ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4db810311430482f1753b50480bde9b3981d13
from pygame import * from random import * from time import time as timer win_widh = 1000 win_hight = 400 win = display.set_mode((win_widh, win_hight)) display.set_caption('Plants') ImegHero = 'Woodman.png' ImeBack = 'Forest.png' ImeAnemi = 'BigCliz.png' img_bullet = 'Ball.png' TimeNow = timer() TimeHit = timer() # clock = time.Clock() class GameSprite(sprite.Sprite): def __init__(self, PLimage, playX, playY, sizeX, sizeY, speed): sprite.Sprite.__init__(self) self.image = transform.scale(image.load(PLimage), (sizeX, sizeY)) self.speed = speed self.rect = self.image.get_rect() self.rect.x = playX self.rect.y = playY def reset(self): win.blit(self.image, (self.rect.x, self.rect.y)) class Plaer(GameSprite): def Went(self): global LastWent global TimeNow went = key.get_pressed() if went[K_UP]: self.rect.y -= self.speed if went[K_DOWN]: self.rect.y += self.speed if went[K_LEFT]: self.rect.x -= self.speed LastWent = 'Left' if went[K_RIGHT]: self.rect.x += self.speed LastWent = 'Right' if (timer() - TimeNow) > 2: if went[K_SPACE]: TimeNow = timer() if LastWent == 'Left': self.rect.x -= 10*self.speed else: self.rect.x += 10*self.speed def fire(self): bullet = Bullet(img_bullet, self.rect.centerx, self.rect.centery, 15, 20, 15) bullets.add(bullet) class PlantsAnami(GameSprite): def update(self): self.rect.x += self.speed if self.rect.x < 0: self.rect.x = win_widh self.rect.y = randint(150, 340) class Bullet(GameSprite): def update(self): self.rect.x += self.speed if self.rect.x > win_widh: self.kill() fps = 30 LastWent = 'Left' HeroGad = Plaer(ImegHero, 50, 50, 60, 60, 10) GameRun = True bacgraund = transform.scale(image.load(ImeBack), (win_widh, win_hight)) monsters = sprite.Group() ds = [50, win_widh-100] for i in range(1,7): monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 400-90), 72, 72, randint(-5,-1)) monsters.add(monster) bullets = sprite.Group() def DrawAll(): win.blit(bacgraund, (0,0)) # draw.rect(win, (0,255,0), (0, 350, 1000, 50)) HeroGad.reset() HeroGad.Went() monsters.update() monsters.draw(win) bullets.update() bullets.draw(win) display.update() while GameRun: for e in event.get(): if e.type == QUIT: GameRun = False elif e.type == KEYDOWN: if e.key == K_q: HeroGad.fire() collide = sprite.groupcollide(bullets, monsters, True, True) for c in collide: while len(monsters) < 6: monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 340), 72, 72, randint(-5,-1)) monsters.add(monster) # tap = key.get_pressed() # if sprite.spritecollide(HeroGad, monsters, True): # print('AAAAAAAAAAAAAA') # # monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 340), 72, 72, randint(-5,-1)) # # monsters.add(monster) # while len(monsters)<6: # monster = PlantsAnami(ImeAnemi, win_widh, randint(150, 340), 72, 72, randint(-5,-1)) # monsters.add(monster) DrawAll() time.delay(fps)
py
1a4dba2822d1bb1e546d09723f9ba9264bb81267
# pylint: disable=g-direct-third-party-import # pylint: disable=g-bad-file-header # Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Creates the embedded_tools.zip that is part of the Bazel binary.""" import contextlib import fnmatch import os import os.path import re import sys import zipfile from src.create_embedded_tools_lib import copy_tar_to_zip from src.create_embedded_tools_lib import copy_zip_to_zip from src.create_embedded_tools_lib import is_executable output_paths = [ ('*tools/jdk/BUILD*', lambda x: 'tools/jdk/BUILD'), ('*tools/platforms/platforms.BUILD', lambda x: 'platforms/BUILD'), ('*tools/platforms/*', lambda x: 'platforms/' + os.path.basename(x)), ('*tools/cpp/runfiles/generated_*', lambda x: 'tools/cpp/runfiles/' + os.path.basename(x)[len('generated_'):]), ('*jarjar_command_deploy.jar', lambda x: 'tools/jdk/jarjar_command_deploy.jar'), ('*BUILD-new.pkg', lambda x: 'tools/jdk/BUILD.pkg'), ('*BUILD.javalangtools', lambda x: 'third_party/java/jdk/langtools/BUILD'), ('*singlejar_local.exe', lambda x: 'tools/jdk/singlejar/singlejar.exe'), ('*singlejar_local', lambda x: 'tools/jdk/singlejar/singlejar'), ('*launcher.exe', lambda x: 'tools/launcher/launcher.exe'), ('*def_parser.exe', lambda x: 'tools/def_parser/def_parser.exe'), ('*ijar.exe', lambda x: 'tools/jdk/ijar/ijar.exe'), ('*ijar', lambda x: 'tools/jdk/ijar/ijar'), ('*zipper.exe', lambda x: 'tools/zip/zipper/zipper.exe'), ('*zipper', lambda x: 'tools/zip/zipper/zipper'), ('*src/objc_tools/*', lambda x: 'tools/objc/precomp_' + os.path.basename(x)), ('*xcode*StdRedirect.dylib', lambda x: 'tools/objc/StdRedirect.dylib'), ('*xcode*make_hashed_objlist.py', lambda x: 'tools/objc/make_hashed_objlist.py'), ('*xcode*realpath', lambda x: 'tools/objc/realpath'), ('*xcode*xcode-locator', lambda x: 'tools/objc/xcode-locator'), ('*src/tools/xcode/*.sh', lambda x: 'tools/objc/' + os.path.basename(x)), ('*src/tools/xcode/*', lambda x: 'tools/objc/' + os.path.basename(x) + '.sh'), ('*external/openjdk_*/file/*.tar.gz', lambda x: 'jdk.tar.gz'), ('*external/openjdk_*/file/*.zip', lambda x: 'jdk.zip'), ('*src/minimal_jdk.tar.gz', lambda x: 'jdk.tar.gz'), ('*src/minimal_jdk.zip', lambda x: 'jdk.zip'), ('*', lambda x: re.sub(r'^.*bazel-out/[^/]*/bin/', '', x, count=1)), ] def get_output_path(path): for pattern, transformer in output_paths: if fnmatch.fnmatch(path.replace('\\', '/'), pattern): # BUILD.tools are stored as BUILD files. return transformer(path).replace('/BUILD.tools', '/BUILD') def get_input_files(argsfile): """Returns a sorted list of tuples (archive_file, input_file). This describes the files that should be put into the generated archive. Args: argsfile: The file containing the list of input files. """ with open(argsfile, 'r') as f: input_files = set(x.strip() for x in f.readlines()) result = {} for input_file in input_files: # If we have both a BUILD and a BUILD.tools file, take the latter only. if (os.path.basename(input_file) == 'BUILD' and input_file + '.tools' in input_files): continue # This gives us the same behavior as the older bash version of this # tool: If two input files map to the same output files, the one that # comes last in the list of input files overrides all earlier ones. result[get_output_path(input_file)] = input_file # By sorting the file list, the resulting ZIP file will not be reproducible # and deterministic. return sorted(result.items()) def copy_jdk_into_archive(output_zip, archive_file, input_file): """Extract the JDK and adds it to the archive under jdk/*.""" def _replace_dirname(filename): # Rename the first folder to 'jdk', because Bazel looks for a # bundled JDK in the embedded tools using that folder name. return 'jdk/' + '/'.join(filename.split('/')[1:]) # The JDK is special - it's extracted instead of copied. if archive_file.endswith('.tar.gz'): copy_tar_to_zip(output_zip, input_file, _replace_dirname) elif archive_file.endswith('.zip'): copy_zip_to_zip(output_zip, input_file, _replace_dirname) def main(): output_zip = os.path.join(os.getcwd(), sys.argv[1]) input_files = get_input_files(sys.argv[2]) # Copy all the input_files into output_zip. # Adding contextlib.closing to be python 2.6 (for centos 6.7) compatible with contextlib.closing( zipfile.ZipFile(output_zip, 'w', zipfile.ZIP_DEFLATED)) as output_zip: zipinfo = zipfile.ZipInfo('WORKSPACE', (1980, 1, 1, 0, 0, 0)) zipinfo.external_attr = 0o644 << 16 output_zip.writestr(zipinfo, 'workspace(name = "bazel_tools")\n') for archive_file, input_file in input_files: if os.path.basename(archive_file) in ('jdk.tar.gz', 'jdk.zip'): copy_jdk_into_archive(output_zip, archive_file, input_file) else: zipinfo = zipfile.ZipInfo(archive_file, (1980, 1, 1, 0, 0, 0)) zipinfo.external_attr = 0o755 << 16 if is_executable( input_file) else 0o644 << 16 zipinfo.compress_type = zipfile.ZIP_DEFLATED with open(input_file, 'rb') as f: output_zip.writestr(zipinfo, f.read()) if __name__ == '__main__': main()
py
1a4dbb4b87052f7aa70c84fe83f561f7aa0fb52c
import paths import os #os.environ['COPY_EDIT_DATA']=paths.data_dir os.environ['CUDA_VISIBLE_DEVICES']='0' from gtd.utils import Config from editor_code.copy_editor.retrieve_edit_run import RetrieveEditTrainingRuns print os.environ['COPY_EDIT_DATA'] import sys #no-profile profile=False runs = RetrieveEditTrainingRuns() config_file = sys.argv[1] config = Config.from_file('editor_code/configs/editor/'+config_file) run = runs.new(config) if profile: from gtd.chrono import Profiling, Profiler profiler = Profiler.default() import editor_code.copy_editor.retriever import editor_code.copy_editor.editor profiler.add_module(editor_code.copy_editor.editor) profiler.add_module(editor_code.copy_editor.retriever) Profiling.start() run.train() Profiler.report(profiler) # prints out report else: run.train()
py
1a4dbb630d0fde19193624b3fe8c6ad588674262
# Copyright 2016 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for checking that required Python packages are installed.""" from collections import deque import os import pkg_resources from perfkitbenchmarker import errors # Path of the root of the current git branch. _BRANCH_ROOT_DIR = os.path.dirname(os.path.dirname(__file__)) def _CheckRequirements(requirements_file_path): """Checks that all package requirements specified in a file are met. Args: requirements_file_path: string. Path to a pip requirements file. """ with open(requirements_file_path, 'rb') as fp: requirements_to_check = [(requirements_file_path, deque(fp.readlines()))] try: while requirements_to_check: file_path, lines = requirements_to_check.pop() while lines: line = lines.popleft().strip() if line.startswith('-r'): requirements_to_check.append((file_path, lines)) file_path = os.path.join(os.path.dirname(file_path), line[2:]) with open(file_path, 'rb') as fp: lines = deque(fp.readlines()) elif line: pkg_resources.require(line) except (pkg_resources.DistributionNotFound, pkg_resources.VersionConflict) as e: # In newer versions of setuptools, these exception classes have a report # method that provides a readable description of the error. report = getattr(e, 'report', None) err_msg = report() if report else str(e) raise errors.Setup.PythonPackageRequirementUnfulfilled( 'A Python package requirement was not met while checking "{path}": ' '{msg}{linesep}To install required packages, execute the following ' 'command:{linesep}pip install -r "{path}"{linesep}To bypass package ' 'requirement checks, run PerfKit Benchmarker with the ' '--ignore_package_requirements flag.'.format( linesep=os.linesep, msg=err_msg, path=requirements_file_path)) def CheckBasicRequirements(): """Checks that all basic package requirements are met. The basic requirements include packages used by modules that are imported regardless of the specified cloud providers. The list of required packages and versions is found in the requirements.txt file in the git branch's root directory. If such a file does not exist, then the requirements check is skipped. """ requirements_file_path = os.path.join(_BRANCH_ROOT_DIR, 'requirements.txt') if os.path.isfile(requirements_file_path): _CheckRequirements(requirements_file_path) def CheckProviderRequirements(provider): """Checks that all provider-specific requirements are met. The provider-specific requirements include packages used by modules that are imported when using a particular cloud provider. The list of required packages is found in the requirements-<provider>.txt file in the git branch's root directory. If such a file does not exist, then no additional requirements are necessary. Args: provider: string. Lowercase name of the cloud provider (e.g. 'gcp'). """ requirements_file_path = os.path.join( _BRANCH_ROOT_DIR, 'perfkitbenchmarker', 'providers', provider, 'requirements.txt') if os.path.isfile(requirements_file_path): _CheckRequirements(requirements_file_path)
py
1a4dbbb5cb2767b882cc6367a72e8e1fae0c4571
"""Load a layout in Blender.""" from pathlib import Path from pprint import pformat from typing import Dict, Optional import bpy import json from avalon import api from avalon.blender.pipeline import AVALON_CONTAINERS from avalon.blender.pipeline import AVALON_CONTAINER_ID from avalon.blender.pipeline import AVALON_PROPERTY from avalon.blender.pipeline import AVALON_INSTANCES from openpype.hosts.blender.api import plugin class JsonLayoutLoader(plugin.AssetLoader): """Load layout published from Unreal.""" families = ["layout"] representations = ["json"] label = "Load Layout" icon = "code-fork" color = "orange" animation_creator_name = "CreateAnimation" def _remove(self, asset_group): objects = list(asset_group.children) for obj in objects: api.remove(obj.get(AVALON_PROPERTY)) def _remove_animation_instances(self, asset_group): instances = bpy.data.collections.get(AVALON_INSTANCES) if instances: for obj in list(asset_group.children): anim_collection = instances.children.get( obj.name + "_animation") if anim_collection: bpy.data.collections.remove(anim_collection) def _get_loader(self, loaders, family): name = "" if family == 'rig': name = "BlendRigLoader" elif family == 'model': name = "BlendModelLoader" if name == "": return None for loader in loaders: if loader.__name__ == name: return loader return None def _process(self, libpath, asset, asset_group, actions): bpy.ops.object.select_all(action='DESELECT') with open(libpath, "r") as fp: data = json.load(fp) all_loaders = api.discover(api.Loader) for element in data: reference = element.get('reference') family = element.get('family') loaders = api.loaders_from_representation(all_loaders, reference) loader = self._get_loader(loaders, family) if not loader: continue instance_name = element.get('instance_name') action = None if actions: action = actions.get(instance_name, None) options = { 'parent': asset_group, 'transform': element.get('transform'), 'action': action, 'create_animation': True if family == 'rig' else False, 'animation_asset': asset } # This should return the loaded asset, but the load call will be # added to the queue to run in the Blender main thread, so # at this time it will not return anything. The assets will be # loaded in the next Blender cycle, so we use the options to # set the transform, parent and assign the action, if there is one. api.load( loader, reference, namespace=instance_name, options=options ) def process_asset(self, context: dict, name: str, namespace: Optional[str] = None, options: Optional[Dict] = None): """ Arguments: name: Use pre-defined name namespace: Use pre-defined namespace context: Full parenthood of representation to load options: Additional settings dictionary """ libpath = self.fname asset = context["asset"]["name"] subset = context["subset"]["name"] asset_name = plugin.asset_name(asset, subset) unique_number = plugin.get_unique_number(asset, subset) group_name = plugin.asset_name(asset, subset, unique_number) namespace = namespace or f"{asset}_{unique_number}" avalon_container = bpy.data.collections.get(AVALON_CONTAINERS) if not avalon_container: avalon_container = bpy.data.collections.new(name=AVALON_CONTAINERS) bpy.context.scene.collection.children.link(avalon_container) asset_group = bpy.data.objects.new(group_name, object_data=None) asset_group.empty_display_type = 'SINGLE_ARROW' avalon_container.objects.link(asset_group) self._process(libpath, asset, asset_group, None) bpy.context.scene.collection.objects.link(asset_group) asset_group[AVALON_PROPERTY] = { "schema": "openpype:container-2.0", "id": AVALON_CONTAINER_ID, "name": name, "namespace": namespace or '', "loader": str(self.__class__.__name__), "representation": str(context["representation"]["_id"]), "libpath": libpath, "asset_name": asset_name, "parent": str(context["representation"]["parent"]), "family": context["representation"]["context"]["family"], "objectName": group_name } self[:] = asset_group.children return asset_group.children def exec_update(self, container: Dict, representation: Dict): """Update the loaded asset. This will remove all objects of the current collection, load the new ones and add them to the collection. If the objects of the collection are used in another collection they will not be removed, only unlinked. Normally this should not be the case though. """ object_name = container["objectName"] asset_group = bpy.data.objects.get(object_name) libpath = Path(api.get_representation_path(representation)) extension = libpath.suffix.lower() self.log.info( "Container: %s\nRepresentation: %s", pformat(container, indent=2), pformat(representation, indent=2), ) assert asset_group, ( f"The asset is not loaded: {container['objectName']}" ) assert libpath, ( "No existing library file found for {container['objectName']}" ) assert libpath.is_file(), ( f"The file doesn't exist: {libpath}" ) assert extension in plugin.VALID_EXTENSIONS, ( f"Unsupported file: {libpath}" ) metadata = asset_group.get(AVALON_PROPERTY) group_libpath = metadata["libpath"] normalized_group_libpath = ( str(Path(bpy.path.abspath(group_libpath)).resolve()) ) normalized_libpath = ( str(Path(bpy.path.abspath(str(libpath))).resolve()) ) self.log.debug( "normalized_group_libpath:\n %s\nnormalized_libpath:\n %s", normalized_group_libpath, normalized_libpath, ) if normalized_group_libpath == normalized_libpath: self.log.info("Library already loaded, not updating...") return actions = {} for obj in asset_group.children: obj_meta = obj.get(AVALON_PROPERTY) if obj_meta.get('family') == 'rig': rig = None for child in obj.children: if child.type == 'ARMATURE': rig = child break if not rig: raise Exception("No armature in the rig asset group.") if rig.animation_data and rig.animation_data.action: namespace = obj_meta.get('namespace') actions[namespace] = rig.animation_data.action mat = asset_group.matrix_basis.copy() self._remove_animation_instances(asset_group) self._remove(asset_group) self._process(str(libpath), asset_group, actions) asset_group.matrix_basis = mat metadata["libpath"] = str(libpath) metadata["representation"] = str(representation["_id"]) def exec_remove(self, container: Dict) -> bool: """Remove an existing container from a Blender scene. Arguments: container (openpype:container-1.0): Container to remove, from `host.ls()`. Returns: bool: Whether the container was deleted. """ object_name = container["objectName"] asset_group = bpy.data.objects.get(object_name) if not asset_group: return False self._remove_animation_instances(asset_group) self._remove(asset_group) bpy.data.objects.remove(asset_group) return True
py
1a4dbc5992d475613307047a90d2769698339b76
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2019-04-15 07:06 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('goods', '0002_auto_20190410_1511'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('users', '0004_user_default_address'), ] operations = [ migrations.CreateModel( name='OrderGoods', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('count', models.IntegerField(default=1, verbose_name='数量')), ('price', models.DecimalField(decimal_places=2, max_digits=10, verbose_name='单价')), ('comment', models.TextField(default='', verbose_name='评价信息')), ('score', models.SmallIntegerField(choices=[(0, '0分'), (1, '20分'), (2, '40分'), (3, '60分'), (4, '80分'), (5, '100分')], default=5, verbose_name='满意度评分')), ('is_anonymous', models.BooleanField(default=False, verbose_name='是否匿名评价')), ('is_commented', models.BooleanField(default=False, verbose_name='是否评价完成')), ], options={ 'verbose_name': '订单商品', 'verbose_name_plural': '订单商品', 'db_table': 'tb_order_goods', }, ), migrations.CreateModel( name='OrderInfo', fields=[ ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('order_id', models.CharField(max_length=64, primary_key=True, serialize=False, verbose_name='订单编号')), ('total_count', models.IntegerField(default=1, verbose_name='商品总数')), ('total_amount', models.DecimalField(decimal_places=2, max_digits=10, verbose_name='实付款')), ('freight', models.DecimalField(decimal_places=2, max_digits=10, verbose_name='运费')), ('pay_method', models.SmallIntegerField(choices=[(1, '货到付款'), (2, '支付宝')], default=1, verbose_name='支付方式')), ('status', models.SmallIntegerField(choices=[(1, '待支付'), (2, '待发货'), (3, '待收货'), (4, '待评价'), (5, '已完成'), (6, '已取消')], default=1, verbose_name='订单状态')), ('address', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='users.Address', verbose_name='收货地址')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL, verbose_name='下单用户')), ], options={ 'verbose_name': '订单基本信息', 'verbose_name_plural': '订单基本信息', 'db_table': 'tb_order_info', }, ), migrations.AddField( model_name='ordergoods', name='order', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='skus', to='orders.OrderInfo', verbose_name='订单'), ), migrations.AddField( model_name='ordergoods', name='sku', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='goods.SKU', verbose_name='订单商品'), ), ]
py
1a4dbc65880cde202f7a2e2b66470df24d1b7676
# Copyright 2019 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Numpy implementations of `tf.signal` functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow_probability.python.internal.backend.numpy import _utils as utils __all__ = [ 'fft', 'fft2d', 'fft3d', 'ifft', 'ifft2d', 'ifft3d', 'irfft', 'irfft2d', 'irfft3d', 'rfft', 'rfft2d', 'rfft3d', ] fft = utils.copy_docstring( 'tf.signal.fft', lambda input, name=None: np.fft.fftn(input, axes=[-1])) fft2d = utils.copy_docstring( 'tf.signal.fft2d', lambda input, name=None: np.fft.fftn(input, axes=[-2, -1])) fft3d = utils.copy_docstring( 'tf.signal.fft3d', lambda input, name=None: np.fft.fftn(input, axes=[-3, -2, -1])) ifft = utils.copy_docstring( 'tf.signal.ifft', lambda input, name=None: np.fft.ifftn(input, axes=[-1])) ifft2d = utils.copy_docstring( 'tf.signal.ifft2d', lambda input, name=None: np.fft.ifftn(input, axes=[-2, -1])) ifft3d = utils.copy_docstring( 'tf.signal.ifft3d', lambda input, name=None: np.fft.ifftn(input, axes=[-3, -2, -1])) rfft = utils.copy_docstring( 'tf.signal.rfft', lambda input, fft_length=None, name=None: np.fft.rfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-1])) rfft2d = utils.copy_docstring( 'tf.signal.rfft2d', lambda input, fft_length=None, name=None: np.fft.rfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-2, -1])) rfft3d = utils.copy_docstring( 'tf.signal.rfft3d', lambda input, fft_length=None, name=None: np.fft.rfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-3, -2, -1])) irfft = utils.copy_docstring( 'tf.signal.irfft', lambda input, fft_length=None, name=None: np.fft.irfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-1])) irfft2d = utils.copy_docstring( 'tf.signal.irfft2d', lambda input, fft_length=None, name=None: np.fft.irfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-2, -1])) irfft3d = utils.copy_docstring( 'tf.signal.irfft3d', lambda input, fft_length=None, name=None: np.fft.irfftn( # pylint:disable=g-long-lambda input, s=fft_length, axes=[-3, -2, -1]))
py
1a4dbe705a1d91ab1bbc4498b2c37047e6b1bbce
import re import django.forms def get_cleaned_text_file_content(uploaded_file): """Read uploaded file, try to fix up encoding to UTF-8 and transform line endings into Unix style, then return the content as a UTF-8 string. Errors are reported as django.forms.ValidationError exceptions.""" if not uploaded_file: return u"" if uploaded_file.size and uploaded_file.size > 10 * 1000 * 1000: raise django.forms.ValidationError("Text file too large (size %s)." % uploaded_file.size) content = "".join(uploaded_file.chunks()) # try to fixup encoding import magic if hasattr(magic, "open"): m = magic.open(magic.MAGIC_MIME) m.load() filetype = m.buffer(content) else: m = magic.Magic() m.cookie = magic.magic_open(magic.MAGIC_NONE | magic.MAGIC_MIME | magic.MAGIC_MIME_ENCODING) magic.magic_load(m.cookie, None) filetype = m.from_buffer(content) if not filetype.startswith("text"): raise django.forms.ValidationError("Uploaded file does not appear to be a text file.") match = re.search("charset=([\w-]+)", filetype) if not match: raise django.forms.ValidationError("File has unknown encoding.") encoding = match.group(1) if "ascii" not in encoding: try: content = content.decode(encoding) except Exception as e: raise django.forms.ValidationError("Error decoding file (%s). Try submitting with UTF-8 encoding or remove non-ASCII characters." % str(e)) # turn line-endings into Unix style content = content.replace("\r\n", "\n").replace("\r", "\n") return content.encode("utf-8")
py
1a4dbe7d338e63b0cbbd27bc05d2862e9bab27eb
from numpy.random import shuffle class Card: def __init__(self, value): if value not in ['Fascist', 'Liberal']: raise ValueError('Must be either a Liberal or Fascist card.') self.value = value self.public = False def play(self): self.public = True def is_liberal(self): return self.value == 'Liberal' def is_fascist(self): return self.value == 'Fascist' def __eq__(self, other): try: return self.value == other.value except AttributeError: return False class LiberalCard(Card): def __init__(self): super().__init__('Liberal') class FascistCard(Card): def __init__(self): super().__init__('Fascist') class CardDeck: def __init__(self, cards): self.cards = cards def add_card(self, card): self.cards.append(card) def remove_card(self): return self.cards.pop() def shuffle_cards(self): shuffle(self.cards) class DrawDeck(CardDeck): def __init__(self, number_of_fascists=11, number_of_liberals=6): libs = [LiberalCard()] * number_of_liberals fascists = [FascistCard()] * number_of_fascists cards = libs + fascists super().__init__(cards) self.shuffle_cards() def top_deck(self): return super().remove_card() def top(self, n): return self.cards[-n:] def remove_card(self): if len(self.cards) <= 2: return 'Reshuffle Condition' else: return super().remove_card() def __add__(self, other): if isinstance(other, DiscardDeck): other.shuffle_cards() self.cards += other class DiscardDeck(CardDeck): pass if __name__ == '__main__': dd = DrawDeck(20, 10) print(dd.top(3)) print(dd.remove_card()) print(dd.top(3)) print(dd.add_card(dd.remove_card()))
py
1a4dbf02a96ff4bc00187fa6e75a13c809b77e17
#!/usr/bin/python3 import spidev import time tx_array = [0]*512 # Split an integer input into a two byte array to send via SPI def write_pot(input): print(input) msb = input >> 8 lsb = input & 0xFF print(spi.xfer([msb,lsb,msb,lsb])) if __name__ == '__main__': spi = spidev.SpiDev() ret = spi.open(0, 0) print("Spi.open = ", ret) spi.max_speed_hz = 30000 spi.mode = 0 print("Started SPIDEV = ", spi) data = 0x555 while True: # print("Hello, I'm MMRPi-Hardware Energomera Library") time.sleep(0.5) data = data + 1 write_pot(data) # break
py
1a4dc0c863f29e9a2e2bf88b841e7a30b452e5f3
safety_hotline_meta = { 'attributes': { 'primary': { 'field': 'description', 'name': 'Description', }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': 'date_created', 'date_granularity': 'year', 'default_date_filter': '2017', 'min_date': '2008', 'max_date': '2018' }, } crash_meta = { 'attributes': { 'primary': { 'field': 'crash_dt', 'name': 'Crash Date', }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': 'crash_dt', 'date_granularity': 'year', 'default_date_filter': '2014', 'min_date': '2004', 'max_date': '2014' }, } block_change_meta = { 'attributes': { 'primary': { 'field': 'stops_pct_change', 'name': 'Ridership Change from 2009 to 2017', 'visualization': { 'type': 'Text', 'comparison_value': None, 'comparison_name': None, }, }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': None, 'date_granularity': None, 'default_date_filter': '2017', 'min_date': None, 'max_date': None }, } route_change_meta = { 'attributes': { 'primary': { 'field': 'pct_change', 'name': 'Ridership Change from 2009 to 2017', }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': None, 'date_granularity': None, 'default_date_filter': '2017', 'min_date': None, 'max_date': None }, } sensors_meta = { 'attributes': { 'primary': { 'field': None, 'name': None, }, 'secondary': { 'field': None, 'name': None, }, }, 'dates': { 'date_attribute': None, 'date_granularity': None, 'default_date_filter': '2018', 'min_date': None, 'max_date': None }, }
py
1a4dc0ed40e0f9a9a400f39481d67c44613f9b9c
import src.sudoku_solver as sudoku_solver from src.sudoku import Sudoku correct_sudoku = Sudoku([[9, 5, 7, 6, 1, 3, 2, 8, 4], [4, 8, 3, 2, 5, 7, 1, 9, 6], [6, 1, 2, 8, 4, 9, 5, 3, 7], [1, 7, 8, 3, 6, 4, 9, 5, 2], [5, 2, 4, 9, 7, 1, 3, 6, 8], [3, 6, 9, 5, 2, 8, 7, 4, 1], [8, 4, 5, 7, 9, 2, 6, 1, 3], [2, 9, 1, 4, 3, 6, 8, 7, 5], [7, 3, 6, 1, 8, 5, 4, 2, 9]]) starting_sudoku = Sudoku([[0, 0, 0, 0, 0, 0, 2, 0, 0], [0, 8, 0, 0, 0, 7, 0, 9, 0], [6, 0, 2, 0, 0, 0, 5, 0, 0], [0, 7, 0, 0, 6, 0, 0, 0, 0], [0, 0, 0, 9, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2, 0, 0, 4, 0], [0, 0, 5, 0, 0, 0, 6, 0, 3], [0, 9, 0, 4, 0, 0, 0, 7, 0], [0, 0, 6, 0, 0, 0, 0, 0, 0]]) starting_sudoku_current_cell_test = Sudoku([[1, 3, 4, 5, 6, 7, 2, 0, 0], [0, 8, 0, 0, 0, 7, 0, 9, 0], [6, 0, 2, 0, 0, 0, 5, 0, 0], [0, 7, 0, 0, 6, 0, 0, 0, 0], [0, 0, 0, 9, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2, 0, 0, 4, 0], [0, 0, 5, 0, 0, 0, 6, 0, 3], [0, 9, 0, 4, 0, 0, 0, 7, 0], [0, 0, 6, 0, 0, 0, 0, 0, 0]]) starting_sudoku_current_cell_test2 = Sudoku([[1, 1, 1, 1, 1, 1, 2, 1, 1], [1, 8, 1, 1, 1, 7, 1, 9, 1], [6, 0, 2, 0, 0, 0, 5, 0, 0], [0, 7, 0, 0, 6, 0, 0, 0, 0], [0, 0, 0, 9, 0, 1, 0, 0, 0], [0, 0, 0, 0, 2, 0, 0, 4, 0], [0, 0, 5, 0, 0, 0, 6, 0, 3], [0, 9, 0, 4, 0, 0, 0, 7, 0], [0, 0, 6, 0, 0, 0, 0, 0, 0]])
py
1a4dc141fbbc30e5b846ecb096f89e5a96de61fb
#cfgfactory.py import utility import numpy.random import cfg import logging class CFGFactory: def __init__(self): self.number_terminals = 100 self.number_nonterminals = 5 self.binary_rules = 40 self.lexical_rules = 100 self.strict_cnf = True def generate_nonterminals(self): nonterminals = [ 'S'] for i in range(1,self.number_nonterminals): nonterminals.append("NT" + str(i)) return nonterminals def sample_uniform(self, lp=0.5,bp = 0.5): """ Sample all productions Bernoulli for lexical and binary. Default 0.5. """ lexicon = list(utility.generate_lexicon(self.number_terminals)) #print("Lexicon",lexicon,self.number_terminals) nonterminals = self.generate_nonterminals() productions = [] for a in nonterminals: for b in lexicon: if numpy.random.random() < lp: productions.append((a,b)) for a in nonterminals: for b in nonterminals[1:]: for c in nonterminals[1:]: if numpy.random.random() < bp: productions.append((a,b,c)) my_cfg = cfg.CFG() my_cfg.start = nonterminals[0] my_cfg.nonterminals = set(nonterminals) my_cfg.terminals = set(lexicon) my_cfg.productions = productions return my_cfg def sample_full(self): lexicon = list(utility.generate_lexicon(self.number_terminals)) #print("Lexicon",lexicon,self.number_terminals) nonterminals = self.generate_nonterminals() lprods = set() bprods= set() for a in nonterminals: for b in lexicon: lprods.add((a,b)) for a in nonterminals: for b in nonterminals[1:]: for c in nonterminals[1:]: bprods.add((a,b,c)) my_cfg = cfg.CFG() my_cfg.start = nonterminals[0] my_cfg.nonterminals = set(nonterminals) my_cfg.terminals = set(lexicon) my_cfg.productions = lprods | bprods #print(my_cfg.terminals) return my_cfg def sample_trim(self): """ Sample one and then trim it. return the trim one. If empty, raise an exception. """ my_cfg = self.sample_raw() #print([ prod for prod in my_cfg.productions if len(prod) == 2 and prod[0] == 'S']) logging.info("CFG nominally has %d nonterminals, %d terminals, %d binary_rules and %d lexical rules", self.number_nonterminals,self.number_terminals,self.binary_rules,self.lexical_rules) ts = my_cfg.compute_trim_set() if len(ts) == 0: # empty language raise ValueError("Empty language") prods = my_cfg.compute_usable_productions(ts) terminals = set() for prod in prods: if len(prod) == 2: terminals.add(prod[1]) tcfg = cfg.CFG() tcfg.start = my_cfg.start tcfg.terminals = terminals tcfg.nonterminals = ts tcfg.productions = set(prods) logging.info("Final CFG has %d nonterminals, %d terminals, %d binary_rules and %d lexical rules", len(tcfg.nonterminals), len(tcfg.terminals), len([prod for prod in tcfg.productions if len(prod) == 3]), len([prod for prod in tcfg.productions if len(prod) == 2])) return tcfg def sample_raw(self): """ return a CFG """ lexicon = list(utility.generate_lexicon(self.number_terminals)) #DEBUGGING lexicon.sort() print(lexicon[0],lexicon[-1]) nonterminals = self.generate_nonterminals() lprods = set() bprods= set() lexicon_size = len(lexicon) while len(lprods) < self.lexical_rules: lhs = numpy.random.choice(nonterminals) rhs = lexicon[numpy.random.choice(range(lexicon_size))] lprods.add( (lhs,rhs)) print(lhs,rhs) while len(bprods) < self.binary_rules: if self.strict_cnf: a = numpy.random.choice(nonterminals) b,c = numpy.random.choice(nonterminals[1:],size=2) else: a,b,c = numpy.random.choice(nonterminals,size=3) bprods.add( (a,b,c)) print(a,b,c) my_cfg = cfg.CFG() my_cfg.start = nonterminals[0] my_cfg.nonterminals = set(nonterminals) my_cfg.terminals = set(lexicon) my_cfg.productions = lprods | bprods return my_cfg
py
1a4dc15c55ac124709bf4a028720cbb4a186984a
import unittest from unittest import mock from flumine.markets.blotter import Blotter from flumine.order.order import OrderStatus from flumine.order.ordertype import MarketOnCloseOrder, LimitOrder, LimitOnCloseOrder class BlotterTest(unittest.TestCase): def setUp(self) -> None: self.blotter = Blotter("1.23") def test_init(self): self.assertEqual(self.blotter.market_id, "1.23") self.assertFalse(self.blotter.active) self.assertEqual(self.blotter._orders, {}) self.assertEqual(self.blotter._live_orders, []) self.assertEqual(self.blotter._trades, {}) self.assertEqual(self.blotter._strategy_orders, {}) self.assertEqual(self.blotter._strategy_selection_orders, {}) def test_strategy_orders(self): mock_order_one = mock.Mock( lookup=(1, 2, 3), status=OrderStatus.EXECUTABLE, size_matched=1 ) mock_order_one.trade.strategy = 69 self.blotter["12345"] = mock_order_one mock_order_two = mock.Mock( lookup=(1, 2, 3), status=OrderStatus.EXECUTION_COMPLETE, size_matched=0 ) mock_order_two.trade.strategy = 69 self.blotter["12345"] = mock_order_two mock_order_three = mock.Mock( lookup=(1, 2, 3), status=OrderStatus.EXECUTION_COMPLETE, size_matched=1 ) mock_order_three.trade.strategy = 69 self.blotter["12345"] = mock_order_three self.assertEqual(self.blotter.strategy_orders(12), []) self.assertEqual( self.blotter.strategy_orders(69), [mock_order_one, mock_order_two, mock_order_three], ) self.assertEqual( self.blotter.strategy_orders( 69, order_status=OrderStatus.EXECUTION_COMPLETE ), [mock_order_two, mock_order_three], ) self.assertEqual( self.blotter.strategy_orders( 69, order_status=OrderStatus.EXECUTION_COMPLETE, matched_only=True ), [mock_order_three], ) def test_strategy_selection_orders(self): mock_order_one = mock.Mock( lookup=(1, 2, 3), status=OrderStatus.EXECUTABLE, size_matched=1 ) mock_order_one.trade.strategy = 69 self.blotter["12345"] = mock_order_one mock_order_two = mock.Mock( lookup=(1, 2, 3), status=OrderStatus.EXECUTION_COMPLETE, size_matched=0 ) mock_order_two.trade.strategy = 69 self.blotter["12345"] = mock_order_two mock_order_three = mock.Mock( lookup=(1, 2, 3), status=OrderStatus.EXECUTION_COMPLETE, size_matched=1 ) mock_order_three.trade.strategy = 69 self.blotter["12345"] = mock_order_three self.assertEqual(self.blotter.strategy_selection_orders(12, 2, 3), []) self.assertEqual( self.blotter.strategy_selection_orders(69, 2, 3), [mock_order_one, mock_order_two, mock_order_three], ) self.assertEqual( self.blotter.strategy_selection_orders( 69, 2, 3, order_status=OrderStatus.EXECUTION_COMPLETE ), [mock_order_two, mock_order_three], ) self.assertEqual( self.blotter.strategy_selection_orders( 69, 2, 3, order_status=OrderStatus.EXECUTION_COMPLETE, matched_only=True ), [mock_order_three], ) def test_live_orders(self): self.assertEqual(list(self.blotter.live_orders), []) mock_order = mock.Mock(complete=False) self.blotter._live_orders = [mock_order] self.assertEqual(list(self.blotter.live_orders), [mock_order]) def test_has_live_orders(self): self.assertFalse(self.blotter.has_live_orders) self.blotter._live_orders = [mock.Mock()] self.assertTrue(self.blotter.has_live_orders) def test_process_closed_market(self): mock_market_book = mock.Mock(number_of_winners=1) mock_runner = mock.Mock(selection_id=123, handicap=0.0) mock_market_book.runners = [mock_runner] mock_order = mock.Mock(selection_id=123, handicap=0.0) self.blotter._orders = {"12345": mock_order} self.blotter.process_closed_market(mock_market_book) self.assertEqual(mock_order.runner_status, mock_runner.status) def test_process_cleared_orders(self): mock_cleared_orders = mock.Mock() mock_cleared_orders.orders = [] self.assertEqual(self.blotter.process_cleared_orders(mock_cleared_orders), []) def test_selection_exposure(self): """ Check that selection_exposure returns the absolute worse loss """ def get_exposures(strategy, lookup): if strategy == "strategy" and lookup == (1, 2, 3): return { "worst_possible_profit_on_win": -1.0, "worst_possible_profit_on_lose": -2.0, } self.blotter.get_exposures = mock.Mock(side_effect=get_exposures) result = self.blotter.selection_exposure("strategy", (1, 2, 3)) self.assertEqual(2.0, result) def test_selection_exposure2(self): """ Check that selection_exposure returns zero if there is no risk of loss. """ def get_exposures(strategy, lookup): if strategy == "strategy" and lookup == (1, 2, 3): return { "worst_possible_profit_on_win": 0.0, "worst_possible_profit_on_lose": 1.0, } self.blotter.get_exposures = mock.Mock(side_effect=get_exposures) result = self.blotter.selection_exposure("strategy", (1, 2, 3)) self.assertEqual(0.0, result) def test_get_exposures(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", average_price_matched=5.6, size_matched=2.0, size_remaining=0.0, order_type=LimitOrder(price=5.6, size=2.0), ) self.blotter["12345"] = mock_order self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": -2.0, "matched_profit_if_win": 9.2, "worst_possible_profit_on_lose": -2.0, "worst_possible_profit_on_win": 9.2, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_with_exclusion(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", average_price_matched=5.6, size_matched=2.0, size_remaining=0.0, order_type=LimitOrder(price=5.6, size=2.0), ) mock_order_excluded = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", average_price_matched=5.6, size_matched=2.0, size_remaining=0.0, order_type=LimitOrder(price=5.6, size=2.0), ) self.blotter["12345"] = mock_order self.blotter["67890"] = mock_order_excluded self.assertEqual( self.blotter.get_exposures( mock_strategy, mock_order.lookup, exclusion=mock_order_excluded ), { "matched_profit_if_lose": -2.0, "matched_profit_if_win": 9.2, "worst_possible_profit_on_lose": -2.0, "worst_possible_profit_on_win": 9.2, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_value_error(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", average_price_matched=5.6, size_matched=2.0, size_remaining=0.0, order_type=mock.Mock(ORDER_TYPE="INVALID"), ) self.blotter["12345"] = mock_order with self.assertRaises(ValueError) as e: self.blotter.get_exposures(mock_strategy, mock_order.lookup) self.assertEqual("Unexpected order type: INVALID", e.exception.args[0]) def test_get_exposures_with_price_none(self): """ Check that get_exposures works if order.order_type.price is None. If order.order_type.price is None, the controls will flag the order as a violation and it won't be set to the exchange, so there won't be any exposure and we can ignore it. """ mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) lookup = (self.blotter.market_id, 123, 0) mock_order1 = mock.Mock( trade=mock_trade, lookup=lookup, side="BACK", average_price_matched=5.6, size_matched=2.0, size_remaining=0.0, order_type=LimitOrder(price=5.6, size=2.0), ) mock_order2 = mock.Mock( trade=mock_trade, lookup=lookup, side="LAY", average_price_matched=5.6, size_matched=0.0, size_remaining=2.0, order_type=LimitOrder(price=None, size=2.0), ) self.blotter["12345"] = mock_order1 self.blotter["23456"] = mock_order2 self.assertEqual( self.blotter.get_exposures(mock_strategy, lookup), { "matched_profit_if_lose": -2.0, "matched_profit_if_win": 9.2, "worst_possible_profit_on_lose": -2.0, "worst_possible_profit_on_win": 9.2, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_no_match(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", average_price_matched=5.6, size_matched=0.0, size_remaining=0.0, order_type=LimitOrder(price=5.6, size=2.0), ) self.blotter["12345"] = mock_order self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": 0.0, "matched_profit_if_win": 0.0, "worst_possible_profit_on_lose": 0.0, "worst_possible_profit_on_win": 0.0, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_from_unmatched_back(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", average_price_matched=5.6, size_matched=2.0, size_remaining=2.0, order_type=LimitOrder(price=6, size=4.0), ) self.blotter["12345"] = mock_order # On the win side, we have 2.0 * (5.6-1.0) = 9.2 # On the lose side, we have -2.0-2.0=-4.0 self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": -2.0, "matched_profit_if_win": 9.2, "worst_possible_profit_on_lose": -4.0, "worst_possible_profit_on_win": 9.2, "worst_potential_unmatched_profit_if_lose": -2.0, "worst_potential_unmatched_profit_if_win": 0, }, ) def test_get_exposures_from_unmatched_lay(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="LAY", average_price_matched=5.6, size_matched=2.0, size_remaining=2.0, order_type=LimitOrder(price=6, size=4.0), ) self.blotter["12345"] = mock_order # On the win side, we have -2.0 * (5.6-1.0) -2.0 * (6.0-1.0) = -19.2 # On the lose side, we have 2.0 from size_matched self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": 2.0, "matched_profit_if_win": -9.2, "worst_possible_profit_on_lose": 2.0, "worst_possible_profit_on_win": -19.2, "worst_potential_unmatched_profit_if_lose": 0, "worst_potential_unmatched_profit_if_win": -10.0, }, ) def test_get_exposures_from_market_on_close_back(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", order_type=MarketOnCloseOrder(liability=10.0), ) self.blotter["12345"] = mock_order self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": 0.0, "matched_profit_if_win": 0.0, "worst_possible_profit_on_lose": -10.0, "worst_possible_profit_on_win": 0.0, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_from_market_on_close_lay(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="LAY", order_type=MarketOnCloseOrder(liability=10.0), ) self.blotter["12345"] = mock_order self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": 0.0, "matched_profit_if_win": 0.0, "worst_possible_profit_on_lose": 0.0, "worst_possible_profit_on_win": -10.0, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_from_limit_on_close_lay(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="LAY", order_type=LimitOnCloseOrder(price=1.01, liability=10.0), ) self.blotter["12345"] = mock_order self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": 0.0, "matched_profit_if_win": 0.0, "worst_possible_profit_on_lose": 0.0, "worst_possible_profit_on_win": -10.0, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_get_exposures_voided(self): mock_strategy = mock.Mock() mock_trade = mock.Mock(strategy=mock_strategy) mock_order = mock.Mock( trade=mock_trade, lookup=(self.blotter.market_id, 123, 0), side="BACK", order_type=LimitOrder(price=5, size=10.0), status=OrderStatus.VIOLATION, ) self.blotter["12345"] = mock_order self.assertEqual( self.blotter.get_exposures(mock_strategy, mock_order.lookup), { "matched_profit_if_lose": 0.0, "matched_profit_if_win": 0.0, "worst_possible_profit_on_lose": 0.0, "worst_possible_profit_on_win": 0.0, "worst_potential_unmatched_profit_if_lose": 0.0, "worst_potential_unmatched_profit_if_win": 0.0, }, ) def test_complete_order(self): self.blotter._live_orders = ["test"] self.blotter.complete_order("test") def test_has_trade(self): self.assertFalse(self.blotter.has_trade("123")) self.blotter._trades["123"].append(1) self.assertTrue(self.blotter.has_trade("123")) def test__contains(self): self.blotter._orders = {"123": "test"} self.assertIn("123", self.blotter) self.assertNotIn("321", self.blotter) def test__setitem(self): mock_order = mock.Mock(lookup=(1, 2, 3)) self.blotter["123"] = mock_order self.assertTrue(self.blotter.active) self.assertEqual(self.blotter._orders, {"123": mock_order}) self.assertEqual(self.blotter._live_orders, [mock_order]) self.assertEqual(self.blotter._trades, {mock_order.trade.id: [mock_order]}) self.assertEqual( self.blotter._strategy_orders, {mock_order.trade.strategy: [mock_order]} ) self.assertEqual( self.blotter._strategy_selection_orders, {(mock_order.trade.strategy, 2, 3): [mock_order]}, ) def test__getitem(self): self.blotter._orders = {"12345": "test", "54321": "test2"} self.assertEqual(self.blotter["12345"], "test") self.assertEqual(self.blotter["54321"], "test2") def test__len(self): self.blotter._orders = {"12345": "test", "54321": "test"} self.assertEqual(len(self.blotter), 2)
py
1a4dc3ecee9d04248d3c8c1f2332acac45eac76f
from PIL import Image class Painter: def __init__(self, k, palette_name, color): self.k = k self.palette_name = palette_name self.color = color self.ctr = 0 # for frames def format_frame(self,n): return f"frames/{self.palette_name}-{self.k}-{n}.png" def current_frame_name(self): self.ctr += 1 return self.format_frame(self.ctr-1) def save_to_image(self, grid, filename): k = self.k color = self.color n = len(grid) # assume grid is square, too lazy to generalize wall = k//2 with Image.new('RGB',(k*n+2*wall,k*n+2*wall)) as painting: for i in range(k*n+2*wall): for j in range(wall): painting.putpixel((i,j),(0,0,0)) painting.putpixel((i,k*n+2*wall-j-1),(0,0,0)) painting.putpixel((j,i),(0,0,0)) painting.putpixel((k*n+2*wall-j-1,i),(0,0,0)) for i in range(k*n): for j in range(k*n): painting.putpixel((i+wall,j+wall),color[grid[i//k][j//k]]) painting.save(filename,"PNG") print(f"Created {filename}")
py
1a4dc4902db9ae654e5725af9f3f2c7c82b10102
# This file is a part of OpenCV project. # It is a subject to the license terms in the LICENSE file found in the top-level directory # of this distribution and at http://opencv.org/license.html. # # Copyright (C) 2018, Intel Corporation, all rights reserved. # Third party copyrights are property of their respective owners. # # Use this script to get the text graph representation (.pbtxt) of SSD-based # deep learning network trained in TensorFlow Object Detection API. # Then you can import it with a binary frozen graph (.pb) using readNetFromTensorflow() function. # See details and examples on the following wiki page: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API import argparse import re from math import sqrt from tf_text_graph_common import * class SSDAnchorGenerator: def __init__(self, min_scale, max_scale, num_layers, aspect_ratios, reduce_boxes_in_lowest_layer, image_width, image_height): self.min_scale = min_scale self.aspect_ratios = aspect_ratios self.reduce_boxes_in_lowest_layer = reduce_boxes_in_lowest_layer self.image_width = image_width self.image_height = image_height self.scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1) for i in range(num_layers)] + [1.0] def get(self, layer_id): if layer_id == 0 and self.reduce_boxes_in_lowest_layer: widths = [0.1, self.min_scale * sqrt(2.0), self.min_scale * sqrt(0.5)] heights = [0.1, self.min_scale / sqrt(2.0), self.min_scale / sqrt(0.5)] else: widths = [self.scales[layer_id] * sqrt(ar) for ar in self.aspect_ratios] heights = [self.scales[layer_id] / sqrt(ar) for ar in self.aspect_ratios] widths += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] heights += [sqrt(self.scales[layer_id] * self.scales[layer_id + 1])] min_size = min(self.image_width, self.image_height) widths = [w * min_size for w in widths] heights = [h * min_size for h in heights] return widths, heights class MultiscaleAnchorGenerator: def __init__(self, min_level, aspect_ratios, scales_per_octave, anchor_scale): self.min_level = min_level self.aspect_ratios = aspect_ratios self.anchor_scale = anchor_scale self.scales = [2**(float(s) / scales_per_octave) for s in range(scales_per_octave)] def get(self, layer_id): widths = [] heights = [] for a in self.aspect_ratios: for s in self.scales: base_anchor_size = 2**(self.min_level + layer_id) * self.anchor_scale ar = sqrt(a) heights.append(base_anchor_size * s / ar) widths.append(base_anchor_size * s * ar) return widths, heights def createSSDGraph(modelPath, configPath, outputPath): # Nodes that should be kept. keepOps = ['Conv2D', 'BiasAdd', 'Add', 'AddV2', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm', 'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity', 'Sub', 'ResizeNearestNeighbor', 'Pad', 'FusedBatchNormV3', 'Mean'] # Node with which prefixes should be removed prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Concatenate/', 'Postprocessor/', 'Preprocessor/map') # Load a config file. config = readTextMessage(configPath) config = config['model'][0]['ssd'][0] num_classes = int(config['num_classes'][0]) fixed_shape_resizer = config['image_resizer'][0]['fixed_shape_resizer'][0] image_width = int(fixed_shape_resizer['width'][0]) image_height = int(fixed_shape_resizer['height'][0]) box_predictor = 'convolutional' if 'convolutional_box_predictor' in config['box_predictor'][0] else 'weight_shared_convolutional' anchor_generator = config['anchor_generator'][0] if 'ssd_anchor_generator' in anchor_generator: ssd_anchor_generator = anchor_generator['ssd_anchor_generator'][0] min_scale = float(ssd_anchor_generator['min_scale'][0]) max_scale = float(ssd_anchor_generator['max_scale'][0]) num_layers = int(ssd_anchor_generator['num_layers'][0]) aspect_ratios = [float(ar) for ar in ssd_anchor_generator['aspect_ratios']] reduce_boxes_in_lowest_layer = True if 'reduce_boxes_in_lowest_layer' in ssd_anchor_generator: reduce_boxes_in_lowest_layer = ssd_anchor_generator['reduce_boxes_in_lowest_layer'][0] == 'true' priors_generator = SSDAnchorGenerator(min_scale, max_scale, num_layers, aspect_ratios, reduce_boxes_in_lowest_layer, image_width, image_height) print('Scale: [%f-%f]' % (min_scale, max_scale)) print('Aspect ratios: %s' % str(aspect_ratios)) print('Reduce boxes in the lowest layer: %s' % str(reduce_boxes_in_lowest_layer)) elif 'multiscale_anchor_generator' in anchor_generator: multiscale_anchor_generator = anchor_generator['multiscale_anchor_generator'][0] min_level = int(multiscale_anchor_generator['min_level'][0]) max_level = int(multiscale_anchor_generator['max_level'][0]) anchor_scale = float(multiscale_anchor_generator['anchor_scale'][0]) aspect_ratios = [float(ar) for ar in multiscale_anchor_generator['aspect_ratios']] scales_per_octave = int(multiscale_anchor_generator['scales_per_octave'][0]) num_layers = max_level - min_level + 1 priors_generator = MultiscaleAnchorGenerator(min_level, aspect_ratios, scales_per_octave, anchor_scale) print('Levels: [%d-%d]' % (min_level, max_level)) print('Anchor scale: %f' % anchor_scale) print('Scales per octave: %d' % scales_per_octave) print('Aspect ratios: %s' % str(aspect_ratios)) else: print('Unknown anchor_generator') exit(0) print('Number of classes: %d' % num_classes) print('Number of layers: %d' % num_layers) print('box predictor: %s' % box_predictor) print('Input image size: %dx%d' % (image_width, image_height)) # Read the graph. outNames = ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes'] writeTextGraph(modelPath, outputPath, outNames) graph_def = parseTextGraph(outputPath) def getUnconnectedNodes(): unconnected = [] for node in graph_def.node: unconnected.append(node.name) for inp in node.input: if inp in unconnected: unconnected.remove(inp) return unconnected def fuse_nodes(nodesToKeep): # Detect unfused batch normalization nodes and fuse them. # Add_0 <-- moving_variance, add_y # Rsqrt <-- Add_0 # Mul_0 <-- Rsqrt, gamma # Mul_1 <-- input, Mul_0 # Mul_2 <-- moving_mean, Mul_0 # Sub_0 <-- beta, Mul_2 # Add_1 <-- Mul_1, Sub_0 nodesMap = {node.name: node for node in graph_def.node} subgraphBatchNorm = ['Add', ['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']], ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] subgraphBatchNormV2 = ['AddV2', ['Mul', 'input', ['Mul', ['Rsqrt', ['AddV2', 'moving_variance', 'add_y']], 'gamma']], ['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]] # Detect unfused nearest neighbor resize. subgraphResizeNN = ['Reshape', ['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']], 'ones'], ['Pack', ['StridedSlice', ['Shape', 'input'], 'stack', 'stack_1', 'stack_2'], 'out_height', 'out_width', 'out_channels']] def checkSubgraph(node, targetNode, inputs, fusedNodes): op = targetNode[0] if node.op == op and (len(node.input) >= len(targetNode) - 1): fusedNodes.append(node) for i, inpOp in enumerate(targetNode[1:]): if isinstance(inpOp, list): if not node.input[i] in nodesMap or \ not checkSubgraph(nodesMap[node.input[i]], inpOp, inputs, fusedNodes): return False else: inputs[inpOp] = node.input[i] return True else: return False nodesToRemove = [] for node in graph_def.node: inputs = {} fusedNodes = [] if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes) or \ checkSubgraph(node, subgraphBatchNormV2, inputs, fusedNodes): name = node.name node.Clear() node.name = name node.op = 'FusedBatchNorm' node.input.append(inputs['input']) node.input.append(inputs['gamma']) node.input.append(inputs['beta']) node.input.append(inputs['moving_mean']) node.input.append(inputs['moving_variance']) node.addAttr('epsilon', 0.001) nodesToRemove += fusedNodes[1:] inputs = {} fusedNodes = [] if checkSubgraph(node, subgraphResizeNN, inputs, fusedNodes): name = node.name node.Clear() node.name = name node.op = 'ResizeNearestNeighbor' node.input.append(inputs['input']) node.input.append(name + '/output_shape') out_height_node = nodesMap[inputs['out_height']] out_width_node = nodesMap[inputs['out_width']] out_height = int(out_height_node.attr['value']['tensor'][0]['int_val'][0]) out_width = int(out_width_node.attr['value']['tensor'][0]['int_val'][0]) shapeNode = NodeDef() shapeNode.name = name + '/output_shape' shapeNode.op = 'Const' shapeNode.addAttr('value', [out_height, out_width]) graph_def.node.insert(graph_def.node.index(node), shapeNode) nodesToKeep.append(shapeNode.name) nodesToRemove += fusedNodes[1:] for node in nodesToRemove: graph_def.node.remove(node) nodesToKeep = [] fuse_nodes(nodesToKeep) removeIdentity(graph_def) def to_remove(name, op): return (not name in nodesToKeep) and \ (op == 'Const' or (not op in keepOps) or name.startswith(prefixesToRemove)) removeUnusedNodesAndAttrs(to_remove, graph_def) # Connect input node to the first layer assert(graph_def.node[0].op == 'Placeholder') try: input_shape = graph_def.node[0].attr['shape']['shape'][0]['dim'] input_shape[1]['size'] = image_height input_shape[2]['size'] = image_width except: print("Input shapes are undefined") # assert(graph_def.node[1].op == 'Conv2D') weights = graph_def.node[1].input[-1] for i in range(len(graph_def.node[1].input)): graph_def.node[1].input.pop() graph_def.node[1].input.append(graph_def.node[0].name) graph_def.node[1].input.append(weights) # check and correct the case when preprocessing block is after input preproc_id = "Preprocessor/" if graph_def.node[2].name.startswith(preproc_id) and \ graph_def.node[2].input[0].startswith(preproc_id): if not any(preproc_id in inp for inp in graph_def.node[3].input): graph_def.node[3].input.insert(0, graph_def.node[2].name) # Create SSD postprocessing head ############################################### # Concatenate predictions of classes, predictions of bounding boxes and proposals. def addConcatNode(name, inputs, axisNodeName): concat = NodeDef() concat.name = name concat.op = 'ConcatV2' for inp in inputs: concat.input.append(inp) concat.input.append(axisNodeName) graph_def.node.extend([concat]) addConstNode('concat/axis_flatten', [-1], graph_def) addConstNode('PriorBox/concat/axis', [-2], graph_def) for label in ['ClassPredictor', 'BoxEncodingPredictor' if box_predictor is 'convolutional' else 'BoxPredictor']: concatInputs = [] for i in range(num_layers): # Flatten predictions flatten = NodeDef() if box_predictor is 'convolutional': inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label) else: if i == 0: inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label else: inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label) flatten.input.append(inpName) flatten.name = inpName + '/Flatten' flatten.op = 'Flatten' concatInputs.append(flatten.name) graph_def.node.extend([flatten]) addConcatNode('%s/concat' % label, concatInputs, 'concat/axis_flatten') num_matched_layers = 0 for node in graph_def.node: if re.match('BoxPredictor_\d/BoxEncodingPredictor/convolution', node.name) or \ re.match('BoxPredictor_\d/BoxEncodingPredictor/Conv2D', node.name) or \ re.match('WeightSharedConvolutionalBoxPredictor(_\d)*/BoxPredictor/Conv2D', node.name): node.addAttr('loc_pred_transposed', True) num_matched_layers += 1 assert(num_matched_layers == num_layers) # Add layers that generate anchors (bounding boxes proposals). priorBoxes = [] boxCoder = config['box_coder'][0] fasterRcnnBoxCoder = boxCoder['faster_rcnn_box_coder'][0] boxCoderVariance = [1.0/float(fasterRcnnBoxCoder['x_scale'][0]), 1.0/float(fasterRcnnBoxCoder['y_scale'][0]), 1.0/float(fasterRcnnBoxCoder['width_scale'][0]), 1.0/float(fasterRcnnBoxCoder['height_scale'][0])] for i in range(num_layers): priorBox = NodeDef() priorBox.name = 'PriorBox_%d' % i priorBox.op = 'PriorBox' if box_predictor is 'convolutional': priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i) else: if i == 0: priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D') else: priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i) priorBox.input.append(graph_def.node[0].name) # image_tensor priorBox.addAttr('flip', False) priorBox.addAttr('clip', False) widths, heights = priors_generator.get(i) priorBox.addAttr('width', widths) priorBox.addAttr('height', heights) priorBox.addAttr('variance', boxCoderVariance) graph_def.node.extend([priorBox]) priorBoxes.append(priorBox.name) # Compare this layer's output with Postprocessor/Reshape addConcatNode('PriorBox/concat', priorBoxes, 'concat/axis_flatten') # Sigmoid for classes predictions and DetectionOutput layer addReshape('ClassPredictor/concat', 'ClassPredictor/concat3d', [0, -1, num_classes + 1], graph_def) sigmoid = NodeDef() sigmoid.name = 'ClassPredictor/concat/sigmoid' sigmoid.op = 'Sigmoid' sigmoid.input.append('ClassPredictor/concat3d') graph_def.node.extend([sigmoid]) addFlatten(sigmoid.name, sigmoid.name + '/Flatten', graph_def) detectionOut = NodeDef() detectionOut.name = 'detection_out' detectionOut.op = 'DetectionOutput' if box_predictor == 'convolutional': detectionOut.input.append('BoxEncodingPredictor/concat') else: detectionOut.input.append('BoxPredictor/concat') detectionOut.input.append(sigmoid.name + '/Flatten') detectionOut.input.append('PriorBox/concat') detectionOut.addAttr('num_classes', num_classes + 1) detectionOut.addAttr('share_location', True) detectionOut.addAttr('background_label_id', 0) postProcessing = config['post_processing'][0] batchNMS = postProcessing['batch_non_max_suppression'][0] if 'iou_threshold' in batchNMS: detectionOut.addAttr('nms_threshold', float(batchNMS['iou_threshold'][0])) else: detectionOut.addAttr('nms_threshold', 0.6) if 'score_threshold' in batchNMS: detectionOut.addAttr('confidence_threshold', float(batchNMS['score_threshold'][0])) else: detectionOut.addAttr('confidence_threshold', 0.01) if 'max_detections_per_class' in batchNMS: detectionOut.addAttr('top_k', int(batchNMS['max_detections_per_class'][0])) else: detectionOut.addAttr('top_k', 100) if 'max_total_detections' in batchNMS: detectionOut.addAttr('keep_top_k', int(batchNMS['max_total_detections'][0])) else: detectionOut.addAttr('keep_top_k', 100) detectionOut.addAttr('code_type', "CENTER_SIZE") graph_def.node.extend([detectionOut]) while True: unconnectedNodes = getUnconnectedNodes() unconnectedNodes.remove(detectionOut.name) if not unconnectedNodes: break for name in unconnectedNodes: for i in range(len(graph_def.node)): if graph_def.node[i].name == name: del graph_def.node[i] break # Save as text. graph_def.save(outputPath) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run this script to get a text graph of ' 'SSD model from TensorFlow Object Detection API. ' 'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.') parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.') parser.add_argument('--output', required=True, help='Path to output text graph.') parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.') args = parser.parse_args() createSSDGraph(args.input, args.config, args.output)
py
