to_encode.shape[1]})." ) raise ValueError(len_msg) check_len(prefix, "prefix") check_len(prefix_sep, "prefix_sep") if isinstance(prefix, str): prefix = itertools.cycle([prefix]) if isinstance(prefix, dict): prefix = [prefix[col] for col in data_to_encode.columns] if prefix is None: prefix = data_to_encode.columns # validate separators if isinstance(prefix_sep, str): prefix_sep = itertools.cycle([prefix_sep]) elif isinstance(prefix_sep, dict): prefix_sep = [prefix_sep[col] for col in data_to_encode.columns] with_dummies: list[DataFrame] if data_to_encode.shape == data.shape: # Encoding the entire df, do not prepend any dropped columns with_dummies = [] elif columns is not None: # Encoding only cols specified in columns. Get all cols not in # columns to prepend to result. with_dummies = [data.drop(columns, axis=1)] else: # Encoding only object and category dtype columns. Get remaining # columns to prepend to result. with_dummies = [data.select_dtypes(exclude=dtypes_to_encode)] for (col, pre, sep) in zip(data_to_encode.items(), prefix, prefix_sep): # col is (column_name, column), use just column data here dummy = _get_dummies_1d( col[1], prefix=pre, prefix_sep=sep, dummy_na=dummy_na, sparse=sparse, drop_first=drop_first, dtype=dtype, ) with_dummies.append(dummy) result = concat(with_dummies, axis=1) else: result = _get_dummies_1d( data, prefix, prefix_sep, dummy_na, sparse=sparse, drop_first=drop_first, dtype=dtype, ) return result def _get_dummies_1d( data, prefix, prefix_sep="_", dummy_na: bool = False, sparse: bool = False, drop_first: bool = False, dtype: Dtype | None = None, ) -> DataFrame: from pandas.core.reshape.concat import concat # Series avoids inconsistent NaN handling codes, levels = factorize_from_iterable(Series(data)) if dtype is None: dtype = np.uint8 # error: Argument 1 to "dtype" has incompatible type "Union[ExtensionDtype, str, # dtype[Any], Type[object]]"; expected "Type[Any]" dtype = np.dtype(dtype) # type: ignore[arg-type] if is_object_dtype(dtype): raise ValueError("dtype=object is not a valid dtype for get_dummies") def get_empty_frame(data) -> DataFrame: if isinstance(data, Series): index = data.index else: index = np.arange(len(data)) return DataFrame(index=index) # if all NaN if not dummy_na and len(levels) == 0: return get_empty_frame(data) codes = codes.copy() if dummy_na: codes[codes == -1] = len(levels) levels = np.append(levels, np.nan) # if dummy_na, we just fake a nan level. drop_first will drop it again if drop_first and len(levels) == 1: return get_empty_frame(data) number_of_cols = len(levels) if prefix is None: dummy_cols = levels else: dummy_cols = Index([f"{prefix}{prefix_sep}{level}" for level in levels]) index: Index | None if isinstance(data, Series): index = data.index else: index = None if sparse: fill_value: bool | float | int if is_integer_dtype(dtype): fill_value = 0 elif dtype == bool: fill_value = False else: fill_value = 0.0 sparse_series = [] N = len(data) sp_indices: list[list] = [[] for _ in range(len(dummy_cols))] mask = codes != -1 codes = codes[mask] n_idx = np.arange(N)[mask] for ndx, code in zip(n_idx, codes): sp_indices[code].append(ndx) if drop_first: # remove first categorical level to avoid perfect collinearity # GH12042 sp_indices = sp_indices[1:] dummy_cols = dummy_cols[1:] for col, ixs in zip(dummy_cols, sp_indices): sarr = SparseArray( np.ones(len(ixs), dtype=dtype), sparse_index=IntIndex(N, ixs), fill_value=fill_value, dtype=dtype, ) sparse_series.append(Series(data=sarr, index=index, name=col)) out = concat(sparse_series, axis=1, copy=False) # TODO: overload concat with Literal for axis out = cast(DataFrame, out) return out else: # take on axis=1 + transpose to ensure ndarray layout is column-major dummy_mat = np.eye(number_of_cols, dtype=dtype).take(codes, axis=1).T if not dummy_na: # reset NaN GH4446 dummy_mat[codes == -1] = 0 if drop_first: # remove first GH12042 dummy_mat = dummy_mat[:, 1:] dummy_cols = dummy_cols[1:] return DataFrame(dummy_mat, index=index, columns=dummy_cols) def _reorder_for_extension_array_stack( arr: ExtensionArray, n_rows: int, n_columns: int ) -> ExtensionArray: """ Re-orders the values when stacking multiple extension-arrays. The indirect stacking method used for EAs requires a followup take to get the order correct. Parameters ---------- arr : ExtensionArray n_rows, n_columns : int The number of rows and columns in the original DataFrame. Returns ------- taken : ExtensionArray The original `arr` with elements re-ordered appropriately Examples -------- >>> arr = np.array(['a', 'b', 'c', 'd', 'e', 'f']) >>> _reorder_for_extension_array_stack(arr, 2, 3) array(['a', 'c', 'e', 'b', 'd', 'f'], dtype='<U1') >>> _reorder_for_extension_array_stack(arr, 3, 2) array(['a', 'd', 'b', 'e', 'c', 'f'], dtype='<U1') """ # final take to get the order correct. # idx is an indexer like # [c0r0, c1r0, c2r0, ..., # c0r1, c1r1, c2r1, ...] idx = np.arange(n_rows * n_columns).reshape(n_columns, n_rows).T.ravel() return arr.take(idx)
py
1a4d8fc742fbc89fd26ce670ade72b75e94577b4
# Copyright (C) 2015-2022 by Vd. # This file is part of Rocketgram, the modern Telegram bot framework. # Rocketgram is released under the MIT License (see LICENSE). from dataclasses import dataclass from typing import Optional from .input_message_content import InputMessageContent @dataclass(frozen=True) class InputContactMessageContent(InputMessageContent): """\ Represents InputContactMessageContent object: https://core.telegram.org/bots/api#inputcontactmessagecontent """ latitude: float longitude: float title: str address: str foursquare_id: Optional[str] = None foursquare_type: Optional[str] = None
py
1a4d916e18a493230b73ffddb1bfc7846406efef
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helpers to manipulate a tensor graph in python. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.platform import tf_logging as logging _VARIABLE_OPS = { "Assign", "AssignAdd", "AssignSub", "Queue", "ScatterAdd", "ScatterSub", "ScatterUpdate", "TruncatedNormal", "Variable", } def _is_variable_op(op): """Returns true if 'op' refers to a Variable node.""" return op in _VARIABLE_OPS def set_cpu0(device_string): """Creates a new device string based on `device_string' but using /CPU:0. If the device is already on /CPU:0, this is a no-op. Args: device_string: A device string. Returns: A device string. """ parsed_device = pydev.DeviceSpec.from_string(device_string) parsed_device.device_type = "CPU" parsed_device.device_index = 0 return parsed_device.to_string() def must_run_on_cpu(node, pin_variables_on_cpu=False): """Returns True if the given node_def must run on CPU, otherwise False. Args: node: The node to be assigned to a device. Could be either an ops.Operation or NodeDef. pin_variables_on_cpu: If True, this function will return False if node_def represents a variable-related op. Returns: True if the given node must run on CPU, otherwise False. """ if isinstance(node, ops.Operation): node_def = node.node_def else: assert isinstance(node, graph_pb2.NodeDef) node_def = node # If the op is a variable-related op, should we pin it on CPU? if pin_variables_on_cpu and _is_variable_op(node_def.op): return True # Constant operations producing a string or int32 must run on CPU. if node_def.op == "Const": # Get the value of the 'dtype' attr dtype = node_def.attr["dtype"].type if dtype == dtypes.string or dtype == dtypes.int32: return True if node_def.op == "DynamicStitch": dtype = node_def.attr["T"].type if dtype == dtypes.int32: # DynamicStitch on GPU only works for int32 values. return True if node_def.op in ["Cast"]: dtype = node_def.attr["SrcT"].type if dtype == dtypes.int32: # Cast on GPU does not works for int32 values. return True return False ################################################################################ # # device functions for use in with g.device(...) # ################################################################################ def _node_name(n): if n.startswith("^"): return n[1:] else: return n.split(":")[0] def extract_sub_graph(graph_def, dest_nodes): """Extract the subgraph that can reach any of the nodes in 'dest_nodes'. Args: graph_def: A graph_pb2.GraphDef proto. dest_nodes: A list of strings specifying the destination node names. Returns: The GraphDef of the sub-graph. Raises: TypeError: If 'graph_def' is not a graph_pb2.GraphDef proto. """ if not isinstance(graph_def, graph_pb2.GraphDef): raise TypeError("graph_def must be a graph_pb2.GraphDef proto.") edges = {} # Keyed by the dest node name. name_to_node_map = {} # Keyed by node name. # Keeps track of node sequences. It is important to still output the # operations in the original order. node_seq = {} # Keyed by node name. seq = 0 for node in graph_def.node: n = _node_name(node.name) name_to_node_map[n] = node edges[n] = [_node_name(x) for x in node.input] node_seq[n] = seq seq += 1 for d in dest_nodes: assert d in name_to_node_map, "%s is not in graph" % d nodes_to_keep = set() # Breadth first search to find all the nodes that we should keep. next_to_visit = dest_nodes[:] while next_to_visit: n = next_to_visit[0] del next_to_visit[0] if n in nodes_to_keep: # Already visited this node. continue nodes_to_keep.add(n) next_to_visit += edges[n] nodes_to_keep_list = sorted(list(nodes_to_keep), key=lambda n: node_seq[n]) # Now construct the output GraphDef out = graph_pb2.GraphDef() for n in nodes_to_keep_list: out.node.extend([copy.deepcopy(name_to_node_map[n])]) return out def tensor_shape_from_node_def_name(graph, input_name): """Convenience function to get a shape from a NodeDef's input string.""" # To get a tensor, the name must be in the form <input>:<port>, for example # 'Mul:0'. The GraphDef input strings don't always have the port specified # though, so if there isn't a colon we need to add a default ':0' to the end. if ":" not in input_name: canonical_name = input_name + ":0" else: canonical_name = input_name tensor = graph.get_tensor_by_name(canonical_name) shape = tensor.get_shape() return shape def convert_variables_to_constants(sess, input_graph_def, output_node_names): """Replaces all the variables in a graph with constants of the same values. If you have a trained graph containing Variable ops, it can be convenient to convert them all to Const ops holding the same values. This makes it possible to describe the network fully with a single GraphDef file, and allows the removal of a lot of ops related to loading and saving the variables. Args: sess: Active TensorFlow session containing the variables. input_graph_def: GraphDef object holding the network. output_node_names: List of name strings for the result nodes of the graph. Returns: GraphDef containing a simplified version of the original. """ found_variables = {} variable_names = [] variable_dict_names = [] for node in input_graph_def.node: if node.op == "Assign": variable_name = node.input[0] variable_dict_names.append(variable_name) variable_names.append(variable_name + ":0") if variable_names: returned_variables = sess.run(variable_names) else: returned_variables = [] found_variables = dict(zip(variable_dict_names, returned_variables)) logging.info("Frozen %d variables." % len(returned_variables)) # This graph only includes the nodes needed to evaluate the output nodes, and # removes unneeded nodes like those involved in saving and assignment. inference_graph = extract_sub_graph(input_graph_def, output_node_names) output_graph_def = graph_pb2.GraphDef() how_many_converted = 0 for input_node in inference_graph.node: output_node = graph_pb2.NodeDef() if input_node.name in found_variables: output_node.op = "Const" output_node.name = input_node.name dtype = input_node.attr["dtype"] data = found_variables[input_node.name] output_node.attr["dtype"].CopyFrom(dtype) output_node.attr["value"].CopyFrom(attr_value_pb2.AttrValue( tensor=tensor_util.make_tensor_proto(data, dtype=dtype.type, shape=data.shape))) how_many_converted += 1 else: output_node.CopyFrom(input_node) output_graph_def.node.extend([output_node]) print("Converted %d variables to const ops." % how_many_converted) return output_graph_def
py
1a4d918d62281f72b7b02429ada5eb7601dc605b
# Copyright (c) 2016, Mark Peek <[email protected]> # All rights reserved. # # See LICENSE file for full license. from . import AWSHelperFn, AWSObject, AWSProperty, Tags from .validators import boolean, integer, positive_integer class SourceAuth(AWSProperty): props = { 'Resource': (basestring, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'OAUTH' ] auth_types = self.properties.get('Type') if auth_types not in valid_types: raise ValueError('SourceAuth Type: must be one of %s' % ','.join(valid_types)) class Artifacts(AWSProperty): props = { 'EncryptionDisabled': (boolean, False), 'Location': (basestring, False), 'Name': (basestring, False), 'NamespaceType': (basestring, False), 'OverrideArtifactName': (boolean, False), 'Packaging': (basestring, False), 'Path': (basestring, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'CODEPIPELINE', 'NO_ARTIFACTS', 'S3', ] artifact_type = self.properties.get('Type') if artifact_type not in valid_types: raise ValueError('Artifacts Type: must be one of %s' % ','.join(valid_types)) if artifact_type == 'S3': for required_property in ['Name', 'Location']: if not self.properties.get(required_property): raise ValueError( 'Artifacts Type S3: requires %s to be set' % required_property ) class EnvironmentVariable(AWSProperty): props = { 'Name': (basestring, True), 'Type': (basestring, False), 'Value': (basestring, True), } def validate(self): if 'Type' in self.properties: valid_types = [ 'PARAMETER_STORE', 'PLAINTEXT', ] env_type = self.properties.get('Type') if env_type not in valid_types: raise ValueError( 'EnvironmentVariable Type: must be one of %s' % ','.join(valid_types)) class Environment(AWSProperty): props = { 'ComputeType': (basestring, True), 'EnvironmentVariables': ((list, [EnvironmentVariable]), False), 'Image': (basestring, True), 'PrivilegedMode': (boolean, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'LINUX_CONTAINER', 'WINDOWS_CONTAINER', ] env_type = self.properties.get('Type') if env_type not in valid_types: raise ValueError('Environment Type: must be one of %s' % ','.join(valid_types)) class ProjectCache(AWSProperty): props = { 'Location': (basestring, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'NO_CACHE', 'S3', ] cache_type = self.properties.get('Type') if cache_type not in valid_types: raise ValueError('ProjectCache Type: must be one of %s' % ','.join(valid_types)) class Source(AWSProperty): props = { 'Auth': (SourceAuth, False), 'BuildSpec': (basestring, False), 'GitCloneDepth': (positive_integer, False), 'InsecureSsl': (boolean, False), 'Location': (basestring, False), 'ReportBuildStatus': (boolean, False), 'Type': (basestring, True), } def validate(self): valid_types = [ 'BITBUCKET', 'CODECOMMIT', 'CODEPIPELINE', 'GITHUB', 'GITHUB_ENTERPRISE', 'NO_SOURCE', 'S3', ] location_agnostic_types = [ 'CODEPIPELINE', 'NO_SOURCE', ] source_type = self.properties.get('Type') # Don't do additional checks if source_type can't # be determined (for example, being a Ref). if isinstance(source_type, AWSHelperFn): return if source_type not in valid_types: raise ValueError('Source Type: must be one of %s' % ','.join(valid_types)) location = self.properties.get('Location') if source_type not in location_agnostic_types and not location: raise ValueError( 'Source Location: must be defined when type is %s' % source_type ) auth = self.properties.get('Auth') if auth is not None and source_type is not 'GITHUB': raise ValueError("SourceAuth: must only be defined when using " "'GITHUB' Source Type.") class VpcConfig(AWSProperty): props = { 'SecurityGroupIds': ([basestring], True), 'Subnets': ([basestring], True), 'VpcId': (basestring, True), } class ProjectTriggers(AWSProperty): props = { 'Webhook': (boolean, False), } def validate_status(status): """ Validate status :param status: The Status of CloudWatchLogs or S3Logs :return: The provided value if valid """ valid_statuses = [ 'ENABLED', 'DISABLED' ] if status not in valid_statuses: raise ValueError('Status: must be one of %s' % ','.join(valid_statuses)) return status class CloudWatchLogs(AWSProperty): props = { "Status": (validate_status, True), "GroupName": (basestring, False), "StreamName": (basestring, False) } class S3Logs(AWSProperty): props = { "Status": (validate_status, True), "Location": (basestring, False) } class LogsConfig(AWSProperty): props = { 'CloudWatchLogs': (CloudWatchLogs, False), 'S3Logs': (S3Logs, False) } class Project(AWSObject): resource_type = "AWS::CodeBuild::Project" props = { 'Artifacts': (Artifacts, True), 'BadgeEnabled': (boolean, False), 'Cache': (ProjectCache, False), 'Description': (basestring, False), 'EncryptionKey': (basestring, False), 'Environment': (Environment, True), "LogsConfig": (LogsConfig, False), 'Name': (basestring, True), 'SecondaryArtifacts': ([Artifacts], False), 'SecondarySources': ([Source], False), 'ServiceRole': (basestring, True), 'Source': (Source, True), 'Tags': (Tags, False), 'TimeoutInMinutes': (integer, False), 'Triggers': (ProjectTriggers, False), 'VpcConfig': (VpcConfig, False), }
py
1a4d942d33ff0fb6c39f2b92c1eb335dec9b4103
import sys sys.path.append('.') from util.game import Game from util.func import Case from util.card import Card, CardList, CardSuit from util.player import Player from typing import List, Optional, Tuple import random class LevelUp(Game): ### Constants PLAYERNUM: int = 4 CARDPOOL: List[Card] = [Card(i) for i in range(54)] * 2 BASESCORE: int = 80 LEVELSCORE: int = 40 def __init__(self): self.players: List[Optional[Player]] = [None] * LevelUp.PLAYERNUM self.discard_buffer: Optional[CardList] = None self.curPlayerIndex: Optional[int] = None self.rankLevel: Tuple[int, int] = (1, 1) self.dealerIndex: Optional[int] = None self.rankMain: int = 1 # E.g. (Spade, 0, 1) means the main suit is spade (suited with a single spade by 0-th player) self.suitMain: Optional[Tuple(CardSuit, int, int)] = None self.score: int = 0 self.state: str = 'END' for i in range(len(self.players)): self.players[i] = Player() def inform(self, information): case = Case(self.state) if case('END'): case = Case(information) if case('START'): self.state = 'DISPATCH' return (True, self._dispatch(), { 'suit': self.suitMain, 'rank': self.rankMain, 'level': self.rankLevel } ) if case('DISPATCH'): case = Case(information) if case('FINISH'): self.state = 'DISCARD' if self.dealerIndex is None: self.dealerIndex = self.suitMain[1] self.curPlayerIndex = self.dealerIndex self.players[self.curPlayerIndex].cardInHand += self.discard_buffer self.discard_buffer = CardList() for player in self.players: player.cardFront = CardList() return (True, None, None) return (False, None, None) def _dispatch(self) -> List[int]: newCardPool: List[Card] = random.sample(LevelUp.CARDPOOL, len(LevelUp.CARDPOOL)) dispatch = [newCardPool[0:25], newCardPool[25:50], newCardPool[50:75], newCardPool[75:100], newCardPool[100:]] for id, player in enumerate(self.players): player.cardInHand = CardList(dispatch[id]) self.discard_buffer = CardList(dispatch[-1]) return [[card.ID for card in cards] for cards in dispatch] def isSuitable(self, cards: List[int], playerID: int, suit: Optional[CardSuit] = None): #suit: 0 NT, 1 Spade, 2 Heart, 3 Club, 4 Diamond if suit is None: return [self.isSuitable(cards, playerID, s) for s in [ CardSuit.Joker, CardSuit.Spade, CardSuit.Heart, CardSuit.Club, CardSuit.Diamond ]] cardnum = -1 case = Case(suit) if case(CardSuit.Spade): cardnum = 39 + self.rankMain elif case(CardSuit.Heart): cardnum = 26 + self.rankMain elif case(CardSuit.Club): cardnum = 13 + self.rankMain elif case(CardSuit.Diamond): cardnum = self.rankMain if self.suitMain is None: if suit == CardSuit.Joker: return cards.count(52) == 2 or cards.count(53) == 2 else: return cardnum in cards elif self.suitMain[1] == playerID: if self.suitMain[2] == 2: return False if suit != self.suitMain[0]: return False return cards.count(cardnum) == 2 else: if suit == CardSuit.Joker: if self.suitMain[0] == CardSuit.Joker: return cards.count(53) == 2 else: return cards.count(53) == 2 or cards.count(52) == 2 if self.suitMain[2] == 2: return False return cards.count(cardnum) == 2 def suitRequest(self, playerID: int, suit: CardSuit): cards = self.players[playerID].cardInHand.tolist() if not self.isSuitable(cards, playerID, suit): return False for player in self.players: player.cardFront = CardList() cardnum = -1 case = Case(suit) if case(CardSuit.Spade): cardnum = 39 + self.rankMain elif case(CardSuit.Heart): cardnum = 26 + self.rankMain elif case(CardSuit.Club): cardnum = 13 + self.rankMain elif case(CardSuit.Diamond): cardnum = self.rankMain if suit == CardSuit.Joker: if cards.count(52) == 2: self.suitMain = (CardSuit.Joker, playerID, 2) self.players[playerID].cardFront += CardList([Card(52), Card(52)]) else: self.suitMain = (CardSuit.Joker, playerID, 2) self.players[playerID].cardFront += CardList([Card(53), Card(53)]) else: if self.suitMain is None: self.suitMain = (suit, playerID, 1) self.players[playerID].cardFront += Card(cardnum) else: self.suitMain = (suit, playerID, 2) self.players[playerID].cardFront += CardList([Card(cardnum), Card(cardnum)]) front = [player.cardFront.tolist() for player in self.players] return [front, self.suitMain]
py
1a4d94e0bc66450cc63ef04da76228e286187ea2
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT """ Read data from the magnetometer and print it out, ASAP! """ import board import adafruit_lsm303dlh_mag i2c = board.I2C() # uses board.SCL and board.SDA sensor = adafruit_lsm303dlh_mag.LSM303DLH_Mag(i2c) while True: mag_x, mag_y, mag_z = sensor.magnetic print("{0:10.3f} {1:10.3f} {2:10.3f}".format(mag_x, mag_y, mag_z))
py
1a4d95e597de30775fd763bbd48e097634f1dace
''' File: pathtracker.py Path tracking simulation with Stanley steering control and PID speed control. author: Atsushi Sakai (@Atsushi_twi) Ref: - [Stanley: The robot that won the DARPA grand challenge](http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf) - [Autonomous Automobile Path Tracking](https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf) ''' import numpy as np import math class StanleyController(object): MIN_THROTTLE = 0.0 MAX_THROTTLE = 1.0 def __init__(self, cfg): self.cfg = cfg self.k = 0.5 # control gain self.Kp = cfg.KP # speed proportional gain self.Kd = cfg.KD # speed diferential gain self.Kta = 0.5 # accel to throttle ratio self.maxaccel = cfg.MAX_ACCEL self.L = 30 # [m] Wheel base of vehicle self.x = 0. self.y = 0. self.camx = 105. self.camy = 400. self.yaw = -math.pi # Current yaw (birdseye frame) self.v = 0. self.throttle = 0. # current throttle setting self.img_count = 0 def constant_speed_control(self,v_target,v_current,throttle): """ Proportional control for the speed. :param target v: (float) :param current v: (float) :param previous v: (float) :return target change in accel: (float) """ v_correction = self.Kp * (v_target - v_current) current_accel = v_current - self.v accel_delta = v_correction - current_accel if accel_delta > self.maxaccel: accel_delta = self.maxaccel if accel_delta < -self.maxaccel: accel_delta = -self.maxaccel throttle = throttle + (accel_delta * self.Kta) if throttle < self.MIN_THROTTLE: throttle = self.MIN_THROTTLE if throttle > self.MAX_THROTTLE: throttle = self.MAX_THROTTLE return throttle def stanley_control(self, cx, cy, cyaw, v, last_target_idx): """ Stanley steering control. :param state: (State object) :param cx: ([float]) :param cy: ([float]) :param cyaw: ([float]) :param last_target_idx: (int) :return: (float, int) """ current_target_idx, error_front_axle = self.calc_target_index(cx, cy) if last_target_idx >= current_target_idx: current_target_idx = last_target_idx # theta_e corrects the heading error theta_e = cyaw[current_target_idx] - self.yaw #self.normalize_angle(cyaw[current_target_idx] - self.yaw) # theta_d corrects the cross track error # theta_d = np.arctan2(self.k * error_front_axle, v) # Steering control delta = theta_e # + theta_d return delta, current_target_idx def normalize_angle(self,angle): """ Normalize an angle to [-pi, pi]. :param angle: (float) :return: (float) Angle in radian in [-pi, pi] """ while angle > np.pi: angle -= 2.0 * np.pi while angle < -np.pi: angle += 2.0 * np.pi return angle def calc_target_index(self, cx, cy): """ Compute index in the trajectory list of the target. :param state: (State object) :param cx: [float] :param cy: [float] :return: (int, float) """ # Calc front axle position fx = self.camx + self.L * np.cos(self.yaw) fy = self.camy + self.L * np.sin(self.yaw) # Search nearest point index dx = [fx - icx for icx in cx] dy = [fy - icy for icy in cy] d = np.hypot(dx, dy) target_idx = np.argmin(d) # Project RMS error onto front axle vector front_axle_vec = [-np.cos(self.yaw + np.pi / 2), -np.sin(self.yaw + np.pi / 2)] error_front_axle = np.dot([dx[target_idx], dy[target_idx]], front_axle_vec) return target_idx, error_front_axle def run(self,img_count,x,y,yaw,velturn,velfwd,rax,ray,ryaw,speedprofile,runstate): if img_count > self.img_count: self.x = x self.y = y self.camx = 105 self.camy = 400 self.img_count = img_count else: dx = (x - self.x) * 100 dy = (y - self.y) * 100 self.camy = self.camy - (np.cos(yaw)*dy - np.sin(yaw)*dx) # rotate velocity by yaw angle to the camera frame self.camx = self.camx + (np.sin(yaw)*dy + np.cos(yaw)*dx) self.x = x self.y = y print(f'reuse situation {self.camx},{self.camy}') v = np.abs(np.hypot(velfwd, velturn)) self.yaw = -np.pi/2 #np.arctan2(velfwd, velturn) - (np.pi / 2.) if runstate == 'running': target_idx, _ = self.calc_target_index(rax, ray) target_speed = speedprofile[target_idx] delta, target_idx = self.stanley_control(rax, ray, ryaw, v, target_idx) # yaw_correction = delta - (np.arctan2(velfwd, velturn) + np.pi) else: # if the car is not in a running state keep it stopped target_speed = 0.0 delta = 0.0 # yaw_correction = 0.0 steering_angle = self.yaw + delta + np.pi throttle = self.constant_speed_control(target_speed, v, self.throttle) print(delta,steering_angle, v, target_speed, throttle, runstate) self.throttle = throttle # for next time around self.v = v return self.camx,self.camy,delta,steering_angle,throttle
py
1a4d96106593ec9c021fb3bdbdeb9742c1c9d15e
import os import json from tabulate import tabulate from hyperopt import Trials, STATUS_OK, tpe from hyperas import optim from hyperas.distributions import choice, uniform from keras.layers import Dense, Dropout, Input, LSTM from keras.constraints import maxnorm from keras.callbacks import EarlyStopping, ModelCheckpoint from stochnet.classes.TimeSeriesDataset import TimeSeriesDataset from stochnet.classes.NeuralNetworks import StochNeuralNetwork from stochnet.classes.TopLayers import MultivariateNormalCholeskyOutputLayer, MixtureOutputLayer def data(): ''' Data providing function: This function is separated from model() so that hyperopt won't reload data for each evaluation run. ''' current = os.getcwd() working_path = os.path.dirname(current) basename = os.path.abspath(working_path) dataset_address = os.path.join(basename, 'dataset/SIR_dataset_upgraded_2.npy') test_dataset_address = os.path.join(basename, 'dataset/SIR_dataset_upgraded_3.npy') data_labels = {'Timestamps': 0, 'Susceptible': 1, 'Infected': 2, 'Removed': 3} dataset = TimeSeriesDataset(dataset_address, labels=data_labels) test_dataset = TimeSeriesDataset(test_dataset_address, labels=data_labels) nb_past_timesteps = 5 dataset.format_dataset_for_ML(nb_past_timesteps=nb_past_timesteps, must_be_rescaled=True, percentage_of_test_data=0) test_dataset.format_dataset_for_ML(nb_past_timesteps=nb_past_timesteps, must_be_rescaled=True, percentage_of_test_data=0) X_train = dataset.X_train X_test = test_dataset.X_train Y_train = dataset.y_train Y_test = test_dataset.y_train return X_train, Y_train, X_test, Y_test def model(X_train, Y_train, X_test, Y_test): """ Model providing function: Create Keras model with double curly brackets dropped-in as needed. Return value has to be a valid python dictionary with two customary keys: - loss: Specify a numeric evaluation metric to be minimized - status: Just use STATUS_OK and see hyperopt documentation if not feasible The last one is optional, though recommended, namely: - model: specify the model just created so that we can later use it again. """ input_tensor = Input(shape=(5, 3)) hidden1 = LSTM({{choice([64, 128, 256, 512, 1024])}}, kernel_constraint=maxnorm({{uniform(1, 3)}}), recurrent_constraint=maxnorm({{uniform(1, 3)}}))(input_tensor) dropout1 = Dropout({{uniform(0.2, 0.7)}})(hidden1) NN_body = Dense({{choice([64, 128, 256, 512, 1024])}}, kernel_constraint=maxnorm({{uniform(1, 3)}}))(dropout1) dropout2 = Dropout({{uniform(0.2, 0.7)}})(NN_body) NN_body = Dense({{choice([64, 128, 256, 512, 1024])}}, kernel_constraint=maxnorm({{uniform(1, 3)}}))(dropout2) number_of_components = 2 components = [] for j in range(number_of_components): components.append(MultivariateNormalCholeskyOutputLayer(3)) TopModel_obj = MixtureOutputLayer(components) NN = StochNeuralNetwork(input_tensor, NN_body, TopModel_obj) callbacks = [] callbacks.append(EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='min')) result = NN.fit(X_train, Y_train, batch_size={{choice([512, 1024, 2048, 3072, 4096])}}, epochs={{choice([10, 15, 20, 40])}}, verbose=2, callbacks=callbacks, validation_data=(X_test, Y_test)) parameters = space val_loss = min(result.history['val_loss']) parameters["val_loss"] = val_loss print('Validation loss: {0}'.format(val_loss)) if 'results' not in globals(): global results results = [] results.append(parameters) print(tabulate(results, headers="keys", tablefmt="fancy_grid", floatfmt=".8f")) with open('/home/lpalmier/workspace/output/SIR/SIR_model_tuning_MNC_01.json', 'w') as f: f.write(json.dumps(results)) return {'loss': val_loss, 'status': STATUS_OK, 'model': NN.model} if __name__ == '__main__': best_run, best_model = optim.minimize(model=model, data=data, algo=tpe.suggest, max_evals=20, trials=Trials()) X_train, Y_train, X_test, Y_test = data() print("Evalutation of best performing model:") print(best_model.evaluate(X_test, Y_test))
py
1a4d96666ee1cb22df9e586777ea3e8a6617c15e
""" scada.py """ from minicps.devices import SCADAServer from utils import SCADA_PROTOCOL, STATE from utils import SCADA_PERIOD_SEC from utils import IP from utils import CO_0_2a, CO_1_2a, CO_2_2a, CO_3_2a from utils import HR_0_2a import time RTU2A_ADDR = IP['rtu2a'] + ':502' RTU2B_ADDR = IP['rtu2b'] + ':502' SCADA_ADDR = IP['scada'] + ':502' class SCADAServer(SCADAServer): def pre_loop(self, sleep=0.5): """scada pre loop. - sleep """ time.sleep(sleep) def main_loop(self): """scada main loop. For each RTU in the network - Read the pump status """ while(True): #co_00_2a = self.receive(CO_0_2a, RTU2A_ADDR) co_00_2a = self.receive(CO_0_2a, SCADA_ADDR) # NOTE: used for testing first challenge #print('DEBUG scada from rtu2a: CO 0-0 2a: {}'.format(co_00_2a)) # NOTE: used for testing second challenge # NOTE: comment out # hr_03_2a = self.receive(HR_0_2a, RTU2B_ADDR, count=3) # print('DEBUG scada from rtu2b: HR 0-2 2a: {}'.format(hr_03_2a)) # print("DEBUG: scada main loop") time.sleep(SCADA_PERIOD_SEC) if __name__ == "__main__": scada = SCADAServer( name='scada', state=STATE, protocol=SCADA_PROTOCOL)
py
1a4d9680c1e0c1d96d3a7eff77637af4d4db0c20
"""Support for deCONZ binary sensors.""" from pydeconz.sensor import Presence, Vibration from homeassistant.components.binary_sensor import BinarySensorDevice from homeassistant.const import ATTR_TEMPERATURE from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from .const import ATTR_DARK, ATTR_ON, NEW_SENSOR from .deconz_device import DeconzDevice from .gateway import get_gateway_from_config_entry, DeconzEntityHandler ATTR_ORIENTATION = "orientation" ATTR_TILTANGLE = "tiltangle" ATTR_VIBRATIONSTRENGTH = "vibrationstrength" async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Old way of setting up deCONZ platforms.""" async def async_setup_entry(hass, config_entry, async_add_entities): """Set up the deCONZ binary sensor.""" gateway = get_gateway_from_config_entry(hass, config_entry) entity_handler = DeconzEntityHandler(gateway) @callback def async_add_sensor(sensors, new=True): """Add binary sensor from deCONZ.""" entities = [] for sensor in sensors: if new and sensor.BINARY: new_sensor = DeconzBinarySensor(sensor, gateway) entity_handler.add_entity(new_sensor) entities.append(new_sensor) async_add_entities(entities, True) gateway.listeners.append( async_dispatcher_connect( hass, gateway.async_signal_new_device(NEW_SENSOR), async_add_sensor ) ) async_add_sensor(gateway.api.sensors.values()) class DeconzBinarySensor(DeconzDevice, BinarySensorDevice): """Representation of a deCONZ binary sensor.""" @callback def async_update_callback(self, force_update=False): """Update the sensor's state.""" changed = set(self._device.changed_keys) keys = {"on", "reachable", "state"} if force_update or any(key in changed for key in keys): self.async_schedule_update_ha_state() @property def is_on(self): """Return true if sensor is on.""" return self._device.is_tripped @property def device_class(self): """Return the class of the sensor.""" return self._device.SENSOR_CLASS @property def icon(self): """Return the icon to use in the frontend.""" return self._device.SENSOR_ICON @property def device_state_attributes(self): """Return the state attributes of the sensor.""" attr = {} if self._device.on is not None: attr[ATTR_ON] = self._device.on if self._device.secondary_temperature is not None: attr[ATTR_TEMPERATURE] = self._device.secondary_temperature if self._device.type in Presence.ZHATYPE and self._device.dark is not None: attr[ATTR_DARK] = self._device.dark elif self._device.type in Vibration.ZHATYPE: attr[ATTR_ORIENTATION] = self._device.orientation attr[ATTR_TILTANGLE] = self._device.tiltangle attr[ATTR_VIBRATIONSTRENGTH] = self._device.vibrationstrength return attr
py
1a4d9928d7a778935c2a41d9b12c296e0ad11675
#!/usr/bin/env python """settings.py Udacity conference server-side Python App Engine app user settings $Id$ created/forked from conference.py by wesc on 2014 may 24 """ # Replace the following lines with client IDs obtained from the APIs # Console or Cloud Console. WEB_CLIENT_ID = '1009053430959-tdqqi86iai9gdqlods5m7mpoo1it0b0q.apps.googleusercontent.com' ANDROID_CLIENT_ID = 'replace with Android client ID' IOS_CLIENT_ID = 'replace with iOS client ID' ANDROID_AUDIENCE = WEB_CLIENT_ID
py
1a4d9a51c71d754c041de47df28d60e91277ec47
import subprocess import logging import sys from contextlib import contextmanager @contextmanager def maybe_open1(out): if isinstance(out, str): with open(out, "ab") as f: yield f else: yield out @contextmanager def maybe_open2(stdout, stderr): with maybe_open1(stdout) as fout: if isinstance(stderr, str): if stderr == stdout: yield fout, fout else: with open(stderr, "ab") as ferr: yield fout, ferr else: yield fout, stderr class Make: def __init__(self, root_dir, args=[], stdout=None, stderr=None, verbose=False): self._root_dir = root_dir self._args = ["make"] + args if not verbose: self._args += ["-s", "--no-print-directory"] self._proc_stdout = stdout self._proc_stderr = stderr def check_call(self, args): args = self._args + args logging.debug(f"Execute {args} in {self._root_dir}, stdout={self._proc_stdout}, stderr={self._proc_stderr}") with maybe_open2(self._proc_stdout, self._proc_stderr) as (stdout, stderr): subprocess.check_call(args, cwd=self._root_dir, stdout=stdout, stderr=stderr ) def check_output(self, args): args = self._args + args logging.debug(f"Execute {args} in {self._root_dir} ...") with maybe_open1(self._proc_stderr) as stderr: output = subprocess.check_output(args, cwd=self._root_dir, stderr=stderr ) logging.debug(f"Output of {args} command: {output}") return output def get_output_lines(self, args): out = self.check_output(args) return [l.strip() for l in out.decode("utf-8").split("\n")]
py
1a4d9b1712540c72f46246b14a64ccbcef1f8511
import numpy as np def calc_jacobian(frames: list, transformations: dict, jsize: int) -> np.array: """ Args: frames (list): frames to compute jacobian transformations (dict): transformations from forward kinematics thetas (int): size of joint space Returns: Jacobian (np.array(6, jsize)): return Jacobian """ target_position = list(transformations.values())[-1].pos J = np.zeros((6, jsize)) n = 0 for frame in frames: if frame.joint.dtype == "revolute": n += 1 w = np.dot(transformations[frame.link.name].h_mat[:3, :3], frame.joint.axis) v = np.cross(w, target_position - transformations[frame.link.name].pos) J[:, n - 1] = np.hstack((v, w)) elif frame.joint.dtype == "prismatic": n += 1 w = np.zeros(3) v = np.dot(transformations[frame.link.name].h_mat[:3, :3], frame.joint.axis) J[:, n - 1] = np.hstack((v, w)) return J
py
1a4d9bf30e955f4a79a528998995b6ba400e3b75
import os os.add_dll_directory(r'C:\Program Files\VideoLAN\VLC') import pafy import vlc def play_music1(): url = "https://youtu.be/St-H0-xc-sc?list=LL" video = pafy.new(url) best = video.getbest() playurl = best.url Instance = vlc.Instance("--vout=dummy") player = Instance.media_player_new() Media = Instance.media_new(playurl) Media.get_mrl() player.set_media(Media) player.audio_set_volume(50) player.play() while True: pass
py
1a4d9f7d39b40685c71b0307ff8e71da100a7998
""" Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from copy import deepcopy from PIL import Image import cv2 import numpy as np from ..adapters import Adapter from ..representation import ImageProcessingPrediction, SuperResolutionPrediction, ContainerPrediction from ..config import ConfigValidator, BoolField, StringField, DictField, NormalizationArgsField from ..preprocessor import Normalize class ImageProcessingAdapter(Adapter): __provider__ = 'image_processing' prediction_types = (ImageProcessingPrediction, ) @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'reverse_channels': BoolField( optional=True, default=False, description="Allow switching output image channels e.g. RGB to BGR" ), 'mean': NormalizationArgsField( optional=True, default=0, description='The value which should be added to prediction pixels for scaling to range [0, 255]' '(usually it is the same mean value which subtracted in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_MEANS ), 'std': NormalizationArgsField( optional=True, default=255, description='The value on which prediction pixels should be multiplied for scaling to range ' '[0, 255] (usually it is the same scale (std) used in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_STDS, allow_zeros=False ), 'target_out': StringField(optional=True, description='Target super resolution model output'), "cast_to_uint8": BoolField( optional=True, default=True, description="Cast prediction values to integer within [0, 255] range" ) }) return parameters @classmethod def validate_config(cls, config, fetch_only=False, **kwargs): return super().validate_config( config, fetch_only=fetch_only, on_extra_argument=ConfigValidator.IGNORE_ON_EXTRA_ARGUMENT ) def configure(self): self.reverse_channels = self.get_value_from_config('reverse_channels') self.mean = self.get_value_from_config('mean') self.std = self.get_value_from_config('std') self.target_out = self.get_value_from_config('target_out') self.cast_to_uint8 = self.get_value_from_config('cast_to_uint8') self.output_verified = False def select_output_blob(self, outputs): self.output_verified = True if not self.target_out: super().select_output_blob(outputs) self.target_out = self.output_blob return self.target_out = self.check_output_name(self.target_out, outputs) return def process(self, raw, identifiers, frame_meta): result = [] raw_outputs = self._extract_predictions(raw, frame_meta) if not self.output_verified: self.select_output_blob(raw_outputs) for identifier, out_img in zip(identifiers, raw_outputs[self.target_out]): out_img = self._basic_postprocess(out_img) result.append(ImageProcessingPrediction(identifier, out_img)) return result def _basic_postprocess(self, img): img = img.transpose((1, 2, 0)) if img.shape[-1] > 4 else img img *= self.std img += self.mean if self.cast_to_uint8: img = np.clip(img, 0., 255.) img = img.astype(np.uint8) if self.reverse_channels: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = Image.fromarray(img, 'RGB') if Image is not None else img img = np.array(img).astype(np.uint8) return img class SuperResolutionAdapter(ImageProcessingAdapter): __provider__ = 'super_resolution' prediction_types = (SuperResolutionPrediction, ) def process(self, raw, identifiers=None, frame_meta=None): result = [] raw_outputs = self._extract_predictions(raw, frame_meta) if not self.output_verified: self.select_output_blob(raw_outputs) for identifier, img_sr in zip(identifiers, raw_outputs[self.target_out]): img_sr = self._basic_postprocess(img_sr) result.append(SuperResolutionPrediction(identifier, img_sr)) return result class MultiSuperResolutionAdapter(Adapter): __provider__ = 'multi_super_resolution' prediction_types = (SuperResolutionPrediction, ) @property def additional_output_mapping(self): return getattr(self, '_additional_output_mapping', None) @additional_output_mapping.setter def additional_output_mapping(self, value): self._additional_output_mapping = value if hasattr(self, '_per_target_adapters'): for adapter in self._per_target_adapters.values(): adapter.additional_output_mapping = value @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'reverse_channels': BoolField( optional=True, default=False, description="Allow switching output image channels e.g. RGB to BGR" ), 'mean': NormalizationArgsField( optional=True, default=0, description='The value which should be added to prediction pixels for scaling to range [0, 255]' '(usually it is the same mean value which subtracted in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_MEANS ), 'std': NormalizationArgsField( optional=True, default=255, description='The value on which prediction pixels should be multiplied for scaling to range ' '[0, 255] (usually it is the same scale (std) used in preprocessing step))', precomputed_args=Normalize.PRECOMPUTED_STDS, allow_zeros=False ), "cast_to_uint8": BoolField( optional=True, default=True, description="Cast prediction values to integer within [0, 255] range" ), 'target_mapping': DictField(allow_empty=False, key_type=str, value_type=str) }) return parameters @classmethod def validate_config(cls, config, fetch_only=False, **kwargs): return super().validate_config( config, fetch_only=fetch_only, on_extra_argument=ConfigValidator.IGNORE_ON_EXTRA_ARGUMENT ) def configure(self): self.target_mapping = self.get_value_from_config('target_mapping') common_adapter_config = deepcopy(self.launcher_config) self._per_target_adapters = {} for key, output_name in self.target_mapping.items(): adapter_config = deepcopy(common_adapter_config) adapter_config['target_out'] = output_name self._per_target_adapters[key] = SuperResolutionAdapter( adapter_config, additional_output_mapping=self.additional_output_mapping ) def process(self, raw, identifiers=None, frame_meta=None): predictions = [{}] * len(identifiers) for key, adapter in self._per_target_adapters.items(): result = adapter.process(raw, identifiers, frame_meta) for batch_id, output_res in enumerate(result): predictions[batch_id][key] = output_res results = [ContainerPrediction(prediction_mapping) for prediction_mapping in predictions] return results class SuperResolutionYUV(Adapter): __provider__ = 'super_resolution_yuv' @classmethod def parameters(cls): parameters = super().parameters() parameters.update({ 'y_output': StringField(), 'u_output': StringField(), 'v_output': StringField(), 'target_color': StringField(optional=True, choices=['bgr', 'rgb'], default='bgr') }) return parameters def configure(self): self.y_output = self.get_value_from_config('y_output') self.u_output = self.get_value_from_config('u_output') self.v_output = self.get_value_from_config('v_output') self.color = cv2.COLOR_YUV2BGR if self.get_value_from_config('target_color') == 'bgr' else cv2.COLOR_YUV2RGB def get_image(self, y, u, v): is_hwc = u.shape[-1] == 1 if not is_hwc: y = np.transpose(y, (1, 2, 0)) u = np.transpose(u, (1, 2, 0)) v = np.transpose(v, (1, 2, 0)) h, w, __ = u.shape u = u.reshape(h, w, 1) v = v.reshape(h, w, 1) u = cv2.resize(u, None, fx=2, fy=2) v = cv2.resize(v, None, fx=2, fy=2) y = y.reshape(2 * h, 2 * w, 1) u = u.reshape(2 * h, 2 * w, 1) v = v.reshape(2 * h, 2 * w, 1) yuv = np.concatenate([y, u, v], axis=2) image = cv2.cvtColor(yuv, self.color) return image def process(self, raw, identifiers=None, frame_meta=None): outs = self._extract_predictions(raw, frame_meta) results = [] for identifier, yres, ures, vres in zip( identifiers, outs[self.y_output], outs[self.u_output], outs[self.v_output] ): sr_img = self.get_image(yres, ures, vres) results.append(SuperResolutionPrediction(identifier, sr_img)) return results class TrimapAdapter(ImageProcessingAdapter): __provider__ = 'trimap' prediction_types = (ImageProcessingPrediction, ) def process(self, raw, identifiers, frame_meta): result = [] raw_outputs = self._extract_predictions(raw, frame_meta) if not self.output_verified: self.select_output_blob(raw_outputs) for identifier, out_img, out_meta in zip(identifiers, raw_outputs[self.target_out], frame_meta): tmap = np.expand_dims(out_meta['tmap'], axis=0) C, _, W = out_img.shape if C > 1 and W == 1: out_img = np.transpose(out_img, [2, 0, 1]) out_img[tmap == 2] = 1 out_img[tmap == 0] = 0 out_img = self._basic_postprocess(out_img) result.append(ImageProcessingPrediction(identifier, out_img)) return result
py
1a4da06669fccb0b0d0780c40baac77e4b6b0892
from corelib import * import MotifParser as MP from pkg_resources import resource_filename from fastafrombed import * from motif_clustering import * import json #make the string to list import os import math #Update: make the motif detecting part availiable in other genome assembily (not limited to hg19 and mm9). class Motif_Scan: '''this module has 2 parts, one is sequence preparation, the other is the motif scan by mis''' def __init__(self, genepeaks, peaksoutofDistance, options, selected, nontarget): self.genepeaks = genepeaks self.distance = options.distance self.curdir = os.getcwd() self.outdir = options.output self.name = options.name self.motifnumber = options.motifnumber self.nontarget = nontarget self.peaksoutofDistance = peaksoutofDistance if options.genome and options.genome.startswith('hg'): self.Species = 'Homo sapiens' elif options.genome and options.genome.startswith('mm'): self.Species = 'Mus musculus' else: self.Species = "NA" self.genefiles = [] self.selected = selected self.associate_peaks = [] for i in self.selected: if i == '"upregulate"': self.genefiles.append(os.path.join(self.outdir,self.name + '_uptarget.txt')) self.associate_peaks.append(self.name + '_uptarget_associate_peaks.bed') if i == '"downregulate"': self.genefiles.append(os.path.join(self.outdir,self.name + '_downtarget.txt')) self.associate_peaks.append(self.name + '_downtarget_associate_peaks.bed') self.genomesequence = options.genomesequence ############################ #part1 Sequence preparation ############################ def get_gene_list(self): files = self.genefiles self.genelists = []#uptarget and downtarget gene lists self.motifgenelists = []#Only the significant target genes associated peaks join to do the motif analysis. for f in files: genelist = [] #selected target genes with open (f) as inf: infile = inf.readlines() totalnumber = len(infile) if totalnumber <= 500: top = totalnumber elif totalnumber > 500 and totalnumber <= 1000: top = 250 + 0.5*totalnumber else: top = 0.5 * totalnumber for line in infile: if line.startswith('Chroms'): pass else: line = line.strip() line = line.split('\t') gene = [line[0],line[3],line[1],line[2],line[5],line[6]]#chrom,refseqID, start, end, strands, symbol genelist.append(tuple(gene)) motifgenelist = genelist[:int(top)] self.motifgenelists.append(motifgenelist) self.genelists.append(genelist) def getpeaks(self): '''get all peaks within the certain distance around this gene''' Info("pick out the peaks %sbp around the selected genes"%str(self.distance)) score = lambda t: math.exp(-0.5-4*t) peakdist = [] for i in range(len(self.genelists)): dist = {} associatepeakf = open(self.associate_peaks[i],'w') associatepeakf.write('chrom\tpStart\tpEnd\tRefseq\tSymbol\tDistance\tScore\n') for gene in self.genelists[i]: if gene[4] == '+': TSS = gene[2] else: TSS = gene[3] try: peaks = self.genepeaks[gene] for peak in peaks: d = (int(peak[1]) + int(peak[2]))/2 - int(TSS) if d <= self.distance: regscore = score(abs(float(d))/float(self.distance)) associatepeakf.write(str(peak[0]) + '\t' + str(peak[1]) + '\t' + str(peak[2]) + '\t' + gene[1] + '\t' + gene[5] + '\t' + str(d) + '\t' + str(regscore) + '\n') if gene in self.motifgenelists[i]: key = tuple(peak) dist[key] = [gene,d] else: continue except KeyError: pass associatepeakf.close() run_cmd('mv %s %s'%(self.associate_peaks[i], self.outdir)) peakdist.append(dist) Info("Finished: Find target gene associated peaks in %s"%self.outdir) self.peaklists = [] if len(peakdist) == 2: up = peakdist[0] down = peakdist[1] uppeaks = up.keys() downpeaks = down.keys() for peak in uppeaks: if peak in downpeaks: updist = up[peak][-1] downdist = down[peak][-1] if updist > downdist: del up[peak] elif downdist > updist: del down[peak] else: del up[peak] del down[peak] else: continue self.peaklists.append(up.keys()) self.peaklists.append(down.keys()) elif len(peakdist) == 1: self.peaklists.append(peakdist[0].keys()) self.peaklists.append(self.peaksoutofDistance) def getsequence(self): '''extend the peak summit to 3 regions, left(-300,-101), middle(-100,99), right(100,299), get the fasta sequece by fastaFromBED--bedtools need to be installed''' if self.Species == 'NA': Info("Motif database is not provided for your species, Skip the motif part ;)") Info("For motif analysis, set the -g with hg19, mm9, hg or mm an rerun your job ;)") Info("BETA Finished, Find your result in %s"%self.outdir) sys.exit(1) flags = [] for flag in self.selected: #'upregulate' or 'downregulate' if flag == '"upregulate"': flag = 'up' flags.append(flag) if flag == '"downregulate"': flag = 'down' flags.append(flag) flags.append('non') self.fastas = [] i = 0 for peaks in self.peaklists:#different gene types(up and down) flag = flags[i] sequences = [] temp = open('select_peak.bed','w') for peak in peaks:#each gene has a lot of peaks within 100k peak_center = (int(peak[1]) + int(peak[2]))/2 #peak center equals to peak summit if the input peak file is the peak summit file temp.write('%s\t%s\t%s\n'%(peak[0],str(peak_center),str(peak_center + 1))) temp.close() location = 'middle' commandline = "awk -v OFS='\t' '{print $1, $2-100, $3+99}' %s > %s"%('select_peak.bed', flag + '_' + location + '.bed') run_cmd(commandline) sequences.append(flag + '_' + location + '.bed') location = 'left' commandline = "awk -v OFS='\t' '{print $1, $2-300, $2-101}' %s > %s"%('select_peak.bed', flag + '_' + location + '.bed') run_cmd(commandline) sequences.append(flag + '_' + location + '.bed') location = 'right' commandline = "awk -v OFS='\t' '{print $1, $3+100, $3+299}' %s > %s"%('select_peak.bed', flag + '_' + location + '.bed') run_cmd(commandline) sequences.append(flag + '_' + location + '.bed') Info("get three regions of every peak around the %s genes"%flag) print sequences for sequence in sequences: outputfasta = sequence.replace('.bed','.fa') self.fastas.append(outputfasta) runfastafrombed(self.genomesequence, sequence, outputfasta) run_cmd('rm %s'%sequence) Info("get the fasta format sequence data of the three regions of %s"%flag) i += 1 run_cmd('rm select_peak.bed') ###################################### #part2 Motif Scan and score caculate ###################################### def run_mis(self): '''mis algorithm is refered of MOODS: Motif Occurrence Detection Suite, we write it into a c code to improve the efficiency, before run mis, the make command is required''' Info("run mis to do the known motif scan with cistrome motif database") #misdir = resource_filename('BETA','mis') #os.chdir(misdir) #Usage: ./mis <in.seq> <in.db> <p-value> <motif-id> <output-prefix> self.motifscore = [] for seq in self.fastas: inseq = os.path.join(self.curdir,seq) db = resource_filename('BETA','references/cistrome.db') p_value = 0.001 motif_ID = 'all' prefix = seq.replace('.fa','') misout = os.path.join(self.curdir,prefix) commandline = 'misp %s %s %s %s %s'%(inseq,db,p_value,motif_ID,misout)#run mis run_cmd(commandline) run_cmd('rm %s'%inseq) scoref = prefix + '_all' self.motifscore.append(scoref) def statistical_test(self): #we are intersted in the motif enriched in the up regulated genes #down regulated genes and the up versus down genes #curdir = os.getcwd() Info("T statistic test performed here to do the significance testing of every motif") groups = [] pairfns = [] pairs = [] for group in self.selected: if group == '"upregulate"': upgroup = [f for f in self.motifscore if f.startswith('up')] groups.append(upgroup) if group == '"downregulate"': downgroup = [f for f in self.motifscore if f.startswith('down')] groups.append(downgroup) nongroup = [f for f in self.motifscore if f.startswith('non')] groups.append(nongroup) if len(groups) == 3: #if this factor has both active and repressive funcation, we will scan the motif of up vs down. pairfn = "upvsdown_motif.txt" pairfns.append(pairfn) pairf = open(pairfn,'w') pairs.append(pairf) pairf.write('MotifID\tSpecies\tSymbol\tDNA BindDom\\tPSSM\tTscore\tPvalue\n') else: pairfn = "upvsdown_motif.txt" pairf = '' middlescores = [] a = MP.MotifParser() motifdb = resource_filename('BETA','references/cistrome.xml') a.Parser(motifdb) motifinfo = a.motifs self.FNs = []#the motif output file upnonf = '' downnonf = '' upnon = "up_non_motif.txt" downnon = "down_non_motif.txt" for group in groups: motifscore = {} if group[0].startswith('up'): fn = "up_motif.txt" outf = open(fn,'w') upnonf = open(upnon,'w') upnonf.write('MotifID\tSpecies\tSymbol\tDNA BindDom\tPSSM\tTscore\tPvalue\n') if group[0].startswith('down'): fn = "down_motif.txt" outf = open(fn,'w') downnonf = open(downnon,'w') downnonf.write('MotifID\tSpecies\tSymbol\tDNA BindDom\tPSSM\tTscore\tPvalue\n') if group[0].startswith('non'): fn = "non_motif.txt" outf = open(fn,'w') outf.write('MotifID\tSpecies\tSymbol\tDNA BindDom\tPSSM\tTscore\tPvalue\n') group.sort() #have the order like: left,middle,right if len(group) != 3: Info('MISP step wronging!') sys.exit(1) for f in group: f = os.path.join(self.curdir, f) with open(f) as scoref: lines = scoref.readlines() for line in lines: if line.startswith('#'): continue elif line.startswith('@'): #@ factor:EN0055 index = lines.index(line) line = line.strip() line = line.split('\t') key = line[0].split(':')[1] scoreline = lines[index + 2] #score line looks like 0,0.20(102),0.23(29),0,0,3.34(-395), scoreline = scoreline.strip() scoreline = scoreline.split(',')[:-1] value = [] for score in scoreline: score = score.split('(')[0] value.append(score) try: motifscore[key].append(value) except: motifscore[key] = [value] else: continue run_cmd('rm %s'%f) motifs = motifscore.keys() mscore = [] for motif in motifs: species = motifinfo[motif]['species'] if len(species) == 1 and species[0] != self.Species: continue else: species = ', '.join(species) #list to string scores = motifscore[motif] leftscore = 'left <- c(' middlescore = 'middle <- c(' rightscore = 'right <- c(' string = [leftscore, middlescore,rightscore] rtestf = open('temptest.r','w') rtestf.write('options(warn=-1)\n') for i in range(3): for s in scores[i]: string[i] += str(s) string[i] += ',' string[i] = string[i].rstrip(',') string[i] += ')' rtestf.write(string[i] + '\n') mscore.append(string[1]) rtestf.write('pvalue=1\n') rtestf.write('summaryml = t.test(middle,left,alternative="greater")\n') rtestf.write('mlpvalue = summaryml$p.value\n') rtestf.write('mltscore = summaryml$statistic\n') rtestf.write('summarymr= t.test(middle,right,alternative="greater")\n') rtestf.write('mrpvalue= summarymr$p.value\n') rtestf.write('mrtscore = summarymr$statistic\n') rtestf.write('pvalue = max(mlpvalue, mrpvalue)\n') rtestf.write('tscore = min(mltscore, mrtscore)\n') rtestf.write('print(pvalue)\n') rtestf.write('print(tscore)\n') rtestf.close() cmd = 'Rscript temptest.r' #testinfo = os.popen(cmd).read().strip().split('\n') if not os.popen(cmd).read(): pvalue = 'NaN' tscore = 'NaN' else: testinfo = os.popen(cmd).read().strip().split('\n') pvalue = testinfo[0].split()[1] tscore = testinfo[-1].split()[-1] symbol = ', '.join(motifinfo[motif]['symbol']) #TFs = motifinfo[motif]['symbol'] DBD = ', '.join(motifinfo[motif]['dbd']) description = ', '.join(motifinfo[motif]['description']) synonym = ', '.join(motifinfo[motif]['synonym']) pssm = str(motifinfo[motif]['pssm']) if pvalue == 'NaN': pvalue = 1000 if tscore == 'NaN': tscore = 0 #print motif, species, symbol, DBD, description, synonym, pssm, tscore, pvalue outf.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\n'%(motif, species, symbol, DBD, pssm, str("%.2f"%float(tscore)), str("%.2e"%float(pvalue)))) outf.close() FN = fn.split('.')[0].upper() + 'S.' + fn.split('.')[1] #the sorted motif file run_cmd('sort -t "\t" -k7,7g %s > %s'%(fn,FN)) self.FNs.append(FN) run_cmd('rm %s'%fn) middlescores.append(mscore) run_cmd('rm temptest.r') pairfns = [upnon, downnon, pairfn] pairs = [upnonf, downnonf, pairf] k = 0 for f in pairs: if f == '': pass else: if f == upnonf: middlescore1 = middlescores[0] middlescore2 = middlescores[-1] if f == downnonf: middlescore1 = middlescores[-2] middlescore2 = middlescores[-1] if f == pairf: middlescore1 = middlescores[0] middlescore2 = middlescores[1] for i in range(len(middlescores[0])): motif = motifs[i] species = motifinfo[motif]['species'] if len(species) == 1 and species[0] != self.Species: pass else: species = ', '.join(species) #list to string pairtest = open('pairtest.r','w') pairtest.write('options(warn=-1)\n') middlescore = middlescore1[i].replace('middle','middle1') pairtest.write(middlescore + '\n') middlescore = middlescore2[i].replace('middle','middle2') pairtest.write(middlescore + '\n') pairtest.write('summary = t.test(middle1,middle2)\n') pairtest.write('pvalue = summary$p.value\n') pairtest.write('tscore= summary$statistic\n') pairtest.write('print(pvalue)\n') pairtest.write('print(tscore)') pairtest.close() cmd = 'Rscript pairtest.r' testinfo = os.popen(cmd).read().strip().split('\n') if not os.popen(cmd).read(): pvalue = 'NaN' tscore = 'NaN' else: testinfo = os.popen(cmd).read().strip().split('\n') pvalue = testinfo[0].split()[1] tscore = testinfo[-1].split()[-1] if pvalue == 'NaN': pvalue = 1000 if tscore == 'NaN': tscore = 0 description = ', '.join(motifinfo[motifs[i]]['description']) symbol = ', '.join(motifinfo[motifs[i]]['symbol']) DBD = ', '.join(motifinfo[motifs[i]]['dbd']) synonym = ', '.join(motifinfo[motifs[i]]['synonym']) pssm = motifinfo[motifs[i]]['pssm'] f.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\n'%(motifs[i], species, symbol, DBD, pssm, str("%.2f"%float(tscore)), str("%.2e"%float(pvalue)))) f.close() fn = pairfns[k] PAIRFN = fn.split('.')[0].upper() + 'S.' + fn.split('.')[1] run_cmd('sort -t "\t" -k7,7g %s > %s'%(fn, PAIRFN)) self.FNs.append(PAIRFN) run_cmd('rm %s'%fn) run_cmd('rm pairtest.r') k += 1 def out2html(self): #write the top 10 motif into the html format Info('motif result will be in html format') FNs = self.FNs template = '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n\ <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">\n\ <head>\n\ <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />\n\ <title>BETA Motif Part</title>\n \ <link rel="stylesheet" type="text/css" href="styles.css" />\n\ </head>\n\ <body>\n\ <div class="section" id="page"> <!-- Defining the #page section with the section tag -->\n\ <div class="header"> <!-- Defining the header section of the page with the appropriate tag -->\n\ <h1>BETA: Motif Analysis</h1>\n\ <h3>Motif Scan on the TF Target Genes</h3>\n\ </div>\n\ <div class="section" id="articles"> <!-- A new section with the articles -->\n\ <div class="line"></div> <!-- Dividing line -->\n\ <div class="article" id="article1"> <!-- The new article tag. The id is supplied so it can be scrolled into view. -->\n\ <h2>Part1: Up Target Genes</h2>\n\ <div class="line"></div>\n\ <div class="articleBody clear">\n\ <table style="text-align: left; width: 100%%" cellpadding="2" cellspacing="2" border="1" style="border: 1px solid #000;" >\n\ %s\n\ %s\n\ </table>\n\ </div>\n\ </div>\n\ <div class="line"></div>\n\ <div class="article" id="article2">\n\ <h2>Part2: Down Target Genes</h2>\n\ <div class="line"></div>\n\ <div class="articleBody clear">\n\ <table style="text-align: left; width: 100%%" cellpadding="2" cellspacing="2" border="1" style="border: 1px solid #000;" >\n\ %s\n\ %s\n\ </table>\n\ </div>\n\ </div>\n\ <div class="line"></div>\n\ <div class="article" id="article3">\n\ <h2>Part3: UP vs DOWN Motif Scan</h2>\n\ <div class="line"></div>\n\ <div class="articleBody clear">\n\ <table style="text-align: left; width: 100%%" cellpadding="2" cellspacing="2" border="1" style="border: 1px solid #000;" >\n\ %s\n\ %s\n\ </table>\n\ </div>\n\ </div>\n\ <div class="line"></div> <!-- Dividing line -->\n\ <div class="article" id="article1"> <!-- The new article tag. The id is supplied so it can be scrolled into view. -->\n\ <h2>Part4: Up VS Non Target Motif</h2>\n\ <div class="line"></div>\n\ <div class="articleBody clear">\n\ <table style="text-align: left; width: 100%%" cellpadding="2" cellspacing="2" border="1" style="border: 1px solid #000;" >\n\ %s\n\ %s\n\ </table>\n\ </div>\n\ </div>\n\ <div class="line"></div> <!-- Dividing line -->\n\ <div class="article" id="article1"> <!-- The new article tag. The id is supplied so it can be scrolled into view. -->\n\ <h2>Part5: Down VS Non Target Motif</h2>\n\ <div class="line"></div>\n\ <div class="articleBody clear">\n\ <table style="text-align: left; width: 100%%" cellpadding="2" cellspacing="2" border="1" style="border: 1px solid #000;" >\n\ %s\n\ %s\n\ </table>\n\ </div>\n\ </div>\n\ </div>\n\ <div class="footer"> <!-- Marking the footer section -->\n\ <div class="line"></div>\n\ <p>BETA: Binding and Expression Target Analysis</p> <!-- Change the copyright notice -->\n\ <a href="#" class="up">Go UP</a>\n\ </div>\n\ </div> <!-- Closing the #page section -->\n\ <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>\n\ <script type="text/javascript" src="jquery.scrollTo-1.4.2/jquery.scrollTo-min.js"></script>\n\ <script type="text/javascript" src="script.js"></script>\n\ </body>\n\ </html>' outhtml = open('betamotif.html','w') resultdir = os.path.join(self.outdir,'motifresult') if os.path.isdir(resultdir): run_cmd('rm -r %s'%resultdir) run_cmd('mkdir %s'%resultdir) else: run_cmd('mkdir %s'%resultdir) imgdir = os.path.join(resultdir,'img') if os.path.isdir(imgdir): run_cmd('rm -r %s'%imgdir) run_cmd('mkdir %s'%imgdir) else: run_cmd('mkdir %s'%imgdir) tabletitle = '\n\ <tr>\n\ <th>\n\ <font size="4" color="yellow">Symbol</font>\n\ </th>\n\ <th>\n\ <font size="4" color="yellow">DNA BindDom</font>\n\ </th>\n\ <th>\n\ <font size="4" color="yellow">Species</font>\n\ </th>\n\ <th>\n\ <font size="4" color="yellow">Pvalue (T Test)</font>\n\ </th>\n\ <th>\n\ <font size="4" color="yellow">T Score</font>\n\ </th>\n\ <th>\n\ <font size="4" color="yellow">Logo</font>\n\ </th>\n\ </tr>' nontable = '<p></p>' subtemplate = '\n\ <tr>\n\ <td>\n\ %s\n\ </td>\n\ <td>\n\ %s\n\ </td>\n\ <td>\n\ <font size="4" >%s</font>\n\ </td>\n\ <td>\n\ <font size="4" >%s</font>\n\ </td>\n\ <td>\n\ <font size="4" >%s</font>\n\ </td>\n\ <td>\n\ <img width="500" height="220" border="0" align="left" alt="some_text" src=%s>\n\ </td>\n\ </tr>' cluster = '\n <p><font size="4">%s</font></p>\n' if 'UP_MOTIFS.txt' in FNs: motif1 = 'UP_MOTIFS.txt'#upmotif motif2 = 'UP_NON_MOTIFS.txt'#upvsnonmotif mistable1 = 'upmis.txt'#up motif mis table mistable2 = 'upnonmis.txt'#upvsnon mis table motifs = [motif1,motif2] mistables = [mistable1,mistable2] subups = [] for q in range(2): motif = motifs[q] mistable = mistables[q] subup = '' output = runmotifcluster_side1(self.outdir, motif, mistable, self.motifnumber) output.sort(key=lambda x:float(x[3])) for motif_class in output: factors = motif_class[0].split('; ') factorinput = '' for factor in factors: factorinput += cluster%factor dbdinput = '' dbds = motif_class[1].split('; ') for dbd in dbds: dbdinput += cluster%dbd species = motif_class[2] pvalue = motif_class[3] tscore = motif_class[4] img = motif_class[-1] run_cmd('cp %s %s'%(img, imgdir)) imgID = os.path.split(img)[1] img = os.path.join('img',imgID) temp = subtemplate%(factorinput,dbdinput,species,pvalue,tscore,img) subup += temp subups.append(subup) tabletitleup = tabletitle run_cmd('mv %s %s'%('UP_MOTIFS.txt', resultdir)) run_cmd('mv %s %s'%('UP_NON_MOTIFS.txt', resultdir)) run_cmd('mv %s %s'%(self.name + '_uptarget.txt', self.outdir)) else: subups = [nontable,nontable] tabletitleup = '<font size="5" color="yellow">This Factor has no Active Function to its target genes, Skipped this part Motif Scan</font>' subcompare = nontable tabletitlecompare = '<font size="5" color="yellow">This Factor has no Active Function to its target genes, Cannot do the comparision Motif Scan</font>' if 'DOWN_MOTIFS.txt' in FNs: motif1 = 'DOWN_MOTIFS.txt'#upmotif motif2 = 'DOWN_NON_MOTIFS.txt'#upvsnonmotif mistable1 = 'downmis.txt'#up motif mis table mistable2 = 'downnonmis.txt'#upvsnon mis table motifs = [motif1,motif2] mistables = [mistable1,mistable2] subdowns = [] for q in range(2): subdown = '' motif = motifs[q] mistable = mistables[q] output = runmotifcluster_side1(self.outdir, motif, mistable, self.motifnumber) output.sort(key=lambda x:float(x[3])) for motif_class in output: factors = motif_class[0].split('; ') factorinput = '' for factor in factors: factorinput += cluster%factor dbdinput = '' dbds = motif_class[1].split('; ') for dbd in dbds: dbdinput += cluster%dbd species = motif_class[2] pvalue = motif_class[3] tscore = motif_class[4] img = motif_class[-1] run_cmd('cp %s %s'%(img, imgdir)) imgID = os.path.split(img)[1] img = os.path.join('img',imgID) temp = subtemplate%(factorinput,dbdinput,species,pvalue,tscore,img) subdown += temp subdowns.append(subdown) tabletitledown = tabletitle run_cmd('mv %s %s'%('DOWN_MOTIFS.txt', resultdir)) run_cmd('mv %s %s'%('DOWN_NON_MOTIFS.txt', resultdir)) run_cmd('mv %s %s'%(self.name + '_downtarget.txt', self.outdir)) else: subdowns = [nontable,nontable] tabletitledown = '<font size="5" color="yellow">This Factor has no Repressive Function to its target genes, Skipped this part Motif Scan</font>' subcompare = nontable tabletitlecompare = '<font size="5" color="yellow">This Factor has no Repressive Function to its target genes, Cannot do the comparision Motif Scan</font>' if 'UPVSDOWN_MOTIFS.txt' in FNs: motif = 'UPVSDOWN_MOTIFS.txt' mistable1 = 'upvsdownmis1.txt' mostable2 = 'upvsdownmis2.txt' output = runmotifcluster_side2(self.outdir, motif, mistable1, mistable2, self.motifnumber) output.sort(key=lambda x:float(x[3])) subcompare = '' for motif_class in output: factors = motif_class[0].split('; ') factorinput = '' for factor in factors: factorinput += cluster%factor dbdinput = '' dbds = motif_class[1].split('; ') for dbd in dbds: dbdinput += cluster%dbd species = motif_class[2] pvalue = motif_class[3] tscore = motif_class[4] img = motif_class[-1] run_cmd('cp %s %s'%(img, imgdir)) imgID = os.path.split(img)[1] img = os.path.join('img',imgID) temp = subtemplate%(factorinput,dbdinput,species,pvalue,tscore,img) subcompare += temp tabletitledown = tabletitle run_cmd('mv %s %s'%(self.name + '_downtarget.txt', self.outdir)) tabletitlecompare = tabletitle run_cmd('mv %s %s'%('UPVSDOWN_MOTIFS.txt', 'DIFFERENTIAL_MOTIF_UP_DOWN.txt')) run_cmd('mv %s %s'%('DIFFERENTIAL_MOTIF_UP_DOWN.txt', resultdir)) b = template%(tabletitleup,subups[0],tabletitledown,subdowns[0],tabletitlecompare,subcompare,tabletitleup,subups[1],tabletitledown,subdowns[1]) outhtml.write(b) outhtml.close() jsfile = resource_filename('BETA','templates/script.js') cssfile = resource_filename('BETA','templates/styles.css') run_cmd('rm %s'%'NON_MOTIFS.txt') run_cmd('cp %s %s'%(jsfile,resultdir)) run_cmd('cp %s %s'%(cssfile,resultdir)) motiflogos = os.path.join(self.outdir,'motiflogos') run_cmd('rm -rf %s'%motiflogos) run_cmd('mv betamotif.html %s'%resultdir) Info("Done: find motif result in beatmotif.html file") Info("Done: find all BETA result in %s"%self.outdir)
py
1a4da117967346d93c94567c1523151572360fa8
from DataUploader.PgsqlDataUploader import PgsqlDataUploader def clean(): input_file = 'csvfiles.json' uploader = PgsqlDataUploader(input_file) uploader.run_script("sql/AdventureWorks_postgres_drop.sql") uploader.clean_up() def prepare(): input_file = 'csvfiles.json' uploader = PgsqlDataUploader(input_file) uploader.run_script("sql/AdventureWorks_postgres_create_NoRels.sql") uploader.clean_up() def upload(): input_file = 'csvfiles.json' uploader = PgsqlDataUploader(input_file) uploader.upload_from_csv() uploader.clean_up() def execute(i): switcher = {0: clean, 1: prepare, 2: upload} func = switcher.get(i, lambda: 'Invalid') return func() if __name__ == '__main__': """ Little application to make some basic operations on Postgres Databases - Clean, Drop, Upload data from scripts - Data in CSV format - Make use of psycopg2 Author: Andres Osorio Date: 27/06/2021 Company: Phystech SAS Client: DS4A Course """ execute(2) print("All done")
py
1a4da12ec2a4a20e3dec3fe1436e9fd37abbd9d9
import sys from rlpyt.utils.launching.affinity import affinity_from_code from rlpyt.samplers.parallel.gpu.sampler import GpuSampler from rlpyt.samplers.parallel.gpu.collectors import GpuWaitResetCollector from rlpyt.envs.atari.atari_env import AtariEnv, AtariTrajInfo from rlpyt.algos.pg.a2c import A2C from rlpyt.agents.pg.atari import AtariLstmAgent from rlpyt.runners.minibatch_rl import MinibatchRl from rlpyt.utils.logging.context import logger_context from rlpyt.utils.launching.variant import load_variant, update_config from rlpyt.experiments.configs.atari.pg.atari_lstm_a2c import configs def build_and_train(slot_affinity_code, log_dir, run_ID, config_key): affinity = affinity_from_code(slot_affinity_code) config = configs[config_key] variant = load_variant(log_dir) config = update_config(config, variant) sampler = GpuSampler( EnvCls=AtariEnv, env_kwargs=config["env"], CollectorCls=GpuWaitResetCollector, TrajInfoCls=AtariTrajInfo, **config["sampler"] ) algo = A2C(optim_kwargs=config["optim"], **config["algo"]) agent = AtariLstmAgent(model_kwargs=config["model"], **config["agent"]) runner = MinibatchRl( algo=algo, agent=agent, sampler=sampler, affinity=affinity, **config["runner"] ) name = config["env"]["game"] with logger_context(log_dir, run_ID, name, config): runner.train() if __name__ == "__main__": build_and_train(*sys.argv[1:])
py
1a4da13d4eb92e4b3b318f9a98cfc35a00968bdc
""" WSGI config for worldCountries project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'worldCountries.settings') application = get_wsgi_application()
py
1a4da142cf7aa5bd642e9c44a348473c67ab69eb
#!/usr/bin/env python """ model.py Self defined model definition. Usage: """ from __future__ import absolute_import from __future__ import print_function import sys import numpy as np import torch import torch.nn as torch_nn import torchaudio import torch.nn.functional as torch_nn_func import sandbox.block_nn as nii_nn import sandbox.util_frontend as nii_front_end import core_scripts.other_tools.debug as nii_debug import core_scripts.data_io.seq_info as nii_seq_tk import core_modules.p2sgrad as nii_p2sgrad import config as prj_conf __author__ = "Xin Wang" __email__ = "[email protected]" __copyright__ = "Copyright 2020, Xin Wang" ############## ## util ############## def protocol_parse(protocol_filepath): """ Parse protocol of ASVspoof2019 and get bonafide/spoof for each trial input: ----- protocol_filepath: string, path to the protocol file for convenience, I put train/dev/eval trials into a single protocol file output: ------- data_buffer: dic, data_bufer[filename] -> 1 (bonafide), 0 (spoof) """ data_buffer = {} temp_buffer = np.loadtxt(protocol_filepath, dtype='str') for row in temp_buffer: if row[-1] == 'bonafide': data_buffer[row[1]] = 1 else: data_buffer[row[1]] = 0 return data_buffer ############## ## FOR MODEL ############## class Model(torch_nn.Module): """ Model definition """ def __init__(self, in_dim, out_dim, args, mean_std=None): super(Model, self).__init__() ##### required part, no need to change ##### # mean std of input and output in_m, in_s, out_m, out_s = self.prepare_mean_std(in_dim,out_dim,\ args, mean_std) self.input_mean = torch_nn.Parameter(in_m, requires_grad=False) self.input_std = torch_nn.Parameter(in_s, requires_grad=False) self.output_mean = torch_nn.Parameter(out_m, requires_grad=False) self.output_std = torch_nn.Parameter(out_s, requires_grad=False) # a flag for debugging (by default False) self.model_debug = False self.validation = False ##### #### # on input waveform and output target #### # Load protocol and prepare the target data for network training protocol_file = prj_conf.optional_argument[0] self.protocol_parser = protocol_parse(protocol_file) # Working sampling rate # torchaudio may be used to change sampling rate self.m_target_sr = 16000 #### # optional configs (not used) #### # re-sampling (optional) self.m_resampler = torchaudio.transforms.Resample( prj_conf.wav_samp_rate, self.m_target_sr) # vad (optional) self.m_vad = torchaudio.transforms.Vad(sample_rate = self.m_target_sr) # flag for balanced class (temporary use) self.v_flag = 1 #### # front-end configuration # multiple front-end configurations may be used # by default, use a single front-end #### # frame shift (number of waveform points) self.frame_hops = [160] # frame length self.frame_lens = [320] # FFT length self.fft_n = [512] # LFCC dim (base component) self.lfcc_dim = [20] self.lfcc_with_delta = True # window type self.win = torch.hann_window # floor in log-spectrum-amplitude calculating (not used) self.amp_floor = 0.00001 # number of frames to be kept for each trial # no truncation self.v_truncate_lens = [None for x in self.frame_hops] # number of sub-models (by default, a single model) self.v_submodels = len(self.frame_lens) # dimension of embedding vectors self.v_emd_dim = 64 # output classes self.v_out_class = 2 #### # create network #### # 1st part of the classifier self.m_transform = [] # pooling layer self.m_pooling = [] # 2nd part of the classifier self.m_output_act = [] # front-end self.m_frontend = [] # final part on training self.m_angle = [] # it can handle models with multiple front-end configuration # by default, only a single front-end for idx, (trunc_len, fft_n, lfcc_dim) in enumerate(zip( self.v_truncate_lens, self.fft_n, self.lfcc_dim)): fft_n_bins = fft_n // 2 + 1 if self.lfcc_with_delta: lfcc_dim = lfcc_dim * 3 self.m_transform.append( torch_nn.Sequential( torch_nn.Conv2d(1, 64, [5, 5], 1, padding=[2, 2]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Conv2d(32, 64, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 96, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.BatchNorm2d(48, affine=False), torch_nn.Conv2d(48, 96, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(48, affine=False), torch_nn.Conv2d(48, 128, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch.nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Conv2d(64, 128, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(64, affine=False), torch_nn.Conv2d(64, 64, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 64, [1, 1], 1, padding=[0, 0]), nii_nn.MaxFeatureMap2D(), torch_nn.BatchNorm2d(32, affine=False), torch_nn.Conv2d(32, 64, [3, 3], 1, padding=[1, 1]), nii_nn.MaxFeatureMap2D(), torch_nn.MaxPool2d([2, 2], [2, 2]), torch_nn.Dropout(0.7) ) ) self.m_pooling.append( nii_nn.SelfWeightedPooling((lfcc_dim // 16) * 32) ) self.m_output_act.append( torch_nn.Linear((lfcc_dim // 16) * 32 * 2, self.v_emd_dim) ) self.m_angle.append( nii_p2sgrad.P2SActivationLayer(self.v_emd_dim, self.v_out_class) ) self.m_frontend.append( nii_front_end.LFCC(self.frame_lens[idx], self.frame_hops[idx], self.fft_n[idx], self.m_target_sr, self.lfcc_dim[idx], with_energy=True) ) self.m_frontend = torch_nn.ModuleList(self.m_frontend) self.m_transform = torch_nn.ModuleList(self.m_transform) self.m_output_act = torch_nn.ModuleList(self.m_output_act) self.m_pooling = torch_nn.ModuleList(self.m_pooling) self.m_angle = torch_nn.ModuleList(self.m_angle) # done return def prepare_mean_std(self, in_dim, out_dim, args, data_mean_std=None): """ prepare mean and std for data processing This is required for the Pytorch project, but not relevant to this code """ if data_mean_std is not None: in_m = torch.from_numpy(data_mean_std[0]) in_s = torch.from_numpy(data_mean_std[1]) out_m = torch.from_numpy(data_mean_std[2]) out_s = torch.from_numpy(data_mean_std[3]) if in_m.shape[0] != in_dim or in_s.shape[0] != in_dim: print("Input dim: {:d}".format(in_dim)) print("Mean dim: {:d}".format(in_m.shape[0])) print("Std dim: {:d}".format(in_s.shape[0])) print("Input dimension incompatible") sys.exit(1) if out_m.shape[0] != out_dim or out_s.shape[0] != out_dim: print("Output dim: {:d}".format(out_dim)) print("Mean dim: {:d}".format(out_m.shape[0])) print("Std dim: {:d}".format(out_s.shape[0])) print("Output dimension incompatible") sys.exit(1) else: in_m = torch.zeros([in_dim]) in_s = torch.ones([in_dim]) out_m = torch.zeros([out_dim]) out_s = torch.ones([out_dim]) return in_m, in_s, out_m, out_s def normalize_input(self, x): """ normalizing the input data This is required for the Pytorch project, but not relevant to this code """ return (x - self.input_mean) / self.input_std def normalize_target(self, y): """ normalizing the target data This is required for the Pytorch project, but not relevant to this code """ return (y - self.output_mean) / self.output_std def denormalize_output(self, y): """ denormalizing the generated output from network This is required for the Pytorch project, but not relevant to this code """ return y * self.output_std + self.output_mean def _front_end(self, wav, idx, trunc_len, datalength): """ simple fixed front-end to extract features input: ------ wav: waveform idx: idx of the trial in mini-batch trunc_len: number of frames to be kept after truncation datalength: list of data length in mini-batch output: ------- x_sp_amp: front-end featues, (batch, frame_num, frame_feat_dim) """ with torch.no_grad(): x_sp_amp = self.m_frontend[idx](wav.squeeze(-1)) # return return x_sp_amp def _compute_embedding(self, x, datalength): """ definition of forward method Assume x (batchsize, length, dim) Output x (batchsize * number_filter, output_dim) """ # resample if necessary #x = self.m_resampler(x.squeeze(-1)).unsqueeze(-1) # number of sub models batch_size = x.shape[0] # buffer to store output scores from sub-models output_emb = torch.zeros([batch_size * self.v_submodels, self.v_emd_dim], device=x.device, dtype=x.dtype) # compute scores for each sub-models for idx, (fs, fl, fn, trunc_len, m_trans, m_pool, m_output) in \ enumerate( zip(self.frame_hops, self.frame_lens, self.fft_n, self.v_truncate_lens, self.m_transform, self.m_pooling, self.m_output_act)): # extract front-end feature x_sp_amp = self._front_end(x, idx, trunc_len, datalength) # compute scores # 1. unsqueeze to (batch, 1, frame_length, fft_bin) # 2. compute hidden features hidden_features = m_trans(x_sp_amp.unsqueeze(1)) # 3. (batch, channel, frame//N, feat_dim//N) -> # (batch, frame//N, channel * feat_dim//N) # where N is caused by conv with stride hidden_features = hidden_features.permute(0, 2, 1, 3).contiguous() frame_num = hidden_features.shape[1] hidden_features = hidden_features.view(batch_size, frame_num, -1) # 4. pooling hidden_features = m_pool(hidden_features) # 5. pass through the output layer tmp_score = m_output(hidden_features) output_emb[idx * batch_size : (idx+1) * batch_size] = tmp_score return output_emb def _compute_score(self, x, inference=False): """ """ # number of sub models batch_size = x.shape[0] # compute score through p2sgrad layer out_score = torch.zeros( [batch_size * self.v_submodels, self.v_out_class], device=x.device, dtype=x.dtype) # compute scores for each sub-models for idx, m_score in enumerate(self.m_angle): tmp_score = m_score(x[idx * batch_size : (idx+1) * batch_size]) out_score[idx * batch_size : (idx+1) * batch_size] = tmp_score if inference: # output_score [:, 1] corresponds to the positive class return out_score[:, 1] else: return out_score def _get_target(self, filenames): try: return [self.protocol_parser[x] for x in filenames] except KeyError: print("Cannot find target data for %s" % (str(filenames))) sys.exit(1) def forward(self, x, fileinfo): filenames = [nii_seq_tk.parse_filename(y) for y in fileinfo] datalength = [nii_seq_tk.parse_length(y) for y in fileinfo] if self.training: feature_vec = self._compute_embedding(x, datalength) scores = self._compute_score(feature_vec) # target target = self._get_target(filenames) target_vec = torch.tensor(target, device=x.device, dtype=scores.dtype) target_vec = target_vec.repeat(self.v_submodels) return [scores, target_vec, True] else: feature_vec = self._compute_embedding(x, datalength) scores = self._compute_score(feature_vec, True) target = self._get_target(filenames) print("Output, %s, %d, %f" % (filenames[0], target[0], scores.mean())) # don't write output score as a single file return None class Loss(): """ Wrapper to define loss function """ def __init__(self, args): """ """ self.m_loss = nii_p2sgrad.P2SGradLoss() def compute(self, outputs, target): """ """ loss = self.m_loss(outputs[0], outputs[1]) return loss if __name__ == "__main__": print("Definition of model")
