ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a2fa9bc071c85c8c01ed2af30bf00fb42c6360b
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Main Created on Tue Aug 17 14:16:44 2021 Version: 1.0 Universidad Santo Tomás Tunja Simulation @author: Juana Valentina Mendoza Santamaría @author: Alix Ivonne Chaparro Vasquez presented to: Martha Susana Contreras Ortiz """ from controllers.settings import config from controllers.mainController import mainController if __name__ == "__main__": simulator = config.PARAMETERS['simulator'] mainController(simulator) # True (simulation) - False (Demo)
py
1a2fad3f3ec070c73e65b6b03c43e2f696851309
# TIPS: only used to find the best epoch of MLP # MLP import csv from itertools import islice import random import matplotlib.pyplot as plt import numpy as np from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import KFold, train_test_split import pandas as pd from sklearn.utils import shuffle import tensorflow as tf def bit2attr(bitstr) -> list: attr_vec = list() for i in range(len(bitstr)): attr_vec.append(int(bitstr[i])) return attr_vec def mean_relative_error(y_pred, y_test): assert len(y_pred) == len(y_test) mre = 0.0 for i in range(len(y_pred)): mre = mre + abs((y_pred[i] - y_test[i]) / y_test[i]) mre = mre * 100/ len(y_pred) return mre Large_MRE_points = pd.DataFrame() Large_MRE_X = [] Large_MRE_y_test = [] Large_MRE_y_pred = [] Large_MRE = [] ''' 1) 数据预处理 ''' # filepath = 'data/fp/sjn/R+B+Cmorgan_fp1202.csv' filepath = 'data/database/22-01-29-descriptor-train.csv' data = pd.read_csv(filepath, encoding='gb18030') print(data.shape) data = data.dropna() print(data.shape) data = shuffle(data) data_x_df = data.drop(['label'], axis=1) data_y_df = data[['label']] # 归一化 min_max_scaler_X = MinMaxScaler() min_max_scaler_X.fit(data_x_df) x_trans1 = min_max_scaler_X.transform(data_x_df) min_max_scaler_y = MinMaxScaler() min_max_scaler_y.fit(data_y_df) y_trans1 = min_max_scaler_y.transform(data_y_df) test_filepath = "data/database/22-01-29-descriptor-test-level-1.csv" test_data = pd.read_csv(test_filepath, encoding='gb18030') print('test data: ', test_data.shape) test_data_x_df = test_data.drop(['label'], axis=1) test_data_y_df = test_data[['label']] x_trans1_test = min_max_scaler_X.transform(test_data_x_df) y_trans1_test = min_max_scaler_y.transform(test_data_y_df) ''' 3) 构建模型 ''' from keras.layers import MaxPooling1D, Conv1D, Dense, Flatten, Dropout from keras import models from keras.optimizers import Adam, RMSprop, SGD def buildModel(): model = models.Sequential() l4 = Dense(512, activation='relu') l5 = Dropout(rate=0.2) l6 = Dense(128, activation='relu') l7 = Dense(30, activation='relu') l8 = Dense(1) layers = [l4, l5, l6, l7, l8] for i in range(len(layers)): model.add(layers[i]) adam = Adam(lr=1e-3) model.compile(optimizer=adam, loss='logcosh', metrics=['mae', 'mape']) model_mlp = MLPRegressor( hidden_layer_sizes=(512, 128, 32), activation='relu', solver='lbfgs', alpha=0.0001, max_iter=5000, random_state=1, tol=0.0001, verbose=False, warm_start=False) return model def scheduler(epoch, lr): if epoch > 0 and epoch % 500 == 0: return lr * 0.1 else: return lr ''' 4) 训练模型 ''' from sklearn import metrics # n_split = 10 mlp_scores = [] MAEs = [] out_MAEs = [] in_y_test = [] in_y_pred = [] out_y_test = [] out_y_pred = [] X_train = x_trans1 y_train = y_trans1 # 外部验证 X_test = x_trans1_test y_trans1_test = np.reshape(y_trans1_test, (-1, 1)) y_test = y_trans1_test callback = tf.keras.callbacks.LearningRateScheduler(scheduler, verbose=1) model_mlp = buildModel() history = model_mlp.fit(X_train, y_train, epochs=1, verbose=1, validation_data=(X_test, y_test), callbacks=[callback]) print(model_mlp.summary()) exit(0) losses = history.history['loss'] eval_mres = history.history['val_mape'] fig, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.plot([x for x in range(len(losses))], losses, 'b', label='loss') ax1.set_ylabel('loss', color='b') ax2.plot([x for x in range(len(eval_mres))], eval_mres, 'r', label='eval_mre') ax2.set_ylabel('eval_mre', color='r') ax1.set_xlabel('epochs') plt.title('Training of MLP') plt.savefig('pics/Training_of_MLP.png') import os outdir = 'Out/losses_and_mres' os.makedirs(outdir, exist_ok=True) with open(os.path.join(outdir, 'mlp_descriptor.txt'), 'w') as f: f.write('loss\n') f.write(' '.join([str(x) for x in losses])) f.write('\n') f.write('mres\n') f.write(' '.join([str(x) for x in eval_mres]))
py