1a4dc53afb7093b167a2d57c1da3c8f3e56308cb
import datetime import os import time from uuid import UUID, uuid4 from django import forms as django_forms, http from django.conf import settings from django.core.exceptions import PermissionDenied from django.core.files.storage import default_storage as storage from django.db import transaction from django.db.models import Count from django.http import JsonResponse from django.shortcuts import get_object_or_404, redirect from django.template import loader from django.utils.http import is_safe_url from django.utils.translation import ugettext, ugettext_lazy as _ from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt import waffle from django_statsd.clients import statsd import olympia.core.logger from olympia import amo from olympia.access import acl from olympia.accounts.utils import redirect_for_login from olympia.accounts.views import API_TOKEN_COOKIE, logout_user from olympia.activity.models import ActivityLog, VersionLog from olympia.activity.utils import log_and_notify from olympia.addons.models import ( Addon, AddonReviewerFlags, AddonUser, AddonUserPendingConfirmation) from olympia.addons.views import BaseFilter from olympia.amo import messages, utils as amo_utils from olympia.amo.decorators import json_view, login_required, post_required from olympia.amo.templatetags.jinja_helpers import absolutify, urlparams from olympia.amo.urlresolvers import get_url_prefix, reverse from olympia.amo.utils import MenuItem, escape_all, render, send_mail from olympia.api.models import APIKey, APIKeyConfirmation from olympia.devhub.decorators import dev_required, no_admin_disabled from olympia.devhub.models import BlogPost, RssKey from olympia.devhub.utils import ( add_dynamic_theme_tag, extract_theme_properties, fetch_existing_translations_from_addon, get_addon_akismet_reports, UploadRestrictionChecker, wizard_unsupported_properties) from olympia.files.models import File, FileUpload, FileValidation from olympia.files.utils import parse_addon from olympia.lib.crypto.signing import sign_file from olympia.reviewers.forms import PublicWhiteboardForm from olympia.reviewers.models import Whiteboard from olympia.reviewers.templatetags.jinja_helpers import get_position from olympia.reviewers.utils import ReviewHelper from olympia.users.models import DeveloperAgreementRestriction from olympia.versions.models import Version from olympia.versions.tasks import extract_version_source_to_git from olympia.versions.utils import get_next_version_number from olympia.zadmin.models import get_config from . import feeds, forms, signals, tasks log = olympia.core.logger.getLogger('z.devhub') # We use a session cookie to make sure people see the dev agreement. MDN_BASE = 'https://developer.mozilla.org/en-US/Add-ons' def get_fileupload_by_uuid_or_404(value): try: UUID(value) except ValueError: raise http.Http404() return get_object_or_404(FileUpload, uuid=value) class AddonFilter(BaseFilter): opts = (('updated', _(u'Updated')), ('name', _(u'Name')), ('created', _(u'Created')), ('popular', _(u'Downloads')), ('rating', _(u'Rating'))) class ThemeFilter(BaseFilter): opts = (('created', _(u'Created')), ('name', _(u'Name')), ('popular', _(u'Downloads')), ('rating', _(u'Rating'))) def addon_listing(request, theme=False): """Set up the queryset and filtering for addon listing for Dashboard.""" if theme: qs = Addon.objects.filter( authors=request.user, type=amo.ADDON_STATICTHEME) filter_cls = ThemeFilter default = 'created' else: qs = Addon.objects.filter(authors=request.user).exclude( type=amo.ADDON_STATICTHEME) filter_cls = AddonFilter default = 'updated' filter_ = filter_cls(request, qs, 'sort', default) return filter_.qs, filter_ def index(request): ctx = {'blog_posts': _get_posts()} if request.user.is_authenticated: user_addons = Addon.objects.filter(authors=request.user) recent_addons = user_addons.order_by('-modified')[:3] ctx['recent_addons'] = [] for addon in recent_addons: ctx['recent_addons'].append({'addon': addon, 'position': get_position(addon)}) return render(request, 'devhub/index.html', ctx) @login_required def dashboard(request, theme=False): addon_items = _get_items( None, Addon.objects.filter(authors=request.user))[:4] data = dict(rss=_get_rss_feed(request), blog_posts=_get_posts(), timestamp=int(time.time()), addon_tab=not theme, theme=theme, addon_items=addon_items) if data['addon_tab']: addons, data['filter'] = addon_listing(request) data['addons'] = amo_utils.paginate(request, addons, per_page=10) if theme: themes, data['filter'] = addon_listing(request, theme=True) data['themes'] = amo_utils.paginate(request, themes, per_page=10) if 'filter' in data: data['sorting'] = data['filter'].field data['sort_opts'] = data['filter'].opts return render(request, 'devhub/addons/dashboard.html', data) @dev_required def ajax_compat_status(request, addon_id, addon): if not (addon.accepts_compatible_apps() and addon.current_version): raise http.Http404() return render(request, 'devhub/addons/ajax_compat_status.html', dict(addon=addon)) @dev_required def ajax_compat_error(request, addon_id, addon): if not (addon.accepts_compatible_apps() and addon.current_version): raise http.Http404() return render(request, 'devhub/addons/ajax_compat_error.html', dict(addon=addon)) @dev_required def ajax_compat_update(request, addon_id, addon, version_id): if not addon.accepts_compatible_apps(): raise http.Http404() version = get_object_or_404(addon.versions.all(), pk=version_id) compat_form = forms.CompatFormSet( request.POST or None, queryset=version.apps.all().select_related('min', 'max'), form_kwargs={'version': version}) if request.method == 'POST' and compat_form.is_valid(): for compat in compat_form.save(commit=False): compat.version = version compat.save() for compat in compat_form.deleted_objects: compat.delete() for form in compat_form.forms: if (isinstance(form, forms.CompatForm) and 'max' in form.changed_data): _log_max_version_change(addon, version, form.instance) return render(request, 'devhub/addons/ajax_compat_update.html', dict(addon=addon, version=version, compat_form=compat_form)) def _get_addons(request, addons, addon_id, action): """Create a list of ``MenuItem``s for the activity feed.""" items = [] a = MenuItem() a.selected = (not addon_id) (a.text, a.url) = (ugettext('All My Add-ons'), reverse('devhub.feed_all')) if action: a.url += '?action=' + action items.append(a) for addon in addons: item = MenuItem() try: item.selected = (addon_id and addon.id == int(addon_id)) except ValueError: pass # We won't get here... EVER url = reverse('devhub.feed', args=[addon.slug]) if action: url += '?action=' + action item.text, item.url = addon.name, url items.append(item) return items def _get_posts(limit=5): return BlogPost.objects.order_by('-date_posted')[0:limit] def _get_activities(request, action): url = request.get_full_path() choices = (None, 'updates', 'status', 'collections', 'reviews') text = {None: ugettext('All Activity'), 'updates': ugettext('Add-on Updates'), 'status': ugettext('Add-on Status'), 'collections': ugettext('User Collections'), 'reviews': ugettext('User Reviews'), } items = [] for c in choices: i = MenuItem() i.text = text[c] i.url, i.selected = urlparams(url, page=None, action=c), (action == c) items.append(i) return items def _get_items(action, addons): filters = { 'updates': (amo.LOG.ADD_VERSION, amo.LOG.ADD_FILE_TO_VERSION), 'status': (amo.LOG.USER_DISABLE, amo.LOG.USER_ENABLE, amo.LOG.CHANGE_STATUS, amo.LOG.APPROVE_VERSION,), 'collections': (amo.LOG.ADD_TO_COLLECTION, amo.LOG.REMOVE_FROM_COLLECTION,), 'reviews': (amo.LOG.ADD_RATING,) } filter_ = filters.get(action) items = (ActivityLog.objects.for_addons(addons) .exclude(action__in=amo.LOG_HIDE_DEVELOPER)) if filter_: items = items.filter(action__in=[i.id for i in filter_]) return items def _get_rss_feed(request): key, _ = RssKey.objects.get_or_create(user=request.user) return urlparams(reverse('devhub.feed_all'), privaterss=key.key.hex) def feed(request, addon_id=None): if request.GET.get('privaterss'): return feeds.ActivityFeedRSS()(request) addon_selected = None if not request.user.is_authenticated: return redirect_for_login(request) else: addons_all = Addon.objects.filter(authors=request.user) if addon_id: addon = get_object_or_404(Addon.objects.id_or_slug(addon_id)) addons = addon # common query set try: key = RssKey.objects.get(addon=addons) except RssKey.DoesNotExist: key = RssKey.objects.create(addon=addons) addon_selected = addon.id rssurl = urlparams(reverse('devhub.feed', args=[addon_id]), privaterss=key.key.hex) if not acl.check_addon_ownership(request, addons, dev=True, ignore_disabled=True): raise PermissionDenied else: rssurl = _get_rss_feed(request) addon = None addons = addons_all action = request.GET.get('action') items = _get_items(action, addons) activities = _get_activities(request, action) addon_items = _get_addons(request, addons_all, addon_selected, action) pager = amo_utils.paginate(request, items, 20) data = dict(addons=addon_items, pager=pager, activities=activities, rss=rssurl, addon=addon) return render(request, 'devhub/addons/activity.html', data) @dev_required def edit(request, addon_id, addon): try: whiteboard = Whiteboard.objects.get(pk=addon.pk) except Whiteboard.DoesNotExist: whiteboard = Whiteboard(pk=addon.pk) previews = ( addon.current_version.previews.all() if addon.current_version and addon.has_per_version_previews else addon.previews.all()) header_preview = ( previews.first() if addon.type == amo.ADDON_STATICTHEME else None) data = { 'page': 'edit', 'addon': addon, 'whiteboard': whiteboard, 'editable': False, 'show_listed_fields': addon.has_listed_versions(), 'valid_slug': addon.slug, 'tags': addon.tags.not_denied().values_list('tag_text', flat=True), 'previews': previews, 'header_preview': header_preview, 'supported_image_types': amo.SUPPORTED_IMAGE_TYPES, } return render(request, 'devhub/addons/edit.html', data) @dev_required(owner_for_post=True) @post_required def delete(request, addon_id, addon): # Database deletes only allowed for free or incomplete addons. if not addon.can_be_deleted(): msg = ugettext( 'Add-on cannot be deleted. Disable this add-on instead.') messages.error(request, msg) return redirect(addon.get_dev_url('versions')) any_theme = addon.type == amo.ADDON_STATICTHEME form = forms.DeleteForm(request.POST, addon=addon) if form.is_valid(): reason = form.cleaned_data.get('reason', '') addon.delete(msg='Removed via devhub', reason=reason) messages.success( request, ugettext('Theme deleted.') if any_theme else ugettext('Add-on deleted.')) return redirect('devhub.%s' % ('themes' if any_theme else 'addons')) else: messages.error( request, ugettext('URL name was incorrect. Theme was not deleted.') if any_theme else ugettext('URL name was incorrect. Add-on was not deleted.')) return redirect(addon.get_dev_url('versions')) @dev_required @post_required def enable(request, addon_id, addon): addon.update(disabled_by_user=False) ActivityLog.create(amo.LOG.USER_ENABLE, addon) return redirect(addon.get_dev_url('versions')) @dev_required(owner_for_post=True) @post_required def cancel(request, addon_id, addon): if addon.status == amo.STATUS_NOMINATED: addon.update(status=amo.STATUS_NULL) ActivityLog.create(amo.LOG.CHANGE_STATUS, addon, addon.status) latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_LISTED) if latest_version: for file_ in latest_version.files.filter( status=amo.STATUS_AWAITING_REVIEW): file_.update(status=amo.STATUS_DISABLED) return redirect(addon.get_dev_url('versions')) @dev_required @post_required def disable(request, addon_id, addon): # Also set the latest listed version to STATUS_DISABLED if it was # AWAITING_REVIEW, to not waste reviewers time. latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_LISTED) if latest_version: latest_version.files.filter( status=amo.STATUS_AWAITING_REVIEW).update( status=amo.STATUS_DISABLED) addon.update_version() addon.update_status() addon.update(disabled_by_user=True) ActivityLog.create(amo.LOG.USER_DISABLE, addon) return redirect(addon.get_dev_url('versions')) # Can't use @dev_required, as the user is not a developer yet. Can't use # @addon_view_factory either, because it requires a developer for unlisted # add-ons. So we just @login_required and retrieve the addon ourselves in the # function. @login_required def invitation(request, addon_id): addon = get_object_or_404(Addon.objects.id_or_slug(addon_id)) try: invitation = AddonUserPendingConfirmation.objects.get( addon=addon, user=request.user) except AddonUserPendingConfirmation.DoesNotExist: # To be nice in case the user accidentally visited this page after # having accepted an invite, redirect to the add-on base edit page. # If they are an author, they will have access, otherwise will get the # appropriate error. return redirect(addon.get_dev_url()) if request.method == 'POST': value = request.POST.get('accept') if value == 'yes': # There is a potential race condition on the position, but it's # difficult to find a sensible value anyway. Should a position # conflict happen, owners can easily fix it themselves. last_position = AddonUser.objects.filter( addon=invitation.addon).order_by('position').values_list( 'position', flat=True).last() or 0 AddonUser.objects.create( addon=invitation.addon, user=invitation.user, role=invitation.role, listed=invitation.listed, position=last_position + 1) messages.success(request, ugettext('Invitation accepted.')) redirect_url = addon.get_dev_url() else: messages.success(request, ugettext('Invitation declined.')) redirect_url = reverse('devhub.addons') # Regardless of whether or not the invitation was accepted or not, # it's now obsolete. invitation.delete() return redirect(redirect_url) ctx = { 'addon': addon, 'invitation': invitation, } return render(request, 'devhub/addons/invitation.html', ctx) @dev_required(owner_for_post=True) def ownership(request, addon_id, addon): fs = [] ctx = {'addon': addon} post_data = request.POST if request.method == 'POST' else None # Authors. user_form = forms.AuthorFormSet( post_data, prefix='user_form', queryset=AddonUser.objects.filter(addon=addon).order_by('position'), form_kwargs={'addon': addon}) fs.append(user_form) ctx['user_form'] = user_form # Authors pending confirmation (owner can still remove them before they # accept). authors_pending_confirmation_form = forms.AuthorWaitingConfirmationFormSet( post_data, prefix='authors_pending_confirmation', queryset=AddonUserPendingConfirmation.objects.filter( addon=addon).order_by('id'), form_kwargs={'addon': addon}) fs.append(authors_pending_confirmation_form) ctx['authors_pending_confirmation_form'] = ( authors_pending_confirmation_form) # Versions. license_form = forms.LicenseForm(post_data, version=addon.current_version) ctx.update(license_form.get_context()) if ctx['license_form']: # if addon has a version fs.append(ctx['license_form']) # Policy. if addon.type != amo.ADDON_STATICTHEME: policy_form = forms.PolicyForm(post_data, addon=addon) ctx['policy_form'] = policy_form fs.append(policy_form) else: policy_form = None def mail_user_changes(author, title, template_part, recipients, extra_context=None): from olympia.amo.utils import send_mail context_data = { 'author': author, 'addon': addon, 'DOMAIN': settings.DOMAIN, } if extra_context: context_data.update(extra_context) template = loader.get_template( 'users/email/{part}.ltxt'.format(part=template_part)) send_mail(title, template.render(context_data), None, recipients, use_deny_list=False) def process_author_changes(source_form, existing_authors_emails): addon_users_to_process = source_form.save(commit=False) for addon_user in addon_users_to_process: action = None addon_user.addon = addon if not addon_user.pk: action = amo.LOG.ADD_USER_WITH_ROLE mail_user_changes( author=addon_user, title=ugettext('An author has been added to your add-on'), template_part='author_added', recipients=existing_authors_emails) mail_user_changes( author=addon_user, title=ugettext( 'Author invitation for {addon_name}').format( addon_name=str(addon.name)), template_part='author_added_confirmation', recipients=[addon_user.user.email], extra_context={'author_confirmation_link': absolutify( reverse('devhub.addons.invitation', args=(addon.slug,)) )}) messages.success(request, ugettext( 'A confirmation email has been sent to {email}').format( email=addon_user.user.email)) elif addon_user.role != addon_user._original_role: action = amo.LOG.CHANGE_USER_WITH_ROLE title = ugettext( 'An author role has been changed on your add-on') recipients = list( set(existing_authors_emails + [addon_user.user.email]) ) mail_user_changes( author=addon_user, title=title, template_part='author_changed', recipients=recipients) addon_user.save() if action: ActivityLog.create( action, addon_user.user, str(addon_user.get_role_display()), addon) for addon_user in source_form.deleted_objects: recipients = list( set(existing_authors_emails + [addon_user.user.email]) ) ActivityLog.create( amo.LOG.REMOVE_USER_WITH_ROLE, addon_user.user, str(addon_user.get_role_display()), addon) mail_user_changes( author=addon_user, title=ugettext('An author has been removed from your add-on'), template_part='author_removed', recipients=recipients) addon_user.delete() if request.method == 'POST' and all([form.is_valid() for form in fs]): if license_form in fs: license_form.save() if policy_form and policy_form in fs: policy_form.save() messages.success(request, ugettext('Changes successfully saved.')) existing_authors_emails = list( addon.authors.values_list('email', flat=True)) process_author_changes( authors_pending_confirmation_form, existing_authors_emails) process_author_changes( user_form, existing_authors_emails) return redirect(addon.get_dev_url('owner')) return render(request, 'devhub/addons/owner.html', ctx) @login_required def validate_addon(request): return render(request, 'devhub/validate_addon.html', {'title': ugettext('Validate Add-on'), 'new_addon_form': forms.DistributionChoiceForm()}) def handle_upload(filedata, request, channel, addon=None, is_standalone=False, submit=False): automated_signing = channel == amo.RELEASE_CHANNEL_UNLISTED user = request.user if request.user.is_authenticated else None upload = FileUpload.from_post( filedata, filedata.name, filedata.size, automated_signing=automated_signing, addon=addon, user=user) log.info('FileUpload created: %s' % upload.uuid.hex) from olympia.lib.akismet.tasks import akismet_comment_check # circ import if (channel == amo.RELEASE_CHANNEL_LISTED): existing_data = ( fetch_existing_translations_from_addon( upload.addon, ('name', 'summary', 'description')) if addon and addon.has_listed_versions() else ()) akismet_reports = get_addon_akismet_reports( user=user, user_agent=request.META.get('HTTP_USER_AGENT'), referrer=request.META.get('HTTP_REFERER'), upload=upload, existing_data=existing_data) else: akismet_reports = [] if akismet_reports: pretask = akismet_comment_check.si( [report.id for _, report in akismet_reports]) else: pretask = None if submit: tasks.validate_and_submit( addon, upload, channel=channel, pretask=pretask) else: tasks.validate( upload, listed=(channel == amo.RELEASE_CHANNEL_LISTED), pretask=pretask) return upload @login_required @post_required def upload(request, channel='listed', addon=None, is_standalone=False): channel = amo.CHANNEL_CHOICES_LOOKUP[channel] filedata = request.FILES['upload'] upload = handle_upload( filedata=filedata, request=request, addon=addon, is_standalone=is_standalone, channel=channel) if addon: return redirect('devhub.upload_detail_for_version', addon.slug, upload.uuid.hex) elif is_standalone: return redirect('devhub.standalone_upload_detail', upload.uuid.hex) else: return redirect('devhub.upload_detail', upload.uuid.hex, 'json') @post_required @dev_required def upload_for_version(request, addon_id, addon, channel): return upload(request, channel=channel, addon=addon) @login_required @json_view def standalone_upload_detail(request, uuid): upload = get_fileupload_by_uuid_or_404(uuid) url = reverse('devhub.standalone_upload_detail', args=[uuid]) return upload_validation_context(request, upload, url=url) @dev_required(submitting=True) @json_view def upload_detail_for_version(request, addon_id, addon, uuid): try: upload = get_fileupload_by_uuid_or_404(uuid) response = json_upload_detail(request, upload, addon_slug=addon.slug) statsd.incr('devhub.upload_detail_for_addon.success') return response except Exception as exc: statsd.incr('devhub.upload_detail_for_addon.error') log.error('Error checking upload status: {} {}'.format(type(exc), exc)) raise @dev_required(allow_reviewers=True) def file_validation(request, addon_id, addon, file_id): file_ = get_object_or_404(File, version__addon=addon, id=file_id) validate_url = reverse('devhub.json_file_validation', args=[addon.slug, file_.id]) file_url = reverse('files.list', args=[file_.id, 'file', '']) context = {'validate_url': validate_url, 'file_url': file_url, 'file': file_, 'filename': file_.filename, 'timestamp': file_.created, 'addon': addon, 'automated_signing': file_.automated_signing} if file_.has_been_validated: context['validation_data'] = file_.validation.processed_validation return render(request, 'devhub/validation.html', context) @csrf_exempt @dev_required(allow_reviewers=True) def json_file_validation(request, addon_id, addon, file_id): file = get_object_or_404(File, version__addon=addon, id=file_id) try: result = file.validation except FileValidation.DoesNotExist: if request.method != 'POST': return http.HttpResponseNotAllowed(['POST']) # This API is, unfortunately, synchronous, so wait for the # task to complete and return the result directly. pk = tasks.validate(file, synchronous=True).get() result = FileValidation.objects.get(pk=pk) response = JsonResponse({ 'validation': result.processed_validation, 'error': None, }) # See: https://github.com/mozilla/addons-server/issues/11048 response['Access-Control-Allow-Origin'] = settings.CODE_MANAGER_URL response['Access-Control-Allow-Methods'] = 'GET, OPTIONS' response['Access-Control-Allow-Headers'] = 'Content-Type' response['Access-Control-Allow-Credentials'] = 'true' return response @json_view def json_upload_detail(request, upload, addon_slug=None): addon = None if addon_slug: addon = get_object_or_404(Addon.objects, slug=addon_slug) result = upload_validation_context(request, upload, addon=addon) if result['validation']: try: pkg = parse_addon(upload, addon=addon, user=request.user) except django_forms.ValidationError as exc: # Don't add custom validation errors if we already # failed validation (This can happen because validation does # call `parse_addon` too.) if result['validation'].get('errors', 0): return result # This doesn't guard against client-side tinkering, and is purely # to display those non-linter errors nicely in the frontend. What # does prevent clients from bypassing those is the fact that we # always call parse_addon() before calling from_upload(), so # ValidationError would be raised before proceeding. for i, msg in enumerate(exc.messages): # Simulate a validation error so the UI displays # it as such result['validation']['messages'].insert( i, {'type': 'error', 'message': escape_all(msg), 'tier': 1, 'fatal': True}) if result['validation']['ending_tier'] < 1: result['validation']['ending_tier'] = 1 result['validation']['errors'] += 1 return json_view.error(result) else: result['addon_type'] = pkg.get('type', '') return result def upload_validation_context(request, upload, addon=None, url=None): if not url: if addon: url = reverse('devhub.upload_detail_for_version', args=[addon.slug, upload.uuid.hex]) else: url = reverse( 'devhub.upload_detail', args=[upload.uuid.hex, 'json']) full_report_url = reverse('devhub.upload_detail', args=[upload.uuid.hex]) validation = upload.processed_validation or '' return {'upload': upload.uuid.hex, 'validation': validation, 'error': None, 'url': url, 'full_report_url': full_report_url} def upload_detail(request, uuid, format='html'): upload = get_fileupload_by_uuid_or_404(uuid) if upload.user_id and not request.user.is_authenticated: return redirect_for_login(request) if format == 'json' or request.is_ajax(): try: response = json_upload_detail(request, upload) statsd.incr('devhub.upload_detail.success') return response except Exception as exc: statsd.incr('devhub.upload_detail.error') log.error('Error checking upload status: {} {}'.format( type(exc), exc)) raise validate_url = reverse('devhub.standalone_upload_detail', args=[upload.uuid.hex]) context = {'validate_url': validate_url, 'filename': upload.pretty_name, 'automated_signing': upload.automated_signing, 'timestamp': upload.created} if upload.validation: context['validation_data'] = upload.processed_validation return render(request, 'devhub/validation.html', context) @dev_required def addons_section(request, addon_id, addon, section, editable=False): show_listed = addon.has_listed_versions() static_theme = addon.type == amo.ADDON_STATICTHEME models = {} content_waffle = waffle.switch_is_active('content-optimization') if show_listed: models.update({ 'describe': (forms.DescribeForm if not content_waffle else forms.DescribeFormContentOptimization), 'additional_details': forms.AdditionalDetailsForm, 'technical': forms.AddonFormTechnical }) if not static_theme: models.update({'media': forms.AddonFormMedia}) else: models.update({ 'describe': (forms.DescribeFormUnlisted if not content_waffle else forms.DescribeFormUnlistedContentOptimization), 'additional_details': forms.AdditionalDetailsFormUnlisted, 'technical': forms.AddonFormTechnicalUnlisted }) if section not in models: raise http.Http404() tags, previews, restricted_tags = [], [], [] cat_form = dependency_form = whiteboard_form = None whiteboard = None if section == 'describe' and show_listed: category_form_class = (forms.SingleCategoryForm if static_theme else forms.CategoryFormSet) cat_form = category_form_class( request.POST or None, addon=addon, request=request) elif section == 'additional_details' and show_listed: tags = addon.tags.not_denied().values_list('tag_text', flat=True) restricted_tags = addon.tags.filter(restricted=True) elif section == 'media': previews = forms.PreviewFormSet( request.POST or None, prefix='files', queryset=addon.previews.all()) if section == 'technical': try: whiteboard = Whiteboard.objects.get(pk=addon.pk) except Whiteboard.DoesNotExist: whiteboard = Whiteboard(pk=addon.pk) whiteboard_form = PublicWhiteboardForm(request.POST or None, instance=whiteboard, prefix='whiteboard') # Get the slug before the form alters it to the form data. valid_slug = addon.slug if editable: if request.method == 'POST': form = models[section](request.POST, request.FILES, instance=addon, request=request) if form.is_valid() and (not previews or previews.is_valid()): addon = form.save(addon) if previews: for preview in previews.forms: preview.save(addon) editable = False if section == 'media': ActivityLog.create(amo.LOG.CHANGE_ICON, addon) else: ActivityLog.create(amo.LOG.EDIT_PROPERTIES, addon) valid_slug = addon.slug if cat_form: if cat_form.is_valid(): cat_form.save() else: editable = True if dependency_form: if dependency_form.is_valid(): dependency_form.save() else: editable = True if whiteboard_form: if whiteboard_form.is_valid(): whiteboard_form.save() else: editable = True else: form = models[section](instance=addon, request=request) else: form = False data = { 'addon': addon, 'whiteboard': whiteboard, 'show_listed_fields': show_listed, 'form': form, 'editable': editable, 'tags': tags, 'restricted_tags': restricted_tags, 'cat_form': cat_form, 'preview_form': previews, 'dependency_form': dependency_form, 'whiteboard_form': whiteboard_form, 'valid_slug': valid_slug, 'supported_image_types': amo.SUPPORTED_IMAGE_TYPES, } return render(request, 'devhub/addons/edit/%s.html' % section, data) @never_cache @dev_required @json_view def image_status(request, addon_id, addon): # Default icon needs no checking. if not addon.icon_type or addon.icon_type.split('/')[0] == 'icon': icons = True else: icons = storage.exists(os.path.join(addon.get_icon_dir(), '%s-32.png' % addon.id)) previews = all(storage.exists(p.thumbnail_path) for p in addon.previews.all()) return {'overall': icons and previews, 'icons': icons, 'previews': previews} @dev_required @json_view def upload_image(request, addon_id, addon, upload_type): errors = [] upload_hash = '' if 'upload_image' in request.FILES: upload_preview = request.FILES['upload_image'] upload_preview.seek(0) upload_hash = uuid4().hex loc = os.path.join(settings.TMP_PATH, upload_type, upload_hash) with storage.open(loc, 'wb') as fd: for chunk in upload_preview: fd.write(chunk) is_icon = upload_type == 'icon' is_preview = upload_type == 'preview' image_check = amo_utils.ImageCheck(upload_preview) is_animated = image_check.is_animated() # will also cache .is_image() if (upload_preview.content_type not in amo.IMG_TYPES or not image_check.is_image()): if is_icon: errors.append(ugettext('Icons must be either PNG or JPG.')) else: errors.append(ugettext('Images must be either PNG or JPG.')) if is_animated: if is_icon: errors.append(ugettext('Icons cannot be animated.')) else: errors.append(ugettext('Images cannot be animated.')) if is_icon: max_size = settings.MAX_ICON_UPLOAD_SIZE else: max_size = None if max_size and upload_preview.size > max_size: if is_icon: errors.append( ugettext('Please use images smaller than %dMB.') % (max_size // 1024 // 1024)) content_waffle = waffle.switch_is_active('content-optimization') if image_check.is_image() and content_waffle and is_preview: min_size = amo.ADDON_PREVIEW_SIZES.get('min') # * 100 to get a nice integer to compare against rather than 1.3333 required_ratio = min_size[0] * 100 // min_size[1] actual_size = image_check.size actual_ratio = actual_size[0] * 100 // actual_size[1] if actual_size[0] < min_size[0] or actual_size[1] < min_size[1]: # L10n: {0} is an image width (in pixels), {1} is a height. errors.append( ugettext('Image must be at least {0} pixels wide and {1} ' 'pixels tall.').format(min_size[0], min_size[1])) if actual_ratio != required_ratio: errors.append( ugettext('Image dimensions must be in the ratio 4:3.')) if image_check.is_image() and content_waffle and is_icon: standard_size = amo.ADDON_ICON_SIZES[-1] icon_size = image_check.size if icon_size[0] < standard_size or icon_size[1] < standard_size: # L10n: {0} is an image width/height (in pixels). errors.append( ugettext(u'Icon must be at least {0} pixels wide and ' u'tall.').format(standard_size)) if icon_size[0] != icon_size[1]: errors.append( ugettext(u'Icon must be square (same width and height).')) if errors and is_preview and os.path.exists(loc): # Delete the temporary preview file in case of error. os.unlink(loc) else: errors.append(ugettext('There was an error uploading your preview.')) if errors: upload_hash = '' return {'upload_hash': upload_hash, 'errors': errors} @dev_required def version_edit(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), pk=version_id) static_theme = addon.type == amo.ADDON_STATICTHEME version_form = forms.VersionForm( request.POST or None, request.FILES or None, instance=version, request=request, ) if not static_theme else None data = {} if version_form: data['version_form'] = version_form is_admin = acl.action_allowed(request, amo.permissions.REVIEWS_ADMIN) if not static_theme and addon.accepts_compatible_apps(): qs = version.apps.all().select_related('min', 'max') compat_form = forms.CompatFormSet( request.POST or None, queryset=qs, form_kwargs={'version': version}) data['compat_form'] = compat_form if (request.method == 'POST' and all([form.is_valid() for form in data.values()])): if 'compat_form' in data: for compat in data['compat_form'].save(commit=False): compat.version = version compat.save() for compat in data['compat_form'].deleted_objects: compat.delete() for form in data['compat_form'].forms: if (isinstance(form, forms.CompatForm) and 'max' in form.changed_data): _log_max_version_change(addon, version, form.instance) if 'version_form' in data: # VersionForm.save() clear the pending info request if the # developer specifically asked for it, but we've got additional # things to do here that depend on it. had_pending_info_request = bool(addon.pending_info_request) data['version_form'].save() if 'approval_notes' in version_form.changed_data: if had_pending_info_request: log_and_notify(amo.LOG.APPROVAL_NOTES_CHANGED, None, request.user, version) else: ActivityLog.create(amo.LOG.APPROVAL_NOTES_CHANGED, addon, version, request.user) if ('source' in version_form.changed_data and version_form.cleaned_data['source']): AddonReviewerFlags.objects.update_or_create( addon=addon, defaults={'needs_admin_code_review': True}) commit_to_git = waffle.switch_is_active( 'enable-uploads-commit-to-git-storage') if commit_to_git: # Extract into git repository extract_version_source_to_git.delay( version_id=data['version_form'].instance.pk, author_id=request.user.pk) if had_pending_info_request: log_and_notify(amo.LOG.SOURCE_CODE_UPLOADED, None, request.user, version) else: ActivityLog.create(amo.LOG.SOURCE_CODE_UPLOADED, addon, version, request.user) messages.success(request, ugettext('Changes successfully saved.')) return redirect('devhub.versions.edit', addon.slug, version_id) data.update({ 'addon': addon, 'version': version, 'is_admin': is_admin, 'choices': File.STATUS_CHOICES, 'files': version.files.all()}) return render(request, 'devhub/versions/edit.html', data) def _log_max_version_change(addon, version, appversion): details = {'version': version.version, 'target': appversion.version.version, 'application': appversion.application} ActivityLog.create(amo.LOG.MAX_APPVERSION_UPDATED, addon, version, details=details) @dev_required @post_required @transaction.atomic def version_delete(request, addon_id, addon): version_id = request.POST.get('version_id') version = get_object_or_404(addon.versions.all(), pk=version_id) if (addon.is_recommended and version.recommendation_approved and version == addon.current_version): # Developers shouldn't be able to delete/disable the current version # of an approved add-on. msg = ugettext('The latest approved version of a Recommended extension' ' cannot be deleted or disabled. Please contact AMO ' 'Admins if you need help with this.') messages.error(request, msg) elif 'disable_version' in request.POST: messages.success( request, ugettext('Version %s disabled.') % version.version) version.is_user_disabled = True # Will update the files/activity log. version.addon.update_status() else: messages.success( request, ugettext('Version %s deleted.') % version.version) version.delete() # Will also activity log. return redirect(addon.get_dev_url('versions')) @dev_required @post_required @transaction.atomic def version_reenable(request, addon_id, addon): version_id = request.POST.get('version_id') version = get_object_or_404(addon.versions.all(), pk=version_id) messages.success( request, ugettext('Version %s re-enabled.') % version.version) version.is_user_disabled = False # Will update the files/activity log. version.addon.update_status() return redirect(addon.get_dev_url('versions')) def check_validation_override(request, form, addon, version): if version and form.cleaned_data.get('admin_override_validation'): helper = ReviewHelper(request=request, addon=addon, version=version) helper.set_data({ 'operating_systems': '', 'applications': '', 'comments': ugettext( u'This upload has failed validation, and may ' u'lack complete validation results. Please ' u'take due care when reviewing it.')}) helper.actions['super']['method']() def auto_sign_file(file_): """If the file should be automatically reviewed and signed, do it.""" addon = file_.version.addon if file_.is_experiment: # See bug 1220097. ActivityLog.create(amo.LOG.EXPERIMENT_SIGNED, file_) sign_file(file_) elif file_.version.channel == amo.RELEASE_CHANNEL_UNLISTED: # Sign automatically without manual review. helper = ReviewHelper(request=None, addon=addon, version=file_.version) # Provide the file to review/sign to the helper. helper.set_data({'addon_files': [file_], 'comments': 'automatic validation'}) helper.handler.process_public() ActivityLog.create(amo.LOG.UNLISTED_SIGNED, file_) def auto_sign_version(version, **kwargs): # Sign all the unapproved files submitted, one for each platform. for file_ in version.files.exclude(status=amo.STATUS_APPROVED): auto_sign_file(file_, **kwargs) @dev_required def version_list(request, addon_id, addon): qs = addon.versions.order_by('-created') versions = amo_utils.paginate(request, qs) is_admin = acl.action_allowed(request, amo.permissions.REVIEWS_ADMIN) token = request.COOKIES.get(API_TOKEN_COOKIE, None) data = {'addon': addon, 'versions': versions, 'token': token, 'is_admin': is_admin} return render(request, 'devhub/versions/list.html', data) @dev_required def version_bounce(request, addon_id, addon, version): # Use filter since there could be dupes. vs = addon.versions.filter(version=version).order_by('-created').first() if vs: return redirect('devhub.versions.edit', addon.slug, vs.id) else: raise http.Http404() @json_view @dev_required def version_stats(request, addon_id, addon): qs = addon.versions.all() reviews = (qs.annotate(review_count=Count('ratings')) .values('id', 'version', 'review_count')) data = {v['id']: v for v in reviews} files = ( qs.annotate(file_count=Count('files')).values_list('id', 'file_count')) for id_, file_count in files: # For backwards compatibility data[id_]['files'] = file_count data[id_]['reviews'] = data[id_].pop('review_count') return data @login_required def submit_addon(request): return render_agreement( request=request, template='devhub/addons/submit/start.html', next_step='devhub.submit.distribution', ) @dev_required def submit_version_agreement(request, addon_id, addon): return render_agreement( request=request, template='devhub/addons/submit/start.html', next_step=reverse('devhub.submit.version', args=(addon.slug,)), submit_page='version', ) @transaction.atomic def _submit_distribution(request, addon, next_view): # Accept GET for the first load so we can preselect the channel. form = forms.DistributionChoiceForm( request.POST if request.method == 'POST' else request.GET if request.GET.get('channel') else None) if request.method == 'POST' and form.is_valid(): data = form.cleaned_data args = [addon.slug] if addon else [] args.append(data['channel']) return redirect(next_view, *args) return render(request, 'devhub/addons/submit/distribute.html', {'distribution_form': form, 'submit_notification_warning': get_config('submit_notification_warning'), 'submit_page': 'version' if addon else 'addon'}) @login_required def submit_addon_distribution(request): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.agreement') return _submit_distribution(request, None, 'devhub.submit.upload') @dev_required(submitting=True) def submit_version_distribution(request, addon_id, addon): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) return _submit_distribution(request, addon, 'devhub.submit.version.upload') WIZARD_COLOR_FIELDS = [ ('frame', _(u'Header area background'), _(u'The color of the header area background, displayed in the part of ' u'the header not covered or visible through the header image. Manifest ' u'field: frame.'), 'rgba(229,230,232,1)'), ('tab_background_text', _(u'Header area text and icons'), _(u'The color of the text and icons in the header area, except the ' u'active tab. Manifest field: tab_background_text.'), 'rgba(0,0,0,1'), ('toolbar', _(u'Toolbar area background'), _(u'The background color for the navigation bar, the bookmarks bar, and ' u'the selected tab. Manifest field: toolbar.'), False), ('bookmark_text', _(u'Toolbar area text and icons'), _(u'The color of the text and icons in the toolbar and the active tab. ' u'Manifest field: bookmark_text.'), False), ('toolbar_field', _(u'Toolbar field area background'), _(u'The background color for fields in the toolbar, such as the URL bar. ' u'Manifest field: toolbar_field.'), False), ('toolbar_field_text', _(u'Toolbar field area text'), _(u'The color of text in fields in the toolbar, such as the URL bar. ' u'Manifest field: toolbar_field_text.'), False) ] @transaction.atomic def _submit_upload(request, addon, channel, next_view, wizard=False): """ If this is a new addon upload `addon` will be None. next_view is the view that will be redirected to. """ form = forms.NewUploadForm( request.POST or None, request.FILES or None, addon=addon, request=request ) if request.method == 'POST' and form.is_valid(): data = form.cleaned_data if addon: version = Version.from_upload( upload=data['upload'], addon=addon, selected_apps=data['compatible_apps'], channel=channel, parsed_data=data['parsed_data']) url_args = [addon.slug, version.id] else: addon = Addon.from_upload( upload=data['upload'], channel=channel, selected_apps=data['compatible_apps'], parsed_data=data['parsed_data'], user=request.user) version = addon.find_latest_version(channel=channel) url_args = [addon.slug] check_validation_override(request, form, addon, version) if (addon.status == amo.STATUS_NULL and addon.has_complete_metadata() and channel == amo.RELEASE_CHANNEL_LISTED): addon.update(status=amo.STATUS_NOMINATED) # auto-sign versions (the method checks eligibility) auto_sign_version(version) add_dynamic_theme_tag(version) return redirect(next_view, *url_args) is_admin = acl.action_allowed(request, amo.permissions.REVIEWS_ADMIN) if addon: channel_choice_text = (forms.DistributionChoiceForm().LISTED_LABEL if channel == amo.RELEASE_CHANNEL_LISTED else forms.DistributionChoiceForm().UNLISTED_LABEL) else: channel_choice_text = '' # We only need this for Version upload. submit_page = 'version' if addon else 'addon' template = ('devhub/addons/submit/upload.html' if not wizard else 'devhub/addons/submit/wizard.html') existing_properties = ( extract_theme_properties(addon, channel) if wizard and addon else {}) unsupported_properties = ( wizard_unsupported_properties( existing_properties, [field for field, _, _, _ in WIZARD_COLOR_FIELDS]) if existing_properties else []) return render(request, template, {'new_addon_form': form, 'is_admin': is_admin, 'addon': addon, 'submit_notification_warning': get_config('submit_notification_warning'), 'submit_page': submit_page, 'channel': channel, 'channel_choice_text': channel_choice_text, 'existing_properties': existing_properties, 'colors': WIZARD_COLOR_FIELDS, 'unsupported_properties': unsupported_properties, 'version_number': get_next_version_number(addon) if wizard else None}) @login_required def submit_addon_upload(request, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.agreement') channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, None, channel_id, 'devhub.submit.source') @dev_required(submitting=True) @no_admin_disabled def submit_version_upload(request, addon_id, addon, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, addon, channel_id, 'devhub.submit.version.source') @dev_required @no_admin_disabled def submit_version_auto(request, addon_id, addon): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) # choose the channel we need from the last upload last_version = addon.find_latest_version(None, exclude=()) if not last_version: return redirect('devhub.submit.version.distribution', addon.slug) channel = last_version.channel return _submit_upload( request, addon, channel, 'devhub.submit.version.source') @login_required def submit_addon_theme_wizard(request, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.agreement') channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, None, channel_id, 'devhub.submit.source', wizard=True) @dev_required @no_admin_disabled def submit_version_theme_wizard(request, addon_id, addon, channel): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect('devhub.submit.version.agreement', addon.slug) channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] return _submit_upload( request, addon, channel_id, 'devhub.submit.version.source', wizard=True) def _submit_source(request, addon, version, next_view): redirect_args = [addon.slug, version.pk] if version else [addon.slug] if addon.type != amo.ADDON_EXTENSION: return redirect(next_view, *redirect_args) latest_version = version or addon.find_latest_version(channel=None) form = forms.SourceForm( request.POST or None, request.FILES or None, instance=latest_version, request=request) if request.method == 'POST' and form.is_valid(): if form.cleaned_data.get('source'): AddonReviewerFlags.objects.update_or_create( addon=addon, defaults={'needs_admin_code_review': True}) activity_log = ActivityLog.objects.create( action=amo.LOG.SOURCE_CODE_UPLOADED.id, user=request.user, details={ 'comments': (u'This version has been automatically ' u'flagged for admin review, as it had source ' u'files attached when submitted.')}) VersionLog.objects.create( version_id=latest_version.id, activity_log=activity_log) form.save() # We can extract the actual source file only after the form # has been saved because the file behind it may not have been # written to disk yet (e.g for in-memory uploads) if waffle.switch_is_active('enable-uploads-commit-to-git-storage'): extract_version_source_to_git.delay( version_id=form.instance.pk, author_id=request.user.pk) return redirect(next_view, *redirect_args) context = { 'form': form, 'addon': addon, 'version': version, 'submit_page': 'version' if version else 'addon', } return render(request, 'devhub/addons/submit/source.html', context) @dev_required(submitting=True) def submit_addon_source(request, addon_id, addon): return _submit_source(request, addon, None, 'devhub.submit.details') @dev_required(submitting=True) def submit_version_source(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), id=version_id) return _submit_source( request, addon, version, 'devhub.submit.version.details') def _submit_details(request, addon, version): static_theme = addon.type == amo.ADDON_STATICTHEME if version: skip_details_step = (version.channel == amo.RELEASE_CHANNEL_UNLISTED or (static_theme and addon.has_complete_metadata())) if skip_details_step: # Nothing to do here. return redirect( 'devhub.submit.version.finish', addon.slug, version.pk) latest_version = version else: # Figure out the latest version early in order to pass the same # instance to each form that needs it (otherwise they might overwrite # each other). latest_version = addon.find_latest_version( channel=amo.RELEASE_CHANNEL_LISTED) if not latest_version: # No listed version ? Then nothing to do in the listed submission # flow. return redirect('devhub.submit.finish', addon.slug) forms_list = [] context = { 'addon': addon, 'version': version, 'sources_provided': latest_version.sources_provided, 'submit_page': 'version' if version else 'addon', } post_data = request.POST if request.method == 'POST' else None show_all_fields = not version or not addon.has_complete_metadata() if show_all_fields: if waffle.switch_is_active('content-optimization'): describe_form = forms.DescribeFormContentOptimization( post_data, instance=addon, request=request, version=version, should_auto_crop=True) else: describe_form = forms.DescribeForm( post_data, instance=addon, request=request, version=version) cat_form_class = (forms.CategoryFormSet if not static_theme else forms.SingleCategoryForm) cat_form = cat_form_class(post_data, addon=addon, request=request) policy_form = forms.PolicyForm(post_data, addon=addon) license_form = forms.LicenseForm( post_data, version=latest_version, prefix='license') context.update(license_form.get_context()) context.update( form=describe_form, cat_form=cat_form, policy_form=policy_form) forms_list.extend([ describe_form, cat_form, policy_form, context['license_form'] ]) if not static_theme: # Static themes don't need this form reviewer_form = forms.VersionForm( post_data, instance=latest_version, request=request) context.update(reviewer_form=reviewer_form) forms_list.append(reviewer_form) if request.method == 'POST' and all( form.is_valid() for form in forms_list): if show_all_fields: addon = describe_form.save() cat_form.save() policy_form.save() license_form.save(log=False) if not static_theme: reviewer_form.save() if addon.status == amo.STATUS_NULL: addon.update(status=amo.STATUS_NOMINATED) signals.submission_done.send(sender=addon) elif not static_theme: reviewer_form.save() if not version: return redirect('devhub.submit.finish', addon.slug) else: return redirect('devhub.submit.version.finish', addon.slug, version.id) template = 'devhub/addons/submit/%s' % ( 'describe.html' if show_all_fields else 'describe_minimal.html') return render(request, template, context) @dev_required(submitting=True) def submit_addon_details(request, addon_id, addon): return _submit_details(request, addon, None) @dev_required(submitting=True) def submit_version_details(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), id=version_id) return _submit_details(request, addon, version) def _submit_finish(request, addon, version): uploaded_version = version or addon.versions.latest() try: author = addon.authors.all()[0] except IndexError: # This should never happen. author = None if (not version and author and uploaded_version.channel == amo.RELEASE_CHANNEL_LISTED and not Version.objects.exclude(pk=uploaded_version.pk) .filter(addon__authors=author, channel=amo.RELEASE_CHANNEL_LISTED) .exclude(addon__status=amo.STATUS_NULL) .exists()): # If that's the first time this developer has submitted an listed addon # (no other listed Version by this author exists) send them a welcome # email. # We can use locale-prefixed URLs because the submitter probably # speaks the same language by the time he/she reads the email. context = { 'addon_name': str(addon.name), 'app': str(request.APP.pretty), 'detail_url': absolutify(addon.get_url_path()), 'version_url': absolutify(addon.get_dev_url('versions')), 'edit_url': absolutify(addon.get_dev_url('edit')), } tasks.send_welcome_email.delay(addon.id, [author.email], context) submit_page = 'version' if version else 'addon' return render(request, 'devhub/addons/submit/done.html', {'addon': addon, 'uploaded_version': uploaded_version, 'submit_page': submit_page, 'preview': uploaded_version.previews.first()}) @dev_required(submitting=True) def submit_addon_finish(request, addon_id, addon): # Bounce to the details step if incomplete if (not addon.has_complete_metadata() and addon.find_latest_version(channel=amo.RELEASE_CHANNEL_LISTED)): return redirect('devhub.submit.details', addon.slug) # Bounce to the versions page if they don't have any versions. if not addon.versions.exists(): return redirect('devhub.submit.version', addon.slug) return _submit_finish(request, addon, None) @dev_required def submit_version_finish(request, addon_id, addon, version_id): version = get_object_or_404(addon.versions.all(), id=version_id) return _submit_finish(request, addon, version) @dev_required @post_required def remove_locale(request, addon_id, addon): POST = request.POST if 'locale' in POST and POST['locale'] != addon.default_locale: addon.remove_locale(POST['locale']) return http.HttpResponse() return http.HttpResponseBadRequest() @dev_required @post_required def request_review(request, addon_id, addon): if not addon.can_request_review(): return http.HttpResponseBadRequest() latest_version = addon.find_latest_version(amo.RELEASE_CHANNEL_LISTED, exclude=()) if latest_version: for f in latest_version.files.filter(status=amo.STATUS_DISABLED): f.update(status=amo.STATUS_AWAITING_REVIEW) # Clear the nomination date so it gets set again in Addon.watch_status. latest_version.update(nomination=None) if addon.has_complete_metadata(): addon.update(status=amo.STATUS_NOMINATED) messages.success(request, ugettext('Review requested.')) else: messages.success(request, _( 'You must provide further details to proceed.')) ActivityLog.create(amo.LOG.CHANGE_STATUS, addon, addon.status) return redirect(addon.get_dev_url('versions')) def docs(request, doc_name=None): mdn_docs = { None: '', 'getting-started': '', 'reference': '', 'how-to': '', 'how-to/getting-started': '', 'how-to/extension-development': '#Extensions', 'how-to/other-addons': '#Other_types_of_add-ons', 'how-to/thunderbird-mobile': '#Application-specific', 'how-to/theme-development': '#Themes', 'themes': '/Themes/Background', 'themes/faq': '/Themes/Background/FAQ', 'policies': '/AMO/Policy', 'policies/reviews': '/AMO/Policy/Reviews', 'policies/contact': '/AMO/Policy/Contact', 'policies/agreement': '/AMO/Policy/Agreement', } if doc_name in mdn_docs: return redirect(MDN_BASE + mdn_docs[doc_name], permanent=True) raise http.Http404() @login_required def api_key_agreement(request): return render_agreement( request=request, template='devhub/api/agreement.html', next_step='devhub.api_key', ) def render_agreement(request, template, next_step, **extra_context): form = forms.AgreementForm( request.POST if request.method == 'POST' else None, request=request ) if request.method == 'POST' and form.is_valid(): # Developer has validated the form: let's update its profile and # redirect to next step. Note that the form is supposed to always be # invalid if submission is not allowed for this request. data = { 'read_dev_agreement': datetime.datetime.now(), } if 'display_name' in form.cleaned_data: data['display_name'] = form.cleaned_data['display_name'] request.user.update(**data) return redirect(next_step) elif not UploadRestrictionChecker(request).is_submission_allowed(): # Developer has either posted an invalid form or just landed on the # page but haven't read the agreement yet, or isn't allowed to submit # for some other reason (denied ip/email): show the form (with # potential errors highlighted) context = { 'agreement_form': form, 'agreement_message': str( DeveloperAgreementRestriction.error_message ), } context.update(extra_context) return render(request, template, context) else: # The developer has already read the agreement, we should just redirect # to the next step. response = redirect(next_step) return response @login_required @transaction.atomic def api_key(request): if not UploadRestrictionChecker(request).is_submission_allowed(): return redirect(reverse('devhub.api_key_agreement')) try: credentials = APIKey.get_jwt_key(user=request.user) except APIKey.DoesNotExist: credentials = None try: confirmation = APIKeyConfirmation.objects.get( user=request.user) except APIKeyConfirmation.DoesNotExist: confirmation = None if request.method == 'POST': has_confirmed_or_is_confirming = confirmation and ( confirmation.confirmed_once or confirmation.is_token_valid( request.POST.get('confirmation_token')) ) # Revoking credentials happens regardless of action, if there were # credentials in the first place. if (credentials and request.POST.get('action') in ('revoke', 'generate')): credentials.update(is_active=None) log.info('revoking JWT key for user: {}, {}' .format(request.user.id, credentials)) send_key_revoked_email(request.user.email, credentials.key) msg = ugettext( 'Your old credentials were revoked and are no longer valid.') messages.success(request, msg) # If trying to generate with no confirmation instance, we don't # generate the keys immediately but instead send you an email to # confirm the generation of the key. This should only happen once per # user, unless the instance is deleted by admins to reset the process # for that user. if confirmation is None and request.POST.get('action') == 'generate': confirmation = APIKeyConfirmation.objects.create( user=request.user, token=APIKeyConfirmation.generate_token()) confirmation.send_confirmation_email() # If you have a confirmation instance, you need to either have it # confirmed once already or have the valid token proving you received # the email. elif (has_confirmed_or_is_confirming and request.POST.get('action') == 'generate'): confirmation.update(confirmed_once=True) new_credentials = APIKey.new_jwt_credentials(request.user) log.info('new JWT key created: {}'.format(new_credentials)) send_key_change_email(request.user.email, new_credentials.key) else: # If we land here, either confirmation token is invalid, or action # is invalid, or state is outdated (like user trying to revoke but # there are already no credentials). # We can just pass and let the redirect happen. pass # In any case, redirect after POST. return redirect(reverse('devhub.api_key')) context_data = { 'title': ugettext('Manage API Keys'), 'credentials': credentials, 'confirmation': confirmation, 'token': request.GET.get('token') # For confirmation step. } return render(request, 'devhub/api/key.html', context_data) def send_key_change_email(to_email, key): template = loader.get_template('devhub/email/new-key-email.ltxt') url = absolutify(reverse('devhub.api_key')) send_mail( ugettext('New API key created'), template.render({'key': key, 'url': url}), from_email=settings.DEFAULT_FROM_EMAIL, recipient_list=[to_email], ) def send_key_revoked_email(to_email, key): template = loader.get_template('devhub/email/revoked-key-email.ltxt') url = absolutify(reverse('devhub.api_key')) send_mail( ugettext('API key revoked'), template.render({'key': key, 'url': url}), from_email=settings.DEFAULT_FROM_EMAIL, recipient_list=[to_email], ) @dev_required @json_view def theme_background_image(request, addon_id, addon, channel): channel_id = amo.CHANNEL_CHOICES_LOOKUP[channel] version = addon.find_latest_version(channel_id) return (version.get_background_images_encoded(header_only=True) if version else {}) def _clean_next_url(request): gets = request.GET.copy() url = gets.get('to', settings.LOGIN_REDIRECT_URL) if not is_safe_url(url, allowed_hosts=(settings.DOMAIN,)): log.info(u'Unsafe redirect to %s' % url) url = settings.LOGIN_REDIRECT_URL domain = gets.get('domain', None) if domain in settings.VALID_LOGIN_REDIRECTS.keys(): url = settings.VALID_LOGIN_REDIRECTS[domain] + url gets['to'] = url request.GET = gets return request def logout(request): user = request.user if not user.is_anonymous: log.debug(u"User (%s) logged out" % user) if 'to' in request.GET: request = _clean_next_url(request) next_url = request.GET.get('to') if not next_url: next_url = settings.LOGOUT_REDIRECT_URL prefixer = get_url_prefix() if prefixer: next_url = prefixer.fix(next_url) response = http.HttpResponseRedirect(next_url) logout_user(request, response) return response
py
1a4dc561ebb13a356bc029d532ae445826bc7bc1
import random BOARD_WIDTH = 3 BOARD_HEIGHT = 3 def new_board(): board = [] for x in range(0, BOARD_WIDTH): column = [] for y in range(0, BOARD_HEIGHT): column.append(None) board.append(column) return board def get_winner(board): all_line_co_ords = get_all_line_co_ords() for line in all_line_co_ords: line_values = [board[x][y] for (x, y) in line] if len(set(line_values)) == 1 and line_values[0] is not None: return line_values[0] return None def get_all_line_co_ords(): cols = [] for x in range(0, BOARD_WIDTH): col = [] for y in range(0, BOARD_HEIGHT): col.append((x, y)) cols.append(col) rows = [] for y in range(0, BOARD_HEIGHT): row = [] for x in range(0, BOARD_WIDTH): row.append((x, y)) rows.append(row) diagonals = [ [(0, 0), (1, 1), (2, 2)], [(0, 2), (1, 1), (2, 0)] ] return cols + rows + diagonals def render(board): rows = [] for y in range(0, BOARD_HEIGHT): row = [] for x in range(0, BOARD_WIDTH): row.append(board[x][y]) rows.append(row) row_num = 0 print ' 0 1 2 ' print ' ------' for row in rows: output_row = '' for sq in row: if sq is None: output_row += ' ' else: output_row += sq print "%d|%s|" % (row_num, ' '.join(output_row)) row_num += 1 print ' ------' def make_move(player, board, move_co_ords): if board[move_co_ords[0]][move_co_ords[1]] is not None: raise Exception("Illegal move!") board[move_co_ords[0]][move_co_ords[1]] = player def is_board_full(board): for col in board: for sq in col: if sq is None: return False return True def play(player1_f, player2_f): players = [ ('X', player1_f), ('O', player2_f), ] turn_number = 0 board = new_board() while True: current_player_id, current_player_f = players[turn_number % 2] render(board) move_co_ords = current_player_f(board, current_player_id) make_move(current_player_id, board, move_co_ords) winner = get_winner(board) if winner is not None: render(board) print "THE WINNER IS %s!" % winner break if is_board_full(board): render(board) print "IT'S A DRAW!" break turn_number += 1
py
1a4dc66f907ea3084cd9e52b2ad191abc7ff8d39
""" https://pyvis.readthedocs.io/en/latest/index.html# https://deepgraph.readthedocs.io/en/latest/what_is_deepgraph.html https://towardsdatascience.com/pyviz-simplifying-the-data-visualisation-process-in-python-1b6d2cb728f1 https://graphviz.org/ """
py
1a4dc7c96fe1e01d32e7f895ae8a4013db881af7
"""LSTM Controller.""" import torch from torch import nn from torch.nn import Parameter import numpy as np # torch.set_default_tensor_type('torch.cuda.FloatTensor') class LSTMController(nn.Module): """An NTM controller based on LSTM.""" def __init__(self, num_inputs, num_outputs, num_layers): super(LSTMController, self).__init__() self.num_inputs = num_inputs self.num_outputs = num_outputs self.num_layers = num_layers self.lstm = nn.LSTM(input_size=num_inputs, hidden_size=num_outputs, num_layers=num_layers) # The hidden state is a learned parameter self.lstm_h_bias = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) self.lstm_c_bias = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) self.reset_parameters() def create_new_state(self, batch_size): # Dimension: (num_layers * num_directions, batch, hidden_size) lstm_h = self.lstm_h_bias.clone().repeat(1, batch_size, 1) lstm_c = self.lstm_c_bias.clone().repeat(1, batch_size, 1) return lstm_h, lstm_c def reset_parameters(self): for p in self.lstm.parameters(): if p.dim() == 1: nn.init.constant_(p, 0) else: stdev = 5 / (np.sqrt(self.num_inputs + self.num_outputs)) nn.init.uniform_(p, -stdev, stdev) def size(self): return self.num_inputs, self.num_outputs def forward(self, x, prev_state): x = x.unsqueeze(0) outp, state = self.lstm(x, prev_state) return outp.squeeze(0), state
py
1a4dc83f3ee84458da3431140fca16d7c5e8c978
import requests import os import zipfile def unzipper(file_path, dirname): with zipfile.ZipFile(file_path) as zf: files = zf.namelist() zf.extractall(dirname) def download_http(url, file_path): r = requests.get(url) with open(file_path, "wb") as f: f.write(r.content) def download(url, file_path): folder = os.path.dirname(file_path) if not os.path.exists(folder): os.makedirs(folder) print("Starting request for file: " + file_path) # start http request if url.startswith('http://'): return download_http(url, file_path) # downlaod file form ftp elif url.startswith('ftp://'): return self.download_ftp(url, file_path)
py
1a4dc8419809e4701418e09d23fe1cde28bc952c
from unittest import TestCase from unittest.mock import patch, Mock from modules.classes import ( ImaginaryServiceConnection, ServiceClient, ServiceError, ) class TestImaginaryServiceConnection(TestCase): """ Tests for the `modules.classes.ImaginaryServiceConnection` class. """ @patch('modules.classes.SERVICE_URL', 'something-else') def test_instantiation(self): """ Instantiation of ImaginaryServiceConnection works as expected. """ isc = ImaginaryServiceConnection('username', 'password') # Instantiating the class should assign the expected class attributes self.assertEqual('username', isc.username) self.assertEqual('password', isc.password) self.assertEqual('something-else', isc.service_url) def test_call(self): """ `ImaginaryServiceConnection.call` works as expected. """ isc = ImaginaryServiceConnection('username', 'password') # Calling the `.call` function should return an integer result = isc.call('function', 'a', 'b', {'c': 1, 'd': 2}) self.assertIsInstance(result, int) def test_call_with_known_exception(self): """ `ImaginaryServiceConnection.call` raises `ServiceError` as expected. """ isc = ImaginaryServiceConnection('username', 'password') # Calling the `.call` function with 'fail' should raise ServiceError with self.assertRaises(ServiceError): isc.call('fail', 'a', 'b', {'c': 1, 'd': 2}) @patch('modules.classes.ImaginaryServiceConnection.call') def test_call_with_simulated_exception(self, call): """ `ImaginaryServiceConnection.call` raises `ServiceError` as expected with simulated error. """ call.side_effect = ServiceError('Simulated error') isc = ImaginaryServiceConnection('username', 'password') # Calling the `.call` function should return the simulated error with self.assertRaises(ServiceError): isc.call('fail', 'a', 'b', {'c': 1, 'd': 2}) class TestServiceClient(TestCase): """ Tests for the `modules.classes.ServiceClient` class. """ def test_instantiation(self): """ Instantiation of `ServiceClient` works as expected. """ sc = ServiceClient('username', 'password') # Instantiating the class should create the `connection` attribute on # the instance using ImaginaryServiceConnection self.assertIsInstance(sc.connection, ImaginaryServiceConnection) def test_call_remote_function(self): """ ServiceClient.call_remote_function works as expected. """ sc = ServiceClient('username', 'password') result = sc.call_remote_function( 'some_function', 'a', 'b', {'c': 1, 'd': 2}, ) # Should receive an integer back self.assertIsInstance(result, int) @patch('modules.classes.ImaginaryServiceConnection.call') def test_call_remote_function_with_mocks(self, call): """ ServiceClient.call_remote_function works as expected while mocking `ImaginaryServiceConnection.call`. """ # Set up the mock `.call` response for # `ImaginaryServiceConnection.call` call.return_value = 'result' sc = ServiceClient('username', 'password') result = sc.call_remote_function( 'some_function', 'a', 'b', {'c': 1, 'd': 2}, ) # Should receive 'result' back self.assertEqual(call.return_value, result) @patch('modules.classes.ImaginaryServiceConnection.call') def test_call_remote_function_with_error(self, call): """ ServiceClient.call_remote_function raises `ServiceError` as expected when an error is encountered via `ImaginaryServiceConnection.call` """ # Set up the error encountered during call to # `ImaginaryServiceConnection.call` call.side_effect = ServiceError('Something bad!') sc = ServiceClient('username', 'password') # `ServiceError` is raised when calling # `ServiceClient.call_remote_function` with self.assertRaises(ServiceError): sc.call_remote_function( 'some_function', 'a', 'b', {'c': 1, 'd': 2}, ) class TestConstructorMocks(TestCase): """ Tests for `modules.classes` using mocked class constructors to limit test scope and assert calls to nested objects. """ @patch('modules.classes.ImaginaryServiceConnection') def test_service_client_with_mocked_connection_class( self, ImaginaryServiceConnection, ): """ Mock the `modules.classes.ImaginaryServiceConnection` class and assert that it was used as expected by the ServiceClient. """ # Establish a mock class instance to be returned by the constructor isc_instance_mock = Mock() # Set a return value for the instance's `call` function isc_instance_mock.call.return_value = 'result' # Set the instance mock as the return value of the class itself ImaginaryServiceConnection.return_value = isc_instance_mock # Instantiate `ServiceClient` and call `call_remote_function` sc = ServiceClient('username', 'password') result = sc.call_remote_function( 'some_function', 'a', 'b', {'c': 1, 'd': 2}, ) # Verify the expected calls to the mocked class # The base class should have been instantiated with the expected args ImaginaryServiceConnection.assert_called_once_with( 'username', 'password', ) # The mocked `ImaginaryServiceConnection` instance should have had the # `.call` function called with the expected args isc_instance_mock.call.assert_called_once_with( 'some_function', 'a', 'b', {'c': 1, 'd': 2}, ) # The `ServiceClient.call_remote_function` call should have returned # the expected result self.assertEqual('result', result)
py
1a4dc92e84218659a5be29b8641d65ab1407e97c
#coding:utf-8 n = int(raw_input()) m = int(raw_input()) matrix = [] for _ in xrange(n): matrix.append(raw_input().split()) maxmum = 0 region = 0 seen_set = set() def is_valid(x, y): return x > -1 and x < n and y > -1 and y < m def dfs(cell): global region seen_set.add(cell) region += 1 a, b = cell #简化写法 for x in [a-1, a, a+1]: for y in [b-1, b, b+1]: if is_valid(x, y) and matrix[x][y] == '1' and (x, y) not in seen_set: dfs((x, y)) return region for i in xrange(n): for j in xrange(m): if matrix[i][j] == '1' and (i, j) not in seen_set: maxmum = max(maxmum, dfs((i, j))) region = 0 print maxmum
py
1a4dc93085326eb2ae715e816c62ff6fd29dda2b
import functools import string from django.shortcuts import render # Create your views here. def validate_headers(*args_, **kwargs_): def inner_function(func): @functools.wraps(func) def wrapper(*args, **kwargs): m = args_[0] validate(str(m['version'])) validate(str(m['device-id'])) validate(str(m['device-type'])) return wrapper return inner_function @validate_headers({'version': 1, 'device-id': "asdasdasd", 'device-type': "android"}) def validate(header: str) -> bool: return not header def validate_auth_token(*args_, **kwargs_): def inner_function(func): @functools.wraps(func) def wrapper(*args, **kwargs): for _ in range(args_[0]): func(*args, **kwargs) return wrapper return inner_function
py
1a4dc9342b6c50f1fc4206fa9e7b01c20cfd45c9
''' OpenIMU SPI package version 0.2.0. -pip install spidev3.4, -read package through SPI interface, OpenIMU330BI test on Pi3 board(Raspbian OS,Raspberry 3B+). -Spi slave: OpenIMU 330 EVK -Pins connection: Pi3 330/300 evk miso <==> miso mosi <==> mosi sck <==> sck gpio(bcm4) <==> cs black line gpio(bcm17) <==> drdy red line gnd <==> gnd bcm 27 nRST @cek from Aceinna 2019.11.4 ''' import os import sys import spidev import time, math import struct try: import RPi.GPIO as GPIO except RuntimeError: print("Error import RPi.GPIO!") import traceback from gpio import * class SpiOpenIMU: def __init__(self, target_module = "300", fw='0.0', cs_pin = 4, interrupt_pin = 17, drdy_status = False): ''' pin number use the BCM code ''' self.spi = spidev.SpiDev() self.cs_channel = cs_pin self.interrupt_channel = interrupt_pin self.drdy = drdy_status self.speed = 1000000 # 1M self.delay = 0 #ns self.word = 8 #硬件限制为8位 self.fw_version = fw self.power = aceinna_gpio(use_gpio=True)# bcm gpio rst EVK power self.gpio_setting() self.spidev_setting() self.check_settings() time.sleep(0.1) self.module = target_module print("initialize based on: %s, with DRDY_usage: %s" % (self.module, self.drdy)) def gpio_setting(self): GPIO.setmode(GPIO.BCM) GPIO.setup(self.cs_channel,GPIO.OUT) GPIO.output(self.cs_channel,GPIO.HIGH) # used as CS line replace CS0 default in Pi3 board if self.drdy: GPIO.setup(self.interrupt_channel,GPIO.IN) # channel used as IMU data ready detection time.sleep(0.4) GPIO.add_event_detect(self.interrupt_channel,GPIO.FALLING) return True def single_read(self, target_register): # if self.drdy and self.module != "300": # while not GPIO.event_detected(self.interrupt_channel): # pass if self.module == "381": time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) self.spi.xfer2([target_register,0x00],self.speed,self.speed) #return data of 0000 GPIO.output(self.cs_channel,GPIO.HIGH) time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) resp_single = self.spi.xfer2([0x00,0x00],self.speed,self.speed) #receive the back target data GPIO.output(self.cs_channel,GPIO.HIGH) return self.combine_reg('>h', resp_single[0],resp_single[1]) else: time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) resp_single = self.spi.xfer2([target_register,0x00,0x00,0x00],self.speed,self.speed) GPIO.output(self.cs_channel,GPIO.HIGH) print("SPI raw read:", hex(resp_single[2]), hex(resp_single[3])) return self.combine_reg('>h', resp_single[2],resp_single[3]) def single_write(self, target_register, target_data): # if self.drdy and self.module != "300": # while not GPIO.event_detected(self.interrupt_channel): # pass GPIO.output(self.cs_channel,GPIO.LOW) temp_reg = target_register | 0x80 self.spi.xfer2([temp_reg, target_data],self.speed,self.speed) #write data, such as 0xF010, target address is 0x70, and data input is 0x10 GPIO.output(self.cs_channel,GPIO.HIGH) return True def burst_read(self, first_register, subregister_num, sratm_fac): ''' sratm_fac={"rate":[0.005, 0], "accel":[0.25, 0]} status, rate, accel, temp, mag factors dict ''' sts, rate, acc, deg, tmstp, temp, mag = [], [], [], [], [], [], [] # if self.drdy and self.module != "300": # 300 no drdy now, so only not 300 will go next # while not GPIO.event_detected(self.interrupt_channel): # pass while (not GPIO.event_detected(self.interrupt_channel)) and self.drdy: pass if "381" in self.module: GPIO.output(self.cs_channel,GPIO.LOW) resp = self.spi.xfer2([first_register,0x00],self.speed,self.speed) GPIO.output(self.cs_channel,GPIO.HIGH) for i_381 in range(subregister_num): time.sleep(0.000010) GPIO.output(self.cs_channel,GPIO.LOW) resp += self.spi.xfer2([0x00,0x00],self.speed,self.speed)[:] GPIO.output(self.cs_channel,GPIO.HIGH) #unit:degree per second rate.append(self.combine_reg('>h', resp[4],resp[5]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[6],resp[7]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[8],resp[9]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) #unit:mg acc.append(self.combine_reg('>h', resp[10],resp[11]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[12],resp[13]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[14],resp[15]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) else: #300,330 is here GPIO.output(self.cs_channel,GPIO.LOW) # xfer2([value],speed_hz,delay_usec_cs), SPI bi-direction data transfer. # default 8 bits mode, if speed_hz set to zero means the maximun supported SPI clock. # delay_usec_cs is the cs hold delay first_register_send = [first_register,0x00] if '330BA' in self.module and first_register == 0x3D: subregister_num += 6 for i_else in range(2*subregister_num): first_register_send.append(0x00) resp = self.spi.xfer2(first_register_send,self.speed,2*self.delay) GPIO.output(self.cs_channel,GPIO.HIGH) sts.append(self.combine_reg('>H', resp[2], resp[3]) * (sratm_fac.get("status")[0]) + (sratm_fac.get("status")[1])) #unit:degree per second if '330BA' in self.module and first_register == 0x3D: rate.append(self.combine_reg('>i', resp[4],resp[5],resp[6],resp[7]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>i', resp[8],resp[9], resp[10],resp[11]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>i', resp[12],resp[13], resp[14],resp[15]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) else: rate.append(self.combine_reg('>h', resp[4],resp[5]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[6],resp[7]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) rate.append(self.combine_reg('>h', resp[8],resp[9]) * (sratm_fac.get("rate")[0]) + (sratm_fac.get("rate")[1])) #unit:g if '330BA' in self.module and first_register == 0x3D: acc.append(self.combine_reg('>i', resp[16],resp[17], resp[18],resp[19]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>i', resp[20],resp[21], resp[22],resp[23]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>i', resp[24],resp[25], resp[26],resp[27]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) else: acc.append(self.combine_reg('>h', resp[10],resp[11]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[12],resp[13]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) acc.append(self.combine_reg('>h', resp[14],resp[15]) * (sratm_fac.get("accel")[0]) + (sratm_fac.get("accel")[1])) #unit:deg if '330BI' in self.module and first_register == 0x3F: deg.append(self.combine_reg('>h', resp[18],resp[19]) * 360/65536) deg.append(self.combine_reg('>h', resp[20],resp[21]) * 360/65536) deg.append(self.combine_reg('>h', resp[22],resp[23]) * 360/65536) # return rate, acc, deg if '330BA' in self.module and first_register == 0x3D: temp.append(self.combine_reg('>h', resp[28],resp[29]) * (sratm_fac.get("temp")[0]) + (sratm_fac.get("temp")[1])) else: temp.append(self.combine_reg('>h', resp[16],resp[17]) * (sratm_fac.get("temp")[0]) + (sratm_fac.get("temp")[1])) if ("330BA" in self.module or '331BI' in self.module) and (first_register == 0x3F or first_register == 0x3D): if first_register == 0x3F: tmstp.append(self.combine_reg('>H', resp[18],resp[19]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) tmstp.append(self.combine_reg('>H', resp[20],resp[21]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) else: tmstp.append(self.combine_reg('>H', resp[30],resp[31]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) tmstp.append(self.combine_reg('>H', resp[32],resp[33]) * (sratm_fac.get("time")[0]) + (sratm_fac.get("time")[1])) # return rate, acc, tmstp if '300ZI' in self.module and first_register == 0x3F: mag.append(self.combine_reg('>h', resp[18],resp[19]) * (sratm_fac.get("mag")[0]) + (sratm_fac.get("mag")[1])) mag.append(self.combine_reg('>h', resp[20],resp[21]) * (sratm_fac.get("mag")[0]) + (sratm_fac.get("mag")[1])) mag.append(self.combine_reg('>h', resp[22],resp[23]) * (sratm_fac.get("mag")[0]) + (sratm_fac.get("mag")[1])) if '300ZI' in self.module and first_register == 0x3D: # deg.append(self.combine_reg('>h', resp[18],resp[19]) * 57.3 * (2*math.pi)/65536) #65536/(2*math.pi)=10430.378350470453 65536/360=0.0054931640625 # deg.append(self.combine_reg('>h', resp[20],resp[21]) * 57.3 * (2*math.pi)/65536) # deg.append(self.combine_reg('>h', resp[22],resp[23]) * 57.3 * (2*math.pi)/65536) deg.append(self.combine_reg('>h', resp[18],resp[19]) * (sratm_fac.get("vg_angle")[0]) + (sratm_fac.get("vg_angle")[1])) deg.append(self.combine_reg('>h', resp[20],resp[21]) * (sratm_fac.get("vg_angle")[0]) + (sratm_fac.get("vg_angle")[1])) deg.append(self.combine_reg('>h', resp[22],resp[23]) * (sratm_fac.get("vg_angle")[0]) + (sratm_fac.get("vg_angle")[1])) return sts, rate, acc, temp, mag, deg, tmstp def spidev_setting(self): bus = 0 #supporyed values:0,1 device = 1 #supported values:0,1 default: 0 self.spi.open(bus,device) #connect to the device. /dev/spidev<bus>.<device> self.spi.bits_per_word = self.word #默认是8,系统上 self.spi.max_speed_hz = self.speed self.spi.mode = 0b11 #spi.bits_per_word = 0 #spi.cshigh #default CS0 in pi3 board #spi.lsbfirst = False #spi.threewire = 0 return True def check_settings(self): print(self.spi.mode) print(self.spi.threewire) print(self.spi.cshigh) print(self.spi.bits_per_word) print(self.spi.lsbfirst) return True def combine_reg(self,fmt='>h',*msb_lsb): temp_bytes = b'' for i in msb_lsb: temp_bytes += struct.pack('B',i) return struct.unpack(fmt,temp_bytes)[0] #MSB firstly def power_reset(self, delay=2): ''' #special for IMU331, WAIT 1.25S at least ''' self.power.power_off() time.sleep(delay) self.power.power_on() time.sleep(delay) def __del__(self): GPIO.cleanup() self.spi.close() if __name__ == "__main__": openimu_spi = SpiOpenIMU(target_module="330BI",drdy_status=True, fw='1.2.1') #set the module name and drdy status(enalbe or not)-----------------step: 1 burst_read, single_read, single_write = True, True, False # set the read style, burst or single------------step:2 f = open("data_" + str(openimu_spi.module) + ".txt", "w") str_config = "module style:{0}; drdy:{1}; burst read:{2}; single read:{3} \n".format(openimu_spi.module, openimu_spi.drdy, burst_read, single_read) print(str_config) f.write(str_config) input("Power on IMU !!!!!!!!") time.sleep(2) try: if openimu_spi.drdy == False: # when no drdy, default SPI ODR is 100HZ time.sleep(0.01) # for i_wd in range(9,12): # for i_wd in [0x00, 0x03,0x04,0x05,0x06,0x30,0x40,0x50,0x60,0x0B, 0x0B]: # ori_list = [0x0000, 0x0009, 0x0023, 0x002A, 0x0041, 0x0048, 0x0062, 0x006B, 0x0085, 0x008C, 0x0092, 0x009B, 0x00C4, 0x00CD, 0x00D3, # 0x00DA, 0x0111, 0x0118, 0x0124, 0x012D, 0x0150, 0x0159, 0x0165, 0x016C # ] # ori_list = [0x0009, 0x016C] # for i_wd in ori_list: if single_read: read_name = [ "X_Rate", "Y_Rate", "Z_Rate", "X_Accel", "Y_Accel", "Z_Accel","X_Mag", "Y_Mag", "Z_Mag", "BOARD_TEMP", "RATE_TEMP", "DRDY_RATE", "ACCEL_LPF", "ACCEL_SCALE_FACTOR", "RATE_SCALE_FACTOR", "SN_1", "SN_2", "SN_3", "PRODUCT_ID", "MASTER_STATUS", "HW_STATUS", "SW_STATUS", "ACCEL_RANGE/RATE_RANGE", "ORIENTATION_MSB/ORIENTATION_LSB", "SAVE_CONFIG", "RATE_LPF", "HW_VERSION/SW_VERSION" ] read_reg = [ 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x37, 0x38, 0x46, 0x47, 0x52, 0x54, 0x58, 0x56, 0x5A, 0x5C, 0x5E, 0x70, 0x74, 0x76, 0x78, 0x7E ] # read_name = ["ORIENTATION_MSB"] # read_reg = [0x74] for i in zip(read_name, read_reg): read_value = openimu_spi.single_read(i[1]) hex_value = hex(read_value) prt_list = [i[0], hex(i[1]), hex_value] print(prt_list) if 'Rate' in i[0]: read_value /= 64 elif 'Accel' in i[0]: read_value /= 4000 elif 'Mag' in i[0]: read_value /= 16354 elif 'TEMP' in i[0]: read_value = read_value*0.073111172849435 + 31.0 str_temp = "{0:_<40s}0x{1:<5X} read value: 0d {2:<10} hex value: {3:<10s}\n".format(i[0], i[1], read_value, hex_value) print(str_temp) f.write(str(prt_list) + '\n' + str_temp) if single_write: while input('need write? y/n?') != 'y': pass write_name = ["packet rate", "Accel LPF", "orimsb", "orilsb", "Rate LPF", "save config"] write_reg = [0x37, 0x38, 0x74, 0x75, 0x78, 0x76] write_data = [0x01, 0x40, 0x00, 0x6B, 0x40, 0x00] # write_name = ["ORIENTATION_LSB"] # write_reg = [0x75] # write_data = [0x02] # write_data = [i_wd, i_wd] # write_data = [i_wd & 0xFF] for j in zip(write_name, write_reg, write_data): #start to write registers print("write_name:{0:<40s}, write address:0x{1:<5X}, wirte data:0x{2:<5X}".format(j[0], j[1], j[2])) openimu_spi.single_write(j[1], j[2]) time.sleep(0.5) # if single_read or single_write: # break while input('need burst read? y/n?') != 'y': pass while burst_read: # not seting the ODR, if you use burst read, it will same with frequency of DRDY if ('330BI' in openimu_spi.module) or ('330BA' in openimu_spi.module): # list_rate, list_acc = openimu_spi.burst_read(first_register=0x3E,subregister_num=8) #input the read register and numbers of subregisters want to read together # str_burst = "time:{0:>10f}; gyro:{1:>25s}; accel:{2:>25s} \n".format( # time.clock(), ", ".join([str(x) for x in list_rate]), ", ".join([str(x) for x in list_acc]) # ) list_sts, list_rate, list_acc, list_temp, list_mag, list_deg, tmstamp = openimu_spi.burst_read(first_register=0x3E,subregister_num=8) #input the read register and numbers of subregisters want to read together str_burst = "time:{0:>10f}; gyro:{1:>50s}; accel:{2:>50s}; timestamp:{3:>25s} \n".format( time.clock(), ", ".join([str(x) for x in list_rate]), ", ".join([str(x) for x in list_acc]), ", ".join([str(x) for x in tmstamp]) ) else: list_sts, list_rate, list_acc, list_temp, list_mag, list_deg, tmstamp= openimu_spi.burst_read(first_register=0x3D,subregister_num=11) str_burst = "time:{0:>20f}; status:{3:>20s} ; gyro:{1:>50s}; accel:{2:>40s}; temp:{4:>10s}; mag:{5:>20s}; deg:{6:>20s}\n".format( time.clock(), ", ".join([str(x) for x in list_rate]), ", ".join([str(x) for x in list_acc]), ", ".join([str(x) for x in list_sts]), ", ".join([str(x) for x in list_temp]), ", ".join([str(x) for x in list_mag]), ", ".join([str(x) for x in list_deg]) ) print(str_burst) f.write(str_burst) # input('next cycle') except KeyboardInterrupt: f.close() print("stoped by customer!") # except Exception as e: # print(e) # traceback.print_exc() # polling mode reading spi interface, with drdy pin detection # try: # while True: # # GPIO.output(cs_channel,GPIO.LOW) # # product_id = spi.xfer2([0x56,0x00,0x00,0x00],0,10) # # GPIO.output(cs_channel,GPIO.HIGH) # # print('id',product_id) # time.sleep(0.1) # # if GPIO.event_detected(interrupt_channel): # if True: # time.sleep(0.5) # GPIO.output(cs_channel,GPIO.LOW) # # xfer2([value],speed_hz,delay_usec_cs), SPI bi-direction data transfer. # # default 8 bits mode, if speed_hz set to zero means the maximun supported SPI clock. # # delay_usec_cs is the cs hold delay # resp = spi.xfer2([openimu_spi.burst_cmd_std,0x00,0x00,0x00,0x00,0x00,0x00, # 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00],0,10) # GPIO.output(cs_channel,GPIO.HIGH) # #unit:degree per second # x_rate = openimu_spi.combine_reg(resp[4],resp[5])/200 # y_rate = openimu_spi.combine_reg(resp[6],resp[7])/200 # z_rate = openimu_spi.combine_reg(resp[8],resp[8])/200 # #unit:mg # x_acc = openimu_spi.combine_reg(resp[10],resp[11])/4 # y_acc = openimu_spi.combine_reg(resp[12],resp[13])/4 # z_acc = openimu_spi.combine_reg(resp[14],resp[15])/4 # print('g/a',x_rate,y_rate,z_rate,x_acc,y_acc,z_acc) # #write to register # time.sleep(0.5) # GPIO.output(cs_channel,GPIO.LOW) # resp1 = spi.xfer2([0x80|0x50,0x23],0,10) # time.sleep(0.5) # GPIO.output(cs_channel,GPIO.HIGH) # 0x56 OPEN300 ID: 0x30(48) 0x00(0) # 0x56 OPEN330 ID: 0x33(48) 0x00(0) # 0x56 IMU381 ID: 0X38(56) 0x10(16)
py
1a4dc9aa2388af9bf423a889f2f62435a75be1b1
import struct from django.forms import ValidationError from .const import ( BANDTYPE_FLAG_HASNODATA, GDAL_TO_POSTGIS, GDAL_TO_STRUCT, POSTGIS_HEADER_STRUCTURE, POSTGIS_TO_GDAL, STRUCT_SIZE, ) def pack(structure, data): """ Pack data into hex string with little endian format. """ return struct.pack('<' + structure, *data) def unpack(structure, data): """ Unpack little endian hexlified binary string into a list. """ return struct.unpack('<' + structure, bytes.fromhex(data)) def chunk(data, index): """ Split a string into two parts at the input index. """ return data[:index], data[index:] def from_pgraster(data): """ Convert a PostGIS HEX String into a dictionary. """ if data is None: return # Split raster header from data header, data = chunk(data, 122) header = unpack(POSTGIS_HEADER_STRUCTURE, header) # Parse band data bands = [] pixeltypes = [] while data: # Get pixel type for this band pixeltype, data = chunk(data, 2) pixeltype = unpack('B', pixeltype)[0] # Remove nodata byte from band nodata value if it exists. has_nodata = pixeltype & BANDTYPE_FLAG_HASNODATA if has_nodata: pixeltype &= ~BANDTYPE_FLAG_HASNODATA # Convert datatype from PostGIS to GDAL & get pack type and size pixeltype = POSTGIS_TO_GDAL[pixeltype] pack_type = GDAL_TO_STRUCT[pixeltype] pack_size = 2 * STRUCT_SIZE[pack_type] # Parse band nodata value. The nodata value is part of the # PGRaster string even if the nodata flag is True, so it always # has to be chunked off the data string. nodata, data = chunk(data, pack_size) nodata = unpack(pack_type, nodata)[0] # Chunk and unpack band data (pack size times nr of pixels) band, data = chunk(data, pack_size * header[10] * header[11]) band_result = {'data': bytes.fromhex(band)} # If the nodata flag is True, set the nodata value. if has_nodata: band_result['nodata_value'] = nodata # Append band data to band list bands.append(band_result) # Store pixeltype of this band in pixeltypes array pixeltypes.append(pixeltype) # Check that all bands have the same pixeltype. # This is required by GDAL. PostGIS rasters could have different pixeltypes # for bands of the same raster. if len(set(pixeltypes)) != 1: raise ValidationError("Band pixeltypes are not all equal.") return { 'srid': int(header[9]), 'width': header[10], 'height': header[11], 'datatype': pixeltypes[0], 'origin': (header[5], header[6]), 'scale': (header[3], header[4]), 'skew': (header[7], header[8]), 'bands': bands, } def to_pgraster(rast): """ Convert a GDALRaster into PostGIS Raster format. """ # Prepare the raster header data as a tuple. The first two numbers are # the endianness and the PostGIS Raster Version, both are fixed by # PostGIS at the moment. rasterheader = ( 1, 0, len(rast.bands), rast.scale.x, rast.scale.y, rast.origin.x, rast.origin.y, rast.skew.x, rast.skew.y, rast.srs.srid, rast.width, rast.height, ) # Pack raster header. result = pack(POSTGIS_HEADER_STRUCTURE, rasterheader) for band in rast.bands: # The PostGIS raster band header has exactly two elements, a 8BUI byte # and the nodata value. # # The 8BUI stores both the PostGIS pixel data type and a nodata flag. # It is composed as the datatype with BANDTYPE_FLAG_HASNODATA (1 << 6) # for existing nodata values: # 8BUI_VALUE = PG_PIXEL_TYPE (0-11) | BANDTYPE_FLAG_HASNODATA # # For example, if the byte value is 71, then the datatype is # 71 & ~BANDTYPE_FLAG_HASNODATA = 7 (32BSI) # and the nodata value is True. structure = 'B' + GDAL_TO_STRUCT[band.datatype()] # Get band pixel type in PostGIS notation pixeltype = GDAL_TO_POSTGIS[band.datatype()] # Set the nodata flag if band.nodata_value is not None: pixeltype |= BANDTYPE_FLAG_HASNODATA # Pack band header bandheader = pack(structure, (pixeltype, band.nodata_value or 0)) # Add packed header and band data to result result += bandheader + band.data(as_memoryview=True) # Convert raster to hex string before passing it to the DB. return result.hex()
py
1a4dc9d9111ee6442d657a660be62c2ba7332043
# -*- coding: utf-8 -*- from django.db import migrations import organizations.fields class Migration(migrations.Migration): dependencies = [("organizations", "0001_initial")] operations = [ migrations.AlterField( model_name="organization", name="slug", field=organizations.fields.SlugField( blank=True, editable=False, help_text="The name in all lowercase, suitable for URL identification", max_length=200, populate_from=("name",), unique=True, ), ) ]
py
1a4dca7c6ad50a94610d072e4b6c46c74e56253c
# (C) Copyright [2020] Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. """HPE Container Platform CLI.""" from __future__ import print_function import sys from hpecp.k8s_worker import WorkerK8sStatus, WorkerK8s from hpecp.cli import base from textwrap import dedent class K8sWorkerProxy(base.BaseProxy): """Proxy object to :py:attr:`<hpecp.client.k8s_worker>`.""" def __dir__(self): """Return the CLI method names.""" return [ "create_with_ssh_key", "delete", "examples", "get", "list", "set_storage", "statuses", "wait_for_status", ] def __init__(self): """Create instance of proxy class with the client module name.""" super(K8sWorkerProxy, self).new_instance("k8s_worker", WorkerK8s) @base.intercept_exception def create_with_ssh_key( self, ip=None, ssh_key=None, ssh_key_file=None, ssh_passphrase=None, tags=None, ephemeral_disks=None, persistent_disks=None, wait_for_operation_secs=0, ): """Create a K8s Worker using SSH key authentication. Parameters ---------- ip : str, optional The IP address of the host, this is used for internal communication, by default None. ssh_key : str, optional The SSH key data as a string, instead of this location to a key file may also be provided, by default None. ssh_key_file : str, optional The SSH key file path, by default None ssh_passphrase: str, optional The SSH passphrase tags : list, optional Tags to use, e.g. /api/v2/tag/1:foo,/api/v2/tag/1:bar, by default None ephemeral_disks : str Comma separated string containing ephemeral disks. e.g: "/dev/nvme2n1,/dev/nvme2n2" persistent_disks : str, optional Comma separated string containing persistent disks, by default None. e.g: "/dev/nvme1n1,/dev/nvme1n2" wait_for_operation_secs: int wait for operations to complete. 0 = don't wait """ if ssh_key is None and ssh_key_file is None: print( "At least one of ssh_key or ssh_key_file must be provided", file=sys.stderr, ) sys.exit(1) if ssh_key is not None and ssh_key_file is not None: print( ( "Either ssh_key or ssh_key_file must be provided," " but not both." ), file=sys.stderr, ) sys.exit(1) if ssh_key_file: try: with open(ssh_key_file) as f: ssh_key = f.read() except OSError: print( "Could not open/read ssh-key-file: {}".format( ssh_key_file ), file=sys.stderr, ) sys.exit(1) if ( ephemeral_disks is not None or persistent_disks is not None ) and wait_for_operation_secs == 0: print( ( "If setting disks, 'wait-for-operation-secs' parameter" " must be greater than zero (recommended 600 seconds)" ), file=sys.stderr, ) sys.exit(1) tags_parsed = [] if tags is not None: for tag in tags.split(","): k, v = tag.split(":") tags_parsed.append({"tag_id": k, "tag_value": v}) worker_id = base.get_client().k8s_worker.create_with_ssh_key( ip=ip, ssh_key_data=ssh_key, ssh_passphrase=ssh_passphrase, tags=tags_parsed, ) if wait_for_operation_secs > 0: self.wait_for_status( id=worker_id, status=["storage_pending", "error"], timeout_secs=wait_for_operation_secs, ) if base.get_client().k8s_worker.get(id=worker_id).status == "error": print( ( "Create request has errored. " "Check status message with `hpecp k8sworker get {}".format( id ) ), file=sys.stderr, ) sys.exit(1) if ephemeral_disks is not None or persistent_disks is not None: self.set_storage( id=worker_id, ephemeral_disks=ephemeral_disks, persistent_disks=persistent_disks, ) if wait_for_operation_secs > 0: self.wait_for_status( id=worker_id, status=["ready"], timeout_secs=wait_for_operation_secs, ) print(worker_id) def examples(self): """Show examples for working with k8sclusters.""" print( dedent( """\ # Find id of k8s workers by ip address $ hpecp k8sworker list --query "[*] | @[?contains('10.0.1.10 10.0.1.210', ipaddr)] | [*][_links.self.href]" --output text /api/v2/worker/k8shost/5 /api/v2/worker/k8shost/7 # Retrieve the first master node of a K8S Cluster $ hpecp k8scluster list --query "[?_links.self.href == '/api/v2/k8scluster/1'] | [0] | [k8shosts_config] | [0] | [?role == 'master'] | [0] | [node]" -o text /api/v2/worker/k8shost/7 """ # noqa: E501 ) ) # TODO: verify with engineering if setup_log is a valid parameter # def get(self, id, setup_log=False): # """Get a K8SWorker.""" # if setup_log is True: # params = {"setup_log": "true"} # else: # params = {} # return super(K8sWorkerProxy, self).get(id=id, params=params) @base.intercept_exception def set_storage( self, id, ephemeral_disks, persistent_disks=None, ): """Set storage for a k8s worker. Parameters ---------- id : str The k8s worker ID ephemeral_disks : str Comma separated string containing ephemeral disks. e.g: "/dev/nvme2n1,/dev/nvme2n2" persistent_disks : str, optional Comma separated string containing persistent disks, by default None. e.g: "/dev/nvme1n1,/dev/nvme1n2" """ if not ephemeral_disks: print("'ephemeral_disks' must be provided", file=sys.stderr) sys.exit(1) p_disks = ( persistent_disks.split(",") if persistent_disks is not None else [] ) e_disks = ephemeral_disks.split(",") base.get_client().k8s_worker.set_storage( worker_id=id, persistent_disks=p_disks, ephemeral_disks=e_disks, ) def statuses( self, ): """Return a list of valid statuses.""" print([s.name for s in WorkerK8sStatus])
py
1a4dca9757b86a132c098bcdce210c8f3c5f7808
from twython import Twython def read_strings_from_file(file_path, how_many): with open(file_path, 'r') as file: data = file.read() return data.split()[:how_many] def read_key_and_secret(file_path): return read_strings_from_file(file_path, 2) def read_token_secret_pin(file_path): return read_strings_from_file(file_path, 2) def write_token_secret(file_path, token, secret): with open(file_path, 'w') as file: file.write("{}\n{}".format(token, secret)) def auth_app(key_file, auth_file): app_key, app_secret = read_key_and_secret(key_file) # obtaining URL for authentication twitter = Twython(app_key, app_secret) auth = twitter.get_authentication_tokens() oauth_token = auth['oauth_token'] oauth_token_secret = auth['oauth_token_secret'] # request pin print('Go here: {}'.format(auth['auth_url'])) pin = input('PIN? ') # complete authorization with PIN twitter = Twython(app_key, app_secret, oauth_token, oauth_token_secret) auth = twitter.get_authorized_tokens(pin) oauth_token = auth['oauth_token'] oauth_token_secret = auth['oauth_token_secret'] # write token and secret to file write_token_secret(auth_file, oauth_token, oauth_token_secret) print('auth credentials written to: {}'.format(auth_file)) def twython_from_key_and_auth(key_file, auth_file): app_key, app_secret = read_key_and_secret(key_file) oauth_token, oauth_token_secret = read_token_secret_pin(auth_file) return Twython(app_key, app_secret, oauth_token, oauth_token_secret)
py
1a4dcaa7cc72ca058a95e5421bf6afc065f7564e
import json from masonite.helpers import config def mix(filename): manifest = config("resources.public_path") + "/mix-manifest.json" with open(manifest) as file: data = json.load(file) return "/static" + data[filename]
py
1a4dcd6e191a9b88ad2ad6b9b089bdce191a6e85
t1=("only even prime","tallest animal","best person","best sportsperson") list1=(2,'giraffe','chirag','lionel messi') print(list(zip(t1,list1)))
py
1a4dcd876a2acb8ed98222753d9260ad10c9074e
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.15.9 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes_asyncio.client.configuration import Configuration class V1KeyToPath(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'key': 'str', 'mode': 'int', 'path': 'str' } attribute_map = { 'key': 'key', 'mode': 'mode', 'path': 'path' } def __init__(self, key=None, mode=None, path=None, local_vars_configuration=None): # noqa: E501 """V1KeyToPath - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._key = None self._mode = None self._path = None self.discriminator = None self.key = key if mode is not None: self.mode = mode self.path = path @property def key(self): """Gets the key of this V1KeyToPath. # noqa: E501 The key to project. # noqa: E501 :return: The key of this V1KeyToPath. # noqa: E501 :rtype: str """ return self._key @key.setter def key(self, key): """Sets the key of this V1KeyToPath. The key to project. # noqa: E501 :param key: The key of this V1KeyToPath. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and key is None: # noqa: E501 raise ValueError("Invalid value for `key`, must not be `None`") # noqa: E501 self._key = key @property def mode(self): """Gets the mode of this V1KeyToPath. # noqa: E501 Optional: mode bits to use on this file, must be a value between 0 and 0777. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set. # noqa: E501 :return: The mode of this V1KeyToPath. # noqa: E501 :rtype: int """ return self._mode @mode.setter def mode(self, mode): """Sets the mode of this V1KeyToPath. Optional: mode bits to use on this file, must be a value between 0 and 0777. If not specified, the volume defaultMode will be used. This might be in conflict with other options that affect the file mode, like fsGroup, and the result can be other mode bits set. # noqa: E501 :param mode: The mode of this V1KeyToPath. # noqa: E501 :type: int """ self._mode = mode @property def path(self): """Gets the path of this V1KeyToPath. # noqa: E501 The relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'. # noqa: E501 :return: The path of this V1KeyToPath. # noqa: E501 :rtype: str """ return self._path @path.setter def path(self, path): """Sets the path of this V1KeyToPath. The relative path of the file to map the key to. May not be an absolute path. May not contain the path element '..'. May not start with the string '..'. # noqa: E501 :param path: The path of this V1KeyToPath. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and path is None: # noqa: E501 raise ValueError("Invalid value for `path`, must not be `None`") # noqa: E501 self._path = path def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1KeyToPath): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1KeyToPath): return True return self.to_dict() != other.to_dict()
py
1a4dcddd2c0fdbf04c855a725a20614c5a22d5a0
# # Copyright (c) 2017, Massachusetts Institute of Technology All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from MDSplus import DATA,Float64Array,tdi import sys example = '/frame?tree=expt&shot=123&y=SIGNAL:NODE&x=0.0&frame_idx=0' def doFrame(self): def getStringExp(self,name,response_headers,_tdi): if name in self.args: try: response_headers.append((name,str(_tdi(self.args[name][-1]).data()))) except Exception as e: response_headers.append((name,"ERROR: %s"%(e,))) response_headers = list() response_headers.append(('Cache-Control','no-store, no-cache, must-revalidate')) response_headers.append(('Pragma','no-cache')) response_headers.append(('Content-Type','application/octet-stream')) if 'tree' in self.args: tree = self.openTree(self.args['tree'][-1],self.args['shot'][-1].split(',')[0]) _tdi = tree.tdiExecute else: tree = None _tdi = tdi for name in ('title','xlabel','ylabel'): getStringExp(self,name,response_headers,_tdi) if 'frame_idx' in self.args: frame_idx = self.args['frame_idx'][-1] else: frame_idx = '0' expr = self.args['y'][-1] sig = _tdi('GetSegment(' + expr + ',' + frame_idx + ')') frame_data = DATA(sig).evaluate() response_headers.append(('FRAME_WIDTH',str(sig.getShape()[0]))) response_headers.append(('FRAME_HEIGHT',str(sig.getShape()[1]))) response_headers.append(('FRAME_BYTES_PER_PIXEL',str(frame_data.data().itemsize))) response_headers.append(('FRAME_LENGTH',str(len(frame_data)))) output = str(frame_data.data().data) if 'init' in self.args: if 'x' in self.args: expr = self.args['x'][-1] times = DATA(_tdi(expr)).evaulate() else: times = list() numSegments = _tdi('GetNumSegments(' + expr + ')').data() for i in range(0, numSegments): times.append(_tdi('GetSegmentLimits(' + expr + ',' + str(i) + ')').data()[0]) times = Float64Array(times) response_headers.append(('TIMES_DATATYPE',times.__class__.__name__)) response_headers.append(('TIMES_LENGTH',str(len(times)))) output = output + str(times.data().data) status = '200 OK' return (status, response_headers, output)
py
1a4dce83aa8be583e9804fe01cca31c87e9f657f
""" Configuration for docs """ # source_link = "https://github.com/[org_name]/item" # docs_base_url = "https://[org_name].github.io/item" # headline = "App that does everything" # sub_heading = "Yes, you got that right the first time, everything" def get_context(context): context.brand_html = "Item"
py
1a4dce9d86a2830fb3726e6cca6792f0a76a275b
wrong_data = input("잘못된 데이터 : ") data = "" wrong_data = wrong_data.split(" ") for i in wrong_data: if i[:len(i) // 2] == i[len(i) // 2 :]: data += i[:len(i) // 2] + " " else: data += i + " " result = "" for i in data: if i.isupper() == 1: i = i.lower() else: i = i.upper() result += i result = result.rstrip(" ") print(result)
py
1a4dd082d2b3847c15c6a19fbeeefe916e3791ec
0 class MDO3000(instrument): """Represents the Tektronix mixed domain oscilloscopes md3000/md4000 and provides a high-level interface for interacting with the instrument. Depending on the """ print('nothing here') # ToDo: Implement basic OSZI functions to measure and get data # ToDo: Make a PyQt GUI that displays both, waveform to send to AFG and measurement DATA ################## # AFG Properties # ################## AFG_function = Instrument.control( "AFG:FUNCtion?", "AFG:FUNCtion %s", """A string property that controls the function of the AFG""", validator=strict_discrete_set, values={'sine': 'SINE', 'square': 'SQUare', 'pulse': 'PULSe', 'ramp': 'RAMP', 'nois': 'NOISe', 'dc': 'DC', 'sinc': 'SINC', 'gauss': 'GAUSsian', 'lorentz': 'LORENtz', 'erise': 'ERISe', 'edecay': 'EDECAy', 'haversine': 'HAVERSINe', 'cardiac': 'CARDIac', 'arbitrary': 'ARBitrary'] ) AFG_offset = Instrument.control( "AFG:OFFSet?", "AFG:OFFSet %g", """A floating point property that represents the AFG offset, in volts. Minimum and Maximum Values depend on the function. NOTE: Load Impedance has to be set before using this function""" ) AFG_loadimpedance = Instrument.control( "AFG:OUTPut:LOAd:IMPEDance?", "AFG:OUTPut:LOAd:IMPEDance %s", """String property, that sets the AFG load impedance. 'high' or 'fifty' are accepted values.""", validator=strict_discrete_set, values={'high': 'HIGHZ', 'fifty': 'FIFty'} ) AFG_output = Instrument.control( "AFG:OUTPUT:STATE?", "AFG:OUTPUT:STATE %s", """String property, that represents the output state ON or OFF""", validator=strict_discrete_set, values={'ON': 'ON', 'OFF': 'OFF'] ) AFG_amplitude = Instrument.control( "AFG:AMPLitude?", "AFG:AMPLitude %g", """A floating point property that represents the AFG amplitude. Maximum and Minimum Values depend on the selected function. NOTE: Load Impedance has to be set before setting this property""", ) AFG_frequency = Instrument.control( "AFG:FREQency?", "AFG:FREQency %g", """Floating point property that represents the AFG frequency. Maximum and Minimum Values depend on the selected function. NOTE: Load Impedance has to be set before setting this property""" ) AFG_highlevel = Instrument.control( "AFG:HIGHLevel?", "AFG:HIGHLevel %g", """Floating point property that represents the AFG low level. Maximum and Minimum Values depend on the selected function. NOTE: Load Impedance has to be set before setting this property""" ) AFG_lowlevel = Instrument.control( "AFG:LOWLevel?", "AFG:LOWLevel %g", """Floating point property that represents the AFG high level. Maximum and Minimum Values depend on the selected function. NOTE: Load Impedance has to be set before setting this property""" ) AFG_period = Instrument.control( "AFG:PERIod?", "AFG:PERIod %g", """Floating point property that represents the AFG period. Maximum and Minimum Values depend on the selected function. NOTE: Load Impedance has to be set before setting this property""" ) AFG_phase = Instrument.control( "AFG:PHASe?", "AFG:PHASe %g", """Floating point property that represents the AFG phase. Maximum and Minimum Values depend on the selected function. NOTE: Load Impedance has to be set before setting this property""" ) AFG_pulsewidth = Instrument.control( "AFG:PULse:WIDth?", "AFG:PULse:WIDth %g", """Floating Point Property. that represents the AFG pulse width. It has an absolute minimum of 10ns and has a relative range of 10%-90% of the current period setting. Resolution is 0.1ns""" ) AFG_additiveNoise = Instrument.control( "AFG:NOISEAdd:PERCent?", "AFG:NOISEAdd:PERCent %g", """Floating point property that represents the AFG additive noise level, as a percentage.""", validator=truncated_range, values=[0, 100] ) AFG_additiveNoiseState = Instrument.control( "AFG:NOISEAdd:STATE?", "AFG:NOISEAdd:STATE %s", """String property that represents the AFG additive noise state""", validator=strict_set, values={'ON': 'ON', '1': 'ON', 'OFF': 'OFF', '2': 'OFF'} ) AFG_rampSymmetry = Instrument.control( "AFG:RAMP:SYMmetry?", "AFG:RAMP:SYMmetry %g", """Floating point promerty that represents the AFG ramp symmetry, as a percentage.""", validator=truncated_range, values=[0, 100] ) AFG_dutyCycle = Instrument.control( "AFG:SQUare:DUty?", "AFG:SQUare:DUty %g", """Floating point property that represents the AFG duty cycle, as a percentage""", validator=truncated_range, values=[0, 100] ) # todo: refaactor AFG_Arb_Label to a property - how does this work with multiple arguments? def AFG_set_arb_label(self, slot, label): self.write(f'AFG:ARBitrary:ARB{slot}:LABel {label}') def AFG_get_arb_label(self, slot): """Queries the waveform label for arbitrary waveform slot 1-4 """ label = self.ask(f'AFG:ARBitrary:ARB{slot}:LABel?')