py
1a4da236aa9221d51d4d9408cc9214ad10fa898d
from hw_asr.augmentations.spectrogram_augmentations.SpecAug import SpecAug __all__ = [ "SpecAug", ]
py
1a4da2680714d63815e341b9f93956763cc664cc
from django.conf.urls import url from . import views urlpatterns = [ url(r"^$", views.PostListView.as_view(), name="post_list"), url(r'^about/$', views.AboutView.as_view(), name='about'), url(r"^post/(?P<pk>\d+)$", views.PostDetailView.as_view(), name="post_detail"), url(r"^post/new/$", views.CreatePostView.as_view(), name="post_new"), url(r"^post/(?P<pk>\d+)/edit/$", views.PostUpdateView.as_view(), name="post_edit"), url(r"^post/(?P<pk>\d+)/publish/$", views.post_publish, name="post_publish"), url(r'^post/(?P<pk>\d+)/remove/$', views.PostDeleteView.as_view(), name='post_remove'), url(r'^drafts/$', views.DraftListView.as_view(), name='post_draft_list'), url(r'^post/(?P<pk>\d+)/comment/$', views.add_comment_to_post, name='add_comment_to_post'), url(r'^comment/(?P<pk>\d+)/approve/$', views.comment_approve, name='comment_approve'), url(r'^comment/(?P<pk>\d+)/remove/$', views.comment_remove, name='comment_remove'), ]
py
1a4da2d3ea4bd0047ff3625b316901f36320e773
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "sana-khan-34437.botics.co" site_params = { "name": "Sana Khan", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
py
1a4da488847e1a4c6c0f4c5026bf162cbef4eb7b
# Import Flask from flask import Flask, jsonify # Dependencies and Setup import numpy as np import datetime as dt # Python SQL Toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from sqlalchemy.pool import StaticPool import dateutil.parser as dparser # Database Setup by creating engine to the db path engine = create_engine("sqlite:///Resources/hawaii.sqlite", echo=False) # Reflect hawaii database into Base Base = automap_base() # Reflect all the tables in hawaii db Base.prepare(engine, reflect=True) # Create instances each Table Measurement = Base.classes.measurement Station = Base.classes.station # Setting-up Flask # Initialize Flask app app = Flask(__name__) # set-up all the routes @app.route("/api/v1.0/precipitation") def percipation(): # Create our session (thread) from Python to the DB session = Session(engine) date = session.query(Measurement.date).order_by(Measurement.date.desc())[0][0] latest_date = dt.datetime.strptime(date, "%Y-%m-%d").date() latest_12 = latest_date - dt.timedelta(days=365) percipitation_data = session.query(Measurement.date, Measurement.prcp).order_by(Measurement.date.desc()).filter(Measurement.date >= latest_12 ).all() session.close() return dict(percipitation_data) @app.route("/api/v1.0/stations") def stations(): # Create our session (thread) from Python to the DB session = Session(engine) stations = session.query(Station.id, Station.station).distinct().all() session.close() results = [] for row in stations: station = {} station["id"] = row[0] station["station"] = row[1] results.append(station) return jsonify(results) @app.route("/api/v1.0/tobs") def tobs(): # Create our session (thread) from Python to the DB session = Session(engine) active_stations = session.query(Measurement.id, Station.id, Measurement.station).\ filter(Station.station == Measurement.station).\ group_by(Measurement.station).\ order_by(Measurement.id.desc()).all() most_active_station = active_stations[0][1] recent_date = session.query(Measurement.date).filter(Station.station == Measurement.station).filter(Station.id == most_active_station).order_by(Measurement.date.desc())[0][0] recent_date = dt.datetime.strptime(recent_date, "%Y-%m-%d").date() recent_year = recent_date - dt.timedelta(days=365) recent_year_temp = session.query(Measurement.date, Measurement.tobs).filter(Measurement.date >= recent_year).order_by(Measurement.date.desc()).all() session.close() return dict(recent_year_temp) @app.route("/api/v1.0/<start_date>") def start_date(start_date): session = Session(engine) result = session.query(Measurement.date, func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).filter(Measurement.tobs).filter(Measurement.date >= start_date).first() session.close() aggre = {} aggre["Date"]= result[0] aggre["Min"] = result[1] aggre["Max"] = result[2] aggre["Average"] = result[3] return aggre @app.route("/api/v1.0/<start_date>/<end_date>") def range_date(start_date, end_date): session = Session(engine) start_date = dt.datetime.strptime(start_date, "%Y-%m-%d").date() start_date = dt.datetime.strptime(end_date, "%Y-%m-%d").date() result = session.query(Measurement.date, func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= start_date)[0] session.close() aggre = {} aggre["Date"]= result[0] aggre["Min"] = result[1] aggre["Max"] = result[2] aggre["Average"] = result[3] return aggre @app.route("/api/v1.0/questions") def questions(): return """<html> <center> <img src="/static/silly.png", alt="There you go!!!", width="700",height="680" /> </center> </html>""" # set-up Home routes @app.route("/") def welcomepage(): return """<html> <h1>Welcome to Hawaii Climate Analysis!!!</h1> <aside> By Shilpa...</aside> <a href = "http://climate.geography.hawaii.edu/interactivemap.html" target = "_blank" ><img src="/static/hawaii_climate.png",width="718" height="135", alt="Hawaii Climate Analysis"/></a> <section><h2><b>Analysis</b><img src="/static/Hawaii_surfing2.png",width="300",height="115", style="float:right", alt="Surf's up!!!"></h2> <p><i>Below are the analysis performed on the Hawaii Climate data: </i></p> <article> <dt><li><b>Percipitation Data</b></li></dt> <dd><a href="/api/v1.0/precipitation" target = "_blank">Percipitation(last 12-months)</a></dd> <dd> <mark>Reurns 'Date' & 'Percipitation' for last 12-month period</mark></dd> </article> <dl><dt><li><b>Stations Data</b></li></dt> <dd><a href="/api/v1.0/stations" target = "_blank">Most active Stations</a></dd> <dd><mark>Returns List of Station 'id's' & 'station names' in Hawaii </mark></dd> </dl> <dl><dt><li><b>Temperature of Bias(Tobs)</b></li></dt> <dd><a href="/api/v1.0/tobs" target = "_blank">Temperature of Bias for last 12-months</a></dd> <dd><mark>Returns 'Date' & 'Temperature' of most active station in the last 12 month period </mark></dd> </dl> <dl><dt><li><b>MIN, MAX & AVERAGE Temperatures</b></li></dt> <dd><a href="/api/v1.0/2016-8-23" target = "_blank">Temperature Aggregations starting 2016-8-23</a></dd> <dd><a href="/api/v1.0/2017-6-23/2017-8-15" target = "_blank">Temperature Aggregations from 2016-8-23 to 2017-1-15</a></dd> <dd><mark>Returns 'Min', 'Max' & 'Average' for the given date or range of dates</mark></dd> </dl> </section> <section><h2><b>Question & Concerns</b></h2> <dl> <dd><h3><a href="/api/v1.0/questions" target = "_blank">Have Questions?? Contact-us here</a></h3></dd> </dl> </section> </html>""" if __name__ == '__main__': app.run(debug=True)
py
1a4da4c14384212ccbf2aff2ffb163872a03a728
from typing import NamedTuple class APIVersion(NamedTuple): major: int minor: int @classmethod def from_string(cls, inp: str) -> 'APIVersion': parts = inp.split('.') if len(parts) != 2: raise ValueError(inp) intparts = [int(p) for p in parts] return cls(major=intparts[0], minor=intparts[1]) def __str__(self): return f'{self.major}.{self.minor}'
py
1a4da506476b52d9539dcf60a06e14d5786bf43f
import math def get_odd(n): while True: if n%2: return n n//=2 def solve(): n=int(input()) c='Ashishgup' o='FastestFinger' while True: if n<=1: print(o) break if (n%2) or n==2: print(c) break if not n&n-1: print(o) break n//=get_odd(n) c,o=o,c if __name__ == '__main__': t=int(input()) for _ in range(t): solve()
py
1a4da5e148774b8ff72d5d5d09d4dfe16431f2de
# -*- coding=utf-8 -*- import os from setuptools import setup, find_packages DIR_PATH = os.path.dirname(os.path.abspath(__file__)) LONGDOC = ''' jionlp ================================================================================ 面向公司算法和使用部门提供算法api接口 安装方法: 代码使用 Python 3 - 半自动安装: $ git clone http://git.bbdops.com/BBD-AI-Lab/BBD-Tools-Documentation.git $ cd BBD-Tools-Documentation $ pip install . - 通过 import bbd_tools as bbd 来引用 ''' __name__ = 'jionlp' __author__ = "cuiguoer" __copyright__ = "Copyright 2020, dongrixinyu" __credits__ = [] __license__ = "Apache License 2.0" __maintainer__ = "dongrixinyu" __email__ = "[email protected]" __url__ = 'https://github.com/dongrixinyu/jionlp' __description__ = 'Simple, Keras-powered multilingual NLP framework,' \ ' allows you to build your models in 5 minutes for named entity recognition (NER),' \ ' part-of-speech tagging (PoS) and text classification tasks. ' \ 'Includes BERT, GPT-2 and word2vec embedding.' with open(os.path.join(DIR_PATH, 'requirements.txt'), 'r', encoding='utf-8') as f: requirements = f.readlines() setup(name=__name__, version='0.1.0', url=__url__, author=__author__, author_email=__email__, description=__description__, long_description=LONGDOC, license=__license__, py_modules=[], packages=find_packages(), include_package_data=True, install_requires=requirements, entry_points={ 'console_scripts': [ # 'scheduler_start = algorithm_platform.scheduler.server: start', ] }, test_suite='nose.collector', tests_require=['nose'])
py
1a4da69809384a20d10fcf0199ce0787d0062010
""" This file offers the methods to automatically retrieve the graph Rhizobium leguminosarum viciae 3841. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def RhizobiumLeguminosarumViciae3841( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Rhizobium leguminosarum viciae 3841 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Rhizobium leguminosarum viciae 3841 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="RhizobiumLeguminosarumViciae3841", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
py
1a4da6d9f5e96dd1ed24b1b384c9281487316ab3
# -*- coding: utf-8 -*- __author__ = 'ooo' __date__ = '2019/1/15 12:17' import math, torch import torch.nn as nn import torch.nn.functional as F class ViewLayer(nn.Module): def __init__(self, dim=-1): super(ViewLayer, self).__init__() self.dim = dim def forward(self, x): # print('view-layer -> ', x.size()) x = x.view(x.size(0), self.dim) return x class AdaAvgPool(nn.Module): def __init__(self, size=0): self.size = size super(AdaAvgPool, self).__init__() def forward(self, x): # print('avg-layer -> ', x.size()) if self.size == -1: return x if self.size == 0: h, w = x.size(2), x.size(3) assert h == w elif self.size >= 1: h, w = self.size, self.size else: raise NotImplementedError('check the avg kernel size !') return F.avg_pool2d(x, kernel_size=(h, w)) class Activate(nn.Module): def __init__(self, method='relu'): super(Activate, self).__init__() if method == 'relu': self.method = nn.ReLU(inplace=True) elif method == 'sigmoid': self.method = nn.Sigmoid() elif method == 'leaky_relu': self.method = nn.LeakyReLU(negative_slope=0.02) else: raise NotImplementedError('--->%s' % method) def forward(self, x): return self.method(x) class SweetBlock(nn.Module): def __init__(self, depth, inter=1, downexp=2, downsize=False): super(SweetBlock, self).__init__() self.downsize = downsize self.bn1 = nn.BatchNorm2d(depth) self.conv1 = nn.Conv2d(depth, depth * inter, 3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(depth * inter) self.deconv2 = nn.ConvTranspose2d(depth * inter, depth, 3, stride=2, padding=1, output_padding=1, bias=False) self.relu = nn.ReLU(inplace=True) if downsize: self.down1 = nn.Sequential( nn.BatchNorm2d(depth), nn.ReLU(inplace=True), nn.Conv2d(depth, depth * downexp, 3, stride=1, padding=1, bias=False), nn.AvgPool2d(2) ) self.down2 = nn.Sequential( nn.BatchNorm2d(depth), nn.ReLU(inplace=True), nn.Conv2d(depth, depth * downexp, 3, stride=1, padding=1, bias=False), nn.AvgPool2d(2), # nn.AvgPool2d(kernel_size=3, stride=2, padding=1) ) def forward(self, x): if isinstance(x, (list, tuple)): assert len(x) == 3, 'len of x is: %s ...' % len(x) x1, x2, pred = x # (big, small, pred) else: x1, x2, pred = x, None, None res1 = self.conv1(self.relu(self.bn1(x1))) res2 = self.deconv2(self.relu(self.bn2(res1))) res1 = res1 + x2 res2 = res2 + x1 if self.downsize: res2 = self.down2(res2) res1 = self.down1(res1) # utils.print_size([res2, res1]) return res2, res1, pred class TransBlock(nn.Module): def __init__(self, indepth, outdepth): super(TransBlock, self).__init__() self.bn1 = nn.BatchNorm2d(indepth) self.conv1 = nn.Conv2d(indepth, outdepth, 3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(indepth) self.conv2 = nn.Conv2d(indepth, outdepth, 3, stride=1, padding=1, bias=False) def forward(self, x): if isinstance(x, (list, tuple)): x1, x2, pred = x else: x1, x2, pred = x, None, None x1 = self.conv1(F.relu(self.bn1(x1))) x1 = F.avg_pool2d(x1, 2) x2 = self.conv2(F.relu(self.bn2(x2))) x2 = F.avg_pool2d(x2, 2) return x1, x2 class SumaryBlock(nn.Module): def __init__(self, depth, classify=1, avgpool=True, active='relu', nclass=1000): super(SumaryBlock, self).__init__() self.classify = classify if self.classify >= 1: self.classifier1 = nn.Sequential( nn.BatchNorm2d(depth), Activate(active), AdaAvgPool(), ViewLayer(), nn.Linear(depth, nclass) ) if self.classify >= 2: self.classifier2 = nn.Sequential( nn.BatchNorm2d(depth), Activate(active), AdaAvgPool(), ViewLayer(), nn.Linear(depth, nclass) ) def forward(self, x): if isinstance(x, (list, tuple)): x1, x2, pred = x else: x1, x2, pred = x, None, None if self.classify == 1: x1 = self.classifier1(x1) pred.extend([x1]) elif self.classify == 2: x1 = self.classifier1(x1) x2 = self.classifier2(x2) pred.extend([x2, x1]) else: raise NotImplementedError return pred class RockBlock(nn.Module): def __init__(self, outdepth, branch=2, dataset='cifar'): super(RockBlock, self).__init__() self.branch = branch if dataset == 'cifar': self.branch1 = nn.Sequential( nn.Conv2d(3, outdepth, kernel_size=3, stride=1, padding=1, bias=False), # nn.BatchNorm2d(depth), # nn.ReLU(inplace=True), ) if branch >= 2: self.branch2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) elif dataset == 'imagenet': self.branch1 = nn.Sequential( nn.Conv2d(3, outdepth, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(outdepth), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) self.branch2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): pred = [] if self.branch == 1: x = self.branch1(x) return x, None, pred elif self.branch == 2: x = self.branch1(x) x2 = self.branch2(x) return x, x2, pred else: raise ValueError('check branch must be in [1, 2, 3]!') class SweetNet(nn.Module): def __init__(self, branch=2, depth=64, layers=(2, 3, 3, 3), expand=(1, 2, 4, 8), downexp=2, downlast=False, inter=(1, 1, 1, 1), classify=1, active='relu', nclass=1000): super(SweetNet, self).__init__() self.layers = layers self.layer0 = RockBlock(depth, branch, dataset='imagenet') self.layer1 = self._make_sweet_layer(SweetBlock, layers[0], depth * expand[0], inter[0], downexp, down=True) self.layer2 = self._make_sweet_layer(SweetBlock, layers[1], depth * expand[1], inter[1], downexp, down=True) self.layer3 = self._make_sweet_layer(SweetBlock, layers[2], depth * expand[2], inter[2], downexp, down=True) self.layer4 = self._make_sweet_layer(SweetBlock, layers[3], depth * expand[3], inter[3], downexp, down=downlast) if downlast: indepth = depth * expand[3] * downexp else: indepth = depth * expand[3] self.classifier = SumaryBlock(indepth, classify, avgpool=True, active=active, nclass=nclass) def _make_sweet_layer(self, block, nums, depth, inter=1, downexp=2, down=True): layers = [] for i in range(nums - 1): layers.append(block(depth, inter, downexp, downsize=False)) layers.append(block(depth, inter, downexp, downsize=down)) return nn.Sequential(*layers) def _make_trans_layer(self, block, indepth, outdepth): return block(indepth, outdepth) def forward(self, x): x = self.layer0(x) # utils.print_size(x) x = self.layer1(x) # utils.print_size(x) x = self.layer2(x) # utils.print_size(x) x = self.layer3(x) # utils.print_size(x) x = self.layer4(x) # utils.print_size(x) x = self.classifier(x) return x class CifarSweetNet(nn.Module): def __init__(self, branch=2, depth=16, layers=(2, 3, 3), expand=(1, 2, 4), downexp=2, downlast=False, inter=(1, 1, 1), classify=1, active='relu', nclass=10): super(CifarSweetNet, self).__init__() self.layers = layers self.layer0 = RockBlock(depth, branch, dataset='cifar') self.layer1 = self._make_sweet_layer(SweetBlock, layers[0], depth * expand[0], inter[0], downexp, down=True) self.layer2 = self._make_sweet_layer(SweetBlock, layers[1], depth * expand[1], inter[1], downexp, down=True) self.layer3 = self._make_sweet_layer(SweetBlock, layers[2], depth * expand[2], inter[2], downexp, down=downlast) if downlast: indepth = depth * expand[2] * downexp else: indepth = depth * expand[2] self.classifier = SumaryBlock(indepth, classify, avgpool=True, active=active, nclass=nclass) def _make_sweet_layer(self, block, nums, depth, inter=1, downexp=2, down=True): layers = [] for i in range(nums - 1): layers.append(block(depth, inter, downexp, downsize=False)) layers.append(block(depth, inter, downexp, downsize=down)) return nn.Sequential(*layers) def _make_trans_layer(self, block, indepth, outdepth): return block(indepth, outdepth) def forward(self, x): x = self.layer0(x) # utils.print_size(x) x = self.layer1(x) # utils.print_size(x) x = self.layer2(x) # utils.print_size(x) x = self.layer3(x) # utils.print_size(x) x = self.classifier(x) return x if __name__ == '__main__': import xtils torch.manual_seed(9528) criterion = nn.CrossEntropyLoss() # model = SweetNet(branch=2, depth=64, layers=(2, 5, 3, 2), expand=(1, 2, 4, 8), downexp=2, downlast=True, # inter=(1, 1, 1, 1), classify=2, active='relu', nclass=1000) # print('\n', model, '\n') # x = torch.randn(4, 3, 256, 256) # # utils.tensorboard_add_model(model, x) # utils.calculate_params_scale(model, format='million') # utils.calculate_layers_num(model, layers=('conv2d', 'deconv2d', 'linear')) # y = model(x) # print(sum(model.layers), len(y), ':', [(yy.shape, yy.max(1)) for yy in y if yy is not None]) arch_kwargs = {} model = CifarSweetNet(branch=2, depth=16, layers=(2, 2, 2), expand=(1, 2, 4), downexp=2, downlast=False, inter=(1, 1, 1), classify=1, active='relu', nclass=10) print('\n', model, '\n') x = torch.randn(4, 3, 32, 32) # utils.tensorboard_add_model(model, x) xtils.calculate_params_scale(model, format='million') xtils.calculate_layers_num(model, layers=('conv2d', 'deconv2d', 'linear')) y = model(x) # loss = [criterion(o, torch.randint(0, 10, o.size()).long()) for o in y] # optimizer = torch.optim.Adam(params=model.parameters(), lr=0.1) # optimizer.zero_grad() # sum(loss).backward() # optimizer.step() print(sum(model.layers), len(y), ':', [(yy.shape, yy.max(1)) for yy in y if yy is not None])
py
1a4da7a5842ff5242587ac28406437cdee11396e
import time import sqlalchemy_1_3 as tsa from sqlalchemy_1_3 import create_engine from sqlalchemy_1_3 import event from sqlalchemy_1_3 import exc from sqlalchemy_1_3 import Integer from sqlalchemy_1_3 import MetaData from sqlalchemy_1_3 import pool from sqlalchemy_1_3 import select from sqlalchemy_1_3 import String from sqlalchemy_1_3 import testing from sqlalchemy_1_3 import util from sqlalchemy_1_3.engine import url from sqlalchemy_1_3.testing import assert_raises from sqlalchemy_1_3.testing import assert_raises_message from sqlalchemy_1_3.testing import assert_raises_message_context_ok from sqlalchemy_1_3.testing import engines from sqlalchemy_1_3.testing import eq_ from sqlalchemy_1_3.testing import expect_warnings from sqlalchemy_1_3.testing import fixtures from sqlalchemy_1_3.testing import is_false from sqlalchemy_1_3.testing import is_true from sqlalchemy_1_3.testing import mock from sqlalchemy_1_3.testing import ne_ from sqlalchemy_1_3.testing.engines import testing_engine from sqlalchemy_1_3.testing.mock import call from sqlalchemy_1_3.testing.mock import Mock from sqlalchemy_1_3.testing.mock import patch from sqlalchemy_1_3.testing.schema import Column from sqlalchemy_1_3.testing.schema import Table from sqlalchemy_1_3.testing.util import gc_collect class MockError(Exception): pass class MockDisconnect(MockError): pass class MockExitIsh(BaseException): pass def mock_connection(): def mock_cursor(): def execute(*args, **kwargs): if conn.explode == "execute": raise MockDisconnect("Lost the DB connection on execute") elif conn.explode == "interrupt": conn.explode = "explode_no_disconnect" raise MockExitIsh("Keyboard / greenlet / etc interruption") elif conn.explode == "interrupt_dont_break": conn.explode = None raise MockExitIsh("Keyboard / greenlet / etc interruption") elif conn.explode in ( "execute_no_disconnect", "explode_no_disconnect", ): raise MockError( "something broke on execute but we didn't lose the " "connection" ) elif conn.explode in ( "rollback", "rollback_no_disconnect", "explode_no_disconnect", ): raise MockError( "something broke on execute but we didn't lose the " "connection" ) elif args and "SELECT" in args[0]: cursor.description = [("foo", None, None, None, None, None)] else: return def close(): cursor.fetchall = cursor.fetchone = Mock( side_effect=MockError("cursor closed") ) cursor = Mock( execute=Mock(side_effect=execute), close=Mock(side_effect=close) ) return cursor def cursor(): while True: yield mock_cursor() def rollback(): if conn.explode == "rollback": raise MockDisconnect("Lost the DB connection on rollback") if conn.explode == "rollback_no_disconnect": raise MockError( "something broke on rollback but we didn't lose the " "connection" ) else: return conn = Mock( rollback=Mock(side_effect=rollback), cursor=Mock(side_effect=cursor()) ) return conn def MockDBAPI(): connections = [] stopped = [False] def connect(): while True: if stopped[0]: raise MockDisconnect("database is stopped") conn = mock_connection() connections.append(conn) yield conn def shutdown(explode="execute", stop=False): stopped[0] = stop for c in connections: c.explode = explode def restart(): stopped[0] = False connections[:] = [] def dispose(): stopped[0] = False for c in connections: c.explode = None connections[:] = [] return Mock( connect=Mock(side_effect=connect()), shutdown=Mock(side_effect=shutdown), dispose=Mock(side_effect=dispose), restart=Mock(side_effect=restart), paramstyle="named", connections=connections, Error=MockError, ) class PrePingMockTest(fixtures.TestBase): def setup(self): self.dbapi = MockDBAPI() def _pool_fixture(self, pre_ping): dialect = url.make_url( "postgresql://foo:bar@localhost/test" ).get_dialect()() dialect.dbapi = self.dbapi _pool = pool.QueuePool( creator=lambda: self.dbapi.connect("foo.db"), pre_ping=pre_ping, dialect=dialect, ) dialect.is_disconnect = lambda e, conn, cursor: isinstance( e, MockDisconnect ) return _pool def teardown(self): self.dbapi.dispose() def test_connect_across_restart(self): pool = self._pool_fixture(pre_ping=True) conn = pool.connect() stale_connection = conn.connection conn.close() self.dbapi.shutdown("execute") self.dbapi.restart() conn = pool.connect() cursor = conn.cursor() cursor.execute("hi") stale_cursor = stale_connection.cursor() assert_raises(MockDisconnect, stale_cursor.execute, "hi") def test_raise_db_is_stopped(self): pool = self._pool_fixture(pre_ping=True) conn = pool.connect() conn.close() self.dbapi.shutdown("execute", stop=True) assert_raises_message_context_ok( MockDisconnect, "database is stopped", pool.connect ) def test_waits_til_exec_wo_ping_db_is_stopped(self): pool = self._pool_fixture(pre_ping=False) conn = pool.connect() conn.close() self.dbapi.shutdown("execute", stop=True) conn = pool.connect() cursor = conn.cursor() assert_raises_message( MockDisconnect, "Lost the DB connection on execute", cursor.execute, "foo", ) def test_waits_til_exec_wo_ping_db_is_restarted(self): pool = self._pool_fixture(pre_ping=False) conn = pool.connect() conn.close() self.dbapi.shutdown("execute", stop=True) self.dbapi.restart() conn = pool.connect() cursor = conn.cursor() assert_raises_message( MockDisconnect, "Lost the DB connection on execute", cursor.execute, "foo", ) @testing.requires.predictable_gc def test_pre_ping_weakref_finalizer(self): pool = self._pool_fixture(pre_ping=True) conn = pool.connect() old_dbapi_conn = conn.connection conn.close() eq_(old_dbapi_conn.mock_calls, [call.cursor(), call.rollback()]) self.dbapi.shutdown("execute", stop=True) self.dbapi.restart() conn = pool.connect() dbapi_conn = conn.connection del conn gc_collect() # new connection was reset on return appropriately eq_(dbapi_conn.mock_calls, [call.cursor(), call.rollback()]) # old connection was just closed - did not get an # erroneous reset on return eq_( old_dbapi_conn.mock_calls, [call.cursor(), call.rollback(), call.cursor(), call.close()], ) class MockReconnectTest(fixtures.TestBase): def setup(self): self.dbapi = MockDBAPI() self.db = testing_engine( "postgresql://foo:bar@localhost/test", options=dict(module=self.dbapi, _initialize=False), ) self.mock_connect = call( host="localhost", password="bar", user="foo", database="test" ) # monkeypatch disconnect checker self.db.dialect.is_disconnect = lambda e, conn, cursor: isinstance( e, MockDisconnect ) def teardown(self): self.dbapi.dispose() def test_reconnect(self): """test that an 'is_disconnect' condition will invalidate the connection, and additionally dispose the previous connection pool and recreate.""" # make a connection conn = self.db.connect() # connection works conn.execute(select([1])) # create a second connection within the pool, which we'll ensure # also goes away conn2 = self.db.connect() conn2.close() # two connections opened total now assert len(self.dbapi.connections) == 2 # set it to fail self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) # assert was invalidated assert not conn.closed assert conn.invalidated # close shouldn't break conn.close() # ensure one connection closed... eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], []], ) conn = self.db.connect() eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], [call()], []], ) conn.execute(select([1])) conn.close() eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], [call()], []], ) def test_invalidate_trans(self): conn = self.db.connect() trans = conn.begin() self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) eq_([c.close.mock_calls for c in self.dbapi.connections], [[call()]]) assert not conn.closed assert conn.invalidated assert trans.is_active assert_raises_message( tsa.exc.StatementError, "Can't reconnect until invalid transaction is rolled back", conn.execute, select([1]), ) assert trans.is_active assert_raises_message( tsa.exc.InvalidRequestError, "Can't reconnect until invalid transaction is rolled back", trans.commit, ) assert trans.is_active trans.rollback() assert not trans.is_active conn.execute(select([1])) assert not conn.invalidated eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], []], ) def test_invalidate_dont_call_finalizer(self): conn = self.db.connect() finalizer = mock.Mock() conn.connection._connection_record.finalize_callback.append(finalizer) conn.invalidate() assert conn.invalidated eq_(finalizer.call_count, 0) def test_conn_reusable(self): conn = self.db.connect() conn.execute(select([1])) eq_(self.dbapi.connect.mock_calls, [self.mock_connect]) self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) assert not conn.closed assert conn.invalidated eq_([c.close.mock_calls for c in self.dbapi.connections], [[call()]]) # test reconnects conn.execute(select([1])) assert not conn.invalidated eq_( [c.close.mock_calls for c in self.dbapi.connections], [[call()], []], ) def test_invalidated_close(self): conn = self.db.connect() self.dbapi.shutdown() assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) conn.close() assert conn.closed assert conn.invalidated assert_raises_message( tsa.exc.StatementError, "This Connection is closed", conn.execute, select([1]), ) def test_noreconnect_execute_plus_closewresult(self): conn = self.db.connect(close_with_result=True) self.dbapi.shutdown("execute_no_disconnect") # raises error assert_raises_message( tsa.exc.DBAPIError, "something broke on execute but we didn't lose the connection", conn.execute, select([1]), ) assert conn.closed assert not conn.invalidated def test_noreconnect_rollback_plus_closewresult(self): conn = self.db.connect(close_with_result=True) self.dbapi.shutdown("rollback_no_disconnect") # raises error with expect_warnings( "An exception has occurred during handling .*" "something broke on execute but we didn't lose the connection", py2konly=True, ): assert_raises_message( tsa.exc.DBAPIError, "something broke on rollback but we didn't " "lose the connection", conn.execute, select([1]), ) assert conn.closed assert not conn.invalidated assert_raises_message( tsa.exc.StatementError, "This Connection is closed", conn.execute, select([1]), ) def test_reconnect_on_reentrant(self): conn = self.db.connect() conn.execute(select([1])) assert len(self.dbapi.connections) == 1 self.dbapi.shutdown("rollback") # raises error with expect_warnings( "An exception has occurred during handling .*" "something broke on execute but we didn't lose the connection", py2konly=True, ): assert_raises_message( tsa.exc.DBAPIError, "Lost the DB connection on rollback", conn.execute, select([1]), ) assert not conn.closed assert conn.invalidated def test_reconnect_on_reentrant_plus_closewresult(self): conn = self.db.connect(close_with_result=True) self.dbapi.shutdown("rollback") # raises error with expect_warnings( "An exception has occurred during handling .*" "something broke on execute but we didn't lose the connection", py2konly=True, ): assert_raises_message( tsa.exc.DBAPIError, "Lost the DB connection on rollback", conn.execute, select([1]), ) assert conn.closed assert conn.invalidated assert_raises_message( tsa.exc.StatementError, "This Connection is closed", conn.execute, select([1]), ) def test_check_disconnect_no_cursor(self): conn = self.db.connect() result = conn.execute(select([1])) result.cursor.close() conn.close() assert_raises_message( tsa.exc.DBAPIError, "cursor closed", list, result ) def test_dialect_initialize_once(self): from sqlalchemy_1_3.engine.url import URL from sqlalchemy_1_3.engine.default import DefaultDialect dbapi = self.dbapi class MyURL(URL): def _get_entrypoint(self): return Dialect def get_dialect(self): return Dialect class Dialect(DefaultDialect): initialize = Mock() engine = create_engine(MyURL("foo://"), module=dbapi) engine.connect() # note that the dispose() call replaces the old pool with a new one; # this is to test that even though a single pool is using # dispatch.exec_once(), by replacing the pool with a new one, the event # would normally fire again onless once=True is set on the original # listen as well. engine.dispose() engine.connect() eq_(Dialect.initialize.call_count, 1) def test_dialect_initialize_retry_if_exception(self): from sqlalchemy_1_3.engine.url import URL from sqlalchemy_1_3.engine.default import DefaultDialect dbapi = self.dbapi class MyURL(URL): def _get_entrypoint(self): return Dialect def get_dialect(self): return Dialect class Dialect(DefaultDialect): initialize = Mock() # note that the first_connect hook is only invoked when the pool # makes a new DBAPI connection, and not when it checks out an existing # connection. So there is a dependency here that if the initializer # raises an exception, the pool-level connection attempt is also # failed, meaning no DBAPI connection is pooled. If the first_connect # exception raise did not prevent the connection from being pooled, # there could be the case where the pool could return that connection # on a subsequent attempt without initialization having proceeded. Dialect.initialize.side_effect = TypeError engine = create_engine(MyURL("foo://"), module=dbapi) assert_raises(TypeError, engine.connect) eq_(Dialect.initialize.call_count, 1) is_true(engine.pool._pool.empty()) assert_raises(TypeError, engine.connect) eq_(Dialect.initialize.call_count, 2) is_true(engine.pool._pool.empty()) engine.dispose() assert_raises(TypeError, engine.connect) eq_(Dialect.initialize.call_count, 3) is_true(engine.pool._pool.empty()) Dialect.initialize.side_effect = None conn = engine.connect() eq_(Dialect.initialize.call_count, 4) conn.close() is_false(engine.pool._pool.empty()) conn = engine.connect() eq_(Dialect.initialize.call_count, 4) conn.close() is_false(engine.pool._pool.empty()) engine.dispose() conn = engine.connect() eq_(Dialect.initialize.call_count, 4) conn.close() is_false(engine.pool._pool.empty()) def test_invalidate_conn_w_contextmanager_interrupt(self): # test [ticket:3803] pool = self.db.pool conn = self.db.connect() self.dbapi.shutdown("interrupt") def go(): with conn.begin(): conn.execute(select([1])) assert_raises(MockExitIsh, go) assert conn.invalidated eq_(pool._invalidate_time, 0) # pool not invalidated conn.execute(select([1])) assert not conn.invalidated def test_invalidate_conn_interrupt_nodisconnect_workaround(self): # test [ticket:3803] workaround for no disconnect on keyboard interrupt @event.listens_for(self.db, "handle_error") def cancel_disconnect(ctx): ctx.is_disconnect = False pool = self.db.pool conn = self.db.connect() self.dbapi.shutdown("interrupt_dont_break") def go(): with conn.begin(): conn.execute(select([1])) assert_raises(MockExitIsh, go) assert not conn.invalidated eq_(pool._invalidate_time, 0) # pool not invalidated conn.execute(select([1])) assert not conn.invalidated def test_invalidate_conn_w_contextmanager_disconnect(self): # test [ticket:3803] change maintains old behavior pool = self.db.pool conn = self.db.connect() self.dbapi.shutdown("execute") def go(): with conn.begin(): conn.execute(select([1])) assert_raises(exc.DBAPIError, go) # wraps a MockDisconnect assert conn.invalidated ne_(pool._invalidate_time, 0) # pool is invalidated conn.execute(select([1])) assert not conn.invalidated class CursorErrTest(fixtures.TestBase): # this isn't really a "reconnect" test, it's more of # a generic "recovery". maybe this test suite should have been # named "test_error_recovery". def _fixture(self, explode_on_exec, initialize): class DBAPIError(Exception): pass def MockDBAPI(): def cursor(): while True: if explode_on_exec: yield Mock( description=[], close=Mock(side_effect=DBAPIError("explode")), execute=Mock(side_effect=DBAPIError("explode")), ) else: yield Mock( description=[], close=Mock(side_effect=Exception("explode")), ) def connect(): while True: yield Mock( spec=["cursor", "commit", "rollback", "close"], cursor=Mock(side_effect=cursor()), ) return Mock( Error=DBAPIError, paramstyle="qmark", connect=Mock(side_effect=connect()), ) dbapi = MockDBAPI() from sqlalchemy_1_3.engine import default url = Mock( get_dialect=lambda: default.DefaultDialect, _get_entrypoint=lambda: default.DefaultDialect, _instantiate_plugins=lambda kwargs: (), translate_connect_args=lambda: {}, query={}, ) eng = testing_engine( url, options=dict(module=dbapi, _initialize=initialize) ) eng.pool.logger = Mock() return eng def test_cursor_explode(self): db = self._fixture(False, False) conn = db.connect() result = conn.execute("select foo") result.close() conn.close() eq_( db.pool.logger.error.mock_calls, [call("Error closing cursor", exc_info=True)], ) def test_cursor_shutdown_in_initialize(self): db = self._fixture(True, True) assert_raises_message_context_ok( exc.SAWarning, "Exception attempting to detect", db.connect ) eq_( db.pool.logger.error.mock_calls, [call("Error closing cursor", exc_info=True)], ) def _assert_invalidated(fn, *args): try: fn(*args) assert False except tsa.exc.DBAPIError as e: if not e.connection_invalidated: raise class RealReconnectTest(fixtures.TestBase): __backend__ = True __requires__ = "graceful_disconnects", "ad_hoc_engines" def setup(self): self.engine = engines.reconnecting_engine() def teardown(self): self.engine.dispose() def test_reconnect(self): conn = self.engine.connect() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert not conn.closed assert conn.invalidated assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated # one more time self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated conn.close() def test_multiple_invalidate(self): c1 = self.engine.connect() c2 = self.engine.connect() eq_(c1.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1.execute, select([1])) p2 = self.engine.pool _assert_invalidated(c2.execute, select([1])) # pool isn't replaced assert self.engine.pool is p2 def test_branched_invalidate_branch_to_parent(self): c1 = self.engine.connect() with patch.object(self.engine.pool, "logger") as logger: c1_branch = c1.connect() eq_(c1_branch.