ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4dff56c3c6fb253a9824cb8811c474c74a38dc
# terrascript/fortios/r.py # Automatically generated by tools/makecode.py () import warnings warnings.warn( "using the 'legacy layout' is deprecated", DeprecationWarning, stacklevel=2 ) import terrascript class fortios_alertemail_setting(terrascript.Resource): pass class fortios_antivirus_heuristic(terrascript.Resource): pass class fortios_antivirus_profile(terrascript.Resource): pass class fortios_antivirus_quarantine(terrascript.Resource): pass class fortios_antivirus_settings(terrascript.Resource): pass class fortios_application_custom(terrascript.Resource): pass class fortios_application_group(terrascript.Resource): pass class fortios_application_list(terrascript.Resource): pass class fortios_application_name(terrascript.Resource): pass class fortios_application_rulesettings(terrascript.Resource): pass class fortios_authentication_rule(terrascript.Resource): pass class fortios_authentication_scheme(terrascript.Resource): pass class fortios_authentication_setting(terrascript.Resource): pass class fortios_certificate_ca(terrascript.Resource): pass class fortios_certificate_crl(terrascript.Resource): pass class fortios_certificate_local(terrascript.Resource): pass class fortios_certificate_remote(terrascript.Resource): pass class fortios_cifs_domaincontroller(terrascript.Resource): pass class fortios_cifs_profile(terrascript.Resource): pass class fortios_credentialstore_domaincontroller(terrascript.Resource): pass class fortios_dlp_filepattern(terrascript.Resource): pass class fortios_dlp_fpdocsource(terrascript.Resource): pass class fortios_dlp_fpsensitivity(terrascript.Resource): pass class fortios_dlp_sensitivity(terrascript.Resource): pass class fortios_dlp_sensor(terrascript.Resource): pass class fortios_dlp_settings(terrascript.Resource): pass class fortios_dnsfilter_domainfilter(terrascript.Resource): pass class fortios_dnsfilter_profile(terrascript.Resource): pass class fortios_dpdk_cpus(terrascript.Resource): pass class fortios_dpdk_global(terrascript.Resource): pass class fortios_emailfilter_blockallowlist(terrascript.Resource): pass class fortios_emailfilter_bwl(terrascript.Resource): pass class fortios_emailfilter_bword(terrascript.Resource): pass class fortios_emailfilter_dnsbl(terrascript.Resource): pass class fortios_emailfilter_fortishield(terrascript.Resource): pass class fortios_emailfilter_iptrust(terrascript.Resource): pass class fortios_emailfilter_mheader(terrascript.Resource): pass class fortios_emailfilter_options(terrascript.Resource): pass class fortios_emailfilter_profile(terrascript.Resource): pass class fortios_endpointcontrol_client(terrascript.Resource): pass class fortios_endpointcontrol_fctems(terrascript.Resource): pass class fortios_endpointcontrol_forticlientems(terrascript.Resource): pass class fortios_endpointcontrol_forticlientregistrationsync(terrascript.Resource): pass class fortios_endpointcontrol_profile(terrascript.Resource): pass class fortios_endpointcontrol_registeredforticlient(terrascript.Resource): pass class fortios_endpointcontrol_settings(terrascript.Resource): pass class fortios_extendercontroller_dataplan(terrascript.Resource): pass class fortios_extendercontroller_extender(terrascript.Resource): pass class fortios_extendercontroller_extender1(terrascript.Resource): pass class fortios_filefilter_profile(terrascript.Resource): pass class fortios_firewall_DoSpolicy(terrascript.Resource): pass class fortios_firewall_DoSpolicy6(terrascript.Resource): pass class fortios_firewall_address(terrascript.Resource): pass class fortios_firewall_address6(terrascript.Resource): pass class fortios_firewall_address6template(terrascript.Resource): pass class fortios_firewall_addrgrp(terrascript.Resource): pass class fortios_firewall_addrgrp6(terrascript.Resource): pass class fortios_firewall_authportal(terrascript.Resource): pass class fortios_firewall_centralsnatmap(terrascript.Resource): pass class fortios_firewall_centralsnatmap_move(terrascript.Resource): pass class fortios_firewall_centralsnatmap_sort(terrascript.Resource): pass class fortios_firewall_city(terrascript.Resource): pass class fortios_firewall_country(terrascript.Resource): pass class fortios_firewall_decryptedtrafficmirror(terrascript.Resource): pass class fortios_firewall_dnstranslation(terrascript.Resource): pass class fortios_firewall_identitybasedroute(terrascript.Resource): pass class fortios_firewall_interfacepolicy(terrascript.Resource): pass class fortios_firewall_interfacepolicy6(terrascript.Resource): pass class fortios_firewall_internetservice(terrascript.Resource): pass class fortios_firewall_internetserviceaddition(terrascript.Resource): pass class fortios_firewall_internetserviceappend(terrascript.Resource): pass class fortios_firewall_internetservicebotnet(terrascript.Resource): pass class fortios_firewall_internetservicecustom(terrascript.Resource): pass class fortios_firewall_internetservicecustomgroup(terrascript.Resource): pass class fortios_firewall_internetservicedefinition(terrascript.Resource): pass class fortios_firewall_internetserviceextension(terrascript.Resource): pass class fortios_firewall_internetservicegroup(terrascript.Resource): pass class fortios_firewall_internetserviceipblreason(terrascript.Resource): pass class fortios_firewall_internetserviceipblvendor(terrascript.Resource): pass class fortios_firewall_internetservicelist(terrascript.Resource): pass class fortios_firewall_internetservicename(terrascript.Resource): pass class fortios_firewall_internetserviceowner(terrascript.Resource): pass class fortios_firewall_internetservicereputation(terrascript.Resource): pass class fortios_firewall_ippool(terrascript.Resource): pass class fortios_firewall_ippool6(terrascript.Resource): pass class fortios_firewall_iptranslation(terrascript.Resource): pass class fortios_firewall_ipv6ehfilter(terrascript.Resource): pass class fortios_firewall_ldbmonitor(terrascript.Resource): pass class fortios_firewall_localinpolicy(terrascript.Resource): pass class fortios_firewall_localinpolicy6(terrascript.Resource): pass class fortios_firewall_multicastaddress(terrascript.Resource): pass class fortios_firewall_multicastaddress6(terrascript.Resource): pass class fortios_firewall_multicastpolicy(terrascript.Resource): pass class fortios_firewall_multicastpolicy6(terrascript.Resource): pass class fortios_firewall_object_address(terrascript.Resource): pass class fortios_firewall_object_addressgroup(terrascript.Resource): pass class fortios_firewall_object_ippool(terrascript.Resource): pass class fortios_firewall_object_service(terrascript.Resource): pass class fortios_firewall_object_servicecategory(terrascript.Resource): pass class fortios_firewall_object_servicegroup(terrascript.Resource): pass class fortios_firewall_object_vip(terrascript.Resource): pass class fortios_firewall_object_vipgroup(terrascript.Resource): pass class fortios_firewall_policy(terrascript.Resource): pass class fortios_firewall_policy46(terrascript.Resource): pass class fortios_firewall_policy6(terrascript.Resource): pass class fortios_firewall_policy64(terrascript.Resource): pass class fortios_firewall_profilegroup(terrascript.Resource): pass class fortios_firewall_profileprotocoloptions(terrascript.Resource): pass class fortios_firewall_proxyaddress(terrascript.Resource): pass class fortios_firewall_proxyaddrgrp(terrascript.Resource): pass class fortios_firewall_proxypolicy(terrascript.Resource): pass class fortios_firewall_proxypolicy_move(terrascript.Resource): pass class fortios_firewall_proxypolicy_sort(terrascript.Resource): pass class fortios_firewall_region(terrascript.Resource): pass class fortios_firewall_security_policy(terrascript.Resource): pass class fortios_firewall_security_policyseq(terrascript.Resource): pass class fortios_firewall_security_policysort(terrascript.Resource): pass class fortios_firewall_securitypolicy(terrascript.Resource): pass class fortios_firewall_shapingpolicy(terrascript.Resource): pass class fortios_firewall_shapingprofile(terrascript.Resource): pass class fortios_firewall_sniffer(terrascript.Resource): pass class fortios_firewall_sslserver(terrascript.Resource): pass class fortios_firewall_sslsshprofile(terrascript.Resource): pass class fortios_firewall_trafficclass(terrascript.Resource): pass class fortios_firewall_ttlpolicy(terrascript.Resource): pass class fortios_firewall_vendormac(terrascript.Resource): pass class fortios_firewall_vip(terrascript.Resource): pass class fortios_firewall_vip46(terrascript.Resource): pass class fortios_firewall_vip6(terrascript.Resource): pass class fortios_firewall_vip64(terrascript.Resource): pass class fortios_firewall_vipgrp(terrascript.Resource): pass class fortios_firewall_vipgrp46(terrascript.Resource): pass class fortios_firewall_vipgrp6(terrascript.Resource): pass class fortios_firewall_vipgrp64(terrascript.Resource): pass class fortios_firewallconsolidated_policy(terrascript.Resource): pass class fortios_firewallipmacbinding_setting(terrascript.Resource): pass class fortios_firewallipmacbinding_table(terrascript.Resource): pass class fortios_firewallschedule_group(terrascript.Resource): pass class fortios_firewallschedule_onetime(terrascript.Resource): pass class fortios_firewallschedule_recurring(terrascript.Resource): pass class fortios_firewallservice_category(terrascript.Resource): pass class fortios_firewallservice_custom(terrascript.Resource): pass class fortios_firewallservice_group(terrascript.Resource): pass class fortios_firewallshaper_peripshaper(terrascript.Resource): pass class fortios_firewallshaper_trafficshaper(terrascript.Resource): pass class fortios_firewallssh_hostkey(terrascript.Resource): pass class fortios_firewallssh_localca(terrascript.Resource): pass class fortios_firewallssh_localkey(terrascript.Resource): pass class fortios_firewallssh_setting(terrascript.Resource): pass class fortios_firewallssl_setting(terrascript.Resource): pass class fortios_firewallwildcardfqdn_custom(terrascript.Resource): pass class fortios_firewallwildcardfqdn_group(terrascript.Resource): pass class fortios_fmg_devicemanager_device(terrascript.Resource): pass class fortios_fmg_devicemanager_install_device(terrascript.Resource): pass class fortios_fmg_devicemanager_install_policypackage(terrascript.Resource): pass class fortios_fmg_devicemanager_script(terrascript.Resource): pass class fortios_fmg_devicemanager_script_execute(terrascript.Resource): pass class fortios_fmg_firewall_object_address(terrascript.Resource): pass class fortios_fmg_firewall_object_ippool(terrascript.Resource): pass class fortios_fmg_firewall_object_service(terrascript.Resource): pass class fortios_fmg_firewall_object_vip(terrascript.Resource): pass class fortios_fmg_firewall_security_policy(terrascript.Resource): pass class fortios_fmg_firewall_security_policypackage(terrascript.Resource): pass class fortios_fmg_jsonrpc_request(terrascript.Resource): pass class fortios_fmg_object_adom_revision(terrascript.Resource): pass class fortios_fmg_system_admin(terrascript.Resource): pass class fortios_fmg_system_admin_profiles(terrascript.Resource): pass class fortios_fmg_system_admin_user(terrascript.Resource): pass class fortios_fmg_system_adom(terrascript.Resource): pass class fortios_fmg_system_dns(terrascript.Resource): pass class fortios_fmg_system_global(terrascript.Resource): pass class fortios_fmg_system_license_forticare(terrascript.Resource): pass class fortios_fmg_system_license_vm(terrascript.Resource): pass class fortios_fmg_system_network_interface(terrascript.Resource): pass class fortios_fmg_system_network_route(terrascript.Resource): pass class fortios_fmg_system_ntp(terrascript.Resource): pass class fortios_fmg_system_syslogserver(terrascript.Resource): pass class fortios_ftpproxy_explicit(terrascript.Resource): pass class fortios_icap_profile(terrascript.Resource): pass class fortios_icap_server(terrascript.Resource): pass class fortios_ips_custom(terrascript.Resource): pass class fortios_ips_decoder(terrascript.Resource): pass class fortios_ips_global(terrascript.Resource): pass class fortios_ips_rule(terrascript.Resource): pass class fortios_ips_rulesettings(terrascript.Resource): pass class fortios_ips_sensor(terrascript.Resource): pass class fortios_ips_settings(terrascript.Resource): pass class fortios_ips_viewmap(terrascript.Resource): pass class fortios_json_generic_api(terrascript.Resource): pass class fortios_log_customfield(terrascript.Resource): pass class fortios_log_eventfilter(terrascript.Resource): pass class fortios_log_fortianalyzer_setting(terrascript.Resource): pass class fortios_log_guidisplay(terrascript.Resource): pass class fortios_log_setting(terrascript.Resource): pass class fortios_log_syslog_setting(terrascript.Resource): pass class fortios_log_threatweight(terrascript.Resource): pass class fortios_logdisk_filter(terrascript.Resource): pass class fortios_logdisk_setting(terrascript.Resource): pass class fortios_logfortianalyzer2_filter(terrascript.Resource): pass class fortios_logfortianalyzer2_overridefilter(terrascript.Resource): pass class fortios_logfortianalyzer2_overridesetting(terrascript.Resource): pass class fortios_logfortianalyzer2_setting(terrascript.Resource): pass class fortios_logfortianalyzer3_filter(terrascript.Resource): pass class fortios_logfortianalyzer3_overridefilter(terrascript.Resource): pass class fortios_logfortianalyzer3_overridesetting(terrascript.Resource): pass class fortios_logfortianalyzer3_setting(terrascript.Resource): pass class fortios_logfortianalyzer_filter(terrascript.Resource): pass class fortios_logfortianalyzer_overridefilter(terrascript.Resource): pass class fortios_logfortianalyzer_overridesetting(terrascript.Resource): pass class fortios_logfortianalyzer_setting(terrascript.Resource): pass class fortios_logfortianalyzercloud_filter(terrascript.Resource): pass class fortios_logfortianalyzercloud_overridefilter(terrascript.Resource): pass class fortios_logfortianalyzercloud_overridesetting(terrascript.Resource): pass class fortios_logfortianalyzercloud_setting(terrascript.Resource): pass class fortios_logfortiguard_filter(terrascript.Resource): pass class fortios_logfortiguard_overridefilter(terrascript.Resource): pass class fortios_logfortiguard_overridesetting(terrascript.Resource): pass class fortios_logfortiguard_setting(terrascript.Resource): pass class fortios_logmemory_filter(terrascript.Resource): pass class fortios_logmemory_globalsetting(terrascript.Resource): pass class fortios_logmemory_setting(terrascript.Resource): pass class fortios_lognulldevice_filter(terrascript.Resource): pass class fortios_lognulldevice_setting(terrascript.Resource): pass class fortios_logsyslogd2_filter(terrascript.Resource): pass class fortios_logsyslogd2_overridefilter(terrascript.Resource): pass class fortios_logsyslogd2_overridesetting(terrascript.Resource): pass class fortios_logsyslogd2_setting(terrascript.Resource): pass class fortios_logsyslogd3_filter(terrascript.Resource): pass class fortios_logsyslogd3_overridefilter(terrascript.Resource): pass class fortios_logsyslogd3_overridesetting(terrascript.Resource): pass class fortios_logsyslogd3_setting(terrascript.Resource): pass class fortios_logsyslogd4_filter(terrascript.Resource): pass class fortios_logsyslogd4_overridefilter(terrascript.Resource): pass class fortios_logsyslogd4_overridesetting(terrascript.Resource): pass class fortios_logsyslogd4_setting(terrascript.Resource): pass class fortios_logsyslogd_filter(terrascript.Resource): pass class fortios_logsyslogd_overridefilter(terrascript.Resource): pass class fortios_logsyslogd_overridesetting(terrascript.Resource): pass class fortios_logsyslogd_setting(terrascript.Resource): pass class fortios_logwebtrends_filter(terrascript.Resource): pass class fortios_logwebtrends_setting(terrascript.Resource): pass class fortios_networking_interface_port(terrascript.Resource): pass class fortios_networking_route_static(terrascript.Resource): pass class fortios_nsxt_servicechain(terrascript.Resource): pass class fortios_nsxt_setting(terrascript.Resource): pass class fortios_report_chart(terrascript.Resource): pass class fortios_report_dataset(terrascript.Resource): pass class fortios_report_layout(terrascript.Resource): pass class fortios_report_setting(terrascript.Resource): pass class fortios_report_style(terrascript.Resource): pass class fortios_report_theme(terrascript.Resource): pass class fortios_router_accesslist(terrascript.Resource): pass class fortios_router_accesslist6(terrascript.Resource): pass class fortios_router_aspathlist(terrascript.Resource): pass class fortios_router_authpath(terrascript.Resource): pass class fortios_router_bfd(terrascript.Resource): pass class fortios_router_bfd6(terrascript.Resource): pass class fortios_router_bgp(terrascript.Resource): pass class fortios_router_communitylist(terrascript.Resource): pass class fortios_router_isis(terrascript.Resource): pass class fortios_router_keychain(terrascript.Resource): pass class fortios_router_multicast(terrascript.Resource): pass class fortios_router_multicast6(terrascript.Resource): pass class fortios_router_multicastflow(terrascript.Resource): pass class fortios_router_ospf(terrascript.Resource): pass class fortios_router_ospf6(terrascript.Resource): pass class fortios_router_policy(terrascript.Resource): pass class fortios_router_policy6(terrascript.Resource): pass class fortios_router_prefixlist(terrascript.Resource): pass class fortios_router_prefixlist6(terrascript.Resource): pass class fortios_router_rip(terrascript.Resource): pass class fortios_router_ripng(terrascript.Resource): pass class fortios_router_routemap(terrascript.Resource): pass class fortios_router_setting(terrascript.Resource): pass class fortios_router_static(terrascript.Resource): pass class fortios_router_static6(terrascript.Resource): pass class fortios_routerbgp_neighbor(terrascript.Resource): pass class fortios_routerbgp_network(terrascript.Resource): pass class fortios_routerbgp_network6(terrascript.Resource): pass class fortios_routerospf6_ospf6interface(terrascript.Resource): pass class fortios_routerospf_neighbor(terrascript.Resource): pass class fortios_routerospf_network(terrascript.Resource): pass class fortios_routerospf_ospfinterface(terrascript.Resource): pass class fortios_spamfilter_bwl(terrascript.Resource): pass class fortios_spamfilter_bword(terrascript.Resource): pass class fortios_spamfilter_dnsbl(terrascript.Resource): pass class fortios_spamfilter_fortishield(terrascript.Resource): pass class fortios_spamfilter_iptrust(terrascript.Resource): pass class fortios_spamfilter_mheader(terrascript.Resource): pass class fortios_spamfilter_options(terrascript.Resource): pass class fortios_spamfilter_profile(terrascript.Resource): pass class fortios_sshfilter_profile(terrascript.Resource): pass class fortios_switchcontroller_8021Xsettings(terrascript.Resource): pass class fortios_switchcontroller_customcommand(terrascript.Resource): pass class fortios_switchcontroller_flowtracking(terrascript.Resource): pass class fortios_switchcontroller_global(terrascript.Resource): pass class fortios_switchcontroller_igmpsnooping(terrascript.Resource): pass class fortios_switchcontroller_lldpprofile(terrascript.Resource): pass class fortios_switchcontroller_lldpsettings(terrascript.Resource): pass class fortios_switchcontroller_location(terrascript.Resource): pass class fortios_switchcontroller_macsyncsettings(terrascript.Resource): pass class fortios_switchcontroller_managedswitch(terrascript.Resource): pass class fortios_switchcontroller_nacdevice(terrascript.Resource): pass class fortios_switchcontroller_nacsettings(terrascript.Resource): pass class fortios_switchcontroller_networkmonitorsettings(terrascript.Resource): pass class fortios_switchcontroller_portpolicy(terrascript.Resource): pass class fortios_switchcontroller_quarantine(terrascript.Resource): pass class fortios_switchcontroller_remotelog(terrascript.Resource): pass class fortios_switchcontroller_sflow(terrascript.Resource): pass class fortios_switchcontroller_snmpcommunity(terrascript.Resource): pass class fortios_switchcontroller_snmpsysinfo(terrascript.Resource): pass class fortios_switchcontroller_snmptrapthreshold(terrascript.Resource): pass class fortios_switchcontroller_snmpuser(terrascript.Resource): pass class fortios_switchcontroller_stormcontrol(terrascript.Resource): pass class fortios_switchcontroller_stormcontrolpolicy(terrascript.Resource): pass class fortios_switchcontroller_stpinstance(terrascript.Resource): pass class fortios_switchcontroller_stpsettings(terrascript.Resource): pass class fortios_switchcontroller_switchgroup(terrascript.Resource): pass class fortios_switchcontroller_switchinterfacetag(terrascript.Resource): pass class fortios_switchcontroller_switchlog(terrascript.Resource): pass class fortios_switchcontroller_switchprofile(terrascript.Resource): pass class fortios_switchcontroller_system(terrascript.Resource): pass class fortios_switchcontroller_trafficpolicy(terrascript.Resource): pass class fortios_switchcontroller_trafficsniffer(terrascript.Resource): pass class fortios_switchcontroller_virtualportpool(terrascript.Resource): pass class fortios_switchcontroller_vlan(terrascript.Resource): pass class fortios_switchcontroller_vlanpolicy(terrascript.Resource): pass class fortios_switchcontrollerautoconfig_custom(terrascript.Resource): pass class fortios_switchcontrollerautoconfig_default(terrascript.Resource): pass class fortios_switchcontrollerautoconfig_policy(terrascript.Resource): pass class fortios_switchcontrollerinitialconfig_template(terrascript.Resource): pass class fortios_switchcontrollerinitialconfig_vlans(terrascript.Resource): pass class fortios_switchcontrollerptp_policy(terrascript.Resource): pass class fortios_switchcontrollerptp_settings(terrascript.Resource): pass class fortios_switchcontrollerqos_dot1pmap(terrascript.Resource): pass class fortios_switchcontrollerqos_ipdscpmap(terrascript.Resource): pass class fortios_switchcontrollerqos_qospolicy(terrascript.Resource): pass class fortios_switchcontrollerqos_queuepolicy(terrascript.Resource): pass class fortios_switchcontrollersecuritypolicy_8021X(terrascript.Resource): pass class fortios_switchcontrollersecuritypolicy_captiveportal(terrascript.Resource): pass class fortios_switchcontrollersecuritypolicy_localaccess(terrascript.Resource): pass class fortios_system_accprofile(terrascript.Resource): pass class fortios_system_admin(terrascript.Resource): pass class fortios_system_admin_administrator(terrascript.Resource): pass class fortios_system_admin_profiles(terrascript.Resource): pass class fortios_system_affinityinterrupt(terrascript.Resource): pass class fortios_system_affinitypacketredistribution(terrascript.Resource): pass class fortios_system_alarm(terrascript.Resource): pass class fortios_system_alias(terrascript.Resource): pass class fortios_system_apiuser(terrascript.Resource): pass class fortios_system_apiuser_setting(terrascript.Resource): pass class fortios_system_arptable(terrascript.Resource): pass class fortios_system_autoinstall(terrascript.Resource): pass class fortios_system_automationaction(terrascript.Resource): pass class fortios_system_automationdestination(terrascript.Resource): pass class fortios_system_automationstitch(terrascript.Resource): pass class fortios_system_automationtrigger(terrascript.Resource): pass class fortios_system_autoscript(terrascript.Resource): pass class fortios_system_centralmanagement(terrascript.Resource): pass class fortios_system_clustersync(terrascript.Resource): pass class fortios_system_console(terrascript.Resource): pass class fortios_system_csf(terrascript.Resource): pass class fortios_system_customlanguage(terrascript.Resource): pass class fortios_system_ddns(terrascript.Resource): pass class fortios_system_dedicatedmgmt(terrascript.Resource): pass class fortios_system_dns(terrascript.Resource): pass class fortios_system_dnsdatabase(terrascript.Resource): pass class fortios_system_dnsserver(terrascript.Resource): pass class fortios_system_dscpbasedpriority(terrascript.Resource): pass class fortios_system_emailserver(terrascript.Resource): pass class fortios_system_externalresource(terrascript.Resource): pass class fortios_system_federatedupgrade(terrascript.Resource): pass class fortios_system_fipscc(terrascript.Resource): pass class fortios_system_fm(terrascript.Resource): pass class fortios_system_fortiguard(terrascript.Resource): pass class fortios_system_fortimanager(terrascript.Resource): pass class fortios_system_fortisandbox(terrascript.Resource): pass class fortios_system_fssopolling(terrascript.Resource): pass class fortios_system_ftmpush(terrascript.Resource): pass class fortios_system_geneve(terrascript.Resource): pass class fortios_system_geoipcountry(terrascript.Resource): pass class fortios_system_geoipoverride(terrascript.Resource): pass class fortios_system_global(terrascript.Resource): pass class fortios_system_gretunnel(terrascript.Resource): pass class fortios_system_ha(terrascript.Resource): pass class fortios_system_hamonitor(terrascript.Resource): pass class fortios_system_interface(terrascript.Resource): pass class fortios_system_ipiptunnel(terrascript.Resource): pass class fortios_system_ips(terrascript.Resource): pass class fortios_system_ipsecaggregate(terrascript.Resource): pass class fortios_system_ipsurlfilterdns(terrascript.Resource): pass class fortios_system_ipsurlfilterdns6(terrascript.Resource): pass class fortios_system_ipv6neighborcache(terrascript.Resource): pass class fortios_system_ipv6tunnel(terrascript.Resource): pass class fortios_system_license_forticare(terrascript.Resource): pass class fortios_system_license_vdom(terrascript.Resource): pass class fortios_system_license_vm(terrascript.Resource): pass class fortios_system_linkmonitor(terrascript.Resource): pass class fortios_system_macaddresstable(terrascript.Resource): pass class fortios_system_managementtunnel(terrascript.Resource): pass class fortios_system_mobiletunnel(terrascript.Resource): pass class fortios_system_nat64(terrascript.Resource): pass class fortios_system_ndproxy(terrascript.Resource): pass class fortios_system_netflow(terrascript.Resource): pass class fortios_system_networkvisibility(terrascript.Resource): pass class fortios_system_ntp(terrascript.Resource): pass class fortios_system_objecttagging(terrascript.Resource): pass class fortios_system_passwordpolicy(terrascript.Resource): pass class fortios_system_passwordpolicyguestadmin(terrascript.Resource): pass class fortios_system_pppoeinterface(terrascript.Resource): pass class fortios_system_proberesponse(terrascript.Resource): pass class fortios_system_proxyarp(terrascript.Resource): pass class fortios_system_ptp(terrascript.Resource): pass class fortios_system_replacemsggroup(terrascript.Resource): pass class fortios_system_replacemsgimage(terrascript.Resource): pass class fortios_system_resourcelimits(terrascript.Resource): pass class fortios_system_saml(terrascript.Resource): pass class fortios_system_sdnconnector(terrascript.Resource): pass class fortios_system_sdwan(terrascript.Resource): pass class fortios_system_sessionhelper(terrascript.Resource): pass class fortios_system_sessionttl(terrascript.Resource): pass class fortios_system_setting_dns(terrascript.Resource): pass class fortios_system_setting_global(terrascript.Resource): pass class fortios_system_setting_ntp(terrascript.Resource): pass class fortios_system_settings(terrascript.Resource): pass class fortios_system_sflow(terrascript.Resource): pass class fortios_system_sittunnel(terrascript.Resource): pass class fortios_system_smsserver(terrascript.Resource): pass class fortios_system_speedtestschedule(terrascript.Resource): pass class fortios_system_speedtestserver(terrascript.Resource): pass class fortios_system_ssoadmin(terrascript.Resource): pass class fortios_system_standalonecluster(terrascript.Resource): pass class fortios_system_storage(terrascript.Resource): pass class fortios_system_switchinterface(terrascript.Resource): pass class fortios_system_tosbasedpriority(terrascript.Resource): pass class fortios_system_vdom(terrascript.Resource): pass class fortios_system_vdom_setting(terrascript.Resource): pass class fortios_system_vdomdns(terrascript.Resource): pass class fortios_system_vdomexception(terrascript.Resource): pass class fortios_system_vdomlink(terrascript.Resource): pass class fortios_system_vdomnetflow(terrascript.Resource): pass class fortios_system_vdomproperty(terrascript.Resource): pass class fortios_system_vdomradiusserver(terrascript.Resource): pass class fortios_system_vdomsflow(terrascript.Resource): pass class fortios_system_virtualswitch(terrascript.Resource): pass class fortios_system_virtualwanlink(terrascript.Resource): pass class fortios_system_virtualwirepair(terrascript.Resource): pass class fortios_system_vnetunnel(terrascript.Resource): pass class fortios_system_vxlan(terrascript.Resource): pass class fortios_system_wccp(terrascript.Resource): pass class fortios_system_zone(terrascript.Resource): pass class fortios_systemautoupdate_pushupdate(terrascript.Resource): pass class fortios_systemautoupdate_schedule(terrascript.Resource): pass class fortios_systemautoupdate_tunneling(terrascript.Resource): pass class fortios_systemdhcp6_server(terrascript.Resource): pass class fortios_systemdhcp_server(terrascript.Resource): pass class fortios_systemlldp_networkpolicy(terrascript.Resource): pass class fortios_systemreplacemsg_admin(terrascript.Resource): pass class fortios_systemreplacemsg_alertmail(terrascript.Resource): pass class fortios_systemreplacemsg_auth(terrascript.Resource): pass class fortios_systemreplacemsg_automation(terrascript.Resource): pass class fortios_systemreplacemsg_devicedetectionportal(terrascript.Resource): pass class fortios_systemreplacemsg_ec(terrascript.Resource): pass class fortios_systemreplacemsg_fortiguardwf(terrascript.Resource): pass class fortios_systemreplacemsg_ftp(terrascript.Resource): pass class fortios_systemreplacemsg_http(terrascript.Resource): pass class fortios_systemreplacemsg_icap(terrascript.Resource): pass class fortios_systemreplacemsg_mail(terrascript.Resource): pass class fortios_systemreplacemsg_nacquar(terrascript.Resource): pass class fortios_systemreplacemsg_nntp(terrascript.Resource): pass class fortios_systemreplacemsg_spam(terrascript.Resource): pass class fortios_systemreplacemsg_sslvpn(terrascript.Resource): pass class fortios_systemreplacemsg_trafficquota(terrascript.Resource): pass class fortios_systemreplacemsg_utm(terrascript.Resource): pass class fortios_systemreplacemsg_webproxy(terrascript.Resource): pass class fortios_systemsnmp_community(terrascript.Resource): pass class fortios_systemsnmp_sysinfo(terrascript.Resource): pass class fortios_systemsnmp_user(terrascript.Resource): pass class fortios_user_adgrp(terrascript.Resource): pass class fortios_user_device(terrascript.Resource): pass class fortios_user_deviceaccesslist(terrascript.Resource): pass class fortios_user_devicecategory(terrascript.Resource): pass class fortios_user_devicegroup(terrascript.Resource): pass class fortios_user_domaincontroller(terrascript.Resource): pass class fortios_user_exchange(terrascript.Resource): pass class fortios_user_fortitoken(terrascript.Resource): pass class fortios_user_fsso(terrascript.Resource): pass class fortios_user_fssopolling(terrascript.Resource): pass class fortios_user_group(terrascript.Resource): pass class fortios_user_krbkeytab(terrascript.Resource): pass class fortios_user_ldap(terrascript.Resource): pass class fortios_user_local(terrascript.Resource): pass class fortios_user_nacpolicy(terrascript.Resource): pass class fortios_user_passwordpolicy(terrascript.Resource): pass class fortios_user_peer(terrascript.Resource): pass class fortios_user_peergrp(terrascript.Resource): pass class fortios_user_pop3(terrascript.Resource): pass class fortios_user_quarantine(terrascript.Resource): pass class fortios_user_radius(terrascript.Resource): pass class fortios_user_saml(terrascript.Resource): pass class fortios_user_securityexemptlist(terrascript.Resource): pass class fortios_user_setting(terrascript.Resource): pass class fortios_user_tacacs(terrascript.Resource): pass class fortios_voip_profile(terrascript.Resource): pass class fortios_vpn_ipsec_phase1interface(terrascript.Resource): pass class fortios_vpn_ipsec_phase2interface(terrascript.Resource): pass class fortios_vpn_l2tp(terrascript.Resource): pass class fortios_vpn_ocvpn(terrascript.Resource): pass class fortios_vpn_pptp(terrascript.Resource): pass class fortios_vpncertificate_ca(terrascript.Resource): pass class fortios_vpncertificate_crl(terrascript.Resource): pass class fortios_vpncertificate_local(terrascript.Resource): pass class fortios_vpncertificate_ocspserver(terrascript.Resource): pass class fortios_vpncertificate_remote(terrascript.Resource): pass class fortios_vpncertificate_setting(terrascript.Resource): pass class fortios_vpnipsec_concentrator(terrascript.Resource): pass class fortios_vpnipsec_forticlient(terrascript.Resource): pass class fortios_vpnipsec_manualkey(terrascript.Resource): pass class fortios_vpnipsec_manualkeyinterface(terrascript.Resource): pass class fortios_vpnipsec_phase1(terrascript.Resource): pass class fortios_vpnipsec_phase1interface(terrascript.Resource): pass class fortios_vpnipsec_phase2(terrascript.Resource): pass class fortios_vpnipsec_phase2interface(terrascript.Resource): pass class fortios_vpnssl_settings(terrascript.Resource): pass class fortios_vpnsslweb_hostchecksoftware(terrascript.Resource): pass class fortios_vpnsslweb_portal(terrascript.Resource): pass class fortios_vpnsslweb_realm(terrascript.Resource): pass class fortios_vpnsslweb_userbookmark(terrascript.Resource): pass class fortios_vpnsslweb_usergroupbookmark(terrascript.Resource): pass class fortios_waf_mainclass(terrascript.Resource): pass class fortios_waf_profile(terrascript.Resource): pass class fortios_waf_signature(terrascript.Resource): pass class fortios_waf_subclass(terrascript.Resource): pass class fortios_wanopt_authgroup(terrascript.Resource): pass class fortios_wanopt_cacheservice(terrascript.Resource): pass class fortios_wanopt_contentdeliverynetworkrule(terrascript.Resource): pass class fortios_wanopt_peer(terrascript.Resource): pass class fortios_wanopt_profile(terrascript.Resource): pass class fortios_wanopt_remotestorage(terrascript.Resource): pass class fortios_wanopt_settings(terrascript.Resource): pass class fortios_wanopt_webcache(terrascript.Resource): pass class fortios_webfilter_content(terrascript.Resource): pass class fortios_webfilter_contentheader(terrascript.Resource): pass class fortios_webfilter_fortiguard(terrascript.Resource): pass class fortios_webfilter_ftgdlocalcat(terrascript.Resource): pass class fortios_webfilter_ftgdlocalrating(terrascript.Resource): pass class fortios_webfilter_ipsurlfiltercachesetting(terrascript.Resource): pass class fortios_webfilter_ipsurlfiltersetting(terrascript.Resource): pass class fortios_webfilter_ipsurlfiltersetting6(terrascript.Resource): pass class fortios_webfilter_override(terrascript.Resource): pass class fortios_webfilter_profile(terrascript.Resource): pass class fortios_webfilter_searchengine(terrascript.Resource): pass class fortios_webfilter_urlfilter(terrascript.Resource): pass class fortios_webproxy_debugurl(terrascript.Resource): pass class fortios_webproxy_explicit(terrascript.Resource): pass class fortios_webproxy_forwardserver(terrascript.Resource): pass class fortios_webproxy_forwardservergroup(terrascript.Resource): pass class fortios_webproxy_global(terrascript.Resource): pass class fortios_webproxy_profile(terrascript.Resource): pass class fortios_webproxy_urlmatch(terrascript.Resource): pass class fortios_webproxy_wisp(terrascript.Resource): pass class fortios_wirelesscontroller_accesscontrollist(terrascript.Resource): pass class fortios_wirelesscontroller_address(terrascript.Resource): pass class fortios_wirelesscontroller_addrgrp(terrascript.Resource): pass class fortios_wirelesscontroller_apcfgprofile(terrascript.Resource): pass class fortios_wirelesscontroller_apstatus(terrascript.Resource): pass class fortios_wirelesscontroller_arrpprofile(terrascript.Resource): pass class fortios_wirelesscontroller_bleprofile(terrascript.Resource): pass class fortios_wirelesscontroller_bonjourprofile(terrascript.Resource): pass class fortios_wirelesscontroller_global(terrascript.Resource): pass class fortios_wirelesscontroller_intercontroller(terrascript.Resource): pass class fortios_wirelesscontroller_log(terrascript.Resource): pass class fortios_wirelesscontroller_mpskprofile(terrascript.Resource): pass class fortios_wirelesscontroller_qosprofile(terrascript.Resource): pass class fortios_wirelesscontroller_region(terrascript.Resource): pass class fortios_wirelesscontroller_setting(terrascript.Resource): pass class fortios_wirelesscontroller_snmp(terrascript.Resource): pass class fortios_wirelesscontroller_timers(terrascript.Resource): pass class fortios_wirelesscontroller_utmprofile(terrascript.Resource): pass class fortios_wirelesscontroller_vap(terrascript.Resource): pass class fortios_wirelesscontroller_vapgroup(terrascript.Resource): pass class fortios_wirelesscontroller_wagprofile(terrascript.Resource): pass class fortios_wirelesscontroller_widsprofile(terrascript.Resource): pass class fortios_wirelesscontroller_wtp(terrascript.Resource): pass class fortios_wirelesscontroller_wtpgroup(terrascript.Resource): pass class fortios_wirelesscontroller_wtpprofile(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_anqp3gppcellular(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_anqpipaddresstype(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_anqpnairealm(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_anqpnetworkauthtype(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_anqproamingconsortium(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_anqpvenuename(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_h2qpconncapability(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_h2qpoperatorname(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_h2qposuprovider(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_h2qpwanmetric(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_hsprofile(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_icon(terrascript.Resource): pass class fortios_wirelesscontrollerhotspot20_qosmap(terrascript.Resource): pass
py
1a4dff7506831772849750d419f5ee2f2d6259ef
from decimal import Decimal as D from oscar.core.loading import get_class from oscar.test import factories Default = get_class('partner.strategy', 'Default') def add_product(basket, price=None, quantity=1, product=None): """ Helper to add a product to the basket. """ has_strategy = False try: has_strategy = hasattr(basket, 'strategy') except RuntimeError: pass if not has_strategy: basket.strategy = Default() if price is None: price = D('1') if product and product.has_stockrecords: record = product.stockrecords.all()[0] else: record = factories.create_stockrecord( product=product, price_excl_tax=price, num_in_stock=quantity + 1) basket.add_product(record.product, quantity) def add_products(basket, args): """ Helper to add a series of products to the passed basket """ for price, quantity in args: add_product(basket, price, quantity)
py
1a4dff887a5dc473df25728b5372dc4c424b806d
import pytest import spacy from spacy.language import Language from timexy.languages.en import en label = "timexy_label" lang = "en" @pytest.fixture() def nlp() -> Language: nlp = spacy.blank(lang) nlp.add_pipe("timexy", config={"label": label}) return nlp test_data = [t for rule in en.rules for t in rule.tests] @pytest.mark.parametrize("text,date_start,date_end", test_data) def test_rule(nlp: Language, text: str, date_start: int, date_end: int) -> None: doc = nlp(text) assert [ e for e in doc.ents if e.start_char == date_start and e.end_char == date_end and e.label_ == label ]
py
1a4e00a55ea4acd5b5558482c30f46055ab30654
#AQUÍ irán las pruebas que se realicen sobre GitHub. #Importamos las librerías necesarias. from github import Github from github.GithubException import UnknownObjectException import aux_functions as aux import dataF_functions as d import ci_tools as ci import github_search as ghs # import openpyxl --> esta hay que instalarla en el venv para que funcione el generarEXCEL. # Generamos un github_token para consultar la API de GitHub a través de la librería. user = "jorcontrerasp" token = aux.readFile("tokens/github_token.txt") g = Github(user, token) ciTool = ci.HerramientasCI.CI2 # zhihu/Matisse # EOSIO/eos # AMAI-GmbH/AI-Expert-Roadmap # jwasham/coding-interview-university # gztchan/awesome-design # agalwood/motrix # kr328/clashforandroid # salomonelli/best-resume-ever # facebook/create-react-app # goldbergyoni/nodebestpractices # freecad/freecad # vuejs/core # artf/grapesjs # cocoapods/cocoapods # google/gvisor # adguardteam/adguardhome # playframework/playframework # hackiftekhar/IQKeyboardManager -> ¿etiqueta matrix? # neovim/neovim -> en los jobs, ¿recojo la etiqueta 'env' como steps? repoName = "neovim/neovim" doTest = True doSearchInAllCiTools = True try: repo = g.get_repo(repoName) except UnknownObjectException as e: print("El repositorio " + repoName + " no existe en GitHub: " + str(e)) doTest = False if doTest: filteredRepos = [repo] df = d.makeDataFrame(filteredRepos, True) df2 = d.makeCounterDataFrame() df3 = d.makeEmptyLanguageDataFrame() df6 = d.makeEmptyStageStatisticsDataFrame() if doSearchInAllCiTools: foundList = [] foundList = ghs.searchReposGitHubApi(filteredRepos, df, df2, df3, df6) d.makeEXCEL(df2, "_counting") else: found,df,df3,df6 = ghs.searchLiteralPathFromRoot(repo, ciTool, df, df2, df3, df6) #found,df,df3,df6 = ghs.searchLiteralPathFromRoot_REC(repo, ciTool, [], df, df2, df3, df6, []) df,df2,df4,df5 = d.doAuxWithResultsDF(df, df2, df3, True) d.makeEXCEL(df, "github/_github_results") d.makeEXCEL(df2, "github/_counting") d.makeEXCEL(df3, "github/_github_languages") d.makeEXCEL(df4, "github/_github_language_statistics") d.makeEXCEL(df5, "github/_github_ci_statistics") d.makeEXCEL(df6, "github/_gitlab_stage_statistics") print("Fin de la prueba.")
py
1a4e00d6527a069d185421b2c2b3e973e19a513e
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import errno import io import select import socket def safe_select(*args, **kwargs): # N.B. This while loop is purely to facilitate SA_RESTART-like behavior for select(), which is # (apparently) not covered by signal.siginterrupt(signal.SIGINT, False) when a timeout is passed. # This helps avoid an unhandled select.error(4, 'Interrupted system call') on SIGINT. # See https://bugs.python.org/issue12224 for more info. while 1: try: return select.select(*args, **kwargs) except select.error as e: if e[0] != errno.EINTR: raise class RecvBufferedSocket(object): """A socket wrapper that simplifies recv() buffering.""" def __init__(self, socket, chunk_size=io.DEFAULT_BUFFER_SIZE, select_timeout=None): """ :param socket socket: The socket.socket object to wrap. :param int chunk_size: The smallest max read size for calls to recv() in bytes. :param float select_timeout: The select timeout for a socket read in seconds. An integer value effectively makes self.recv non-blocking (default: None, blocking). """ self._socket = socket self._chunk_size = chunk_size self._select_timeout = select_timeout self._buffer = b'' def recv(self, bufsize): """Buffers up to _chunk_size bytes when the internal buffer has less than `bufsize` bytes.""" assert bufsize > 0, 'a positive bufsize is required' if len(self._buffer) < bufsize: readable, _, _ = safe_select([self._socket], [], [], self._select_timeout) if readable: recvd = self._socket.recv(max(self._chunk_size, bufsize)) self._buffer = self._buffer + recvd return_buf, self._buffer = self._buffer[:bufsize], self._buffer[bufsize:] return return_buf def __getattr__(self, attr): return getattr(self._socket, attr)
py
1a4e0128f8b18c46555d6ac974d8d7438c11d92e
from django.test import TestCase from .models import Item class TestModels(TestCase): def test_new_item_defaults_to_done_false(self): item = Item.objects.create(name="Test DoneFalse Item") self.assertFalse(item.done) def test_item_string_method_returns_name(self): item_name = "Test Item StringMethod" item = Item.objects.create(name=item_name) self.assertEqual(str(item), item_name)
py
1a4e01a7b7b5f4099496064e6434eab7251d7faf
from .records_not_found_error import RecordsNotFoundException from .provider_selection_error import ProviderSelectionException __all__ = ['RecordsNotFoundException', 'ProviderSelectionException']
py
1a4e01ad6bc063d6fec2e86c1a9c918aa1efcec3
#!/usr/bin/env python3 from typing import List from reagent import types as rlt from reagent.core.dataclasses import dataclass, field from reagent.models.base import ModelBase from reagent.models.dqn import FullyConnectedDQN from reagent.net_builder.discrete_dqn_net_builder import DiscreteDQNNetBuilder from reagent.parameters import NormalizationData, param_hash @dataclass class FullyConnected(DiscreteDQNNetBuilder): __hash__ = param_hash sizes: List[int] = field(default_factory=lambda: [256, 128]) activations: List[str] = field(default_factory=lambda: ["relu", "relu"]) dropout_ratio: float = 0.0 use_batch_norm: bool = False def __post_init_post_parse__(self): super().__init__() assert len(self.sizes) == len(self.activations), ( f"Must have the same numbers of sizes and activations; got: " f"{self.sizes}, {self.activations}" ) def build_q_network( self, state_feature_config: rlt.ModelFeatureConfig, state_normalization_data: NormalizationData, output_dim: int, ) -> ModelBase: state_dim = self._get_input_dim(state_normalization_data) return FullyConnectedDQN( state_dim=state_dim, action_dim=output_dim, sizes=self.sizes, activations=self.activations, dropout_ratio=self.dropout_ratio, use_batch_norm=self.use_batch_norm, )
py
1a4e02447a4012994db47d42a8fe065d0bf4a900
import pandas as pd import qcportal as ptl from simtk import unit PARTICLE = unit.mole.create_unit( 6.02214076e23 ** -1, "particle", "particle", ) HARTREE_PER_PARTICLE = unit.hartree / PARTICLE HARTREE_TO_KCALMOL = HARTREE_PER_PARTICLE.conversion_factor_to( unit.kilocalorie_per_mole ) def main(): # Define the qcfractal server instance to download data from the datasets: # 1. OpenFF Theory Benchmarking Set v1.1 - which contain the torsiondrives at different levels of theory # link (https://github.com/openforcefield/qca-dataset-submission/tree/master/submissions/2020-12-18-OpenFF-Theory # -Benchmarking-Set-v1.0) client = ptl.FractalClient() ds = client.get_collection( "TorsionDriveDataset", "OpenFF Theory Benchmarking Set v1.0" ) specifications = ds.list_specifications().index.to_list() print(specifications) # Create a dataframe to store the torsiondrives data df = pd.DataFrame(columns=specifications) for i, entry_index in enumerate(ds.df.index): for spec_name in specifications: data_entry = ds.get_entry(entry_index) td_record_id = data_entry.object_map[spec_name] td_dict = {} td_dict["td_record_id"] = td_record_id td_dict["attributes"] = data_entry.attributes td_dict["mapped_smiles"] = data_entry.attributes[ "canonical_isomeric_explicit_hydrogen_mapped_smiles" ] df.loc[entry_index + str(i), spec_name] = [td_dict] td_record = client.query_procedures(td_record_id)[0] print(f"{i:5d} : {entry_index:50s} status {td_record.status}") if td_record.status == "COMPLETE": angles = [] energies = [] dipoles = [] quadrupoles = [] for key, value in td_record.get_final_energies().items(): angles.append(key[0]) energies.append(value) dipoles.append( td_record.get_final_results()[key].extras["qcvars"][ "SCF DIPOLE" ] ) quadrupoles.append( td_record.get_final_results()[key].extras["qcvars"][ "SCF QUADRUPOLE" ] ) angles, energies, dipoles, quadrupoles = zip( *sorted(zip(angles, energies, dipoles, quadrupoles)) ) energy_min = min(energies) relative_energies = [(x - energy_min) for x in energies] dihedrals = td_record.keywords.dict()["dihedrals"][0] df.loc[entry_index + str(i), spec_name][0].update( { "initial_molecules": client.query_molecules( td_record.initial_molecule ), "final_molecules": td_record.get_final_molecules(), "final_energies": td_record.get_final_energies(), "angles": angles, "relative_energies": relative_energies, "dipoles": dipoles, "quadrupoles": quadrupoles, "dihedrals": dihedrals, "keywords": td_record.keywords.dict(), } ) # saving it to a pickle file df.to_pickle("./torsiondrive_data.pkl") if __name__ == "__main__": main()
py
1a4e02df20eb358c99e2f3820df727ece77ca6bc
#!/usr/bin/env python # -*- coding:utf-8 -*- # @File: cms.py """ envlib.cms ~~~~~~~~~~ Cms配置类预置库 """ import json as json_tool from copy import deepcopy from envlib.env.envlogging import logger from envlib.env.globals import current_app as app from envlib.env.globals import g from envlib.env.helpers import GetKeysMixin from envlib.env_resources.preset_data import CMS_STORAGE_DIRECTORY, CMS_STORAGE_TYPE, cms_system_config_data, \ cms_archive_config_data from envlib.envsetup.storage import Storage from envlib.util import get_last_ip_str from resources.data import STORAGE_CONFIG __all__ = ['Cms', ] class Cms(GetKeysMixin): """Cms配置类""" def __init__(self): pass @classmethod def query_cms_platform_config_by_rest(cls, check=False): """查询cms,系统配置,平台配置 查询结果绑定到 当前运行的Env实例关联的上下文环境信息AppCtxGlobals实例的代理 ``g`` 下:: key='cms_platform_config', value=查询接口返回值,cms,系统配置,平台配置 Args: check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值,cms,系统配置,平台配置 """ res = app.send_by_rest('/api/demo@get') app.bind_to_g(key='cms_platform_config', value=json_tool.loads(res.get('value')), lock=False) return json_tool.loads(res.get('value')) @classmethod def config_cms_platform_by_rest(cls, json=cms_system_config_data, check=False): """cms,系统配置,平台配置 Args: json (any): json数据结构 check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值 """ _config_cms_platform_json = { "key": "viid", "value": json_tool.dumps(json) } res = app.send_by_rest('/api/demo@post', json=_config_cms_platform_json, check=check) cls.query_cms_platform_config_by_rest() return res @classmethod def query_cms_archive_config_by_rest(cls, check=False): """查询cms,系统配置,一人一档配置 查询结果绑定到 当前运行的Env实例关联的上下文环境信息AppCtxGlobals实例的代理 ``g`` 下:: key='cms_archive_config', value=查询接口返回值,cms,系统配置,一人一档配置 Args: check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值,cms,系统配置,一人一档配置 """ res = app.send_by_rest('/api/demo@get', check=check) app.bind_to_g(key='cms_archive_config', value=res, lock=False) return res @classmethod def config_cms_archive_by_rest(cls, json=cms_archive_config_data, check=False): """cms,系统配置,一人一档 Args: json (any): json数据结构 check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值 """ res = app.send_by_rest('/api/demo@put', json=json, check=check) cls.query_cms_archive_config_by_rest() return res @classmethod def query_cms_cloud_storage_list_by_rest(cls, check=False): """cms-查询存储集群列表 查询结果绑定到 当前运行的Env实例关联的上下文环境信息AppCtxGlobals实例的代理 ``g`` 下:: key='cms_cloud_storage_list', value=查询接口返回值,cms-查询存储集群列表 Args: check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值,cms-查询存储集群列表 """ res = app.send_by_rest('/api/demo@get', check=check) app.bind_to_g(key='cms_cloud_storage_list', value=res.get('data'), lock=False) return res.get('data') @classmethod def add_cms_cloud_storage_by_rest_via_json(cls, json, check=False): """cms系统配置-云存储配置-添加存储集群 Args: json (any): json数据结构 check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值 """ res = app.send_by_rest('/api/demo@post', json=json, check=check) return res @classmethod def query_cms_cloud_storage_capacity_by_rest(cls, ip=STORAGE_CONFIG.get('cm_ip'), check=False): """ Args: ip (str): ip check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值 """ res = app.send_by_rest('/api/demo@get', params=f'ip={ip}&port=9001&protocal=0', check=check) return res.get('capacity') @classmethod def config_cms_cloud_storage_directory_by_rest_via_json(cls, json, check=False): """cms-存储集群存储目录配置 Args: json (any): json数据结构 check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值 """ res = app.send_by_rest('/api/demo@post', json=json, check=check) return res @classmethod def query_cms_cloud_storage_directory_by_rest_via_params(cls, params, check=False): """cms-查询存储集群存储目录配置 Args: params (any): params数据结构 check (bool): 接口返回状态码校验,默认不校验 Returns: rest接口返回值 """ res = app.send_by_rest('/api/demo@get', params=params, check=check) return res @classmethod def config_cms_cloud_storage_from_env_ini(cls): """cms,系统配置-云存储配置,根据env_ini中预设的存储集群,添加存储集群 Returns: rest接口返回值 """ _storage_list = cls.query_cms_cloud_storage_list_by_rest().get('data') _exist_storage = [_storage for _storage in _storage_list if _storage.get('storage_name') == STORAGE_CONFIG.get('cms_storage_name')] if _exist_storage: logger.warning(f"CMS已添加存储{STORAGE_CONFIG.get('cms_storage_name')},请勿重复添加!!") else: _storage_capacity = cls.query_cms_cloud_storage_capacity_by_rest( ip=STORAGE_CONFIG.get('cm_ip')) _set_storage_capacity = _storage_capacity if _storage_capacity else 30000 _cms_storage_add_json = { "read_write_permission": 1, "storage_id": get_last_ip_str(STORAGE_CONFIG.get('cm_ip')), "storage_name": STORAGE_CONFIG.get('cms_storage_name'), "storage_ip": STORAGE_CONFIG.get('cm_ip'), "storage_port": 9001, "storage_protocal": 0, "storage_capacity": _set_storage_capacity, "storage_desc": None } cls.add_cms_cloud_storage_by_rest_via_json(json=_cms_storage_add_json) res = cls.query_cms_cloud_storage_list_by_rest() return res @classmethod def get_storage_id_via_cm_ip(cls, cm_ip=STORAGE_CONFIG.get('cm_ip')): """通过cm ip获取存储id Args: cm_ip (str): cm ip Returns: rest接口返回值, 存储id """ cls.query_cms_cloud_storage_list_by_rest() _storage_id = g.getk('cms_cloud_storage_list').extracting('storage_id', filter={'storage_ip': cm_ip}) if _storage_id is None: cls.config_cms_cloud_storage_from_env_ini() _storage_id = g.getk('cms_cloud_storage_list').extracting('storage_id', filter={'storage_ip': cm_ip}) return _storage_id @classmethod def config_cms_cloud_storage_directory_from_env_ini(cls): """cms,系统配置-云存储配置,根据env_ini中预设的存储集群,进行目录配置 Returns: rest接口返回值 """ _storage_id = cls.get_storage_id_via_cm_ip(cm_ip=STORAGE_CONFIG.get('cm_ip')) for _bucket_name in CMS_STORAGE_DIRECTORY: _quota = Storage.query_y3000_bucket_storage_quota_via_bucket_name(bucket_name=_bucket_name) _quota = 200 if _quota == 0 else _quota _bucket_id = CMS_STORAGE_TYPE.get(_bucket_name) _query_storage_set = cls.query_cms_cloud_storage_directory_by_rest_via_params( params=f'data_type={_bucket_id}&storage_id={_storage_id}') _json = deepcopy(CMS_STORAGE_DIRECTORY.get(_bucket_name)) _json.update(storage_id=_storage_id) _json.get('storage_info')[0].update(capacity=_quota) if not _query_storage_set: # 未设置则调接口设置 cls.config_cms_cloud_storage_directory_by_rest_via_json(json=_json) if __name__ == '__main__': pass
py
1a4e03c1546dd7365208cc543d69ecc1d80364ec
__author__ = 'Ulric Qin'
py
1a4e04f37e654b012d0d39a5ad808db143129616
_o_file = open("folder/test.txt", "r") def read_file(): global _o_file print(_o_file.read()) _o_file.close() def read_file_loop(): global _o_file for x in _o_file: print(x) _o_file.close()
py
1a4e06594519bc549a9782f9d4bf752e9c1e7c87
import unittest from streamlink.plugins.crunchyroll import Crunchyroll class TestPluginCrunchyroll(unittest.TestCase): def test_can_handle_url(self): # should match self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.com/idol-incidents/episode-1-why-become-a-dietwoman-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.com/ru/idol-incidents/episode-1-why-become-a-dietwoman-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.com/idol-incidents/media-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.com/fr/idol-incidents/media-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.com/media-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.com/de/media-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.fr/media-728233")) self.assertTrue(Crunchyroll.can_handle_url("http://www.crunchyroll.fr/es/media-728233")) # shouldn't match self.assertFalse(Crunchyroll.can_handle_url("http://www.crunchyroll.com/gintama")) self.assertFalse(Crunchyroll.can_handle_url("http://www.crunchyroll.es/gintama")) self.assertFalse(Crunchyroll.can_handle_url("http://www.youtube.com/"))
py
1a4e06a5f68a7bec563d1d0f6351aece0503fcef
# coding: utf-8 """ Looker API 3.0 Reference ### Authorization The Looker API uses Looker **API3** credentials for authorization and access control. Looker admins can create API3 credentials on Looker's **Admin/Users** page. Pass API3 credentials to the **/login** endpoint to obtain a temporary access_token. Include that access_token in the Authorization header of Looker API requests. For details, see [Looker API Authorization](https://looker.com/docs/r/api/authorization) ### Client SDKs The Looker API is a RESTful system that should be usable by any programming language capable of making HTTPS requests. Client SDKs for a variety of programming languages can be generated from the Looker API's Swagger JSON metadata to streamline use of the Looker API in your applications. A client SDK for Ruby is available as an example. For more information, see [Looker API Client SDKs](https://looker.com/docs/r/api/client_sdks) ### Try It Out! The 'api-docs' page served by the Looker instance includes 'Try It Out!' buttons for each API method. After logging in with API3 credentials, you can use the \"Try It Out!\" buttons to call the API directly from the documentation page to interactively explore API features and responses. ### Versioning Future releases of Looker will expand this API release-by-release to securely expose more and more of the core power of Looker to API client applications. API endpoints marked as \"beta\" may receive breaking changes without warning. Stable (non-beta) API endpoints should not receive breaking changes in future releases. For more information, see [Looker API Versioning](https://looker.com/docs/r/api/versioning) # noqa: E501 OpenAPI spec version: 3.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import looker_client_30 from looker_client_30.looker_sdk.project_file import ProjectFile # noqa: E501 from looker_client_30.rest import ApiException class TestProjectFile(unittest.TestCase): """ProjectFile unit test stubs""" def setUp(self): pass def tearDown(self): pass def testProjectFile(self): """Test ProjectFile""" # FIXME: construct object with mandatory attributes with example values # model = looker_client_30.models.project_file.ProjectFile() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a4e076c0aab45db01867ed84fff661cbfa869b6
from django.contrib import admin from django.db.models import Count from flicks.base.admin import BaseModelAdmin, NumVotesFilter from flicks.videos import models from flicks.videos.tasks import process_video class SelectRelatedFieldListFilter(admin.filters.RelatedFieldListFilter): template = 'admin/filters_select.html' class Video2013Admin(BaseModelAdmin): list_display = ['title', 'user_full_name', 'user_email', 'num_votes', 'created', 'vimeo_id', 'filename', 'processed', 'approved'] list_filter = ['processed', 'approved', NumVotesFilter] search_fields = ['title', 'description', 'user__userprofile__full_name', 'user__email'] readonly_fields = ['filename', 'processed', 'user_notified', 'created'] fieldsets = ( (None, { 'fields': ('title', 'user', 'created', 'vimeo_id', 'filename', 'description', 'thumbnail') }), ('Moderation', { 'fields': ('processed', 'approved') }) ) actions = ['process_videos', 'download_thumbnails'] change_form_template = 'admin/video2013_change_form.html' def queryset(self, request): """Add num_votes field to queryset.""" qs = super(Video2013Admin, self).queryset(request) qs = qs.annotate(num_votes=Count('voters')) return qs def num_votes(self, video): # Use method on admin so we can sort by this field. return video.vote_count num_votes.admin_order_field = 'num_votes' def user_full_name(self, instance): return instance.user.profile.full_name if instance.user.profile else '' def user_email(self, instance): return instance.user.email def process_videos(self, request, queryset): """Synchronously run the video processing task on the selected videos.""" for video in queryset: process_video(video.id) msg = '{0} videos processed successfully.' self.message_user(request, msg.format(len(queryset))) process_videos.short_description = 'Manually run video processing' def download_thumbnails(self, request, queryset): """Attempt to download thumbnails for the selected videos.""" errors = [] for video in queryset: try: video.download_thumbnail() except Exception, e: msg = 'Error downloading thumbnail for "{0}": {1}' errors.append(msg.format(video, e)) # Notify user of results. count = len(queryset) - len(errors) if count > 0: msg = '{0} videos updated successfully.' self.message_user(request, msg.format(count)) for error in errors: self.message_user_error(request, error) download_thumbnails.short_description = 'Download thumbnails from Vimeo' class VoteAdmin(BaseModelAdmin): list_display = ['user_nickname', 'user_email', 'video', 'created'] list_filter = ['created', ('video', SelectRelatedFieldListFilter)] search_fields = ['user__userprofile__full_name', 'user__userprofile__nickname', 'user__email', 'video__title'] def user_nickname(self, vote): return vote.user.userprofile.nickname def user_email(self, vote): return vote.user.email class Video2012Admin(BaseModelAdmin): """Configuration for the video admin pages.""" list_display = ['title', 'user_email', 'state', 'judge_mark', 'category', 'region', 'shortlink', 'created'] list_filter = ['state', 'judge_mark', 'category', 'region'] search_fields = ['title', 'description', 'user__email'] class AwardAdmin(BaseModelAdmin): """Configuration for the award admin pages.""" list_display = ['region', 'award_type', 'category', 'video', 'preview'] admin.site.register(models.Video2013, Video2013Admin) admin.site.register(models.Vote, VoteAdmin) admin.site.register(models.Video2012, Video2012Admin) admin.site.register(models.Award, AwardAdmin)
py
1a4e0780035091dc3937db73c6c1b2932ebb0bbb
from django.shortcuts import get_object_or_404 from users.serializers import CandidateSerializer from users.models import Candidate from rest_framework import viewsets class CandidateViewSet(viewsets.ModelViewSet): """ A viewset for viewing and editing Candidate instances. """ serializer_class = CandidateSerializer queryset = Candidate.objects.all()
py
1a4e080869467fd03f6bd752ab0643fe82b98c4f
import pytest import requests def test_swagger(): model_endpoint = 'http://localhost:5000/swagger.json' r = requests.get(url=model_endpoint) assert r.status_code == 200 assert r.headers['Content-Type'] == 'application/json' json = r.json() assert 'swagger' in json assert json.get('info') and json.get('info').get('title') == 'Model Asset Exchange Server' def test_metadata(): model_endpoint = 'http://localhost:5000/model/metadata' r = requests.get(url=model_endpoint) assert r.status_code == 200 metadata = r.json() assert metadata['id'] == 'ssrnet' assert metadata['name'] == 'SSR-Net Facial Age Estimator Model' assert metadata['description'] == 'SSR-Net Facial Recognition and Age Prediction model; trained using Keras on ' \ 'the IMDB-WIKI dataset' assert metadata['license'] == 'MIT' def test_predict(): model_endpoint = 'http://localhost:5000/model/predict' file_path = 'assets/tom_cruise.jpg' with open(file_path, 'rb') as file: file_form = {'image': (file_path, file, 'image/jpeg')} r = requests.post(url=model_endpoint, files=file_form) assert r.status_code == 200 json = r.json() assert json['status'] == "ok" assert 55 > json['predictions'][0]['age_estimation'] > 45 assert 310 > json['predictions'][0]['face_box'][0] > 290 assert 180 > json['predictions'][0]['face_box'][1] > 160 assert 390 > json['predictions'][0]['face_box'][2] > 370 assert 525 > json['predictions'][0]['face_box'][3] > 500 if __name__ == '__main__': pytest.main([__file__])
py
1a4e085cdaa3dc5aee10ad12b88df4024ecedfd2
# -*- coding: utf-8 -*- import numpy from matplotlib import pyplot def lif(v, ge, gi, i): dv = (v * -0.01) + ge - gi + i spk = v > 1 dv[spk] = -v[spk] return dv, spk def lif_net(num_neurons, duration): offset = -numpy.linspace(0, 4 * numpy.pi, num_neurons) offset[:num_neurons / 2] = -3 * numpy.pi v = numpy.zeros((duration, num_neurons)) ge = numpy.zeros(num_neurons) gi = numpy.zeros(num_neurons) i = 0.019 * numpy.random.rand(duration, num_neurons) spikes = numpy.zeros((duration, num_neurons)) v[0,:] = numpy.random.rand(num_neurons) for t in numpy.arange(1, duration): ge[num_neurons / 2:] = 0.15 * spikes[t-1,:num_neurons / 2] gi = numpy.ones(num_neurons) * 0.001 * (numpy.sin(offset + t / 100) + 1) dv, spikes[t,:] = lif(v[t-1,:], ge, gi, i[t,:]) v[t,:] = v[t-1,:] + dv return spikes spikes = lif_net(2000, 3000) indices = numpy.where(spikes) pyplot.figure() ax = pyplot.subplot(121) pyplot.scatter(indices[0][indices[1] < 1000], indices[1][indices[1] < 1000], marker='.', alpha=0.5) indices = numpy.where(spikes) pyplot.scatter(indices[0][indices[1] >= 1000], indices[1][indices[1] >= 1000], marker='.', alpha=0.5) pyplot.xlabel('Time (ms)') pyplot.yticks([]) pyplot.subplot(164) pyplot.hist(indices[1], bins=50, orientation='horizontal') pyplot.yticks([]) pyplot.xticks([]) pyplot.tight_layout()
py
1a4e0920e63d475ac30f882123b5750dc9642a24
# -*- coding: utf-8 -*- # file: BERT_SPC.py # author: songyouwei <[email protected]> # Copyright (C) 2019. All Rights Reserved. import torch import torch.nn as nn class BERT_SPC(nn.Module): def __init__(self, bert, opt): super(BERT_SPC, self).__init__() self.bert = bert self.dropout = nn.Dropout(0.4) self.dense = nn.Linear(opt.bert_dim, opt.polarities_dim) def forward(self, inputs): text_bert_indices, bert_segments_ids = inputs[0], inputs[1] _, pooled_output = self.bert(text_bert_indices, token_type_ids=bert_segments_ids) pooled_output = self.dropout(pooled_output) logits = self.dense(pooled_output) return logits
py
1a4e0a28be4cbb46162cb3f5eee7a13d325bfb40
#!/usr/bin/python # -*- coding: utf-8 -*- # Advanced Movie Selection for Dreambox-Enigma2 # # The plugin is developed on the basis from a lot of single plugins (thx for the code @ all) # Coded by JackDaniel @ cmikula (c)2011 # Support: www.i-have-a-dreambox.com # # This plugin is licensed under the Creative Commons # Attribution-NonCommercial-ShareAlike 3.0 Unported # License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative # Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. # # Alternatively, this plugin may be distributed and executed on hardware which # is licensed by Dream Multimedia GmbH. # # This plugin is NOT free software. It is open source, you are allowed to # modify it (if you keep the license), but it may not be commercially # distributed other than under the conditions noted above. # from __future__ import print_function from __init__ import _ from Screens.Screen import Screen from Screens.MessageBox import MessageBox from Components.Pixmap import Pixmap from Components.Button import Button from Components.config import config, getConfigListEntry from Components.ActionMap import ActionMap from Components.ConfigList import ConfigListScreen from Components.MultiContent import MultiContentEntryText from Components.GUIComponent import GUIComponent from Components.Sources.StaticText import StaticText from enigma import eListboxPythonMultiContent, eListbox, gFont, RT_HALIGN_LEFT, RT_HALIGN_RIGHT from Source.Remote.MessageServer import serverInstance, getIpAddress from Source.Remote.Client import getClients from time import localtime, strftime from Source.Globals import SkinTools staticIP = None class ClientSetupList(GUIComponent): def __init__(self, ip_address): GUIComponent.__init__(self) self.l = eListboxPythonMultiContent() self.l.setFont(0, gFont("Regular", 22)) self.l.setFont(1, gFont("Regular", 18)) self.l.setItemHeight(100) self.l.setBuildFunc(self.buildMovieListEntry) self.onSelectionChanged = [] self.staticIP = ip_address def connectSelChanged(self, fnc): if not fnc in self.onSelectionChanged: self.onSelectionChanged.append(fnc) def disconnectSelChanged(self, fnc): if fnc in self.onSelectionChanged: self.onSelectionChanged.remove(fnc) def selectionChanged(self): for x in self.onSelectionChanged: x() def buildMovieListEntry(self, client): res = [None] width = self.l.getItemSize().width() width_up_r = 250 width_up_l = width - width_up_r width_dn_r = width / 2 width_dn_l = width - width_dn_r pos_up_r = width - width_up_r pos_dn_r = width - width_dn_r if client.isRecording(): stby_text = _("Status:") + ' ' + _("Recording") elif client.inStandby(): stby_text = _("Status:") + ' ' + _("Standby") else: stby_text = _("Status:") + ' ' + _("Switched on") last_trash_clean_status = "" lastEvent = client.lastTrashEvent() if lastEvent == -1: last_trash_clean_status = (_("The %s is a client box") % client.getDeviceName()) elif lastEvent > 0: t = localtime(lastEvent) last_trash_clean_status = _("Last remote wastebasket empty at %s") % (strftime(("%02d.%02d.%04d" % (t[2], t[1], t[0])) + ' ' + _("at") + ' ' + ("%02d:%02d" % (t[3], t[4])) + ' ' + _("Clock"))) next_trash_clean_status = "" nextEvent = client.nextTrashEvent() if nextEvent == -1: trash_clean_status = (_("The %s is a client box") % client.getDeviceName()) elif nextEvent > 0: t = localtime(nextEvent) next_trash_clean_status = _("Next remote wastebasket empty at %s") % (strftime(("%02d.%02d.%04d" % (t[2], t[1], t[0])) + ' ' + _("at") + ' ' + ("%02d:%02d" % (t[3], t[4])) + ' ' + _("Clock"))) hostname = _("Hostname:") + ' ' + client.getDeviceName() ip_addr = client.getAddress() addr = _("IP:") + ' ' + ip_addr if ip_addr == self.staticIP: addr = addr + ' ' + _("<Local device>") port = _("Port:") + ' ' + str(client.getPort()) res.append(MultiContentEntryText(pos=(5, 2), size=(width_up_l, 30), font=0, flags=RT_HALIGN_LEFT, text=hostname)) res.append(MultiContentEntryText(pos=(pos_up_r, 3), size=(width_up_r, 22), font=1, flags=RT_HALIGN_RIGHT, text=stby_text)) res.append(MultiContentEntryText(pos=(5, 26), size=(width_dn_l, 30), font=1, flags=RT_HALIGN_LEFT, text=addr)) res.append(MultiContentEntryText(pos=(pos_dn_r, 28), size=(width_dn_r, 22), font=1, flags=RT_HALIGN_RIGHT, text=port)) res.append(MultiContentEntryText(pos=(5, 50), size=(width, 30), font=1, flags=RT_HALIGN_LEFT, text=last_trash_clean_status)) res.append(MultiContentEntryText(pos=(5, 75), size=(width, 30), font=1, flags=RT_HALIGN_LEFT, text=next_trash_clean_status)) return res def moveToIndex(self, index): self.instance.moveSelectionTo(index) def getCurrentIndex(self): return self.instance.getCurrentIndex() def getCurrent(self): l = self.l.getCurrentSelection() return l and l[0] GUI_WIDGET = eListbox def postWidgetCreate(self, instance): instance.setContent(self.l) instance.selectionChanged.get().append(self.selectionChanged) def preWidgetRemove(self, instance): instance.setContent(None) instance.selectionChanged.get().remove(self.selectionChanged) def reload(self): self.list = [] for client in getClients(): self.list.append((client,)) print(client.getAddress()) self.l.setList(self.list) def remove(self, x): for l in self.list[:]: if l[0] == x: self.list.remove(l) self.l.setList(self.list) def __len__(self): return len(self.list) def moveTo(self, client): count = 0 for x in self.list: if x[0] == client: self.instance.moveSelectionTo(count) return True count += 1 return False class ClientSetup(ConfigListScreen, Screen): def __init__(self, session): Screen.__init__(self, session) self.skinName = SkinTools.appendResolution("AdvancedMovieSelection_ClientSetup_") self.staticIP = getIpAddress('eth0') self.session = session self["key_red"] = Button(_("Close")) self["key_green"] = StaticText("") self["key_yellow"] = StaticText("") self["actions"] = ActionMap(["WizardActions", "MenuActions", "ShortcutActions", "EPGSelectActions"], { "ok": self.keySave, "back": self.keyCancel, "red": self.keyCancel, "green": self.keySave, "yellow": self.keyYellow, "up": self.keyUp, "down": self.keyDown, "nextBouquet": self.keyBouquetUp, "prevBouquet": self.keyBouquetDown, }, -1) self["status"] = StaticText("") self["help"] = StaticText("") self["green_button"] = Pixmap() self["yellow_button"] = Pixmap() self["green_button"].hide() self["yellow_button"].hide() self["clienttxt"] = StaticText("") self["list"] = ClientSetupList(self.staticIP) self.list = self["list"] self.list.reload() self.configList = [] ConfigListScreen.__init__(self, self.configList, session=self.session) if not self.showHelp in self["config"].onSelectionChanged: self["config"].onSelectionChanged.append(self.showHelp) self.onShown.append(self.setWindowTitle) def setWindowTitle(self): self.setTitle(_("Advanced Movie Selection - Clientbox setup")) if self.staticIP: self.createSetup() self["key_green"].setText(_("Save")) self["key_yellow"].setText(_("Manual search")) self["green_button"].show() self["yellow_button"].show() self["status"].setText(_("Local IP: %s") % self.staticIP) if config.AdvancedMovieSelection.server_enabled.value: self["clienttxt"].setText(_("Available Server/Clients")) else: self["clienttxt"].setText(_("Remoteserver disabled!")) else: self["status"].setText(_("ATTENTION: DHCP in lan configuration is activ, no clientbox services available!")) def createSetup(self): self.configList = [] self.configList.append(getConfigListEntry(_("Port address:"), config.AdvancedMovieSelection.server_port, _("Set the port address for client and server. Port address from connected clients will be automatically updated."))) self.configList.append(getConfigListEntry(_("Start search IP:"), config.AdvancedMovieSelection.start_search_ip, _("Only last three digits from the IP must be set."))) self.configList.append(getConfigListEntry(_("Stop search IP:"), config.AdvancedMovieSelection.stop_search_ip, _("Only last three digits from the IP must be set."))) self["config"].setList(self.configList) def showHelp(self): current = self["config"].getCurrent() if len(current) > 2 and current[2] is not None: self["help"].setText(current[2]) else: self["help"].setText(_("No Helptext available!")) def cancelConfirm(self, result): if not result: return for x in self["config"].list: x[1].cancel() self.close() def keyCancel(self): if self["config"].isChanged(): self.session.openWithCallback(self.cancelConfirm, MessageBox, _("Really close without saving settings?")) else: self.close() def keySave(self): if config.AdvancedMovieSelection.server_port.isChanged(): self.setPort() if self.staticIP: ConfigListScreen.keySave(self) def keyYellow(self): if self.staticIP: if config.AdvancedMovieSelection.server_port.isChanged(): self.setPort() self["status"].setText(_("Searching for clients, please wait ...")) #TODO: status wird nicht angezeigt ;( serverInstance.setSearchRange(config.AdvancedMovieSelection.start_search_ip.value, config.AdvancedMovieSelection.stop_search_ip.value) serverInstance.findClients() self.finishedState() def finishedState(self): self["status"].setText(_("Manual search finished")) self.list.reload() def setPort(self): config.AdvancedMovieSelection.server_port.save() port = config.AdvancedMovieSelection.server_port.value for client in getClients(): if client.getAddress() != self.staticIP: client.setPort(port) else: # this only set the port of local client !don't reconnect it! client.port = port serverInstance.reconnect(port=port) def keyUp(self): self["config"].instance.moveSelection(self["config"].instance.moveUp) def keyDown(self): self["config"].instance.moveSelection(self["config"].instance.moveDown) def keyBouquetUp(self): self["list"].instance.moveSelection(self["list"].instance.pageUp) def keyBouquetDown(self): self["list"].instance.moveSelection(self["list"].instance.pageDown)
py
1a4e0aacde095cf4afdea0ad372e420de8d181ef
import glob, os, shutil if not os.path.exists('./converted'): os.makedirs('./converted') os.chdir('./labels') for file in glob.glob("*.txt"): f = open(file, "r") line = f.read() lineVals = line.split() if (len(lineVals) > 19): newLine = lineVals[0] + ' ' + lineVals[1] + ' ' + lineVals[2] + ' ' + lineVals[19] + ' ' + lineVals[20] else: newLine = ' ' with open('../converted/' + file, 'w') as file: file.write(newLine) os.chdir('../') # delete all files in labels shutil.rmtree('./labels') # move converted to labels os.rename('./converted', './labels') # fix train and test cwd = os.getcwd() with open('./train_new.txt', 'w') as file: f = open('./train.txt', "r") for x in f: file.write(x.replace('sspdFormat', cwd).replace('g ', 'g')) f.close() with open('./test_new.txt', 'w') as file: f = open('./test.txt', "r") for x in f: file.write(x.replace('sspdFormat', cwd).replace('g ', 'g')) f.close() os.remove('./train.txt') os.remove('./test.txt') os.rename('./train_new.txt', './train.txt') os.rename('./test_new.txt', './test.txt')
py
1a4e0b0922aff9bc671516f3004245a368699a5c
import networkx as nx import pyparsing as pp from .parser import obo_parser __all__ = ['obo_parser', 'parse_result_to_networkx'] def parse_result_to_networkx(result: pp.ParseResults) -> nx.MultiDiGraph: common_attrs = {} try: common_attrs['name'] = result['headers']['ontology'][1] common_attrs['version'] = result['headers']['data-version'][1] except (KeyError, IndexError): pass graph = nx.MultiDiGraph(**common_attrs) for stanza in result[1]: name, tvps = stanza if name == 'Term': try: if tvps['is_obsolete'][1]: continue except KeyError: pass _id = tvps['id'][1] for key, *vals in tvps: if key == 'is_a': graph.add_edge(vals[0], _id, key='is_a') elif key == 'relationship': graph.add_edge(vals[1], _id, key=vals[0]) return graph
py
1a4e0b895f665004da1431f5f5f50a227b9d3316
from .models import Image from django import forms class NewImageForm(forms.ModelForm): class Meta: model = Image fields = ['name','profile','image']
py
1a4e0cafdcb892d8f610903892a2b5a945129f40
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2018, Simon Dodsley ([email protected]) # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: purefa_dns version_added: '2.8' short_description: Configure FlashArray DNS settings description: - Set or erase configuration for the DNS settings. - Nameservers provided will overwrite any existing nameservers. author: - Pure Storage Ansible Team (@sdodsley) <[email protected]> options: state: description: - Set or delete directory service configuration default: present type: str choices: [ absent, present ] domain: description: - Domain suffix to be appended when perofrming DNS lookups. type: str nameservers: description: - List of up to 3 unique DNS server IP addresses. These can be IPv4 or IPv6 - No validation is done of the addresses is performed. type: list extends_documentation_fragment: - purestorage.fa ''' EXAMPLES = r''' - name: Delete exisitng DNS settings purefa_dns: state: absent fa_url: 10.10.10.2 api_token: e31060a7-21fc-e277-6240-25983c6c4592 - name: Set DNS settings purefa_dns: domain: purestorage.com nameservers: - 8.8.8.8 - 8.8.4.4 fa_url: 10.10.10.2 api_token: e31060a7-21fc-e277-6240-25983c6c4592 ''' RETURN = r''' ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.pure import get_system, purefa_argument_spec def remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: final_list.append(num) return final_list def delete_dns(module, array): """Delete DNS settings""" changed = False current_dns = array.get_dns() if current_dns['domain'] == '' and current_dns['nameservers'] == ['']: module.exit_json(changed=changed) else: try: array.set_dns(domain='', nameservers=[]) changed = True except Exception: module.fail_json(msg='Delete DNS settigs failed') module.exit_json(changed=changed) def create_dns(module, array): """Set DNS settings""" changed = False current_dns = array.get_dns() if current_dns['domain'] != module.params['domain'] or sorted(module.params['nameservers']) != sorted(current_dns['nameservers']): try: array.set_dns(domain=module.params['domain'], nameservers=module.params['nameservers'][0:3]) changed = True except Exception: module.fail_json(msg='Set DNS settings failed: Check configuration') module.exit_json(changed=changed) def main(): argument_spec = purefa_argument_spec() argument_spec.update(dict( state=dict(type='str', default='present', choices=['absent', 'present']), domain=dict(type='str'), nameservers=dict(type='list'), )) required_if = [('state', 'present', ['domain', 'nameservers'])] module = AnsibleModule(argument_spec, required_if=required_if, supports_check_mode=False) state = module.params['state'] array = get_system(module) if state == 'absent': delete_dns(module, array) elif state == 'present': module.params['nameservers'] = remove(module.params['nameservers']) create_dns(module, array) else: module.exit_json(changed=False) if __name__ == '__main__': main()
py
1a4e0e4af1315cc56c19affed4e55335703aa5a6