py
1a4dd0c70737d2950b7564dd5e2fd86c3c571398
from django.http import HttpResponse from django.shortcuts import render from django.contrib import messages from django.http import HttpResponseRedirect from cfbets.forms import SignUpForm, UserProfileForm from django.contrib.auth import authenticate, login from django.contrib.auth.decorators import login_required from bets.models import ProposedBet, AcceptedBet, UserProfile from common.stats import * from django.contrib.auth.models import User def welcome(request): if request.user.is_authenticated(): return HttpResponseRedirect('/bets/my_bets') else: return render(request, 'base_welcome.html') def sign_up(request): if request.method == 'POST': form = SignUpForm(request.POST) # check the group id group_id = request.POST.get('group_id') if group_id != '' and group_id != 'cl3ms0n': form.add_error('group_id', 'Not a valid group id.') elif form.is_valid(): form.save() new_user = authenticate( username=form.cleaned_data['username'], password=form.cleaned_data['password1']) if new_user is not None: login(request, new_user) return HttpResponseRedirect("/") else: return HttpResponseRedirect("/login") else: form = SignUpForm() return render(request, 'base_sign_up.html', {'form': form}) @login_required(login_url='/login/') def profile(request): # get the current user current_user = User.objects.get(id=request.user.id) # get the current user profile current_user_profile = UserProfile.objects.get(user=current_user) # all the form stuff if request.method == 'POST': user_profile_form = UserProfileForm(request.POST) if user_profile_form.is_valid(): # save data for current user / user profile current_user.first_name = user_profile_form.cleaned_data['first_name'] current_user.last_name = user_profile_form.cleaned_data['last_name'] current_user_profile.get_prop_bet_emails = user_profile_form.cleaned_data[ 'get_prop_bet_emails'] current_user_profile.get_accepted_bet_emails = user_profile_form.cleaned_data[ 'get_accepted_bet_emails'] current_user.save(update_fields=['first_name', 'last_name']) current_user_profile.save( update_fields=[ 'get_prop_bet_emails', 'get_accepted_bet_emails']) messages.success(request, 'Profile saved successfully.') return HttpResponseRedirect("/profile") else: user_profile_form = UserProfileForm( initial={ 'first_name': current_user.first_name, 'last_name': current_user.last_name, 'email': current_user.email, 'get_prop_bet_emails': current_user_profile.get_prop_bet_emails, 'get_accepted_bet_emails': current_user_profile.get_accepted_bet_emails}) total_won_bets = get_total_wins(current_user) total_loss_bets = get_total_losses(current_user) total_tie_bets = get_total_ties(current_user) return render(request, 'base_profile.html', {'user_profile_form': user_profile_form, 'total_won_bets': total_won_bets, 'total_tie_bets': total_tie_bets, 'total_loss_bets': total_loss_bets})
py
1a4dd1fce478a009a3d3a50e7cf22da550de1b35
# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from .base_vfi_dataset import BaseVFIDataset from .registry import DATASETS @DATASETS.register_module() class VFIVimeo90K7FramesDataset(BaseVFIDataset): """Utilize Vimeo90K dataset (7 frames) for video frame interpolation. Load 7 GT (Ground-Truth) frames from the dataset, predict several frame(s) from other frames. Then it applies specified transforms and finally returns a dict containing paired data and other information. It reads Vimeo90K keys from the txt file. Each line contains: 1. video frame folder 2. number of frames 3. image shape Examples: :: 00001/0266 7 (256,448,3) 00001/0268 7 (256,448,3) Note: Only `video frame folder` is required information. Args: folder (str | :obj:`Path`): Path to image folder. ann_file (str | :obj:`Path`): Path to the annotation file. pipeline (list[dict | callable]): A sequence of data transformations. input_frames (list[int]): Index of input frames. target_frames (list[int]): Index of target frames. test_mode (bool): Store `True` when building test dataset. Default: `False`. """ def __init__(self, folder, ann_file, pipeline, input_frames, target_frames, test_mode=False): super().__init__( pipeline=pipeline, folder=folder, ann_file=ann_file, test_mode=test_mode) self.input_frames = input_frames self.target_frames = target_frames self.data_infos = self.load_annotations() def load_annotations(self): """Load annoations for Vimeo-90K dataset. Returns: list[dict]: A list of dicts for paired paths and other information. """ # get keys with open(self.ann_file, 'r') as fin: keys = [line.strip().split(' ')[0] for line in fin] data_infos = [] for key in keys: key = key.replace('/', os.sep) inputs_path = [ osp.join(self.folder, key, f'im{i}.png') for i in self.input_frames ] target_path = [ osp.join(self.folder, key, f'im{i}.png') for i in self.target_frames ] data_infos.append( dict( inputs_path=inputs_path, target_path=target_path, key=key)) return data_infos
py
1a4dd3ae6acae271c4212f694b538c00bfd2919a
import unittest import io from ppci.common import CompilerError from ppci.lang.c import CBuilder, render_ast, print_ast, COptions from ppci.arch.example import ExampleArch from ppci import ir from ppci.irutils import verify_module class CFrontendTestCase(unittest.TestCase): """ Test if various C-snippets build correctly """ def setUp(self): arch = ExampleArch() self.builder = CBuilder(arch.info, COptions()) def do(self, src): self._do_compile(src) self._print_ast(src) def _do_compile(self, src): f = io.StringIO(src) try: ir_module = self.builder.build(f, None) except CompilerError as compiler_error: lines = src.split("\n") compiler_error.render(lines) raise assert isinstance(ir_module, ir.Module) verify_module(ir_module) def _print_ast(self, src): # Try to parse ast as well: tree = self.builder._create_ast(src, None) print(tree) print("C-AST:") print_ast(tree) # Print rendered c: print("re-rendered C:") render_ast(tree) def expect_errors(self, src, errors): with self.assertRaises(CompilerError) as cm: self.do(src) for row, message in errors: self.assertEqual(row, cm.exception.loc.row) self.assertRegex(cm.exception.msg, message) def test_hello_world(self): src = r""" void printf(char*, ...); void main(int b) { printf("Hello \x81 world %i\n", 42); } """ self.do(src) def test_adjecent_strings(self): src = r""" void printf(char*); void main(int b) { printf("Hello" "world\n"); static unsigned char msg[]= "Woooot\n"; printf(msg); } """ self.do(src) def test_1(self): src = """ int a; void main(int b) { a = 10 + b; } """ self.do(src) def test_2(self): src = """ static int c, d, e; static float x; char f, g; int main() { int d; d = 20 + c * 10 + c >> 2 - 123; return d; } """ self.do(src) def test_control_structures(self): src = """ int main() { int d,i,c; c = 2; d = 20 + c * 10 + c >> 2 - 123; if (d < 10) { while (d < 20) { d = d + c * 4; } } if (d > 20) { do { d += c; } while (d < 100); } else { for (i=i;i<10;i++) { } for (i=0;;) { } for (;;) { } } return d; } """ self.do(src) def test_for_statement(self): src = """ int main() { int i; for (i=i;i<10;i++) { } for (i=0;;) { } for (;;) { } for (int x=0;x<10;x++) { } } """ self.do(src) def test_for_statement_scope(self): """ Test the scope of declarations inside a for loop. """ src = """ void print(int); int main() { for (int i=0;i<10;i++) print(i); for (int i=0;i<10;i++) print(i); } """ self.do(src) def test_conditionals(self): src = """ int main() { int d, i, c; c = (( (d < 10) || (i != c) ) | 22) != 0; return c; } """ self.do(src) def test_expressions(self): """ Test various expression constructions """ src = """ void main() { int a,b,c,d; c = 2; d = a + b - c / a * b; d = !a; d = a ? b : c + 2; } """ self.do(src) def test_ternary_operator(self): """ Test ternary operator with functions. """ src = """ int foo(int x) { return x + 1; } int bar(int x) { return x - 1; } void p1(int x); void p2(int x); void main(int b) { int a; a = (b ? foo : bar)(22); // ternary usage with function pointers (b ? p1 : p2)(33); // ternary usage with void type } """ self.do(src) def test_comma_operator(self): """ Test comma operator """ src = """ void main() { int a,b,c,d; a = 2, b=3; } """ self.do(src) def test_4(self): """ Test expressions """ src = """ int main(int, int c) { int stack[2]; struct { int ptr;} *s; int d; d = 20 + c * 10 + c >> 2 - 123; d = stack[--s->ptr]; --d; d--; return d; } """ self.do(src) def test_5(self): src = """ static int G; void initialize(int g) { G = g; } int main(int, int c) { int d = 2; initialize(d); return d; } """ self.do(src) def test_type_modifiers(self): """ Test the various constructs of type names """ src = """ void main() { int n; n = sizeof(int); int *a[3]; n = sizeof(int *[3]); int (*p)[3]; n = sizeof(int (*)[3]); n = sizeof(int *(void)); volatile const int * volatile vc; } int *f(void); """ self.do(src) def test_struct(self): """ Test structure usage """ src = """ typedef struct {int quot, rem; } div_t; struct {} empty_unit; struct z { int foo; }; struct s; struct s* p; struct s { struct s *next; int b:2+5, c:9, d; struct z Z; int *g; }; struct s AllocS; void main() { volatile div_t x, *y; x.rem = 2; y = &x; y->quot = x.rem = sizeof *AllocS.g; struct s S; S.next->next->b = 1; } """ self.do(src) def test_tag_scoping(self): src = """ void f(int n) { struct S { int a; } s; union U { int a; } u; enum E { E1, E2 } e; if (n == 10) { struct S { int b; } s; s.b = 1; union U { int b; } u; u.b = 1; enum E { E3, E4 } e; e = E3; } s.a = 2; u.a = 2; e = E1; } """ self.do(src) def test_struct_copy(self): """ Test struct behavior when copied around. """ src = """ typedef struct {int a,b,c,d,e,f; } data_t; data_t my_f(data_t y) { data_t z; z.a = y.a; z.b = 42; return z; } void main() { data_t *ptr; data_t x; x = *ptr++; x = my_f(x); x = my_f(*ptr--); } """ self.do(src) def test_bad_bitfield_type(self): """ Test bad bitfield type """ src = """ struct z { float foo : 3; }; """ self.expect_errors(src, [(2, r"Invalid type \(float\) for bit-field")]) def test_offsetof(self): """ Test offsetof """ src = """ struct z { int foo; }; void main() { __builtin_offsetof(struct z, foo); } """ self.do(src) def test_offsetof_after_bitfield(self): """ Test offsetof after bitfields works """ src = """ struct z { char foo : 1; int fu : 2; int bar; }; void do_x(struct z g) { } void main() { __builtin_offsetof(struct z, bar); struct z y; do_x(y); } """ self.do(src) def test_offsetof_bitfield(self): """ Test offsetof on bitfields returns an error """ src = """ struct z { int foo : 23; }; void main() { __builtin_offsetof(struct z, foo); } """ self.expect_errors(src, [(4, 'address of bit-field "foo"')]) def test_union(self): """ Test union usage """ src = """ union z { int foo; struct { int b, a, r; } bar;}; union z myZ[2] = {1, 2}; void main() { union z localZ[2] = {1, 2}; } """ self.do(src) def test_anonymous_union_member(self): """ Test anonymous union member access. """ src = """ union z { int foo; struct { int b; }; }; void main() { union z my_z; my_z.b = 34; } """ self.do(src) def test_array(self): """ Test array types """ src = """ int a[10]; int b[] = {1, 2}; int bbb[] = {1, 2,}; // Trailing comma void main() { int c[sizeof(long int)/sizeof(char)]; unsigned long long d[] = {1ULL, 2ULL}; a[2] = b[10] + c[2] + d[1]; int* p = a + 2; int A[][3] = {1,2,3,4,5,6,7,8,9}; } """ self.do(src) def test_array_index_pointer(self): """ Test array indexing of a pointer type """ src = """ void main() { int* a, b; b = a[100]; } """ self.do(src) def test_pointer_arithmatics(self): """ Test dark pointer voodoo """ src = """ void main() { int *a, b, *c; a = &b; c = a + 10; // pointer + numeric c = 20 + a; // numeric + pointer a = a - 10; // pointer - numeric b = c - a; // pointer - pointer a += 2; a -= 4; } """ self.do(src) def test_size_outside_struct(self): """ Assert error when using bitsize indicator outside struct """ src = """ int b:2+5, c:9, d; """ self.expect_errors(src, [(2, 'Expected ";"')]) def test_wrong_tag_kind(self): """ Assert error when using wrong tag kind """ src = """ union S { int x;}; int B = sizeof(struct S); """ self.expect_errors(src, [(3, "Wrong tag kind")]) def test_enum(self): """ Test enum usage """ src = """ void main() { enum E { A, B, C=A+10 }; enum E e = A; e = B; e = 2; } """ self.do(src) def test_enum_implicit_cast(self): """ Test enum casting """ src = """ void main() { enum E { A, B, C }; enum D { X, Y, Z }; enum E e = Z; } """ self.do(src) def test_literal_data(self): """ Test various formats of literal data """ src = """ void main() { int i; char *s, c; i = 10l; s = "Hello!" "World!"; c = ' '; s = &"bla"[2]; // This is fine! } """ self.do(src) def test_compound_literal(self): """ Test compund literal """ src = """ typedef struct { int x; } X_t; X_t main() { return (X_t){2}; } """ self.do(src) def test_global_compound_literal(self): """ Test pointer to global compund literals. Points of interest: - compound literals can empty initializer lists. """ src = """ int *pa1 = (int[]){1,2,3,4}; int *pa2 = (int[4]){1,2,3,4}; struct S2 { int a; }; struct S2* ps1 = &((struct S2){.a=2}); struct S2* ps2 = &((struct S2){}); """ self.do(src) def test_assignment_operators(self): """ Test assignment operators """ src = """ void main() { int a, b, c; a += b - c; a -= b - c; a /= b - c; a %= b - c; a |= b - c; a &= b - c; } """ self.do(src) def test_sizeof(self): """ Test sizeof usage """ src = """ void main() { int x, *y; union U; union U { int x; }; union U u; x = sizeof(float*); x = sizeof *y; x = sizeof(*y); x = sizeof(union U); int w = sizeof w; // Sizeof works on the expression before the '=' } """ self.do(src) def test_goto(self): """ Test goto statements """ src = """ void main() { goto part2; part2: goto part2; switch(0) { case 34: break; default: break; } } """ self.do(src) def test_continue(self): """ Test continue statement """ src = """ void main() { while (1) { continue; } } """ self.do(src) def test_break(self): """ Test break statement """ src = """ void main() { while (1) { break; } } """ self.do(src) def test_switch(self): """ Test switch statement """ src = """ void main() { int a; short b = 23L; switch (b) { case 34: a -= 5; break; case 342LL: break; default: a += 2; break; } } """ self.do(src) def test_switch_gnu(self): """ Test switch statement with gnu extension. """ src = """ void main() { int b = 23; switch (b) { case 34 ... 40: b = 1; break; case 342: b = 2; break; } } """ self.do(src) def test_loose_case(self): """ Test loose case statement """ src = """ void main() { case 34: break; } """ self.expect_errors(src, [(3, "Case statement outside")]) def test_loose_default(self): """ Test loose default statement """ src = """ void main() { default: break; } """ self.expect_errors(src, [(3, "Default statement outside")]) def test_void_function(self): """ Test calling of a void function """ src = """ void main(void) { main(); } """ self.do(src) def test_function_arguments(self): """ Test calling of functions """ src = """ void add(int a, int b, int c); void main() { add((int)22, 2, 3); } """ self.do(src) def test_function_argument_name(self): """ Test an argument name with the same name as a typedef """ src = """ typedef double a; void add(a a) { a: return; } void mul(int a) { unsigned int a; } """ self.do(src) def test_forward_declaration(self): """ Test forward declarations """ src = """ extern char a; char a = 2; """ self.do(src) def test_afterwards_declaration(self): """ Test redeclaration """ src = """ char a = 2; extern char a; // this is fine too! char a; // this is fine int add(int a, int b); int add(int a, int b); // fine! int add(int a, int b) { return a + b; } int add(int a, int b); // fine! """ self.do(src) def test_variable_double_definition(self): """ Test double definition raises an error. """ src = """ char a = 2; char a = 3; // Not cool! """ self.expect_errors(src, [(3, "Invalid redefinition")]) def test_function_double_definition(self): """ Test double definition raises an error. """ src = """ int add(int a, int b) { return a + b; } int add(int a, int b) { // Not cool! return a + b; } """ self.expect_errors(src, [(5, "invalid redefinition")]) def test_softfloat_bug(self): """ Bug encountered in softfloat library """ src = """ #define INLINE typedef short int16; typedef unsigned int bits32; typedef char int8; INLINE void shift64ExtraRightJamming( bits32 a0, bits32 a1, bits32 a2, int16 count, bits32 *z0Ptr, bits32 *z1Ptr, bits32 *z2Ptr ) { bits32 z0, z1, z2; int8 negCount = ( - count ) & 31; if ( count == 0 ) { z2 = a2; z1 = a1; z0 = a0; } else { if ( count < 32 ) { z2 = a1<<negCount; z1 = ( a0<<negCount ) | ( a1>>count ); z0 = a0>>count; } else { if ( count == 32 ) { z2 = a1; z1 = a0; } else { a2 |= a1; if ( count < 64 ) { z2 = a0<<negCount; z1 = a0>>( count & 31 ); } else { z2 = ( count == 64 ) ? a0 : ( a0 != 0 ); z1 = 0; } } z0 = 0; } z2 |= ( a2 != 0 ); } *z2Ptr = z2; *z1Ptr = z1; *z0Ptr = z0; } """ self.do(src) def test_initialization(self): """ Test initialization of complex data structures. """ src = """ struct rec { int a, b; char c[5]; struct { int x, y; } d; }; char x = '\2'; int* ptr = (int*)0x1000; int data; int* ptr2 = &data; struct rec d = {.b = 2, .c = {[2] = 3}, .d.x=100}; int e[] = {1, [2]=3, [0] = 2, [6]=2.2}; int f[] = {1,2,[5]=6}; void main() { char x = '\2'; int* ptr = (int*)0x1000; struct rec d = {.b = 2, .c = {[2] = 3}, .d.x=100}; int e[] = {1, [2]=3, [0] = 2, [6]=2.2}; int f[] = {1,2,[5]=6}; } """ self.do(src) def test_anonymous_struct_field_initialization(self): """ Test designated initialization into an anonymous struct. """ src = """ struct rec { struct { int x; }; }; struct rec d = {.x = 2}; void main() { struct rec d = {.x = 2}; } """ self.do(src) def test_function_pointer_passing(self): """ Test passing of function pointers """ src = """ void callback(void) { } static void (*cb)(void); void register_callback(void (*f)()) { cb = f; } void main() { register_callback(callback); callback(); // direct call cb(); // via function pointer // TODO: (*cb)(); // again via function pointer } """ self.do(src) def test_not_all_paths_return_value(self): """ Test what happens when not all code paths return a value """ src = """ int f(int a) { if(a == 0) return(1); } """ self.do(src) def test_array_of_strings(self): """ Test array's of strings """ src = """ char *msg[] = { "Hi", "Bonjour" }; """ self.do(src) def test_inline_asm(self): """ Test inline assembly code. """ src = """ void main(int a) { // This is example arch asm code: int res; asm ( "add r0, r1, r2" : // TODO: "=r" (res) : "r" (a) ); } """ self.do(src) if __name__ == "__main__": unittest.main()
py
1a4dd4046805a0d142e0f6c5f00c122c4516f4aa
""" This process performs a restore of all the application entities from a given restore. """ import argparse import logging import os from appscale.common import appscale_info from ..backup.datastore_restore import DatastoreRestore from ..dbconstants import APP_ENTITY_SCHEMA from ..dbconstants import APP_ENTITY_TABLE from ..dbconstants import APP_KIND_SCHEMA from ..dbconstants import APP_KIND_TABLE from ..dbconstants import ASC_PROPERTY_TABLE from ..dbconstants import COMPOSITE_SCHEMA from ..dbconstants import COMPOSITE_TABLE from ..dbconstants import DSC_PROPERTY_TABLE from ..dbconstants import PROPERTY_SCHEMA from ..utils import fetch_and_delete_entities from ..zkappscale import zktransaction as zk # Where to look to verify the app is deployed. _APPS_LOCATION = '/var/apps/' logger = logging.getLogger(__name__) def init_parser(): """ Initializes the command line argument parser. Returns: A parser object. """ parser = argparse.ArgumentParser( description='Restore application code and data.') main_args = parser.add_argument_group('main args') main_args.add_argument('-a', '--app-id', required=True, help='The application ID to restore data under.') main_args.add_argument('-b', '--backup-dir', required=True, help='The backup directory to restore data from.') main_args.add_argument('-c', '--clear-datastore', required=False, action="store_true", default=False, help='Start with a clean datastore.') main_args.add_argument('-d', '--debug', required=False, action="store_true", default=False, help='Display debug messages.') # TODO # Read in source code location and owner and deploy the app # before restoring data. return parser def app_is_deployed(app_id, zk_client): """ Looks for the app directory in the deployed apps location. Args: app_id: A str, the application ID. Returns: True on success, False otherwise. """ if not zk_client.exists('/appscale/projects/{}'.format(app_id)): logger.error("Seems that \"{0}\" is not deployed.".format(app_id)) logger.info("Please deploy \"{0}\" and try again.".\ format(app_id)) return False return True def backup_dir_exists(backup_dir): """ Checks it the given backup directory exists. Args: backup_dir: A str, the location of the backup directory containing all backup files. Returns: True on success, False otherwise. """ if not os.path.exists(backup_dir): logger.error("Error while accessing backup files.") logger.info("Please provide a valid backup directory.") return False return True def main(): """ This main function allows you to run the restore manually. """ # Parse CLI arguments. parser = init_parser() args = parser.parse_args() # Set up logging. level = logging.INFO if args.debug: level = logging.DEBUG logging.basicConfig(format='%(asctime)s %(levelname)s %(filename)s:' \ '%(lineno)s %(message)s ', level=level) logger.info("Logging started") logger.info(args) zk_connection_locations = appscale_info.get_zk_locations_string() zookeeper = zk.ZKTransaction(host=zk_connection_locations) # Verify app is deployed. if not app_is_deployed(args.app_id, zookeeper.handle): return # Verify backup dir exists. if not backup_dir_exists(args.backup_dir): return if args.clear_datastore: message = "Deleting \"{0}\" data...".\ format(args.app_id, args.backup_dir) logger.info(message) try: tables_to_clear = { APP_ENTITY_TABLE: APP_ENTITY_SCHEMA, ASC_PROPERTY_TABLE: PROPERTY_SCHEMA, DSC_PROPERTY_TABLE: PROPERTY_SCHEMA, COMPOSITE_TABLE: COMPOSITE_SCHEMA, APP_KIND_TABLE: APP_KIND_SCHEMA } for table, schema in tables_to_clear.items(): fetch_and_delete_entities('cassandra', table, schema, args.app_id, False) except Exception as exception: logger.error("Unhandled exception while deleting \"{0}\" data: {1} " \ "Exiting...".format(args.app_id, exception.message)) return # Initialize connection to Zookeeper and database related variables. db_info = appscale_info.get_db_info() table = db_info[':table'] # Start restore process. ds_restore = DatastoreRestore(args.app_id.strip('/'), args.backup_dir, zookeeper, table) try: ds_restore.run() finally: zookeeper.close()
py
1a4dd4b7e41aeded1dff66c6b7df1a42af19df3e
"""Helper sensor for calculating utility costs.""" from __future__ import annotations from dataclasses import dataclass from functools import partial from typing import Any, Final, Literal, TypeVar, cast from homeassistant.components.sensor import ( ATTR_LAST_RESET, DEVICE_CLASS_MONETARY, STATE_CLASS_MEASUREMENT, SensorEntity, ) from homeassistant.core import HomeAssistant, State, callback, split_entity_id from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.event import async_track_state_change_event from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType import homeassistant.util.dt as dt_util from .const import DOMAIN from .data import EnergyManager, async_get_manager async def async_setup_platform( hass: HomeAssistant, config: ConfigType, async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the energy sensors.""" manager = await async_get_manager(hass) process_now = partial(_process_manager_data, hass, manager, async_add_entities, {}) manager.async_listen_updates(process_now) if manager.data: await process_now() T = TypeVar("T") @dataclass class FlowAdapter: """Adapter to allow flows to be used as sensors.""" flow_type: Literal["flow_from", "flow_to"] stat_energy_key: Literal["stat_energy_from", "stat_energy_to"] entity_energy_key: Literal["entity_energy_from", "entity_energy_to"] total_money_key: Literal["stat_cost", "stat_compensation"] name_suffix: str entity_id_suffix: str FLOW_ADAPTERS: Final = ( FlowAdapter( "flow_from", "stat_energy_from", "entity_energy_from", "stat_cost", "Cost", "cost", ), FlowAdapter( "flow_to", "stat_energy_to", "entity_energy_to", "stat_compensation", "Compensation", "compensation", ), ) async def _process_manager_data( hass: HomeAssistant, manager: EnergyManager, async_add_entities: AddEntitiesCallback, current_entities: dict[tuple[str, str], EnergyCostSensor], ) -> None: """Process updated data.""" to_add: list[SensorEntity] = [] to_remove = dict(current_entities) async def finish() -> None: if to_add: async_add_entities(to_add) for key, entity in to_remove.items(): current_entities.pop(key) await entity.async_remove() if not manager.data: await finish() return for energy_source in manager.data["energy_sources"]: if energy_source["type"] != "grid": continue for adapter in FLOW_ADAPTERS: for flow in energy_source[adapter.flow_type]: # Opting out of the type complexity because can't get it to work untyped_flow = cast(dict, flow) # No need to create an entity if we already have a cost stat if untyped_flow.get(adapter.total_money_key) is not None: continue # This is unique among all flow_from's key = (adapter.flow_type, untyped_flow[adapter.stat_energy_key]) # Make sure the right data is there # If the entity existed, we don't pop it from to_remove so it's removed if untyped_flow.get(adapter.entity_energy_key) is None or ( untyped_flow.get("entity_energy_price") is None and untyped_flow.get("number_energy_price") is None ): continue current_entity = to_remove.pop(key, None) if current_entity: current_entity.update_config(untyped_flow) continue current_entities[key] = EnergyCostSensor( adapter, manager.data["currency"], untyped_flow, ) to_add.append(current_entities[key]) await finish() class EnergyCostSensor(SensorEntity): """Calculate costs incurred by consuming energy. This is intended as a fallback for when no specific cost sensor is available for the utility. """ def __init__( self, adapter: FlowAdapter, currency: str, flow: dict, ) -> None: """Initialize the sensor.""" super().__init__() self._adapter = adapter self.entity_id = f"{flow[adapter.entity_energy_key]}_{adapter.entity_id_suffix}" self._attr_device_class = DEVICE_CLASS_MONETARY self._attr_state_class = STATE_CLASS_MEASUREMENT self._attr_unit_of_measurement = currency self._flow = flow self._last_energy_sensor_state: State | None = None def _reset(self, energy_state: State) -> None: """Reset the cost sensor.""" self._attr_state = 0.0 self._attr_last_reset = dt_util.utcnow() self._last_energy_sensor_state = energy_state self.async_write_ha_state() @callback def _update_cost(self) -> None: """Update incurred costs.""" energy_state = self.hass.states.get( cast(str, self._flow[self._adapter.entity_energy_key]) ) if energy_state is None or ATTR_LAST_RESET not in energy_state.attributes: return try: energy = float(energy_state.state) except ValueError: return # Determine energy price if self._flow["entity_energy_price"] is not None: energy_price_state = self.hass.states.get(self._flow["entity_energy_price"]) if energy_price_state is None: return try: energy_price = float(energy_price_state.state) except ValueError: return else: energy_price_state = None energy_price = cast(float, self._flow["number_energy_price"]) if self._last_energy_sensor_state is None: # Initialize as it's the first time all required entities are in place. self._reset(energy_state) return cur_value = cast(float, self._attr_state) if ( energy_state.attributes[ATTR_LAST_RESET] != self._last_energy_sensor_state.attributes[ATTR_LAST_RESET] ): # Energy meter was reset, reset cost sensor too self._reset(energy_state) else: # Update with newly incurred cost old_energy_value = float(self._last_energy_sensor_state.state) self._attr_state = cur_value + (energy - old_energy_value) * energy_price self._last_energy_sensor_state = energy_state async def async_added_to_hass(self) -> None: """Register callbacks.""" energy_state = self.hass.states.get(self._flow[self._adapter.entity_energy_key]) if energy_state: name = energy_state.name else: name = split_entity_id(self._flow[self._adapter.entity_energy_key])[ 0 ].replace("_", " ") self._attr_name = f"{name} {self._adapter.name_suffix}" self._update_cost() # Store stat ID in hass.data so frontend can look it up self.hass.data[DOMAIN]["cost_sensors"][ self._flow[self._adapter.entity_energy_key] ] = self.entity_id @callback def async_state_changed_listener(*_: Any) -> None: """Handle child updates.""" self._update_cost() self.async_write_ha_state() self.async_on_remove( async_track_state_change_event( self.hass, cast(str, self._flow[self._adapter.entity_energy_key]), async_state_changed_listener, ) ) async def async_will_remove_from_hass(self) -> None: """Handle removing from hass.""" self.hass.data[DOMAIN]["cost_sensors"].pop( self._flow[self._adapter.entity_energy_key] ) await super().async_will_remove_from_hass() @callback def update_config(self, flow: dict) -> None: """Update the config.""" self._flow = flow
py
1a4dd60489beb62128771714ee35d76ffbde7445
from .combinators import Mix2 from .exponential import Exponential from .normal import Normal from .poisson import Poisson from .polynomial import Polynomial from .uniform import Uniform, UniformInt
py
1a4dd7740a45db5768576910743107c52daa2d78
class BaseControlError(Exception): """inherited by all exceptions in this module""" class NoReplyError(BaseControlError): """Used when retrying for a result""" class CommandNotAcceptedError(BaseControlError): """Command was not accepted by remote""" class CommandConfirmationTimeoutError(BaseControlError): """Reply from remote host did not arrive in time"""
py
1a4dd8e5ef8d0093df7bcb340964a0c6072c1fa6
#!/usr/bin/env python3 from common import does_file_exist, authentication_help from base64 import standard_b64decode import wave LOCAL_FILE_PATH = "bin.html" def switch_endian(): # TODO: implement this for real # The Python WAV libraries don't support endian order. # Kludge by "merging" the channels. # Switching endian order probably can be done via pack. wf = wave.open("c19.wav", "rb") frames = wf.readframes(wf.getnframes()) result = wave.open("result.wav", "wb") result.setnchannels(wf.getnchannels()) result.setsampwidth(wf.getsampwidth() // 2) result.setframerate(wf.getframerate() * 2) result.writeframes(frames) def main(): if not does_file_exist(LOCAL_FILE_PATH, "Challenge 1"): exit() line_num = 0 data = "" with open(LOCAL_FILE_PATH) as in_file, open(f"c19.wav", "wb") as out_file: for line in in_file: # TODO - don't hardcode extracting out the attachment line_num += 1 if line_num < 28: continue data += line.strip() wav_data = standard_b64decode(data) out_file.write(wav_data) switch_endian() print("As you can see, this does not print the result in a traditional format.") print("In fact, it's not graphical at all. Listen to result.wav. Listen to what you are called.") print("Use the standard format of: http://www.pythonchallenge.com/pc/hex/{answer}.html") authentication_help("hex") if __name__ == "__main__": main()
py
1a4ddac962638ab60c52cbce834ab0ebda7f7eee
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Updates a flagfile containing a resign threshold flag Reads the bigtables defined by the flags --cbt_{project, instance, table} to compute the 95 percentile of the bleakest-evaluations found in calibration games, then updates the flagfile on the default bucket path, resetting that value. Recommended usage is via common flagfile (e.g. rl_loop/distributed_flags) """ import sys import re import os import time from absl import app from absl import flags import numpy as np import tensorflow as tf sys.path.insert(0, '.') import mask_flags import bigtable_input import rl_loop.fsdb as fsdb # Fun fact, this only helps for --helpshort. It's not a validator. flags.adopt_module_key_flags(bigtable_input) flags.adopt_module_key_flags(fsdb) FLAGS = flags.FLAGS RESIGN_FLAG_REGEX = re.compile(r'--resign_threshold=([-\d.]+)') def get_95_percentile_bleak(games_nr, n_back=500): """Gets the 95th percentile of bleakest_eval from bigtable""" end_game = int(games_nr.latest_game_number) start_game = end_game - n_back if end_game >= n_back else 0 moves = games_nr.bleakest_moves(start_game, end_game) evals = np.array([m[2] for m in moves]) return np.percentile(evals, 5) def update_flagfile(flags_path, new_threshold): """Updates the flagfile at `flags_path`, changing the value for `resign_threshold` to `new_threshold` """ if abs(new_threshold) > 1: raise ValueError("Invalid new percentile for resign threshold") with tf.gfile.GFile(flags_path) as f: lines = f.read() if new_threshold > 0: new_threshold *= -1 if not RESIGN_FLAG_REGEX.search(lines): print("Resign threshold flag not found in flagfile {}! Aborting.".format(flags_path)) sys.exit(1) old_threshold = RESIGN_FLAG_REGEX.search(lines).groups(1) lines = re.sub(RESIGN_FLAG_REGEX, "--resign_threshold={:.3f}".format(new_threshold), lines) if abs(float(old_threshold[0]) - new_threshold) < 0.001: print("Not updating percentiles; {} ~= {:.3f}".format( old_threshold[0], new_threshold), flush=True) else: print("Updated percentile from {} to {:.3f}".format( old_threshold[0], new_threshold), flush=True) with tf.gfile.GFile(flags_path, 'w') as f: f.write(lines) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') games_nr = bigtable_input.GameQueue( FLAGS.cbt_project, FLAGS.cbt_instance, FLAGS.cbt_table + '-nr') while True: new_pct = get_95_percentile_bleak(games_nr) update_flagfile(fsdb.flags_path(), new_pct) time.sleep(60 * 3) if __name__ == '__main__': valid_flags = list(map(lambda f: '--' + f, FLAGS.flag_values_dict().keys())) valid_flags += ['--helpshort', '--helpfull', '--help'] parsed_flags = flags.FlagValues().read_flags_from_files(sys.argv[1:]) filtered_flags = mask_flags.filter_flags(parsed_flags, valid_flags) print(filtered_flags, flush=True) app.run(main, argv=sys.argv[:1] + filtered_flags)
py
1a4ddcbc6a001d3195ed5e88dc0c4a7e1738bbc7
#!/usr/local/bin/python # coding: utf-8 # Copyright (C) 2011-2012 FeatureSpaceTree Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # FeatureSpaceTree: # # Author: Adrian Pastor Lopez-Monroy <[email protected]> # URL: <https://github.com/beiceman/FeatureSpaceTree> # # Language Technologies Lab, # Department of Computer Science, # Instituto Nacional de Astrofísica, Óptica y Electrónica # # For license information, see: # * The header of this file # * The LICENSE.TXT included in the project dir # ============================================================================== from postfilter import DecoratorByTokenNormalizer class NeighboringBigramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(NeighboringBigramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOUL CHECK THIS CASE." for i in range(rows): for j in range(cols): v = ["NOT_A_VISUAL_FEATURE" for e in range(8)] actual = base_mat[i][j] if ((i-1) >= 0) and ((j-1) >= 0) : v[0] = base_mat[i-1][j-1] if (j-1) >= 0: v[1] = base_mat[i][j-1] if ((i+1) < rows) and ((j-1) >= 0): v[2] = base_mat[i+1][j-1] if ((i+1) < rows): v[3] = base_mat[i+1][j] if ((i+1) < rows) and ((j+1) < cols): v[4] = base_mat[i+1][j+1] if (j+1) < cols: v[5] = base_mat[i][j+1] if ((i-1) >= 0) and ((j+1) < cols): v[6] = base_mat[i-1][j+1] if (i-1) >= 0: v[7] = base_mat[i-1][j] for v_e in v: if v_e != "NOT_A_VISUAL_FEATURE": new_list_of_tokens += [actual + "~" + v_e] # print new_list_of_tokens return new_list_of_tokens class OrientationNeighboringBigramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(OrientationNeighboringBigramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOUL CHECK THIS CASE." for i in range(rows): for j in range(cols): v = ["NOT_A_VISUAL_FEATURE" for e in range(8)] actual = "c" + base_mat[i][j] if ((i-1) >= 0) and ((j-1) >= 0) : v[0] = "no" + base_mat[i-1][j-1] if (j-1) >= 0: v[1] = "o" + base_mat[i][j-1] if ((i+1) < rows) and ((j-1) >= 0): v[2] = "so" + base_mat[i+1][j-1] if ((i+1) < rows): v[3] = "s" + base_mat[i+1][j] if ((i+1) < rows) and ((j+1) < cols): v[4] = "se" + base_mat[i+1][j+1] if (j+1) < cols: v[5] = "e" + base_mat[i][j+1] if ((i-1) >= 0) and ((j+1) < cols): v[6] = "ne" + base_mat[i-1][j+1] if (i-1) >= 0: v[7] = "n" + base_mat[i-1][j] for v_e in v: if v_e != "NOT_A_VISUAL_FEATURE": new_list_of_tokens += [actual + "~" + v_e] # print new_list_of_tokens return new_list_of_tokens class NeighboringNoOrderBigramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(NeighboringNoOrderBigramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOUL CHECK THIS CASE." for i in range(rows): for j in range(cols): v = ["NOT_A_VISUAL_FEATURE" for e in range(8)] actual = base_mat[i][j] if ((i-1) >= 0) and ((j-1) >= 0) : v[0] = base_mat[i-1][j-1] if (j-1) >= 0: v[1] = base_mat[i][j-1] if ((i+1) < rows) and ((j-1) >= 0): v[2] = base_mat[i+1][j-1] if ((i+1) < rows): v[3] = base_mat[i+1][j] if ((i+1) < rows) and ((j+1) < cols): v[4] = base_mat[i+1][j+1] if (j+1) < cols: v[5] = base_mat[i][j+1] if ((i-1) >= 0) and ((j+1) < cols): v[6] = base_mat[i-1][j+1] if (i-1) >= 0: v[7] = base_mat[i-1][j] for v_e in v: if v_e != "NOT_A_VISUAL_FEATURE": generated_bigram = "" if actual <= v_e: generated_bigram = actual + "~" + v_e else: generated_bigram = v_e + "~" + actual new_list_of_tokens += [generated_bigram] # print new_list_of_tokens return new_list_of_tokens class W2VNeighboringNoOrderBigramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(W2VNeighboringNoOrderBigramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): #print "UUUUUUUUUUUUUUUUUUY" old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOUL CHECK THIS CASE." for i in range(rows): for j in range(cols): v = ["NOT_A_VISUAL_FEATURE" for e in range(8)] actual = base_mat[i][j] if ((i-1) >= 0) and ((j-1) >= 0) : v[0] = base_mat[i-1][j-1] if (j-1) >= 0: v[1] = base_mat[i][j-1] if ((i+1) < rows) and ((j-1) >= 0): v[2] = base_mat[i+1][j-1] if ((i+1) < rows): v[3] = base_mat[i+1][j] if ((i+1) < rows) and ((j+1) < cols): v[4] = base_mat[i+1][j+1] if (j+1) < cols: v[5] = base_mat[i][j+1] if ((i-1) >= 0) and ((j+1) < cols): v[6] = base_mat[i-1][j+1] if (i-1) >= 0: v[7] = base_mat[i-1][j] if "NOT_A_VISUAL_FEATURE" in set(v): continue generated_bigram = [] cw = 0 for v_e in v: generated_bigram += [v_e] if cw == 3: generated_bigram += [actual] cw += 1 new_list_of_tokens += generated_bigram #print new_list_of_tokens #print "HEEEEEEEEEEEEEEEEEEEEEEY" #print new_list_of_tokens return new_list_of_tokens class NeighboringNoOrderTrigramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(NeighboringNoOrderTrigramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOUL CHECK THIS CASE." for i in range(rows): for j in range(cols): v = ["NOT_A_VISUAL_FEATURE" for e in range(8)] v_ext = ["NOT_A_VISUAL_FEATURE" for e in range(8)] actual = base_mat[i][j] if ((i-1) >= 0) and ((j-1) >= 0) and ((i-2) >= 0) and ((j-2) >= 0): v[0] = base_mat[i-1][j-1] v_ext[0] = base_mat[i-2][j-2] if ((j-1) >= 0) and ((j-2) >= 0): v[1] = base_mat[i][j-1] v_ext[1] = base_mat[i][j-2] if (((i+1) < rows) and ((j-1) >= 0)) and (((i+2) < rows) and ((j-2) >= 0)): v[2] = base_mat[i+1][j-1] v_ext[2] = base_mat[i+2][j-2] if ((i+1) < rows) and ((i+2) < rows): v[3] = base_mat[i+1][j] v_ext[3] = base_mat[i+2][j] if (((i+1) < rows) and ((j+1) < cols)) and (((i+2) < rows) and ((j+2) < cols)): v[4] = base_mat[i+1][j+1] v_ext[4] = base_mat[i+2][j+2] if ((j+1) < cols) and ((j+2) < cols): v[5] = base_mat[i][j+1] v_ext[5] = base_mat[i][j+2] if (((i-1) >= 0) and ((j+1) < cols)) and (((i-2) >= 0) and ((j+2) < cols)): v[6] = base_mat[i-1][j+1] v_ext[6] = base_mat[i-2][j+2] if ((i-1) >= 0) and ((i-2) >= 0): v[7] = base_mat[i-1][j] v_ext[7] = base_mat[i-2][j] for v_e, v_e_ext in zip(v, v_ext): if (v_e != "NOT_A_VISUAL_FEATURE") and (v_e_ext != "NOT_A_VISUAL_FEATURE"): my_seq = [actual, v_e, v_e_ext] if my_seq[0] <= my_seq[-1]: my_seq.reverse() generated_trigram = my_seq[0] + "~" + my_seq[1] + "~" + my_seq[2] new_list_of_tokens += [generated_trigram] # print new_list_of_tokens return new_list_of_tokens ##### class NeighboringNoOrderTetragramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(NeighboringNoOrderTetragramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOUL CHECK THIS CASE." for i in range(rows): for j in range(cols): v = ["NOT_A_VISUAL_FEATURE" for e in range(8)] v_ext = ["NOT_A_VISUAL_FEATURE" for e in range(8)] v_ext_2 = ["NOT_A_VISUAL_FEATURE" for e in range(8)] actual = base_mat[i][j] if ((i-1) >= 0) and ((j-1) >= 0) and ((i-2) >= 0) and ((j-2) >= 0) and ((i-3) >= 0) and ((j-3) >= 0): v[0] = base_mat[i-1][j-1] v_ext[0] = base_mat[i-2][j-2] v_ext_2[0] = base_mat[i-3][j-3] if ((j-1) >= 0) and ((j-2) >= 0) and ((j-3) >= 0): v[1] = base_mat[i][j-1] v_ext[1] = base_mat[i][j-2] v_ext_2[1] = base_mat[i][j-3] if (((i+1) < rows) and ((j-1) >= 0)) and (((i+2) < rows) and ((j-2) >= 0)) and (((i+3) < rows) and ((j-3) >= 0)): v[2] = base_mat[i+1][j-1] v_ext[2] = base_mat[i+2][j-2] v_ext_2[2] = base_mat[i+3][j-3] if ((i+1) < rows) and ((i+2) < rows) and ((i+3) < rows): v[3] = base_mat[i+1][j] v_ext[3] = base_mat[i+2][j] v_ext_2[3] = base_mat[i+3][j] if (((i+1) < rows) and ((j+1) < cols)) and (((i+2) < rows) and ((j+2) < cols)) and (((i+3) < rows) and ((j+3) < cols)): v[4] = base_mat[i+1][j+1] v_ext[4] = base_mat[i+2][j+2] v_ext_2[4] = base_mat[i+3][j+3] if ((j+1) < cols) and ((j+2) < cols) and ((j+3) < cols): v[5] = base_mat[i][j+1] v_ext[5] = base_mat[i][j+2] v_ext_2[5] = base_mat[i][j+3] if (((i-1) >= 0) and ((j+1) < cols)) and (((i-2) >= 0) and ((j+2) < cols)) and (((i-3) >= 0) and ((j+3) < cols)): v[6] = base_mat[i-1][j+1] v_ext[6] = base_mat[i-2][j+2] v_ext_2[6] = base_mat[i-3][j+3] if ((i-1) >= 0) and ((i-2) >= 0) and ((i-3) >= 0): v[7] = base_mat[i-1][j] v_ext[7] = base_mat[i-2][j] v_ext_2[7] = base_mat[i-3][j] for v_e, v_e_ext, v_e_ext_2 in zip(v, v_ext, v_ext_2): if (v_e != "NOT_A_VISUAL_FEATURE") and (v_e_ext != "NOT_A_VISUAL_FEATURE") and (v_e_ext_2 != "NOT_A_VISUAL_FEATURE"): my_seq = [actual, v_e, v_e_ext, v_e_ext_2] if my_seq[0] <= my_seq[-1]: my_seq.reverse() generated_tetragram = my_seq[0] + "~" + my_seq[1] + "~" + my_seq[2] + "~" + my_seq[3] new_list_of_tokens += [generated_tetragram] # print new_list_of_tokens return new_list_of_tokens ##### class SkipSizeInfoFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer): super(SkipSizeInfoFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) new_list_of_tokens = old_list_of_tokens[2:] return new_list_of_tokens class MaxPatternsByRowFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): max_patterns = None def __init__(self, by_token_normalizer, path_to_max_patterns, a, b): super(MaxPatternsByRowFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) self.path_to_max_patterns = path_to_max_patterns self.a = a self.b = b def count_max_patterns_in_row(self, max_pattern, row): count = 0 if len(set(max_pattern) & set(row)) == len(set(max_pattern)): index_max_pattern = 0 for elem_row in row: if elem_row == max_pattern[index_max_pattern]: index_max_pattern += 1 # if you have found the last element of the pattern, then restart the index and count it. if index_max_pattern == len(max_pattern): index_max_pattern = 0 count += 1 return count def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() # print old_list_of_tokens # Read the list of max patterns ---------------------------------------- max_patterns = [] if MaxPatternsByRowFilterDecoratorByTokenNormalizer.max_patterns == None: f_of_max_patterns = open(self.path_to_max_patterns, "r") for line in f_of_max_patterns: elements = line.split() if int(elements[1]) >= self.a and int(elements[1]) <= self.b: max_patterns += [elements[2:]] print "MAX_PATTERNS: ", max_patterns MaxPatternsByRowFilterDecoratorByTokenNormalizer.max_patterns = max_patterns f_of_max_patterns.close() else: max_patterns = MaxPatternsByRowFilterDecoratorByTokenNormalizer.max_patterns # ---------------------------------------------------------------------- new_list_of_tokens = [] rows = int(old_list_of_tokens[0]) cols = int(old_list_of_tokens[1]) tokens = old_list_of_tokens[2:] base_mat = [] for i in range(rows): a = i*cols b = i*cols + cols base_mat += [tokens[a:b]] # print base_mat if (len(base_mat) != rows) or (len(base_mat[0]) != cols) or (len(base_mat[-1]) != cols): print "THE MATRIX HAS A STRANGE SIZE!!!, YOU SHOULD CHECK THIS CASE." for i in range(rows): for max_pattern in max_patterns: freq = 0 freq = self.count_max_patterns_in_row(max_pattern, base_mat[i]) tag_pattern = "~".join(max_pattern) new_list_of_tokens += [tag_pattern] * freq # print new_list_of_tokens return new_list_of_tokens class GapBigramsFilterDecoratorByTokenNormalizer(DecoratorByTokenNormalizer): def __init__(self, by_token_normalizer, gap_size): super(GapBigramsFilterDecoratorByTokenNormalizer, self).__init__(by_token_normalizer) self.gap_size = gap_size def get_list_of_tokens(self): old_list_of_tokens = self._by_token_normalizer.get_list_of_tokens() print old_list_of_tokens new_list_of_tokens = [] # NEW CODE HERE: -------------------- self.gap_size print "HERE YYYY" #new_list_of_tokens = old_list_of_tokens #new_list_of_tokens[1] = u"PERRO" new_list_of_tokens = [] for palabra in old_list_of_tokens: new_list_of_tokens += [palabra + "XXX"] # ----------------------------------- print new_list_of_tokens return new_list_of_tokens
py
1a4ddf51e29c268d8df51b306b91b7b5cfa3885a
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-07-24 21:32:13 # @Author : ZiQiangWang # Email : [email protected] import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.environ.get('SECRECT_KEY') or 'hard to guess string' SQLALCHEMY_TRACK_MODIFICATIONS = True ARTICLES_PER_PAGE = 10 @staticmethod def init_app(app): pass class DevelopmentConfig(Config): DEBUG = True SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'data-dev.sqlite') class TestingConfig(Config): TESTING = True class ProductionConfig(Config): pass config = { 'development': DevelopmentConfig, 'testing': TestingConfig, 'production': ProductionConfig, 'default': DevelopmentConfig }
py
1a4de0604022461ca75dfa4e1da5e8fb55027e2c
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import copy import logging import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from reagent import types as rlt from reagent.core.configuration import param_hash from reagent.core.dataclasses import dataclass from reagent.model_utils.seq2slate_utils import ( DECODER_START_SYMBOL, PADDING_SYMBOL, Seq2SlateMode, Seq2SlateOutputArch, attention, clones, mask_logits_by_idx, per_symbol_to_per_seq_log_probs, per_symbol_to_per_seq_probs, subsequent_mask, ) from reagent.models.base import ModelBase from reagent.torch_utils import gather from torch.nn.parallel.distributed import DistributedDataParallel logger = logging.getLogger(__name__) class Generator(nn.Module): """ Define standard linear + softmax generation step. """ def __init__(self, dim_model, candidate_size, temperature): super(Generator, self).__init__() self.dim_model = dim_model self.candidate_size = candidate_size self.temperature = temperature def forward(self, mode, logits=None, tgt_in_idx=None, greedy=None): if mode in ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, ): return self._log_probs(logits, tgt_in_idx, mode) elif mode == Seq2SlateMode.DECODE_ONE_STEP_MODE: assert greedy is not None return self._decode_one_step(logits, tgt_in_idx, greedy) else: raise NotImplementedError() def _log_probs(self, logits, tgt_in_idx, mode): """ Return the log probability distribution at each decoding step :param logits: logits of decoder outputs. Shape: batch_size, seq_len, candidate_size :param tgt_idx: the indices of candidates in decoder input sequences. The first symbol is always DECODER_START_SYMBOL. Shape: batch_size, seq_len """ assert mode in ( Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, ) logits = mask_logits_by_idx(logits, tgt_in_idx) # log_probs shape: batch_size, seq_len, candidate_size log_probs = F.log_softmax(logits / self.temperature, dim=2) return log_probs def _decode_one_step(self, logits, tgt_in_idx, greedy): """ Decode one-step :param logits: logits of decoder outputs. Shape: batch_size, seq_len, candidate_size :param tgt_in_idx: input to the decoder, the first symbol is always the starting symbol. Shape: batch_size, seq_len :param greedy: whether to greedily pick or sample the next symbol """ batch_size = logits.shape[0] # get the last step logits shape: batch_size, candidate_size logits = logits[:, -1, :] # invalidate the padding symbol and decoder-starting symbol logits[:, :2] = float("-inf") # invalidate symbols already appeared in decoded sequences logits = logits.scatter(1, tgt_in_idx, float("-inf")) prob = F.softmax(logits / self.temperature, dim=1) if greedy: _, next_candidate = torch.max(prob, dim=1) else: next_candidate = torch.multinomial(prob, num_samples=1, replacement=False) next_candidate = next_candidate.reshape(batch_size, 1) # next_candidate: the decoded symbols for the latest step # shape: batch_size x 1 # prob: generative probabilities of the latest step # shape: batch_size x candidate_size return next_candidate, prob class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. """ def __init__(self, dim_model): super(SublayerConnection, self).__init__() self.norm = nn.LayerNorm(dim_model) def forward(self, x, sublayer): return x + sublayer(self.norm(x)) class Encoder(nn.Module): "Core encoder is a stack of num_layers layers" def __init__(self, layer, num_layers): super(Encoder, self).__init__() self.layers = clones(layer, num_layers) self.norm = nn.LayerNorm(layer.dim_model) def forward(self, x, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, mask) return self.norm(x) class EncoderLayer(nn.Module): """ Encoder is made up of self-attn and feed forward """ def __init__(self, dim_model, self_attn, feed_forward): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(dim_model), 2) self.dim_model = dim_model def forward(self, src_embed, src_mask): # src_embed shape: batch_size, seq_len, dim_model # src_src_mask shape: batch_size, seq_len, seq_len def self_attn_layer(x): return self.self_attn(x, x, x, src_mask) # attn_output shape: batch_size, seq_len, dim_model attn_output = self.sublayer[0](src_embed, self_attn_layer) # return shape: batch_size, seq_len, dim_model return self.sublayer[1](attn_output, self.feed_forward) class Decoder(nn.Module): """ Generic num_layers layer decoder with masking.""" def __init__(self, layer, num_layers): super(Decoder, self).__init__() self.layers = clones(layer, num_layers) self.norm = nn.LayerNorm(layer.size) def forward(self, x, memory, tgt_src_mask, tgt_tgt_mask): # each layer is one DecoderLayer for layer in self.layers: x = layer(x, memory, tgt_src_mask, tgt_tgt_mask) return self.norm(x) class DecoderLayer(nn.Module): """ Decoder is made of self-attn, src-attn, and feed forward """ def __init__(self, size, self_attn, src_attn, feed_forward): super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.sublayer = clones(SublayerConnection(size), 3) def forward(self, x, m, tgt_src_mask, tgt_tgt_mask): # x is target embedding or the output of previous decoder layer # x shape: batch_size, seq_len, dim_model # m is the output of the last encoder layer # m shape: batch_size, seq_len, dim_model # tgt_src_mask shape: batch_size, tgt_seq_len, src_seq_len # tgt_tgt_mask shape: batch_size, tgt_seq_len, tgt_seq_len def self_attn_layer_tgt(x): return self.self_attn(query=x, key=x, value=x, mask=tgt_tgt_mask) def self_attn_layer_src(x): return self.src_attn(query=x, key=m, value=m, mask=tgt_src_mask) x = self.sublayer[0](x, self_attn_layer_tgt) x = self.sublayer[1](x, self_attn_layer_src) # return shape: batch_size, seq_len, dim_model return self.sublayer[2](x, self.feed_forward) class MultiHeadedAttention(nn.Module): def __init__(self, num_heads, dim_model): """ Take in model size and number of heads """ super(MultiHeadedAttention, self).__init__() assert dim_model % num_heads == 0 # We assume d_v always equals d_k self.d_k = dim_model // num_heads self.num_heads = num_heads self.linears = clones(nn.Linear(dim_model, dim_model), 4) def forward(self, query, key, value, mask=None): if mask is not None: # Same mask applied to all num_heads heads. # mask shape: batch_size, 1, seq_len, seq_len mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from dim_model => num_heads x d_k # self.linear[0, 1, 2] is query weight matrix, key weight matrix, and # value weight matrix, respectively. # l(x) represents the transformed query matrix, key matrix and value matrix # l(x) has shape (batch_size, seq_len, dim_model). You can think l(x) as # the matrices from a one-head attention; or you can think # l(x).view(...).transpose(...) as the matrices of num_heads attentions, # each attention has d_k dimension. query, key, value = [ l(x).view(nbatches, -1, self.num_heads, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value)) ] # 2) Apply attention on all the projected vectors in batch. # x shape: batch_size, num_heads, seq_len, d_k x, _ = attention(query, key, value, mask, self.d_k) # 3) "Concat" using a view and apply a final linear. # each attention's output is d_k dimension. Concat num_heads attention's outputs # x shape: batch_size, seq_len, dim_model x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.num_heads * self.d_k) return self.linears[-1](x) class PositionwiseFeedForward(nn.Module): def __init__(self, dim_model, dim_feedforward): super(PositionwiseFeedForward, self).__init__() self.net = torch.nn.Sequential( torch.nn.Linear(dim_model, dim_feedforward), torch.nn.ReLU(), torch.nn.Linear(dim_feedforward, dim_model), ) def forward(self, x): return self.net(x) class Embedder(nn.Module): def __init__(self, dim_in, dim_out): super(Embedder, self).__init__() self.dim_in = dim_in self.dim_out = dim_out self.linear = nn.Linear(self.dim_in, self.dim_out) def forward(self, x): # x: raw input features. Shape: batch_size, seq_len, dim_in output = self.linear(x) * math.sqrt(self.dim_out) # output shape: batch_size, seq_len, dim_out return output class PositionalEncoding(nn.Module): def __init__(self, dim_model, max_len): super(PositionalEncoding, self).__init__() self.pos_embed = nn.Embedding(max_len, dim_model) def forward(self, x): device = x.device batch_size, seq_len, _ = x.shape position_idx = ( torch.arange(0, seq_len).unsqueeze(0).repeat(batch_size, 1).to(device) ) x = x + self.pos_embed(position_idx) return x class BaselineNet(nn.Module): def __init__(self, state_dim, dim_feedforward, num_stacked_layers): super(BaselineNet, self).__init__() nn_blocks = [nn.Linear(state_dim, dim_feedforward), nn.ReLU()] assert num_stacked_layers >= 1 for _ in range(num_stacked_layers - 1): nn_blocks.extend([nn.Linear(dim_feedforward, dim_feedforward), nn.ReLU()]) nn_blocks.append(nn.Linear(dim_feedforward, 1)) self.mlp = nn.Sequential(*nn_blocks) def forward(self, input: rlt.PreprocessedRankingInput): x = input.state.float_features return self.mlp(x) class Seq2SlateTransformerModel(nn.Module): """ A Seq2Slate network with Transformer. The network is essentially an encoder-decoder structure. The encoder inputs a sequence of candidate feature vectors and a state feature vector, and the decoder outputs an ordered list of candidate indices. The output order is learned through REINFORCE algorithm to optimize sequence-wise reward. One application example is to rank candidate feeds to a specific user such that the final list of feeds as a whole optimizes the user's engagement. Seq2Slate paper: https://arxiv.org/abs/1810.02019 Transformer paper: https://arxiv.org/abs/1706.03762 The model archtecture can also adapt to some variations. (1) The decoder can be autoregressive (2) The decoder can take encoder scores and perform iterative softmax (aka frechet sort) (3) No decoder and the output order is solely based on encoder scores """ def __init__( self, state_dim: int, candidate_dim: int, num_stacked_layers: int, num_heads: int, dim_model: int, dim_feedforward: int, max_src_seq_len: int, max_tgt_seq_len: int, output_arch: Seq2SlateOutputArch, temperature: float = 1.0, ): """ :param state_dim: state feature dimension :param candidate_dim: candidate feature dimension :param num_stacked_layers: number of stacked layers in Transformer :param num_heads: number of attention heads used in Transformer :param dim_model: number of attention dimensions in Transformer :param dim_feedforward: number of hidden units in FeedForward layers in Transformer :param max_src_seq_len: the maximum length of input sequences :param max_tgt_seq_len: the maximum length of output sequences :param output_arch: determines seq2slate output architecture :param temperature: temperature used in decoder sampling """ super().