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1_branch.execute, select([1])) assert c1.invalidated assert c1_branch.invalidated c1_branch._revalidate_connection() assert not c1.invalidated assert not c1_branch.invalidated assert "Invalidate connection" in logger.mock_calls[0][1][0] def test_branched_invalidate_parent_to_branch(self): c1 = self.engine.connect() c1_branch = c1.connect() eq_(c1_branch.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1.execute, select([1])) assert c1.invalidated assert c1_branch.invalidated c1._revalidate_connection() assert not c1.invalidated assert not c1_branch.invalidated def test_branch_invalidate_state(self): c1 = self.engine.connect() c1_branch = c1.connect() eq_(c1_branch.execute(select([1])).scalar(), 1) self.engine.test_shutdown() _assert_invalidated(c1_branch.execute, select([1])) assert not c1_branch.closed assert not c1_branch._connection_is_valid def test_ensure_is_disconnect_gets_connection(self): def is_disconnect(e, conn, cursor): # connection is still present assert conn.connection is not None # the error usually occurs on connection.cursor(), # though MySQLdb we get a non-working cursor. # assert cursor is None self.engine.dialect.is_disconnect = is_disconnect conn = self.engine.connect() self.engine.test_shutdown() with expect_warnings( "An exception has occurred during handling .*", py2konly=True ): assert_raises(tsa.exc.DBAPIError, conn.execute, select([1])) def test_rollback_on_invalid_plain(self): conn = self.engine.connect() trans = conn.begin() conn.invalidate() trans.rollback() @testing.requires.two_phase_transactions def test_rollback_on_invalid_twophase(self): conn = self.engine.connect() trans = conn.begin_twophase() conn.invalidate() trans.rollback() @testing.requires.savepoints def test_rollback_on_invalid_savepoint(self): conn = self.engine.connect() conn.begin() trans2 = conn.begin_nested() conn.invalidate() trans2.rollback() def test_invalidate_twice(self): conn = self.engine.connect() conn.invalidate() conn.invalidate() @testing.skip_if( [lambda: util.py3k, "oracle+cx_oracle"], "Crashes on py3k+cx_oracle" ) def test_explode_in_initializer(self): engine = engines.testing_engine() def broken_initialize(connection): connection.execute("select fake_stuff from _fake_table") engine.dialect.initialize = broken_initialize # raises a DBAPIError, not an AttributeError assert_raises(exc.DBAPIError, engine.connect) @testing.skip_if( [lambda: util.py3k, "oracle+cx_oracle"], "Crashes on py3k+cx_oracle" ) def test_explode_in_initializer_disconnect(self): engine = engines.testing_engine() def broken_initialize(connection): connection.execute("select fake_stuff from _fake_table") engine.dialect.initialize = broken_initialize def is_disconnect(e, conn, cursor): return True engine.dialect.is_disconnect = is_disconnect # invalidate() also doesn't screw up assert_raises(exc.DBAPIError, engine.connect) def test_null_pool(self): engine = engines.reconnecting_engine( options=dict(poolclass=pool.NullPool) ) conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert not conn.closed assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated def test_close(self): conn = self.engine.connect() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) conn.close() conn = self.engine.connect() eq_(conn.execute(select([1])).scalar(), 1) def test_with_transaction(self): conn = self.engine.connect() trans = conn.begin() eq_(conn.execute(select([1])).scalar(), 1) assert not conn.closed self.engine.test_shutdown() _assert_invalidated(conn.execute, select([1])) assert not conn.closed assert conn.invalidated assert trans.is_active assert_raises_message( tsa.exc.StatementError, "Can't reconnect until invalid transaction is rolled back", conn.execute, select([1]), ) assert trans.is_active assert_raises_message( tsa.exc.InvalidRequestError, "Can't reconnect until invalid transaction is rolled back", trans.commit, ) assert trans.is_active trans.rollback() assert not trans.is_active assert conn.invalidated eq_(conn.execute(select([1])).scalar(), 1) assert not conn.invalidated class RecycleTest(fixtures.TestBase): __backend__ = True def test_basic(self): engine = engines.reconnecting_engine() conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() # set the pool recycle down to 1. # we aren't doing this inline with the # engine create since cx_oracle takes way # too long to create the 1st connection and don't # want to build a huge delay into this test. engine.pool._recycle = 1 # kill the DB connection engine.test_shutdown() # wait until past the recycle period time.sleep(2) # can connect, no exception conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() class PrePingRealTest(fixtures.TestBase): __backend__ = True def test_pre_ping_db_is_restarted(self): engine = engines.reconnecting_engine(options={"pool_pre_ping": True}) conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) stale_connection = conn.connection.connection conn.close() engine.test_shutdown() engine.test_restart() conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() def exercise_stale_connection(): curs = stale_connection.cursor() curs.execute("select 1") assert_raises(engine.dialect.dbapi.Error, exercise_stale_connection) def test_pre_ping_db_stays_shutdown(self): engine = engines.reconnecting_engine(options={"pool_pre_ping": True}) conn = engine.connect() eq_(conn.execute(select([1])).scalar(), 1) conn.close() engine.test_shutdown(stop=True) assert_raises(exc.DBAPIError, engine.connect) class InvalidateDuringResultTest(fixtures.TestBase): __backend__ = True def setup(self): self.engine = engines.reconnecting_engine() self.meta = MetaData(self.engine) table = Table( "sometable", self.meta, Column("id", Integer, primary_key=True), Column("name", String(50)), ) self.meta.create_all() table.insert().execute( [{"id": i, "name": "row %d" % i} for i in range(1, 100)] ) def teardown(self): self.meta.drop_all() self.engine.dispose() @testing.crashes( "oracle", "cx_oracle 6 doesn't allow a close like this due to open cursors", ) @testing.fails_if( ["+mysqlconnector", "+mysqldb", "+cymysql", "+pymysql", "+pg8000"], "Buffers the result set and doesn't check for connection close", ) def test_invalidate_on_results(self): conn = self.engine.connect() result = conn.execute("select * from sometable") for x in range(20): result.fetchone() self.engine.test_shutdown() _assert_invalidated(result.fetchone) assert conn.invalidated
py
1a4da87cc03ced70a2ba4704b8d055df2b65e0f5
# pylint: disable=C,R,W from datetime import datetime, timedelta import inspect import logging import os import re import time import traceback from urllib import parse from flask import ( flash, g, Markup, redirect, render_template, request, Response, url_for, ) from flask_appbuilder import expose, SimpleFormView from flask_appbuilder.actions import action from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_appbuilder.security.decorators import has_access, has_access_api from flask_appbuilder.security.views import AuthDBView from flask_login import login_user from flask_babel import gettext as __ from flask_babel import lazy_gettext as _ import pandas as pd import simplejson as json import sqlalchemy as sqla from sqlalchemy import and_, create_engine, MetaData, or_, update from sqlalchemy.engine.url import make_url from sqlalchemy.exc import IntegrityError from unidecode import unidecode from werkzeug.routing import BaseConverter from werkzeug.utils import secure_filename from superset import ( app, appbuilder, cache, dashboard_import_export_util, db, results_backend, security_manager, sql_lab, utils, viz, csrf) from superset.connectors.connector_registry import ConnectorRegistry from superset.connectors.sqla.models import AnnotationDatasource, SqlaTable from superset.exceptions import SupersetException from superset.forms import CsvToDatabaseForm from superset.jinja_context import get_template_processor from superset.legacy import cast_form_data, update_time_range import superset.models.core as models from superset.models.sql_lab import Query from superset.models.user_attributes import UserAttribute from superset.sql_parse import SupersetQuery from superset.utils import ( merge_extra_filters, merge_request_params, QueryStatus, ) from .base import ( api, BaseSupersetView, check_ownership, CsvResponse, DeleteMixin, generate_download_headers, get_error_msg, json_error_response, SupersetFilter, SupersetModelView, YamlExportMixin, ) from .utils import bootstrap_user_data config = app.config stats_logger = config.get('STATS_LOGGER') log_this = models.Log.log_this DAR = models.DatasourceAccessRequest ALL_DATASOURCE_ACCESS_ERR = __( 'This endpoint requires the `all_datasource_access` permission') DATASOURCE_MISSING_ERR = __('The datasource seems to have been deleted') ACCESS_REQUEST_MISSING_ERR = __( 'The access requests seem to have been deleted') USER_MISSING_ERR = __('The user seems to have been deleted') FORM_DATA_KEY_BLACKLIST = [] if not config.get('ENABLE_JAVASCRIPT_CONTROLS'): FORM_DATA_KEY_BLACKLIST = [ 'js_tooltip', 'js_onclick_href', 'js_data_mutator', ] def get_database_access_error_msg(database_name): return __('This view requires the database %(name)s or ' '`all_datasource_access` permission', name=database_name) def json_success(json_msg, status=200): return Response(json_msg, status=status, mimetype='application/json') def is_owner(obj, user): """ Check if user is owner of the slice """ return obj and user in obj.owners def check_dbp_user(user, is_shared): if app.config['ENABLE_CUSTOM_ROLE_RESOURCE_SHOW'] and not is_shared and user: for role in user.roles: if role.name.lower().find(app.config['CUSTOM_ROLE_NAME_KEYWORD'].lower()) >= 0: return True return False class SliceFilter(SupersetFilter): def apply(self, query, func): # noqa if security_manager.all_datasource_access(): return query perms = self.get_view_menus('datasource_access') # TODO(bogdan): add `schema_access` support here #if len(perms) > 0 : if check_dbp_user(g.user, app.config['ENABLE_CHART_SHARE_IN_CUSTOM_ROLE']): slice_ids = self.get_current_user_slice_ids() return query.filter(self.model.perm.in_(perms)).filter(self.model.id.in_(slice_ids)) else: return query.filter(self.model.perm.in_(perms)) #else: # return query.filter(self.model.id.in_(slice_ids)) class DashboardFilter(SupersetFilter): """List dashboards for which users have access to at least one slice or are owners""" def apply(self, query, func): # noqa if security_manager.all_datasource_access(): return query Slice = models.Slice # noqa Dash = models.Dashboard # noqa User = security_manager.user_model # TODO(bogdan): add `schema_access` support here datasource_perms = self.get_view_menus('datasource_access') slice_ids_qry = None if check_dbp_user(g.user, app.config['ENABLE_DASHBOARD_SHARE_IN_CUSTOM_ROLE']): slice_ids = self.get_current_user_slice_ids() slice_ids_qry = ( db.session .query(Slice.id) .filter(Slice.perm.in_(datasource_perms)).filter(Slice.id.in_(slice_ids)) ) else: slice_ids_qry = ( db.session .query(Slice.id) .filter(Slice.perm.in_(datasource_perms)) ) owner_ids_qry = ( db.session .query(Dash.id) .join(Dash.owners) .filter(User.id == User.get_user_id()) ) query = query.filter( or_(Dash.id.in_( db.session.query(Dash.id) .distinct() .join(Dash.slices) .filter(Slice.id.in_(slice_ids_qry)), ), Dash.id.in_(owner_ids_qry)), ) return query class DatabaseView(SupersetModelView, DeleteMixin, YamlExportMixin): # noqa datamodel = SQLAInterface(models.Database) list_title = _('List Databases') show_title = _('Show Database') add_title = _('Add Database') edit_title = _('Edit Database') list_columns = [ 'database_name', 'backend', 'allow_run_sync', 'allow_run_async', 'allow_dml', 'allow_csv_upload', 'creator', 'modified'] order_columns = [ 'database_name', 'allow_run_sync', 'allow_run_async', 'allow_dml', 'modified', 'allow_csv_upload', ] add_columns = [ 'database_name', 'sqlalchemy_uri', 'cache_timeout', 'expose_in_sqllab', 'allow_run_sync', 'allow_run_async', 'allow_csv_upload', 'allow_ctas', 'allow_dml', 'force_ctas_schema', 'impersonate_user', 'allow_multi_schema_metadata_fetch', 'extra', ] search_exclude_columns = ( 'password', 'tables', 'created_by', 'changed_by', 'queries', 'saved_queries') edit_columns = add_columns show_columns = [ 'tables', 'cache_timeout', 'extra', 'database_name', 'sqlalchemy_uri', 'perm', 'created_by', 'created_on', 'changed_by', 'changed_on', ] add_template = 'superset/models/database/add.html' edit_template = 'superset/models/database/edit.html' base_order = ('changed_on', 'desc') description_columns = { 'sqlalchemy_uri': utils.markdown( 'Refer to the ' '[SqlAlchemy docs]' '(http://docs.sqlalchemy.org/en/rel_1_0/core/engines.html#' 'database-urls) ' 'for more information on how to structure your URI.', True), 'expose_in_sqllab': _('Expose this DB in SQL Lab'), 'allow_run_sync': _( 'Allow users to run synchronous queries, this is the default ' 'and should work well for queries that can be executed ' 'within a web request scope (<~1 minute)'), 'allow_run_async': _( 'Allow users to run queries, against an async backend. ' 'This assumes that you have a Celery worker setup as well ' 'as a results backend.'), 'allow_ctas': _('Allow CREATE TABLE AS option in SQL Lab'), 'allow_dml': _( 'Allow users to run non-SELECT statements ' '(UPDATE, DELETE, CREATE, ...) ' 'in SQL Lab'), 'force_ctas_schema': _( 'When allowing CREATE TABLE AS option in SQL Lab, ' 'this option forces the table to be created in this schema'), 'extra': utils.markdown( 'JSON string containing extra configuration elements.<br/>' '1. The ``engine_params`` object gets unpacked into the ' '[sqlalchemy.create_engine]' '(http://docs.sqlalchemy.org/en/latest/core/engines.html#' 'sqlalchemy.create_engine) call, while the ``metadata_params`` ' 'gets unpacked into the [sqlalchemy.MetaData]' '(http://docs.sqlalchemy.org/en/rel_1_0/core/metadata.html' '#sqlalchemy.schema.MetaData) call.<br/>' '2. The ``metadata_cache_timeout`` is a cache timeout setting ' 'in seconds for metadata fetch of this database. Specify it as ' '**"metadata_cache_timeout": {"schema_cache_timeout": 600}**. ' 'If unset, cache will not be enabled for the functionality. ' 'A timeout of 0 indicates that the cache never expires.<br/>' '3. The ``schemas_allowed_for_csv_upload`` is a comma separated list ' 'of schemas that CSVs are allowed to upload to. ' 'Specify it as **"schemas_allowed": ["public", "csv_upload"]**. ' 'If database flavor does not support schema or any schema is allowed ' 'to be accessed, just leave the list empty', True), 'impersonate_user': _( 'If Presto, all the queries in SQL Lab are going to be executed as the ' 'currently logged on user who must have permission to run them.<br/>' 'If Hive and hive.server2.enable.doAs is enabled, will run the queries as ' 'service account, but impersonate the currently logged on user ' 'via hive.server2.proxy.user property.'), 'allow_multi_schema_metadata_fetch': _( 'Allow SQL Lab to fetch a list of all tables and all views across ' 'all database schemas. For large data warehouse with thousands of ' 'tables, this can be expensive and put strain on the system.'), 'cache_timeout': _( 'Duration (in seconds) of the caching timeout for charts of this database. ' 'A timeout of 0 indicates that the cache never expires. ' 'Note this defaults to the global timeout if undefined.'), 'allow_csv_upload': _( 'If selected, please set the schemas allowed for csv upload in Extra.'), } label_columns = { 'expose_in_sqllab': _('Expose in SQL Lab'), 'allow_ctas': _('Allow CREATE TABLE AS'), 'allow_dml': _('Allow DML'), 'force_ctas_schema': _('CTAS Schema'), 'database_name': _('Database'), 'creator': _('Creator'), 'changed_on_': _('Last Changed'), 'sqlalchemy_uri': _('SQLAlchemy URI'), 'cache_timeout': _('Chart Cache Timeout'), 'extra': _('Extra'), 'allow_run_sync': _('Allow Run Sync'), 'allow_run_async': _('Allow Run Async'), 'impersonate_user': _('Impersonate the logged on user'), 'allow_csv_upload': _('Allow Csv Upload'), 'modified': _('Modified'), 'allow_multi_schema_metadata_fetch': _('Allow Multi Schema Metadata Fetch'), 'backend': _('Backend'), } def pre_add(self, db): self.check_extra(db) db.set_sqlalchemy_uri(db.sqlalchemy_uri) security_manager.merge_perm('database_access', db.perm) # adding a new database we always want to force refresh schema list for schema in db.all_schema_names(force_refresh=True): security_manager.merge_perm( 'schema_access', security_manager.get_schema_perm(db, schema)) def pre_update(self, db): self.pre_add(db) def pre_delete(self, obj): if obj.tables: raise SupersetException(Markup( 'Cannot delete a database that has tables attached. ' "Here's the list of associated tables: " + ', '.join('{}'.format(o) for o in obj.tables))) def _delete(self, pk): DeleteMixin._delete(self, pk) def check_extra(self, db): # this will check whether json.loads(extra) can succeed try: extra = db.get_extra() except Exception as e: raise Exception('Extra field cannot be decoded by JSON. {}'.format(str(e))) # this will check whether 'metadata_params' is configured correctly metadata_signature = inspect.signature(MetaData) for key in extra.get('metadata_params', {}): if key not in metadata_signature.parameters: raise Exception('The metadata_params in Extra field ' 'is not configured correctly. The key ' '{} is invalid.'.format(key)) appbuilder.add_link( 'Import Dashboards', label=__('Import Dashboards'), href='/superset/import_dashboards', icon='fa-cloud-upload', category='Manage', category_label=__('Manage'), category_icon='fa-wrench') appbuilder.add_view( DatabaseView, 'Databases', label=__('Databases'), icon='fa-database', category='Sources', category_label=__('Sources'), category_icon='fa-database') class DatabaseAsync(DatabaseView): list_columns = [ 'id', 'database_name', 'expose_in_sqllab', 'allow_ctas', 'force_ctas_schema', 'allow_run_async', 'allow_run_sync', 'allow_dml', 'allow_multi_schema_metadata_fetch', 'allow_csv_upload', 'allows_subquery', ] appbuilder.add_view_no_menu(DatabaseAsync) class CsvToDatabaseView(SimpleFormView): form = CsvToDatabaseForm form_template = 'superset/form_view/csv_to_database_view/edit.html' form_title = _('CSV to Database configuration') add_columns = ['database', 'schema', 'table_name'] def form_get(self, form): form.sep.data = ',' form.header.data = 0 form.mangle_dupe_cols.data = True form.skipinitialspace.data = False form.skip_blank_lines.data = True form.infer_datetime_format.data = True form.decimal.data = '.' form.if_exists.data = 'fail' def form_post(self, form): database = form.con.data schema_name = form.schema.data or '' if not self.is_schema_allowed(database, schema_name): message = _('Database "{0}" Schema "{1}" is not allowed for csv uploads. ' 'Please contact Superset Admin'.format(database.database_name, schema_name)) flash(message, 'danger') return redirect('/csvtodatabaseview/form') csv_file = form.csv_file.data form.csv_file.data.filename = secure_filename(form.csv_file.data.filename) csv_filename = form.csv_file.data.filename path = os.path.join(config['UPLOAD_FOLDER'], csv_filename) try: utils.ensure_path_exists(config['UPLOAD_FOLDER']) csv_file.save(path) if csv_filename.lower().endswith("csv"): table = SqlaTable(table_name=form.name.data) table.database = form.data.get('con') table.database_id = table.database.id table.database.db_engine_spec.create_table_from_csv(form, table) elif csv_filename.lower().endswith("xls") or csv_filename.lower().endswith("xlsx"): table = SqlaTable(table_name=form.name.data) table.database = form.data.get('con') table.database_id = table.database.id table.database.db_engine_spec.create_table_from_excel(form, path) except Exception as e: try: os.remove(path) except OSError: pass message = 'Table name {} already exists. Please pick another'.format( form.name.data) if isinstance(e, IntegrityError) else e flash( message, 'danger') return redirect('/csvtodatabaseview/form') os.remove(path) # Go back to welcome page / splash screen db_name = table.database.database_name message = _('CSV file "{0}" uploaded to table "{1}" in ' 'database "{2}"'.format(csv_filename, form.name.data, db_name)) flash(message, 'info') return redirect('/tablemodelview/list/') def is_schema_allowed(self, database, schema): if not database.allow_csv_upload: return False schemas = database.get_schema_access_for_csv_upload() if schemas: return schema in schemas return (security_manager.database_access(database) or security_manager.all_datasource_access()) appbuilder.add_view_no_menu(CsvToDatabaseView) class DatabaseTablesAsync(DatabaseView): list_columns = ['id', 'all_table_names', 'all_schema_names'] appbuilder.add_view_no_menu(DatabaseTablesAsync) if config.get('ENABLE_ACCESS_REQUEST'): class AccessRequestsModelView(SupersetModelView, DeleteMixin): datamodel = SQLAInterface(DAR) list_columns = [ 'username', 'user_roles', 'datasource_link', 'roles_with_datasource', 'created_on'] order_columns = ['created_on'] base_order = ('changed_on', 'desc') label_columns = { 'username': _('User'), 'user_roles': _('User Roles'), 'database': _('Database URL'), 'datasource_link': _('Datasource'), 'roles_with_datasource': _('Roles to grant'), 'created_on': _('Created On'), } appbuilder.add_view( AccessRequestsModelView, 'Access requests', label=__('Access requests'), category='Security', category_label=__('Security'), icon='fa-table') class SliceModelView(SupersetModelView, DeleteMixin): # noqa route_base = '/chart' datamodel = SQLAInterface(models.Slice) list_title = _('List Charts') show_title = _('Show Chart') add_title = _('Add Chart') edit_title = _('Edit Chart') can_add = False label_columns = { 'datasource_link': _('Datasource'), } search_columns = ( 'slice_name', 'description', 'viz_type', 'datasource_name', 'owners', ) list_columns = [ 'slice_link', 'viz_type', 'datasource_link', 'creator', 'modified'] order_columns = ['viz_type', 'datasource_link', 'modified'] edit_columns = [ 'slice_name', 'description', 'viz_type', 'owners', 'dashboards', 'params', 'cache_timeout'] base_order = ('changed_on', 'desc') description_columns = { 'description': Markup( 'The content here can be displayed as widget headers in the ' 'dashboard view. Supports ' '<a href="https://daringfireball.net/projects/markdown/"">' 'markdown</a>'), 'params': _( 'These parameters are generated dynamically when clicking ' 'the save or overwrite button in the explore view. This JSON ' 'object is exposed here for reference and for power users who may ' 'want to alter specific parameters.', ), 'cache_timeout': _( 'Duration (in seconds) of the caching timeout for this chart. ' 'Note this defaults to the datasource/table timeout if undefined.'), } base_filters = [['id', SliceFilter, lambda: []]] label_columns = { 'cache_timeout': _('Cache Timeout'), 'creator': _('Creator'), 'dashboards': _('Dashboards'), 'datasource_link': _('Datasource'), 'description': _('Description'), 'modified': _('Last Modified'), 'owners': _('Owners'), 'params': _('Parameters'), 'slice_link': _('Chart'), 'slice_name': _('Name'), 'table': _('Table'), 'viz_type': _('Visualization Type'), } def pre_add(self, obj): utils.validate_json(obj.params) def pre_update(self, obj): utils.validate_json(obj.params) check_ownership(obj) def pre_delete(self, obj): check_ownership(obj) @expose('/add', methods=['GET', 'POST']) @has_access def add(self): datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ {'value': str(d.id) + '__' + d.type, 'label': repr(d)} for d in datasources ] return self.render_template( 'superset/add_slice.html', bootstrap_data=json.dumps({ 'datasources': sorted(datasources, key=lambda d: d['label']), }), ) appbuilder.add_view( SliceModelView, 'Charts', label=__('Charts'), icon='fa-bar-chart', category='', category_icon='') class SliceAsync(SliceModelView): # noqa route_base = '/sliceasync' list_columns = [ 'id', 'slice_link', 'viz_type', 'slice_name', 'creator', 'modified', 'icons'] label_columns = { 'icons': ' ', 'slice_link': _('Chart'), } appbuilder.add_view_no_menu(SliceAsync) class SliceAddView(SliceModelView): # noqa route_base = '/sliceaddview' list_columns = [ 'id', 'slice_name', 'slice_url', 'edit_url', 'viz_type', 'params', 'description', 'description_markeddown', 'datasource_id', 'datasource_type', 'datasource_name_text', 'datasource_link', 'owners', 'modified', 'changed_on'] appbuilder.add_view_no_menu(SliceAddView) class DashboardModelView(SupersetModelView, DeleteMixin): # noqa route_base = '/dashboard' datamodel = SQLAInterface(models.Dashboard) list_title = _('List Dashboards') show_title = _('Show Dashboard') add_title = _('Add Dashboard') edit_title = _('Edit Dashboard') list_columns = ['dashboard_link', 'creator', 'modified'] order_columns = ['modified'] edit_columns = [ 'dashboard_title', 'slug', 'owners', 'position_json', 'css', 'json_metadata'] show_columns = edit_columns + ['table_names', 'slices'] search_columns = ('dashboard_title', 'slug', 'owners') add_columns = edit_columns base_order = ('changed_on', 'desc') description_columns = { 'position_json': _( 'This json object describes the positioning of the widgets in ' 'the dashboard. It is dynamically generated when adjusting ' 'the widgets size and positions by using drag & drop in ' 'the dashboard view'), 'css': _( 'The css for individual dashboards can be altered here, or ' 'in the dashboard view where changes are immediately ' 'visible'), 'slug': _('To get a readable URL for your dashboard'), 'json_metadata': _( 'This JSON object is generated dynamically when clicking ' 'the save or overwrite button in the dashboard view. It ' 'is exposed here for reference and for power users who may ' 'want to alter specific parameters.'), 'owners': _('Owners is a list of users who can alter the dashboard.'), } base_filters = [['slice', DashboardFilter, lambda: []]] label_columns = { 'dashboard_link': _('Dashboard'), 'dashboard_title': _('Title'), 'slug': _('Slug'), 'slices': _('Charts'), 'owners': _('Owners'), 'creator': _('Creator'), 'modified': _('Modified'), 'position_json': _('Position JSON'), 'css': _('CSS'), 'json_metadata': _('JSON Metadata'), 'table_names': _('Underlying Tables'), } def pre_add(self, obj): obj.slug = obj.slug.strip() or None if obj.slug: obj.slug = obj.slug.replace(' ', '-') obj.slug = re.sub(r'[^\w\-]+', '', obj.slug) if g.user not in obj.owners: obj.owners.append(g.user) utils.validate_json(obj.json_metadata) utils.validate_json(obj.position_json) owners = [o for o in obj.owners] for slc in obj.slices: slc.owners = list(set(owners) | set(slc.owners)) def pre_update(self, obj): check_ownership(obj) self.pre_add(obj) def pre_delete(self, obj): check_ownership(obj) @action('mulexport', __('Export'), __('Export dashboards?'), 'fa-database') def mulexport(self, items): if not isinstance(items, list): items = [items] ids = ''.join('&id={}'.format(d.id) for d in items) return redirect( '/dashboard/export_dashboards_form?{}'.format(ids[1:])) @expose('/export_dashboards_form') def download_dashboards(self): if request.args.get('action') == 'go': ids = request.args.getlist('id') return Response( models.Dashboard.export_dashboards(ids), headers=generate_download_headers('json'), mimetype='application/text') return self.render_template( 'superset/export_dashboards.html', dashboards_url='/dashboard/list', ) appbuilder.add_view( DashboardModelView, 'Dashboards', label=__('Dashboards'), icon='fa-dashboard', category='', category_icon='') class DashboardModelViewAsync(DashboardModelView): # noqa route_base = '/dashboardasync' list_columns = [ 'id', 'dashboard_link', 'creator', 'modified', 'dashboard_title', 'changed_on', 'url', 'changed_by_name', ] label_columns = { 'dashboard_link': _('Dashboard'), 'dashboard_title': _('Title'), 'creator': _('Creator'), 'modified': _('Modified'), } appbuilder.add_view_no_menu(DashboardModelViewAsync) class DashboardAddView(DashboardModelView): # noqa route_base = '/dashboardaddview' list_columns = [ 'id', 'dashboard_link', 'creator', 'modified', 'dashboard_title', 'changed_on', 'url', 'changed_by_name', ] show_columns = list(set(DashboardModelView.edit_columns + list_columns)) appbuilder.add_view_no_menu(DashboardAddView) class LogModelView(SupersetModelView): datamodel = SQLAInterface(models.Log) list_title = _('List Log') show_title = _('Show Log') add_title = _('Add Log') edit_title = _('Edit Log') list_columns = ('user', 'action', 'local_dttm') edit_columns = ('user', 'action', 'dttm', 'json') base_order = ('dttm', 'desc') label_columns = { 'user': _('User'), 'action': _('Action'), 'local_dttm': _('Time'), 'json': _('JSON'), } appbuilder.add_view( LogModelView, 'Action Log', label=__('Action Log'), category='Security', category_label=__('Security'), icon='fa-list-ol') @app.route('/health') def health(): return 'OK' @app.route('/healthcheck') def healthcheck(): return 'OK' @app.route('/ping') def ping(): return 'OK' @csrf.exempt @app.route('/add_user_from_dbp', methods=['POST']) def add_user_from_dbp(): raw_user_info = request.data user_info = json.loads(raw_user_info, encoding='utf-8') try: username = user_info.get('username', None) first_name = user_info.get('first_name', None) last_name = user_info.get('last_name', None) email = user_info.get('email', None) password = user_info.get('password', None) user_role = user_info.get('role', config.get('CUSTOM_ROLE_NAME_KEYWORD')) if not username and not email: return json_error_response( 'username and email are missing.') user = security_manager.find_user(username, email) if user: return json_error_response( 'User with name(%s) or email(%s) exist.' % (username, email)) role = security_manager.find_role(user_role) if not role: return json_error_response( 'Role with name(%s) not exist.' % (user_role,)) user = security_manager.add_user(username=username, first_name=first_name, last_name=last_name, email=email, role=role, password=password) resp = json_success(json.dumps( {'user_id': user.id}, default=utils.json_int_dttm_ser, ignore_nan=True), status=200) return resp except Exception: return json_error_response( 'Error in call add_user_from_dbp.' 'The error message returned was:\n{}').format(traceback.format_exc()) class KV(BaseSupersetView): """Used for storing and retrieving key value pairs""" @log_this @expose('/store/', methods=['POST']) def store(self): try: value = request.form.get('data') obj = models.KeyValue(value=value) db.session.add(obj) db.session.commit() except Exception as e: return json_error_response(e) return Response( json.dumps({'id': obj.id}), status=200) @log_this @expose('/<key_id>/', methods=['GET']) def get_value(self, key_id): kv = None try: kv = db.session.query(models.KeyValue).filter_by(id=key_id).one() except Exception as e: return json_error_response(e) return Response(kv.value, status=200) appbuilder.add_view_no_menu(KV) class R(BaseSupersetView): """used for short urls""" @log_this @expose('/<url_id>') def index(self, url_id): url = db.session.query(models.Url).filter_by(id=url_id).first() if url: return redirect('/' + url.url) else: flash('URL to nowhere...', 'danger') return redirect('/') @log_this @expose('/shortner/', methods=['POST', 'GET']) def shortner(self): url = request.form.get('data') obj = models.Url(url=url) db.session.add(obj) db.session.commit() return Response( '{scheme}://{request.headers[Host]}/r/{obj.id}'.format( scheme=request.scheme, request=request, obj=obj), mimetype='text/plain') @expose('/msg/') def msg(self): """Redirects to specified url while flash a message""" flash(Markup(request.args.get('msg')), 'info') return redirect(request.args.get('url')) appbuilder.add_view_no_menu(R) class Superset(BaseSupersetView): """The base views for Superset!""" @has_access_api @expose('/datasources/') def datasources(self): datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [o.short_data for o in datasources] datasources = sorted(datasources, key=lambda o: o['name']) return self.json_response(datasources) @has_access_api @expose('/override_role_permissions/', methods=['POST']) def override_role_permissions(self): """Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] } """ data = request.get_json(force=True) role_name = data['role_name'] databases = data['database'] db_ds_names = set() for dbs in databases: for schema in dbs['schema']: for ds_name in schema['datasources']: fullname = utils.get_datasource_full_name( dbs['name'], ds_name, schema=schema['name']) db_ds_names.add(fullname) existing_datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ d for d in existing_datasources if d.full_name in db_ds_names] role = security_manager.find_role(role_name) # remove all permissions role.permissions = [] # grant permissions to the list of datasources granted_perms = [] for datasource in datasources: view_menu_perm = security_manager.find_permission_view_menu( view_menu_name=datasource.perm, permission_name='datasource_access') # prevent creating empty permissions if view_menu_perm and view_menu_perm.view_menu: role.permissions.append(view_menu_perm) granted_perms.append(view_menu_perm.view_menu.name) db.session.commit() return self.json_response({ 'granted': granted_perms, 'requested': list(db_ds_names), }, status=201) @log_this @has_access @expose('/request_access/') def request_access(self): datasources = set() dashboard_id = request.args.get('dashboard_id') if dashboard_id: dash = ( db.session.query(models.Dashboard) .filter_by(id=int(dashboard_id)) .one() ) datasources |= dash.datasources datasource_id = request.args.get('datasource_id') datasource_type = request.args.get('datasource_type') if datasource_id: ds_class = ConnectorRegistry.sources.get(datasource_type) datasource = ( db.session.query(ds_class) .filter_by(id=int(datasource_id)) .one() ) datasources.add(datasource) has_access = all( ( datasource and security_manager.datasource_access(datasource) for datasource in datasources )) if has_access: return redirect('/superset/dashboard/{}'.format(dashboard_id)) if request.args.get('action') == 'go': for datasource in datasources: access_request = DAR( datasource_id=datasource.id, datasource_type=datasource.type) db.session.add(access_request) db.session.commit() flash(__('Access was requested'), 'info') return redirect('/') return self.render_template( 'superset/request_access.html', datasources=datasources, datasource_names=', '.join([o.name for o in datasources]), ) @log_this @has_access @expose('/approve') def approve(self): def clean_fulfilled_requests(session): for r in session.query(DAR).all(): datasource = ConnectorRegistry.get_datasource( r.datasource_type, r.datasource_id, session) user = security_manager.get_user_by_id(r.created_by_fk) if not datasource or \ security_manager.datasource_access(datasource, user): # datasource does not exist anymore session.delete(r) session.commit() datasource_type = request.args.get('datasource_type') datasource_id = request.args.get('datasource_id') created_by_username = request.args.get('created_by') role_to_grant = request.args.get('role_to_grant') role_to_extend = request.args.get('role_to_extend') session = db.session datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, session) if not datasource: flash(DATASOURCE_MISSING_ERR, 'alert') return json_error_response(DATASOURCE_MISSING_ERR) requested_by = security_manager.find_user(username=created_by_username) if not requested_by: flash(USER_MISSING_ERR, 'alert') return json_error_response(USER_MISSING_ERR) requests = ( session.query(DAR) .filter( DAR.datasource_id == datasource_id, DAR.datasource_type == datasource_type, DAR.created_by_fk == requested_by.id) .all() ) if not requests: flash(ACCESS_REQUEST_MISSING_ERR, 'alert') return json_error_response(ACCESS_REQUEST_MISSING_ERR) # check if you can approve if security_manager.all_datasource_access() or g.user.id == datasource.owner_id: # can by done by admin only if role_to_grant: role = security_manager.find_role(role_to_grant) requested_by.roles.append(role) msg = __( '%(user)s was granted the role %(role)s that gives access ' 'to the %(datasource)s', user=requested_by.username, role=role_to_grant, datasource=datasource.full_name) utils.notify_user_about_perm_udate( g.user, requested_by, role, datasource, 'email/role_granted.txt', app.config) flash(msg, 'info') if role_to_extend: perm_view = security_manager.find_permission_view_menu( 'email/datasource_access', datasource.perm) role = security_manager.find_role(role_to_extend) security_manager.add_permission_role(role, perm_view) msg = __('Role %(r)s was extended to provide the access to ' 'the datasource %(ds)s', r=role_to_extend, ds=datasource.full_name) utils.notify_user_about_perm_udate( g.user, requested_by, role, datasource, 'email/role_extended.txt', app.config) flash(msg, 'info') clean_fulfilled_requests(session) else: flash(__('You have no permission to approve this request'), 'danger') return redirect('/accessrequestsmodelview/list/') for r in requests: session.delete(r) session.commit() return redirect('/accessrequestsmodelview/list/') def get_form_data(self, slice_id=None, use_slice_data=False): form_data = {} post_data = request.form.get('form_data') request_args_data = request.args.get('form_data') # Supporting POST if post_data: form_data.update(json.loads(post_data)) # request params can overwrite post body if request_args_data: form_data.update(json.loads(request_args_data)) url_id = request.args.get('r') if url_id: saved_url = db.session.query(models.Url).filter_by(id=url_id).first() if saved_url: url_str = parse.unquote_plus( saved_url.url.split('?')