1a2fada21c09f8bf65d23747a1211aeb7930ea13
import logging from google.appengine.ext import db from google.appengine.api import memcache from app.utility.utils import memcached import app.utility.utils as utils import app.db.counter as counter import web QUESTIONS_PER_SITEMAP = 500 class Sitemap(db.Model): question_count = db.IntegerProperty(default = 0) question_keys = db.StringListProperty(default = []) content = db.TextProperty(default ='') archived = db.BooleanProperty(default = False) created = db.DateTimeProperty(auto_now_add = True) last_modified = db.DateTimeProperty(auto_now = True) @staticmethod def get_last_sitemap(): entity = Sitemap.all().order('-created').get() if entity: if entity.question_count >= QUESTIONS_PER_SITEMAP: entity.content = unicode(web.render.sitemap_questions(entity.question_keys)) entity.archived = True entity.put() entity = Sitemap() entity.put() else: entity = Sitemap() entity.put() return entity @staticmethod def update_last_sitemap(key): last_sitemap = Sitemap.get_last_sitemap() last_sitemap.question_count += 1 last_sitemap.question_keys.insert(0, str(key)) last_sitemap.put() @staticmethod def get_sitemaps(): sitemaps = Sitemap.all().order('-created').fetch(500) return sitemaps @staticmethod @memcached('get_sitemap_by_id', 3600*24, lambda id : int(id) ) def get_sitemap_by_id(id): entity = Sitemap.get_by_id(id) if entity: if entity.content: return entity.content else: return unicode(web.render.sitemap_questions(entity.question_keys)) else: raise web.notfound()
py
1a2faefaf711c5ce913d8e0bc348eba0ebcc72e8
from django.shortcuts import render from django.contrib.auth.models import User from django.http import HttpResponse from .models import Form from .forms import ReqForm from .filters import FormFilter from django.http import HttpResponseRedirect from django.urls import reverse from django.shortcuts import redirect def form(request): return render(request,'form.html') def status(request): return render(request,'status.html') def about(request): return render(request,'about.html') def index(request): return render(request,'index.html') def showformdata(request): if request.method=='POST': fm=ReqForm(request.POST) if fm.is_valid(): em=fm.cleaned_data['email'] cn=fm.cleaned_data['ClubName'] rn=fm.cleaned_data['RepresentativeName'] cn=fm.cleaned_data['Contact'] df=fm.cleaned_data['req_date_from'] dt=fm.cleaned_data['req_date_to'] rt=fm.cleaned_data['req_type'] rp=fm.cleaned_data['req_purpose'] profile = fm.save(commit=False) profile.user = request.user profile.save() fm.save() fm=ReqForm() print(em) print(rn) else: fm=ReqForm() return render(request,'form.html',{'frm':fm}) def reqInfo(request): u=request.user if u.groups.filter(name='Managers').exists(): req = Form.objects.all() print(req) print("this is a manager") context={ 'form':form, 'req': req } else: req = Form.objects.filter(user=request.user) print(req) print("normal user") context={ 'form':form, 'req': req } return render(request,'status.html',context) def student_approve(request,user_id): val=Form.objects.get(id=user_id) val.alloted=1 val.save() return HttpResponse("approved successfully") def student_disapprove(request,user_id): val=Form.objects.get(id=user_id) val.alloted=2 val.save() return HttpResponse("disapproved successfully") def student_reset(request,user_id): val=Form.objects.get(id=user_id) val.alloted=0 val.save() return HttpResponse("reset successfully") # def write_view(request, *args, **kwargs): # val=Form.objects.get(id=user_id) # if request.is_ajax() and request.method == "POST": # texteditor = request.POST['TextEntered'] # val.Management_Comments='texteditor' # print(texteditor) # ## Don't forget to do validation and cleanup on texteditor to avoid security hassles # ## Do your logic here # SuccessAcknowledgment = {"Acknowledged":"Acknowledged"} # return HttpResponse(json.dumps(SuccessAcknowledgment)) # else: # return render(request, "write.html") def reqInfoMess(request): u=request.user if u.groups.filter(name='Managers').exists(): req = Form.objects.all() print(req) print("this is a manager") context={ 'form':form, 'req': req } else: req = Form.objects.filter(user=request.user) print(req) print("normal user") context={ 'form':form, 'req': req } return render(request,'status.html',context) def showmess(request, user_id): u=request.user if request.method=='POST': fm=mess(request.POST) ms="" if fm.is_valid(): ms=fm.cleaned_data['Management_Comments'] u = fm.save(commit=False) #profile.user = request.user u.save() fm.save() fm=mess() print(ms) return render(request,'status.html',{'mess':ms})