__init__() self.state_dim = state_dim self.candidate_dim = candidate_dim self.num_stacked_layers = num_stacked_layers self.num_heads = num_heads self.dim_model = dim_model self.dim_feedforward = dim_feedforward self.max_src_seq_len = max_src_seq_len self.max_tgt_seq_len = max_tgt_seq_len self.output_arch = output_arch self._DECODER_START_SYMBOL = DECODER_START_SYMBOL self._PADDING_SYMBOL = PADDING_SYMBOL self._RANK_MODE = Seq2SlateMode.RANK_MODE self._PER_SYMBOL_LOG_PROB_DIST_MODE = ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE ) self._PER_SEQ_LOG_PROB_MODE = Seq2SlateMode.PER_SEQ_LOG_PROB_MODE self._DECODE_ONE_STEP_MODE = Seq2SlateMode.DECODE_ONE_STEP_MODE self._ENCODER_SCORE_MODE = Seq2SlateMode.ENCODER_SCORE_MODE c = copy.deepcopy attn = MultiHeadedAttention(num_heads, dim_model) ff = PositionwiseFeedForward(dim_model, dim_feedforward) self.encoder = Encoder( EncoderLayer(dim_model, c(attn), c(ff)), num_stacked_layers ) if self.output_arch == Seq2SlateOutputArch.FRECHET_SORT: # Compute score at each encoder step self.encoder_scorer = nn.Linear(dim_model, 1) # Generator needs to know the output symbol size, # Possible output symbols include candidate indices, decoder-start symbol # and padding symbol self.generator = Generator(dim_model, max_src_seq_len + 2, temperature) elif self.output_arch == Seq2SlateOutputArch.AUTOREGRESSIVE: self.decoder = Decoder( DecoderLayer(dim_model, c(attn), c(attn), c(ff)), num_stacked_layers ) self.decoder_logit_proj = nn.Linear(dim_model, max_src_seq_len + 2) self.generator = Generator(dim_model, max_src_seq_len + 2, temperature) elif self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE: # Compute score at each encoder step self.encoder_scorer = nn.Linear(dim_model, 1) self.candidate_embedder = Embedder(candidate_dim, dim_model // 2) self.state_embedder = Embedder(state_dim, dim_model // 2) self.positional_encoding_encoder = PositionalEncoding( dim_model, max_len=max_src_seq_len ) self.positional_encoding_decoder = PositionalEncoding( dim_model, max_len=max_tgt_seq_len ) # Initialize parameters with Glorot / fan_avg. for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) self._print_model_info() __constants__ = [ "state_dim", "candidate_dim", "num_stacked_layers", "num_heads", "dim_model", "dim_feedforward", "max_src_seq_len", "max_tgt_seq_len", "output_path", "_DECODER_START_SYMBOL", "_PADDING_SYMBOL", "_RANK_MODE", "_PER_SYMBOL_LOG_PROB_DIST_MODE", "_PER_SEQ_LOG_PROB_MODE", "_DECODE_ONE_STEP_MODE", "_ENCODER_SCORE_MODE", ] def _print_model_info(self): def _num_of_params(model): return len(torch.cat([p.flatten() for p in model.parameters()])) logger.info(f"Num of total params: {_num_of_params(self)}") logger.info(f"Num of Encoder params: {_num_of_params(self.encoder)}") logger.info( f"Num of Candidate Embedder params: {_num_of_params(self.candidate_embedder)}" ) logger.info( f"Num of State Embedder params: {_num_of_params(self.state_embedder)}" ) if self.output_arch == Seq2SlateOutputArch.FRECHET_SORT: logger.info( f"Num of Encoder_Scorer params: {_num_of_params(self.encoder_scorer)}" ) elif self.output_arch == Seq2SlateOutputArch.AUTOREGRESSIVE: logger.info(f"Num of Decoder params: {_num_of_params(self.decoder)}") logger.info( f"Num of Decoder Projection params: {_num_of_params(self.decoder_logit_proj)}" ) elif self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE: logger.info( f"Num of Encoder_Scorer params: {_num_of_params(self.encoder_scorer)}" ) def forward( self, input: rlt.PreprocessedRankingInput, mode: str, tgt_seq_len: Optional[int] = None, greedy: Optional[bool] = None, ): """ :param input: model input :param mode: a string indicating which mode to perform. "rank": return ranked actions and their generative probabilities. "per_seq_log_probs": return generative log probabilities of given tgt sequences (used for REINFORCE training) "per_symbol_log_probs": return generative log probabilties of each symbol in given tgt sequences (used in TEACHER FORCING and DIFFERENTIABLE_REWARD training) :param tgt_seq_len: the length of output sequence to be decoded. Only used in rank mode :param greedy: whether to sample based on softmax distribution or greedily when decoding. Only used in rank mode """ if mode == self._RANK_MODE: if tgt_seq_len is None: tgt_seq_len = self.max_tgt_seq_len return self._rank( state=input.state.float_features, src_seq=input.src_seq.float_features, src_src_mask=input.src_src_mask, tgt_seq_len=tgt_seq_len, greedy=greedy, ) elif mode in (self._PER_SEQ_LOG_PROB_MODE, self._PER_SYMBOL_LOG_PROB_DIST_MODE): assert input.tgt_in_seq is not None return self._log_probs( state=input.state.float_features, src_seq=input.src_seq.float_features, # pyre-fixme[16]: `Optional` has no attribute `float_features`. tgt_in_seq=input.tgt_in_seq.float_features, src_src_mask=input.src_src_mask, tgt_tgt_mask=input.tgt_tgt_mask, tgt_in_idx=input.tgt_in_idx, tgt_out_idx=input.tgt_out_idx, mode=mode, ) elif mode == self._ENCODER_SCORE_MODE: assert self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE return self.encoder_output_to_scores( state=input.state.float_features, src_seq=input.src_seq.float_features, src_src_mask=input.src_src_mask, tgt_out_idx=input.tgt_out_idx, ) def _rank(self, state, src_seq, src_src_mask, tgt_seq_len, greedy): """ Decode sequences based on given inputs """ device = src_seq.device batch_size, src_seq_len, candidate_dim = src_seq.shape candidate_size = src_seq_len + 2 # candidate_features is used as look-up table for candidate features. # the second dim is src_seq_len + 2 because we also want to include # features of start symbol and padding symbol candidate_features = torch.zeros( batch_size, src_seq_len + 2, candidate_dim, device=device ) # TODO: T62502977 create learnable feature vectors for start symbol # and padding symbol candidate_features[:, 2:, :] = src_seq # memory shape: batch_size, src_seq_len, dim_model memory = self.encode(state, src_seq, src_src_mask) ranked_per_symbol_probs = torch.zeros( batch_size, tgt_seq_len, candidate_size, device=device ) ranked_per_seq_probs = torch.zeros(batch_size, 1) if self.output_arch == Seq2SlateOutputArch.ENCODER_SCORE: # encoder_scores shape: batch_size, src_seq_len encoder_scores = self.encoder_scorer(memory).squeeze(dim=2) tgt_out_idx = torch.argsort(encoder_scores, dim=1, descending=True)[ :, :tgt_seq_len ] # +2 to account for start symbol and padding symbol tgt_out_idx += 2 # every position has propensity of 1 because we are just using argsort ranked_per_symbol_probs = ranked_per_symbol_probs.scatter( 2, tgt_out_idx.unsqueeze(2), 1.0 ) ranked_per_seq_probs[:, :] = 1.0 return ranked_per_symbol_probs, ranked_per_seq_probs, tgt_out_idx tgt_in_idx = ( torch.ones(batch_size, 1, device=device) .fill_(self._DECODER_START_SYMBOL) .type(torch.long) ) assert greedy is not None for l in range(tgt_seq_len): tgt_in_seq = gather(candidate_features, tgt_in_idx) tgt_src_mask = src_src_mask[:, : l + 1, :] # shape batch_size, l + 1, candidate_size logits = self.decode( memory=memory, state=state, tgt_src_mask=tgt_src_mask, tgt_in_seq=tgt_in_seq, tgt_tgt_mask=subsequent_mask(l + 1, device), tgt_seq_len=l + 1, ) # next candidate shape: batch_size, 1 # prob shape: batch_size, candidate_size next_candidate, prob = self.generator( mode=self._DECODE_ONE_STEP_MODE, logits=logits, tgt_in_idx=tgt_in_idx, greedy=greedy, ) ranked_per_symbol_probs[:, l, :] = prob tgt_in_idx = torch.cat([tgt_in_idx, next_candidate], dim=1) # remove the decoder start symbol # tgt_out_idx shape: batch_size, tgt_seq_len tgt_out_idx = tgt_in_idx[:, 1:] ranked_per_seq_probs = per_symbol_to_per_seq_probs( ranked_per_symbol_probs, tgt_out_idx ) # ranked_per_symbol_probs shape: batch_size, tgt_seq_len, candidate_size # ranked_per_seq_probs shape: batch_size, 1 # tgt_out_idx shape: batch_size, tgt_seq_len return ranked_per_symbol_probs, ranked_per_seq_probs, tgt_out_idx def _log_probs( self, state, src_seq, tgt_in_seq, src_src_mask, tgt_tgt_mask, tgt_in_idx, tgt_out_idx, mode, ): """ Compute log of generative probabilities of given tgt sequences (used for REINFORCE training) """ # encoder_output shape: batch_size, src_seq_len, dim_model encoder_output = self.encode(state, src_seq, src_src_mask) tgt_seq_len = tgt_in_seq.shape[1] src_seq_len = src_seq.shape[1] assert tgt_seq_len <= src_seq_len # tgt_src_mask shape: batch_size, tgt_seq_len, src_seq_len tgt_src_mask = src_src_mask[:, :tgt_seq_len, :] # decoder_logits shape: batch_size, tgt_seq_len, candidate_size decoder_logits = self.decode( memory=encoder_output, state=state, tgt_src_mask=tgt_src_mask, tgt_in_seq=tgt_in_seq, tgt_tgt_mask=tgt_tgt_mask, tgt_seq_len=tgt_seq_len, ) # log_probs shape: # if mode == PER_SEQ_LOG_PROB_MODE: batch_size, 1 # if mode == PER_SYMBOL_LOG_PROB_DIST_MODE: batch_size, tgt_seq_len, candidate_size log_probs = self._decoder_logits_to_log_probs( decoder_logits, tgt_in_idx, tgt_out_idx, mode ) return log_probs def _decoder_logits_to_log_probs(self, logits, tgt_in_idx, tgt_out_idx, mode): """ :param logits: the logits from the decoder, with shape: (batch_size, seq_len, candidate_size) :param tgt_in_idx: input idx to the decoder, the first symbol is always the DECODER_START_SYMBOL. Shape: batch_size x seq_len :param tgt_out_idx: output idx of the decoder. Shape: batch_size x seq_len :param mode: return log prob distribution per symbol or reduce them per sequence """ assert mode in ( self._PER_SEQ_LOG_PROB_MODE, self._PER_SYMBOL_LOG_PROB_DIST_MODE, ) # per_symbol_log_probs: log probability distribution of each symbol # shape: batch_size, seq_len, candidate_size per_symbol_log_probs = self.generator( mode=mode, logits=logits, tgt_in_idx=tgt_in_idx ) if mode == self._PER_SYMBOL_LOG_PROB_DIST_MODE: return per_symbol_log_probs # shape: batch_size, 1 return per_symbol_to_per_seq_log_probs(per_symbol_log_probs, tgt_out_idx) def encoder_output_to_scores(self, state, src_seq, src_src_mask, tgt_out_idx): # encoder_output shape: batch_size, src_seq_len, dim_model encoder_output = self.encode(state, src_seq, src_src_mask) # encoder_output shape: batch_size, src_seq_len, dim_model # tgt_out_idx shape: batch_size, tgt_seq_len batch_size, tgt_seq_len = tgt_out_idx.shape # order encoder_output by tgt_out_idx # slate_encoder_output shape: batch_size, tgt_seq_len, dim_model slate_encoder_output = gather(encoder_output, tgt_out_idx - 2) # encoder_scores shape: batch_size, tgt_seq_len return self.encoder_scorer(slate_encoder_output).squeeze() def encode(self, state, src_seq, src_mask): # state: batch_size, state_dim # src_seq: batch_size, src_seq_len, dim_candidate # src_src_mask shape: batch_size, src_seq_len, src_seq_len batch_size = src_seq.shape[0] # candidate_embed: batch_size, src_seq_len, dim_model/2 candidate_embed = self.candidate_embedder(src_seq) # state_embed: batch_size, dim_model/2 state_embed = self.state_embedder(state) # transform state_embed into shape: batch_size, src_seq_len, dim_model/2 state_embed = state_embed.repeat(1, self.max_src_seq_len).reshape( batch_size, self.max_src_seq_len, -1 ) # Input at each encoder step is actually concatenation of state_embed # and candidate embed. state_embed is replicated at each encoding step. # src_embed shape: batch_size, src_seq_len, dim_model src_embed = self.positional_encoding_encoder( torch.cat((state_embed, candidate_embed), dim=2) ) # encoder_output shape: batch_size, src_seq_len, dim_model return self.encoder(src_embed, src_mask) def decode( self, memory, state, tgt_src_mask, tgt_in_seq, tgt_tgt_mask, tgt_seq_len ): # memory is the output of the encoder, the attention of each input symbol # memory shape: batch_size, src_seq_len, dim_model # tgt_src_mask shape: batch_size, tgt_seq_len, src_seq_len # tgt_seq shape: batch_size, tgt_seq_len, dim_candidate # tgt_tgt_mask shape: batch_size, tgt_seq_len, tgt_seq_len batch_size, src_seq_len, _ = memory.shape candidate_size = src_seq_len + 2 if self.output_arch == Seq2SlateOutputArch.FRECHET_SORT: # encoder_scores shape: batch_size, src_seq_len encoder_scores = self.encoder_scorer(memory).squeeze(dim=2) logits = torch.zeros(batch_size, tgt_seq_len, candidate_size).to( encoder_scores.device ) logits[:, :, :2] = float("-inf") logits[:, :, 2:] = encoder_scores.repeat(1, tgt_seq_len).reshape( batch_size, tgt_seq_len, src_seq_len ) elif self.output_arch == Seq2SlateOutputArch.AUTOREGRESSIVE: # candidate_embed shape: batch_size, tgt_seq_len, dim_model/2 candidate_embed = self.candidate_embedder(tgt_in_seq) # state_embed: batch_size, dim_model/2 state_embed = self.state_embedder(state) # state_embed: batch_size, tgt_seq_len, dim_model/2 state_embed = state_embed.repeat(1, tgt_seq_len).reshape( batch_size, tgt_seq_len, -1 ) # tgt_embed: batch_size, tgt_seq_len, dim_model tgt_embed = self.positional_encoding_decoder( torch.cat((state_embed, candidate_embed), dim=2) ) # output of decoder will be later transformed into probabilities over symbols. # shape: batch_size, tgt_seq_len, dim_model decoder_output = self.decoder(tgt_embed, memory, tgt_src_mask, tgt_tgt_mask) # logits shape: batch_size, seq_len, candidate_size logits = self.decoder_logit_proj(decoder_output) return logits @dataclass class Seq2SlateNet(ModelBase): __hash__ = param_hash state_dim: int candidate_dim: int num_stacked_layers: int dim_model: int max_src_seq_len: int max_tgt_seq_len: int output_arch: Seq2SlateOutputArch temperature: float def __post_init_post_parse__(self) -> None: super(Seq2SlateNet, self).__init__() # pyre-fixme[16]: `Seq2SlateNet` has no attribute `seq2slate`. self.seq2slate = self._build_model() def _build_model(self): return None def input_prototype(self): return rlt.PreprocessedRankingInput.from_tensors( state=torch.randn(1, self.state_dim), src_seq=torch.randn(1, self.max_src_seq_len, self.candidate_dim), tgt_in_seq=torch.randn(1, self.max_tgt_seq_len, self.candidate_dim), tgt_out_seq=torch.randn(1, self.max_tgt_seq_len, self.candidate_dim), src_src_mask=torch.ones(1, self.max_src_seq_len, self.max_src_seq_len), tgt_tgt_mask=torch.ones(1, self.max_tgt_seq_len, self.max_tgt_seq_len), slate_reward=torch.randn(1), ) def forward( self, input: rlt.PreprocessedRankingInput, mode: str, tgt_seq_len: Optional[int] = None, greedy: Optional[bool] = None, ): # pyre-fixme[16]: `Seq2SlateNet` has no attribute `seq2slate`. res = self.seq2slate(input, mode=mode, tgt_seq_len=tgt_seq_len, greedy=greedy) if mode == Seq2SlateMode.RANK_MODE: return rlt.RankingOutput( ranked_per_symbol_probs=res[0], ranked_per_seq_probs=res[1], ranked_tgt_out_idx=res[2], ) elif mode in ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, ): return rlt.RankingOutput(log_probs=res) elif mode == Seq2SlateMode.ENCODER_SCORE_MODE: return rlt.RankingOutput(encoder_scores=res) else: raise NotImplementedError() def get_distributed_data_parallel_model(self): return _DistributedSeq2SlateNet(self) @dataclass class Seq2SlateTransformerNet(Seq2SlateNet): __hash__ = param_hash num_heads: int dim_feedforward: int def _build_model(self): return Seq2SlateTransformerModel( state_dim=self.state_dim, candidate_dim=self.candidate_dim, num_stacked_layers=self.num_stacked_layers, num_heads=self.num_heads, dim_model=self.dim_model, dim_feedforward=self.dim_feedforward, max_src_seq_len=self.max_src_seq_len, max_tgt_seq_len=self.max_tgt_seq_len, output_arch=self.output_arch, temperature=self.temperature, ) class _DistributedSeq2SlateNet(ModelBase): def __init__(self, seq2slate_net: Seq2SlateNet): super().__init__() current_device = torch.cuda.current_device() self.data_parallel = DistributedDataParallel( # pyre-fixme[16]: `Seq2SlateNet` has no attribute `seq2slate`. seq2slate_net.seq2slate, device_ids=[current_device], output_device=current_device, ) self.seq2slate_net = seq2slate_net def input_prototype(self): return self.seq2slate_net.input_prototype() def cpu_model(self): return self.seq2slate_net.cpu_model() def forward( self, input: rlt.PreprocessedRankingInput, mode: str, tgt_seq_len: Optional[int] = None, greedy: Optional[bool] = None, ): res = self.data_parallel( input, mode=mode, tgt_seq_len=tgt_seq_len, greedy=greedy ) if mode == Seq2SlateMode.RANK_MODE: return rlt.RankingOutput( ranked_per_symbol_probs=res[0], ranked_per_seq_probs=res[1], ranked_tgt_out_idx=res[2], ) elif mode in ( Seq2SlateMode.PER_SYMBOL_LOG_PROB_DIST_MODE, Seq2SlateMode.PER_SEQ_LOG_PROB_MODE, ): return rlt.RankingOutput(log_probs=res) elif mode == Seq2SlateMode.ENCODER_SCORE_MODE: return rlt.RankingOutput(encoder_scores=res) else: raise NotImplementedError()
py
1a4de080d158b5b57e60a93f77aa74c06a253837
# -*- coding: utf-8 -*- """Vertical structure functions for ROMS :func:`sdepth` Depth of s-levels :func:`zslice` Slice a 3D field in s-coordinates to fixed depth :func:`multi_zslice` Slice a 3D field to several depth levels :func:`z_average` Vertical average of a 3D field :func:`s_stretch` Compute vertical stretching arrays Cs_r or Cs_w """ # ----------------------------------- # Bjørn Ådlandsvik <[email protected]> # Institute of Marine Research # Bergen, Norway # 2010-09-30 # ----------------------------------- from __future__ import absolute_import, division import numpy as np def sdepth(H, Hc, C, stagger="rho", Vtransform=1): """Depth of s-levels *H* : arraylike Bottom depths [meter, positive] *Hc* : scalar Critical depth *cs_r* : 1D array s-level stretching curve *stagger* : [ 'rho' | 'w' ] *Vtransform* : [ 1 | 2 ] defines the transform used, defaults 1 = Song-Haidvogel Returns an array with ndim = H.ndim + 1 and shape = cs_r.shape + H.shape with the depths of the mid-points in the s-levels. Typical usage:: >>> fid = Dataset(roms_file) >>> H = fid.variables['h'][:, :] >>> C = fid.variables['Cs_r'][:] >>> Hc = fid.variables['hc'].getValue() >>> z_rho = sdepth(H, Hc, C) """ H = np.asarray(H) Hshape = H.shape # Save the shape of H H = H.ravel() # and make H 1D for easy shape maniplation C = np.asarray(C) N = len(C) outshape = (N,) + Hshape # Shape of output if stagger == "rho": S = -1.0 + (0.5 + np.arange(N)) / N # Unstretched coordinates elif stagger == "w": S = np.linspace(-1.0, 0.0, N) else: raise ValueError("stagger must be 'rho' or 'w'") if Vtransform == 1: # Default transform by Song and Haidvogel A = Hc * (S - C)[:, None] B = np.outer(C, H) return (A + B).reshape(outshape) elif Vtransform == 2: # New transform by Shchepetkin N = Hc * S[:, None] + np.outer(C, H) D = 1.0 + Hc / H return (N / D).reshape(outshape) else: raise ValueError("Unknown Vtransform") # ------------------------------------ def sdepth_w(H, Hc, cs_w): """Return depth of w-points in s-levels Kept for backwards compatibility use *sdepth(H, Hc, cs_w, stagger='w')* instead """ return sdepth(H, Hc, cs_w, stagger="w") # ------------------------------------------ # Vertical slicing e.t.c. # ------------------------------------------ def zslice(F, S, z): """Vertical slice of a 3D ROMS field Vertical interpolation of a field in s-coordinates to (possibly varying) depth level *F* : array with vertical profiles, first dimension is vertical *S* : array with depths of the F-values, *z* : Depth level(s) for output, scalar or ``shape = F.shape[1:]`` The z values should be negative Return value : array, `shape = F.shape[1:]`, the vertical slice Example: H is an array of depths (positive values) Hc is the critical depth C is 1D containing the s-coordinate stretching at rho-points returns F50, interpolated values at 50 meter with F50.shape = H.shape >>> z_rho = sdepth(H, Hc, C) >>> F50 = zslice(F, z_rho, -50.0) """ # TODO: # Option to Save A, D, Dm # => faster interpolate more fields to same depth F = np.asarray(F) S = np.asarray(S) z = np.asarray(z, dtype="float") Fshape = F.shape # Save original shape if S.shape != Fshape: raise ValueError("F and z_r must have same shape") if z.shape and z.shape != Fshape[1:]: raise ValueError("z must be scalar or have shape = F.shape[1:]") # Flatten all non-vertical dimensions N = F.shape[0] # Length of vertical dimension M = F.size // N # Combined length of horizontal dimension(s) F = F.reshape((N, M)) S = S.reshape((N, M)) if z.shape: z = z.reshape((M,)) # Find integer array C with shape (M,) # with S[C[i]-1, i] < z <= S[C[i], i] # C = np.apply_along_axis(np.searchsorted, 0, S, z) # but the following is much faster C = np.sum(S < z, axis=0) C = C.clip(1, N - 1) # For vectorisation # construct index array tuples D and Dm such that # F[D][i] = F[C[i], i] # F[Dm][i] = F[C[i]-1, i] I = np.arange(M, dtype="int") D = (C, I) Dm = (C - 1, I) # Compute interpolation weights A = (z - S[Dm]) / (S[D] - S[Dm]) A = A.clip(0.0, 1.0) # Control the extrapolation # Do the linear interpolation R = (1 - A) * F[Dm] + A * F[D] # Give the result the correct s R = R.reshape(Fshape[1:]) return R # ----------------------------------------------- def multi_zslice(F, S, Z): """Slice a 3D ROMS field to fixed depth Vertical interpolation of a field in s-coordinates to fixed vertical level *F* : array of with vertical profiles, first dimension is vertical *S* : array with depth of s-levels (at rho-points) 1D (constant depth) or S.shape = F.shape *Z* : single depth value, negative Returns : array, ``shape = F.shape[1:]`` the vertical slice """ # TODO: # Option to Save A, D, Dm # => faster interpolate more fields to same depth F = np.asarray(F) S = np.asarray(S) Fshape = F.shape # Save original shape # Flat all dimensions after first N = F.shape[0] M = F.size // N F = F.reshape((N, M)) S = S.reshape((N, M)) # Make z.shape = (M,) Z = np.asarray(Z, dtype="float") # Valid possibilities # 1) Z = single scalar (shape = ()), one constant value # 2) Z = 1D array, shape=(kmax), a set of constant depths # 3) Z = 2D or more, reshapeable to (kmax, M) if Z.ndim == 0: Z = Z + np.zeros((1, M)) kmax = 1 elif Z.ndim == 1: kmax = Z.size Z = Z[:, np.newaxis] + np.zeros((kmax, M)) else: kmax = Z.size // M Z = Z.reshape((kmax, M)) # Find C, C.shape = (kmax, M) such that # z_r[C[k,i]-1, i] < Z[k] <= z_r[C[k,i], i] # shape: kmax, N, M => kmax, M C = np.sum(S[np.newaxis, :, :] < Z[:, np.newaxis, :], axis=1) C = C.clip(1, N - 1) # Horizontal index I = np.arange(M, dtype=int) # Compute interpolation weights A = (Z - S[(C - 1, I)]) / (S[(C, I)] - S[(C - 1, I)]) A = A.clip(0.0, 1.0) # Control the extrapolation # Do the interpolation R = (1 - A) * F[(C - 1, I)] + A * F[(C, I)] # Give the result the correct shape R = R.reshape((kmax,) + Fshape[1:]) return R # ------------------------------------------------------ def z_average(F, z_r, z0, z1): """Slice a 3D ROMS field to fixed depth Vertical interpolation of a field in s-coordinates to fixed vertical level *F* : array Vertical profiles, first dimension is vertical *z_r* : array Depth of s-levels (at rho-points), requires `z_r.shape = F.shape` *z0*, *z1* : floats Single depth values with z0 <= z1 <= 0 return value : array `shape = F.shape[1:]`, the vertical average """ F = np.asarray(F) z_r = np.asarray(z_r) Fshape = F.shape # Save original shape # Flatten all dimensions after first N = F.shape[0] M = F.size // N F = F.reshape((N, M)) z_r = z_r.reshape((N, M)) # z0, z1 are scalars or horizontal arrays z0 = np.asarray(z0) if z0.shape: # Array, must be 2D z0 = z0.reshape((M,)) z1 = np.asarray(z1) if z1.shape: z1 = z1.reshape((M,)) # Bracket z0, i.e. # Find integer array C0 with shape (M,) # with z_r[C0[i]-1, i] < z0 <= z_r[C0[i], i] # Can be done with: # C0 = np.apply_along_axis(np.searchsorted, 0, z_r, z0) # but the following is much faster C0 = np.sum(z_r < z0, axis=0) C0 = C0.clip(1, N - 1) # Clip to avoid illegal indices # Bracket z1 C1 = np.sum(z_r < z1, axis=0) C1 = C1.clip(1, N - 1) # Use advanced indexing for vectorisation # F[(C0,I)][i] = F[C0[i], i] I = np.arange(M, dtype="int") # Interpolate F to the two levels A0 = (z0 - z_r[(C0 - 1, I)]) / (z_r[(C0, I)] - z_r[(C0 - 1, I)]) A0 = A0.clip(0.0, 1.0) # Control the extrapolation F0 = (1 - A0) * F[(C0 - 1, I)] + A0 * F[(C0, I)] A1 = (z1 - z_r[(C1 - 1, I)]) / (z_r[(C1, I)] - z_r[(C1 - 1, I)]) A1 = A1.clip(0.0, 1.0) F1 = (1 - A1) * F[(C1 - 1, I)] + A1 * F[(C1, I)] # Find indices again (unclipped) C0 = np.sum(z_r < z0, axis=0) C1 = np.sum(z_r < z1, axis=0) R = np.zeros(M, dtype=np.float64) X = np.zeros(N + 2, dtype=np.float64) Y = np.zeros(N + 2, dtype=np.float64) z0 = z0 + R # Make sure they are spatial arrays z1 = z1 + R # For indexing below for i in I: X[:] = 0.0 Y[:] = 0.0 nz = C1[i] - C0[i] # Number of rho-points between z0 and z1 # Set up arrays for trapezoidal integration X[0] = z0[i] X[1 : nz + 1] = z_r[C0[i] : C1[i], i] X[nz + 1] = z1[i] Y[0] = F0[i] Y[1 : nz + 1] = F[C0[i] : C1[i], i] Y[nz + 1] = F1[i] # Perform the integration R[i] = 0.5 * np.dot( X[1 : nz + 2] - X[0 : nz + 1], Y[1 : nz + 2] + Y[0 : nz + 1] ) # Compute average and revert to correct shape R = R / (z1 - z0) R = R.reshape(Fshape[1:]) return R # ---------------------------------- def s_stretch(N, theta_s, theta_b, stagger="rho", Vstretching=1): """Compute a s-level stretching array *N* : Number of vertical levels *theta_s* : Surface stretching factor *theta_b* : Bottom stretching factor *stagger* : "rho"|"w" *Vstretching* : 1|2|3|4|5 """ # if stagger == "rho": # S = -1.0 + (0.5 + np.arange(N)) / N # elif stagger == "w": # S = np.linspace(-1.0, 0.0, N + 1) if stagger == "rho": K = np.arange(0.5, N) elif stagger == "w": K = np.arange(N + 1) else: raise ValueError("stagger must be 'rho' or 'w'") S = -1 + K / N if Vstretching == 1: cff1 = 1.0 / np.sinh(theta_s) cff2 = 0.5 / np.tanh(0.5 * theta_s) return (1.0 - theta_b) * cff1 * np.sinh(theta_s * S) + theta_b * ( cff2 * np.tanh(theta_s * (S + 0.5)) - 0.5 ) elif Vstretching == 2: a, b = 1.0, 1.0 Csur = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) Cbot = np.sinh(theta_b * (S + 1)) / np.sinh(theta_b) - 1 mu = (S + 1) ** a * (1 + (a / b) * (1 - (S + 1) ** b)) return mu * Csur + (1 - mu) * Cbot elif Vstretching == 3: gamma_ = 3.0 Csur = -np.log(np.cosh(gamma_ * (-S) ** theta_s)) / np.log(np.cosh(gamma_)) # Csur = -np.log(np.cosh(gamma_ * np.abs(S) ** theta_s)) / np.log(np.cosh(gamma_)) Cbot = ( np.log(np.cosh(gamma_ * (S + 1) ** theta_b)) / np.log(np.cosh(gamma_)) - 1 ) mu = 0.5 * (1 - np.tanh(gamma_ * (S + 0.5))) return mu * Csur + (1 - mu) * Cbot elif Vstretching == 4: C = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) C = (np.exp(theta_b * C) - 1) / (1 - np.exp(-theta_b)) return C elif Vstretching == 5: S1 = (K * K - 2 * K * N + K + N * N - N) / (N * N - N) S2 = (K * K - K * N) / (1 - N) S = -S1 - 0.01 * S2 C = (1 - np.cosh(theta_s * S)) / (np.cosh(theta_s) - 1) C = (np.exp(theta_b * C) - 1) / (1 - np.exp(-theta_b)) return C else: raise ValueError("Unknown Vstretching") # wrapper for backwards compatibility def s_stretch_w(N, theta_s, theta_b, Vstretching=1): """Obsolete use *s_stretch* instead""" return s_stretch(N, theta_s, theta_b, stagger="w", Vstretching=Vstretching)
py
1a4de0c57d8c114e92f9ea1abefe481ed367c284
from errors import ArchMinerError class StaticMinerError(ArchMinerError): def __init__(self, message): self.message = message class DynamicMinerError(ArchMinerError): def __init__(self, message): self.message = message
py
1a4de12e4e8379421cfd4198127f0d98e94c2406
word = input('>').split() emojis = { ':)' : '😊', ':(' : '😥', ':D' : '😄' } for i in word: print(emojis.get(i, i), end = ' ')
py
1a4de152823b45361759740383933a723c593497
{%- if cookiecutter.copyright != "None" -%} # Copyright (c) {% now "utc", '%Y' %}, {{ cookiecutter.copyright }}. Unauthorised use, distribution or duplication is prohibited {% endif %} """ {{ cookiecutter.project_name }}. {{ cookiecutter.library_name }} """ import argparse from flask import Flask from flask_cors import CORS from flask_swagger_ui import get_swaggerui_blueprint from blueprints.health import blueprint as health_endpoint from blueprints.version import blueprint as version_endpoint from observability.logger import Logger SWAGGER_URL = "/api/docs" API_URL = "/static/swagger.json" SWAGGER_UI_BLUEPRINT = get_swaggerui_blueprint( SWAGGER_URL, API_URL, config={"app_name": "{{ cookiecutter.project_name }} {{ cookiecutter.library_name }} Api"}, ) logger = Logger.init("{{ cookiecutter.__project_name_slug }}") def create_app(): """Initialize the core application.""" app = Flask(__name__) CORS(app, resources=r"/api/*") app.config["CORS_HEADERS"] = "Content-Type" app.register_blueprint(version_endpoint) app.register_blueprint(health_endpoint) app.register_blueprint(SWAGGER_UI_BLUEPRINT, url_prefix=SWAGGER_URL) return app def serve(app, address, port, middleware=None): """Serve the application.""" if middleware is not None: middleware(app) logger.info("{{ cookiecutter.project_name }} {{ cookiecutter.library_name }} Server starting...") app.run(host=address, port=port) if __name__ == "__main__": app = create_app() logger.info("server.py main : parsing arguments") parser = argparse.ArgumentParser() parser.add_argument("--address", help="Set server address", default="0.0.0.0") parser.add_argument("-p", "--port", type=int, help="Set server port", default=5000) args = parser.parse_args() serve(app=app, address=args.address, port=args.port)
py
1a4de3f22b0711a3086ef33d10468c4c3d8a8459
import subprocess import os import urllib.request import sys from typing import Optional from conapp.file_paths import get_snapshot_filename from conapp.validate import validate_subprocess from conapp.definitions import USER_HOME_DIR, DEFAULT_STRIP_COMPONENTS def apply_config(file_name: str) -> None: """ A wrapper around apply snapshot but for stripping the top level :param file_name: :return: """ return apply_snapshot(file_name, True) def apply_snapshot(file_name: str, strip_top_level=False) -> None: """Given file_name use tar to apply it to the users home directory""" if not os.path.isfile(file_name): print(f"Error! attempted to apply nonexistent snapshot {file_name}") print(f"Applying snapshot {file_name}") validate_subprocess( subprocess.run([ 'tar', '-C', USER_HOME_DIR, DEFAULT_STRIP_COMPONENTS if strip_top_level else '', '--show-transformed-names', '-zvxf', file_name, ]) ) def create_snapshot(file_name: str) -> Optional[str]: file_names_result = get_files_from_tar(file_name, True) files = list( filter( lambda file_path: os.path.isfile(os.path.expanduser(f"~/{file_path}")), file_names_result.stdout.split() ) ) if len(files) > 0: snapshot_name = get_snapshot_filename() backup_command = [ 'tar', '-C', USER_HOME_DIR, '-czvf', snapshot_name, ] + files print(f"Local files would get overridden, creating backup of: {' '.join(files)}") validate_subprocess(subprocess.run( backup_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, )) print(f"Successfully backed up files to {snapshot_name}") return snapshot_name else: print("No files will be overridden, not creating backup") return None def get_files_from_tar(file_name: str, strip_top_level=False) -> subprocess.CompletedProcess: get_file_names_command = [ "tar", DEFAULT_STRIP_COMPONENTS if strip_top_level else '', '--show-transformed-names', '-tf', file_name ] result = subprocess.run( get_file_names_command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, ) validate_subprocess(result) return result def download_file(file_name: str, url: str) -> None: """Attempt to download a file or exit""" try: print(f"Attempting to download {url}") urllib.request.urlretrieve(url, file_name) print(f"Success, downloaded to {file_name}") except urllib.request.HTTPError as ex: print(f"Error occurred, does {url} exist?\n{ex}") sys.exit(-1)
py
1a4de4325c17085aef09084eb7bbe59bda40e6fa
from django.conf.urls import url from . import views app_name = 'polls' urlpatterns = [ # ex: /polls/ url(r'^$', views.IndexView.as_view(), name='index'), # ex: /polls/5/ url(r'^(?P<pk>[0-9]+)/$', views.DetailView.as_view(), name='detail'), # ex: /polls/5/results/ url(r'^(?P<pk>[0-9]+)/results/$', views.ResultsView.as_view(), name='results'), # ex: /polls/5/vote/ url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'), ]
py
1a4de55feda76c0205e62e04cd7aa25cefb6ab05
# Generated by Django 3.0.6 on 2020-06-03 19:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('content', models.TextField()), ('date_posted', models.DateTimeField(default=django.utils.timezone.now)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
py
1a4de59f5dd9e4ab818d3c023e5aa8f40ae3df04
from typing import Tuple import PIL import torch import torchvision.transforms as transforms from .datasets import DATASET_STATS, SUPPORTED_DATASETS from .gaussian_blur import GaussianBlur class SimCLRDataTransform: """Applies augmentations to sample two times, as described in SimCLR paper""" def __init__(self, transform: transforms.Compose): self.transform = transform def __call__(self, sample: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: xi = self.transform(sample) xj = self.transform(sample) return xi, xj class ContrastiveAugmentor: """Applies augmentation for contrastive learning, as in SimCLR paper""" def __init__(self, dataset: str, input_size: Tuple[int, int, int]): """ Args: dataset: dataset to apply augmentations to input_size: input image size Raises: ValueError: if specified dataset is unsupported """ if dataset not in SUPPORTED_DATASETS: raise ValueError('Unsupported dataset') stats = DATASET_STATS[dataset] h, w = input_size[:2] size = (h, w) blur_kernel_size = 2 * int(.05 * h) + 1 color = transforms.ColorJitter(0.8, 0.8, 0.8, 0.2) augmentations = transforms.Compose([ transforms.Resize(size, interpolation=PIL.Image.LANCZOS), transforms.RandomResizedCrop(size=size, interpolation=PIL.Image.LANCZOS), transforms.RandomHorizontalFlip(), transforms.RandomApply([color], p=0.8), transforms.RandomGrayscale(p=0.2), GaussianBlur(kernel_size=blur_kernel_size), transforms.ToTensor(), transforms.Normalize(mean=stats['mean'], std=stats['std']) ]) self._augmentations = SimCLRDataTransform(augmentations) def __call__(self, sample: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: return self._augmentations(sample) class ValidAugmentor: """Applies augmentation for validation and testing""" def __init__(self, dataset: str, input_size: Tuple[int, int, int]): """ Args: dataset: dataset to apply augmentations to input_size: input image size Raises: ValueError: if specified dataset is unsupported """ if dataset not in SUPPORTED_DATASETS: raise ValueError('Unsupported dataset') stats = DATASET_STATS[dataset] h, w = input_size[:2] size = (h, w) self._augmentations = transforms.Compose([ transforms.Resize(size=size), transforms.ToTensor(), transforms.Normalize(mean=stats['mean'], std=stats['std']) ]) def __call__(self, sample: torch.Tensor) -> torch.Tensor: return self._augmentations(sample) class PatchAugmentor: """Applies augmentations to patch""" def __init__(self, input_size: Tuple[int, int, int]): """ Args: input_size: input image size """ h, w = input_size[:2] size = (h, w) self._augmentations = transforms.Compose([ transforms.Resize(size=size), transforms.ToTensor() ]) def __call__(self, sample: torch.Tensor) -> torch.Tensor: return self._augmentations(sample)
py
1a4de5bfd25348d210660ea307cdfd440a52e9a1
import reveallib import reveallib64 from utils import * from multiprocessing.pool import Pool import signal import os import math import argparse import logging import intervaltree import matplotlib import sortedcontainers import time def plot(plt,anchors,sep,wait=True,nc='r',rc='g',color=None,edges=False,lines=False,alpha=1,args=None): if len(anchors)==0: return if len(anchors[0])==2: #unaligned blocks for start,stop in anchors: ax = plt.axes() if start<sep: #ref ax.add_patch( matplotlib.patches.Rectangle( (start, 0), #bottom left stop-start, #width sep, #height #should be qry length! alpha=.25, color="blue" ) ) else: ax.add_patch( matplotlib.patches.Rectangle( (0, start-sep), #bottom left sep, #width stop-start, #height alpha=.25, color="grey" ) ) elif len(anchors[0])==3: #mums for l,sps,revcomp in anchors: if revcomp: plt.plot( (sps[0],sps[0]+l), ((sps[1]-sep)+l, (sps[1]-sep)),'%s-'%rc,alpha=alpha) else: plt.plot( (sps[0],sps[0]+l), ((sps[1]-sep), (sps[1]-sep)+l),'%s-'%nc,alpha=alpha) elif len(anchors[0])==4: #synteny blocks, without orientation for anchor in anchors: s1,e1,s2,e2=anchor ax = plt.axes() ax.add_patch( matplotlib.patches.Rectangle( (s1, s2-sep), #bottom left e1-s1, #width e2-s2, #height alpha=.5, color=color ) ) elif len(anchors[0])==5: #synteny blocks with orientation for anchor in anchors: s1,e1,s2,e2,revcomp=anchor ax = plt.axes() ax.add_patch( matplotlib.patches.Rectangle( (s1, s2-sep), #bottom left e1-s1, #width e2-s2, #height alpha=.25, color="green" if revcomp else "red" ) ) elif len(anchors[0])==8: #synteny blocks with score and ctg if edges: for c in [0,2]: anchors.sort(key=lambda a:a[c]) xedges,yedges=[],[] panchor=None for anchor in anchors: s1,e1,s2,e2,revcomp,score,ref,ctg=anchor if panchor!=None: ps1,pe1,ps2,pe2,prevcomp,pscore,pref,pctg=panchor if pctg!=ctg and pref!=ref: panchor=anchor continue if c==0: xedges.append(pe1) xedges.append(s1) xedges.append(None) if prevcomp: yedges.append(ps2-sep) else: yedges.append(pe2-sep) if revcomp: yedges.append(e2-sep) else: yedges.append(s2-sep) yedges.append(None) else: if prevcomp: xedges.append(ps1) else: xedges.append(pe1) if revcomp: xedges.append(e1) else: xedges.append(s1) xedges.append(None) yedges.append(pe2-sep) yedges.append(s2-sep) yedges.append(None) panchor=anchor if c==0: plt.plot(xedges,yedges,'b--',alpha=alpha) else: plt.plot(xedges,yedges,'y--',alpha=alpha) if lines: rcxpoints,xpoints=[],[] rcypoints,ypoints=[],[] for anchor in anchors: s1,e1,s2,e2,revcomp,score,ref,ctg=anchor # plt.text(s1+((e1-s1)/2),(s2-sep)+(((e2-sep)-(s2-sep))/2) ,str(anchor),fontsize=6) if revcomp: # plt.plot((s1,e1), (e2-sep,s2-sep),'g-') rcxpoints.append(s1) rcxpoints.append(e1) rcxpoints.append(None) rcypoints.append(e2-sep) rcypoints.append(s2-sep) rcypoints.append(None) else: # plt.plot((s1,e1), (s2-sep,e2-sep),'r-') xpoints.append(s1) xpoints.append(e1) xpoints.append(None) ypoints.append(s2-sep) ypoints.append(e2-sep) ypoints.append(None) plt.plot(xpoints,ypoints,'r-' if color==None else '%s-'%color,alpha=alpha) plt.plot(rcxpoints,rcypoints,'g-' if color==None else '%s-'%color,alpha=alpha) else: #plot squares for anchor in anchors: s1,e1,s2,e2,revcomp,score,ref,ctg=anchor ax = plt.axes() ax.add_patch( matplotlib.patches.Rectangle( (s1, s2-sep), #bottom left e1-s1, #width e2-s2, #height alpha=.25, color="green" if revcomp else "red" ) ) if wait: plt.show() else: plt.draw() def addctginfo(mums,ctg2range): logging.debug("Augment contig information.") #add ref information to mums mums.sort(key=lambda m: m[1][0]) #sort mums by ref domain intvidx=0 for i in range(len(mums)): while mums[i][1][0]>ctg2range[intvidx][1]: intvidx+=1 mums[i]=mums[i]+(intvidx,) #add contig information to mums mums.sort(key=lambda m: m[1][1]) #sort mums by query domain intvidx=0 for i in range(len(mums)): while mums[i][1][1]>ctg2range[intvidx][1]: intvidx+=1 mums[i]=mums[i]+(intvidx,) logging.debug("Done.") return mums def transform_cmd(args): for qry in args.contigs: logging.info("Running transform for %s"%qry) transform(args,qry) logging.info("Done") def transform(args,qry): if not args.interactive: matplotlib.use("agg") if args.plot: from matplotlib import pyplot as plt if args.output==None: prefix=os.path.splitext(os.path.basename(qry))[0] else: prefix=args.output refnames=[] ctgnames=[] if args.sa64: idx=reveallib64.index() else: idx=reveallib.index() ctg2range=[] for sample in [args.reference[0],qry]: idx.addsample(os.path.basename(sample)) for name,seq in fasta_reader(sample, cutN=args.cutn): if len(seq)<args.minctglength: logging.debug("Skip transform for contig: %s"%name) continue intv=idx.addsequence(seq) ctg2range.append(intv) if sample==args.reference[0]: refnames.append(name) else: ctgnames.append(name) T=idx.T logging.info("Compute mums.") idx.construct(rc=False) mums=addctginfo(idx.getmums(args.minlength),ctg2range) logging.info("Done, %d mums."%len(mums)) if args.cluster: logging.info("Cluster mums by diagonals.") blocks=clustermumsbydiagonal(mums,maxdist=args.maxdist,minclustsize=args.mincluster,rcmums=False) logging.info("Done, %d clusters."%len(blocks)) else: blocks=[(mum[1][0], mum[1][0]+mum[0], mum[1][1], mum[1][1]+mum[0], mum[2], mum[0], mum[3], mum[4]) for mum in mums] # rcidx=idx.copy() # rcidx.construct(rc=True) # mums+=rcidx.getmums(args.minlength) logging.info("Compute RC mums.") idx.construct(rc=True) rcmums=addctginfo(idx.getmums(args.minlength),ctg2range) logging.info("Done, %d rc mums."%len(rcmums)) sep=idx.nsep[0] idxn=idx.n rlength=idx.nsep[0] qlength=idxn-idx.nsep[0] del idx if args.cluster: logging.info("Cluster rc mums by anti-diagonals.") if len(rcmums)==0: rcblocks = [(mum[1][0], mum[1][0] + mum[0], mum[1][1], mum[1][1] + mum[0], mum[2], mum[0], mum[3], mum[4]) for mum in rcmums] else: rcblocks=clustermumsbydiagonal(rcmums,maxdist=args.maxdist,minclustsize=args.mincluster,rcmums=True) logging.info("Done, %d rc clusters."%len(rcblocks)) else: rcblocks=[(mum[1][0], mum[1][0]+mum[0], mum[1][1], mum[1][1]+mum[0], mum[2], mum[0], mum[3], mum[4]) for mum in rcmums] blocks+=rcblocks if args.plot: plot(plt,blocks,sep,wait=False,lines=True,alpha=0.2,args=args) # if args.plot: # plot(blocks,sep,wait=False,lines=True) logging.info("Start glocal chaining for filtering anchors (reference).") # blocks.sort(key=lambda b: b[1]-b[0]) # logging.info("Largest ref block: %s"%str(blocks[-1])) # minbacktrack=blocks[-1][1]-blocks[-1][0] nbefore=len(blocks) syntenyblocks=blocks nafter=None refiteration=0 # maxiter=1 while nbefore!=nafter:# or refiteration==maxiter: logging.info("Glocal chain iteration %d"%refiteration) nbefore=len(syntenyblocks) syntenyblocks=glocalchain(syntenyblocks,rlength,qlength,ctg2range,rearrangecost=args.rearrangecost, inversioncost=args.inversioncost, _lambda=args._lambda, eps=args.eps, useheap=args.useheap, lastn=args.lastn, lastbp=args.lastbp, alfa=args.alfa, gapopen=args.gapopen, axis=0) nafter=len(syntenyblocks) logging.info("Anchor before chaining: %s"%nbefore) logging.info("Anchor after chaining: %s"%nafter) refiteration+=1 if args.plot: plot(plt,syntenyblocks,sep,wait=False,lines=True,color='k',alpha=.7) logging.info("%d anchors remain after glocal chaining (reference)."%len(syntenyblocks)) logging.info("Start glocal chaining for filtering anchors (query).") nbefore=len(syntenyblocks) nafter=None qryiteration=0 while nbefore!=nafter:# or qryiteration==maxiter: logging.info("Glocal chain iteration %d"%qryiteration) nbefore=len(syntenyblocks) syntenyblocks=glocalchain(syntenyblocks,rlength,qlength,ctg2range,rearrangecost=args.rearrangecost, inversioncost=args.inversioncost, _lambda=args._lambda, eps=args.eps, useheap=args.useheap, lastn=args.lastn, lastbp=args.lastbp, alfa=args.alfa, gapopen=args.gapopen, axis=1) nafter=len(syntenyblocks) logging.info("Anchor before chaining: %s"%nbefore) logging.info("Anchor after chaining: %s"%nafter) qryiteration+=1 # G=localcolinearchains(syntenyblocks,rlength,qlength,rearrangecost=rearrangecost,inversioncost=inversioncost) # chain,rcchain=colinearchains(syntenyblocks,rlength,qlength) logging.info("%d anchors remain after glocal chaining (query)."%len(syntenyblocks)) if args.plot: plot(plt,syntenyblocks,sep,wait=False,lines=True,color='b',alpha=.7) #take the intersection of both the chains # logging.info("Determine intersection between the chains...") # syntenyblocks=list(set(rsyntenyblocks) & set(qsyntenyblocks)) # logging.info("Done. %d chains remain."%len(qsyntenyblocks)) # logging.info("Remove anchors that are contained in other clusters." # syntenyblocks=remove_contained_blocks(blocks) # logging.info("Done, %d anchors remain."%len(syntenyblocks)) # logging.info("Done.") logging.info("Merge consecutive blocks.") syntenyblocks=merge_consecutive(syntenyblocks) logging.info("%d blocks after merging consecutive blocks."%len(syntenyblocks)) # if args.plot: # plot(syntenyblocks,sep,wait=True,lines=True,color='b') # logging.info("Merge consecutive blocks.") # syntenyblocks=merge_consecutive(syntenyblocks) # logging.info("%d blocks after merging consecutive blocks."%len(syntenyblocks)) if args.greedy: logging.info("Assign overlap between MUMs in a greedy manner.") syntenyblocks=remove_overlap_greedy_blocks(syntenyblocks) logging.info("Done.") else: logging.info("Assign overlap between MUMs in a conservative manner.") syntenyblocks=remove_overlap_conservative_blocks(syntenyblocks) logging.info("Done.") logging.info("Remove all blocks that are shorter than minchainsum (%d)."%args.minchainsum) syntenyblocks=[b for b in syntenyblocks if b[5] >= args.minchainsum] logging.info("%d blocks after filtering for minchainsum."%len(syntenyblocks)) logging.info("Merge consecutive blocks.") syntenyblocks=merge_consecutive(syntenyblocks) logging.info("%d blocks after merging consecutive blocks."%len(syntenyblocks)) if args.optimise and len(syntenyblocks)>1: weight,cost,edgecosts=chainscore(syntenyblocks, rlength, qlength, ctg2range,rearrangecost=args.rearrangecost,inversioncost=args.inversioncost,_lambda=args._lambda,eps=args.eps,alfa=args.alfa,gapopen=args.gapopen) #determine the actual cost of the glocal chain score=weight-cost assert(len(edgecosts) == len(syntenyblocks)+1) iteration=0 while True: iteration+=1 logging.info("Optimise chain, iteration %d."%iteration) tsyntenyblocks,tweight,tcost,tedgecosts=optimise(syntenyblocks,rlength, qlength, ctg2range,rearrangecost=args.rearrangecost,inversioncost=args.inversioncost,_lambda=args._lambda,eps=args.eps,alfa=args.alfa,gapopen=args.gapopen) nscore=tweight-tcost if nscore<=score: break else: score=nscore syntenyblocks=tsyntenyblocks weight=tweight cost=tcost edgecosts=tedgecosts syntenyblocks=merge_consecutive(syntenyblocks) logging.info("Done. %d blocks after optimisation."%len(syntenyblocks)) syntenyblocks=merge_consecutive(syntenyblocks) weight,cost,edgecosts=chainscore(syntenyblocks, rlength, qlength, ctg2range,rearrangecost=args.rearrangecost,inversioncost=args.inversioncost,_lambda=args._lambda,eps=args.eps,alfa=args.alfa,gapopen=args.gapopen) #determine the actual cost of the glocal chain score=weight-cost assert(len(edgecosts) == len(syntenyblocks)+1) if args.outputbed: #before extending to the edges of the contig, output the breakpoint regions logging.info("Write bedfile with contig mappings on reference to: %s.bed"%prefix) with open(prefix+".bed",'w') as bedout: block2ctgidx=dict() pctgid=None ctgid2lastblock=dict() ci=0 syntenyblocks.sort(key=lambda b: b[2]) #sort by query for i,block in enumerate(syntenyblocks): #sorted by query s1,e1,s2,e2,o,score,refid,ctgid=block if ctgid!=pctgid: if pctgid!=None: ctgid2lastblock[pctgid]=ci ci=0 else: ci+=1 block2ctgidx[block]=ci pctgid=ctgid ctgid2lastblock[pctgid]=ci syntenyblocks.sort(key=lambda b: b[0]) #sort by reference bedout.write("#reference\trefbegin\trefend\tcontig:segmentidx:lastsegmentidx:begin:end\tscore:cost\torientation\taln-start\taln-end\n") pblock=None for i,block in enumerate(syntenyblocks): #sorted by reference s1,e1,s2,e2,o,score,refid,ctgid=block if i>0: ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=pblock else: pblock=None cost=edgecosts[i] #cost to connect to pblock to block if i<len(syntenyblocks)-2: nblock=syntenyblocks[i+1] ns1,ne1,ns2,ne2,no,nscore,nrefid,nctgid=nblock else: nblock=None ctgoffsets=ctg2range[ctgid] refoffsets=ctg2range[refid] if pblock!=None and prefid==refid: start=(s1-refoffsets[0])-((s1-pe1)/2) else: start=s1-refoffsets[0] if nblock!=None and nrefid==refid: end=(e1-refoffsets[0])+((ns1-e1)/2) else: end=e1-refoffsets[0] qstart=s2-ctgoffsets[0] qend=e2-ctgoffsets[0] chromname=refnames[refid].split()[0] qi=block2ctgidx[block] bedout.write("%s\t%d\t%d\t%s:%d:%d:%d:%d\t%d:%d\t%s\t%d\t%d\n"%(chromname, #chrom start, #start end, #end ctgnames[ctgid-len(refnames)].split()[0], #name, make sure there's no whitespace to comply with bed 'format' qi, ctgid2lastblock[ctgid], qstart, qend, score, cost, '+' if o==False else '-', #strand s1-refoffsets[0], #thick start e1-refoffsets[0]) #thick end #itemRgb #blockCount #blockSizes #blockStarts ) #bedout.write("%s\t%d\t%d\t%s\t%s\t%s\t%s\n"%(refnames[refid], pe1-refoffsets[0], s1-refoffsets[0], ctgnames[ctgid-len(refnames)], ctgnames[pctgid-len(refnames)], 'n' if po==False else 'r', 'n' if o==False else 'r')) pblock=block if args.plot: plot(plt,syntenyblocks,sep,wait=False,args=args) logging.debug("Extend %d blocks to query borders."%len(syntenyblocks)) extendblocks(syntenyblocks,ctg2range) logging.debug("Done.") if args.plot: for start,end in ctg2range: if start<sep: plt.axvline(x=start, ymin=0, ymax=idxn-sep, linewidth=.1, linestyle='solid') else: plt.axhline(y=start-sep, xmin=0, xmax=sep, linewidth=.1, linestyle='solid') plot(plt,syntenyblocks,sep,wait=False,edges=False,args=args) plt.xlim(0,rlength) plt.ylim(0,qlength) if args.interactive: plt.show() else: plt.savefig("%s.png"%(prefix)) plt.clf() #determine the subset of mappable contigs from ref and qry mappablectgs=set() for s1,e1,s2,e2,o,score,refid,ctgid in syntenyblocks: mappablectgs.add(ctgid) mappablectgs.add(refid) if len(mappablectgs)!=0: logging.info("Write breakpoint graph to: %s.gfa"%prefix) write_breakpointgraph(syntenyblocks,T,refnames,ctgnames,mappablectgs,prefix) else: logging.info("No mappable contigs.") def clustermumsbydiagonal(mums,maxdist=90,minclustsize=65,rcmums=True): logging.debug("Sorting anchors by diagonals...") if rcmums: mums.sort(key=lambda m: (m[1][0]+(m[1][1]+m[0]), m[1][0]-(m[1][1]+m[0])) ) #sort mums by anti-diagonal, then diagonal else: mums.sort(key=lambda m: (m[1][0]-m[1][1], m[1][0]+m[1][1])) #sort mums by diagonal, then anti-diagonal logging.debug("Done.") l,sps,rc,ctg,ref=mums[0] clusters=[(sps[0],sps[0]+l,sps[1],sps[1]+l,rc,l,ctg,ref)] update_progress(0,len(mums)) for i in xrange(1,len(mums)): update_progress(i,len(mums)) l,sps,rc,ctg,ref=mums[i] s1,e1,s2,e2,prc,score,pctg,pref=clusters[-1] if rcmums: d=mums[i][1][0]+(mums[i][1][1]+mums[i][0]) pd=e1+s2 else: d=mums[i][1][0]-mums[i][1][1] pd=s1-s2 if d==pd and pctg==ctg and pref==ref: #same diagonal and same contigs dist=mums[i][1][0]-e1 assert(dist>=0) if dist < maxdist: if rc==0: clusters[-1]=(s1,sps[0]+l,s2,sps[1]+l,rc,score+l,ctg,ref) else: clusters[-1]=(s1,sps[0]+l,sps[1],e2,rc,score+l,ctg,ref) else: clusters.append((sps[0],sps[0]+l,sps[1],sps[1]+l,rc,l,ctg,ref)) else: clusters.append((sps[0],sps[0]+l,sps[1],sps[1]+l,rc,l,ctg,ref)) return [c for c in clusters if c[5]>=minclustsize] def write_breakpointgraph(syntenyblocks,T,refnames,ctgnames,mappablectgs,outputprefix): #build a breakpoint graph, that we can write to GFA G=nx.MultiDiGraph() start=uuid.uuid4().hex end=uuid.uuid4().hex G.graph['startnodes']=[start] G.graph['endnodes']=[end] G.graph['paths']=[] G.graph['path2id']={} G.graph['id2path']={} G.add_node(start,offsets=dict()) G.add_node(end,offsets=dict()) pid=0 for name in refnames: if pid in mappablectgs: # name=os.path.splitext(os.path.basename(reference))[0]+"_"+name name=os.path.basename(outputprefix+"_"+name) G.graph['paths'].append(name) G.graph['path2id'][name]=pid G.graph['id2path'][pid]=name G.node[start]['offsets'][pid]=0 else: logging.info("No contigs were mapped to: %s"%name) pid+=1 for name in ctgnames: if pid in mappablectgs: name="*"+name #prefix so we can recognise the two paths afterwards G.graph['paths'].append(name) G.graph['path2id'][name]=pid G.graph['id2path'][pid]=name G.node[start]['offsets'][pid]=0 else: logging.info("Contig: %s could not be uniquely placed on the reference"%name) pid+=1 #write the reference layout of the query sequences syntenyblocks.sort(key=lambda b: b[0]) #TODO: check if not already the case.. prefid=None pnid=None l=0 mapping=dict() nid=0 for i,block in enumerate(syntenyblocks): s1,e1,s2,e2,o,score,refid,ctgid=block mapping[(s2,e2)]=nid if refid!=prefid: if prefid!=None: G.add_edge(pnid,end,paths=set([prefid]),ofrom="+", oto="+") pnid=start l=0 if o==0: G.add_node(nid,seq=T[s2:e2],offsets={refid:l}) else: G.add_node(nid,seq=rc(T[s2:e2]),offsets={refid:l}) G.add_edge(pnid,nid,paths=set([refid]),ofrom="+", oto="+") prefid=refid pnid=nid nid+=1 l+=e2-s2 if i!=len(syntenyblocks)-1: #add gap node, so we later know which bubbles are caused by gaps in the assembly gapsize=1 #TODO: if specified use reference to add a gap G.add_node(nid,seq="N"*gapsize,offsets={refid:l}) l+=gapsize G.add_edge(pnid,nid,paths=set([refid]),ofrom="+", oto="+") pnid=nid nid+=1 G.add_edge(pnid,end,paths=set([refid]),ofrom="+", oto="+") writeorg=True if writeorg: #write the original layout of the query sequences, so we can reconstruct the input afterwards syntenyblocks.sort(key=lambda b: b[2]) pctgid=None pnid=None l=0 for nid,block in enumerate(syntenyblocks): s1,e1,s2,e2,o,score,refid,ctgid=block nid=mapping[(s2,e2)] if ctgid!=pctgid: if pctgid!=None: G.add_edge(pnid,end,paths=set([pctgid]),ofrom="+" if o==0 else "-", oto="+") pnid=start l=0 po=0 G.node[nid]['offsets'][ctgid]=l l+=e2-s2 G.add_edge(pnid,nid,paths=set([ctgid]),ofrom="+" if po==0 else "-", oto="+" if o==0 else "-") po=o pctgid=ctgid pnid=nid G.add_edge(pnid,end,paths=set([ctgid]),ofrom="+" if o==0 else "-", oto="+") write_gfa(G,None,outputfile=outputprefix if outputprefix.endswith(".gfa") else outputprefix+".gfa") def merge_consecutive(syntenyblocks): if len(syntenyblocks)<2: return syntenyblocks #first merge consecutive blocks in the chain syntenyblocks.sort(key=lambda s: s[0]) #order by ref position qryorder = sorted(xrange(len(syntenyblocks)), key= lambda i: syntenyblocks[i][2]) #qry order qryorder_inv = sorted(xrange(len(syntenyblocks)), key=qryorder.__getitem__) #inverse qry order head=0 for ri in xrange(1,len(syntenyblocks)): pblock=syntenyblocks[ri-1] block=syntenyblocks[ri] pqi=qryorder_inv[ri-1] #index within the qryorder of pblock qi=qryorder_inv[ri] #index within the qryorder of block ps1,pe2,ps2,pe2,po,pscore,prefid,pctgid=pblock #previous block on reference s1,e1,s2,e2,o,score,refid,ctgid=block es1,ee1,es2,ee2,eo,escore,erefid,ectgid=syntenyblocks[head] if ctgid==pctgid: if pqi+1==qi and o==po==0: syntenyblocks[head]=(es1,e1,es2,e2,eo,escore+score,erefid,ectgid) elif pqi-1==qi and o==po==1: syntenyblocks[head]=(es1,e1,s2,ee2,eo,escore+score,erefid,ectgid) else: head+=1 syntenyblocks[head]=block else: head+=1 syntenyblocks[head]=block while head!=ri:#len(syntenyblocks)-1: syntenyblocks.pop() head+=1 return syntenyblocks def extendblocks(syntenyblocks,ctg2range): syntenyblocks.sort(key=lambda s: s[0]) #order by reference position for i in xrange(len(syntenyblocks)): s1,e1,s2,e2,o,score,ref,ctg=syntenyblocks[i] if i==0: #first s1=ctg2range[ref][0] else: ps1,pe1,ps2,pe2,po,pscore,pref,pctg=syntenyblocks[i-1] if pref==ref: s1=pe1 else: s1=ctg2range[ref][0] if i==len(syntenyblocks)-1: #last e1=ctg2range[ref][1] else: ns1,ne1,ns2,ne2,no,nscore,nref,nctg=syntenyblocks[i+1] if nref==ref: e1+=((ns1-e1)/2) else: e1=ctg2range[ref][1] assert(s1<e1) syntenyblocks[i]=(s1,e1,s2,e2,o,score,ref,ctg) syntenyblocks.sort(key=lambda s: s[2]) #order by qry position for i in xrange(len(syntenyblocks)): s1,e1,s2,e2,o,score,ref,ctg=syntenyblocks[i] if i==0: #first s2=ctg2range[ctg][0] else: ps1,pe1,ps2,pe2,po,pscore,pref,pctg=syntenyblocks[i-1] if pctg==ctg: s2=pe2 else: s2=ctg2range[ctg][0] if i==len(syntenyblocks)-1: #last e2=ctg2range[ctg][1] else: ns1,ne1,ns2,ne2,no,nscore,nref,nctg=syntenyblocks[i+1] if nctg==ctg: e2+=((ns2-e2)/2) else: e2=ctg2range[ctg][1] assert(s2<e2) syntenyblocks[i]=(s1,e1,s2,e2,o,score,ref,ctg) def optimise(syntenyblocks,rlength, qlength, ctg2range,rearrangecost=1000,inversioncost=1,_lambda=5,eps=1,alfa=1,gapopen=10): orgchain=sorted(syntenyblocks,key=lambda c: c[5]) maxchain=syntenyblocks maxchain_weight,maxchain_cost,maxchain_edgecosts=chainscore(maxchain, rlength, qlength, ctg2range, rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,alfa=alfa,gapopen=gapopen) maxchainscore=maxchain_weight-maxchain_cost stack=[] loglevel=logging.getLogger().getEffectiveLevel() if loglevel>logging.DEBUG: update_progress(0,len(orgchain)) for i in xrange(len(orgchain)): if loglevel>logging.DEBUG: update_progress(i,len(orgchain)) tmp=list(stack+orgchain[i+1:]) weight,cost,edgecosts=chainscore(tmp, rlength, qlength, ctg2range, rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,alfa=alfa,gapopen=gapopen) tmpchainscore=weight-cost if tmpchainscore<maxchainscore: stack.append(orgchain[i]) #keep it else: logging.debug("Dropped block %s, gain: %d"%(orgchain[i],tmpchainscore-maxchainscore)) maxchainscore=tmpchainscore maxchain=tmp maxchain_cost=cost maxchain_weight=weight maxchain_edgecosts=edgecosts logging.debug("Optimal chain has %d blocks and scores: %d"%(len(maxchain),maxchainscore)) return maxchain,maxchain_weight,maxchain_cost,maxchain_edgecosts def chainscore(chain, rlength, qlength, ctg2range, rearrangecost=1000, inversioncost=1, _lambda=5, eps=1, alfa=1, gapopen=10): # logging.debug("rearrangecost=%d, inversioncost=%d, _lambda=%d, eps=%d, alfa=%d, gapopen=%d"%(rearrangecost, inversioncost, _lambda, eps, alfa, gapopen)) if len(chain)==0: start=(0,0,rlength,rlength,0,0,0,0) end=(rlength,rlength,rlength+qlength,rlength+qlength,0,0,0,0) cost=gapcost(start,end,rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) return 0,cost,[cost] chain.sort(key=lambda s: s[0]) #order by reference position qryorder = sorted(xrange(len(chain)), key= lambda i: chain[i][2]) #qry order qryorder_inv = sorted(xrange(len(chain)), key=qryorder.__getitem__) #inverse qry order lastqstart,lastqend=ctg2range[chain[-1][7]] if chain[0][4]==0: end=(rlength,rlength,lastqend,lastqend,chain[0][4]) else: end=(rlength,rlength,lastqstart,lastqstart,chain[0][4]) firstqstart,firstqend=ctg2range[chain[0][7]] if chain[0][4]==0: start=(0,0,firstqstart,firstqstart,chain[0][4]) else: start=(0,0,firstqend,firstqend,chain[0][4]) #count out of order traversals rearrangements=0 inversions=0 startcost=gapcost(start,chain[0],rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) cost=startcost edgecosts=[startcost] weight=alfa*chain[0][5] for ri in xrange(1,len(chain)): pblock=chain[ri-1] block=chain[ri] ps1,pe1,ps2,pe2,po,pscore,pref,pctg=pblock s1,e1,s2,e2,o,score,ref2,ctg=block weight+=(alfa*score) # xgap=0#s1-pe1 pqi=qryorder_inv[ri-1] #index within the qryorder of pblock qi=qryorder_inv[ri] #index within the qryorder of block if pctg==ctg and pref==ref2: if (pqi==qi-1) or (pqi==qi+1): #check if the two blocks are colinear gc=gapcost(pblock,block,rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) cost+=gc edgecosts.append(gc) else: #all other options use rearrangement penalty rearrangements+=1 cost+=(gapopen+rearrangecost) edgecosts.append(gapopen+rearrangecost) else: #cross contigs if o==0: if qi>0: pqs1,pqe1,pqs2,pqe2,pqo,pqscore,pq_ref,pq_ctg=chain[qryorder[qi-1]] else: pq_ctg='start' else: if qi<len(qryorder)-1: pqs1,pqe1,pqs2,pqe2,pqo,pqscore,pq_ref,pq_ctg=chain[qryorder[qi+1]] else: pq_ctg='end' if po==0: if pqi<len(qryorder)-1: nqs1,nqe1,nqs2,nqe2,nqo,nqscore,nq_ref,nq_ctg=chain[qryorder[pqi+1]] else: nq_ctg='end' else: if pqi>0: nqs1,nqe1,nqs2,nqe2,nqo,nqscore,nq_ref,nq_ctg=chain[qryorder[pqi-1]] else: nq_ctg='start' if pq_ctg==ctg or nq_ctg==pctg: #there exists another block on this query contig before changing contigs, so has to be rearranged rearrangements+=1 cost+=(gapopen+rearrangecost) edgecosts.append((gapopen+rearrangecost)) else: edgecosts.append(gapopen) #simple traversal between two contigs endcost=gapcost(chain[-1],end,rearrangecost=rearrangecost,inversioncost=inversioncost,_lambda=_lambda,eps=eps,gapopen=gapopen,axis=0) cost+=endcost edgecosts.append(endcost) return weight,cost,edgecosts def update_progress(i,n): fullbar=100 if (i+1) % (n/fullbar if n>fullbar else 1)==0 or i+1==n: done=int(fullbar*((i+1)/float(n))) todo=fullbar-done sys.stdout.write('\r[%s%s]'%("#"*done," "*todo)) if i+1==n: sys.stdout.write('\n') sys.stdout.flush() def glocalchain(syntenyblocks, rlength, qlength, ctg2range, rearrangecost=1000, inversioncost=1, lastn=50, lastbp=10000, useheap=False, axis=0, _lambda=5, eps=1, alfa=1, gapopen=10): sep=rlength #add some dummy blocks for the contig start/ends if axis==0: for refid,(refstart,refend) in enumerate(ctg2range): if refstart>=sep: break if refid==0: start=(refstart,refstart,None,None,0,0,None,None) syntenyblocks.append((refend,refend,None,None,0,0,None,None)) end=syntenyblocks[-1] if axis==1: first=True for ctgid,(ctgstart,ctgend) in enumerate(ctg2range): if ctgstart<sep: continue if first: start=(None,None,ctgstart,ctgstart,0,0,None,None) first=False syntenyblocks.append((None,None,ctgend,ctgend,0,0,None,None)) end=syntenyblocks[-1] if axis==0: #sort by ref c1,c2=0,2 else: #sort by qry c1,c2=2,0 syntenyblocks.sort(key=lambda s: (s[c1],-s[5]) ) #order by reference position, then score if useheap: heap=sortedcontainers.SortedList() heap.add((0,start)) else: heap=[(0,start)]+[None]*(len(syntenyblocks)) G={b:None for b in syntenyblocks} maxscore=None n=len(syntenyblocks) bt=range(n+1) update_progress(0,n) pri=0 t0=time.time() deepest=0 # best=None for ri in xrange(n): block=syntenyblocks[ri] while syntenyblocks[deepest][c1+1]<block[c1]: deepest+=1 if ri%1000==0: t1=time.time() sec=t1-t0 bd=ri-pri logging.debug("Blocks per sec: %d"%(bd/sec)) t0=t1 pri=ri update_progress(ri,n) s1,e1,s2,e2,o,score,refid,ctgid=block trace=False # starttrace=105637436 # endtrace=starttrace+10 # if s1>=starttrace and s1<endtrace: # and refid==ctgtrace: # # # if block==(4499237, 4502780, 9008394, 9011937, 0, 3543, 0, 1) or block==end: # logging.info("BLOCK: %s"%str(block)) # print "deepest",syntenyblocks[deepest], syntenyblocks[deepest][c1+1] # trace=True bestscore=None bestblock=None bestcost=0 # checkedbest=False l=0 for j in bt: #back track on the heap if useheap: if j>=len(heap): break cscore,pblock=heap[-j] else: i=(ri+1)-j-1 if i<0: break cscore,pblock=heap[i] # if best==None or cscore==best: # checkedbest=True ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=pblock if (pblock[c1]==block[c1] and prefid!