[1][10:], encoding='utf-8', errors=None) url_form_data = json.loads(url_str) # allow form_date in request override saved url url_form_data.update(form_data) form_data = url_form_data if request.args.get('viz_type'): # Converting old URLs form_data = cast_form_data(form_data) form_data = { k: v for k, v in form_data.items() if k not in FORM_DATA_KEY_BLACKLIST } # When a slice_id is present, load from DB and override # the form_data from the DB with the other form_data provided slice_id = form_data.get('slice_id') or slice_id slc = None # Check if form data only contains slice_id contains_only_slc_id = not any(key != 'slice_id' for key in form_data) # Include the slice_form_data if request from explore or slice calls # or if form_data only contains slice_id if slice_id and (use_slice_data or contains_only_slc_id): slc = db.session.query(models.Slice).filter_by(id=slice_id).first() slice_form_data = slc.form_data.copy() # allow form_data in request override slice from_data slice_form_data.update(form_data) form_data = slice_form_data update_time_range(form_data) return form_data, slc def get_viz( self, slice_id=None, form_data=None, datasource_type=None, datasource_id=None, force=False, ): if slice_id: slc = ( db.session.query(models.Slice) .filter_by(id=slice_id) .one() ) return slc.get_viz() else: viz_type = form_data.get('viz_type', 'table') datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) viz_obj = viz.viz_types[viz_type]( datasource, form_data=form_data, force=force, ) return viz_obj @has_access @expose('/slice/<slice_id>/') def slice(self, slice_id): form_data, slc = self.get_form_data(slice_id, use_slice_data=True) endpoint = '/superset/explore/?form_data={}'.format( parse.quote(json.dumps(form_data)), ) if request.args.get('standalone') == 'true': endpoint += '&standalone=true' return redirect(endpoint) def get_query_string_response(self, viz_obj): query = None try: query_obj = viz_obj.query_obj() if query_obj: query = viz_obj.datasource.get_query_str(query_obj) except Exception as e: logging.exception(e) return json_error_response(e) if query_obj and query_obj['prequeries']: query_obj['prequeries'].append(query) query = ';\n\n'.join(query_obj['prequeries']) if query: query += ';' else: query = 'No query.' return self.json_response({ 'query': query, 'language': viz_obj.datasource.query_language, }) def get_raw_results(self, viz_obj): return self.json_response({ 'data': viz_obj.get_df().to_dict('records'), }) def get_samples(self, viz_obj): return self.json_response({ 'data': viz_obj.get_samples(), }) def generate_json( self, datasource_type, datasource_id, form_data, csv=False, query=False, force=False, results=False, samples=False, ): try: viz_obj = self.get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=force, ) except Exception as e: logging.exception(e) return json_error_response( utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) if not security_manager.datasource_access(viz_obj.datasource, g.user): return json_error_response( security_manager.get_datasource_access_error_msg(viz_obj.datasource), status=404, link=security_manager.get_datasource_access_link(viz_obj.datasource)) if csv: return CsvResponse( viz_obj.get_csv(), status=200, headers=generate_download_headers('csv'), mimetype='application/csv') if query: return self.get_query_string_response(viz_obj) if results: return self.get_raw_results(viz_obj) if samples: return self.get_samples(viz_obj) try: payload = viz_obj.get_payload() except SupersetException as se: logging.exception(se) return json_error_response(utils.error_msg_from_exception(se), status=se.status) except Exception as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e)) status = 200 if ( payload.get('status') == QueryStatus.FAILED or payload.get('error') is not None ): status = 400 return json_success(viz_obj.json_dumps(payload), status=status) @log_this @has_access_api @expose('/slice_json/<slice_id>') def slice_json(self, slice_id): try: form_data, slc = self.get_form_data(slice_id, use_slice_data=True) datasource_type = slc.datasource.type datasource_id = slc.datasource.id except Exception as e: return json_error_response( utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) return self.generate_json(datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data) @log_this @has_access_api @expose('/annotation_json/<layer_id>') def annotation_json(self, layer_id): form_data = self.get_form_data()[0] form_data['layer_id'] = layer_id form_data['filters'] = [{'col': 'layer_id', 'op': '==', 'val': layer_id}] datasource = AnnotationDatasource() viz_obj = viz.viz_types['table']( datasource, form_data=form_data, force=False, ) try: payload = viz_obj.get_payload() except Exception as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e)) status = 200 if payload.get('status') == QueryStatus.FAILED: status = 400 return json_success(viz_obj.json_dumps(payload), status=status) @log_this @has_access_api @expose('/explore_json/<datasource_type>/<datasource_id>/', methods=['GET', 'POST']) @expose('/explore_json/', methods=['GET', 'POST']) def explore_json(self, datasource_type=None, datasource_id=None): """Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape""" csv = request.args.get('csv') == 'true' query = request.args.get('query') == 'true' results = request.args.get('results') == 'true' samples = request.args.get('samples') == 'true' force = request.args.get('force') == 'true' try: form_data = self.get_form_data()[0] datasource_id, datasource_type = self.datasource_info( datasource_id, datasource_type, form_data) except Exception as e: logging.exception(e) return json_error_response( utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) return self.generate_json( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, csv=csv, query=query, results=results, force=force, samples=samples, ) @log_this @has_access @expose('/import_dashboards', methods=['GET', 'POST']) def import_dashboards(self): """Overrides the dashboards using json instances from the file.""" f = request.files.get('file') if request.method == 'POST' and f: dashboard_import_export_util.import_dashboards(db.session, f.stream) return redirect('/dashboard/list/') return self.render_template('superset/import_dashboards.html') @log_this @has_access @expose('/explorev2/<datasource_type>/<datasource_id>/') def explorev2(self, datasource_type, datasource_id): """Deprecated endpoint, here for backward compatibility of urls""" return redirect(url_for( 'Superset.explore', datasource_type=datasource_type, datasource_id=datasource_id, **request.args)) @staticmethod def datasource_info(datasource_id, datasource_type, form_data): """Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code""" datasource = form_data.get('datasource', '') if '__' in datasource: datasource_id, datasource_type = datasource.split('__') # The case where the datasource has been deleted datasource_id = None if datasource_id == 'None' else datasource_id if not datasource_id: raise Exception( 'The datasource associated with this chart no longer exists') datasource_id = int(datasource_id) return datasource_id, datasource_type @log_this @has_access @expose('/explore/<datasource_type>/<datasource_id>/', methods=['GET', 'POST']) @expose('/explore/', methods=['GET', 'POST']) def explore(self, datasource_type=None, datasource_id=None): user_id = g.user.get_id() if g.user else None form_data, slc = self.get_form_data(use_slice_data=True) datasource_id, datasource_type = self.datasource_info( datasource_id, datasource_type, form_data) error_redirect = '/chart/list/' datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: flash(DATASOURCE_MISSING_ERR, 'danger') return redirect(error_redirect) if config.get('ENABLE_ACCESS_REQUEST') and ( not security_manager.datasource_access(datasource) ): flash( __(security_manager.get_datasource_access_error_msg(datasource)), 'danger') return redirect( 'superset/request_access/?' 'datasource_type={datasource_type}&' 'datasource_id={datasource_id}&' ''.format(**locals())) viz_type = form_data.get('viz_type') if not viz_type and datasource.default_endpoint: return redirect(datasource.default_endpoint) # slc perms slice_add_perm = security_manager.can_access('can_add', 'SliceModelView') slice_overwrite_perm = is_owner(slc, g.user) slice_download_perm = security_manager.can_access( 'can_download', 'SliceModelView') form_data['datasource'] = str(datasource_id) + '__' + datasource_type # On explore, merge legacy and extra filters into the form data utils.convert_legacy_filters_into_adhoc(form_data) merge_extra_filters(form_data) # merge request url params if request.method == 'GET': merge_request_params(form_data, request.args) # handle save or overwrite action = request.args.get('action') if action == 'overwrite' and not slice_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('chart'), status=400) if action == 'saveas' and not slice_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('chart'), status=400) if action in ('saveas', 'overwrite'): return self.save_or_overwrite_slice( request.args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource.name) standalone = request.args.get('standalone') == 'true' bootstrap_data = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': slice_overwrite_perm, 'datasource': datasource.data, 'form_data': form_data, 'datasource_id': datasource_id, 'datasource_type': datasource_type, 'slice': slc.data if slc else None, 'standalone': standalone, 'user_id': user_id, 'user_name': g.user.username, 'forced_height': request.args.get('height'), 'common': self.common_bootsrap_payload(), } table_name = datasource.table_name \ if datasource_type == 'table' \ else datasource.datasource_name if slc: title = slc.slice_name else: title = _('Explore - %(table)s', table=table_name) return self.render_template( 'superset/basic.html', bootstrap_data=json.dumps(bootstrap_data), entry='explore', title=title, standalone_mode=standalone) @api @has_access_api @expose('/filter/<datasource_type>/<datasource_id>/<column>/') def filter(self, datasource_type, datasource_id, column): """ Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return: """ # TODO: Cache endpoint by user, datasource and column datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) if not security_manager.datasource_access(datasource): return json_error_response( security_manager.get_datasource_access_error_msg(datasource)) payload = json.dumps( datasource.values_for_column( column, config.get('FILTER_SELECT_ROW_LIMIT', 10000), ), default=utils.json_int_dttm_ser) return json_success(payload) def save_or_overwrite_slice( self, args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource_name): """Save or overwrite a slice""" slice_name = args.get('slice_name') action = args.get('action') form_data, _ = self.get_form_data() if action in ('saveas'): if 'slice_id' in form_data: form_data.pop('slice_id') # don't save old slice_id slc = models.Slice(owners=[g.user] if g.user else []) slc.params = json.dumps(form_data) slc.datasource_name = datasource_name slc.viz_type = form_data['viz_type'] slc.datasource_type = datasource_type slc.datasource_id = datasource_id slc.slice_name = slice_name if action in ('saveas') and slice_add_perm: self.save_slice(slc) elif action == 'overwrite' and slice_overwrite_perm: self.overwrite_slice(slc) # Adding slice to a dashboard if requested dash = None if request.args.get('add_to_dash') == 'existing': dash = ( db.session.query(models.Dashboard) .filter_by(id=int(request.args.get('save_to_dashboard_id'))) .one() ) # check edit dashboard permissions dash_overwrite_perm = check_ownership(dash, raise_if_false=False) if not dash_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('dashboard'), status=400) flash( 'Slice [{}] was added to dashboard [{}]'.format( slc.slice_name, dash.dashboard_title), 'info') elif request.args.get('add_to_dash') == 'new': # check create dashboard permissions dash_add_perm = security_manager.can_access('can_add', 'DashboardModelView') if not dash_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('dashboard'), status=400) dash = models.Dashboard( dashboard_title=request.args.get('new_dashboard_name'), owners=[g.user] if g.user else []) flash( 'Dashboard [{}] just got created and slice [{}] was added ' 'to it'.format( dash.dashboard_title, slc.slice_name), 'info') if dash and slc not in dash.slices: dash.slices.append(slc) db.session.commit() response = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': is_owner(slc, g.user), 'form_data': slc.form_data, 'slice': slc.data, } if request.args.get('goto_dash') == 'true': response.update({'dashboard': dash.url}) return json_success(json.dumps(response)) def save_slice(self, slc): session = db.session() msg = _('Chart [{}] has been saved').format(slc.slice_name) session.add(slc) session.commit() flash(msg, 'info') def overwrite_slice(self, slc): session = db.session() session.merge(slc) session.commit() msg = _('Chart [{}] has been overwritten').format(slc.slice_name) flash(msg, 'info') @api @has_access_api @expose('/checkbox/<model_view>/<id_>/<attr>/<value>', methods=['GET']) def checkbox(self, model_view, id_, attr, value): """endpoint for checking/unchecking any boolean in a sqla model""" modelview_to_model = { '{}ColumnInlineView'.format(name.capitalize()): source.column_class for name, source in ConnectorRegistry.sources.items() } model = modelview_to_model[model_view] col = db.session.query(model).filter_by(id=id_).first() checked = value == 'true' if col: setattr(col, attr, checked) if checked: metrics = col.get_metrics().values() col.datasource.add_missing_metrics(metrics) db.session.commit() return json_success('OK') @api @has_access_api @expose('/schemas/<db_id>/') @expose('/schemas/<db_id>/<force_refresh>/') def schemas(self, db_id, force_refresh='true'): db_id = int(db_id) force_refresh = force_refresh.lower() == 'true' database = ( db.session .query(models.Database) .filter_by(id=db_id) .one() ) schemas = database.all_schema_names(force_refresh=force_refresh) schemas = security_manager.schemas_accessible_by_user(database, schemas) return Response( json.dumps({'schemas': schemas}), mimetype='application/json') @api @has_access_api @expose('/tables/<db_id>/<schema>/<substr>/') def tables(self, db_id, schema, substr): """Endpoint to fetch the list of tables for given database""" db_id = int(db_id) schema = utils.js_string_to_python(schema) substr = utils.js_string_to_python(substr) database = db.session.query(models.Database).filter_by(id=db_id).one() table_names = security_manager.accessible_by_user( database, database.all_table_names(schema), schema) view_names = security_manager.accessible_by_user( database, database.all_view_names(schema), schema) if substr: table_names = [tn for tn in table_names if substr in tn] view_names = [vn for vn in view_names if substr in vn] max_items = config.get('MAX_TABLE_NAMES') or len(table_names) total_items = len(table_names) + len(view_names) max_tables = len(table_names) max_views = len(view_names) if total_items and substr: max_tables = max_items * len(table_names) // total_items max_views = max_items * len(view_names) // total_items table_options = [{'value': tn, 'label': tn} for tn in table_names[:max_tables]] table_options.extend([{'value': vn, 'label': '[view] {}'.format(vn)} for vn in view_names[:max_views]]) payload = { 'tableLength': len(table_names) + len(view_names), 'options': table_options, } return json_success(json.dumps(payload)) @api @has_access_api @expose('/copy_dash/<dashboard_id>/', methods=['GET', 'POST']) def copy_dash(self, dashboard_id): """Copy dashboard""" session = db.session() data = json.loads(request.form.get('data')) dash = models.Dashboard() original_dash = ( session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) dash.owners = [g.user] if g.user else [] dash.dashboard_title = data['dashboard_title'] if data['duplicate_slices']: # Duplicating slices as well, mapping old ids to new ones old_to_new_sliceids = {} for slc in original_dash.slices: new_slice = slc.clone() new_slice.owners = [g.user] if g.user else [] session.add(new_slice) session.flush() new_slice.dashboards.append(dash) old_to_new_sliceids['{}'.format(slc.id)] = \ '{}'.format(new_slice.id) # update chartId of layout entities # in v2_dash positions json data, chartId should be integer, # while in older version slice_id is string type for value in data['positions'].values(): if ( isinstance(value, dict) and value.get('meta') and value.get('meta').get('chartId') ): old_id = '{}'.format(value.get('meta').get('chartId')) new_id = int(old_to_new_sliceids[old_id]) value['meta']['chartId'] = new_id else: dash.slices = original_dash.slices dash.params = original_dash.params self._set_dash_metadata(dash, data) session.add(dash) session.commit() dash_json = json.dumps(dash.data) session.close() return json_success(dash_json) @api @has_access_api @expose('/save_dash/<dashboard_id>/', methods=['GET', 'POST']) def save_dash(self, dashboard_id): """Save a dashboard's metadata""" session = db.session() dash = (session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) data = json.loads(request.form.get('data')) self._set_dash_metadata(dash, data) session.merge(dash) session.commit() session.close() return 'SUCCESS' @staticmethod def _set_dash_metadata(dashboard, data): positions = data['positions'] # find slices in the position data slice_ids = [] slice_id_to_name = {} for value in positions.values(): if ( isinstance(value, dict) and value.get('meta') and value.get('meta').get('chartId') ): slice_id = value.get('meta').get('chartId') slice_ids.append(slice_id) slice_id_to_name[slice_id] = value.get('meta').get('sliceName') session = db.session() Slice = models.Slice # noqa current_slices = session.query(Slice).filter( Slice.id.in_(slice_ids)).all() dashboard.slices = current_slices # update slice names. this assumes user has permissions to update the slice for slc in dashboard.slices: new_name = slice_id_to_name[slc.id] if slc.slice_name != new_name: slc.slice_name = new_name session.merge(slc) session.flush() # remove leading and trailing white spaces in the dumped json dashboard.position_json = json.dumps( positions, indent=None, separators=(',', ':'), sort_keys=True) md = dashboard.params_dict dashboard.css = data.get('css') dashboard.dashboard_title = data['dashboard_title'] if 'filter_immune_slices' not in md: md['filter_immune_slices'] = [] if 'timed_refresh_immune_slices' not in md: md['timed_refresh_immune_slices'] = [] if 'filter_immune_slice_fields' not in md: md['filter_immune_slice_fields'] = {} md['expanded_slices'] = data['expanded_slices'] default_filters_data = json.loads(data.get('default_filters', '{}')) applicable_filters = \ {key: v for key, v in default_filters_data.items() if int(key) in slice_ids} md['default_filters'] = json.dumps(applicable_filters) dashboard.json_metadata = json.dumps(md) @api @has_access_api @expose('/add_slices/<dashboard_id>/', methods=['POST']) def add_slices(self, dashboard_id): """Add and save slices to a dashboard""" data = json.loads(request.form.get('data')) session = db.session() Slice = models.Slice # noqa dash = ( session.query(models.Dashboard).filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) new_slices = session.query(Slice).filter( Slice.id.in_(data['slice_ids'])) dash.slices += new_slices session.merge(dash) session.commit() session.close() return 'SLICES ADDED' @api @has_access_api @expose('/testconn', methods=['POST', 'GET']) def testconn(self): """Tests a sqla connection""" try: username = g.user.username if g.user is not None else None uri = request.json.get('uri') db_name = request.json.get('name') impersonate_user = request.json.get('impersonate_user') database = None if db_name: database = ( db.session .query(models.Database) .filter_by(database_name=db_name) .first() ) if database and uri == database.safe_sqlalchemy_uri(): # the password-masked uri was passed # use the URI associated with this database uri = database.sqlalchemy_uri_decrypted configuration = {} if database and uri: url = make_url(uri) db_engine = models.Database.get_db_engine_spec_for_backend( url.get_backend_name()) db_engine.patch() masked_url = database.get_password_masked_url_from_uri(uri) logging.info('Superset.testconn(). Masked URL: {0}'.format(masked_url)) configuration.update( db_engine.get_configuration_for_impersonation(uri, impersonate_user, username), ) engine_params = ( request.json .get('extras', {}) .get('engine_params', {})) connect_args = engine_params.get('connect_args') if configuration: connect_args['configuration'] = configuration engine = create_engine(uri, **engine_params) engine.connect() return json_success(json.dumps(engine.table_names(), indent=4)) except Exception as e: logging.exception(e) return json_error_response(( 'Connection failed!\n\n' 'The error message returned was:\n{}').format(e)) @api @has_access_api @expose('/recent_activity/<user_id>/', methods=['GET']) def recent_activity(self, user_id): """Recent activity (actions) for a given user""" M = models # noqa if request.args.get('limit'): limit = int(request.args.get('limit')) else: limit = 1000 qry = ( db.session.query(M.Log, M.Dashboard, M.Slice) .outerjoin( M.Dashboard, M.Dashboard.id == M.Log.dashboard_id, ) .outerjoin( M.Slice, M.Slice.id == M.Log.slice_id, ) .filter( sqla.and_( ~M.Log.action.in_(('queries', 'shortner', 'sql_json')), M.Log.user_id == user_id, ), ) .order_by(M.Log.dttm.desc()) .limit(limit) ) payload = [] for log in qry.all(): item_url = None item_title = None if log.Dashboard: item_url = log.Dashboard.url item_title = log.Dashboard.dashboard_title elif log.Slice: item_url = log.Slice.slice_url item_title = log.Slice.slice_name payload.append({ 'action': log.Log.action, 'item_url': item_url, 'item_title': item_title, 'time': log.Log.dttm, }) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/csrf_token/', methods=['GET']) def csrf_token(self): return Response( self.render_template('superset/csrf_token.json'), mimetype='text/json', ) @api @has_access_api @expose('/fave_dashboards_by_username/<username>/', methods=['GET']) def fave_dashboards_by_username(self, username): """This lets us use a user's username to pull favourite dashboards""" user = security_manager.find_user(username=username) return self.fave_dashboards(user.get_id()) @api @has_access_api @expose('/fave_dashboards/<user_id>/', methods=['GET']) def fave_dashboards(self, user_id): qry = ( db.session.query( models.Dashboard, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'Dashboard', models.Dashboard.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Dashboard.id, 'dashboard': o.Dashboard.dashboard_link(), 'title': o.Dashboard.dashboard_title, 'url': o.Dashboard.url, 'dttm': o.dttm, } if o.Dashboard.created_by: user = o.Dashboard.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/created_dashboards/<user_id>/', methods=['GET']) def created_dashboards(self, user_id): Dash = models.Dashboard # noqa qry = ( db.session.query( Dash, ) .filter( sqla.or_( Dash.created_by_fk == user_id, Dash.changed_by_fk == user_id, ), ) .order_by( Dash.changed_on.desc(), ) ) payload = [{ 'id': o.id, 'dashboard': o.dashboard_link(), 'title': o.dashboard_title, 'url': o.url, 'dttm': o.changed_on, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/user_slices', methods=['GET']) @expose('/user_slices/<user_id>/', methods=['GET']) def user_slices(self, user_id=None): """List of slices a user created, or faved""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa FavStar = models.FavStar # noqa qry = ( db.session.query(Slice, FavStar.dttm).join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), isouter=True).filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, FavStar.user_id == user_id, ), ) .order_by(Slice.slice_name.asc()) ) payload = [{ 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'data': o.Slice.form_data, 'dttm': o.dttm if o.dttm else o.Slice.changed_on, 'viz_type': o.Slice.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/created_slices', methods=['GET']) @expose('/created_slices/<user_id>/', methods=['GET']) def created_slices(self, user_id=None): """List of slices created by this user""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa qry = ( db.session.query(Slice) .filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, ), ) .order_by(Slice.changed_on.desc()) ) payload = [{ 'id': o.id, 'title': o.slice_name, 'url': o.slice_url, 'dttm': o.changed_on, 'viz_type': o.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/fave_slices', methods=['GET']) @expose('/fave_slices/<user_id>/', methods=['GET']) def fave_slices(self, user_id=None): """Favorite slices for a user""" if not user_id: user_id = g.user.id qry = ( db.session.query( models.Slice, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'dttm': o.dttm, 'viz_type': o.Slice.viz_type, } if o.Slice.created_by: user = o.Slice.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser)) @api @has_access_api @expose('/warm_up_cache/', methods=['GET']) def warm_up_cache(self): """Warms up the cache for the slice or table. Note for slices a force refresh occurs. """ slices = None session = db.session() slice_id = request.args.get('slice_id') table_name = request.args.get('table_name') db_name = request.args.get('db_name') if not slice_id and not (table_name and db_name): return json_error_response(__( 'Malformed request. slice_id or table_name and db_name ' 'arguments are expected'), status=400) if slice_id: slices = session.query(models.Slice).filter_by(id=slice_id).all() if not slices: return json_error_response(__( 'Chart %(id)s not found', id=slice_id), status=404) elif table_name and db_name: SqlaTable = ConnectorRegistry.sources['table'] table = ( session.query(SqlaTable) .join(models.Database) .filter( models.Database.database_name == db_name or SqlaTable.table_name == table_name) ).first() if not table: return json_error_response(__( "Table %(t)s wasn't found in the database %(d)s", t=table_name, s=db_name), status=404) slices = session.query(models.Slice).filter_by( datasource_id=table.id, datasource_type=table.type).all() for slc in slices: try: obj = slc.get_viz(force=True) obj.get_json() except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) return json_success(json.dumps( [{'slice_id': slc.id, 'slice_name': slc.slice_name} for slc in slices])) @expose('/favstar/<class_name>/<obj_id>/<action>/') def favstar(self, class_name, obj_id, action): """Toggle favorite stars on Slices and Dashboard""" session = db.session() FavStar = models.FavStar # noqa count = 0 favs = session.query(FavStar).filter_by( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id()).all() if action == 'select': if not favs: session.add( FavStar( class_name=class_name, obj_id=obj_id, user_id=g.user.get_id(), dttm=datetime.now(), ), ) count = 1 elif action == 'unselect': for fav in favs: session.delete(fav) else: count = len(favs) session.commit() return json_success(json.dumps({'count': count})) @has_access @expose('/dashboard/<dashboard_id>/') def dashboard(self, dashboard_id): """Server side rendering for a dashboard""" session = db.session() qry = session.query(models.Dashboard) if dashboard_id.isdigit(): qry = qry.filter_by(id=int(dashboard_id)) else: qry = qry.filter_by(slug=dashboard_id) dash = qry.one() datasources = set() for slc in dash.slices: datasource = slc.datasource if datasource: datasources.add(datasource) if config.get('ENABLE_ACCESS_REQUEST'): for datasource in datasources: if datasource and not security_manager.datasource_access(datasource): flash( __(security_manager.get_datasource_access_error_msg(datasource)), 'danger') return redirect( 'superset/request_access/?' 'dashboard_id={dash.id}&'.format(**locals())) dash_edit_perm = True if check_dbp_user(g.user, app.config['ENABLE_DASHBOARD_SHARE_IN_CUSTOM_ROLE']): dash_edit_perm = check_ownership(dash, raise_if_false=False) and \ security_manager.can_access('can_save_dash', 'Superset') and g.user.id == dash.created_by_fk else: dash_edit_perm = check_ownership(dash, raise_if_false=False) and \ security_manager.can_access('can_save_dash', 'Superset') dash_save_perm = security_manager.can_access('can_save_dash', 'Superset') superset_can_explore = security_manager.can_access('can_explore', 'Superset') slice_can_edit = security_manager.can_access('can_edit', 'SliceModelView') standalone_mode = request.args.get('standalone') == 'true' edit_mode = request.args.get('edit') == 'true' # Hack to log the dashboard_id properly, even when getting a slug @log_this def dashboard(**kwargs): # noqa pass dashboard( dashboard_id=dash.id, dashboard_version='v2', dash_edit_perm=dash_edit_perm, edit_mode=edit_mode) dashboard_data = dash.data dashboard_data.update({ 'standalone_mode': standalone_mode, 'dash_save_perm': dash_save_perm, 'dash_edit_perm': dash_edit_perm, 'superset_can_explore': superset_can_explore, 'slice_can_edit': slice_can_edit, }) bootstrap_data = { 'user_id': g.user.get_id(), 'user_name': g.user.username, 'dashboard_data': dashboard_data, 'datasources': {ds.uid: ds.data for ds in datasources}, 'common': self.common_bootsrap_payload(), 'editMode': edit_mode, } if request.args.get('json') == 'true': return json_success(json.dumps(bootstrap_data)) return self.render_template( 'superset/dashboard.html', entry='dashboard', standalone_mode=standalone_mode, title=dash.dashboard_title, bootstrap_data=json.dumps(bootstrap_data), ) @api @log_this @expose('/log/', methods=['POST']) def log(self): return Response(status=200) @has_access @expose('/sync_druid/', methods=['POST']) @log_this def sync_druid_source(self): """Syncs the druid datasource in main db with the provided config. The endpoint takes 3 arguments: user - user name to perform the operation as cluster - name of the druid cluster config - configuration stored in json that contains: name: druid datasource name dimensions: list of the dimensions, they become druid columns with the type STRING metrics_spec: list of metrics (dictionary). Metric consists of 2 attributes: type and name. Type can be count, etc. `count` type is stored internally as longSum other fields will be ignored. Example: { 'name': 'test_click', 'metrics_spec': [{'type': 'count', 'name': 'count'}], 'dimensions': ['affiliate_id', 'campaign', 'first_seen'] } """ payload = request.get_json(force=True) druid_config = payload['config'] user_name = payload['user'] cluster_name = payload['cluster'] user = security_manager.find_user(username=user_name) DruidDatasource = ConnectorRegistry.sources['druid'] DruidCluster = DruidDatasource.cluster_class if not user: err_msg = __("Can't find User '%(name)s', please ask your admin " 'to create one.', name=user_name) logging.error(err_msg) return json_error_response(err_msg) cluster = db.session.query(DruidCluster).filter_by( cluster_name=cluster_name).first() if not cluster: err_msg = __("Can't find DruidCluster with cluster_name = " "'%(name)s'", name=cluster_name) logging.error(err_msg) return json_error_response(err_msg) try: DruidDatasource.sync_to_db_from_config( druid_config, user, cluster) except Exception as e: logging.exception(utils.error_msg_from_exception(e)) return json_error_response(utils.error_msg_from_exception(e)) return Response(status=201) @has_access @expose('/sqllab_viz/', methods=['POST']) @log_this def sqllab_viz(self): SqlaTable = ConnectorRegistry.sources['table'] data = json.loads(request.form.get('data')) table_name = data.get('datasourceName') table = ( db.session.query(SqlaTable) .filter_by(table_name=table_name) .first() ) if not table: table = SqlaTable(table_name=table_name) table.database_id = data.get('dbId') table.schema = data.get('schema') table.template_params = data.get('templateParams') table.is_sqllab_view = True q = SupersetQuery(data.get('sql')) table.sql = q.stripped() db.session.add(table) cols = [] for config in data.get('columns'): column_name = config.get('name') SqlaTable = ConnectorRegistry.sources['table'] TableColumn = SqlaTable.column_class SqlMetric = SqlaTable.metric_class col = TableColumn( column_name=column_name, filterable=True, groupby=True, is_dttm=config.get('is_date', False), type=config.get('type', False), ) cols.append(col) table.columns = cols table.metrics = [ SqlMetric(metric_name='count', expression='count(*)'), ] db.session.commit() return self.json_response(json.dumps({ 'table_id': table.id, })) @has_access @expose('/table/<database_id>/<table_name>/<schema>/') @log_this def table(self, database_id, table_name, schema): schema = utils.js_string_to_python(schema) mydb = db.session.query(models.Database).filter_by(id=database_id).one() payload_columns = [] indexes = [] primary_key = [] foreign_keys = [] try: columns = mydb.get_columns(table_name, schema) indexes = mydb.get_indexes(table_name, schema) primary_key = mydb.get_pk_constraint(table_name, schema) foreign_keys = mydb.get_foreign_keys(table_name, schema) except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) keys = [] if primary_key and primary_key.get('constrained_columns'): primary_key['column_names'] = primary_key.pop('constrained_columns') primary_key['type'] = 'pk' keys += [primary_key] for fk in foreign_keys: fk['column_names'] = fk.pop('constrained_columns') fk['type'] = 'fk' keys += foreign_keys for idx in indexes: idx['type'] = 'index' keys += indexes for col in columns: dtype = '' try: dtype = '{}'.format(col['type']) except Exception: # sqla.types.JSON __str__ has a bug, so using __class__. dtype = col['type'].__class__.__name__ pass payload_columns.append({ 'name': col['name'], 'type': dtype.split('(')[0] if '(' in dtype else dtype, 'longType': dtype, 'keys': [ k for k in keys if col['name'] in k.get('column_names') ], }) tbl = { 'name': table_name, 'columns': payload_columns, 'selectStar': mydb.select_star( table_name, schema=schema, show_cols=True, indent=True, cols=columns, latest_partition=True), 'primaryKey': primary_key, 'foreignKeys': foreign_keys, 'indexes': keys, } return json_success(json.dumps(tbl)) @has_access @expose('/extra_table_metadata/<database_id>/<table_name>/<schema>/') @log_this def extra_table_metadata(self, database_id, table_name, schema): schema = utils.js_string_to_python(schema) mydb = db.session.query(models.Database).filter_by(id=database_id).one() payload = mydb.db_engine_spec.extra_table_metadata( mydb, table_name, schema) return json_success(json.dumps(payload)) @has_access @expose('/select_star/<database_id>/<table_name>') @expose('/select_star/<database_id>/<table_name>/<schema>') @log_this def select_star(self, database_id, table_name, schema=None): mydb = db.session.query( models.Database).filter_by(id=database_id).first() return json_success( mydb.select_star( table_name, schema, latest_partition=True, show_cols=True, ), ) @expose('/theme/') def theme(self): return self.render_template('superset/theme.html') @has_access_api @expose('/cached_key/<key>/') @log_this def cached_key(self, key): """Returns a key from the cache""" resp = cache.get(key) if resp: return resp return 'nope' @has_access_api @expose('/cache_key_exist/<key>/') @log_this def cache_key_exist(self, key): """Returns if a key from cache exist""" key_exist = True if cache.get(key) else False status = 200 if key_exist else 404 return json_success(json.dumps({'key_exist': key_exist}), status=status) @has_access_api @expose('/results/<key>/') @log_this def results(self, key): """Serves a key off of the results backend""" if not results_backend: return json_error_response("Results backend isn't configured") read_from_results_backend_start = utils.now_as_float() blob = results_backend.get(key) stats_logger.timing( 'sqllab.query.results_backend_read', utils.now_as_float() - read_from_results_backend_start, ) if not blob: return json_error_response( 'Data could not be retrieved. ' 'You may want to re-run the query.', status=410, ) query = db.session.query(Query).filter_by(results_key=key).one() rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: return json_error_response(security_manager.get_table_access_error_msg( '{}'.format(rejected_tables)), status=403) payload = utils.zlib_decompress_to_string(blob) display_limit = app.config.get('DISPLAY_MAX_ROW', None) if display_limit: payload_json = json.loads(payload) payload_json['data'] = payload_json['data'][:display_limit] return json_success( json.dumps( payload_json, default=utils.json_iso_dttm_ser, ignore_nan=True, ), ) @has_access_api @expose('/stop_query/', methods=['POST']) @log_this def stop_query(self): client_id = request.form.get('client_id') try: query = ( db.session.query(Query) .filter_by(client_id=client_id).one() ) query.status = utils.QueryStatus.STOPPED db.session.commit() except Exception: pass return self.json_response('OK') @has_access_api @expose('/sql_json/', methods=['POST', 'GET']) @log_this def sql_json(self): """Runs arbitrary sql and returns and json""" async_ = request.form.get('runAsync') == 'true' sql = request.form.get('sql') database_id = request.form.get('database_id') schema = request.form.get('schema') or None template_params = json.loads( request.form.get('templateParams') or '{}') session = db.session() mydb = session.query(models.Database).filter_by(id=database_id).first() if not mydb: json_error_response( 'Database with id {} is missing.'.format(database_id)) rejected_tables = security_manager.rejected_datasources(sql, mydb, schema) if rejected_tables: return json_error_response( security_manager.get_table_access_error_msg(rejected_tables), link=security_manager.get_table_access_link(rejected_tables), status=403) session.commit() select_as_cta = request.form.get('select_as_cta') == 'true' tmp_table_name = request.form.get('tmp_table_name') if select_as_cta and mydb.force_ctas_schema: tmp_table_name = '{}.