#!/usr/bin/env python3 # Copyright (c) 2019-2020 The Bitcoin Core and Devcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Test Taproot softfork (BIPs 340-342) from test_framework.blocktools import ( COINBASE_MATURITY, create_coinbase, create_block, add_witness_commitment, MAX_BLOCK_SIGOPS_WEIGHT, NORMAL_GBT_REQUEST_PARAMS, WITNESS_SCALE_FACTOR, ) from test_framework.messages import ( COutPoint, CTransaction, CTxIn, CTxInWitness, CTxOut, ) from test_framework.script import ( ANNEX_TAG, CScript, CScriptNum, CScriptOp, LEAF_VERSION_TAPSCRIPT, LegacySignatureHash, LOCKTIME_THRESHOLD, MAX_SCRIPT_ELEMENT_SIZE, OP_0, OP_1, OP_2, OP_3, OP_4, OP_5, OP_6, OP_7, OP_8, OP_9, OP_10, OP_11, OP_12, OP_16, OP_2DROP, OP_2DUP, OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY, OP_CHECKSIG, OP_CHECKSIGADD, OP_CHECKSIGVERIFY, OP_CODESEPARATOR, OP_DROP, OP_DUP, OP_ELSE, OP_ENDIF, OP_EQUAL, OP_EQUALVERIFY, OP_IF, OP_NOP, OP_NOT, OP_NOTIF, OP_PUSHDATA1, OP_RETURN, OP_SWAP, OP_VERIFY, SIGHASH_DEFAULT, SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE, SIGHASH_ANYONECANPAY, SegwitV0SignatureHash, TaprootSignatureHash, is_op_success, taproot_construct, ) from test_framework.script_util import ( key_to_p2wpkh_script, keyhash_to_p2pkh_script, script_to_p2sh_script, script_to_p2wsh_script, ) from test_framework.test_framework import DevcoinTestFramework from test_framework.util import assert_raises_rpc_error, assert_equal from test_framework.key import generate_privkey, compute_xonly_pubkey, sign_schnorr, tweak_add_privkey, ECKey from test_framework.address import ( hash160, ) from collections import OrderedDict, namedtuple from io import BytesIO import json import hashlib import os import random # === Framework for building spending transactions. === # # The computation is represented as a "context" dict, whose entries store potentially-unevaluated expressions that # refer to lower-level ones. By overwriting these expression, many aspects - both high and low level - of the signing # process can be overridden. # # Specifically, a context object is a dict that maps names to compositions of: # - values # - lists of values # - callables which, when fed the context object as argument, produce any of these # # The DEFAULT_CONTEXT object specifies a standard signing process, with many overridable knobs. # # The get(ctx, name) function can evaluate a name, and cache its result in the context. # getter(name) can be used to construct a callable that evaluates name. For example: # # ctx1 = {**DEFAULT_CONTEXT, inputs=[getter("sign"), b'\x01']} # # creates a context where the script inputs are a signature plus the bytes 0x01. # # override(expr, name1=expr1, name2=expr2, ...) can be used to cause an expression to be evaluated in a selectively # modified context. For example: # # ctx2 = {**DEFAULT_CONTEXT, sighash=override(default_sighash, hashtype=SIGHASH_DEFAULT)} # # creates a context ctx2 where the sighash is modified to use hashtype=SIGHASH_DEFAULT. This differs from # # ctx3 = {**DEFAULT_CONTEXT, hashtype=SIGHASH_DEFAULT} # # in that ctx3 will globally use hashtype=SIGHASH_DEFAULT (including in the hashtype byte appended to the signature) # while ctx2 only uses the modified hashtype inside the sighash calculation. def deep_eval(ctx, expr): """Recursively replace any callables c in expr (including inside lists) with c(ctx).""" while callable(expr): expr = expr(ctx) if isinstance(expr, list): expr = [deep_eval(ctx, x) for x in expr] return expr # Data type to represent fully-evaluated expressions in a context dict (so we can avoid reevaluating them). Final = namedtuple("Final", "value") def get(ctx, name): """Evaluate name in context ctx.""" assert name in ctx, "Missing '%s' in context" % name expr = ctx[name] if not isinstance(expr, Final): # Evaluate and cache the result. expr = Final(deep_eval(ctx, expr)) ctx[name] = expr return expr.value def getter(name): """Return a callable that evaluates name in its passed context.""" return lambda ctx: get(ctx, name) def override(expr, **kwargs): """Return a callable that evaluates expr in a modified context.""" return lambda ctx: deep_eval({**ctx, **kwargs}, expr) # === Implementations for the various default expressions in DEFAULT_CONTEXT === def default_hashtype(ctx): """Default expression for "hashtype": SIGHASH_DEFAULT for taproot, SIGHASH_ALL otherwise.""" mode = get(ctx, "mode") if mode == "taproot": return SIGHASH_DEFAULT else: return SIGHASH_ALL def default_tapleaf(ctx): """Default expression for "tapleaf": looking up leaf in tap[2].""" return get(ctx, "tap").leaves[get(ctx, "leaf")] def default_script_taproot(ctx): """Default expression for "script_taproot": tapleaf.script.""" return get(ctx, "tapleaf").script def default_leafversion(ctx): """Default expression for "leafversion": tapleaf.version""" return get(ctx, "tapleaf").version def default_negflag(ctx): """Default expression for "negflag": tap.negflag.""" return get(ctx, "tap").negflag def default_pubkey_internal(ctx): """Default expression for "pubkey_internal": tap.internal_pubkey.""" return get(ctx, "tap").internal_pubkey def default_merklebranch(ctx): """Default expression for "merklebranch": tapleaf.merklebranch.""" return get(ctx, "tapleaf").merklebranch def default_controlblock(ctx): """Default expression for "controlblock": combine leafversion, negflag, pubkey_internal, merklebranch.""" return bytes([get(ctx, "leafversion") + get(ctx, "negflag")]) + get(ctx, "pubkey_internal") + get(ctx, "merklebranch") def default_sighash(ctx): """Default expression for "sighash": depending on mode, compute BIP341, BIP143, or legacy sighash.""" tx = get(ctx, "tx") idx = get(ctx, "idx") hashtype = get(ctx, "hashtype_actual") mode = get(ctx, "mode") if mode == "taproot": # BIP341 signature hash utxos = get(ctx, "utxos") annex = get(ctx, "annex") if get(ctx, "leaf") is not None: codeseppos = get(ctx, "codeseppos") leaf_ver = get(ctx, "leafversion") script = get(ctx, "script_taproot") return TaprootSignatureHash(tx, utxos, hashtype, idx, scriptpath=True, script=script, leaf_ver=leaf_ver, codeseparator_pos=codeseppos, annex=annex) else: return TaprootSignatureHash(tx, utxos, hashtype, idx, scriptpath=False, annex=annex) elif mode == "witv0": # BIP143 signature hash scriptcode = get(ctx, "scriptcode") utxos = get(ctx, "utxos") return SegwitV0SignatureHash(scriptcode, tx, idx, hashtype, utxos[idx].nValue) else: # Pre-segwit signature hash scriptcode = get(ctx, "scriptcode") return LegacySignatureHash(scriptcode, tx, idx, hashtype)[0] def default_tweak(ctx): """Default expression for "tweak": None if a leaf is specified, tap[0] otherwise.""" if get(ctx, "leaf") is None: return get(ctx, "tap").tweak return None def default_key_tweaked(ctx): """Default expression for "key_tweaked": key if tweak is None, tweaked with it otherwise.""" key = get(ctx, "key") tweak = get(ctx, "tweak") if tweak is None: return key else: return tweak_add_privkey(key, tweak) def default_signature(ctx): """Default expression for "signature": BIP340 signature or ECDSA signature depending on mode.""" sighash = get(ctx, "sighash") if get(ctx, "mode") == "taproot": key = get(ctx, "key_tweaked") flip_r = get(ctx, "flag_flip_r") flip_p = get(ctx, "flag_flip_p") return sign_schnorr(key, sighash, flip_r=flip_r, flip_p=flip_p) else: key = get(ctx, "key") return key.sign_ecdsa(sighash) def default_hashtype_actual(ctx): """Default expression for "hashtype_actual": hashtype, unless mismatching SIGHASH_SINGLE in taproot.""" hashtype = get(ctx, "hashtype") mode = get(ctx, "mode") if mode != "taproot": return hashtype idx = get(ctx, "idx") tx = get(ctx, "tx") if hashtype & 3 == SIGHASH_SINGLE and idx >= len(tx.vout): return (hashtype & ~3) | SIGHASH_NONE return hashtype def default_bytes_hashtype(ctx): """Default expression for "bytes_hashtype": bytes([hashtype_actual]) if not 0, b"" otherwise.""" return bytes([x for x in [get(ctx, "hashtype_actual")] if x != 0]) def default_sign(ctx): """Default expression for "sign": concatenation of signature and bytes_hashtype.""" return get(ctx, "signature") + get(ctx, "bytes_hashtype") def default_inputs_keypath(ctx): """Default expression for "inputs_keypath": a signature.""" return [get(ctx, "sign")] def default_witness_taproot(ctx): """Default expression for "witness_taproot", consisting of inputs, script, control block, and annex as needed.""" annex = get(ctx, "annex") suffix_annex = [] if annex is not None: suffix_annex = [annex] if get(ctx, "leaf") is None: return get(ctx, "inputs_keypath") + suffix_annex else: return get(ctx, "inputs") + [bytes(get(ctx, "script_taproot")), get(ctx, "controlblock")] + suffix_annex def default_witness_witv0(ctx): """Default expression for "witness_witv0", consisting of inputs and witness script, as needed.""" script = get(ctx, "script_witv0") inputs = get(ctx, "inputs") if script is None: return inputs else: return inputs + [script] def default_witness(ctx): """Default expression for "witness", delegating to "witness_taproot" or "witness_witv0" as needed.""" mode = get(ctx, "mode") if mode == "taproot": return get(ctx, "witness_taproot") elif mode == "witv0": return get(ctx, "witness_witv0") else: return [] def default_scriptsig(ctx): """Default expression for "scriptsig", consisting of inputs and redeemscript, as needed.""" scriptsig = [] mode = get(ctx, "mode") if mode == "legacy": scriptsig = get(ctx, "inputs") redeemscript = get(ctx, "script_p2sh") if redeemscript is not None: scriptsig += [bytes(redeemscript)] return scriptsig # The default context object. DEFAULT_CONTEXT = { # == The main expressions to evaluate. Only override these for unusual or invalid spends. == # The overall witness stack, as a list of bytes objects. "witness": default_witness, # The overall scriptsig, as a list of CScript objects (to be concatenated) and bytes objects (to be pushed) "scriptsig": default_scriptsig, # == Expressions you'll generally only override for intentionally invalid spends. == # The witness stack for spending a taproot output. "witness_taproot": default_witness_taproot, # The witness stack for spending a P2WPKH/P2WSH output. "witness_witv0": default_witness_witv0, # The script inputs for a taproot key path spend. "inputs_keypath": default_inputs_keypath, # The actual hashtype to use (usually equal to hashtype, but in taproot SIGHASH_SINGLE is not always allowed). "hashtype_actual": default_hashtype_actual, # The bytes object for a full signature (including hashtype byte, if needed). "bytes_hashtype": default_bytes_hashtype, # A full script signature (bytes including hashtype, if needed) "sign": default_sign, # An ECDSA or Schnorr signature (excluding hashtype byte). "signature": default_signature, # The 32-byte tweaked key (equal to key for script path spends, or key+tweak for key path spends). "key_tweaked": default_key_tweaked, # The tweak to use (None for script path spends, the actual tweak for key path spends). "tweak": default_tweak, # The sighash value (32 bytes) "sighash": default_sighash, # The information about the chosen script path spend (TaprootLeafInfo object). "tapleaf": default_tapleaf, # The script to push, and include in the sighash, for a taproot script path spend. "script_taproot": default_script_taproot, # The internal pubkey for a taproot script path spend (32 bytes). "pubkey_internal": default_pubkey_internal, # The negation flag of the internal pubkey for a taproot script path spend. "negflag": default_negflag, # The leaf version to include in the sighash (this does not affect the one in the control block). "leafversion": default_leafversion, # The Merkle path to include in the control block for a script path spend. "merklebranch": default_merklebranch, # The control block to push for a taproot script path spend. "controlblock": default_controlblock, # Whether to produce signatures with invalid P sign (Schnorr signatures only). "flag_flip_p": False, # Whether to produce signatures with invalid R sign (Schnorr signatures only). "flag_flip_r": False, # == Parameters that can be changed without invalidating, but do have a default: == # The hashtype (as an integer). "hashtype": default_hashtype, # The annex (only when mode=="taproot"). "annex": None, # The codeseparator position (only when mode=="taproot"). "codeseppos": -1, # The redeemscript to add to the scriptSig (if P2SH; None implies not P2SH). "script_p2sh": None, # The script to add to the witness in (if P2WSH; None implies P2WPKH) "script_witv0": None, # The leaf to use in taproot spends (if script path spend; None implies key path spend). "leaf": None, # The input arguments to provide to the executed script "inputs": [], # == Parameters to be set before evaluation: == # - mode: what spending style to use ("taproot", "witv0", or "legacy"). # - key: the (untweaked) private key to sign with (ECKey object for ECDSA, 32 bytes for Schnorr). # - tap: the TaprootInfo object (see taproot_construct; needed in mode=="taproot"). # - tx: the transaction to sign. # - utxos: the UTXOs being spent (needed in mode=="witv0" and mode=="taproot"). # - idx: the input position being signed. # - scriptcode: the scriptcode to include in legacy and witv0 sighashes. } def flatten(lst): ret = [] for elem in lst: if isinstance(elem, list): ret += flatten(elem) else: ret.append(elem) return ret def spend(tx, idx, utxos, **kwargs): """Sign transaction input idx of tx, provided utxos is the list of outputs being spent. Additional arguments may be provided that override any aspect of the signing process. See DEFAULT_CONTEXT above for what can be overridden, and what must be provided. """ ctx = {**DEFAULT_CONTEXT, "tx":tx, "idx":idx, "utxos":utxos, **kwargs} def to_script(elem): """If fed a CScript, return it; if fed bytes, return a CScript that pushes it.""" if isinstance(elem, CScript): return elem else: return CScript([elem]) scriptsig_list = flatten(get(ctx, "scriptsig")) scriptsig = CScript(b"".join(bytes(to_script(elem)) for elem in scriptsig_list)) witness_stack = flatten(get(ctx, "witness")) return (scriptsig, witness_stack) # === Spender objects === # # Each spender is a tuple of: # - A scriptPubKey which is to be spent from (CScript) # - A comment describing the test (string) # - Whether the spending (on itself) is expected to be standard (bool) # - A tx-signing lambda returning (scriptsig, witness_stack), taking as inputs: # - A transaction to sign (CTransaction) # - An input position (int) # - The spent UTXOs by this transaction (list of CTxOut) # - Whether to produce a valid spend (bool) # - A string with an expected error message for failure case if known # - The (pre-taproot) sigops weight consumed by a successful spend # - Whether this spend cannot fail # - Whether this test demands being placed in a txin with no corresponding txout (for testing SIGHASH_SINGLE behavior) Spender = namedtuple("Spender", "script,comment,is_standard,sat_function,err_msg,sigops_weight,no_fail,need_vin_vout_mismatch") def make_spender(comment, *, tap=None, witv0=False, script=None, pkh=None, p2sh=False, spk_mutate_pre_p2sh=None, failure=None, standard=True, err_msg=None, sigops_weight=0, need_vin_vout_mismatch=False, **kwargs): """Helper for constructing Spender objects using the context signing framework. * tap: a TaprootInfo object (see taproot_construct), for Taproot spends (cannot be combined with pkh, witv0, or script) * witv0: boolean indicating the use of witness v0 spending (needs one of script or pkh) * script: the actual script executed (for bare/P2WSH/P2SH spending) * pkh: the public key for P2PKH or P2WPKH spending * p2sh: whether the output is P2SH wrapper (this is supported even for Taproot, where it makes the output unencumbered) * spk_mutate_pre_psh: a callable to be applied to the script (before potentially P2SH-wrapping it) * failure: a dict of entries to override in the context when intentionally failing to spend (if None, no_fail will be set) * standard: whether the (valid version of) spending is expected to be standard * err_msg: a string with an expected error message for failure (or None, if not cared about) * sigops_weight: the pre-taproot sigops weight consumed by a successful spend * need_vin_vout_mismatch: whether this test requires being tested in a transaction input that has no corresponding transaction output. """ conf = dict() # Compute scriptPubKey and set useful defaults based on the inputs. if witv0: assert tap is None conf["mode"] = "witv0" if pkh is not None: # P2WPKH assert script is None pubkeyhash = hash160(pkh) spk = key_to_p2wpkh_script(pkh) conf["scriptcode"] = keyhash_to_p2pkh_script(pubkeyhash) conf["script_witv0"] = None conf["inputs"] = [getter("sign"), pkh] elif script is not None: # P2WSH spk = script_to_p2wsh_script(script) conf["scriptcode"] = script conf["script_witv0"] = script else: assert False elif tap is None: conf["mode"] = "legacy" if pkh is not None: # P2PKH assert script is None pubkeyhash = hash160(pkh) spk = keyhash_to_p2pkh_script(pubkeyhash) conf["scriptcode"] = spk conf["inputs"] = [getter("sign"), pkh] elif script is not None: # bare spk = script conf["scriptcode"] = script else: assert False else: assert script is None conf["mode"] = "taproot" conf["tap"] = tap spk = tap.scriptPubKey if spk_mutate_pre_p2sh is not None: spk = spk_mutate_pre_p2sh(spk) if p2sh: # P2SH wrapper can be combined with anything else conf["script_p2sh"] = spk spk = script_to_p2sh_script(spk) conf = {**conf, **kwargs} def sat_fn(tx, idx, utxos, valid): if valid: return spend(tx, idx, utxos, **conf) else: assert failure is not None return spend(tx, idx, utxos, **{**conf, **failure}) return Spender(script=spk, comment=comment, is_standard=standard, sat_function=sat_fn, err_msg=err_msg, sigops_weight=sigops_weight, no_fail=failure is None, need_vin_vout_mismatch=need_vin_vout_mismatch) def add_spender(spenders, *args, **kwargs): """Make a spender using make_spender, and add it to spenders.""" spenders.append(make_spender(*args, **kwargs)) # === Helpers for the test === def random_checksig_style(pubkey): """Creates a random CHECKSIG* tapscript that would succeed with only the valid signature on witness stack.""" opcode = random.choice([OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_CHECKSIGADD]) if opcode == OP_CHECKSIGVERIFY: ret = CScript([pubkey, opcode, OP_1]) elif opcode == OP_CHECKSIGADD: num = random.choice([0, 0x7fffffff, -0x7fffffff]) ret = CScript([num, pubkey, opcode, num + 1, OP_EQUAL]) else: ret = CScript([pubkey, opcode]) return bytes(ret) def random_bytes(n): """Return a random bytes object of length n.""" return bytes(random.getrandbits(8) for i in range(n)) def bitflipper(expr): """Return a callable that evaluates expr and returns it with a random bitflip.""" def fn(ctx): sub = deep_eval(ctx, expr) assert isinstance(sub, bytes) return (int.from_bytes(sub, 'little') ^ (1 << random.randrange(len(sub) * 8))).to_bytes(len(sub), 'little') return fn def zero_appender(expr): """Return a callable that evaluates expr and returns it with a zero added.""" return lambda ctx: deep_eval(ctx, expr) + b"\x00" def byte_popper(expr): """Return a callable that evaluates expr and returns it with its last byte removed.""" return lambda ctx: deep_eval(ctx, expr)[:-1] # Expected error strings ERR_SIG_SIZE = {"err_msg": "Invalid Schnorr signature size"} ERR_SIG_HASHTYPE = {"err_msg": "Invalid Schnorr signature hash type"} ERR_SIG_SCHNORR = {"err_msg": "Invalid Schnorr signature"} ERR_OP_RETURN = {"err_msg": "OP_RETURN was encountered"} ERR_CONTROLBLOCK_SIZE = {"err_msg": "Invalid Taproot control block size"} ERR_WITNESS_PROGRAM_MISMATCH = {"err_msg": "Witness program hash mismatch"} ERR_PUSH_LIMIT = {"err_msg": "Push value size limit exceeded"} ERR_DISABLED_OPCODE = {"err_msg": "Attempted to use a disabled opcode"} ERR_TAPSCRIPT_CHECKMULTISIG = {"err_msg": "OP_CHECKMULTISIG(VERIFY) is not available in tapscript"} ERR_MINIMALIF = {"err_msg": "OP_IF/NOTIF argument must be minimal in tapscript"} ERR_UNKNOWN_PUBKEY = {"err_msg": "Public key is neither compressed or uncompressed"} ERR_STACK_SIZE = {"err_msg": "Stack size limit exceeded"} ERR_CLEANSTACK = {"err_msg": "Stack size must be exactly one after execution"} ERR_STACK_EMPTY = {"err_msg": "Operation not valid with the current stack size"} ERR_SIGOPS_RATIO = {"err_msg": "Too much signature validation relative to witness weight"} ERR_UNDECODABLE = {"err_msg": "Opcode missing or not understood"} ERR_NO_SUCCESS = {"err_msg": "Script evaluated without error but finished with a false/empty top stack element"} ERR_EMPTY_WITNESS = {"err_msg": "Witness program was passed an empty witness"} ERR_CHECKSIGVERIFY = {"err_msg": "Script failed an OP_CHECKSIGVERIFY operation"} VALID_SIGHASHES_ECDSA = [ SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE, SIGHASH_ANYONECANPAY + SIGHASH_ALL, SIGHASH_ANYONECANPAY + SIGHASH_NONE, SIGHASH_ANYONECANPAY + SIGHASH_SINGLE ] VALID_SIGHASHES_TAPROOT = [SIGHASH_DEFAULT] + VALID_SIGHASHES_ECDSA VALID_SIGHASHES_TAPROOT_SINGLE = [ SIGHASH_SINGLE, SIGHASH_ANYONECANPAY + SIGHASH_SINGLE ] VALID_SIGHASHES_TAPROOT_NO_SINGLE = [h for h in VALID_SIGHASHES_TAPROOT if h not in VALID_SIGHASHES_TAPROOT_SINGLE] SIGHASH_BITFLIP = {"failure": {"sighash": bitflipper(default_sighash)}} SIG_POP_BYTE = {"failure": {"sign": byte_popper(default_sign)}} SINGLE_SIG = {"inputs": [getter("sign")]} SIG_ADD_ZERO = {"failure": {"sign": zero_appender(default_sign)}} DUST_LIMIT = 600 MIN_FEE = 50000 # === Actual test cases === def spenders_taproot_active(): """Return a list of Spenders for testing post-Taproot activation behavior.""" secs = [generate_privkey() for _ in range(8)] pubs = [compute_xonly_pubkey(sec)[0] for sec in secs] spenders = [] # == Tests for BIP340 signature validation. == # These are primarily tested through the test vectors implemented in libsecp256k1, and in src/tests/key_tests.cpp. # Some things are tested programmatically as well here. tap = taproot_construct(pubs[0]) # Test with key with bit flipped. add_spender(spenders, "sig/key", tap=tap, key=secs[0], failure={"key_tweaked": bitflipper(default_key_tweaked)}, **ERR_SIG_SCHNORR) # Test with sighash with bit flipped. add_spender(spenders, "sig/sighash", tap=tap, key=secs[0], failure={"sighash": bitflipper(default_sighash)}, **ERR_SIG_SCHNORR) # Test with invalid R sign. add_spender(spenders, "sig/flip_r", tap=tap, key=secs[0], failure={"flag_flip_r": True}, **ERR_SIG_SCHNORR) # Test with invalid P sign. add_spender(spenders, "sig/flip_p", tap=tap, key=secs[0], failure={"flag_flip_p": True}, **ERR_SIG_SCHNORR) # Test with signature with bit flipped. add_spender(spenders, "sig/bitflip", tap=tap, key=secs[0], failure={"signature": bitflipper(default_signature)}, **ERR_SIG_SCHNORR) # == Tests for signature hashing == # Run all tests once with no annex, and once with a valid random annex. for annex in [None, lambda _: bytes([ANNEX_TAG]) + random_bytes(random.randrange(0, 250))]: # Non-empty annex is non-standard no_annex = annex is None # Sighash mutation tests (test all sighash combinations) for hashtype in VALID_SIGHASHES_TAPROOT: common = {"annex": annex, "hashtype": hashtype, "standard": no_annex} # Pure pubkey tap = taproot_construct(pubs[0]) add_spender(spenders, "sighash/purepk", tap=tap, key=secs[0], **common, **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) # Pubkey/P2PK script combination scripts = [("s0", CScript(random_checksig_style(pubs[1])))] tap = taproot_construct(pubs[0], scripts) add_spender(spenders, "sighash/keypath_hashtype_%x" % hashtype, tap=tap, key=secs[0], **common, **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/scriptpath_hashtype_%x" % hashtype, tap=tap, leaf="s0", key=secs[1], **common, **SINGLE_SIG, **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) # Test SIGHASH_SINGLE behavior in combination with mismatching outputs if hashtype in VALID_SIGHASHES_TAPROOT_SINGLE: add_spender(spenders, "sighash/keypath_hashtype_mis_%x" % hashtype, tap=tap, key=secs[0], annex=annex, standard=no_annex, hashtype_actual=random.choice(VALID_SIGHASHES_TAPROOT_NO_SINGLE), failure={"hashtype_actual": hashtype}, **ERR_SIG_HASHTYPE, need_vin_vout_mismatch=True) add_spender(spenders, "sighash/scriptpath_hashtype_mis_%x" % hashtype, tap=tap, leaf="s0", key=secs[1], annex=annex, standard=no_annex, hashtype_actual=random.choice(VALID_SIGHASHES_TAPROOT_NO_SINGLE), **SINGLE_SIG, failure={"hashtype_actual": hashtype}, **ERR_SIG_HASHTYPE, need_vin_vout_mismatch=True) # Test OP_CODESEPARATOR impact on sighashing. hashtype = lambda _: random.choice(VALID_SIGHASHES_TAPROOT) common = {"annex": annex, "hashtype": hashtype, "standard": no_annex} scripts = [ ("pk_codesep", CScript(random_checksig_style(pubs[1]) + bytes([OP_CODESEPARATOR]))), # codesep after checksig ("codesep_pk", CScript(bytes([OP_CODESEPARATOR]) + random_checksig_style(pubs[1]))), # codesep before checksig ("branched_codesep", CScript([random_bytes(random.randrange(511)), OP_DROP, OP_IF, OP_CODESEPARATOR, pubs[0], OP_ELSE, OP_CODESEPARATOR, pubs[1], OP_ENDIF, OP_CHECKSIG])), # branch dependent codesep ] random.shuffle(scripts) tap = taproot_construct(pubs[0], scripts) add_spender(spenders, "sighash/pk_codesep", tap=tap, leaf="pk_codesep", key=secs[1], **common, **SINGLE_SIG, **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/codesep_pk", tap=tap, leaf="codesep_pk", key=secs[1], codeseppos=0, **common, **SINGLE_SIG, **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/branched_codesep/left", tap=tap, leaf="branched_codesep", key=secs[0], codeseppos=3, **common, inputs=[getter("sign"), b'\x01'], **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/branched_codesep/right", tap=tap, leaf="branched_codesep", key=secs[1], codeseppos=6, **common, inputs=[getter("sign"), b''], **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) # Reusing the scripts above, test that various features affect the sighash. add_spender(spenders, "sighash/annex", tap=tap, leaf="pk_codesep", key=secs[1], hashtype=hashtype, standard=False, **SINGLE_SIG, annex=bytes([ANNEX_TAG]), failure={"sighash": override(default_sighash, annex=None)}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/script", tap=tap, leaf="pk_codesep", key=secs[1], **common, **SINGLE_SIG, failure={"sighash": override(default_sighash, script_taproot=tap.leaves["codesep_pk"].script)}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/leafver", tap=tap, leaf="pk_codesep", key=secs[1], **common, **SINGLE_SIG, failure={"sighash": override(default_sighash, leafversion=random.choice([x & 0xFE for x in range(0x100) if x & 0xFE != 0xC0]))}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/scriptpath", tap=tap, leaf="pk_codesep", key=secs[1], **common, **SINGLE_SIG, failure={"sighash": override(default_sighash, leaf=None)}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/keypath", tap=tap, key=secs[0], **common, failure={"sighash": override(default_sighash, leaf="pk_codesep")}, **ERR_SIG_SCHNORR) # Test that invalid hashtypes don't work, both in key path and script path spends hashtype = lambda _: random.choice(VALID_SIGHASHES_TAPROOT) for invalid_hashtype in [x for x in range(0x100) if x not in VALID_SIGHASHES_TAPROOT]: add_spender(spenders, "sighash/keypath_unk_hashtype_%x" % invalid_hashtype, tap=tap, key=secs[0], hashtype=hashtype, failure={"hashtype": invalid_hashtype}, **ERR_SIG_HASHTYPE) add_spender(spenders, "sighash/scriptpath_unk_hashtype_%x" % invalid_hashtype, tap=tap, leaf="pk_codesep", key=secs[1], **SINGLE_SIG, hashtype=hashtype, failure={"hashtype": invalid_hashtype}, **ERR_SIG_HASHTYPE) # Test that hashtype 0 cannot have a hashtype byte, and 1 must have one. add_spender(spenders, "sighash/hashtype0_byte_keypath", tap=tap, key=secs[0], hashtype=SIGHASH_DEFAULT, failure={"bytes_hashtype": bytes([SIGHASH_DEFAULT])}, **ERR_SIG_HASHTYPE) add_spender(spenders, "sighash/hashtype0_byte_scriptpath", tap=tap, leaf="pk_codesep", key=secs[1], **SINGLE_SIG, hashtype=SIGHASH_DEFAULT, failure={"bytes_hashtype": bytes([SIGHASH_DEFAULT])}, **ERR_SIG_HASHTYPE) add_spender(spenders, "sighash/hashtype1_byte_keypath", tap=tap, key=secs[0], hashtype=SIGHASH_ALL, failure={"bytes_hashtype": b''}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/hashtype1_byte_scriptpath", tap=tap, leaf="pk_codesep", key=secs[1], **SINGLE_SIG, hashtype=SIGHASH_ALL, failure={"bytes_hashtype": b''}, **ERR_SIG_SCHNORR) # Test that hashtype 0 and hashtype 1 cannot be transmuted into each other. add_spender(spenders, "sighash/hashtype0to1_keypath", tap=tap, key=secs[0], hashtype=SIGHASH_DEFAULT, failure={"bytes_hashtype": bytes([SIGHASH_ALL])}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/hashtype0to1_scriptpath", tap=tap, leaf="pk_codesep", key=secs[1], **SINGLE_SIG, hashtype=SIGHASH_DEFAULT, failure={"bytes_hashtype": bytes([SIGHASH_ALL])}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/hashtype1to0_keypath", tap=tap, key=secs[0], hashtype=SIGHASH_ALL, failure={"bytes_hashtype": b''}, **ERR_SIG_SCHNORR) add_spender(spenders, "sighash/hashtype1to0_scriptpath", tap=tap, leaf="pk_codesep", key=secs[1], **SINGLE_SIG, hashtype=SIGHASH_ALL, failure={"bytes_hashtype": b''}, **ERR_SIG_SCHNORR) # Test aspects of signatures with unusual lengths for hashtype in [SIGHASH_DEFAULT, random.choice(VALID_SIGHASHES_TAPROOT)]: scripts = [ ("csv", CScript([pubs[2], OP_CHECKSIGVERIFY, OP_1])), ("cs_pos", CScript([pubs[2], OP_CHECKSIG])), ("csa_pos", CScript([OP_0, pubs[2], OP_CHECKSIGADD, OP_1, OP_EQUAL])), ("cs_neg", CScript([pubs[2], OP_CHECKSIG, OP_NOT])), ("csa_neg", CScript([OP_2, pubs[2], OP_CHECKSIGADD, OP_2, OP_EQUAL])) ] random.shuffle(scripts) tap = taproot_construct(pubs[3], scripts) # Empty signatures add_spender(spenders, "siglen/empty_keypath", tap=tap, key=secs[3], hashtype=hashtype, failure={"sign": b""}, **ERR_SIG_SIZE) add_spender(spenders, "siglen/empty_csv", tap=tap, key=secs[2], leaf="csv", hashtype=hashtype, **SINGLE_SIG, failure={"sign": b""}, **ERR_CHECKSIGVERIFY) add_spender(spenders, "siglen/empty_cs", tap=tap, key=secs[2], leaf="cs_pos", hashtype=hashtype, **SINGLE_SIG, failure={"sign": b""}, **ERR_NO_SUCCESS) add_spender(spenders, "siglen/empty_csa", tap=tap, key=secs[2], leaf="csa_pos", hashtype=hashtype, **SINGLE_SIG, failure={"sign": b""}, **ERR_NO_SUCCESS) add_spender(spenders, "siglen/empty_cs_neg", tap=tap, key=secs[2], leaf="cs_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", failure={"sign": lambda _: random_bytes(random.randrange(1, 63))}, **ERR_SIG_SIZE) add_spender(spenders, "siglen/empty_csa_neg", tap=tap, key=secs[2], leaf="csa_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", failure={"sign": lambda _: random_bytes(random.randrange(66, 100))}, **ERR_SIG_SIZE) # Appending a zero byte to signatures invalidates them add_spender(spenders, "siglen/padzero_keypath", tap=tap, key=secs[3], hashtype=hashtype, **SIG_ADD_ZERO, **(ERR_SIG_HASHTYPE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SIZE)) add_spender(spenders, "siglen/padzero_csv", tap=tap, key=secs[2], leaf="csv", hashtype=hashtype, **SINGLE_SIG, **SIG_ADD_ZERO, **(ERR_SIG_HASHTYPE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SIZE)) add_spender(spenders, "siglen/padzero_cs", tap=tap, key=secs[2], leaf="cs_pos", hashtype=hashtype, **SINGLE_SIG, **SIG_ADD_ZERO, **(ERR_SIG_HASHTYPE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SIZE)) add_spender(spenders, "siglen/padzero_csa", tap=tap, key=secs[2], leaf="csa_pos", hashtype=hashtype, **SINGLE_SIG, **SIG_ADD_ZERO, **(ERR_SIG_HASHTYPE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SIZE)) add_spender(spenders, "siglen/padzero_cs_neg", tap=tap, key=secs[2], leaf="cs_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", **SIG_ADD_ZERO, **(ERR_SIG_HASHTYPE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SIZE)) add_spender(spenders, "siglen/padzero_csa_neg", tap=tap, key=secs[2], leaf="csa_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", **SIG_ADD_ZERO, **(ERR_SIG_HASHTYPE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SIZE)) # Removing the last byte from signatures invalidates them add_spender(spenders, "siglen/popbyte_keypath", tap=tap, key=secs[3], hashtype=hashtype, **SIG_POP_BYTE, **(ERR_SIG_SIZE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SCHNORR)) add_spender(spenders, "siglen/popbyte_csv", tap=tap, key=secs[2], leaf="csv", hashtype=hashtype, **SINGLE_SIG, **SIG_POP_BYTE, **(ERR_SIG_SIZE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SCHNORR)) add_spender(spenders, "siglen/popbyte_cs", tap=tap, key=secs[2], leaf="cs_pos", hashtype=hashtype, **SINGLE_SIG, **SIG_POP_BYTE, **(ERR_SIG_SIZE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SCHNORR)) add_spender(spenders, "siglen/popbyte_csa", tap=tap, key=secs[2], leaf="csa_pos", hashtype=hashtype, **SINGLE_SIG, **SIG_POP_BYTE, **(ERR_SIG_SIZE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SCHNORR)) add_spender(spenders, "siglen/popbyte_cs_neg", tap=tap, key=secs[2], leaf="cs_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", **SIG_POP_BYTE, **(ERR_SIG_SIZE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SCHNORR)) add_spender(spenders, "siglen/popbyte_csa_neg", tap=tap, key=secs[2], leaf="csa_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", **SIG_POP_BYTE, **(ERR_SIG_SIZE if hashtype == SIGHASH_DEFAULT else ERR_SIG_SCHNORR)) # Verify that an invalid signature is not allowed, not even when the CHECKSIG* is expected to fail. add_spender(spenders, "siglen/invalid_cs_neg", tap=tap, key=secs[2], leaf="cs_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", failure={"sign": default_sign, "sighash": bitflipper(default_sighash)}, **ERR_SIG_SCHNORR) add_spender(spenders, "siglen/invalid_csa_neg", tap=tap, key=secs[2], leaf="csa_neg", hashtype=hashtype, **SINGLE_SIG, sign=b"", failure={"sign": default_sign, "sighash": bitflipper(default_sighash)}, **ERR_SIG_SCHNORR) # == Test that BIP341 spending only applies to witness version 1, program length 32, no P2SH == for p2sh in [False, True]: for witver in range(1, 17): for witlen in [20, 31, 32, 33]: def mutate(spk): prog = spk[2:] assert len(prog) == 32 if witlen < 32: prog = prog[0:witlen] elif witlen > 32: prog += bytes([0 for _ in range(witlen - 32)]) return CScript([CScriptOp.encode_op_n(witver), prog]) scripts = [("s0", CScript([pubs[0], OP_CHECKSIG])), ("dummy", CScript([OP_RETURN]))] tap = taproot_construct(pubs[1], scripts) if not p2sh and witver == 1 and witlen == 32: add_spender(spenders, "applic/keypath", p2sh=p2sh, spk_mutate_pre_p2sh=mutate, tap=tap, key=secs[1], **SIGHASH_BITFLIP, **ERR_SIG_SCHNORR) add_spender(spenders, "applic/scriptpath", p2sh=p2sh, leaf="s0", spk_mutate_pre_p2sh=mutate, tap=tap, key=secs[0], **SINGLE_SIG, failure={"leaf": "dummy"}, **ERR_OP_RETURN) else: add_spender(spenders, "applic/keypath", p2sh=p2sh, spk_mutate_pre_p2sh=mutate, tap=tap, key=secs[1], standard=False) add_spender(spenders, "applic/scriptpath", p2sh=p2sh, leaf="s0", spk_mutate_pre_p2sh=mutate, tap=tap, key=secs[0], **SINGLE_SIG, standard=False) # == Test various aspects of BIP341 spending paths == # A set of functions that compute the hashing partner in a Merkle tree, designed to exercise # edge cases. This relies on the taproot_construct feature that a lambda can be passed in # instead of a subtree, to compute the partner to be hashed with. PARTNER_MERKLE_FN = [ # Combine with itself lambda h: h, # Combine with hash 0 lambda h: bytes([0 for _ in range(32)]), # Combine with hash 2^256-1 lambda h: bytes([0xff for _ in range(32)]), # Combine with itself-1 (BE) lambda h: (int.from_bytes(h, 'big') - 1).to_bytes(32, 'big'), # Combine with itself+1 (BE) lambda h: (int.from_bytes(h, 'big') + 1).to_bytes(32, 'big'), # Combine with itself-1 (LE) lambda h: (int.from_bytes(h, 'little') - 1).to_bytes(32, 'big'), # Combine with itself+1 (LE) lambda h: (int.from_bytes(h, 'little') + 1).to_bytes(32, 'little'), # Combine with random bitflipped version of self. lambda h: (int.from_bytes(h, 'little') ^ (1 << random.randrange(256))).to_bytes(32, 'little') ] # Start with a tree of that has depth 1 for "128deep" and depth 2 for "129deep". scripts = [("128deep", CScript([pubs[0], OP_CHECKSIG])), [("129deep", CScript([pubs[0], OP_CHECKSIG])), random.choice(PARTNER_MERKLE_FN)]] # Add 127 nodes on top of that tree, so that "128deep" and "129deep" end up at their designated depths. for _ in range(127): scripts = [scripts, random.choice(PARTNER_MERKLE_FN)] tap = taproot_construct(pubs[0], scripts) # Test that spends with a depth of 128 work, but 129 doesn't (even with a tree with weird Merkle branches in it). add_spender(spenders, "spendpath/merklelimit", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"leaf": "129deep"}, **ERR_CONTROLBLOCK_SIZE) # Test that flipping the negation bit invalidates spends. add_spender(spenders, "spendpath/negflag", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"negflag": lambda ctx: 1 - default_negflag(ctx)}, **ERR_WITNESS_PROGRAM_MISMATCH) # Test that bitflips in the Merkle branch invalidate it. add_spender(spenders, "spendpath/bitflipmerkle", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"merklebranch": bitflipper(default_merklebranch)}, **ERR_WITNESS_PROGRAM_MISMATCH) # Test that bitflips in the internal pubkey invalidate it. add_spender(spenders, "spendpath/bitflippubkey", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"pubkey_internal": bitflipper(default_pubkey_internal)}, **ERR_WITNESS_PROGRAM_MISMATCH) # Test that empty witnesses are invalid. add_spender(spenders, "spendpath/emptywit", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"witness": []}, **ERR_EMPTY_WITNESS) # Test that adding garbage to the control block invalidates it. add_spender(spenders, "spendpath/padlongcontrol", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"controlblock": lambda ctx: default_controlblock(ctx) + random_bytes(random.randrange(1, 32))}, **ERR_CONTROLBLOCK_SIZE) # Test that truncating the control block invalidates it. add_spender(spenders, "spendpath/trunclongcontrol", tap=tap, leaf="128deep", **SINGLE_SIG, key=secs[0], failure={"controlblock": lambda ctx: default_merklebranch(ctx)[0:random.randrange(1, 32)]}, **ERR_CONTROLBLOCK_SIZE) scripts = [("s", CScript([pubs[0], OP_CHECKSIG]))] tap = taproot_construct(pubs[1], scripts) # Test that adding garbage to the control block invalidates it. add_spender(spenders, "spendpath/padshortcontrol", tap=tap, leaf="s", **SINGLE_SIG, key=secs[0], failure={"controlblock": lambda ctx: default_controlblock(ctx) + random_bytes(random.randrange(1, 32))}, **ERR_CONTROLBLOCK_SIZE) # Test that truncating the control block invalidates it. add_spender(spenders, "spendpath/truncshortcontrol", tap=tap, leaf="s", **SINGLE_SIG, key=secs[0], failure={"controlblock": lambda ctx: default_merklebranch(ctx)[0:random.randrange(1, 32)]}, **ERR_CONTROLBLOCK_SIZE) # Test that truncating the control block to 1 byte ("-1 Merkle length") invalidates it add_spender(spenders, "spendpath/trunc1shortcontrol", tap=tap, leaf="s", **SINGLE_SIG, key=secs[0], failure={"controlblock": lambda ctx: default_merklebranch(ctx)[0:1]}, **ERR_CONTROLBLOCK_SIZE) # == Test BIP342 edge cases == csa_low_val = random.randrange(0, 17) # Within range for OP_n csa_low_result = csa_low_val + 1 csa_high_val = random.randrange(17, 100) if random.getrandbits(1) else random.randrange(-100, -1) # Outside OP_n range csa_high_result = csa_high_val + 1 OVERSIZE_NUMBER = 2**31 assert_equal(len(CScriptNum.encode(CScriptNum(OVERSIZE_NUMBER))), 6) assert_equal(len(CScriptNum.encode(CScriptNum(OVERSIZE_NUMBER-1))), 5) big_choices = [] big_scriptops = [] for i in range(1000): r = random.randrange(len(pubs)) big_choices.append(r) big_scriptops += [pubs[r], OP_CHECKSIGVERIFY] def big_spend_inputs(ctx): """Helper function to construct the script input for t33/t34 below.""" # Instead of signing 999 times, precompute signatures for every (key, hashtype) combination sigs = {} for ht in VALID_SIGHASHES_TAPROOT: for k in range(len(pubs)): sigs[(k, ht)] = override(default_sign, hashtype=ht, key=secs[k])(ctx) num = get(ctx, "num") return [sigs[(big_choices[i], random.choice(VALID_SIGHASHES_TAPROOT))] for i in range(num - 1, -1, -1)] # Various BIP342 features scripts = [ # 0) drop stack element and OP_CHECKSIG ("t0", CScript([OP_DROP, pubs[1], OP_CHECKSIG])), # 1) normal OP_CHECKSIG ("t1", CScript([pubs[1], OP_CHECKSIG])), # 2) normal OP_CHECKSIGVERIFY ("t2", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_1])), # 3) Hypothetical OP_CHECKMULTISIG script that takes a single sig as input ("t3", CScript([OP_0, OP_SWAP, OP_1, pubs[1], OP_1, OP_CHECKMULTISIG])), # 4) Hypothetical OP_CHECKMULTISIGVERIFY script that takes a single sig as input ("t4", CScript([OP_0, OP_SWAP, OP_1, pubs[1], OP_1, OP_CHECKMULTISIGVERIFY, OP_1])), # 5) OP_IF script that needs a true input ("t5", CScript([OP_IF, pubs[1], OP_CHECKSIG, OP_ELSE, OP_RETURN, OP_ENDIF])), # 6) OP_NOTIF script that needs a true input ("t6", CScript([OP_NOTIF, OP_RETURN, OP_ELSE, pubs[1], OP_CHECKSIG, OP_ENDIF])), # 7) OP_CHECKSIG with an empty key ("t7", CScript([OP_0, OP_CHECKSIG])), # 8) OP_CHECKSIGVERIFY with an empty key ("t8", CScript([OP_0, OP_CHECKSIGVERIFY, OP_1])), # 9) normal OP_CHECKSIGADD that also ensures return value is correct ("t9", CScript([csa_low_val, pubs[1], OP_CHECKSIGADD, csa_low_result, OP_EQUAL])), # 10) OP_CHECKSIGADD with empty key ("t10", CScript([csa_low_val, OP_0, OP_CHECKSIGADD, csa_low_result, OP_EQUAL])), # 11) OP_CHECKSIGADD with missing counter stack element ("t11", CScript([pubs[1], OP_CHECKSIGADD, OP_1, OP_EQUAL])), # 12) OP_CHECKSIG that needs invalid signature ("t12", CScript([pubs[1], OP_CHECKSIGVERIFY, pubs[0], OP_CHECKSIG, OP_NOT])), # 13) OP_CHECKSIG with empty key that needs invalid signature ("t13", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_0, OP_CHECKSIG, OP_NOT])), # 14) OP_CHECKSIGADD that needs invalid signature ("t14", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_0, pubs[0], OP_CHECKSIGADD, OP_NOT])), # 15) OP_CHECKSIGADD with empty key that needs invalid signature ("t15", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_0, OP_0, OP_CHECKSIGADD, OP_NOT])), # 16) OP_CHECKSIG with unknown pubkey type ("t16", CScript([OP_1, OP_CHECKSIG])), # 17) OP_CHECKSIGADD with unknown pubkey type ("t17", CScript([OP_0, OP_1, OP_CHECKSIGADD])), # 18) OP_CHECKSIGVERIFY with unknown pubkey type ("t18", CScript([OP_1, OP_CHECKSIGVERIFY, OP_1])), # 19) script longer than 10000 bytes and over 201 non-push opcodes ("t19", CScript([OP_0, OP_0, OP_2DROP] * 10001 + [pubs[1], OP_CHECKSIG])), # 20) OP_CHECKSIGVERIFY with empty key ("t20", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_0, OP_0, OP_CHECKSIGVERIFY, OP_1])), # 21) Script that grows the stack to 1000 elements ("t21", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_1] + [OP_DUP] * 999 + [OP_DROP] * 999)), # 22) Script that grows the stack to 1001 elements ("t22", CScript([pubs[1], OP_CHECKSIGVERIFY, OP_1] + [OP_DUP] * 1000 + [OP_DROP] * 1000)), # 23) Script that expects an input stack of 1000 elements ("t23", CScript([OP_DROP] * 999 + [pubs[1], OP_CHECKSIG])), # 24) Script that expects an input stack of 1001 elements ("t24", CScript([OP_DROP] * 1000 + [pubs[1], OP_CHECKSIG])), # 25) Script that pushes a MAX_SCRIPT_ELEMENT_SIZE-bytes element ("t25", CScript([random_bytes(MAX_SCRIPT_ELEMENT_SIZE), OP_DROP, pubs[1], OP_CHECKSIG])), # 26) Script that pushes a (MAX_SCRIPT_ELEMENT_SIZE+1)-bytes element ("t26", CScript([random_bytes(MAX_SCRIPT_ELEMENT_SIZE+1), OP_DROP, pubs[1], OP_CHECKSIG])), # 27) CHECKSIGADD that must fail because numeric argument number is >4 bytes ("t27", CScript([CScriptNum(OVERSIZE_NUMBER), pubs[1], OP_CHECKSIGADD])), # 28) Pushes random CScriptNum value, checks OP_CHECKSIGADD result ("t28", CScript([csa_high_val, pubs[1], OP_CHECKSIGADD, csa_high_result, OP_EQUAL])), # 29) CHECKSIGADD that succeeds with proper sig because numeric argument number is <=4 bytes ("t29", CScript([CScriptNum(OVERSIZE_NUMBER-1), pubs[1], OP_CHECKSIGADD])), # 30) Variant of t1 with "normal" 33-byte pubkey ("t30", CScript([b'\x03' + pubs[1], OP_CHECKSIG])), # 31) Variant of t2 with "normal" 33-byte pubkey ("t31", CScript([b'\x02' + pubs[1], OP_CHECKSIGVERIFY, OP_1])), # 32) Variant of t28 with "normal" 33-byte pubkey ("t32", CScript([csa_high_val, b'\x03' + pubs[1], OP_CHECKSIGADD, csa_high_result, OP_EQUAL])), # 33) 999-of-999 multisig ("t33", CScript(big_scriptops[:1998] + [OP_1])), # 34) 1000-of-1000 multisig ("t34", CScript(big_scriptops[:2000] + [OP_1])), # 35) Variant of t9 that uses a non-minimally encoded input arg ("t35", CScript([bytes([csa_low_val]), pubs[1], OP_CHECKSIGADD, csa_low_result, OP_EQUAL])), # 36) Empty script ("t36", CScript([])), ] # Add many dummies to test huge trees for j in range(100000): scripts.append((None, CScript([OP_RETURN, random.randrange(100000)]))) random.shuffle(scripts) tap = taproot_construct(pubs[0], scripts) common = { "hashtype": hashtype, "key": secs[1], "tap": tap, } # Test that MAX_SCRIPT_ELEMENT_SIZE byte stack element inputs are valid, but not one more (and 80 bytes is standard but 81 is not). add_spender(spenders, "tapscript/inputmaxlimit", leaf="t0", **common, standard=False, inputs=[getter("sign"), random_bytes(MAX_SCRIPT_ELEMENT_SIZE)], failure={"inputs": [getter("sign"), random_bytes(MAX_SCRIPT_ELEMENT_SIZE+1)]}, **ERR_PUSH_LIMIT) add_spender(spenders, "tapscript/input80limit", leaf="t0", **common, inputs=[getter("sign"), random_bytes(80)]) add_spender(spenders, "tapscript/input81limit", leaf="t0", **common, standard=False, inputs=[getter("sign"), random_bytes(81)]) # Test that OP_CHECKMULTISIG and OP_CHECKMULTISIGVERIFY cause failure, but OP_CHECKSIG and OP_CHECKSIGVERIFY work. add_spender(spenders, "tapscript/disabled_checkmultisig", leaf="t1", **common, **SINGLE_SIG, failure={"leaf": "t3"}, **ERR_TAPSCRIPT_CHECKMULTISIG) add_spender(spenders, "tapscript/disabled_checkmultisigverify", leaf="t2", **common, **SINGLE_SIG, failure={"leaf": "t4"}, **ERR_TAPSCRIPT_CHECKMULTISIG) # Test that OP_IF and OP_NOTIF do not accept non-0x01 as truth value (the MINIMALIF rule is consensus in Tapscript) add_spender(spenders, "tapscript/minimalif", leaf="t5", **common, inputs=[getter("sign"), b'\x01'], failure={"inputs": [getter("sign"), b'\x02']}, **ERR_MINIMALIF) add_spender(spenders, "tapscript/minimalnotif", leaf="t6", **common, inputs=[getter("sign"), b'\x01'], failure={"inputs": [getter("sign"), b'\x03']}, **ERR_MINIMALIF) add_spender(spenders, "tapscript/minimalif", leaf="t5", **common, inputs=[getter("sign"), b'\x01'], failure={"inputs": [getter("sign"), b'\x0001']}, **ERR_MINIMALIF) add_spender(spenders, "tapscript/minimalnotif", leaf="t6", **common, inputs=[getter("sign"), b'\x01'], failure={"inputs": [getter("sign"), b'\x0100']}, **ERR_MINIMALIF) # Test that 1-byte public keys (which are unknown) are acceptable but nonstandard with unrelated signatures, but 0-byte public keys are not valid. add_spender(spenders, "tapscript/unkpk/checksig", leaf="t16", standard=False, **common, **SINGLE_SIG, failure={"leaf": "t7"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/unkpk/checksigadd", leaf="t17", standard=False, **common, **SINGLE_SIG, failure={"leaf": "t10"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/unkpk/checksigverify", leaf="t18", standard=False, **common, **SINGLE_SIG, failure={"leaf": "t8"}, **ERR_UNKNOWN_PUBKEY) # Test that 33-byte public keys (which are unknown) are acceptable but nonstandard with valid signatures, but normal pubkeys are not valid in that case. add_spender(spenders, "tapscript/oldpk/checksig", leaf="t30", standard=False, **common, **SINGLE_SIG, sighash=bitflipper(default_sighash), failure={"leaf": "t1"}, **ERR_SIG_SCHNORR) add_spender(spenders, "tapscript/oldpk/checksigadd", leaf="t31", standard=False, **common, **SINGLE_SIG, sighash=bitflipper(default_sighash), failure={"leaf": "t2"}, **ERR_SIG_SCHNORR) add_spender(spenders, "tapscript/oldpk/checksigverify", leaf="t32", standard=False, **common, **SINGLE_SIG, sighash=bitflipper(default_sighash), failure={"leaf": "t28"}, **ERR_SIG_SCHNORR) # Test that 0-byte public keys are not acceptable. add_spender(spenders, "tapscript/emptypk/checksig", leaf="t1", **SINGLE_SIG, **common, failure={"leaf": "t7"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/emptypk/checksigverify", leaf="t2", **SINGLE_SIG, **common, failure={"leaf": "t8"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/emptypk/checksigadd", leaf="t9", **SINGLE_SIG, **common, failure={"leaf": "t10"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/emptypk/checksigadd", leaf="t35", standard=False, **SINGLE_SIG, **common, failure={"leaf": "t10"}, **ERR_UNKNOWN_PUBKEY) # Test that OP_CHECKSIGADD results are as expected add_spender(spenders, "tapscript/checksigaddresults", leaf="t28", **SINGLE_SIG, **common, failure={"leaf": "t27"}, err_msg="unknown error") add_spender(spenders, "tapscript/checksigaddoversize", leaf="t29", **SINGLE_SIG, **common, failure={"leaf": "t27"}, err_msg="unknown error") # Test that OP_CHECKSIGADD requires 3 stack elements. add_spender(spenders, "tapscript/checksigadd3args", leaf="t9", **SINGLE_SIG, **common, failure={"leaf": "t11"}, **ERR_STACK_EMPTY) # Test that empty signatures do not cause script failure in OP_CHECKSIG and OP_CHECKSIGADD (but do fail with empty pubkey, and do fail OP_CHECKSIGVERIFY) add_spender(spenders, "tapscript/emptysigs/checksig", leaf="t12", **common, inputs=[b'', getter("sign")], failure={"leaf": "t13"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/emptysigs/nochecksigverify", leaf="t12", **common, inputs=[b'', getter("sign")], failure={"leaf": "t20"}, **ERR_UNKNOWN_PUBKEY) add_spender(spenders, "tapscript/emptysigs/checksigadd", leaf="t14", **common, inputs=[b'', getter("sign")], failure={"leaf": "t15"}, **ERR_UNKNOWN_PUBKEY) # Test that scripts over 10000 bytes (and over 201 non-push ops) are acceptable. add_spender(spenders, "tapscript/no10000limit", leaf="t19", **SINGLE_SIG, **common) # Test that a stack size of 1000 elements is permitted, but 1001 isn't. add_spender(spenders, "tapscript/1000stack", leaf="t21", **SINGLE_SIG, **common, failure={"leaf": "t22"}, **ERR_STACK_SIZE) # Test that an input stack size of 1000 elements is permitted, but 1001 isn't. add_spender(spenders, "tapscript/1000inputs", leaf="t23", **common, inputs=[getter("sign")] + [b'' for _ in range(999)], failure={"leaf": "t24", "inputs": [getter("sign")] + [b'' for _ in range(1000)]}, **ERR_STACK_SIZE) # Test that pushing a MAX_SCRIPT_ELEMENT_SIZE byte stack element is valid, but one longer is not. add_spender(spenders, "tapscript/pushmaxlimit", leaf="t25", **common, **SINGLE_SIG, failure={"leaf": "t26"}, **ERR_PUSH_LIMIT) # Test that 999-of-999 multisig works (but 1000-of-1000 triggers stack size limits) add_spender(spenders, "tapscript/bigmulti", leaf="t33", **common, inputs=big_spend_inputs, num=999, failure={"leaf": "t34", "num": 1000}, **ERR_STACK_SIZE) # Test that the CLEANSTACK rule is consensus critical in tapscript add_spender(spenders, "tapscript/cleanstack", leaf="t36", tap=tap, inputs=[b'\x01'], failure={"inputs": [b'\x01', b'\x01']}, **ERR_CLEANSTACK) # == Test for sigops ratio limit == # Given a number n, and a public key pk, functions that produce a (CScript, sigops). Each script takes as # input a valid signature with the passed pk followed by a dummy push of bytes that are to be dropped, and # will execute sigops signature checks. SIGOPS_RATIO_SCRIPTS = [ # n OP_CHECKSIGVERFIYs and 1 OP_CHECKSIG. lambda n, pk: (CScript([OP_DROP, pk] + [OP_2DUP, OP_CHECKSIGVERIFY] * n + [OP_CHECKSIG]), n + 1), # n OP_CHECKSIGVERIFYs and 1 OP_CHECKSIGADD, but also one unexecuted OP_CHECKSIGVERIFY. lambda n, pk: (CScript([OP_DROP, pk, OP_0, OP_IF, OP_2DUP, OP_CHECKSIGVERIFY, OP_ENDIF] + [OP_2DUP, OP_CHECKSIGVERIFY] * n + [OP_2, OP_SWAP, OP_CHECKSIGADD, OP_3, OP_EQUAL]), n + 1), # n OP_CHECKSIGVERIFYs and 1 OP_CHECKSIGADD, but also one unexecuted OP_CHECKSIG. lambda n, pk: (CScript([random_bytes(220), OP_2DROP, pk, OP_1, OP_NOTIF, OP_2DUP, OP_CHECKSIG, OP_VERIFY, OP_ENDIF] + [OP_2DUP, OP_CHECKSIGVERIFY] * n + [OP_4, OP_SWAP, OP_CHECKSIGADD, OP_5, OP_EQUAL]), n + 1), # n OP_CHECKSIGVERFIYs and 1 OP_CHECKSIGADD, but also one unexecuted OP_CHECKSIGADD. lambda n, pk: (CScript([OP_DROP, pk, OP_1, OP_IF, OP_ELSE, OP_2DUP, OP_6, OP_SWAP, OP_CHECKSIGADD, OP_7, OP_EQUALVERIFY, OP_ENDIF] + [OP_2DUP, OP_CHECKSIGVERIFY] * n + [OP_8, OP_SWAP, OP_CHECKSIGADD, OP_9, OP_EQUAL]), n + 1), # n+1 OP_CHECKSIGs, but also one OP_CHECKSIG with an empty signature. lambda n, pk: (CScript([OP_DROP, OP_0, pk, OP_CHECKSIG, OP_NOT, OP_VERIFY, pk] + [OP_2DUP, OP_CHECKSIG, OP_VERIFY] * n + [OP_CHECKSIG]), n + 1), # n OP_CHECKSIGADDs and 1 OP_CHECKSIG, but also an OP_CHECKSIGADD with an empty signature. lambda n, pk: (CScript([OP_DROP, OP_0, OP_10, pk, OP_CHECKSIGADD, OP_10, OP_EQUALVERIFY, pk] + [OP_2DUP, OP_16, OP_SWAP, OP_CHECKSIGADD, b'\x11', OP_EQUALVERIFY] * n + [OP_CHECKSIG]), n + 1), ] for annex in [None, bytes([ANNEX_TAG]) + random_bytes(random.randrange(1000))]: for hashtype in [SIGHASH_DEFAULT, SIGHASH_ALL]: for pubkey in [pubs[1], random_bytes(random.choice([x for x in range(2, 81) if x != 32]))]: for fn_num, fn in enumerate(SIGOPS_RATIO_SCRIPTS): merkledepth = random.randrange(129) def predict_sigops_ratio(n, dummy_size): """Predict whether spending fn(n, pubkey) with dummy_size will pass the ratio test.""" script, sigops = fn(n, pubkey) # Predict the size of the witness for a given choice of n stacklen_size = 1 sig_size = 64 + (hashtype != SIGHASH_DEFAULT) siglen_size = 1 dummylen_size = 1 + 2 * (dummy_size >= 253) script_size = len(script) scriptlen_size = 1 + 2 * (script_size >= 253) control_size = 33 + 32 * merkledepth controllen_size = 1 + 2 * (control_size >= 253) annex_size = 0 if annex is None else len(annex) annexlen_size = 0 if annex is None else 1 + 2 * (annex_size >= 253) witsize = stacklen_size + sig_size + siglen_size + dummy_size + dummylen_size + script_size + scriptlen_size + control_size + controllen_size + annex_size + annexlen_size # sigops ratio test return witsize + 50 >= 50 * sigops # Make sure n is high enough that with empty dummy, the script is not valid n = 0 while predict_sigops_ratio(n, 0): n += 1 # But allow picking a bit higher still n += random.randrange(5) # Now pick dummy size *just* large enough that the overall construction passes dummylen = 0 while not predict_sigops_ratio(n, dummylen): dummylen += 1 scripts = [("s", fn(n, pubkey)[0])] for _ in range(merkledepth): scripts = [scripts, random.choice(PARTNER_MERKLE_FN)] tap = taproot_construct(pubs[0], scripts) standard = annex is None and dummylen <= 80 and len(pubkey) == 32 add_spender(spenders, "tapscript/sigopsratio_%i" % fn_num, tap=tap, leaf="s", annex=annex, hashtype=hashtype, key=secs[1], inputs=[getter("sign"), random_bytes(dummylen)], standard=standard, failure={"inputs": [getter("sign"), random_bytes(dummylen - 1)]}, **ERR_SIGOPS_RATIO) # Future leaf versions for leafver in range(0, 0x100, 2): if leafver == LEAF_VERSION_TAPSCRIPT or leafver == ANNEX_TAG: # Skip the defined LEAF_VERSION_TAPSCRIPT, and the ANNEX_TAG which is not usable as leaf version continue scripts = [ ("bare_c0", CScript([OP_NOP])), ("bare_unkver", CScript([OP_NOP]), leafver), ("return_c0", CScript([OP_RETURN])), ("return_unkver", CScript([OP_RETURN]), leafver), ("undecodable_c0", CScript([OP_PUSHDATA1])), ("undecodable_unkver", CScript([OP_PUSHDATA1]), leafver), ("bigpush_c0", CScript([random_bytes(MAX_SCRIPT_ELEMENT_SIZE+1), OP_DROP])), ("bigpush_unkver", CScript([random_bytes(MAX_SCRIPT_ELEMENT_SIZE+1), OP_DROP]), leafver), ("1001push_c0", CScript([OP_0] * 1001)), ("1001push_unkver", CScript([OP_0] * 1001), leafver), ] random.shuffle(scripts) tap = taproot_construct(pubs[0], scripts) add_spender(spenders, "unkver/bare", standard=False, tap=tap, leaf="bare_unkver", failure={"leaf": "bare_c0"}, **ERR_CLEANSTACK) add_spender(spenders, "unkver/return", standard=False, tap=tap, leaf="return_unkver", failure={"leaf": "return_c0"}, **ERR_OP_RETURN) add_spender(spenders, "unkver/undecodable", standard=False, tap=tap, leaf="undecodable_unkver", failure={"leaf": "undecodable_c0"}, **ERR_UNDECODABLE) add_spender(spenders, "unkver/bigpush", standard=False, tap=tap, leaf="bigpush_unkver", failure={"leaf": "bigpush_c0"}, **ERR_PUSH_LIMIT) add_spender(spenders, "unkver/1001push", standard=False, tap=tap, leaf="1001push_unkver", failure={"leaf": "1001push_c0"}, **ERR_STACK_SIZE) add_spender(spenders, "unkver/1001inputs", standard=False, tap=tap, leaf="bare_unkver", inputs=[b'']*1001, failure={"leaf": "bare_c0"}, **ERR_STACK_SIZE) # OP_SUCCESSx tests. hashtype = lambda _: random.choice(VALID_SIGHASHES_TAPROOT) for opval in range(76, 0x100): opcode = CScriptOp(opval) if not is_op_success(opcode): continue scripts = [ ("bare_success", CScript([opcode])), ("bare_nop", CScript([OP_NOP])), ("unexecif_success", CScript([OP_0, OP_IF, opcode, OP_ENDIF])), ("unexecif_nop", CScript([OP_0, OP_IF, OP_NOP, OP_ENDIF])), ("return_success", CScript([OP_RETURN, opcode])), ("return_nop", CScript([OP_RETURN, OP_NOP])), ("undecodable_success", CScript([opcode, OP_PUSHDATA1])), ("undecodable_nop", CScript([OP_NOP, OP_PUSHDATA1])), ("undecodable_bypassed_success", CScript([OP_PUSHDATA1, OP_2, opcode])), ("bigpush_success", CScript([random_bytes(MAX_SCRIPT_ELEMENT_SIZE+1), OP_DROP, opcode])), ("bigpush_nop", CScript([random_bytes(MAX_SCRIPT_ELEMENT_SIZE+1), OP_DROP, OP_NOP])), ("1001push_success", CScript([OP_0] * 1001 + [opcode])), ("1001push_nop", CScript([OP_0] * 1001 + [OP_NOP])), ] random.shuffle(scripts) tap = taproot_construct(pubs[0], scripts) add_spender(spenders, "opsuccess/bare", standard=False, tap=tap, leaf="bare_success", failure={"leaf": "bare_nop"}, **ERR_CLEANSTACK) add_spender(spenders, "opsuccess/unexecif", standard=False, tap=tap, leaf="unexecif_success", failure={"leaf": "unexecif_nop"}, **ERR_CLEANSTACK) add_spender(spenders, "opsuccess/return", standard=False, tap=tap, leaf="return_success", failure={"leaf": "return_nop"}, **ERR_OP_RETURN) add_spender(spenders, "opsuccess/undecodable", standard=False, tap=tap, leaf="undecodable_success", failure={"leaf": "undecodable_nop"}, **ERR_UNDECODABLE) add_spender(spenders, "opsuccess/undecodable_bypass", standard=False, tap=tap, leaf="undecodable_success", failure={"leaf": "undecodable_bypassed_success"}, **ERR_UNDECODABLE) add_spender(spenders, "opsuccess/bigpush", standard=False, tap=tap, leaf="bigpush_success", failure={"leaf": "bigpush_nop"}, **ERR_PUSH_LIMIT) add_spender(spenders, "opsuccess/1001push", standard=False, tap=tap, leaf="1001push_success", failure={"leaf": "1001push_nop"}, **ERR_STACK_SIZE) add_spender(spenders, "opsuccess/1001inputs", standard=False, tap=tap, leaf="bare_success", inputs=[b'']*1001, failure={"leaf": "bare_nop"}, **ERR_STACK_SIZE) # Non-OP_SUCCESSx (verify that those aren't accidentally treated as OP_SUCCESSx) for opval in range(0, 0x100): opcode = CScriptOp(opval) if is_op_success(opcode): continue scripts = [ ("normal", CScript([OP_RETURN, opcode] + [OP_NOP] * 75)), ("op_success", CScript([OP_RETURN, CScriptOp(0x50)])) ] tap = taproot_construct(pubs[0], scripts) add_spender(spenders, "alwaysvalid/notsuccessx", tap=tap, leaf="op_success", inputs=[], standard=False, failure={"leaf": "normal"}) # err_msg differs based on opcode # == Legacy tests == # Also add a few legacy spends into the mix, so that transactions which combine taproot and pre-taproot spends get tested too. for compressed in [False, True]: eckey1 = ECKey() eckey1.set(generate_privkey(), compressed) pubkey1 = eckey1.get_pubkey().get_bytes() eckey2 = ECKey() eckey2.set(generate_privkey(), compressed) for p2sh in [False, True]: for witv0 in [False, True]: for hashtype in VALID_SIGHASHES_ECDSA + [random.randrange(0x04, 0x80), random.randrange(0x84, 0x100)]: standard = (hashtype in VALID_SIGHASHES_ECDSA) and (compressed or not witv0) add_spender(spenders, "legacy/pk-wrongkey", hashtype=hashtype, p2sh=p2sh, witv0=witv0, standard=standard, script=CScript([pubkey1, OP_CHECKSIG]), **SINGLE_SIG, key=eckey1, failure={"key": eckey2}, sigops_weight=4-3*witv0, **ERR_NO_SUCCESS) add_spender(spenders, "legacy/pkh-sighashflip", hashtype=hashtype, p2sh=p2sh, witv0=witv0, standard=standard, pkh=pubkey1, key=eckey1, **SIGHASH_BITFLIP, sigops_weight=4-3*witv0, **ERR_NO_SUCCESS) # Verify that OP_CHECKSIGADD wasn't accidentally added to pre-taproot validation logic. for p2sh in [False, True]: for witv0 in [False, True]: for hashtype in VALID_SIGHASHES_ECDSA + [random.randrange(0x04, 0x80), random.randrange(0x84, 0x100)]: standard = hashtype in VALID_SIGHASHES_ECDSA and (p2sh or witv0) add_spender(spenders, "compat/nocsa", hashtype=hashtype, p2sh=p2sh, witv0=witv0, standard=standard, script=CScript([OP_IF, OP_11, pubkey1, OP_CHECKSIGADD, OP_12, OP_EQUAL, OP_ELSE, pubkey1, OP_CHECKSIG, OP_ENDIF]), key=eckey1, sigops_weight=4-3*witv0, inputs=[getter("sign"), b''], failure={"inputs": [getter("sign"), b'\x01']}, **ERR_UNDECODABLE) return spenders def spenders_taproot_inactive(): """Spenders for testing that pre-activation Taproot rules don't apply.""" spenders = [] sec = generate_privkey() pub, _ = compute_xonly_pubkey(sec) scripts = [ ("pk", CScript([pub, OP_CHECKSIG])), ("future_leaf", CScript([pub, OP_CHECKSIG]), 0xc2), ("op_success", CScript([pub, OP_CHECKSIG, OP_0, OP_IF, CScriptOp(0x50), OP_ENDIF])), ] tap = taproot_construct(pub, scripts) # Test that keypath spending is valid & non-standard, regardless of validity. add_spender(spenders, "inactive/keypath_valid", key=sec, tap=tap, standard=False) add_spender(spenders, "inactive/keypath_invalidsig", key=sec, tap=tap, standard=False, sighash=bitflipper(default_sighash)) add_spender(spenders, "inactive/keypath_empty", key=sec, tap=tap, standard=False, witness=[]) # Same for scriptpath spending (and features like annex, leaf versions, or OP_SUCCESS don't change this) add_spender(spenders, "inactive/scriptpath_valid", key=sec, tap=tap, leaf="pk", standard=False, inputs=[getter("sign")]) add_spender(spenders, "inactive/scriptpath_invalidsig", key=sec, tap=tap, leaf="pk", standard=False, inputs=[getter("sign")], sighash=bitflipper(default_sighash)) add_spender(spenders, "inactive/scriptpath_invalidcb", key=sec, tap=tap, leaf="pk", standard=False, inputs=[getter("sign")], controlblock=bitflipper(default_controlblock)) add_spender(spenders, "inactive/scriptpath_valid_unkleaf", key=sec, tap=tap, leaf="future_leaf", standard=False, inputs=[getter("sign")]) add_spender(spenders, "inactive/scriptpath_invalid_unkleaf", key=sec, tap=tap, leaf="future_leaf", standard=False, inputs=[getter("sign")], sighash=bitflipper(default_sighash)) add_spender(spenders, "inactive/scriptpath_valid_opsuccess", key=sec, tap=tap, leaf="op_success", standard=False, inputs=[getter("sign")]) add_spender(spenders, "inactive/scriptpath_valid_opsuccess", key=sec, tap=tap, leaf="op_success", standard=False, inputs=[getter("sign")], sighash=bitflipper(default_sighash)) return spenders # Consensus validation flags to use in dumps for tests with "legacy/" or "inactive/" prefix. LEGACY_FLAGS = "P2SH,DERSIG,CHECKLOCKTIMEVERIFY,CHECKSEQUENCEVERIFY,WITNESS,NULLDUMMY" # Consensus validation flags to use in dumps for all other tests. TAPROOT_FLAGS = "P2SH,DERSIG,CHECKLOCKTIMEVERIFY,CHECKSEQUENCEVERIFY,WITNESS,NULLDUMMY,TAPROOT" def dump_json_test(tx, input_utxos, idx, success, failure): spender = input_utxos[idx].spender # Determine flags to dump flags = LEGACY_FLAGS if spender.comment.startswith("legacy/") or spender.comment.startswith("inactive/") else TAPROOT_FLAGS fields = [ ("tx", tx.serialize().hex()), ("prevouts", [x.output.serialize().hex() for x in input_utxos]), ("index", idx), ("flags", flags), ("comment", spender.comment) ] # The "final" field indicates that a spend should be always valid, even with more validation flags enabled # than the listed ones. Use standardness as a proxy for this (which gives a conservative underestimate). if spender.is_standard: fields.append(("final", True)) def dump_witness(wit): return OrderedDict([("scriptSig", wit[0].hex()), ("witness", [x.hex() for x in wit[1]])]) if success is not None: fields.append(("success", dump_witness(success))) if failure is not None: fields.append(("failure", dump_witness(failure))) # Write the dump to $TEST_DUMP_DIR/x/xyz... where x,y,z,... are the SHA1 sum of the dump (which makes the # file naming scheme compatible with fuzzing infrastructure). dump = json.dumps(OrderedDict(fields)) + ",\n" sha1 = hashlib.sha1(dump.encode("utf-8")).hexdigest() dirname = os.environ.get("TEST_DUMP_DIR", ".") + ("/%s" % sha1[0]) os.makedirs(dirname, exist_ok=True) with open(dirname + ("/%s" % sha1), 'w', encoding="utf8") as f: f.write(dump) # Data type to keep track of UTXOs, where they were created, and how to spend them. UTXOData = namedtuple('UTXOData', 'outpoint,output,spender') class TaprootTest(DevcoinTestFramework): def add_options(self, parser): parser.add_argument("--dumptests", dest="dump_tests", default=False, action="store_true", help="Dump generated test cases to directory set by TEST_DUMP_DIR environment variable") parser.add_argument("--previous_release", dest="previous_release", default=False, action="store_true", help="Use a previous release as taproot-inactive node") def skip_test_if_missing_module(self): self.skip_if_no_wallet() if self.options.previous_release: self.skip_if_no_previous_releases() def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True # Node 0 has Taproot inactive, Node 1 active. self.extra_args = [["-par=1"], ["-par=1"]] if self.options.previous_release: self.wallet_names = [None, self.default_wallet_name] else: self.extra_args[0].append("-vbparams=taproot:1:1") def setup_nodes(self): self.add_nodes(self.num_nodes, self.extra_args, versions=[ 200100 if self.options.previous_release else None, None, ]) self.start_nodes() self.import_deterministic_coinbase_privkeys() def block_submit(self, node, txs, msg, err_msg, cb_pubkey=None, fees=0, sigops_weight=0, witness=False, accept=False): # Deplete block of any non-tapscript sigops using a single additional 0-value coinbase output. # It is not impossible to fit enough tapscript sigops to hit the old 80k limit without # busting txin-level limits. We simply have to account for the p2pk outputs in all # transactions. extra_output_script = CScript([OP_CHECKSIG]*((MAX_BLOCK_SIGOPS_WEIGHT - sigops_weight) // WITNESS_SCALE_FACTOR)) block = create_block(self.tip, create_coinbase(self.lastblockheight + 1, pubkey=cb_pubkey, extra_output_script=extra_output_script, fees=fees), self.lastblocktime + 1) block.nVersion = 4 for tx in txs: tx.rehash() block.vtx.append(tx) block.hashMerkleRoot = block.calc_merkle_root() witness and add_witness_commitment(block) block.rehash() block.solve() block_response = node.submitblock(block.serialize().hex()) if err_msg is not None: assert block_response is not None and err_msg in block_response, "Missing error message '%s' from block response '%s': %s" % (err_msg, "(None)" if block_response is None else block_response, msg) if accept: assert node.getbestblockhash() == block.hash, "Failed to accept: %s (response: %s)" % (msg, block_response) self.tip = block.sha256 self.lastblockhash = block.hash self.lastblocktime += 1 self.lastblockheight += 1 else: assert node.getbestblockhash() == self.lastblockhash, "Failed to reject: " + msg def test_spenders(self, node, spenders, input_counts): """Run randomized tests with a number of "spenders". Steps: 1) Generate an appropriate UTXO for each spender to test spend conditions 2) Generate 100 random addresses of all wallet types: pkh/sh_wpkh/wpkh 3) Select random number of inputs from (1) 4) Select random number of addresses from (2) as outputs Each spender embodies a test; in a large randomized test, it is verified that toggling the valid argument to each lambda toggles the validity of the transaction. This is accomplished by constructing transactions consisting of all valid inputs, except one invalid one. """ # Construct a bunch of sPKs that send coins back to the host wallet self.log.info("- Constructing addresses for returning coins") host_spks = [] host_pubkeys = [] for i in range(16): addr = node.getnewaddress(address_type=random.choice(["legacy", "p2sh-segwit", "bech32"])) info = node.getaddressinfo(addr) spk = bytes.fromhex(info['scriptPubKey']) host_spks.append(spk) host_pubkeys.append(bytes.fromhex(info['pubkey'])) # Initialize variables used by block_submit(). self.lastblockhash = node.getbestblockhash() self.tip = int(self.lastblockhash, 16) block = node.getblock(self.lastblockhash) self.lastblockheight = block['height'] self.lastblocktime = block['time'] # Create transactions spending up to 50 of the wallet's inputs, with one output for each spender, and # one change output at the end. The transaction is constructed on the Python side to enable # having multiple outputs to the same address and outputs with no assigned address. The wallet # is then asked to sign it through signrawtransactionwithwallet, and then added to a block on the # Python side (to bypass standardness rules). self.log.info("- Creating test UTXOs...") random.shuffle(spenders) normal_utxos = [] mismatching_utxos = [] # UTXOs with input that requires mismatching output position done = 0 while done < len(spenders): # Compute how many UTXOs to create with this transaction count_this_tx = min(len(spenders) - done, (len(spenders) + 4) // 5, 10000) fund_tx = CTransaction() # Add the 50 highest-value inputs unspents = node.listunspent() random.shuffle(unspents) unspents.sort(key=lambda x: int(x["amount"] * 100000000), reverse=True) if len(unspents) > 50: unspents = unspents[:50] random.shuffle(unspents) balance = 0 for unspent in unspents: balance += int(unspent["amount"] * 100000000) txid = int(unspent["txid"], 16) fund_tx.vin.append(CTxIn(COutPoint(txid, int(unspent["vout"])), CScript())) # Add outputs cur_progress = done / len(spenders) next_progress = (done + count_this_tx) / len(spenders) change_goal = (1.0 - 0.6 * next_progress) / (1.0 - 0.6 * cur_progress) * balance self.log.debug("Create %i UTXOs in a transaction spending %i inputs worth %.8f (sending ~%.8f to change)" % (count_this_tx, len(unspents), balance * 0.00000001, change_goal * 0.00000001)) for i in range(count_this_tx): avg = (balance - change_goal) / (count_this_tx - i) amount = int(random.randrange(int(avg*0.85 + 0.5), int(avg*1.15 + 0.5)) + 0.5) balance -= amount fund_tx.vout.append(CTxOut(amount, spenders[done + i].script)) # Add change fund_tx.vout.append(CTxOut(balance - 10000, random.choice(host_spks))) # Ask the wallet to sign ss = BytesIO(bytes.fromhex(node.signrawtransactionwithwallet(fund_tx.serialize().hex())["hex"])) fund_tx.deserialize(ss) # Construct UTXOData entries fund_tx.rehash() for i in range(count_this_tx): utxodata = UTXOData(outpoint=COutPoint(fund_tx.sha256, i), output=fund_tx.vout[i], spender=spenders[done]) if utxodata.spender.need_vin_vout_mismatch: mismatching_utxos.append(utxodata) else: normal_utxos.append(utxodata) done += 1 # Mine into a block self.block_submit(node, [fund_tx], "Funding tx", None, random.choice(host_pubkeys), 10000, MAX_BLOCK_SIGOPS_WEIGHT, True, True) # Consume groups of choice(input_coins) from utxos in a tx, testing the spenders. self.log.info("- Running %i spending tests" % done) random.shuffle(normal_utxos) random.shuffle(mismatching_utxos) assert done == len(normal_utxos) + len(mismatching_utxos) left = done while left: # Construct CTransaction with random nVersion, nLocktime tx = CTransaction() tx.nVersion = random.choice([1, 2, random.randint(-0x80000000, 0x7fffffff)]) min_sequence = (tx.nVersion != 1 and tx.nVersion != 0) * 0x80000000 # The minimum sequence number to disable relative locktime if random.choice([True, False]): tx.nLockTime = random.randrange(LOCKTIME_THRESHOLD, self.lastblocktime - 7200) # all absolute locktimes in the past else: tx.nLockTime = random.randrange(self.lastblockheight + 1) # all block heights in the past # Decide how many UTXOs to test with. acceptable = [n for n in input_counts if n <= left and (left - n > max(input_counts) or (left - n) in [0] + input_counts)] num_inputs = random.choice(acceptable) # If we have UTXOs that require mismatching inputs/outputs left, include exactly one of those # unless there is only one normal UTXO left (as tests with mismatching UTXOs require at least one # normal UTXO to go in the first position), and we don't want to run out of normal UTXOs. input_utxos = [] while len(mismatching_utxos) and (len(input_utxos) == 0 or len(normal_utxos) == 1): input_utxos.append(mismatching_utxos.pop()) left -= 1 # Top up until we hit num_inputs (but include at least one normal UTXO always). for _ in range(max(1, num_inputs - len(input_utxos))): input_utxos.append(normal_utxos.pop()) left -= 1 # The first input cannot require a mismatching output (as there is at least one output). while True: random.shuffle(input_utxos) if not input_utxos[0].spender.need_vin_vout_mismatch: break first_mismatch_input = None for i in range(len(input_utxos)): if input_utxos[i].spender.need_vin_vout_mismatch: first_mismatch_input = i assert first_mismatch_input is None or first_mismatch_input > 0 # Decide fee, and add CTxIns to tx. amount = sum(utxo.output.nValue for utxo in input_utxos) fee = min(random.randrange(MIN_FEE * 2, MIN_FEE * 4), amount - DUST_LIMIT) # 10000-20000 sat fee in_value = amount - fee tx.vin = [CTxIn(outpoint=utxo.outpoint, nSequence=random.randint(min_sequence, 0xffffffff)) for utxo in input_utxos] tx.wit.vtxinwit = [CTxInWitness() for _ in range(len(input_utxos))] sigops_weight = sum(utxo.spender.sigops_weight for utxo in input_utxos) self.log.debug("Test: %s" % (", ".join(utxo.spender.comment for utxo in input_utxos))) # Add 1 to 4 random outputs (but constrained by inputs that require mismatching outputs) num_outputs = random.choice(range(1, 1 + min(4, 4 if first_mismatch_input is None else first_mismatch_input))) assert in_value >= 0 and fee - num_outputs * DUST_LIMIT >= MIN_FEE for i in range(num_outputs): tx.vout.append(CTxOut()) if in_value <= DUST_LIMIT: tx.vout[-1].nValue = DUST_LIMIT elif i < num_outputs - 1: tx.vout[-1].nValue = in_value else: tx.vout[-1].nValue = random.randint(DUST_LIMIT, in_value) in_value -= tx.vout[-1].nValue tx.vout[-1].scriptPubKey = random.choice(host_spks) sigops_weight += CScript(tx.vout[-1].scriptPubKey).GetSigOpCount(False) * WITNESS_SCALE_FACTOR fee += in_value assert fee >= 0 # Select coinbase pubkey cb_pubkey = random.choice(host_pubkeys) sigops_weight += 1 * WITNESS_SCALE_FACTOR # Precompute one satisfying and one failing scriptSig/witness for each input. input_data = [] for i in range(len(input_utxos)): fn = input_utxos[i].spender.sat_function fail = None success = fn(tx, i, [utxo.output for utxo in input_utxos], True) if not input_utxos[i].spender.no_fail: fail = fn(tx, i, [utxo.output for utxo in input_utxos], False) input_data.append((fail, success)) if self.options.dump_tests: dump_json_test(tx, input_utxos, i, success, fail) # Sign each input incorrectly once on each complete signing pass, except the very last. for fail_input in list(range(len(input_utxos))) + [None]: # Skip trying to fail at spending something that can't be made to fail. if fail_input is not None and input_utxos[fail_input].spender.no_fail: continue # Expected message with each input failure, may be None(which is ignored) expected_fail_msg = None if fail_input is None else input_utxos[fail_input].spender.err_msg # Fill inputs/witnesses for i in range(len(input_utxos)): tx.vin[i].scriptSig = input_data[i][i != fail_input][0] tx.wit.vtxinwit[i].scriptWitness.stack = input_data[i][i != fail_input][1] # Submit to mempool to check standardness is_standard_tx = fail_input is None and all(utxo.spender.is_standard for utxo in input_utxos) and tx.nVersion >= 1 and tx.nVersion <= 2 tx.rehash() msg = ','.join(utxo.spender.comment + ("*" if n == fail_input else "") for n, utxo in enumerate(input_utxos)) if is_standard_tx: node.sendrawtransaction(tx.serialize().hex(), 0) assert node.getmempoolentry(tx.hash) is not None, "Failed to accept into mempool: " + msg else: assert_raises_rpc_error(-26, None, node.sendrawtransaction, tx.serialize().hex(), 0) # Submit in a block self.block_submit(node, [tx], msg, witness=True, accept=fail_input is None, cb_pubkey=cb_pubkey, fees=fee, sigops_weight=sigops_weight, err_msg=expected_fail_msg) if (len(spenders) - left) // 200 > (len(spenders) - left - len(input_utxos)) // 200: self.log.info(" - %i tests done" % (len(spenders) - left)) assert left == 0 assert len(normal_utxos) == 0 assert len(mismatching_utxos) == 0 self.log.info(" - Done") def run_test(self): # Post-taproot activation tests go first (pre-taproot tests' blocks are invalid post-taproot). self.log.info("Post-activation tests...") self.nodes[1].generate(COINBASE_MATURITY + 1) self.test_spenders(self.nodes[1], spenders_taproot_active(), input_counts=[1, 2, 2, 2, 2, 3]) # Re-connect nodes in case they have been disconnected self.disconnect_nodes(0, 1) self.connect_nodes(0, 1) # Transfer value of the largest 500 coins to pre-taproot node. addr = self.nodes[0].getnewaddress() unsp = self.nodes[1].listunspent() unsp = sorted(unsp, key=lambda i: i['amount'], reverse=True) unsp = unsp[:500] rawtx = self.nodes[1].createrawtransaction( inputs=[{ 'txid': i['txid'], 'vout': i['vout'] } for i in unsp], outputs={addr: sum(i['amount'] for i in unsp)} ) rawtx = self.nodes[1].signrawtransactionwithwallet(rawtx)['hex'] # Mine a block with the transaction block = create_block(tmpl=self.nodes[1].getblocktemplate(NORMAL_GBT_REQUEST_PARAMS), txlist=[rawtx]) add_witness_commitment(block) block.rehash() block.solve() assert_equal(None, self.nodes[1].submitblock(block.serialize().hex())) self.sync_blocks() # Pre-taproot activation tests. self.log.info("Pre-activation tests...") # Run each test twice; once in isolation, and once combined with others. Testing in isolation # means that the standardness is verified in every test (as combined transactions are only standard # when all their inputs are standard). self.test_spenders(self.nodes[0], spenders_taproot_inactive(), input_counts=[1]) self.test_spenders(self.nodes[0], spenders_taproot_inactive(), input_counts=[2, 3]) if __name__ == '__main__': TaprootTest().main()
py
1a4e10375c3142a0f83e8da0bdd7d81443201d16
from .trie import * # noqa: F401, F403
py
1a4e123a6ad29edf25bd3c8385368076c482fdb9
# Copyright (c) 2019-2020, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cupy as cp from string import Template from ..utils._caches import _cupy_kernel_cache _SUPPORTED_TYPES = ["float32", "float64"] # Custom Cupy raw kernel # Matthew Nicely - [email protected] cuda_code_cupy_v7 = Template( """ extern "C" { // Compute linalg.inv(S) __device__ ${T} inverse( const int & ltx, const int & lty, const int & ltz, ${T}(&s_ZZ_A)[${BLOCKS}][${DIM_Z}][${DIM_Z}], ${T}(&s_ZZ_I)[${BLOCKS}][${DIM_Z}][${DIM_Z}]) { ${T} temp {}; // Interchange the row of matrix if ( lty == 0 && ltx < ${DIM_Z}) { #pragma unroll ( ${DIM_Z} - 1 ) for ( int i = ${DIM_Z} - 1; i > 0; i-- ) { if ( s_ZZ_A[ltz][i - 1][0] < s_ZZ_A[ltz][i][0] ) { temp = s_ZZ_A[ltz][i][ltx]; s_ZZ_A[ltz][i][ltx] = s_ZZ_A[ltz][i - 1][ltx]; s_ZZ_A[ltz][i - 1][ltx] = temp; temp = s_ZZ_I[ltz][i][ltx]; s_ZZ_I[ltz][i][ltx] = s_ZZ_I[ltz][i - 1][ltx]; s_ZZ_I[ltz][i - 1][ltx] = temp; } } } // Replace a row by sum of itself and a // constant multiple of another row of the matrix #pragma unroll ${DIM_Z} for ( int i = 0; i < ${DIM_Z}; i++ ) { if ( lty < ${DIM_Z} && ltx < ${DIM_Z} ) { if ( lty != i ) { temp = s_ZZ_A[ltz][lty][i] / s_ZZ_A[ltz][i][i]; } } __syncthreads(); if ( lty < ${DIM_Z} && ltx < ${DIM_Z} ) { if ( lty != i ) { s_ZZ_A[ltz][lty][ltx] -= s_ZZ_A[ltz][i][ltx] * temp; s_ZZ_I[ltz][lty][ltx] -= s_ZZ_I[ltz][i][ltx] * temp; } } __syncthreads(); } if ( lty < ${DIM_Z} && ltx < ${DIM_Z} ) { // Multiply each row by a nonzero integer. // Divide row element by the diagonal element temp = s_ZZ_A[ltz][lty][lty]; } __syncthreads(); if ( lty < ${DIM_Z} && ltx < ${DIM_Z} ) { s_ZZ_A[ltz][lty][ltx] = s_ZZ_A[ltz][lty][ltx] / temp; s_ZZ_I[ltz][lty][ltx] = s_ZZ_I[ltz][lty][ltx] / temp; } __syncthreads(); return ( s_ZZ_I[ltz][lty][ltx] ); } __global__ void __launch_bounds__(${MAX_TPB}) _cupy_predict( const int num_points, const ${T} * __restrict__ alpha_sq, ${T} * __restrict__ x_in, const ${T} * __restrict__ u, const ${T} * __restrict__ B, const ${T} * __restrict__ F, ${T} * __restrict__ P, const ${T} * __restrict__ Q, const bool skip ) { __shared__ ${T} s_XX_A[${BLOCKS}][${DIM_X}][${DIM_X}]; __shared__ ${T} s_XX_F[${BLOCKS}][${DIM_X}][${DIM_X}]; __shared__ ${T} s_XX_P[${BLOCKS}][${DIM_X}][${DIM_X}]; const auto ltx = threadIdx.x; const auto lty = threadIdx.y; const auto ltz = threadIdx.z; const int btz { static_cast<int>(blockIdx.z * blockDim.z + threadIdx.z) }; const int stride_z { static_cast<int>( blockDim.z * gridDim.z ) }; const int x_value { lty * ${DIM_X} + ltx }; for ( int gtz = btz; gtz < num_points; gtz += stride_z ) { s_XX_F[ltz][lty][ltx] = F[gtz * ${DIM_X} * ${DIM_X} + x_value]; __syncthreads(); ${T} alpha2 { alpha_sq[gtz] }; ${T} localQ { Q[gtz * ${DIM_X} * ${DIM_X} + x_value] }; ${T} localP { P[gtz * ${DIM_X} * ${DIM_X} + x_value] }; ${T} temp {}; //${T} temp2 {}; /* if ( !skip ) { // Compute self.x = dot(B, u) if ( ltx == 0 ) { #pragma unroll ${DIM_U} for ( int j = 0; j < ${DIM_U}; j++ ) { temp2 += B[gtz * ${DIM_X} * ${DIM_U} + lty * ${DIM_U} + j] * u[gtz * ${DIM_U} + j]; } printf("%d: %f\\n", lty, temp2); } } */ // Compute self.x = dot(F, self.x) if ( ltx == 0 ) { #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_XX_F[ltz][lty][j] * x_in[gtz * ${DIM_X} + j + ltx]; } // x_in[gtz * ${DIM_X} * 1 + lty * 1 + ltx] //x_in[gtz * ${DIM_X} + lty + ltx] = temp + temp2; x_in[gtz * ${DIM_X} + lty + ltx] = temp; } s_XX_P[ltz][lty][ltx] = localP; __syncthreads(); // Compute dot(F, self.P) temp = 0.0; #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_XX_F[ltz][lty][j] * s_XX_P[ltz][j][ltx]; } s_XX_A[ltz][lty][ltx] = temp; __syncthreads(); // Compute dot(dot(F, self.P), F.T) temp = 0.0; #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_XX_A[ltz][lty][j] * //133 s_XX_F[ltz][ltx][j]; } __syncthreads(); // Compute self._alpha_sq * dot(dot(F, self.P), F.T) + Q // Where temp = dot(dot(F, self.P), F.T) P[gtz * ${DIM_X} * ${DIM_X} + x_value] = alpha2 * temp + localQ; } } __global__ void __launch_bounds__(${MAX_TPB}) _cupy_update( const int num_points, ${T} * __restrict__ x_in, const ${T} * __restrict__ z_in, const ${T} * __restrict__ H, ${T} * __restrict__ P, const ${T} * __restrict__ R ) { __shared__ ${T} s_XX_A[${BLOCKS}][${DIM_X}][${DIM_X}]; __shared__ ${T} s_XX_B[${BLOCKS}][${DIM_X}][${DIM_X}]; __shared__ ${T} s_XX_P[${BLOCKS}][${DIM_X}][${DIM_X}]; __shared__ ${T} s_ZX_H[${BLOCKS}][${DIM_Z}][${DIM_X}]; __shared__ ${T} s_XZ_K[${BLOCKS}][${DIM_X}][${DIM_Z}]; __shared__ ${T} s_XZ_A[${BLOCKS}][${DIM_X}][${DIM_Z}]; __shared__ ${T} s_ZZ_A[${BLOCKS}][${DIM_Z}][${DIM_Z}]; __shared__ ${T} s_ZZ_R[${BLOCKS}][${DIM_Z}][${DIM_Z}]; __shared__ ${T} s_ZZ_I[${BLOCKS}][${DIM_Z}][${DIM_Z}]; __shared__ ${T} s_Z1_y[${BLOCKS}][${DIM_Z}][1]; const auto ltx = threadIdx.x; const auto lty = threadIdx.y; const auto ltz = threadIdx.z; const int btz { static_cast<int>( blockIdx.z * blockDim.z + threadIdx.z ) }; const int stride_z { static_cast<int>( blockDim.z * gridDim.z ) }; const int x_value { lty * ${DIM_X} + ltx }; const int z_value { lty * ${DIM_Z} + ltx }; for ( int gtz = btz; gtz < num_points; gtz += stride_z ) { if ( lty < ${DIM_Z} ) { s_ZX_H[ltz][lty][ltx] = H[gtz * ${DIM_Z} * ${DIM_X} + x_value]; } __syncthreads(); s_XX_P[ltz][lty][ltx] = P[gtz * ${DIM_X} * ${DIM_X} + x_value]; if ( ( lty < ${DIM_Z} ) && ( ltx < ${DIM_Z} ) ) { s_ZZ_R[ltz][lty][ltx] = R[gtz * ${DIM_Z} * ${DIM_Z} + z_value]; if ( lty == ltx ) { s_ZZ_I[ltz][lty][ltx] = 1.0; } else { s_ZZ_I[ltz][lty][ltx] = 0.0; } } ${T} temp {}; // Compute self.y : z = dot(self.H, self.x) --> Z1 if ( ( ltx == 0 ) && ( lty < ${DIM_Z} ) ) { ${T} temp_z { z_in[gtz * ${DIM_Z} + lty] }; #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_ZX_H[ltz][lty][j] * x_in[gtz * ${DIM_X} + j]; } s_Z1_y[ltz][lty][ltx] = temp_z - temp; } __syncthreads(); // Compute PHT : dot(self.P, self.H.T) --> XZ temp = 0.0; if ( ltx < ${DIM_Z} ) { #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_XX_P[ltz][lty][j] * s_ZX_H[ltz][ltx][j]; } // s_XX_A holds PHT s_XZ_A[ltz][lty][ltx] = temp; } __syncthreads(); // Compute self.S : dot(self.H, PHT) + self.R --> ZZ temp = 0.0; if ( ( ltx < ${DIM_Z} ) && ( lty < ${DIM_Z} ) ) { #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_ZX_H[ltz][lty][j] * s_XZ_A[ltz][j][ltx]; } // s_XX_B holds S - system uncertainty s_ZZ_A[ltz][lty][ltx] = temp + s_ZZ_R[ltz][lty][ltx]; } __syncthreads(); // Compute matrix inversion temp = inverse(ltx, lty, ltz, s_ZZ_A, s_ZZ_I); __syncthreads(); if ( ( ltx < ${DIM_Z} ) && ( lty < ${DIM_Z} ) ) { // s_XX_B hold SI - inverse system uncertainty s_ZZ_A[ltz][lty][ltx] = temp; } __syncthreads(); // Compute self.K : dot(PHT, self.SI) --> ZZ // kalman gain temp = 0.0; if ( ltx < ${DIM_Z} ) { #pragma unroll ${DIM_Z} for ( int j = 0; j < ${DIM_Z}; j++ ) { temp += s_XZ_A[ltz][lty][j] * s_ZZ_A[ltz][ltx][j]; } s_XZ_K[ltz][lty][ltx] = temp; } __syncthreads(); // Compute self.x : self.x + cp.dot(self.K, self.y) --> X1 temp = 0.0; if ( ltx == 0 ) { #pragma unroll ${DIM_Z} for ( int j = 0; j < ${DIM_Z}; j++ ) { temp += s_XZ_K[ltz][lty][j] * s_Z1_y[ltz][j][ltx]; } x_in[gtz * ${DIM_X} * 1 + lty * 1 + ltx] += temp; } // Compute I_KH = self_I - dot(self.K, self.H) --> XX temp = 0.0; #pragma unroll ${DIM_Z} for ( int j = 0; j < ${DIM_Z}; j++ ) { temp += s_XZ_K[ltz][lty][j] * s_ZX_H[ltz][j][ltx]; } // s_XX_A holds I_KH s_XX_A[ltz][lty][ltx] = ( ( ltx == lty ) ? 1 : 0 ) - temp; __syncthreads(); // Compute self.P = dot(dot(I_KH, self.P), I_KH.T) + // dot(dot(self.K, self.R), self.K.T) // Compute dot(I_KH, self.P) --> XX temp = 0.0; #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_XX_A[ltz][lty][j] * s_XX_P[ltz][j][ltx]; } s_XX_B[ltz][lty][ltx] = temp; __syncthreads(); // Compute dot(dot(I_KH, self.P), I_KH.T) --> XX temp = 0.0; #pragma unroll ${DIM_X} for ( int j = 0; j < ${DIM_X}; j++ ) { temp += s_XX_B[ltz][lty][j] * s_XX_A[ltz][ltx][j]; } s_XX_P[ltz][lty][ltx] = temp; // Compute dot(self.K, self.R) --> XZ temp = 0.0; if ( ltx < ${DIM_Z} ) { #pragma unroll ${DIM_Z} for ( int j = 0; j < ${DIM_Z}; j++ ) { temp += s_XZ_K[ltz][lty][j] * s_ZZ_R[ltz][j][ltx]; } // s_XZ_A holds dot(self.K, self.R) s_XZ_A[ltz][lty][ltx] = temp; } __syncthreads(); // Compute dot(dot(self.K, self.R), self.K.T) --> XX temp = 0.0; #pragma unroll ${DIM_Z} for ( int j = 0; j < ${DIM_Z}; j++ ) { temp += s_XZ_A[ltz][lty][j] * s_XZ_K[ltz][ltx][j]; } P[gtz * ${DIM_X} * ${DIM_X} + x_value] = s_XX_P[ltz][lty][ltx] + temp; } } } """ ) cuda_code_cupy_v8 = """ // Compute linalg.inv(S) template<typename T, int BLOCKS, int DIM_Z> __device__ T inverse( const int & ltx, const int & lty, const int & ltz, T(&s_ZZ_A)[BLOCKS][DIM_Z][DIM_Z], T(&s_ZZ_I)[BLOCKS][DIM_Z][DIM_Z]) { T temp {}; // Interchange the row of matrix if ( lty == 0 && ltx < DIM_Z) { #pragma unroll ( DIM_Z - 1 ) for ( int i = DIM_Z - 1; i > 0; i-- ) { if ( s_ZZ_A[ltz][i - 1][0] < s_ZZ_A[ltz][i][0] ) { temp = s_ZZ_A[ltz][i][ltx]; s_ZZ_A[ltz][i][ltx] = s_ZZ_A[ltz][i - 1][ltx]; s_ZZ_A[ltz][i - 1][ltx] = temp; temp = s_ZZ_I[ltz][i][ltx]; s_ZZ_I[ltz][i][ltx] = s_ZZ_I[ltz][i - 1][ltx]; s_ZZ_I[ltz][i - 1][ltx] = temp; } } } // Replace a row by sum of itself and a // constant multiple of another row of the matrix #pragma unroll DIM_Z for ( int i = 0; i < DIM_Z; i++ ) { if ( lty < DIM_Z && ltx < DIM_Z ) { if ( lty != i ) { temp = s_ZZ_A[ltz][lty][i] / s_ZZ_A[ltz][i][i]; } } __syncthreads(); if ( lty < DIM_Z && ltx < DIM_Z ) { if ( lty != i ) { s_ZZ_A[ltz][lty][ltx] -= s_ZZ_A[ltz][i][ltx] * temp; s_ZZ_I[ltz][lty][ltx] -= s_ZZ_I[ltz][i][ltx] * temp; } } __syncthreads(); } if ( lty < DIM_Z && ltx < DIM_Z ) { // Multiply each row by a nonzero integer. // Divide row element by the diagonal element temp = s_ZZ_A[ltz][lty][lty]; } __syncthreads(); if ( lty < DIM_Z && ltx < DIM_Z ) { s_ZZ_A[ltz][lty][ltx] = s_ZZ_A[ltz][lty][ltx] / temp; s_ZZ_I[ltz][lty][ltx] = s_ZZ_I[ltz][lty][ltx] / temp; } __syncthreads(); return ( s_ZZ_I[ltz][lty][ltx] ); } template<typename T, int BLOCKS, int DIM_X, int DIM_U, int MAX_TPB> __global__ void __launch_bounds__(MAX_TPB) _cupy_predict( const int num_points, const T * __restrict__ alpha_sq, T * __restrict__ x_in, const T * __restrict__ u, const T * __restrict__ B, const T * __restrict__ F, T * __restrict__ P, const T * __restrict__ Q, const bool skip ) { __shared__ T s_XX_A[BLOCKS][DIM_X][DIM_X]; __shared__ T s_XX_F[BLOCKS][DIM_X][DIM_X]; __shared__ T s_XX_P[BLOCKS][DIM_X][DIM_X]; const auto ltx = threadIdx.x; const auto lty = threadIdx.y; const auto ltz = threadIdx.z; const int btz { static_cast<int>(blockIdx.z * blockDim.z + threadIdx.z) }; const int stride_z { static_cast<int>( blockDim.z * gridDim.z ) }; const int x_value { lty * DIM_X + ltx }; for ( int gtz = btz; gtz < num_points; gtz += stride_z ) { s_XX_F[ltz][lty][ltx] = F[gtz * DIM_X * DIM_X + x_value]; __syncthreads(); T alpha2 { alpha_sq[gtz] }; T localQ { Q[gtz * DIM_X * DIM_X + x_value] }; T localP { P[gtz * DIM_X * DIM_X + x_value] }; T temp {}; //T temp2 {}; /* if ( !skip ) { // Compute self.x = dot(B, u) if ( ltx == 0 ) { #pragma unroll DIM_U for ( int j = 0; j < DIM_U; j++ ) { temp2 += B[gtz * DIM_X * DIM_U + lty * DIM_U + j] * u[gtz * DIM_U + j]; } printf("%d: %f\\n", lty, temp2); } } */ // Compute self.x = dot(F, self.x) if ( ltx == 0 ) { #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_XX_F[ltz][lty][j] * x_in[gtz * DIM_X + j + ltx]; } // x_in[gtz * DIM_X * 1 + lty * 1 + ltx] //x_in[gtz * DIM_X + lty + ltx] = temp + temp2; x_in[gtz * DIM_X + lty + ltx] = temp; } s_XX_P[ltz][lty][ltx] = localP; __syncthreads(); // Compute dot(F, self.P) temp = 0.0; #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_XX_F[ltz][lty][j] * s_XX_P[ltz][j][ltx]; } s_XX_A[ltz][lty][ltx] = temp; __syncthreads(); // Compute dot(dot(F, self.P), F.T) temp = 0.0; #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_XX_A[ltz][lty][j] * //133 s_XX_F[ltz][ltx][j]; } __syncthreads(); // Compute self._alpha_sq * dot(dot(F, self.P), F.T) + Q // Where temp = dot(dot(F, self.P), F.T) P[gtz * DIM_X * DIM_X + x_value] = alpha2 * temp + localQ; } } template<typename T, int BLOCKS, int DIM_X, int DIM_Z, int MAX_TPB> __global__ void __launch_bounds__(MAX_TPB) _cupy_update( const int num_points, T * __restrict__ x_in, const T * __restrict__ z_in, const T * __restrict__ H, T * __restrict__ P, const T * __restrict__ R ) { __shared__ T s_XX_A[BLOCKS][DIM_X][DIM_X]; __shared__ T s_XX_B[BLOCKS][DIM_X][DIM_X]; __shared__ T s_XX_P[BLOCKS][DIM_X][DIM_X]; __shared__ T s_ZX_H[BLOCKS][DIM_Z][DIM_X]; __shared__ T s_XZ_K[BLOCKS][DIM_X][DIM_Z]; __shared__ T s_XZ_A[BLOCKS][DIM_X][DIM_Z]; __shared__ T s_ZZ_A[BLOCKS][DIM_Z][DIM_Z]; __shared__ T s_ZZ_R[BLOCKS][DIM_Z][DIM_Z]; __shared__ T s_ZZ_I[BLOCKS][DIM_Z][DIM_Z]; __shared__ T s_Z1_y[BLOCKS][DIM_Z][1]; const auto ltx = threadIdx.x; const auto lty = threadIdx.y; const auto ltz = threadIdx.z; const int btz { static_cast<int>( blockIdx.z * blockDim.z + threadIdx.z ) }; const int stride_z { static_cast<int>( blockDim.z * gridDim.z ) }; const int x_value { lty * DIM_X + ltx }; const int z_value { lty * DIM_Z + ltx }; for ( int gtz = btz; gtz < num_points; gtz += stride_z ) { if ( lty < DIM_Z ) { s_ZX_H[ltz][lty][ltx] = H[gtz * DIM_Z * DIM_X + x_value]; } __syncthreads(); s_XX_P[ltz][lty][ltx] = P[gtz * DIM_X * DIM_X + x_value]; if ( ( lty < DIM_Z ) && ( ltx < DIM_Z ) ) { s_ZZ_R[ltz][lty][ltx] = R[gtz * DIM_Z * DIM_Z + z_value]; if ( lty == ltx ) { s_ZZ_I[ltz][lty][ltx] = 1.0; } else { s_ZZ_I[ltz][lty][ltx] = 0.0; } } T temp {}; // Compute self.y : z = dot(self.H, self.x) --> Z1 if ( ( ltx == 0 ) && ( lty < DIM_Z ) ) { T temp_z { z_in[gtz * DIM_Z + lty] }; #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_ZX_H[ltz][lty][j] * x_in[gtz * DIM_X + j]; } s_Z1_y[ltz][lty][ltx] = temp_z - temp; } __syncthreads(); // Compute PHT : dot(self.P, self.H.T) --> XZ temp = 0.0; if ( ltx < DIM_Z ) { #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_XX_P[ltz][lty][j] * s_ZX_H[ltz][ltx][j]; } // s_XX_A holds PHT s_XZ_A[ltz][lty][ltx] = temp; } __syncthreads(); // Compute self.S : dot(self.H, PHT) + self.R --> ZZ temp = 0.0; if ( ( ltx < DIM_Z ) && ( lty < DIM_Z ) ) { #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_ZX_H[ltz][lty][j] * s_XZ_A[ltz][j][ltx]; } // s_XX_B holds S - system uncertainty s_ZZ_A[ltz][lty][ltx] = temp + s_ZZ_R[ltz][lty][ltx]; } __syncthreads(); // Compute matrix inversion temp = inverse(ltx, lty, ltz, s_ZZ_A, s_ZZ_I); __syncthreads(); if ( ( ltx < DIM_Z ) && ( lty < DIM_Z ) ) { // s_XX_B hold SI - inverse system uncertainty s_ZZ_A[ltz][lty][ltx] = temp; } __syncthreads(); // Compute self.K : dot(PHT, self.SI) --> ZZ // kalman gain temp = 0.0; if ( ltx < DIM_Z ) { #pragma unroll DIM_Z for ( int j = 0; j < DIM_Z; j++ ) { temp += s_XZ_A[ltz][lty][j] * s_ZZ_A[ltz][ltx][j]; } s_XZ_K[ltz][lty][ltx] = temp; } __syncthreads(); // Compute self.x : self.x + cp.dot(self.K, self.y) --> X1 temp = 0.0; if ( ltx == 0 ) { #pragma unroll DIM_Z for ( int j = 0; j < DIM_Z; j++ ) { temp += s_XZ_K[ltz][lty][j] * s_Z1_y[ltz][j][ltx]; } x_in[gtz * DIM_X * 1 + lty * 1 + ltx] += temp; } // Compute I_KH = self_I - dot(self.K, self.H) --> XX temp = 0.0; #pragma unroll DIM_Z for ( int j = 0; j < DIM_Z; j++ ) { temp += s_XZ_K[ltz][lty][j] * s_ZX_H[ltz][j][ltx]; } // s_XX_A holds I_KH s_XX_A[ltz][lty][ltx] = ( ( ltx == lty ) ? 1 : 0 ) - temp; __syncthreads(); // Compute self.P = dot(dot(I_KH, self.P), I_KH.T) + // dot(dot(self.K, self.R), self.K.T) // Compute dot(I_KH, self.P) --> XX temp = 0.0; #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_XX_A[ltz][lty][j] * s_XX_P[ltz][j][ltx]; } s_XX_B[ltz][lty][ltx] = temp; __syncthreads(); // Compute dot(dot(I_KH, self.P), I_KH.T) --> XX temp = 0.0; #pragma unroll DIM_X for ( int j = 0; j < DIM_X; j++ ) { temp += s_XX_B[ltz][lty][j] * s_XX_A[ltz][ltx][j]; } s_XX_P[ltz][lty][ltx] = temp; // Compute dot(self.K, self.R) --> XZ temp = 0.0; if ( ltx < DIM_Z ) { #pragma unroll DIM_Z for ( int j = 0; j < DIM_Z; j++ ) { temp += s_XZ_K[ltz][lty][j] * s_ZZ_R[ltz][j][ltx]; } // s_XZ_A holds dot(self.K, self.R) s_XZ_A[ltz][lty][ltx] = temp; } __syncthreads(); // Compute dot(dot(self.K, self.R), self.K.T) --> XX temp = 0.0; #pragma unroll DIM_Z for ( int j = 0; j < DIM_Z; j++ ) { temp += s_XZ_A[ltz][lty][j] * s_XZ_K[ltz][ltx][j]; } P[gtz * DIM_X * DIM_X + x_value] = s_XX_P[ltz][lty][ltx] + temp; } } """ class _cupy_predict_wrapper(object): def __init__(self, grid, block, kernel): if isinstance(grid, int): grid = (grid,) if isinstance(block, int): block = (block,) self.grid = grid self.block = block self.kernel = kernel def __call__( self, alpha_sq, x, u, B, F, P, Q, ): if B is not None and u is not None: skip = False else: skip = True kernel_args = (x.shape[0], alpha_sq, x, u, B, F, P, Q, skip) self.kernel(self.grid, self.block, kernel_args) class _cupy_update_wrapper(object): def __init__(self, grid, block, kernel): if isinstance(grid, int): grid = (grid,) if isinstance(block, int): block = (block,) self.grid = grid self.block = block self.kernel = kernel def __call__(self, x, z, H, P, R): kernel_args = (x.shape[0], x, z, H, P, R) self.kernel(self.grid, self.block, kernel_args) def _populate_kernel_cache(np_type, blocks, dim_x, dim_z, dim_u, max_tpb): # Check in np_type is a supported option if np_type not in _SUPPORTED_TYPES: raise ValueError( "Datatype {} not found for Kalman Filter".format(np_type) ) if np_type == "float32": c_type = "float" else: c_type = "double" # Check CuPy version # Update to only check for v8.X in cuSignal 0.16 valid = ["8.0.0b4", "8.0.0b5", "8.0.0rc1", "8.0.0"] ver = cp.__version__ if ver not in valid: src = cuda_code_cupy_v7.substitute( T=c_type, BLOCKS=blocks, DIM_X=dim_x, DIM_Z=dim_z, DIM_U=dim_u, MAX_TPB=max_tpb, ) module = cp.RawModule(code=src, options=("-std=c++11",)) _cupy_kernel_cache[(str(np_type), "predict")] = module.get_function( "_cupy_predict" ) _cupy_kernel_cache[(str(np_type), "update")] = module.get_function( "_cupy_update" ) else: # Instantiate the cupy kernel for this type and compile specializations = ( "_cupy_predict<{}, {}, {}, {}, {}>".format( c_type, blocks, dim_x, dim_u, max_tpb ), "_cupy_update<{}, {}, {}, {}, {}>".format( c_type, blocks, dim_x, dim_z, max_tpb ), ) module = cp.RawModule( code=cuda_code_cupy_v8, options=( "-std=c++11", "-fmad=true", ), name_expressions=specializations, ) _cupy_kernel_cache[(str(np_type), "predict")] = module.get_function( specializations[0] ) _cupy_kernel_cache[(str(np_type), "update")] = module.get_function( specializations[1] ) def _get_backend_kernel(dtype, grid, block, k_type): kernel = _cupy_kernel_cache[(str(dtype), k_type)] if kernel: if k_type == "predict": return _cupy_predict_wrapper(grid, block, kernel) elif k_type == "update": return _cupy_update_wrapper(grid, block, kernel) else: raise NotImplementedError( "No CuPY kernel found for k_type {}, datatype {}".format( k_type, dtype ) ) else: raise ValueError( "Kernel {} not found in _cupy_kernel_cache".format(k_type) )
py
1a4e12d699589b017b8323da5df24b979ce2a21a
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """ """ __docformat__ = 'restructuredtext'
py
1a4e138779f692df295f05999756fadc66fd0f16
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRouteCrossConnectionPeeringsOperations: """ExpressRouteCrossConnectionPeeringsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name: str, cross_connection_name: str, **kwargs ) -> AsyncIterable["models.ExpressRouteCrossConnectionPeeringList"]: """Gets all peerings in a specified ExpressRouteCrossConnection. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cross_connection_name: The name of the ExpressRouteCrossConnection. :type cross_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRouteCrossConnectionPeeringList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_06_01.models.ExpressRouteCrossConnectionPeeringList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCrossConnectionPeeringList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'crossConnectionName': self._serialize.url("cross_connection_name", cross_connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRouteCrossConnectionPeeringList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCrossConnections/{crossConnectionName}/peerings'} # type: ignore async def _delete_initial( self, resource_group_name: str, cross_connection_name: str, peering_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'crossConnectionName': self._serialize.url("cross_connection_name", cross_connection_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCrossConnections/{crossConnectionName}/peerings/{peeringName}'} # type: ignore async def begin_delete( self, resource_group_name: str, cross_connection_name: str, peering_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified peering from the ExpressRouteCrossConnection. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cross_connection_name: The name of the ExpressRouteCrossConnection. :type cross_connection_name: str :param peering_name: The name of the peering. :type peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, cross_connection_name=cross_connection_name, peering_name=peering_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCrossConnections/{crossConnectionName}/peerings/{peeringName}'} # type: ignore async def get( self, resource_group_name: str, cross_connection_name: str, peering_name: str, **kwargs ) -> "models.ExpressRouteCrossConnectionPeering": """Gets the specified peering for the ExpressRouteCrossConnection. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cross_connection_name: The name of the ExpressRouteCrossConnection. :type cross_connection_name: str :param peering_name: The name of the peering. :type peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRouteCrossConnectionPeering, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_06_01.models.ExpressRouteCrossConnectionPeering :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCrossConnectionPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'crossConnectionName': self._serialize.url("cross_connection_name", cross_connection_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRouteCrossConnectionPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCrossConnections/{crossConnectionName}/peerings/{peeringName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, cross_connection_name: str, peering_name: str, peering_parameters: "models.ExpressRouteCrossConnectionPeering", **kwargs ) -> "models.ExpressRouteCrossConnectionPeering": cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCrossConnectionPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'crossConnectionName': self._serialize.url("cross_connection_name", cross_connection_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(peering_parameters, 'ExpressRouteCrossConnectionPeering') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ExpressRouteCrossConnectionPeering', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRouteCrossConnectionPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCrossConnections/{crossConnectionName}/peerings/{peeringName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, cross_connection_name: str, peering_name: str, peering_parameters: "models.ExpressRouteCrossConnectionPeering", **kwargs ) -> AsyncLROPoller["models.ExpressRouteCrossConnectionPeering"]: """Creates or updates a peering in the specified ExpressRouteCrossConnection. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cross_connection_name: The name of the ExpressRouteCrossConnection. :type cross_connection_name: str :param peering_name: The name of the peering. :type peering_name: str :param peering_parameters: Parameters supplied to the create or update ExpressRouteCrossConnection peering operation. :type peering_parameters: ~azure.mgmt.network.v2019_06_01.models.ExpressRouteCrossConnectionPeering :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either ExpressRouteCrossConnectionPeering or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2019_06_01.models.ExpressRouteCrossConnectionPeering] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRouteCrossConnectionPeering"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, cross_connection_name=cross_connection_name, peering_name=peering_name, peering_parameters=peering_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRouteCrossConnectionPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCrossConnections/{crossConnectionName}/peerings/{peeringName}'} # type: ignore