=None and refid!=None) or (pblock[c1+1]>=block[c1+1] and prefid!=None and refid!=None): continue if (pblock[c2]>=block[c2] and prefid!=None and refid!=None) and (pblock[c2+1]<=block[c2+1] and prefid!=None and refid!=None): continue l+=1 if bestscore!=None: if cscore<=bestscore: if useheap: break else: if block[c1]-pblock[c1]>lastbp and l>=lastn and pblock[c1]<syntenyblocks[deepest][c1]: break else: continue #if block is a dummy block, make it relative to pblock, if possible if block[6]==None and pblock[6]!=None: #update current block to be relative to pblock if axis==0: _block=(s1, e1, pe2 if po==0 else ps2, pe2 if po==0 else ps2, po, 0, prefid, pctgid) else: _block=(pe1 if po==0 else ps1, pe1 if po==0 else ps1, s2, e2, po, 0, prefid, pctgid) else: _block=block #if pblock is a dummy block, make it relative to block, if possible if pblock[6]==None and block[6]!=None: if axis==0: _pblock=(ps1, pe1, s2 if o==0 else e2, s2 if o==0 else e2, o, 0, refid, ctgid) else: _pblock=(s1 if o==0 else e1, s1 if o==0 else e1, ps2, pe2, o, 0, refid, ctgid) else: _pblock=pblock #if blocks come from same query contig and reference contig, compute gapcost, else introduce rearrangement cost if _pblock[6]==_block[6]!=None and _pblock[7]==_block[7]!=None: c=gapcost(_pblock,_block,rearrangecost=rearrangecost,inversioncost=inversioncost,eps=eps,_lambda=_lambda,gapopen=gapopen,axis=axis) elif _pblock[6]==_block[6]==None and _pblock[7]==_block[7]==None: #connect two dummy blocks c=gapopen+(abs(block[c1]-(pblock[c1+1]))*eps) else: #blocks cross contigs or ref without passing a dummy block, introduce rearrangement cost pblockctgstart,pblockctgend=ctg2range[_pblock[7]] blockctgstart,blockctgend=ctg2range[_block[7]] pblockrefstart,pblockrefend=ctg2range[_pblock[6]] blockrefstart,blockrefend=ctg2range[_block[6]] if _pblock[6]==_block[6] and axis==0: if _pblock[4]==0: cp=abs( pblockctgend-_pblock[3]) else: cp=abs( _pblock[2]-pblockctgstart) if _block[4]==0: cb=abs( blockctgend-_block[3] ) else: cb=abs( _block[2]-blockctgstart ) c=gapopen+min((rearrangecost,((cp+cb)*eps))) elif _pblock[7]==_block[7] and axis==1: if _pblock[4]==0: cp=abs( pblockrefend-_pblock[1]) else: cp=abs( _pblock[0]-pblockrefstart) if _block[4]==0: cb=abs( _block[0]-blockrefstart ) else: cb=abs( blockrefend-_block[1]) c=gapopen+min((rearrangecost,((cp+cb)*eps))) else: c=rearrangecost+gapopen+(abs(block[c1]-(pblock[c1+1]))*eps) assert(c>=0) if trace: logging.info("Connect to PBLOCK: %s costs %s, depth=%s, lastbp=%d, cscore,%s, cscore-c=%d, bestscore=%s"%(pblock,c,l,block[c1]-pblock[c1],cscore,cscore-c,bestscore)) if bestscore==None or cscore-c > bestscore: bestscore=cscore-c bestblock=pblock bestcost=c if not useheap: if block[c1]-pblock[c1]>lastbp and l>=lastn and pblock[c1]<syntenyblocks[deepest][c1]: break # if l>lastn: # logging.info("Forced deeper %d backtrack for block: %s"%(l,block)) cscore=bestscore+(alfa*score) # if best==None or cscore>best: # best=cscore if useheap: heap.add((cscore,block)) else: heap[ri+1]=(cscore,block) if maxscore==None or maxscore<cscore: maxscore=cscore maxnode=block if trace: logging.info("CONNECT TO BLOCK: %s, score=%s, cost=%s, depth=%s"%(bestblock,bestscore,bestcost,l)) G[block]=(bestblock,bestscore) node,cscore=G[end] chain=[] while node!=start:# and node!=startrc: if node[6]!=None: #only add to the chain if it is an actual anchor, exclude contig endpoints chain.append(node) s1,e1,s2,e2,o,score,refid,ctgid=node nnode,score=G[node] if node==nnode: logging.fatal("Loop in chain!") sys.exit(1) node=nnode logging.info("Optimal glocal chain contains: %d anchors and scores %d"%(len(chain),cscore)) return chain[::-1] def gapcost(block1,block2,rearrangecost=10000,inversioncost=0,eps=0,_lambda=0.5,gapopen=10,axis=0): if axis==0: #sorted by ref c1,c2=0,2 else: #sorted by qry c1,c2=2,0 assert(block1[c1]<=block2[c1]) d1=block2[c1]-block1[c1+1] if block1[4]==block2[4]==0: #both normal orientation if block2[c2]<block1[c2]:#always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*(d1 if d1>0 else 0) #do not penalize if overlap return gapopen+indelcost+substitutioncost else: d2=block2[c2]-block1[c2+1] indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost elif block1[4]==block2[4]==1: #both reverse comp orientation if block2[c2]>block1[c2]: #always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*(d1 if d1>0 else 0) return gapopen+indelcost+substitutioncost else: d2=block1[c2]-block2[c2+1] indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost elif block1[4]==1 and block2[4]==0: d1=max((0,d1)) if block2[c2]>block1[c2]: d2=block2[c2]-block1[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost else: d2=block1[c2]-block2[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost else: # assert(block1[4]==0 and block2[4]==1) d1=max((0,d1)) if block2[c2]>block1[c2]: d2=block2[c2]-block1[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost else: d2=block1[c2]-block2[c2+1] d2=max((0,d2)) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*max(((d1 if d1<d2 else d2),0)) return gapopen+indelcost+substitutioncost+inversioncost def _gapcost(block1,block2,rearrangecost=10000,inversioncost=0,eps=0,_lambda=0.5,gapopen=10,axis=0): if axis==0: #sorted by ref c1,c2=0,2 else: #sorted by qry c1,c2=2,0 assert(block1[c1]<=block2[c1]) d1=abs(block2[c1]-block1[c1+1]) if block1[4]==block2[4]==0: #both normal orientation if block2[c2]<block1[c2]:#always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*d1 return gapopen+indelcost+substitutioncost else: d2=abs(block2[c2]-block1[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost elif block1[4]==block2[4]==1: #both reverse comp orientation if block2[c2]>block1[c2]: #always has to be rearranged! indelcost=rearrangecost substitutioncost=eps*d1 return gapopen+indelcost+substitutioncost else: d2=abs(block1[c2]-block2[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost elif block1[4]==1 and block2[4]==0: if block2[c2]>block1[c2]: d2=abs(block2[c2]-block1[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost else: d2=abs(block1[c2]-block2[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost else: # assert(block1[4]==0 and block2[4]==1) if block2[c2]>block1[c2]: d2=abs(block2[c2]-block1[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost else: d2=abs(block1[c2]-block2[c2+1]) indelcost=min((rearrangecost,_lambda*abs(d1-d2))) substitutioncost=eps*(d1 if d1<d2 else d2) return gapopen+indelcost+substitutioncost+inversioncost def printSA(index,maxline=100,start=0,end=None,fn="sa.txt"): sa=index.SA lcp=index.LCP t=index.T #so=index.SO if end==None: end=len(sa) # with open(fn,'w') as f: sys.stdout.write("%d\t%d\n"%(len(sa), len(lcp))) assert(len(sa)==len(lcp)) for i in xrange(len(sa)): s=sa[i] lcpi=lcp[i] if i>0 and i<len(sa)-1: l1=lcp[i] l2=lcp[i+1] elif i==len(sa)-1: l1=max([lcp[i-1],lcp[i]]) l2=0 else: l1=0 l2=lcp[i+1] if i>=start and i<=end: #f.write("%s\t%s\t%s\n"%(str(s).zfill(8), str(lcpi).zfill(6), t[s:s+maxline].ljust(maxline) if l1<=maxline else t[s:s+maxline]+"..."+t[s+l1-40:s+l1].ljust(maxline) ) ) sys.stdout.write("%s\t%s\t%s\t%s\t%s\n"%(str(s).zfill(8), str(lcpi).zfill(6), t[s:s+maxline] ,t[s+l1-maxline:s+l1], t[s+l2-maxline:s+l2] ) ) def remove_overlap_conservative_blocks(anchors): for coord in [0,2]: if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[coord], (m[coord+1]-m[coord])*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[coord] < last[coord+1]: #overlap if anchor[coord+1]<=last[coord+1]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] for anchor in anchors[1:]: s1,e1,s2,e2,o,score,refid,ctgid=anchor ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] overlap=(_anchors[-1][coord+1]) - anchor[coord] pl=pe1-ps1 if overlap > 0: #overlap if score<=overlap: continue assert(score-overlap >= 0) if o==0: anchor=(s1+overlap,e1,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) else: if coord==0: anchor=(s1+overlap,e1,s2,e2-overlap,o,score-overlap if overlap<score else 0,refid,ctgid) else: anchor=(s1,e1-overlap,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) assert(anchor[coord+1]>_anchors[-1][coord+1]) while pl<=overlap or pscore<=overlap: _anchors.pop() ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] overlap=(_anchors[-1][coord+1]) - anchor[coord] if overlap<0: break pl=pe1-ps1 if overlap>0: assert(pscore-overlap >= 0) if po==0: _anchors[-1]=(ps1,pe1-overlap,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) else: if coord==0: _anchors[-1]=(ps1,pe1-overlap, ps2+overlap,pe2, po,pscore-overlap if overlap<pscore else 0, prefid,pctgid) else: _anchors[-1]=(ps1+overlap,pe1,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0, prefid,pctgid) _anchors.append(anchor) anchors=_anchors return anchors def remove_overlap_greedy_blocks(anchors): #TODO: remove duplicates! for coord in [0,2]: if len(anchors)<=1: #by definition no containment return anchors update_progress(0,len(anchors)) anchors.sort(key=lambda m: (m[coord], (m[coord+1]-m[coord])*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[coord] < last[coord+1]: #overlap if anchor[coord+1]<=last[coord+1]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] # for anchor in anchors[1:]: for i in xrange(1,len(anchors)): anchor=anchors[i] update_progress(i,len(anchors)) s1,e1,s2,e2,o,score,refid,ctgid=anchor ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] pl=pe1-ps1 overlap=(_anchors[-1][coord+1]) - anchor[coord] if overlap > 0: #overlap if pscore > score: #update current anchor if score<=overlap: continue assert(score-overlap >= 0) if o==0: anchor=(s1+overlap,e1,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) else: if coord==0: anchor=(s1+overlap,e1,s2,e2-overlap,o,score-overlap if overlap<score else 0,refid,ctgid) else: anchor=(s1,e1-overlap,s2+overlap,e2,o,score-overlap if overlap<score else 0,refid,ctgid) _anchors.append(anchor) else: while pl<=overlap or pscore<=overlap: _anchors.pop() ps1,pe1,ps2,pe2,po,pscore,prefid,pctgid=_anchors[-1] overlap=(_anchors[-1][coord+1]) - anchor[coord] if overlap<0: break pl=pe1-ps1 if overlap>0: assert(pl>overlap) assert(pscore>overlap) assert(pscore-overlap >= 0) if po==0: _anchors[-1]=(ps1,pe1-overlap,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) else: if coord==0: _anchors[-1]=(ps1,pe1-overlap, ps2+overlap,pe2, po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) else: _anchors[-1]=(ps1+overlap,pe1,ps2,pe2-overlap,po,pscore-overlap if overlap<pscore else 0,prefid,pctgid) _anchors.append(anchor) else: _anchors.append(anchor) anchors=_anchors return anchors def remove_contained_blocks(anchors): #remove duplicates! for coord in [0,2]: logging.info("Remove overlap in %s dimension."%("first" if coord==0 else "second")) if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[coord], (m[coord+1]-m[coord])*-1) ) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] update_progress(0,len(anchors)) # for anchor in anchors[1:]: for i in xrange(1,len(anchors)): anchor=anchors[i] update_progress(i,len(anchors)) if anchor[coord] < last[coord+1]: #overlap if anchor[coord+1]<=last[coord+1]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors return anchors #unused def remove_overlap_greedy_mums(anchors): #remove duplicates! n=2 for coord in range(n): if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[1][coord], m[0]*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap if anchor[1][coord]+anchor[0]<=last[1][coord]+last[0]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] for anchor in anchors[1:]: overlap=(_anchors[-1][1][coord]+_anchors[-1][0]) - anchor[1][coord] if overlap > 0: #overlap if _anchors[-1][0] > anchor[0]: if anchor[2]==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]+overlap), anchor[2]) else: if coord==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]), anchor[2]) else: anchor=(anchor[0]-overlap, (anchor[1][0], anchor[1][1]+overlap), anchor[2]) _anchors.append(anchor) else: while _anchors[-1][0]<=overlap and overlap>0: _anchors.pop() overlap=(_anchors[-1][1][coord]+_anchors[-1][0]) - anchor[1][coord] if overlap>0: if _anchors[-1][2]==0: _anchors[-1]=(_anchors[-1][0]-overlap,_anchors[-1][1],_anchors[-1][2]) #update stack else: if coord==0: _anchors[-1]=(_anchors[-1][0]-overlap,_anchors[-1][1],_anchors[-1][2]) else: _anchors[-1]=(_anchors[-1][0]-overlap,(_anchors[-1][1][0]+overlap, _anchors[-1][1][1]),_anchors[-1][2]) _anchors.append(anchor) else: _anchors.append(anchor) anchors=_anchors return anchors #unused def remove_contained_mums(anchors): #remove duplicates! for coord in range(2): if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[1][coord], m[0]*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap if anchor[1][coord]+anchor[0]<=last[1][coord]+last[0]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors return anchors #unused def remove_overlap_conservative_mums(anchors): #remove duplicates! n=2 for coord in range(n): if len(anchors)<=1: #by definition no containment return anchors anchors.sort(key=lambda m: (m[1][coord], m[0]*-1)) #sort by start position, then -1*size _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap if anchor[1][coord]+anchor[0]<=last[1][coord]+last[0]: #contained continue _anchors.append(anchor) last=anchor anchors=_anchors _anchors=[anchors[0]] last=anchors[0] for anchor in anchors[1:]: if anchor[1][coord] < last[1][coord]+last[0]: #overlap assert(anchor[1][coord]+anchor[0] > last[1][coord]+last[0]) #may not be contained, as we filtered these out already overlap=(last[1][coord]+last[0])-anchor[1][coord] assert(overlap>=0) assert(anchor[0]>overlap) if anchor[2]==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]+overlap), anchor[2]) else: if coord==0: anchor=(anchor[0]-overlap, (anchor[1][0]+overlap, anchor[1][1]), anchor[2]) else: anchor=(anchor[0]-overlap, (anchor[1][0], anchor[1][1]+overlap), anchor[2]) # assert(last[0]>overlap) if last[2]==0: _anchors[-1]=(last[0]-overlap,last[1],last[2]) #update last else: if coord==0: _anchors[-1]=(last[0]-overlap,(last[1][0], last[1][1]+overlap),last[2]) else: _anchors[-1]=(last[0]-overlap,(last[1][0]+overlap, last[1][1]),last[2]) if _anchors[-1][0]<=0: _anchors[-1]=anchor else: _anchors.append(anchor) last=anchor anchors=_anchors return anchors
py
1a4de5de3d5a2b2a79966e4828471ae2420d5ee1
from .a_star import a_star from .graph import Path, Node, Graph
py
1a4de661e9bfe46cc29e248dbcdce5f9275307fb
# ------------------------------------------------------------------------------ # Training code. # Example command: # python -m torch.distributed.launch --nproc_per_node=4 tools/train_net.py --cfg PATH_TO_CONFIG_FILE # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import argparse import os import pprint import logging import time import torch from torch import nn import torch.backends.cudnn as cudnn from torch.nn.parallel import DistributedDataParallel import tools._init_paths from fvcore.common.file_io import PathManager from segmentation.config import config, update_config from segmentation.utils.logger import setup_logger from segmentation.model import build_segmentation_model_from_cfg from segmentation.utils import comm from segmentation.solver import build_optimizer, build_lr_scheduler from segmentation.data import build_train_loader_from_cfg, build_test_loader_from_cfg from segmentation.solver import get_lr_group_id from segmentation.utils import save_debug_images from segmentation.utils import AverageMeter from segmentation.utils.utils import get_loss_info_str, to_cuda, get_module def parse_args(): parser = argparse.ArgumentParser(description='Train segmentation network') parser.add_argument('--cfg', help='experiment configure file name', required=True, type=str) parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('opts', help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER) args = parser.parse_args() update_config(config, args) return args def main(): args = parse_args() logger = logging.getLogger('segmentation') if not logger.isEnabledFor(logging.INFO): # setup_logger is not called setup_logger(output=config.OUTPUT_DIR, distributed_rank=args.local_rank) # logger.info(pprint.pformat(args)) # logger.info(config) # cudnn related setting cudnn.benchmark = config.CUDNN.BENCHMARK cudnn.deterministic = config.CUDNN.DETERMINISTIC cudnn.enabled = config.CUDNN.ENABLED gpus = list(config.GPUS) distributed = len(gpus) > 1 device = torch.device('cuda:{}'.format(args.local_rank)) if distributed: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group( backend="nccl", init_method="env://", ) # build model model = build_segmentation_model_from_cfg(config) # logger.info("Model:\n{}".format(model)) logger.info("Rank of current process: {}. World size: {}".format(comm.get_rank(), comm.get_world_size())) if distributed: model = nn.SyncBatchNorm.convert_sync_batchnorm(model) model = model.to(device) if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank ) data_loader = build_train_loader_from_cfg(config) optimizer = build_optimizer(config, model) lr_scheduler = build_lr_scheduler(config, optimizer) data_loader_iter = iter(data_loader) start_iter = 0 max_iter = config.TRAIN.MAX_ITER best_param_group_id = get_lr_group_id(optimizer) # initialize model if os.path.isfile(config.MODEL.WEIGHTS): model_weights = torch.load(config.MODEL.WEIGHTS) get_module(model, distributed).load_state_dict(model_weights, strict=False) logger.info('Pre-trained model from {}'.format(config.MODEL.WEIGHTS)) elif config.MODEL.BACKBONE.PRETRAINED: if os.path.isfile(config.MODEL.BACKBONE.WEIGHTS): pretrained_weights = torch.load(config.MODEL.BACKBONE.WEIGHTS) get_module(model, distributed).backbone.load_state_dict(pretrained_weights, strict=False) logger.info('Pre-trained backbone from {}'.format(config.MODEL.BACKBONE.WEIGHTS)) else: logger.info('No pre-trained weights for backbone, training from scratch.') # load model if config.TRAIN.RESUME: model_state_file = os.path.join(config.OUTPUT_DIR, 'checkpoint.pth.tar') if os.path.isfile(model_state_file): checkpoint = torch.load(model_state_file) start_iter = checkpoint['start_iter'] get_module(model, distributed).load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) logger.info('Loaded checkpoint (starting from iter {})'.format(checkpoint['start_iter'])) data_time = AverageMeter() batch_time = AverageMeter() loss_meter = AverageMeter() # 显示模型的参数量 def get_parameter_number(net): total_num = sum(p.numel() for p in net.parameters()) trainable_num = sum(p.numel() for p in net.parameters() if p.requires_grad) # return {'Total': total_num/1000000, 'Trainable': trainable_num/1000000} logger.info('Total:{}M, Trainable:{}M'.format(total_num/1000000, trainable_num/1000000)) print(get_parameter_number(model)) # Debug output. if config.DEBUG.DEBUG: debug_out_dir = os.path.join(config.OUTPUT_DIR, 'debug_train') PathManager.mkdirs(debug_out_dir) # Train loop. try: for i in range(start_iter, max_iter): # data start_time = time.time() data = next(data_loader_iter) if not distributed: data = to_cuda(data, device) data_time.update(time.time() - start_time) # 取出mini-bach的数据和标签 image = data.pop('image') label = data.pop('label') # import imageio # import numpy as np # print(label.shape) # label_image = np.array(label.cpu()[0]) # print(label_image.shape) # imageio.imwrite('%s/%d_%s.png' % ('./', 1, 'debug_batch_label'), label_image.transpose(1, 2, 0)) # 向前传播 out_dict = model(image, data) # 计算代价函数 loss = out_dict['loss'] # 清零梯度准备计算 optimizer.zero_grad() # 反向传播 loss.backward() # 更新训练参数 optimizer.step() # Get lr. lr = optimizer.param_groups[best_param_group_id]["lr"] lr_scheduler.step() batch_time.update(time.time() - start_time) loss_meter.update(loss.detach().cpu().item(), image.size(0)) if i == 0 or (i + 1) % config.PRINT_FREQ == 0: msg = '[{0}/{1}] LR: {2:.7f}\t' \ 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \ 'Data: {data_time.val:.3f}s ({data_time.avg:.3f}s)\t'.format( i + 1, max_iter, lr, batch_time=batch_time, data_time=data_time) msg += get_loss_info_str(get_module(model, distributed).loss_meter_dict) logger.info(msg) if i == 0 or (i + 1) % config.DEBUG.DEBUG_FREQ == 0: if comm.is_main_process() and config.DEBUG.DEBUG: save_debug_images( dataset=data_loader.dataset, label=label, batch_images=image, batch_targets=data, batch_outputs=out_dict, out_dir=debug_out_dir, iteration=i, target_keys=config.DEBUG.TARGET_KEYS, output_keys=config.DEBUG.OUTPUT_KEYS, iteration_to_remove=i - config.DEBUG.KEEP_INTERVAL ) if i == 0 or (i + 1) % config.CKPT_FREQ == 0: if comm.is_main_process(): torch.save({ 'start_iter': i + 1, 'state_dict': get_module(model, distributed).state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), }, os.path.join(config.OUTPUT_DIR, 'checkpoint.pth.tar')) except Exception: logger.exception("Exception during training:") raise finally: if comm.is_main_process(): torch.save(get_module(model, distributed).state_dict(), os.path.join(config.OUTPUT_DIR, 'final_state.pth')) logger.info("Training finished.") if __name__ == '__main__': main()
py
1a4de67a4eadf6e9fa8054abf93a2a913d56009b
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 # 导入所需模块 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np import time ##1## # 导入数据,分别为输入特征和标签 x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) # seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) # 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行 x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] # 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错 x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) # from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) # 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元 # 用tf.Variable()标记参数可训练 # 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据 test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据 epoch = 500 # 循环500轮 loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和 ########################################################################## m_w, m_b = 0, 0 beta = 0.9 ########################################################################## # 训练部分 now_time = time.time() ##2## for epoch in range(epoch): # 数据集级别的循环,每个epoch循环一次数据集 for step, (x_train, y_train) in enumerate(train_db): # batch级别的循环 ,每个step循环一个batch with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算 y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss) y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2) loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确 # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) ########################################################################## # sgd-momentun m_w = beta * m_w + (1 - beta) * grads[0] m_b = beta * m_b + (1 - beta) * grads[1] w1.assign_sub(lr * m_w) b1.assign_sub(lr * m_b) ########################################################################## # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all / 4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") total_time = time.time() - now_time ##3## print("total_time", total_time) ##4## # 绘制 loss 曲线 plt.title('Loss Function Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Loss') # y轴变量名称 plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss plt.legend() # 画出曲线图标 plt.show() # 画出图像 # 绘制 Accuracy 曲线 plt.title('Acc Curve') # 图片标题 plt.xlabel('Epoch') # x轴变量名称 plt.ylabel('Acc') # y轴变量名称 plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy plt.legend() plt.show() # 请将loss曲线、ACC曲线、total_time记录到 class2\优化器对比.docx 对比各优化器收敛情况
py
1a4de68769a3ec4f0dffcb9f36ee9c6a724ae981
import cgi import re import urllib.parse import warnings from collections import defaultdict from pathlib import Path from typing import TYPE_CHECKING from typing import Any from typing import Dict from typing import Iterator from typing import List from typing import Optional import requests import requests.auth from cachecontrol import CacheControl from cachecontrol.caches.file_cache import FileCache from cachy import CacheManager from poetry.core.packages.package import Package from poetry.core.packages.utils.link import Link from poetry.core.semver.helpers import parse_constraint from poetry.core.semver.version import Version from poetry.core.semver.version_constraint import VersionConstraint from poetry.core.semver.version_range import VersionRange from poetry.locations import REPOSITORY_CACHE_DIR from poetry.utils.helpers import canonicalize_name from poetry.utils.patterns import wheel_file_re from ..config.config import Config from ..inspection.info import PackageInfo from ..installation.authenticator import Authenticator from .exceptions import PackageNotFound from .exceptions import RepositoryError from .pypi_repository import PyPiRepository if TYPE_CHECKING: from poetry.core.packages.dependency import Dependency try: from html import unescape except ImportError: try: from html.parser import HTMLParser except ImportError: from HTMLParser import HTMLParser unescape = HTMLParser().unescape try: from urllib.parse import quote except ImportError: from urllib import quote with warnings.catch_warnings(): warnings.simplefilter("ignore") import html5lib class Page: VERSION_REGEX = re.compile(r"(?i)([a-z0-9_\-.]+?)-(?=\d)([a-z0-9_.!+-]+)") SUPPORTED_FORMATS = [ ".tar.gz", ".whl", ".zip", ".tar.bz2", ".tar.xz", ".tar.Z", ".tar", ] def __init__(self, url: str, content: str, headers: Dict[str, Any]) -> None: if not url.endswith("/"): url += "/" self._url = url encoding = None if headers and "Content-Type" in headers: content_type, params = cgi.parse_header(headers["Content-Type"]) if "charset" in params: encoding = params["charset"] self._content = content if encoding is None: self._parsed = html5lib.parse(content, namespaceHTMLElements=False) else: self._parsed = html5lib.parse( content, transport_encoding=encoding, namespaceHTMLElements=False ) @property def versions(self) -> Iterator[Version]: seen = set() for link in self.links: version = self.link_version(link) if not version: continue if version in seen: continue seen.add(version) yield version @property def links(self) -> Iterator[Link]: for anchor in self._parsed.findall(".//a"): if anchor.get("href"): href = anchor.get("href") url = self.clean_link(urllib.parse.urljoin(self._url, href)) pyrequire = anchor.get("data-requires-python") pyrequire = unescape(pyrequire) if pyrequire else None link = Link(url, self, requires_python=pyrequire) if link.ext not in self.SUPPORTED_FORMATS: continue yield link def links_for_version(self, version: Version) -> Iterator[Link]: for link in self.links: if self.link_version(link) == version: yield link def link_version(self, link: Link) -> Optional[Version]: m = wheel_file_re.match(link.filename) if m: version = m.group("ver") else: info, ext = link.splitext() match = self.VERSION_REGEX.match(info) if not match: return version = match.group(2) try: version = Version.parse(version) except ValueError: return return version _clean_re = re.compile(r"[^a-z0-9$&+,/:;=?@.#%_\\|-]", re.I) def clean_link(self, url: str) -> str: """Makes sure a link is fully encoded. That is, if a ' ' shows up in the link, it will be rewritten to %20 (while not over-quoting % or other characters).""" return self._clean_re.sub(lambda match: "%%%2x" % ord(match.group(0)), url) class LegacyRepository(PyPiRepository): def __init__( self, name: str, url: str, config: Optional[Config] = None, disable_cache: bool = False, cert: Optional[Path] = None, client_cert: Optional[Path] = None, ) -> None: if name == "pypi": raise ValueError("The name [pypi] is reserved for repositories") self._packages = [] self._name = name self._url = url.rstrip("/") self._client_cert = client_cert self._cert = cert self._cache_dir = REPOSITORY_CACHE_DIR / name self._cache = CacheManager( { "default": "releases", "serializer": "json", "stores": { "releases": {"driver": "file", "path": str(self._cache_dir)}, "packages": {"driver": "dict"}, "matches": {"driver": "dict"}, }, } ) self._authenticator = Authenticator( config=config or Config(use_environment=True) ) self._session = CacheControl( self._authenticator.session, cache=FileCache(str(self._cache_dir / "_http")) ) username, password = self._authenticator.get_credentials_for_url(self._url) if username is not None and password is not None: self._authenticator.session.auth = requests.auth.HTTPBasicAuth( username, password ) if self._cert: self._authenticator.session.verify = str(self._cert) if self._client_cert: self._authenticator.session.cert = str(self._client_cert) self._disable_cache = disable_cache @property def cert(self) -> Optional[Path]: return self._cert @property def client_cert(self) -> Optional[Path]: return self._client_cert @property def authenticated_url(self) -> str: if not self._session.auth: return self.url parsed = urllib.parse.urlparse(self.url) return "{scheme}://{username}:{password}@{netloc}{path}".format( scheme=parsed.scheme, username=quote(self._session.auth.username, safe=""), password=quote(self._session.auth.password, safe=""), netloc=parsed.netloc, path=parsed.path, ) def find_packages(self, dependency: "Dependency") -> List[Package]: packages = [] constraint = dependency.constraint if constraint is None: constraint = "*" if not isinstance(constraint, VersionConstraint): constraint = parse_constraint(constraint) allow_prereleases = dependency.allows_prereleases() if isinstance(constraint, VersionRange): if ( constraint.max is not None and constraint.max.is_prerelease() or constraint.min is not None and constraint.min.is_prerelease() ): allow_prereleases = True key = dependency.name if not constraint.is_any(): key = "{}:{}".format(key, str(constraint)) ignored_pre_release_versions = [] if self._cache.store("matches").has(key): versions = self._cache.store("matches").get(key) else: page = self._get("/{}/".format(dependency.name.replace(".", "-"))) if page is None: return [] versions = [] for version in page.versions: if version.is_prerelease() and not allow_prereleases: if constraint.is_any(): # we need this when all versions of the package are pre-releases ignored_pre_release_versions.append(version) continue if constraint.allows(version): versions.append(version) self._cache.store("matches").put(key, versions, 5) for package_versions in (versions, ignored_pre_release_versions): for version in package_versions: package = Package( dependency.name, version, source_type="legacy", source_reference=self.name, source_url=self._url, ) packages.append(package) self._log( "{} packages found for {} {}".format( len(packages), dependency.name, str(constraint) ), level="debug", ) if packages or not constraint.is_any(): # we have matching packages, or constraint is not (*) break return packages def package( self, name: str, version: str, extras: Optional[List[str]] = None ) -> Package: """ Retrieve the release information. This is a heavy task which takes time. We have to download a package to get the dependencies. We also need to download every file matching this release to get the various hashes. Note that this will be cached so the subsequent operations should be much faster. """ try: index = self._packages.index(Package(name, version, version)) return self._packages[index] except ValueError: package = super(LegacyRepository, self).package(name, version, extras) package._source_type = "legacy" package._source_url = self._url package._source_reference = self.name return package def find_links_for_package(self, package: Package) -> List[Link]: page = self._get("/{}/".format(package.name.replace(".", "-"))) if page is None: return [] return list(page.links_for_version(package.version)) def _get_release_info(self, name: str, version: str) -> dict: page = self._get("/{}/".format(canonicalize_name(name).replace(".", "-"))) if page is None: raise PackageNotFound('No package named "{}"'.format(name)) data = PackageInfo( name=name, version=version, summary="", platform=None, requires_dist=[], requires_python=None, files=[], cache_version=str(self.CACHE_VERSION), ) links = list(page.links_for_version(Version.parse(version))) if not links: raise PackageNotFound( 'No valid distribution links found for package: "{}" version: "{}"'.format( name, version ) ) urls = defaultdict(list) files = [] for link in links: if link.is_wheel: urls["bdist_wheel"].append(link.url) elif link.filename.endswith( (".tar.gz", ".zip", ".bz2", ".xz", ".Z", ".tar") ): urls["sdist"].append(link.url) h = link.hash if h: h = link.hash_name + ":" + link.hash files.append({"file": link.filename, "hash": h}) data.files = files info = self._get_info_from_urls(urls) data.summary = info.summary data.requires_dist = info.requires_dist data.requires_python = info.requires_python return data.asdict() def _get(self, endpoint: str) -> Optional[Page]: url = self._url + endpoint try: response = self.session.get(url) if response.status_code == 404: return response.raise_for_status() except requests.HTTPError as e: raise RepositoryError(e) if response.status_code in (401, 403): self._log( "Authorization error accessing {url}".format(url=response.url), level="warn", ) return if response.url != url: self._log( "Response URL {response_url} differs from request URL {url}".format( response_url=response.url, url=url ), level="debug", ) return Page(response.url, response.content, response.headers)
py
1a4de6ab051143561b5441cc2f92d4714fba7efd
''' Client.Processor.* tests. ''' from tests.integration.util import ( create_client ) import pytest import plaid import json from plaid.model.processor_token_create_request import ProcessorTokenCreateRequest from plaid.model.processor_stripe_bank_account_token_create_request import ProcessorStripeBankAccountTokenCreateRequest def test_stripe_processor_token(): client = create_client() # Just test the failure case - behavior here depends on the API keys used with pytest.raises(plaid.ApiException) as e: request = ProcessorStripeBankAccountTokenCreateRequest( access_token='fakeAccessToken', account_id='fakeAccountId', ) client.processor_stripe_bank_account_token_create(request) response = json.loads(e.body) assert response['error_code'] == 'INVALID_INPUT' def test_dwolla_processor_token(): client = create_client() # Just test the failure case - behavior here depends on the API keys used with pytest.raises(plaid.ApiException) as e: request = ProcessorTokenCreateRequest( access_token='fakeAccessToken', account_id='fakeAccountId', processor='dwolla' ) client.processor_token_create(request) response = json.loads(e.body) assert response['error_code'] == 'INVALID_INPUT'
py
1a4de709b22c210df2f7a64714fa848616179aa4
# Generated by Django 3.2.7 on 2021-10-05 10:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('fck', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='category', options={'verbose_name_plural': 'categories'}, ), migrations.AddField( model_name='category', name='slug', field=models.CharField(default='-', max_length=200), preserve_default=False, ), migrations.AlterField( model_name='post', name='status', field=models.CharField(choices=[('DRAFT', 'Draft'), ('PUBLISHED', 'Published post')], default='DRAFT', max_length=32), ), ]
py
1a4de728c7938f7dd5582fdc5a0353ddde8a1157
from time import time TIMEOUT = 30 class Users: def __init__(self): self.users_logged_in = {} def add_user_activity(self, username): self.users_logged_in[username] = time() def remove_user(self, username): self.users_logged_in.pop(username, None) def get_num_logged_users(self): t = time() rm = [] for a in self.users_logged_in.keys(): if self.users_logged_in[a] + TIMEOUT < t: rm.append(a) for b in rm: self.users_logged_in.pop(b, None) return len(self.users_logged_in)
py
1a4de986a276e42187cbaf2ad3d83475db61b9a9
import pathlib from setuptools import setup, find_packages BASE_DIR = pathlib.Path(__file__).parent PACKAGE_NAME = 'nlp_api' VERSION = '0.0.01' AUTHOR = 'Aivin V. Solatorio' URL = 'https://github.com/avsolatorio/wb_nlp/app/nlp_api' LICENSE = 'MIT' DESCRIPTION = 'Python API' INSTALL_REQUIRES = ['fastapi'] # Setting up setup( name=PACKAGE_NAME, version=VERSION, author=AUTHOR, url=URL, description=DESCRIPTION, install_requires=INSTALL_REQUIRES, packages=find_packages(include=['wb_nlp']) )
py
1a4de9fbd9a8a4bcaf481f6f337db310b4f640e7
import re # The rules of whether a file name is valid is based on # https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file def is_valid_windows_file_name(file_name): if is_reserved_word(file_name): raise Exception(f'You entered {file_name}, but you cannot use any of these reserved ' f'words: {get_reserved_words()}') elif contains_reserved_char(file_name): raise Exception(f'You entered {file_name}, but you cannot use any of these characters: ' f'{get_reserved_char_list()}') elif ends_in_space_or_period(file_name): raise Exception(f'You entered {file_name}, but you cannot have a period or space at the end.') return True def get_reserved_char_list(): return ['<', '>', ':', '"', '/', '\\ (single backslash)', '|', '?', '*'] def contains_reserved_char(word: str): """ The following reserved chars are not permitted at all: < (less than) > (greater than) : (colon) " (double quote) / (forward slash) \\ (single backslash (escaped here)) | (vertical bar or pipe) ? (question mark) * (asterisk) """ # single backslash, vertical bar, question mark and asterisk are escaped return re.match(r'\S*(<+|>+|:+|"+|/+|\\+|\|+|\?+|\*+)', word) is not None def get_reserved_words(): return { 'CON', 'PRN', 'AUX', 'NUL', 'COM1', 'COM2', 'COM3', 'COM4', 'COM5', 'COM6', 'COM7', 'COM8', 'COM9', 'LPT1', 'LPT2', 'LPT3', 'LPT4', 'LPT5', 'LPT6', 'LPT7', 'LPT8', 'LPT9' } def is_reserved_word(word: str): return word in get_reserved_words() def ends_in_space_or_period(word: str): return word.endswith(' ') or word.endswith('.')
py
1a4deb0a945718790fb0e02a12399aa8a3ba6ba4
""" This is a sample simulation that does not represent any particular biological system. It is just a showcase of how create a Simulation object, add forces, and initialize the reporter. In this simulation, a simple polymer chain of 10,000 monomers is """ import time import numpy as np import os, sys import polychrom from polychrom import simulation, starting_conformations, forces, forcekits from polychrom.integrators import ActiveBrownianIntegrator, CorrelatedNoiseIntegrator import openmm from polychrom.hdf5_format import HDF5Reporter from simtk import unit from pathlib import Path total_runs = 2500 runs_per_gpu = total_runs // 2 def run_sim(i, gpuid=None, timestep=170, ntimesteps=10000, blocksize=100): """ Run a single simulation on GPU i.""" N=100 density = 0.224 r = (3 * N / (4 * 3.141592 * density)) ** (1/3) print(f"Radius of confinement: {r}") D = np.ones((N, 3)) rhos = 0.5*np.ones((1, N)) rhos[0, 0:20] = -0.5 rhos[0, 20:40] = 0.0 rhos[0, 60:80] = 0.0 timestep = timestep collision_rate = 2.0 friction = collision_rate * (1.0/unit.picosecond) conlen = 1.0 * unit.nanometer mass = 100 * unit.amu temperature = 300 kB = unit.BOLTZMANN_CONSTANT_kB * unit.AVOGADRO_CONSTANT_NA kT = kB * temperature * unit.kelvin particleD = unit.Quantity(D, kT/(friction * mass)) integrator = CorrelatedNoiseIntegrator(timestep, collision_rate, particleD, rhos) if gpuid is None: gpuid = f"{i % 4}" traj = f"/net/dau/home/dkannan/simulations/corr_sameT/ensemble10000_100/run{i}" Path(traj).mkdir(parents=True, exist_ok=True) reporter = HDF5Reporter(folder=traj, max_data_length=100, overwrite=True) sim = simulation.Simulation( platform="CUDA", integrator=integrator, timestep=timestep, temperature=temperature, GPU=gpuid, collision_rate=collision_rate, N=N, save_decimals=2, PBCbox=False, reporters=[reporter], ) polymer = starting_conformations.grow_cubic(N, 5) sim.set_data(polymer, center=True) # loads a polymer, puts a center of mass at zero sim.set_velocities(v=np.zeros((N,3))) sim.add_force(forces.spherical_confinement(sim, density=density, k=5.0)) sim.add_force( forcekits.polymer_chains( sim, chains=[(0, None, False)], # By default the library assumes you have one polymer chain # If you want to make it a ring, or more than one chain, use self.setChains # self.setChains([(0,50,True),(50,None,False)]) will set a 50-monomer ring and a chain from monomer 50 to the end bond_force_func=forces.harmonic_bonds, bond_force_kwargs={ "bondLength": 1.0, "bondWiggleDistance": 0.3, # Bond distance will fluctuate +- 0.05 on average }, angle_force_func=None, angle_force_kwargs={}, nonbonded_force_func=forces.polynomial_repulsive, nonbonded_force_kwargs={ "trunc": 3.0, # this will let chains cross sometimes #'trunc':10.0, # this will resolve chain crossings and will not let chain cross anymore }, except_bonds=True, ) ) tic = time.perf_counter() for _ in range(ntimesteps): # Do 10 blocks sim.do_block(blocksize) # Of 100 timesteps each. Data is saved automatically. toc = time.perf_counter() print(f'Ran simulation in {(toc - tic):0.4f}s') sim.print_stats() # In the end, print very simple statistics reporter.dump_data() # always need to run in the end to dump the block cache to the disk if __name__ == '__main__': #run 8 simulations, one on each gpu, for the same parameters #run_sim(1) for i in range(1, 1 + 2*runs_per_gpu, 2): run_sim(i, gpuid="3")
py
1a4dec17b0ee5f363321e79ba4068cd3b544fbb6
""" Command line tool to copy experiment metadata from one NeXus file to the other. """ import sys import logging import argparse import freephil from pathlib import Path from . import ( version_parser, full_copy_parser, tristan_copy_parser, ) from ..nxs_copy import CopyNexus, CopyTristanNexus # Define a logger object and a formatter logger = logging.getLogger("CopyNeXus") logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(levelname)s %(message)s") # Phil scopes general_scope = freephil.parse( """ input{ original_nexus = None .type = path .help = "NeXus file to be copied." data_filename = None .multiple = True .type = path .help = "HDF5 data file." data_type = *images events .type = choice .help = "Type of data in the HDF5 file, can be either images or events." simple_copy = False .type = bool .help = "If True, the full NeXus tree is copied." skip = NXdata .multiple = True .optional = True .type = str .help = "NX_class object, or list of, to be skipped when copying metadata. If called, it will always first skip NXdata." } """ ) tristan_scope = freephil.parse( """ input { tristan_nexus = None .type = path .help = "NeXus file associated with Tristan detector" data_filename = None .multiple = True .type = path .help = "HDF5 file with binned images" experiment_type = stationary *rotation .type = choice .help = "Specify whether an experiment is stationary or a rotation scan. Defaults to rotation." write_mode = r+ w *x a .type = choice .help = "Specify write mode for new NeXus file." } """ ) # Parse command line arguments parser = argparse.ArgumentParser( description="Copy metadata from input NeXus file.", parents=[version_parser], ) parser.add_argument("--debug", action="store_const", const=True) parser.add_argument( "-c", "--show-config", action="store_true", default=False, dest="show_config", help="Show the configuration parameters.", ) # CLIs def copy_nexus(args): clai = general_scope.command_line_argument_interpreter() working_phil = general_scope.fetch(clai.process_and_fetch(args.phil_args)) params = working_phil.extract() working_phil.show() logger.info("Copy metadata from one NeXus file to another.") # Path to data file and original nexus file data_file = [Path(d).expanduser().resolve() for d in params.input.data_filename] nexus_file = Path(params.input.original_nexus).expanduser().resolve() logger.info(f"NeXus file to be copied: {nexus_file}") logger.info(f"Input data to be saved in NeXus file: {data_file}") logger.info(f"Data type: {params.input.data_type}") if params.input.simple_copy is True: logger.info(f"{nexus_file} will be copied in its entirety.") else: logger.info( f"The following groups will not be copied from NXentry of {nexus_file}: {params.input.skip}" ) try: if params.input.data_type == "images": new_nxs = CopyNexus.images_nexus( data_file, nexus_file, simple_copy=params.input.simple_copy, skip_group=params.input.skip, ) elif params.input.data_type == "events": new_nxs = CopyNexus.pseudo_events_nexus( data_file, nexus_file, ) logger.info(f"File {nexus_file} correctly copied to {new_nxs}.") except Exception as err: logger.info(f"File {nexus_file} could not be copied.") logger.exception(err) def copy_tristan_nexus(args): clai = tristan_scope.command_line_argument_interpreter() working_phil = tristan_scope.fetch(clai.process_and_fetch(args.phil_args)) params = working_phil.extract() working_phil.show() logger.info("Copy metadata from Tristan NeXus file.") # Path to data and original nexus file data_file = [Path(d).expanduser().resolve() for d in params.input.data_filename] nexus_file = Path(params.input.tristan_nexus).expanduser().resolve() logger.info(f"Working directory: {data_file[0].parent}") logger.info(f"NeXus file to be copied: {nexus_file}") logger.info(f"Input data to be saved in NeXus file: {data_file}") try: if params.input.experiment_type == "stationary": logger.info( "Copying metadata for a stationary dataset. \n" "This means either a single image or a pump-probe experiment.\n" "The 'scan_axis' will be a single scalar." ) nxs_img = CopyTristanNexus.single_image_nexus( data_file[0], nexus_file, params.input.write_mode, ) elif params.input.experiment_type == "rotation": logger.info( "Copying metadata for a roation dataset. \n" "This means either a multiple images or a multi sequences pump-probe experiment.\n" ) if args.osc_angle: logger.info( f"Scan_axis will be a list of values defined by an oscillation angle of {args.osc_angle}." ) elif args.num_bins: logger.info(f"Scan_ axis will be a list of {args.num_bins} values.") for filename in data_file: nxs_img = CopyTristanNexus.multiple_images_nexus( filename, nexus_file, params.input.write_mode, args.osc_angle, args.num_bins, ) logger.info( f"Experiment metadata correctly copied from {nexus_file} to {nxs_img}." ) except Exception as err: logger.info(f"File {nexus_file} could not be copied.") logger.exception(err) # Define subparsers subparsers = parser.add_subparsers( help="Choose copy methods.", required=True, dest="sub-command", ) parser_general = subparsers.add_parser( "gen", aliases=["copy-file"], description=("Copy experiment metadata to a new NeXus file."), parents=[full_copy_parser], ) parser_general.set_defaults(func=copy_nexus) parser_tristan = subparsers.add_parser( "tristan", aliases=["copy-tristan"], description=( "Create a new NeXus file for binned images by copying the metadata from the original experiment NeXus file." ), parents=[tristan_copy_parser], ) parser_tristan.set_defaults(func=copy_tristan_nexus) def main(): # Define a stream handler CH = logging.StreamHandler(sys.stdout) CH.setLevel(logging.DEBUG) CH.setFormatter(formatter) # Add handler to logger logger.addHandler(CH) args = parser.parse_args() args.func(args) main()
py
1a4dec2724438e1df66aa8fb286e74979847df02
def main(request, response): try: count = int(request.server.stash.take(request.GET[b"id"])) except: count = 0 if b"count" in request.GET: return str(count) request.server.stash.put(request.GET[b"id"], str(count + 1)) return u'body { color: red }'
py
1a4dec6d13ceb244e45e7154cc07c869329a528f
# # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """test for str and repr Make sure things can print and in a nice form. Put all the print tests together so that running this test file alone can inspect all the print messages in the project """ import torch from torch import nn from pytorch_quantization import calib from pytorch_quantization import tensor_quant from pytorch_quantization import nn as quant_nn from pytorch_quantization.nn.modules.tensor_quantizer import TensorQuantizer # pylint:disable=missing-docstring, no-self-use class TestPrint(): def test_print_descriptor(self): test_desc = tensor_quant.QUANT_DESC_8BIT_CONV2D_WEIGHT_PER_CHANNEL print(test_desc) def test_print_tensor_quantizer(self): test_quantizer = TensorQuantizer() print(test_quantizer) def test_print_module(self): class _TestModule(nn.Module): def __init__(self): super(_TestModule, self).__init__() self.conv = nn.Conv2d(33, 65, 3) self.quant_conv = quant_nn.Conv2d(33, 65, 3) self.linear = nn.Linear(33, 65) self.quant_linear = quant_nn.Linear(33, 65) test_module = _TestModule() print(test_module) def test_print_calibrator(self): print(calib.MaxCalibrator(7, 1, False)) hist_calibrator = calib.HistogramCalibrator(8, None, True) hist_calibrator.collect(torch.rand(10)) print(hist_calibrator)
py
1a4decf341966cee54d2db5c27d03c3b31491665
if __name__ != "__main__": import csv import time import pandas as pd class ObrasBot(): def __init__(self, browser, portal_url, categorias, veiculo, nome_csv, *colunas): self.browser = browser self.categorias = [c.upper() for c in categorias] self.veiculo = [v.upper() for v in veiculo] self.portal_url = portal_url self.nome_csv = nome_csv self.colunas = list(colunas) #acessa o site self.browser.get(self.portal_url) self.browser.maximize_window() #botao busca avancada self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[1]/tbody/tr[3]/td/a" ).click() time.sleep(2) def criaBase(self): with open(self.nome_csv, 'w') as base: writer = csv.DictWriter(base, self.colunas) writer.writeheader() def alimentaBase(self, obra, diretores, veiculo, distribuidor, classificacao): with open(self.nome_csv, 'a') as base: writer = csv.DictWriter(base, self.colunas) writer.writerow({self.colunas[0]: obra, self.colunas[1]: diretores, self.colunas[2]: veiculo, self.colunas[3]: distribuidor, self.colunas[4]: classificacao}) def limpaBase(self): base = pd.read_csv(self.nome_csv, encoding='ISO-8859-1') #ou latin 1 base.drop_duplicates(inplace=True) base.to_csv(self.nome_csv, index=False, encoding='ISO-8859-1') self.browser.quit() def portalObras(self, obra): obra = obra.upper().replace('"', '') #limpa o campo self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[1]/tbody/tr[1]/td[2]/input").clear() #digita o titulo titulo_br_input = self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[1]/tbody/tr[1]/td[2]/input") for o in obra: time.sleep(0.1) titulo_br_input.send_keys(o) #botao consultar self.browser.find_element_by_xpath( "/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/form[1]/table[2]/tbody/tr/td/a" ).click() time.sleep(2) linha = 1 while True: try: #pega o titulo br e categoria presentes na tabela 1 titulo_br_tabela = self.browser.find_element_by_xpath( '//*[@id="lista"]/tbody/tr[' + str(linha) + ']/td[1]' ).text categoria_tabela = self.browser.find_element_by_xpath( '//*[@id="lista"]/tbody/tr[' + str(linha) + ']/td[4]' ).text if titulo_br_tabela.strip().upper() == obra and categoria_tabela.strip().upper() in self.categorias: #abre a página de interesse clicando num botão presente em cada linha da tabela 1 self.browser.find_element_by_xpath('//*[@id="lista"]/tbody/tr[' + str(linha) + ']/td[5]/a').click() time.sleep(2) aux = 1 while True: try: #acessa a tabela 2, filtra veiculo e novamente a categoria categoria_tabela2 = self.browser.find_element_by_xpath( '//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[4]' ).text veiculo_tabela2 = self.browser.find_element_by_xpath( '//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[3]' ).text if categoria_tabela2.strip().upper() in self.categorias and veiculo_tabela2.strip().upper() in self.veiculo: diretores_tabela = self.browser.find_element_by_xpath( '//*[@id="TRbl_report_TbObra"]/tbody/tr[6]/td' ).text #quando é mais de um diretor(a) #costuma vir assim: Jurandir Muller/Roberto Tibiriçá/Claudia Priscilla diretores_tabela = diretores_tabela.replace('Diretores:', '').replace('/', ' - ').replace('"', '').strip().upper() veiculo = self.browser.find_element_by_xpath('//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[3]').text distribuidor = self.browser.find_element_by_xpath('//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[5]').text distribuidor = distribuidor.replace('"', "") classificacao = self.browser.find_element_by_xpath('//*[@id="TRbl_report_ClassificacaoProcessoObraView'+str(aux)+'"]/td[6]').text self.alimentaBase(obra, diretores_tabela, veiculo, distribuidor, classificacao) aux += 1 except: break #voltar à página anterior self.browser.find_element_by_xpath('/html/body/table/tbody/tr/td/table[6]/tbody/tr/td/a').click() linha += 1 except: break
py
1a4dedcbad3b9a80d2c4ca42fed5489de9233bca
# -*- coding: utf-8 -*- # Copyright 2018-2019 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import streamlit as st import pandas as pd import time st.title("Empty charts") st.write( """ This file tests what happens when you pass an empty dataframe or `None` into a chart. In some cases, we handle it nicely. In others, we show an error. The reason for the latter is because some chart types derive their configuration from the dataframe you pass in at the start. So when there's no dataframe we cannot detect that configuration. """ ) data = pd.DataFrame({"a": [1, 2, 3, 4], "b": [1, 3, 2, 4]}) spec = { "mark": "line", "encoding": { "x": {"field": "a", "type": "quantitative"}, "y": {"field": "b", "type": "quantitative"}, }, } st.subheader("Here are 4 empty charts") st.vega_lite_chart(spec) st.line_chart() st.area_chart() st.bar_chart() st.write("Below is an empty pyplot chart (i.e. just a blank image)") st.pyplot() st.write("...and that was it.") st.subheader("Here are 2 filled charts") x = st.vega_lite_chart(spec) x.vega_lite_chart(data, spec) x = st.vega_lite_chart(spec) time.sleep(0.2) # Sleep a little so the add_rows gets sent separately. x.add_rows(data) x = st.line_chart() x.add_rows(data) x = st.area_chart() x.add_rows(data) x = st.bar_chart() x.add_rows(data) st.subheader("Here is 1 empty map") st.deck_gl_chart() # TODO: Implement add_rows on DeckGL # st.subheader('1 filled map') # x = st.deck_gl_chart() # x.add_rows({'lat': 0, 'lon': 0}) # TODO: write Python tests for these: # (This manual test doesn't work anymore since errors break execution now) # st.subheader('Here are 10 errors') # st.write(1) # st.vega_lite_chart({}) # st.write(2) # st.vega_lite_chart(data, {}) # st.write(3) # st.vega_lite_chart(data) # st.write(4) # st.vega_lite_chart() # st.write(5) # st.altair_chart() # st.write(6) # st.line_chart() # st.write(7) # st.area_chart() # st.write(8) # st.bar_chart() # st.write(9) # st._native_chart() # st.write(10) # st.map()
py
1a4dee32d155e29dbd33a89d02a48998a725efac
from torchvision.transforms import ToPILImage from datasets.data_utils import DatasetOutput, default_transform from typing import Callable from PIL import Image from .data_utils import slide_windows_over_img, DatasetOutput import torch import torch.nn as nn from torch.utils.data import Dataset class GenericImageDataset(Dataset): """Generic dataset which defines all basic operations for the images.""" def __init__( self, path_to_images: str, get_sub_images: bool = False, sub_images_nr_windows: int = 10, sub_images_batch_size: int = 10, sub_images_min_size: int = 30, sub_images_max_size: int = 64, sub_images_stride: float = 0.2, classification_label: int = 0, transform: Callable = default_transform, **kwargs ): self.path_to_images = path_to_images self.transform = transform self.classification_label = classification_label # Sub images properties self.get_sub_images = get_sub_images self.sub_images_min_size = sub_images_min_size self.sub_images_max_size = sub_images_max_size self.sub_images_nr_windows = sub_images_nr_windows self.sub_images_batch_size = sub_images_batch_size self.sub_images_stride = sub_images_stride self.pil_transformer = ToPILImage() # Create store for data self.store = None def __getitem__(self, idx: int): # Read the image from the store index, and a dataset-defined `.read_image` img: Image = self.read_image(idx) # Apply transformation to the image tensor_img: torch.Tensor = self.transform(img) sub_images: torch.Tensor = torch.tensor(0) # Extract sub images if applicable if self.get_sub_images: sub_images = slide_windows_over_img( tensor_img, min_win_size=self.sub_images_min_size, max_win_size=self.sub_images_max_size, nr_windows=self.sub_images_nr_windows, stride=self.sub_images_stride ) return DatasetOutput( image=tensor_img, label=torch.tensor(self.classification_label), idx=torch.tensor(idx).long(), sub_images=sub_images ) def read_image(self, idx: int): """Interface, returns an PIL Image using the index.""" pass def __len__(self): return len(self.store)
py
1a4deeee564dfd4fc1c9a0ec798b65292d848f52
# -*- coding: utf-8 -*- # pylint: disable=missing-docstring __version__ = "0.0.1" """validation test package initialisation."""