{}'.format( mydb.force_ctas_schema, tmp_table_name, ) client_id = request.form.get('client_id') or utils.shortid()[:10] query = Query( database_id=int(database_id), limit=mydb.db_engine_spec.get_limit_from_sql(sql), sql=sql, schema=schema, select_as_cta=request.form.get('select_as_cta') == 'true', start_time=utils.now_as_float(), tab_name=request.form.get('tab'), status=QueryStatus.PENDING if async_ else QueryStatus.RUNNING, sql_editor_id=request.form.get('sql_editor_id'), tmp_table_name=tmp_table_name, user_id=g.user.get_id() if g.user else None, client_id=client_id, ) session.add(query) session.flush() query_id = query.id session.commit() # shouldn't be necessary if not query_id: raise Exception(_('Query record was not created as expected.')) logging.info('Triggering query_id: {}'.format(query_id)) try: template_processor = get_template_processor( database=query.database, query=query) rendered_query = template_processor.process_template( query.sql, **template_params) except Exception as e: return json_error_response( 'Template rendering failed: {}'.format(utils.error_msg_from_exception(e))) # Async request. if async_: logging.info('Running query on a Celery worker') # Ignore the celery future object and the request may time out. try: sql_lab.get_sql_results.delay( query_id, rendered_query, return_results=False, store_results=not query.select_as_cta, user_name=g.user.username if g.user else None, start_time=utils.now_as_float()) except Exception as e: logging.exception(e) msg = ( 'Failed to start remote query on a worker. ' 'Tell your administrator to verify the availability of ' 'the message queue.' ) query.status = QueryStatus.FAILED query.error_message = msg session.commit() return json_error_response('{}'.format(msg)) resp = json_success(json.dumps( {'query': query.to_dict()}, default=utils.json_int_dttm_ser, ignore_nan=True), status=202) session.commit() return resp # Sync request. try: timeout = config.get('SQLLAB_TIMEOUT') timeout_msg = ( 'The query exceeded the {timeout} seconds ' 'timeout.').format(**locals()) with utils.timeout(seconds=timeout, error_message=timeout_msg): # pylint: disable=no-value-for-parameter data = sql_lab.get_sql_results( query_id, rendered_query, return_results=True, user_name=g.user.username if g.user else None) payload = json.dumps( data, default=utils.pessimistic_json_iso_dttm_ser, ignore_nan=True, encoding=None, ) except Exception as e: logging.exception(e) return json_error_response('{}'.format(e)) if data.get('status') == QueryStatus.FAILED: return json_error_response(payload=data) return json_success(payload) @has_access @expose('/csv/<client_id>') @log_this def csv(self, client_id): """Download the query results as csv.""" logging.info('Exporting CSV file [{}]'.format(client_id)) query = ( db.session.query(Query) .filter_by(client_id=client_id) .one() ) rejected_tables = security_manager.rejected_datasources( query.sql, query.database, query.schema) if rejected_tables: flash( security_manager.get_table_access_error_msg('{}'.format(rejected_tables))) return redirect('/') blob = None if results_backend and query.results_key: logging.info( 'Fetching CSV from results backend ' '[{}]'.format(query.results_key)) blob = results_backend.get(query.results_key) if blob: logging.info('Decompressing') json_payload = utils.zlib_decompress_to_string(blob) obj = json.loads(json_payload) columns = [c['name'] for c in obj['columns']] df = pd.DataFrame.from_records(obj['data'], columns=columns) logging.info('Using pandas to convert to CSV') csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) else: logging.info('Running a query to turn into CSV') sql = query.select_sql or query.executed_sql df = query.database.get_df(sql, query.schema) # TODO(bkyryliuk): add compression=gzip for big files. csv = df.to_csv(index=False, **config.get('CSV_EXPORT')) response = Response(csv, mimetype='text/csv') response.headers['Content-Disposition'] = ( 'attachment; filename={}.csv'.format(unidecode(query.name))) logging.info('Ready to return response') return response @has_access @expose('/fetch_datasource_metadata') @log_this def fetch_datasource_metadata(self): datasource_id, datasource_type = ( request.args.get('datasourceKey').split('__')) datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) # Check if datasource exists if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) # Check permission for datasource if not security_manager.datasource_access(datasource): return json_error_response( security_manager.get_datasource_access_error_msg(datasource), link=security_manager.get_datasource_access_link(datasource)) return json_success(json.dumps(datasource.data)) @expose('/queries/<last_updated_ms>') def queries(self, last_updated_ms): """Get the updated queries.""" stats_logger.incr('queries') if not g.user.get_id(): return json_error_response( 'Please login to access the queries.', status=403) # Unix time, milliseconds. last_updated_ms_int = int(float(last_updated_ms)) if last_updated_ms else 0 # UTC date time, same that is stored in the DB. last_updated_dt = utils.EPOCH + timedelta(seconds=last_updated_ms_int / 1000) sql_queries = ( db.session.query(Query) .filter( Query.user_id == g.user.get_id(), Query.changed_on >= last_updated_dt, ) .all() ) dict_queries = {q.client_id: q.to_dict() for q in sql_queries} now = int(round(time.time() * 1000)) unfinished_states = [ utils.QueryStatus.PENDING, utils.QueryStatus.RUNNING, ] queries_to_timeout = [ client_id for client_id, query_dict in dict_queries.items() if ( query_dict['state'] in unfinished_states and ( now - query_dict['startDttm'] > config.get('SQLLAB_ASYNC_TIME_LIMIT_SEC') * 1000 ) ) ] if queries_to_timeout: update(Query).where( and_( Query.user_id == g.user.get_id(), Query.client_id in queries_to_timeout, ), ).values(state=utils.QueryStatus.TIMED_OUT) for client_id in queries_to_timeout: dict_queries[client_id]['status'] = utils.QueryStatus.TIMED_OUT return json_success( json.dumps(dict_queries, default=utils.json_int_dttm_ser)) @has_access @expose('/search_queries') @log_this def search_queries(self): """Search for queries.""" query = db.session.query(Query) search_user_id = request.args.get('user_id') database_id = request.args.get('database_id') search_text = request.args.get('search_text') status = request.args.get('status') # From and To time stamp should be Epoch timestamp in seconds from_time = request.args.get('from') to_time = request.args.get('to') if search_user_id: # Filter on db Id query = query.filter(Query.user_id == search_user_id) if database_id: # Filter on db Id query = query.filter(Query.database_id == database_id) if status: # Filter on status query = query.filter(Query.status == status) if search_text: # Filter on search text query = query \ .filter(Query.sql.like('%{}%'.format(search_text))) if from_time: query = query.filter(Query.start_time > int(from_time)) if to_time: query = query.filter(Query.start_time < int(to_time)) query_limit = config.get('QUERY_SEARCH_LIMIT', 1000) sql_queries = ( query.order_by(Query.start_time.asc()) .limit(query_limit) .all() ) dict_queries = [q.to_dict() for q in sql_queries] return Response( json.dumps(dict_queries, default=utils.json_int_dttm_ser), status=200, mimetype='application/json') @app.errorhandler(500) def show_traceback(self): return render_template( 'superset/traceback.html', error_msg=get_error_msg(), ), 500 @expose('/welcome') def welcome(self): """Personalized welcome page""" if not g.user or not g.user.get_id(): return redirect(appbuilder.get_url_for_login) welcome_dashboard_id = ( db.session .query(UserAttribute.welcome_dashboard_id) .filter_by(user_id=g.user.get_id()) .scalar() ) if welcome_dashboard_id: return self.dashboard(str(welcome_dashboard_id)) payload = { 'user': bootstrap_user_data(), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', entry='welcome', title='Superset', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), ) @has_access @expose('/profile/<username>/') def profile(self, username): """User profile page""" if not username and g.user: username = g.user.username payload = { 'user': bootstrap_user_data(username, include_perms=True), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', title=_("%(user)s's profile", user=username), entry='profile', bootstrap_data=json.dumps(payload, default=utils.json_iso_dttm_ser), ) @has_access @expose('/sqllab') def sqllab(self): """SQL Editor""" d = { 'defaultDbId': config.get('SQLLAB_DEFAULT_DBID'), 'common': self.common_bootsrap_payload(), } return self.render_template( 'superset/basic.html', entry='sqllab', bootstrap_data=json.dumps(d, default=utils.json_iso_dttm_ser), ) @api @has_access_api @expose('/slice_query/<slice_id>/') def slice_query(self, slice_id): """ This method exposes an API endpoint to get the database query string for this slice """ viz_obj = self.get_viz(slice_id) if not security_manager.datasource_access(viz_obj.datasource): return json_error_response( security_manager.get_datasource_access_error_msg(viz_obj.datasource), status=401, link=security_manager.get_datasource_access_link(viz_obj.datasource)) return self.get_query_string_response(viz_obj) @api @has_access_api @expose('/schema_access_for_csv_upload') def schemas_access_for_csv_upload(self): """ This method exposes an API endpoint to get the schema access control settings for csv upload in this database """ if not request.args.get('db_id'): return json_error_response( 'No database is allowed for your csv upload') db_id = int(request.args.get('db_id')) database = ( db.session .query(models.Database) .filter_by(id=db_id) .one() ) try: schemas_allowed = database.get_schema_access_for_csv_upload() if (security_manager.database_access(database) or security_manager.all_datasource_access()): return self.json_response(schemas_allowed) # the list schemas_allowed should not be empty here # and the list schemas_allowed_processed returned from security_manager # should not be empty either, # otherwise the database should have been filtered out # in CsvToDatabaseForm schemas_allowed_processed = security_manager.schemas_accessible_by_user( database, schemas_allowed, False) return self.json_response(schemas_allowed_processed) except Exception: return json_error_response(( 'Failed to fetch schemas allowed for csv upload in this database! ' 'Please contact Superset Admin!\n\n' 'The error message returned was:\n{}').format(traceback.format_exc())) appbuilder.add_view_no_menu(Superset) class CssTemplateModelView(SupersetModelView, DeleteMixin): datamodel = SQLAInterface(models.CssTemplate) list_title = _('List Css Template') show_title = _('Show Css Template') add_title = _('Add Css Template') edit_title = _('Edit Css Template') list_columns = ['template_name'] edit_columns = ['template_name', 'css'] add_columns = edit_columns label_columns = { 'template_name': _('Template Name'), } class CssTemplateAsyncModelView(CssTemplateModelView): list_columns = ['template_name', 'css'] appbuilder.add_separator('Sources') appbuilder.add_view( CssTemplateModelView, 'CSS Templates', label=__('CSS Templates'), icon='fa-css3', category='Manage', category_label=__('Manage'), category_icon='') appbuilder.add_view_no_menu(CssTemplateAsyncModelView) appbuilder.add_link( 'SQL Editor', label=_('SQL Editor'), href='/superset/sqllab', category_icon='fa-flask', icon='fa-flask', category='SQL Lab', category_label=__('SQL Lab'), ) appbuilder.add_link( 'Query Search', label=_('Query Search'), href='/superset/sqllab#search', icon='fa-search', category_icon='fa-flask', category='SQL Lab', category_label=__('SQL Lab'), ) appbuilder.add_link( 'Upload a CSV', label=__('Upload a CSV'), href='/csvtodatabaseview/form', icon='fa-upload', category='Sources', category_label=__('Sources'), category_icon='fa-wrench') appbuilder.add_separator('Sources') @app.after_request def apply_caching(response): """Applies the configuration's http headers to all responses""" for k, v in config.get('HTTP_HEADERS').items(): response.headers[k] = v return response # --------------------------------------------------------------------- # Redirecting URL from previous names class RegexConverter(BaseConverter): def __init__(self, url_map, *items): super(RegexConverter, self).__init__(url_map) self.regex = items[0] app.url_map.converters['regex'] = RegexConverter @app.route('/<regex("panoramix\/.*"):url>') def panoramix(url): # noqa return redirect(request.full_path.replace('panoramix', 'superset')) @app.route('/<regex("caravel\/.*"):url>') def caravel(url): # noqa return redirect(request.full_path.replace('caravel', 'superset')) # --------------------------------------------------------------------- class SupersetCasAuthDBView(AuthDBView): login_template = 'appbuilder/general/security/login_cas.html' @expose('/hna_iam_authorize', methods=['GET']) def cas_authorized(self): if g.user is not None and g.user.is_authenticated: return redirect(self.appbuilder.get_url_for_index) return redirect(app.config['IAM_LOGIN_VALID_URL'] + "?service=" + app.config['SUPERSET_CAS_CALL_URL'] + "&params=") def add_role_if_missing(self, sm, user_id, role_name): found_role = sm.find_role(role_name) session = sm.get_session user = session.query(sm.user_model).get(user_id) if found_role and found_role not in user.roles: user.roles += [found_role] session.commit() @expose('/callback', methods=['GET']) def cas_callback(self): if 'ticket' not in request.args: flash("Invalid ticket param in callback") return redirect(self.appbuilder.get_url_for_login) ticket = request.args.get('ticket') validateUrl = "%s?service=%s&ticket=%s&format=json" % (app.config['IAM_VALID_URL'], app.config['SUPERSET_CAS_CALL_URL'], ticket) import requests res = requests.get(validateUrl) if res.status_code != 200 : flash("request iam validate failure in callback") return redirect(self.appbuilder.get_url_for_login) user_info = res.content.decode() user_info_json = json.load(user_info) if 'authenticationSuccess' in user_info_json['serviceResponse']: sucessRes = user_info_json['serviceResponse']['authenticationSuccess'] username = sucessRes.get('user') email = sucessRes['attributes'].get('email') sm = self.appbuilder.sm user = sm.find_user(username) role = sm.find_role(app.config['CUSTOM_ROLE_NAME_KEYWORD']) if user is None and username: user = sm.add_user( username=username, first_name=username, last_name='', email=email, role=role ) msg = ("Welcome to Superset, {}".format(username)) flash(msg, 'info') user = sm.auth_user_remote_user(username) self.add_role_if_missing(sm, user.id, app.config['CUSTOM_ROLE_NAME_KEYWORD']) login_user(user) return redirect(self.redirect_url()) else: flash("Error :%s " % user_info_json['serviceResponse']['authenticationFailure']['description']) return redirect(self.appbuilder.get_url_for_login) class VistorRegModelView(SupersetModelView, DeleteMixin): datamodel = SQLAInterface(models.VisitorReg) list_title = _('List Vistors ') show_title = _('Show Vistor') add_title = _('Add Vistor') edit_title = _('Edit Vistor') list_columns = [ 'jbh_uid', 'name', 'phone', 'group_prop', 'registry_type', 'first_vistor_time', 'first_receptor', 'communication_times', 'agree', 'status' ] add_columns = [ 'jbh_uid', 'name', 'phone', 'group_prop', 'registry_type', 'illustration', 'first_vistor_time', 'first_receptor', 'communication_times', 'agree', 'status' ] label_columns = { 'jbh_uid': _('聚宝汇UID'), 'name': _('姓名'), 'phone': _('电话'), 'group_prop': _('集团属性'), 'registry_type': _('登记类型'), 'first_vistor_time': _('首次来访时间'), 'first_receptor': _('首次接待人员'), 'communication_times': _('沟通次数'), 'agree': _('客户是否同意'), 'status': _('状态'), 'illustration': _('客户诉求'), } appbuilder.add_view( VistorRegModelView, 'Vistor Registion', label=__('访客登记'), icon='fa-registered', category='Disposal process', category_label=__('处置流程'), category_icon='fa-hand-lizard-o') appbuilder.add_separator('Disposal process') appbuilder.add_link( 'Investor Communication', label=__('投资人沟通'), href='/csvtodatabaseview/form', icon='fa-odnoklassniki', category='Disposal process', category_label=__('处置流程'), category_icon='fa-hand-lizard-o') appbuilder.add_separator('Disposal process') appbuilder.add_link( 'Cash Plan', label=__('兑付计划'), href='/csvtodatabaseview/form', icon='fa-odnoklassniki', category='Disposal process', category_label=__('处置流程'), category_icon='fa-hand-lizard-o')
py
1a4da947be1d84f9ffff13b9d4f102b755114bd9
from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect, \ get_object_or_404 # redirect consegue mandar uma pessoa p uma url, no caso a person_list # get object é para pegar o objeto do usuário e caso não consiga, retorna um 404 from .models import Pessoa from .forms import PersonForm @login_required def person_list(request): persons = Pessoa.objects.all() # é como um select * from Pessoa, ou seja, busca todas as pessoas return render(request, 'person.html', {"galeres": persons}) @login_required def person_new(request): form = PersonForm(request.POST or None, request.FILES or None) # o files são para pegar os arquivos de midia mandados if form.is_valid(): form.save() return redirect('person_list') # após concluir a ação, irá redirecionar para a lista return render(request, 'person_form.html', {'form': form}) @login_required def person_update(request, id): pessoa = get_object_or_404(Pessoa, pk=id) # o pk é que vai procurar a pessoa atraves do id no banco de dados, o pk é o id no bd / Pessoa é no models form = PersonForm(request.POST or None, request.FILES or None, instance=pessoa) # PersonForm é no forms.py if form.is_valid(): form.save() return redirect('person_list') return render(request, 'person_form.html', {'form': form}) @login_required def person_delete(request, id): pessoa = get_object_or_404(Pessoa, pk=id) form = PersonForm(request.POST or None, request.FILES or None, instance=pessoa) # não sei como isso se dá, mas o form nesse caso é usado #para quando clicarmos em deletar, ir para o formulário da pessoa. Caso não seja necessário, podemos apenas deixar a página com o botão delete if request.method == 'POST': # se o usuario usar http post, retornará TRUE, se não, retornará FALSE pessoa.delete() return redirect('person_list') return render(request, 'person_delete_confirm.html', {'form': form})
py
1a4da9faeaa430c1f4f15fb3e869d5601be2d482
import os import sys import yaml import re ## def LoadConfig(confFile: str) -> dict: """ Load some YAML, or return None """ if isinstance( confFile, list): return SearchConfigs( confFile ) try: with open( confFile, 'r') as stream: return yaml.load(stream, Loader=yaml.SafeLoader); except OSError as e: # TODO: Log location with trace or debug level? return None except Exception as e: print( "Failed to load config with error: {}".format(e)) return None def SearchConfigs(searchPaths: list) -> dict: """ Given an array of search locations, try to load files, first file to load is returned. """ config = None; if isinstance(searchPaths, list): for path in searchPaths: if config is None: config = LoadConfig( path ) if config is not None: return config; if config is None: print( "Failed to load config, searched: ['%s']" % "', '".join(searchPaths), file=sys.stderr) else: return LoadConfig(searchPaths) def MergeConfigs(searchPaths: list) -> dict: """ Given an array of search locations, files are "merged" first to last, if they exists. Any keys defined in last config will overwrite values in the first config, including blank and False values. If a key exists in the first config that isn't overwritten by a later config, it will be included in final configuration. - Usefor for ['default.yaml','app.PROD.yaml'] ect """ config = None; if isinstance( searchPaths, list): for path in searchPaths: if config is None: config = LoadConfig( path ) else: overlayConf = LoadConfig( path ) if overlayConf is not None: config.update( overlayConf ) if config is None: print( "Failed to merge any config, : ['%s']" % "', '".join(searchPaths), file=sys.stderr) else: return LoadConfig(searchPaths) return config def AutoLoad(scriptName: str) -> dict: """ Attempt to autoload yaml config based on typical search paths/conventions """ scriptName = os.path.basename(scriptName) scriptName = re.sub(r"\.py$","", scriptName) defaultPaths = [ './default.yaml', './etc/' + scriptName + '.yaml', os.path.expanduser('~/etc/' + scriptName + '.yaml'), os.path.expanduser('~/.' + scriptName + '.yaml'), '/etc/' + scriptName + '.yaml' ] return MergeConfigs(defaultPaths)
py
1a4daa67a7b6a847fe4f95a9e4780b2a33b65690
__author__ = 'rramchandani' from .operation import Operations class VimBase: def __init__(self, vmomi_object=None, service_instance=None, credentials=None): self.vmomi_object = vmomi_object self.service_instance = service_instance self.credentials = dict() if credentials is None else credentials class Details: def __init__(self, vobj): self._vobj = vobj @property def runtime(self): """ :return: *vim.vm.RuntimeInfo*, the runtime details of the current machine. | (vim.vm.RuntimeInfo) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | device = (vim.vm.DeviceRuntimeInfo) [ | (vim.vm.DeviceRuntimeInfo) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | runtimeState = (vim.vm.DeviceRuntimeInfo.VirtualEthernetCardRuntimeState) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | vmDirectPathGen2Active = false, | vmDirectPathGen2InactiveReasonVm = (str) [], | vmDirectPathGen2InactiveReasonOther = (str) [ | 'vmNptIncompatibleNetwork' | ], | vmDirectPathGen2InactiveReasonExtended = <unset>, | reservationStatus = <unset> | }, | key = 4000 | } | ], | host = 'vim.HostSystem:host-14', | connectionState = 'connected', | **powerState** = 'poweredOn', | faultToleranceState = 'notConfigured', | dasVmProtection = <unset>, | toolsInstallerMounted = false, | suspendTime = <unset>, | bootTime = 2017-02-17T14:39:35.245193Z, | suspendInterval = 0L, | question = <unset>, | memoryOverhead = <unset>, | maxCpuUsage = 9196, | maxMemoryUsage = 4096, | numMksConnections = 0, | recordReplayState = 'inactive', | cleanPowerOff = <unset>, | needSecondaryReason = <unset>, | onlineStandby = false, | minRequiredEVCModeKey = <unset>, | consolidationNeeded = false, | offlineFeatureRequirement = (vim.vm.FeatureRequirement) [ | (vim.vm.FeatureRequirement) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | key = 'cpuid.lm', | featureName = 'cpuid.lm', | value = 'Bool:Min:1' | } | ], | featureRequirement = (vim.vm.FeatureRequirement) [ | (vim.vm.FeatureRequirement) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | key = 'cpuid.SSE3', | featureName = 'cpuid.SSE3', | value = 'Bool:Min:1' | },... | ], | featureMask = (vim.host.FeatureMask) [], | vFlashCacheAllocation = 0L, | paused = false, | snapshotInBackground = false, | quiescedForkParent = <unset> | } """ return self._vobj.summary.runtime @property def guest(self): """ :return: *vim.vm.Summary.GuestSummary*, the guest details of the current machine. | (vim.vm.Summary.GuestSummary) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | guestId = 'windows7_64Guest', | **guestFullName** = 'Microsoft Windows 7 (64-bit)', | toolsStatus = 'toolsOk', | toolsVersionStatus = 'guestToolsCurrent', | toolsVersionStatus2 = 'guestToolsCurrent', | toolsRunningStatus = 'guestToolsRunning', | **hostName** = 'W7x64', | **ipAddress** = '10.112.19.116' | } """ return self._vobj.summary.guest @property def config(self): """ :return: *vim.vm.Summary.ConfigSummary*, the config details of the current machine. | (vim.vm.Summary.ConfigSummary) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | **name** = 'Jenkins', | **template** = false, | vmPathName = '[datastore1] Jenkins/Jenkins.vmx', | memorySizeMB = 4096, | cpuReservation = 0, | memoryReservation = 0, | numCpu = 4, | numEthernetCards = 1, | numVirtualDisks = 1, | uuid = '420c6ef6-eef0-03ff-20f2-5d2479b2afdc', | instanceUuid = '500ce065-5f5b-17fa-fa8f-d7033e548ecb', | guestId = 'windows7_64Guest', | guestFullName = 'Microsoft Windows 7 (64-bit)', | annotation = '', | product = <unset>, | installBootRequired = false, | ftInfo = <unset>, | managedBy = <unset> | } """ return self._vobj.summary.config @property def storage(self): """ :return: *vim.vm.Summary.StorageSummary*, the storage details of the current machine. | (vim.vm.Summary.StorageSummary) { | dynamicType = <unset>, | dynamicProperty = (vmodl.DynamicProperty) [], | committed = 38614424818L, | uncommitted = 239075873L, | unshared = 34120663040L, | timestamp = 2017-05-18T09:16:22.357187Z | } """ return self._vobj.summary.storage def __repr__(self): return "<{0}_Details: runtime, guest, config, storage>".format(self.config.name) class VirtualMachine(object): def __init__(self, vmomi_obj, service_instance, **kwargs): self.vim = VimBase() self.vim.vmomi_object = vmomi_obj self.vim.service_instance = service_instance self._operations = None self._dirty = False self.details = Details(vmomi_obj) self.timeout = kwargs.get('timeout', None) def set_credentials(self, username, password, credentials_type, default=False): """ Adds the credentials for the Guest operations on this virtual machine. :param username: (str) Guest username. ex: domain_name\\user_name :param password: (str) Guest password. :param credentials_type: (any immutable) A dictionary key which helps to different credentials for the system. :param default: (bool) If specified then for all the guest operation these credentials will be used by default. Unless with the operation one specifies the *credential_type* with it. | **Examples** | >> vm.set_credentials(username="myDomain\\domainUser", password="secret", credentials_type="user", default=True) | >> vm.set_credentials(username="myDomain\\domainAdmin", password="secret", credentials_type="admin") """ self._dirty = True self.vim.credentials[credentials_type] = {'username': username, 'password': password, 'default': default} @property def operations(self): """ Set of operations supported over Virtual machine. """ if not self._operations or self._dirty: self._operations = Operations(self.vim, timeout=self.timeout) self._dirty = False return self._operations def __repr__(self): return "<VirtualMachine: {0}>".format(self.vim.vmomi_object.name)
py
1a4daaebb2b982ef6adad0572f889c8d872dd6b6
# Copyright 2016 - Nokia Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os from vitrageclient.common import yaml_utils from vitrageclient import exceptions as exc class Template(object): url = 'v1/template/' def __init__(self, api): self.api = api def list(self): """Get templates list""" return self.api.get(self.url).json() def versions(self): """Get templates versions""" return self.api.get(self.url + 'versions').json() def show(self, _id): """Show template content""" url = self.url + _id return self.api.get(url).json() def add(self, path=None, template_type=None, params=None, template_str=None, overwrite=False): """Add a new template :param path: (optional) The template file path or templates dir path :param template_type: (optional) The template type, in case it is not written inside the template metadata section :param params: (optional) Actual values for the template parameters :param template_str: (optional) A string representation of the template :param overwrite: (optional) overwrite the template if exists yaml Either path or template_str must exist (but not both) :return: """ files_content = \ self._load_template(path=path, template_str=template_str) api_params = dict(templates=files_content, template_type=template_type, params=params, overwrite=overwrite) return self.api.put(self.url, json=api_params).json() def delete(self, ids): """Delete existing""" params = dict(id=ids) return self.api.delete(self.url, json=params).json() def validate(self, path=None, template_type=None, params=None, template_str=None): """Template validation Make sure that the template file is correct in terms of syntax and content. It is possible to pass a specific file path in order to validate one template, or directory path for validation of several templates (the directory must contain only templates) :param path: (optional) The template file path or templates dir path :param template_type: (optional) The template type, in case it is not written inside the template metadata section :param params: (optional) Actual values for the template parameters :param template_str: (optional) A string representation of the template yaml Either path or template_str must exist (but not both) :return: """ files_content = \ self._load_template(path=path, template_str=template_str) api_params = dict(templates=files_content, template_type=template_type, params=params) return self.api.post(self.url, json=api_params).json() @classmethod def _load_yaml_files(cls, path): if os.path.isdir(path): files_content = [] for file_name in os.listdir(path): file_path = '%s/%s' % (path, file_name) if os.path.isfile(file_path): template = cls._load_yaml_file(file_path) files_content.append((file_path, template)) else: files_content = [(path, cls._load_yaml_file(path))] return files_content @classmethod def _load_yaml_file(cls, path): with open(path, 'r') as stream: return cls._load_yaml(stream) @classmethod def _load_yaml(cls, yaml_content): try: return yaml_utils.load(yaml_content) except ValueError as e: message = 'Could not load template: %s. Reason: %s' \ % (yaml_content, e) raise exc.CommandError(message) @classmethod def _load_template(cls, path, template_str): if path: files_content = cls._load_yaml_files(path) elif template_str: files_content = [(None, cls._load_yaml(template_str))] else: raise exc.CommandError( 'Add template API must be called with either \'path\' or ' '\'template_str\'') return files_content
py
1a4dab14c2a56a2cd577374917f55310d85695bf
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: target_log.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from assets_inventory_sdk.model.easy_command import action_log_pb2 as assets__inventory__sdk_dot_model_dot_easy__command_dot_action__log__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='target_log.proto', package='easy_command', syntax='proto3', serialized_options=_b('ZFgo.easyops.local/contracts/protorepo-models/easyops/model/easy_command'), serialized_pb=_b('\n\x10target_log.proto\x12\x0c\x65\x61sy_command\x1a\x38\x61ssets_inventory_sdk/model/easy_command/action_log.proto\"\xe6\x01\n\tTargetLog\x12\x10\n\x08targetId\x18\x01 \x01(\t\x12\x12\n\ntargetName\x18\x02 \x01(\t\x12\x0e\n\x06status\x18\x03 \x01(\t\x12\x11\n\tsysStatus\x18\x04 \x01(\t\x12\x0c\n\x04\x63ode\x18\x05 \x01(\x05\x12\x0b\n\x03msg\x18\x06 \x01(\t\x12+\n\nactionsLog\x18\x07 \x03(\x0b\x32\x17.easy_command.ActionLog\x12\x10\n\x08usedTime\x18\x08 \x01(\x05\x12\x11\n\tstartTime\x18\t \x01(\t\x12\x12\n\nupdateTime\x18\n \x01(\t\x12\x0f\n\x07\x65ndTime\x18\x0b \x01(\tBHZFgo.easyops.local/contracts/protorepo-models/easyops/model/easy_commandb\x06proto3') , dependencies=[assets__inventory__sdk_dot_model_dot_easy__command_dot_action__log__pb2.DESCRIPTOR,]) _TARGETLOG = _descriptor.Descriptor( name='TargetLog', full_name='easy_command.TargetLog', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='targetId', full_name='easy_command.TargetLog.targetId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targetName', full_name='easy_command.TargetLog.targetName', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='easy_command.TargetLog.status', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sysStatus', full_name='easy_command.TargetLog.sysStatus', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='code', full_name='easy_command.TargetLog.code', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='msg', full_name='easy_command.TargetLog.msg', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='actionsLog', full_name='easy_command.TargetLog.actionsLog', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='usedTime', full_name='easy_command.TargetLog.usedTime', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='startTime', full_name='easy_command.TargetLog.startTime', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='updateTime', full_name='easy_command.TargetLog.updateTime', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='endTime', full_name='easy_command.TargetLog.endTime', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=93, serialized_end=323, ) _TARGETLOG.fields_by_name['actionsLog'].message_type = assets__inventory__sdk_dot_model_dot_easy__command_dot_action__log__pb2._ACTIONLOG DESCRIPTOR.message_types_by_name['TargetLog'] = _TARGETLOG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TargetLog = _reflection.GeneratedProtocolMessageType('TargetLog', (_message.Message,), { 'DESCRIPTOR' : _TARGETLOG, '__module__' : 'target_log_pb2' # @@protoc_insertion_point(class_scope:easy_command.TargetLog) }) _sym_db.RegisterMessage(TargetLog) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
py
1a4dad13a741e76fb9e1bf195aaf6536c501ceb9
"""Support for Z-Wave fans.""" import math from openpeerpower.components.fan import DOMAIN, SUPPORT_SET_SPEED, FanEntity from openpeerpower.core import callback from openpeerpower.helpers.dispatcher import async_dispatcher_connect from openpeerpower.util.percentage import ( int_states_in_range, percentage_to_ranged_value, ranged_value_to_percentage, ) from . import ZWaveDeviceEntity SUPPORTED_FEATURES = SUPPORT_SET_SPEED SPEED_RANGE = (1, 99) # off is not included async def async_setup_entry(opp, config_entry, async_add_entities): """Set up Z-Wave Fan from Config Entry.""" @callback def async_add_fan(fan): """Add Z-Wave Fan.""" async_add_entities([fan]) async_dispatcher_connect(opp, "zwave_new_fan", async_add_fan) def get_device(values, **kwargs): """Create Z-Wave entity device.""" return ZwaveFan(values) class ZwaveFan(ZWaveDeviceEntity, FanEntity): """Representation of a Z-Wave fan.""" def __init__(self, values): """Initialize the Z-Wave fan device.""" ZWaveDeviceEntity.__init__(self, values, DOMAIN) self.update_properties() def update_properties(self): """Handle data changes for node values.""" self._state = self.values.primary.data def set_percentage(self, percentage): """Set the speed percentage of the fan.""" if percentage is None: # Value 255 tells device to return to previous value zwave_speed = 255 elif percentage == 0: zwave_speed = 0 else: zwave_speed = math.ceil(percentage_to_ranged_value(SPEED_RANGE, percentage)) self.node.set_dimmer(self.values.primary.value_id, zwave_speed) def turn_on(self, speed=None, percentage=None, preset_mode=None, **kwargs): """Turn the device on.""" self.set_percentage(percentage) def turn_off(self, **kwargs): """Turn the device off.""" self.node.set_dimmer(self.values.primary.value_id, 0) @property def percentage(self): """Return the current speed percentage.""" return ranged_value_to_percentage(SPEED_RANGE, self._state) @property def speed_count(self) -> int: """Return the number of speeds the fan supports.""" return int_states_in_range(SPEED_RANGE) @property def supported_features(self): """Flag supported features.""" return SUPPORTED_FEATURES
py
1a4dad68c7c6aa85d33c6988177bc2a278e7abc9
# coding=utf-8 # *** WARNING: this file was generated by test. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import errno from setuptools import setup, find_packages from setuptools.command.install import install from subprocess import check_call VERSION = "0.0.0" PLUGIN_VERSION = "0.0.0" class InstallPluginCommand(install): def run(self): install.run(self) try: check_call(['pulumi', 'plugin', 'install', 'resource', 'example', PLUGIN_VERSION]) except OSError as error: if error.errno == errno.ENOENT: print(f""" There was an error installing the example resource provider plugin. It looks like `pulumi` is not installed on your system. Please visit https://pulumi.com/ to install the Pulumi CLI. You may try manually installing the plugin by running `pulumi plugin install resource example {PLUGIN_VERSION}` """) else: raise def readme(): try: with open('README.md', encoding='utf-8') as f: return f.read() except FileNotFoundError: return "example Pulumi Package - Development Version" setup(name='pulumi_example', version=VERSION, long_description=readme(), long_description_content_type='text/markdown', cmdclass={ 'install': InstallPluginCommand, }, packages=find_packages(), package_data={ 'pulumi_example': [ 'py.typed', 'pulumi-plugin.json', ] }, install_requires=[ 'parver>=0.2.1', 'pulumi', 'semver>=2.8.1' ], zip_safe=False)
py
1a4daee26071cf7bfff3459a1dfd5c78250656d0
import copy import random import time from functools import partial from sklearn.utils import shuffle import numpy as np from sklearn import linear_model from dnl import Sampling_Methods, Solver from dnl.PredictPlustOptimizeUtils import compute_C_k from dnl.Solver import get_optimization_objective from dnl.Utils import TransitionPoint, get_mini_batches from operator import attrgetter import multiprocessing as mp CONV_CONST = 10E-6 MEDIAN_LOSS = 'MEDIAN' MEAN_LOSS = 'MEAN LOSS' class PredictPlusOptModel: def __init__(self, alphas=None, const=None, opt_params=None, loss=MEDIAN_LOSS, max_step_size_magnitude=1, min_step_size_magnitude=-1, step_size_divider=10, sampling_method=Sampling_Methods.DIVIDE_AND_CONQUER, is_parallel=True, learning_rate=0.1, mini_batch_size=32, beta=0, epoch_limit=3, run_time_limit=100000, verbose=False, is_Val = True): """ :param alphas: model parameters :param const: model constant :param capacities: capacity of the optimization problem :param max_step_size_magnitude: sample space upper bound :param min_step_size_magnitude: sample space lower step size :param step_size_divider: :param sampling_method: """ self.alphas = alphas self.const = const self.opt_params = opt_params self.is_val = is_Val self.step_size_divider = step_size_divider self.is_parallel = is_parallel if mini_batch_size == -1: self.learning_rate = 1 else: self.learning_rate = learning_rate self.mini_batch_size = mini_batch_size self.epoch_limit = epoch_limit self.run_time_limit = run_time_limit self.training_obj_value = [] self.test_regrets = [] self.val_regrets = [] self.epochs = [] self.sub_epochs = [] self.run_time = [] self.max_step_size_magnitude = max_step_size_magnitude self.min_step_size_magnitude = min_step_size_magnitude self.sampling_method = sampling_method self.test_MSE = 0 self.loss = loss self.number_of_epochs = 0 self.test_regret = 0 self.training_MSE = 0 self.test_run_time = 0 self.beta = beta self.verbose = verbose def init_params_lin_regression(self, X,Y): """ initialize the model with linear regression :param train_set: :return: """ params = initialize_parameters(X,Y) self.__setattr__('alphas', params.get('alphas')) self.__setattr__('const', params.get('const')) self.