py
1a4e1469289cf91873473fb21a233d6e65bcb83e
import itertools import logging from collections import defaultdict, deque from BaseClasses import DoorType from Regions import dungeon_events from Dungeons import dungeon_keys, dungeon_bigs from DungeonGenerator import ExplorationState, special_big_key_doors class KeyLayout(object): def __init__(self, sector, starts, proposal): self.sector = sector self.start_regions = starts self.proposal = proposal self.key_logic = KeyLogic(sector.name) self.key_counters = None self.flat_prop = None self.max_chests = None self.max_drops = None self.all_chest_locations = {} self.big_key_special = False self.all_locations = set() self.item_locations = set() # bk special? # bk required? True if big chests or big doors exists def reset(self, proposal, builder, world, player): self.proposal = proposal self.flat_prop = flatten_pair_list(self.proposal) self.key_logic = KeyLogic(self.sector.name) self.max_chests = calc_max_chests(builder, self, world, player) self.all_locations = set() self.item_locations = set() class KeyLogic(object): def __init__(self, dungeon_name): self.door_rules = {} self.bk_restricted = set() # subset of free locations self.bk_locked = set() # includes potentially other locations and key only locations self.sm_restricted = set() self.small_key_name = dungeon_keys[dungeon_name] self.bk_name = dungeon_bigs[dungeon_name] self.bk_doors = set() self.bk_chests = set() self.logic_min = {} self.logic_max = {} self.placement_rules = [] self.location_rules = {} self.outside_keys = 0 self.dungeon = dungeon_name def check_placement(self, unplaced_keys, big_key_loc=None): for rule in self.placement_rules: if not rule.is_satisfiable(self.outside_keys, unplaced_keys): return False if big_key_loc: for rule_a, rule_b in itertools.combinations(self.placement_rules, 2): if rule_a.contradicts(rule_b, unplaced_keys, big_key_loc): return False return True class DoorRules(object): def __init__(self, number, is_valid): self.small_key_num = number self.is_valid = is_valid # allowing a different number if bk is behind this door in a set of locations self.alternate_small_key = None self.alternate_big_key_loc = set() # for a place with only 1 free location/key_only_location behind it ... no goals and locations self.allow_small = False self.small_location = None self.opposite = None class LocationRule(object): def __init__(self): self.small_key_num = 0 self.conditional_sets = [] class ConditionalLocationRule(object): def __init__(self, conditional_set): self.conditional_set = conditional_set self.small_key_num = 0 class PlacementRule(object): def __init__(self): self.door_reference = None self.small_key = None self.bk_conditional_set = None # the location that means self.needed_keys_w_bk = None self.needed_keys_wo_bk = None self.check_locations_w_bk = None self.check_locations_wo_bk = None self.bk_relevant = True self.key_reduced = False def contradicts(self, rule, unplaced_keys, big_key_loc): bk_blocked = big_key_loc in self.bk_conditional_set if self.bk_conditional_set else False rule_blocked = big_key_loc in rule.bk_conditional_set if rule.bk_conditional_set else False check_locations = self.check_locations_wo_bk if bk_blocked else self.check_locations_w_bk rule_locations = rule.check_locations_wo_bk if rule_blocked else rule.check_locations_w_bk if check_locations is None or rule_locations is None: return False check_locations = check_locations - {big_key_loc} rule_locations = rule_locations - {big_key_loc} threshold = self.needed_keys_wo_bk if bk_blocked else self.needed_keys_w_bk rule_threshold = rule.needed_keys_wo_bk if rule_blocked else rule.needed_keys_w_bk common_locations = rule_locations & check_locations shared = len(common_locations) if min(rule_threshold, threshold) - shared > 0: left = unplaced_keys - shared check_locations = check_locations - common_locations check_needed = threshold - shared if len(check_locations) < check_needed or left < check_needed: return True else: left -= check_needed rule_locations = rule_locations - common_locations rule_needed = rule_threshold - shared if len(rule_locations) < rule_needed or left < rule_needed: return True else: left -= rule_needed return False def is_satisfiable(self, outside_keys, unplaced_keys): bk_blocked = False if self.bk_conditional_set: for loc in self.bk_conditional_set: if loc.item and loc.item.bigkey: bk_blocked = True break check_locations = self.check_locations_wo_bk if bk_blocked else self.check_locations_w_bk if not bk_blocked and check_locations is None: return True available_keys = outside_keys empty_chests = 0 threshold = self.needed_keys_wo_bk if bk_blocked else self.needed_keys_w_bk for loc in check_locations: if not loc.item: empty_chests += 1 elif loc.item and loc.item.name == self.small_key: available_keys += 1 place_able_keys = min(empty_chests, unplaced_keys) available_keys += place_able_keys return available_keys >= threshold class KeyCounter(object): def __init__(self, max_chests): self.max_chests = max_chests self.free_locations = {} self.key_only_locations = {} self.child_doors = {} self.open_doors = {} self.used_keys = 0 self.big_key_opened = False self.important_location = False self.other_locations = {} self.important_locations = {} def used_smalls_loc(self, reserve=0): return max(self.used_keys + reserve - len(self.key_only_locations), 0) def build_key_layout(builder, start_regions, proposal, world, player): key_layout = KeyLayout(builder.master_sector, start_regions, proposal) key_layout.flat_prop = flatten_pair_list(key_layout.proposal) key_layout.max_drops = count_key_drops(key_layout.sector) key_layout.max_chests = calc_max_chests(builder, key_layout, world, player) key_layout.big_key_special = check_bk_special(key_layout.sector.region_set(), world, player) key_layout.all_locations = find_all_locations(key_layout.sector) return key_layout def count_key_drops(sector): cnt = 0 for region in sector.regions: for loc in region.locations: if loc.forced_item and 'Small Key' in loc.item.name: cnt += 1 return cnt def find_all_locations(sector): all_locations = set() for region in sector.regions: for loc in region.locations: all_locations.add(loc) return all_locations def calc_max_chests(builder, key_layout, world, player): if world.doorShuffle[player] != 'crossed': return len(world.get_dungeon(key_layout.sector.name, player).small_keys) return max(0, builder.key_doors_num - key_layout.max_drops) def analyze_dungeon(key_layout, world, player): key_layout.key_counters = create_key_counters(key_layout, world, player) key_logic = key_layout.key_logic find_bk_locked_sections(key_layout, world, player) key_logic.bk_chests.update(find_big_chest_locations(key_layout.all_chest_locations)) key_logic.bk_chests.update(find_big_key_locked_locations(key_layout.all_chest_locations)) if world.retro[player] and world.mode[player] != 'standard': return original_key_counter = find_counter({}, False, key_layout) queue = deque([(None, original_key_counter)]) doors_completed = set() visited_cid = set() visited_cid.add(cid(original_key_counter, key_layout)) while len(queue) > 0: queue = deque(sorted(queue, key=queue_sorter)) parent_door, key_counter = queue.popleft() chest_keys = available_chest_small_keys(key_counter, world, player) raw_avail = chest_keys + len(key_counter.key_only_locations) available = raw_avail - key_counter.used_keys possible_smalls = count_unique_small_doors(key_counter, key_layout.flat_prop) avail_bigs = exist_relevant_big_doors(key_counter, key_layout) or exist_big_chest(key_counter) non_big_locs = count_locations_big_optional(key_counter.free_locations) big_avail = key_counter.big_key_opened or (key_layout.big_key_special and any(x for x in key_counter.other_locations.keys() if x.forced_item and x.forced_item.bigkey)) if not big_avail: if chest_keys == non_big_locs and chest_keys > 0 and available <= possible_smalls and not avail_bigs: key_logic.bk_restricted.update(filter_big_chest(key_counter.free_locations)) # try to relax the rules here? - smallest requirement that doesn't force a softlock child_queue = deque() for child in key_counter.child_doors.keys(): if not child.bigKey or not key_layout.big_key_special or big_avail: odd_counter = create_odd_key_counter(child, key_counter, key_layout, world, player) empty_flag = empty_counter(odd_counter) child_queue.append((child, odd_counter, empty_flag)) while len(child_queue) > 0: child, odd_counter, empty_flag = child_queue.popleft() if not child.bigKey and child not in doors_completed: best_counter = find_best_counter(child, odd_counter, key_counter, key_layout, world, player, False, empty_flag) rule = create_rule(best_counter, key_counter, key_layout, world, player) check_for_self_lock_key(rule, child, best_counter, key_layout, world, player) bk_restricted_rules(rule, child, odd_counter, empty_flag, key_counter, key_layout, world, player) key_logic.door_rules[child.name] = rule doors_completed.add(child) next_counter = find_next_counter(child, key_counter, key_layout) ctr_id = cid(next_counter, key_layout) if ctr_id not in visited_cid: queue.append((child, next_counter)) visited_cid.add(ctr_id) check_rules(original_key_counter, key_layout, world, player) # Flip bk rules if more restrictive, to prevent placing a big key in a softlocking location for rule in key_logic.door_rules.values(): if rule.alternate_small_key is not None and rule.alternate_small_key > rule.small_key_num: max_counter = find_max_counter(key_layout) rule.alternate_big_key_loc = set(max_counter.free_locations.keys()).difference(rule.alternate_big_key_loc) rule.small_key_num, rule.alternate_small_key = rule.alternate_small_key, rule.small_key_num create_exhaustive_placement_rules(key_layout, world, player) set_paired_rules(key_logic, world, player) def create_exhaustive_placement_rules(key_layout, world, player): key_logic = key_layout.key_logic max_ctr = find_max_counter(key_layout) for code, key_counter in key_layout.key_counters.items(): accessible_loc = set() accessible_loc.update(key_counter.free_locations) accessible_loc.update(key_counter.key_only_locations) blocked_loc = key_layout.item_locations.difference(accessible_loc) valid_rule = True # min_keys = max(count_unique_sm_doors(key_counter.child_doors), key_counter.used_keys + 1) min_keys = key_counter.used_keys + 1 if len(blocked_loc) > 0 and len(key_counter.key_only_locations) < min_keys: rule = PlacementRule() rule.door_reference = code rule.small_key = key_logic.small_key_name if key_counter.big_key_opened or not big_key_progress(key_counter): rule.needed_keys_w_bk = min_keys rule.bk_relevant = key_counter.big_key_opened if key_counter.big_key_opened and rule.needed_keys_w_bk + 1 > len(accessible_loc): valid_rule = False # indicates that the big key cannot be in the accessible locations key_logic.bk_restricted.update(accessible_loc.difference(max_ctr.key_only_locations)) else: placement_self_lock_adjustment(rule, max_ctr, blocked_loc, key_counter, world, player) rule.check_locations_w_bk = accessible_loc check_sm_restriction_needed(key_layout, max_ctr, rule, blocked_loc) else: if big_key_progress(key_counter) and only_sm_doors(key_counter): create_inclusive_rule(key_layout, max_ctr, code, key_counter, blocked_loc, accessible_loc, min_keys, world, player) rule.bk_conditional_set = blocked_loc rule.needed_keys_wo_bk = min_keys rule.check_locations_wo_bk = set(filter_big_chest(accessible_loc)) if valid_rule: key_logic.placement_rules.append(rule) adjust_locations_rules(key_logic, rule, accessible_loc, key_layout, key_counter, max_ctr) refine_placement_rules(key_layout, max_ctr) refine_location_rules(key_layout) def placement_self_lock_adjustment(rule, max_ctr, blocked_loc, ctr, world, player): if len(blocked_loc) == 1 and world.accessibility[player] != 'locations': blocked_others = set(max_ctr.other_locations).difference(set(ctr.other_locations)) important_found = False for loc in blocked_others: if important_location(loc, world, player): important_found = True break if not important_found: rule.needed_keys_w_bk -= 1 def check_sm_restriction_needed(key_layout, max_ctr, rule, blocked): if rule.needed_keys_w_bk == key_layout.max_chests + len(max_ctr.key_only_locations): key_layout.key_logic.sm_restricted.update(blocked.difference(max_ctr.key_only_locations)) return True return False def adjust_locations_rules(key_logic, rule, accessible_loc, key_layout, key_counter, max_ctr): if rule.bk_conditional_set: test_set = (rule.bk_conditional_set - key_logic.bk_locked) - set(max_ctr.key_only_locations.keys()) needed = rule.needed_keys_wo_bk if test_set else 0 else: test_set = None needed = rule.needed_keys_w_bk if needed > 0: all_accessible = set(accessible_loc) all_accessible.update(key_counter.other_locations) blocked_loc = key_layout.all_locations-all_accessible for location in blocked_loc: if location not in key_logic.location_rules.keys(): loc_rule = LocationRule() key_logic.location_rules[location] = loc_rule else: loc_rule = key_logic.location_rules[location] if test_set: if location not in key_logic.bk_locked: cond_rule = None for other in loc_rule.conditional_sets: if other.conditional_set == test_set: cond_rule = other break if not cond_rule: cond_rule = ConditionalLocationRule(test_set) loc_rule.conditional_sets.append(cond_rule) cond_rule.small_key_num = max(needed, cond_rule.small_key_num) else: loc_rule.small_key_num = max(needed, loc_rule.small_key_num) def refine_placement_rules(key_layout, max_ctr): key_logic = key_layout.key_logic changed = True while changed: changed = False rules_to_remove = [] for rule in key_logic.placement_rules: if rule.check_locations_w_bk: rule.check_locations_w_bk.difference_update(key_logic.sm_restricted) key_onlys = rule.check_locations_w_bk.intersection(max_ctr.key_only_locations) if len(key_onlys) > 0: rule.check_locations_w_bk.difference_update(key_onlys) rule.needed_keys_w_bk -= len(key_onlys) if rule.needed_keys_w_bk == 0: rules_to_remove.append(rule) # todo: evaluate this usage # if rule.bk_relevant and len(rule.check_locations_w_bk) == rule.needed_keys_w_bk + 1: # new_restricted = set(max_ctr.free_locations) - rule.check_locations_w_bk # if len(new_restricted | key_logic.bk_restricted) < len(key_layout.all_chest_locations): # if len(new_restricted - key_logic.bk_restricted) > 0: # key_logic.bk_restricted.update(new_restricted) # bk must be in one of the check_locations # changed = True # else: # rules_to_remove.append(rule) # changed = True if rule.needed_keys_w_bk > key_layout.max_chests or len(rule.check_locations_w_bk) < rule.needed_keys_w_bk: logging.getLogger('').warning('Invalid rule - what went wrong here??') rules_to_remove.append(rule) changed = True if rule.bk_conditional_set is not None: rule.bk_conditional_set.difference_update(key_logic.bk_restricted) rule.bk_conditional_set.difference_update(max_ctr.key_only_locations) if len(rule.bk_conditional_set) == 0: rules_to_remove.append(rule) if rule.check_locations_wo_bk: rule.check_locations_wo_bk.difference_update(key_logic.sm_restricted) key_onlys = rule.check_locations_wo_bk.intersection(max_ctr.key_only_locations) if len(key_onlys) > 0: rule.check_locations_wo_bk.difference_update(key_onlys) rule.needed_keys_wo_bk -= len(key_onlys) if rule.needed_keys_wo_bk == 0: rules_to_remove.append(rule) if len(rule.check_locations_wo_bk) < rule.needed_keys_wo_bk or rule.needed_keys_wo_bk > key_layout.max_chests: if len(rule.bk_conditional_set) > 0: key_logic.bk_restricted.update(rule.bk_conditional_set) rules_to_remove.append(rule) changed = True # impossible for bk to be here, I think for rule_a, rule_b in itertools.combinations([x for x in key_logic.placement_rules if x not in rules_to_remove], 2): if rule_b.bk_conditional_set and rule_a.check_locations_w_bk: temp = rule_a rule_a = rule_b rule_b = temp if rule_a.bk_conditional_set and rule_b.check_locations_w_bk: common_needed = min(rule_a.needed_keys_wo_bk, rule_b.needed_keys_w_bk) if len(rule_b.check_locations_w_bk & rule_a.check_locations_wo_bk) < common_needed: key_logic.bk_restricted.update(rule_a.bk_conditional_set) rules_to_remove.append(rule_a) changed = True break equivalent_rules = [] for rule in key_logic.placement_rules: for rule2 in key_logic.placement_rules: if rule != rule2: if rule.check_locations_w_bk and rule2.check_locations_w_bk: if rule2.check_locations_w_bk == rule.check_locations_w_bk and rule2.needed_keys_w_bk > rule.needed_keys_w_bk: rules_to_remove.append(rule) elif rule2.needed_keys_w_bk == rule.needed_keys_w_bk and rule2.check_locations_w_bk < rule.check_locations_w_bk: rules_to_remove.append(rule) elif rule2.check_locations_w_bk == rule.check_locations_w_bk and rule2.needed_keys_w_bk == rule.needed_keys_w_bk: equivalent_rules.append((rule, rule2)) if rule.check_locations_wo_bk and rule2.check_locations_wo_bk and rule.bk_conditional_set == rule2.bk_conditional_set: if rule2.check_locations_wo_bk == rule.check_locations_wo_bk and rule2.needed_keys_wo_bk > rule.needed_keys_wo_bk: rules_to_remove.append(rule) elif rule2.needed_keys_wo_bk == rule.needed_keys_wo_bk and rule2.check_locations_wo_bk < rule.check_locations_wo_bk: rules_to_remove.append(rule) elif rule2.check_locations_wo_bk == rule.check_locations_wo_bk and rule2.needed_keys_wo_bk == rule.needed_keys_wo_bk: equivalent_rules.append((rule, rule2)) if len(rules_to_remove) > 0: key_logic.placement_rules = [x for x in key_logic.placement_rules if x not in rules_to_remove] equivalent_rules = [x for x in equivalent_rules if x[0] not in rules_to_remove and x[1] not in rules_to_remove] if len(equivalent_rules) > 0: removed_rules = {} for r1, r2 in equivalent_rules: if r1 in removed_rules.keys(): r1 = removed_rules[r1] if r2 in removed_rules.keys(): r2 = removed_rules[r2] if r1 != r2: r1.door_reference += ','+r2.door_reference key_logic.placement_rules.remove(r2) removed_rules[r2] = r1 def refine_location_rules(key_layout): locs_to_remove = [] for loc, rule in key_layout.key_logic.location_rules.items(): conditions_to_remove = [] for cond_rule in rule.conditional_sets: if cond_rule.small_key_num <= rule.small_key_num: conditions_to_remove.append(cond_rule) rule.conditional_sets = [x for x in rule.conditional_sets if x not in conditions_to_remove] if rule.small_key_num == 0 and len(rule.conditional_sets) == 0: locs_to_remove.append(loc) for loc in locs_to_remove: del key_layout.key_logic.location_rules[loc] def create_inclusive_rule(key_layout, max_ctr, code, key_counter, blocked_loc, accessible_loc, min_keys, world, player): key_logic = key_layout.key_logic rule = PlacementRule() rule.door_reference = code rule.small_key = key_logic.small_key_name rule.needed_keys_w_bk = min_keys if key_counter.big_key_opened and rule.needed_keys_w_bk + 1 > len(accessible_loc): # indicates that the big key cannot be in the accessible locations key_logic.bk_restricted.update(accessible_loc.difference(max_ctr.key_only_locations)) else: placement_self_lock_adjustment(rule, max_ctr, blocked_loc, key_counter, world, player) rule.check_locations_w_bk = accessible_loc check_sm_restriction_needed(key_layout, max_ctr, rule, blocked_loc) key_logic.placement_rules.append(rule) adjust_locations_rules(key_logic, rule, accessible_loc, key_layout, key_counter, max_ctr) def queue_sorter(queue_item): door, counter = queue_item if door is None: return 0 return 1 if door.bigKey else 0 def queue_sorter_2(queue_item): door, counter, key_only = queue_item if door is None: return 0 return 1 if door.bigKey else 0 def find_bk_locked_sections(key_layout, world, player): key_counters = key_layout.key_counters key_logic = key_layout.key_logic bk_not_required = set() big_chest_allowed_big_key = world.accessibility[player] != 'locations' for counter in key_counters.values(): key_layout.all_chest_locations.update(counter.free_locations) key_layout.item_locations.update(counter.free_locations) key_layout.item_locations.update(counter.key_only_locations) key_layout.all_locations.update(key_layout.item_locations) key_layout.all_locations.update(counter.other_locations) if counter.big_key_opened and counter.important_location: big_chest_allowed_big_key = False if not counter.big_key_opened: bk_not_required.update(counter.free_locations) bk_not_required.update(counter.key_only_locations) bk_not_required.update(counter.other_locations) # todo?: handle bk special differently in cross dungeon # notably: things behind bk doors - relying on the bk door logic atm if not key_layout.big_key_special: key_logic.bk_restricted.update(dict.fromkeys(set(key_layout.all_chest_locations).difference(bk_not_required))) key_logic.bk_locked.update(dict.fromkeys(set(key_layout.all_locations) - bk_not_required)) if not big_chest_allowed_big_key: bk_required_locations = find_big_chest_locations(key_layout.all_chest_locations) bk_required_locations += find_big_key_locked_locations(key_layout.all_chest_locations) key_logic.bk_restricted.update(bk_required_locations) key_logic.bk_locked.update(bk_required_locations) def empty_counter(counter): if len(counter.key_only_locations) != 0 or len(counter.free_locations) != 0 or len(counter.child_doors) != 0: return False return not counter.important_location def relative_empty_counter(odd_counter, key_counter): if len(set(odd_counter.key_only_locations).difference(key_counter.key_only_locations)) > 0: return False if len(set(odd_counter.free_locations).difference(key_counter.free_locations)) > 0: return False # important only if len(set(odd_counter.important_locations).difference(key_counter.important_locations)) > 0: return False new_child_door = False for child in odd_counter.child_doors: if unique_child_door(child, key_counter): new_child_door = True break if new_child_door: return False return True def relative_empty_counter_2(odd_counter, key_counter): if len(set(odd_counter.key_only_locations).difference(key_counter.key_only_locations)) > 0: return False if len(set(odd_counter.free_locations).difference(key_counter.free_locations)) > 0: return False # important only if len(set(odd_counter.important_locations).difference(key_counter.important_locations)) > 0: return False for child in odd_counter.child_doors: if unique_child_door_2(child, key_counter): return False return True def progressive_ctr(new_counter, last_counter): if len(set(new_counter.key_only_locations).difference(last_counter.key_only_locations)) > 0: return True if len(set(new_counter.free_locations).difference(last_counter.free_locations)) > 0: return True for child in new_counter.child_doors: if unique_child_door_2(child, last_counter): return True return False def unique_child_door(child, key_counter): if child in key_counter.child_doors or child.dest in key_counter.child_doors: return False if child in key_counter.open_doors or child.dest in key_counter.open_doors: return False if child.bigKey and key_counter.big_key_opened: return False return True def unique_child_door_2(child, key_counter): if child in key_counter.child_doors or child.dest in key_counter.child_doors: return False if child in key_counter.open_doors or child.dest in key_counter.open_doors: return False return True def find_best_counter(door, odd_counter, key_counter, key_layout, world, player, skip_bk, empty_flag): # try to waste as many keys as possible? ignored_doors = {door, door.dest} if door is not None else {} finished = False opened_doors = dict(key_counter.open_doors) bk_opened = key_counter.big_key_opened # new_counter = key_counter last_counter = key_counter while not finished: door_set = find_potential_open_doors(last_counter, ignored_doors, key_layout, skip_bk) if door_set is None or len(door_set) == 0: finished = True continue for new_door in door_set: proposed_doors = {**opened_doors, **dict.fromkeys([new_door, new_door.dest])} bk_open = bk_opened or new_door.bigKey new_counter = find_counter(proposed_doors, bk_open, key_layout) bk_open = new_counter.big_key_opened # this means the new_door invalidates the door / leads to the same stuff if not empty_flag and relative_empty_counter(odd_counter, new_counter): ignored_doors.add(new_door) elif empty_flag or key_wasted(new_door, door, last_counter, new_counter, key_layout, world, player): last_counter = new_counter opened_doors = proposed_doors bk_opened = bk_open else: ignored_doors.add(new_door) return last_counter def find_worst_counter(door, odd_counter, key_counter, key_layout, skip_bk): # try to waste as many keys as possible? ignored_doors = {door, door.dest} if door is not None else {} finished = False opened_doors = dict(key_counter.open_doors) bk_opened = key_counter.big_key_opened # new_counter = key_counter last_counter = key_counter while not finished: door_set = find_potential_open_doors(last_counter, ignored_doors, key_layout, skip_bk, 0) if door_set is None or len(door_set) == 0: finished = True continue for new_door in door_set: proposed_doors = {**opened_doors, **dict.fromkeys([new_door, new_door.dest])} bk_open = bk_opened or new_door.bigKey new_counter = find_counter(proposed_doors, bk_open, key_layout) bk_open = new_counter.big_key_opened if not new_door.bigKey and progressive_ctr(new_counter, last_counter) and relative_empty_counter_2(odd_counter, new_counter): ignored_doors.add(new_door) else: last_counter = new_counter opened_doors = proposed_doors bk_opened = bk_open # this means the new_door invalidates the door / leads to the same stuff return last_counter def find_potential_open_doors(key_counter, ignored_doors, key_layout, skip_bk, reserve=1): small_doors = [] big_doors = [] if key_layout.big_key_special: big_key_available = any(x for x in key_counter.other_locations.keys() if x.forced_item and x.forced_item.bigkey) else: big_key_available = len(key_counter.free_locations) - key_counter.used_smalls_loc(reserve) > 0 for other in key_counter.child_doors: if other not in ignored_doors and other.dest not in ignored_doors: if other.bigKey: if not skip_bk and (not key_layout.big_key_special or big_key_available): big_doors.append(other) elif other.dest not in small_doors: small_doors.append(other) if len(small_doors) == 0 and (not skip_bk and (len(big_doors) == 0 or not big_key_available)): return None return small_doors + big_doors def key_wasted(new_door, old_door, old_counter, new_counter, key_layout, world, player): if new_door.bigKey: # big keys are not wastes - it uses up a location return True chest_keys = available_chest_small_keys(old_counter, world, player) old_key_diff = len(old_counter.key_only_locations) - old_counter.used_keys old_avail = chest_keys + old_key_diff new_chest_keys = available_chest_small_keys(new_counter, world, player) new_key_diff = len(new_counter.key_only_locations) - new_counter.used_keys new_avail = new_chest_keys + new_key_diff if new_key_diff < old_key_diff or new_avail < old_avail: return True if new_avail >= old_avail: wasted_keys = 0 old_children = old_counter.child_doors.keys() new_children = [x for x in new_counter.child_doors.keys() if x != old_door and x.dest != old_door and (not x.bigKey or x not in old_children)] current_counter = new_counter opened_doors = dict(current_counter.open_doors) bk_opened = current_counter.big_key_opened for new_child in new_children: proposed_doors = {**opened_doors, **dict.fromkeys([new_child, new_child.dest])} bk_open = bk_opened or new_door.bigKey new_counter = find_counter(proposed_doors, bk_open, key_layout) if key_wasted(new_child, old_door, current_counter, new_counter, key_layout, world, player): wasted_keys += 1 if new_avail - wasted_keys < old_avail: return True # waste is possible return False def find_next_counter(new_door, old_counter, key_layout): proposed_doors = {**old_counter.open_doors, **dict.fromkeys([new_door, new_door.dest])} bk_open = old_counter.big_key_opened or new_door.bigKey return find_counter(proposed_doors, bk_open, key_layout) def check_special_locations(locations): for loc in locations: if loc.name == 'Hyrule Castle - Zelda\'s Chest': return True return False def calc_avail_keys(key_counter, world, player): chest_keys = available_chest_small_keys(key_counter, world, player) raw_avail = chest_keys + len(key_counter.key_only_locations) return raw_avail - key_counter.used_keys def create_rule(key_counter, prev_counter, key_layout, world, player): # prev_chest_keys = available_chest_small_keys(prev_counter, world) # prev_avail = prev_chest_keys + len(prev_counter.key_only_locations) chest_keys = available_chest_small_keys(key_counter, world, player) key_gain = len(key_counter.key_only_locations) - len(prev_counter.key_only_locations) # previous method # raw_avail = chest_keys + len(key_counter.key_only_locations) # available = raw_avail - key_counter.used_keys # possible_smalls = count_unique_small_doors(key_counter, key_layout.flat_prop) # required_keys = min(available, possible_smalls) + key_counter.used_keys required_keys = key_counter.used_keys + 1 # this makes more sense, if key_counter has wasted all keys adj_chest_keys = min(chest_keys, required_keys) needed_chests = required_keys - len(key_counter.key_only_locations) is_valid = needed_chests <= chest_keys unneeded_chests = min(key_gain, max(0, adj_chest_keys - needed_chests)) rule_num = required_keys - unneeded_chests return DoorRules(rule_num, is_valid) def check_for_self_lock_key(rule, door, parent_counter, key_layout, world, player): if world.accessibility[player] != 'locations': counter = find_inverted_counter(door, parent_counter, key_layout, world, player) if not self_lock_possible(counter): return if len(counter.free_locations) == 1 and len(counter.key_only_locations) == 0 and not counter.important_location: rule.allow_small = True rule.small_location = next(iter(counter.free_locations)) def find_inverted_counter(door, parent_counter, key_layout, world, player): # open all doors in counter counter = open_all_counter(parent_counter, key_layout, door=door) max_counter = find_max_counter(key_layout) # find the difference inverted_counter = KeyCounter(key_layout.max_chests) inverted_counter.free_locations = dict_difference(max_counter.free_locations, counter.free_locations) inverted_counter.key_only_locations = dict_difference(max_counter.key_only_locations, counter.key_only_locations) # child doors? used_keys? # inverted_counter.child_doors = dict_difference(max_counter.child_doors, counter.child_doors) inverted_counter.open_doors = dict_difference(max_counter.open_doors, counter.open_doors) inverted_counter.other_locations = dict_difference(max_counter.other_locations, counter.other_locations) for loc in inverted_counter.other_locations: if important_location(loc, world, player): inverted_counter.important_location = True return inverted_counter def open_all_counter(parent_counter, key_layout, door=None, skipBk=False): changed = True counter = parent_counter proposed_doors = dict.fromkeys(parent_counter.open_doors.keys()) while changed: changed = False doors_to_open = {} for child in counter.child_doors: if door is None or (child != door and child != door.dest): if skipBk: if not child.bigKey: doors_to_open[child] = None elif not child.bigKey or not key_layout.big_key_special or counter.big_key_opened: doors_to_open[child] = None if len(doors_to_open.keys()) > 0: proposed_doors = {**proposed_doors, **doors_to_open} bk_hint = counter.big_key_opened for d in doors_to_open.keys(): bk_hint = bk_hint or d.bigKey counter = find_counter(proposed_doors, bk_hint, key_layout) changed = True return counter def open_some_counter(parent_counter, key_layout, ignored_doors): changed = True counter = parent_counter proposed_doors = dict.fromkeys(parent_counter.open_doors.keys()) while changed: changed = False doors_to_open = {} for child in counter.child_doors: if child not in ignored_doors: if not child.bigKey: doors_to_open[child] = None if len(doors_to_open.keys()) > 0: proposed_doors = {**proposed_doors, **doors_to_open} bk_hint = counter.big_key_opened for d in doors_to_open.keys(): bk_hint = bk_hint or d.bigKey counter = find_counter(proposed_doors, bk_hint, key_layout) changed = True return counter def self_lock_possible(counter): return len(counter.free_locations) <= 1 and len(counter.key_only_locations) == 0 and not counter.important_location def available_chest_small_keys(key_counter, world, player): if not world.keyshuffle[player] and not world.retro[player]: cnt = 0 for loc in key_counter.free_locations: if key_counter.big_key_opened or '- Big Chest' not in loc.name: cnt += 1 return min(cnt, key_counter.max_chests) else: return key_counter.max_chests def available_chest_small_keys_logic(key_counter, world, player, sm_restricted): if not world.keyshuffle[player] and not world.retro[player]: cnt = 0 for loc in key_counter.free_locations: if loc not in sm_restricted and (key_counter.big_key_opened or '- Big Chest' not in loc.name): cnt += 1 return min(cnt, key_counter.max_chests) else: return key_counter.max_chests def big_key_drop_available(key_counter): for loc in key_counter.other_locations: if loc.forced_big_key(): return True return False def bk_restricted_rules(rule, door, odd_counter, empty_flag, key_counter, key_layout, world, player): if key_counter.big_key_opened: return best_counter = find_best_counter(door, odd_counter, key_counter, key_layout, world, player, True, empty_flag) bk_rule = create_rule(best_counter, key_counter, key_layout, world, player) if bk_rule.small_key_num >= rule.small_key_num: return door_open = find_next_counter(door, best_counter, key_layout) ignored_doors = dict_intersection(best_counter.child_doors, door_open.child_doors) dest_ignored = [] for door in ignored_doors.keys(): if door.dest not in ignored_doors: dest_ignored.append(door.dest) ignored_doors = {**ignored_doors, **dict.fromkeys(dest_ignored)} post_counter = open_some_counter(door_open, key_layout, ignored_doors.keys()) unique_loc = dict_difference(post_counter.free_locations, best_counter.free_locations) # todo: figure out the intention behind this change - better way to detect the big key is blocking needed key onlys? if len(unique_loc) > 0: # and bk_rule.is_valid rule.alternate_small_key = bk_rule.small_key_num rule.alternate_big_key_loc.update(unique_loc) # elif not bk_rule.is_valid: # key_layout.key_logic.bk_restricted.update(unique_loc) def find_worst_counter_wo_bk(small_key_num, accessible_set, door, odd_ctr, key_counter, key_layout): if key_counter.big_key_opened: return None, None, None worst_counter = find_worst_counter(door, odd_ctr, key_counter, key_layout, True) bk_rule_num = worst_counter.used_keys + 1 bk_access_set = set() bk_access_set.update(worst_counter.free_locations) bk_access_set.update(worst_counter.key_only_locations) if bk_rule_num == small_key_num and len(bk_access_set ^ accessible_set) == 0: return None, None, None door_open = find_next_counter(door, worst_counter, key_layout) ignored_doors = dict_intersection(worst_counter.child_doors, door_open.child_doors) dest_ignored = [] for door in ignored_doors.keys(): if door.dest not in ignored_doors: dest_ignored.append(door.dest) ignored_doors = {**ignored_doors, **dict.fromkeys(dest_ignored)} post_counter = open_some_counter(door_open, key_layout, ignored_doors.keys()) return worst_counter, post_counter, bk_rule_num def open_a_door(door, child_state, flat_proposal): if door.bigKey or door.name in special_big_key_doors: child_state.big_key_opened = True child_state.avail_doors.extend(child_state.big_doors) child_state.opened_doors.extend(set([d.door for d in child_state.big_doors])) child_state.big_doors.clear() else: child_state.opened_doors.append(door) doors_to_open = [x for x in child_state.small_doors if x.door == door] child_state.small_doors[:] = [x for x in child_state.small_doors if x.door != door] child_state.avail_doors.extend(doors_to_open) dest_door = door.dest if dest_door in flat_proposal and door.type != DoorType.SpiralStairs: child_state.opened_doors.append(dest_door) if child_state.in_door_list_ic(dest_door, child_state.small_doors): now_available = [x for x in child_state.small_doors if x.door == dest_door] child_state.small_doors[:] = [x for x in child_state.small_doors if x.door != dest_door] child_state.avail_doors.extend(now_available) # allows dest doors def unique_doors(doors): unique_d_set = [] for d in doors: if d.door not in unique_d_set: unique_d_set.append(d.door) return unique_d_set # does not allow dest doors def count_unique_sm_doors(doors): unique_d_set = set() for d in doors: if d not in unique_d_set and (d.dest not in unique_d_set or d.type == DoorType.SpiralStairs) and not d.bigKey: unique_d_set.add(d) return len(unique_d_set) def big_key_progress(key_counter): return not only_sm_doors(key_counter) or exist_big_chest(key_counter) def only_sm_doors(key_counter): for door in key_counter.child_doors: if door.bigKey: return False return True # doesn't count dest doors def count_unique_small_doors(key_counter, proposal): cnt = 0 counted = set() for door in key_counter.child_doors: if door in proposal and door not in counted: cnt += 1 counted.add(door) if door.type != DoorType.SpiralStairs: counted.add(door.dest) return cnt def exist_relevant_big_doors(key_counter, key_layout): bk_counter = find_counter(key_counter.open_doors, True, key_layout, False) if bk_counter is not None: diff = dict_difference(bk_counter.free_locations, key_counter.free_locations) if len(diff) > 0: return True diff = dict_difference(bk_counter.key_only_locations, key_counter.key_only_locations) if len(diff) > 0: return True diff = dict_difference(bk_counter.child_doors, key_counter.child_doors) if len(diff) > 0: return True return False def exist_big_chest(key_counter): for loc in key_counter.free_locations: if '- Big Chest' in loc.name: return True return False def count_locations_big_optional(locations, bk=False): cnt = 0 for loc in locations: if bk or '- Big Chest' not in loc.name: cnt += 1 return cnt def filter_big_chest(locations): return [x for x in locations if '- Big Chest' not in x.name] def count_locations_exclude_logic(locations, key_logic): cnt = 0 for loc in locations: if not location_is_bk_locked(loc, key_logic) and not loc.forced_item and not prize_or_event(loc): cnt += 1 return cnt def location_is_bk_locked(loc, key_logic): return loc in key_logic.bk_chests or loc in key_logic.bk_locked def prize_or_event(loc): return loc.name in dungeon_events or '- Prize' in loc.name or loc.name in ['Agahnim 1', 'Agahnim 2'] def count_free_locations(state): cnt = 0 for loc in state.found_locations: if not prize_or_event(loc) and not loc.forced_item: cnt += 1 return cnt def count_locations_exclude_big_chest(state): cnt = 0 for loc in state.found_locations: if '- Big Chest' not in loc.name and not loc.forced_item and not prize_or_event(loc): cnt += 1 return cnt def count_small_key_only_locations(state): cnt = 0 for loc in state.found_locations: if loc.forced_item and loc.item.smallkey: cnt += 1 return cnt def big_chest_in_locations(locations): return len(find_big_chest_locations(locations)) > 0 def find_big_chest_locations(locations): ret = [] for loc in locations: if 'Big Chest' in loc.name: ret.append(loc) return ret def find_big_key_locked_locations(locations): ret = [] for loc in locations: if loc.name in ["Thieves' Town - Blind's Cell", "Hyrule Castle - Zelda's Chest"]: ret.append(loc) return ret def expand_key_state(state, flat_proposal, world, player): while len(state.avail_doors) > 0: exp_door = state.next_avail_door() door = exp_door.door connect_region = world.get_entrance(door.name, player).connected_region if state.validate(door, connect_region, world, player): state.visit_region(connect_region, key_checks=True) state.add_all_doors_check_keys(connect_region, flat_proposal, world, player) def flatten_pair_list(paired_list): flat_list = [] for d in paired_list: if type(d) is tuple: flat_list.append(d[0]) flat_list.append(d[1]) else: flat_list.append(d) return flat_list def check_rules(original_counter, key_layout, world, player): all_key_only = set() key_only_map = {} queue = deque([(None, original_counter, original_counter.key_only_locations)]) completed = set() completed.add(cid(original_counter, key_layout)) while len(queue) > 0: queue = deque(sorted(queue, key=queue_sorter_2)) access_door, counter, key_only_loc = queue.popleft() for loc in key_only_loc: if loc not in all_key_only: all_key_only.add(loc) access_rules = [] key_only_map[loc] = access_rules else: access_rules = key_only_map[loc] if access_door is None or access_door.name not in key_layout.key_logic.door_rules.keys(): if access_door is None or not access_door.bigKey: access_rules.append(DoorRules(0, True)) else: rule = key_layout.key_logic.door_rules[access_door.name] if rule not in access_rules: access_rules.append(rule) for child in counter.child_doors.keys(): if not child.bigKey or not key_layout.big_key_special or counter.big_key_opened: next_counter = find_next_counter(child, counter, key_layout) c_id = cid(next_counter, key_layout) if c_id not in completed: completed.add(c_id) new_key_only = dict_difference(next_counter.key_only_locations, counter.key_only_locations) queue.append((child, next_counter, new_key_only)) min_rule_bk = defaultdict(list) min_rule_non_bk = defaultdict(list) check_non_bk = False for loc, rule_list in key_only_map.items(): m_bk = None m_nbk = None for rule in rule_list: if m_bk is None or rule.small_key_num <= m_bk: min_rule_bk[loc].append(rule) m_bk = rule.small_key_num if rule.alternate_small_key is None: ask = rule.small_key_num else: check_non_bk = True ask = rule.alternate_small_key if m_nbk is None or ask <= m_nbk: min_rule_non_bk[loc].append(rule) m_nbk = rule.alternate_small_key adjust_key_location_mins(key_layout, min_rule_bk, lambda r: r.small_key_num, lambda r, v: setattr(r, 'small_key_num', v)) if check_non_bk: adjust_key_location_mins(key_layout, min_rule_non_bk, lambda r: r.small_key_num if r.alternate_small_key is None else r.alternate_small_key, lambda r, v: r if r.alternate_small_key is None else setattr(r, 'alternate_small_key', v)) check_rules_deep(original_counter, key_layout, world, player) def adjust_key_location_mins(key_layout, min_rules, getter, setter): collected_keys = key_layout.max_chests collected_locs = set() changed = True while changed: changed = False for_removal = [] for loc, rules in min_rules.items(): if loc in collected_locs: for_removal.append(loc) for rule in rules: if getter(rule) <= collected_keys and loc not in collected_locs: changed = True collected_keys += 1 collected_locs.add(loc) for_removal.append(loc) for loc in for_removal: del min_rules[loc] if len(min_rules) > 0: for loc, rules in min_rules.items(): for rule in rules: setter(rule, collected_keys) def check_rules_deep(original_counter, key_layout, world, player): key_logic = key_layout.key_logic big_locations = {x for x in key_layout.all_chest_locations if x not in key_logic.bk_restricted} queue = deque([original_counter]) completed = set() completed.add(cid(original_counter, key_layout)) last_counter = None bail = 0 while len(queue) > 0: counter = queue.popleft() if counter == last_counter: bail += 1 if bail > 10: raise Exception('Key logic issue, during deep rule check: %s' % key_layout.sector.name) else: bail = 0 last_counter = counter chest_keys = available_chest_small_keys_logic(counter, world, player, key_logic.sm_restricted) bk_drop = big_key_drop_available(counter) big_avail = counter.big_key_opened or bk_drop big_maybe_not_found = not counter.big_key_opened and not bk_drop # better named as big_missing? if not key_layout.big_key_special and not big_avail: if world.bigkeyshuffle[player]: big_avail = True else: for location in counter.free_locations: if location not in key_logic.bk_restricted: big_avail = True break outstanding_big_locs = {x for x in big_locations if x not in counter.free_locations} if big_maybe_not_found: if len(outstanding_big_locs) == 0 and not key_layout.big_key_special: big_maybe_not_found = False big_uses_chest = big_avail and not key_layout.big_key_special collected_alt = len(counter.key_only_locations) + chest_keys if big_uses_chest and chest_keys == count_locations_big_optional(counter.free_locations, counter.big_key_opened): chest_keys -= 1 collected = len(counter.key_only_locations) + chest_keys can_progress = len(counter.child_doors) == 0 smalls_opened, big_opened = False, False small_rules = [] for door in counter.child_doors.keys(): can_open = False if door.bigKey and big_avail: can_open = True elif door.name in key_logic.door_rules.keys(): rule = key_logic.door_rules[door.name] small_rules.append(rule) if rule_satisfied(rule, collected, collected_alt, outstanding_big_locs, chest_keys, key_layout): can_open = True smalls_opened = True elif not door.bigKey: can_open = True if can_open: can_progress = smalls_opened or not big_maybe_not_found next_counter = find_next_counter(door, counter, key_layout) c_id = cid(next_counter, key_layout) if c_id not in completed: completed.add(c_id) queue.append(next_counter) if not can_progress: if len(small_rules) > 0: # zero could be indicative of a problem, but also, the big key is now required reduce_rules(small_rules, collected, collected_alt) queue.append(counter) # run it through again else: raise Exception('Possible problem with generation or bk rules') def rule_satisfied(rule, collected, collected_alt, outstanding_big_locs, chest_keys, key_layout): if collected >= rule.small_key_num: return True if rule.allow_small and collected >= rule.small_key_num-1 and chest_keys < key_layout.max_chests: return True rule_diff = outstanding_big_locs.difference(rule.alternate_big_key_loc) if rule.alternate_small_key is not None and len(rule_diff) == 0 and collected >= rule.alternate_small_key: return True if collected_alt > collected: if collected_alt >= rule.small_key_num: return True if rule.allow_small and collected_alt >= rule.small_key_num-1 and chest_keys+1 < key_layout.max_chests: return True if rule.alternate_small_key is not None and len(rule_diff) == 0 and collected_alt >= rule.alternate_small_key: return True return False def reduce_rules(small_rules, collected, collected_alt): smallest_rules = [] min_num = None for rule in small_rules: if min_num is None or rule.small_key_num <= min_num: if min_num is not None and rule.small_key_num < min_num: min_num = rule.small_key_num smallest_rules.clear() elif min_num is None: min_num = rule.small_key_num smallest_rules.append(rule) for rule in smallest_rules: if rule.allow_small: # we are already reducing it rule.allow_small = False if min_num > collected_alt > collected: rule.small_key_num = collected_alt else: rule.small_key_num = collected def set_paired_rules(key_logic, world, player): for d_name, rule in key_logic.door_rules.items(): door = world.get_door(d_name, player) if door.dest.name in key_logic.door_rules.keys(): rule.opposite = key_logic.door_rules[door.dest.name] def check_bk_special(regions, world, player): for r_name in regions: region = world.get_region(r_name, player) for loc in region.locations: if loc.forced_big_key(): return True return False # Soft lock stuff def validate_key_layout(key_layout, world, player): # retro is all good - except for hyrule castle in standard mode if (world.retro[player] and (world.mode[player] != 'standard' or key_layout.sector.name != 'Hyrule Castle')) or world.logic[player] == 'nologic': return True flat_proposal = key_layout.flat_prop state = ExplorationState(dungeon=key_layout.sector.name) state.key_locations = key_layout.max_chests state.big_key_special = check_bk_special(key_layout.sector.regions, world, player) for region in key_layout.start_regions: state.visit_region(region, key_checks=True) state.add_all_doors_check_keys(region, flat_proposal, world, player) return validate_key_layout_sub_loop(key_layout, state, {}, flat_proposal, None, 0, world, player) def validate_key_layout_sub_loop(key_layout, state, checked_states, flat_proposal, prev_state, prev_avail, world, player): expand_key_state(state, flat_proposal, world, player) smalls_avail = len(state.small_doors) > 0 # de-dup crystal repeats num_bigs = 1 if len(state.big_doors) > 0 else 0 # all or nothing if not smalls_avail and num_bigs == 0: return True # I think that's the end # todo: fix state to separate out these types ttl_locations = count_free_locations(state) if state.big_key_opened else count_locations_exclude_big_chest(state) ttl_small_key_only = count_small_key_only_locations(state) available_small_locations = cnt_avail_small_locations(ttl_locations, ttl_small_key_only, state, world, player) available_big_locations = cnt_avail_big_locations(ttl_locations, state, world, player) if invalid_self_locking_key(key_layout, state, prev_state, prev_avail, world, player): return False # todo: allow more key shuffles - refine placement rules # if (not smalls_avail or available_small_locations == 0) and (state.big_key_opened or num_bigs == 0 or available_big_locations == 0): found_forced_bk = state.found_forced_bk() smalls_done = not smalls_avail or not enough_small_locations(state, available_small_locations) bk_done = state.big_key_opened or num_bigs == 0 or (available_big_locations == 0 and not found_forced_bk) if smalls_done and bk_done: return False else: if smalls_avail and available_small_locations > 0: for exp_door in state.small_doors: state_copy = state.copy() open_a_door(exp_door.door, state_copy, flat_proposal) state_copy.used_smalls += 1 if state_copy.used_smalls > ttl_small_key_only: state_copy.used_locations += 1 code = state_id(state_copy, flat_proposal) if code not in checked_states.keys(): valid = validate_key_layout_sub_loop(key_layout, state_copy, checked_states, flat_proposal, state, available_small_locations, world, player) checked_states[code] = valid else: valid = checked_states[code] if not valid: return False if not state.big_key_opened and (available_big_locations >= num_bigs > 0 or (found_forced_bk and num_bigs > 0)): state_copy = state.copy() open_a_door(state.big_doors[0].door, state_copy, flat_proposal) if not found_forced_bk: state_copy.used_locations += 1 code = state_id(state_copy, flat_proposal) if code not in checked_states.keys(): valid = validate_key_layout_sub_loop(key_layout, state_copy, checked_states, flat_proposal, state, available_small_locations, world, player) checked_states[code] = valid else: valid = checked_states[code] if not valid: return False return True def invalid_self_locking_key(key_layout, state, prev_state, prev_avail, world, player): if prev_state is None or state.used_smalls == prev_state.used_smalls: return False new_bk_doors = set(state.big_doors).difference(set(prev_state.big_doors)) state_copy = state.copy() while len(new_bk_doors) > 0: for door in new_bk_doors: open_a_door(door.door, state_copy, key_layout.flat_prop) new_bk_doors = set(state_copy.big_doors).difference(set(prev_state.big_doors)) expand_key_state(state_copy, key_layout.flat_prop, world, player) new_locations = set(state_copy.found_locations).difference(set(prev_state.found_locations)) important_found = False for loc in new_locations: important_found |= important_location(loc, world, player) if not important_found: return False new_small_doors = set(state.small_doors).difference(set(prev_state.small_doors)) if len(new_small_doors) > 0: return False return prev_avail - 1 == 0 def enough_small_locations(state, avail_small_loc): unique_d_set = set() for exp_door in state.small_doors: door = exp_door.door if door not in unique_d_set and door.dest not in unique_d_set: unique_d_set.add(door) return avail_small_loc >= len(unique_d_set) def cnt_avail_small_locations(free_locations, key_only, state, world, player): if not world.keyshuffle[player] and not world.retro[player]: bk_adj = 1 if state.big_key_opened and not state.big_key_special else 0 avail_chest_keys = min(free_locations - bk_adj, state.key_locations - key_only) return max(0, avail_chest_keys + key_only - state.used_smalls) return state.key_locations - state.used_smalls def cnt_avail_big_locations(ttl_locations, state, world, player): if not world.bigkeyshuffle[player]: return max(0, ttl_locations - state.used_locations) if not state.big_key_special else 0 return 1 if not state.big_key_special else 0 def create_key_counters(key_layout, world, player): key_counters = {} flat_proposal = key_layout.flat_prop state = ExplorationState(dungeon=key_layout.sector.name) if world.doorShuffle[player] == 'vanilla': state.key_locations = len(world.get_dungeon(key_layout.sector.name, player).small_keys) else: state.key_locations = world.dungeon_layouts[player][key_layout.sector.name].key_doors_num state.big_key_special, special_region = False, None for region in key_layout.sector.regions: for location in region.locations: if location.forced_big_key(): state.big_key_special = True special_region = region for region in key_layout.start_regions: state.visit_region(region, key_checks=True) state.add_all_doors_check_keys(region, flat_proposal, world, player) expand_key_state(state, flat_proposal, world, player) code = state_id(state, key_layout.flat_prop) key_counters[code] = create_key_counter(state, key_layout, world, player) queue = deque([(key_counters[code], state)]) while len(queue) > 0: next_key_counter, parent_state = queue.popleft() for door in next_key_counter.child_doors: child_state = parent_state.copy() if door.bigKey or door.name in special_big_key_doors: key_layout.key_logic.bk_doors.add(door) # open the door, if possible if not door.bigKey or not child_state.big_key_special or child_state.visited_at_all(special_region): open_a_door(door, child_state, flat_proposal) expand_key_state(child_state, flat_proposal, world, player) code = state_id(child_state, key_layout.flat_prop) if code not in key_counters.keys(): child_kr = create_key_counter(child_state, key_layout, world, player) key_counters[code] = child_kr queue.append((child_kr, child_state)) return key_counters def create_key_counter(state, key_layout, world, player): key_counter = KeyCounter(key_layout.max_chests) key_counter.child_doors.update(dict.fromkeys(unique_doors(state.small_doors+state.big_doors))) for loc in state.found_locations: if important_location(loc, world, player): key_counter.important_location = True key_counter.other_locations[loc] = None key_counter.important_locations[loc] = None elif loc.forced_item and loc.item.name == key_layout.key_logic.small_key_name: key_counter.key_only_locations[loc] = None elif loc.forced_item and loc.item.name == key_layout.key_logic.bk_name: key_counter.other_locations[loc] = None elif loc.name not in dungeon_events: key_counter.free_locations[loc] = None else: key_counter.other_locations[loc] = None key_counter.open_doors.update(dict.fromkeys(state.opened_doors)) key_counter.used_keys = count_unique_sm_doors(state.opened_doors) key_counter.big_key_opened = state.big_key_opened return key_counter imp_locations = None def imp_locations_factory(world, player): global imp_locations if imp_locations: return imp_locations imp_locations = ['Agahnim 1', 'Agahnim 2', 'Attic Cracked Floor', 'Suspicious Maiden'] if world.mode[player] == 'standard': imp_locations.append('Zelda Pickup') imp_locations.append('Zelda Dropoff') return imp_locations def important_location(loc, world, player): return '- Prize' in loc.name or loc.name in imp_locations_factory(world, player) or (loc.forced_big_key()) def create_odd_key_counter(door, parent_counter, key_layout, world, player): odd_counter = KeyCounter(key_layout.max_chests) next_counter = find_next_counter(door, parent_counter, key_layout) odd_counter.free_locations = dict_difference(next_counter.free_locations, parent_counter.free_locations) odd_counter.key_only_locations = dict_difference(next_counter.key_only_locations, parent_counter.key_only_locations) odd_counter.child_doors = {} for d in next_counter.child_doors: if d not in parent_counter.child_doors and (d.type == DoorType.SpiralStairs or d.dest not in parent_counter.child_doors): odd_counter.child_doors[d] = None odd_counter.other_locations = dict_difference(next_counter.other_locations, parent_counter.other_locations) odd_counter.important_locations = dict_difference(next_counter.important_locations, parent_counter.important_locations) for loc in odd_counter.other_locations: if important_location(loc, world, player): odd_counter.important_location = True return odd_counter def dict_difference(dict_a, dict_b): return dict.fromkeys([x for x in dict_a.keys() if x not in dict_b.keys()]) def dict_intersection(dict_a, dict_b): return dict.fromkeys([x for x in dict_a.keys() if x in dict_b.keys()]) def state_id(state, flat_proposal): s_id = '1' if state.big_key_opened else '0' for d in flat_proposal: s_id += '1' if d in state.opened_doors else '0' return s_id def find_counter(opened_doors, bk_hint, key_layout, raise_on_error=True): counter = find_counter_hint(opened_doors, bk_hint, key_layout) if counter is not None: return counter more_doors = [] for door in opened_doors.keys(): more_doors.append(door) if door.dest not in opened_doors.keys(): more_doors.append(door.dest) if len(more_doors) > len(opened_doors.keys()): counter = find_counter_hint(dict.fromkeys(more_doors), bk_hint, key_layout) if counter is not None: return counter if raise_on_error: raise Exception('Unable to find door permutation. Init CID: %s' % counter_id(opened_doors, bk_hint, key_layout.flat_prop)) return None def find_counter_hint(opened_doors, bk_hint, key_layout): cid = counter_id(opened_doors, bk_hint, key_layout.flat_prop) if cid in key_layout.key_counters.keys(): return key_layout.key_counters[cid] if not bk_hint: cid = counter_id(opened_doors, True, key_layout.flat_prop) if cid in key_layout.key_counters.keys(): return key_layout.key_counters[cid] return None def find_max_counter(key_layout): max_counter = find_counter_hint(dict.fromkeys(key_layout.flat_prop), False, key_layout) if max_counter is None: raise Exception("Max Counter is none - something is amiss") if len(max_counter.child_doors) > 0: max_counter = find_counter_hint(dict.fromkeys(key_layout.flat_prop), True, key_layout) return max_counter def counter_id(opened_doors, bk_unlocked, flat_proposal): s_id = '1' if bk_unlocked else '0' for d in flat_proposal: s_id += '1' if d in opened_doors.keys() else '0' return s_id def cid(counter, key_layout): return counter_id(counter.open_doors, counter.big_key_opened, key_layout.flat_prop) # class SoftLockException(Exception): # pass # vanilla validation code def validate_vanilla_key_logic(world, player): validators = { 'Hyrule Castle': val_hyrule, 'Eastern Palace': val_eastern, 'Desert Palace': val_desert, 'Tower of Hera': val_hera, 'Agahnims Tower': val_tower, 'Palace of Darkness': val_pod, 'Swamp Palace': val_swamp, 'Skull Woods': val_skull, 'Thieves Town': val_thieves, 'Ice Palace': val_ice, 'Misery Mire': val_mire, 'Turtle Rock': val_turtle, 'Ganons Tower': val_ganons } key_logic_dict = world.key_logic[player] for key, key_logic in key_logic_dict.items(): validators[key](key_logic, world, player) def val_hyrule(key_logic, world, player): if world.mode[player] == 'standard': val_rule(key_logic.door_rules['Hyrule Dungeon Map Room Key Door S'], 1) val_rule(key_logic.door_rules['Hyrule Dungeon Armory Interior Key Door N'], 2) val_rule(key_logic.door_rules['Sewers Dark Cross Key Door N'], 3) val_rule(key_logic.door_rules['Sewers Key Rat Key Door N'], 4) else: val_rule(key_logic.door_rules['Sewers Secret Room Key Door S'], 2) val_rule(key_logic.door_rules['Sewers Dark Cross Key Door N'], 2) val_rule(key_logic.door_rules['Hyrule Dungeon Map Room Key Door S'], 2) val_rule(key_logic.door_rules['Hyrule Dungeon Armory Interior Key Door N'], 4) def val_eastern(key_logic, world, player): val_rule(key_logic.door_rules['Eastern Dark Square Key Door WN'], 2, True, 'Eastern Palace - Big Key Chest', 1, {'Eastern Palace - Big Key Chest'}) val_rule(key_logic.door_rules['Eastern Darkness Up Stairs'], 2) assert world.get_location('Eastern Palace - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Eastern Palace - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_desert(key_logic, world, player): val_rule(key_logic.door_rules['Desert East Wing Key Door EN'], 4) val_rule(key_logic.door_rules['Desert Tiles 1 Up Stairs'], 2) val_rule(key_logic.door_rules['Desert Beamos Hall NE'], 3) val_rule(key_logic.door_rules['Desert Tiles 2 NE'], 4) assert world.get_location('Desert Palace - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Desert Palace - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_hera(key_logic, world, player): val_rule(key_logic.door_rules['Hera Lobby Key Stairs'], 1, True, 'Tower of Hera - Big Key Chest') assert world.get_location('Tower of Hera - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Tower of Hera - Compass Chest', player) in key_logic.bk_restricted assert world.get_location('Tower of Hera - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 3 def val_tower(key_logic, world, player): val_rule(key_logic.door_rules['Tower Room 03 Up Stairs'], 1) val_rule(key_logic.door_rules['Tower Dark Maze ES'], 2) val_rule(key_logic.door_rules['Tower Dark Archers Up Stairs'], 3) val_rule(key_logic.door_rules['Tower Circle of Pots ES'], 4) def val_pod(key_logic, world, player): val_rule(key_logic.door_rules['PoD Arena Main NW'], 4) val_rule(key_logic.door_rules['PoD Basement Ledge Up Stairs'], 6, True, 'Palace of Darkness - Big Key Chest') val_rule(key_logic.door_rules['PoD Compass Room SE'], 6, True, 'Palace of Darkness - Harmless Hellway') val_rule(key_logic.door_rules['PoD Falling Bridge WN'], 6) val_rule(key_logic.door_rules['PoD Dark Pegs WN'], 6) assert world.get_location('Palace of Darkness - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Palace of Darkness - Boss', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_swamp(key_logic, world, player): val_rule(key_logic.door_rules['Swamp Entrance Down Stairs'], 1) val_rule(key_logic.door_rules['Swamp Pot Row WS'], 2) val_rule(key_logic.door_rules['Swamp Trench 1 Key Ledge NW'], 3) val_rule(key_logic.door_rules['Swamp Hub North Ledge N'], 5) val_rule(key_logic.door_rules['Swamp Hub WN'], 6) val_rule(key_logic.door_rules['Swamp Waterway NW'], 6) assert world.get_location('Swamp Palace - Entrance', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 1 def val_skull(key_logic, world, player): val_rule(key_logic.door_rules['Skull 3 Lobby NW'], 4) val_rule(key_logic.door_rules['Skull Spike Corner ES'], 5) def val_thieves(key_logic, world, player): val_rule(key_logic.door_rules['Thieves Hallway WS'], 1) val_rule(key_logic.door_rules['Thieves Spike Switch Up Stairs'], 3) val_rule(key_logic.door_rules['Thieves Conveyor Bridge WS'], 3, True, 'Thieves\' Town - Big Chest') assert world.get_location('Thieves\' Town - Attic', player) in key_logic.bk_restricted assert world.get_location('Thieves\' Town - Boss', player) in key_logic.bk_restricted assert world.get_location('Thieves\' Town - Blind\'s Cell', player) in key_logic.bk_restricted assert world.get_location('Thieves\' Town - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 4 def val_ice(key_logic, world, player): val_rule(key_logic.door_rules['Ice Jelly Key Down Stairs'], 1) val_rule(key_logic.door_rules['Ice Conveyor SW'], 2) val_rule(key_logic.door_rules['Ice Backwards Room Down Stairs'], 5) assert world.get_location('Ice Palace - Boss', player) in key_logic.bk_restricted assert world.get_location('Ice Palace - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_mire(key_logic, world, player): mire_west_wing = {'Misery Mire - Big Key Chest', 'Misery Mire - Compass Chest'} val_rule(key_logic.door_rules['Mire Spikes NW'], 3) # todo: is sometimes 3 or 5? best_counter order matters # val_rule(key_logic.door_rules['Mire Spike Barrier NE'], 4) # kind of a waste mostly val_rule(key_logic.door_rules['Mire Hub WS'], 5, False, None, 3, mire_west_wing) val_rule(key_logic.door_rules['Mire Conveyor Crystal WS'], 6, False, None, 4, mire_west_wing) assert world.get_location('Misery Mire - Boss', player) in key_logic.bk_restricted assert world.get_location('Misery Mire - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 2 def val_turtle(key_logic, world, player): # todo: check vanilla key logic when TR back doors are accessible if world.shuffle[player] == 'vanilla' and world.mode[player] != 'inverted': val_rule(key_logic.door_rules['TR Hub NW'], 1) val_rule(key_logic.door_rules['TR Pokey 1 NW'], 2) val_rule(key_logic.door_rules['TR Chain Chomps Down Stairs'], 3) val_rule(key_logic.door_rules['TR Pokey 2 ES'], 6, True, 'Turtle Rock - Big Key Chest', 4, {'Turtle Rock - Big Key Chest'}) val_rule(key_logic.door_rules['TR Crystaroller Down Stairs'], 5) val_rule(key_logic.door_rules['TR Dash Bridge WS'], 6) assert world.get_location('Turtle Rock - Eye Bridge - Bottom Right', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Eye Bridge - Top Left', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Eye Bridge - Top Right', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Eye Bridge - Bottom Left', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Boss', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Crystaroller Room', player) in key_logic.bk_restricted assert world.get_location('Turtle Rock - Big Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 7 def val_ganons(key_logic, world, player): rando_room = {'Ganons Tower - Randomizer Room - Top Left', 'Ganons Tower - Randomizer Room - Top Right', 'Ganons Tower - Randomizer Room - Bottom Left', 'Ganons Tower - Randomizer Room - Bottom Right'} compass_room = {'Ganons Tower - Compass Room - Top Left', 'Ganons Tower - Compass Room - Top Right', 'Ganons Tower - Compass Room - Bottom Left', 'Ganons Tower - Compass Room - Bottom Right'} gt_middle = {'Ganons Tower - Big Key Room - Left', 'Ganons Tower - Big Key Chest', 'Ganons Tower - Big Key Room - Right', 'Ganons Tower - Bob\'s Chest', 'Ganons Tower - Big Chest'} val_rule(key_logic.door_rules['GT Double Switch EN'], 6, False, None, 4, rando_room.union({'Ganons Tower - Firesnake Room'})) val_rule(key_logic.door_rules['GT Hookshot ES'], 7, False, 'Ganons Tower - Map Chest', 5, {'Ganons Tower - Map Chest'}) val_rule(key_logic.door_rules['GT Tile Room EN'], 6, False, None, 5, compass_room) val_rule(key_logic.door_rules['GT Firesnake Room SW'], 7, False, None, 5, rando_room) val_rule(key_logic.door_rules['GT Conveyor Star Pits EN'], 6, False, None, 5, gt_middle) # should be 7? val_rule(key_logic.door_rules['GT Mini Helmasaur Room WN'], 6) # not sure about this 6... val_rule(key_logic.door_rules['GT Crystal Circles SW'], 8) assert world.get_location('Ganons Tower - Mini Helmasaur Room - Left', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Mini Helmasaur Room - Right', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Big Chest', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Pre-Moldorm Chest', player) in key_logic.bk_restricted assert world.get_location('Ganons Tower - Validation Chest', player) in key_logic.bk_restricted assert len(key_logic.bk_restricted) == 5 def val_rule(rule, skn, allow=False, loc=None, askn=None, setCheck=None): if setCheck is None: setCheck = set() assert rule.small_key_num == skn assert rule.allow_small == allow assert rule.small_location == loc or rule.small_location.name == loc assert rule.alternate_small_key == askn assert len(setCheck) == len(rule.alternate_big_key_loc) for loc in rule.alternate_big_key_loc: assert loc.name in setCheck # Soft lock stuff def validate_key_placement(key_layout, world, player): if world.retro[player] or world.accessibility[player] == 'none': return True # Can't keylock in retro. Expected if beatable only. max_counter = find_max_counter(key_layout) keys_outside = 0 big_key_outside = False smallkey_name = dungeon_keys[key_layout.sector.name] bigkey_name = dungeon_bigs[key_layout.sector.name] if world.keyshuffle[player]: keys_outside = key_layout.max_chests - sum(1 for i in max_counter.free_locations if i.item is not None and i.item.name == smallkey_name and i.item.player == player) if world.bigkeyshuffle[player]: max_counter = find_max_counter(key_layout) big_key_outside = bigkey_name not in (l.item.name for l in max_counter.free_locations if l.item) for code, counter in key_layout.key_counters.items(): if len(counter.child_doors) == 0: continue if key_layout.big_key_special: big_found = any(i.forced_item is not None and i.item.bigkey for i in counter.other_locations) or big_key_outside else: big_found = any(i.item is not None and i.item.name == bigkey_name for i in counter.free_locations if "- Big Chest" not in i.name) or big_key_outside if counter.big_key_opened and not big_found: continue # Can't get to this state found_locations = set(i for i in counter.free_locations if big_found or "- Big Chest" not in i.name) found_keys = sum(1 for i in found_locations if i.item is not None and i.item.name == smallkey_name and i.item.player == player) + \ len(counter.key_only_locations) + keys_outside can_progress = (not counter.big_key_opened and big_found and any(d.bigKey for d in counter.child_doors)) or \ found_keys > counter.used_keys and any(not d.bigKey for d in counter.child_doors) if not can_progress: missing_locations = set(max_counter.free_locations.keys()).difference(found_locations) missing_items = [l for l in missing_locations if l.item is None or (l.item.name != smallkey_name and l.item.name != bigkey_name) or "- Boss" in l.name] # missing_key_only = set(max_counter.key_only_locations.keys()).difference(counter.key_only_locations.keys()) # do freestanding keys matter for locations? if len(missing_items) > 0: # world.accessibility[player]=='locations' and (len(missing_locations)>0 or len(missing_key_only) > 0): logging.getLogger('').error("Keylock - can't open locations: ") logging.getLogger('').error("code: " + code) for i in missing_locations: logging.getLogger('').error(i) return False return True
py
1a4e14c4d2e4db5e683b4e651fdbe6f0d4382bf1
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ._enums import * __all__ = [ 'GooglePrivacyDlpV2ActionArgs', 'GooglePrivacyDlpV2AuxiliaryTableArgs', 'GooglePrivacyDlpV2BigQueryFieldArgs', 'GooglePrivacyDlpV2BigQueryOptionsArgs', 'GooglePrivacyDlpV2BigQueryTableArgs', 'GooglePrivacyDlpV2BucketingConfigArgs', 'GooglePrivacyDlpV2BucketArgs', 'GooglePrivacyDlpV2CategoricalStatsConfigArgs', 'GooglePrivacyDlpV2CharacterMaskConfigArgs', 'GooglePrivacyDlpV2CharsToIgnoreArgs', 'GooglePrivacyDlpV2CloudStorageFileSetArgs', 'GooglePrivacyDlpV2CloudStorageOptionsArgs', 'GooglePrivacyDlpV2CloudStoragePathArgs', 'GooglePrivacyDlpV2CloudStorageRegexFileSetArgs', 'GooglePrivacyDlpV2ConditionsArgs', 'GooglePrivacyDlpV2ConditionArgs', 'GooglePrivacyDlpV2CryptoDeterministicConfigArgs', 'GooglePrivacyDlpV2CryptoHashConfigArgs', 'GooglePrivacyDlpV2CryptoKeyArgs', 'GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigArgs', 'GooglePrivacyDlpV2CustomInfoTypeArgs', 'GooglePrivacyDlpV2DatastoreOptionsArgs', 'GooglePrivacyDlpV2DateShiftConfigArgs', 'GooglePrivacyDlpV2DeidentifyConfigArgs', 'GooglePrivacyDlpV2DeltaPresenceEstimationConfigArgs', 'GooglePrivacyDlpV2DetectionRuleArgs', 'GooglePrivacyDlpV2DictionaryArgs', 'GooglePrivacyDlpV2EntityIdArgs', 'GooglePrivacyDlpV2ExcludeInfoTypesArgs', 'GooglePrivacyDlpV2ExclusionRuleArgs', 'GooglePrivacyDlpV2ExpressionsArgs', 'GooglePrivacyDlpV2FieldIdArgs', 'GooglePrivacyDlpV2FieldTransformationArgs', 'GooglePrivacyDlpV2FileSetArgs', 'GooglePrivacyDlpV2FindingLimitsArgs', 'GooglePrivacyDlpV2FixedSizeBucketingConfigArgs', 'GooglePrivacyDlpV2HotwordRuleArgs', 'GooglePrivacyDlpV2HybridOptionsArgs', 'GooglePrivacyDlpV2InfoTypeLimitArgs', 'GooglePrivacyDlpV2InfoTypeTransformationsArgs', 'GooglePrivacyDlpV2InfoTypeTransformationArgs', 'GooglePrivacyDlpV2InfoTypeArgs', 'GooglePrivacyDlpV2InspectConfigArgs', 'GooglePrivacyDlpV2InspectJobConfigArgs', 'GooglePrivacyDlpV2InspectionRuleSetArgs', 'GooglePrivacyDlpV2InspectionRuleArgs', 'GooglePrivacyDlpV2JobNotificationEmailsArgs', 'GooglePrivacyDlpV2KAnonymityConfigArgs', 'GooglePrivacyDlpV2KMapEstimationConfigArgs', 'GooglePrivacyDlpV2KindExpressionArgs', 'GooglePrivacyDlpV2KmsWrappedCryptoKeyArgs', 'GooglePrivacyDlpV2LDiversityConfigArgs', 'GooglePrivacyDlpV2LargeCustomDictionaryConfigArgs', 'GooglePrivacyDlpV2LeaveUntransformedArgs', 'GooglePrivacyDlpV2LikelihoodAdjustmentArgs', 'GooglePrivacyDlpV2ManualArgs', 'GooglePrivacyDlpV2NumericalStatsConfigArgs', 'GooglePrivacyDlpV2OutputStorageConfigArgs', 'GooglePrivacyDlpV2PartitionIdArgs', 'GooglePrivacyDlpV2PrimitiveTransformationArgs', 'GooglePrivacyDlpV2PrivacyMetricArgs', 'GooglePrivacyDlpV2ProximityArgs', 'GooglePrivacyDlpV2PublishFindingsToCloudDataCatalogArgs', 'GooglePrivacyDlpV2PublishSummaryToCsccArgs', 'GooglePrivacyDlpV2PublishToPubSubArgs', 'GooglePrivacyDlpV2PublishToStackdriverArgs', 'GooglePrivacyDlpV2QuasiIdFieldArgs', 'GooglePrivacyDlpV2QuasiIdentifierFieldArgs', 'GooglePrivacyDlpV2QuasiIdArgs', 'GooglePrivacyDlpV2RecordConditionArgs', 'GooglePrivacyDlpV2RecordSuppressionArgs', 'GooglePrivacyDlpV2RecordTransformationsArgs', 'GooglePrivacyDlpV2RedactConfigArgs', 'GooglePrivacyDlpV2RegexArgs', 'GooglePrivacyDlpV2ReplaceDictionaryConfigArgs', 'GooglePrivacyDlpV2ReplaceValueConfigArgs', 'GooglePrivacyDlpV2ReplaceWithInfoTypeConfigArgs', 'GooglePrivacyDlpV2RiskAnalysisJobConfigArgs', 'GooglePrivacyDlpV2SaveFindingsArgs', 'GooglePrivacyDlpV2ScheduleArgs', 'GooglePrivacyDlpV2StatisticalTableArgs', 'GooglePrivacyDlpV2StorageConfigArgs', 'GooglePrivacyDlpV2StoredInfoTypeConfigArgs', 'GooglePrivacyDlpV2StoredTypeArgs', 'GooglePrivacyDlpV2SurrogateTypeArgs', 'GooglePrivacyDlpV2TableOptionsArgs', 'GooglePrivacyDlpV2TaggedFieldArgs', 'GooglePrivacyDlpV2ThrowErrorArgs', 'GooglePrivacyDlpV2TimePartConfigArgs', 'GooglePrivacyDlpV2TimespanConfigArgs', 'GooglePrivacyDlpV2TransformationErrorHandlingArgs', 'GooglePrivacyDlpV2TransientCryptoKeyArgs', 'GooglePrivacyDlpV2TriggerArgs', 'GooglePrivacyDlpV2UnwrappedCryptoKeyArgs', 'GooglePrivacyDlpV2ValueArgs', 'GooglePrivacyDlpV2WordListArgs', 'GoogleProtobufEmptyArgs', 'GoogleTypeDateArgs', 'GoogleTypeTimeOfDayArgs', ] @pulumi.input_type class GooglePrivacyDlpV2ActionArgs: def __init__(__self__, *, job_notification_emails: Optional[pulumi.Input['GooglePrivacyDlpV2JobNotificationEmailsArgs']] = None, pub_sub: Optional[pulumi.Input['GooglePrivacyDlpV2PublishToPubSubArgs']] = None, publish_findings_to_cloud_data_catalog: Optional[pulumi.Input['GooglePrivacyDlpV2PublishFindingsToCloudDataCatalogArgs']] = None, publish_summary_to_cscc: Optional[pulumi.Input['GooglePrivacyDlpV2PublishSummaryToCsccArgs']] = None, publish_to_stackdriver: Optional[pulumi.Input['GooglePrivacyDlpV2PublishToStackdriverArgs']] = None, save_findings: Optional[pulumi.Input['GooglePrivacyDlpV2SaveFindingsArgs']] = None): """ A task to execute on the completion of a job. See https://cloud.google.com/dlp/docs/concepts-actions to learn more. :param pulumi.Input['GooglePrivacyDlpV2JobNotificationEmailsArgs'] job_notification_emails: Enable email notification for project owners and editors on job's completion/failure. :param pulumi.Input['GooglePrivacyDlpV2PublishToPubSubArgs'] pub_sub: Publish a notification to a pubsub topic. :param pulumi.Input['GooglePrivacyDlpV2PublishFindingsToCloudDataCatalogArgs'] publish_findings_to_cloud_data_catalog: Publish findings to Cloud Datahub. :param pulumi.Input['GooglePrivacyDlpV2PublishSummaryToCsccArgs'] publish_summary_to_cscc: Publish summary to Cloud Security Command Center (Alpha). :param pulumi.Input['GooglePrivacyDlpV2PublishToStackdriverArgs'] publish_to_stackdriver: Enable Stackdriver metric dlp.googleapis.com/finding_count. :param pulumi.Input['GooglePrivacyDlpV2SaveFindingsArgs'] save_findings: Save resulting findings in a provided location. """ if job_notification_emails is not None: pulumi.set(__self__, "job_notification_emails", job_notification_emails) if pub_sub is not None: pulumi.set(__self__, "pub_sub", pub_sub) if publish_findings_to_cloud_data_catalog is not None: pulumi.set(__self__, "publish_findings_to_cloud_data_catalog", publish_findings_to_cloud_data_catalog) if publish_summary_to_cscc is not None: pulumi.set(__self__, "publish_summary_to_cscc", publish_summary_to_cscc) if publish_to_stackdriver is not None: pulumi.set(__self__, "publish_to_stackdriver", publish_to_stackdriver) if save_findings is not None: pulumi.set(__self__, "save_findings", save_findings) @property @pulumi.getter(name="jobNotificationEmails") def job_notification_emails(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2JobNotificationEmailsArgs']]: """ Enable email notification for project owners and editors on job's completion/failure. """ return pulumi.get(self, "job_notification_emails") @job_notification_emails.setter def job_notification_emails(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2JobNotificationEmailsArgs']]): pulumi.set(self, "job_notification_emails", value) @property @pulumi.getter(name="pubSub") def pub_sub(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PublishToPubSubArgs']]: """ Publish a notification to a pubsub topic. """ return pulumi.get(self, "pub_sub") @pub_sub.setter def pub_sub(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PublishToPubSubArgs']]): pulumi.set(self, "pub_sub", value) @property @pulumi.getter(name="publishFindingsToCloudDataCatalog") def publish_findings_to_cloud_data_catalog(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PublishFindingsToCloudDataCatalogArgs']]: """ Publish findings to Cloud Datahub. """ return pulumi.get(self, "publish_findings_to_cloud_data_catalog") @publish_findings_to_cloud_data_catalog.setter def publish_findings_to_cloud_data_catalog(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PublishFindingsToCloudDataCatalogArgs']]): pulumi.set(self, "publish_findings_to_cloud_data_catalog", value) @property @pulumi.getter(name="publishSummaryToCscc") def publish_summary_to_cscc(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PublishSummaryToCsccArgs']]: """ Publish summary to Cloud Security Command Center (Alpha). """ return pulumi.get(self, "publish_summary_to_cscc") @publish_summary_to_cscc.setter def publish_summary_to_cscc(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PublishSummaryToCsccArgs']]): pulumi.set(self, "publish_summary_to_cscc", value) @property @pulumi.getter(name="publishToStackdriver") def publish_to_stackdriver(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PublishToStackdriverArgs']]: """ Enable Stackdriver metric dlp.googleapis.com/finding_count. """ return pulumi.get(self, "publish_to_stackdriver") @publish_to_stackdriver.setter def publish_to_stackdriver(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PublishToStackdriverArgs']]): pulumi.set(self, "publish_to_stackdriver", value) @property @pulumi.getter(name="saveFindings") def save_findings(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2SaveFindingsArgs']]: """ Save resulting findings in a provided location. """ return pulumi.get(self, "save_findings") @save_findings.setter def save_findings(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2SaveFindingsArgs']]): pulumi.set(self, "save_findings", value) @pulumi.input_type class GooglePrivacyDlpV2AuxiliaryTableArgs: def __init__(__self__, *, quasi_ids: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdFieldArgs']]], relative_frequency: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'], table: pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']): """ An auxiliary table contains statistical information on the relative frequency of different quasi-identifiers values. It has one or several quasi-identifiers columns, and one column that indicates the relative frequency of each quasi-identifier tuple. If a tuple is present in the data but not in the auxiliary table, the corresponding relative frequency is assumed to be zero (and thus, the tuple is highly reidentifiable). :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdFieldArgs']]] quasi_ids: Quasi-identifier columns. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] relative_frequency: The relative frequency column must contain a floating-point number between 0 and 1 (inclusive). Null values are assumed to be zero. :param pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs'] table: Auxiliary table location. """ pulumi.set(__self__, "quasi_ids", quasi_ids) pulumi.set(__self__, "relative_frequency", relative_frequency) pulumi.set(__self__, "table", table) @property @pulumi.getter(name="quasiIds") def quasi_ids(self) -> pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdFieldArgs']]]: """ Quasi-identifier columns. """ return pulumi.get(self, "quasi_ids") @quasi_ids.setter def quasi_ids(self, value: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdFieldArgs']]]): pulumi.set(self, "quasi_ids", value) @property @pulumi.getter(name="relativeFrequency") def relative_frequency(self) -> pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']: """ The relative frequency column must contain a floating-point number between 0 and 1 (inclusive). Null values are assumed to be zero. """ return pulumi.get(self, "relative_frequency") @relative_frequency.setter def relative_frequency(self, value: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']): pulumi.set(self, "relative_frequency", value) @property @pulumi.getter def table(self) -> pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']: """ Auxiliary table location. """ return pulumi.get(self, "table") @table.setter def table(self, value: pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']): pulumi.set(self, "table", value) @pulumi.input_type class GooglePrivacyDlpV2BigQueryFieldArgs: def __init__(__self__, *, field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None, table: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']] = None): """ Message defining a field of a BigQuery table. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Designated field in the BigQuery table. :param pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs'] table: Source table of the field. """ if field is not None: pulumi.set(__self__, "field", field) if table is not None: pulumi.set(__self__, "table", table) @property @pulumi.getter def field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Designated field in the BigQuery table. """ return pulumi.get(self, "field") @field.setter def field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "field", value) @property @pulumi.getter def table(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]: """ Source table of the field. """ return pulumi.get(self, "table") @table.setter def table(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]): pulumi.set(self, "table", value) @pulumi.input_type class GooglePrivacyDlpV2BigQueryOptionsArgs: def __init__(__self__, *, excluded_fields: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]] = None, identifying_fields: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]] = None, included_fields: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]] = None, rows_limit: Optional[pulumi.Input[str]] = None, rows_limit_percent: Optional[pulumi.Input[int]] = None, sample_method: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsSampleMethod']] = None, table_reference: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']] = None): """ Options defining BigQuery table and row identifiers. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] excluded_fields: References to fields excluded from scanning. This allows you to skip inspection of entire columns which you know have no findings. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] identifying_fields: Table fields that may uniquely identify a row within the table. When `actions.saveFindings.outputConfig.table` is specified, the values of columns specified here are available in the output table under `location.content_locations.record_location.record_key.id_values`. Nested fields such as `person.birthdate.year` are allowed. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] included_fields: Limit scanning only to these fields. :param pulumi.Input[str] rows_limit: Max number of rows to scan. If the table has more rows than this value, the rest of the rows are omitted. If not set, or if set to 0, all rows will be scanned. Only one of rows_limit and rows_limit_percent can be specified. Cannot be used in conjunction with TimespanConfig. :param pulumi.Input[int] rows_limit_percent: Max percentage of rows to scan. The rest are omitted. The number of rows scanned is rounded down. Must be between 0 and 100, inclusively. Both 0 and 100 means no limit. Defaults to 0. Only one of rows_limit and rows_limit_percent can be specified. Cannot be used in conjunction with TimespanConfig. :param pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs'] table_reference: Complete BigQuery table reference. """ if excluded_fields is not None: pulumi.set(__self__, "excluded_fields", excluded_fields) if identifying_fields is not None: pulumi.set(__self__, "identifying_fields", identifying_fields) if included_fields is not None: pulumi.set(__self__, "included_fields", included_fields) if rows_limit is not None: pulumi.set(__self__, "rows_limit", rows_limit) if rows_limit_percent is not None: pulumi.set(__self__, "rows_limit_percent", rows_limit_percent) if sample_method is not None: pulumi.set(__self__, "sample_method", sample_method) if table_reference is not None: pulumi.set(__self__, "table_reference", table_reference) @property @pulumi.getter(name="excludedFields") def excluded_fields(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]: """ References to fields excluded from scanning. This allows you to skip inspection of entire columns which you know have no findings. """ return pulumi.get(self, "excluded_fields") @excluded_fields.setter def excluded_fields(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]): pulumi.set(self, "excluded_fields", value) @property @pulumi.getter(name="identifyingFields") def identifying_fields(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]: """ Table fields that may uniquely identify a row within the table. When `actions.saveFindings.outputConfig.table` is specified, the values of columns specified here are available in the output table under `location.content_locations.record_location.record_key.id_values`. Nested fields such as `person.birthdate.year` are allowed. """ return pulumi.get(self, "identifying_fields") @identifying_fields.setter def identifying_fields(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]): pulumi.set(self, "identifying_fields", value) @property @pulumi.getter(name="includedFields") def included_fields(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]: """ Limit scanning only to these fields. """ return pulumi.get(self, "included_fields") @included_fields.setter def included_fields(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]): pulumi.set(self, "included_fields", value) @property @pulumi.getter(name="rowsLimit") def rows_limit(self) -> Optional[pulumi.Input[str]]: """ Max number of rows to scan. If the table has more rows than this value, the rest of the rows are omitted. If not set, or if set to 0, all rows will be scanned. Only one of rows_limit and rows_limit_percent can be specified. Cannot be used in conjunction with TimespanConfig. """ return pulumi.get(self, "rows_limit") @rows_limit.setter def rows_limit(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "rows_limit", value) @property @pulumi.getter(name="rowsLimitPercent") def rows_limit_percent(self) -> Optional[pulumi.Input[int]]: """ Max percentage of rows to scan. The rest are omitted. The number of rows scanned is rounded down. Must be between 0 and 100, inclusively. Both 0 and 100 means no limit. Defaults to 0. Only one of rows_limit and rows_limit_percent can be specified. Cannot be used in conjunction with TimespanConfig. """ return pulumi.get(self, "rows_limit_percent") @rows_limit_percent.setter def rows_limit_percent(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "rows_limit_percent", value) @property @pulumi.getter(name="sampleMethod") def sample_method(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsSampleMethod']]: return pulumi.get(self, "sample_method") @sample_method.setter def sample_method(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsSampleMethod']]): pulumi.set(self, "sample_method", value) @property @pulumi.getter(name="tableReference") def table_reference(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]: """ Complete BigQuery table reference. """ return pulumi.get(self, "table_reference") @table_reference.setter def table_reference(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]): pulumi.set(self, "table_reference", value) @pulumi.input_type class GooglePrivacyDlpV2BigQueryTableArgs: def __init__(__self__, *, dataset_id: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None, table_id: Optional[pulumi.Input[str]] = None): """ Message defining the location of a BigQuery table. A table is uniquely identified by its project_id, dataset_id, and table_name. Within a query a table is often referenced with a string in the format of: `:.` or `..`. :param pulumi.Input[str] dataset_id: Dataset ID of the table. :param pulumi.Input[str] project: The Google Cloud Platform project ID of the project containing the table. If omitted, project ID is inferred from the API call. :param pulumi.Input[str] table_id: Name of the table. """ if dataset_id is not None: pulumi.set(__self__, "dataset_id", dataset_id) if project is not None: pulumi.set(__self__, "project", project) if table_id is not None: pulumi.set(__self__, "table_id", table_id) @property @pulumi.getter(name="datasetId") def dataset_id(self) -> Optional[pulumi.Input[str]]: """ Dataset ID of the table. """ return pulumi.get(self, "dataset_id") @dataset_id.setter def dataset_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "dataset_id", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The Google Cloud Platform project ID of the project containing the table. If omitted, project ID is inferred from the API call. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @property @pulumi.getter(name="tableId") def table_id(self) -> Optional[pulumi.Input[str]]: """ Name of the table. """ return pulumi.get(self, "table_id") @table_id.setter def table_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "table_id", value) @pulumi.input_type class GooglePrivacyDlpV2BucketingConfigArgs: def __init__(__self__, *, buckets: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2BucketArgs']]]] = None): """ Generalization function that buckets values based on ranges. The ranges and replacement values are dynamically provided by the user for custom behavior, such as 1-30 -> LOW 31-65 -> MEDIUM 66-100 -> HIGH This can be used on data of type: number, long, string, timestamp. If the bound `Value` type differs from the type of data being transformed, we will first attempt converting the type of the data to be transformed to match the type of the bound before comparing. See https://cloud.google.com/dlp/docs/concepts-bucketing to learn more. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2BucketArgs']]] buckets: Set of buckets. Ranges must be non-overlapping. """ if buckets is not None: pulumi.set(__self__, "buckets", buckets) @property @pulumi.getter def buckets(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2BucketArgs']]]]: """ Set of buckets. Ranges must be non-overlapping. """ return pulumi.get(self, "buckets") @buckets.setter def buckets(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2BucketArgs']]]]): pulumi.set(self, "buckets", value) @pulumi.input_type class GooglePrivacyDlpV2BucketArgs: def __init__(__self__, *, replacement_value: pulumi.Input['GooglePrivacyDlpV2ValueArgs'], max: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']] = None, min: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']] = None): """ Bucket is represented as a range, along with replacement values. :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] replacement_value: Replacement value for this bucket. :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] max: Upper bound of the range, exclusive; type must match min. :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] min: Lower bound of the range, inclusive. Type should be the same as max if used. """ pulumi.set(__self__, "replacement_value", replacement_value) if max is not None: pulumi.set(__self__, "max", max) if min is not None: pulumi.set(__self__, "min", min) @property @pulumi.getter(name="replacementValue") def replacement_value(self) -> pulumi.Input['GooglePrivacyDlpV2ValueArgs']: """ Replacement value for this bucket. """ return pulumi.get(self, "replacement_value") @replacement_value.setter def replacement_value(self, value: pulumi.Input['GooglePrivacyDlpV2ValueArgs']): pulumi.set(self, "replacement_value", value) @property @pulumi.getter def max(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]: """ Upper bound of the range, exclusive; type must match min. """ return pulumi.get(self, "max") @max.setter def max(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]): pulumi.set(self, "max", value) @property @pulumi.getter def min(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]: """ Lower bound of the range, inclusive. Type should be the same as max if used. """ return pulumi.get(self, "min") @min.setter def min(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]): pulumi.set(self, "min", value) @pulumi.input_type class GooglePrivacyDlpV2CategoricalStatsConfigArgs: def __init__(__self__, *, field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ Compute numerical stats over an individual column, including number of distinct values and value count distribution. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Field to compute categorical stats on. All column types are supported except for arrays and structs. However, it may be more informative to use NumericalStats when the field type is supported, depending on the data. """ if field is not None: pulumi.set(__self__, "field", field) @property @pulumi.getter def field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Field to compute categorical stats on. All column types are supported except for arrays and structs. However, it may be more informative to use NumericalStats when the field type is supported, depending on the data. """ return pulumi.get(self, "field") @field.setter def field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "field", value) @pulumi.input_type class GooglePrivacyDlpV2CharacterMaskConfigArgs: def __init__(__self__, *, characters_to_ignore: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreArgs']]]] = None, masking_character: Optional[pulumi.Input[str]] = None, number_to_mask: Optional[pulumi.Input[int]] = None, reverse_order: Optional[pulumi.Input[bool]] = None): """ Partially mask a string by replacing a given number of characters with a fixed character. Masking can start from the beginning or end of the string. This can be used on data of any type (numbers, longs, and so on) and when de-identifying structured data we'll attempt to preserve the original data's type. (This allows you to take a long like 123 and modify it to a string like **3. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreArgs']]] characters_to_ignore: When masking a string, items in this list will be skipped when replacing characters. For example, if the input string is `555-555-5555` and you instruct Cloud DLP to skip `-` and mask 5 characters with `*`, Cloud DLP returns `***-**5-5555`. :param pulumi.Input[str] masking_character: Character to use to mask the sensitive values—for example, `*` for an alphabetic string such as a name, or `0` for a numeric string such as ZIP code or credit card number. This string must have a length of 1. If not supplied, this value defaults to `*` for strings, and `0` for digits. :param pulumi.Input[int] number_to_mask: Number of characters to mask. If not set, all matching chars will be masked. Skipped characters do not count towards this tally. :param pulumi.Input[bool] reverse_order: Mask characters in reverse order. For example, if `masking_character` is `0`, `number_to_mask` is `14`, and `reverse_order` is `false`, then the input string `1234-5678-9012-3456` is masked as `00000000000000-3456`. If `masking_character` is `*`, `number_to_mask` is `3`, and `reverse_order` is `true`, then the string `12345` is masked as `12***`. """ if characters_to_ignore is not None: pulumi.set(__self__, "characters_to_ignore", characters_to_ignore) if masking_character is not None: pulumi.set(__self__, "masking_character", masking_character) if number_to_mask is not None: pulumi.set(__self__, "number_to_mask", number_to_mask) if reverse_order is not None: pulumi.set(__self__, "reverse_order", reverse_order) @property @pulumi.getter(name="charactersToIgnore") def characters_to_ignore(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreArgs']]]]: """ When masking a string, items in this list will be skipped when replacing characters. For example, if the input string is `555-555-5555` and you instruct Cloud DLP to skip `-` and mask 5 characters with `*`, Cloud DLP returns `***-**5-5555`. """ return pulumi.get(self, "characters_to_ignore") @characters_to_ignore.setter def characters_to_ignore(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreArgs']]]]): pulumi.set(self, "characters_to_ignore", value) @property @pulumi.getter(name="maskingCharacter") def masking_character(self) -> Optional[pulumi.Input[str]]: """ Character to use to mask the sensitive values—for example, `*` for an alphabetic string such as a name, or `0` for a numeric string such as ZIP code or credit card number. This string must have a length of 1. If not supplied, this value defaults to `*` for strings, and `0` for digits. """ return pulumi.get(self, "masking_character") @masking_character.setter def masking_character(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "masking_character", value) @property @pulumi.getter(name="numberToMask") def number_to_mask(self) -> Optional[pulumi.Input[int]]: """ Number of characters to mask. If not set, all matching chars will be masked. Skipped characters do not count towards this tally. """ return pulumi.get(self, "number_to_mask") @number_to_mask.setter def number_to_mask(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "number_to_mask", value) @property @pulumi.getter(name="reverseOrder") def reverse_order(self) -> Optional[pulumi.Input[bool]]: """ Mask characters in reverse order. For example, if `masking_character` is `0`, `number_to_mask` is `14`, and `reverse_order` is `false`, then the input string `1234-5678-9012-3456` is masked as `00000000000000-3456`. If `masking_character` is `*`, `number_to_mask` is `3`, and `reverse_order` is `true`, then the string `12345` is masked as `12***`. """ return pulumi.get(self, "reverse_order") @reverse_order.setter def reverse_order(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "reverse_order", value) @pulumi.input_type class GooglePrivacyDlpV2CharsToIgnoreArgs: def __init__(__self__, *, characters_to_skip: Optional[pulumi.Input[str]] = None, common_characters_to_ignore: Optional[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreCommonCharactersToIgnore']] = None): """ Characters to skip when doing deidentification of a value. These will be left alone and skipped. :param pulumi.Input[str] characters_to_skip: Characters to not transform when masking. :param pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreCommonCharactersToIgnore'] common_characters_to_ignore: Common characters to not transform when masking. Useful to avoid removing punctuation. """ if characters_to_skip is not None: pulumi.set(__self__, "characters_to_skip", characters_to_skip) if common_characters_to_ignore is not None: pulumi.set(__self__, "common_characters_to_ignore", common_characters_to_ignore) @property @pulumi.getter(name="charactersToSkip") def characters_to_skip(self) -> Optional[pulumi.Input[str]]: """ Characters to not transform when masking. """ return pulumi.get(self, "characters_to_skip") @characters_to_skip.setter def characters_to_skip(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "characters_to_skip", value) @property @pulumi.getter(name="commonCharactersToIgnore") def common_characters_to_ignore(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreCommonCharactersToIgnore']]: """ Common characters to not transform when masking. Useful to avoid removing punctuation. """ return pulumi.get(self, "common_characters_to_ignore") @common_characters_to_ignore.setter def common_characters_to_ignore(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CharsToIgnoreCommonCharactersToIgnore']]): pulumi.set(self, "common_characters_to_ignore", value) @pulumi.input_type class GooglePrivacyDlpV2CloudStorageFileSetArgs: def __init__(__self__, *, url: Optional[pulumi.Input[str]] = None): """ Message representing a set of files in Cloud Storage. :param pulumi.Input[str] url: The url, in the format `gs:///`. Trailing wildcard in the path is allowed. """ if url is not None: pulumi.set(__self__, "url", url) @property @pulumi.getter def url(self) -> Optional[pulumi.Input[str]]: """ The url, in the format `gs:///`. Trailing wildcard in the path is allowed. """ return pulumi.get(self, "url") @url.setter def url(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "url", value) @pulumi.input_type class GooglePrivacyDlpV2CloudStorageOptionsArgs: def __init__(__self__, *, bytes_limit_per_file: Optional[pulumi.Input[str]] = None, bytes_limit_per_file_percent: Optional[pulumi.Input[int]] = None, file_set: Optional[pulumi.Input['GooglePrivacyDlpV2FileSetArgs']] = None, file_types: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsFileTypesItem']]]] = None, files_limit_percent: Optional[pulumi.Input[int]] = None, sample_method: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsSampleMethod']] = None): """ Options defining a file or a set of files within a Google Cloud Storage bucket. :param pulumi.Input[str] bytes_limit_per_file: Max number of bytes to scan from a file. If a scanned file's size is bigger than this value then the rest of the bytes are omitted. Only one of bytes_limit_per_file and bytes_limit_per_file_percent can be specified. Cannot be set if de-identification is requested. :param pulumi.Input[int] bytes_limit_per_file_percent: Max percentage of bytes to scan from a file. The rest are omitted. The number of bytes scanned is rounded down. Must be between 0 and 100, inclusively. Both 0 and 100 means no limit. Defaults to 0. Only one of bytes_limit_per_file and bytes_limit_per_file_percent can be specified. Cannot be set if de-identification is requested. :param pulumi.Input['GooglePrivacyDlpV2FileSetArgs'] file_set: The set of one or more files to scan. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsFileTypesItem']]] file_types: List of file type groups to include in the scan. If empty, all files are scanned and available data format processors are applied. In addition, the binary content of the selected files is always scanned as well. Images are scanned only as binary if the specified region does not support image inspection and no file_types were specified. Image inspection is restricted to 'global', 'us', 'asia', and 'europe'. :param pulumi.Input[int] files_limit_percent: Limits the number of files to scan to this percentage of the input FileSet. Number of files scanned is rounded down. Must be between 0 and 100, inclusively. Both 0 and 100 means no limit. Defaults to 0. """ if bytes_limit_per_file is not None: pulumi.set(__self__, "bytes_limit_per_file", bytes_limit_per_file) if bytes_limit_per_file_percent is not None: pulumi.set(__self__, "bytes_limit_per_file_percent", bytes_limit_per_file_percent) if file_set is not None: pulumi.set(__self__, "file_set", file_set) if file_types is not None: pulumi.set(__self__, "file_types", file_types) if files_limit_percent is not None: pulumi.set(__self__, "files_limit_percent", files_limit_percent) if sample_method is not None: pulumi.set(__self__, "sample_method", sample_method) @property @pulumi.getter(name="bytesLimitPerFile") def bytes_limit_per_file(self) -> Optional[pulumi.Input[str]]: """ Max number of bytes to scan from a file. If a scanned file's size is bigger than this value then the rest of the bytes are omitted. Only one of bytes_limit_per_file and bytes_limit_per_file_percent can be specified. Cannot be set if de-identification is requested. """ return pulumi.get(self, "bytes_limit_per_file") @bytes_limit_per_file.setter def bytes_limit_per_file(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "bytes_limit_per_file", value) @property @pulumi.getter(name="bytesLimitPerFilePercent") def bytes_limit_per_file_percent(self) -> Optional[pulumi.Input[int]]: """ Max percentage of bytes to scan from a file. The rest are omitted. The number of bytes scanned is rounded down. Must be between 0 and 100, inclusively. Both 0 and 100 means no limit. Defaults to 0. Only one of bytes_limit_per_file and bytes_limit_per_file_percent can be specified. Cannot be set if de-identification is requested. """ return pulumi.get(self, "bytes_limit_per_file_percent") @bytes_limit_per_file_percent.setter def bytes_limit_per_file_percent(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "bytes_limit_per_file_percent", value) @property @pulumi.getter(name="fileSet") def file_set(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FileSetArgs']]: """ The set of one or more files to scan. """ return pulumi.get(self, "file_set") @file_set.setter def file_set(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FileSetArgs']]): pulumi.set(self, "file_set", value) @property @pulumi.getter(name="fileTypes") def file_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsFileTypesItem']]]]: """ List of file type groups to include in the scan. If empty, all files are scanned and available data format processors are applied. In addition, the binary content of the selected files is always scanned as well. Images are scanned only as binary if the specified region does not support image inspection and no file_types were specified. Image inspection is restricted to 'global', 'us', 'asia', and 'europe'. """ return pulumi.get(self, "file_types") @file_types.setter def file_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsFileTypesItem']]]]): pulumi.set(self, "file_types", value) @property @pulumi.getter(name="filesLimitPercent") def files_limit_percent(self) -> Optional[pulumi.Input[int]]: """ Limits the number of files to scan to this percentage of the input FileSet. Number of files scanned is rounded down. Must be between 0 and 100, inclusively. Both 0 and 100 means no limit. Defaults to 0. """ return pulumi.get(self, "files_limit_percent") @files_limit_percent.setter def files_limit_percent(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "files_limit_percent", value) @property @pulumi.getter(name="sampleMethod") def sample_method(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsSampleMethod']]: return pulumi.get(self, "sample_method") @sample_method.setter def sample_method(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsSampleMethod']]): pulumi.set(self, "sample_method", value) @pulumi.input_type class GooglePrivacyDlpV2CloudStoragePathArgs: def __init__(__self__, *, path: Optional[pulumi.Input[str]] = None): """ Message representing a single file or path in Cloud Storage. :param pulumi.Input[str] path: A url representing a file or path (no wildcards) in Cloud Storage. Example: gs://[BUCKET_NAME]/dictionary.txt """ if path is not None: pulumi.set(__self__, "path", path) @property @pulumi.getter def path(self) -> Optional[pulumi.Input[str]]: """ A url representing a file or path (no wildcards) in Cloud Storage. Example: gs://[BUCKET_NAME]/dictionary.txt """ return pulumi.get(self, "path") @path.setter def path(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "path", value) @pulumi.input_type class GooglePrivacyDlpV2CloudStorageRegexFileSetArgs: def __init__(__self__, *, bucket_name: Optional[pulumi.Input[str]] = None, exclude_regex: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, include_regex: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ Message representing a set of files in a Cloud Storage bucket. Regular expressions are used to allow fine-grained control over which files in the bucket to include. Included files are those that match at least one item in `include_regex` and do not match any items in `exclude_regex`. Note that a file that matches items from both lists will _not_ be included. For a match to occur, the entire file path (i.e., everything in the url after the bucket name) must match the regular expression. For example, given the input `{bucket_name: "mybucket", include_regex: ["directory1/.*"], exclude_regex: ["directory1/excluded.*"]}`: * `gs://mybucket/directory1/myfile` will be included * `gs://mybucket/directory1/directory2/myfile` will be included (`.*` matches across `/`) * `gs://mybucket/directory0/directory1/myfile` will _not_ be included (the full path doesn't match any items in `include_regex`) * `gs://mybucket/directory1/excludedfile` will _not_ be included (the path matches an item in `exclude_regex`) If `include_regex` is left empty, it will match all files by default (this is equivalent to setting `include_regex: [".*"]`). Some other common use cases: * `{bucket_name: "mybucket", exclude_regex: [".*\.pdf"]}` will include all files in `mybucket` except for .pdf files * `{bucket_name: "mybucket", include_regex: ["directory/[^/]+"]}` will include all files directly under `gs://mybucket/directory/`, without matching across `/` :param pulumi.Input[str] bucket_name: The name of a Cloud Storage bucket. Required. :param pulumi.Input[Sequence[pulumi.Input[str]]] exclude_regex: A list of regular expressions matching file paths to exclude. All files in the bucket that match at least one of these regular expressions will be excluded from the scan. Regular expressions use RE2 [syntax](https://github.com/google/re2/wiki/Syntax); a guide can be found under the google/re2 repository on GitHub. :param pulumi.Input[Sequence[pulumi.Input[str]]] include_regex: A list of regular expressions matching file paths to include. All files in the bucket that match at least one of these regular expressions will be included in the set of files, except for those that also match an item in `exclude_regex`. Leaving this field empty will match all files by default (this is equivalent to including `.*` in the list). Regular expressions use RE2 [syntax](https://github.com/google/re2/wiki/Syntax); a guide can be found under the google/re2 repository on GitHub. """ if bucket_name is not None: pulumi.set(__self__, "bucket_name", bucket_name) if exclude_regex is not None: pulumi.set(__self__, "exclude_regex", exclude_regex) if include_regex is not None: pulumi.set(__self__, "include_regex", include_regex) @property @pulumi.getter(name="bucketName") def bucket_name(self) -> Optional[pulumi.Input[str]]: """ The name of a Cloud Storage bucket. Required. """ return pulumi.get(self, "bucket_name") @bucket_name.setter def bucket_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "bucket_name", value) @property @pulumi.getter(name="excludeRegex") def exclude_regex(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of regular expressions matching file paths to exclude. All files in the bucket that match at least one of these regular expressions will be excluded from the scan. Regular expressions use RE2 [syntax](https://github.com/google/re2/wiki/Syntax); a guide can be found under the google/re2 repository on GitHub. """ return pulumi.get(self, "exclude_regex") @exclude_regex.setter def exclude_regex(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "exclude_regex", value) @property @pulumi.getter(name="includeRegex") def include_regex(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of regular expressions matching file paths to include. All files in the bucket that match at least one of these regular expressions will be included in the set of files, except for those that also match an item in `exclude_regex`. Leaving this field empty will match all files by default (this is equivalent to including `.*` in the list). Regular expressions use RE2 [syntax](https://github.com/google/re2/wiki/Syntax); a guide can be found under the google/re2 repository on GitHub. """ return pulumi.get(self, "include_regex") @include_regex.setter def include_regex(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "include_regex", value) @pulumi.input_type class GooglePrivacyDlpV2ConditionsArgs: def __init__(__self__, *, conditions: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ConditionArgs']]]] = None): """ A collection of conditions. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ConditionArgs']]] conditions: A collection of conditions. """ if conditions is not None: pulumi.set(__self__, "conditions", conditions) @property @pulumi.getter def conditions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ConditionArgs']]]]: """ A collection of conditions. """ return pulumi.get(self, "conditions") @conditions.setter def conditions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ConditionArgs']]]]): pulumi.set(self, "conditions", value) @pulumi.input_type class GooglePrivacyDlpV2ConditionArgs: def __init__(__self__, *, field: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'], operator: pulumi.Input['GooglePrivacyDlpV2ConditionOperator'], value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']] = None): """ The field type of `value` and `field` do not need to match to be considered equal, but not all comparisons are possible. EQUAL_TO and NOT_EQUAL_TO attempt to compare even with incompatible types, but all other comparisons are invalid with incompatible types. A `value` of type: - `string` can be compared against all other types - `boolean` can only be compared against other booleans - `integer` can be compared against doubles or a string if the string value can be parsed as an integer. - `double` can be compared against integers or a string if the string can be parsed as a double. - `Timestamp` can be compared against strings in RFC 3339 date string format. - `TimeOfDay` can be compared against timestamps and strings in the format of 'HH:mm:ss'. If we fail to compare do to type mismatch, a warning will be given and the condition will evaluate to false. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Field within the record this condition is evaluated against. :param pulumi.Input['GooglePrivacyDlpV2ConditionOperator'] operator: Operator used to compare the field or infoType to the value. :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] value: Value to compare against. [Mandatory, except for `EXISTS` tests.] """ pulumi.set(__self__, "field", field) pulumi.set(__self__, "operator", operator) if value is not None: pulumi.set(__self__, "value", value) @property @pulumi.getter def field(self) -> pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']: """ Field within the record this condition is evaluated against. """ return pulumi.get(self, "field") @field.setter def field(self, value: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']): pulumi.set(self, "field", value) @property @pulumi.getter def operator(self) -> pulumi.Input['GooglePrivacyDlpV2ConditionOperator']: """ Operator used to compare the field or infoType to the value. """ return pulumi.get(self, "operator") @operator.setter def operator(self, value: pulumi.Input['GooglePrivacyDlpV2ConditionOperator']): pulumi.set(self, "operator", value) @property @pulumi.getter def value(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]: """ Value to compare against. [Mandatory, except for `EXISTS` tests.] """ return pulumi.get(self, "value") @value.setter def value(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]): pulumi.set(self, "value", value) @pulumi.input_type class GooglePrivacyDlpV2CryptoDeterministicConfigArgs: def __init__(__self__, *, context: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None, crypto_key: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']] = None, surrogate_info_type: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']] = None): """ Pseudonymization method that generates deterministic encryption for the given input. Outputs a base64 encoded representation of the encrypted output. Uses AES-SIV based on the RFC https://tools.ietf.org/html/rfc5297. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] context: A context may be used for higher security and maintaining referential integrity such that the same identifier in two different contexts will be given a distinct surrogate. The context is appended to plaintext value being encrypted. On decryption the provided context is validated against the value used during encryption. If a context was provided during encryption, same context must be provided during decryption as well. If the context is not set, plaintext would be used as is for encryption. If the context is set but: 1. there is no record present when transforming a given value or 2. the field is not present when transforming a given value, plaintext would be used as is for encryption. Note that case (1) is expected when an `InfoTypeTransformation` is applied to both structured and non-structured `ContentItem`s. :param pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs'] crypto_key: The key used by the encryption function. For deterministic encryption using AES-SIV, the provided key is internally expanded to 64 bytes prior to use. :param pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs'] surrogate_info_type: The custom info type to annotate the surrogate with. This annotation will be applied to the surrogate by prefixing it with the name of the custom info type followed by the number of characters comprising the surrogate. The following scheme defines the format: {info type name}({surrogate character count}):{surrogate} For example, if the name of custom info type is 'MY_TOKEN_INFO_TYPE' and the surrogate is 'abc', the full replacement value will be: 'MY_TOKEN_INFO_TYPE(3):abc' This annotation identifies the surrogate when inspecting content using the custom info type 'Surrogate'. This facilitates reversal of the surrogate when it occurs in free text. Note: For record transformations where the entire cell in a table is being transformed, surrogates are not mandatory. Surrogates are used to denote the location of the token and are necessary for re-identification in free form text. In order for inspection to work properly, the name of this info type must not occur naturally anywhere in your data; otherwise, inspection may either - reverse a surrogate that does not correspond to an actual identifier - be unable to parse the surrogate and result in an error Therefore, choose your custom info type name carefully after considering what your data looks like. One way to select a name that has a high chance of yielding reliable detection is to include one or more unicode characters that are highly improbable to exist in your data. For example, assuming your data is entered from a regular ASCII keyboard, the symbol with the hex code point 29DD might be used like so: ⧝MY_TOKEN_TYPE. """ if context is not None: pulumi.set(__self__, "context", context) if crypto_key is not None: pulumi.set(__self__, "crypto_key", crypto_key) if surrogate_info_type is not None: pulumi.set(__self__, "surrogate_info_type", surrogate_info_type) @property @pulumi.getter def context(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ A context may be used for higher security and maintaining referential integrity such that the same identifier in two different contexts will be given a distinct surrogate. The context is appended to plaintext value being encrypted. On decryption the provided context is validated against the value used during encryption. If a context was provided during encryption, same context must be provided during decryption as well. If the context is not set, plaintext would be used as is for encryption. If the context is set but: 1. there is no record present when transforming a given value or 2. the field is not present when transforming a given value, plaintext would be used as is for encryption. Note that case (1) is expected when an `InfoTypeTransformation` is applied to both structured and non-structured `ContentItem`s. """ return pulumi.get(self, "context") @context.setter def context(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "context", value) @property @pulumi.getter(name="cryptoKey") def crypto_key(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']]: """ The key used by the encryption function. For deterministic encryption using AES-SIV, the provided key is internally expanded to 64 bytes prior to use. """ return pulumi.get(self, "crypto_key") @crypto_key.setter def crypto_key(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']]): pulumi.set(self, "crypto_key", value) @property @pulumi.getter(name="surrogateInfoType") def surrogate_info_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]: """ The custom info type to annotate the surrogate with. This annotation will be applied to the surrogate by prefixing it with the name of the custom info type followed by the number of characters comprising the surrogate. The following scheme defines the format: {info type name}({surrogate character count}):{surrogate} For example, if the name of custom info type is 'MY_TOKEN_INFO_TYPE' and the surrogate is 'abc', the full replacement value will be: 'MY_TOKEN_INFO_TYPE(3):abc' This annotation identifies the surrogate when inspecting content using the custom info type 'Surrogate'. This facilitates reversal of the surrogate when it occurs in free text. Note: For record transformations where the entire cell in a table is being transformed, surrogates are not mandatory. Surrogates are used to denote the location of the token and are necessary for re-identification in free form text. In order for inspection to work properly, the name of this info type must not occur naturally anywhere in your data; otherwise, inspection may either - reverse a surrogate that does not correspond to an actual identifier - be unable to parse the surrogate and result in an error Therefore, choose your custom info type name carefully after considering what your data looks like. One way to select a name that has a high chance of yielding reliable detection is to include one or more unicode characters that are highly improbable to exist in your data. For example, assuming your data is entered from a regular ASCII keyboard, the symbol with the hex code point 29DD might be used like so: ⧝MY_TOKEN_TYPE. """ return pulumi.get(self, "surrogate_info_type") @surrogate_info_type.setter def surrogate_info_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]): pulumi.set(self, "surrogate_info_type", value) @pulumi.input_type class GooglePrivacyDlpV2CryptoHashConfigArgs: def __init__(__self__, *, crypto_key: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']] = None): """ Pseudonymization method that generates surrogates via cryptographic hashing. Uses SHA-256. The key size must be either 32 or 64 bytes. Outputs a base64 encoded representation of the hashed output (for example, L7k0BHmF1ha5U3NfGykjro4xWi1MPVQPjhMAZbSV9mM=). Currently, only string and integer values can be hashed. See https://cloud.google.com/dlp/docs/pseudonymization to learn more. :param pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs'] crypto_key: The key used by the hash function. """ if crypto_key is not None: pulumi.set(__self__, "crypto_key", crypto_key) @property @pulumi.getter(name="cryptoKey") def crypto_key(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']]: """ The key used by the hash function. """ return pulumi.get(self, "crypto_key") @crypto_key.setter def crypto_key(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']]): pulumi.set(self, "crypto_key", value) @pulumi.input_type class GooglePrivacyDlpV2CryptoKeyArgs: def __init__(__self__, *, kms_wrapped: Optional[pulumi.Input['GooglePrivacyDlpV2KmsWrappedCryptoKeyArgs']] = None, transient: Optional[pulumi.Input['GooglePrivacyDlpV2TransientCryptoKeyArgs']] = None, unwrapped: Optional[pulumi.Input['GooglePrivacyDlpV2UnwrappedCryptoKeyArgs']] = None): """ This is a data encryption key (DEK) (as opposed to a key encryption key (KEK) stored by Cloud Key Management Service (Cloud KMS). When using Cloud KMS to wrap or unwrap a DEK, be sure to set an appropriate IAM policy on the KEK to ensure an attacker cannot unwrap the DEK. :param pulumi.Input['GooglePrivacyDlpV2KmsWrappedCryptoKeyArgs'] kms_wrapped: Key wrapped using Cloud KMS :param pulumi.Input['GooglePrivacyDlpV2TransientCryptoKeyArgs'] transient: Transient crypto key :param pulumi.Input['GooglePrivacyDlpV2UnwrappedCryptoKeyArgs'] unwrapped: Unwrapped crypto key """ if kms_wrapped is not None: pulumi.set(__self__, "kms_wrapped", kms_wrapped) if transient is not None: pulumi.set(__self__, "transient", transient) if unwrapped is not None: pulumi.set(__self__, "unwrapped", unwrapped) @property @pulumi.getter(name="kmsWrapped") def kms_wrapped(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2KmsWrappedCryptoKeyArgs']]: """ Key wrapped using Cloud KMS """ return pulumi.get(self, "kms_wrapped") @kms_wrapped.setter def kms_wrapped(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2KmsWrappedCryptoKeyArgs']]): pulumi.set(self, "kms_wrapped", value) @property @pulumi.getter def transient(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2TransientCryptoKeyArgs']]: """ Transient crypto key """ return pulumi.get(self, "transient") @transient.setter def transient(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2TransientCryptoKeyArgs']]): pulumi.set(self, "transient", value) @property @pulumi.getter def unwrapped(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2UnwrappedCryptoKeyArgs']]: """ Unwrapped crypto key """ return pulumi.get(self, "unwrapped") @unwrapped.setter def unwrapped(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2UnwrappedCryptoKeyArgs']]): pulumi.set(self, "unwrapped", value) @pulumi.input_type class GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigArgs: def __init__(__self__, *, crypto_key: pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs'], common_alphabet: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigCommonAlphabet']] = None, context: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None, custom_alphabet: Optional[pulumi.Input[str]] = None, radix: Optional[pulumi.Input[int]] = None, surrogate_info_type: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']] = None): """ Replaces an identifier with a surrogate using Format Preserving Encryption (FPE) with the FFX mode of operation; however when used in the `ReidentifyContent` API method, it serves the opposite function by reversing the surrogate back into the original identifier. The identifier must be encoded as ASCII. For a given crypto key and context, the same identifier will be replaced with the same surrogate. Identifiers must be at least two characters long. In the case that the identifier is the empty string, it will be skipped. See https://cloud.google.com/dlp/docs/pseudonymization to learn more. Note: We recommend using CryptoDeterministicConfig for all use cases which do not require preserving the input alphabet space and size, plus warrant referential integrity. :param pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs'] crypto_key: The key used by the encryption algorithm. :param pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigCommonAlphabet'] common_alphabet: Common alphabets. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] context: The 'tweak', a context may be used for higher security since the same identifier in two different contexts won't be given the same surrogate. If the context is not set, a default tweak will be used. If the context is set but: 1. there is no record present when transforming a given value or 1. the field is not present when transforming a given value, a default tweak will be used. Note that case (1) is expected when an `InfoTypeTransformation` is applied to both structured and non-structured `ContentItem`s. Currently, the referenced field may be of value type integer or string. The tweak is constructed as a sequence of bytes in big endian byte order such that: - a 64 bit integer is encoded followed by a single byte of value 1 - a string is encoded in UTF-8 format followed by a single byte of value 2 :param pulumi.Input[str] custom_alphabet: This is supported by mapping these to the alphanumeric characters that the FFX mode natively supports. This happens before/after encryption/decryption. Each character listed must appear only once. Number of characters must be in the range [2, 95]. This must be encoded as ASCII. The order of characters does not matter. The full list of allowed characters is: 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ~`!@#$%^&*()_-+={[}]|\:;"'<,>.?/ :param pulumi.Input[int] radix: The native way to select the alphabet. Must be in the range [2, 95]. :param pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs'] surrogate_info_type: The custom infoType to annotate the surrogate with. This annotation will be applied to the surrogate by prefixing it with the name of the custom infoType followed by the number of characters comprising the surrogate. The following scheme defines the format: info_type_name(surrogate_character_count):surrogate For example, if the name of custom infoType is 'MY_TOKEN_INFO_TYPE' and the surrogate is 'abc', the full replacement value will be: 'MY_TOKEN_INFO_TYPE(3):abc' This annotation identifies the surrogate when inspecting content using the custom infoType [`SurrogateType`](https://cloud.google.com/dlp/docs/reference/rest/v2/InspectConfig#surrogatetype). This facilitates reversal of the surrogate when it occurs in free text. In order for inspection to work properly, the name of this infoType must not occur naturally anywhere in your data; otherwise, inspection may find a surrogate that does not correspond to an actual identifier. Therefore, choose your custom infoType name carefully after considering what your data looks like. One way to select a name that has a high chance of yielding reliable detection is to include one or more unicode characters that are highly improbable to exist in your data. For example, assuming your data is entered from a regular ASCII keyboard, the symbol with the hex code point 29DD might be used like so: ⧝MY_TOKEN_TYPE """ pulumi.set(__self__, "crypto_key", crypto_key) if common_alphabet is not None: pulumi.set(__self__, "common_alphabet", common_alphabet) if context is not None: pulumi.set(__self__, "context", context) if custom_alphabet is not None: pulumi.set(__self__, "custom_alphabet", custom_alphabet) if radix is not None: pulumi.set(__self__, "radix", radix) if surrogate_info_type is not None: pulumi.set(__self__, "surrogate_info_type", surrogate_info_type) @property @pulumi.getter(name="cryptoKey") def crypto_key(self) -> pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']: """ The key used by the encryption algorithm. """ return pulumi.get(self, "crypto_key") @crypto_key.setter def crypto_key(self, value: pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']): pulumi.set(self, "crypto_key", value) @property @pulumi.getter(name="commonAlphabet") def common_alphabet(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigCommonAlphabet']]: """ Common alphabets. """ return pulumi.get(self, "common_alphabet") @common_alphabet.setter def common_alphabet(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigCommonAlphabet']]): pulumi.set(self, "common_alphabet", value) @property @pulumi.getter def context(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ The 'tweak', a context may be used for higher security since the same identifier in two different contexts won't be given the same surrogate. If the context is not set, a default tweak will be used. If the context is set but: 1. there is no record present when transforming a given value or 1. the field is not present when transforming a given value, a default tweak will be used. Note that case (1) is expected when an `InfoTypeTransformation` is applied to both structured and non-structured `ContentItem`s. Currently, the referenced field may be of value type integer or string. The tweak is constructed as a sequence of bytes in big endian byte order such that: - a 64 bit integer is encoded followed by a single byte of value 1 - a string is encoded in UTF-8 format followed by a single byte of value 2 """ return pulumi.get(self, "context") @context.setter def context(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "context", value) @property @pulumi.getter(name="customAlphabet") def custom_alphabet(self) -> Optional[pulumi.Input[str]]: """ This is supported by mapping these to the alphanumeric characters that the FFX mode natively supports. This happens before/after encryption/decryption. Each character listed must appear only once. Number of characters must be in the range [2, 95]. This must be encoded as ASCII. The order of characters does not matter. The full list of allowed characters is: 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ~`!@#$%^&*()_-+={[}]|\:;"'<,>.?/ """ return pulumi.get(self, "custom_alphabet") @custom_alphabet.setter def custom_alphabet(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "custom_alphabet", value) @property @pulumi.getter def radix(self) -> Optional[pulumi.Input[int]]: """ The native way to select the alphabet. Must be in the range [2, 95]. """ return pulumi.get(self, "radix") @radix.setter def radix(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "radix", value) @property @pulumi.getter(name="surrogateInfoType") def surrogate_info_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]: """ The custom infoType to annotate the surrogate with. This annotation will be applied to the surrogate by prefixing it with the name of the custom infoType followed by the number of characters comprising the surrogate. The following scheme defines the format: info_type_name(surrogate_character_count):surrogate For example, if the name of custom infoType is 'MY_TOKEN_INFO_TYPE' and the surrogate is 'abc', the full replacement value will be: 'MY_TOKEN_INFO_TYPE(3):abc' This annotation identifies the surrogate when inspecting content using the custom infoType [`SurrogateType`](https://cloud.google.com/dlp/docs/reference/rest/v2/InspectConfig#surrogatetype). This facilitates reversal of the surrogate when it occurs in free text. In order for inspection to work properly, the name of this infoType must not occur naturally anywhere in your data; otherwise, inspection may find a surrogate that does not correspond to an actual identifier. Therefore, choose your custom infoType name carefully after considering what your data looks like. One way to select a name that has a high chance of yielding reliable detection is to include one or more unicode characters that are highly improbable to exist in your data. For example, assuming your data is entered from a regular ASCII keyboard, the symbol with the hex code point 29DD might be used like so: ⧝MY_TOKEN_TYPE """ return pulumi.get(self, "surrogate_info_type") @surrogate_info_type.setter def surrogate_info_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]): pulumi.set(self, "surrogate_info_type", value) @pulumi.input_type class GooglePrivacyDlpV2CustomInfoTypeArgs: def __init__(__self__, *, detection_rules: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2DetectionRuleArgs']]]] = None, dictionary: Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']] = None, exclusion_type: Optional[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeExclusionType']] = None, info_type: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']] = None, likelihood: Optional[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeLikelihood']] = None, regex: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']] = None, stored_type: Optional[pulumi.Input['GooglePrivacyDlpV2StoredTypeArgs']] = None, surrogate_type: Optional[pulumi.Input['GooglePrivacyDlpV2SurrogateTypeArgs']] = None): """ Custom information type provided by the user. Used to find domain-specific sensitive information configurable to the data in question. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2DetectionRuleArgs']]] detection_rules: Set of detection rules to apply to all findings of this CustomInfoType. Rules are applied in order that they are specified. Not supported for the `surrogate_type` CustomInfoType. :param pulumi.Input['GooglePrivacyDlpV2DictionaryArgs'] dictionary: A list of phrases to detect as a CustomInfoType. :param pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeExclusionType'] exclusion_type: If set to EXCLUSION_TYPE_EXCLUDE this infoType will not cause a finding to be returned. It still can be used for rules matching. :param pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs'] info_type: CustomInfoType can either be a new infoType, or an extension of built-in infoType, when the name matches one of existing infoTypes and that infoType is specified in `InspectContent.info_types` field. Specifying the latter adds findings to the one detected by the system. If built-in info type is not specified in `InspectContent.info_types` list then the name is treated as a custom info type. :param pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeLikelihood'] likelihood: Likelihood to return for this CustomInfoType. This base value can be altered by a detection rule if the finding meets the criteria specified by the rule. Defaults to `VERY_LIKELY` if not specified. :param pulumi.Input['GooglePrivacyDlpV2RegexArgs'] regex: Regular expression based CustomInfoType. :param pulumi.Input['GooglePrivacyDlpV2StoredTypeArgs'] stored_type: Load an existing `StoredInfoType` resource for use in `InspectDataSource`. Not currently supported in `InspectContent`. :param pulumi.Input['GooglePrivacyDlpV2SurrogateTypeArgs'] surrogate_type: Message for detecting output from deidentification transformations that support reversing. """ if detection_rules is not None: pulumi.set(__self__, "detection_rules", detection_rules) if dictionary is not None: pulumi.set(__self__, "dictionary", dictionary) if exclusion_type is not None: pulumi.set(__self__, "exclusion_type", exclusion_type) if info_type is not None: pulumi.set(__self__, "info_type", info_type) if likelihood is not None: pulumi.set(__self__, "likelihood", likelihood) if regex is not None: pulumi.set(__self__, "regex", regex) if stored_type is not None: pulumi.set(__self__, "stored_type", stored_type) if surrogate_type is not None: pulumi.set(__self__, "surrogate_type", surrogate_type) @property @pulumi.getter(name="detectionRules") def detection_rules(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2DetectionRuleArgs']]]]: """ Set of detection rules to apply to all findings of this CustomInfoType. Rules are applied in order that they are specified. Not supported for the `surrogate_type` CustomInfoType. """ return pulumi.get(self, "detection_rules") @detection_rules.setter def detection_rules(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2DetectionRuleArgs']]]]): pulumi.set(self, "detection_rules", value) @property @pulumi.getter def dictionary(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']]: """ A list of phrases to detect as a CustomInfoType. """ return pulumi.get(self, "dictionary") @dictionary.setter def dictionary(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']]): pulumi.set(self, "dictionary", value) @property @pulumi.getter(name="exclusionType") def exclusion_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeExclusionType']]: """ If set to EXCLUSION_TYPE_EXCLUDE this infoType will not cause a finding to be returned. It still can be used for rules matching. """ return pulumi.get(self, "exclusion_type") @exclusion_type.setter def exclusion_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeExclusionType']]): pulumi.set(self, "exclusion_type", value) @property @pulumi.getter(name="infoType") def info_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]: """ CustomInfoType can either be a new infoType, or an extension of built-in infoType, when the name matches one of existing infoTypes and that infoType is specified in `InspectContent.info_types` field. Specifying the latter adds findings to the one detected by the system. If built-in info type is not specified in `InspectContent.info_types` list then the name is treated as a custom info type. """ return pulumi.get(self, "info_type") @info_type.setter def info_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]): pulumi.set(self, "info_type", value) @property @pulumi.getter def likelihood(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeLikelihood']]: """ Likelihood to return for this CustomInfoType. This base value can be altered by a detection rule if the finding meets the criteria specified by the rule. Defaults to `VERY_LIKELY` if not specified. """ return pulumi.get(self, "likelihood") @likelihood.setter def likelihood(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeLikelihood']]): pulumi.set(self, "likelihood", value) @property @pulumi.getter def regex(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]: """ Regular expression based CustomInfoType. """ return pulumi.get(self, "regex") @regex.setter def regex(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]): pulumi.set(self, "regex", value) @property @pulumi.getter(name="storedType") def stored_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2StoredTypeArgs']]: """ Load an existing `StoredInfoType` resource for use in `InspectDataSource`. Not currently supported in `InspectContent`. """ return pulumi.get(self, "stored_type") @stored_type.setter def stored_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2StoredTypeArgs']]): pulumi.set(self, "stored_type", value) @property @pulumi.getter(name="surrogateType") def surrogate_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2SurrogateTypeArgs']]: """ Message for detecting output from deidentification transformations that support reversing. """ return pulumi.get(self, "surrogate_type") @surrogate_type.setter def surrogate_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2SurrogateTypeArgs']]): pulumi.set(self, "surrogate_type", value) @pulumi.input_type class GooglePrivacyDlpV2DatastoreOptionsArgs: def __init__(__self__, *, kind: Optional[pulumi.Input['GooglePrivacyDlpV2KindExpressionArgs']] = None, partition_id: Optional[pulumi.Input['GooglePrivacyDlpV2PartitionIdArgs']] = None): """ Options defining a data set within Google Cloud Datastore. :param pulumi.Input['GooglePrivacyDlpV2KindExpressionArgs'] kind: The kind to process. :param pulumi.Input['GooglePrivacyDlpV2PartitionIdArgs'] partition_id: A partition ID identifies a grouping of entities. The grouping is always by project and namespace, however the namespace ID may be empty. """ if kind is not None: pulumi.set(__self__, "kind", kind) if partition_id is not None: pulumi.set(__self__, "partition_id", partition_id) @property @pulumi.getter def kind(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2KindExpressionArgs']]: """ The kind to process. """ return pulumi.get(self, "kind") @kind.setter def kind(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2KindExpressionArgs']]): pulumi.set(self, "kind", value) @property @pulumi.getter(name="partitionId") def partition_id(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PartitionIdArgs']]: """ A partition ID identifies a grouping of entities. The grouping is always by project and namespace, however the namespace ID may be empty. """ return pulumi.get(self, "partition_id") @partition_id.setter def partition_id(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PartitionIdArgs']]): pulumi.set(self, "partition_id", value) @pulumi.input_type class GooglePrivacyDlpV2DateShiftConfigArgs: def __init__(__self__, *, lower_bound_days: pulumi.Input[int], upper_bound_days: pulumi.Input[int], context: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None, crypto_key: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']] = None): """ Shifts dates by random number of days, with option to be consistent for the same context. See https://cloud.google.com/dlp/docs/concepts-date-shifting to learn more. :param pulumi.Input[int] lower_bound_days: For example, -5 means shift date to at most 5 days back in the past. :param pulumi.Input[int] upper_bound_days: Range of shift in days. Actual shift will be selected at random within this range (inclusive ends). Negative means shift to earlier in time. Must not be more than 365250 days (1000 years) each direction. For example, 3 means shift date to at most 3 days into the future. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] context: Points to the field that contains the context, for example, an entity id. If set, must also set cryptoKey. If set, shift will be consistent for the given context. :param pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs'] crypto_key: Causes the shift to be computed based on this key and the context. This results in the same shift for the same context and crypto_key. If set, must also set context. Can only be applied to table items. """ pulumi.set(__self__, "lower_bound_days", lower_bound_days) pulumi.set(__self__, "upper_bound_days", upper_bound_days) if context is not None: pulumi.set(__self__, "context", context) if crypto_key is not None: pulumi.set(__self__, "crypto_key", crypto_key) @property @pulumi.getter(name="lowerBoundDays") def lower_bound_days(self) -> pulumi.Input[int]: """ For example, -5 means shift date to at most 5 days back in the past. """ return pulumi.get(self, "lower_bound_days") @lower_bound_days.setter def lower_bound_days(self, value: pulumi.Input[int]): pulumi.set(self, "lower_bound_days", value) @property @pulumi.getter(name="upperBoundDays") def upper_bound_days(self) -> pulumi.Input[int]: """ Range of shift in days. Actual shift will be selected at random within this range (inclusive ends). Negative means shift to earlier in time. Must not be more than 365250 days (1000 years) each direction. For example, 3 means shift date to at most 3 days into the future. """ return pulumi.get(self, "upper_bound_days") @upper_bound_days.setter def upper_bound_days(self, value: pulumi.Input[int]): pulumi.set(self, "upper_bound_days", value) @property @pulumi.getter def context(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Points to the field that contains the context, for example, an entity id. If set, must also set cryptoKey. If set, shift will be consistent for the given context. """ return pulumi.get(self, "context") @context.setter def context(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "context", value) @property @pulumi.getter(name="cryptoKey") def crypto_key(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']]: """ Causes the shift to be computed based on this key and the context. This results in the same shift for the same context and crypto_key. If set, must also set context. Can only be applied to table items. """ return pulumi.get(self, "crypto_key") @crypto_key.setter def crypto_key(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoKeyArgs']]): pulumi.set(self, "crypto_key", value) @pulumi.input_type class GooglePrivacyDlpV2DeidentifyConfigArgs: def __init__(__self__, *, info_type_transformations: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs']] = None, record_transformations: Optional[pulumi.Input['GooglePrivacyDlpV2RecordTransformationsArgs']] = None, transformation_error_handling: Optional[pulumi.Input['GooglePrivacyDlpV2TransformationErrorHandlingArgs']] = None): """ The configuration that controls how the data will change. :param pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs'] info_type_transformations: Treat the dataset as free-form text and apply the same free text transformation everywhere. :param pulumi.Input['GooglePrivacyDlpV2RecordTransformationsArgs'] record_transformations: Treat the dataset as structured. Transformations can be applied to specific locations within structured datasets, such as transforming a column within a table. :param pulumi.Input['GooglePrivacyDlpV2TransformationErrorHandlingArgs'] transformation_error_handling: Mode for handling transformation errors. If left unspecified, the default mode is `TransformationErrorHandling.ThrowError`. """ if info_type_transformations is not None: pulumi.set(__self__, "info_type_transformations", info_type_transformations) if record_transformations is not None: pulumi.set(__self__, "record_transformations", record_transformations) if transformation_error_handling is not None: pulumi.set(__self__, "transformation_error_handling", transformation_error_handling) @property @pulumi.getter(name="infoTypeTransformations") def info_type_transformations(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs']]: """ Treat the dataset as free-form text and apply the same free text transformation everywhere. """ return pulumi.get(self, "info_type_transformations") @info_type_transformations.setter def info_type_transformations(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs']]): pulumi.set(self, "info_type_transformations", value) @property @pulumi.getter(name="recordTransformations") def record_transformations(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RecordTransformationsArgs']]: """ Treat the dataset as structured. Transformations can be applied to specific locations within structured datasets, such as transforming a column within a table. """ return pulumi.get(self, "record_transformations") @record_transformations.setter def record_transformations(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RecordTransformationsArgs']]): pulumi.set(self, "record_transformations", value) @property @pulumi.getter(name="transformationErrorHandling") def transformation_error_handling(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2TransformationErrorHandlingArgs']]: """ Mode for handling transformation errors. If left unspecified, the default mode is `TransformationErrorHandling.ThrowError`. """ return pulumi.get(self, "transformation_error_handling") @transformation_error_handling.setter def transformation_error_handling(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2TransformationErrorHandlingArgs']]): pulumi.set(self, "transformation_error_handling", value) @pulumi.input_type class GooglePrivacyDlpV2DeltaPresenceEstimationConfigArgs: def __init__(__self__, *, quasi_ids: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdArgs']]], auxiliary_tables: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2StatisticalTableArgs']]]] = None, region_code: Optional[pulumi.Input[str]] = None): """ δ-presence metric, used to estimate how likely it is for an attacker to figure out that one given individual appears in a de-identified dataset. Similarly to the k-map metric, we cannot compute δ-presence exactly without knowing the attack dataset, so we use a statistical model instead. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdArgs']]] quasi_ids: Fields considered to be quasi-identifiers. No two fields can have the same tag. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2StatisticalTableArgs']]] auxiliary_tables: Several auxiliary tables can be used in the analysis. Each custom_tag used to tag a quasi-identifiers field must appear in exactly one field of one auxiliary table. :param pulumi.Input[str] region_code: ISO 3166-1 alpha-2 region code to use in the statistical modeling. Set if no column is tagged with a region-specific InfoType (like US_ZIP_5) or a region code. """ pulumi.set(__self__, "quasi_ids", quasi_ids) if auxiliary_tables is not None: pulumi.set(__self__, "auxiliary_tables", auxiliary_tables) if region_code is not None: pulumi.set(__self__, "region_code", region_code) @property @pulumi.getter(name="quasiIds") def quasi_ids(self) -> pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdArgs']]]: """ Fields considered to be quasi-identifiers. No two fields can have the same tag. """ return pulumi.get(self, "quasi_ids") @quasi_ids.setter def quasi_ids(self, value: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdArgs']]]): pulumi.set(self, "quasi_ids", value) @property @pulumi.getter(name="auxiliaryTables") def auxiliary_tables(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2StatisticalTableArgs']]]]: """ Several auxiliary tables can be used in the analysis. Each custom_tag used to tag a quasi-identifiers field must appear in exactly one field of one auxiliary table. """ return pulumi.get(self, "auxiliary_tables") @auxiliary_tables.setter def auxiliary_tables(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2StatisticalTableArgs']]]]): pulumi.set(self, "auxiliary_tables", value) @property @pulumi.getter(name="regionCode") def region_code(self) -> Optional[pulumi.Input[str]]: """ ISO 3166-1 alpha-2 region code to use in the statistical modeling. Set if no column is tagged with a region-specific InfoType (like US_ZIP_5) or a region code. """ return pulumi.get(self, "region_code") @region_code.setter def region_code(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region_code", value) @pulumi.input_type class GooglePrivacyDlpV2DetectionRuleArgs: def __init__(__self__, *, hotword_rule: Optional[pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs']] = None): """ Deprecated; use `InspectionRuleSet` instead. Rule for modifying a `CustomInfoType` to alter behavior under certain circumstances, depending on the specific details of the rule. Not supported for the `surrogate_type` custom infoType. :param pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs'] hotword_rule: Hotword-based detection rule. """ if hotword_rule is not None: pulumi.set(__self__, "hotword_rule", hotword_rule) @property @pulumi.getter(name="hotwordRule") def hotword_rule(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs']]: """ Hotword-based detection rule. """ return pulumi.get(self, "hotword_rule") @hotword_rule.setter def hotword_rule(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs']]): pulumi.set(self, "hotword_rule", value) @pulumi.input_type class GooglePrivacyDlpV2DictionaryArgs: def __init__(__self__, *, cloud_storage_path: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs']] = None, word_list: Optional[pulumi.Input['GooglePrivacyDlpV2WordListArgs']] = None): """ Custom information type based on a dictionary of words or phrases. This can be used to match sensitive information specific to the data, such as a list of employee IDs or job titles. Dictionary words are case-insensitive and all characters other than letters and digits in the unicode [Basic Multilingual Plane](https://en.wikipedia.org/wiki/Plane_%28Unicode%29#Basic_Multilingual_Plane) will be replaced with whitespace when scanning for matches, so the dictionary phrase "Sam Johnson" will match all three phrases "sam johnson", "Sam, Johnson", and "Sam (Johnson)". Additionally, the characters surrounding any match must be of a different type than the adjacent characters within the word, so letters must be next to non-letters and digits next to non-digits. For example, the dictionary word "jen" will match the first three letters of the text "jen123" but will return no matches for "jennifer". Dictionary words containing a large number of characters that are not letters or digits may result in unexpected findings because such characters are treated as whitespace. The [limits](https://cloud.google.com/dlp/limits) page contains details about the size limits of dictionaries. For dictionaries that do not fit within these constraints, consider using `LargeCustomDictionaryConfig` in the `StoredInfoType` API. :param pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs'] cloud_storage_path: Newline-delimited file of words in Cloud Storage. Only a single file is accepted. :param pulumi.Input['GooglePrivacyDlpV2WordListArgs'] word_list: List of words or phrases to search for. """ if cloud_storage_path is not None: pulumi.set(__self__, "cloud_storage_path", cloud_storage_path) if word_list is not None: pulumi.set(__self__, "word_list", word_list) @property @pulumi.getter(name="cloudStoragePath") def cloud_storage_path(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs']]: """ Newline-delimited file of words in Cloud Storage. Only a single file is accepted. """ return pulumi.get(self, "cloud_storage_path") @cloud_storage_path.setter def cloud_storage_path(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs']]): pulumi.set(self, "cloud_storage_path", value) @property @pulumi.getter(name="wordList") def word_list(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2WordListArgs']]: """ List of words or phrases to search for. """ return pulumi.get(self, "word_list") @word_list.setter def word_list(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2WordListArgs']]): pulumi.set(self, "word_list", value) @pulumi.input_type class GooglePrivacyDlpV2EntityIdArgs: def __init__(__self__, *, field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ An entity in a dataset is a field or set of fields that correspond to a single person. For example, in medical records the `EntityId` might be a patient identifier, or for financial records it might be an account identifier. This message is used when generalizations or analysis must take into account that multiple rows correspond to the same entity. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Composite key indicating which field contains the entity identifier. """ if field is not None: pulumi.set(__self__, "field", field) @property @pulumi.getter def field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Composite key indicating which field contains the entity identifier. """ return pulumi.get(self, "field") @field.setter def field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "field", value) @pulumi.input_type class GooglePrivacyDlpV2ExcludeInfoTypesArgs: def __init__(__self__, *, info_types: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]] = None): """ List of exclude infoTypes. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]] info_types: InfoType list in ExclusionRule rule drops a finding when it overlaps or contained within with a finding of an infoType from this list. For example, for `InspectionRuleSet.info_types` containing "PHONE_NUMBER"` and `exclusion_rule` containing `exclude_info_types.info_types` with "EMAIL_ADDRESS" the phone number findings are dropped if they overlap with EMAIL_ADDRESS finding. That leads to "[email protected]" to generate only a single finding, namely email address. """ if info_types is not None: pulumi.set(__self__, "info_types", info_types) @property @pulumi.getter(name="infoTypes") def info_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]: """ InfoType list in ExclusionRule rule drops a finding when it overlaps or contained within with a finding of an infoType from this list. For example, for `InspectionRuleSet.info_types` containing "PHONE_NUMBER"` and `exclusion_rule` containing `exclude_info_types.info_types` with "EMAIL_ADDRESS" the phone number findings are dropped if they overlap with EMAIL_ADDRESS finding. That leads to "[email protected]" to generate only a single finding, namely email address. """ return pulumi.get(self, "info_types") @info_types.setter def info_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]): pulumi.set(self, "info_types", value) @pulumi.input_type class GooglePrivacyDlpV2ExclusionRuleArgs: def __init__(__self__, *, dictionary: Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']] = None, exclude_info_types: Optional[pulumi.Input['GooglePrivacyDlpV2ExcludeInfoTypesArgs']] = None, matching_type: Optional[pulumi.Input['GooglePrivacyDlpV2ExclusionRuleMatchingType']] = None, regex: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']] = None): """ The rule that specifies conditions when findings of infoTypes specified in `InspectionRuleSet` are removed from results. :param pulumi.Input['GooglePrivacyDlpV2DictionaryArgs'] dictionary: Dictionary which defines the rule. :param pulumi.Input['GooglePrivacyDlpV2ExcludeInfoTypesArgs'] exclude_info_types: Set of infoTypes for which findings would affect this rule. :param pulumi.Input['GooglePrivacyDlpV2ExclusionRuleMatchingType'] matching_type: How the rule is applied, see MatchingType documentation for details. :param pulumi.Input['GooglePrivacyDlpV2RegexArgs'] regex: Regular expression which defines the rule. """ if dictionary is not None: pulumi.set(__self__, "dictionary", dictionary) if exclude_info_types is not None: pulumi.set(__self__, "exclude_info_types", exclude_info_types) if matching_type is not None: pulumi.set(__self__, "matching_type", matching_type) if regex is not None: pulumi.set(__self__, "regex", regex) @property @pulumi.getter def dictionary(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']]: """ Dictionary which defines the rule. """ return pulumi.get(self, "dictionary") @dictionary.setter def dictionary(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']]): pulumi.set(self, "dictionary", value) @property @pulumi.getter(name="excludeInfoTypes") def exclude_info_types(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ExcludeInfoTypesArgs']]: """ Set of infoTypes for which findings would affect this rule. """ return pulumi.get(self, "exclude_info_types") @exclude_info_types.setter def exclude_info_types(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ExcludeInfoTypesArgs']]): pulumi.set(self, "exclude_info_types", value) @property @pulumi.getter(name="matchingType") def matching_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ExclusionRuleMatchingType']]: """ How the rule is applied, see MatchingType documentation for details. """ return pulumi.get(self, "matching_type") @matching_type.setter def matching_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ExclusionRuleMatchingType']]): pulumi.set(self, "matching_type", value) @property @pulumi.getter def regex(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]: """ Regular expression which defines the rule. """ return pulumi.get(self, "regex") @regex.setter def regex(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]): pulumi.set(self, "regex", value) @pulumi.input_type class GooglePrivacyDlpV2ExpressionsArgs: def __init__(__self__, *, conditions: Optional[pulumi.Input['GooglePrivacyDlpV2ConditionsArgs']] = None, logical_operator: Optional[pulumi.Input['GooglePrivacyDlpV2ExpressionsLogicalOperator']] = None): """ An expression, consisting or an operator and conditions. :param pulumi.Input['GooglePrivacyDlpV2ConditionsArgs'] conditions: Conditions to apply to the expression. :param pulumi.Input['GooglePrivacyDlpV2ExpressionsLogicalOperator'] logical_operator: The operator to apply to the result of conditions. Default and currently only supported value is `AND`. """ if conditions is not None: pulumi.set(__self__, "conditions", conditions) if logical_operator is not None: pulumi.set(__self__, "logical_operator", logical_operator) @property @pulumi.getter def conditions(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ConditionsArgs']]: """ Conditions to apply to the expression. """ return pulumi.get(self, "conditions") @conditions.setter def conditions(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ConditionsArgs']]): pulumi.set(self, "conditions", value) @property @pulumi.getter(name="logicalOperator") def logical_operator(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ExpressionsLogicalOperator']]: """ The operator to apply to the result of conditions. Default and currently only supported value is `AND`. """ return pulumi.get(self, "logical_operator") @logical_operator.setter def logical_operator(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ExpressionsLogicalOperator']]): pulumi.set(self, "logical_operator", value) @pulumi.input_type class GooglePrivacyDlpV2FieldIdArgs: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None): """ General identifier of a data field in a storage service. :param pulumi.Input[str] name: Name describing the field. """ if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name describing the field. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @pulumi.input_type class GooglePrivacyDlpV2FieldTransformationArgs: def __init__(__self__, *, fields: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]], condition: Optional[pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs']] = None, info_type_transformations: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs']] = None, primitive_transformation: Optional[pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs']] = None): """ The transformation to apply to the field. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] fields: Input field(s) to apply the transformation to. When you have columns that reference their position within a list, omit the index from the FieldId. FieldId name matching ignores the index. For example, instead of "contact.nums[0].type", use "contact.nums.type". :param pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs'] condition: Only apply the transformation if the condition evaluates to true for the given `RecordCondition`. The conditions are allowed to reference fields that are not used in the actual transformation. Example Use Cases: - Apply a different bucket transformation to an age column if the zip code column for the same record is within a specific range. - Redact a field if the date of birth field is greater than 85. :param pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs'] info_type_transformations: Treat the contents of the field as free text, and selectively transform content that matches an `InfoType`. :param pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs'] primitive_transformation: Apply the transformation to the entire field. """ pulumi.set(__self__, "fields", fields) if condition is not None: pulumi.set(__self__, "condition", condition) if info_type_transformations is not None: pulumi.set(__self__, "info_type_transformations", info_type_transformations) if primitive_transformation is not None: pulumi.set(__self__, "primitive_transformation", primitive_transformation) @property @pulumi.getter def fields(self) -> pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]: """ Input field(s) to apply the transformation to. When you have columns that reference their position within a list, omit the index from the FieldId. FieldId name matching ignores the index. For example, instead of "contact.nums[0].type", use "contact.nums.type". """ return pulumi.get(self, "fields") @fields.setter def fields(self, value: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]): pulumi.set(self, "fields", value) @property @pulumi.getter def condition(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs']]: """ Only apply the transformation if the condition evaluates to true for the given `RecordCondition`. The conditions are allowed to reference fields that are not used in the actual transformation. Example Use Cases: - Apply a different bucket transformation to an age column if the zip code column for the same record is within a specific range. - Redact a field if the date of birth field is greater than 85. """ return pulumi.get(self, "condition") @condition.setter def condition(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs']]): pulumi.set(self, "condition", value) @property @pulumi.getter(name="infoTypeTransformations") def info_type_transformations(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs']]: """ Treat the contents of the field as free text, and selectively transform content that matches an `InfoType`. """ return pulumi.get(self, "info_type_transformations") @info_type_transformations.setter def info_type_transformations(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationsArgs']]): pulumi.set(self, "info_type_transformations", value) @property @pulumi.getter(name="primitiveTransformation") def primitive_transformation(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs']]: """ Apply the transformation to the entire field. """ return pulumi.get(self, "primitive_transformation") @primitive_transformation.setter def primitive_transformation(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs']]): pulumi.set(self, "primitive_transformation", value) @pulumi.input_type class GooglePrivacyDlpV2FileSetArgs: def __init__(__self__, *, regex_file_set: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageRegexFileSetArgs']] = None, url: Optional[pulumi.Input[str]] = None): """ Set of files to scan. :param pulumi.Input['GooglePrivacyDlpV2CloudStorageRegexFileSetArgs'] regex_file_set: The regex-filtered set of files to scan. Exactly one of `url` or `regex_file_set` must be set. :param pulumi.Input[str] url: The Cloud Storage url of the file(s) to scan, in the format `gs:///`. Trailing wildcard in the path is allowed. If the url ends in a trailing slash, the bucket or directory represented by the url will be scanned non-recursively (content in sub-directories will not be scanned). This means that `gs://mybucket/` is equivalent to `gs://mybucket/*`, and `gs://mybucket/directory/` is equivalent to `gs://mybucket/directory/*`. Exactly one of `url` or `regex_file_set` must be set. """ if regex_file_set is not None: pulumi.set(__self__, "regex_file_set", regex_file_set) if url is not None: pulumi.set(__self__, "url", url) @property @pulumi.getter(name="regexFileSet") def regex_file_set(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageRegexFileSetArgs']]: """ The regex-filtered set of files to scan. Exactly one of `url` or `regex_file_set` must be set. """ return pulumi.get(self, "regex_file_set") @regex_file_set.setter def regex_file_set(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageRegexFileSetArgs']]): pulumi.set(self, "regex_file_set", value) @property @pulumi.getter def url(self) -> Optional[pulumi.Input[str]]: """ The Cloud Storage url of the file(s) to scan, in the format `gs:///`. Trailing wildcard in the path is allowed. If the url ends in a trailing slash, the bucket or directory represented by the url will be scanned non-recursively (content in sub-directories will not be scanned). This means that `gs://mybucket/` is equivalent to `gs://mybucket/*`, and `gs://mybucket/directory/` is equivalent to `gs://mybucket/directory/*`. Exactly one of `url` or `regex_file_set` must be set. """ return pulumi.get(self, "url") @url.setter def url(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "url", value) @pulumi.input_type class GooglePrivacyDlpV2FindingLimitsArgs: def __init__(__self__, *, max_findings_per_info_type: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeLimitArgs']]]] = None, max_findings_per_item: Optional[pulumi.Input[int]] = None, max_findings_per_request: Optional[pulumi.Input[int]] = None): """ Configuration to control the number of findings returned. Cannot be set if de-identification is requested. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeLimitArgs']]] max_findings_per_info_type: Configuration of findings limit given for specified infoTypes. :param pulumi.Input[int] max_findings_per_item: Max number of findings that will be returned for each item scanned. When set within `InspectJobConfig`, the maximum returned is 2000 regardless if this is set higher. When set within `InspectContentRequest`, this field is ignored. :param pulumi.Input[int] max_findings_per_request: Max number of findings that will be returned per request/job. When set within `InspectContentRequest`, the maximum returned is 2000 regardless if this is set higher. """ if max_findings_per_info_type is not None: pulumi.set(__self__, "max_findings_per_info_type", max_findings_per_info_type) if max_findings_per_item is not None: pulumi.set(__self__, "max_findings_per_item", max_findings_per_item) if max_findings_per_request is not None: pulumi.set(__self__, "max_findings_per_request", max_findings_per_request) @property @pulumi.getter(name="maxFindingsPerInfoType") def max_findings_per_info_type(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeLimitArgs']]]]: """ Configuration of findings limit given for specified infoTypes. """ return pulumi.get(self, "max_findings_per_info_type") @max_findings_per_info_type.setter def max_findings_per_info_type(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeLimitArgs']]]]): pulumi.set(self, "max_findings_per_info_type", value) @property @pulumi.getter(name="maxFindingsPerItem") def max_findings_per_item(self) -> Optional[pulumi.Input[int]]: """ Max number of findings that will be returned for each item scanned. When set within `InspectJobConfig`, the maximum returned is 2000 regardless if this is set higher. When set within `InspectContentRequest`, this field is ignored. """ return pulumi.get(self, "max_findings_per_item") @max_findings_per_item.setter def max_findings_per_item(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_findings_per_item", value) @property @pulumi.getter(name="maxFindingsPerRequest") def max_findings_per_request(self) -> Optional[pulumi.Input[int]]: """ Max number of findings that will be returned per request/job. When set within `InspectContentRequest`, the maximum returned is 2000 regardless if this is set higher. """ return pulumi.get(self, "max_findings_per_request") @max_findings_per_request.setter def max_findings_per_request(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_findings_per_request", value) @pulumi.input_type class GooglePrivacyDlpV2FixedSizeBucketingConfigArgs: def __init__(__self__, *, bucket_size: pulumi.Input[float], lower_bound: pulumi.Input['GooglePrivacyDlpV2ValueArgs'], upper_bound: pulumi.Input['GooglePrivacyDlpV2ValueArgs']): """ Buckets values based on fixed size ranges. The Bucketing transformation can provide all of this functionality, but requires more configuration. This message is provided as a convenience to the user for simple bucketing strategies. The transformed value will be a hyphenated string of {lower_bound}-{upper_bound}. For example, if lower_bound = 10 and upper_bound = 20, all values that are within this bucket will be replaced with "10-20". This can be used on data of type: double, long. If the bound Value type differs from the type of data being transformed, we will first attempt converting the type of the data to be transformed to match the type of the bound before comparing. See https://cloud.google.com/dlp/docs/concepts-bucketing to learn more. :param pulumi.Input[float] bucket_size: Size of each bucket (except for minimum and maximum buckets). So if `lower_bound` = 10, `upper_bound` = 89, and `bucket_size` = 10, then the following buckets would be used: -10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-89, 89+. Precision up to 2 decimals works. :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] lower_bound: Lower bound value of buckets. All values less than `lower_bound` are grouped together into a single bucket; for example if `lower_bound` = 10, then all values less than 10 are replaced with the value "-10". :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] upper_bound: Upper bound value of buckets. All values greater than upper_bound are grouped together into a single bucket; for example if `upper_bound` = 89, then all values greater than 89 are replaced with the value "89+". """ pulumi.set(__self__, "bucket_size", bucket_size) pulumi.set(__self__, "lower_bound", lower_bound) pulumi.set(__self__, "upper_bound", upper_bound) @property @pulumi.getter(name="bucketSize") def bucket_size(self) -> pulumi.Input[float]: """ Size of each bucket (except for minimum and maximum buckets). So if `lower_bound` = 10, `upper_bound` = 89, and `bucket_size` = 10, then the following buckets would be used: -10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-89, 89+. Precision up to 2 decimals works. """ return pulumi.get(self, "bucket_size") @bucket_size.setter def bucket_size(self, value: pulumi.Input[float]): pulumi.set(self, "bucket_size", value) @property @pulumi.getter(name="lowerBound") def lower_bound(self) -> pulumi.Input['GooglePrivacyDlpV2ValueArgs']: """ Lower bound value of buckets. All values less than `lower_bound` are grouped together into a single bucket; for example if `lower_bound` = 10, then all values less than 10 are replaced with the value "-10". """ return pulumi.get(self, "lower_bound") @lower_bound.setter def lower_bound(self, value: pulumi.Input['GooglePrivacyDlpV2ValueArgs']): pulumi.set(self, "lower_bound", value) @property @pulumi.getter(name="upperBound") def upper_bound(self) -> pulumi.Input['GooglePrivacyDlpV2ValueArgs']: """ Upper bound value of buckets. All values greater than upper_bound are grouped together into a single bucket; for example if `upper_bound` = 89, then all values greater than 89 are replaced with the value "89+". """ return pulumi.get(self, "upper_bound") @upper_bound.setter def upper_bound(self, value: pulumi.Input['GooglePrivacyDlpV2ValueArgs']): pulumi.set(self, "upper_bound", value) @pulumi.input_type class GooglePrivacyDlpV2HotwordRuleArgs: def __init__(__self__, *, hotword_regex: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']] = None, likelihood_adjustment: Optional[pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentArgs']] = None, proximity: Optional[pulumi.Input['GooglePrivacyDlpV2ProximityArgs']] = None): """ The rule that adjusts the likelihood of findings within a certain proximity of hotwords. :param pulumi.Input['GooglePrivacyDlpV2RegexArgs'] hotword_regex: Regular expression pattern defining what qualifies as a hotword. :param pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentArgs'] likelihood_adjustment: Likelihood adjustment to apply to all matching findings. :param pulumi.Input['GooglePrivacyDlpV2ProximityArgs'] proximity: Proximity of the finding within which the entire hotword must reside. The total length of the window cannot exceed 1000 characters. Note that the finding itself will be included in the window, so that hotwords may be used to match substrings of the finding itself. For example, the certainty of a phone number regex "\(\d{3}\) \d{3}-\d{4}" could be adjusted upwards if the area code is known to be the local area code of a company office using the hotword regex "\(xxx\)", where "xxx" is the area code in question. """ if hotword_regex is not None: pulumi.set(__self__, "hotword_regex", hotword_regex) if likelihood_adjustment is not None: pulumi.set(__self__, "likelihood_adjustment", likelihood_adjustment) if proximity is not None: pulumi.set(__self__, "proximity", proximity) @property @pulumi.getter(name="hotwordRegex") def hotword_regex(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]: """ Regular expression pattern defining what qualifies as a hotword. """ return pulumi.get(self, "hotword_regex") @hotword_regex.setter def hotword_regex(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]): pulumi.set(self, "hotword_regex", value) @property @pulumi.getter(name="likelihoodAdjustment") def likelihood_adjustment(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentArgs']]: """ Likelihood adjustment to apply to all matching findings. """ return pulumi.get(self, "likelihood_adjustment") @likelihood_adjustment.setter def likelihood_adjustment(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentArgs']]): pulumi.set(self, "likelihood_adjustment", value) @property @pulumi.getter def proximity(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ProximityArgs']]: """ Proximity of the finding within which the entire hotword must reside. The total length of the window cannot exceed 1000 characters. Note that the finding itself will be included in the window, so that hotwords may be used to match substrings of the finding itself. For example, the certainty of a phone number regex "\(\d{3}\) \d{3}-\d{4}" could be adjusted upwards if the area code is known to be the local area code of a company office using the hotword regex "\(xxx\)", where "xxx" is the area code in question. """ return pulumi.get(self, "proximity") @proximity.setter def proximity(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ProximityArgs']]): pulumi.set(self, "proximity", value) @pulumi.input_type class GooglePrivacyDlpV2HybridOptionsArgs: def __init__(__self__, *, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, required_finding_label_keys: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, table_options: Optional[pulumi.Input['GooglePrivacyDlpV2TableOptionsArgs']] = None): """ Configuration to control jobs where the content being inspected is outside of Google Cloud Platform. :param pulumi.Input[str] description: A short description of where the data is coming from. Will be stored once in the job. 256 max length. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] labels: To organize findings, these labels will be added to each finding. Label keys must be between 1 and 63 characters long and must conform to the following regular expression: `[a-z]([-a-z0-9]*[a-z0-9])?`. Label values must be between 0 and 63 characters long and must conform to the regular expression `([a-z]([-a-z0-9]*[a-z0-9])?)?`. No more than 10 labels can be associated with a given finding. Examples: * `"environment" : "production"` * `"pipeline" : "etl"` :param pulumi.Input[Sequence[pulumi.Input[str]]] required_finding_label_keys: These are labels that each inspection request must include within their 'finding_labels' map. Request may contain others, but any missing one of these will be rejected. Label keys must be between 1 and 63 characters long and must conform to the following regular expression: `[a-z]([-a-z0-9]*[a-z0-9])?`. No more than 10 keys can be required. :param pulumi.Input['GooglePrivacyDlpV2TableOptionsArgs'] table_options: If the container is a table, additional information to make findings meaningful such as the columns that are primary keys. """ if description is not None: pulumi.set(__self__, "description", description) if labels is not None: pulumi.set(__self__, "labels", labels) if required_finding_label_keys is not None: pulumi.set(__self__, "required_finding_label_keys", required_finding_label_keys) if table_options is not None: pulumi.set(__self__, "table_options", table_options) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A short description of where the data is coming from. Will be stored once in the job. 256 max length. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ To organize findings, these labels will be added to each finding. Label keys must be between 1 and 63 characters long and must conform to the following regular expression: `[a-z]([-a-z0-9]*[a-z0-9])?`. Label values must be between 0 and 63 characters long and must conform to the regular expression `([a-z]([-a-z0-9]*[a-z0-9])?)?`. No more than 10 labels can be associated with a given finding. Examples: * `"environment" : "production"` * `"pipeline" : "etl"` """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "labels", value) @property @pulumi.getter(name="requiredFindingLabelKeys") def required_finding_label_keys(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ These are labels that each inspection request must include within their 'finding_labels' map. Request may contain others, but any missing one of these will be rejected. Label keys must be between 1 and 63 characters long and must conform to the following regular expression: `[a-z]([-a-z0-9]*[a-z0-9])?`. No more than 10 keys can be required. """ return pulumi.get(self, "required_finding_label_keys") @required_finding_label_keys.setter def required_finding_label_keys(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "required_finding_label_keys", value) @property @pulumi.getter(name="tableOptions") def table_options(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2TableOptionsArgs']]: """ If the container is a table, additional information to make findings meaningful such as the columns that are primary keys. """ return pulumi.get(self, "table_options") @table_options.setter def table_options(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2TableOptionsArgs']]): pulumi.set(self, "table_options", value) @pulumi.input_type class GooglePrivacyDlpV2InfoTypeLimitArgs: def __init__(__self__, *, info_type: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']] = None, max_findings: Optional[pulumi.Input[int]] = None): """ Max findings configuration per infoType, per content item or long running DlpJob. :param pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs'] info_type: Type of information the findings limit applies to. Only one limit per info_type should be provided. If InfoTypeLimit does not have an info_type, the DLP API applies the limit against all info_types that are found but not specified in another InfoTypeLimit. :param pulumi.Input[int] max_findings: Max findings limit for the given infoType. """ if info_type is not None: pulumi.set(__self__, "info_type", info_type) if max_findings is not None: pulumi.set(__self__, "max_findings", max_findings) @property @pulumi.getter(name="infoType") def info_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]: """ Type of information the findings limit applies to. Only one limit per info_type should be provided. If InfoTypeLimit does not have an info_type, the DLP API applies the limit against all info_types that are found but not specified in another InfoTypeLimit. """ return pulumi.get(self, "info_type") @info_type.setter def info_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]): pulumi.set(self, "info_type", value) @property @pulumi.getter(name="maxFindings") def max_findings(self) -> Optional[pulumi.Input[int]]: """ Max findings limit for the given infoType. """ return pulumi.get(self, "max_findings") @max_findings.setter def max_findings(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_findings", value) @pulumi.input_type class GooglePrivacyDlpV2InfoTypeTransformationsArgs: def __init__(__self__, *, transformations: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationArgs']]]): """ A type of transformation that will scan unstructured text and apply various `PrimitiveTransformation`s to each finding, where the transformation is applied to only values that were identified as a specific info_type. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationArgs']]] transformations: Transformation for each infoType. Cannot specify more than one for a given infoType. """ pulumi.set(__self__, "transformations", transformations) @property @pulumi.getter def transformations(self) -> pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationArgs']]]: """ Transformation for each infoType. Cannot specify more than one for a given infoType. """ return pulumi.get(self, "transformations") @transformations.setter def transformations(self, value: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeTransformationArgs']]]): pulumi.set(self, "transformations", value) @pulumi.input_type class GooglePrivacyDlpV2InfoTypeTransformationArgs: def __init__(__self__, *, primitive_transformation: pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs'], info_types: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]] = None): """ A transformation to apply to text that is identified as a specific info_type. :param pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs'] primitive_transformation: Primitive transformation to apply to the infoType. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]] info_types: InfoTypes to apply the transformation to. An empty list will cause this transformation to apply to all findings that correspond to infoTypes that were requested in `InspectConfig`. """ pulumi.set(__self__, "primitive_transformation", primitive_transformation) if info_types is not None: pulumi.set(__self__, "info_types", info_types) @property @pulumi.getter(name="primitiveTransformation") def primitive_transformation(self) -> pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs']: """ Primitive transformation to apply to the infoType. """ return pulumi.get(self, "primitive_transformation") @primitive_transformation.setter def primitive_transformation(self, value: pulumi.Input['GooglePrivacyDlpV2PrimitiveTransformationArgs']): pulumi.set(self, "primitive_transformation", value) @property @pulumi.getter(name="infoTypes") def info_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]: """ InfoTypes to apply the transformation to. An empty list will cause this transformation to apply to all findings that correspond to infoTypes that were requested in `InspectConfig`. """ return pulumi.get(self, "info_types") @info_types.setter def info_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]): pulumi.set(self, "info_types", value) @pulumi.input_type class GooglePrivacyDlpV2InfoTypeArgs: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None, version: Optional[pulumi.Input[str]] = None): """ Type of information detected by the API. :param pulumi.Input[str] name: Name of the information type. Either a name of your choosing when creating a CustomInfoType, or one of the names listed at https://cloud.google.com/dlp/docs/infotypes-reference when specifying a built-in type. When sending Cloud DLP results to Data Catalog, infoType names should conform to the pattern `[A-Za-z0-9$-_]{1,64}`. :param pulumi.Input[str] version: Optional version name for this InfoType. """ if name is not None: pulumi.set(__self__, "name", name) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Name of the information type. Either a name of your choosing when creating a CustomInfoType, or one of the names listed at https://cloud.google.com/dlp/docs/infotypes-reference when specifying a built-in type. When sending Cloud DLP results to Data Catalog, infoType names should conform to the pattern `[A-Za-z0-9$-_]{1,64}`. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def version(self) -> Optional[pulumi.Input[str]]: """ Optional version name for this InfoType. """ return pulumi.get(self, "version") @version.setter def version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "version", value) @pulumi.input_type class GooglePrivacyDlpV2InspectConfigArgs: def __init__(__self__, *, content_options: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectConfigContentOptionsItem']]]] = None, custom_info_types: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeArgs']]]] = None, exclude_info_types: Optional[pulumi.Input[bool]] = None, include_quote: Optional[pulumi.Input[bool]] = None, info_types: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]] = None, limits: Optional[pulumi.Input['GooglePrivacyDlpV2FindingLimitsArgs']] = None, min_likelihood: Optional[pulumi.Input['GooglePrivacyDlpV2InspectConfigMinLikelihood']] = None, rule_set: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleSetArgs']]]] = None): """ Configuration description of the scanning process. When used with redactContent only info_types and min_likelihood are currently used. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectConfigContentOptionsItem']]] content_options: List of options defining data content to scan. If empty, text, images, and other content will be included. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeArgs']]] custom_info_types: CustomInfoTypes provided by the user. See https://cloud.google.com/dlp/docs/creating-custom-infotypes to learn more. :param pulumi.Input[bool] exclude_info_types: When true, excludes type information of the findings. :param pulumi.Input[bool] include_quote: When true, a contextual quote from the data that triggered a finding is included in the response; see Finding.quote. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]] info_types: Restricts what info_types to look for. The values must correspond to InfoType values returned by ListInfoTypes or listed at https://cloud.google.com/dlp/docs/infotypes-reference. When no InfoTypes or CustomInfoTypes are specified in a request, the system may automatically choose what detectors to run. By default this may be all types, but may change over time as detectors are updated. If you need precise control and predictability as to what detectors are run you should specify specific InfoTypes listed in the reference, otherwise a default list will be used, which may change over time. :param pulumi.Input['GooglePrivacyDlpV2FindingLimitsArgs'] limits: Configuration to control the number of findings returned. :param pulumi.Input['GooglePrivacyDlpV2InspectConfigMinLikelihood'] min_likelihood: Only returns findings equal or above this threshold. The default is POSSIBLE. See https://cloud.google.com/dlp/docs/likelihood to learn more. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleSetArgs']]] rule_set: Set of rules to apply to the findings for this InspectConfig. Exclusion rules, contained in the set are executed in the end, other rules are executed in the order they are specified for each info type. """ if content_options is not None: pulumi.set(__self__, "content_options", content_options) if custom_info_types is not None: pulumi.set(__self__, "custom_info_types", custom_info_types) if exclude_info_types is not None: pulumi.set(__self__, "exclude_info_types", exclude_info_types) if include_quote is not None: pulumi.set(__self__, "include_quote", include_quote) if info_types is not None: pulumi.set(__self__, "info_types", info_types) if limits is not None: pulumi.set(__self__, "limits", limits) if min_likelihood is not None: pulumi.set(__self__, "min_likelihood", min_likelihood) if rule_set is not None: pulumi.set(__self__, "rule_set", rule_set) @property @pulumi.getter(name="contentOptions") def content_options(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectConfigContentOptionsItem']]]]: """ List of options defining data content to scan. If empty, text, images, and other content will be included. """ return pulumi.get(self, "content_options") @content_options.setter def content_options(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectConfigContentOptionsItem']]]]): pulumi.set(self, "content_options", value) @property @pulumi.getter(name="customInfoTypes") def custom_info_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeArgs']]]]: """ CustomInfoTypes provided by the user. See https://cloud.google.com/dlp/docs/creating-custom-infotypes to learn more. """ return pulumi.get(self, "custom_info_types") @custom_info_types.setter def custom_info_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2CustomInfoTypeArgs']]]]): pulumi.set(self, "custom_info_types", value) @property @pulumi.getter(name="excludeInfoTypes") def exclude_info_types(self) -> Optional[pulumi.Input[bool]]: """ When true, excludes type information of the findings. """ return pulumi.get(self, "exclude_info_types") @exclude_info_types.setter def exclude_info_types(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "exclude_info_types", value) @property @pulumi.getter(name="includeQuote") def include_quote(self) -> Optional[pulumi.Input[bool]]: """ When true, a contextual quote from the data that triggered a finding is included in the response; see Finding.quote. """ return pulumi.get(self, "include_quote") @include_quote.setter def include_quote(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "include_quote", value) @property @pulumi.getter(name="infoTypes") def info_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]: """ Restricts what info_types to look for. The values must correspond to InfoType values returned by ListInfoTypes or listed at https://cloud.google.com/dlp/docs/infotypes-reference. When no InfoTypes or CustomInfoTypes are specified in a request, the system may automatically choose what detectors to run. By default this may be all types, but may change over time as detectors are updated. If you need precise control and predictability as to what detectors are run you should specify specific InfoTypes listed in the reference, otherwise a default list will be used, which may change over time. """ return pulumi.get(self, "info_types") @info_types.setter def info_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]): pulumi.set(self, "info_types", value) @property @pulumi.getter def limits(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FindingLimitsArgs']]: """ Configuration to control the number of findings returned. """ return pulumi.get(self, "limits") @limits.setter def limits(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FindingLimitsArgs']]): pulumi.set(self, "limits", value) @property @pulumi.getter(name="minLikelihood") def min_likelihood(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InspectConfigMinLikelihood']]: """ Only returns findings equal or above this threshold. The default is POSSIBLE. See https://cloud.google.com/dlp/docs/likelihood to learn more. """ return pulumi.get(self, "min_likelihood") @min_likelihood.setter def min_likelihood(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InspectConfigMinLikelihood']]): pulumi.set(self, "min_likelihood", value) @property @pulumi.getter(name="ruleSet") def rule_set(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleSetArgs']]]]: """ Set of rules to apply to the findings for this InspectConfig. Exclusion rules, contained in the set are executed in the end, other rules are executed in the order they are specified for each info type. """ return pulumi.get(self, "rule_set") @rule_set.setter def rule_set(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleSetArgs']]]]): pulumi.set(self, "rule_set", value) @pulumi.input_type class GooglePrivacyDlpV2InspectJobConfigArgs: def __init__(__self__, *, actions: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]]] = None, inspect_config: Optional[pulumi.Input['GooglePrivacyDlpV2InspectConfigArgs']] = None, inspect_template_name: Optional[pulumi.Input[str]] = None, storage_config: Optional[pulumi.Input['GooglePrivacyDlpV2StorageConfigArgs']] = None): """ Controls what and how to inspect for findings. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]] actions: Actions to execute at the completion of the job. :param pulumi.Input['GooglePrivacyDlpV2InspectConfigArgs'] inspect_config: How and what to scan for. :param pulumi.Input[str] inspect_template_name: If provided, will be used as the default for all values in InspectConfig. `inspect_config` will be merged into the values persisted as part of the template. :param pulumi.Input['GooglePrivacyDlpV2StorageConfigArgs'] storage_config: The data to scan. """ if actions is not None: pulumi.set(__self__, "actions", actions) if inspect_config is not None: pulumi.set(__self__, "inspect_config", inspect_config) if inspect_template_name is not None: pulumi.set(__self__, "inspect_template_name", inspect_template_name) if storage_config is not None: pulumi.set(__self__, "storage_config", storage_config) @property @pulumi.getter def actions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]]]: """ Actions to execute at the completion of the job. """ return pulumi.get(self, "actions") @actions.setter def actions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]]]): pulumi.set(self, "actions", value) @property @pulumi.getter(name="inspectConfig") def inspect_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InspectConfigArgs']]: """ How and what to scan for. """ return pulumi.get(self, "inspect_config") @inspect_config.setter def inspect_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InspectConfigArgs']]): pulumi.set(self, "inspect_config", value) @property @pulumi.getter(name="inspectTemplateName") def inspect_template_name(self) -> Optional[pulumi.Input[str]]: """ If provided, will be used as the default for all values in InspectConfig. `inspect_config` will be merged into the values persisted as part of the template. """ return pulumi.get(self, "inspect_template_name") @inspect_template_name.setter def inspect_template_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "inspect_template_name", value) @property @pulumi.getter(name="storageConfig") def storage_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2StorageConfigArgs']]: """ The data to scan. """ return pulumi.get(self, "storage_config") @storage_config.setter def storage_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2StorageConfigArgs']]): pulumi.set(self, "storage_config", value) @pulumi.input_type class GooglePrivacyDlpV2InspectionRuleSetArgs: def __init__(__self__, *, info_types: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]] = None, rules: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleArgs']]]] = None): """ Rule set for modifying a set of infoTypes to alter behavior under certain circumstances, depending on the specific details of the rules within the set. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]] info_types: List of infoTypes this rule set is applied to. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleArgs']]] rules: Set of rules to be applied to infoTypes. The rules are applied in order. """ if info_types is not None: pulumi.set(__self__, "info_types", info_types) if rules is not None: pulumi.set(__self__, "rules", rules) @property @pulumi.getter(name="infoTypes") def info_types(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]: """ List of infoTypes this rule set is applied to. """ return pulumi.get(self, "info_types") @info_types.setter def info_types(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]]]): pulumi.set(self, "info_types", value) @property @pulumi.getter def rules(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleArgs']]]]: """ Set of rules to be applied to infoTypes. The rules are applied in order. """ return pulumi.get(self, "rules") @rules.setter def rules(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2InspectionRuleArgs']]]]): pulumi.set(self, "rules", value) @pulumi.input_type class GooglePrivacyDlpV2InspectionRuleArgs: def __init__(__self__, *, exclusion_rule: Optional[pulumi.Input['GooglePrivacyDlpV2ExclusionRuleArgs']] = None, hotword_rule: Optional[pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs']] = None): """ A single inspection rule to be applied to infoTypes, specified in `InspectionRuleSet`. :param pulumi.Input['GooglePrivacyDlpV2ExclusionRuleArgs'] exclusion_rule: Exclusion rule. :param pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs'] hotword_rule: Hotword-based detection rule. """ if exclusion_rule is not None: pulumi.set(__self__, "exclusion_rule", exclusion_rule) if hotword_rule is not None: pulumi.set(__self__, "hotword_rule", hotword_rule) @property @pulumi.getter(name="exclusionRule") def exclusion_rule(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ExclusionRuleArgs']]: """ Exclusion rule. """ return pulumi.get(self, "exclusion_rule") @exclusion_rule.setter def exclusion_rule(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ExclusionRuleArgs']]): pulumi.set(self, "exclusion_rule", value) @property @pulumi.getter(name="hotwordRule") def hotword_rule(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs']]: """ Hotword-based detection rule. """ return pulumi.get(self, "hotword_rule") @hotword_rule.setter def hotword_rule(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2HotwordRuleArgs']]): pulumi.set(self, "hotword_rule", value) @pulumi.input_type class GooglePrivacyDlpV2JobNotificationEmailsArgs: def __init__(__self__): """ Enable email notification to project owners and editors on jobs's completion/failure. """ pass @pulumi.input_type class GooglePrivacyDlpV2KAnonymityConfigArgs: def __init__(__self__, *, entity_id: Optional[pulumi.Input['GooglePrivacyDlpV2EntityIdArgs']] = None, quasi_ids: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]] = None): """ k-anonymity metric, used for analysis of reidentification risk. :param pulumi.Input['GooglePrivacyDlpV2EntityIdArgs'] entity_id: Message indicating that multiple rows might be associated to a single individual. If the same entity_id is associated to multiple quasi-identifier tuples over distinct rows, we consider the entire collection of tuples as the composite quasi-identifier. This collection is a multiset: the order in which the different tuples appear in the dataset is ignored, but their frequency is taken into account. Important note: a maximum of 1000 rows can be associated to a single entity ID. If more rows are associated with the same entity ID, some might be ignored. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] quasi_ids: Set of fields to compute k-anonymity over. When multiple fields are specified, they are considered a single composite key. Structs and repeated data types are not supported; however, nested fields are supported so long as they are not structs themselves or nested within a repeated field. """ if entity_id is not None: pulumi.set(__self__, "entity_id", entity_id) if quasi_ids is not None: pulumi.set(__self__, "quasi_ids", quasi_ids) @property @pulumi.getter(name="entityId") def entity_id(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2EntityIdArgs']]: """ Message indicating that multiple rows might be associated to a single individual. If the same entity_id is associated to multiple quasi-identifier tuples over distinct rows, we consider the entire collection of tuples as the composite quasi-identifier. This collection is a multiset: the order in which the different tuples appear in the dataset is ignored, but their frequency is taken into account. Important note: a maximum of 1000 rows can be associated to a single entity ID. If more rows are associated with the same entity ID, some might be ignored. """ return pulumi.get(self, "entity_id") @entity_id.setter def entity_id(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2EntityIdArgs']]): pulumi.set(self, "entity_id", value) @property @pulumi.getter(name="quasiIds") def quasi_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]: """ Set of fields to compute k-anonymity over. When multiple fields are specified, they are considered a single composite key. Structs and repeated data types are not supported; however, nested fields are supported so long as they are not structs themselves or nested within a repeated field. """ return pulumi.get(self, "quasi_ids") @quasi_ids.setter def quasi_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]): pulumi.set(self, "quasi_ids", value) @pulumi.input_type class GooglePrivacyDlpV2KMapEstimationConfigArgs: def __init__(__self__, *, quasi_ids: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2TaggedFieldArgs']]], auxiliary_tables: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2AuxiliaryTableArgs']]]] = None, region_code: Optional[pulumi.Input[str]] = None): """ Reidentifiability metric. This corresponds to a risk model similar to what is called "journalist risk" in the literature, except the attack dataset is statistically modeled instead of being perfectly known. This can be done using publicly available data (like the US Census), or using a custom statistical model (indicated as one or several BigQuery tables), or by extrapolating from the distribution of values in the input dataset. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2TaggedFieldArgs']]] quasi_ids: Fields considered to be quasi-identifiers. No two columns can have the same tag. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2AuxiliaryTableArgs']]] auxiliary_tables: Several auxiliary tables can be used in the analysis. Each custom_tag used to tag a quasi-identifiers column must appear in exactly one column of one auxiliary table. :param pulumi.Input[str] region_code: ISO 3166-1 alpha-2 region code to use in the statistical modeling. Set if no column is tagged with a region-specific InfoType (like US_ZIP_5) or a region code. """ pulumi.set(__self__, "quasi_ids", quasi_ids) if auxiliary_tables is not None: pulumi.set(__self__, "auxiliary_tables", auxiliary_tables) if region_code is not None: pulumi.set(__self__, "region_code", region_code) @property @pulumi.getter(name="quasiIds") def quasi_ids(self) -> pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2TaggedFieldArgs']]]: """ Fields considered to be quasi-identifiers. No two columns can have the same tag. """ return pulumi.get(self, "quasi_ids") @quasi_ids.setter def quasi_ids(self, value: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2TaggedFieldArgs']]]): pulumi.set(self, "quasi_ids", value) @property @pulumi.getter(name="auxiliaryTables") def auxiliary_tables(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2AuxiliaryTableArgs']]]]: """ Several auxiliary tables can be used in the analysis. Each custom_tag used to tag a quasi-identifiers column must appear in exactly one column of one auxiliary table. """ return pulumi.get(self, "auxiliary_tables") @auxiliary_tables.setter def auxiliary_tables(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2AuxiliaryTableArgs']]]]): pulumi.set(self, "auxiliary_tables", value) @property @pulumi.getter(name="regionCode") def region_code(self) -> Optional[pulumi.Input[str]]: """ ISO 3166-1 alpha-2 region code to use in the statistical modeling. Set if no column is tagged with a region-specific InfoType (like US_ZIP_5) or a region code. """ return pulumi.get(self, "region_code") @region_code.setter def region_code(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "region_code", value) @pulumi.input_type class GooglePrivacyDlpV2KindExpressionArgs: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None): """ A representation of a Datastore kind. :param pulumi.Input[str] name: The name of the kind. """ if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the kind. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @pulumi.input_type class GooglePrivacyDlpV2KmsWrappedCryptoKeyArgs: def __init__(__self__, *, crypto_key_name: pulumi.Input[str], wrapped_key: pulumi.Input[str]): """ Include to use an existing data crypto key wrapped by KMS. The wrapped key must be a 128-, 192-, or 256-bit key. Authorization requires the following IAM permissions when sending a request to perform a crypto transformation using a KMS-wrapped crypto key: dlp.kms.encrypt For more information, see [Creating a wrapped key] (https://cloud.google.com/dlp/docs/create-wrapped-key). Note: When you use Cloud KMS for cryptographic operations, [charges apply](https://cloud.google.com/kms/pricing). :param pulumi.Input[str] crypto_key_name: The resource name of the KMS CryptoKey to use for unwrapping. :param pulumi.Input[str] wrapped_key: The wrapped data crypto key. """ pulumi.set(__self__, "crypto_key_name", crypto_key_name) pulumi.set(__self__, "wrapped_key", wrapped_key) @property @pulumi.getter(name="cryptoKeyName") def crypto_key_name(self) -> pulumi.Input[str]: """ The resource name of the KMS CryptoKey to use for unwrapping. """ return pulumi.get(self, "crypto_key_name") @crypto_key_name.setter def crypto_key_name(self, value: pulumi.Input[str]): pulumi.set(self, "crypto_key_name", value) @property @pulumi.getter(name="wrappedKey") def wrapped_key(self) -> pulumi.Input[str]: """ The wrapped data crypto key. """ return pulumi.get(self, "wrapped_key") @wrapped_key.setter def wrapped_key(self, value: pulumi.Input[str]): pulumi.set(self, "wrapped_key", value) @pulumi.input_type class GooglePrivacyDlpV2LDiversityConfigArgs: def __init__(__self__, *, quasi_ids: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]] = None, sensitive_attribute: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ l-diversity metric, used for analysis of reidentification risk. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] quasi_ids: Set of quasi-identifiers indicating how equivalence classes are defined for the l-diversity computation. When multiple fields are specified, they are considered a single composite key. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] sensitive_attribute: Sensitive field for computing the l-value. """ if quasi_ids is not None: pulumi.set(__self__, "quasi_ids", quasi_ids) if sensitive_attribute is not None: pulumi.set(__self__, "sensitive_attribute", sensitive_attribute) @property @pulumi.getter(name="quasiIds") def quasi_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]: """ Set of quasi-identifiers indicating how equivalence classes are defined for the l-diversity computation. When multiple fields are specified, they are considered a single composite key. """ return pulumi.get(self, "quasi_ids") @quasi_ids.setter def quasi_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]): pulumi.set(self, "quasi_ids", value) @property @pulumi.getter(name="sensitiveAttribute") def sensitive_attribute(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Sensitive field for computing the l-value. """ return pulumi.get(self, "sensitive_attribute") @sensitive_attribute.setter def sensitive_attribute(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "sensitive_attribute", value) @pulumi.input_type class GooglePrivacyDlpV2LargeCustomDictionaryConfigArgs: def __init__(__self__, *, big_query_field: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryFieldArgs']] = None, cloud_storage_file_set: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageFileSetArgs']] = None, output_path: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs']] = None): """ Configuration for a custom dictionary created from a data source of any size up to the maximum size defined in the [limits](https://cloud.google.com/dlp/limits) page. The artifacts of dictionary creation are stored in the specified Google Cloud Storage location. Consider using `CustomInfoType.Dictionary` for smaller dictionaries that satisfy the size requirements. :param pulumi.Input['GooglePrivacyDlpV2BigQueryFieldArgs'] big_query_field: Field in a BigQuery table where each cell represents a dictionary phrase. :param pulumi.Input['GooglePrivacyDlpV2CloudStorageFileSetArgs'] cloud_storage_file_set: Set of files containing newline-delimited lists of dictionary phrases. :param pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs'] output_path: Location to store dictionary artifacts in Google Cloud Storage. These files will only be accessible by project owners and the DLP API. If any of these artifacts are modified, the dictionary is considered invalid and can no longer be used. """ if big_query_field is not None: pulumi.set(__self__, "big_query_field", big_query_field) if cloud_storage_file_set is not None: pulumi.set(__self__, "cloud_storage_file_set", cloud_storage_file_set) if output_path is not None: pulumi.set(__self__, "output_path", output_path) @property @pulumi.getter(name="bigQueryField") def big_query_field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryFieldArgs']]: """ Field in a BigQuery table where each cell represents a dictionary phrase. """ return pulumi.get(self, "big_query_field") @big_query_field.setter def big_query_field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryFieldArgs']]): pulumi.set(self, "big_query_field", value) @property @pulumi.getter(name="cloudStorageFileSet") def cloud_storage_file_set(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageFileSetArgs']]: """ Set of files containing newline-delimited lists of dictionary phrases. """ return pulumi.get(self, "cloud_storage_file_set") @cloud_storage_file_set.setter def cloud_storage_file_set(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageFileSetArgs']]): pulumi.set(self, "cloud_storage_file_set", value) @property @pulumi.getter(name="outputPath") def output_path(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs']]: """ Location to store dictionary artifacts in Google Cloud Storage. These files will only be accessible by project owners and the DLP API. If any of these artifacts are modified, the dictionary is considered invalid and can no longer be used. """ return pulumi.get(self, "output_path") @output_path.setter def output_path(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStoragePathArgs']]): pulumi.set(self, "output_path", value) @pulumi.input_type class GooglePrivacyDlpV2LeaveUntransformedArgs: def __init__(__self__): """ Skips the data without modifying it if the requested transformation would cause an error. For example, if a `DateShift` transformation were applied an an IP address, this mode would leave the IP address unchanged in the response. """ pass @pulumi.input_type class GooglePrivacyDlpV2LikelihoodAdjustmentArgs: def __init__(__self__, *, fixed_likelihood: Optional[pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentFixedLikelihood']] = None, relative_likelihood: Optional[pulumi.Input[int]] = None): """ Message for specifying an adjustment to the likelihood of a finding as part of a detection rule. :param pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentFixedLikelihood'] fixed_likelihood: Set the likelihood of a finding to a fixed value. :param pulumi.Input[int] relative_likelihood: Increase or decrease the likelihood by the specified number of levels. For example, if a finding would be `POSSIBLE` without the detection rule and `relative_likelihood` is 1, then it is upgraded to `LIKELY`, while a value of -1 would downgrade it to `UNLIKELY`. Likelihood may never drop below `VERY_UNLIKELY` or exceed `VERY_LIKELY`, so applying an adjustment of 1 followed by an adjustment of -1 when base likelihood is `VERY_LIKELY` will result in a final likelihood of `LIKELY`. """ if fixed_likelihood is not None: pulumi.set(__self__, "fixed_likelihood", fixed_likelihood) if relative_likelihood is not None: pulumi.set(__self__, "relative_likelihood", relative_likelihood) @property @pulumi.getter(name="fixedLikelihood") def fixed_likelihood(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentFixedLikelihood']]: """ Set the likelihood of a finding to a fixed value. """ return pulumi.get(self, "fixed_likelihood") @fixed_likelihood.setter def fixed_likelihood(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2LikelihoodAdjustmentFixedLikelihood']]): pulumi.set(self, "fixed_likelihood", value) @property @pulumi.getter(name="relativeLikelihood") def relative_likelihood(self) -> Optional[pulumi.Input[int]]: """ Increase or decrease the likelihood by the specified number of levels. For example, if a finding would be `POSSIBLE` without the detection rule and `relative_likelihood` is 1, then it is upgraded to `LIKELY`, while a value of -1 would downgrade it to `UNLIKELY`. Likelihood may never drop below `VERY_UNLIKELY` or exceed `VERY_LIKELY`, so applying an adjustment of 1 followed by an adjustment of -1 when base likelihood is `VERY_LIKELY` will result in a final likelihood of `LIKELY`. """ return pulumi.get(self, "relative_likelihood") @relative_likelihood.setter def relative_likelihood(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "relative_likelihood", value) @pulumi.input_type class GooglePrivacyDlpV2ManualArgs: def __init__(__self__): """ Job trigger option for hybrid jobs. Jobs must be manually created and finished. """ pass @pulumi.input_type class GooglePrivacyDlpV2NumericalStatsConfigArgs: def __init__(__self__, *, field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ Compute numerical stats over an individual column, including min, max, and quantiles. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Field to compute numerical stats on. Supported types are integer, float, date, datetime, timestamp, time. """ if field is not None: pulumi.set(__self__, "field", field) @property @pulumi.getter def field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Field to compute numerical stats on. Supported types are integer, float, date, datetime, timestamp, time. """ return pulumi.get(self, "field") @field.setter def field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "field", value) @pulumi.input_type class GooglePrivacyDlpV2OutputStorageConfigArgs: def __init__(__self__, *, output_schema: Optional[pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigOutputSchema']] = None, table: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']] = None): """ Cloud repository for storing output. :param pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigOutputSchema'] output_schema: Schema used for writing the findings for Inspect jobs. This field is only used for Inspect and must be unspecified for Risk jobs. Columns are derived from the `Finding` object. If appending to an existing table, any columns from the predefined schema that are missing will be added. No columns in the existing table will be deleted. If unspecified, then all available columns will be used for a new table or an (existing) table with no schema, and no changes will be made to an existing table that has a schema. Only for use with external storage. :param pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs'] table: Store findings in an existing table or a new table in an existing dataset. If table_id is not set a new one will be generated for you with the following format: dlp_googleapis_yyyy_mm_dd_[dlp_job_id]. Pacific timezone will be used for generating the date details. For Inspect, each column in an existing output table must have the same name, type, and mode of a field in the `Finding` object. For Risk, an existing output table should be the output of a previous Risk analysis job run on the same source table, with the same privacy metric and quasi-identifiers. Risk jobs that analyze the same table but compute a different privacy metric, or use different sets of quasi-identifiers, cannot store their results in the same table. """ if output_schema is not None: pulumi.set(__self__, "output_schema", output_schema) if table is not None: pulumi.set(__self__, "table", table) @property @pulumi.getter(name="outputSchema") def output_schema(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigOutputSchema']]: """ Schema used for writing the findings for Inspect jobs. This field is only used for Inspect and must be unspecified for Risk jobs. Columns are derived from the `Finding` object. If appending to an existing table, any columns from the predefined schema that are missing will be added. No columns in the existing table will be deleted. If unspecified, then all available columns will be used for a new table or an (existing) table with no schema, and no changes will be made to an existing table that has a schema. Only for use with external storage. """ return pulumi.get(self, "output_schema") @output_schema.setter def output_schema(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigOutputSchema']]): pulumi.set(self, "output_schema", value) @property @pulumi.getter def table(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]: """ Store findings in an existing table or a new table in an existing dataset. If table_id is not set a new one will be generated for you with the following format: dlp_googleapis_yyyy_mm_dd_[dlp_job_id]. Pacific timezone will be used for generating the date details. For Inspect, each column in an existing output table must have the same name, type, and mode of a field in the `Finding` object. For Risk, an existing output table should be the output of a previous Risk analysis job run on the same source table, with the same privacy metric and quasi-identifiers. Risk jobs that analyze the same table but compute a different privacy metric, or use different sets of quasi-identifiers, cannot store their results in the same table. """ return pulumi.get(self, "table") @table.setter def table(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]): pulumi.set(self, "table", value) @pulumi.input_type class GooglePrivacyDlpV2PartitionIdArgs: def __init__(__self__, *, namespace_id: Optional[pulumi.Input[str]] = None, project: Optional[pulumi.Input[str]] = None): """ Datastore partition ID. A partition ID identifies a grouping of entities. The grouping is always by project and namespace, however the namespace ID may be empty. A partition ID contains several dimensions: project ID and namespace ID. :param pulumi.Input[str] namespace_id: If not empty, the ID of the namespace to which the entities belong. :param pulumi.Input[str] project: The ID of the project to which the entities belong. """ if namespace_id is not None: pulumi.set(__self__, "namespace_id", namespace_id) if project is not None: pulumi.set(__self__, "project", project) @property @pulumi.getter(name="namespaceId") def namespace_id(self) -> Optional[pulumi.Input[str]]: """ If not empty, the ID of the namespace to which the entities belong. """ return pulumi.get(self, "namespace_id") @namespace_id.setter def namespace_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "namespace_id", value) @property @pulumi.getter def project(self) -> Optional[pulumi.Input[str]]: """ The ID of the project to which the entities belong. """ return pulumi.get(self, "project") @project.setter def project(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project", value) @pulumi.input_type class GooglePrivacyDlpV2PrimitiveTransformationArgs: def __init__(__self__, *, bucketing_config: Optional[pulumi.Input['GooglePrivacyDlpV2BucketingConfigArgs']] = None, character_mask_config: Optional[pulumi.Input['GooglePrivacyDlpV2CharacterMaskConfigArgs']] = None, crypto_deterministic_config: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoDeterministicConfigArgs']] = None, crypto_hash_config: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoHashConfigArgs']] = None, crypto_replace_ffx_fpe_config: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigArgs']] = None, date_shift_config: Optional[pulumi.Input['GooglePrivacyDlpV2DateShiftConfigArgs']] = None, fixed_size_bucketing_config: Optional[pulumi.Input['GooglePrivacyDlpV2FixedSizeBucketingConfigArgs']] = None, redact_config: Optional[pulumi.Input['GooglePrivacyDlpV2RedactConfigArgs']] = None, replace_config: Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceValueConfigArgs']] = None, replace_dictionary_config: Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceDictionaryConfigArgs']] = None, replace_with_info_type_config: Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceWithInfoTypeConfigArgs']] = None, time_part_config: Optional[pulumi.Input['GooglePrivacyDlpV2TimePartConfigArgs']] = None): """ A rule for transforming a value. :param pulumi.Input['GooglePrivacyDlpV2BucketingConfigArgs'] bucketing_config: Bucketing :param pulumi.Input['GooglePrivacyDlpV2CharacterMaskConfigArgs'] character_mask_config: Mask :param pulumi.Input['GooglePrivacyDlpV2CryptoDeterministicConfigArgs'] crypto_deterministic_config: Deterministic Crypto :param pulumi.Input['GooglePrivacyDlpV2CryptoHashConfigArgs'] crypto_hash_config: Crypto :param pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigArgs'] crypto_replace_ffx_fpe_config: Ffx-Fpe :param pulumi.Input['GooglePrivacyDlpV2DateShiftConfigArgs'] date_shift_config: Date Shift :param pulumi.Input['GooglePrivacyDlpV2FixedSizeBucketingConfigArgs'] fixed_size_bucketing_config: Fixed size bucketing :param pulumi.Input['GooglePrivacyDlpV2RedactConfigArgs'] redact_config: Redact :param pulumi.Input['GooglePrivacyDlpV2ReplaceValueConfigArgs'] replace_config: Replace with a specified value. :param pulumi.Input['GooglePrivacyDlpV2ReplaceDictionaryConfigArgs'] replace_dictionary_config: Replace with a value randomly drawn (with replacement) from a dictionary. :param pulumi.Input['GooglePrivacyDlpV2ReplaceWithInfoTypeConfigArgs'] replace_with_info_type_config: Replace with infotype :param pulumi.Input['GooglePrivacyDlpV2TimePartConfigArgs'] time_part_config: Time extraction """ if bucketing_config is not None: pulumi.set(__self__, "bucketing_config", bucketing_config) if character_mask_config is not None: pulumi.set(__self__, "character_mask_config", character_mask_config) if crypto_deterministic_config is not None: pulumi.set(__self__, "crypto_deterministic_config", crypto_deterministic_config) if crypto_hash_config is not None: pulumi.set(__self__, "crypto_hash_config", crypto_hash_config) if crypto_replace_ffx_fpe_config is not None: pulumi.set(__self__, "crypto_replace_ffx_fpe_config", crypto_replace_ffx_fpe_config) if date_shift_config is not None: pulumi.set(__self__, "date_shift_config", date_shift_config) if fixed_size_bucketing_config is not None: pulumi.set(__self__, "fixed_size_bucketing_config", fixed_size_bucketing_config) if redact_config is not None: pulumi.set(__self__, "redact_config", redact_config) if replace_config is not None: pulumi.set(__self__, "replace_config", replace_config) if replace_dictionary_config is not None: pulumi.set(__self__, "replace_dictionary_config", replace_dictionary_config) if replace_with_info_type_config is not None: pulumi.set(__self__, "replace_with_info_type_config", replace_with_info_type_config) if time_part_config is not None: pulumi.set(__self__, "time_part_config", time_part_config) @property @pulumi.getter(name="bucketingConfig") def bucketing_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BucketingConfigArgs']]: """ Bucketing """ return pulumi.get(self, "bucketing_config") @bucketing_config.setter def bucketing_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BucketingConfigArgs']]): pulumi.set(self, "bucketing_config", value) @property @pulumi.getter(name="characterMaskConfig") def character_mask_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CharacterMaskConfigArgs']]: """ Mask """ return pulumi.get(self, "character_mask_config") @character_mask_config.setter def character_mask_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CharacterMaskConfigArgs']]): pulumi.set(self, "character_mask_config", value) @property @pulumi.getter(name="cryptoDeterministicConfig") def crypto_deterministic_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoDeterministicConfigArgs']]: """ Deterministic Crypto """ return pulumi.get(self, "crypto_deterministic_config") @crypto_deterministic_config.setter def crypto_deterministic_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoDeterministicConfigArgs']]): pulumi.set(self, "crypto_deterministic_config", value) @property @pulumi.getter(name="cryptoHashConfig") def crypto_hash_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoHashConfigArgs']]: """ Crypto """ return pulumi.get(self, "crypto_hash_config") @crypto_hash_config.setter def crypto_hash_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoHashConfigArgs']]): pulumi.set(self, "crypto_hash_config", value) @property @pulumi.getter(name="cryptoReplaceFfxFpeConfig") def crypto_replace_ffx_fpe_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigArgs']]: """ Ffx-Fpe """ return pulumi.get(self, "crypto_replace_ffx_fpe_config") @crypto_replace_ffx_fpe_config.setter def crypto_replace_ffx_fpe_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CryptoReplaceFfxFpeConfigArgs']]): pulumi.set(self, "crypto_replace_ffx_fpe_config", value) @property @pulumi.getter(name="dateShiftConfig") def date_shift_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2DateShiftConfigArgs']]: """ Date Shift """ return pulumi.get(self, "date_shift_config") @date_shift_config.setter def date_shift_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2DateShiftConfigArgs']]): pulumi.set(self, "date_shift_config", value) @property @pulumi.getter(name="fixedSizeBucketingConfig") def fixed_size_bucketing_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FixedSizeBucketingConfigArgs']]: """ Fixed size bucketing """ return pulumi.get(self, "fixed_size_bucketing_config") @fixed_size_bucketing_config.setter def fixed_size_bucketing_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FixedSizeBucketingConfigArgs']]): pulumi.set(self, "fixed_size_bucketing_config", value) @property @pulumi.getter(name="redactConfig") def redact_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RedactConfigArgs']]: """ Redact """ return pulumi.get(self, "redact_config") @redact_config.setter def redact_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RedactConfigArgs']]): pulumi.set(self, "redact_config", value) @property @pulumi.getter(name="replaceConfig") def replace_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceValueConfigArgs']]: """ Replace with a specified value. """ return pulumi.get(self, "replace_config") @replace_config.setter def replace_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceValueConfigArgs']]): pulumi.set(self, "replace_config", value) @property @pulumi.getter(name="replaceDictionaryConfig") def replace_dictionary_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceDictionaryConfigArgs']]: """ Replace with a value randomly drawn (with replacement) from a dictionary. """ return pulumi.get(self, "replace_dictionary_config") @replace_dictionary_config.setter def replace_dictionary_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceDictionaryConfigArgs']]): pulumi.set(self, "replace_dictionary_config", value) @property @pulumi.getter(name="replaceWithInfoTypeConfig") def replace_with_info_type_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceWithInfoTypeConfigArgs']]: """ Replace with infotype """ return pulumi.get(self, "replace_with_info_type_config") @replace_with_info_type_config.setter def replace_with_info_type_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ReplaceWithInfoTypeConfigArgs']]): pulumi.set(self, "replace_with_info_type_config", value) @property @pulumi.getter(name="timePartConfig") def time_part_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2TimePartConfigArgs']]: """ Time extraction """ return pulumi.get(self, "time_part_config") @time_part_config.setter def time_part_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2TimePartConfigArgs']]): pulumi.set(self, "time_part_config", value) @pulumi.input_type class GooglePrivacyDlpV2PrivacyMetricArgs: def __init__(__self__, *, categorical_stats_config: Optional[pulumi.Input['GooglePrivacyDlpV2CategoricalStatsConfigArgs']] = None, delta_presence_estimation_config: Optional[pulumi.Input['GooglePrivacyDlpV2DeltaPresenceEstimationConfigArgs']] = None, k_anonymity_config: Optional[pulumi.Input['GooglePrivacyDlpV2KAnonymityConfigArgs']] = None, k_map_estimation_config: Optional[pulumi.Input['GooglePrivacyDlpV2KMapEstimationConfigArgs']] = None, l_diversity_config: Optional[pulumi.Input['GooglePrivacyDlpV2LDiversityConfigArgs']] = None, numerical_stats_config: Optional[pulumi.Input['GooglePrivacyDlpV2NumericalStatsConfigArgs']] = None): """ Privacy metric to compute for reidentification risk analysis. :param pulumi.Input['GooglePrivacyDlpV2CategoricalStatsConfigArgs'] categorical_stats_config: Categorical stats :param pulumi.Input['GooglePrivacyDlpV2DeltaPresenceEstimationConfigArgs'] delta_presence_estimation_config: delta-presence :param pulumi.Input['GooglePrivacyDlpV2KAnonymityConfigArgs'] k_anonymity_config: K-anonymity :param pulumi.Input['GooglePrivacyDlpV2KMapEstimationConfigArgs'] k_map_estimation_config: k-map :param pulumi.Input['GooglePrivacyDlpV2LDiversityConfigArgs'] l_diversity_config: l-diversity :param pulumi.Input['GooglePrivacyDlpV2NumericalStatsConfigArgs'] numerical_stats_config: Numerical stats """ if categorical_stats_config is not None: pulumi.set(__self__, "categorical_stats_config", categorical_stats_config) if delta_presence_estimation_config is not None: pulumi.set(__self__, "delta_presence_estimation_config", delta_presence_estimation_config) if k_anonymity_config is not None: pulumi.set(__self__, "k_anonymity_config", k_anonymity_config) if k_map_estimation_config is not None: pulumi.set(__self__, "k_map_estimation_config", k_map_estimation_config) if l_diversity_config is not None: pulumi.set(__self__, "l_diversity_config", l_diversity_config) if numerical_stats_config is not None: pulumi.set(__self__, "numerical_stats_config", numerical_stats_config) @property @pulumi.getter(name="categoricalStatsConfig") def categorical_stats_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CategoricalStatsConfigArgs']]: """ Categorical stats """ return pulumi.get(self, "categorical_stats_config") @categorical_stats_config.setter def categorical_stats_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CategoricalStatsConfigArgs']]): pulumi.set(self, "categorical_stats_config", value) @property @pulumi.getter(name="deltaPresenceEstimationConfig") def delta_presence_estimation_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2DeltaPresenceEstimationConfigArgs']]: """ delta-presence """ return pulumi.get(self, "delta_presence_estimation_config") @delta_presence_estimation_config.setter def delta_presence_estimation_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2DeltaPresenceEstimationConfigArgs']]): pulumi.set(self, "delta_presence_estimation_config", value) @property @pulumi.getter(name="kAnonymityConfig") def k_anonymity_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2KAnonymityConfigArgs']]: """ K-anonymity """ return pulumi.get(self, "k_anonymity_config") @k_anonymity_config.setter def k_anonymity_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2KAnonymityConfigArgs']]): pulumi.set(self, "k_anonymity_config", value) @property @pulumi.getter(name="kMapEstimationConfig") def k_map_estimation_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2KMapEstimationConfigArgs']]: """ k-map """ return pulumi.get(self, "k_map_estimation_config") @k_map_estimation_config.setter def k_map_estimation_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2KMapEstimationConfigArgs']]): pulumi.set(self, "k_map_estimation_config", value) @property @pulumi.getter(name="lDiversityConfig") def l_diversity_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2LDiversityConfigArgs']]: """ l-diversity """ return pulumi.get(self, "l_diversity_config") @l_diversity_config.setter def l_diversity_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2LDiversityConfigArgs']]): pulumi.set(self, "l_diversity_config", value) @property @pulumi.getter(name="numericalStatsConfig") def numerical_stats_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2NumericalStatsConfigArgs']]: """ Numerical stats """ return pulumi.get(self, "numerical_stats_config") @numerical_stats_config.setter def numerical_stats_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2NumericalStatsConfigArgs']]): pulumi.set(self, "numerical_stats_config", value) @pulumi.input_type class GooglePrivacyDlpV2ProximityArgs: def __init__(__self__, *, window_after: Optional[pulumi.Input[int]] = None, window_before: Optional[pulumi.Input[int]] = None): """ Message for specifying a window around a finding to apply a detection rule. :param pulumi.Input[int] window_after: Number of characters after the finding to consider. :param pulumi.Input[int] window_before: Number of characters before the finding to consider. """ if window_after is not None: pulumi.set(__self__, "window_after", window_after) if window_before is not None: pulumi.set(__self__, "window_before", window_before) @property @pulumi.getter(name="windowAfter") def window_after(self) -> Optional[pulumi.Input[int]]: """ Number of characters after the finding to consider. """ return pulumi.get(self, "window_after") @window_after.setter def window_after(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "window_after", value) @property @pulumi.getter(name="windowBefore") def window_before(self) -> Optional[pulumi.Input[int]]: """ Number of characters before the finding to consider. """ return pulumi.get(self, "window_before") @window_before.setter def window_before(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "window_before", value) @pulumi.input_type class GooglePrivacyDlpV2PublishFindingsToCloudDataCatalogArgs: def __init__(__self__): """ Publish findings of a DlpJob to Data Catalog. Labels summarizing the results of the DlpJob will be applied to the entry for the resource scanned in Data Catalog. Any labels previously written by another DlpJob will be deleted. InfoType naming patterns are strictly enforced when using this feature. Note that the findings will be persisted in Data Catalog storage and are governed by Data Catalog service-specific policy, see https://cloud.google.com/terms/service-terms Only a single instance of this action can be specified and only allowed if all resources being scanned are BigQuery tables. Compatible with: Inspect """ pass @pulumi.input_type class GooglePrivacyDlpV2PublishSummaryToCsccArgs: def __init__(__self__): """ Publish the result summary of a DlpJob to the Cloud Security Command Center (CSCC Alpha). This action is only available for projects which are parts of an organization and whitelisted for the alpha Cloud Security Command Center. The action will publish count of finding instances and their info types. The summary of findings will be persisted in CSCC and are governed by CSCC service-specific policy, see https://cloud.google.com/terms/service-terms Only a single instance of this action can be specified. Compatible with: Inspect """ pass @pulumi.input_type class GooglePrivacyDlpV2PublishToPubSubArgs: def __init__(__self__, *, topic: Optional[pulumi.Input[str]] = None): """ Publish a message into given Pub/Sub topic when DlpJob has completed. The message contains a single field, `DlpJobName`, which is equal to the finished job's [`DlpJob.name`](https://cloud.google.com/dlp/docs/reference/rest/v2/projects.dlpJobs#DlpJob). Compatible with: Inspect, Risk :param pulumi.Input[str] topic: Cloud Pub/Sub topic to send notifications to. The topic must have given publishing access rights to the DLP API service account executing the long running DlpJob sending the notifications. Format is projects/{project}/topics/{topic}. """ if topic is not None: pulumi.set(__self__, "topic", topic) @property @pulumi.getter def topic(self) -> Optional[pulumi.Input[str]]: """ Cloud Pub/Sub topic to send notifications to. The topic must have given publishing access rights to the DLP API service account executing the long running DlpJob sending the notifications. Format is projects/{project}/topics/{topic}. """ return pulumi.get(self, "topic") @topic.setter def topic(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "topic", value) @pulumi.input_type class GooglePrivacyDlpV2PublishToStackdriverArgs: def __init__(__self__): """ Enable Stackdriver metric dlp.googleapis.com/finding_count. This will publish a metric to stack driver on each infotype requested and how many findings were found for it. CustomDetectors will be bucketed as 'Custom' under the Stackdriver label 'info_type'. """ pass @pulumi.input_type class GooglePrivacyDlpV2QuasiIdFieldArgs: def __init__(__self__, *, custom_tag: Optional[pulumi.Input[str]] = None, field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ A quasi-identifier column has a custom_tag, used to know which column in the data corresponds to which column in the statistical model. :param pulumi.Input[str] custom_tag: A auxiliary field. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Identifies the column. """ if custom_tag is not None: pulumi.set(__self__, "custom_tag", custom_tag) if field is not None: pulumi.set(__self__, "field", field) @property @pulumi.getter(name="customTag") def custom_tag(self) -> Optional[pulumi.Input[str]]: """ A auxiliary field. """ return pulumi.get(self, "custom_tag") @custom_tag.setter def custom_tag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "custom_tag", value) @property @pulumi.getter def field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Identifies the column. """ return pulumi.get(self, "field") @field.setter def field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "field", value) @pulumi.input_type class GooglePrivacyDlpV2QuasiIdentifierFieldArgs: def __init__(__self__, *, custom_tag: Optional[pulumi.Input[str]] = None, field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ A quasi-identifier column has a custom_tag, used to know which column in the data corresponds to which column in the statistical model. :param pulumi.Input[str] custom_tag: A column can be tagged with a custom tag. In this case, the user must indicate an auxiliary table that contains statistical information on the possible values of this column (below). :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Identifies the column. """ if custom_tag is not None: pulumi.set(__self__, "custom_tag", custom_tag) if field is not None: pulumi.set(__self__, "field", field) @property @pulumi.getter(name="customTag") def custom_tag(self) -> Optional[pulumi.Input[str]]: """ A column can be tagged with a custom tag. In this case, the user must indicate an auxiliary table that contains statistical information on the possible values of this column (below). """ return pulumi.get(self, "custom_tag") @custom_tag.setter def custom_tag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "custom_tag", value) @property @pulumi.getter def field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Identifies the column. """ return pulumi.get(self, "field") @field.setter def field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "field", value) @pulumi.input_type class GooglePrivacyDlpV2QuasiIdArgs: def __init__(__self__, *, field: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'], custom_tag: Optional[pulumi.Input[str]] = None, inferred: Optional[pulumi.Input['GoogleProtobufEmptyArgs']] = None, info_type: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']] = None): """ A column with a semantic tag attached. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Identifies the column. :param pulumi.Input[str] custom_tag: A column can be tagged with a custom tag. In this case, the user must indicate an auxiliary table that contains statistical information on the possible values of this column (below). :param pulumi.Input['GoogleProtobufEmptyArgs'] inferred: If no semantic tag is indicated, we infer the statistical model from the distribution of values in the input data :param pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs'] info_type: A column can be tagged with a InfoType to use the relevant public dataset as a statistical model of population, if available. We currently support US ZIP codes, region codes, ages and genders. To programmatically obtain the list of supported InfoTypes, use ListInfoTypes with the supported_by=RISK_ANALYSIS filter. """ pulumi.set(__self__, "field", field) if custom_tag is not None: pulumi.set(__self__, "custom_tag", custom_tag) if inferred is not None: pulumi.set(__self__, "inferred", inferred) if info_type is not None: pulumi.set(__self__, "info_type", info_type) @property @pulumi.getter def field(self) -> pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']: """ Identifies the column. """ return pulumi.get(self, "field") @field.setter def field(self, value: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']): pulumi.set(self, "field", value) @property @pulumi.getter(name="customTag") def custom_tag(self) -> Optional[pulumi.Input[str]]: """ A column can be tagged with a custom tag. In this case, the user must indicate an auxiliary table that contains statistical information on the possible values of this column (below). """ return pulumi.get(self, "custom_tag") @custom_tag.setter def custom_tag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "custom_tag", value) @property @pulumi.getter def inferred(self) -> Optional[pulumi.Input['GoogleProtobufEmptyArgs']]: """ If no semantic tag is indicated, we infer the statistical model from the distribution of values in the input data """ return pulumi.get(self, "inferred") @inferred.setter def inferred(self, value: Optional[pulumi.Input['GoogleProtobufEmptyArgs']]): pulumi.set(self, "inferred", value) @property @pulumi.getter(name="infoType") def info_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]: """ A column can be tagged with a InfoType to use the relevant public dataset as a statistical model of population, if available. We currently support US ZIP codes, region codes, ages and genders. To programmatically obtain the list of supported InfoTypes, use ListInfoTypes with the supported_by=RISK_ANALYSIS filter. """ return pulumi.get(self, "info_type") @info_type.setter def info_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]): pulumi.set(self, "info_type", value) @pulumi.input_type class GooglePrivacyDlpV2RecordConditionArgs: def __init__(__self__, *, expressions: Optional[pulumi.Input['GooglePrivacyDlpV2ExpressionsArgs']] = None): """ A condition for determining whether a transformation should be applied to a field. :param pulumi.Input['GooglePrivacyDlpV2ExpressionsArgs'] expressions: An expression. """ if expressions is not None: pulumi.set(__self__, "expressions", expressions) @property @pulumi.getter def expressions(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ExpressionsArgs']]: """ An expression. """ return pulumi.get(self, "expressions") @expressions.setter def expressions(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ExpressionsArgs']]): pulumi.set(self, "expressions", value) @pulumi.input_type class GooglePrivacyDlpV2RecordSuppressionArgs: def __init__(__self__, *, condition: Optional[pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs']] = None): """ Configuration to suppress records whose suppression conditions evaluate to true. :param pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs'] condition: A condition that when it evaluates to true will result in the record being evaluated to be suppressed from the transformed content. """ if condition is not None: pulumi.set(__self__, "condition", condition) @property @pulumi.getter def condition(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs']]: """ A condition that when it evaluates to true will result in the record being evaluated to be suppressed from the transformed content. """ return pulumi.get(self, "condition") @condition.setter def condition(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RecordConditionArgs']]): pulumi.set(self, "condition", value) @pulumi.input_type class GooglePrivacyDlpV2RecordTransformationsArgs: def __init__(__self__, *, field_transformations: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldTransformationArgs']]]] = None, record_suppressions: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2RecordSuppressionArgs']]]] = None): """ A type of transformation that is applied over structured data such as a table. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldTransformationArgs']]] field_transformations: Transform the record by applying various field transformations. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2RecordSuppressionArgs']]] record_suppressions: Configuration defining which records get suppressed entirely. Records that match any suppression rule are omitted from the output. """ if field_transformations is not None: pulumi.set(__self__, "field_transformations", field_transformations) if record_suppressions is not None: pulumi.set(__self__, "record_suppressions", record_suppressions) @property @pulumi.getter(name="fieldTransformations") def field_transformations(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldTransformationArgs']]]]: """ Transform the record by applying various field transformations. """ return pulumi.get(self, "field_transformations") @field_transformations.setter def field_transformations(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldTransformationArgs']]]]): pulumi.set(self, "field_transformations", value) @property @pulumi.getter(name="recordSuppressions") def record_suppressions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2RecordSuppressionArgs']]]]: """ Configuration defining which records get suppressed entirely. Records that match any suppression rule are omitted from the output. """ return pulumi.get(self, "record_suppressions") @record_suppressions.setter def record_suppressions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2RecordSuppressionArgs']]]]): pulumi.set(self, "record_suppressions", value) @pulumi.input_type class GooglePrivacyDlpV2RedactConfigArgs: def __init__(__self__): """ Redact a given value. For example, if used with an `InfoTypeTransformation` transforming PHONE_NUMBER, and input 'My phone number is 206-555-0123', the output would be 'My phone number is '. """ pass @pulumi.input_type class GooglePrivacyDlpV2RegexArgs: def __init__(__self__, *, group_indexes: Optional[pulumi.Input[Sequence[pulumi.Input[int]]]] = None, pattern: Optional[pulumi.Input[str]] = None): """ Message defining a custom regular expression. :param pulumi.Input[Sequence[pulumi.Input[int]]] group_indexes: The index of the submatch to extract as findings. When not specified, the entire match is returned. No more than 3 may be included. :param pulumi.Input[str] pattern: Pattern defining the regular expression. Its syntax (https://github.com/google/re2/wiki/Syntax) can be found under the google/re2 repository on GitHub. """ if group_indexes is not None: pulumi.set(__self__, "group_indexes", group_indexes) if pattern is not None: pulumi.set(__self__, "pattern", pattern) @property @pulumi.getter(name="groupIndexes") def group_indexes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[int]]]]: """ The index of the submatch to extract as findings. When not specified, the entire match is returned. No more than 3 may be included. """ return pulumi.get(self, "group_indexes") @group_indexes.setter def group_indexes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[int]]]]): pulumi.set(self, "group_indexes", value) @property @pulumi.getter def pattern(self) -> Optional[pulumi.Input[str]]: """ Pattern defining the regular expression. Its syntax (https://github.com/google/re2/wiki/Syntax) can be found under the google/re2 repository on GitHub. """ return pulumi.get(self, "pattern") @pattern.setter def pattern(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "pattern", value) @pulumi.input_type class GooglePrivacyDlpV2ReplaceDictionaryConfigArgs: def __init__(__self__, *, word_list: Optional[pulumi.Input['GooglePrivacyDlpV2WordListArgs']] = None): """ Replace each input value with a value randomly selected from the dictionary. :param pulumi.Input['GooglePrivacyDlpV2WordListArgs'] word_list: A list of words to select from for random replacement. The [limits](https://cloud.google.com/dlp/limits) page contains details about the size limits of dictionaries. """ if word_list is not None: pulumi.set(__self__, "word_list", word_list) @property @pulumi.getter(name="wordList") def word_list(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2WordListArgs']]: """ A list of words to select from for random replacement. The [limits](https://cloud.google.com/dlp/limits) page contains details about the size limits of dictionaries. """ return pulumi.get(self, "word_list") @word_list.setter def word_list(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2WordListArgs']]): pulumi.set(self, "word_list", value) @pulumi.input_type class GooglePrivacyDlpV2ReplaceValueConfigArgs: def __init__(__self__, *, new_value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']] = None): """ Replace each input value with a given `Value`. :param pulumi.Input['GooglePrivacyDlpV2ValueArgs'] new_value: Value to replace it with. """ if new_value is not None: pulumi.set(__self__, "new_value", new_value) @property @pulumi.getter(name="newValue") def new_value(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]: """ Value to replace it with. """ return pulumi.get(self, "new_value") @new_value.setter def new_value(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueArgs']]): pulumi.set(self, "new_value", value) @pulumi.input_type class GooglePrivacyDlpV2ReplaceWithInfoTypeConfigArgs: def __init__(__self__): """ Replace each matching finding with the name of the info_type. """ pass @pulumi.input_type class GooglePrivacyDlpV2RiskAnalysisJobConfigArgs: def __init__(__self__, *, actions: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]]] = None, privacy_metric: Optional[pulumi.Input['GooglePrivacyDlpV2PrivacyMetricArgs']] = None, source_table: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']] = None): """ Configuration for a risk analysis job. See https://cloud.google.com/dlp/docs/concepts-risk-analysis to learn more. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]] actions: Actions to execute at the completion of the job. Are executed in the order provided. :param pulumi.Input['GooglePrivacyDlpV2PrivacyMetricArgs'] privacy_metric: Privacy metric to compute. :param pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs'] source_table: Input dataset to compute metrics over. """ if actions is not None: pulumi.set(__self__, "actions", actions) if privacy_metric is not None: pulumi.set(__self__, "privacy_metric", privacy_metric) if source_table is not None: pulumi.set(__self__, "source_table", source_table) @property @pulumi.getter def actions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]]]: """ Actions to execute at the completion of the job. Are executed in the order provided. """ return pulumi.get(self, "actions") @actions.setter def actions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2ActionArgs']]]]): pulumi.set(self, "actions", value) @property @pulumi.getter(name="privacyMetric") def privacy_metric(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2PrivacyMetricArgs']]: """ Privacy metric to compute. """ return pulumi.get(self, "privacy_metric") @privacy_metric.setter def privacy_metric(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2PrivacyMetricArgs']]): pulumi.set(self, "privacy_metric", value) @property @pulumi.getter(name="sourceTable") def source_table(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]: """ Input dataset to compute metrics over. """ return pulumi.get(self, "source_table") @source_table.setter def source_table(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']]): pulumi.set(self, "source_table", value) @pulumi.input_type class GooglePrivacyDlpV2SaveFindingsArgs: def __init__(__self__, *, output_config: Optional[pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigArgs']] = None): """ If set, the detailed findings will be persisted to the specified OutputStorageConfig. Only a single instance of this action can be specified. Compatible with: Inspect, Risk :param pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigArgs'] output_config: Location to store findings outside of DLP. """ if output_config is not None: pulumi.set(__self__, "output_config", output_config) @property @pulumi.getter(name="outputConfig") def output_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigArgs']]: """ Location to store findings outside of DLP. """ return pulumi.get(self, "output_config") @output_config.setter def output_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2OutputStorageConfigArgs']]): pulumi.set(self, "output_config", value) @pulumi.input_type class GooglePrivacyDlpV2ScheduleArgs: def __init__(__self__, *, recurrence_period_duration: Optional[pulumi.Input[str]] = None): """ Schedule for inspect job triggers. :param pulumi.Input[str] recurrence_period_duration: With this option a job is started a regular periodic basis. For example: every day (86400 seconds). A scheduled start time will be skipped if the previous execution has not ended when its scheduled time occurs. This value must be set to a time duration greater than or equal to 1 day and can be no longer than 60 days. """ if recurrence_period_duration is not None: pulumi.set(__self__, "recurrence_period_duration", recurrence_period_duration) @property @pulumi.getter(name="recurrencePeriodDuration") def recurrence_period_duration(self) -> Optional[pulumi.Input[str]]: """ With this option a job is started a regular periodic basis. For example: every day (86400 seconds). A scheduled start time will be skipped if the previous execution has not ended when its scheduled time occurs. This value must be set to a time duration greater than or equal to 1 day and can be no longer than 60 days. """ return pulumi.get(self, "recurrence_period_duration") @recurrence_period_duration.setter def recurrence_period_duration(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "recurrence_period_duration", value) @pulumi.input_type class GooglePrivacyDlpV2StatisticalTableArgs: def __init__(__self__, *, quasi_ids: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdentifierFieldArgs']]], relative_frequency: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'], table: pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']): """ An auxiliary table containing statistical information on the relative frequency of different quasi-identifiers values. It has one or several quasi-identifiers columns, and one column that indicates the relative frequency of each quasi-identifier tuple. If a tuple is present in the data but not in the auxiliary table, the corresponding relative frequency is assumed to be zero (and thus, the tuple is highly reidentifiable). :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdentifierFieldArgs']]] quasi_ids: Quasi-identifier columns. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] relative_frequency: The relative frequency column must contain a floating-point number between 0 and 1 (inclusive). Null values are assumed to be zero. :param pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs'] table: Auxiliary table location. """ pulumi.set(__self__, "quasi_ids", quasi_ids) pulumi.set(__self__, "relative_frequency", relative_frequency) pulumi.set(__self__, "table", table) @property @pulumi.getter(name="quasiIds") def quasi_ids(self) -> pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdentifierFieldArgs']]]: """ Quasi-identifier columns. """ return pulumi.get(self, "quasi_ids") @quasi_ids.setter def quasi_ids(self, value: pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2QuasiIdentifierFieldArgs']]]): pulumi.set(self, "quasi_ids", value) @property @pulumi.getter(name="relativeFrequency") def relative_frequency(self) -> pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']: """ The relative frequency column must contain a floating-point number between 0 and 1 (inclusive). Null values are assumed to be zero. """ return pulumi.get(self, "relative_frequency") @relative_frequency.setter def relative_frequency(self, value: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']): pulumi.set(self, "relative_frequency", value) @property @pulumi.getter def table(self) -> pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']: """ Auxiliary table location. """ return pulumi.get(self, "table") @table.setter def table(self, value: pulumi.Input['GooglePrivacyDlpV2BigQueryTableArgs']): pulumi.set(self, "table", value) @pulumi.input_type class GooglePrivacyDlpV2StorageConfigArgs: def __init__(__self__, *, big_query_options: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsArgs']] = None, cloud_storage_options: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsArgs']] = None, datastore_options: Optional[pulumi.Input['GooglePrivacyDlpV2DatastoreOptionsArgs']] = None, hybrid_options: Optional[pulumi.Input['GooglePrivacyDlpV2HybridOptionsArgs']] = None, timespan_config: Optional[pulumi.Input['GooglePrivacyDlpV2TimespanConfigArgs']] = None): """ Shared message indicating Cloud storage type. :param pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsArgs'] big_query_options: BigQuery options. :param pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsArgs'] cloud_storage_options: Google Cloud Storage options. :param pulumi.Input['GooglePrivacyDlpV2DatastoreOptionsArgs'] datastore_options: Google Cloud Datastore options. :param pulumi.Input['GooglePrivacyDlpV2HybridOptionsArgs'] hybrid_options: Hybrid inspection options. """ if big_query_options is not None: pulumi.set(__self__, "big_query_options", big_query_options) if cloud_storage_options is not None: pulumi.set(__self__, "cloud_storage_options", cloud_storage_options) if datastore_options is not None: pulumi.set(__self__, "datastore_options", datastore_options) if hybrid_options is not None: pulumi.set(__self__, "hybrid_options", hybrid_options) if timespan_config is not None: pulumi.set(__self__, "timespan_config", timespan_config) @property @pulumi.getter(name="bigQueryOptions") def big_query_options(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsArgs']]: """ BigQuery options. """ return pulumi.get(self, "big_query_options") @big_query_options.setter def big_query_options(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2BigQueryOptionsArgs']]): pulumi.set(self, "big_query_options", value) @property @pulumi.getter(name="cloudStorageOptions") def cloud_storage_options(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsArgs']]: """ Google Cloud Storage options. """ return pulumi.get(self, "cloud_storage_options") @cloud_storage_options.setter def cloud_storage_options(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2CloudStorageOptionsArgs']]): pulumi.set(self, "cloud_storage_options", value) @property @pulumi.getter(name="datastoreOptions") def datastore_options(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2DatastoreOptionsArgs']]: """ Google Cloud Datastore options. """ return pulumi.get(self, "datastore_options") @datastore_options.setter def datastore_options(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2DatastoreOptionsArgs']]): pulumi.set(self, "datastore_options", value) @property @pulumi.getter(name="hybridOptions") def hybrid_options(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2HybridOptionsArgs']]: """ Hybrid inspection options. """ return pulumi.get(self, "hybrid_options") @hybrid_options.setter def hybrid_options(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2HybridOptionsArgs']]): pulumi.set(self, "hybrid_options", value) @property @pulumi.getter(name="timespanConfig") def timespan_config(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2TimespanConfigArgs']]: return pulumi.get(self, "timespan_config") @timespan_config.setter def timespan_config(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2TimespanConfigArgs']]): pulumi.set(self, "timespan_config", value) @pulumi.input_type class GooglePrivacyDlpV2StoredInfoTypeConfigArgs: def __init__(__self__, *, description: Optional[pulumi.Input[str]] = None, dictionary: Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']] = None, display_name: Optional[pulumi.Input[str]] = None, large_custom_dictionary: Optional[pulumi.Input['GooglePrivacyDlpV2LargeCustomDictionaryConfigArgs']] = None, regex: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']] = None): """ Configuration for stored infoTypes. All fields and subfield are provided by the user. For more information, see https://cloud.google.com/dlp/docs/creating-custom-infotypes. :param pulumi.Input[str] description: Description of the StoredInfoType (max 256 characters). :param pulumi.Input['GooglePrivacyDlpV2DictionaryArgs'] dictionary: Store dictionary-based CustomInfoType. :param pulumi.Input[str] display_name: Display name of the StoredInfoType (max 256 characters). :param pulumi.Input['GooglePrivacyDlpV2LargeCustomDictionaryConfigArgs'] large_custom_dictionary: StoredInfoType where findings are defined by a dictionary of phrases. :param pulumi.Input['GooglePrivacyDlpV2RegexArgs'] regex: Store regular expression-based StoredInfoType. """ if description is not None: pulumi.set(__self__, "description", description) if dictionary is not None: pulumi.set(__self__, "dictionary", dictionary) if display_name is not None: pulumi.set(__self__, "display_name", display_name) if large_custom_dictionary is not None: pulumi.set(__self__, "large_custom_dictionary", large_custom_dictionary) if regex is not None: pulumi.set(__self__, "regex", regex) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ Description of the StoredInfoType (max 256 characters). """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def dictionary(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']]: """ Store dictionary-based CustomInfoType. """ return pulumi.get(self, "dictionary") @dictionary.setter def dictionary(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2DictionaryArgs']]): pulumi.set(self, "dictionary", value) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[pulumi.Input[str]]: """ Display name of the StoredInfoType (max 256 characters). """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "display_name", value) @property @pulumi.getter(name="largeCustomDictionary") def large_custom_dictionary(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2LargeCustomDictionaryConfigArgs']]: """ StoredInfoType where findings are defined by a dictionary of phrases. """ return pulumi.get(self, "large_custom_dictionary") @large_custom_dictionary.setter def large_custom_dictionary(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2LargeCustomDictionaryConfigArgs']]): pulumi.set(self, "large_custom_dictionary", value) @property @pulumi.getter def regex(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]: """ Store regular expression-based StoredInfoType. """ return pulumi.get(self, "regex") @regex.setter def regex(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2RegexArgs']]): pulumi.set(self, "regex", value) @pulumi.input_type class GooglePrivacyDlpV2StoredTypeArgs: def __init__(__self__, *, create_time: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None): """ A reference to a StoredInfoType to use with scanning. :param pulumi.Input[str] create_time: Timestamp indicating when the version of the `StoredInfoType` used for inspection was created. Output-only field, populated by the system. :param pulumi.Input[str] name: Resource name of the requested `StoredInfoType`, for example `organizations/433245324/storedInfoTypes/432452342` or `projects/project-id/storedInfoTypes/432452342`. """ if create_time is not None: pulumi.set(__self__, "create_time", create_time) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter(name="createTime") def create_time(self) -> Optional[pulumi.Input[str]]: """ Timestamp indicating when the version of the `StoredInfoType` used for inspection was created. Output-only field, populated by the system. """ return pulumi.get(self, "create_time") @create_time.setter def create_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "create_time", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Resource name of the requested `StoredInfoType`, for example `organizations/433245324/storedInfoTypes/432452342` or `projects/project-id/storedInfoTypes/432452342`. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @pulumi.input_type class GooglePrivacyDlpV2SurrogateTypeArgs: def __init__(__self__): """ Message for detecting output from deidentification transformations such as [`CryptoReplaceFfxFpeConfig`](https://cloud.google.com/dlp/docs/reference/rest/v2/organizations.deidentifyTemplates#cryptoreplaceffxfpeconfig). These types of transformations are those that perform pseudonymization, thereby producing a "surrogate" as output. This should be used in conjunction with a field on the transformation such as `surrogate_info_type`. This CustomInfoType does not support the use of `detection_rules`. """ pass @pulumi.input_type class GooglePrivacyDlpV2TableOptionsArgs: def __init__(__self__, *, identifying_fields: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]] = None): """ Instructions regarding the table content being inspected. :param pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]] identifying_fields: The columns that are the primary keys for table objects included in ContentItem. A copy of this cell's value will stored alongside alongside each finding so that the finding can be traced to the specific row it came from. No more than 3 may be provided. """ if identifying_fields is not None: pulumi.set(__self__, "identifying_fields", identifying_fields) @property @pulumi.getter(name="identifyingFields") def identifying_fields(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]: """ The columns that are the primary keys for table objects included in ContentItem. A copy of this cell's value will stored alongside alongside each finding so that the finding can be traced to the specific row it came from. No more than 3 may be provided. """ return pulumi.get(self, "identifying_fields") @identifying_fields.setter def identifying_fields(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]]]): pulumi.set(self, "identifying_fields", value) @pulumi.input_type class GooglePrivacyDlpV2TaggedFieldArgs: def __init__(__self__, *, field: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'], custom_tag: Optional[pulumi.Input[str]] = None, inferred: Optional[pulumi.Input['GoogleProtobufEmptyArgs']] = None, info_type: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']] = None): """ A column with a semantic tag attached. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] field: Identifies the column. :param pulumi.Input[str] custom_tag: A column can be tagged with a custom tag. In this case, the user must indicate an auxiliary table that contains statistical information on the possible values of this column (below). :param pulumi.Input['GoogleProtobufEmptyArgs'] inferred: If no semantic tag is indicated, we infer the statistical model from the distribution of values in the input data :param pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs'] info_type: A column can be tagged with a InfoType to use the relevant public dataset as a statistical model of population, if available. We currently support US ZIP codes, region codes, ages and genders. To programmatically obtain the list of supported InfoTypes, use ListInfoTypes with the supported_by=RISK_ANALYSIS filter. """ pulumi.set(__self__, "field", field) if custom_tag is not None: pulumi.set(__self__, "custom_tag", custom_tag) if inferred is not None: pulumi.set(__self__, "inferred", inferred) if info_type is not None: pulumi.set(__self__, "info_type", info_type) @property @pulumi.getter def field(self) -> pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']: """ Identifies the column. """ return pulumi.get(self, "field") @field.setter def field(self, value: pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']): pulumi.set(self, "field", value) @property @pulumi.getter(name="customTag") def custom_tag(self) -> Optional[pulumi.Input[str]]: """ A column can be tagged with a custom tag. In this case, the user must indicate an auxiliary table that contains statistical information on the possible values of this column (below). """ return pulumi.get(self, "custom_tag") @custom_tag.setter def custom_tag(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "custom_tag", value) @property @pulumi.getter def inferred(self) -> Optional[pulumi.Input['GoogleProtobufEmptyArgs']]: """ If no semantic tag is indicated, we infer the statistical model from the distribution of values in the input data """ return pulumi.get(self, "inferred") @inferred.setter def inferred(self, value: Optional[pulumi.Input['GoogleProtobufEmptyArgs']]): pulumi.set(self, "inferred", value) @property @pulumi.getter(name="infoType") def info_type(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]: """ A column can be tagged with a InfoType to use the relevant public dataset as a statistical model of population, if available. We currently support US ZIP codes, region codes, ages and genders. To programmatically obtain the list of supported InfoTypes, use ListInfoTypes with the supported_by=RISK_ANALYSIS filter. """ return pulumi.get(self, "info_type") @info_type.setter def info_type(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2InfoTypeArgs']]): pulumi.set(self, "info_type", value) @pulumi.input_type class GooglePrivacyDlpV2ThrowErrorArgs: def __init__(__self__): """ Throw an error and fail the request when a transformation error occurs. """ pass @pulumi.input_type class GooglePrivacyDlpV2TimePartConfigArgs: def __init__(__self__, *, part_to_extract: Optional[pulumi.Input['GooglePrivacyDlpV2TimePartConfigPartToExtract']] = None): """ For use with `Date`, `Timestamp`, and `TimeOfDay`, extract or preserve a portion of the value. :param pulumi.Input['GooglePrivacyDlpV2TimePartConfigPartToExtract'] part_to_extract: The part of the time to keep. """ if part_to_extract is not None: pulumi.set(__self__, "part_to_extract", part_to_extract) @property @pulumi.getter(name="partToExtract") def part_to_extract(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2TimePartConfigPartToExtract']]: """ The part of the time to keep. """ return pulumi.get(self, "part_to_extract") @part_to_extract.setter def part_to_extract(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2TimePartConfigPartToExtract']]): pulumi.set(self, "part_to_extract", value) @pulumi.input_type class GooglePrivacyDlpV2TimespanConfigArgs: def __init__(__self__, *, enable_auto_population_of_timespan_config: Optional[pulumi.Input[bool]] = None, end_time: Optional[pulumi.Input[str]] = None, start_time: Optional[pulumi.Input[str]] = None, timestamp_field: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']] = None): """ Configuration of the timespan of the items to include in scanning. Currently only supported when inspecting Google Cloud Storage and BigQuery. :param pulumi.Input[bool] enable_auto_population_of_timespan_config: When the job is started by a JobTrigger we will automatically figure out a valid start_time to avoid scanning files that have not been modified since the last time the JobTrigger executed. This will be based on the time of the execution of the last run of the JobTrigger. :param pulumi.Input[str] end_time: Exclude files, tables, or rows newer than this value. If not set, no upper time limit is applied. :param pulumi.Input[str] start_time: Exclude files, tables, or rows older than this value. If not set, no lower time limit is applied. :param pulumi.Input['GooglePrivacyDlpV2FieldIdArgs'] timestamp_field: Specification of the field containing the timestamp of scanned items. Used for data sources like Datastore and BigQuery. For BigQuery: If this value is not specified and the table was modified between the given start and end times, the entire table will be scanned. If this value is specified, then rows are filtered based on the given start and end times. Rows with a `NULL` value in the provided BigQuery column are skipped. Valid data types of the provided BigQuery column are: `INTEGER`, `DATE`, `TIMESTAMP`, and `DATETIME`. For Datastore: If this value is specified, then entities are filtered based on the given start and end times. If an entity does not contain the provided timestamp property or contains empty or invalid values, then it is included. Valid data types of the provided timestamp property are: `TIMESTAMP`. """ if enable_auto_population_of_timespan_config is not None: pulumi.set(__self__, "enable_auto_population_of_timespan_config", enable_auto_population_of_timespan_config) if end_time is not None: pulumi.set(__self__, "end_time", end_time) if start_time is not None: pulumi.set(__self__, "start_time", start_time) if timestamp_field is not None: pulumi.set(__self__, "timestamp_field", timestamp_field) @property @pulumi.getter(name="enableAutoPopulationOfTimespanConfig") def enable_auto_population_of_timespan_config(self) -> Optional[pulumi.Input[bool]]: """ When the job is started by a JobTrigger we will automatically figure out a valid start_time to avoid scanning files that have not been modified since the last time the JobTrigger executed. This will be based on the time of the execution of the last run of the JobTrigger. """ return pulumi.get(self, "enable_auto_population_of_timespan_config") @enable_auto_population_of_timespan_config.setter def enable_auto_population_of_timespan_config(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_auto_population_of_timespan_config", value) @property @pulumi.getter(name="endTime") def end_time(self) -> Optional[pulumi.Input[str]]: """ Exclude files, tables, or rows newer than this value. If not set, no upper time limit is applied. """ return pulumi.get(self, "end_time") @end_time.setter def end_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "end_time", value) @property @pulumi.getter(name="startTime") def start_time(self) -> Optional[pulumi.Input[str]]: """ Exclude files, tables, or rows older than this value. If not set, no lower time limit is applied. """ return pulumi.get(self, "start_time") @start_time.setter def start_time(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "start_time", value) @property @pulumi.getter(name="timestampField") def timestamp_field(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]: """ Specification of the field containing the timestamp of scanned items. Used for data sources like Datastore and BigQuery. For BigQuery: If this value is not specified and the table was modified between the given start and end times, the entire table will be scanned. If this value is specified, then rows are filtered based on the given start and end times. Rows with a `NULL` value in the provided BigQuery column are skipped. Valid data types of the provided BigQuery column are: `INTEGER`, `DATE`, `TIMESTAMP`, and `DATETIME`. For Datastore: If this value is specified, then entities are filtered based on the given start and end times. If an entity does not contain the provided timestamp property or contains empty or invalid values, then it is included. Valid data types of the provided timestamp property are: `TIMESTAMP`. """ return pulumi.get(self, "timestamp_field") @timestamp_field.setter def timestamp_field(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2FieldIdArgs']]): pulumi.set(self, "timestamp_field", value) @pulumi.input_type class GooglePrivacyDlpV2TransformationErrorHandlingArgs: def __init__(__self__, *, leave_untransformed: Optional[pulumi.Input['GooglePrivacyDlpV2LeaveUntransformedArgs']] = None, throw_error: Optional[pulumi.Input['GooglePrivacyDlpV2ThrowErrorArgs']] = None): """ How to handle transformation errors during de-identification. A transformation error occurs when the requested transformation is incompatible with the data. For example, trying to de-identify an IP address using a `DateShift` transformation would result in a transformation error, since date info cannot be extracted from an IP address. Information about any incompatible transformations, and how they were handled, is returned in the response as part of the `TransformationOverviews`. :param pulumi.Input['GooglePrivacyDlpV2LeaveUntransformedArgs'] leave_untransformed: Ignore errors :param pulumi.Input['GooglePrivacyDlpV2ThrowErrorArgs'] throw_error: Throw an error """ if leave_untransformed is not None: pulumi.set(__self__, "leave_untransformed", leave_untransformed) if throw_error is not None: pulumi.set(__self__, "throw_error", throw_error) @property @pulumi.getter(name="leaveUntransformed") def leave_untransformed(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2LeaveUntransformedArgs']]: """ Ignore errors """ return pulumi.get(self, "leave_untransformed") @leave_untransformed.setter def leave_untransformed(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2LeaveUntransformedArgs']]): pulumi.set(self, "leave_untransformed", value) @property @pulumi.getter(name="throwError") def throw_error(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ThrowErrorArgs']]: """ Throw an error """ return pulumi.get(self, "throw_error") @throw_error.setter def throw_error(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ThrowErrorArgs']]): pulumi.set(self, "throw_error", value) @pulumi.input_type class GooglePrivacyDlpV2TransientCryptoKeyArgs: def __init__(__self__, *, name: pulumi.Input[str]): """ Use this to have a random data crypto key generated. It will be discarded after the request finishes. :param pulumi.Input[str] name: Name of the key. This is an arbitrary string used to differentiate different keys. A unique key is generated per name: two separate `TransientCryptoKey` protos share the same generated key if their names are the same. When the data crypto key is generated, this name is not used in any way (repeating the api call will result in a different key being generated). """ pulumi.set(__self__, "name", name) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ Name of the key. This is an arbitrary string used to differentiate different keys. A unique key is generated per name: two separate `TransientCryptoKey` protos share the same generated key if their names are the same. When the data crypto key is generated, this name is not used in any way (repeating the api call will result in a different key being generated). """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @pulumi.input_type class GooglePrivacyDlpV2TriggerArgs: def __init__(__self__, *, manual: Optional[pulumi.Input['GooglePrivacyDlpV2ManualArgs']] = None, schedule: Optional[pulumi.Input['GooglePrivacyDlpV2ScheduleArgs']] = None): """ What event needs to occur for a new job to be started. :param pulumi.Input['GooglePrivacyDlpV2ManualArgs'] manual: For use with hybrid jobs. Jobs must be manually created and finished. :param pulumi.Input['GooglePrivacyDlpV2ScheduleArgs'] schedule: Create a job on a repeating basis based on the elapse of time. """ if manual is not None: pulumi.set(__self__, "manual", manual) if schedule is not None: pulumi.set(__self__, "schedule", schedule) @property @pulumi.getter def manual(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ManualArgs']]: """ For use with hybrid jobs. Jobs must be manually created and finished. """ return pulumi.get(self, "manual") @manual.setter def manual(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ManualArgs']]): pulumi.set(self, "manual", value) @property @pulumi.getter def schedule(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ScheduleArgs']]: """ Create a job on a repeating basis based on the elapse of time. """ return pulumi.get(self, "schedule") @schedule.setter def schedule(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ScheduleArgs']]): pulumi.set(self, "schedule", value) @pulumi.input_type class GooglePrivacyDlpV2UnwrappedCryptoKeyArgs: def __init__(__self__, *, key: pulumi.Input[str]): """ Using raw keys is prone to security risks due to accidentally leaking the key. Choose another type of key if possible. :param pulumi.Input[str] key: A 128/192/256 bit key. """ pulumi.set(__self__, "key", key) @property @pulumi.getter def key(self) -> pulumi.Input[str]: """ A 128/192/256 bit key. """ return pulumi.get(self, "key") @key.setter def key(self, value: pulumi.Input[str]): pulumi.set(self, "key", value) @pulumi.input_type class GooglePrivacyDlpV2ValueArgs: def __init__(__self__, *, boolean_value: Optional[pulumi.Input[bool]] = None, date_value: Optional[pulumi.Input['GoogleTypeDateArgs']] = None, day_of_week_value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueDayOfWeekValue']] = None, float_value: Optional[pulumi.Input[float]] = None, integer_value: Optional[pulumi.Input[str]] = None, string_value: Optional[pulumi.Input[str]] = None, time_value: Optional[pulumi.Input['GoogleTypeTimeOfDayArgs']] = None, timestamp_value: Optional[pulumi.Input[str]] = None): """ Set of primitive values supported by the system. Note that for the purposes of inspection or transformation, the number of bytes considered to comprise a 'Value' is based on its representation as a UTF-8 encoded string. For example, if 'integer_value' is set to 123456789, the number of bytes would be counted as 9, even though an int64 only holds up to 8 bytes of data. :param pulumi.Input[bool] boolean_value: boolean :param pulumi.Input['GoogleTypeDateArgs'] date_value: date :param pulumi.Input['GooglePrivacyDlpV2ValueDayOfWeekValue'] day_of_week_value: day of week :param pulumi.Input[float] float_value: float :param pulumi.Input[str] integer_value: integer :param pulumi.Input[str] string_value: string :param pulumi.Input['GoogleTypeTimeOfDayArgs'] time_value: time of day :param pulumi.Input[str] timestamp_value: timestamp """ if boolean_value is not None: pulumi.set(__self__, "boolean_value", boolean_value) if date_value is not None: pulumi.set(__self__, "date_value", date_value) if day_of_week_value is not None: pulumi.set(__self__, "day_of_week_value", day_of_week_value) if float_value is not None: pulumi.set(__self__, "float_value", float_value) if integer_value is not None: pulumi.set(__self__, "integer_value", integer_value) if string_value is not None: pulumi.set(__self__, "string_value", string_value) if time_value is not None: pulumi.set(__self__, "time_value", time_value) if timestamp_value is not None: pulumi.set(__self__, "timestamp_value", timestamp_value) @property @pulumi.getter(name="booleanValue") def boolean_value(self) -> Optional[pulumi.Input[bool]]: """ boolean """ return pulumi.get(self, "boolean_value") @boolean_value.setter def boolean_value(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "boolean_value", value) @property @pulumi.getter(name="dateValue") def date_value(self) -> Optional[pulumi.Input['GoogleTypeDateArgs']]: """ date """ return pulumi.get(self, "date_value") @date_value.setter def date_value(self, value: Optional[pulumi.Input['GoogleTypeDateArgs']]): pulumi.set(self, "date_value", value) @property @pulumi.getter(name="dayOfWeekValue") def day_of_week_value(self) -> Optional[pulumi.Input['GooglePrivacyDlpV2ValueDayOfWeekValue']]: """ day of week """ return pulumi.get(self, "day_of_week_value") @day_of_week_value.setter def day_of_week_value(self, value: Optional[pulumi.Input['GooglePrivacyDlpV2ValueDayOfWeekValue']]): pulumi.set(self, "day_of_week_value", value) @property @pulumi.getter(name="floatValue") def float_value(self) -> Optional[pulumi.Input[float]]: """ float """ return pulumi.get(self, "float_value") @float_value.setter def float_value(self, value: Optional[pulumi.Input[float]]): pulumi.set(self, "float_value", value) @property @pulumi.getter(name="integerValue") def integer_value(self) -> Optional[pulumi.Input[str]]: """ integer """ return pulumi.get(self, "integer_value") @integer_value.setter def integer_value(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "integer_value", value) @property @pulumi.getter(name="stringValue") def string_value(self) -> Optional[pulumi.Input[str]]: """ string """ return pulumi.get(self, "string_value") @string_value.setter def string_value(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "string_value", value) @property @pulumi.getter(name="timeValue") def time_value(self) -> Optional[pulumi.Input['GoogleTypeTimeOfDayArgs']]: """ time of day """ return pulumi.get(self, "time_value") @time_value.setter def time_value(self, value: Optional[pulumi.Input['GoogleTypeTimeOfDayArgs']]): pulumi.set(self, "time_value", value) @property @pulumi.getter(name="timestampValue") def timestamp_value(self) -> Optional[pulumi.Input[str]]: """ timestamp """ return pulumi.get(self, "timestamp_value") @timestamp_value.setter def timestamp_value(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "timestamp_value", value) @pulumi.input_type class GooglePrivacyDlpV2WordListArgs: def __init__(__self__, *, words: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ Message defining a list of words or phrases to search for in the data. :param pulumi.Input[Sequence[pulumi.Input[str]]] words: Words or phrases defining the dictionary. The dictionary must contain at least one phrase and every phrase must contain at least 2 characters that are letters or digits. [required] """ if words is not None: pulumi.set(__self__, "words", words) @property @pulumi.getter def words(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Words or phrases defining the dictionary. The dictionary must contain at least one phrase and every phrase must contain at least 2 characters that are letters or digits. [required] """ return pulumi.get(self, "words") @words.setter def words(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "words", value) @pulumi.input_type class GoogleProtobufEmptyArgs: def __init__(__self__): """ A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for `Empty` is empty JSON object `{}`. """ pass @pulumi.input_type class GoogleTypeDateArgs: def __init__(__self__, *, day: Optional[pulumi.Input[int]] = None, month: Optional[pulumi.Input[int]] = None, year: Optional[pulumi.Input[int]] = None): """ Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following: * A full date, with non-zero year, month, and day values * A month and day value, with a zero year, such as an anniversary * A year on its own, with zero month and day values * A year and month value, with a zero day, such as a credit card expiration date Related types are google.type.TimeOfDay and `google.protobuf.Timestamp`. :param pulumi.Input[int] day: Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn't significant. :param pulumi.Input[int] month: Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day. :param pulumi.Input[int] year: Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year. """ if day is not None: pulumi.set(__self__, "day", day) if month is not None: pulumi.set(__self__, "month", month) if year is not None: pulumi.set(__self__, "year", year) @property @pulumi.getter def day(self) -> Optional[pulumi.Input[int]]: """ Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn't significant. """ return pulumi.get(self, "day") @day.setter def day(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "day", value) @property @pulumi.getter def month(self) -> Optional[pulumi.Input[int]]: """ Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day. """ return pulumi.get(self, "month") @month.setter def month(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "month", value) @property @pulumi.getter def year(self) -> Optional[pulumi.Input[int]]: """ Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year. """ return pulumi.get(self, "year") @year.setter def year(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "year", value) @pulumi.input_type class GoogleTypeTimeOfDayArgs: def __init__(__self__, *, hours: Optional[pulumi.Input[int]] = None, minutes: Optional[pulumi.Input[int]] = None, nanos: Optional[pulumi.Input[int]] = None, seconds: Optional[pulumi.Input[int]] = None): """ Represents a time of day. The date and time zone are either not significant or are specified elsewhere. An API may choose to allow leap seconds. Related types are google.type.Date and `google.protobuf.Timestamp`. :param pulumi.Input[int] hours: Hours of day in 24 hour format. Should be from 0 to 23. An API may choose to allow the value "24:00:00" for scenarios like business closing time. :param pulumi.Input[int] minutes: Minutes of hour of day. Must be from 0 to 59. :param pulumi.Input[int] nanos: Fractions of seconds in nanoseconds. Must be from 0 to 999,999,999. :param pulumi.Input[int] seconds: Seconds of minutes of the time. Must normally be from 0 to 59. An API may allow the value 60 if it allows leap-seconds. """ if hours is not None: pulumi.set(__self__, "hours", hours) if minutes is not None: pulumi.set(__self__, "minutes", minutes) if nanos is not None: pulumi.set(__self__, "nanos", nanos) if seconds is not None: pulumi.set(__self__, "seconds", seconds) @property @pulumi.getter def hours(self) -> Optional[pulumi.Input[int]]: """ Hours of day in 24 hour format. Should be from 0 to 23. An API may choose to allow the value "24:00:00" for scenarios like business closing time. """ return pulumi.get(self, "hours") @hours.setter def hours(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "hours", value) @property @pulumi.getter def minutes(self) -> Optional[pulumi.Input[int]]: """ Minutes of hour of day. Must be from 0 to 59. """ return pulumi.get(self, "minutes") @minutes.setter def minutes(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "minutes", value) @property @pulumi.getter def nanos(self) -> Optional[pulumi.Input[int]]: """ Fractions of seconds in nanoseconds. Must be from 0 to 999,999,999. """ return pulumi.get(self, "nanos") @nanos.setter def nanos(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "nanos", value) @property @pulumi.getter def seconds(self) -> Optional[pulumi.Input[int]]: """ Seconds of minutes of the time. Must normally be from 0 to 59. An API may allow the value 60 if it allows leap-seconds. """ return pulumi.get(self, "seconds") @seconds.setter def seconds(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "seconds", value)
py
1a4e15bdf05105e1cd4d928ddeced21c34111d4d
import os import re import numpy import numpy as np from speech_manip import get_speech, put_speech, rate2fftlength, rate2worldapsize # [http://stackoverflow.com/questions/1208118/using-numpy-to-build-an-array-of-all-combinations-of-two-arrays] def cartesian(arrays, out=None): """ Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] dtype = arrays[0].dtype n = np.prod([x.size for x in arrays]) if out is None: out = np.zeros([n, len(arrays)], dtype=dtype) m = n / arrays[0].size out[:,0] = np.repeat(arrays[0], m) if arrays[1:]: cartesian(arrays[1:], out=out[0:m,1:]) for j in xrange(1, arrays[0].size): out[j*m:(j+1)*m,1:] = out[0:m,1:] return out def destandardise(norm_speech, config): ### TEMP -- copied from standardise.pu statsdir = os.path.join(config['workdir'], 'stats') bap_size = rate2worldapsize(config['sample_rate']) w = config['weights'] weight_vec = [w['mgc']] * (config['mcc_order']+1) + \ [w['lf0']] + \ [w['vuv']] + \ [w['bap']] * bap_size weight_vec = np.array(weight_vec) dim = config['mcc_order'] + 3 + bap_size ## 3 = f0, vuv, energy mean_vec = np.loadtxt(os.path.join(statsdir, 'mean.txt')) std_vec = np.loadtxt(os.path.join(statsdir, 'std.txt')) vuv_dim = config['mcc_order'] + 2 m,n = np.shape(norm_speech) mean_mat = np.tile(mean_vec,(m,1)) std_mat = np.tile(std_vec,(m,1)) weight_mat = np.tile(weight_vec,(m,1)) speech = norm_speech / weight_mat speech *= std_mat speech += mean_mat speech[:,vuv_dim] = norm_speech[:,vuv_dim] return speech def safe_makedir(dir): if not os.path.isdir(dir): os.makedirs(dir) def writelist(seq, fname): f = open(fname, 'w') f.write('\n'.join(seq) + '\n') f.close() def readlist(fname): f = open(fname, 'r') data = f.readlines() f.close() return [line.strip('\n') for line in data] def read_norm_data(fname, stream_names): out = {} vals = np.loadtxt(fname) mean_ix = 0 for stream in stream_names: std_ix = mean_ix + 1 out[stream] = (vals[mean_ix], vals[std_ix]) mean_ix += 2 return out def makedirecs(direcs): for direc in direcs: if not os.path.isdir(direc): os.makedirs(direc) def basename(fname): path, name = os.path.split(fname) base = re.sub('\.[^\.]+\Z','',name) return base def split_into_streams(speech, stream_names, datadims): # if 'vuv' not in datadims: # dim += 1 ## add 1 for vuv # speech = get_speech(cmpfile, dim) start = 0 outputs = {} for stream in stream_names: stream_dim = datadims[stream] if stream == 'mgc': stream_dim += 1 end = start + stream_dim print stream outputs[stream] = speech[:,start:end] start = end return outputs def world_synth(cmpfile, wavefile, config, denorm=False): stream_names = config['stream_names'] datadims = dict(zip(stream_names, config['datadims_list'])) datadims['vuv'] = 1 speech = get_speech(cmpfile, sum(datadims.values())+1) #print config if denorm: speech = destandardise(speech, config) streams = split_into_streams(speech, stream_names, datadims) #print streams if 'lf0' in streams: fzero = numpy.exp(streams['lf0']) vuv_thresh = 0.5 if 'vuv' in streams: vuv = streams['vuv'] lf0 = streams['lf0'] fzero[vuv <= vuv_thresh] = 0.0 #fzero *= fzero_scale streams['lf0'] = fzero streams2wav(streams, wavefile, config) def denorm_data(streams, config): stream_names = config['stream_names'] norm_data = read_norm_data(config['norm_data_file'] , stream_names) denorm_data = {} weights = config['weights'] for (stream_name, stream_data) in streams.items(): (mean_val, std_val) = norm_data[stream_name] stream_data /= weights[stream_name] stream_data *= std_val stream_data += mean_val denorm_data[stream_name] = stream_data return denorm_data def streams2wav(streams, outfile, config): bin_dir = config['bindir'] alpha = config['mcc_alpha'] order = config['mcc_order'] sr = config['sample_rate'] fftl = rate2fftlength(sr) ## TODO -- handle tmp better os.system('rm /tmp/tmp*') for (stream, data) in streams.items(): put_speech(data, '/tmp/tmp.%s'%(stream)) comm=bin_dir+"/x2x +fd /tmp/tmp."+stream+" >/tmp/tmp_d."+stream print comm os.system(comm) comm = "%s/mgc2sp -a %s -g 0 -m %s -l %s -o 2 /tmp/tmp.mgc | %s/sopr -d 32768.0 -P | %s/x2x +fd -o > /tmp/tmp.spec"%(bin_dir, alpha, order, fftl, bin_dir, bin_dir) print comm os.system(comm) '''Avoid: x2x : error: input data is over the range of type 'double'! -o : clip by minimum and maximum of output data type if input data is over the range of output data type. ''' comm = "%s/synth %s %s /tmp/tmp_d.lf0 /tmp/tmp.spec /tmp/tmp_d.bap %s"%(bin_dir, fftl, sr, outfile) print comm res = os.system(comm) if res != 0: print print 'trouble with resynth command:' print comm print else: # os.system("mv /tmp/tmp.resyn.wav "+outfile) print 'Produced %s'%(outfile) def splice_data(data, splice_weights): assert len(splice_weights) % 2 == 1, 'no. of weights should be odd' middle = (len(splice_weights) - 1) / 2 assert splice_weights[middle] == 1.0, 'middle weight must be 1!' #print data #print '====' offset = len(splice_weights)-1 stacked = [] for (i,w) in enumerate(splice_weights): if offset == 0: #print data[i:, :] #* w stacked.append(data[i:, :]) else: #print data[i:-offset, :] #* w stacked.append(data[i:-offset, :]) #print i #print offset offset -= 1 stacked = np.hstack(stacked) #print stacked return stacked def unsplice(data, splice_weights): assert len(splice_weights) % 2 == 1, 'no. of weights should be odd' middle = (len(splice_weights) - 1) / 2 # print splice_weights # print splice_weights[middle] # print middle m,n = np.shape(data) dim = n / len(splice_weights) return data[:,(dim*middle):(dim*middle)+dim] def comm(comm_line, quiet=False): if not quiet: print comm_line os.system(comm_line) def latex_matrix(X, integer=False): """ Print a numpy array to a string that will compile when pasted into latex . Arbitary matric name M -- change this after. See http://selinap.com/2009/05/how-to-create-a-matrix-in-latex/ on latex matrices """ m,n = X.shape align_pattern = "c" * n outstring="""\\begin{pmatrix}\n""" for i in range(m): for j in range(n): if integer: outstring += str(int(X[i,j])) else: outstring += "%.2f"%(X[i,j]) ### 2 decimal places for floats if j == (n-1): outstring += " \\\\ \n" else: outstring += " & " outstring += """\end{pmatrix} \n""" return outstring def vector_to_string(vect): ''' Version of vector suitable for use in filenames. Try to drop values after decimal point if possible ''' string_values = [] for value in vect: if int(value) == value: string_values.append(str(int(value))) else: string_values.append(str(value)) ## 'run length encode' repeated values to get sensible size string: unique_values = [] counts = [] prev_val = '' assert '' not in string_values for val in string_values: if val != prev_val: unique_values.append(val) if prev_val != '': counts.append(count) count = 1 else: count += 1 prev_val = val counts.append(count) assert len(unique_values) == len(counts) dedup_string_values = [] for (value, count) in zip(unique_values, counts): dedup_string_values.append('%sx%s'%(count, value)) dedup_string_values = '-'.join(dedup_string_values) return dedup_string_values
py
1a4e1661004272d9f8bb54997953ee4ee33c02be
""" Test calling user defined functions using expression evaluation. This test checks that typesystem lookup works correctly for typedefs of untagged structures. Ticket: https://llvm.org/bugs/show_bug.cgi?id=26790 """ import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestExprLookupAnonStructTypedef(TestBase): mydir = TestBase.compute_mydir(__file__) @expectedFailureAll( oslist=['linux'], archs=['arm'], bugnumber="llvm.org/pr27868") def test(self): """Test typedeffed untagged struct arguments for function call expressions""" self.build() lldbutil.run_to_source_breakpoint(self, "// break here", lldb.SBFileSpec("main.cpp")) self.expect_expr("multiply(&s)", result_type="double", result_value="1")
py
1a4e167906f5c03b491ad2d66a884008d8b1dd3e
from random import randint from pygame import * class GameSprite(sprite.Sprite): def __init__(self, player_image, player_speed, player_x, player_y): super().__init__() self.image = transform.scale(image.load(player_image),(65, 65)) self.speed = player_speed self.rect = self.image.get_rect() self.rect.x = player_x self.rect.y = player_y def reset(self): window.blit(self.image, (self.rect.x, self.rect.y)) background = transform.scale(image.load('desert.jpg'),(1100, 900)) class Player(GameSprite): def update(self): keys_pressed = key.get_pressed() if keys_pressed[K_a] and self.rect.x > 0: self.rect.x -= self.speed if keys_pressed[K_d] and self.rect.x < 595: self.rect.x += self.speed if keys_pressed[K_w] and self.rect.y > 0: self.rect.y -= self.speed if keys_pressed[K_s] and self.rect.y < 395: self.rect.y += self.speed class Ball (GameSprite): def hod(self): self.rect.x += self.speed self.rect.y += self.speed window = display.set_mode((1100,900)) display.set_caption('Shooter') background = transform.scale(image.load('desert.jpg'),(1100, 900)) run = True FPS = 60 clock = time.Clock() finish = False score = 0 rocket = Player('raket.png', 30, 50, 450) rocket1 = Player('raket.png', 30, 1050, 450) shar = Ball('bol.png', 40, 550, 450) while run: for i in event.get(): if e.type == QUIT: run = False rocket.reset() rocket1.reset() time.delay(50)
py
1a4e16b151e8f74f0917b8f1273fddfabd4b6e30
from . import _nnls from numpy import asarray_chkfinite, zeros, double __all__ = ['nnls'] def nnls(A, b, maxiter=None): """ Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``. This is a wrapper for a FORTRAN non-negative least squares solver. Parameters ---------- A : ndarray Matrix ``A`` as shown above. b : ndarray Right-hand side vector. maxiter: int, optional Maximum number of iterations, optional. Default is ``3 * A.shape[1]``. Returns ------- x : ndarray Solution vector. rnorm : float The residual, ``|| Ax-b ||_2``. See Also -------- lsq_linear : Linear least squares with bounds on the variables Notes ----- The FORTRAN code was published in the book below. The algorithm is an active set method. It solves the KKT (Karush-Kuhn-Tucker) conditions for the non-negative least squares problem. References ---------- Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM Examples -------- >>> from scipy.optimize import nnls ... >>> A = np.array([[1, 0], [1, 0], [0, 1]]) >>> b = np.array([2, 1, 1]) >>> nnls(A, b) (array([1.5, 1. ]), 0.7071067811865475) >>> b = np.array([-1, -1, -1]) >>> nnls(A, b) (array([0., 0.]), 1.7320508075688772) """ A, b = map(asarray_chkfinite, (A, b)) if len(A.shape) != 2: raise ValueError("Expected a two-dimensional array (matrix)" + ", but the shape of A is %s" % (A.shape, )) if len(b.shape) != 1: raise ValueError("Expected a one-dimensional array (vector" + ", but the shape of b is %s" % (b.shape, )) m, n = A.shape if m != b.shape[0]: raise ValueError( "Incompatible dimensions. The first dimension of " + "A is %s, while the shape of b is %s" % (m, (b.shape[0], ))) maxiter = -1 if maxiter is None else int(maxiter) w = zeros((n,), dtype=double) zz = zeros((m,), dtype=double) index = zeros((n,), dtype=int) x, rnorm, mode = _nnls.nnls(A, m, n, b, w, zz, index, maxiter) if mode != 1: raise RuntimeError("too many iterations") return x, rnorm
py
1a4e16fb224361ee20f623c6a68bb5f0e3bf072e
#!/usr/bin/env python3 # coding: utf8 """ Loads and handels training and validation data collections. """ __author__ = 'David Flury, Andreas Kaufmann, Raphael Müller' __email__ = "[email protected]" import hashlib import glob import os import random from unmix.source.configuration import Configuration from unmix.source.data.song import Song from unmix.source.logging.logger import Logger class DataLoader(object): @staticmethod def load(path=None, test_data_count=None): if path is None: folders = Configuration.get('collection.folders') if folders is None: return DataLoader.loadDataset(Configuration.get('collection.folder', optional=False), test_data_count) else: return DataLoader.loadMultipleDatasets(folders, test_data_count) else: return DataLoader.loadDataset(path, test_data_count) @staticmethod def loadDataset(path, test_data_count): files = DataLoader.loadFiles(path) training_files, validation_files, test_files = DataLoader.splitDataset(files, test_data_count) Logger.debug( "Found %d songs for training and %d songs for validation." % (len(training_files), len(validation_files))) if test_files is not None: test_frequency = Configuration.get('collection.test_frequency', default=0) Logger.debug("Use %d songs for tests after every %d epoch." % (len(test_files), test_frequency)) if len(training_files) == 0: Logger.warn("No training files assigned.") if len(validation_files) == 0: Logger.warn("No validation files assigned.") return training_files, validation_files, test_files @staticmethod def loadFiles(path, ignore_song_limit=False): if path is None: path = Configuration.get_path('collection.folder', False) instrument_filter = os.path.join(path, '**', '%s*.wav' % Song.PREFIX_INSTRUMENT) files_instrument = [os.path.dirname(file) for file in glob.iglob(instrument_filter, recursive=True)] rest_filter = os.path.join(path, '**', '%s*.wav' % Song.PREFIX_REST) files_rest = [os.path.dirname(file) for file in glob.iglob(rest_filter, recursive=True)] files = [f for f in files_instrument if f in files_rest] # make sure both instrument and rest file exists skipped_count = len(set(files_instrument) - set(files_rest)) + len(set(files_rest) - set(files_instrument)) Logger.debug(f"Skipped {skipped_count} files (incomplete instrument/rest pair)") # Sort files by hash value of folder to guarantee a consistent order files.sort(key=lambda x: hashlib.md5(os.path.basename(x).encode('utf-8', 'surrogatepass')).hexdigest()) song_limit = Configuration.get('collection.song_limit', default=0) if not ignore_song_limit and song_limit > 0: if song_limit <= 1: # Configuration as percentage share song_limit = song_limit * len(files) song_limit = min(int(song_limit), len(files)) files = files[:song_limit] return files @staticmethod def splitDataset(files, test_data_count): test_files = None test_frequency = Configuration.get('collection.test_frequency', default=0) if not test_data_count: test_data_count = Configuration.get('collection.test_data_count', default=0) if test_data_count > 0: test_data_count = int(test_data_count) test_files = files[-test_data_count:] files = files[:len(files) - test_data_count] validation_ratio = Configuration.get('collection.validation_ratio', default=0.2) validation_files = files[:int(len(files) * validation_ratio)] training_files = files[len(validation_files):] return training_files, validation_files, test_files @staticmethod def loadMultipleDatasets(folders, test_data_count): datasets = [] ratio_sum = 0 smallest_dataset_length = None smallest_dataset_ratio = None for folder in folders: ratio = folder['ratio'] dataset = DataLoader.loadFiles(folder['path'], True) datasets.append((dataset, ratio, folder['path'])) ratio_sum = ratio_sum + ratio dataset_length = len(dataset) if smallest_dataset_length is None or dataset_length < smallest_dataset_length: smallest_dataset_length = dataset_length smallest_dataset_ratio = ratio target_song_count = ratio_sum / smallest_dataset_ratio * smallest_dataset_length song_limit = Configuration.get('collection.song_limit', default=0) if song_limit < target_song_count: if song_limit >= 1: target_song_count = song_limit elif song_limit > 0: target_song_count = target_song_count * song_limit training_files = [] validation_files = [] test_files = [] for dataset, ratio, folder in datasets: requested_file_count = int(ratio / ratio_sum * target_song_count) files = dataset[:requested_file_count] print('Loaded %s files from %s' % (len(files), folder)) training, validation, test = DataLoader.splitDataset(files, test_data_count) training_files.extend(training) validation_files.extend(validation) if test is not None: test_files.extend(test) return training_files, validation_files, test_files
py
1a4e190d1a510e8d92675773c991c8fe0fc4ff89
import cPickle import os import time import mxnet as mx import numpy as np import sys from scipy.io import savemat from module import MutableModule from rcnn.logger import logger from rcnn.config import config, default from rcnn.fio import image from rcnn.fio.load_ct_img import map_box_back from rcnn.processing.bbox_transform import bbox_pred, clip_boxes from rcnn.processing.nms import py_nms_wrapper, cpu_nms_wrapper, gpu_nms_wrapper from rcnn.utils.timer import Timer from rcnn.utils.evaluation import recall_all class Predictor(object): def __init__(self, symbol, data_names, label_names, context=mx.cpu(), max_data_shapes=None, provide_data=None, provide_label=None, arg_params=None, aux_params=None): self._mod = MutableModule(symbol, data_names, label_names, context=context, max_data_shapes=max_data_shapes) self._mod.bind(provide_data, provide_label, for_training=False) self._mod.init_params(arg_params=arg_params, aux_params=aux_params) def predict(self, data_batch): self._mod.forward(data_batch) return dict(zip(self._mod.output_names, self._mod.get_outputs())) def im_proposal(predictor, data_batch, data_names, scale): data_dict = dict(zip(data_names, data_batch.data)) output = predictor.predict(data_batch) # drop the batch index boxes = output['rois_output'].asnumpy()[:, 1:] scores = output['rois_score'].asnumpy() # transform to original scale boxes = boxes / scale return scores, boxes, data_dict def generate_proposals(predictor, test_data, imdb, vis=False, thresh=0.): """ Generate detections results using RPN. :param predictor: Predictor :param test_data: data iterator, must be non-shuffled :param imdb: image database :param vis: controls visualization :param thresh: thresh for valid detections :return: list of detected boxes """ assert vis or not test_data.shuffle data_names = [k[0] for k in test_data.provide_data] i = 0 t = time.time() imdb_boxes = list() original_boxes = list() for im_info, data_batch in test_data: t1 = time.time() - t t = time.time() scale = im_info[0, 2] scores, boxes, data_dict = im_proposal(predictor, data_batch, data_names, scale) t2 = time.time() - t t = time.time() # assemble proposals dets = np.hstack((boxes, scores)) original_boxes.append(dets) # filter proposals keep = np.where(dets[:, 4:] > thresh)[0] dets = dets[keep, :] imdb_boxes.append(dets) if vis: vis_all_detection(data_dict['data'].asnumpy(), [dets], ['obj'], scale) logger.info('generating %d/%d ' % (i + 1, imdb.num_images) + 'proposal %d ' % (dets.shape[0]) + 'data %.4fs net %.4fs' % (t1, t2)) i += 1 assert len(imdb_boxes) == imdb.num_images, 'calculations not complete' # save results rpn_folder = os.path.join(imdb.root_path, 'rpn_data') if not os.path.exists(rpn_folder): os.mkdir(rpn_folder) rpn_file = os.path.join(rpn_folder, imdb.name + '_rpn.pkl') with open(rpn_file, 'wb') as f: cPickle.dump(imdb_boxes, f, cPickle.HIGHEST_PROTOCOL) if thresh > 0: full_rpn_file = os.path.join(rpn_folder, imdb.name + '_full_rpn.pkl') with open(full_rpn_file, 'wb') as f: cPickle.dump(original_boxes, f, cPickle.HIGHEST_PROTOCOL) logger.info('wrote rpn proposals to %s' % rpn_file) return imdb_boxes def im_detect(predictor, data_batch, data_names, scale): output = predictor.predict(data_batch) data_dict = dict(zip(data_names, data_batch.data)) if config.TEST.HAS_RPN: rois = output['rois_output'].asnumpy()[:, 1:] else: rois = data_dict['rois'].asnumpy().reshape((-1, 5))[:, 1:] im_shape = data_dict['data'].shape # save output scores = output['cls_prob_reshape_output'].asnumpy()[0] bbox_deltas = output['bbox_pred_reshape_output'].asnumpy()[0] # print 'im_det', scores[:,1] # post processing pred_boxes = bbox_pred(rois, bbox_deltas) pred_boxes = clip_boxes(pred_boxes, im_shape[-2:]) # we used scaled image & roi to train, so it is necessary to transform them back pred_boxes = pred_boxes / scale return scores, pred_boxes, data_dict from rcnn.utils.evaluation import sens_at_FP def my_evaluate_detections(all_boxes, all_gts): print 'Sensitivity @', default.val_avg_fp, 'average FPs per image:', res = sens_at_FP(all_boxes[1], all_gts[1], default.val_avg_fp, default.val_iou_th) # cls 0 is background print res return res[3] # sens@4FP def pred_eval(predictor, test_data, imdb, vis=False, max_box=-1, thresh=1e-3): """ wrapper for calculating offline validation for faster data analysis in this example, all threshold are set by hand :param predictor: Predictor :param test_data: data iterator, must be non-shuffle :param imdb: image database :param vis: controls visualization :param max_box: maximum number of boxes detected in each image :param thresh: valid detection threshold :return: """ # assert vis or not test_data.shuffle data_names = [k[0] for k in test_data.provide_data] nms = py_nms_wrapper(config.TEST.NMS) # limit detections to max_per_image over all classes max_per_image = max_box num_images = imdb.num_images # all detections are collected into: # all_boxes[cls][image] = N x 5 array of detections in # (x1, y1, x2, y2, score) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] kept_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] all_gts = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] all_iminfos = [] all_imnames = [] all_crops = [] i = 0 _t = {'data': Timer(), 'im_detect' : Timer(), 'misc' : Timer()} _t['data'].tic() num_image = config.NUM_IMAGES_3DCE key_idx = (num_image - 1) / 2 # adjust image for 3DCE for im_info, imname, crop, data_batch in test_data: _t['data'].toc() _t['im_detect'].tic() all_iminfos.append(im_info) all_imnames.append(imname) all_crops.append(crop) # scale = im_info[0, 2] scale = 1. # we have scaled the label in get_image(), so no need to scale the pred_box gt_boxes = data_batch.label[0].asnumpy()[key_idx, :, :] data_batch.label = None scores, boxes, data_dict = im_detect(predictor, data_batch, data_names, scale) _t['im_detect'].toc() _t['misc'].tic() for j in range(1, imdb.num_classes): indexes = np.where(scores[:, j] > thresh)[0] cls_scores = scores[indexes, j, np.newaxis] cls_boxes = boxes[indexes, j * 4:(j + 1) * 4] cls_boxes = map_box_back(cls_boxes, crop[2], crop[0], im_info[0,2]) cls_dets = np.hstack((cls_boxes, cls_scores)) keep = nms(cls_dets) all_boxes[j][i] = cls_dets[keep, :] all_gts[j][i] = map_box_back(gt_boxes, crop[2], crop[0], im_info[0,2]) if max_per_image > 0: image_scores = np.hstack([all_boxes[j][i][:, -1] for j in range(1, imdb.num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in range(1, imdb.num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] kept_boxes[j][i] = all_boxes[j][i][keep, :] if vis: boxes_this_image = [[]] + [kept_boxes[j][i] for j in range(1, imdb.num_classes)] vis_all_detection(data_dict['data'].asnumpy(), boxes_this_image, imdb.classes, scale) _t['misc'].toc() if i % 200 == 0: if i <= 400: logger.info('im_detect: {:d}/{:d} data {:.3f}s im_detect {:.3f}s misc {:.3f}s' .format(i, imdb.num_images, _t['data'].average_time, _t['im_detect'].average_time, _t['misc'].average_time)) else: print i, sys.stdout.flush() # logger.info('testing %d/%d data %.4fs net %.4fs post %.4fs' % (i, imdb.num_images, t1, t2, t3)) i += 1 _t['data'].tic() print sys.stdout.flush() det_file = os.path.join(imdb.cache_path, imdb.name + '_detections.pkl') with open(det_file, 'wb') as f: cPickle.dump(kept_boxes, f, protocol=cPickle.HIGHEST_PROTOCOL) default.res_dict = {'imname': all_imnames, 'boxes': all_boxes[1], 'gts': all_gts[1]} # default.res_dict = {'imname': all_imnames, 'im_info': all_iminfos, 'crops': all_crops, 'boxes': all_boxes[1], 'gts': all_gts[1]} acc = my_evaluate_detections(all_boxes, all_gts) sys.stdout.flush() return acc def vis_all_boxes(im_array, boxes): """ visualize all boxes in one image :param im_array: [b=1 c h w] in rgb :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ] :param class_names: list of names in imdb :param scale: visualize the scaled image :return: """ import matplotlib.pyplot as plt from ..fio.load_ct_img import windowing_rev, windowing im = windowing_rev(im_array+config.PIXEL_MEANS, config.WINDOWING) im = windowing(im, [-175,275]).astype(np.uint8) # soft tissue window plt.imshow(im) color = (0.,1.,0.) for bbox in boxes: rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=2) plt.gca().add_patch(rect) if boxes.shape[1] == 5: score = bbox[-1] plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white') plt.show() def vis_all_detection(im_array, detections, class_names, scale): """ visualize all detections in one image :param im_array: [b=1 c h w] in rgb :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ] :param class_names: list of names in imdb :param scale: visualize the scaled image :return: """ import matplotlib.pyplot as plt import random im = image.transform_inverse(im_array, config.PIXEL_MEANS) plt.imshow(im) for j, name in enumerate(class_names): if name == '__background__': continue color = (random.random(), random.random(), random.random()) # generate a random color dets = detections[j] for det in dets: bbox = det[:4] * scale score = det[-1] rect = plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor=color, linewidth=3.5) plt.gca().add_patch(rect) plt.gca().text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(name, score), bbox=dict(facecolor=color, alpha=0.5), fontsize=12, color='white') plt.show() def draw_all_detection(im_array, detections, class_names, scale): """ visualize all detections in one image :param im_array: [b=1 c h w] in rgb :param detections: [ numpy.ndarray([[x1 y1 x2 y2 score]]) for j in classes ] :param class_names: list of names in imdb :param scale: visualize the scaled image :return: """ import cv2 import random color_white = (255, 255, 255) im = image.transform_inverse(im_array, config.PIXEL_MEANS) # change to bgr im = cv2.cvtColor(im, cv2.cv.CV_RGB2BGR) for j, name in enumerate(class_names): if name == '__background__': continue color = (random.randint(0, 256), random.randint(0, 256), random.randint(0, 256)) # generate a random color dets = detections[j] for det in dets: bbox = det[:4] * scale score = det[-1] bbox = map(int, bbox) cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=color, thickness=2) cv2.putText(im, '%s %.3f' % (class_names[j], score), (bbox[0], bbox[1] + 10), color=color_white, fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=0.5) return im
py
1a4e198097c066367983585650962ae02be05b98
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyPybigwig(PythonPackage): """A package for accessing bigWig files using libBigWig.""" pypi = "pyBigWig/pyBigWig-0.3.4.tar.gz" version('0.3.12', sha256='e01991790ece496bf6d3f00778dcfb136dd9ca0fd28acc1b3fb43051ad9b8403') version('0.3.4', sha256='8c97a19218023190041c0e426f1544f7a4944a7bb4568faca1d85f1975af9ee2') variant('numpy', default=True, description='Enable support for numpy integers and vectors') patch('python3_curl.patch', when='@:0.3.12 ^python@3:') depends_on('curl', type=('build', 'link', 'run')) depends_on('py-setuptools', type='build') depends_on('py-numpy', type=('build', 'run'), when='+numpy')
py
1a4e1ae66a58b4827c29d33bfc0f9b74080f76a9
import subprocess import os def arg(): try: import sys return sys.argv[1] except: None inputfile = input("Enter the file to parse:") outputfile = input("Enter the file to output to: ") if os.path.exists("my_filters_001"): os.chdir("my_filters_001") subprocess.call(["git pull"],shell=True) os.chdir("..") else: subprocess.call(["git clone https://github.com/iam-py-test/my_filters_001.git"],shell=True) alt = open("my_filters_001/Alternative list formats/{}".format(outputfile),"w") with open("my_filters_001/{}".format(inputfile)) as f: lines = f.read().split("\n") for line in lines: if line.startswith("||"): continue elif line.startswith("!"): if arg() != "--nocomment": alt.write(line.replace("!","#")) alt.write("\n") elif line != "": alt.write("127.0.0.1 {}".format(line.split("$")[0])) alt.write("\n") alt.close() os.chdir("my_filters_001") subprocess.call(["git add ."],shell=True) subprocess.call(["git commit -m \"[bot] add alt list\""],shell=True) subprocess.call(["git push"],shell=True)
py
1a4e1d1c4fb2e286ff120ecf2c31d8325afee48e
""" Created on 27 Feb 2018 @author: Bruno Beloff ([email protected]) """ import optparse from scs_dfe.interface.interface_conf import InterfaceConf # -------------------------------------------------------------------------------------------------------------------- class CmdInterfaceConf(object): """ unix command line handler """ # ---------------------------------------------------------------------------------------------------------------- def __init__(self): self.__parser = optparse.OptionParser(usage="%prog [{ [-m MODEL] | -d }] [-v]", version="%prog 1.0") models = ' | '.join(InterfaceConf.models()) # optional... self.__parser.add_option("--model", "-m", type="string", nargs=1, action="store", dest="model", help="interface model { %s }" % models) self.__parser.add_option("--delete", "-d", action="store_true", dest="delete", default=False, help="delete the interface configuration") self.__parser.add_option("--verbose", "-v", action="store_true", dest="verbose", default=False, help="report narrative to stderr") self.__opts, self.__args = self.__parser.parse_args() # ---------------------------------------------------------------------------------------------------------------- def is_valid(self): if self.set() and self.delete: return False if self.set() and self.model is not None and self.model not in InterfaceConf.models(): return False return True def set(self): return self.model is not None # ---------------------------------------------------------------------------------------------------------------- @property def model(self): return self.__opts.model @property def delete(self): return self.__opts.delete @property def verbose(self): return self.__opts.verbose # ---------------------------------------------------------------------------------------------------------------- def print_help(self, file): self.__parser.print_help(file) def __str__(self, *args, **kwargs): return "CmdInterfaceConf:{source:%s, delete:%s, verbose:%s}" % \ (self.__opts.source, self.delete, self.verbose)
py
1a4e1e5211e5c1c5674f53c622e2a5b7dc8b5706
#!/usr/bin/env python # Copyright 2015-2016 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./check_marathon_services_replication.py [options] This is a script that checks the number of HAProxy backends via Synapse against the expected amount that should've been deployed via Marathon in a mesos cluster. Basically, the script checks smartstack.yaml for listed namespaces, and then queries Synapse for the number of available backends for that namespace. It then goes through the Marathon service configuration file for that cluster, and sees how many instances are expected to be available for that namespace based on the number of instances deployed on that namespace. After retrieving that information, a fraction of available instances is calculated (available/expected), and then compared against a threshold. The default threshold is 50, meaning if less than 50% of a service's backends are available, the script sends CRITICAL. If replication_threshold is defined in the yelpsoa config for a service instance then it will be used instead. """ import logging from datetime import datetime from datetime import timedelta from datetime import timezone from typing import Optional from typing import Sequence from marathon.models.task import MarathonTask from paasta_tools import marathon_tools from paasta_tools import monitoring_tools from paasta_tools.check_services_replication_tools import main from paasta_tools.long_running_service_tools import get_proxy_port_for_instance from paasta_tools.marathon_tools import format_job_id from paasta_tools.marathon_tools import MarathonServiceConfig from paasta_tools.smartstack_tools import MesosSmartstackEnvoyReplicationChecker log = logging.getLogger(__name__) def filter_healthy_marathon_instances_for_short_app_id(all_tasks, app_id): tasks_for_app = [ task for task in all_tasks if task.app_id.startswith("/%s" % app_id) ] one_minute_ago = datetime.now(timezone.utc) - timedelta(minutes=1) healthy_tasks = [] for task in tasks_for_app: if ( marathon_tools.is_task_healthy(task, default_healthy=True) and task.started_at is not None and task.started_at < one_minute_ago ): healthy_tasks.append(task) return len(healthy_tasks) def check_healthy_marathon_tasks_for_service_instance( instance_config, expected_count, all_tasks, dry_run=False, ): app_id = format_job_id(instance_config.service, instance_config.instance) num_healthy_tasks = filter_healthy_marathon_instances_for_short_app_id( all_tasks=all_tasks, app_id=app_id ) log.info("Checking %s in marathon as it is not in smartstack" % app_id) monitoring_tools.send_replication_event_if_under_replication( instance_config=instance_config, expected_count=expected_count, num_available=num_healthy_tasks, dry_run=dry_run, ) def check_service_replication( instance_config: MarathonServiceConfig, all_tasks_or_pods: Sequence[MarathonTask], replication_checker: MesosSmartstackEnvoyReplicationChecker, dry_run: bool = False, ) -> Optional[bool]: """Checks a service's replication levels based on how the service's replication should be monitored. (smartstack/envoy or mesos) :param instance_config: an instance of MarathonServiceConfig :param replication_checker: an instance of MesosSmartstackEnvoyReplicationChecker """ expected_count = instance_config.get_instances() log.info( "Expecting %d total tasks for %s" % (expected_count, instance_config.job_id) ) proxy_port = get_proxy_port_for_instance(instance_config) registrations = instance_config.get_registrations() # if the primary registration does not match the service_instance name then # the best we can do is check marathon for replication (for now). if proxy_port is not None and registrations[0] == instance_config.job_id: is_well_replicated = monitoring_tools.check_replication_for_instance( instance_config=instance_config, expected_count=expected_count, replication_checker=replication_checker, dry_run=dry_run, ) return is_well_replicated else: check_healthy_marathon_tasks_for_service_instance( instance_config=instance_config, expected_count=expected_count, all_tasks=all_tasks_or_pods, dry_run=dry_run, ) return None if __name__ == "__main__": main( instance_type_class=marathon_tools.MarathonServiceConfig, check_service_replication=check_service_replication, namespace=None, # not relevant for mesos mesos=True, )
py
1a4e1e91de0ff3121767ebe72e238421d5ca0f0b
from event_manager import event_actions, event_subjects from event_manager.event import Attribute, Event SUPERUSER_ROLE_GRANTED = '{}.{}'.format(event_subjects.SUPERUSER, event_actions.GRANTED) SUPERUSER_ROLE_REVOKED = '{}.{}'.format(event_subjects.SUPERUSER, event_actions.REVOKED) class SuperUserRoleGrantedEvent(Event): event_type = SUPERUSER_ROLE_GRANTED actor_id = 'actor_id' attributes = ( Attribute('id'), Attribute('actor_id') ) class SuperUserRoleRevokedEvent(Event): event_type = SUPERUSER_ROLE_REVOKED actor_id = 'actor_id' attributes = ( Attribute('id'), Attribute('actor_id') )
py
1a4e1f375a3c13fdf053b946e2a16e3273908091
__all__ = ['ArcGIS'] from .arcgis import ArcGIS
py
1a4e1f9725a190e1541cdca8c155f10a2713fa90
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from aria.orchestrator.workflows.api import task from aria.orchestrator.workflows.builtin.install import install from tests import mock from tests import storage from . import assert_node_install_operations @pytest.fixture def ctx(tmpdir): context = mock.context.simple(str(tmpdir), topology=mock.topology.create_simple_topology_three_nodes) yield context storage.release_sqlite_storage(context.model) def test_install(ctx): install_tasks = list(task.WorkflowTask(install, ctx=ctx).topological_order(True)) assert len(install_tasks) == 3 dependency_node_subgraph1, dependency_node_subgraph2, dependent_node_subgraph = install_tasks dependent_node_tasks = list(dependent_node_subgraph.topological_order(reverse=True)) dependency_node1_tasks = list(dependency_node_subgraph1.topological_order(reverse=True)) dependency_node2_tasks = list(dependency_node_subgraph2.topological_order(reverse=True)) assert_node_install_operations(dependency_node1_tasks) assert_node_install_operations(dependency_node2_tasks) assert_node_install_operations(dependent_node_tasks, relationships=2)
py
1a4e1fee9d9aff4de6fea37e9f4e7ebedc279afc
from logging import Logger from typing import Optional from widgetastic.browser import Browser from widgetastic.types import ViewParent from widgetastic.utils import ParametrizedLocator from widgetastic.widget.base import ClickableMixin from widgetastic.widget.base import View from widgetastic.widget.base import Widget from widgetastic.xpath import quote class OUIABase: """ Base class for ``OUIA`` support. According to the spec ``OUIA`` compatible components may have the following attributes in the root level HTML element: * data-ouia-component-type * data-ouia-component-id * data-ouia-safe https://ouia.readthedocs.io/en/latest/README.html#ouia-component """ ROOT = ParametrizedLocator( ".//*[@data-ouia-component-type={@component_type}{@component_id_suffix}]" ) browser: Browser def _set_attrs( self, component_type: str, component_id: Optional[str] = None, ) -> None: self.component_type = quote(component_type) self.component_id = quote(component_id) component_id = f" and @data-ouia-component-id={quote(component_id)}" if component_id else "" self.component_id_suffix = component_id self.locator = self.ROOT.locator @property def is_safe(self) -> bool: """ An attribute called data-ouia-safe, which is True only when the component is in a static state, i.e. no animations are occurring. At all other times, this value MUST be False. """ return "true" in self.browser.get_attribute("data-ouia-safe", self) def __locator__(self) -> ParametrizedLocator: return self.ROOT def __repr__(self): component_id_suffix = f"; ouia id: {self.component_id}" if self.component_id else "" desc = f"ouia type: {self.component_type}{component_id_suffix}" return f"<{type(self).__name__}; {desc}>" class OUIAGenericView(OUIABase, View): """A base class for any OUIA compatible view. Children classes must have the same name as the value of ``data-ouia-component-type`` attribute of the root HTML element. Args: component_id: value of data-ouia-component-id attribute. component_type: value of data-ouia-component-type attribute. """ OUIA_COMPONENT_TYPE: str OUIA_ID: Optional[str] def __init__( self, parent: ViewParent, component_id: str = "", logger: Optional[Logger] = None, **kwargs, ) -> None: component_type: Optional[str] = kwargs.pop("component_type", None) self._set_attrs( component_type=component_type or self.OUIA_COMPONENT_TYPE or type(self).__name__, component_id=getattr(self, "OUIA_ID", component_id), ) super().__init__( parent=parent, logger=logger, **kwargs, ) class OUIAGenericWidget(OUIABase, Widget, ClickableMixin): """A base class for any OUIA compatible widget. Children classes must have the same name as the value of ``data-ouia-component-type`` attribute of the root HTML element. Args: component_id: value of data-ouia-component-id attribute. component_type: value of data-ouia-component-type attribute. """ OUIA_COMPONENT_TYPE: str def __init__( self, parent: ViewParent, component_id: Optional[str] = None, logger: Optional[Logger] = None, component_type: Optional[str] = None, ) -> None: self._set_attrs( component_type=component_type or self.OUIA_COMPONENT_TYPE or type(self).__name__, component_id=component_id, ) super().__init__(parent=parent, logger=logger)
py
1a4e208260ad27aa7b8caa4119ff5af0665a0d26
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """Base test cases.""" import os from typing import Any, Dict, List, Optional import toml class TestDetails: """Holds the test details.""" repository_id: str token: str username: str tenant: str project_id: str def __init__(self) -> None: self.token = os.environ["SIMPLE_ADO_BASE_TOKEN"] self.username = os.environ["SIMPLE_ADO_USERNAME"] self.tenant = os.environ["SIMPLE_ADO_TENANT"] self.repository_id = os.environ["SIMPLE_ADO_REPO_ID"] self.project_id = os.environ["SIMPLE_ADO_PROJECT_ID"]
py
1a4e20bb64f50c0e72179e294e26a17107229e10
DEPS = [ 'recipe_engine/path', 'recipe_engine/properties', ] # TODO(phajdan): provide coverage (http://crbug.com/693058). DISABLE_STRICT_COVERAGE = True
py
1a4e223d483d5a6388c2bac11fdad42dac08960f
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = [ 'GetCertificateAuthorityResult', 'AwaitableGetCertificateAuthorityResult', 'get_certificate_authority', ] @pulumi.output_type class GetCertificateAuthorityResult: """ A collection of values returned by getCertificateAuthority. """ def __init__(__self__, arn=None, certificate=None, certificate_chain=None, certificate_signing_request=None, id=None, not_after=None, not_before=None, revocation_configurations=None, serial=None, status=None, tags=None, type=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if certificate and not isinstance(certificate, str): raise TypeError("Expected argument 'certificate' to be a str") pulumi.set(__self__, "certificate", certificate) if certificate_chain and not isinstance(certificate_chain, str): raise TypeError("Expected argument 'certificate_chain' to be a str") pulumi.set(__self__, "certificate_chain", certificate_chain) if certificate_signing_request and not isinstance(certificate_signing_request, str): raise TypeError("Expected argument 'certificate_signing_request' to be a str") pulumi.set(__self__, "certificate_signing_request", certificate_signing_request) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if not_after and not isinstance(not_after, str): raise TypeError("Expected argument 'not_after' to be a str") pulumi.set(__self__, "not_after", not_after) if not_before and not isinstance(not_before, str): raise TypeError("Expected argument 'not_before' to be a str") pulumi.set(__self__, "not_before", not_before) if revocation_configurations and not isinstance(revocation_configurations, list): raise TypeError("Expected argument 'revocation_configurations' to be a list") pulumi.set(__self__, "revocation_configurations", revocation_configurations) if serial and not isinstance(serial, str): raise TypeError("Expected argument 'serial' to be a str") pulumi.set(__self__, "serial", serial) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def arn(self) -> str: return pulumi.get(self, "arn") @property @pulumi.getter def certificate(self) -> str: """ Base64-encoded certificate authority (CA) certificate. Only available after the certificate authority certificate has been imported. """ return pulumi.get(self, "certificate") @property @pulumi.getter(name="certificateChain") def certificate_chain(self) -> str: """ Base64-encoded certificate chain that includes any intermediate certificates and chains up to root on-premises certificate that you used to sign your private CA certificate. The chain does not include your private CA certificate. Only available after the certificate authority certificate has been imported. """ return pulumi.get(self, "certificate_chain") @property @pulumi.getter(name="certificateSigningRequest") def certificate_signing_request(self) -> str: """ The base64 PEM-encoded certificate signing request (CSR) for your private CA certificate. """ return pulumi.get(self, "certificate_signing_request") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="notAfter") def not_after(self) -> str: """ Date and time after which the certificate authority is not valid. Only available after the certificate authority certificate has been imported. """ return pulumi.get(self, "not_after") @property @pulumi.getter(name="notBefore") def not_before(self) -> str: """ Date and time before which the certificate authority is not valid. Only available after the certificate authority certificate has been imported. """ return pulumi.get(self, "not_before") @property @pulumi.getter(name="revocationConfigurations") def revocation_configurations(self) -> Sequence['outputs.GetCertificateAuthorityRevocationConfigurationResult']: """ Nested attribute containing revocation configuration. * `revocation_configuration.0.crl_configuration` - Nested attribute containing configuration of the certificate revocation list (CRL), if any, maintained by the certificate authority. * `revocation_configuration.0.crl_configuration.0.custom_cname` - Name inserted into the certificate CRL Distribution Points extension that enables the use of an alias for the CRL distribution point. * `revocation_configuration.0.crl_configuration.0.enabled` - Boolean value that specifies whether certificate revocation lists (CRLs) are enabled. * `revocation_configuration.0.crl_configuration.0.expiration_in_days` - Number of days until a certificate expires. * `revocation_configuration.0.crl_configuration.0.s3_bucket_name` - Name of the S3 bucket that contains the CRL. """ return pulumi.get(self, "revocation_configurations") @property @pulumi.getter def serial(self) -> str: """ Serial number of the certificate authority. Only available after the certificate authority certificate has been imported. """ return pulumi.get(self, "serial") @property @pulumi.getter def status(self) -> str: """ Status of the certificate authority. """ return pulumi.get(self, "status") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ Specifies a key-value map of user-defined tags that are attached to the certificate authority. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The type of the certificate authority. """ return pulumi.get(self, "type") class AwaitableGetCertificateAuthorityResult(GetCertificateAuthorityResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetCertificateAuthorityResult( arn=self.arn, certificate=self.certificate, certificate_chain=self.certificate_chain, certificate_signing_request=self.certificate_signing_request, id=self.id, not_after=self.not_after, not_before=self.not_before, revocation_configurations=self.revocation_configurations, serial=self.serial, status=self.status, tags=self.tags, type=self.type) def get_certificate_authority(arn: Optional[str] = None, revocation_configurations: Optional[Sequence[pulumi.InputType['GetCertificateAuthorityRevocationConfigurationArgs']]] = None, tags: Optional[Mapping[str, str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetCertificateAuthorityResult: """ Get information on a AWS Certificate Manager Private Certificate Authority (ACM PCA Certificate Authority). ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.acmpca.get_certificate_authority(arn="arn:aws:acm-pca:us-east-1:123456789012:certificate-authority/12345678-1234-1234-1234-123456789012") ``` :param str arn: Amazon Resource Name (ARN) of the certificate authority. :param Sequence[pulumi.InputType['GetCertificateAuthorityRevocationConfigurationArgs']] revocation_configurations: Nested attribute containing revocation configuration. * `revocation_configuration.0.crl_configuration` - Nested attribute containing configuration of the certificate revocation list (CRL), if any, maintained by the certificate authority. * `revocation_configuration.0.crl_configuration.0.custom_cname` - Name inserted into the certificate CRL Distribution Points extension that enables the use of an alias for the CRL distribution point. * `revocation_configuration.0.crl_configuration.0.enabled` - Boolean value that specifies whether certificate revocation lists (CRLs) are enabled. * `revocation_configuration.0.crl_configuration.0.expiration_in_days` - Number of days until a certificate expires. * `revocation_configuration.0.crl_configuration.0.s3_bucket_name` - Name of the S3 bucket that contains the CRL. :param Mapping[str, str] tags: Specifies a key-value map of user-defined tags that are attached to the certificate authority. """ __args__ = dict() __args__['arn'] = arn __args__['revocationConfigurations'] = revocation_configurations __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:acmpca/getCertificateAuthority:getCertificateAuthority', __args__, opts=opts, typ=GetCertificateAuthorityResult).value return AwaitableGetCertificateAuthorityResult( arn=__ret__.arn, certificate=__ret__.certificate, certificate_chain=__ret__.certificate_chain, certificate_signing_request=__ret__.certificate_signing_request, id=__ret__.id, not_after=__ret__.not_after, not_before=__ret__.not_before, revocation_configurations=__ret__.revocation_configurations, serial=__ret__.serial, status=__ret__.status, tags=__ret__.tags, type=__ret__.type)
py
1a4e22da8b7927f66582d98b3a67fd4fc23a91e4
#!/usr/bin/env python # -*- coding: utf-8 -*- #unit tests for ACR functions from .test_ObjectPath import op_test from .test_utils import utils_test import unittest def doTests(): print ('Started ObjectPath Python implementation testing.\n') unittest.TextTestRunner(verbosity = 2).run(op_test) unittest.TextTestRunner(verbosity = 2).run(utils_test)
py
1a4e22ddb9f1055d8be9f66e8b38bebcdc1e6a63
import os import jinja2 import logging from mkdocs import utils from mkdocs.utils import filters from mkdocs.config.base import ValidationError log = logging.getLogger(__name__) log.addFilter(utils.warning_filter) class Theme: """ A Theme object. Keywords: name: The name of the theme as defined by its entrypoint. custom_dir: User defined directory for custom templates. static_templates: A list of templates to render as static pages. All other keywords are passed as-is and made available as a key/value mapping. """ def __init__(self, name=None, **user_config): self.name = name self._vars = {} # MkDocs provided static templates are always included package_dir = os.path.abspath(os.path.dirname(__file__)) mkdocs_templates = os.path.join(package_dir, 'templates') self.static_templates = set(os.listdir(mkdocs_templates)) # Build self.dirs from various sources in order of precedence self.dirs = [] if 'custom_dir' in user_config: self.dirs.append(user_config.pop('custom_dir')) if self.name: self._load_theme_config(name) # Include templates provided directly by MkDocs (outside any theme) self.dirs.append(mkdocs_templates) # Handle remaining user configs. Override theme configs (if set) self.static_templates.update(user_config.pop('static_templates', [])) self._vars.update(user_config) def __repr__(self): return "{}(name='{}', dirs={}, static_templates={}, {})".format( self.__class__.__name__, self.name, self.dirs, list(self.static_templates), ', '.join('{}={}'.format(k, repr(v)) for k, v in self._vars.items()) ) def __getitem__(self, key): return self._vars[key] def __setitem__(self, key, value): self._vars[key] = value def __contains__(self, item): return item in self._vars def __iter__(self): return iter(self._vars) def _load_theme_config(self, name): """ Recursively load theme and any parent themes. """ theme_dir = utils.get_theme_dir(name) self.dirs.append(theme_dir) try: file_path = os.path.join(theme_dir, 'mkdocs_theme.yml') with open(file_path, 'rb') as f: theme_config = utils.yaml_load(f) if theme_config is None: theme_config = {} except OSError as e: log.debug(e) raise ValidationError( "The theme '{}' does not appear to have a configuration file. " "Please upgrade to a current version of the theme.".format(name) ) log.debug("Loaded theme configuration for '%s' from '%s': %s", name, file_path, theme_config) parent_theme = theme_config.pop('extends', None) if parent_theme: themes = utils.get_theme_names() if parent_theme not in themes: raise ValidationError( "The theme '{}' inherits from '{}', which does not appear to be installed. " "The available installed themes are: {}".format(name, parent_theme, ', '.join(themes)) ) self._load_theme_config(parent_theme) self.static_templates.update(theme_config.pop('static_templates', [])) self._vars.update(theme_config) def get_env(self): """ Return a Jinja environment for the theme. """ loader = jinja2.FileSystemLoader(self.dirs) # No autoreload because editing a template in the middle of a build is not useful. env = jinja2.Environment(loader=loader, auto_reload=False) env.filters['tojson'] = filters.tojson env.filters['url'] = filters.url_filter return env
py
1a4e2300442730cb67dd38e362e1097fa3f976bd
"""Tools for processing Texas PUDF in conjunction with HCUP data Texas does not participate in HCUP, but does provide instead its own Inpatient Public Use Data Files (PUDF) for similar purposes. More information on Texas Inpatient PUDF at http://www.dshs.state.tx.us/thcic/hospitals/Inpatientpudf.shtm. """ import os, re def meta_from_txt(target): """Parses target text file containing Texas PUDF metadata and builds a pandas DataFrame object. """ pattern = '(?P<field_number>\d+\w?)\s+(?P<field>\S+)\s+(?:(?P<label>.*?)\s*)(?P<position>\d+)\s+(?P<width>\d+)\s+(?P<data_type>\w+)' joined = ' '.join([x for x in open(target)]) captured = [x.groupdict() for x in re.finditer(pattern, joined)] #avoid circular imports from pandas import DataFrame meta = DataFrame(captured) if len(meta[ meta.field == 'SPEC_UNIT_1' ]) == 1: #we have individual spec unit cols, so drop any combined one #otherwise this throws off the parsing of the real files meta = meta[ meta.field != 'SPEC_UNIT' ] # Occasionally there's a cute field with a hyphen in it. This breaks SQL since it's a disallowed character for SQL object names due to ambiguity with the subtraction operator. meta.field = meta.field.map(lambda x: x.replace('-', '_')) return meta def get_meta(year, variety='base', split_base_portion=None): """Retrieves a meta DataFrame object for a given year of Texas PUDF data split_base_portion should only be used for 2011 and 2012 base years, which are split into two chunks by Texas """ year = int(year)#sometimes this is passed a string and I'd rather it work anyways varieties = ['base', 'charges', 'facility'] years = xrange(1999, 2013) assert variety.lower() in varieties, "No Texas PUDF definitions available for variety %s" % variety assert year in years, "No Texas PUDF definitions available for year %s" % year if not (year > 2010 and variety.lower == 'base'): filename = 'tx_pudf_%d_%s_definition.txt' % (year, variety.lower()) else: assert split_base_portion in [1, 2], "For 2011 and 2012 base files, must specify which portion (1 or 2)" filename = 'tx_pudf_%d_%s_definition_%d.txt' % (year, variety.lower(), split_base_portion) from .hachoir import BUNDLED_LOADFILE_DIR target = os.path.join(BUNDLED_LOADFILE_DIR, 'tx_pudf', filename) return meta_from_txt(target) def meta_augment(meta_df): """Akin to sas.meta_augment(), but for use with meta derived from Texas Inpatient Public Use Data Files. """ meta_df['length'] = meta_df['width'] meta_df['scale'] = meta_df['field'].map(lambda x: 2 if x.find('CHARGES') > -1 or x.find('AMOUNT') > -1 else 0) return meta_df
py
1a4e235a85718e5868c7c092a5d61f9e4480695d
from .solution import matrix_to_sycamore_operations
py
1a4e2388bbc2e1ef70f1caa29d2723ded0a218a5
an = int(input()) a = set(map(int, input().split())) N = int(input()) for i in range(N): cmd, n = input().split(" ") s = set(map(int, input().split(" "))) getattr(a, cmd)(s) print(sum(a))
py
1a4e23b6b1ae6e7401f9f507d850fa8a780543ce
import json import vidservers from utils import gen_client, getLink, process_xpath # ----------------------------------------------------------------------- def get_server_link(ep_number, server_id, episodes, servers, c): client = gen_client(referer=f"{c['scheme']}{c['host']}") sourceId = episodes[ep_number][server_id] url = f"{c['scheme']}{c['host']}/ajax/anime/episode?id={sourceId}" res = client.get(url).json() encryptedURL = res['url'] server_link = getLink(encryptedURL) return server_link # ----------------------------------------------------------------------- def get_dl(server_link: str, server_id, servers): dl = getattr(vidservers, servers[server_id].lower())(server_link) return dl # ----------------------------------------------------------------------- def parse_servers(data: str): # server_id [ {server_id: server_name},... ] servers = process_xpath("//*[contains(@id, 'server')]", data) server_id = {} server_choices = [] server_lookup = {} for server in servers: server_name = server.text_content().strip() id = server.get('data-id') server_id[id] = server_name server_choices.append(server_name) server_lookup[server_name] = id return server_id, server_choices, server_lookup # ----------------------------------------------------------------------- def parse_episodes(data: str): # [ ep_num: { server_id: 'episode_id',... },... ] episodes_parsed = {} episodes = process_xpath("//a[@data-sources]", data) for ep in episodes: episodes_parsed[ep.get('data-base')] = json.loads(ep.get('data-sources')) return episodes_parsed # -----------------------------------------------------------------------
py
1a4e23e1cb178e495f2c59f483e8ad5479d45f3d
import logging RANDOM_SEED = 20201234 import argparse import openml import os import numpy as np import string import pandas as pd import scipy import math OPENML_REGRESSION_LIST = [201, 1191, 215, 344, 537, 564, 1196, 1199, 1203, 1206, 5648, 23515, 41506, 41539, 42729, 42496] NS_LIST = list(string.ascii_lowercase) + list(string.ascii_uppercase) # NS_LIST = list(string.ascii_lowercase)[:10] OML_target_attribute_dict = { 42236: 'pm2.5' } # from ..vw_benchmark.config import QW_OML_API_KEY, VW_DS_DIR VW_DS_DIR = './test/vw/vw_benchmark/data/openml_vwdatasets/' QW_OML_API_KEY = '8c4eebcda506ae1065902c2b224369b9' #TODO: how to get these info from config.py class OpenML2VWData: VW_DS_DIR = VW_DS_DIR def __init__(self, did, max_ns_num, task_type='regression'): self._did = did self._task_type = task_type self._is_regression = False self.vw_x_dic_list = [] self.Y = [] if 'regression' in self._task_type: self._is_regression = True self.vw_examples = self.load_vw_dataset(did, OpenML2VWData.VW_DS_DIR, self._is_regression, max_ns_num) print( 'number of samples', len(self.vw_examples)) for i, e in enumerate(self.vw_examples): self.Y.append(float(e.split('|')[0])) print( self.Y[0:5]) logging.info('y label%s', self.Y[0:5]) @staticmethod def load_vw_dataset(did, ds_dir, is_regression, max_ns_num): import os data_list = [] if is_regression: fname = 'ds_{}_{}_{}.vw'.format(did, max_ns_num, 0) # the second field specifies the largest number of namespaces using. vw_dataset_file = os.path.join(ds_dir, fname) if not os.path.exists(vw_dataset_file) or os.stat(vw_dataset_file).st_size < 1000: get_oml_to_vw(did, max_ns_num) print(ds_dir, vw_dataset_file) if not os.path.exists(ds_dir): os.makedirs(ds_dir) with open(os.path.join(ds_dir, fname), 'r') as f: vw_content = f.read().splitlines() print(type(vw_content), len(vw_content)) return vw_content # target # of ns: 10-26. # TODO: split features into 10-26 ns:(1) look at the prefix (10<# of unique prefix< 26); (2) sequentially. def oml_to_vw_no_grouping(X, y, ds_dir, fname): print('no feature grouping') with open(os.path.join(ds_dir, fname), 'w') as f: if isinstance(X, pd.DataFrame): for i in range(len(X)): ns_line = '{} |{}'.format(str(y[i]), '|'.join('{} {}:{:.6f}'.format(NS_LIST[j], j, val) for j, val in enumerate(X.iloc[i].to_list()) )) f.write(ns_line) f.write('\n') elif isinstance(X, np.ndarray): for i in range(len(X)): ns_line = '{} |{}'.format(str(y[i]), '|'.join('{} {}:{:.6f}'.format(NS_LIST[j], j, val) for j, val in enumerate(X[i]) )) f.write(ns_line) f.write('\n') elif isinstance(X, scipy.sparse.csr_matrix): print('NotImplementedError for sparse data') NotImplementedError def oml_to_vw_w_grouping(X, y, ds_dir, fname, orginal_dim, group_num, grouping_method='sequential'): all_indexes = [i for i in range(orginal_dim)] print('grouping', group_num) # split all_indexes into # group_num of groups # max_size_per_group = math.ceil(orginal_dim/float(group_num)) max_size_per_group = int(np.ceil(orginal_dim / float(group_num))) # Option 1: sequential grouping if grouping_method == 'sequential': group_indexes = [] # lists of lists print('indexes', group_num) for i in range(group_num): print('indexes', group_num, max_size_per_group) indexes = [ind for ind in range(i*max_size_per_group, min( (i+1)*max_size_per_group, orginal_dim)) ] print('indexes', group_num, indexes) if len(indexes)>0: group_indexes.append(indexes) print(group_indexes) print(group_indexes) else: NotImplementedError if group_indexes: print('group_indexes') with open(os.path.join(ds_dir, fname), 'w') as f: if isinstance(X, pd.DataFrame): raise NotImplementedError elif isinstance(X, np.ndarray): for i in range(len(X)): # ns_content = '{} {}:{:.6f}'.format(NS_LIST[j], j, val) for j, val in enumerate(X[i]) NS_content = [] for zz in range(len(group_indexes)): ns_features = ' '.join('{}:{:.6f}'.format(ind, X[i][ind]) for ind in group_indexes[zz]) NS_content.append(ns_features) ns_line = '{} |{}'.format(str(y[i]), '|'.join('{} {}'.format(NS_LIST[j], NS_content[j]) for j in range(len(group_indexes)) )) f.write(ns_line) f.write('\n') elif isinstance(X, scipy.sparse.csr_matrix): print('NotImplementedError for sparse data') NotImplementedError def save_vw_dataset_w_ns(X, y, did, ds_dir, max_ns_num, is_regression): """ convert openml dataset to vw example and save to file """ print('is_regression',is_regression) if is_regression: fname = 'ds_{}_{}_{}.vw'.format(did, max_ns_num, 0) print('dataset size', X.shape[0], X.shape[1]) print('saving data', did, ds_dir, fname) dim = X.shape[1] # do not do feature grouping from os import path # if not path.exists(os.path.join(ds_dir, fname)): # TODO: remove no_grouping code if dim < max_ns_num: oml_to_vw_no_grouping(X, y, ds_dir, fname) else: oml_to_vw_w_grouping(X, y, ds_dir, fname, dim, group_num=max_ns_num) def shuffle_data(X, y, seed): try: n = len(X) except: n = X.getnnz() perm = np.random.RandomState(seed=seed).permutation(n) X_shuf = X[perm, :] y_shuf = y[perm] return X_shuf, y_shuf def get_oml_to_vw(did, max_ns_num, ds_dir=VW_DS_DIR): success = False print('-----getting oml dataset-------', did) ds = openml.datasets.get_dataset(did) target_attribute = ds.default_target_attribute if target_attribute is None and did in OML_target_attribute_dict: target_attribute = OML_target_attribute_dict[did] print('target=ds.default_target_attribute', target_attribute) data = ds.get_data(target=target_attribute, dataset_format='array') X, y = data[0], data[1] # return X: pd DataFrame, y: pd series import scipy if scipy.sparse.issparse(X): X = scipy.sparse.csr_matrix.toarray(X) print('is sparse matrix') if data and isinstance(X, np.ndarray): print('-----converting oml to vw and and saving oml dataset-------') save_vw_dataset_w_ns(X, y, did, ds_dir, max_ns_num, is_regression=True) success = True else: print('---failed to convert/save oml dataset to vw!!!----') try: X, y = data[0], data[1] # return X: pd DataFrame, y: pd series if data and isinstance(X, np.ndarray): print('-----converting oml to vw and and saving oml dataset-------') save_vw_dataset_w_ns(X, y, did, ds_dir, max_ns_num, is_regression = True) success = True else: print('---failed to convert/save oml dataset to vw!!!----') except: print('-------------failed to get oml dataset!!!', did) return success if __name__ == '__main__': parser = argparse.ArgumentParser(description='openML to vw converter') parser.add_argument('-dataset', type=int, default=None, help='dataset id') parser.add_argument('-ns_num', '--ns_num', metavar='ns_num', type = int, default=10, help="max name space number") parser.add_argument('-min_sample_size', type=int, default=10000, help='minimum sample size') parser.add_argument('-max_sample_size', type=int, default=None, help='maximum sample size') args = parser.parse_args() openml.config.apikey = QW_OML_API_KEY openml.config.set_cache_directory('./data/omlcache/') print('loaded openML') if not os.path.exists(VW_DS_DIR): os.makedirs(VW_DS_DIR) if args.dataset is not None: dids = [args.dataset] else: if args.min_sample_size >=10000 and args.max_sample_size is None: dids = OPENML_REGRESSION_LIST failed_datasets = [] for did in sorted(dids): print('processing did', did) print('getting data,', did) success = get_oml_to_vw(did, args.ns_num) if not success: failed_datasets.append(did) print('-----------failed datasets', failed_datasets) ## command line: # python openml_data_helper.py -min_sample_size 10000 # failed datasets [1414, 5572, 40753, 41463, 42080, 42092, 42125, 42130, 42131, 42160, 42183, 42207, # 42208, 42362, 42367, 42464, 42559, 42635, 42672, 42673, 42677, 42688, 42720, 42721, 42726, 42728, 42729, 42731]
py
1a4e25a331fcaa281b56a3bcef1f3ab1ec23670f
from rlalgos.pytorch.mf import dqn as dqn_pytorch, sac as sac_pytorch, td3 as td3_pytorch, \ categorical_dqn as c51_pytorch, qr_dqn as qr_dqn_pytorch from rlalgos.pytorch.mf.atari import categorical_dqn as c51_pytorch, dqn as atari_dqn_pytorch, \ qr_dqn as atari_qr_dqn_pytorch from rlalgos.pytorch.offline import cql as cql_pytorch from rlutils.infra.runner import get_argparser_from_func # from rlutils.tf.algos.mb import pets # from rlutils.tf.algos.mf import td3, ppo, trpo, sac, ddpg, dqn # from rlutils.tf.algos.offline import cql, plas __tf__ = ['ppo', 'td3', 'trpo', 'sac', 'ddpg', 'cql', 'plas', 'dqn', 'pets'] __all__ = ['sac_pytorch', 'td3_pytorch', 'atari_dqn_pytorch', 'dqn_pytorch', 'cql_pytorch', 'c51_pytorch', 'c51_pytorch', 'qr_dqn_pytorch', 'atari_qr_dqn_pytorch'] def main(): import argparse parser = argparse.ArgumentParser('Running rl algorithms', formatter_class=argparse.ArgumentDefaultsHelpFormatter) algorithm_parsers = parser.add_subparsers(title='algorithm', help='algorithm specific parser', dest='algo') for algo in __all__: algo_parser = algorithm_parsers.add_parser(algo, formatter_class=argparse.ArgumentDefaultsHelpFormatter) get_argparser_from_func(eval(f'{algo}.Runner.main'), algo_parser) kwargs = vars(parser.parse_args()) algo = kwargs.pop('algo') eval(f'{algo}.Runner.main')(**kwargs) if __name__ == '__main__': main()
py
1a4e26315d026f2c14fb1692db1fab10f345dae4