py
1a4def92cfc636f46285555db7bac4fd1e5aaee0
#!/usr/bin/env python3 # dinkum_mas_unittest/test_data/multiple_testcases.py ''' This is test program input to unittests for coding_standards.py. It has several TestCase's defined. It has NO violations of the coding standard. ''' def foo() : pass import unittest class Test_1 (unittest.TestCase) : def test_1_first_thing(self) : pass class Test_2 (unittest.TestCase) : def test_2_first_thing(self) : pass if __name__ == "__main__" : # Run the unittests unittest.main()
py
1a4defbb028eaac072cea81c6dff83d4a2758763
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import timeit import itertools import argparse import os class OpArgMngr(object): """Operator argument manager for storing operator workloads.""" args = {} @staticmethod def add_workload(funcname, *args, **kwargs): if "_specifier" not in kwargs: _specifier = funcname else: _specifier = kwargs["_specififer"] del kwargs["_specififer"] if _specifier in OpArgMngr.args: raise ValueError("duplicate {}".format(_specifier)) OpArgMngr.args[_specifier] = {'args': args, 'kwargs': kwargs, 'funcname': funcname} def generate_workloads(): array_pool = {} shapes = [] for ndim in range(4): shapes.extend(list(itertools.product(range(4), repeat=ndim))) for shape in shapes: name = 'x'.join(str(i) for i in shape) if name in array_pool: raise ValueError("duplicate array {}".format(name)) array_pool[name] = dnp.ones(shape) return array_pool def prepare_workloads(): pool = generate_workloads() OpArgMngr.add_workload("zeros", (2, 2)) OpArgMngr.add_workload("einsum", "ii", pool['2x2'], optimize=False) OpArgMngr.add_workload("unique", pool['1'], return_index=True, return_inverse=True, return_counts=True, axis=-1) OpArgMngr.add_workload("dstack", (pool['2x1'], pool['2x1'], pool['2x1'], pool['2x1'])) OpArgMngr.add_workload("polyval", dnp.arange(10), pool['2x2']) OpArgMngr.add_workload("ediff1d", pool['2x2'], pool['2x2'], pool['2x2']) OpArgMngr.add_workload("nan_to_num", pool['2x2']) OpArgMngr.add_workload("tensordot", pool['2x2'], pool['2x2'], ((1, 0), (0, 1))) OpArgMngr.add_workload("kron", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("cumsum", pool['3x2'], axis=0, out=pool['3x2']) OpArgMngr.add_workload("random.shuffle", pool['3']) OpArgMngr.add_workload("equal", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("not_equal", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("less", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("greater_equal", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("less_equal", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("maximum", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("minimum", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("sum", pool['2x2'], axis=0, keepdims=True, out=pool['1x2']) OpArgMngr.add_workload("std", pool['2x2'], axis=0, ddof=0, keepdims=True, out=pool['1x2']) OpArgMngr.add_workload("var", pool['2x2'], axis=0, ddof=1, keepdims=True, out=pool['1x2']) OpArgMngr.add_workload("average", pool['2x2'], weights=pool['2'], axis=1, returned=True) OpArgMngr.add_workload("histogram", pool['2x2'], bins=10, range=(0.0, 10.0)) OpArgMngr.add_workload("add", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("cross", pool['2'], pool['2']) OpArgMngr.add_workload("linalg.eig", pool['3x3']) OpArgMngr.add_workload("linalg.eigh", pool['3x3']) OpArgMngr.add_workload("linalg.det", pool['3x3']) OpArgMngr.add_workload("linalg.slogdet", pool['3x3']) OpArgMngr.add_workload("linalg.matrix_rank", pool['3x3'], pool['1'], hermitian=False) OpArgMngr.add_workload("linalg.svd", pool['3x3']) OpArgMngr.add_workload("linalg.cholesky", pool['1x1']) OpArgMngr.add_workload("linalg.qr", pool['3x3']) OpArgMngr.add_workload("linalg.lstsq", pool['2x1'], pool['2'], rcond=None) OpArgMngr.add_workload("linalg.eigvals", pool['1x1']) OpArgMngr.add_workload("linalg.eigvalsh", pool['1x1'], UPLO='L') OpArgMngr.add_workload("linalg.inv", pool['1x1']) OpArgMngr.add_workload("linalg.pinv", pool['2x3x3'], pool['1'], hermitian=False) OpArgMngr.add_workload("linalg.solve", pool['1x1'], pool['1']) OpArgMngr.add_workload("linalg.tensorinv", pool['1x1'], ind=2) OpArgMngr.add_workload("linalg.norm", pool['3x3']) OpArgMngr.add_workload("linalg.tensorsolve", pool['1x1x1'], pool['1x1x1'], (2, 0, 1)) OpArgMngr.add_workload("tile", pool['2x2'], 1) OpArgMngr.add_workload("trace", pool['2x2']) OpArgMngr.add_workload("transpose", pool['2x2']) OpArgMngr.add_workload("split", pool['3x3'], (0, 1, 2), axis=1) OpArgMngr.add_workload("argmax", pool['3x2'], axis=-1) OpArgMngr.add_workload("argmin", pool['3x2'], axis=-1) OpArgMngr.add_workload("atleast_1d", pool['2'], pool['2x2']) OpArgMngr.add_workload("atleast_2d", pool['2'], pool['2x2']) OpArgMngr.add_workload("atleast_3d", pool['2'], pool['2x2']) OpArgMngr.add_workload("indices", dimensions=(1, 2, 3)) OpArgMngr.add_workload("subtract", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("multiply", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("mod", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("remainder", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("divide", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("true_divide", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("power", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("lcm", pool['2x2'].astype('int32'), pool['2x2'].astype('int32')) OpArgMngr.add_workload("diff", pool['2x2'], n=1, axis=-1) OpArgMngr.add_workload("nonzero", pool['2x2']) OpArgMngr.add_workload("tril", pool['2x2'], k=0) OpArgMngr.add_workload("random.choice", pool['2'], size=(2, 2)) OpArgMngr.add_workload("take", pool['2'], dnp.array([1,0], dtype='int64')) OpArgMngr.add_workload("clip", pool['2x2'], 0, 1) OpArgMngr.add_workload("expand_dims", pool['2x2'], axis=0) OpArgMngr.add_workload("broadcast_to", pool['2x2'], (2, 2, 2)) OpArgMngr.add_workload("full_like", pool['2x2'], 2) OpArgMngr.add_workload("zeros_like", pool['2x2']) OpArgMngr.add_workload("ones_like", pool['2x2']) OpArgMngr.add_workload("bitwise_and", pool['2x2'].astype(int), pool['2x2'].astype(int)) OpArgMngr.add_workload("bitwise_xor", pool['2x2'].astype(int), pool['2x2'].astype(int)) OpArgMngr.add_workload("bitwise_or", pool['2x2'].astype(int), pool['2x2'].astype(int)) OpArgMngr.add_workload("copysign", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("arctan2", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("hypot", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("ldexp", pool['2x2'].astype(int), pool['2x2'].astype(int)) OpArgMngr.add_workload("logical_and", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("logical_or", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("logical_xor", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("random.uniform", low=0, high=1, size=1) OpArgMngr.add_workload("random.exponential", scale=2, size=(2,2)) OpArgMngr.add_workload("random.rayleigh", scale=2, size=(2,2)) OpArgMngr.add_workload("random.weibull", a=2, size=(2,2)) OpArgMngr.add_workload("random.pareto", a=2, size=(2,2)) OpArgMngr.add_workload("random.power", a=2, size=(2,2)) OpArgMngr.add_workload("random.logistic", loc=2, scale=2, size=(2,2)) OpArgMngr.add_workload("random.gumbel", loc=2, scale=2, size=(2,2)) OpArgMngr.add_workload("where", pool['2x3'], pool['2x3'], pool['2x1']) OpArgMngr.add_workload("fmax", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("fmin", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("fmod", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("may_share_memory", pool['2x3'][:0], pool['2x3'][:1]) OpArgMngr.add_workload("pad", pool['2x2'], pad_width=((1,2),(1,2)), mode="constant") OpArgMngr.add_workload("prod", pool['2x2'], axis=1, dtype="float64", keepdims=False) OpArgMngr.add_workload("diag", pool['2x2'], k=1) OpArgMngr.add_workload("diagonal", pool['2x2x2'], offset=-1, axis1=0, axis2=1) OpArgMngr.add_workload("diag_indices_from", pool['2x2']) OpArgMngr.add_workload("bincount", dnp.arange(3, dtype=int), pool['3'], minlength=4) OpArgMngr.add_workload("percentile", pool['2x2x2'], 80, axis=0, out=pool['2x2'],\ interpolation='midpoint') OpArgMngr.add_workload("quantile", pool['2x2x2'], 0.8, axis=0, out=pool['2x2'],\ interpolation='midpoint') OpArgMngr.add_workload("all", pool['2x2x2'], axis=(0, 1),\ out=dnp.array([False, False], dtype=bool), keepdims=False) OpArgMngr.add_workload("any", pool['2x2x2'], axis=(0, 1),\ out=dnp.array([False, False], dtype=bool), keepdims=False) OpArgMngr.add_workload("roll", pool["2x2"], 1, axis=0) OpArgMngr.add_workload("rot90", pool["2x2"], 2) OpArgMngr.add_workload("column_stack", (pool['3x3'], pool['3x3'], pool['3x3'])) OpArgMngr.add_workload("hstack", (pool['3x3'], pool['3x3'], pool['3x3'])) OpArgMngr.add_workload("triu", pool['3x3']) OpArgMngr.add_workload("array_split", pool['2x2'], 2, axis=1) OpArgMngr.add_workload("vsplit", pool['2x2'], 2) OpArgMngr.add_workload("hsplit", pool['2x2'], 2) OpArgMngr.add_workload("dsplit", pool['2x2x2'], 2) OpArgMngr.add_workload("arange", 10) OpArgMngr.add_workload("concatenate", (pool['1x2'], pool['1x2'], pool['1x2']), axis=0) OpArgMngr.add_workload("append", pool['2x2'], pool['1x2'], axis=0) OpArgMngr.add_workload("insert", pool['3x2'], 1, pool['1x1'], axis=0) OpArgMngr.add_workload("delete", pool['3x2'], 1, axis=0) OpArgMngr.add_workload("blackman", 12) OpArgMngr.add_workload("eye", 5) OpArgMngr.add_workload("hamming", 12) OpArgMngr.add_workload("hanning", 12) OpArgMngr.add_workload("linspace", 0, 10, 8, endpoint=False) OpArgMngr.add_workload("logspace", 2.0, 3.0, num=4, base=2.0, dtype=onp.float32) OpArgMngr.add_workload("matmul", pool['2x2'], pool['2x2']) OpArgMngr.add_workload("mean", pool['2x2'], axis=0, keepdims=True) OpArgMngr.add_workload("random.gamma", 1, size=(2, 3)) OpArgMngr.add_workload("random.normal", 1, size=(2, 3)) unary_ops = ['negative', 'reciprocal', 'abs', 'sign', 'rint', 'ceil', 'floor', 'bitwise_not', 'trunc', 'fix', 'square', 'sqrt', 'cbrt', 'exp', 'log', 'log10', 'log2', 'log1p', 'expm1', 'logical_not', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'degrees', 'radians', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh'] # 'rad2deg', 'deg2rad' cannot run without tvm for unary_op in unary_ops: if unary_op == "bitwise_not": OpArgMngr.add_workload(unary_op, dnp.ones((2, 2), dtype=int)) else: OpArgMngr.add_workload(unary_op, pool['2x2']) def benchmark_helper(f, *args, **kwargs): number = 10000 return timeit.timeit(lambda: f(*args, **kwargs), number=number) / number def get_op(module, funcname): funcname = funcname.split(".") for fname in funcname: module = getattr(module, fname) return module def run_benchmark(packages): results = {} for (k, v) in OpArgMngr.args.items(): result = {} for (name, package) in packages.items(): print('{}.{} running...'.format(name, k)) op = get_op(package["module"], v["funcname"]) args = [package["data"](arg) for arg in v["args"]] kwargs = {k: package["data"](v) for (k, v) in v["kwargs"].items()} benchmark = benchmark_helper(op, *args, **kwargs) result[name] = benchmark results[k] = result return results def show_results(results): print("{:>24}{:>24}{:>24}".format("name", "package", "time(us)")) for (specifier, d) in results.items(): for (k, v) in d.items(): print("{:>24}{:>24}{:>24}".format(specifier, k, v * 10 ** 6)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('ffi_type') parsed = parser.parse_args() if parsed.ffi_type == "cython": os.environ['MXNET_ENABLE_CYTHON'] = '1' os.environ['MXNET_ENFORCE_CYTHON'] = '1' elif parsed.ffi_type == "ctypes": os.environ['MXNET_ENABLE_CYTHON'] = '0' else: raise ValueError("unknown ffi_type {}",format(parsed.ffi_type)) os.environ["MXNET_ENGINE_TYPE"] = "NaiveEngine" import mxnet as mx import numpy as onp from mxnet import np as dnp mx.npx.set_np() packages = { "onp": { "module": onp, "data": lambda arr: arr.asnumpy() if isinstance(arr, dnp.ndarray) else arr }, "dnp": { "module": dnp, "data": lambda arr: arr } } prepare_workloads() results = run_benchmark(packages) show_results(results)
py
1a4deffa47c48cc5e66ae59fe9c7aaaf75defea7
import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread('img/entrada/folha-de-mamao-menor.jpg',0) edges = cv.Canny(img,100,200) plt.subplot(121),plt.imshow(img,cmap = 'gray') plt.title('Original Image'), plt.xticks([]), plt.yticks([]) plt.subplot(122),plt.imshow(edges,cmap = 'gray') plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) plt.show()
py
1a4df0775c0ccb513c265f2096e08b5dc9b7325d
# coding=utf-8 # Copyright 2021 TF-Transformers Authors and The TensorFlow Authors. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function import tensorflow as tf from tf_transformers.core import LegacyLayer from tf_transformers.layers import dense_einsum from tf_transformers.layers.attention import BartAttention from tf_transformers.utils import tf_utils class TransformerBART(LegacyLayer): """Transformer This layer implements the Transformer from "Attention Is All You Need". (https://arxiv.org/abs/1706.03762). """ def __init__( self, hidden_size, num_attention_heads, intermediate_size, intermediate_activation, use_auto_regressive, attention_head_size=None, dropout_rate=0.0, attention_dropout_rate=0.0, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, use_bias=True, use_decoder=False, share_attention_layers=True, layer_norm_epsilon=None, is_training=False, use_dropout=False, name="transformer", **kwargs, ): """ Args: num_attention_heads: int, Number of attention heads. intermediate_size: int, Size of the intermediate layer. intermediate_activation: keras object, Activation for the intermediate layer. attention_cfg: The config with which to instantiate `attention_cls`. Ignored if attention_cls is a layer instance. dropout_rate: float (between 0 and 1), Dropout probability for the post-attention and output dropout. attention_dropout_rate: float (between 0 and 1), Dropout probability for within the attention layer. kernel_initializer: Initializer for dense layer kernels. bias_initializer: Initializer for dense layer biases. kernel_regularizer: Regularizer for dense layer kernels. bias_regularizer: Regularizer for dense layer biases. activity_regularizer: Regularizer for dense layer activity. kernel_constraint: Constraint for dense layer kernels. bias_constraint: Constraint for dense layer kernels. share_attention_layers: To share same attention layers in decoder cross attentions cross_attention_inside_encoder: Whether we want to use cross attention \ inside encoder. is_decoder: bool """ super(TransformerBART, self).__init__(name=name, is_training=is_training, use_dropout=use_dropout, **kwargs) # mostly embedding_size is same as projecting after attention self._hidden_size = hidden_size self._num_heads = num_attention_heads self._intermediate_size = intermediate_size self._intermediate_activation = intermediate_activation self._attention_head_size = attention_head_size self._dropout_rate = dropout_rate self._attention_dropout_rate = attention_dropout_rate self._kernel_initializer = tf.keras.initializers.get(kernel_initializer) self._bias_initializer = tf.keras.initializers.get(bias_initializer) self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer) self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer) self._kernel_constraint = tf.keras.constraints.get(kernel_constraint) self._bias_constraint = tf.keras.constraints.get(bias_constraint) self._use_bias = use_bias self._use_decoder = use_decoder self._layer_norm_epsilon = layer_norm_epsilon self._is_training = is_training self._use_dropout = use_dropout self._use_auto_regressive = use_auto_regressive def build(self, input_shape): """Build variables based on shape at run time. Args: input_shape ([input_word_embeddings 3D, attention_mask 3D]): input_word_embeddings (b x s x h) and attention_mask (b x 1 x s) Raises: ValueError: [description] ValueError: [description] """ input_tensor = input_shape[0] input_tensor_shape = tf.TensorShape(input_tensor) batch_size, sequence_length, embedding_size = input_tensor_shape if not self._attention_head_size: # If attention_head is None, then make sure # it can be inferred from (embedding_size // self._num_heads) if embedding_size % self._num_heads != 0: raise ValueError( "The input size (%d) is not a multiple of the number of attention " "heads (%d)" % (embedding_size, self._num_heads) ) self._attention_head_size = int(embedding_size // self._num_heads) # Common kwargs common_kwargs = dict( bias_initializer=self._bias_initializer, kernel_regularizer=self._kernel_regularizer, bias_regularizer=self._bias_regularizer, activity_regularizer=self._activity_regularizer, kernel_constraint=self._kernel_constraint, bias_constraint=self._bias_constraint, ) # Self Attention Layer self._attention_layer = BartAttention( num_heads=self._num_heads, head_size=self._attention_head_size, dropout_rate=self._attention_dropout_rate, name="self_attention", is_training=self._is_training, use_decoder=self._use_decoder, use_auto_regressive=self._use_auto_regressive, use_dropout=self._use_dropout, **common_kwargs, ) # Dense layer self._attention_output_dense = dense_einsum.DenseEinsum( output_shape=self._hidden_size, name="self_attention_output", **common_kwargs ) # Attention Dropout self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) # Self Attention Norm self._attention_layer_norm = tf.keras.layers.LayerNormalization( name="self_attention_layer_norm", axis=-1, epsilon=self._layer_norm_epsilon, dtype=tf.float32, ) # Cross Attention for Decoder if self._use_decoder: # Cross Attention layer self._cross_attention_layer = BartAttention( num_heads=self._num_heads, head_size=self._attention_head_size, dropout_rate=self._attention_dropout_rate, name="cross_attention", is_training=self._is_training, use_auto_regressive=self._use_auto_regressive, use_decoder=self._use_decoder, use_dropout=self._use_dropout, **common_kwargs, ) # Dense self._cross_attention_output_dense = dense_einsum.DenseEinsum( output_shape=self._hidden_size, name="cross_attention_output", **common_kwargs ) # Norm self._cross_attention_layer_norm = tf.keras.layers.LayerNormalization( name="cross_attention_layer_norm", axis=-1, epsilon=self._layer_norm_epsilon, dtype=tf.float32, ) # Main Dense Layer after Attention, with activation self._intermediate_dense = dense_einsum.DenseEinsum( output_shape=self._intermediate_size, activation=self._intermediate_activation, # This layer is always float32 for numeric stability. dtype=tf.float32, name="intermediate", **common_kwargs, ) # intermediate Dense self._output_dense = dense_einsum.DenseEinsum(output_shape=self._hidden_size, name="output", **common_kwargs) self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate) # Use float32 in layernorm for numeric stability. self._output_layer_norm = tf.keras.layers.LayerNormalization( name="output_layer_norm", axis=-1, epsilon=self._layer_norm_epsilon, dtype=tf.float32 ) super(TransformerBART, self).build(input_shape) def get_config(self): config = { "hidden_size": self._hidden_size, "num_attention_heads": self._num_heads, "intermediate_size": self._intermediate_size, "intermediate_activation": self._intermediate_activation, "dropout_rate": self._dropout_rate, "attention_dropout_rate": self._attention_dropout_rate, "kernel_initializer": tf.keras.initializers.serialize(self._kernel_initializer), "bias_initializer": tf.keras.initializers.serialize(self._bias_initializer), "kernel_regularizer": tf.keras.regularizers.serialize(self._kernel_regularizer), "bias_regularizer": tf.keras.regularizers.serialize(self._bias_regularizer), "activity_regularizer": tf.keras.regularizers.serialize(self._activity_regularizer), "kernel_constraint": tf.keras.constraints.serialize(self._kernel_constraint), "bias_constraint": tf.keras.constraints.serialize(self._bias_constraint), "is_training": self.is_training, "use_auto_regressive": self._use_auto_regressive, } base_config = super(TransformerBART, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call_encoder(self, inputs, cache_key=None, cache_value=None): """ Training pipeline """ # b x s x h # b x s x s input_tensor, attention_mask = inputs # [from_tensor, to_tensor] attention_inputs = [input_tensor, input_tensor] if attention_mask is not None: attention_inputs.append(attention_mask) # attention_inputs = [from_tensor, to_tensor, attention_mask] ((b x s x 768)) attention_output, key, value = self._attention_layer( attention_inputs, cache_key=cache_key, cache_value=cache_value ) attention_output = self._attention_output_dense(attention_output) attention_output = self._attention_dropout(attention_output, training=self._use_dropout) attention_output = self._attention_layer_norm(input_tensor + attention_output) # mixed precision stability requires Normalization to be in tf.ffloat32 attention_output = tf.cast(attention_output, dtype=tf_utils.get_dtype()) intermediate_output = self._intermediate_dense(attention_output) layer_output = self._output_dense(intermediate_output) layer_output = self._output_dropout(layer_output) layer_output = self._output_layer_norm(layer_output + attention_output) return layer_output, key, value def call_decoder(self, inputs, cache_key=None, cache_value=None): """ Training pipeline """ input_tensor, attention_mask, encoder_output, decoder_encoder_mask = inputs # Decoder Self Attention (Call goes to bart_attention.py call_training) attention_inputs = [input_tensor, input_tensor] if attention_mask is not None: attention_inputs.append(attention_mask) attention_output, key, value = self._attention_layer( attention_inputs, cache_key=cache_key, cache_value=cache_value ) # Self Attention Dense + Norm attention_output = self._attention_output_dense(attention_output) attention_output = self._attention_dropout(attention_output, training=self.use_dropout) attention_output = self._attention_layer_norm(attention_output + input_tensor) if self._use_decoder: # Cross Attention attention_output_copy = tf.identity(attention_output, name="attention_output_copy") attention_inputs_for_decoder = [ attention_output_copy, encoder_output, decoder_encoder_mask, ] # For auto-regressive we need this # cache_key has to be zeros, because nothng # to cache in cross_attention cache_key_cross = None cache_value_cross = None if cache_key is not None and self._use_auto_regressive: cache_key_cross = tf.zeros_like(cache_key) cache_value_cross = tf.zeros_like(cache_value) attention_output, _, _ = self._cross_attention_layer( attention_inputs_for_decoder, cache_key=cache_key_cross, cache_value=cache_value_cross ) attention_output = self._cross_attention_output_dense(attention_output) attention_output = self._attention_dropout(attention_output, training=self.use_dropout) attention_output_copy = tf.cast(attention_output_copy, dtype=tf_utils.get_dtype()) attention_output = self._cross_attention_layer_norm(attention_output_copy + attention_output) attention_output = tf.cast(attention_output, dtype=tf_utils.get_dtype()) # Last Projection intermediate_output = self._intermediate_dense(attention_output) layer_output = self._output_dense(intermediate_output) layer_output = self._output_dropout(layer_output) layer_output = self._output_layer_norm(layer_output + attention_output) layer_output = tf.cast(layer_output, dtype=tf_utils.get_dtype()) return layer_output, key, value def call(self, inputs, mode="encoder", cache_key=None, cache_value=None): """Call Args: inputs ([embeddings 3D, attention_mask 3D]): List of [embeddings, attention_mask] mode (str, optional): [description]. Defaults to "encoder". cache_key ([type], optional): [description]. Defaults to None. cache_value ([type], optional): [description]. Defaults to None. Returns: [type]: [description] """ if self._use_decoder: outputs = self.call_decoder(inputs, cache_key=cache_key, cache_value=cache_value) else: outputs = self.call_encoder(inputs, cache_key=cache_key, cache_value=cache_value) return outputs
py
1a4df0804a4f7839afb525e324804e9a29fde223
#!/usr/bin/python """ Convert polarised CST element files to OSKAR scalar element pattern format. """ from __future__ import print_function import sys import numpy def load_cst_file(filename): """" Loads a CST element pattern file into a numpy matrix. Parameters ---------- filename : string Path of the CST element pattern file to load. Returns ------- Matrix of values from the CST file. """ f = open(filename, 'r') lines = f.readlines() f.close() X = [] for line in lines: values = line.split() if not len(values) == 8: continue else: x_all = numpy.array(values, dtype=numpy.dtype('f8')) X.append(x_all) return numpy.array(X, dtype=numpy.dtype('f8')) def convert(cst_file_in, scalar_file_out): """ Calculates a scalar element pattern file from a CST element pattern file Parameters ---------- cst_file_in : string Input CST format element pattern file scalar_file_out : string Output scalar format element pattern file Notes ----- This function is designed to be used to create scalar element input files for the oskar_fit_element_data application. """ # Load the CST element pattern data. X = load_cst_file(cst_file_in) # Only require columns for: # Theta, Phi, Abs(Theta), Phase(Theta), Abs(Phi), Phase(Phi) X = numpy.copy(X[:, [0, 1, 3, 4, 5, 6]]) # Discard any data at values of phi >= 360 degrees, # as any duplicated entries will cause this method to fail. X = X[X[:, 1] < 360.0, :] # Generate the rotated data for Y from X by adding 90 degrees to the phi # values Y = numpy.copy(X) Y[:, 1] += 90.0 Y[Y[:, 1] >= 360.0, 1] -= 360.0 # Linked column sort by phi and then theta for both X and Y. X = X[numpy.lexsort((X[:, 0], X[:, 1])), :] Y = Y[numpy.lexsort((Y[:, 0], Y[:, 1])), :] # Check that the coordinate columns in X and Y now match. assert numpy.sum(numpy.abs(X[:, 0] - Y[:, 0])) < 1e-6 assert numpy.sum(numpy.abs(X[:, 1] - Y[:, 1])) < 1e-6 # Generate scalar values from sorted data. X_theta = X[:, 2] * numpy.exp(1j * numpy.radians(X[:, 3])) X_phi = X[:, 4] * numpy.exp(1j * numpy.radians(X[:, 5])) Y_theta = Y[:, 2] * numpy.exp(1j * numpy.radians(Y[:, 3])) Y_phi = Y[:, 4] * numpy.exp(1j * numpy.radians(Y[:, 5])) s = X_theta * numpy.conj(X_theta) + X_phi * numpy.conj(X_phi) + \ Y_theta * numpy.conj(Y_theta) + Y_phi * numpy.conj(Y_phi) # Take the sqrt to convert to a 'voltage' s = numpy.sqrt(0.5 * s) s_amp = numpy.absolute(s) s_phase = numpy.angle(s, deg=True) # Write scalar values to file Columns = (theta, phi, amp, phase). o = numpy.column_stack((X[:, 0], X[:, 1], s_amp, s_phase)) numpy.savetxt(scalar_file_out, o, fmt=['%12.4f', '%12.4f', '%20.6e', '%12.4f']) if __name__ == "__main__": if len(sys.argv) < 3: print("Usage: oskar_convert_cst_to_scalar.py " "<input CST file> <output scalar file>") sys.exit(1) convert(sys.argv[1], sys.argv[2])
py
1a4df0dcc16cc7b0a25634c6058dfdca8e6c2dba
import asyncio from datetime import datetime import io import os from pathlib import Path from telethon import events, functions, types from telethon.tl.types import InputMessagesFilterDocument from . import * @bot.on(phoenix_cmd(pattern=r"cmds")) @bot.on(sudo_cmd(pattern=r"cmds", allow_sudo=True)) async def kk(event): if event.fwd_from: return reply_to_id = event.message.id if event.reply_to_msg_id: reply_to_id = event.reply_to_msg_id cmd = "ls phoenix/plugins" thumb = phoenix_logo process = await asyncio.create_subprocess_shell( cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await process.communicate() o = stdout.decode() _o = o.split("\n") o = "\n".join(_o) OUTPUT = f"List of Plugins in bot :- \n\n{o}\n\n<><><><><><><><><><><><><><><><><><><><><><><><>\nHELP:- If you want to know the commands for a plugin, do :- \n.plinfo <plugin name> without the < > brackets. \nJoin {hell_grp} for help." if len(OUTPUT) > 69: with io.BytesIO(str.encode(OUTPUT)) as out_file: out_file.name = "cmd_list.text" phoenix_file = await bot.send_file( event.chat_id, out_file, force_document=True, allow_cache=False, thumb=thumb, reply_to=reply_to_id, ) await edit_or_reply(phoenix_file, f"Output Too Large. This is the file for the list of plugins in bot.\n\n**BY :-** {PHOENIX_USER}") await event.delete() @bot.on(phoenix_cmd(pattern=r"send (?P<shortname>\w+)", outgoing=True)) @bot.on(sudo_cmd(pattern=r"send (?P<shortname>\w+)", allow_sudo=True)) async def send(event): if event.fwd_from: return message_id = event.message.id thumb = phoenix_logo input_str = event.pattern_match.group(1) omk = f"**• Plugin name ≈** `{input_str}`\n**• Uploaded by ≈** {phoenix_mention}\n\n⚡ **[ρнσєηιχ ]({chnl_link})** ⚡" the_plugin_file = "./hellbot/plugins/{}.py".format(input_str) if os.path.exists(the_plugin_file): lauda = await event.client.send_file( event.chat_id, the_plugin_file, thumb=thumb, caption=omk, force_document=True, allow_cache=False, reply_to=message_id, ) await event.delete() else: await eod(event, "File not found..... Kk vaii !!!") @bot.on(phoenix_cmd(pattern="install$", outgoing=True)) @bot.on(sudo_cmd(pattern="install$", allow_sudo=True)) async def install(event): if event.fwd_from: return a = "__Installing.__" b = 1 await event.edit(a) if event.fwd_from: return if event.reply_to_msg_id: try: downloaded_file_name = await event.client.download_media( # pylint:disable=E0602 await event.get_reply_message(), "./phoenix/plugins/" # pylint:disable=E0602 ) if "(" not in downloaded_file_name: path1 = Path(downloaded_file_name) shortname = path1.stem load_module(shortname.replace(".py", "")) if shortname in CMD_LIST: string = "**Commands found in** `{}`\n".format((os.path.basename(downloaded_file_name))) for i in CMD_LIST[shortname]: string += " • `" + i string += "`\n" if b == 1: a = "__Installing..__" b = 2 else: a = "__Installing...__" b = 1 await eor(event, a) return await eor(event, f"✅ **Installed module** :- `{shortname}` \n✨ BY :- {phoenix_mention}\n\n{string}\n\n ⚡ **[ʟɛɢɛռɖaʀʏ ᴀғ ρнσєηιχ]({chnl_link})** ⚡", link_preview=False) return await eor(event, f"Installed module `{os.path.basename(downloaded_file_name)}`") else: os.remove(downloaded_file_name) return await eod(event, f"**Failed to Install** \n`Error`\nModule already installed or unknown format") except Exception as e: await eod(event, f"**Failed to Install** \n`Error`\n{str(e)}") return os.remove(downloaded_file_name) @bot.on(phoenix_cmd(pattern=r"uninstall (?P<shortname>\w+)", outgoing=True)) @bot.on(sudo_cmd(pattern=r"uninstall (?P<shortname>\w+)", allow_sudo=True)) async def uninstall(kraken): if kraken.fwd_from: return shortname = kraken.pattern_match["shortname"] dir_path =f"./phoenix/plugins/{shortname}.py" try: remove_plugin(shortname) os.remove(dir_path) await eod(kraken, f"Uninstalled `{shortname}` successfully") except OSError as e: await kraken.edit("Error: %s : %s" % (dir_path, e.strerror)) @bot.on(phoenix_cmd(pattern=r"unload (?P<shortname>\w+)$")) @bot.on(sudo_cmd(pattern=r"unload (?P<shortname>\w+)$", allow_sudo=True)) async def unload(event): if event.fwd_from: return shortname = event.pattern_match["shortname"] try: remove_plugin(shortname) await event.edit(f"Successfully unloaded `{shortname}`") except Exception as e: await event.edit( "Successfully unloaded {shortname}\n{}".format( shortname, str(e) ) ) @bot.on(phoenix_cmd(pattern=r"load (?P<shortname>\w+)$")) @bot.on(sudo_cmd(pattern=r"load (?P<shortname>\w+)$", allow_sudo=True)) async def load(event): if event.fwd_from: return shortname = event.pattern_match["shortname"] try: try: remove_plugin(shortname) except BaseException: pass load_module(shortname) await event.edit(f"Successfully loaded `{shortname}`") except Exception as e: await event.edit( f"Sorry, could not load {shortname} because of the following error.\n{str(e)}" ) CmdHelp("core").add_command( "install", "<reply to a .py file>", "Installs the replied python file if suitable to Hêllẞø†'s codes." ).add_command( "uninstall", "<plugin name>", "Uninstalls the given plugin from ρнσєηιχ. To get that again do .restart", "uninstall alive" ).add_command( "load", "<plugin name>", "Loades the unloaded plugin to your userbot", "load alive" ).add_command( "unload", "<plugin name>", "Unloads the plugin from your userbot", "unload alive" ).add_command( "send", "<file name>", "Sends the given file from your userbot server, if any.", "send alive" ).add_command( "cmds", None, "Gives out the list of modules in HellBot." ).add_warning( "❌ Install External Plugin On Your Own Risk. We won't help if anything goes wrong after installing a plugin." ).add() # hellbot
py
1a4df0dedc1ec1a2c49ba6736a95eeaa019a6e5f
import datetime import django from django.test import TestCase from SteamProphet.apps.SteamProphet.models import VotingPeriod, Week from .. import services class TestServices(TestCase): def test_getCurrentVotingPeriodReturnsNoneIfThereIsNoTimePeriod(self): self.assertIsNone(services.getCurrentVotingPeriod()) def test_getCurrentVotingPeriodReturnsNoneIfAllVotingPeriodsAreInTheFuture(self): now = django.utils.timezone.now() week1 = Week.objects.create(week=1) week2 = Week.objects.create(week=2) VotingPeriod.objects.create( week=week1, start=now + datetime.timedelta(days=7), end=now + datetime.timedelta(days=10) ) VotingPeriod.objects.create( week=week2, start=now + datetime.timedelta(days=14), end=now + datetime.timedelta(days=17) ) self.assertIsNone(services.getCurrentVotingPeriod()) def test_getCurrentVotingPeriodReturnsNoneIfAllVotingPeriodsAreInThePast(self): now = django.utils.timezone.now() week1 = Week.objects.create(week=1) week2 = Week.objects.create(week=2) VotingPeriod.objects.create( week=week1, start=now - datetime.timedelta(days=14), end=now - datetime.timedelta(days=17) ) VotingPeriod.objects.create( week=week2, start=now - datetime.timedelta(days=7), end=now - datetime.timedelta(days=10) ) self.assertIsNone(services.getCurrentVotingPeriod()) def test_getCurrentVotingPeriodsReturnsTheCurrentVotingPeriodIfVotingPeriodIsNow(self): now = django.utils.timezone.now() week1 = Week.objects.create(week=1) week2 = Week.objects.create(week=2) VotingPeriod.objects.create( week=week1, start=now - datetime.timedelta(days=7), end=now - datetime.timedelta(days=10) ) votingPeriod2 = VotingPeriod.objects.create( week=week2, start=now - datetime.timedelta(days=2), end=now + datetime.timedelta(days=1), ) self.assertEqual(votingPeriod2, services.getCurrentVotingPeriod())
py
1a4df0e13633e066219b75cd501d5a03920a7309
import os import pwd class NoSuchUser(Exception): pass class User(object): def __init__(self, uid, gid, username, homedir): self.uid = uid self.gid = gid self.username = username self.homedir = homedir def get_pegasus_dir(self): return os.path.join(self.homedir, ".pegasus") def get_ensembles_dir(self): return os.path.join(self.homedir, ".pegasus", "ensembles") def get_master_db(self): return os.path.join(self.homedir, ".pegasus", "workflow.db") def get_master_db_url(self): return "sqlite:///%s" % self.get_master_db() def __user_from_pwd(pw): return User(pw.pw_uid, pw.pw_gid, pw.pw_name, pw.pw_dir) def get_user_by_uid(uid): try: pw = pwd.getpwuid(uid) return __user_from_pwd(pw) except KeyError as e: raise NoSuchUser(uid) def get_user_by_username(username): try: pw = pwd.getpwnam(username) return __user_from_pwd(pw) except KeyError: raise NoSuchUser(username) except TypeError: raise NoSuchUser(username)
py
1a4df29249c103bfc14315f8459e1afca6b45fca
#!/usr/bin/python # # sslsniff Captures data on read/recv or write/send functions of OpenSSL and # GnuTLS # For Linux, uses BCC, eBPF. # # USAGE: sslsniff.py [-h] [-p PID] [-c COMM] [-o] [-g] [-d] # # Licensed under the Apache License, Version 2.0 (the "License") # # 12-Aug-2016 Adrian Lopez Created this. # 13-Aug-2016 Mark Drayton Fix SSL_Read # 17-Aug-2016 Adrian Lopez Capture GnuTLS and add options # from __future__ import print_function import ctypes as ct from bcc import BPF import argparse # arguments examples = """examples: ./sslsniff # sniff OpenSSL and GnuTLS functions ./sslsniff -p 181 # sniff PID 181 only ./sslsniff -c curl # sniff curl command only ./sslsniff --no-openssl # don't show OpenSSL calls ./sslsniff --no-gnutls # don't show GnuTLS calls """ parser = argparse.ArgumentParser( description="Sniff SSL data", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-p", "--pid", type=int, help="sniff this PID only.") parser.add_argument("-c", "--comm", help="sniff only commands matching string.") parser.add_argument("-o", "--no-openssl", action="store_false", dest="openssl", help="do not show OpenSSL calls.") parser.add_argument("-g", "--no-gnutls", action="store_false", dest="gnutls", help="do not show GnuTLS calls.") parser.add_argument('-d', '--debug', dest='debug', action='count', default=0, help='debug mode.') args = parser.parse_args() prog = """ #include <linux/ptrace.h> #include <linux/sched.h> /* For TASK_COMM_LEN */ struct probe_SSL_data_t { u64 timestamp_ns; u32 pid; char comm[TASK_COMM_LEN]; char v0[464]; u32 len; }; BPF_PERF_OUTPUT(perf_SSL_write); int probe_SSL_write(struct pt_regs *ctx, void *ssl, void *buf, int num) { u32 pid = bpf_get_current_pid_tgid(); FILTER struct probe_SSL_data_t __data = {0}; __data.timestamp_ns = bpf_ktime_get_ns(); __data.pid = pid; __data.len = num; bpf_get_current_comm(&__data.comm, sizeof(__data.comm)); if ( buf != 0) { bpf_probe_read(&__data.v0, sizeof(__data.v0), buf); } perf_SSL_write.perf_submit(ctx, &__data, sizeof(__data)); return 0; } BPF_PERF_OUTPUT(perf_SSL_read); BPF_HASH(bufs, u32, u64); int probe_SSL_read_enter(struct pt_regs *ctx, void *ssl, void *buf, int num) { u32 pid = bpf_get_current_pid_tgid(); FILTER bufs.update(&pid, (u64*)&buf); return 0; } int probe_SSL_read_exit(struct pt_regs *ctx, void *ssl, void *buf, int num) { u32 pid = bpf_get_current_pid_tgid(); FILTER u64 *bufp = bufs.lookup(&pid); if (bufp == 0) { return 0; } struct probe_SSL_data_t __data = {0}; __data.timestamp_ns = bpf_ktime_get_ns(); __data.pid = pid; __data.len = PT_REGS_RC(ctx); bpf_get_current_comm(&__data.comm, sizeof(__data.comm)); if (bufp != 0) { bpf_probe_read(&__data.v0, sizeof(__data.v0), (char *)*bufp); } bufs.delete(&pid); perf_SSL_read.perf_submit(ctx, &__data, sizeof(__data)); return 0; } """ if args.pid: prog = prog.replace('FILTER', 'if (pid != %d) { return 0; }' % args.pid) else: prog = prog.replace('FILTER', '') if args.debug: print(prog) b = BPF(text=prog) # It looks like SSL_read's arguments aren't available in a return probe so you # need to stash the buffer address in a map on the function entry and read it # on its exit (Mark Drayton) # if args.openssl: b.attach_uprobe(name="ssl", sym="SSL_write", fn_name="probe_SSL_write", pid=args.pid or -1) b.attach_uprobe(name="ssl", sym="SSL_read", fn_name="probe_SSL_read_enter", pid=args.pid or -1) b.attach_uretprobe(name="ssl", sym="SSL_read", fn_name="probe_SSL_read_exit", pid=args.pid or -1) if args.gnutls: b.attach_uprobe(name="gnutls", sym="gnutls_record_send", fn_name="probe_SSL_write", pid=args.pid or -1) b.attach_uprobe(name="gnutls", sym="gnutls_record_recv", fn_name="probe_SSL_read_enter", pid=args.pid or -1) b.attach_uretprobe(name="gnutls", sym="gnutls_record_recv", fn_name="probe_SSL_read_exit", pid=args.pid or -1) # define output data structure in Python TASK_COMM_LEN = 16 # linux/sched.h MAX_BUF_SIZE = 464 # Limited by the BPF stack # Max size of the whole struct: 512 bytes class Data(ct.Structure): _fields_ = [ ("timestamp_ns", ct.c_ulonglong), ("pid", ct.c_uint), ("comm", ct.c_char * TASK_COMM_LEN), ("v0", ct.c_char * MAX_BUF_SIZE), ("len", ct.c_uint) ] # header print("%-12s %-18s %-16s %-6s %-6s" % ("FUNC", "TIME(s)", "COMM", "PID", "LEN")) # process event start = 0 def print_event_write(cpu, data, size): print_event(cpu, data, size, "WRITE/SEND") def print_event_read(cpu, data, size): print_event(cpu, data, size, "READ/RECV") def print_event(cpu, data, size, rw): global start event = ct.cast(data, ct.POINTER(Data)).contents # Filter events by command if args.comm: if not args.comm == event.comm: return if start == 0: start = event.timestamp_ns time_s = (float(event.timestamp_ns - start)) / 1000000000 s_mark = "-" * 5 + " DATA " + "-" * 5 e_mark = "-" * 5 + " END DATA " + "-" * 5 truncated_bytes = event.len - MAX_BUF_SIZE if truncated_bytes > 0: e_mark = "-" * 5 + " END DATA (TRUNCATED, " + str(truncated_bytes) + \ " bytes lost) " + "-" * 5 print("%-12s %-18.9f %-16s %-6d %-6d\n%s\n%s\n%s\n\n" % (rw, time_s, event.comm.decode(), event.pid, event.len, s_mark, event.v0.decode(), e_mark)) b["perf_SSL_write"].open_perf_buffer(print_event_write) b["perf_SSL_read"].open_perf_buffer(print_event_read) while 1: b.kprobe_poll()
py
1a4df517bff40e98dc117da6a07fcdc03069bb5c
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import json import time import logging from . import builder_config from .utils import save_profiled_results, merge_info from nn_meter.builder.backends import connect_backend logging = logging.getLogger("nn-Meter") def convert_models(backend, models, mode = 'predbuild', broken_point_mode = False): """ convert the model to the needed format by backend, in order to increase efficiency when profiling on device. @params: backend (subclass instance of BaseBackend): applied backend instance models (str or dict): the Dict of models or the path of the json file about models information mode (str): the mode for running models, including ['ruletest', 'predbuild'] broken_point_mode (boolean): broken_point_mode will skip all models have attributes "converted_model" """ if isinstance(models, str): save_name = os.path.basename(models) with open(models, 'r') as fp: models = json.load(fp) else: save_name = "converted_results.json" workspace_path = builder_config.get('WORKSPACE', mode) model_save_path = os.path.join(workspace_path, 'models') os.makedirs(model_save_path, exist_ok=True) info_save_path = os.path.join(workspace_path, "results") os.makedirs(info_save_path, exist_ok=True) # convert models count = 0 for module in models.values(): for id, model in module.items(): if broken_point_mode and 'converted_model' in model: continue try: model_path = model['model'] converted_model = backend.convert_model(model_path, model_save_path, model['shapes']) model['converted_model'] = converted_model except Exception as e: open(os.path.join(info_save_path, "convert_error.log"), 'a').write(f"{id}: {e}\n") # save information to json file for per 50 models count += 1 if count % 50 == 0: with open(os.path.join(info_save_path, save_name), 'w') as fp: json.dump(models, fp, indent=4) logging.keyinfo(f"{count} models complete. Still converting... Save the intermediate results to {os.path.join(info_save_path, save_name)}.") with open(os.path.join(info_save_path, save_name), 'w') as fp: json.dump(models, fp, indent=4) logging.keyinfo(f"Complete convert all {count} models. Save the intermediate results to {os.path.join(info_save_path, save_name)}.") # save information to json file with open(os.path.join(info_save_path, save_name), 'w') as fp: json.dump(models, fp, indent=4) logging.keyinfo(f"Save the converted models information to {os.path.join(info_save_path, save_name)}") return models def profile_models(backend, models, mode = 'ruletest', metrics = ["latency"], save_name = None, have_converted = False, log_frequency = 50, broken_point_mode = False, **kwargs): """ run models with given backend and return latency of testcase models @params: backend (subclass instance of BaseBackend): applied backend instance models (str or dict): the Dict of models or the path of the json file about models information mode (str): the mode for running models, including ['ruletest', 'predbuild'] metrics (list): required metrics to report. We only support latency for metric by now. save_name (str): the save name to store profiled results. The whole path should be `<workspace>/<mode-folder>/results/<save-name>` have_converted (boolean): if the model have been converted to the needed format by backend, the model will not be converted before profiling. The model path of `model['converted_model']` will be profiled on device directly. The conversion of model could be done by appling `nn_meter.builder.convert_models` broken_point_mode (boolean): broken_point_mode will check file in `<workspace>/<mode-folder>/results/<save-name>` (if the file exists) and skip all models already have attributes "latency" **kwargs: arguments for profiler, such as `taskset` and `close_xnnpack` in TFLite profiler """ if isinstance(models, str): with open(models, 'r') as fp: models = json.load(fp) workspace_path = builder_config.get('WORKSPACE', mode) model_save_path = os.path.join(workspace_path, 'models') os.makedirs(model_save_path, exist_ok=True) info_save_path = os.path.join(workspace_path, "results") os.makedirs(info_save_path, exist_ok=True) # in broken point model, if the output file `<workspace>/<mode-folder>/results/<save-name>` exists, # load the existing latency and skip these model in profiling if broken_point_mode and os.path.isfile(os.path.join(info_save_path, save_name)): from nn_meter.builder.backend_meta.utils import read_profiled_results with open(os.path.join(info_save_path, save_name), 'r') as fp: profiled_models = read_profiled_results(json.load(fp)) for module_key, module in models.items(): if module_key not in profiled_models: continue for id, model in module.items(): if id in profiled_models[module_key]: model.update(profiled_models[module_key][id]) # profile models and get metric results count = 0 detail = builder_config.get('DETAIL', mode) save_name = save_name or "profiled_results.json" logging.info("Profiling ...") for module in models.values(): for id, model in module.items(): if broken_point_mode and 'latency' in model and model['latency'].avg != 0: continue if have_converted: # the models have been converted for the backend try: model_path = model['converted_model'] profiled_res = backend.profile(model_path, metrics, model['shapes'], **kwargs) for metric in metrics: model[metric] = profiled_res[metric] time.sleep(0.2) count += 1 except Exception as e: open(os.path.join(info_save_path, "profile_error.log"), 'a').write(f"{id}: {e}\n") else: # the models have not been converted try: model_path = model['model'] profiled_res = backend.profile_model_file(model_path, model_save_path, model['shapes'], metrics, **kwargs) for metric in metrics: model[metric] = profiled_res[metric] time.sleep(0.2) count += 1 except Exception as e: open(os.path.join(info_save_path, "profile_error.log"), 'a').write(f"{id}: {e}\n") # save information to json file for per 50 models if count > 0 and count % log_frequency == 0: save_profiled_results(models, os.path.join(info_save_path, save_name), detail, metrics) logging.keyinfo(f"{count} models complete. Still profiling... Save the intermediate results to {os.path.join(info_save_path, save_name)}.") # save information to json file save_profiled_results(models, os.path.join(info_save_path, save_name), detail, metrics) logging.keyinfo(f"All {count} models profiling complete. Save all success profiled results to {os.path.join(info_save_path, save_name)}.") return models def sample_and_profile_kernel_data(kernel_type, sample_num, backend, sampling_mode = 'prior', configs = None, mark = '', detail = True, metrics = ["latency"], **kwargs): ''' sample kernel configs and profile kernel model based on configs ''' from nn_meter.builder.kernel_predictor_builder import generate_config_sample # sample configs for kernel and generate models models = generate_config_sample(kernel_type, sample_num, mark=mark, sampling_mode=sampling_mode, configs=configs) # connect to backend, run models and get latency backend = connect_backend(backend_name=backend) profiled_results = profile_models(backend, models, mode='predbuild', metrics=metrics, save_name=f"profiled_{kernel_type}.json") return profiled_results def build_predictor_for_kernel(kernel_type, backend, init_sample_num = 1000, finegrained_sample_num = 10, iteration = 5, error_threshold = 0.1, predict_label = "latency", mark = ""): """ Build latency predictor for given kernel. This method contains three main steps: 1. sample kernel configs and profile kernel model based on configs; 2. initialize latency predictor of kernel based on the profiled data; 3. adopt adaptive sampler with iteratively doing step 1 for finegrained sampling to improve predictor performance @params kernel_type (str): the type of kernel backend (str): the name of backend instance to profile models init_sample_num (int, optional): the data size for predictor initialization. Defaults to 1000. finegrained_sample_num (int, optional): the data size for adaptive sampling. For each data with error higher than error_threshold, #finegrained_sample_num data will be generated based the the large error data. Defaults to 10. iteration (int, optional): the iteration for sampling and training. Initial sampling is regarded as iteration 1, thus `iteration == 2` means one iteration for adaptive sampling. Defaults to 5. error_threshold (float, optional): the threshold of large error. Defaults to 0.2. predict_label (str): the predicting label to build kernel predictor. Defaults to "latency" """ from nn_meter.builder.kernel_predictor_builder import build_predictor_by_data workspace_path = builder_config.get('WORKSPACE', 'predbuild') mark = mark if mark == "" else "_" + mark # init predictor builder with prior data sampler kernel_data = sample_and_profile_kernel_data(kernel_type, init_sample_num, backend, sampling_mode='prior', mark=f'prior{mark}') # use current sampled data to build regression model, and locate data with large errors in testset predictor, acc10, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend, error_threshold=error_threshold, mark=f'prior{mark}', save_path=os.path.join(workspace_path, "results"), predict_label=predict_label) logging.keyinfo(f'Iteration 0: acc10 {acc10}, error_configs number: {len(error_configs)}') for i in range(1, iteration): # finegrained sampling and profiling for large error data new_kernel_data = sample_and_profile_kernel_data(kernel_type, finegrained_sample_num, backend, sampling_mode='finegrained', configs=error_configs, mark=f'finegrained{i}{mark}') # merge finegrained data with previous data and build new regression model kernel_data = merge_info(new_info=new_kernel_data, prev_info=kernel_data) predictor, acc10, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend, error_threshold=error_threshold, mark=f'finegrained{i}{mark}', save_path=os.path.join(workspace_path, "results"), predict_label=predict_label) logging.keyinfo(f'Iteration {i}: acc10 {acc10}, error_configs number: {len(error_configs)}') return predictor, kernel_data def build_initial_predictor_by_data(kernel_type, backend = None, init_sample_num = 20, error_threshold = 0.1, mark = '', predict_label = "latency"): return build_predictor_for_kernel(kernel_type, backend, init_sample_num=init_sample_num, iteration=1, error_threshold=error_threshold, predict_label=predict_label, mark=f'{mark}') def build_adaptive_predictor_by_data(kernel_type, kernel_data, backend = None, finegrained_sample_num = 20, error_threshold = 0.1, mark = '', predict_label = "latency"): """ Run adaptive sampler in one iteration based """ workspace_path = builder_config.get('WORKSPACE', 'predbuild') save_path = os.path.join(workspace_path, "results") from nn_meter.builder.kernel_predictor_builder import build_predictor_by_data, collect_kernel_data _, _, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend = backend, error_threshold=error_threshold, save_path=None, predict_label=predict_label) new_kernel_data = sample_and_profile_kernel_data(kernel_type, finegrained_sample_num, backend, sampling_mode='finegrained', configs=error_configs, mark=mark) # merge finegrained data with previous data and build new regression model mark = mark if mark == "" else "_" + mark kernel_data = merge_info(new_info=new_kernel_data, prev_info=collect_kernel_data(kernel_data)) predictor, acc10, error_configs = build_predictor_by_data(kernel_type, kernel_data, backend, error_threshold=error_threshold, mark=f'finegrained{mark}', save_path=save_path, predict_label=predict_label) logging.keyinfo(f'{mark}: acc10 {acc10}, error_configs number: {len(error_configs)}') return predictor, kernel_data def build_latency_predictor(backend): """ Build latency predictor for all kernel in `<workspace-path>/configs/predictorbuild_config.yaml` @params backend (str): the name of backend instance to profile models """ kernels = builder_config.get("KERNELS", 'predbuild') for kernel_type in kernels: init_sample_num = kernels[kernel_type]["INIT_SAMPLE_NUM"] finegrained_sample_num = kernels[kernel_type]["FINEGRAINED_SAMPLE_NUM"] iteration = kernels[kernel_type]["ITERATION"] error_threshold = kernels[kernel_type]["ERROR_THRESHOLD"] build_predictor_for_kernel( kernel_type, backend, init_sample_num = init_sample_num, finegrained_sample_num = finegrained_sample_num, iteration = iteration, error_threshold = error_threshold )
py
1a4df58050b23efc732bc8ddc186f0479a907e57
from setuptools import setup, find_packages def readme(): with open('README.md') as f: return f.read() setup(name='hpfspecmatch', version='0.1.1', description='Matching HPF Spectra', long_description=readme(), url='https://github.com/gummiks/hpfspecmatch/', author='Gudmundur Stefansson', author_email='[email protected]', install_requires=['barycorrpy','emcee','lmfit','hpfspec','crosscorr','pyde','astroquery','glob2'], packages=['hpfspecmatch'], license='GPLv3', classifiers=['Topic :: Scientific/Engineering :: Astronomy'], keywords='HPF Spectra Astronomy', dependency_links=['http://github.com/user/repo/tarball/master#egg=package-1.0'], include_package_data=True, zip_safe=False )
py
1a4df5ddcb2550b666a8e5d6b60c78d60e0966e3
import numpy as np class KNN: """ K-neariest-neighbor classifier using L1 loss """ def __init__(self, k=1): self.k = k def fit(self, X, y): self.train_X = X self.train_y = y def predict(self, X, num_loops=0): ''' Uses the KNN model to predict clases for the data samples provided Arguments: X, np array (num_samples, num_features) - samples to run through the model num_loops, int - which implementation to use Returns: predictions, np array of ints (num_samples) - predicted class for each sample ''' if num_loops == 0: dists = self.compute_distances_no_loops(X) elif num_loops == 1: dists = self.compute_distances_one_loop(X) else: dists = self.compute_distances_two_loops(X) if self.train_y.dtype == np.bool: return self.predict_labels_binary(dists) else: return self.predict_labels_multiclass(dists) def compute_distances_two_loops(self, X): ''' Computes L1 distance from every sample of X to every training sample Uses simplest implementation with 2 Python loops Arguments: X, np array (num_test_samples, num_features) - samples to run Returns: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample ''' num_train = self.train_X.shape[0] num_test = X.shape[0] dists = np.zeros((num_test, num_train), np.float32) for i_test in range(num_test): for i_train in range(num_train): dists[i_test][i_train] = np.sum(np.abs(X[i_test] - self.train_X[i_train])) return dists def compute_distances_one_loop(self, X): ''' Computes L1 distance from every sample of X to every training sample Vectorizes some of the calculations, so only 1 loop is used Arguments: X, np array (num_test_samples, num_features) - samples to run Returns: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample ''' num_train = self.train_X.shape[0] num_test = X.shape[0] dists = np.zeros((num_test, num_train), np.float32) for i_test in range(num_test): dists[i_test] = np.sum(np.abs(X[i_test] - self.train_X), axis=1) return dists def compute_distances_no_loops(self, X): ''' Computes L1 distance from every sample of X to every training sample Fully vectorizes the calculations using numpy Arguments: X, np array (num_test_samples, num_features) - samples to run Returns: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample ''' num_train = self.train_X.shape[0] num_test = X.shape[0] # Using float32 to to save memory - the default is float64 dists = np.zeros((num_test, num_train), np.float32) dists = np.abs(X[:, None] - self.train_X).sum(-1) return dists def predict_labels_binary(self, dists): ''' Returns model predictions for binary classification case Arguments: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample Returns: pred, np array of bool (num_test_samples) - binary predictions for every test sample ''' num_test = dists.shape[0] pred = np.zeros(num_test, np.bool) for i in range(num_test): pred[i] = self.train_y[np.argsort(dists[i])[:self.k]].sum() > self.k / 2 return pred def predict_labels_multiclass(self, dists): ''' Returns model predictions for multi-class classification case Arguments: dists, np array (num_test_samples, num_train_samples) - array with distances between each test and each train sample Returns: pred, np array of int (num_test_samples) - predicted class index for every test sample ''' num_test = dists.shape[0] num_test = dists.shape[0] pred = np.zeros(num_test, np.int) for i in range(num_test): # TODO: Implement choosing best class based on k # nearest training samples pass return pred
py
1a4df697b38726cb4c905f66b3cc03ed383f88b9
def BMI_calculator(weight, height): """ Function to calculate the BMI of an individual given their respective weight (lb) and height (in)""" # Calculate BMI using lb / inches equation bmi = ((weight)/(height * height)) * 703 return bmi
py
1a4df7913743e00adb3d3be3ffc09e6782387687