__setattr__('capacities', params.get('capacities')) def coordinate_descent(self, train_X, train_Y, train_weights, val_X, val_Y, val_weights, print_test=False, test_X=None, test_Y=None, test_weights=None, core_number=7): """ Uses coordinate descent to optimize parameters :param train_X: test set features :param train_Y: test set output :param train_weights: :return: profit: average profit of the training set """ # self_decided_features = [4, 5, 6, 7] # self_decided_features = range(8) # self_decided_features = [4] is_break = False self_decided_features = list(range(len(self.alphas))) prev_profit = -10 model_params = {'alphas': self.alphas, 'const': self.const} profit = np.median(get_optimization_objective(X=train_X, Y=train_Y, weights=train_weights, opt_params=self.opt_params, model_params=model_params)) test_regret = np.median(self.get_regret(test_X, test_Y, test_weights)) val_regret = np.median(self.get_regret(val_X, val_Y, val_weights)) self.test_regrets.append(test_regret) self.training_obj_value.append(profit) self.run_time.append(0) self.epochs.append(0) self.sub_epochs.append(0) self.val_regrets.append(val_regret) start_time = time.time() print("original objective value: " + str(profit)) EPOCH = 0 direction = np.zeros(len(self_decided_features)) momentum = np.zeros(len(self_decided_features)) sampler = Sampling_Methods.Sampler(max_step_size_magnitude=self.max_step_size_magnitude, min_step_size_magnitude=self.min_step_size_magnitude, step_size_divider=self.step_size_divider, sampling_method=self.sampling_method, opt_params=self.opt_params) if self.is_parallel: mypool = mp.Pool(processes=min(8, core_number)) else: mypool = None print("------------------------") train_X_og = train_X train_Y_og = train_Y train_weights_og = train_weights if self.mini_batch_size == -1: mini_batch_size = len(train_Y) else: mini_batch_size = self.mini_batch_size mini_batches_X, mini_batches_Y, mini_batches_weights = get_mini_batches(X=train_X, Y=train_Y, weights=train_weights, size=mini_batch_size) sub_epoch = 0 while (EPOCH < self.epoch_limit) and self.run_time[-1] < self.run_time_limit and not converge(profit, prev_profit, CONV_CONST, self.mini_batch_size): mini_batches_X, mini_batches_Y, mini_batches_weights = shuffle(mini_batches_X, mini_batches_Y, mini_batches_weights) for mini_batch_X, mini_batch_Y, mini_batch_weights in zip(mini_batches_X, mini_batches_Y, mini_batches_weights): train_X = mini_batch_X train_Y = mini_batch_Y train_weights = mini_batch_weights profit = np.median(get_optimization_objective(X=train_X, Y=train_Y, weights=train_weights, opt_params=self.opt_params, model_params=model_params)) # cut for minibatch prev_profit = profit print("-----------------------") # use for raandom # for k in random.sample(range(len(self.alphas)), len(self.alphas) - 1): # for k in range(len(self.alphas)): random.seed(time.time()) random.shuffle(self_decided_features) for k in self_decided_features: model_params = {'alphas': self.alphas, 'const': self.const} current_alpha = self.alphas[k, 0] best_transition_points_set = set() if self.is_parallel: map_func = partial(get_and_clean_transition_points, sampler=sampler, model_params=model_params, k=k, opt_params=self.opt_params, current_alpha=current_alpha) iter = [[benchmark_X, benchmark_Y, benchmark_weights] for benchmark_X, benchmark_Y, benchmark_weights in zip(train_X, train_Y, train_weights)] best_transition_points_set = mypool.starmap(map_func, iter) best_transition_points_set = set().union(*best_transition_points_set) benchmark_best_transition_point = find_the_best_transition_point_benchmarks(train_X, train_Y, k=k, model_params=model_params, train_weights=train_weights, opt_params=self.opt_params, transition_point_list=list( best_transition_points_set), prev_profit=profit, pool=mypool) else: for benchmark_X, benchmark_Y, benchmark_weights in zip(train_X, train_Y, train_weights): best_transition_point, __, predicted_regrets, regrets, plot_x = sampler.get_transition_points( model_params=model_params, k=k, train_X=benchmark_X, train_Y=benchmark_Y, train_weights=benchmark_weights) best_transition_point_set_benchmark = clean_transition_points( transition_points=best_transition_point[-1], benchmark_X=benchmark_X, benchmark_Y=benchmark_Y, weights=benchmark_weights, model_params=model_params, opt_params=self.opt_params, current_alpha=current_alpha) best_transition_points_set = best_transition_points_set.union( best_transition_point_set_benchmark) # To reduce training time move this process to the sampling method so we dont iterate through transition points list twice benchmark_best_transition_point = find_the_best_transition_point_benchmarks(train_X, train_Y, k=k, model_params=model_params, train_weights=train_weights, opt_params=self.opt_params, transition_point_list=list( best_transition_points_set), prev_profit=profit) gradient = benchmark_best_transition_point.x - self.alphas[k, 0] # print(( # benchmark_best_transition_point.x - self.alphas[k, 0])) # print('dir', direction[k]) # if abs(gradient) > 0: # gradient = gradient / abs(gradient) direction[k] = -self.beta * momentum[k] - (1 - self.beta) * gradient # print(momentum, gradient, direction) # print('mom: ', momentum[k], 'dir: ', direction[k]) self.alphas[k, 0] = self.alphas[k, 0] - direction[k] * self.learning_rate momentum[k] = direction[k] * 1 profit = benchmark_best_transition_point.true_profit #record data for each parameter update if its full batch if self.mini_batch_size == -1: if self.is_val: # print('val') val_regret = np.median(self.get_regret(val_X, val_Y, val_weights, pool=mypool)) self.val_regrets.append(val_regret) test_run_time = time.time() if print_test: # print('test') test_regret = np.median(self.get_regret(test_X, test_Y, test_weights, pool=mypool)) self.test_regrets.append(test_regret) train_regret = np.median(self.get_regret(train_X, train_Y, train_weights, pool=mypool)) self.training_obj_value.append(train_regret) if self.verbose: print('updating parameter', k, 'test regret', test_regret) print("Updating Parameter: " + str(k) + " profit: " + str(profit)) self.test_run_time = self.test_run_time + time.time() - test_run_time sub_epoch = sub_epoch + 1 self.sub_epochs.append(sub_epoch) self.epochs.append(EPOCH) self.run_time.append((time.time() - start_time - self.test_run_time)) print("EPOCH:", EPOCH, "sub epoch:", sub_epoch, "objective value:", profit, 'val regret', self.val_regrets[-1], 'test regret', self.test_regrets[-1], flush=True) if not self.mini_batch_size == -1: # Record data after each batch for mini batches if self.is_val: # print('val') val_regret = np.median(self.get_regret(val_X,val_Y,val_weights,pool=mypool)) self.val_regrets.append(val_regret) test_run_time = time.time() if (print_test): # print('test') test_regret = np.median(self.get_regret(test_X, test_Y, test_weights,pool=mypool)) self.test_regrets.append(test_regret) train_regret = np.median(self.get_regret(train_X, train_Y, train_weights,pool=mypool)) self.training_obj_value.append(train_regret) if self.verbose: print('updating parameter', k, 'test regret', test_regret) print("Updating Parameter: " + str(k) + " profit: " + str(profit)) self.test_run_time = self.test_run_time + time.time() - test_run_time sub_epoch = sub_epoch + 1 self.sub_epochs.append(sub_epoch) self.epochs.append(EPOCH) self.run_time.append((time.time() - start_time - self.test_run_time)) print("EPOCH:", EPOCH, "sub epoch:", sub_epoch, "objective value:", profit, 'val regret', self.val_regrets[-1],'test regret', self.test_regrets[-1]) if self.run_time[-1] > self.run_time_limit: is_break = True break if is_break: break EPOCH = EPOCH + 1 self.number_of_epochs = EPOCH print("EPOCH:", EPOCH, "objective value:", profit, 'val regret', self.val_regrets[-1], 'test regret', self.test_regrets[-1]) print('Training finished ') print("-----------------------") if self.is_parallel: mypool.close() return profit def get_regret(self, X, Y, weights=None, pool=None): model_params = {'alphas': self.alphas, 'const': self.const} if pool is None: # print('X shape', X[0].shape) # # print('y shape', len(Y)) average_objective_value_with_predicted_items = get_optimization_objective(X=X, Y=Y, weights=weights, opt_params=self.opt_params, model_params=model_params ) optimal_average_objective_value = Solver.get_optimal_average_objective_value(X=X, Y=Y, weights=weights, opt_params=self.opt_params, ) # print('regret predicted item value set',average_objective_value_with_predicted_items,'regret with real item value',optimal_average_objective_value) # print('pred obj', np.sum(average_objective_value_with_predicted_items)) # print('true obj', np.sum(optimal_average_objective_value)) # print(optimal_average_objective_value - average_objective_value_with_predicted_items) # print('true obj', np.sum(optimal_average_objective_value)) regret = np.median(optimal_average_objective_value - average_objective_value_with_predicted_items) # print('regret', regret) # print(regret) else: map_func = partial(get_regret_worker, model_params=model_params, opt_params=self.opt_params) iter = zip(X, Y, weights) # [[x, y] for x, y in zip([4, 1, 0], [5, 1, 1])] objective_values = pool.starmap(map_func, iter) objective_values_predicted_items, optimal_objective_values = zip(*objective_values) # print('optimal_average_objective_value', objective_values_predicted_items) # print('average_objective_value_with_predicted_items', optimal_objective_values) print(np.mean(np.concatenate(optimal_objective_values))) regret = np.median(np.concatenate(optimal_objective_values) - np.concatenate(objective_values_predicted_items)) # print('true obj',np.sum(np.concatenate(optimal_objective_values))) self.test_regret = regret return regret def get_MSE(self, X, Y): predicted_values = compute_C_k(X.T, self.alphas, self.const, isSampling=False) MSE = np.mean((Y - predicted_values) ** 2) self.test_MSE = MSE return MSE def print(self): first_line = ['Method', 'Max Step Size Order', 'Min Step Size Order', 'Run Time Limit', 'Epoch Limit', 'Mini Batch Size', 'Learning rate', 'Parallelism', 'Test MSE'] second_line = [self.sampling_method, self.max_step_size_magnitude, self.min_step_size_magnitude, self.run_time_limit, self.epoch_limit, self.mini_batch_size, self.learning_rate, self.is_parallel, self.test_MSE] third_line = ['epochs', 'sub epochs', 'run time', 'training objective', 'test regret', 'val regret'] rest = np.array( [self.epochs, self.sub_epochs, self.run_time, self.training_obj_value, self.test_regrets, self.val_regrets]).T.tolist() print = [] print.append(first_line) print.append(second_line) print.append(third_line) print.extend(rest) return print def get_file_name(self, file_type='.csv'): file_name = str(self.sampling_method) + '-' + str(self.max_step_size_magnitude) + str( self.min_step_size_magnitude) + file_type return file_name def get_and_clean_transition_points(benchmark_X, benchmark_Y, benchmark_weights, sampler, model_params, k, opt_params, current_alpha): best_transition_point, __, predicted_regrets, regrets, plot_x = sampler.get_transition_points( model_params=model_params, k=k, train_X=benchmark_X, train_Y=benchmark_Y, train_weights=benchmark_weights) best_transition_point_set_benchmark = clean_transition_points( transition_points=best_transition_point[-1], benchmark_X=benchmark_X, benchmark_Y=benchmark_Y, weights=benchmark_weights, model_params=model_params, opt_params=opt_params, current_alpha=current_alpha) return best_transition_point_set_benchmark def find_the_best_transition_point_benchmarks(train_X, train_Y, model_params, transition_point_list, opt_params, train_weights, prev_profit, k, pool=None): alphas = model_params.get('alphas') best_average_profit = prev_profit best_transition_point = TransitionPoint(alphas[k, 0], true_profit=prev_profit) if not (len(transition_point_list) == 1 and alphas[k, 0] == transition_point_list[0]): if pool is not None: map_func = partial(find_the_best_transition_point_benchmarks_worker, train_X=train_X, train_Y=train_Y, train_weights=train_weights, model_params=model_params, opt_params=opt_params, k=k) results = pool.map(map_func, transition_point_list) results.append(best_transition_point) # print('x', [transition_point.x for transition_point in results], ' objective_value' , # [transition_point.true_profit for transition_point in results]) best_transition_point = max(results, key=attrgetter('true_profit')) else: for transition_point_x in transition_point_list: transition_point = find_the_best_transition_point_benchmarks_worker(transition_point_x, train_X=train_X, train_Y=train_Y, train_weights=train_weights, model_params=model_params, opt_params=opt_params, k=k) if transition_point.true_profit > best_average_profit: best_average_profit = transition_point.true_profit best_transition_point = copy.deepcopy(transition_point) return best_transition_point def find_the_best_transition_point_benchmarks_worker(transition_point_x, train_X, train_Y, train_weights, model_params, opt_params, k): alphas = model_params.get('alphas') alphas[k, 0] = transition_point_x model_params['alphas'] = alphas average_profit = np.median(get_optimization_objective(X=train_X, Y=train_Y, weights=train_weights, opt_params=opt_params, model_params=model_params)) # print('k: ' + str(k) + ' transition_point: ' + str(transition_point_x) + ' profit: ' + str(average_profit)) return TransitionPoint(transition_point_x, true_profit=average_profit) def get_regret_worker(X, Y, weights, model_params, opt_params ): # print('im in worker') # print('X shape', X.shape) # print('y shape', Y.shape) # print('weights shape', weights.shape) average_objective_value_with_predicted_items = get_optimization_objective(X=[X], Y=[Y], weights=[weights], opt_params=opt_params, model_params=model_params ) # print('finished average_objective_value_with_predicted_items') optimal_average_objective_value = Solver.get_optimal_average_objective_value(X=[X], Y=[Y], weights=[weights], opt_params=opt_params, ) # print('finished working') return average_objective_value_with_predicted_items, optimal_average_objective_value def converge(profit, prev_profit, conv_const, flag): """ A method to determine if the algorithm has reached the convergence point. Not used at the moment, but will be used in the full algorithm :param cost: :param prev_cost: :param conv_const: Convergence limit :return: is_converge : boolean """ if flag > 0: return False else: print('prev profit', prev_profit, 'profit' , profit) print('ratio', abs((profit - prev_profit) / profit)) if abs((profit - prev_profit) / profit) < conv_const: is_converged = True else: is_converged = False return is_converged def initialize_parameters(X,Y): """ initialize the parameters of the predict-opt model, AKA first stage :param train_set: dictionary containing X, and Y :return: params: dictionary, has initialized parameters of the model. """ model = linear_model.Ridge().fit(X, Y) coef = model.coef_ const = model.intercept_ params = {'alphas': coef.T, 'const': const} return params def clean_transition_points(transition_points, benchmark_X, benchmark_Y, weights, opt_params, model_params, current_alpha): cleaner_transition_points = set() base_profit = np.median(Solver.get_optimization_objective(X=[benchmark_X], Y=[benchmark_Y], weights=weights, model_params=model_params, opt_params=opt_params)) for transition_point in transition_points: if transition_point.true_profit > base_profit: cleaner_transition_points.add(transition_point.x) if not cleaner_transition_points: cleaner_transition_points.add(float(current_alpha)) return cleaner_transition_points
py
1a4daf9fc0d999d15602ac8785978ec66c81500a
''' Copyright Vulcan Inc. 2018-2020 Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at http://www.apache.org/licenses/LICENSE-2.0 or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import setuptools with open("README.md", "r") as f: long_description = f.read() setuptools.setup( name="gcsutils", version="1.1.5", description="Utility functions for Google Cloud Storage", long_description=long_description, long_description_content_type="text/markdown", packages=['gcsutils'], install_requires=['google-cloud-storage==1.16.1'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], python_requires='>=3.6', url='https://github.com/CoralMapping/proc_gcs_utils' )
py
1a4db0dd572a8738f2ef4152f86fd89e2090fa48
from django.contrib import admin # Register your models here. from profiles_api import models admin.site.register(models.UserProfile) admin.site.register(models.ProfileFeedItem)
py
1a4db1108dcd6d241bb5a5bdfd218020d8923598
# postgresql/psycopg2.py # Copyright (C) 2005-2019 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php r""" .. dialect:: postgresql+psycopg2 :name: psycopg2 :dbapi: psycopg2 :connectstring: postgresql+psycopg2://user:password@host:port/dbname[?key=value&key=value...] :url: http://pypi.python.org/pypi/psycopg2/ psycopg2 Connect Arguments ----------------------------------- psycopg2-specific keyword arguments which are accepted by :func:`.create_engine()` are: * ``server_side_cursors``: Enable the usage of "server side cursors" for SQL statements which support this feature. What this essentially means from a psycopg2 point of view is that the cursor is created using a name, e.g. ``connection.cursor('some name')``, which has the effect that result rows are not immediately pre-fetched and buffered after statement execution, but are instead left on the server and only retrieved as needed. SQLAlchemy's :class:`~sqlalchemy.engine.ResultProxy` uses special row-buffering behavior when this feature is enabled, such that groups of 100 rows at a time are fetched over the wire to reduce conversational overhead. Note that the :paramref:`.Connection.execution_options.stream_results` execution option is a more targeted way of enabling this mode on a per-execution basis. * ``use_native_unicode``: Enable the usage of Psycopg2 "native unicode" mode per connection. True by default. .. seealso:: :ref:`psycopg2_disable_native_unicode` * ``isolation_level``: This option, available for all PostgreSQL dialects, includes the ``AUTOCOMMIT`` isolation level when using the psycopg2 dialect. .. seealso:: :ref:`psycopg2_isolation_level` * ``client_encoding``: sets the client encoding in a libpq-agnostic way, using psycopg2's ``set_client_encoding()`` method. .. seealso:: :ref:`psycopg2_unicode` * ``executemany_mode``, ``executemany_batch_page_size``, ``executemany_values_page_size``: Allows use of psycopg2 extensions for optimizing "executemany"-stye queries. See the referenced section below for details. .. seealso:: :ref:`psycopg2_executemany_mode` * ``use_batch_mode``: this is the previous setting used to affect "executemany" mode and is now deprecated. Unix Domain Connections ------------------------ psycopg2 supports connecting via Unix domain connections. When the ``host`` portion of the URL is omitted, SQLAlchemy passes ``None`` to psycopg2, which specifies Unix-domain communication rather than TCP/IP communication:: create_engine("postgresql+psycopg2://user:password@/dbname") By default, the socket file used is to connect to a Unix-domain socket in ``/tmp``, or whatever socket directory was specified when PostgreSQL was built. This value can be overridden by passing a pathname to psycopg2, using ``host`` as an additional keyword argument:: create_engine("postgresql+psycopg2://user:password@/dbname?host=/var/lib/postgresql") .. seealso:: `PQconnectdbParams \ <http://www.postgresql.org/docs/9.1/static/libpq-connect.html#LIBPQ-PQCONNECTDBPARAMS>`_ Empty DSN Connections / Environment Variable Connections --------------------------------------------------------- The psycopg2 DBAPI can connect to PostgreSQL by passing an empty DSN to the libpq client library, which by default indicates to connect to a localhost PostgreSQL database that is open for "trust" connections. This behavior can be further tailored using a particular set of environment variables which are prefixed with ``PG_...``, which are consumed by ``libpq`` to take the place of any or all elements of the connection string. For this form, the URL can be passed without any elements other than the initial scheme:: engine = create_engine('postgresql+psycopg2://') In the above form, a blank "dsn" string is passed to the ``psycopg2.connect()`` function which in turn represents an empty DSN passed to libpq. .. versionadded:: 1.3.2 support for parameter-less connections with psycopg2. .. seealso:: `Environment Variables\ <https://www.postgresql.org/docs/current/libpq-envars.html>`_ - PostgreSQL documentation on how to use ``PG_...`` environment variables for connections. .. _psycopg2_execution_options: Per-Statement/Connection Execution Options ------------------------------------------- The following DBAPI-specific options are respected when used with :meth:`.Connection.execution_options`, :meth:`.Executable.execution_options`, :meth:`.Query.execution_options`, in addition to those not specific to DBAPIs: * ``isolation_level`` - Set the transaction isolation level for the lifespan of a :class:`.Connection` (can only be set on a connection, not a statement or query). See :ref:`psycopg2_isolation_level`. * ``stream_results`` - Enable or disable usage of psycopg2 server side cursors - this feature makes use of "named" cursors in combination with special result handling methods so that result rows are not fully buffered. If ``None`` or not set, the ``server_side_cursors`` option of the :class:`.Engine` is used. * ``max_row_buffer`` - when using ``stream_results``, an integer value that specifies the maximum number of rows to buffer at a time. This is interpreted by the :class:`.BufferedRowResultProxy`, and if omitted the buffer will grow to ultimately store 1000 rows at a time. .. versionadded:: 1.0.6 .. _psycopg2_executemany_mode: Psycopg2 Fast Execution Helpers ------------------------------- Modern versions of psycopg2 include a feature known as `Fast Execution Helpers \ <http://initd.org/psycopg/docs/extras.html#fast-execution-helpers>`_, which have been shown in benchmarking to improve psycopg2's executemany() performance, primarily with INSERT statements, by multiple orders of magnitude. SQLAlchemy allows this extension to be used for all ``executemany()`` style calls invoked by an :class:`.Engine` when used with :ref:`multiple parameter sets <execute_multiple>`, which includes the use of this feature both by the Core as well as by the ORM for inserts of objects with non-autogenerated primary key values, by adding the ``executemany_mode`` flag to :func:`.create_engine`:: engine = create_engine( "postgresql+psycopg2://scott:tiger@host/dbname", executemany_mode='batch') .. versionchanged:: 1.3.7 - the ``use_batch_mode`` flag has been superseded by a new parameter ``executemany_mode`` which provides support both for psycopg2's ``execute_batch`` helper as well as the ``execute_values`` helper. Possible options for ``executemany_mode`` include: * ``None`` - By default, psycopg2's extensions are not used, and the usual ``cursor.executemany()`` method is used when invoking batches of statements. * ``'batch'`` - Uses ``psycopg2.extras.execute_batch`` so that multiple copies of a SQL query, each one corresponding to a parameter set passed to ``executemany()``, are joined into a single SQL string separated by a semicolon. This is the same behavior as was provided by the ``use_batch_mode=True`` flag. * ``'values'``- For Core :func:`.insert` constructs only (including those emitted by the ORM automatically), the ``psycopg2.extras.execute_values`` extension is used so that multiple parameter sets are grouped into a single INSERT statement and joined together with multiple VALUES expressions. This method requires that the string text of the VALUES clause inside the INSERT statement is manipulated, so is only supported with a compiled :func:`.insert` construct where the format is predictable. For all other constructs, including plain textual INSERT statements not rendered by the SQLAlchemy expression language compiler, the ``psycopg2.extras.execute_batch`` method is used. It is therefore important to note that **"values" mode implies that "batch" mode is also used for all statements for which "values" mode does not apply**. For both strategies, the ``executemany_batch_page_size`` and ``executemany_values_page_size`` arguments control how many parameter sets should be represented in each execution. Because "values" mode implies a fallback down to "batch" mode for non-INSERT statements, there are two independent page size arguments. For each, the default value of ``None`` means to use psycopg2's defaults, which at the time of this writing are quite low at 100. For the ``execute_values`` method, a number as high as 10000 may prove to be performant, whereas for ``execute_batch``, as the number represents full statements repeated, a number closer to the default of 100 is likely more appropriate:: engine = create_engine( "postgresql+psycopg2://scott:tiger@host/dbname", executemany_mode='values', executemany_values_page_size=10000, executemany_batch_page_size=500) .. seealso:: :ref:`execute_multiple` - General information on using the :class:`.Connection` object to execute statements in such a way as to make use of the DBAPI ``.executemany()`` method. .. versionchanged:: 1.3.7 - Added support for ``psycopg2.extras.execute_values``. The ``use_batch_mode`` flag is superseded by the ``executemany_mode`` flag. .. _psycopg2_unicode: Unicode with Psycopg2 ---------------------- By default, the psycopg2 driver uses the ``psycopg2.extensions.UNICODE`` extension, such that the DBAPI receives and returns all strings as Python Unicode objects directly - SQLAlchemy passes these values through without change. Psycopg2 here will encode/decode string values based on the current "client encoding" setting; by default this is the value in the ``postgresql.conf`` file, which often defaults to ``SQL_ASCII``. Typically, this can be changed to ``utf8``, as a more useful default:: # postgresql.conf file # client_encoding = sql_ascii # actually, defaults to database # encoding client_encoding = utf8 A second way to affect the client encoding is to set it within Psycopg2 locally. SQLAlchemy will call psycopg2's :meth:`psycopg2:connection.set_client_encoding` method on all new connections based on the value passed to :func:`.create_engine` using the ``client_encoding`` parameter:: # set_client_encoding() setting; # works for *all* PostgreSQL versions engine = create_engine("postgresql://user:pass@host/dbname", client_encoding='utf8') This overrides the encoding specified in the PostgreSQL client configuration. When using the parameter in this way, the psycopg2 driver emits ``SET client_encoding TO 'utf8'`` on the connection explicitly, and works in all PostgreSQL versions. Note that the ``client_encoding`` setting as passed to :func:`.create_engine` is **not the same** as the more recently added ``client_encoding`` parameter now supported by libpq directly. This is enabled when ``client_encoding`` is passed directly to ``psycopg2.connect()``, and from SQLAlchemy is passed using the :paramref:`.create_engine.connect_args` parameter:: engine = create_engine( "postgresql://user:pass@host/dbname", connect_args={'client_encoding': 'utf8'}) # using the query string is equivalent engine = create_engine("postgresql://user:pass@host/dbname?client_encoding=utf8") The above parameter was only added to libpq as of version 9.1 of PostgreSQL, so using the previous method is better for cross-version support. .. _psycopg2_disable_native_unicode: Disabling Native Unicode ^^^^^^^^^^^^^^^^^^^^^^^^ SQLAlchemy can also be instructed to skip the usage of the psycopg2 ``UNICODE`` extension and to instead utilize its own unicode encode/decode services, which are normally reserved only for those DBAPIs that don't fully support unicode directly. Passing ``use_native_unicode=False`` to :func:`.create_engine` will disable usage of ``psycopg2.extensions.UNICODE``. SQLAlchemy will instead encode data itself into Python bytestrings on the way in and coerce from bytes on the way back, using the value of the :func:`.create_engine` ``encoding`` parameter, which defaults to ``utf-8``. SQLAlchemy's own unicode encode/decode functionality is steadily becoming obsolete as most DBAPIs now support unicode fully. Bound Parameter Styles ---------------------- The default parameter style for the psycopg2 dialect is "pyformat", where SQL is rendered using ``%(paramname)s`` style. This format has the limitation that it does not accommodate the unusual case of parameter names that actually contain percent or parenthesis symbols; as SQLAlchemy in many cases generates bound parameter names based on the name of a column, the presence of these characters in a column name can lead to problems. There are two solutions to the issue of a :class:`.schema.Column` that contains one of these characters in its name. One is to specify the :paramref:`.schema.Column.key` for columns that have such names:: measurement = Table('measurement', metadata, Column('Size (meters)', Integer, key='size_meters') ) Above, an INSERT statement such as ``measurement.insert()`` will use ``size_meters`` as the parameter name, and a SQL expression such as ``measurement.c.size_meters > 10`` will derive the bound parameter name from the ``size_meters`` key as well. .. versionchanged:: 1.0.0 - SQL expressions will use :attr:`.Column.key` as the source of naming when anonymous bound parameters are created in SQL expressions; previously, this behavior only applied to :meth:`.Table.insert` and :meth:`.Table.update` parameter names. The other solution is to use a positional format; psycopg2 allows use of the "format" paramstyle, which can be passed to :paramref:`.create_engine.paramstyle`:: engine = create_engine( 'postgresql://scott:tiger@localhost:5432/test', paramstyle='format') With the above engine, instead of a statement like:: INSERT INTO measurement ("Size (meters)") VALUES (%(Size (meters))s) {'Size (meters)': 1} we instead see:: INSERT INTO measurement ("Size (meters)") VALUES (%s) (1, ) Where above, the dictionary style is converted into a tuple with positional style. Transactions ------------ The psycopg2 dialect fully supports SAVEPOINT and two-phase commit operations. .. _psycopg2_isolation_level: Psycopg2 Transaction Isolation Level ------------------------------------- As discussed in :ref:`postgresql_isolation_level`, all PostgreSQL dialects support setting of transaction isolation level both via the ``isolation_level`` parameter passed to :func:`.create_engine`, as well as the ``isolation_level`` argument used by :meth:`.Connection.execution_options`. When using the psycopg2 dialect, these options make use of psycopg2's ``set_isolation_level()`` connection method, rather than emitting a PostgreSQL directive; this is because psycopg2's API-level setting is always emitted at the start of each transaction in any case. The psycopg2 dialect supports these constants for isolation level: * ``READ COMMITTED`` * ``READ UNCOMMITTED`` * ``REPEATABLE READ`` * ``SERIALIZABLE`` * ``AUTOCOMMIT`` .. seealso:: :ref:`postgresql_isolation_level` :ref:`pg8000_isolation_level` NOTICE logging --------------- The psycopg2 dialect will log PostgreSQL NOTICE messages via the ``sqlalchemy.dialects.postgresql`` logger. When this logger is set to the ``logging.INFO`` level, notice messages will be logged:: import logging logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO) Above, it is assumed that logging is configured externally. If this is not the case, configuration such as ``logging.basicConfig()`` must be utilized:: import logging logging.basicConfig() # log messages to stdout logging.getLogger('sqlalchemy.dialects.postgresql').setLevel(logging.INFO) .. seealso:: `Logging HOWTO <https://docs.python.org/3/howto/logging.html>`_ - on the python.org website .. _psycopg2_hstore: HSTORE type ------------ The ``psycopg2`` DBAPI includes an extension to natively handle marshalling of the HSTORE type. The SQLAlchemy psycopg2 dialect will enable this extension by default when psycopg2 version 2.4 or greater is used, and it is detected that the target database has the HSTORE type set up for use. In other words, when the dialect makes the first connection, a sequence like the following is performed: 1. Request the available HSTORE oids using ``psycopg2.extras.HstoreAdapter.get_oids()``. If this function returns a list of HSTORE identifiers, we then determine that the ``HSTORE`` extension is present. This function is **skipped** if the version of psycopg2 installed is less than version 2.4. 2. If the ``use_native_hstore`` flag is at its default of ``True``, and we've detected that ``HSTORE`` oids are available, the ``psycopg2.extensions.register_hstore()`` extension is invoked for all connections. The ``register_hstore()`` extension has the effect of **all Python dictionaries being accepted as parameters regardless of the type of target column in SQL**. The dictionaries are converted by this extension into a textual HSTORE expression. If this behavior is not desired, disable the use of the hstore extension by setting ``use_native_hstore`` to ``False`` as follows:: engine = create_engine("postgresql+psycopg2://scott:tiger@localhost/test", use_native_hstore=False) The ``HSTORE`` type is **still supported** when the ``psycopg2.extensions.register_hstore()`` extension is not used. It merely means that the coercion between Python dictionaries and the HSTORE string format, on both the parameter side and the result side, will take place within SQLAlchemy's own marshalling logic, and not that of ``psycopg2`` which may be more performant. """ # noqa from __future__ import absolute_import import decimal import logging import re from .base import _DECIMAL_TYPES from .base import _FLOAT_TYPES from .base import _INT_TYPES from .base import ENUM from .base import PGCompiler from .base import PGDialect from .base import PGExecutionContext from .base import PGIdentifierPreparer from .base import UUID from .hstore import HSTORE from .json import JSON from .json import JSONB from ... import exc from ... import processors from ... import types as sqltypes from ... import util from ...engine import result as _result from ...util import collections_abc try: from uuid import UUID as _python_UUID # noqa except ImportError: _python_UUID = None logger = logging.getLogger("sqlalchemy.dialects.postgresql") class _PGNumeric(sqltypes.Numeric): def bind_processor(self, dialect): return None def result_processor(self, dialect, coltype): if self.asdecimal: if coltype in _FLOAT_TYPES: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale ) elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: # pg8000 returns Decimal natively for 1700 return None else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) else: if coltype in _FLOAT_TYPES: # pg8000 returns float natively for 701 return None elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: return processors.to_float else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype ) class _PGEnum(ENUM): def result_processor(self, dialect, coltype): if util.py2k and self._expect_unicode is True: # for py2k, if the enum type needs unicode data (which is set up as # part of the Enum() constructor based on values passed as py2k # unicode objects) we have to use our own converters since # psycopg2's don't work, a rare exception to the "modern DBAPIs # support unicode everywhere" theme of deprecating # convert_unicode=True. Use the special "force_nocheck" directive # which forces unicode conversion to happen on the Python side # without an isinstance() check. in py3k psycopg2 does the right # thing automatically. self._expect_unicode = "force_nocheck" return super(_PGEnum, self).result_processor(dialect, coltype) class _PGHStore(HSTORE): def bind_processor(self, dialect): if dialect._has_native_hstore: return None else: return super(_PGHStore, self).bind_processor(dialect) def result_processor(self, dialect, coltype): if dialect._has_native_hstore: return None else: return super(_PGHStore, self).result_processor(dialect, coltype) class _PGJSON(JSON): def result_processor(self, dialect, coltype): if dialect._has_native_json: return None else: return super(_PGJSON, self).result_processor(dialect, coltype) class _PGJSONB(JSONB): def result_processor(self, dialect, coltype): if dialect._has_native_jsonb: return None else: return super(_PGJSONB, self).result_processor(dialect, coltype) class _PGUUID(UUID): def bind_processor(self, dialect): if not self.as_uuid and dialect.use_native_uuid: def process(value): if value is not None: value = _python_UUID(value) return value return process def result_processor(self, dialect, coltype): if not self.as_uuid and dialect.use_native_uuid: def process(value): if value is not None: value = str(value) return value return process _server_side_id = util.counter() class PGExecutionContext_psycopg2(PGExecutionContext): def create_server_side_cursor(self): # use server-side cursors: # http://lists.initd.org/pipermail/psycopg/2007-January/005251.html ident = "c_%s_%s" % (hex(id(self))[2:], hex(_server_side_id())[2:]) return self._dbapi_connection.cursor(ident) def get_result_proxy(self): self._log_notices(self.cursor) if self._is_server_side: return _result.BufferedRowResultProxy(self) else: return _result.ResultProxy(self) def _log_notices(self, cursor): # check also that notices is an iterable, after it's already # established that we will be iterating through it. This is to get # around test suites such as SQLAlchemy's using a Mock object for # cursor if not cursor.connection.notices or not isinstance( cursor.connection.notices, collections_abc.Iterable ): return for notice in cursor.connection.notices: # NOTICE messages have a # newline character at the end logger.info(notice.rstrip()) cursor.connection.notices[:] = [] class PGCompiler_psycopg2(PGCompiler): pass class PGIdentifierPreparer_psycopg2(PGIdentifierPreparer): pass EXECUTEMANY_DEFAULT = util.symbol("executemany_default") EXECUTEMANY_BATCH = util.symbol("executemany_batch") EXECUTEMANY_VALUES = util.symbol("executemany_values") class PGDialect_psycopg2(PGDialect): driver = "psycopg2" if util.py2k: supports_unicode_statements = False supports_server_side_cursors = True default_paramstyle = "pyformat" # set to true based on psycopg2 version supports_sane_multi_rowcount = False execution_ctx_cls = PGExecutionContext_psycopg2 statement_compiler = PGCompiler_psycopg2 preparer = PGIdentifierPreparer_psycopg2 psycopg2_version = (0, 0) FEATURE_VERSION_MAP = dict( native_json=(2, 5), native_jsonb=(2, 5, 4), sane_multi_rowcount=(2, 0, 9), array_oid=(2, 4, 3), hstore_adapter=(2, 4), ) _has_native_hstore = False _has_native_json = False _has_native_jsonb = False engine_config_types = PGDialect.engine_config_types.union( [("use_native_unicode", util.asbool)] ) colspecs = util.update_copy( PGDialect.colspecs, { sqltypes.Numeric: _PGNumeric, ENUM: _PGEnum, # needs force_unicode sqltypes.Enum: _PGEnum, # needs force_unicode HSTORE: _PGHStore, JSON: _PGJSON, sqltypes.JSON: _PGJSON, JSONB: _PGJSONB, UUID: _PGUUID, }, ) @util.deprecated_params( use_batch_mode=( "1.3.7", "The psycopg2 use_batch_mode flag is superseded by " "executemany_mode='batch'", ) ) def __init__( self, server_side_cursors=False, use_native_unicode=True, client_encoding=None, use_native_hstore=True, use_native_uuid=True, executemany_mode=None, executemany_batch_page_size=None, executemany_values_page_size=None, use_batch_mode=None, **kwargs ): PGDialect.__init__(self, **kwargs) self.server_side_cursors = server_side_cursors self.use_native_unicode = use_native_unicode self.use_native_hstore = use_native_hstore self.use_native_uuid = use_native_uuid self.supports_unicode_binds = use_native_unicode self.client_encoding = client_encoding # Parse executemany_mode argument, allowing it to be only one of the # symbol names self.executemany_mode = util.symbol.parse_user_argument( executemany_mode, { EXECUTEMANY_DEFAULT: [None], EXECUTEMANY_BATCH: ["batch"], EXECUTEMANY_VALUES: ["values"], }, "executemany_mode", ) if use_batch_mode: self.executemany_mode = EXECUTEMANY_BATCH self.executemany_batch_page_size = executemany_batch_page_size self.executemany_values_page_size = executemany_values_page_size if self.dbapi and hasattr(self.dbapi, "__version__"): m = re.match(r"(\d+)\.(\d+)(?:\.(\d+))?", self.dbapi.__version__) if m: self.psycopg2_version = tuple( int(x) for x in m.group(1, 2, 3) if x is not None ) def initialize(self, connection): super(PGDialect_psycopg2, self).initialize(connection) self._has_native_hstore = ( self.use_native_hstore and self._hstore_oids(connection.connection) is not None ) self._has_native_json = ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["native_json"] ) self._has_native_jsonb = ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["native_jsonb"] ) # http://initd.org/psycopg/docs/news.html#what-s-new-in-psycopg-2-0-9 self.supports_sane_multi_rowcount = ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["sane_multi_rowcount"] and self.executemany_mode is EXECUTEMANY_DEFAULT ) @classmethod def dbapi(cls): import psycopg2 return psycopg2 @classmethod def _psycopg2_extensions(cls): from psycopg2 import extensions return extensions @classmethod def _psycopg2_extras(cls): from psycopg2 import extras return extras @util.memoized_property def _isolation_lookup(self): extensions = self._psycopg2_extensions() return { "AUTOCOMMIT": extensions.ISOLATION_LEVEL_AUTOCOMMIT, "READ COMMITTED": extensions.ISOLATION_LEVEL_READ_COMMITTED, "READ UNCOMMITTED": extensions.ISOLATION_LEVEL_READ_UNCOMMITTED, "REPEATABLE READ": extensions.ISOLATION_LEVEL_REPEATABLE_READ, "SERIALIZABLE": extensions.ISOLATION_LEVEL_SERIALIZABLE, } def set_isolation_level(self, connection, level): try: level = self._isolation_lookup[level.replace("_", " ")] except KeyError: raise exc.ArgumentError( "Invalid value '%s' for isolation_level. " "Valid isolation levels for %s are %s" % (level, self.name, ", ".join(self._isolation_lookup)) ) connection.set_isolation_level(level) def on_connect(self): extras = self._psycopg2_extras() extensions = self._psycopg2_extensions() fns = [] if self.client_encoding is not None: def on_connect(conn): conn.set_client_encoding(self.client_encoding) fns.append(on_connect) if self.isolation_level is not None: def on_connect(conn): self.set_isolation_level(conn, self.isolation_level) fns.append(on_connect) if self.dbapi and self.use_native_uuid: def on_connect(conn): extras.register_uuid(None, conn) fns.append(on_connect) if self.dbapi and self.use_native_unicode: def on_connect(conn): extensions.register_type(extensions.UNICODE, conn) extensions.register_type(extensions.UNICODEARRAY, conn) fns.append(on_connect) if self.dbapi and self.use_native_hstore: def on_connect(conn): hstore_oids = self._hstore_oids(conn) if hstore_oids is not None: oid, array_oid = hstore_oids kw = {"oid": oid} if util.py2k: kw["unicode"] = True if ( self.psycopg2_version >= self.FEATURE_VERSION_MAP["array_oid"] ): kw["array_oid"] = array_oid extras.register_hstore(conn, **kw) fns.append(on_connect) if self.dbapi and self._json_deserializer: def on_connect(conn): if self._has_native_json: extras.register_default_json( conn, loads=self._json_deserializer ) if self._has_native_jsonb: extras.register_default_jsonb( conn, loads=self._json_deserializer ) fns.append(on_connect) if fns: def on_connect(conn): for fn in fns: fn(conn) return on_connect else: return None def do_executemany(self, cursor, statement, parameters, context=None): if self.executemany_mode is EXECUTEMANY_DEFAULT: cursor.executemany(statement, parameters) return if ( self.executemany_mode is EXECUTEMANY_VALUES and context and context.isinsert and context.compiled.insert_single_values_expr ): executemany_values = ( "(%s)" % context.compiled.insert_single_values_expr ) # guard for statement that was altered via event hook or similar if executemany_values not in statement: executemany_values = None else: executemany_values = None if executemany_values: # Currently, SQLAlchemy does not pass "RETURNING" statements # into executemany(), since no DBAPI has ever supported that # until the introduction of psycopg2's executemany_values, so # we are not yet using the fetch=True flag. statement = statement.replace(executemany_values, "%s") if self.executemany_values_page_size: kwargs = {"page_size": self.executemany_values_page_size} else: kwargs = {} self._psycopg2_extras().execute_values( cursor, statement, parameters, template=executemany_values, **kwargs ) else: if self.executemany_batch_page_size: kwargs = {"page_size": self.executemany_batch_page_size} else: kwargs = {} self._psycopg2_extras().execute_batch( cursor, statement, parameters, **kwargs ) @util.memoized_instancemethod def _hstore_oids(self, conn): if self.psycopg2_version >= self.FEATURE_VERSION_MAP["hstore_adapter"]: extras = self._psycopg2_extras() oids = extras.HstoreAdapter.get_oids(conn) if oids is not None and oids[0]: return oids[0:2] return None def create_connect_args(self, url): opts = url.translate_connect_args(username="user") if opts: if "port" in opts: opts["port"] = int(opts["port"]) opts.update(url.query) # send individual dbname, user, password, host, port # parameters to psycopg2.connect() return ([], opts) elif url.query: # any other connection arguments, pass directly opts.update(url.query) return ([], opts) else: # no connection arguments whatsoever; psycopg2.connect() # requires that "dsn" be present as a blank string. return ([""], opts) def is_disconnect(self, e, connection, cursor): if isinstance(e, self.dbapi.Error): # check the "closed" flag. this might not be # present on old psycopg2 versions. Also, # this flag doesn't actually help in a lot of disconnect # situations, so don't rely on it. if getattr(connection, "closed", False): return True # checks based on strings. in the case that .closed # didn't cut it, fall back onto these. str_e = str(e).partition("\n")[0] for msg in [ # these error messages from libpq: interfaces/libpq/fe-misc.c # and interfaces/libpq/fe-secure.c. "terminating connection", "closed the connection", "connection not open", "could not receive data from server", "could not send data to server", # psycopg2 client errors, psycopg2/conenction.h, # psycopg2/cursor.h "connection already closed", "cursor already closed", # not sure where this path is originally from, it may # be obsolete. It really says "losed", not "closed". "losed the connection unexpectedly", # these can occur in newer SSL "connection has been closed unexpectedly", "SSL SYSCALL error: Bad file descriptor", "SSL SYSCALL error: EOF detected", "SSL error: decryption failed or bad record mac", "SSL SYSCALL error: Operation timed out", ]: idx = str_e.find(msg) if idx >= 0 and '"' not in str_e[:idx]: return True return False dialect = PGDialect_psycopg2
py