# coding: utf-8 """ vautoscaling Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from ncloud_vautoscaling.model.launch_configuration import LaunchConfiguration # noqa: F401,E501 class DeleteLaunchConfigurationResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'request_id': 'str', 'return_code': 'str', 'return_message': 'str', 'total_rows': 'int', 'launch_configuration_list': 'list[LaunchConfiguration]' } attribute_map = { 'request_id': 'requestId', 'return_code': 'returnCode', 'return_message': 'returnMessage', 'total_rows': 'totalRows', 'launch_configuration_list': 'launchConfigurationList' } def __init__(self, request_id=None, return_code=None, return_message=None, total_rows=None, launch_configuration_list=None): # noqa: E501 """DeleteLaunchConfigurationResponse - a model defined in Swagger""" # noqa: E501 self._request_id = None self._return_code = None self._return_message = None self._total_rows = None self._launch_configuration_list = None self.discriminator = None if request_id is not None: self.request_id = request_id if return_code is not None: self.return_code = return_code if return_message is not None: self.return_message = return_message if total_rows is not None: self.total_rows = total_rows if launch_configuration_list is not None: self.launch_configuration_list = launch_configuration_list @property def request_id(self): """Gets the request_id of this DeleteLaunchConfigurationResponse. # noqa: E501 :return: The request_id of this DeleteLaunchConfigurationResponse. # noqa: E501 :rtype: str """ return self._request_id @request_id.setter def request_id(self, request_id): """Sets the request_id of this DeleteLaunchConfigurationResponse. :param request_id: The request_id of this DeleteLaunchConfigurationResponse. # noqa: E501 :type: str """ self._request_id = request_id @property def return_code(self): """Gets the return_code of this DeleteLaunchConfigurationResponse. # noqa: E501 :return: The return_code of this DeleteLaunchConfigurationResponse. # noqa: E501 :rtype: str """ return self._return_code @return_code.setter def return_code(self, return_code): """Sets the return_code of this DeleteLaunchConfigurationResponse. :param return_code: The return_code of this DeleteLaunchConfigurationResponse. # noqa: E501 :type: str """ self._return_code = return_code @property def return_message(self): """Gets the return_message of this DeleteLaunchConfigurationResponse. # noqa: E501 :return: The return_message of this DeleteLaunchConfigurationResponse. # noqa: E501 :rtype: str """ return self._return_message @return_message.setter def return_message(self, return_message): """Sets the return_message of this DeleteLaunchConfigurationResponse. :param return_message: The return_message of this DeleteLaunchConfigurationResponse. # noqa: E501 :type: str """ self._return_message = return_message @property def total_rows(self): """Gets the total_rows of this DeleteLaunchConfigurationResponse. # noqa: E501 :return: The total_rows of this DeleteLaunchConfigurationResponse. # noqa: E501 :rtype: int """ return self._total_rows @total_rows.setter def total_rows(self, total_rows): """Sets the total_rows of this DeleteLaunchConfigurationResponse. :param total_rows: The total_rows of this DeleteLaunchConfigurationResponse. # noqa: E501 :type: int """ self._total_rows = total_rows @property def launch_configuration_list(self): """Gets the launch_configuration_list of this DeleteLaunchConfigurationResponse. # noqa: E501 :return: The launch_configuration_list of this DeleteLaunchConfigurationResponse. # noqa: E501 :rtype: list[LaunchConfiguration] """ return self._launch_configuration_list @launch_configuration_list.setter def launch_configuration_list(self, launch_configuration_list): """Sets the launch_configuration_list of this DeleteLaunchConfigurationResponse. :param launch_configuration_list: The launch_configuration_list of this DeleteLaunchConfigurationResponse. # noqa: E501 :type: list[LaunchConfiguration] """ self._launch_configuration_list = launch_configuration_list def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteLaunchConfigurationResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a4e26b01d374d77e82874f56f3b585c497f33a7
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('communities', '0006_remove_community_conn_ssl_cert_pass'), ] operations = [ migrations.AlterField( model_name='community', name='conn_host', field=models.IPAddressField(verbose_name=b'Community Host'), preserve_default=True, ), migrations.AlterField( model_name='community', name='conn_pass', field=models.CharField(max_length=1024, verbose_name=b'Community Password'), preserve_default=True, ), migrations.AlterField( model_name='community', name='conn_user', field=models.CharField(max_length=1024, verbose_name=b'Community Username'), preserve_default=True, ), migrations.AlterField( model_name='community', name='name', field=models.CharField(max_length=1024, verbose_name=b'Community Name'), preserve_default=True, ), migrations.AlterField( model_name='community', name='sightings_anonymous', field=models.BooleanField(default=False, verbose_name=b'Report Sightings Anonymously?'), preserve_default=True, ), migrations.AlterField( model_name='community', name='sightings_configuration', field=models.CharField(default=b'Auto', max_length=255, verbose_name=b'Sightings Mode', choices=[(b'Auto', b'Auto'), (b'Manual', b'Manual')]), preserve_default=True, ), ]
py
1a4e2784782e8807bca6109a6f1f51b1da392bcc
import os import random import numpy as np import vec_noise from PIL import Image from tqdm import tqdm WORLD_SIZE = [2000, 2000, 3] WORKING_DIR = os.getcwd() DATA_DIR = WORKING_DIR[:-8] os.system("cls") # +------------------------------------------------------------+ # | Made by Jonáš Erlebach | # | Thanks to third party libraries from https://pypi.org/ | # +------------------------------------------------------------+ class WorldGeneration: def __init__(self, DATA_DIR): self.DATA_DIR = DATA_DIR self.NOISE_SCALE = 0.002 # def 0.002 self.octaves_devider = 1 def CreateImage(self): x = [[[0, 0, 0] for x in range(WORLD_SIZE[0])] for _y in range(WORLD_SIZE[1])] startx, starty = random.randint(0, 50000), random.randint(0, 50000) for x_ in tqdm(range(WORLD_SIZE[0])): for y in range(WORLD_SIZE[1]): value = vec_noise.snoise2(startx + x_ * self.NOISE_SCALE, starty + y * self.NOISE_SCALE, 12 // self.octaves_devider) if value < -0.45: x[x_][y][0] = 128 x[x_][y][1] = 197 x[x_][y][2] = 222 continue if value < -0.35: x[x_][y][0] = 248 x[x_][y][1] = 240 x[x_][y][2] = 164 continue if value < 0.35: x[x_][y][0] = 126 x[x_][y][1] = 200 x[x_][y][2] = 80 continue if value < 0.53: x[x_][y][0] = 200 x[x_][y][1] = 200 x[x_][y][2] = 200 continue else: x[x_][y][0] = 255 x[x_][y][1] = 255 x[x_][y][2] = 255 continue self.to_image(x) def to_image(self, array): print("Creating Image") array = np.array(array).astype(np.uint8) img = Image.fromarray(array) img.save(self.DATA_DIR + "\\Maps\\BG.png") print("Image Created") if __name__ == '__main__': WorldGeneration(DATA_DIR).CreateImage()
py
1a4e286e43074ed0896465a0c9f77fdd60e3ec68
# DIP - Dependency Injection Principle # High level modules should not depend on low level modules. # Both should depend upon abstractions. # **BAD class CarWashService(object): def __init__(self): self.paymentMethod = Bank() # CarWashService depends on Bank() class # What if you want to add other payment method? # CarshWashService is tighly coupled with Bank() # **GOOD class CarWashService(object): def __init__(self, paymentMethod): self.paymentMethod = paymentMethod # Changes on paymentMethod doesn't affect # CarWashService since paymentMethod is injected. # You can pass any payment method
py
1a4e28f825b15ffc23f6d489086336cd63cd71f3
# -*- coding: utf-8 -*- # # League of Code server implementation # https://github.com/guluc3m/loc-server # # The MIT License (MIT) # # Copyright (c) 2017 Grupo de Usuarios de Linux UC3M <http://gul.es> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Mails.""" from flask_babel import lazy_gettext as t # Welcome WELCOME_SUBJECT = t('Welcome to League of Code') WELCOME_BODY = t( 'Welcome to the League of Code, %(username)s!\n\n' 'You can now login from %(link)s.\n\n' 'Happy Hacking!' ) WELCOME_HTML = t( 'Welcome to the League of Code, %(username)s!<br/><br/>' 'You can now login from <a href="%(link)s">the application</a>.<br/><br/>' 'Happy Hacking!' ) # Forgot password FORGOT_PASSWORD_SUBJECT = t('League of Code - Reset your password') FORGOT_PASSWORD_BODY = t( 'Hello %(username)s,\n\n' 'We have received a request to reset your password. If you have not done ' 'this, then it is safe to ignore this email.\n\n' 'You can reset your password through the following link: %(link)s' ) FORGOT_PASSWORD_HTML = t( 'Hello %(username)s,<br/><br/>' 'We have received a request to reset your password. If you have not done ' 'this, then it is safe to ignore this email.<br/><br/>' 'You can reset your password through the <a href="%(link)s">following link</a>.' ) # Kicked from party KICKED_SUBJECT = t('League of Code - Kicked from party') KICKED_BODY = t( 'Hello %(username)s,\n\n' 'This is a notification to let you know that you have been kicked from a ' 'party for the match: %(match)s.\n\n' 'You are still signed up for the match, but are now alone in your own party.' ) KICKED_HTML = ( 'Hello %(username)s,<br/><br/>' 'This is a notification to let you know that you have been kicked from a ' 'party for the match: %(match)s.<br/><br/>' 'You are still signed up for the match, but are now alone in your own party.' )
py
1a4e295d0ea8d1c4879c5a86815dbe32d766a651
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2014 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import hashlib import sys import time import traceback import json import certifi import urllib.parse import aiohttp try: from . import paymentrequest_pb2 as pb2 except ImportError: sys.exit("Error: could not find paymentrequest_pb2.py. Create it with 'protoc --proto_path=electrum_audax/ --python_out=electrum_audax/ electrum_audax/paymentrequest.proto'") from . import bitcoin, ecc, util, transaction, x509, rsakey from .util import bh2u, bfh, export_meta, import_meta, make_aiohttp_session from .crypto import sha256 from .bitcoin import TYPE_ADDRESS from .transaction import TxOutput from .network import Network from .logging import get_logger, Logger _logger = get_logger(__name__) REQUEST_HEADERS = {'Accept': 'application/audax-paymentrequest', 'User-Agent': 'Electrum'} ACK_HEADERS = {'Content-Type':'application/audax-payment','Accept':'application/audax-paymentack','User-Agent':'Electrum'} ca_path = certifi.where() ca_list = None ca_keyID = None def load_ca_list(): global ca_list, ca_keyID if ca_list is None: ca_list, ca_keyID = x509.load_certificates(ca_path) # status of payment requests PR_UNPAID = 0 PR_EXPIRED = 1 PR_UNKNOWN = 2 # sent but not propagated PR_PAID = 3 # send and propagated async def get_payment_request(url: str) -> 'PaymentRequest': u = urllib.parse.urlparse(url) error = None if u.scheme in ('http', 'https'): resp_content = None try: proxy = Network.get_instance().proxy async with make_aiohttp_session(proxy, headers=REQUEST_HEADERS) as session: async with session.get(url) as response: resp_content = await response.read() response.raise_for_status() # Guard against `audax:`-URIs with invalid payment request URLs if "Content-Type" not in response.headers \ or response.headers["Content-Type"] != "application/audax-paymentrequest": data = None error = "payment URL not pointing to a payment request handling server" else: data = resp_content data_len = len(data) if data is not None else None _logger.info(f'fetched payment request {url} {data_len}') except aiohttp.ClientError as e: error = f"Error while contacting payment URL:\n{repr(e)}" if isinstance(e, aiohttp.ClientResponseError) and e.status == 400 and resp_content: error += "\n" + resp_content.decode("utf8") data = None elif u.scheme == 'file': try: with open(u.path, 'r', encoding='utf-8') as f: data = f.read() except IOError: data = None error = "payment URL not pointing to a valid file" else: data = None error = f"Unknown scheme for payment request. URL: {url}" pr = PaymentRequest(data, error) return pr class PaymentRequest: def __init__(self, data, error=None): self.raw = data self.error = error self.parse(data) self.requestor = None # known after verify self.tx = None def __str__(self): return str(self.raw) def parse(self, r): if self.error: return self.id = bh2u(sha256(r)[0:16]) try: self.data = pb2.PaymentRequest() self.data.ParseFromString(r) except: self.error = "cannot parse payment request" return self.details = pb2.PaymentDetails() self.details.ParseFromString(self.data.serialized_payment_details) self.outputs = [] for o in self.details.outputs: type_, addr = transaction.get_address_from_output_script(o.script) if type_ != TYPE_ADDRESS: # TODO maybe rm restriction but then get_requestor and get_id need changes self.error = "only addresses are allowed as outputs" return self.outputs.append(TxOutput(type_, addr, o.amount)) self.memo = self.details.memo self.payment_url = self.details.payment_url def is_pr(self): return self.get_amount() != 0 #return self.get_outputs() != [(TYPE_ADDRESS, self.get_requestor(), self.get_amount())] def verify(self, contacts): if self.error: return False if not self.raw: self.error = "Empty request" return False pr = pb2.PaymentRequest() try: pr.ParseFromString(self.raw) except: self.error = "Error: Cannot parse payment request" return False if not pr.signature: # the address will be displayed as requestor self.requestor = None return True if pr.pki_type in ["x509+sha256", "x509+sha1"]: return self.verify_x509(pr) elif pr.pki_type in ["dnssec+audax", "dnssec+ecdsa"]: return self.verify_dnssec(pr, contacts) else: self.error = "ERROR: Unsupported PKI Type for Message Signature" return False def verify_x509(self, paymntreq): load_ca_list() if not ca_list: self.error = "Trusted certificate authorities list not found" return False cert = pb2.X509Certificates() cert.ParseFromString(paymntreq.pki_data) # verify the chain of certificates try: x, ca = verify_cert_chain(cert.certificate) except BaseException as e: _logger.exception('') self.error = str(e) return False # get requestor name self.requestor = x.get_common_name() if self.requestor.startswith('*.'): self.requestor = self.requestor[2:] # verify the BIP70 signature pubkey0 = rsakey.RSAKey(x.modulus, x.exponent) sig = paymntreq.signature paymntreq.signature = b'' s = paymntreq.SerializeToString() sigBytes = bytearray(sig) msgBytes = bytearray(s) if paymntreq.pki_type == "x509+sha256": hashBytes = bytearray(hashlib.sha256(msgBytes).digest()) verify = pubkey0.verify(sigBytes, x509.PREFIX_RSA_SHA256 + hashBytes) elif paymntreq.pki_type == "x509+sha1": verify = pubkey0.hashAndVerify(sigBytes, msgBytes) else: self.error = f"ERROR: unknown pki_type {paymntreq.pki_type} in Payment Request" return False if not verify: self.error = "ERROR: Invalid Signature for Payment Request Data" return False ### SIG Verified self.error = 'Signed by Trusted CA: ' + ca.get_common_name() return True def verify_dnssec(self, pr, contacts): sig = pr.signature alias = pr.pki_data info = contacts.resolve(alias) if info.get('validated') is not True: self.error = "Alias verification failed (DNSSEC)" return False if pr.pki_type == "dnssec+audax": self.requestor = alias address = info.get('address') pr.signature = b'' message = pr.SerializeToString() if ecc.verify_message_with_address(address, sig, message): self.error = 'Verified with DNSSEC' return True else: self.error = "verify failed" return False else: self.error = "unknown algo" return False def has_expired(self): return self.details.expires and self.details.expires < int(time.time()) def get_expiration_date(self): return self.details.expires def get_amount(self): return sum(map(lambda x:x[2], self.outputs)) def get_address(self): o = self.outputs[0] assert o.type == TYPE_ADDRESS return o.address def get_requestor(self): return self.requestor if self.requestor else self.get_address() def get_verify_status(self): return self.error if self.requestor else "No Signature" def get_memo(self): return self.memo def get_dict(self): return { 'requestor': self.get_requestor(), 'memo':self.get_memo(), 'exp': self.get_expiration_date(), 'amount': self.get_amount(), 'signature': self.get_verify_status(), 'txid': self.tx, 'outputs': self.get_outputs() } def get_id(self): return self.id if self.requestor else self.get_address() def get_outputs(self): return self.outputs[:] async def send_payment_and_receive_paymentack(self, raw_tx, refund_addr): pay_det = self.details if not self.details.payment_url: return False, "no url" paymnt = pb2.Payment() paymnt.merchant_data = pay_det.merchant_data paymnt.transactions.append(bfh(raw_tx)) ref_out = paymnt.refund_to.add() ref_out.script = util.bfh(transaction.Transaction.pay_script(TYPE_ADDRESS, refund_addr)) paymnt.memo = "Paid using Electrum" pm = paymnt.SerializeToString() payurl = urllib.parse.urlparse(pay_det.payment_url) resp_content = None try: proxy = Network.get_instance().proxy async with make_aiohttp_session(proxy, headers=ACK_HEADERS) as session: async with session.post(payurl.geturl(), data=pm) as response: resp_content = await response.read() response.raise_for_status() try: paymntack = pb2.PaymentACK() paymntack.ParseFromString(resp_content) except Exception: return False, "PaymentACK could not be processed. Payment was sent; please manually verify that payment was received." print(f"PaymentACK message received: {paymntack.memo}") return True, paymntack.memo except aiohttp.ClientError as e: error = f"Payment Message/PaymentACK Failed:\n{repr(e)}" if isinstance(e, aiohttp.ClientResponseError) and e.status == 400 and resp_content: error += "\n" + resp_content.decode("utf8") return False, error def make_unsigned_request(req): from .transaction import Transaction addr = req['address'] time = req.get('time', 0) exp = req.get('exp', 0) if time and type(time) != int: time = 0 if exp and type(exp) != int: exp = 0 amount = req['amount'] if amount is None: amount = 0 memo = req['memo'] script = bfh(Transaction.pay_script(TYPE_ADDRESS, addr)) outputs = [(script, amount)] pd = pb2.PaymentDetails() for script, amount in outputs: pd.outputs.add(amount=amount, script=script) pd.time = time pd.expires = time + exp if exp else 0 pd.memo = memo pr = pb2.PaymentRequest() pr.serialized_payment_details = pd.SerializeToString() pr.signature = util.to_bytes('') return pr def sign_request_with_alias(pr, alias, alias_privkey): pr.pki_type = 'dnssec+audax' pr.pki_data = str(alias) message = pr.SerializeToString() ec_key = ecc.ECPrivkey(alias_privkey) compressed = bitcoin.is_compressed_privkey(alias_privkey) pr.signature = ec_key.sign_message(message, compressed) def verify_cert_chain(chain): """ Verify a chain of certificates. The last certificate is the CA""" load_ca_list() # parse the chain cert_num = len(chain) x509_chain = [] for i in range(cert_num): x = x509.X509(bytearray(chain[i])) x509_chain.append(x) if i == 0: x.check_date() else: if not x.check_ca(): raise Exception("ERROR: Supplied CA Certificate Error") if not cert_num > 1: raise Exception("ERROR: CA Certificate Chain Not Provided by Payment Processor") # if the root CA is not supplied, add it to the chain ca = x509_chain[cert_num-1] if ca.getFingerprint() not in ca_list: keyID = ca.get_issuer_keyID() f = ca_keyID.get(keyID) if f: root = ca_list[f] x509_chain.append(root) else: raise Exception("Supplied CA Not Found in Trusted CA Store.") # verify the chain of signatures cert_num = len(x509_chain) for i in range(1, cert_num): x = x509_chain[i] prev_x = x509_chain[i-1] algo, sig, data = prev_x.get_signature() sig = bytearray(sig) pubkey = rsakey.RSAKey(x.modulus, x.exponent) if algo == x509.ALGO_RSA_SHA1: verify = pubkey.hashAndVerify(sig, data) elif algo == x509.ALGO_RSA_SHA256: hashBytes = bytearray(hashlib.sha256(data).digest()) verify = pubkey.verify(sig, x509.PREFIX_RSA_SHA256 + hashBytes) elif algo == x509.ALGO_RSA_SHA384: hashBytes = bytearray(hashlib.sha384(data).digest()) verify = pubkey.verify(sig, x509.PREFIX_RSA_SHA384 + hashBytes) elif algo == x509.ALGO_RSA_SHA512: hashBytes = bytearray(hashlib.sha512(data).digest()) verify = pubkey.verify(sig, x509.PREFIX_RSA_SHA512 + hashBytes) else: raise Exception("Algorithm not supported: {}".format(algo)) if not verify: raise Exception("Certificate not Signed by Provided CA Certificate Chain") return x509_chain[0], ca def check_ssl_config(config): from . import pem key_path = config.get('ssl_privkey') cert_path = config.get('ssl_chain') with open(key_path, 'r', encoding='utf-8') as f: params = pem.parse_private_key(f.read()) with open(cert_path, 'r', encoding='utf-8') as f: s = f.read() bList = pem.dePemList(s, "CERTIFICATE") # verify chain x, ca = verify_cert_chain(bList) # verify that privkey and pubkey match privkey = rsakey.RSAKey(*params) pubkey = rsakey.RSAKey(x.modulus, x.exponent) assert x.modulus == params[0] assert x.exponent == params[1] # return requestor requestor = x.get_common_name() if requestor.startswith('*.'): requestor = requestor[2:] return requestor def sign_request_with_x509(pr, key_path, cert_path): from . import pem with open(key_path, 'r', encoding='utf-8') as f: params = pem.parse_private_key(f.read()) privkey = rsakey.RSAKey(*params) with open(cert_path, 'r', encoding='utf-8') as f: s = f.read() bList = pem.dePemList(s, "CERTIFICATE") certificates = pb2.X509Certificates() certificates.certificate.extend(map(bytes, bList)) pr.pki_type = 'x509+sha256' pr.pki_data = certificates.SerializeToString() msgBytes = bytearray(pr.SerializeToString()) hashBytes = bytearray(hashlib.sha256(msgBytes).digest()) sig = privkey.sign(x509.PREFIX_RSA_SHA256 + hashBytes) pr.signature = bytes(sig) def serialize_request(req): pr = make_unsigned_request(req) signature = req.get('sig') requestor = req.get('name') if requestor and signature: pr.signature = bfh(signature) pr.pki_type = 'dnssec+audax' pr.pki_data = str(requestor) return pr def make_request(config, req): pr = make_unsigned_request(req) key_path = config.get('ssl_privkey') cert_path = config.get('ssl_chain') if key_path and cert_path: sign_request_with_x509(pr, key_path, cert_path) return pr class InvoiceStore(Logger): def __init__(self, storage): Logger.__init__(self) self.storage = storage self.invoices = {} self.paid = {} d = self.storage.get('invoices', {}) self.load(d) def set_paid(self, pr, txid): pr.tx = txid pr_id = pr.get_id() self.paid[txid] = pr_id if pr_id not in self.invoices: # in case the user had deleted it previously self.add(pr) def load(self, d): for k, v in d.items(): try: pr = PaymentRequest(bfh(v.get('hex'))) pr.tx = v.get('txid') pr.requestor = v.get('requestor') self.invoices[k] = pr if pr.tx: self.paid[pr.tx] = k except: continue def import_file(self, path): def validate(data): return data # TODO import_meta(path, validate, self.on_import) def on_import(self, data): self.load(data) self.save() def export_file(self, filename): export_meta(self.dump(), filename) def dump(self): d = {} for k, pr in self.invoices.items(): d[k] = { 'hex': bh2u(pr.raw), 'requestor': pr.requestor, 'txid': pr.tx } return d def save(self): self.storage.put('invoices', self.dump()) def get_status(self, key): pr = self.get(key) if pr is None: self.logger.info(f"get_status() can't find pr for {key}") return if pr.tx is not None: return PR_PAID if pr.has_expired(): return PR_EXPIRED return PR_UNPAID def add(self, pr): key = pr.get_id() self.invoices[key] = pr self.save() return key def remove(self, key): self.invoices.pop(key) self.save() def get(self, k): return self.invoices.get(k) def sorted_list(self): # sort return self.invoices.values() def unpaid_invoices(self): return [self.invoices[k] for k in filter(lambda x: self.get_status(x) not in (PR_PAID, None), self.invoices.keys()) ]
py
1a4e2985a39b71b6cb9efc82e8cc214589f05a26
def run(): """ Run the nose test scripts for rb_cqed. """ import nose # runs tests in rb_cqed.tests module only nose.run(defaultTest="rb_cqed.tests", argv=['nosetests', '-v'])
py
1a4e29d0530bdffbb67ae01f7fbda75966a43954
"""Add multi-column indexes to appropriation and object class program activity table Revision ID: 51b1bbc0bfde Revises: 4ebc7a781b31 Create Date: 2019-07-26 12:03:39.154057 """ # revision identifiers, used by Alembic. revision = '51b1bbc0bfde' down_revision = '4ebc7a781b31' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_data_broker(): # ### commands auto generated by Alembic - please adjust! ### op.create_index('ix_appropriation_tas_id_submission_id', 'appropriation', ['tas_id', 'submission_id'], unique=False) op.create_index('ix_oc_pa_tas_id_submission_id', 'object_class_program_activity', ['tas_id', 'submission_id'], unique=False) # ### end Alembic commands ### def downgrade_data_broker(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ix_oc_pa_tas_id_submission_id', table_name='object_class_program_activity') op.drop_index('ix_appropriation_tas_id_submission_id', table_name='appropriation') # ### end Alembic commands ###
py
1a4e2b7db4de95b978b183696c1fecd840efb4c3
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('example', '0002_relatedsubscription'), ] operations = [ migrations.CreateModel( name='Summary', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('subscriptions', models.ManyToManyField(related_name='summaries', to='example.StockSubscription')), ], ), ]
py
1a4e2b91d8e2a070f6a44b048df3312b511d9ced
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.api_core import operations_v1 from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.aiplatform_v1beta1.types import entity_type from google.cloud.aiplatform_v1beta1.types import entity_type as gca_entity_type from google.cloud.aiplatform_v1beta1.types import feature from google.cloud.aiplatform_v1beta1.types import feature as gca_feature from google.cloud.aiplatform_v1beta1.types import featurestore from google.cloud.aiplatform_v1beta1.types import featurestore_service from google.longrunning import operations_pb2 # type: ignore from .base import FeaturestoreServiceTransport, DEFAULT_CLIENT_INFO from .grpc import FeaturestoreServiceGrpcTransport class FeaturestoreServiceGrpcAsyncIOTransport(FeaturestoreServiceTransport): """gRPC AsyncIO backend transport for FeaturestoreService. The service that handles CRUD and List for resources for Featurestore. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "aiplatform.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "aiplatform.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client: Optional[operations_v1.OperationsAsyncClient] = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, # use the credentials which are saved credentials=self._credentials, # Set ``credentials_file`` to ``None`` here as # the credentials that we saved earlier should be used. credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsAsyncClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Quick check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsAsyncClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def create_featurestore( self, ) -> Callable[ [featurestore_service.CreateFeaturestoreRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the create featurestore method over gRPC. Creates a new Featurestore in a given project and location. Returns: Callable[[~.CreateFeaturestoreRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_featurestore" not in self._stubs: self._stubs["create_featurestore"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/CreateFeaturestore", request_serializer=featurestore_service.CreateFeaturestoreRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["create_featurestore"] @property def get_featurestore( self, ) -> Callable[ [featurestore_service.GetFeaturestoreRequest], Awaitable[featurestore.Featurestore], ]: r"""Return a callable for the get featurestore method over gRPC. Gets details of a single Featurestore. Returns: Callable[[~.GetFeaturestoreRequest], Awaitable[~.Featurestore]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_featurestore" not in self._stubs: self._stubs["get_featurestore"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/GetFeaturestore", request_serializer=featurestore_service.GetFeaturestoreRequest.serialize, response_deserializer=featurestore.Featurestore.deserialize, ) return self._stubs["get_featurestore"] @property def list_featurestores( self, ) -> Callable[ [featurestore_service.ListFeaturestoresRequest], Awaitable[featurestore_service.ListFeaturestoresResponse], ]: r"""Return a callable for the list featurestores method over gRPC. Lists Featurestores in a given project and location. Returns: Callable[[~.ListFeaturestoresRequest], Awaitable[~.ListFeaturestoresResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_featurestores" not in self._stubs: self._stubs["list_featurestores"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/ListFeaturestores", request_serializer=featurestore_service.ListFeaturestoresRequest.serialize, response_deserializer=featurestore_service.ListFeaturestoresResponse.deserialize, ) return self._stubs["list_featurestores"] @property def update_featurestore( self, ) -> Callable[ [featurestore_service.UpdateFeaturestoreRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the update featurestore method over gRPC. Updates the parameters of a single Featurestore. Returns: Callable[[~.UpdateFeaturestoreRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_featurestore" not in self._stubs: self._stubs["update_featurestore"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/UpdateFeaturestore", request_serializer=featurestore_service.UpdateFeaturestoreRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["update_featurestore"] @property def delete_featurestore( self, ) -> Callable[ [featurestore_service.DeleteFeaturestoreRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the delete featurestore method over gRPC. Deletes a single Featurestore. The Featurestore must not contain any EntityTypes or ``force`` must be set to true for the request to succeed. Returns: Callable[[~.DeleteFeaturestoreRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_featurestore" not in self._stubs: self._stubs["delete_featurestore"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/DeleteFeaturestore", request_serializer=featurestore_service.DeleteFeaturestoreRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["delete_featurestore"] @property def create_entity_type( self, ) -> Callable[ [featurestore_service.CreateEntityTypeRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the create entity type method over gRPC. Creates a new EntityType in a given Featurestore. Returns: Callable[[~.CreateEntityTypeRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_entity_type" not in self._stubs: self._stubs["create_entity_type"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/CreateEntityType", request_serializer=featurestore_service.CreateEntityTypeRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["create_entity_type"] @property def get_entity_type( self, ) -> Callable[ [featurestore_service.GetEntityTypeRequest], Awaitable[entity_type.EntityType] ]: r"""Return a callable for the get entity type method over gRPC. Gets details of a single EntityType. Returns: Callable[[~.GetEntityTypeRequest], Awaitable[~.EntityType]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_entity_type" not in self._stubs: self._stubs["get_entity_type"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/GetEntityType", request_serializer=featurestore_service.GetEntityTypeRequest.serialize, response_deserializer=entity_type.EntityType.deserialize, ) return self._stubs["get_entity_type"] @property def list_entity_types( self, ) -> Callable[ [featurestore_service.ListEntityTypesRequest], Awaitable[featurestore_service.ListEntityTypesResponse], ]: r"""Return a callable for the list entity types method over gRPC. Lists EntityTypes in a given Featurestore. Returns: Callable[[~.ListEntityTypesRequest], Awaitable[~.ListEntityTypesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_entity_types" not in self._stubs: self._stubs["list_entity_types"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/ListEntityTypes", request_serializer=featurestore_service.ListEntityTypesRequest.serialize, response_deserializer=featurestore_service.ListEntityTypesResponse.deserialize, ) return self._stubs["list_entity_types"] @property def update_entity_type( self, ) -> Callable[ [featurestore_service.UpdateEntityTypeRequest], Awaitable[gca_entity_type.EntityType], ]: r"""Return a callable for the update entity type method over gRPC. Updates the parameters of a single EntityType. Returns: Callable[[~.UpdateEntityTypeRequest], Awaitable[~.EntityType]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_entity_type" not in self._stubs: self._stubs["update_entity_type"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/UpdateEntityType", request_serializer=featurestore_service.UpdateEntityTypeRequest.serialize, response_deserializer=gca_entity_type.EntityType.deserialize, ) return self._stubs["update_entity_type"] @property def delete_entity_type( self, ) -> Callable[ [featurestore_service.DeleteEntityTypeRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the delete entity type method over gRPC. Deletes a single EntityType. The EntityType must not have any Features or ``force`` must be set to true for the request to succeed. Returns: Callable[[~.DeleteEntityTypeRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_entity_type" not in self._stubs: self._stubs["delete_entity_type"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/DeleteEntityType", request_serializer=featurestore_service.DeleteEntityTypeRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["delete_entity_type"] @property def create_feature( self, ) -> Callable[ [featurestore_service.CreateFeatureRequest], Awaitable[operations_pb2.Operation] ]: r"""Return a callable for the create feature method over gRPC. Creates a new Feature in a given EntityType. Returns: Callable[[~.CreateFeatureRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_feature" not in self._stubs: self._stubs["create_feature"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/CreateFeature", request_serializer=featurestore_service.CreateFeatureRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["create_feature"] @property def batch_create_features( self, ) -> Callable[ [featurestore_service.BatchCreateFeaturesRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the batch create features method over gRPC. Creates a batch of Features in a given EntityType. Returns: Callable[[~.BatchCreateFeaturesRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "batch_create_features" not in self._stubs: self._stubs["batch_create_features"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/BatchCreateFeatures", request_serializer=featurestore_service.BatchCreateFeaturesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["batch_create_features"] @property def get_feature( self, ) -> Callable[[featurestore_service.GetFeatureRequest], Awaitable[feature.Feature]]: r"""Return a callable for the get feature method over gRPC. Gets details of a single Feature. Returns: Callable[[~.GetFeatureRequest], Awaitable[~.Feature]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_feature" not in self._stubs: self._stubs["get_feature"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/GetFeature", request_serializer=featurestore_service.GetFeatureRequest.serialize, response_deserializer=feature.Feature.deserialize, ) return self._stubs["get_feature"] @property def list_features( self, ) -> Callable[ [featurestore_service.ListFeaturesRequest], Awaitable[featurestore_service.ListFeaturesResponse], ]: r"""Return a callable for the list features method over gRPC. Lists Features in a given EntityType. Returns: Callable[[~.ListFeaturesRequest], Awaitable[~.ListFeaturesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_features" not in self._stubs: self._stubs["list_features"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/ListFeatures", request_serializer=featurestore_service.ListFeaturesRequest.serialize, response_deserializer=featurestore_service.ListFeaturesResponse.deserialize, ) return self._stubs["list_features"] @property def update_feature( self, ) -> Callable[ [featurestore_service.UpdateFeatureRequest], Awaitable[gca_feature.Feature] ]: r"""Return a callable for the update feature method over gRPC. Updates the parameters of a single Feature. Returns: Callable[[~.UpdateFeatureRequest], Awaitable[~.Feature]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_feature" not in self._stubs: self._stubs["update_feature"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/UpdateFeature", request_serializer=featurestore_service.UpdateFeatureRequest.serialize, response_deserializer=gca_feature.Feature.deserialize, ) return self._stubs["update_feature"] @property def delete_feature( self, ) -> Callable[ [featurestore_service.DeleteFeatureRequest], Awaitable[operations_pb2.Operation] ]: r"""Return a callable for the delete feature method over gRPC. Deletes a single Feature. Returns: Callable[[~.DeleteFeatureRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_feature" not in self._stubs: self._stubs["delete_feature"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/DeleteFeature", request_serializer=featurestore_service.DeleteFeatureRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["delete_feature"] @property def import_feature_values( self, ) -> Callable[ [featurestore_service.ImportFeatureValuesRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the import feature values method over gRPC. Imports Feature values into the Featurestore from a source storage. The progress of the import is tracked by the returned operation. The imported features are guaranteed to be visible to subsequent read operations after the operation is marked as successfully done. If an import operation fails, the Feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same import request again and wait till the new operation returned is marked as successfully done. There are also scenarios where the caller can cause inconsistency. - Source data for import contains multiple distinct Feature values for the same entity ID and timestamp. - Source is modified during an import. This includes adding, updating, or removing source data and/or metadata. Examples of updating metadata include but are not limited to changing storage location, storage class, or retention policy. - Online serving cluster is under-provisioned. Returns: Callable[[~.ImportFeatureValuesRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "import_feature_values" not in self._stubs: self._stubs["import_feature_values"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/ImportFeatureValues", request_serializer=featurestore_service.ImportFeatureValuesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["import_feature_values"] @property def batch_read_feature_values( self, ) -> Callable[ [featurestore_service.BatchReadFeatureValuesRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the batch read feature values method over gRPC. Batch reads Feature values from a Featurestore. This API enables batch reading Feature values, where each read instance in the batch may read Feature values of entities from one or more EntityTypes. Point-in-time correctness is guaranteed for Feature values of each read instance as of each instance's read timestamp. Returns: Callable[[~.BatchReadFeatureValuesRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "batch_read_feature_values" not in self._stubs: self._stubs["batch_read_feature_values"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/BatchReadFeatureValues", request_serializer=featurestore_service.BatchReadFeatureValuesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["batch_read_feature_values"] @property def export_feature_values( self, ) -> Callable[ [featurestore_service.ExportFeatureValuesRequest], Awaitable[operations_pb2.Operation], ]: r"""Return a callable for the export feature values method over gRPC. Exports Feature values from all the entities of a target EntityType. Returns: Callable[[~.ExportFeatureValuesRequest], Awaitable[~.Operation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "export_feature_values" not in self._stubs: self._stubs["export_feature_values"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/ExportFeatureValues", request_serializer=featurestore_service.ExportFeatureValuesRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["export_feature_values"] @property def search_features( self, ) -> Callable[ [featurestore_service.SearchFeaturesRequest], Awaitable[featurestore_service.SearchFeaturesResponse], ]: r"""Return a callable for the search features method over gRPC. Searches Features matching a query in a given project. Returns: Callable[[~.SearchFeaturesRequest], Awaitable[~.SearchFeaturesResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "search_features" not in self._stubs: self._stubs["search_features"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1beta1.FeaturestoreService/SearchFeatures", request_serializer=featurestore_service.SearchFeaturesRequest.serialize, response_deserializer=featurestore_service.SearchFeaturesResponse.deserialize, ) return self._stubs["search_features"] def close(self): return self.grpc_channel.close() __all__ = ("FeaturestoreServiceGrpcAsyncIOTransport",)
py
1a4e2c0281571b8c7bbc7da8dcb377835adbb091
"""HTML handling. Copyright 2003-2006 John J. Lee <[email protected]> This code is free software; you can redistribute it and/or modify it under the terms of the BSD or ZPL 2.1 licenses (see the file COPYING.txt included with the distribution). """ import codecs import copy import htmlentitydefs import re import _sgmllib_copy as sgmllib import _beautifulsoup import _form from _headersutil import split_header_words, is_html as _is_html import _request import _rfc3986 DEFAULT_ENCODING = "latin-1" COMPRESS_RE = re.compile(r"\s+") class CachingGeneratorFunction(object): """Caching wrapper around a no-arguments iterable.""" def __init__(self, iterable): self._cache = [] # wrap iterable to make it non-restartable (otherwise, repeated # __call__ would give incorrect results) self._iterator = iter(iterable) def __call__(self): cache = self._cache for item in cache: yield item for item in self._iterator: cache.append(item) yield item class EncodingFinder: def __init__(self, default_encoding): self._default_encoding = default_encoding def encoding(self, response): # HTTPEquivProcessor may be in use, so both HTTP and HTTP-EQUIV # headers may be in the response. HTTP-EQUIV headers come last, # so try in order from first to last. for ct in response.info().getheaders("content-type"): for k, v in split_header_words([ct])[0]: if k == "charset": encoding = v try: codecs.lookup(v) except LookupError: continue else: return encoding return self._default_encoding class ResponseTypeFinder: def __init__(self, allow_xhtml): self._allow_xhtml = allow_xhtml def is_html(self, response, encoding): ct_hdrs = response.info().getheaders("content-type") url = response.geturl() # XXX encoding return _is_html(ct_hdrs, url, self._allow_xhtml) class Args(object): # idea for this argument-processing trick is from Peter Otten def __init__(self, args_map): self.__dict__["dictionary"] = dict(args_map) def __getattr__(self, key): try: return self.dictionary[key] except KeyError: return getattr(self.__class__, key) def __setattr__(self, key, value): if key == "dictionary": raise AttributeError() self.dictionary[key] = value def form_parser_args( select_default=False, form_parser_class=None, request_class=None, backwards_compat=False, ): return Args(locals()) class Link: def __init__(self, base_url, url, text, tag, attrs): assert None not in [url, tag, attrs] self.base_url = base_url self.absolute_url = _rfc3986.urljoin(base_url, url) self.url, self.text, self.tag, self.attrs = url, text, tag, attrs def __cmp__(self, other): try: for name in "url", "text", "tag", "attrs": if getattr(self, name) != getattr(other, name): return -1 except AttributeError: return -1 return 0 def __repr__(self): return "Link(base_url=%r, url=%r, text=%r, tag=%r, attrs=%r)" % ( self.base_url, self.url, self.text, self.tag, self.attrs) class LinksFactory: def __init__(self, link_parser_class=None, link_class=Link, urltags=None, ): import _pullparser if link_parser_class is None: link_parser_class = _pullparser.TolerantPullParser self.link_parser_class = link_parser_class self.link_class = link_class if urltags is None: urltags = { "a": "href", "area": "href", "frame": "src", "iframe": "src", } self.urltags = urltags self._response = None self._encoding = None def set_response(self, response, base_url, encoding): self._response = response self._encoding = encoding self._base_url = base_url def links(self): """Return an iterator that provides links of the document.""" response = self._response encoding = self._encoding base_url = self._base_url p = self.link_parser_class(response, encoding=encoding) try: for token in p.tags(*(self.urltags.keys()+["base"])): if token.type == "endtag": continue if token.data == "base": base_href = dict(token.attrs).get("href") if base_href is not None: base_url = base_href continue attrs = dict(token.attrs) tag = token.data text = None # XXX use attr_encoding for ref'd doc if that doc does not # provide one by other means #attr_encoding = attrs.get("charset") url = attrs.get(self.urltags[tag]) # XXX is "" a valid URL? if not url: # Probably an <A NAME="blah"> link or <AREA NOHREF...>. # For our purposes a link is something with a URL, so # ignore this. continue url = _rfc3986.clean_url(url, encoding) if tag == "a": if token.type != "startendtag": # hmm, this'd break if end tag is missing text = p.get_compressed_text(("endtag", tag)) # but this doesn't work for e.g. # <a href="blah"><b>Andy</b></a> #text = p.get_compressed_text() yield Link(base_url, url, text, tag, token.attrs) except sgmllib.SGMLParseError, exc: raise _form.ParseError(exc) class FormsFactory: """Makes a sequence of objects satisfying HTMLForm interface. After calling .forms(), the .global_form attribute is a form object containing all controls not a descendant of any FORM element. For constructor argument docs, see ParseResponse argument docs. """ def __init__(self, select_default=False, form_parser_class=None, request_class=None, backwards_compat=False, ): self.select_default = select_default if form_parser_class is None: form_parser_class = _form.FormParser self.form_parser_class = form_parser_class if request_class is None: request_class = _request.Request self.request_class = request_class self.backwards_compat = backwards_compat self._response = None self.encoding = None self.global_form = None def set_response(self, response, encoding): self._response = response self.encoding = encoding self.global_form = None def forms(self): encoding = self.encoding forms = _form.ParseResponseEx( self._response, select_default=self.select_default, form_parser_class=self.form_parser_class, request_class=self.request_class, encoding=encoding, _urljoin=_rfc3986.urljoin, _urlparse=_rfc3986.urlsplit, _urlunparse=_rfc3986.urlunsplit, ) self.global_form = forms[0] return forms[1:] class TitleFactory: def __init__(self): self._response = self._encoding = None def set_response(self, response, encoding): self._response = response self._encoding = encoding def _get_title_text(self, parser): import _pullparser text = [] tok = None while 1: try: tok = parser.get_token() except _pullparser.NoMoreTokensError: break if tok.type == "data": text.append(str(tok)) elif tok.type == "entityref": t = unescape("&%s;" % tok.data, parser._entitydefs, parser.encoding) text.append(t) elif tok.type == "charref": t = unescape_charref(tok.data, parser.encoding) text.append(t) elif tok.type in ["starttag", "endtag", "startendtag"]: tag_name = tok.data if tok.type == "endtag" and tag_name == "title": break text.append(str(tok)) return COMPRESS_RE.sub(" ", "".join(text).strip()) def title(self): import _pullparser p = _pullparser.TolerantPullParser( self._response, encoding=self._encoding) try: try: p.get_tag("title") except _pullparser.NoMoreTokensError: return None else: return self._get_title_text(p) except sgmllib.SGMLParseError, exc: raise _form.ParseError(exc) def unescape(data, entities, encoding): if data is None or "&" not in data: return data def replace_entities(match): ent = match.group() if ent[1] == "#": return unescape_charref(ent[2:-1], encoding) repl = entities.get(ent[1:-1]) if repl is not None: repl = unichr(repl) if type(repl) != type(""): try: repl = repl.encode(encoding) except UnicodeError: repl = ent else: repl = ent return repl return re.sub(r"&#?[A-Za-z0-9]+?;", replace_entities, data) def unescape_charref(data, encoding): name, base = data, 10 if name.startswith("x"): name, base= name[1:], 16 uc = unichr(int(name, base)) if encoding is None: return uc else: try: repl = uc.encode(encoding) except UnicodeError: repl = "&#%s;" % data return repl class MechanizeBs(_beautifulsoup.BeautifulSoup): _entitydefs = htmlentitydefs.name2codepoint # don't want the magic Microsoft-char workaround PARSER_MASSAGE = [(re.compile('(<[^<>]*)/>'), lambda(x):x.group(1) + ' />'), (re.compile('<!\s+([^<>]*)>'), lambda(x):'<!' + x.group(1) + '>') ] def __init__(self, encoding, text=None, avoidParserProblems=True, initialTextIsEverything=True): self._encoding = encoding _beautifulsoup.BeautifulSoup.__init__( self, text, avoidParserProblems, initialTextIsEverything) def handle_charref(self, ref): t = unescape("&#%s;"%ref, self._entitydefs, self._encoding) self.handle_data(t) def handle_entityref(self, ref): t = unescape("&%s;"%ref, self._entitydefs, self._encoding) self.handle_data(t) def unescape_attrs(self, attrs): escaped_attrs = [] for key, val in attrs: val = unescape(val, self._entitydefs, self._encoding) escaped_attrs.append((key, val)) return escaped_attrs class RobustLinksFactory: compress_re = COMPRESS_RE def __init__(self, link_parser_class=None, link_class=Link, urltags=None, ): if link_parser_class is None: link_parser_class = MechanizeBs self.link_parser_class = link_parser_class self.link_class = link_class if urltags is None: urltags = { "a": "href", "area": "href", "frame": "src", "iframe": "src", } self.urltags = urltags self._bs = None self._encoding = None self._base_url = None def set_soup(self, soup, base_url, encoding): self._bs = soup self._base_url = base_url self._encoding = encoding def links(self): bs = self._bs base_url = self._base_url encoding = self._encoding for ch in bs.recursiveChildGenerator(): if (isinstance(ch, _beautifulsoup.Tag) and ch.name in self.urltags.keys()+["base"]): link = ch attrs = bs.unescape_attrs(link.attrs) attrs_dict = dict(attrs) if link.name == "base": base_href = attrs_dict.get("href") if base_href is not None: base_url = base_href continue url_attr = self.urltags[link.name] url = attrs_dict.get(url_attr) if not url: continue url = _rfc3986.clean_url(url, encoding) text = link.fetchText(lambda t: True) if not text: # follow _pullparser's weird behaviour rigidly if link.name == "a": text = "" else: text = None else: text = self.compress_re.sub(" ", " ".join(text).strip()) yield Link(base_url, url, text, link.name, attrs) class RobustFormsFactory(FormsFactory): def __init__(self, *args, **kwds): args = form_parser_args(*args, **kwds) if args.form_parser_class is None: args.form_parser_class = _form.RobustFormParser FormsFactory.__init__(self, **args.dictionary) def set_response(self, response, encoding): self._response = response self.encoding = encoding class RobustTitleFactory: def __init__(self): self._bs = self._encoding = None def set_soup(self, soup, encoding): self._bs = soup self._encoding = encoding def title(self): title = self._bs.first("title") if title == _beautifulsoup.Null: return None else: inner_html = "".join([str(node) for node in title.contents]) return COMPRESS_RE.sub(" ", inner_html.strip()) class Factory: """Factory for forms, links, etc. This interface may expand in future. Public methods: set_request_class(request_class) set_response(response) forms() links() Public attributes: Note that accessing these attributes may raise ParseError. encoding: string specifying the encoding of response if it contains a text document (this value is left unspecified for documents that do not have an encoding, e.g. an image file) is_html: true if response contains an HTML document (XHTML may be regarded as HTML too) title: page title, or None if no title or not HTML global_form: form object containing all controls that are not descendants of any FORM element, or None if the forms_factory does not support supplying a global form """ LAZY_ATTRS = ["encoding", "is_html", "title", "global_form"] def __init__(self, forms_factory, links_factory, title_factory, encoding_finder=EncodingFinder(DEFAULT_ENCODING), response_type_finder=ResponseTypeFinder(allow_xhtml=False), ): """ Pass keyword arguments only. default_encoding: character encoding to use if encoding cannot be determined (or guessed) from the response. You should turn on HTTP-EQUIV handling if you want the best chance of getting this right without resorting to this default. The default value of this parameter (currently latin-1) may change in future. """ self._forms_factory = forms_factory self._links_factory = links_factory self._title_factory = title_factory self._encoding_finder = encoding_finder self._response_type_finder = response_type_finder self.set_response(None) def set_request_class(self, request_class): """Set request class (mechanize.Request by default). HTMLForm instances returned by .forms() will return instances of this class when .click()ed. """ self._forms_factory.request_class = request_class def set_response(self, response): """Set response. The response must either be None or implement the same interface as objects returned by mechanize.urlopen(). """ self._response = response self._forms_genf = self._links_genf = None self._get_title = None for name in self.LAZY_ATTRS: try: delattr(self, name) except AttributeError: pass def __getattr__(self, name): if name not in self.LAZY_ATTRS: return getattr(self.__class__, name) if name == "encoding": self.encoding = self._encoding_finder.encoding( copy.copy(self._response)) return self.encoding elif name == "is_html": self.is_html = self._response_type_finder.is_html( copy.copy(self._response), self.encoding) return self.is_html elif name == "title": if self.is_html: self.title = self._title_factory.title() else: self.title = None return self.title elif name == "global_form": self.forms() return self.global_form def forms(self): """Return iterable over HTMLForm-like objects. Raises mechanize.ParseError on failure. """ # this implementation sets .global_form as a side-effect, for benefit # of __getattr__ impl if self._forms_genf is None: try: self._forms_genf = CachingGeneratorFunction( self._forms_factory.forms()) except: # XXXX define exception! self.set_response(self._response) raise self.global_form = getattr( self._forms_factory, "global_form", None) return self._forms_genf() def links(self): """Return iterable over mechanize.Link-like objects. Raises mechanize.ParseError on failure. """ if self._links_genf is None: try: self._links_genf = CachingGeneratorFunction( self._links_factory.links()) except: # XXXX define exception! self.set_response(self._response) raise return self._links_genf() class DefaultFactory(Factory): """Based on sgmllib.""" def __init__(self, i_want_broken_xhtml_support=False): Factory.__init__( self, forms_factory=FormsFactory(), links_factory=LinksFactory(), title_factory=TitleFactory(), response_type_finder=ResponseTypeFinder( allow_xhtml=i_want_broken_xhtml_support), ) def set_response(self, response): Factory.set_response(self, response) if response is not None: self._forms_factory.set_response( copy.copy(response), self.encoding) self._links_factory.set_response( copy.copy(response), response.geturl(), self.encoding) self._title_factory.set_response( copy.copy(response), self.encoding) class RobustFactory(Factory): """Based on BeautifulSoup, hopefully a bit more robust to bad HTML than is DefaultFactory. """ def __init__(self, i_want_broken_xhtml_support=False, soup_class=None): Factory.__init__( self, forms_factory=RobustFormsFactory(), links_factory=RobustLinksFactory(), title_factory=RobustTitleFactory(), response_type_finder=ResponseTypeFinder( allow_xhtml=i_want_broken_xhtml_support), ) if soup_class is None: soup_class = MechanizeBs self._soup_class = soup_class def set_response(self, response): Factory.set_response(self, response) if response is not None: data = response.read() soup = self._soup_class(self.encoding, data) self._forms_factory.set_response( copy.copy(response), self.encoding) self._links_factory.set_soup( soup, response.geturl(), self.encoding) self._title_factory.set_soup(soup, self.encoding)
py
1a4e2db38e8bfb322c1eb669756e5f0b3c750aec
from django.core.mail import send_mail from rest_framework.decorators import api_view from rest_framework.pagination import PageNumberPagination from rest_framework.request import Request from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from companies.models import Company from companies.serializers import CompanySerializer class CompanyViewSet(ModelViewSet): serializer_class = CompanySerializer queryset = Company.objects.all().order_by("-last_update") pagination_class = PageNumberPagination @api_view(http_method_names=["POST"]) def send_company_email(request: Request) -> Response: """ sends email with request payload sender: [email protected] receiver: [email protected] """ send_mail( subject=request.data.get("subject"), message=request.data.get("message"), from_email="[email protected]", recipient_list=["[email protected]"], ) return Response( {"status": "success", "info": "email sent successfully"}, status=200 )
py
1a4e2e69cf2f762aeb6d216b155a534b12bc6662
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test multiple RPC users.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import str_to_b64str, assert_equal import os import http.client import urllib.parse class HTTPBasicsTest (BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 def setup_chain(self): super().setup_chain() #Append rpcauth to oblivion.conf before initialization rpcauth = "rpcauth=rt:93648e835a54c573682c2eb19f882535$7681e9c5b74bdd85e78166031d2058e1069b3ed7ed967c93fc63abba06f31144" rpcauth2 = "rpcauth=rt2:f8607b1a88861fac29dfccf9b52ff9f$ff36a0c23c8c62b4846112e50fa888416e94c17bfd4c42f88fd8f55ec6a3137e" rpcuser = "rpcuser=rpcuser💻" rpcpassword = "rpcpassword=rpcpassword🔑" with open(os.path.join(self.options.tmpdir+"/node0", "oblivion.conf"), 'a', encoding='utf8') as f: f.write(rpcauth+"\n") f.write(rpcauth2+"\n") with open(os.path.join(self.options.tmpdir+"/node1", "oblivion.conf"), 'a', encoding='utf8') as f: f.write(rpcuser+"\n") f.write(rpcpassword+"\n") def run_test(self): ################################################## # Check correctness of the rpcauth config option # ################################################## url = urllib.parse.urlparse(self.nodes[0].url) #Old authpair authpair = url.username + ':' + url.password #New authpair generated via share/rpcuser tool password = "cA773lm788buwYe4g4WT+05pKyNruVKjQ25x3n0DQcM=" #Second authpair with different username password2 = "8/F3uMDw4KSEbw96U3CA1C4X05dkHDN2BPFjTgZW4KI=" authpairnew = "rt:"+password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Use new authpair to confirm both work headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong login name with rt's password authpairnew = "rtwrong:"+password headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Wrong password for rt authpairnew = "rt:"+password+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Correct for rt2 authpairnew = "rt2:"+password2 headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong password for rt2 authpairnew = "rt2:"+password2+"wrong" headers = {"Authorization": "Basic " + str_to_b64str(authpairnew)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() ############################################################### # Check correctness of the rpcuser/rpcpassword config options # ############################################################### url = urllib.parse.urlparse(self.nodes[1].url) # rpcuser and rpcpassword authpair rpcuserauthpair = "rpcuser💻:rpcpassword🔑" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 200) conn.close() #Wrong login name with rpcuser's password rpcuserauthpair = "rpcuserwrong:rpcpassword" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() #Wrong password for rpcuser rpcuserauthpair = "rpcuser:rpcpasswordwrong" headers = {"Authorization": "Basic " + str_to_b64str(rpcuserauthpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) resp = conn.getresponse() assert_equal(resp.status, 401) conn.close() if __name__ == '__main__': HTTPBasicsTest ().main ()
py
1a4e32b4d8cace386858d3d7d0551d3e4168647b
############################################################################### # # ChartScatter - A class for writing the Excel XLSX Scatter charts. # # Copyright 2013-2016, John McNamara, [email protected] # from . import chart class ChartScatter(chart.Chart): """ A class for writing the Excel XLSX Scatter charts. """ ########################################################################### # # Public API. # ########################################################################### def __init__(self, options=None): """ Constructor. """ super(ChartScatter, self).__init__() if options is None: options = {} self.subtype = options.get('subtype') if not self.subtype: self.subtype = 'marker_only' self.cross_between = 'midCat' self.horiz_val_axis = 0 self.val_axis_position = 'b' self.smooth_allowed = True self.requires_category = True # Set the available data label positions for this chart type. self.label_position_default = 'right' self.label_positions = { 'center': 'ctr', 'right': 'r', 'left': 'l', 'above': 't', 'below': 'b', # For backward compatibility. 'top': 't', 'bottom': 'b'} def combine(self, chart=None): """ Create a combination chart with a secondary chart. Note: Override parent method to add a warning. Args: chart: The secondary chart to combine with the primary chart. Returns: Nothing. """ if chart is None: return warn('Combined chart not currently supported with scatter chart ' 'as the primary chart') ########################################################################### # # Private API. # ########################################################################### def _write_chart_type(self, args): # Override the virtual superclass method with a chart specific method. # Write the c:scatterChart element. self._write_scatter_chart(args) ########################################################################### # # XML methods. # ########################################################################### def _write_scatter_chart(self, args): # Write the <c:scatterChart> element. if args['primary_axes']: series = self._get_primary_axes_series() else: series = self._get_secondary_axes_series() if not len(series): return style = 'lineMarker' subtype = self.subtype # Set the user defined chart subtype. if subtype == 'marker_only': style = 'lineMarker' if subtype == 'straight_with_markers': style = 'lineMarker' if subtype == 'straight': style = 'lineMarker' if subtype == 'smooth_with_markers': style = 'smoothMarker' if subtype == 'smooth': style = 'smoothMarker' # Add default formatting to the series data. self._modify_series_formatting() self._xml_start_tag('c:scatterChart') # Write the c:scatterStyle element. self._write_scatter_style(style) # Write the series elements. for data in series: self._write_ser(data) # Write the c:marker element. self._write_marker_value() # Write the c:axId elements self._write_axis_ids(args) self._xml_end_tag('c:scatterChart') def _write_ser(self, series): # Over-ridden to write c:xVal/c:yVal instead of c:cat/c:val elements. # Write the <c:ser> element. index = self.series_index self.series_index += 1 self._xml_start_tag('c:ser') # Write the c:idx element. self._write_idx(index) # Write the c:order element. self._write_order(index) # Write the series name. self._write_series_name(series) # Write the c:spPr element. self._write_sp_pr(series) # Write the c:marker element. self._write_marker(series.get('marker')) # Write the c:dPt element. self._write_d_pt(series.get('points')) # Write the c:dLbls element. self._write_d_lbls(series.get('labels')) # Write the c:trendline element. self._write_trendline(series.get('trendline')) # Write the c:errBars element. self._write_error_bars(series.get('error_bars')) # Write the c:xVal element. self._write_x_val(series) # Write the c:yVal element. self._write_y_val(series) # Write the c:smooth element. if 'smooth' in self.subtype and series['smooth'] is None: # Default is on for smooth scatter charts. self._write_c_smooth(True) else: self._write_c_smooth(series['smooth']) self._xml_end_tag('c:ser') def _write_plot_area(self): # Over-ridden to have 2 valAx elements for scatter charts instead # of catAx/valAx. # # Write the <c:plotArea> element. self._xml_start_tag('c:plotArea') # Write the c:layout element. self._write_layout(self.plotarea.get('layout'), 'plot') # Write the subclass chart elements for primary and secondary axes. self._write_chart_type({'primary_axes': 1}) self._write_chart_type({'primary_axes': 0}) # Write c:catAx and c:valAx elements for series using primary axes. self._write_cat_val_axis({'x_axis': self.x_axis, 'y_axis': self.y_axis, 'axis_ids': self.axis_ids, 'position': 'b', }) tmp = self.horiz_val_axis self.horiz_val_axis = 1 self._write_val_axis({'x_axis': self.x_axis, 'y_axis': self.y_axis, 'axis_ids': self.axis_ids, 'position': 'l', }) self.horiz_val_axis = tmp # Write c:valAx and c:catAx elements for series using secondary axes self._write_cat_val_axis({'x_axis': self.x2_axis, 'y_axis': self.y2_axis, 'axis_ids': self.axis2_ids, 'position': 'b', }) self.horiz_val_axis = 1 self._write_val_axis({'x_axis': self.x2_axis, 'y_axis': self.y2_axis, 'axis_ids': self.axis2_ids, 'position': 'l', }) # Write the c:spPr element for the plotarea formatting. self._write_sp_pr(self.plotarea) self._xml_end_tag('c:plotArea') def _write_x_val(self, series): # Write the <c:xVal> element. formula = series.get('categories') data_id = series.get('cat_data_id') data = self.formula_data[data_id] self._xml_start_tag('c:xVal') # Check the type of cached data. data_type = self._get_data_type(data) # TODO. Can a scatter plot have non-numeric data. if data_type == 'str': # Write the c:numRef element. self._write_str_ref(formula, data, data_type) else: # Write the c:numRef element. self._write_num_ref(formula, data, data_type) self._xml_end_tag('c:xVal') def _write_y_val(self, series): # Write the <c:yVal> element. formula = series.get('values') data_id = series.get('val_data_id') data = self.formula_data[data_id] self._xml_start_tag('c:yVal') # Unlike Cat axes data should only be numeric. # Write the c:numRef element. self._write_num_ref(formula, data, 'num') self._xml_end_tag('c:yVal') def _write_scatter_style(self, val): # Write the <c:scatterStyle> element. attributes = [('val', val)] self._xml_empty_tag('c:scatterStyle', attributes) def _modify_series_formatting(self): # Add default formatting to the series data unless it has already been # specified by the user. subtype = self.subtype # The default scatter style "markers only" requires a line type. if subtype == 'marker_only': # Go through each series and define default values. for series in self.series: # Set a line type unless there is already a user defined type. if not series['line']['defined']: series['line'] = {'width': 2.25, 'none': 1, 'defined': 1, } # Turn markers off for subtypes that don't have them. if 'marker' not in subtype: # Go through each series and define default values. for series in self.series: # Set a marker type unless there is a user defined type. if not series.get('marker'): series['marker'] = {'type': 'none', 'defined': 1} def _write_d_pt_point(self, index, point): # Write an individual <c:dPt> element. Override the parent method to # add markers. self._xml_start_tag('c:dPt') # Write the c:idx element. self._write_idx(index) self._xml_start_tag('c:marker') # Write the c:spPr element. self._write_sp_pr(point) self._xml_end_tag('c:marker') self._xml_end_tag('c:dPt')
py
1a4e343e349f6aa32b67415b3c734f62535ed7db
#encoding: utf-8 import json from django import template from django.conf import settings register = template.Library() @register.inclusion_tag('laws/bill_full_name.html') def bill_full_name(bill): return { 'bill': bill } @register.inclusion_tag('laws/bill_list_item.html') def bill_list_item(bill, add_li=True, show_tags=True): return { 'bill': bill, 'add_li': add_li, 'show_tags': show_tags } @register.inclusion_tag('laws/item_tags.html') def item_tags(tags): return { 'tags': tags } def split_member_vote_list_by_party(member_vote_list): ''' create a party partitioned list of "for" voters and "against" voters ''' list_by_party = [] if len(member_vote_list) > 0: ''' first party, first member ''' curr_party = { 'party' : member_vote_list[0].member.current_party.name, 'members' : []} for vote in member_vote_list: member = {'name' : vote.member.name, 'url' : vote.member.get_absolute_url(), 'img_url' : vote.member.img_url, 'id' : vote.member.id} if vote.member.current_party.name == curr_party['party']: curr_party['members'].append(member) else: list_by_party.append(curr_party) curr_party = { 'party' : vote.member.current_party.name, 'members' : [member]} ''' last party ''' list_by_party.append(curr_party) return list_by_party def create_vote_dict(vote): for_vote_sorted = vote.for_votes()\ .order_by('member__current_party')\ .select_related('member','member__current_party') for_vote_sorted = list(for_vote_sorted) for_votes_grouped = split_member_vote_list_by_party(for_vote_sorted) against_vote_sorted = vote.against_votes()\ .order_by('member__current_party')\ .select_related('member','member__current_party') against_vote_sorted = list(against_vote_sorted) against_votes_grouped = split_member_vote_list_by_party(against_vote_sorted) vote_drill_data = dict({'against': dict({'count': len(against_vote_sorted), 'votes' : against_votes_grouped}), 'for': dict({ 'count' : len(for_vote_sorted), 'votes' : for_votes_grouped})}) vote_dict = dict({'vote' : vote, 'vote_drill_data' : json.dumps(vote_drill_data), 'vote_passed' : vote.for_votes_count > vote.against_votes_count, 'vote_time' : {'day' : vote.time.day, 'month' : vote.time.month, 'year' : vote.time.year}}) return vote_dict def get_explanation(bill, proposals): if hasattr(bill, 'knesset_proposal'): if bill.knesset_proposal.get_explanation() != '': return bill.knesset_proposal.get_explanation() if hasattr(bill, 'gov_proposal'): if bill.gov_proposal.get_explanation() != '': return bill.gov_proposal.get_explanation() for proposal in proposals: if proposal.get_explanation() != '': return proposal.get_explanation() @register.inclusion_tag('laws/bill_inabox.html') def bill_inabox(bill): """ TODO: firstX and not first3""" proposals = list(bill.proposals.all()) proposers = bill.proposers.all() bill_inabox_dict = { 'bill': bill, 'billurl': 'http://oknesset.org%s' % bill.get_absolute_url(), 'proposers_first3': proposers[:3], 'proposers_count_minus3': len(proposers) - 3, 'explanation': get_explanation(bill, proposals), } #proposal if proposals: proposal = proposals[-1] bill_inabox_dict['proposal'] = dict({'day' : proposal.date.day, 'month' : proposal.date.month, 'year' : proposal.date.year}) #pre vote pre_votes = list(bill.pre_votes.all()) pre_vote = None if pre_votes: pre_vote = pre_votes[-1] bill_inabox_dict['pre_vote'] = create_vote_dict(pre_vote) #first_committee_meetings cms = list(bill.first_committee_meetings.all()) if cms: first_committee_meetings = cms[-1] bill_inabox_dict['first_committee_meetings'] = dict({'day' : first_committee_meetings.date.day, 'month' : first_committee_meetings.date.month, 'year' : first_committee_meetings.date.year, 'url' : first_committee_meetings.get_absolute_url()}) #first vote fv = bill.first_vote if fv: bill_inabox_dict['first_vote'] = create_vote_dict(fv) #second_committee_meetings cms = list(bill.second_committee_meetings.all()) if cms: second_committee_meetings = cms[-1] bill_inabox_dict['second_committee_meetings'] = dict({'day' : second_committee_meetings.date.day, 'month' : second_committee_meetings.date.month, 'year' : second_committee_meetings.date.year, 'url' : second_committee_meetings.get_absolute_url()}) #second+third vote (approval_vote) av = bill.approval_vote if av: bill_inabox_dict['approval_vote'] = create_vote_dict(av) return bill_inabox_dict
py
1a4e344589b6ad36f9f10396002766d6e96964cd
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Wrappers for primitive Neural Net (NN) Operations. """ from __future__ import print_function as _print_function from tensorflow._api.v1.compat.v1.nn import rnn_cell from tensorflow.python import depth_to_space from tensorflow.python import sigmoid from tensorflow.python import space_to_batch from tensorflow.python import space_to_depth from tensorflow.python import tanh from tensorflow.python.ops.candidate_sampling_ops import all_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import compute_accidental_hits from tensorflow.python.ops.candidate_sampling_ops import fixed_unigram_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import learned_unigram_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import log_uniform_candidate_sampler from tensorflow.python.ops.candidate_sampling_ops import uniform_candidate_sampler from tensorflow.python.ops.ctc_ops import collapse_repeated from tensorflow.python.ops.ctc_ops import ctc_beam_search_decoder from tensorflow.python.ops.ctc_ops import ctc_beam_search_decoder_v2 from tensorflow.python.ops.ctc_ops import ctc_greedy_decoder from tensorflow.python.ops.ctc_ops import ctc_loss from tensorflow.python.ops.ctc_ops import ctc_loss_v2 from tensorflow.python.ops.ctc_ops import ctc_unique_labels from tensorflow.python.ops.embedding_ops import embedding_lookup from tensorflow.python.ops.embedding_ops import embedding_lookup_sparse from tensorflow.python.ops.embedding_ops import safe_embedding_lookup_sparse from tensorflow.python.ops.gen_nn_ops import conv3d_backprop_filter_v2 from tensorflow.python.ops.gen_nn_ops import conv3d_backprop_filter_v2 as conv3d_backprop_filter from tensorflow.python.ops.gen_nn_ops import depthwise_conv2d_native from tensorflow.python.ops.gen_nn_ops import depthwise_conv2d_native_backprop_filter from tensorflow.python.ops.gen_nn_ops import depthwise_conv2d_native_backprop_filter as depthwise_conv2d_backprop_filter from tensorflow.python.ops.gen_nn_ops import depthwise_conv2d_native_backprop_input from tensorflow.python.ops.gen_nn_ops import depthwise_conv2d_native_backprop_input as depthwise_conv2d_backprop_input from tensorflow.python.ops.gen_nn_ops import elu from tensorflow.python.ops.gen_nn_ops import l2_loss from tensorflow.python.ops.gen_nn_ops import lrn from tensorflow.python.ops.gen_nn_ops import lrn as local_response_normalization from tensorflow.python.ops.gen_nn_ops import quantized_avg_pool from tensorflow.python.ops.gen_nn_ops import quantized_conv2d from tensorflow.python.ops.gen_nn_ops import quantized_max_pool from tensorflow.python.ops.gen_nn_ops import quantized_relu_x from tensorflow.python.ops.gen_nn_ops import relu from tensorflow.python.ops.gen_nn_ops import selu from tensorflow.python.ops.gen_nn_ops import softplus from tensorflow.python.ops.gen_nn_ops import softsign from tensorflow.python.ops.nn import atrous_conv2d from tensorflow.python.ops.nn import atrous_conv2d_transpose from tensorflow.python.ops.nn import avg_pool from tensorflow.python.ops.nn import avg_pool as avg_pool2d from tensorflow.python.ops.nn import avg_pool1d from tensorflow.python.ops.nn import avg_pool3d from tensorflow.python.ops.nn import avg_pool_v2 from tensorflow.python.ops.nn import batch_norm_with_global_normalization from tensorflow.python.ops.nn import batch_normalization from tensorflow.python.ops.nn import bias_add from tensorflow.python.ops.nn import bidirectional_dynamic_rnn from tensorflow.python.ops.nn import conv1d from tensorflow.python.ops.nn import conv1d_transpose from tensorflow.python.ops.nn import conv2d from tensorflow.python.ops.nn import conv2d_backprop_filter from tensorflow.python.ops.nn import conv2d_backprop_input from tensorflow.python.ops.nn import conv2d_transpose from tensorflow.python.ops.nn import conv3d_transpose from tensorflow.python.ops.nn import conv3d_v1 as conv3d from tensorflow.python.ops.nn import conv_transpose from tensorflow.python.ops.nn import convolution from tensorflow.python.ops.nn import crelu from tensorflow.python.ops.nn import depthwise_conv2d from tensorflow.python.ops.nn import dilation2d_v1 as dilation2d from tensorflow.python.ops.nn import dropout from tensorflow.python.ops.nn import dynamic_rnn from tensorflow.python.ops.nn import erosion2d from tensorflow.python.ops.nn import fractional_avg_pool from tensorflow.python.ops.nn import fractional_max_pool from tensorflow.python.ops.nn import fused_batch_norm from tensorflow.python.ops.nn import in_top_k from tensorflow.python.ops.nn import l2_normalize from tensorflow.python.ops.nn import leaky_relu from tensorflow.python.ops.nn import log_poisson_loss from tensorflow.python.ops.nn import log_softmax from tensorflow.python.ops.nn import max_pool from tensorflow.python.ops.nn import max_pool1d from tensorflow.python.ops.nn import max_pool2d from tensorflow.python.ops.nn import max_pool3d from tensorflow.python.ops.nn import max_pool_v2 from tensorflow.python.ops.nn import max_pool_with_argmax_v1 as max_pool_with_argmax from tensorflow.python.ops.nn import moments from tensorflow.python.ops.nn import nce_loss from tensorflow.python.ops.nn import normalize_moments from tensorflow.python.ops.nn import pool from tensorflow.python.ops.nn import raw_rnn from tensorflow.python.ops.nn import relu6 from tensorflow.python.ops.nn import relu_layer from tensorflow.python.ops.nn import sampled_softmax_loss from tensorflow.python.ops.nn import separable_conv2d from tensorflow.python.ops.nn import sigmoid_cross_entropy_with_logits from tensorflow.python.ops.nn import softmax from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits from tensorflow.python.ops.nn import softmax_cross_entropy_with_logits_v2_helper as softmax_cross_entropy_with_logits_v2 from tensorflow.python.ops.nn import sparse_softmax_cross_entropy_with_logits from tensorflow.python.ops.nn import static_rnn from tensorflow.python.ops.nn import static_state_saving_rnn from tensorflow.python.ops.nn import sufficient_statistics from tensorflow.python.ops.nn import swish from tensorflow.python.ops.nn import top_k from tensorflow.python.ops.nn import weighted_cross_entropy_with_logits from tensorflow.python.ops.nn import weighted_moments from tensorflow.python.ops.nn import with_space_to_batch from tensorflow.python.ops.nn import xw_plus_b from tensorflow.python.ops.nn import zero_fraction from tensorflow.python.ops.rnn import static_bidirectional_rnn del _print_function
py
1a4e34659d43ea754a721b7f08454d9ffc097894
""" Top-level entries in a TOML file. """ from .prettify import elements from .prettify.elements import TableElement, TableHeaderElement from .peekableit import PeekableIterator class TopLevel: """ A abstract top-level entry. """ def __init__(self, names, table_element): self._table_element = table_element self._names = Name(names) @property def table_element(self): return self._table_element @property def name(self): """ The distinct name of a table entry as an Name instance. """ return self._names class Name: def __init__(self, names): self._names = names @property def sub_names(self): return self._names def drop(self, n=0): """ Returns the name after dropping the first n entries of it. """ return Name(names=self._names[n:]) def is_prefixed_with(self, names): if isinstance(names, Name): return self.is_prefixed_with(names.sub_names) for i, name in enumerate(names): if self._names[i] != name: return False return True def without_prefix(self, names): if isinstance(names, Name): return self.without_prefix(names.sub_names) for i, name in enumerate(names): if name != self._names[i]: return Name(self._names[i:]) return Name(names=self.sub_names[len(names) :]) @property def is_qualified(self): return len(self._names) > 1 def __str__(self): return ".".join(self.sub_names) def __hash__(self): return hash(str(self)) def __eq__(self, other): return str(self) == str(other) def __ne__(self, other): return not self.__eq__(other) class AnonymousTable(TopLevel): def __init__(self, table_element): TopLevel.__init__(self, ("",), table_element) class Table(TopLevel): def __init__(self, names, table_element): TopLevel.__init__(self, names=names, table_element=table_element) class ArrayOfTables(TopLevel): def __init__(self, names, table_element): TopLevel.__init__(self, names=names, table_element=table_element) def _validate_file_elements(file_elements): pass def identify(file_elements): """ Outputs an ordered sequence of instances of TopLevel types. Elements start with an optional TableElement, followed by zero or more pairs of (TableHeaderElement, TableElement). """ if not file_elements: return _validate_file_elements(file_elements) # An iterator over enumerate(the non-metadata) elements iterator = PeekableIterator( (element_i, element) for (element_i, element) in enumerate(file_elements) if element.type != elements.TYPE_METADATA ) try: _, first_element = iterator.peek() if isinstance(first_element, TableElement): iterator.next() yield AnonymousTable(first_element) except KeyError: pass except StopIteration: return for element_i, element in iterator: if not isinstance(element, TableHeaderElement): continue # If TableHeader of a regular table, return Table following it if not element.is_array_of_tables: table_element_i, table_element = next(iterator) yield Table(names=element.names, table_element=table_element) # If TableHeader of an array of tables, do your thing else: table_element_i, table_element = next(iterator) yield ArrayOfTables(names=element.names, table_element=table_element)
py
1a4e3566c3cde6d108cfb95c6e9a27d5b40a1ea0
################################################################################ # # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ """TensorFlow Quantization""" from ft_tensorflow_quantization.python.ops.fake_quantize import * from ft_tensorflow_quantization.python.layers.tensor_quantizer import * from ft_tensorflow_quantization.python.layers.dense import * from ft_tensorflow_quantization.python.calib.max import * from ft_tensorflow_quantization.python.calib.histogram import * from ft_tensorflow_quantization.python.calib.calibrator import *
py
1a4e35ce63c20ef056ef397d23545c2398fb6b89
# -*- coding: utf-8 -*- # Copyright (c) 2020 Nekokatt # Copyright (c) 2021-present davfsa # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Pytest integration.""" import os from pipelines import config from pipelines import nox RUN_FLAGS = [ "-c", config.PYPROJECT_TOML, "--showlocals", ] COVERAGE_FLAGS = [ "--cov", config.MAIN_PACKAGE, "--cov-config", config.PYPROJECT_TOML, "--cov-report", "term", "--cov-report", f"html:{config.COVERAGE_HTML_PATH}", "--cov-report", "xml", ] @nox.session(reuse_venv=True) def pytest(session: nox.Session) -> None: """Run unit tests and measure code coverage. Coverage can be disabled with the `--skip-coverage` flag. """ session.install("-r", "requirements.txt", "-r", "dev-requirements.txt") _pytest(session) @nox.session(reuse_venv=True) def pytest_all_features(session: nox.Session) -> None: """Run unit tests and measure code coverage, using speedup modules. Coverage can be disabled with the `--skip-coverage` flag. """ session.install( "-r", "requirements.txt", "-r", "server-requirements.txt", "-r", "speedup-requirements.txt", "-r", "dev-requirements.txt", ) _pytest(session, "-OO") def _pytest(session: nox.Session, *py_flags: str) -> None: if "--skip-coverage" in session.posargs: session.posargs.remove("--skip-coverage") flags = RUN_FLAGS else: flags = [*RUN_FLAGS, *COVERAGE_FLAGS] session.run("python", *py_flags, "-m", "pytest", *flags, *session.posargs, config.TEST_PACKAGE)
py
1a4e3646c65b735881362d6aeaae2897d6b7e452
# -*- coding: utf-8 -*- # # straight.plugin documentation build configuration file, created by # sphinx-quickstart on Wed Jan 25 22:49:22 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ["sphinx.ext.autodoc"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = u"straight.plugin" copyright = u"2012, Calvin Spealman" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "1.4" # The full version, including alpha/beta/rc tags. release = "1.4.0" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "straightplugindoc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "index", "straightplugin.tex", u"straight.plugin Documentation", u"Calvin Spealman", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( "index", "straightplugin", u"straight.plugin Documentation", [u"Calvin Spealman"], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "straightplugin", u"straight.plugin Documentation", u"Calvin Spealman", "straightplugin", "One line description of project.", "Miscellaneous", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
py
1a4e36e7c65cf39f317f173105ce01aa4ce7d5fb
from time import time from datetime import datetime from apscheduler.schedulers.background import BackgroundScheduler from app import create_flask_app from Database.redis import check_actual_users_redis scheduler = BackgroundScheduler() scheduler.add_job(func=check_actual_users_redis, trigger="interval", minutes=60) scheduler.start() if __name__ == "__main__": create_flask_app().run(host='0.0.0.0')
py
1a4e36eb0e5746d27c6e946a9ea5cb4fb09df5b6
# flake8: noqa from .base import Settings __version__ = '0.2' __all__ = ['Settings']
py
1a4e372b89b00deb6d11c1c4e42c2dd5079e1ac8
import copy import argparse import json import pickle import torch import torch.nn.functional as F from torch.utils.data import DataLoader import egg.core as core from egg.core.util import find_lengths from egg.core import EarlyStopperAccuracy from egg.core import CheckpointSaver from egg.zoo.imitation_learning.archs import ( PlusOneWrapper, Receiver, Sender, ) from egg.zoo.compo_vs_generalization import train as compo_vs_generalization from egg.zoo.compo_vs_generalization.data import ( ScaledDataset, enumerate_attribute_value, one_hotify, select_subset_V1, select_subset_V2, split_holdout, split_train_test, ) from egg.zoo.imitation_learning.loader import * from egg.zoo.imitation_learning.util import * def eval_expert(metadata_path: str): checkpoint_wrapper = load_metadata_from_pkl(metadata_path) params = checkpoint_wrapper['params'] params.append('--load_from_checkpoint={}'.format(checkpoint_wrapper['checkpoint_path'])) compo_vs_generalization.main(params, train_mode=False) def eval_bc_prediction(new_sender, new_receiver, trainer, t=None, checkpoint_path=None): _, interaction = trainer.eval() r_loss, r_acc, _ = new_receiver.score(interaction, val=True) s_loss, s_acc, _ = new_sender.score(interaction, val=True) print('Epoch: {}; Receiver val loss: {}; Sender val loss: {}'.format(t, r_loss, s_loss)) return r_loss, s_loss, r_acc, s_acc def eval_expert_original_task(trainer): # print('About to evaluate og agents on og task') mean_loss, interaction = trainer.eval() acc_or, acc = interaction.aux['acc_or'].mean(), interaction.aux['acc'].mean() print('Expert Loss: {}. Acc_or: {}. Acc: {}'.format(mean_loss, acc_or, acc)) # input() return mean_loss, acc, acc_or def eval_bc_original_task(new_trainer, t=None, checkpoint_path=None): mean_loss, interaction = new_trainer.eval() acc_or, acc = interaction.aux['acc_or'].mean(), interaction.aux['acc'].mean() print('Epoch: {}; Original Task Loss: {}. Acc_or: {}. Acc: {}'.format(t, mean_loss, acc_or, acc)) return mean_loss, acc, acc_or # new results def train_bc(bc_args, new_sender, new_receiver, optimizer_s, optimizer_r, trainer, new_trainer=None, imitation=False, perf_log=None, sender_aware_weight=0.0): new_receiver_converged = False new_sender_converged = False receiver_converged_epoch, sender_converged_epoch = 0, 0 cumu_r_loss, cumu_s_loss = torch.zeros(bc_args.n_epochs_bc), torch.zeros(bc_args.n_epochs_bc) cumu_r_acc, cumu_s_acc = torch.empty(bc_args.n_epochs_bc), torch.empty(bc_args.n_epochs_bc) reinforce_loss_for_sender = torch.zeros(bc_args.n_epochs_bc) for t in range(bc_args.n_epochs_bc): val = t % bc_args.val_interval == 0 if val: new_sender.eval() new_receiver.eval() r_loss, s_loss, r_acc, s_acc = eval_bc_prediction(new_sender, new_receiver, trainer, t) if new_trainer is not None: mean_loss, acc, acc_or = eval_bc_original_task(new_trainer, t) if perf_log is not None: log_performance(perf_log, r_loss.item(), s_loss.item(), r_acc.item(), s_acc.item(), mean_loss, acc.item(), acc_or.item(), sender_converged_epoch, receiver_converged_epoch) _, interaction = trainer.eval(trainer.train_data) trainer.game.train() if not new_receiver_converged: new_receiver.train() r_loss, r_acc, aux_info = train_epoch( optimizer_r, new_receiver, interaction, expert=trainer.game.receiver, imitation=imitation, aux_info={'expert_sender': train.game.sender if sender_aware_weight > 0 else None, 'sender_aware': sender_aware_weight > 0} ) reinforce_loss_for_sender[t] = aux_info['reinforce_loss'] cumu_r_loss[t] = r_loss cumu_r_acc[t] = r_acc new_receiver_converged = get_grad_norm(new_receiver) < bc_args.convergence_epsilon receiver_converged_epoch = t if not new_sender_converged: new_sender.train() s_loss, s_acc, _ = train_epoch( optimizer_s, new_sender, interaction, expert=trainer.game.sender, imitation=imitation ) cumu_s_loss[t] = s_loss cumu_s_acc[t] = s_acc new_sender_converged = get_grad_norm(new_sender) < bc_args.convergence_epsilon sender_converged_epoch = t if new_receiver_converged and new_sender_converged: print('Both receiver and sender gradients < epsilon={}'.format(bc_args.convergence_epsilon)) break print('Epoch: {}; Receiver loss: {}; Sender loss: {}; R acc: {}; S acc: {}'.format(t, r_loss, s_loss, r_acc, s_acc)) cumu_s_loss += sender_aware_weight * reinforce_loss_for_sender cumu_s_loss = cumu_s_loss.sum() cumu_r_loss = cumu_r_loss.sum() return cumu_s_loss, cumu_r_loss, t, s_acc, r_acc, cumu_s_acc, cumu_r_acc def train_epoch(optimizer, agent, interaction, expert=None, imitation=False, aux_info={}): optimizer.zero_grad() loss, acc, aux = agent.score(interaction, expert=expert, imitation=imitation, aux_info=aux_info) loss.backward() optimizer.step() return loss, acc, aux def main(metadata_path: str, bc_params, expert_seed): bc_args = get_bc_params(bc_params) checkpoint_wrapper = load_metadata_from_pkl(metadata_path) params = checkpoint_wrapper['params'] params.append('--load_from_checkpoint={}'.format(checkpoint_wrapper['checkpoint_path'])) params = list(filter(lambda x: 'random_seed' not in x, params)) params.append('--random_seed={}'.format(bc_args.bc_random_seed)) opts = get_params(params) device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu') # New agents new_sender, new_receiver = bc_agents_setup(opts, device, *define_agents(opts)) optimizer_r = torch.optim.Adam(new_receiver.parameters(), lr=opts.lr) optimizer_s = torch.optim.Adam(new_sender.parameters(), lr=opts.lr) # Dataloader trainer = expert_setup(opts) new_trainer = copy.deepcopy(trainer) new_trainer.game.sender, new_trainer.game.receiver = new_sender.agent, new_receiver.agent # Logging perf_log = { 'r_loss': [], 's_loss': [], 'r_acc': [], 's_acc': [], 'mean_loss': [], 'acc': [], 'acc_or': [], 'epoch': [], 'epoch_speaker': [], 'epoch_receiver': [] } train_bc(bc_args, new_sender, new_receiver, optimizer_s, optimizer_r, trainer, new_trainer, perf_log) # Last validation score print('==============================================') print('Last validation score') r_loss, s_loss, r_acc, s_acc = eval_bc_prediction(new_sender, new_receiver, trainer, t=t) # Integrate with og environment on validation print('Last validation score on original task') mean_loss, acc, acc_or = eval_bc_original_task(new_trainer, t=t) # Original model score print('Expert validation on original task') eval_expert_original_task(trainer) log_performance(perf_log, r_loss.item(), s_loss.item(), r_acc.item(), s_acc.item(), mean_loss, acc.item(), acc_or.item(), sender_converged_epoch, receiver_converged_epoch) # Save BC model if bc_args.save_bc: save_behavioral_clones(bc_args, params, new_receiver, new_sender, optimizer_r, optimizer_s, metadata_path, perf_log, expert_seed) core.close() if __name__=='__main__': import sys import random # for i in range(100): # try: # resave_compo_metrics_on_whole_dataset('saved_models/' + # 'n_val_10_n_att_2_vocab_100_max_len_3_hidden_500/' + # 'checkpoint_wrapper_randomseed{}.pkl'.format(i)) # except: # continue # # run program for all the things for seed in range(101, 131): print('Random seed: ', seed) random.seed(seed) params = sys.argv[1:].copy() params.append('--bc_random_seed={}'.format(seed)) for i in range(100): try: main('saved_models/' + 'n_val_10_n_att_2_vocab_100_max_len_3_hidden_500/' + 'checkpoint_wrapper_randomseed{}.pkl'.format(i), params, i) except(FileNotFoundError): continue