"""Class :py:class:`CMDBBUtils` utilities for calib manager DB methods ============================================================================== Usage :: # Test: python lcls2/psana/psana/graphqt/CMDBUtils.py # Import from psana.graphqt.CMDBUtils import dbu # See test at the EOF See: - :class:`CMWMain` - :class:`CMWConfig` - `on github <https://github.com/slac-lcls/lcls2>`_. Created on 2018-04-10 by Mikhail Dubrovin """ import logging logger = logging.getLogger(__name__) #_name = 'DCMDBUtils' #from psana.pyalgos.generic.Logger import logger import psana.pscalib.calib.MDBUtils as dbu ObjectId = dbu.ObjectId connect_to_server = dbu.connect_to_server #database_names = dbu.database_names database = dbu.database #collection_names = dbu.collection_names collection = dbu.collection timestamp_id = dbu.timestamp_id doc_add_id_ts = dbu.doc_add_id_ts db_prefixed_name = dbu.db_prefixed_name time_and_timestamp= dbu.time_and_timestamp exportdb = dbu.exportdb importdb = dbu.importdb out_fname_prefix = dbu.out_fname_prefix save_doc_and_data_in_file = dbu.save_doc_and_data_in_file #insert_data_and_doc = dbu.insert_data_and_doc #document_info = dbu.document_info #db_prefixed_name = dbu.db_prefixed_name # ('') #delete_databases = dbu.delete_databases # (list_db_names) #delete_collections= dbu.delete_collections # (dic_db_cols) #collection_info = dbu.collection_info # (client, dbname, colname) from psana.graphqt.CMConfigParameters import cp def connect_client(host=None, port=None, user=cp.user, upwd=cp.upwd): # user=dbu.cc.USERNAME _host = cp.cdb_host.value() if host is None else host _port = cp.cdb_port.value() if port is None else port #logger.debug('CMDBBUtils: Connect client to host: %s port: %d user: %s upwd: %s' % (_host, _port, user, upwd)) return dbu.connect_to_server(_host, _port, user, upwd) # if cp.upwd else dbu.connect_to_server(_host, _port, cp.user) def database_names(client=None): """ """ if client is None: client = connect_client() return dbu.database_names(client) def collection_names(db): """ """ if isinstance(db, str): client = connect_client() db = dbu.database(client, db) return dbu.collection_names(db) def delete_databases(list_db_names): """Delete databases specified in the list_db_names """ client = connect_client() logger.debug('Delete databases:\n %s' % ('\n '.join(list_db_names))) dbu.delete_databases(client, list_db_names) def delete_collections(dic_db_cols): """Delete collections specified in the dic_db_cols consisting of pairs {dbname:lstcols} """ msg = 'Delete collections:' client = connect_client() for dbname, lstcols in dic_db_cols.items(): db = dbu.database(client, dbname) msg += '\nFrom database: %s delete collections:\n %s' % (dbname, '\n '.join(lstcols)) dbu.delete_collections(db, lstcols) logger.debug(msg) def delete_documents(dbname, colname, doc_ids): """Delete documents with _id-s in doc_ids from dbname, colname """ #logger.debug('Deleting documents:\n %s' % ('\n '.join(doc_ids))) client = connect_client() db, fs = dbu.db_and_fs(client, dbname) col = collection(db, colname) #msg = 'Deleted documents from db: %s col: %s' % (dbname, colname) for s in doc_ids: oid = ObjectId(s) doc = dbu.find_doc(col, query={'_id':oid}) if doc is None: continue #msg += '\n %s and its data' % doc.get('_id', 'N/A') dbu.del_document_data(doc, fs) dbu.delete_document_from_collection(col, oid) #logger.debug(msg) def insert_document_and_data(dbname, colname, doc, data): client = connect_client() db, fs = dbu.db_and_fs(client, dbname) col = collection(db, colname) id_data, id_doc = dbu.insert_data_and_doc(data, fs, col, **doc) return id_data, id_doc def get_data_for_doc(dbname, doc): client = connect_client() db, fs = dbu.db_and_fs(client, dbname) return dbu.get_data_for_doc(fs, doc) def collection_info(dbname, colname): """Delete collections specified in the dic_db_cols consisting of pairs {dbname:lstcols} """ client = connect_client() return dbu.collection_info(client, dbname, colname) def list_of_documents(dbname, colname): client = connect_client() db = database(client, dbname) #db, fs = dbu.db_and_fs(client, dbname='cdb-cxi12345') col = collection(db, colname) docs = col.find().sort('_id', dbu.DESCENDING) return [d for d in docs] def document_info(doc, keys=('time_sec','time_stamp','experiment',\ 'detector','ctype','run','id_data_ts','data_type','data_dtype', '_id'),\ fmt='%10s %24s %11s %24s %16s %4s %30s %10s %10s %24s'): """The same as dbu.document_info, but with different default parameters (added _id). """ return dbu.document_info(doc, keys, fmt) # EOF
py
1a4df870e26b739d125d8729dd9c207a718d6125
# Copyright 2021 The Private Cardinality Estimation Framework Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for data sets. Represents real or simulated impression log data for multiple publishers. """ from collections import defaultdict from copy import deepcopy from os import listdir from os.path import isfile, join from pathlib import Path from typing import Dict from typing import Iterable from typing import List from wfa_planning_evaluation_framework.data_generators.publisher_data import ( PublisherData, ) from wfa_planning_evaluation_framework.models.reach_point import ReachPoint class DataSet: """Real or simulated impression log data for multiple publishers. A DataSet represents a real or simulated configuration of impression log data for a collection of related campaigns across multiple publishers. It represents the basic unit across which modeling strategies are compared. It is expected that this class will be sub-classed for each of the different types of publisher overlap models that will be investigate. Thus, we might have an IndependentDataSet, a SequentiallyCorrelatedDataSet, etc. """ def __init__(self, publisher_data_list: Iterable[PublisherData], name: str = None): """Constructor Args: publisher_data_list: An iterable list of PublisherDatas, one for each of the publishers that comprise this DataSet. name: If specified, a human-readable name that will be associated to this DataSet. For example, it could be an encoding of the parameters that were used to create this DataSet, such as "homog_p=10_rep=3". If no name is given, then a random digit string is assigned as the name. """ self._data = deepcopy(publisher_data_list) total_audience = set() for pub in self._data: total_audience.update([id for id, _ in pub._data]) self._maximum_reach = len(total_audience) if name: self._name = name else: self._name = "{:012d}".format(randint(0, 1e12)) @property def publisher_count(self): """Number of publishers represented in this DataSet.""" return len(self._data) @property def maximum_reach(self): """Total number of reachable people across all publishers.""" return self._maximum_reach @property def name(self): """Name of this DataSet.""" return self._name def spend_by_impressions(self, impressions: Iterable[int]) -> List[float]: """Returns spend vector corresponding to a given impression vector. Args: impressions: Iterable of hypothetical impression buys, having one value per publisher. Returns: List of corresponding spends. If I is the vector of impressions and S is the returned vector of spends, then S[k] is the amount that would need to be spent with the k-th publisher to obtain I[k] impressions. """ return [ self._data[i].spend_by_impressions(impressions[i]) for i in range(len(self._data)) ] def impressions_by_spend(self, spends: Iterable[float]) -> List[int]: """Returns impression vector corresponding to a given spend vector. Args: spends: Iterable of hypothetical spend amounts, having one value per publisher. Returns: List of corresponding impression counts. If S is the vector of spends and I is the returned vector of impression counts, then I[k] is the number of impressions that would be obtained for a spend of S[k] with publisher k. """ return [ self._data[i].impressions_by_spend(spends[i]) for i in range(len(self._data)) ] def reach_by_impressions( self, impressions: Iterable[int], max_frequency: int = 10 ) -> ReachPoint: """Number of people reached for a given impression count. Args: impressions: A list of impression counts. The length of the list must equal the value of publisher_count. Specifies the number of impressions that each publisher will deliver. max_frequency: int, The maximum frequency that should be counted. All frequencies about this amount will be grouped into a single bucket. Returns: A ReachPoint object representing the k+ reach for each frequency in the range 1..max_frequency. """ if len(impressions) != self.publisher_count: raise ValueError( "Invalid impression vector length. Got {}, expected {}".format( len(impressions), self.publisher_count ) ) counts = defaultdict(int) spends = [] for i, imp in enumerate(impressions): spends.append(self._data[i].spend_by_impressions(imp)) for id, freq in self._data[i].user_counts_by_impressions(imp).items(): counts[id] += freq kplus_reaches = self._counts_to_histogram(counts, max_frequency) return ReachPoint(impressions, kplus_reaches, spends) def _counts_to_histogram( self, counts: Dict[int, int], max_frequency: int ) -> List[int]: """Constructs k+ reach list from a dictionary of per-id reach counts.""" frequency_counts = [0] * max_frequency for c in counts.values(): frequency_counts[min(c, max_frequency) - 1] += 1 # At this point, frequency_counts[k] represents the number of people who are # reach exactly k+1 times, except that frequency_counts[max_frequency-1] contains # the number of people reached at least max_frequency times. Now, we convert this # to a list of k+ reach values. for i in range(max_frequency - 2, -1, -1): frequency_counts[i] += frequency_counts[i + 1] return frequency_counts def reach_by_spend( self, spends: Iterable[float], max_frequency: int = 10 ) -> ReachPoint: """Number of people reached for a given spend. Args: spends: A list of spend amounts. The length of the list must equal the value of publisher_count. Specifies the amount spent with each publisher. max_frequency: int, The maximum frequency that should be counted. All frequencies about this amount will be grouped into a single bucket. Returns: A ReachPoint object representing the k+ reach for each frequency in the range 1..max_frequency. """ if len(spends) != self.publisher_count: raise ValueError( "Invalid spends vector length. Got {}, expected {}".format( len(spends), self.publisher_count ) ) counts = defaultdict(int) impressions = [] for i, publisher_spend in enumerate(spends): user_counts = self._data[i].user_counts_by_spend(publisher_spend) impressions.append(sum(user_counts.values())) for id, freq in user_counts.items(): counts[id] += freq kplus_reaches = self._counts_to_histogram(counts, max_frequency) return ReachPoint(impressions, kplus_reaches, spends) def write_data_set(self, parent_dir: str, dataset_dir: str = None) -> None: """Writes this DataSet object to disk. Args: parent_dir: The directory where the DataSet is to be written. dataset:dir: The directory name of the DataSet itself. If not specified, then the name given in the object constructor is used. If no name was given in the object constructor, then a random name is used. """ if not dataset_dir: dataset_dir = self._name fulldir = join(parent_dir, dataset_dir) Path(fulldir).mkdir(parents=True, exist_ok=True) for pdf in self._data: with open(join(fulldir, pdf.name), "w") as file: pdf.write_publisher_data(file) file.close() @classmethod def read_data_set(cls, dirpath: str) -> "DataSet": """Reads a DataSet from disk. A DataSet is given by a directory containing a collection of files, each of which represents a PublisherDataSet. The name associated to the DataSet object is the last component of the dirpath. Args: dirpath: Directory containing the PublisherDataSets that comprise this DataSet. Returns: The DataSet object representing the contents of this directory. """ pdf_list = [] for f in sorted(listdir(dirpath)): filepath = join(dirpath, f) if isfile(filepath): with open(filepath) as file: try: pdf = PublisherData.read_publisher_data(file) pdf.name = f pdf_list.append(pdf) except (ValueError, RuntimeError) as e: raise RuntimeError( "In publisher file {}".format(filepath) ) from e name = dirpath.split("/")[-1] return cls(pdf_list, name)
py
1a4df8a9039600358d821d9776256f0bc57d76c8
import torch torch.cuda.manual_seed(3) torch.manual_seed(3) import data_handler, tracking_nn import sys from torch.optim import Adam flag = int(sys.argv[1]) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Working on", device) batch_size = 32 cnn = tracking_nn.CNN().to(device) if flag: cnn.load_state_dict(torch.load("cnn_model.pt", map_location = device)) for param in cnn.parameters(): param.requires_grad = False rnn = tracking_nn.RNN().to(device) model = tracking_nn.Net(device, cnn, rnn).to(device) paths = ["p11/2.a", "p11/3.a", "p16/3.a", "p17/2.a", "p17/3.a", "p1/2.a", "p18/2.a", "p18/3.a"] data = data_handler.LegDataLoader(batch_size = batch_size) # Train the nn epochs = 1000 patience = 0 learning_rate = 0.0001 grid = 7 optimizer = Adam(model.parameters(), lr = learning_rate) best_acc = float("Inf") if flag: save_path = "model.pt" else: save_path = "cnn_model.pt" def eucl_dist(out, labels): ret = 0 m = 0 for i in range(out.shape[0]): yh = out[i] p1_h = yh[0, :, :] p2_h = yh[3, :, :] detect_cell1 = p1_h.reshape(-1).argmax(axis = 0) detect_cell2 = p2_h.reshape(-1).argmax(axis = 0) x1, y1 = detect_cell1 // grid, detect_cell1 % grid x2, y2 = detect_cell2 // grid, detect_cell2 % grid d1 = (torch.sqrt((x1 + out[i, 1, x1, y1] - labels[i, 0, 0]) ** 2 + (y1 + out[i, 2, x1, y1] - labels[i, 0, 1]) ** 2)).item() d2 = (torch.sqrt((x2 + out[i, 4, x2, y2] - labels[i, 1, 0]) ** 2 + (y2 + out[i, 5, x2, y2] - labels[i, 1, 1]) ** 2)).item() if d1 > m: m = d1 if d2 > m: m = d2 ret += (d1 + d2) / 2 return m, ret / out.shape[0] print("Started training...") for epoch in range(epochs): running_loss = 0 if epoch == 20 or epoch == 50: learning_rate *= 0.1 optimizer = Adam(model.parameters(), lr = learning_rate) f, input, label = data.load(0) model.init_hidden() c = 0 while(True): input, label = input.to(device), label.to(device) optimizer.zero_grad() output = model.forward(input) #print("labels", labels[0]) loss = model.loss(output, label) loss.backward() optimizer.step() running_loss += loss.item() / input.shape[0] c += 1 if f == -1: break if f: model.init_hidden() f, input, label = data.load(0) #model.init_hidden() model.detach_hidden() print("epoch:{}, running loss: {}".format(epoch, running_loss / c)) running_loss = 0 if epoch >= patience: with torch.no_grad(): acc = 0 dist = 0 c = 0 f, input, label = data.load(1) model.init_hidden() m = 0 while(True): input, label = input.to(device), label.to(device) output = model.forward(input) acc += model.loss(output, label).item() / input.shape[0] m1, d = eucl_dist(output, label) dist += d if m1 > m: m = m1 c += 1 if f == -1: break if f: model.init_hidden() f, input, label = data.load(1) #model.init_hidden() if acc < best_acc: best_acc = acc print("Saving model with acc:", acc / c, ", mean dist:", dist / c / grid * 100, ", max dist:", m / grid * 100) #mean dist in cm if flag: torch.save(model, save_path) else: torch.save(cnn.state_dict(), save_path)
py
1a4df90aa0fb702c65d19883ae63a8fe8c80fb1c
import tkinter as tk ventana = tk.Tk() mensaje = """Hola a todos ¿Cómo están? Adiós""" labelMessage = tk.Label(ventana, text=mensaje, justify=tk.CENTER).pack() ventana.mainloop()
py
1a4df95d223ea5dd0de0ba2053fdb6baae8ff662
import numpy as np import multidim import itertools import os import hdbscan import sys import time import pandas as pd from copy import deepcopy from matplotlib.patches import Ellipse from ripser import ripser from persim import plot_diagrams from numba import jit, njit, prange from sklearn import mixture from sklearn.model_selection import train_test_split, cross_val_score from sklearn.linear_model import RidgeClassifier from multidim.covertree import CoverTree from multidim.models import CDER import matplotlib.pyplot as plt np.set_printoptions(precision=2) sys.path.append('../..') from ATS import * # ----------------------------------------------------------------------------- # ------------------------------ IMPORT DATA ---------------------------------- # ----------------------------------------------------------------------------- num_dgms = int(sys.argv[1]) N = num_dgms*6 d = 10 colors = ['red', 'yellow', 'magenta', 'green', 'blue', 'black'] os.system('mkdir cder_images') os.system('rm -r cder_images/*') score_train = [] score_test = [] for n in range(10): X = testSetManifolds(numDgms = num_dgms, numPts = 200, permute = True) F_labels = X.trainingLabel labels = X.trainingLabel.unique() X_dgm0 = X.Dgm0.tolist() # We need to perturbate H_0 to use CDER. for h0 in X_dgm0: h0[:,0] = h0[:,0] + np.random.uniform(-0.05, 0.05, len(h0)) h0[:,1][h0[:,1]==np.inf] = 10 # Changge all inf values in H_0 for 10. X_dgm1 = X.Dgm1.tolist() i=0 for l in labels: F_labels[F_labels == l]=i i += 1 F = F_labels.tolist() # ----------------------------------------------------------------------------- # ------------------------------ H_0 ------------------------------------------ # ----------------------------------------------------------------------------- X_train, X_test, F_train, F_test = train_test_split(X_dgm0, F, test_size=0.33, random_state=10) # ----------------------------------------------------------------------------- # ------------------------------ GMM ------------------------------------------ # ----------------------------------------------------------------------------- print('Begin GMM...') t0 = time.time() X_train_temp = np.vstack(X_train) X_train_temp = X_train_temp[:,1] X_train_temp = X_train_temp.reshape((-1,1)) gmm_f_train=[] for i in range(len(X_train)): gmm_f_train.append(F_train[i]*np.ones(len(X_train[i]))) gmm_f_train = np.concatenate(gmm_f_train) gmm = mixture.BayesianGaussianMixture(n_components=d, covariance_type='full', max_iter=int(10e4)).fit(X_train_temp, gmm_f_train) ellipses = [] for i in range(len(gmm.means_)): L, v = np.linalg.eig(gmm.covariances_[i]) temp = {'mean':gmm.means_[i], 'std':np.sqrt(L), 'rotation':v.transpose(), 'radius':max(np.sqrt(L)), 'entropy':gmm.weights_[i]} ellipses.append(temp) t1 = time.time() print('Finish GMM. Time: {}'.format(t1-t0)) # ----------------------------------------------------------------------------- # ------------------------------ GMM features --------------------------------- # ----------------------------------------------------------------------------- t0 = time.time() X_train_temp = [dgm[:,1] for dgm in X_train] X_train_features_0 = get_all_features(X_train_temp, ellipses, f_gaussian) X_test_temp = [dgm[:,1] for dgm in X_test] X_test_features_0 = get_all_features(X_test_temp, ellipses, f_gaussian) t1 = time.time() print('Features H_0:{}'.format(t1-t0)) # ----------------------------------------------------------------------------- # ------------------------------ H_1 ------------------------------------------ # ----------------------------------------------------------------------------- X_train, X_test, F_train, F_test = train_test_split(X_dgm1, F, test_size=0.33, random_state=10) # ----------------------------------------------------------------------------- # ------------------------------ CDER ----------------------------------------- # ----------------------------------------------------------------------------- F_train_cder = F_train.copy() for l in range(6): for k, j in enumerate(F_train_cder): if j == l: F_train_cder[k] = colors[l] pc_train = multidim.PointCloud.from_multisample_multilabel(X_train, F_train_cder) ct_train = CoverTree(pc_train) cder = CDER(parsimonious=True) cder.fit(ct_train) cder_result = cder.gaussians ellipses = [] for c in cder_result: temp = {key:c[key] for key in ['mean', 'std', 'rotation', 'radius', 'entropy']} temp['std'] = 3*temp['std'] ellipses.append(temp) for i in range(len(X_train)): dgm = np.array(X_train[i]) plt.scatter(dgm[:,0], dgm[:,1], color='grey') ellipses_plot_cder = [] for i in range(len(ellipses)): e = ellipses[i] ellipses_plot_cder.append(Ellipse(xy=e['mean'], width=e['std'][0], height=e['std'][1], angle=np.arccos(e['rotation'][0,0]))) for e in ellipses_plot_cder: plt.gca().add_artist(e) e.set_clip_box(plt.gca().bbox) e.set_alpha(0.5) e.set_facecolor([1,0,0]) plt.savefig('cder_images/{}_h1_cder_n_{}.png'.format(n, num_dgms)) plt.close() # ----------------------------------------------------------------------------- # ------------------------------ CDER features -------------------------------- # ----------------------------------------------------------------------------- X_train_features_1 = get_all_features(X_train, ellipses, f_ellipse) X_test_features_1 = get_all_features(X_test, ellipses, f_ellipse) # ----------------------------------------------------------------------------- # ------------------------------ Ridge Classification ------------------------ # ----------------------------------------------------------------------------- X_train_features = np.column_stack((X_train_features_0, X_train_features_1)) X_test_features = np.column_stack((X_test_features_0, X_test_features_1)) ridge_model = RidgeClassifier().fit(X_train_features, F_train) score_train.append(ridge_model.score(X_train_features, F_train)) score_test.append(ridge_model.score(X_test_features, F_test)) # print('train', score_train[-1]) # print('test', score_test[-1]) print(np.mean(score_train), np.std(score_train)) print(np.mean(score_test), np.std(score_test))
py
1a4dfac7fb13435a7f2e7ea0086d1172c7d315f5
from os.path import abspath, join, dirname from sys import path from envs.keys_and_passwords import * PROJECT_ROOT = abspath(join(dirname(__file__), "../")) APPS_DIR = abspath(join(dirname(__file__), "../", "apps")) path.insert(0, PROJECT_ROOT) path.insert(0, APPS_DIR) DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('Steven Skoczen', '[email protected]'), ) DEFAULT_FROM_EMAIL = "[email protected]" SERVER_EMAIL = DEFAULT_FROM_EMAIL MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'project.sqlite3', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': DB_PASSWORD, # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } TIME_ZONE = 'America/Vancouver' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = False USE_L10N = True MEDIA_ROOT = join(PROJECT_ROOT, "media_root") MEDIA_URL = '' STATIC_ROOT = join(PROJECT_ROOT, "collected_static") STATIC_URL = '/static/' STATICFILES_DIRS = () STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". ADMIN_MEDIA_PREFIX = '/static/admin/' AUTH_PROFILE_MODULE = 'my_schools.Person' FACEBOOK_APP_ID = '400474649994341' # Make this unique, and don't share it with anybody. SECRET_KEY = '^7!$isr6jd!o+mgl1qy@+8197dm53uhp2i*vp8k4p#*g#8mg1n' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'django_facebook.auth_backends.FacebookBackend', ) ROOT_URLCONF = 'project.urls' TEMPLATE_DIRS = ( join(abspath(PROJECT_ROOT), "templates"), ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', # 'django.contrib.admindocs', "analytical", "annoying", "compressor", "django_extensions", "django_facebook", "lettuce.django", "gunicorn", "south", "home", "schools", "events", "my_schools", ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.request", 'django_facebook.context_processors.facebook', ) STATICFILES_EXCLUDED_APPS = [] COMPRESS_ROOT = STATIC_ROOT EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' GOOGLE_ANALYTICS_PROPERTY_ID = "UA-35602695-1" GAUGES_SITE_ID = "" LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
py
1a4dfb313c6abecf60e6166af742576fcb089ce1
#!/usr/bin/env python3 import argparse from migen import * from migen.genlib.resetsync import AsyncResetSynchronizer from litex.soc.integration.soc_core import * from litex.soc.integration.builder import * from litex_boards.platforms import arty from ring import * # CRG ---------------------------------------------------------------------------------------------- class CRG(Module): def __init__(self, platform, sys_clk_freq): self.rst = Signal() self.clock_domains.cd_sys = ClockDomain() # # # clk = platform.request("clk100") rst_n = platform.request("cpu_reset") self.comb += self.cd_sys.clk.eq(clk) self.specials += AsyncResetSynchronizer(self.cd_sys, ~rst_n) platform.add_period_constraint(clk, 1e9/100e6) # BaseSoC ------------------------------------------------------------------------------------------ class BaseSoC(SoCMini): def __init__(self, sys_clk_freq=int(100e6), mode=mode.DOUBLE, **kwargs): platform = arty.Platform(variant="a7-35", toolchain="vivado") from litex.build.generic_platform import Pins, IOStandard platform.add_extension([("do", 0, Pins("B7"), IOStandard("LVCMOS33"))]) SoCMini.__init__(self, platform, sys_clk_freq, ident = "LiteX SoC on Arty A7-35", ident_version = True) self.submodules.crg = CRG(platform, sys_clk_freq) led = RingControl(platform.request("do"), mode, 12, sys_clk_freq) self.submodules.ledring = led self.add_csr("ledring") self.add_uartbone() # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on Arty A7-35") parser.add_argument("--build", action="store_true", help="Build bitstream") parser.add_argument("--mode-single", action="store_true", help="Build bitstream") parser.add_argument("--load", action="store_true", help="Load bitstream") parser.add_argument("--flash", action="store_true", help="Flash Bitstream") builder_args(parser) soc_core_args(parser) args = parser.parse_args() m = mode.DOUBLE if args.mode_single: m = mode.SINGLE soc = BaseSoC( sys_clk_freq = 100e6, mode = m, **soc_core_argdict(args) ) builder = Builder(soc, **builder_argdict(args)) builder.build(run=args.build) if args.load: prog = soc.platform.create_programmer() prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bit")) exit() if __name__ == "__main__": main()
py
1a4dfb4ea21ec66e8915d2ccaf7997d0591c9ea0
import os, sys import math import numpy as np import cv2 from PIL import Image, ImageDraw, ImageFont import argparse def parse_args(): def str2bool(v): return v.lower() in ("true", "t", "1") parser = argparse.ArgumentParser() # params for prediction engine parser.add_argument("--use_gpu", type=str2bool, default=True) # parser.add_argument("--ir_optim", type=str2bool, default=True) # parser.add_argument("--use_tensorrt", type=str2bool, default=False) # parser.add_argument("--use_fp16", type=str2bool, default=False) parser.add_argument("--gpu_mem", type=int, default=500) # params for text detector parser.add_argument("--image_dir", type=str) parser.add_argument("--det_algorithm", type=str, default='DB') parser.add_argument("--det_model_path", type=str) parser.add_argument("--det_limit_side_len", type=float, default=960) parser.add_argument("--det_limit_type", type=str, default='max') # DB parmas parser.add_argument("--det_db_thresh", type=float, default=0.3) parser.add_argument("--det_db_box_thresh", type=float, default=0.5) parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6) parser.add_argument("--max_batch_size", type=int, default=10) parser.add_argument("--use_dilation", type=bool, default=False) parser.add_argument("--det_db_score_mode", type=str, default="fast") # EAST parmas parser.add_argument("--det_east_score_thresh", type=float, default=0.8) parser.add_argument("--det_east_cover_thresh", type=float, default=0.1) parser.add_argument("--det_east_nms_thresh", type=float, default=0.2) # SAST parmas parser.add_argument("--det_sast_score_thresh", type=float, default=0.5) parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2) parser.add_argument("--det_sast_polygon", type=bool, default=False) # params for text recognizer parser.add_argument("--rec_algorithm", type=str, default='CRNN') parser.add_argument("--rec_model_path", type=str) parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320") parser.add_argument("--rec_char_type", type=str, default='ch') parser.add_argument("--rec_batch_num", type=int, default=6) parser.add_argument("--max_text_length", type=int, default=25) parser.add_argument("--use_space_char", type=str2bool, default=True) parser.add_argument("--drop_score", type=float, default=0.5) parser.add_argument("--limited_max_width", type=int, default=1280) parser.add_argument("--limited_min_width", type=int, default=16) parser.add_argument( "--vis_font_path", type=str, default=os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'doc/fonts/simfang.ttf')) parser.add_argument( "--rec_char_dict_path", type=str, default=os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'pytorchocr/utils/ppocr_keys_v1.txt')) # params for text classifier parser.add_argument("--use_angle_cls", type=str2bool, default=False) parser.add_argument("--cls_model_path", type=str) parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192") parser.add_argument("--label_list", type=list, default=['0', '180']) parser.add_argument("--cls_batch_num", type=int, default=6) parser.add_argument("--cls_thresh", type=float, default=0.9) parser.add_argument("--enable_mkldnn", type=str2bool, default=False) parser.add_argument("--use_pdserving", type=str2bool, default=False) # params for e2e parser.add_argument("--e2e_algorithm", type=str, default='PGNet') parser.add_argument("--e2e_model_path", type=str) parser.add_argument("--e2e_limit_side_len", type=float, default=768) parser.add_argument("--e2e_limit_type", type=str, default='max') # PGNet parmas parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5) parser.add_argument( "--e2e_char_dict_path", type=str, default=os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'pytorchocr/utils/ic15_dict.txt')) parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext') parser.add_argument("--e2e_pgnet_polygon", type=bool, default=True) parser.add_argument("--e2e_pgnet_mode", type=str, default='fast') # params .yaml parser.add_argument("--det_yaml_path", type=str, default=None) parser.add_argument("--rec_yaml_path", type=str, default=None) parser.add_argument("--cls_yaml_path", type=str, default=None) parser.add_argument("--e2e_yaml_path", type=str, default=None) return parser.parse_args() def get_default_config(args): return vars(args) def read_network_config_from_yaml(yaml_path): if not os.path.exists(yaml_path): raise FileNotFoundError('{} is not existed.'.format(yaml_path)) import yaml with open(yaml_path, encoding='utf-8') as f: res = yaml.safe_load(f) if res.get('Architecture') is None: raise ValueError('{} has no Architecture'.format(yaml_path)) return res['Architecture'] def AnalysisConfig(weights_path, yaml_path=None): if not os.path.exists(os.path.abspath(weights_path)): raise FileNotFoundError('{} is not found.'.format(weights_path)) if yaml_path is not None: return read_network_config_from_yaml(yaml_path) weights_basename = os.path.basename(weights_path) weights_name = weights_basename.lower() # supported_weights = ['ch_ptocr_server_v2.0_det_infer.pth', # 'ch_ptocr_server_v2.0_rec_infer.pth', # 'ch_ptocr_mobile_v2.0_det_infer.pth', # 'ch_ptocr_mobile_v2.0_rec_infer.pth', # 'ch_ptocr_mobile_v2.0_cls_infer.pth', # ] # assert weights_name in supported_weights, \ # "supported weights are {} but input weights is {}".format(supported_weights, weights_name) if weights_name == 'ch_ptocr_server_v2.0_det_infer.pth': network_config = {'model_type':'det', 'algorithm':'DB', 'Transform':None, 'Backbone':{'name':'ResNet', 'layers':18, 'disable_se':True}, 'Neck':{'name':'DBFPN', 'out_channels':256}, 'Head':{'name':'DBHead', 'k':50}} elif weights_name == 'ch_ptocr_server_v2.0_rec_infer.pth': network_config = {'model_type':'rec', 'algorithm':'CRNN', 'Transform':None, 'Backbone':{'name':'ResNet', 'layers':34}, 'Neck':{'name':'SequenceEncoder', 'hidden_size':256, 'encoder_type':'rnn'}, 'Head':{'name':'CTCHead', 'fc_decay': 4e-05}} elif weights_name == 'ch_ptocr_mobile_v2.0_det_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'DB', 'Transform': None, 'Backbone': {'name': 'MobileNetV3', 'model_name': 'large', 'scale': 0.5, 'disable_se': True}, 'Neck': {'name': 'DBFPN', 'out_channels': 96}, 'Head': {'name': 'DBHead', 'k': 50}} elif weights_name == 'ch_ptocr_mobile_v2.0_rec_infer.pth': network_config = {'model_type':'rec', 'algorithm':'CRNN', 'Transform':None, 'Backbone':{'model_name':'small', 'name':'MobileNetV3', 'scale':0.5, 'small_stride':[1,2,2,2]}, 'Neck':{'name':'SequenceEncoder', 'hidden_size':48, 'encoder_type':'rnn'}, 'Head':{'name':'CTCHead', 'fc_decay': 4e-05}} elif weights_name == 'ch_ptocr_mobile_v2.0_cls_infer.pth': network_config = {'model_type':'cls', 'algorithm':'CLS', 'Transform':None, 'Backbone':{'name':'MobileNetV3', 'model_name':'small', 'scale':0.35}, 'Neck':None, 'Head':{'name':'ClsHead', 'class_dim':2}} elif weights_name == 'det_mv3_db_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'DB', 'Transform': None, 'Backbone': {'name': 'MobileNetV3', 'model_name': 'large'}, 'Neck': {'name': 'DBFPN', 'out_channels': 256}, 'Head': {'name': 'DBHead', 'k': 50}} elif weights_name == 'det_r50_vd_db_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'DB', 'Transform': None, 'Backbone': {'name': 'ResNet', 'layers': 50}, 'Neck': {'name': 'DBFPN', 'out_channels': 256}, 'Head': {'name': 'DBHead', 'k': 50}} elif weights_name == 'det_mv3_east_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'EAST', 'Transform': None, 'Backbone': {'name': 'MobileNetV3', 'model_name': 'large'}, 'Neck': {'name': 'EASTFPN', 'model_name': 'small'}, 'Head': {'name': 'EASTHead', 'model_name': 'small'}} elif weights_name == 'det_r50_vd_east_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'EAST', 'Transform': None, 'Backbone': {'name': 'ResNet', 'layers': 50}, 'Neck': {'name': 'EASTFPN', 'model_name': 'large'}, 'Head': {'name': 'EASTHead', 'model_name': 'large'}} elif weights_name == 'det_r50_vd_sast_icdar15_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'SAST', 'Transform': None, 'Backbone': {'name': 'ResNet_SAST', 'layers': 50}, 'Neck': {'name': 'SASTFPN', 'with_cab': True}, 'Head': {'name': 'SASTHead'}} elif weights_name == 'det_r50_vd_sast_totaltext_v2.0_infer.pth': network_config = {'model_type': 'det', 'algorithm': 'SAST', 'Transform': None, 'Backbone': {'name': 'ResNet_SAST', 'layers': 50}, 'Neck': {'name': 'SASTFPN', 'with_cab': True}, 'Head': {'name': 'SASTHead'}} elif weights_name == 'en_server_pgneta_infer.pth': network_config = {'model_type': 'e2e', 'algorithm': 'PGNet', 'Transform': None, 'Backbone': {'name': 'ResNet', 'layers': 50}, 'Neck': {'name': 'PGFPN'}, 'Head': {'name': 'PGHead'}} else: network_config = {'model_type': 'rec', 'algorithm': 'CRNN', 'Transform': None, 'Backbone': {'model_name': 'small', 'name': 'MobileNetV3', 'scale': 0.5, 'small_stride': [1, 2, 2, 2]}, 'Neck': {'name': 'SequenceEncoder', 'hidden_size': 48, 'encoder_type': 'rnn'}, 'Head': {'name': 'CTCHead', 'fc_decay': 4e-05}} # raise NotImplementedError return network_config def draw_e2e_res(dt_boxes, strs, img_path): src_im = cv2.imread(img_path) for box, str in zip(dt_boxes, strs): box = box.astype(np.int32).reshape((-1, 1, 2)) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) cv2.putText( src_im, str, org=(int(box[0, 0, 0]), int(box[0, 0, 1])), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.7, color=(0, 255, 0), thickness=1) return src_im def draw_text_det_res(dt_boxes, img_path): src_im = cv2.imread(img_path) for box in dt_boxes: box = np.array(box).astype(np.int32).reshape(-1, 2) cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2) return src_im def resize_img(img, input_size=600): """ resize img and limit the longest side of the image to input_size """ img = np.array(img) im_shape = img.shape im_size_max = np.max(im_shape[0:2]) im_scale = float(input_size) / float(im_size_max) img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale) return img def draw_ocr_box_txt(image, boxes, txts, scores=None, drop_score=0.5, font_path="./doc/simfang.ttf"): h, w = image.height, image.width img_left = image.copy() img_right = Image.new('RGB', (w, h), (255, 255, 255)) import random random.seed(0) draw_left = ImageDraw.Draw(img_left) draw_right = ImageDraw.Draw(img_right) for idx, (box, txt) in enumerate(zip(boxes, txts)): if scores is not None and scores[idx] < drop_score: continue color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw_left.polygon(box, fill=color) draw_right.polygon( [ box[0][0], box[0][1], box[1][0], box[1][1], box[2][0], box[2][1], box[3][0], box[3][1] ], outline=color) box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][ 1])**2) box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][ 1])**2) if box_height > 2 * box_width: font_size = max(int(box_width * 0.9), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") cur_y = box[0][1] for c in txt: char_size = font.getsize(c) draw_right.text( (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font) cur_y += char_size[1] else: font_size = max(int(box_height * 0.8), 10) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") draw_right.text( [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font) img_left = Image.blend(image, img_left, 0.5) img_show = Image.new('RGB', (w * 2, h), (255, 255, 255)) img_show.paste(img_left, (0, 0, w, h)) img_show.paste(img_right, (w, 0, w * 2, h)) return np.array(img_show) def str_count(s): """ Count the number of Chinese characters, a single English character and a single number equal to half the length of Chinese characters. args: s(string): the input of string return(int): the number of Chinese characters """ import string count_zh = count_pu = 0 s_len = len(s) en_dg_count = 0 for c in s: if c in string.ascii_letters or c.isdigit() or c.isspace(): en_dg_count += 1 elif c.isalpha(): count_zh += 1 else: count_pu += 1 return s_len - math.ceil(en_dg_count / 2) def text_visual(texts, scores, img_h=400, img_w=600, threshold=0., font_path="./doc/simfang.ttf"): """ create new blank img and draw txt on it args: texts(list): the text will be draw scores(list|None): corresponding score of each txt img_h(int): the height of blank img img_w(int): the width of blank img font_path: the path of font which is used to draw text return(array): """ if scores is not None: assert len(texts) == len( scores), "The number of txts and corresponding scores must match" def create_blank_img(): blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255 blank_img[:, img_w - 1:] = 0 blank_img = Image.fromarray(blank_img).convert("RGB") draw_txt = ImageDraw.Draw(blank_img) return blank_img, draw_txt blank_img, draw_txt = create_blank_img() font_size = 20 txt_color = (0, 0, 0) font = ImageFont.truetype(font_path, font_size, encoding="utf-8") gap = font_size + 5 txt_img_list = [] count, index = 1, 0 for idx, txt in enumerate(texts): index += 1 if scores[idx] < threshold or math.isnan(scores[idx]): index -= 1 continue first_line = True while str_count(txt) >= img_w // font_size - 4: tmp = txt txt = tmp[:img_w // font_size - 4] if first_line: new_txt = str(index) + ': ' + txt first_line = False else: new_txt = ' ' + txt draw_txt.text((0, gap * count), new_txt, txt_color, font=font) txt = tmp[img_w // font_size - 4:] if count >= img_h // gap - 1: txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 if first_line: new_txt = str(index) + ': ' + txt + ' ' + '%.3f' % (scores[idx]) else: new_txt = " " + txt + " " + '%.3f' % (scores[idx]) draw_txt.text((0, gap * count), new_txt, txt_color, font=font) # whether add new blank img or not if count >= img_h // gap - 1 and idx + 1 < len(texts): txt_img_list.append(np.array(blank_img)) blank_img, draw_txt = create_blank_img() count = 0 count += 1 txt_img_list.append(np.array(blank_img)) if len(txt_img_list) == 1: blank_img = np.array(txt_img_list[0]) else: blank_img = np.concatenate(txt_img_list, axis=1) return np.array(blank_img) def base64_to_cv2(b64str): import base64 data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def draw_boxes(image, boxes, scores=None, drop_score=0.5): if scores is None: scores = [1] * len(boxes) for (box, score) in zip(boxes, scores): if score < drop_score: continue box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64) image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2) return image
py
1a4dfb8241e3ae093a083ff4c9fe07524eeda1a1
""" Generic setup of the data sources and the model training. Based on: https://github.com/fchollet/keras/blob/master/examples/mnist_mlp.py and also on https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py """ import logging # Keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.regularizers import l2 from keras.callbacks import EarlyStopping, Callback from keras.layers import Conv2D, MaxPooling2D from keras import backend as K # Scipy from scipy.stats import pearsonr # Sklearn from sklearn.model_selection import train_test_split from GA.utils.utils import clean_data # Helper: Early stopping. early_stopper = EarlyStopping(monitor='val_loss', min_delta=0.1, patience=2, verbose=0, mode='auto') # In case that your training loss is not dropping - which means you are learning nothing after each epoch. # It look like there's nothing to learn in this model, aside from some trivial linear-like fit or cutoff value. def compile_model_mlp(geneparam, input_shape): """Compile a sequential model. Args: geneparam (dict): the parameters of the network Returns: a compiled network. """ # Get our network parameters. nb_layers = geneparam['nb_layers'] nb_neurons = geneparam['nb_neurons'] activation = geneparam['activation'] optimizer = geneparam['optimizer'] dropout = geneparam['dropout'] weight_decay = geneparam['weight_decay'] print("Architecture:%d,%s,%s,%d,%.2f%%,%.2f%%" % (nb_neurons, activation, optimizer, nb_layers, dropout,weight_decay)) logging.info("Architecture:%d,%s,%s,%d,%.2f%%,%.2f%%" % (nb_neurons, activation, optimizer, nb_layers, dropout, weight_decay)) model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: if weight_decay>0: model.add(Dense(nb_neurons, activation=activation, input_dim=input_shape, kernel_regularizer=l2(weight_decay))) else: model.add(Dense(nb_neurons, activation=activation, input_dim=input_shape)) else: if weight_decay > 0: model.add(Dense(nb_neurons, activation=activation, kernel_regularizer=l2(weight_decay))) else: model.add(Dense(nb_neurons, activation=activation)) if dropout > 0: model.add(Dropout(dropout)) # dropout for each layer # Output layer. model.add(Dense(1)) model.compile(loss='mse', optimizer=optimizer, metrics=['mae']) return model def compile_model_cnn(geneparam, nb_classes, input_shape): """Compile a sequential model. Args: geneparam (dict): the parameters of the genome Returns: a compiled network. """ # Get our network parameters. nb_layers = geneparam['nb_layers'] nb_neurons = geneparam['nb_neurons'] activation = geneparam['activation'] optimizer = geneparam['optimizer'] logging.info("Architecture:%d,%s,%s,%d" % (nb_neurons, activation, optimizer, nb_layers)) model = Sequential() # Add each layer. for i in range(0, nb_layers): # Need input shape for first layer. if i == 0: model.add( Conv2D(nb_neurons, kernel_size=(3, 3), activation=activation, padding='same', input_shape=input_shape)) else: model.add(Conv2D(nb_neurons, kernel_size=(3, 3), activation=activation)) if i < 2: # otherwise we hit zero model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(nb_neurons, activation=activation)) model.add(Dropout(0.5)) model.add(Dense(nb_classes, activation='softmax')) # BAYESIAN CONVOLUTIONAL NEURAL NETWORKS WITH BERNOULLI APPROXIMATE VARIATIONAL INFERENCE # need to read this paper model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model class LossHistory(Callback): def on_train_begin(self, logs={}): self.losses = [] def on_batch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) def get_data(dataset): markers, pheno = clean_data(dataset.trait, dataset.k) x_train, x_test, y_train, y_test = train_test_split(markers, pheno, test_size=0.33, random_state=42) return markers.shape[1], x_train, x_test, y_train, y_test def train_and_score(geneparam, dataset): """Train the model, return test loss. Args: geneparam (dict): the parameters of the network dataset (str): Dataset to use for training/evaluating """ logging.info("Getting datasets") input_shape, x_train, x_test, y_train, y_test = get_data(dataset) logging.info("Compling Keras model") model = compile_model_mlp(geneparam, input_shape) history = LossHistory() model.fit(x_train, y_train, epochs=1200, # using early stopping so no real limit - don't want to waste time on horrible architectures verbose=1, validation_data =(x_test, y_test), # callbacks=[history]) callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) print('Test mse:', score[0]) print('Test mae:', score[1]) r = pearsonr(model.predict(x_test).ravel(), y_test)[0] print('Test r:', r) logging.info("R: %.3f" % r) K.clear_session() # we do not care about keeping any of this in memory - # we just need to know the final scores and the architecture if r != r: r = -1.0 return r
py
1a4dfbd4d331546e3f5b0854a18826413e2106b9
# Copyright 2019 Christo Kirov. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for parsing PTB text files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import sys import tensorflow as tf def _read_words(filename): print('Reading %s...' % (filename), file=sys.stderr) with tf.io.gfile.GFile(filename, "r") as f: return f.read().strip().replace("\n", "<eos>").split() def _build_vocab(filename): data = _read_words(filename) data += _read_words(filename + ".out") counter = collections.Counter(data) count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0])) words, _ = list(zip(*count_pairs)) word_to_id = dict(zip(words, range(len(words)))) id_to_word = dict(zip(range(len(words)), words)) # Save the vocab to a file, ordered according to the index. with open('labels.txt', 'w', encoding='utf-8') as outfile: for w in words: outfile.write(w + "\n") return word_to_id def _file_to_word_ids(filename, word_to_id): print('Converting %s to IDs' % (filename), file=sys.stderr) data_in = _read_words(filename) data_out = _read_words(filename + ".out") ids_in = [word_to_id[word] for word in data_in if word in word_to_id] ids_out = [word_to_id[word] for word in data_out if word in word_to_id] print(' ', len(ids_in),ids_in[-1],'|', len(ids_out), ids_out[-1], file=sys.stderr) assert(len(ids_in) == len(ids_out)) return [(x,y) for x, y in zip(ids_in, ids_out)] def lm_raw_data(data_path=None): """Load LM raw data from data directory "data_path". Reads LM text files, converts strings to integer ids, and performs mini-batching of the inputs. Args: data_path: string path to the directory where simple-examples.tgz has been extracted. Returns: tuple (train_data, valid_data, test_data, vocabulary) where each of the data objects can be passed to PTBIterator. """ train_path = os.path.join(data_path, "lm.train.txt") valid_path = os.path.join(data_path, "lm.valid.txt") test_path = os.path.join(data_path, "lm.test.txt") word_to_id = _build_vocab(train_path) train_data = _file_to_word_ids(train_path, word_to_id) valid_data = _file_to_word_ids(valid_path, word_to_id) test_data = _file_to_word_ids(test_path, word_to_id) vocabulary = len(word_to_id) return train_data, valid_data, test_data, vocabulary def lm_producer(raw_data, batch_size, num_steps, name=None): """Iterate on the raw PTB data. This chunks up raw_data into batches of examples and returns Tensors that are drawn from these batches. Args: raw_data: one of the raw data outputs from ptb_raw_data. batch_size: int, the batch size. num_steps: int, the number of unrolls. name: the name of this operation (optional). Returns: A pair of Tensors, each shaped [batch_size, num_steps]. The second element of the tuple is the same data time-shifted to the right by one. Raises: tf.errors.InvalidArgumentError: if batch_size or num_steps are too high. """ with tf.name_scope(name, "LMProducer", [raw_data, batch_size, num_steps]): raw_data_in = [cp[0] for cp in raw_data] raw_data_out = [cp[1] for cp in raw_data] raw_data_in = tf.convert_to_tensor(raw_data_in, name="raw_data", dtype=tf.int32) raw_data_out = tf.convert_to_tensor(raw_data_out, name="raw_data", dtype=tf.int32) data_len = tf.size(raw_data_in) batch_len = data_len // batch_size data_in = tf.reshape(raw_data_in[0 : batch_size * batch_len], [batch_size, batch_len]) data_out = tf.reshape(raw_data_out[0 : batch_size * batch_len], [batch_size, batch_len]) epoch_size = (batch_len - 1) // num_steps assertion = tf.compat.v1.assert_positive( epoch_size, message="epoch_size == 0, decrease batch_size or num_steps") with tf.control_dependencies([assertion]): epoch_size = tf.identity(epoch_size, name="epoch_size") i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue() x = tf.strided_slice(data_in, [0, i * num_steps], [batch_size, (i + 1) * num_steps]) x.set_shape([batch_size, num_steps]) y = tf.strided_slice(data_out, [0, i * num_steps + 1], [batch_size, (i + 1) * num_steps + 1]) y.set_shape([batch_size, num_steps]) return x, y
py
1a4dfbe0db2e143c869ef4c5fb01e36789ff46f4
import tensorflow as tf class GAINGenerator(object): """This is class to impute missing value with proper values from observed data and missing mask (0/1 flags indicating missing value) """ def __init__(self): pass def generate(self, x, m, z, drop): """Generate candidate values to be imputated. Parameters ---------- x : tf.Tensor of tf.float32 data frame which is target of missing value imputation. m : tf.Tensor of tf.bool mask data indicating missing positions in x. (if True, observed ; same size as x) z : tf.Tensor of tf.float32 data frame each cell of which has random numbers to generate imputed values (same size as x) Returns ------- xbar : tf.Tensor of tf.float32 generated data frame which has candidate values (even in observed cell) """ assert x.shape.as_list() == m.shape.as_list() == z.shape.as_list() assert x.dtype == z.dtype == tf.float32 assert m.dtype == tf.bool mf = tf.cast(m, dtype=tf.float32, name="mask_float") out = tf.concat([x, mf, z], axis=1, name="concat") d = x.shape[1] out = tf.layers.dense(out, d, activation=tf.tanh, name="dense1") out = tf.layers.dropout(out, drop) out = tf.layers.dense(out, int(int(d)/2), activation=tf.tanh, name="dense2") out = tf.layers.dropout(out, drop) out = tf.layers.dense(out, d, activation=tf.sigmoid, name="dense3") xbar = out return xbar def impute(self, x, xbar, m): """Do missing value imputation. This method uses candidate values in xbar (which is generated by generate method) Parameters ---------- x : tf.Tensor of tf.float32 data frame which is target of missing value imputation. xbar : tf.Tensor of tf.float32 data frame which is result of generate method. all of missing value of x are imputed by candidate values. (same size as x) m : tf.Tensor of tf.bool mask data indicating missing positions (if True, observed) Returns ------- xhat : tf.Tensor of tf.float32 result of missing value imputation of x. """ assert x.shape.as_list() == xbar.shape.as_list() == m.shape.as_list() assert x.dtype == xbar.dtype == tf.float32 assert m.dtype == tf.bool xhat = tf.where(m, x, xbar) return xhat def adversarial_loss(self, mhat, m, b): """Calculate adversarial loss. This method compares actual missing mask from output of discriminator, and uses hint (b). Parameters ---------- mhat : tf.Tensor of tf.float32 A prediction result of missing mask of discriminator. It contains probability whether it is observed. m : tf.Tensor of tf.bool actual missing mask (same size as mhat) b : tf.Tensor of tf.bool Hint flag data each row has only one True, which is selected at random. The other cells are False (same size as mhat) Returns ------- loss : tf.Tensor of tf.float32 (no dimension) adversarial loss calculated """ assert mhat.shape.as_list() == m.shape.as_list() == b.shape.as_list() assert mhat.dtype == tf.float32 assert m.dtype == b.dtype == tf.bool eps = 1e-7 log_loss = - tf.where(m, tf.zeros_like(m, dtype=tf.float32), tf.log(mhat + eps)) loss = tf.reduce_sum(tf.where(b, log_loss, tf.zeros_like(b, dtype=tf.float32))) return loss def generate_loss(self, x, xbar, m): """Calculate generate loss. The more x is similar to xbar, the less loss is. Parameters ---------- x : tf.Tensor of tf.float32 data frame which is target of missing value imputation. xbar : tf.Tensor of tf.float32 data frame which is result of generate method. all of missing value of x are imputed by candidate values. (same size as x) m : tf.Tensor of tf.bool mask data indicating missing positions in x by 0/1 flag (0=missing, 1=observed ; same size as x) Returns ------- loss : tf.Tensor of tf.float32 (no dimension) generate loss calculated """ assert x.shape.as_list() == xbar.shape.as_list() == m.shape.as_list() assert x.dtype == xbar.dtype == tf.float32 assert m.dtype == tf.bool mse = tf.square(x - xbar) loss = tf.reduce_sum(tf.where(m, mse, tf.zeros_like(m, dtype=tf.float32))) return loss
py
1a4dfcd490d6c5460cb8982f2a3c9fcf5b7c4f82
import unittest2 import os import tempfile import shutil import pip from hoplite.client.status_updater import MockStatusUpdater from hoplite.builtin_plugins.constants import InstallPythonPackageJobConstants as KEYS from hoplite.builtin_plugins import install_python_package_job from httmock import urlmatch, response, HTTMock # Monkey patch pip so it doesn't mess with logging. Otherwise, presence of nose xunit logging handlers will cause an # error when pip tries to set logging things def blank_func(blank_arg): pass import pip.basecommand pip.basecommand.__dict__['logging_dictConfig'] = blank_func @urlmatch(path='/reload$') def reload_site_packages(url, request): return response(200) class TestInstallPythonPackage(unittest2.TestCase): def test_install_from_local_path(self): setup_str = "from setuptools import setup, find_packages;setup(name='poopy', version='0.1', packages=find_packages())" tempdir = tempfile.mkdtemp() try: setup_py = open(os.path.join(tempdir, "setup.py"), 'w') setup_py.write(setup_str) setup_py.close() package_path = os.path.join(tempdir, "poopy") os.mkdir(package_path) init_file = open(os.path.join(package_path, "__init__.py"), 'w') init_file.close() config = {KEYS.LOCAL_PATH: tempdir} status = MockStatusUpdater() with HTTMock(reload_site_packages): install_python_package_job.run(config, status) self.assertTrue(status.status["succeeded"]) try: import poopy except ImportError: self.fail("Could not import installed package") finally: pip.main(['uninstall', '-y', "poopy"]) shutil.rmtree(tempdir) def test_install_fails_success_false_stdout_info(self): setup_str = "raise ValueError('I FAILED!')" tempdir = tempfile.mkdtemp() try: setup_py = open(os.path.join(tempdir, "setup.py"), 'w') setup_py.write(setup_str) setup_py.close() config = {KEYS.LOCAL_PATH: tempdir} status = MockStatusUpdater() install_python_package_job.run(config, status) self.assertFalse(status.status["succeeded"]) # Because we monkey patch pip so it doesn't mess up nose xunit logging, the traceback info goes to the # console rather than to status.status.stdout #self.assertRegexpMatches(status.status["stdout"], "Traceback") self.assertIn("Pip returned a non-zero error code", status.status["errors"]) finally: shutil.rmtree(tempdir) def test_missing_local_path_returns_errors(self): config = {} status = MockStatusUpdater() install_python_package_job.run(config, status) self.assertFalse(status.status["succeeded"]) self.assertIn("No local path specified", status.status["errors"])
py
1a4dfdf8e2e8b6a5b29a5e5dde66384752ee397c
import operator from django.db import InterfaceError from django.db.backends.base.features import BaseDatabaseFeatures from django.utils.functional import cached_property class DatabaseFeatures(BaseDatabaseFeatures): allows_group_by_selected_pks = True can_return_columns_from_insert = True can_return_rows_from_bulk_insert = True has_real_datatype = True has_native_uuid_field = True has_native_duration_field = True has_native_json_field = True can_defer_constraint_checks = True has_select_for_update = True has_select_for_update_nowait = True has_select_for_update_of = True has_select_for_update_skip_locked = True can_release_savepoints = True supports_tablespaces = True supports_transactions = True can_introspect_autofield = True can_introspect_ip_address_field = True can_introspect_materialized_views = True can_introspect_small_integer_field = True can_distinct_on_fields = True can_rollback_ddl = True supports_combined_alters = True nulls_order_largest = True closed_cursor_error_class = InterfaceError has_case_insensitive_like = False greatest_least_ignores_nulls = True can_clone_databases = True supports_temporal_subtraction = True supports_slicing_ordering_in_compound = True create_test_procedure_without_params_sql = """ CREATE FUNCTION test_procedure () RETURNS void AS $$ DECLARE V_I INTEGER; BEGIN V_I := 1; END; $$ LANGUAGE plpgsql;""" create_test_procedure_with_int_param_sql = """ CREATE FUNCTION test_procedure (P_I INTEGER) RETURNS void AS $$ DECLARE V_I INTEGER; BEGIN V_I := P_I; END; $$ LANGUAGE plpgsql;""" requires_casted_case_in_updates = True supports_over_clause = True only_supports_unbounded_with_preceding_and_following = True supports_aggregate_filter_clause = True supported_explain_formats = {"JSON", "TEXT", "XML", "YAML"} validates_explain_options = False # A query will error on invalid options. supports_deferrable_unique_constraints = True has_json_operators = True json_key_contains_list_matching_requires_list = True @cached_property def is_postgresql_9_6(self): return self.connection.pg_version >= 90600 @cached_property def is_postgresql_10(self): return self.connection.pg_version >= 100000 @cached_property def is_postgresql_11(self): return self.connection.pg_version >= 110000 @cached_property def is_postgresql_12(self): return self.connection.pg_version >= 120000 has_bloom_index = property(operator.attrgetter("is_postgresql_9_6")) has_brin_autosummarize = property(operator.attrgetter("is_postgresql_10")) has_phraseto_tsquery = property(operator.attrgetter("is_postgresql_9_6")) has_websearch_to_tsquery = property(operator.attrgetter("is_postgresql_11")) supports_table_partitions = property(operator.attrgetter("is_postgresql_10"))