1a4db13a884ebf07c73dbfd765771ecf6fae5bc0
from __future__ import absolute_import import os import posixpath import pysvn from cobra.core.constants import README_MARKUPS from cobra.core.markup import rest2html, can_markup, is_markdown, is_rst, is_plain from cobra.core.markdown import markdown def get_readme(repository, path='', revision=None): # 1 - md # 2 - rst # 3 - txt readme_suffix_names = README_MARKUPS readme_name = '' if repository.root.endswith(posixpath.sep): root = repository.root[:-1] else: root = repository.root root_path = '%s%s' % (root, path) if revision is None: revision = repository.get_latest_revision() c = repository.get_svn_client() r = pysvn.Revision(pysvn.opt_revision_kind.number, revision) ls = c.list(root_path, recurse=False, peg_revision=r, revision=r) ls = map(lambda y: dict(y.items()), map(lambda x: x[0], ls)) for item in ls: if pysvn.node_kind.file == item['kind']: # sometimes double slashes appear in the returned path node_path = item['repos_path'] # we meet a special situation, it is that the root of repo is not real 'root' # and we have no permission to access the real root, so, the repos_path that # has the prefix of real root must be cut off. if repository.prefix: repo_prefix = repository.prefix if repo_prefix.endswith(posixpath.sep): repo_prefix = repo_prefix[:-1] node_path = node_path.replace(repo_prefix, '/', 1) if node_path.startswith('//'): node_path = node_path[1:] head, tail = os.path.split(node_path) file_name, file_suffix = os.path.splitext(tail) if file_name.lower() == 'readme' and (file_suffix in readme_suffix_names): readme_name = node_path break if file_name.lower() == 'readme' and (file_suffix.lower()=='.txt' or file_suffix==''): readme_name = node_path if readme_name: content = c.cat('%s%s' % (root, readme_name), revision=r, peg_revision=r) try: content = content.decode('utf-8') except UnicodeDecodeError: content = content.decode('gbk') if readme_name.startswith('/'): readme_name = readme_name[1:] if is_markdown(readme_name): content = markdown(content) elif is_rst(readme_name): content = rest2html(content) else: content = '<pre class="plain-readme">' + content + '</pre>' readme = { 'name': readme_name, 'content': content } return readme else: return
py
1a4db20d55bbe6a080e3d0ae3d5896a38f717027
# coding: utf-8 # Copyright (c) Scanlon Materials Theory Group # Distributed under the terms of the MIT License. """ A script to calculate and plot optical spectra from ab initio calculations. """ import os from glob import glob import sys import logging import warnings import argparse from collections import OrderedDict import matplotlib as mpl mpl.use('Agg') from pymatgen.io.vasp import Vasprun from pymatgen.util.string import latexify from sumo.io import questaal from sumo.plotting.optics_plotter import SOpticsPlotter from sumo.electronic_structure.optics import (broaden_eps, calculate_dielectric_properties, write_files) __author__ = "Alex Ganose" __version__ = "1.0" __maintainer__ = "Alex Ganose" __email__ = "[email protected]" __date__ = "Jan 10, 2018" def optplot(modes=('absorption',), filenames=None, codes='vasp', prefix=None, directory=None, gaussian=None, band_gaps=None, labels=None, average=True, height=6, width=6, xmin=0, xmax=None, ymin=0, ymax=1e5, colours=None, style=None, no_base_style=None, image_format='pdf', dpi=400, plt=None, fonts=None): """A script to plot optical absorption spectra from VASP calculations. Args: modes (:obj:`list` or :obj:`tuple`): Ordered list of :obj:`str` determining properties to plot. Accepted options are 'absorption' (default), 'eps', 'eps-real', 'eps-im', 'n', 'n-real', 'n-im', 'loss' (equivalent to n-im). filenames (:obj:`str` or :obj:`list`, optional): Path to data file. For VASP this is a *vasprun.xml* file (can be gzipped); for Questaal the *opt.ext* file from *lmf* or *eps_BSE.out* from *bethesalpeter* may be used. Alternatively, a list of paths can be provided, in which case the absorption spectra for each will be plotted concurrently. codes (:obj:`str` or :obj:`list`, optional): Original calculator. Accepted values are 'vasp' and 'questaal'. Items should correspond to filenames. prefix (:obj:`str`, optional): Prefix for file names. directory (:obj:`str`, optional): The directory in which to save files. gaussian (:obj:`float`): Standard deviation for gaussian broadening. band_gaps (:obj:`float`, :obj:`str` or :obj:`list`, optional): The band gap as a :obj:`float`, plotted as a dashed line. If plotting multiple spectra then a :obj:`list` of band gaps can be provided. Band gaps can be provided as a floating-point number or as a path to a *vasprun.xml* file. To skip over a line, set its bandgap to zero or a negative number to place it outside the visible range. labels (:obj:`str` or :obj:`list`): A label to identify the spectra. If plotting multiple spectra then a :obj:`list` of labels can be provided. average (:obj:`bool`, optional): Average the dielectric response across all lattice directions. Defaults to ``True``. height (:obj:`float`, optional): The height of the plot. width (:obj:`float`, optional): The width of the plot. xmin (:obj:`float`, optional): The minimum energy on the x-axis. xmax (:obj:`float`, optional): The maximum energy on the x-axis. ymin (:obj:`float`, optional): The minimum absorption intensity on the y-axis. ymax (:obj:`float`, optional): The maximum absorption intensity on the y-axis. colours (:obj:`list`, optional): A :obj:`list` of colours to use in the plot. The colours can be specified as a hex code, set of rgb values, or any other format supported by matplotlib. style (:obj:`list` or :obj:`str`, optional): (List of) matplotlib style specifications, to be composed on top of Sumo base style. no_base_style (:obj:`bool`, optional): Prevent use of sumo base style. This can make alternative styles behave more predictably. image_format (:obj:`str`, optional): The image file format. Can be any format supported by matplotlib, including: png, jpg, pdf, and svg. Defaults to pdf. dpi (:obj:`int`, optional): The dots-per-inch (pixel density) for the image. plt (:obj:`matplotlib.pyplot`, optional): A :obj:`matplotlib.pyplot` object to use for plotting. fonts (:obj:`list`, optional): Fonts to use in the plot. Can be a a single font, specified as a :obj:`str`, or several fonts, specified as a :obj:`list` of :obj:`str`. Returns: A matplotlib pyplot object. """ # Don't write files if this is being done to manipulate existing plt save_files = False if plt else True ##### BUILD LIST OF FILES AUTOMATICALLY IF NECESSARY ##### if codes == 'vasp': if not filenames: if os.path.exists('vasprun.xml'): filenames = ['vasprun.xml'] elif os.path.exists('vasprun.xml.gz'): filenames = ['vasprun.xml.gz'] else: logging.error('ERROR: No vasprun.xml found!') sys.exit() elif codes == 'questaal': if not filenames: if len(glob('opt.*')) > 0: filenames = glob('opt.*') if len(filenames) == 1: logging.info("Found optics file: " + filenames[0]) else: logging.info("Found optics files: " + ", ".join(filenames)) if isinstance(filenames, str): filenames = [filenames] if isinstance(codes, str): codes = [codes] * len(filenames) elif len(codes) == 1: codes = list(codes) * len(filenames) #### ITERATE OVER FILES READING DIELECTRIC DATA #### dielectrics = [] auto_labels = [] auto_band_gaps = [] for i, (filename, code) in enumerate(zip(filenames, codes)): if code == 'vasp': vr = Vasprun(filename) dielectrics.append(vr.dielectric) auto_labels.append( latexify(vr.final_structure.composition.reduced_formula). replace('$_', '$_\mathregular')) if isinstance(band_gaps, list) and not band_gaps: # band_gaps = [], auto band gap requested auto_band_gaps.append( vr.get_band_structure().get_band_gap()['energy']) else: auto_band_gaps.append(None) elif code == 'questaal': if not save_files: out_filename = None elif len(filenames) == 1: out_filename = 'dielectric.dat' else: out_filename = 'dielectric_{0}.dat'.format(i + 1) dielectrics.append( questaal.dielectric_from_file(filename, out_filename)) auto_band_gaps.append(None) auto_labels.append(filename.split('.')[-1]) if isinstance(band_gaps, list) and not band_gaps: logging.info('Bandgap requested but not supported for Questaal' ' file {}: skipping...'.format(filename)) else: raise Exception('Code selection "{}" not recognised'.format(code)) if not labels and len(filenames) > 1: labels = auto_labels #### PROCESS DIELECTRIC DATA: BROADENING AND DERIVED PROPERTIES #### if gaussian: dielectrics = [broaden_eps(d, gaussian) for d in dielectrics] # initialize spectrum data ready to append from each dataset abs_data = OrderedDict() for mode in modes: abs_data.update({mode: []}) # for each calculation, get all required properties and append to data for d in dielectrics: for mode, spectrum in calculate_dielectric_properties( d, set(modes), average=average).items(): abs_data[mode].append(spectrum) if isinstance(band_gaps, list) and not band_gaps: # empty list therefore use bandgaps collected from vasprun files band_gaps = auto_band_gaps elif isinstance(band_gaps, list): # list containing filenames and/or values: mutate the list in-place for i, item in enumerate(band_gaps): if item is None: pass elif _floatable(item): band_gaps[i] = float(item) elif 'vasprun' in item: band_gaps[i] = ( Vasprun(item).get_band_structure().get_band_gap()['energy'] ) else: raise ValueError('Format not recognised for auto bandgap: ' '{}.'.format(item)) plotter = SOpticsPlotter(abs_data, band_gap=band_gaps, label=labels) plt = plotter.get_plot(width=width, height=height, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, colours=colours, dpi=dpi, plt=plt, fonts=fonts, style=style, no_base_style=no_base_style) if save_files: basename = 'absorption' if prefix: basename = '{}_{}'.format(prefix, basename) image_filename = '{}.{}'.format(basename, image_format) if directory: image_filename = os.path.join(directory, image_filename) plt.savefig(image_filename, format=image_format, dpi=dpi) for mode, data in abs_data.items(): basename = 'absorption' if mode == 'abs' else mode write_files(data, basename=basename, prefix=prefix, directory=directory) else: return plt def _floatable(item): """Check if an item can be intepreted with float()""" try: float(item) return True except ValueError: return False def _get_parser(): parser = argparse.ArgumentParser(description=""" optplot is a script to produce optical absorption spectra diagrams""", epilog=""" Author: {} Version: {} Last updated: {}""".format(__author__, __version__, __date__)) parser.add_argument('mode', type=str, nargs='*', default='absorption', metavar='M', choices={'absorption', 'loss', 'eps_real', 'eps_imag', 'n_real', 'n_imag'}, help='Optical properties to plot. Multiple choices ' ' will be displayed as subplots. Accepted values:' ' "absorption" (optical absorption over distance)' ', "loss" (energy-loss function -Im(1/eps)), ' '"eps_real" and "eps_imag" (real and imaginary ' 'parts of the dielectric function), ' '"n_real" (real part of complex refractive index)' '"n_imag" (imaginary part of RI, also known as ' 'the extinction coefficient kappa.)') parser.add_argument('-f', '--filenames', metavar='F', help='path to one or more vasprun.xml files', default=None, nargs='+') parser.add_argument('-p', '--prefix', metavar='P', help='prefix for the files generated') parser.add_argument('-d', '--directory', metavar='D', help='output directory for files') parser.add_argument('-c', '--code', metavar='C', default='vasp', nargs='+', help=('Original calculator. Accepted values are ' '"vasp" and "questaal".')) parser.add_argument('-g', '--gaussian', type=float, metavar='G', help='standard deviation of gaussian broadening') parser.add_argument('-b', '--bandgaps', nargs='*', metavar='E', help=('indicate the fundamental band gap (options: ' 'nothing, vasprun.xml file, or float). A ' 'sequence of files and values may be provided, ' 'corresponding to the optical data files. ' 'To skip a line, set a value outside the plot ' 'range (e.g. -1).')) parser.add_argument('-l', '--labels', nargs='+', metavar='L', help='labels for the absorption specta') parser.add_argument('-a', '--anisotropic', action='store_false', help='separate spectra into to x, y, and z directions') parser.add_argument('--height', type=float, default=None, help='height of the graph') parser.add_argument('--width', type=float, default=None, help='width of the graph') parser.add_argument('--xmin', type=float, default=0., help='minimum energy on the x-axis') parser.add_argument('--xmax', type=float, default=None, help='maximum energy on the x-axis') parser.add_argument('--ymin', type=str, default=['auto'], nargs='+', help='minimum intensity on the y-axis; may specify ' 'multiple values if plotting more than one axis. ' 'Use "auto" or "_" for automatic value.') parser.add_argument('--ymax', type=str, default=['auto'], nargs='+', help='maximum intensity on the y-axis; may specify' 'multiple values if plotting more than one axis. ' 'Use "auto" or "_" for automatic value.') parser.add_argument('--style', type=str, nargs='+', default=None, help='matplotlib style specifications') parser.add_argument('--no-base-style', action='store_true', dest='no_base_style', help='prevent use of sumo base style') parser.add_argument('--format', type=str, default='pdf', dest='image_format', metavar='FORMAT', help='image file format (options: pdf, svg, jpg, png)') parser.add_argument('--dpi', type=int, default=400, help='pixel density for image file') parser.add_argument('--font', default=None, help='font to use') return parser def main(): args = _get_parser().parse_args() logging.basicConfig(filename='sumo-optplot.log', level=logging.INFO, filemode='w', format='%(message)s') console = logging.StreamHandler() logging.info(" ".join(sys.argv[:])) logging.getLogger('').addHandler(console) warnings.filterwarnings("ignore", category=UserWarning, module="matplotlib") warnings.filterwarnings("ignore", category=UnicodeWarning, module="matplotlib") warnings.filterwarnings("ignore", category=UserWarning, module="pymatgen") # Wrap mode into list if necessary if not isinstance(args.mode, list): args.mode = [args.mode] # Replace text placeholders with preferred Python representation: None ymin = [None if (x.lower() in ('auto', '_')) else float(x) for x in args.ymin] ymax = [None if (x.lower() in ('auto', '_')) else float(x) for x in args.ymax] # Settings should be list corresponding to n_plots, or value for all ymin = ymin[0] if len(ymin) == 1 else ymin ymax = ymax[0] if len(ymax) == 1 else ymax optplot(modes=args.mode, filenames=args.filenames, codes=args.code, prefix=args.prefix, directory=args.directory, gaussian=args.gaussian, band_gaps=args.bandgaps, labels=args.labels, average=args.anisotropic, height=args.height, width=args.width, xmin=args.xmin, xmax=args.xmax, ymin=ymin, ymax=ymax, colours=None, image_format=args.image_format, dpi=args.dpi, style=args.style, no_base_style=args.no_base_style, fonts=args.font) if __name__ == "__main__": main()
py
1a4db29f4a14cfef5460a84c53bcce6dd72c9dd4
# Copyright 2014 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron.openstack.common import log as logging from neutron.plugins.cisco.common import cisco_exceptions as c_exc from neutron.plugins.cisco.n1kv import n1kv_client LOG = logging.getLogger(__name__) _resource_metadata = {'port': ['id', 'macAddress', 'ipAddress', 'subnetId'], 'vmnetwork': ['name', 'networkSegmentId', 'networkSegment', 'portProfile', 'portProfileId', 'tenantId', 'portId', 'macAddress', 'ipAddress', 'subnetId'], 'subnet': ['addressRangeStart', 'addressRangeEnd', 'ipAddressSubnet', 'description', 'gateway', 'dhcp', 'dnsServersList', 'networkAddress', 'netSegmentName', 'id', 'tenantId']} class TestClient(n1kv_client.Client): def __init__(self, **kwargs): self.broken = False self.inject_params = False self.total_profiles = 2 super(TestClient, self).__init__() def _get_total_profiles(self): return self.total_profiles def _do_request(self, method, action, body=None, headers=None): if self.broken: raise c_exc.VSMError(reason='VSM:Internal Server Error') if self.inject_params and body: body['invalidKey'] = 'catchMeIfYouCan' if method == 'POST': return _validate_resource(action, body) elif method == 'GET': if 'virtual-port-profile' in action: return _policy_profile_generator( self._get_total_profiles()) else: raise c_exc.VSMError(reason='VSM:Internal Server Error') class TestClientInvalidRequest(TestClient): def __init__(self, **kwargs): super(TestClientInvalidRequest, self).__init__() self.inject_params = True class TestClientInvalidResponse(TestClient): def __init__(self, **kwargs): super(TestClientInvalidResponse, self).__init__() self.broken = True def _validate_resource(action, body=None): if body: body_set = set(body.keys()) else: return if 'vm-network' in action and 'port' not in action: vmnetwork_set = set(_resource_metadata['vmnetwork']) if body_set - vmnetwork_set: raise c_exc.VSMError(reason='Invalid Request') elif 'port' in action: port_set = set(_resource_metadata['port']) if body_set - port_set: raise c_exc.VSMError(reason='Invalid Request') elif 'subnet' in action: subnet_set = set(_resource_metadata['subnet']) if body_set - subnet_set: raise c_exc.VSMError(reason='Invalid Request') else: return def _policy_profile_generator(total_profiles): """ Generate policy profile response and return a dictionary. :param total_profiles: integer representing total number of profiles to return """ profiles = {} for num in range(1, total_profiles + 1): name = "pp-%s" % num profile_id = "00000000-0000-0000-0000-00000000000%s" % num profiles[name] = {"properties": {"name": name, "id": profile_id}} return profiles def _policy_profile_generator_xml(total_profiles): """ Generate policy profile response in XML format. :param total_profiles: integer representing total number of profiles to return """ xml = ["""<?xml version="1.0" encoding="utf-8"?> <set name="virtual_port_profile_set">"""] template = ( '<instance name="%(num)d"' ' url="/api/n1k/virtual-port-profile/%(num)s">' '<properties>' '<id>00000000-0000-0000-0000-00000000000%(num)s</id>' '<name>pp-%(num)s</name>' '</properties>' '</instance>' ) xml.extend(template % {'num': n} for n in range(1, total_profiles + 1)) xml.append("</set>") return ''.join(xml)
py
1a4db50299b0d773800eb8d286bba8aaf5478b8e
# !/usr/bin/env python3 # -*- coding: utf-8 -*- import glob import json import os def main(blastdir): print('Populating organism selftargeting spacer objects') for fn in glob.glob(blastdir + '/*.json'): # get loci intervals of organism accession = os.path.splitext(os.path.split(fn)[1])[0] q_org = Organism.objects.filter(accession=accession) if not q_org.exists(): print('Organism with accession {} is not in db but blast ' 'report exists'.format(accession)) continue org = q_org[0] interval_loci = [ (entry['genomic_start'], entry['genomic_end']) for entry in org.locus_set.all().values('genomic_start', 'genomic_end') ] with open(fn, 'r') as f: try: blastrec = json.loads(f.read()) except Exception as e: print('Error on accession {}\n{}'.format(accession, e)) continue for res in blastrec['BlastOutput2']: query = res['report']['results']['bl2seq'][0] spacerid = query['query_title'] for hit in query['hits']: for hsps in hit['hsps']: start_h, end_h = hsps['hit_from'], hsps['hit_to'] in_locus = any([start_h > start and end_h < end for start, end in interval_loci]) if in_locus: continue q_spacer = Spacer.objects.filter(id=int(spacerid)) if not q_spacer.exists(): print('Spacer with sequence {} for organism {} ' 'not found in db'.format(hsps['qseq'], org.accession)) continue spacer = q_spacer[0] evalue = float(hsps['evalue']) oselftarget, _ = OrganismSelfSpacer.objects.get_or_create( organism=org, spacer=spacer, evalue=evalue, genomic_start=start_h, genomic_end=end_h ) if __name__ == '__main__': import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "phageAPI.settings") django.setup() from restapi.models import Organism, OrganismSelfSpacer, Spacer main('gbfiles/blastoutput')
py
1a4db596e1c5da08150ca1e3f019d12ba2628ac8
""" The Plaid API The Plaid REST API. Please see https://plaid.com/docs/api for more details. # noqa: E501 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from plaid.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class TransactionData(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = True @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'description': (str,), # noqa: E501 'amount': (float,), # noqa: E501 'date': (date,), # noqa: E501 'account_id': (str,), # noqa: E501 'transaction_id': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'description': 'description', # noqa: E501 'amount': 'amount', # noqa: E501 'date': 'date', # noqa: E501 'account_id': 'account_id', # noqa: E501 'transaction_id': 'transaction_id', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, description, amount, date, account_id, transaction_id, *args, **kwargs): # noqa: E501 """TransactionData - a model defined in OpenAPI Args: description (str): The description of the transaction. amount (float): The amount of the transaction. date (date): The date of the transaction, in [ISO 8601](https://wikipedia.org/wiki/ISO_8601) format (\"yyyy-mm-dd\"). account_id (str): A unique identifier for the end user's account. transaction_id (str): A unique identifier for the transaction. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.description = description self.amount = amount self.date = date self.account_id = account_id self.transaction_id = transaction_id for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
py
1a4db5b4527cec4a74ae338aabbc8f2cf932f0b9
"""This module implements row model of MUFG bank CSV.""" from __future__ import annotations from abc import ABC from dataclasses import dataclass from datetime import datetime from enum import Enum from typing import Optional from zaimcsvconverter.file_csv_convert import FileCsvConvert from zaimcsvconverter.inputcsvformats import InputRow, InputRowFactory, InputStoreRow, InputStoreRowData from zaimcsvconverter.utility import Utility @dataclass class MufgRowData(InputStoreRowData): """This class implements data class for wrapping list of MUFG bunk CSV row model.""" # Reason: This implement depends on design of CSV. pylint: disable=too-many-instance-attributes class Summary(Enum): CARD = "カ−ド" CARD_CONVENIENCE_STORE_ATM = "カ−ドC1" class CashFlowKind(Enum): """This class implements constant of cash flow kind in MUFG CSV.""" INCOME = "入金" PAYMENT = "支払い" TRANSFER_INCOME = "振替入金" TRANSFER_PAYMENT = "振替支払い" _date: str summary: str _summary_content: str _payed_amount: str _deposit_amount: str balance: str note: str is_uncapitalized: str _cash_flow_kind: str @property def date(self) -> datetime: return datetime.strptime(self._date, "%Y/%m/%d") @property def store_name(self) -> str: return self._summary_content @property def payed_amount(self) -> Optional[int]: return Utility.convert_string_to_int_or_none(self._payed_amount) @property def deposit_amount(self) -> Optional[int]: return Utility.convert_string_to_int_or_none(self._deposit_amount) @property def cash_flow_kind(self) -> MufgRowData.CashFlowKind: return self.CashFlowKind(self._cash_flow_kind) @property def validate(self) -> bool: self.stock_error(lambda: self.date, f"Invalid date. Date = {self._date}") # This comment prevents pylint duplicate-code. self.stock_error(lambda: self.payed_amount, f"Invalid payed amount. Payed amount = {self._payed_amount}") self.stock_error( lambda: self.deposit_amount, f"Invalid deposit amount. Deposit amount = {self._deposit_amount}" ) self.stock_error( lambda: self.cash_flow_kind, 'The value of "Cash flow kind" has not been defined in this code. ' f"Cash flow kind = {self._cash_flow_kind}", ) return super().validate class MufgRow(InputRow): """This class implements row model of MUFG bank CSV.""" def __init__(self, input_row_data: MufgRowData, *args, **kwargs): super().__init__(input_row_data, *args, **kwargs) self.cash_flow_kind: MufgRowData.CashFlowKind = input_row_data.cash_flow_kind self._summary: str = input_row_data.summary @property def is_income(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.INCOME @property def is_payment(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.PAYMENT @property def is_transfer_income(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.TRANSFER_INCOME @property def is_transfer_payment(self) -> bool: return self.cash_flow_kind == MufgRowData.CashFlowKind.TRANSFER_PAYMENT @property def is_by_card(self) -> bool: return ( self._summary == MufgRowData.Summary.CARD.value or self._summary == MufgRowData.Summary.CARD_CONVENIENCE_STORE_ATM.value ) @property def is_income_from_other_own_account(self) -> bool: return self.is_income and self.is_by_card class MufgIncomeRow(MufgRow, ABC): """This class implements income row model of MUFG bank CSV.""" def __init__(self, row_data: MufgRowData, *args, **kwargs): super().__init__(row_data, *args, **kwargs) self._deposit_amount: Optional[int] = row_data.deposit_amount @property def deposit_amount(self) -> int: if self._deposit_amount is None: raise ValueError("Deposit amount on income row is not allowed empty.") return self._deposit_amount @property def validate(self) -> bool: self.stock_error( lambda: self.deposit_amount, f"Deposit amount in income row is required. Deposit amount = {self._deposit_amount}", ) return super().validate class MufgPaymentRow(MufgRow, ABC): """This class implements payment row model of MUFG bank CSV.""" def __init__(self, row_data: MufgRowData, *args, **kwargs): super().__init__(row_data, *args, **kwargs) self._payed_amount: Optional[int] = row_data.payed_amount @property def payed_amount(self) -> int: if self._payed_amount is None: raise ValueError("Payed amount on payment row is not allowed empty.") return self._payed_amount @property def validate(self) -> bool: self.stock_error( lambda: self.payed_amount, f"Payed amount in payment row is required. Payed amount = {self._payed_amount}" ) return super().validate class MufgIncomeFromSelfRow(MufgIncomeRow): """This class implements income from self row model of MUFG bank CSV.""" class MufgPaymentToSelfRow(MufgPaymentRow): """This class implements payment from self row model of MUFG bank CSV.""" # pylint: disable=too-many-instance-attributes class MufgStoreRow(MufgRow, InputStoreRow, ABC): """This class implements row model of MUFG bank CSV.""" def __init__(self, input_row_data: MufgRowData): super().__init__(input_row_data, FileCsvConvert.MUFG.value) @property def is_transfer_income_from_other_own_account(self) -> bool: """This method returns whether this row is transfer income from other own account or not.""" return self.is_transfer_income and self.store.transfer_target is not None @property def is_transfer_payment_to_other_own_account(self) -> bool: """This method returns whether this row is transfer payment to other own account or not.""" return self.is_transfer_payment and self.store.transfer_target is not None # pylint: disable=too-many-ancestors class MufgIncomeFromOthersRow(MufgStoreRow, MufgIncomeRow): """This class implements row model of MUFG bank CSV.""" # pylint: disable=too-many-ancestors class MufgPaymentToSomeoneRow(MufgStoreRow, MufgPaymentRow): """ This class implements payment row model of MUFG bank CSV. It may to others, also may to self. """ class MufgRowFactory(InputRowFactory[MufgRowData, MufgRow]): """This class implements factory to create MUFG CSV row instance.""" def create(self, input_row_data: MufgRowData) -> MufgRow: if input_row_data.is_empty_store_name and input_row_data.cash_flow_kind == MufgRowData.CashFlowKind.INCOME: return MufgIncomeFromSelfRow(input_row_data) if input_row_data.is_empty_store_name and input_row_data.cash_flow_kind == MufgRowData.CashFlowKind.PAYMENT: return MufgPaymentToSelfRow(input_row_data) if input_row_data.cash_flow_kind in ( MufgRowData.CashFlowKind.PAYMENT, MufgRowData.CashFlowKind.TRANSFER_PAYMENT, ): return MufgPaymentToSomeoneRow(input_row_data) if input_row_data.cash_flow_kind in (MufgRowData.CashFlowKind.INCOME, MufgRowData.CashFlowKind.TRANSFER_INCOME): return MufgIncomeFromOthersRow(input_row_data) raise ValueError( f"Cash flow kind is not supported. Cash flow kind = {input_row_data.cash_flow_kind}" ) # pragma: no cover # Reason: This line is insurance for future development so process must be not able to reach
py
1a4db5da70638cf8109008f1bb13f8bf2a2ca4e8
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base evaluator.""" import abc import dataclasses from typing import List, Optional, Union import numpy as np @dataclasses.dataclass class EvaluatorOutput: """The output of an evaluator.""" # An evaluator does not necessarily generate all fields below. For example, # some evaluators like Kendalls Tau return a scalar and image metric, while # TwoWayCycleConsistency only generates a scalar metric. scalar: Optional[Union[float, List[float]]] = None image: Optional[Union[np.ndarray, List[np.ndarray]]] = None video: Optional[Union[np.ndarray, List[np.ndarray]]] = None @staticmethod def _assert_same_attrs(list_out): """Ensures a list of this class instance have the same attributes.""" def _not_none(o): return [getattr(o, a) is not None for a in ["scalar", "image", "video"]] expected = _not_none(list_out[0]) for o in list_out[1:]: actual = _not_none(o) assert np.array_equal(expected, actual) @staticmethod def merge(list_out): """Merge a list of this class instance into one.""" # We need to make sure that all elements of the list have the same # non-empty (i.e. != None) attributes. EvaluatorOutput._assert_same_attrs(list_out) # At this point, we're confident that we only need to check the # attributes of the first member of the list to guarantee the same # availability for *all* other members of the list. scalars = None if list_out[0].scalar is not None: scalars = [o.scalar for o in list_out] images = None if list_out[0].image is not None: images = [o.image for o in list_out] videos = None if list_out[0].video is not None: videos = [o.video for o in list_out] return EvaluatorOutput(scalars, images, videos) def log(self, logger, global_step, name, prefix): """Log the attributes to tensorboard.""" if self.scalar is not None: if isinstance(self.scalar, list): self.scalar = np.mean(self.scalar) logger.log_scalar(self.scalar, global_step, name, prefix) if self.image is not None: if isinstance(self.image, list): for i, image in enumerate(self.image): logger.log_image(image, global_step, name + f"_{i}", prefix) else: logger.log_image(self.image, global_step, name, prefix) if self.video is not None: if isinstance(self.video, list): for i, video in enumerate(self.video): logger.log_video(video, global_step, name + f"_{i}", prefix) else: logger.log_video(self.video, global_step, name, prefix) logger.flush() class Evaluator(abc.ABC): """Base class for evaluating a self-supervised model on downstream tasks. Subclasses must implement the `_evaluate` method. """ def __init__(self, inter_class): self.inter_class = inter_class @abc.abstractmethod def evaluate(self, outs): """Evaluate the downstream task in embedding space. Args: outs: A list of outputs generated by the model on the downstream dataset. :meta public: """ pass
py
1a4db713738bfc5c64b39889f0400e27b12586e8
""" A Qt API selector that can be used to switch between PyQt and PySide. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import sys from matplotlib import rcParams, verbose # Available APIs. QT_API_PYQT = 'PyQt4' # API is not set here; Python 2.x default is V 1 QT_API_PYQTv2 = 'PyQt4v2' # forced to Version 2 API QT_API_PYSIDE = 'PySide' # only supports Version 2 API QT_API_PYQT5 = 'PyQt5' # use PyQt5 API; Version 2 with module shim ETS = dict(pyqt=(QT_API_PYQTv2, 4), pyside=(QT_API_PYSIDE, 4), pyqt5=(QT_API_PYQT5, 5)) # ETS is a dict of env variable to (QT_API, QT_MAJOR_VERSION) # If the ETS QT_API environment variable is set, use it, but only # if the varible if of the same major QT version. Note that # ETS requires the version 2 of PyQt4, which is not the platform # default for Python 2.x. QT_API_ENV = os.environ.get('QT_API') if rcParams['backend'] == 'Qt5Agg': QT_RC_MAJOR_VERSION = 5 elif rcParams['backend'] == 'Qt4Agg': QT_RC_MAJOR_VERSION = 4 else: # A different backend was specified, but we still got here because a Qt # related file was imported. This is allowed, so lets try and guess # what we should be using. if "PyQt4" in sys.modules or "PySide" in sys.modules: # PyQt4 or PySide is actually used. QT_RC_MAJOR_VERSION = 4 else: # This is a fallback: PyQt5 QT_RC_MAJOR_VERSION = 5 QT_API = None # check if any binding is already imported, if so silently ignore the # rcparams/ENV settings and use what ever is already imported. if 'PySide' in sys.modules: # user has imported PySide before importing mpl QT_API = QT_API_PYSIDE if 'PyQt4' in sys.modules: # user has imported PyQt4 before importing mpl # this case also handles the PyQt4v2 case as once sip is imported # the API versions can not be changed so do not try QT_API = QT_API_PYQT if 'PyQt5' in sys.modules: # the user has imported PyQt5 before importing mpl QT_API = QT_API_PYQT5 if (QT_API_ENV is not None) and QT_API is None: try: QT_ENV_MAJOR_VERSION = ETS[QT_API_ENV][1] except KeyError: raise RuntimeError( ('Unrecognized environment variable %r, valid values are:' ' %r, %r or %r' % (QT_API_ENV, 'pyqt', 'pyside', 'pyqt5'))) if QT_ENV_MAJOR_VERSION == QT_RC_MAJOR_VERSION: # Only if backend and env qt major version are # compatible use the env variable. QT_API = ETS[QT_API_ENV][0] if QT_API is None: # No ETS environment or incompatible so use rcParams. if rcParams['backend'] == 'Qt5Agg': QT_API = rcParams['backend.qt5'] elif rcParams['backend'] == 'Qt4Agg': QT_API = rcParams['backend.qt4'] else: # A non-Qt backend was specified, no version of the Qt # bindings is imported, but we still got here because a Qt # related file was imported. This is allowed, fall back to Qt5 # using which ever binding the rparams ask for. QT_API = rcParams['backend.qt5'] # We will define an appropriate wrapper for the differing versions # of file dialog. _getSaveFileName = None # Flag to check if sip could be imported _sip_imported = False # Now perform the imports. if QT_API in (QT_API_PYQT, QT_API_PYQTv2, QT_API_PYQT5): try: import sip _sip_imported = True except ImportError: # Try using PySide QT_API = QT_API_PYSIDE cond = ("Could not import sip; falling back on PySide\n" "in place of PyQt4 or PyQt5.\n") verbose.report(cond, 'helpful') if _sip_imported: if QT_API == QT_API_PYQTv2: if QT_API_ENV == 'pyqt': cond = ("Found 'QT_API=pyqt' environment variable. " "Setting PyQt4 API accordingly.\n") else: cond = "PyQt API v2 specified." try: sip.setapi('QString', 2) except: res = 'QString API v2 specification failed. Defaulting to v1.' verbose.report(cond + res, 'helpful') # condition has now been reported, no need to repeat it: cond = "" try: sip.setapi('QVariant', 2) except: res = 'QVariant API v2 specification failed. Defaulting to v1.' verbose.report(cond + res, 'helpful') if QT_API == QT_API_PYQT5: try: from PyQt5 import QtCore, QtGui, QtWidgets _getSaveFileName = QtWidgets.QFileDialog.getSaveFileName except ImportError: # fell through, tried PyQt5, failed fall back to PyQt4 QT_API = rcParams['backend.qt4'] QT_RC_MAJOR_VERSION = 4 # needs to be if so we can re-test the value of QT_API which may # have been changed in the above if block if QT_API in [QT_API_PYQT, QT_API_PYQTv2]: # PyQt4 API from PyQt4 import QtCore, QtGui try: if sip.getapi("QString") > 1: # Use new getSaveFileNameAndFilter() _getSaveFileName = QtGui.QFileDialog.getSaveFileNameAndFilter else: # Use old getSaveFileName() def _getSaveFileName(*args, **kwargs): return (QtGui.QFileDialog.getSaveFileName(*args, **kwargs), None) except (AttributeError, KeyError): # call to getapi() can fail in older versions of sip def _getSaveFileName(*args, **kwargs): return QtGui.QFileDialog.getSaveFileName(*args, **kwargs), None try: # Alias PyQt-specific functions for PySide compatibility. QtCore.Signal = QtCore.pyqtSignal try: QtCore.Slot = QtCore.pyqtSlot except AttributeError: # Not a perfect match but works in simple cases QtCore.Slot = QtCore.pyqtSignature QtCore.Property = QtCore.pyqtProperty __version__ = QtCore.PYQT_VERSION_STR except NameError: # QtCore did not get imported, fall back to pyside QT_API = QT_API_PYSIDE if QT_API == QT_API_PYSIDE: # try importing pyside try: from PySide import QtCore, QtGui, __version__, __version_info__ except ImportError: raise ImportError( "Matplotlib qt-based backends require an external PyQt4, PyQt5,\n" "or PySide package to be installed, but it was not found.") if __version_info__ < (1, 0, 3): raise ImportError( "Matplotlib backend_qt4 and backend_qt4agg require PySide >=1.0.3") _getSaveFileName = QtGui.QFileDialog.getSaveFileName # Apply shim to Qt4 APIs to make them look like Qt5 if QT_API in (QT_API_PYQT, QT_API_PYQTv2, QT_API_PYSIDE): '''Import all used QtGui objects into QtWidgets Here I've opted to simple copy QtGui into QtWidgets as that achieves the same result as copying over the objects, and will continue to work if other objects are used. ''' QtWidgets = QtGui def is_pyqt5(): return QT_API == QT_API_PYQT5