py
1a4e37a56186a1ddb16acaee9d37c0d13aa9f347
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Creature() result.template = "object/mobile/shared_human_female.iff" result.attribute_template_id = 9 result.stfName("npc_name","human_base_female") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
py
1a4e37b3577443cee6cb31950534e7241026f38b
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Pig(Package): """ Pig is a dataflow programming environment for processing very large files. Pig's language is called Pig Latin. A Pig Latin program consists of a directed acyclic graph where each node represents an operation that transforms data. """ homepage = "http://archive.apache.org" url = "http://archive.apache.org/dist/hadoop/pig/stable/pig-0.7.0.tar.gz" version('0.7.0', sha256='fa7211fb339f547f679a3dd90055f1ddc45d5754d88463e4cc39c380ddf8b02a') def install(self, spec, prefix): install_tree('.', prefix)
py
1a4e38020b44b19d4a5fe2c24e9329033f2cf80c
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for `utils/monte_carlo.py`.""" from jax import test_util as jtu from jax.config import config as jax_config from jax.lib import xla_bridge import jax.numpy as np import jax.random as random from neural_tangents import stax from neural_tangents.utils import batch from neural_tangents.utils import empirical from neural_tangents.utils import monte_carlo from neural_tangents.utils import test_utils jax_config.parse_flags_with_absl() BATCH_SIZES = [ 1, 2, 4, ] DEVICE_COUNTS = [0, 1, 2] STORE_ON_DEVICE = [True, False] N_SAMPLES = 4 ALL_GET = ('nngp', 'ntk', ('nngp', 'ntk'), None) test_utils.update_test_tolerance() def _get_inputs_and_model(width=1, n_classes=2, use_conv=True): key = random.PRNGKey(1) key, split = random.split(key) x1 = random.normal(key, (8, 4, 3, 2)) x2 = random.normal(split, (4, 4, 3, 2)) if not use_conv: x1 = np.reshape(x1, (x1.shape[0], -1)) x2 = np.reshape(x2, (x2.shape[0], -1)) init_fn, apply_fn, kernel_fn = stax.serial( stax.Conv(width, (3, 3)) if use_conv else stax.Dense(width), stax.Relu(), stax.Flatten(), stax.Dense(n_classes, 2., 0.5)) return x1, x2, init_fn, apply_fn, kernel_fn, key class MonteCarloTest(jtu.JaxTestCase): @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '[batch_size={}, ' 'device_count={} ' 'store_on_device={} ' 'get={} ' ']'.format(batch_size, device_count, store_on_device, get), 'batch_size': batch_size, 'device_count': device_count, 'store_on_device': store_on_device, 'get': get, } for batch_size in BATCH_SIZES for device_count in DEVICE_COUNTS for store_on_device in STORE_ON_DEVICE for get in ALL_GET)) def test_sample_once_batch(self, batch_size, device_count, store_on_device, get): test_utils.stub_out_pmap(batch, device_count) x1, x2, init_fn, apply_fn, _, key = _get_inputs_and_model() kernel_fn = empirical.empirical_kernel_fn(apply_fn) sample_once_fn = monte_carlo._sample_once_kernel_fn(kernel_fn, init_fn) sample_once_batch_fn = monte_carlo._sample_once_kernel_fn( kernel_fn, init_fn, batch_size, device_count, store_on_device) one_sample = sample_once_fn(x1, x2, key, get) one_sample_batch = sample_once_batch_fn(x1, x2, key, get) self.assertAllClose(one_sample, one_sample_batch, True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '[batch_size={}, ' 'device_count={} ' 'store_on_device={} ' 'get={} ' ']'.format(batch_size, device_count, store_on_device, get), 'batch_size': batch_size, 'device_count': device_count, 'store_on_device': store_on_device, 'get': get, } for batch_size in BATCH_SIZES for device_count in DEVICE_COUNTS for store_on_device in STORE_ON_DEVICE for get in ALL_GET)) def test_batch_sample_once(self, batch_size, device_count, store_on_device, get): test_utils.stub_out_pmap(batch, device_count) x1, x2, init_fn, apply_fn, _, key = _get_inputs_and_model() kernel_fn = empirical.empirical_kernel_fn(apply_fn) sample_once_fn = monte_carlo._sample_once_kernel_fn( kernel_fn, init_fn, device_count=0) batch_sample_once_fn = batch.batch(sample_once_fn, batch_size, device_count, store_on_device) one_sample = sample_once_fn(x1, x2, key, get) one_batch_sample = batch_sample_once_fn(x1, x2, key, get) self.assertAllClose(one_sample, one_batch_sample, True) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '[batch_size={}, ' 'device_count={} ' 'store_on_device={} ' ']'.format(batch_size, device_count, store_on_device ), 'batch_size': batch_size, 'device_count': device_count, 'store_on_device': store_on_device, } for batch_size in BATCH_SIZES for device_count in DEVICE_COUNTS for store_on_device in STORE_ON_DEVICE)) def test_sample_vs_analytic_nngp(self, batch_size, device_count, store_on_device): test_utils.stub_out_pmap(batch, device_count) x1, x2, init_fn, apply_fn, stax_kernel_fn, key = _get_inputs_and_model( 1024, 256, xla_bridge.get_backend().platform == 'tpu') sample = monte_carlo.monte_carlo_kernel_fn(init_fn, apply_fn, key, 200, batch_size, device_count, store_on_device) ker_empirical = sample(x1, x2, 'nngp') ker_analytic = stax_kernel_fn(x1, x2, 'nngp') test_utils.assert_close_matrices(self, ker_analytic, ker_empirical, 2e-2) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '[batch_size={}, ' 'device_count={} ' 'store_on_device={} ' ']'.format(batch_size, device_count, store_on_device ), 'batch_size': batch_size, 'device_count': device_count, 'store_on_device': store_on_device, } for batch_size in BATCH_SIZES for device_count in DEVICE_COUNTS for store_on_device in STORE_ON_DEVICE)) def test_monte_carlo_vs_analytic_ntk(self, batch_size, device_count, store_on_device): test_utils.stub_out_pmap(batch, device_count) x1, x2, init_fn, apply_fn, stax_kernel_fn, key = _get_inputs_and_model( 256, 2, xla_bridge.get_backend().platform == 'tpu') sample = monte_carlo.monte_carlo_kernel_fn(init_fn, apply_fn, key, 100, batch_size, device_count, store_on_device) ker_empirical = sample(x1, x2, 'ntk') ker_empirical = ( np.sum(ker_empirical, axis=(-1, -2)) / ker_empirical.shape[-1]) ker_analytic = stax_kernel_fn(x1, x2, 'ntk') test_utils.assert_close_matrices(self, ker_analytic, ker_empirical, 2e-2) @jtu.parameterized.named_parameters( jtu.cases_from_list({ 'testcase_name': '[batch_size={}, ' 'device_count={} ' 'store_on_device={} ' 'get={}' ']'.format(batch_size, device_count, store_on_device, get), 'batch_size': batch_size, 'device_count': device_count, 'store_on_device': store_on_device, 'get': get } for batch_size in BATCH_SIZES for device_count in DEVICE_COUNTS for store_on_device in STORE_ON_DEVICE for get in ALL_GET)) def test_monte_carlo_generator(self, batch_size, device_count, store_on_device, get): test_utils.stub_out_pmap(batch, device_count) x1, x2, init_fn, apply_fn, stax_kernel_fn, key = _get_inputs_and_model(8, 1) x3, x4, _, _, _, _ = _get_inputs_and_model(8, 1) log_n_max = 4 n_samples = [2**k for k in range(log_n_max)] sample_generator = monte_carlo.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, batch_size, device_count, store_on_device) if get is None: samples_12 = sample_generator(x1, x2) samples_34 = sample_generator(x3, x4) count = 0 for n, s_12, s_34 in zip(n_samples, samples_12, samples_34): sample_fn = monte_carlo.monte_carlo_kernel_fn(init_fn, apply_fn, key, n, batch_size, device_count, store_on_device) sample_12 = sample_fn(x1, x2) sample_34 = sample_fn(x3, x4) self.assertAllClose(s_12, sample_12, True) self.assertAllClose(s_12, s_34, True) self.assertAllClose(s_12, sample_34, True) count += 1 self.assertEqual(log_n_max, count) ker_analytic_12 = stax_kernel_fn(x1, x2, ('nngp', 'ntk')) ker_analytic_34 = stax_kernel_fn(x3, x4, ('nngp', 'ntk')) else: samples_12 = sample_generator(x1, x2, get) samples_34 = sample_generator(x3, x4, get) count = 0 for n, s_12, s_34 in zip(n_samples, samples_12, samples_34): sample_fn = monte_carlo.monte_carlo_kernel_fn( init_fn, apply_fn, key, n, batch_size, device_count, store_on_device) sample_12 = sample_fn(x1, x2, get) sample_34 = sample_fn(x3, x4, get) self.assertAllClose(s_12, sample_12, True) self.assertAllClose(s_12, s_34, True) self.assertAllClose(s_12, sample_34, True) count += 1 self.assertEqual(log_n_max, count) ker_analytic_12 = stax_kernel_fn(x1, x2, get) ker_analytic_34 = stax_kernel_fn(x3, x4, get) if get == 'ntk': s_12 = np.squeeze(s_12, (-1, -2)) elif get is None or 'ntk' in get: s_12 = s_12._replace(ntk=np.squeeze(s_12.ntk, (-1, -2))) self.assertAllClose(ker_analytic_12, s_12, True, 2., 2.) self.assertAllClose(ker_analytic_12, ker_analytic_34, True) if __name__ == '__main__': jtu.absltest.main()
py
1a4e38cddfe6a8c1fe09d9baae76dd1a6ee650dd
# Copyright (c) 2014 The Bitcoin Core developers # Copyright (c) 2014-2015 The Dash developers # Copyright (c) 2015-2017 The PIVX developers # Copyright (c) 2017 The Peps developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "peps.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. pepsd and peps-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run pepsd: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "pepsd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "peps-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:[email protected]:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart, starting # at 1 Jan 2014 block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in peps.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): """ Start a pepsd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "pepsd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "peps-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): """ Start multiple pepsds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
py
1a4e393a5e54ee06f846bd2a9a4dea653a876e63
# Copyright 2018 Databricks, Inc. import re VERSION = "1.13.1.dev0" def is_release_version(): return bool(re.match(r"^\d+\.\d+\.\d+$", VERSION))
py
1a4e39e1b321cb96558f69766ad4fffe4cc9504c
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:[email protected]) import enum import logging import typing from decimal import Decimal from ..account import Account, AccountSlot from ..accountinstrumentvalues import AccountInstrumentValues, PricedAccountInstrumentValues from ..cache import Cache, MarketCache from ..context import Context from ..group import GroupSlotSpotMarket, GroupSlotPerpMarket, GroupSlot, Group from ..instrumentvalue import InstrumentValue from ..lotsizeconverter import NullLotSizeConverter from ..openorders import OpenOrders from ..perpaccount import PerpAccount from ..token import Instrument # # 🥭 HealthType enum # # Is the health calculation Initial or Maintenance? # class HealthType(enum.Enum): # We use strings here so that argparse can work with these as parameters. INITIAL = "INITIAL" MAINTENANCE = "MAINTENANCE" def __str__(self) -> str: return self.value def __repr__(self) -> str: return f"{self}" class HealthCalculator: def __init__(self, context: Context, health_type: HealthType) -> None: self.logger: logging.Logger = logging.getLogger(self.__class__.__name__) self.context: Context = context self.health_type: HealthType = health_type def _calculate_pessimistic_spot_value(self, values: PricedAccountInstrumentValues) -> typing.Tuple[InstrumentValue, InstrumentValue]: # base total if all bids were executed if_all_bids_executed: InstrumentValue = values.quote_token_locked + values.base_token_total # base total if all asks were executed if_all_asks_executed: InstrumentValue = values.base_token_free base: InstrumentValue quote: InstrumentValue if if_all_bids_executed > if_all_asks_executed: base = values.net_value + if_all_bids_executed quote = values.quote_token_free return base, quote else: base = values.net_value + if_all_asks_executed quote = values.base_token_locked + values.quote_token_total return base, quote def _calculate_pessimistic_perp_value(self, values: PricedAccountInstrumentValues) -> typing.Tuple[InstrumentValue, InstrumentValue]: return values.perp_base_position, values.perp_quote_position def _calculate_perp_value(self, basket_token: AccountSlot, token_price: InstrumentValue, market_index: int, cache: Cache, unadjustment_factor: Decimal) -> typing.Tuple[Decimal, Decimal]: if basket_token.perp_account is None or basket_token.perp_account.empty: return Decimal(0), Decimal(0) perp_market_cache = cache.perp_market_cache[market_index] if perp_market_cache is None: raise Exception(f"Cache contains no perp market cache for market index {market_index}.") perp_account: PerpAccount = basket_token.perp_account token: Instrument = basket_token.base_instrument base_lot_size: Decimal = perp_account.lot_size_converter.base_lot_size quote_lot_size: Decimal = perp_account.lot_size_converter.quote_lot_size takerQuote: Decimal = perp_account.taker_quote * quote_lot_size base_position: Decimal = (perp_account.base_position + perp_account.taker_base) * base_lot_size bids_quantity: Decimal = perp_account.bids_quantity * base_lot_size asks_quantity: Decimal = perp_account.asks_quantity * base_lot_size if_all_bids_executed = token.shift_to_decimals(base_position + bids_quantity) * unadjustment_factor if_all_asks_executed = token.shift_to_decimals(base_position - asks_quantity) * unadjustment_factor if abs(if_all_bids_executed) > abs(if_all_asks_executed): quote_position = perp_account.quote_position - perp_account.unsettled_funding(perp_market_cache) full_quote_position = quote_position + takerQuote - (bids_quantity * token_price.value) return if_all_bids_executed, full_quote_position else: quote_position = perp_account.quote_position - perp_account.unsettled_funding(perp_market_cache) full_quote_position = quote_position + takerQuote + (asks_quantity * token_price.value) return if_all_asks_executed, full_quote_position def calculate(self, account: Account, open_orders_by_address: typing.Dict[str, OpenOrders], group: Group, cache: Cache) -> Decimal: priced_reports: typing.List[PricedAccountInstrumentValues] = [] for asset in account.base_slots: # if (asset.deposit.value != 0) or (asset.borrow.value != 0) or (asset.net_value.value != 0): report: AccountInstrumentValues = AccountInstrumentValues.from_account_basket_base_token( asset, open_orders_by_address, group) # print("report", report) # price: InstrumentValue = group.token_price_from_cache(cache, report.base_token) market_cache: MarketCache = group.market_cache_from_cache(cache, report.base_token) # print("Market cache", market_cache) priced_report: PricedAccountInstrumentValues = report.priced(market_cache) # print("priced_report", priced_report) priced_reports += [priced_report] quote_token_free_in_open_orders: InstrumentValue = InstrumentValue(group.shared_quote_token, Decimal(0)) quote_token_total_in_open_orders: InstrumentValue = InstrumentValue(group.shared_quote_token, Decimal(0)) for priced_report in priced_reports: quote_token_free_in_open_orders += priced_report.quote_token_free quote_token_total_in_open_orders += priced_report.quote_token_total # print("quote_token_free_in_open_orders", quote_token_free_in_open_orders) # print("quote_token_total_in_open_orders", quote_token_total_in_open_orders) quote_report: AccountInstrumentValues = AccountInstrumentValues(account.shared_quote_token, account.shared_quote_token, account.shared_quote.raw_deposit, account.shared_quote.deposit, account.shared_quote.raw_borrow, account.shared_quote.borrow, InstrumentValue( group.shared_quote_token, Decimal(0)), InstrumentValue( group.shared_quote_token, Decimal(0)), quote_token_free_in_open_orders, quote_token_total_in_open_orders, InstrumentValue( group.shared_quote_token, Decimal(0)), Decimal(0), Decimal(0), InstrumentValue( group.shared_quote_token, Decimal(0)), InstrumentValue( group.shared_quote_token, Decimal(0)), Decimal(0), Decimal(0), NullLotSizeConverter()) # print("quote_report", quote_report) health: Decimal = quote_report.net_value.value # print("Health (start)", health) for priced_report in priced_reports: slot: GroupSlot = group.slot_by_instrument(priced_report.base_token) spot_market: typing.Optional[GroupSlotSpotMarket] = slot.spot_market if spot_market is None: raise Exception(f"Could not find market for spot token {priced_report.base_token.symbol}.") base_value, quote_value = self._calculate_pessimistic_spot_value(priced_report) spot_weight = spot_market.init_asset_weight if base_value > 0 else spot_market.init_liab_weight spot_health = base_value.value * spot_weight # print("Weights", base_value.value, "*", spot_weight, spot_health) perp_base, perp_quote = priced_report.if_worst_execution() perp_market: typing.Optional[GroupSlotPerpMarket] = slot.perp_market perp_health: Decimal = Decimal(0) if perp_market is not None: perp_weight = perp_market.init_asset_weight if perp_base > 0 else perp_market.init_liab_weight perp_health = perp_base.value * perp_weight health += spot_health health += perp_health health += quote_value.value health += perp_quote.value health += priced_report.raw_perp_quote_position # print("Health (now)", health, spot_health, perp_health, quote_value.value, # perp_quote.value, priced_report.raw_perp_quote_position) # print("Health (returning)", health) return health def __str__(self) -> str: return f"« 𝙷𝚎𝚊𝚕𝚝𝚑𝙲𝚊𝚕𝚌𝚞𝚕𝚊𝚝𝚘𝚛 [{self.health_type}] »" def __repr__(self) -> str: return f"{self}"
py
1a4e3a01f972499b2801f6c09fadd6baaccd155b
n = 10 m = 4 stack = [] def main(): while True: if is_full_solution(): is_acceptable() if has_next_solution(): try_next_solution() else: backtrack() continue if can_expand_solution(): expand_solution() continue break def is_full_solution(): return len(stack) == m def is_acceptable(): if len(stack) == m and stack[len(stack) - 1] < stack[len(stack) - 2]: print(stack) def can_expand_solution(): if len(stack) < m: return True def expand_solution(): stack.append(m - len(stack)) def has_next_solution(): return stack[len(stack) - 1] + 1 < stack[len(stack) - 2] def try_next_solution(): stack[len(stack) - 1] += 1 def backtrack(): global stack cursor = len(stack) - 1 while stack[cursor] - stack[cursor - 1] == -1 and cursor - 1 >= 0: cursor -= 1 stack = stack[:cursor+1] # increase one stack[-1] += 1 if stack[0] > n: raise main()
py
1a4e3a799a262c54b287009a7020efa39f118553
from .base import * from .policy_iteration import * from .value_iteration import * from .q_learner import * __all__ = ['policy_iteration', 'value_iteration', 'q_learner']
py
1a4e3c53f9187ad8d1561407b65814231c7dd840
import os import warnings from collections import OrderedDict from itertools import product from typing import Any, Dict, List, Optional, Union import torch from torch.nn.functional import interpolate from torch.nn.modules import LSTM from torch.nn.modules.conv import Conv2d from torch.nn.modules.linear import Linear import delve from delve.logger import log from delve.metrics import * from delve.torch_utils import TorchCovarianceMatrix from delve.writers import STATMAP, WRITERS, CompositWriter, NPYWriter class CheckLayerSat(object): """Takes PyTorch module and records layer saturation, intrinsic dimensionality and other scalars. Args: savefile (str) : destination for summaries save_to (str, List[Union[str, delve.writers.AbstractWriter]]: Specify one or multiple save strategies. You can use preimplemented save strategies or inherit from the AbstractWriter in order to implement your own preferred saving strategy. pre-existing saving strategies are: csv : stores all stats in a csv-file with one row for each epoch. plot : produces plots from intrinsic dimensionality and / or layer saturation tensorboard : saves all stats to tensorboard print : print all metrics on console as soon as they are logged npy : creates a folder-structure with npy-files containing the logged values. This is the only save strategy that can save the full covariance matrix. This strategy is useful if you want to reproduce intrinsic dimensionality and saturation values with other thresholds without re-evaluating model checkpoints. modules (torch modules or list of modules) : layer-containing object. Per default, only Conv2D, Linear and LSTM-Cells are recorded writers_args (dict) : contains additional arguments passed over to the writers. This is only used, when a writer is initialized through a string-key. log_interval (int) : distances between two batches used for updating the covariance matrix. Default value is 1, which means that all data is used for computing intrinsic dimensionality and saturation. Increasing the log interval is usefull on very large datasets to reduce numeric instability. max_samples (int) : (optional) the covariance matrix in each layer will halt updating itself when max_samples are reached. Usecase is similar to log-interval, when datasets are very large. stats (list of str): list of stats to compute supported stats are: idim : intrinsic dimensionality lsat : layer saturation (intrinsic dimensionality divided by feature space dimensionality) cov : the covariance-matrix (only saveable using the 'npy' save strategy) det : the determinant of the covariance matrix (also known as generalized variance) trc : the trace of the covariance matrix, generally a more useful metric than det for determining the total variance of the data than the determinant. However note that this does not take the correlation between features into account. On the other hand, in most cases the determinent will be zero, since there will be very strongly correlated features, so trace might be the better option. dtrc : the trace of the diagonalmatrix, another way of measuring the dispersion of the data. lsat : layer saturation (intrinsic dimensionality divided by feature space dimensionality) embed : samples embedded in the eigenspace of dimension 2 layerwise_sat (bool): whether or not to include layerwise saturation when saving reset_covariance (bool): True by default, resets the covariance every time the stats are computed. Disabling this option will strongly bias covariance since the gradient will influence the model. We recommend computing saturation at the end of training and testing. include_conv : setting to False includes only linear layers conv_method (str) : how to subsample convolutional layers. Default is channelwise, which means that the each position of the filter tensor is considered a datapoint, effectivly yielding a data matrix of shape (height*width*batch_size, num_filters) supported methods are: channelwise : treats every depth vector of the tensor as a datapoint, effectivly reshaping the data tensor from shape (batch_size, height, width, channel) into (batch_size*height*width, channel). mean : applies global average pooling on each feature map max : applies global max pooling on each feature map median : applies global median pooling on each feature map flatten : flattenes the entire feature map to a vector, reshaping the data tensor into a data matrix of shape (batch_size, height*width*channel). This strategy for dealing with convolutions is extremly memory intensive and will likely cause memory and performance problems for any non toy-problem timeseries_method (str) : how to subsample timeseries methods. Default is last_timestep. supported methods are: timestepwise : stacks each sample timestep-by-timestep last_timestep : selects the last timestep's output nosave (bool) : If True, disables saving artifacts (images), default is False verbose (bool) : print saturation for every layer during training sat_threshold (float): threshold used to determine the number of eigendirections belonging to the latent space. In effect, this is the threshold determining the the intrinsic dimensionality. Default value is 0.99 (99% of the explained variance), which is a compromise between a good and interpretable approximation. From experience the threshold should be between 0.97 and 0.9995 for meaningfull results. verbose (bool) : Change verbosity level (default is 0) device (str) : Device to do the computations on. Default is cuda:0. Generally it is recommended to do the computations on the gpu in order to get maximum performance. Using the cpu is generally slower but it lets delve use regular RAM instead of the generally more limited VRAM of the GPU. Not having delve run on the same device as the network causes slight performance decrease due to copying memory between devices during each forward pass. Delve can handle models distributed on multiple GPUs, however delve itself will always run on a single device. initial_epoch (int) : The initial epoch to start with. Default is 0, which corresponds to a new run. If initial_epoch != 0 the writers will look for save states that they can resume. If set to zero, all existing states will be overwritten. If set to a lower epoch than actually recorded the behavior of the writers is undefined and may result in crashes, loss of data or corrupted data. interpolation_strategy (str) : Default is None (disabled). If set to a string key accepted by the model-argument of torch.nn.functional.interpolate, the feature map will be resized to match the interpolated size. This is useful if you work with large resolutions and want to save up on computation time. is done if the resolution is smaller. interpolation_downsampling (int): Default is 32. The target resolution if downsampling is enabled. """ def __init__(self, savefile: str, save_to: Union[str, delve.writers.AbstractWriter], modules: torch.nn.Module, writer_args: Optional[Dict[str, Any]] = None, log_interval=1, max_samples=None, stats: list = ['lsat'], layerwise_sat: bool = True, reset_covariance: bool = True, average_sat: bool = False, ignore_layer_names: List[str] = [], include_conv: bool = True, conv_method: str = 'channelwise', timeseries_method: str = 'last_timestep', sat_threshold: str = .99, nosave=False, verbose: bool = False, device='cuda:0', initial_epoch: int = 0, interpolation_strategy: Optional[str] = None, interpolation_downsampling: int = 32): self.nosave = nosave self.verbose = verbose # self.disable_compute: bool = False self.include_conv = include_conv self.conv_method = conv_method self.timeseries_method = timeseries_method self.threshold = sat_threshold self.layers = self.get_layers_recursive(modules) self.max_samples = max_samples self.log_interval = log_interval self.reset_covariance = reset_covariance self.initial_epoch = initial_epoch self.interpolation_strategy = interpolation_strategy self.interpolation_downsampling = interpolation_downsampling writer_args = writer_args or {} writer_args['savepath'] = savefile os.makedirs(savefile, exist_ok=True) self.writer = self._get_writer(save_to, writer_args) self.interval = log_interval self._warn_if_covariance_not_saveable(stats) self.logs, self.stats = self._check_stats(stats) self.layerwise_sat = layerwise_sat self.average_sat = average_sat self.ignore_layer_names = ignore_layer_names self.seen_samples = {'train': {}, 'eval': {}} self.global_steps = 0 self.global_hooks_registered = False self.is_notebook = None self.device = device self.record = True for name, layer in self.layers.items(): if isinstance(layer, Conv2d) or isinstance(layer, Linear) \ or isinstance(layer, LSTM): self._register_hooks(layer=layer, layer_name=name, interval=log_interval) if self.initial_epoch != 0: self.writer.resume_from_saved_state(self.initial_epoch) def _warn_if_covariance_not_saveable(self, stats: List[str]): warn = False if 'cov' in stats: if isinstance(self.writer, CompositWriter): for writer in self.writer.writers: if isinstance(writer, NPYWriter): return warn = True elif not isinstance(self.writer, NPYWriter): warn = True if warn: warnings.warn("'cov' was selected as stat, but 'npy' (NPYWriter)" "is not used as a save strategy, which is the only" "writer able to save the covariance matrix. The" "training and logging will run normally, but the" "covariance matrix will not be saved. Note that you" "can add multiple writers by passing a list.") def __getattr__(self, name): if name.startswith('add_') and name != 'add_saturations': if not self.nosave: return getattr(self.writer, name) else: def noop(*args, **kwargs): log.info( f'Logging disabled, not logging: {args}, {kwargs}') pass return noop else: try: # Redirect to writer object return self.writer.__getattribute__(name) except Exception: # Default behaviour return self.__getattribute__(name) def __repr__(self): return self.layers.keys().__repr__() def is_recording(self) -> bool: return self.record def stop(self): self.record = False def resume(self): self.record = True def close(self): """User endpoint to close writer and progress bars.""" return self.writer.close() def _format_saturation(self, saturation_status): raise NotImplementedError def _check_stats(self, stats: list): if not isinstance(stats, list): stats = list(stats) supported_stats = [ 'lsat', 'idim', 'cov', 'det', 'trc', 'dtrc', 'embed', ] compatible = [ stat in supported_stats if "_" not in stat else stat.split("_")[0] in stats for stat in stats ] incompatible = [i for i, x in enumerate(compatible) if not x] assert all(compatible), "Stat {} is not supported".format( stats[incompatible[0]]) name_mapper = STATMAP logs = { f'{mode}-{name_mapper[stat]}': OrderedDict() for mode, stat in product(['train', 'eval'], ['cov']) } return logs, stats def _add_conv_layer(self, layer: torch.nn.Module): layer.out_features = layer.out_channels layer.conv_method = self.conv_method def _add_lstm_layer(self, layer: torch.nn.Module): layer.out_features = layer.hidden_size layer.timeseries_method = self.timeseries_method def get_layer_from_submodule(self, submodule: torch.nn.Module, layers: dict, name_prefix: str = ''): if len(submodule._modules) > 0: for idx, (name, subsubmodule) in \ enumerate(submodule._modules.items()): new_prefix = name if name_prefix == '' else name_prefix + \ '-' + name self.get_layer_from_submodule(subsubmodule, layers, new_prefix) return layers else: layer_name = name_prefix layer_type = layer_name if not self._check_is_supported_layer(submodule): log.info(f"Skipping {layer_type}") return layers if isinstance(submodule, Conv2d) and self.include_conv: self._add_conv_layer(submodule) layers[layer_name] = submodule log.info('added layer {}'.format(layer_name)) return layers def _check_is_supported_layer(self, layer: torch.nn.Module) -> bool: return isinstance(layer, Conv2d) or isinstance( layer, Linear) or isinstance(layer, LSTM) def get_layers_recursive(self, modules: Union[list, torch.nn.Module]): layers = {} if not isinstance(modules, list) and not hasattr( modules, 'out_features'): # submodules = modules._modules # OrderedDict layers = self.get_layer_from_submodule(modules, layers, '') elif self._check_is_supported_layer(modules): for module in modules: layers = self.get_layer_from_submodule(module, layers, type(module)) else: for i, module in enumerate(modules): layers = self.get_layer_from_submodule( module, layers, '' if not self._check_is_supported_layer(module) else f'Module-{i}-{type(module).__name__}') return layers def _get_writer(self, save_to, writers_args) -> \ delve.writers.AbstractWriter: """Create a writer to log history to `writer_dir`.""" if issubclass(type(save_to), delve.writers.AbstractWriter): return save_to if isinstance(save_to, list): all_writers = [] for saver in save_to: all_writers.append( self._get_writer(save_to=saver, writers_args=writers_args)) return CompositWriter(all_writers) if save_to in WRITERS: writer = WRITERS[save_to](**writers_args) else: raise ValueError( 'Illegal argument for save_to "{}"'.format(save_to)) return writer def _register_hooks(self, layer: torch.nn.Module, layer_name: str, interval): layer.eval_layer_history = getattr(layer, 'eval_layer_history', list()) layer.train_layer_history = getattr(layer, 'train_layer_history', list()) layer.layer_svd = getattr(layer, 'layer_svd', None) layer.forward_iter = getattr(layer, 'forward_iter', 0) layer.interval = getattr(layer, 'interval', interval) layer.writer = getattr(layer, 'writer', self.writer) layer.name = getattr(layer, 'name', layer_name) self.register_forward_hooks(layer, self.stats) return self def _record_stat(self, activations_batch: torch.Tensor, lstm_ae: bool, layer: torch.nn.Module, training_state: str, stat: str): if activations_batch.dim() == 4: # conv layer (B x C x H x W) if self.interpolation_strategy is not None and ( activations_batch.shape[3] > self.interpolation_downsampling or activations_batch.shape[2] > self.interpolation_downsampling): activations_batch = interpolate( activations_batch, size=self.interpolation_downsampling, mode=self.interpolation_strategy) if self.conv_method == 'median': shape = activations_batch.shape reshaped_batch = activations_batch.reshape( shape[0], shape[1], shape[2] * shape[3]) activations_batch, _ = torch.median(reshaped_batch, dim=2) # channel median elif self.conv_method == 'max': shape = activations_batch.shape reshaped_batch = activations_batch.reshape( shape[0], shape[1], shape[2] * shape[3]) activations_batch, _ = torch.max(reshaped_batch, dim=2) # channel median elif self.conv_method == 'mean': activations_batch = torch.mean(activations_batch, dim=(2, 3)) elif self.conv_method == 'flatten': activations_batch = activations_batch.view( activations_batch.size(0), -1) elif self.conv_method == 'channelwise': reshaped_batch: torch.Tensor = activations_batch.permute( [1, 0, 2, 3]) shape = reshaped_batch.shape reshaped_batch: torch.Tensor = reshaped_batch.flatten(1) reshaped_batch: torch.Tensor = reshaped_batch.permute([1, 0]) activations_batch = reshaped_batch elif activations_batch.dim() == 3: # LSTM layer (B x T x U) if self.timeseries_method == 'timestepwise': activations_batch = activations_batch.flatten(1) elif self.timeseries_method == 'last_timestep': activations_batch = activations_batch[:, -1, :] if layer.name not in self.logs[f'{training_state}-{stat}'] or ( not isinstance(self.logs[f'{training_state}-{stat}'], TorchCovarianceMatrix) and self.record): save_data = 'embed' in self.stats self.logs[f'{training_state}-{stat}'][ layer.name] = TorchCovarianceMatrix(device=self.device, save_data=save_data) self.logs[f'{training_state}-{stat}'][layer.name].update( activations_batch, lstm_ae) def register_forward_hooks(self, layer: torch.nn.Module, stats: list): """Register hook to show `stats` in `layer`.""" def record_layer_saturation(layer: torch.nn.Module, input, output): """Hook to register in `layer` module.""" if not self.record: if layer.name not in self.logs[ f'{"train" if layer.training else "eval"}-{"covariance-matrix"}']: # save_data = 'embed' in self.stats self.logs[ f'{"train" if layer.training else "eval"}-{"covariance-matrix"}'][ layer.name] = np.nan return # Increment step counter layer.forward_iter += 1 # VAE output is a tuple; Hence output.data throw exception lstm_ae = False if layer.name in [ 'encoder_lstm', 'encoder_output', 'decoder_lstm', 'decoder_output' ]: output = output[1][0] lstm_ae = True elif isinstance(layer, torch.nn.LSTM): output = output[0] training_state = 'train' if layer.training else 'eval' if layer.name not in self.seen_samples[training_state]: self.seen_samples[training_state][layer.name] = 0 if (self.max_samples is None or self.seen_samples[training_state][layer.name] < self.max_samples ) and layer.forward_iter % self.log_interval == 0: num_samples = min( output.data.shape[0], self.max_samples - self.seen_samples[training_state][layer.name] ) if self.max_samples is not None else output.data.shape[0] activations_batch = output.data[:num_samples] self.seen_samples[training_state][layer.name] += num_samples self._record_stat(activations_batch, lstm_ae, layer, training_state, 'covariance-matrix') layer.register_forward_hook(record_layer_saturation) def add_saturations(self, save=True): """ Computes saturation and saves all stats :return: """ for key in self.logs: train_sats = [] val_sats = [] for i, layer_name in enumerate(self.logs[key]): if layer_name in self.ignore_layer_names: continue if self.record and self.logs[key][layer_name]._cov_mtx is None: raise ValueError("Attempting to compute intrinsic" "dimensionality when covariance" "is not initialized") if self.record: cov_mat = self.logs[key][layer_name].fix() log_values = {} sample_log_values = {} for stat in self.stats: if stat == 'lsat': log_values[key.replace(STATMAP['cov'], STATMAP['lsat']) + '_' + layer_name] = compute_saturation( cov_mat, thresh=self.threshold ) if self.record else np.nan elif stat == 'idim': log_values[ key.replace(STATMAP['cov'], STATMAP['idim']) + '_' + layer_name] = compute_intrinsic_dimensionality( cov_mat, thresh=self.threshold ) if self.record else np.nan elif stat == 'cov': log_values[key + '_' + layer_name] = cov_mat.cpu().numpy() elif stat == 'det': log_values[key.replace(STATMAP['cov'], STATMAP['det']) + '_' + layer_name] = compute_cov_determinant( cov_mat) if self.record else np.nan elif stat == 'trc': log_values[key.replace(STATMAP['cov'], STATMAP['trc']) + '_' + layer_name] = compute_cov_trace(cov_mat) elif stat == 'dtrc': log_values[key.replace(STATMAP['cov'], STATMAP['dtrc']) + '_' + layer_name] = compute_diag_trace(cov_mat) elif stat == 'embed': transformation_matrix = torch.mm( cov_mat[0:2].transpose(0, 1), cov_mat[0:2]) saved_samples = self.logs[key][ layer_name].saved_samples sample_log_values['embed'] = list() for (index, sample) in enumerate(saved_samples): coord = torch.matmul(transformation_matrix, sample) sample_log_values['embed'].append( (coord[0], coord[1])) self.seen_samples[key.split('-')[0]][layer_name] = 0 if self.reset_covariance and self.record: self.logs[key][layer_name]._cov_mtx = None if self.layerwise_sat: self.writer.add_scalars( prefix='', value_dict=log_values, sample_value_dict=sample_log_values) if self.average_sat: self.writer.add_scalar('average-train-sat', np.mean(train_sats)) self.writer.add_scalar('average-eval-sat', np.mean(val_sats)) if save: self.save() def save(self): self.writer.save()
py
1a4e3c8aaf1724471a045f698119469708c30cfb
# MySQL Connector/Python - MySQL driver written in Python. # Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved. # MySQL Connector/Python is licensed under the terms of the GPLv2 # <http://www.gnu.org/licenses/old-licenses/gpl-2.0.html>, like most # MySQL Connectors. There are special exceptions to the terms and # conditions of the GPLv2 as it is applied to this software, see the # FOSS License Exception # <http://www.mysql.com/about/legal/licensing/foss-exception.html>. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA """Module gathering all abstract base classes""" from abc import ABCMeta, abstractmethod, abstractproperty import re import time import weakref from .catch23 import make_abc, BYTE_TYPES from .conversion import MySQLConverterBase from .constants import ClientFlag, CharacterSet, DEFAULT_CONFIGURATION from .optionfiles import MySQLOptionsParser from . import errors NAMED_TUPLE_CACHE = weakref.WeakValueDictionary() @make_abc(ABCMeta) class MySQLConnectionAbstract(object): """Abstract class for classes connecting to a MySQL server""" def __init__(self, **kwargs): """Initialize""" self._client_flags = ClientFlag.get_default() self._charset_id = 33 self._sql_mode = None self._time_zone = None self._autocommit = False self._server_version = None self._handshake = None self._user = '' self._password = '' self._database = '' self._host = '127.0.0.1' self._port = 3306 self._unix_socket = None self._client_host = '' self._client_port = 0 self._ssl = {} self._ssl_disabled = DEFAULT_CONFIGURATION["ssl_disabled"] self._force_ipv6 = False self._use_unicode = True self._get_warnings = False self._raise_on_warnings = False self._connection_timeout = DEFAULT_CONFIGURATION["connect_timeout"] self._buffered = False self._unread_result = False self._have_next_result = False self._raw = False self._in_transaction = False self._prepared_statements = None self._ssl_active = False self._auth_plugin = None self._pool_config_version = None self.converter = None self._converter_class = None self._compress = False self._consume_results = False def _get_self(self): """Return self for weakref.proxy This method is used when the original object is needed when using weakref.proxy. """ return self def _read_option_files(self, config): """ Read option files for connection parameters. Checks if connection arguments contain option file arguments, and then reads option files accordingly. """ if 'option_files' in config: try: if isinstance(config['option_groups'], str): config['option_groups'] = [config['option_groups']] groups = config['option_groups'] del config['option_groups'] except KeyError: groups = ['client', 'connector_python'] if isinstance(config['option_files'], str): config['option_files'] = [config['option_files']] option_parser = MySQLOptionsParser(list(config['option_files']), keep_dashes=False) del config['option_files'] config_from_file = option_parser.get_groups_as_dict_with_priority( *groups) config_options = {} for group in groups: try: for option, value in config_from_file[group].items(): try: if option == 'socket': option = 'unix_socket' # pylint: disable=W0104 DEFAULT_CONFIGURATION[option] # pylint: enable=W0104 if (option not in config_options or config_options[option][1] <= value[1]): config_options[option] = value except KeyError: if group is 'connector_python': raise AttributeError("Unsupported argument " "'{0}'".format(option)) except KeyError: continue for option, value in config_options.items(): if option not in config: try: config[option] = eval(value[0]) # pylint: disable=W0123 except (NameError, SyntaxError): config[option] = value[0] return config @property def user(self): """User used while connecting to MySQL""" return self._user @property def server_host(self): """MySQL server IP address or name""" return self._host @property def server_port(self): "MySQL server TCP/IP port" return self._port @property def unix_socket(self): "MySQL Unix socket file location" return self._unix_socket @abstractproperty def database(self): """Get the current database""" pass @database.setter def database(self, value): """Set the current database""" self.cmd_query("USE %s" % value) @property def can_consume_results(self): """Returns whether to consume results""" return self._consume_results def config(self, **kwargs): """Configure the MySQL Connection This method allows you to configure the MySQLConnection instance. Raises on errors. """ config = kwargs.copy() if 'dsn' in config: raise errors.NotSupportedError("Data source name is not supported") # Read option files self._read_option_files(config) # Configure how we handle MySQL warnings try: self.get_warnings = config['get_warnings'] del config['get_warnings'] except KeyError: pass # Leave what was set or default try: self.raise_on_warnings = config['raise_on_warnings'] del config['raise_on_warnings'] except KeyError: pass # Leave what was set or default # Configure client flags try: default = ClientFlag.get_default() self.set_client_flags(config['client_flags'] or default) del config['client_flags'] except KeyError: pass # Missing client_flags-argument is OK try: if config['compress']: self._compress = True self.set_client_flags([ClientFlag.COMPRESS]) except KeyError: pass # Missing compress argument is OK try: if not config['allow_local_infile']: self.set_client_flags([-ClientFlag.LOCAL_FILES]) except KeyError: pass # Missing allow_local_infile argument is OK try: if not config['consume_results']: self._consume_results = False else: self._consume_results = True except KeyError: self._consume_results = False # Configure auth_plugin try: self._auth_plugin = config['auth_plugin'] del config['auth_plugin'] except KeyError: self._auth_plugin = '' # Configure character set and collation if 'charset' in config or 'collation' in config: try: charset = config['charset'] del config['charset'] except KeyError: charset = None try: collation = config['collation'] del config['collation'] except KeyError: collation = None self._charset_id = CharacterSet.get_charset_info(charset, collation)[0] # Set converter class try: self.set_converter_class(config['converter_class']) except KeyError: pass # Using default converter class except TypeError: raise AttributeError("Converter class should be a subclass " "of conversion.MySQLConverterBase.") # Compatible configuration with other drivers compat_map = [ # (<other driver argument>,<translates to>) ('db', 'database'), ('passwd', 'password'), ('connect_timeout', 'connection_timeout'), ] for compat, translate in compat_map: try: if translate not in config: config[translate] = config[compat] del config[compat] except KeyError: pass # Missing compat argument is OK # Configure login information if 'user' in config or 'password' in config: try: user = config['user'] del config['user'] except KeyError: user = self._user try: password = config['password'] del config['password'] except KeyError: password = self._password self.set_login(user, password) # Check network locations try: self._port = int(config['port']) del config['port'] except KeyError: pass # Missing port argument is OK except ValueError: raise errors.InterfaceError( "TCP/IP port number should be an integer") if "ssl_disabled" in config: self._ssl_disabled = config.pop("ssl_disabled") # Other configuration set_ssl_flag = False for key, value in config.items(): try: DEFAULT_CONFIGURATION[key] except KeyError: raise AttributeError("Unsupported argument '{0}'".format(key)) # SSL Configuration if key.startswith('ssl_'): set_ssl_flag = True self._ssl.update({key.replace('ssl_', ''): value}) else: attribute = '_' + key try: setattr(self, attribute, value.strip()) except AttributeError: setattr(self, attribute, value) if set_ssl_flag: if 'verify_cert' not in self._ssl: self._ssl['verify_cert'] = \ DEFAULT_CONFIGURATION['ssl_verify_cert'] # Make sure both ssl_key/ssl_cert are set, or neither (XOR) if 'ca' not in self._ssl or self._ssl['ca'] is None: raise AttributeError( "Missing ssl_ca argument.") if bool('key' in self._ssl) != bool('cert' in self._ssl): raise AttributeError( "ssl_key and ssl_cert need to be both " "specified, or neither." ) # Make sure key/cert are set to None elif not set(('key', 'cert')) <= set(self._ssl): self._ssl['key'] = None self._ssl['cert'] = None elif (self._ssl['key'] is None) != (self._ssl['cert'] is None): raise AttributeError( "ssl_key and ssl_cert need to be both " "set, or neither." ) def _check_server_version(self, server_version): """Check the MySQL version This method will check the MySQL version and raise an InterfaceError when it is not supported or invalid. It will return the version as a tuple with major, minor and patch. Raises InterfaceError if invalid server version. Returns tuple """ if isinstance(server_version, BYTE_TYPES): server_version = server_version.decode() # pylint: disable=W1401 regex_ver = re.compile(r"^(\d{1,2})\.(\d{1,2})\.(\d{1,3})(.*)") # pylint: enable=W1401 match = regex_ver.match(server_version) if not match: raise errors.InterfaceError("Failed parsing MySQL version") version = tuple([int(v) for v in match.groups()[0:3]]) if 'fabric' in match.group(4).lower(): if version < (1, 5): raise errors.InterfaceError( "MySQL Fabric '{0}' is not supported".format( server_version)) elif version < (4, 1): raise errors.InterfaceError( "MySQL Version '{0}' is not supported.".format(server_version)) return version def get_server_version(self): """Get the MySQL version This method returns the MySQL server version as a tuple. If not previously connected, it will return None. Returns a tuple or None. """ return self._server_version def get_server_info(self): """Get the original MySQL version information This method returns the original MySQL server as text. If not previously connected, it will return None. Returns a string or None. """ try: return self._handshake['server_version_original'] except (TypeError, KeyError): return None @abstractproperty def in_transaction(self): """MySQL session has started a transaction""" pass def set_client_flags(self, flags): """Set the client flags The flags-argument can be either an int or a list (or tuple) of ClientFlag-values. If it is an integer, it will set client_flags to flags as is. If flags is a list (or tuple), each flag will be set or unset when it's negative. set_client_flags([ClientFlag.FOUND_ROWS,-ClientFlag.LONG_FLAG]) Raises ProgrammingError when the flags argument is not a set or an integer bigger than 0. Returns self.client_flags """ if isinstance(flags, int) and flags > 0: self._client_flags = flags elif isinstance(flags, (tuple, list)): for flag in flags: if flag < 0: self._client_flags &= ~abs(flag) else: self._client_flags |= flag else: raise errors.ProgrammingError( "set_client_flags expect integer (>0) or set") return self._client_flags def isset_client_flag(self, flag): """Check if a client flag is set""" if (self._client_flags & flag) > 0: return True return False @property def time_zone(self): """Get the current time zone""" return self.info_query("SELECT @@session.time_zone")[0] @time_zone.setter def time_zone(self, value): """Set the time zone""" self.cmd_query("SET @@session.time_zone = '{0}'".format(value)) self._time_zone = value @property def sql_mode(self): """Get the SQL mode""" return self.info_query("SELECT @@session.sql_mode")[0] @sql_mode.setter def sql_mode(self, value): """Set the SQL mode This method sets the SQL Mode for the current connection. The value argument can be either a string with comma separate mode names, or a sequence of mode names. It is good practice to use the constants class SQLMode: from mysql.connector.constants import SQLMode cnx.sql_mode = [SQLMode.NO_ZERO_DATE, SQLMode.REAL_AS_FLOAT] """ if isinstance(value, (list, tuple)): value = ','.join(value) self.cmd_query("SET @@session.sql_mode = '{0}'".format(value)) self._sql_mode = value @abstractmethod def info_query(self, query): """Send a query which only returns 1 row""" pass def set_login(self, username=None, password=None): """Set login information for MySQL Set the username and/or password for the user connecting to the MySQL Server. """ if username is not None: self._user = username.strip() else: self._user = '' if password is not None: self._password = password else: self._password = '' def set_unicode(self, value=True): """Toggle unicode mode Set whether we return string fields as unicode or not. Default is True. """ self._use_unicode = value if self.converter: self.converter.set_unicode(value) @property def autocommit(self): """Get whether autocommit is on or off""" value = self.info_query("SELECT @@session.autocommit")[0] return True if value == 1 else False @autocommit.setter def autocommit(self, value): """Toggle autocommit""" switch = 'ON' if value else 'OFF' self.cmd_query("SET @@session.autocommit = {0}".format(switch)) self._autocommit = value @property def get_warnings(self): """Get whether this connection retrieves warnings automatically This method returns whether this connection retrieves warnings automatically. Returns True, or False when warnings are not retrieved. """ return self._get_warnings @get_warnings.setter def get_warnings(self, value): """Set whether warnings should be automatically retrieved The toggle-argument must be a boolean. When True, cursors for this connection will retrieve information about warnings (if any). Raises ValueError on error. """ if not isinstance(value, bool): raise ValueError("Expected a boolean type") self._get_warnings = value @property def raise_on_warnings(self): """Get whether this connection raises an error on warnings This method returns whether this connection will raise errors when MySQL reports warnings. Returns True or False. """ return self._raise_on_warnings @raise_on_warnings.setter def raise_on_warnings(self, value): """Set whether warnings raise an error The toggle-argument must be a boolean. When True, cursors for this connection will raise an error when MySQL reports warnings. Raising on warnings implies retrieving warnings automatically. In other words: warnings will be set to True. If set to False, warnings will be also set to False. Raises ValueError on error. """ if not isinstance(value, bool): raise ValueError("Expected a boolean type") self._raise_on_warnings = value self._get_warnings = value @property def unread_result(self): """Get whether there is an unread result This method is used by cursors to check whether another cursor still needs to retrieve its result set. Returns True, or False when there is no unread result. """ return self._unread_result @unread_result.setter def unread_result(self, value): """Set whether there is an unread result This method is used by cursors to let other cursors know there is still a result set that needs to be retrieved. Raises ValueError on errors. """ if not isinstance(value, bool): raise ValueError("Expected a boolean type") self._unread_result = value @property def charset(self): """Returns the character set for current connection This property returns the character set name of the current connection. The server is queried when the connection is active. If not connected, the configured character set name is returned. Returns a string. """ return CharacterSet.get_info(self._charset_id)[0] @property def python_charset(self): """Returns the Python character set for current connection This property returns the character set name of the current connection. Note that, unlike property charset, this checks if the previously set character set is supported by Python and if not, it returns the equivalent character set that Python supports. Returns a string. """ encoding = CharacterSet.get_info(self._charset_id)[0] if encoding in ('utf8mb4', 'binary'): return 'utf8' else: return encoding def set_charset_collation(self, charset=None, collation=None): """Sets the character set and collation for the current connection This method sets the character set and collation to be used for the current connection. The charset argument can be either the name of a character set as a string, or the numerical equivalent as defined in constants.CharacterSet. When the collation is not given, the default will be looked up and used. For example, the following will set the collation for the latin1 character set to latin1_general_ci: set_charset('latin1','latin1_general_ci') """ if charset: if isinstance(charset, int): (self._charset_id, charset_name, collation_name) = \ CharacterSet.get_charset_info(charset) elif isinstance(charset, str): (self._charset_id, charset_name, collation_name) = \ CharacterSet.get_charset_info(charset, collation) else: raise ValueError( "charset should be either integer, string or None") elif collation: (self._charset_id, charset_name, collation_name) = \ CharacterSet.get_charset_info(collation=collation) self._execute_query("SET NAMES '{0}' COLLATE '{1}'".format( charset_name, collation_name)) try: # Required for C Extension self.set_character_set_name(charset_name) # pylint: disable=E1101 except AttributeError: # Not required for pure Python connection pass if self.converter: self.converter.set_charset(charset_name) @property def collation(self): """Returns the collation for current connection This property returns the collation name of the current connection. The server is queried when the connection is active. If not connected, the configured collation name is returned. Returns a string. """ return CharacterSet.get_charset_info(self._charset_id)[2] @abstractmethod def _do_handshake(self): """Gather information of the MySQL server before authentication""" pass @abstractmethod def _open_connection(self): """Open the connection to the MySQL server""" pass def _post_connection(self): """Executes commands after connection has been established This method executes commands after the connection has been established. Some setting like autocommit, character set, and SQL mode are set using this method. """ self.set_charset_collation(self._charset_id) self.autocommit = self._autocommit if self._time_zone: self.time_zone = self._time_zone if self._sql_mode: self.sql_mode = self._sql_mode @abstractmethod def disconnect(self): """Disconnect from the MySQL server""" pass close = disconnect def connect(self, **kwargs): """Connect to the MySQL server This method sets up the connection to the MySQL server. If no arguments are given, it will use the already configured or default values. """ if len(kwargs) > 0: self.config(**kwargs) self.disconnect() self._open_connection() self._post_connection() def reconnect(self, attempts=1, delay=0): """Attempt to reconnect to the MySQL server The argument attempts should be the number of times a reconnect is tried. The delay argument is the number of seconds to wait between each retry. You may want to set the number of attempts higher and use delay when you expect the MySQL server to be down for maintenance or when you expect the network to be temporary unavailable. Raises InterfaceError on errors. """ counter = 0 while counter != attempts: counter = counter + 1 try: self.disconnect() self.connect() if self.is_connected(): break except Exception as err: # pylint: disable=W0703 if counter == attempts: msg = "Can not reconnect to MySQL after {0} "\ "attempt(s): {1}".format(attempts, str(err)) raise errors.InterfaceError(msg) if delay > 0: time.sleep(delay) @abstractmethod def is_connected(self): """Reports whether the connection to MySQL Server is available""" pass @abstractmethod def ping(self, reconnect=False, attempts=1, delay=0): """Check availability of the MySQL server""" pass @abstractmethod def commit(self): """Commit current transaction""" pass @abstractmethod def cursor(self, buffered=None, raw=None, prepared=None, cursor_class=None, dictionary=None, named_tuple=None): """Instantiates and returns a cursor""" pass @abstractmethod def _execute_query(self, query): """Execute a query""" pass @abstractmethod def rollback(self): """Rollback current transaction""" pass def start_transaction(self, consistent_snapshot=False, isolation_level=None, readonly=None): """Start a transaction This method explicitly starts a transaction sending the START TRANSACTION statement to the MySQL server. You can optionally set whether there should be a consistent snapshot, which isolation level you need or which access mode i.e. READ ONLY or READ WRITE. For example, to start a transaction with isolation level SERIALIZABLE, you would do the following: >>> cnx = mysql.connector.connect(..) >>> cnx.start_transaction(isolation_level='SERIALIZABLE') Raises ProgrammingError when a transaction is already in progress and when ValueError when isolation_level specifies an Unknown level. """ if self.in_transaction: raise errors.ProgrammingError("Transaction already in progress") if isolation_level: level = isolation_level.strip().replace('-', ' ').upper() levels = ['READ UNCOMMITTED', 'READ COMMITTED', 'REPEATABLE READ', 'SERIALIZABLE'] if level not in levels: raise ValueError( 'Unknown isolation level "{0}"'.format(isolation_level)) self._execute_query( "SET TRANSACTION ISOLATION LEVEL {0}".format(level)) if readonly is not None: if self._server_version < (5, 6, 5): raise ValueError( "MySQL server version {0} does not support " "this feature".format(self._server_version)) if readonly: access_mode = 'READ ONLY' else: access_mode = 'READ WRITE' self._execute_query( "SET TRANSACTION {0}".format(access_mode)) query = "START TRANSACTION" if consistent_snapshot: query += " WITH CONSISTENT SNAPSHOT" self.cmd_query(query) def reset_session(self, user_variables=None, session_variables=None): """Clears the current active session This method resets the session state, if the MySQL server is 5.7.3 or later active session will be reset without re-authenticating. For other server versions session will be reset by re-authenticating. It is possible to provide a sequence of variables and their values to be set after clearing the session. This is possible for both user defined variables and session variables. This method takes two arguments user_variables and session_variables which are dictionaries. Raises OperationalError if not connected, InternalError if there are unread results and InterfaceError on errors. """ if not self.is_connected(): raise errors.OperationalError("MySQL Connection not available.") try: self.cmd_reset_connection() except (errors.NotSupportedError, NotImplementedError): if self._compress: raise errors.NotSupportedError( "Reset session is not supported with compression for " "MySQL server version 5.7.2 or earlier.") else: self.cmd_change_user(self._user, self._password, self._database, self._charset_id) if user_variables or session_variables: cur = self.cursor() if user_variables: for key, value in user_variables.items(): cur.execute("SET @`{0}` = %s".format(key), (value,)) if session_variables: for key, value in session_variables.items(): cur.execute("SET SESSION `{0}` = %s".format(key), (value,)) cur.close() def set_converter_class(self, convclass): """ Set the converter class to be used. This should be a class overloading methods and members of conversion.MySQLConverter. """ if convclass and issubclass(convclass, MySQLConverterBase): charset_name = CharacterSet.get_info(self._charset_id)[0] self._converter_class = convclass self.converter = convclass(charset_name, self._use_unicode) else: raise TypeError("Converter class should be a subclass " "of conversion.MySQLConverterBase.") @abstractmethod def get_rows(self, count=None, binary=False, columns=None): """Get all rows returned by the MySQL server""" pass def cmd_init_db(self, database): """Change the current database""" raise NotImplementedError def cmd_query(self, query, raw=False, buffered=False, raw_as_string=False): """Send a query to the MySQL server""" raise NotImplementedError def cmd_query_iter(self, statements): """Send one or more statements to the MySQL server""" raise NotImplementedError def cmd_refresh(self, options): """Send the Refresh command to the MySQL server""" raise NotImplementedError def cmd_quit(self): """Close the current connection with the server""" raise NotImplementedError def cmd_shutdown(self, shutdown_type=None): """Shut down the MySQL Server""" raise NotImplementedError def cmd_statistics(self): """Send the statistics command to the MySQL Server""" raise NotImplementedError def cmd_process_info(self): """Get the process list of the MySQL Server This method is a placeholder to notify that the PROCESS_INFO command is not supported by raising the NotSupportedError. The command "SHOW PROCESSLIST" should be send using the cmd_query()-method or using the INFORMATION_SCHEMA database. Raises NotSupportedError exception """ raise errors.NotSupportedError( "Not implemented. Use SHOW PROCESSLIST or INFORMATION_SCHEMA") def cmd_process_kill(self, mysql_pid): """Kill a MySQL process""" raise NotImplementedError def cmd_debug(self): """Send the DEBUG command""" raise NotImplementedError def cmd_ping(self): """Send the PING command""" raise NotImplementedError def cmd_change_user(self, username='', password='', database='', charset=33): """Change the current logged in user""" raise NotImplementedError def cmd_stmt_prepare(self, statement): """Prepare a MySQL statement""" raise NotImplementedError def cmd_stmt_execute(self, statement_id, data=(), parameters=(), flags=0): """Execute a prepared MySQL statement""" raise NotImplementedError def cmd_stmt_close(self, statement_id): """Deallocate a prepared MySQL statement""" raise NotImplementedError def cmd_stmt_send_long_data(self, statement_id, param_id, data): """Send data for a column""" raise NotImplementedError def cmd_stmt_reset(self, statement_id): """Reset data for prepared statement sent as long data""" raise NotImplementedError def cmd_reset_connection(self): """Resets the session state without re-authenticating""" raise NotImplementedError @make_abc(ABCMeta) class MySQLCursorAbstract(object): """Abstract cursor class Abstract class defining cursor class with method and members required by the Python Database API Specification v2.0. """ def __init__(self): """Initialization""" self._description = None self._rowcount = -1 self._last_insert_id = None self._warnings = None self.arraysize = 1 @abstractmethod def callproc(self, procname, args=()): """Calls a stored procedure with the given arguments The arguments will be set during this session, meaning they will be called like _<procname>__arg<nr> where <nr> is an enumeration (+1) of the arguments. Coding Example: 1) Defining the Stored Routine in MySQL: CREATE PROCEDURE multiply(IN pFac1 INT, IN pFac2 INT, OUT pProd INT) BEGIN SET pProd := pFac1 * pFac2; END 2) Executing in Python: args = (5,5,0) # 0 is to hold pprod cursor.callproc('multiply', args) print(cursor.fetchone()) Does not return a value, but a result set will be available when the CALL-statement execute successfully. Raises exceptions when something is wrong. """ pass @abstractmethod def close(self): """Close the cursor.""" pass @abstractmethod def execute(self, operation, params=(), multi=False): """Executes the given operation Executes the given operation substituting any markers with the given parameters. For example, getting all rows where id is 5: cursor.execute("SELECT * FROM t1 WHERE id = %s", (5,)) The multi argument should be set to True when executing multiple statements in one operation. If not set and multiple results are found, an InterfaceError will be raised. If warnings where generated, and connection.get_warnings is True, then self._warnings will be a list containing these warnings. Returns an iterator when multi is True, otherwise None. """ pass @abstractmethod def executemany(self, operation, seqparams): """Execute the given operation multiple times The executemany() method will execute the operation iterating over the list of parameters in seq_params. Example: Inserting 3 new employees and their phone number data = [ ('Jane','555-001'), ('Joe', '555-001'), ('John', '555-003') ] stmt = "INSERT INTO employees (name, phone) VALUES ('%s','%s')" cursor.executemany(stmt, data) INSERT statements are optimized by batching the data, that is using the MySQL multiple rows syntax. Results are discarded. If they are needed, consider looping over data using the execute() method. """ pass @abstractmethod def fetchone(self): """Returns next row of a query result set Returns a tuple or None. """ pass @abstractmethod def fetchmany(self, size=1): """Returns the next set of rows of a query result, returning a list of tuples. When no more rows are available, it returns an empty list. The number of rows returned can be specified using the size argument, which defaults to one """ pass @abstractmethod def fetchall(self): """Returns all rows of a query result set Returns a list of tuples. """ pass def nextset(self): """Not Implemented.""" pass def setinputsizes(self, sizes): """Not Implemented.""" pass def setoutputsize(self, size, column=None): """Not Implemented.""" pass def reset(self, free=True): """Reset the cursor to default""" pass @abstractproperty def description(self): """Returns description of columns in a result This property returns a list of tuples describing the columns in in a result set. A tuple is described as follows:: (column_name, type, None, None, None, None, null_ok, column_flags) # Addition to PEP-249 specs Returns a list of tuples. """ return self._description @abstractproperty def rowcount(self): """Returns the number of rows produced or affected This property returns the number of rows produced by queries such as a SELECT, or affected rows when executing DML statements like INSERT or UPDATE. Note that for non-buffered cursors it is impossible to know the number of rows produced before having fetched them all. For those, the number of rows will be -1 right after execution, and incremented when fetching rows. Returns an integer. """ return self._rowcount @abstractproperty def lastrowid(self): """Returns the value generated for an AUTO_INCREMENT column Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE statement or None when there is no such value available. Returns a long value or None. """ return self._last_insert_id def fetchwarnings(self): """Returns Warnings.""" return self._warnings
py
1a4e3cca6df2f1f8f8e18baa3edbfca37647e0f2
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import logging as log from copy import copy import numpy as np from extensions.back.ConvolutionNormalizer import ConvolutionNormalizer, ConvolutionWithGroupsResolver from extensions.back.MarkNodesWithShapeValues import MarkNodesWithShapeValues from extensions.back.PackBinaryWeights import PackBinaryWeights from extensions.back.SpecialNodesFinalization import RemoveConstOps, CreateConstNodesReplacement from extensions.back.StridedSliceMasksNormalizer import StridedSliceMasksNormalizer from extensions.back.blob_normalizer import BlobNormalizer from mo.graph.graph import Graph from mo.middle.passes.convert_data_type import data_type_str_to_precision from mo.middle.pattern_match import for_graph_and_each_sub_graph_recursively from mo.pipeline.common import prepare_emit_ir from mo.utils.class_registration import apply_replacements_list from mo.utils.ir_engine.ir_engine import IREngine from mo.utils.ir_reader.layer_to_class import copy_graph_with_ops, collect_extenders, collect_ops from mo.utils.utils import get_mo_root_dir def restore_graph_from_ir(path_to_xml: str, path_to_bin: str = None) -> (Graph, dict): """ Function to make valid graph and metadata for MO back stage from IR. :param path_to_xml: :param path_to_bin: :return: (restored graph, meta data) """ ir = IREngine(path_to_xml, path_to_bin) assert ir.graph.graph.get('ir_version') >= 10, 'IR version {} is not supported, ' \ 'please generate actual IR for your model and use it.'.format(ir.graph.graph.get('ir_version')) path = get_mo_root_dir() collect_ops(path) collect_extenders(path) # Create a new copy of graph with correct attributes (shape & type infer, backend attrs etc.) new_graph = copy_graph_with_ops(ir.graph) return new_graph, copy(ir.meta_data) def save_restored_graph(graph: Graph, path: str, meta_data, name=None): """ Function to apply all necessary transforms from back stage to prepare and save restored graph and metadata. :param graph: Graph to save :param path: Path to saved IR :param meta_data: Namespace with converting parameters restored from IR :param name: Name for saved IR :return: """ if name is None: name = graph.name if 'data_type' not in meta_data: log.debug('Provided `meta_data` does not contain `data_type` parameter. Set `data_type`' ' parameter value to `FP32`.') # Set data_type to FP32. All restored constants will be saved in provided data type. data_type = 'FP32' # We need to specify this attribute to pass graph transformations. This information will not be saved into IR. # All constants and placeholders will be saved with same types as restored from IR graph.graph['cmd_params'].data_type = data_type else: data_type = data_type_str_to_precision(graph.graph['cmd_params'].data_type) assert data_type in ['FP16', 'FP32'], '`data_type` value {} is not supported by MO,' \ ' cannot save graph'.format(data_type) # List items order matters, do not change it. transformation_list = [ ConvolutionWithGroupsResolver, StridedSliceMasksNormalizer, PackBinaryWeights, BlobNormalizer, ConvolutionNormalizer, MarkNodesWithShapeValues, ] # We need to run some specific passes from MO back stage. apply_replacements_list(graph, transformation_list) # Transformations with enabled=False should be run manually. for_graph_and_each_sub_graph_recursively(graph, RemoveConstOps().find_and_replace_pattern) for_graph_and_each_sub_graph_recursively(graph, CreateConstNodesReplacement().find_and_replace_pattern) prepare_emit_ir(graph, data_type, path, name, meta_info=meta_data, used_by_ir_reader=True)
py
1a4e3cf360b21f1e1c1a29cde163e09b5e384bbd
from input_output.Loader import Loader from joblib import load # Loader specific for the Titanic task # The loader loads the data class TitanicLoader(Loader): def load_split(self, training_data_file, test_data_file, verbose=False): train, test = self.load_data(training_data_file, test_data_file) test_labels = test['PassengerId'] X_train, Y_train = self.split_data(train) if verbose: print( "\n" + ('-' * 40) ) print( " Original data") print( '-' * 40) print( X_train.head() ) print ("Loaded dataset") return X_train, Y_train, test, test_labels def split_data(self, train): # split the features and predector feature train_X = train train_Y = train_X["Survived"] del train_X["Survived"] return train_X, train_Y def load_pkl(self, file_name): return load(file_name)
py
1a4e3d98efc9f7c2d2732b4c66ec73f2a78509bd
# coding: utf-8 import pprint import re import six class StartRecyclePolicyRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'x_language': 'str', 'body': 'RecyclePolicyRequestBody' } attribute_map = { 'x_language': 'X-Language', 'body': 'body' } def __init__(self, x_language=None, body=None): """StartRecyclePolicyRequest - a model defined in huaweicloud sdk""" self._x_language = None self._body = None self.discriminator = None if x_language is not None: self.x_language = x_language if body is not None: self.body = body @property def x_language(self): """Gets the x_language of this StartRecyclePolicyRequest. :return: The x_language of this StartRecyclePolicyRequest. :rtype: str """ return self._x_language @x_language.setter def x_language(self, x_language): """Sets the x_language of this StartRecyclePolicyRequest. :param x_language: The x_language of this StartRecyclePolicyRequest. :type: str """ self._x_language = x_language @property def body(self): """Gets the body of this StartRecyclePolicyRequest. :return: The body of this StartRecyclePolicyRequest. :rtype: RecyclePolicyRequestBody """ return self._body @body.setter def body(self, body): """Sets the body of this StartRecyclePolicyRequest. :param body: The body of this StartRecyclePolicyRequest. :type: RecyclePolicyRequestBody """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, StartRecyclePolicyRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a4e3dc618def9a471572a5898b4298b9313598d
from microbit import * import neopixel from utime import ticks_us, sleep_us class bitBotXL: def __init__(self): pass leds = neopixel.NeoPixel(pin13, 12) def forward(self, speed): if (speed > 1023) or (speed < 1): print("Error, speed must be a number 1-1023") display.scroll("Speed must be a number 1-1023") else: pin16.write_analog(speed) pin8.write_digital(0) pin14.write_analog(speed) pin12.write_digital(0) def backward(self, speed): if (speed > 1023) or (speed < 1): print("Error, speed must be a number 1-1023") display.scroll("Speed must be a number 1-1023") else: pin16.write_digital(0) pin8.write_analog(speed) pin14.write_digital(0) pin12.write_analog(speed) def left(self, speed): if (speed > 1023) or (speed < 1): print("Error, speed must be a number 1-1023") display.scroll("Speed must be a number 1-1023") else: pin14.write_analog(0) pin12.write_analog(0) pin16.write_analog(speed) pin8.write_digital(0) def right(self, speed): if (speed > 1023) or (speed < 1): print("Error, speed must be a number 1-1023") display.scroll("Speed must be a number 1-1023") else: pin16.write_analog(0) pin8.write_analog(0) pin14.write_analog(speed) pin12.write_digital(0) def stop(self, brake=True): if brake==True: pin16.write_analog(1023) pin8.write_analog(1023) pin14.write_analog(1023) pin12.write_analog(1023) else: pin16.write_analog(0) pin8.write_analog(0) pin14.write_analog(0) pin12.write_analog(0) def sonar_cm(self): pin15.write_digital(1) sleep_us(10) pin15.write_digital(0) while pin15.read_digital() == 0: pass start = ticks_us() while pin15.read_digital() == 1: pass end = ticks_us() echo = end-start distance = int(0.01715 * echo) return distance def sonar_mm(self): pin15.write_digital(1) sleep_us(10) pin15.write_digital(0) while pin15.read_digital() == 0: pass start = ticks_us() while pin15.read_digital() == 1: pass end = ticks_us() echo = end-start distance = int(0.01715 * echo*10) return distance
py
1a4e3e25f5ef18db304baafa3b6bc1f888fb1433
from somerandomapi.sync_async_handler import SyncAsyncHandler from somerandomapi import http def welcome( key: str, image: int, background: str, type: str, avatar: str, username: str, discriminator: int, guild_name: str, text_color: str, member_count: int, ): """ Docs: https://some-random-api.ml/docs/canvas/welcome - key - This endpoint requires a key to use but even if the key is expired it is fine. - image - It must be between 1 and 7. - background - Must be one of these: - stars - stars2 - rainbowgradient - rainbow - sunset - night - blobday - blobnight - space - gaming1 - gaming3 - gaming2 - gaming4 - type - Could be either `join` or `leave` - avatar - username - Maximum 30 characters - discriminator - guild_name - text_color - member_count """ return SyncAsyncHandler( get_welcome, async_get_welcome, key=key, image=image, background=background, type=type, avatar=avatar, username=username, discriminator=discriminator, guildName=guild_name, textcolor=text_color, memberCount=member_count, ) class Query: def __init__(self, queries): self.__dict__.update(queries) async def async_get_welcome(**queries): query = Query(queries) queries.pop("image", None) queries.pop("background", None) async with http.GET( ("welcome", "img", str(query.image), query.background), queries ) as response: return response def get_welcome(**queries): query = Query(queries) queries.pop("image", None) queries.pop("background", None) with http.GET(("img", query.image, query.background), queries) as response: return response
py
1a4e3e370a3f4517061d3d861f089f86845e83c4
import os import json import nltk import random import re classes_under_consideration = ['ynQuestion','whQuestion','Greet','Statement','Emotion'] out_dir = './../res/data/nps_chat_dataset' if not os.path.exists(out_dir): os.makedirs(out_dir) posts = nltk.corpus.nps_chat.xml_posts()[:] dataset = {} for post in posts: _class = post.get('class') if _class not in classes_under_consideration: continue text = " " for word in nltk.word_tokenize(post.text): if not re.search('user', word, re.IGNORECASE): text = text + " " + word.lower() text = text.strip() if dataset.get(_class) == None: dataset[_class] = [] if _class not in ['ynQuestion','whQuestion'] and len(text) > 3: dataset[_class].append(text) elif _class in ['ynQuestion','whQuestion']: dataset[_class].append(text) for _class, texts in dataset.items(): texts = random.sample(texts,533) file_name = '{}.txt'.format(_class) with open(os.path.join(out_dir,file_name), 'w') as f: f.write('\n'.join(texts))
py
1a4e3eda6cfb05ce7bee80a98e00a59c8e8c6059
# %% import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from ..config import ( device, experiment_folder, second_stage, second_stage_dataset, ) from ..model import LanguageGenerator, SentenceDecoderWithAttention, TermEncoder from .misc import extract_caption_len # In case of "RuntimeError: received 0 items of ancdata" # https://github.com/pytorch/pytorch/issues/973 # torch.multiprocessing.set_sharing_strategy("file_system") def train(model, dataset, mapping, criterion, optimizer, writer, epoch): dataloader = DataLoader( dataset, batch_size=second_stage["batch_size"], num_workers=4, shuffle=True ) model = model.train().to(device) running_loss = 0 for i, data in enumerate(tqdm(dataloader, desc="Batches")): caps, terms = data caps, terms = torch.stack(caps).to(device), torch.stack(terms).to(device) caps, clens = extract_caption_len(caps.T) terms, tlens = extract_caption_len(terms.T) targets = caps.detach().clone()[:, 1:] optimizer.zero_grad() out, hidden, attn = model(terms, tlens, caps[:, :-1], clens + 1) # add <start> loss = criterion(out.permute(0, 2, 1), targets) loss.backward() optimizer.step() running_loss += loss.item() if i % 50 == 49: step_number = epoch * len(dataloader) + i writer.add_scalar("Training loss", running_loss / 50, step_number) running_loss = 0 return model def main(): dataset = second_stage_dataset() writer = SummaryWriter(experiment_folder) cmapping, tmapping = dataset.get_cap_mapping, dataset.get_term_mapping enc = TermEncoder(len(tmapping), 2048) dec = SentenceDecoderWithAttention(len(cmapping), 2048, len(cmapping)) lang = LanguageGenerator(enc, dec) criterion = nn.NLLLoss(ignore_index=0) optimizer = torch.optim.Adam(lang.parameters(), lr=second_stage["learning_rate"]) for i in range(second_stage["epochs"]): print(f"Epoch {i}") lang = train(lang, dataset, cmapping, criterion, optimizer, writer, i) torch.save(lang.state_dict(), experiment_folder / f"language_ep{i:03d}.pth") if __name__ == "__main__": main() # %%
py
1a4e3fba02d077f0a70268a005275337e9fff65a
from __future__ import print_function, unicode_literals, absolute_import, division import numpy as np from .utils import _normalize_grid def random_label_cmap(n=2**16): import matplotlib import colorsys # cols = np.random.rand(n,3) # cols = np.random.uniform(0.1,1.0,(n,3)) h,l,s = np.random.uniform(0,1,n), 0.4 + np.random.uniform(0,0.6,n), 0.2 + np.random.uniform(0,0.8,n) cols = np.stack([colorsys.hls_to_rgb(_h,_l,_s) for _h,_l,_s in zip(h,l,s)],axis=0) cols[0] = 0 return matplotlib.colors.ListedColormap(cols) def _plot_polygon(x,y,score,color): import matplotlib.pyplot as plt a,b = list(x),list(y) a += a[:1] b += b[:1] plt.plot(a,b,'--', alpha=1, linewidth=score, zorder=1, color=color) def draw_polygons(coord, score, poly_idx, grid=(1,1), cmap=None, show_dist=False): """poly_idx is a N x 2 array with row-col coordinate indices""" return _draw_polygons(polygons=coord[poly_idx[:,0],poly_idx[:,1]], points=poly_idx, scores=score[poly_idx[:,0],poly_idx[:,1]], grid=grid, cmap=cmap, show_dist=show_dist) def _draw_polygons(polygons, points=None, scores=None, grid=(1,1), cmap=None, show_dist=False): """ polygons is a list/array of x,y coordinate lists/arrays points is a list/array of x,y coordinates scores is a list/array of scalar values between 0 and 1 """ # TODO: better name for this function? import matplotlib.pyplot as plt from matplotlib.collections import LineCollection grid = _normalize_grid(grid,2) if points is None: points = [None]*len(polygons) if scores is None: scores = np.ones(len(polygons)) if cmap is None: cmap = random_label_cmap(len(polygons)+1) assert len(polygons) == len(scores) assert len(cmap.colors[1:]) >= len(polygons) assert not show_dist or all(p is not None for p in points) for point,poly,score,c in zip(points,polygons,scores,cmap.colors[1:]): if point is not None: plt.plot(point[1]*grid[1], point[0]*grid[0], '.', markersize=8*score, color=c) if show_dist: dist_lines = np.empty((poly.shape[-1],2,2)) dist_lines[:,0,0] = poly[1] dist_lines[:,0,1] = poly[0] dist_lines[:,1,0] = point[1]*grid[1] dist_lines[:,1,1] = point[0]*grid[0] plt.gca().add_collection(LineCollection(dist_lines, colors=c, linewidths=0.4)) _plot_polygon(poly[1], poly[0], 3*score, color=c)
py
1a4e427718f8bd440fbca9b663982c7af48861b0
#!/usr/bin/env python import colorsys import math import time import unicornhathd print("""Unicorn HAT HD: demo.py This pixel shading demo transitions between 4 classic graphics demo effects. Press Ctrl+C to exit! """) unicornhathd.rotation(0) u_width, u_height = unicornhathd.get_shape() # Generate a lookup table for 8bit hue to RGB conversion hue_to_rgb = [] for i in range(0, 255): hue_to_rgb.append(colorsys.hsv_to_rgb(i / 255.0, 1, 1)) def gradient(x, y, step): g = x * 16 b = y * 16 r = 255 - (x * 16) return (r, g, b) # twisty swirly goodness def swirl(x, y, step): x -= (u_width / 2) y -= (u_height / 2) dist = math.sqrt(pow(x, 2) + pow(y, 2)) / 2.0 angle = (step / 10.0) + (dist * 1.5) s = math.sin(angle) c = math.cos(angle) xs = x * c - y * s ys = x * s + y * c r = abs(xs + ys) r = r * 12.0 r -= 20 return (r, r + (s * 130), r + (c * 130)) # roto-zooming checker board def checker(x, y, step): x -= (u_width / 2) y -= (u_height / 2) angle = (step / 10.0) s = math.sin(angle) c = math.cos(angle) xs = x * c - y * s ys = x * s + y * c xs -= math.sin(step / 200.0) * 40.0 ys -= math.cos(step / 200.0) * 40.0 scale = step % 20 scale /= 20 scale = (math.sin(step / 50.0) / 8.0) + 0.25 xs *= scale ys *= scale xo = abs(xs) - int(abs(xs)) yo = abs(ys) - int(abs(ys)) v = 0 if (math.floor(xs) + math.floor(ys)) % 2 else 1 if xo > .1 and yo > .1 else .5 r, g, b = hue_to_rgb[step % 255] return (r * (v * 255), g * (v * 255), b * (v * 255)) # weeee waaaah def blues_and_twos(x, y, step): x -= (u_width / 2) y -= (u_height / 2) scale = math.sin(step / 6.0) / 1.5 r = math.sin((x * scale) / 1.0) + math.cos((y * scale) / 1.0) b = math.sin(x * scale / 2.0) + math.cos(y * scale / 2.0) g = r - .8 g = 0 if g < 0 else g b -= r b /= 1.4 return (r * 255, (b + g) * 255, g * 255) # rainbow search spotlights def rainbow_search(x, y, step): xs = math.sin((step) / 100.0) * 20.0 ys = math.cos((step) / 100.0) * 20.0 scale = ((math.sin(step / 60.0) + 1.0) / 5.0) + 0.2 r = math.sin((x + xs) * scale) + math.cos((y + xs) * scale) g = math.sin((x + xs) * scale) + math.cos((y + ys) * scale) b = math.sin((x + ys) * scale) + math.cos((y + ys) * scale) return (r * 255, g * 255, b * 255) # zoom tunnel def tunnel(x, y, step): speed = step / 100.0 x -= (u_width / 2) y -= (u_height / 2) xo = math.sin(step / 27.0) * 2 yo = math.cos(step / 18.0) * 2 x += xo y += yo if y == 0: if x < 0: angle = -(math.pi / 2) else: angle = (math.pi / 2) else: angle = math.atan(x / y) if y > 0: angle += math.pi angle /= 2 * math.pi # convert angle to 0...1 range hyp = math.sqrt(math.pow(x, 2) + math.pow(y, 2)) shade = hyp / 2.1 shade = 1 if shade > 1 else shade angle += speed depth = speed + (hyp / 10) col1 = hue_to_rgb[step % 255] col1 = (col1[0] * 0.8, col1[1] * 0.8, col1[2] * 0.8) col2 = hue_to_rgb[step % 255] col2 = (col2[0] * 0.3, col2[1] * 0.3, col2[2] * 0.3) col = col1 if int(abs(angle * 6.0)) % 2 == 0 else col2 td = .3 if int(abs(depth * 3.0)) % 2 == 0 else 0 col = (col[0] + td, col[1] + td, col[2] + td) col = (col[0] * shade, col[1] * shade, col[2] * shade) return (col[0] * 255, col[1] * 255, col[2] * 255) def current_milli_time(): return int(round(time.time() * 1000)) effects = [gradient, tunnel, rainbow_search, checker, swirl] step = 0 try: while True: for i in range(100): start = current_milli_time() for y in range(u_height): for x in range(u_width): r, g, b = effects[0](x, y, step) if i > 75: r2, g2, b2 = effects[-1](x, y, step) ratio = (100.00 - i) / 25.0 r = r * ratio + r2 * (1.0 - ratio) g = g * ratio + g2 * (1.0 - ratio) b = b * ratio + b2 * (1.0 - ratio) r = int(max(0, min(255, r))) g = int(max(0, min(255, g))) b = int(max(0, min(255, b))) unicornhathd.set_pixel(x, y, r, g, b) step += 2 unicornhathd.show() effect = effects.pop() effects.insert(0, effect) except KeyboardInterrupt: unicornhathd.off()
py
1a4e44fa1437f33e3868edd4c85aa17b157bd285
# https://justhackerthings.com/post/building-a-dark-web-scraper/ import sys def main(): # Disable SSL warnings try: import requests.packages.urllib3 requests.packages.urllib3.disable_warnings() except: pass START = sys.argv[1] if __name__ == "__main__": main()
py
1a4e46a77ff266eff87274201b43bf42cd193c74
#!/usr/bin/env python import sys, os , socket, random, struct, time import argparse from scapy.all import sendp, send, get_if_list, get_if_hwaddr, bind_layers from scapy.all import Packet from scapy.all import Ether, IP, UDP, TCP, Raw from scapy.fields import * SRC = 0 DST = 1 DSCP = 2 BOS = 0 LABEL1 = 1 SWITCH_ID = 0 TIMESTAMP = 1 parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('-e', '--ethernet', type=str, help='Ethernet src/dst addresses') parser.add_argument('-m', '--mpls', type=str, help='Enable MPLS header and add parameters') parser.add_argument('-i', '--ip', type=str, help='Add IPv4 parameters') parser.add_argument('-t', '--tcp', type=int, action='store', help='Enable TCP header and add parameters') parser.add_argument('-u', '--udp', type=int, action='store', help='Enable UDP header and add parameters') parser.add_argument('-p', '--packets', type=int, action='store', help='Number of packets to send') parser.add_argument('-b', '--bytes', type=int, action='store', help='Bytes for the payload') parser.add_argument('-r', '--randbytes', const=True, action='store_const', help='Add random bytes to the payload') parser.add_argument('-f', '--filename', type=str, help='Path for the filename') parser.add_argument('-c', '--interface', type=str, help='Name of the interface to send the packet to') parser.add_argument('-n', '--int', type=str, help='Add INT header') args = parser.parse_args() class MPLS(Packet): name = "MPLS" fields_desc = [ BitField("label", 1000, 20), BitField("exp", 0, 3), BitField("bos", 1, 1), ByteField("ttl", 0) ] class INT(Packet): name = "INT" fields_desc = [ BitField("egress_timestamp", 5, 64) #name, default, size ] bind_layers(Ether, IP, type=0x0800) bind_layers(IP, INT, protocol=0xFE) def main(): if args.ethernet: ethernetParams = [p for p in args.ethernet.split(',')] if args.ip: ipParams = [p for p in args.ip.split(',')] #outF = open(fileName, "a") print("Sending packets on interface %s" % (args.interface)) pkt = Ether(src=ethernetParams[SRC], dst=ethernetParams[DST]) pkt = pkt / IP(src=ipParams[SRC], dst=ipParams[DST], tos=int(ipParams[DSCP], 0) << 2) if args.int: pkt = pkt / INT(egress_timestamp = 7) # el "/" es para hacer append if args.udp: pkt = pkt / UDP(sport=0, dport=args.udp) if args.tcp: pkt = pkt / TCP(sport=0, dport=args.tcp) if args.bytes: if args.randbytes: pkt = pkt / Raw(load=bytearray(os.urandom(args.bytes))) else: pkt = pkt / Raw(load=bytearray([0] * args.bytes) ) for i in range(args.packets): #pkt.show() #t = time.time_ns() if args.udp: pkt[UDP].sport = i+1 if args.tcp: pkt[TCP].sport = i+1 sendp(pkt, iface=args.interface, verbose=False) print("Sent packet: " + str(i+1)) time.sleep(0.3) if __name__ == '__main__': main()