py
1a2faf341daa8b57f34a09cec3003b1557907096
#!/usr/bin/env python # -*- coding: utf-8 -*- # License: BSD-3 (https://tldrlegal.com/license/bsd-3-clause-license-(revised)) # Copyright (c) 2016-2021, Cabral, Juan; Luczywo, Nadia # All rights reserved. # ============================================================================= # DOCS # ============================================================================= """Tool to check if each python module has a corresponding API docs.""" # ============================================================================= # IMPORTS # ============================================================================= import inspect import pathlib import attr import typer # ============================================================================= # CONSTANTS # ============================================================================= VERSION = "0.1" # ============================================================================= # FUNCTIONS # ============================================================================= def check_apidoc_structure(apidoc_dir, reference_dir): apidoc_dir = pathlib.Path(apidoc_dir) reference_dir = pathlib.Path(reference_dir) if not apidoc_dir.exists(): raise OSError(f"'{apidoc_dir}' do no exist") if not reference_dir.exists(): raise OSError(f"'{reference_dir}' do no exist") reference = list(reference_dir.glob("**/*.py")) result = {} for ref in reference: # essentially we remove the parent dir *dirs, ref_name = ref.relative_to(reference_dir).parts if ref_name == "__init__.py": ref_name = "index.py" search_dir = apidoc_dir for subdir in dirs: search_dir /= subdir search = search_dir / f"{ref_name[:-3]}.rst" result[str(ref)] = (str(search), search.exists()) return result # ============================================================================= # CLI # ============================================================================= @attr.s(frozen=True) class CLI: """Check if the structure of API doc directory is equivalent to those of the project. """ footnotes = "\n".join( [ "This software is under the BSD 3-Clause License.", "Copyright (c) 2021, Juan Cabral.", "For bug reporting or other instructions please check:" " https://github.com/quatrope/scikit-criteria", ] ) run = attr.ib(init=False) @run.default def _set_run_default(self): app = typer.Typer() for k in dir(self): if k.startswith("_"): continue v = getattr(self, k) if inspect.ismethod(v): decorator = app.command() decorator(v) return app def version(self): """Print checktestdir.py version.""" typer.echo(f"{__file__ } v.{VERSION}") def check( self, test_dir: str = typer.Argument( ..., help="Path to the api-doc structure." ), reference_dir: str = typer.Option( ..., help="Path to the reference structure." ), verbose: bool = typer.Option( default=False, help="Show all the result" ), ): """Check if the structure of test directory is equivalent to those of the project. """ try: check_result = check_apidoc_structure(test_dir, reference_dir) except Exception as err: typer.echo(typer.style(str(err), fg=typer.colors.RED)) raise typer.Exit(code=1) all_tests_exists = True for ref, test_result in check_result.items(): test, test_exists = test_result if test_exists: fg = typer.colors.GREEN status = "" else: all_tests_exists = False fg = typer.colors.RED status = typer.style("[NOT FOUND]", fg=typer.colors.YELLOW) if verbose or not test_exists: msg = f"{ref} -> {test} {status}" typer.echo(typer.style(msg, fg=fg)) if all_tests_exists: final_fg = typer.colors.GREEN final_status = "Test structure ok!" exit_code = 0 else: final_fg = typer.colors.RED final_status = "Structure not equivalent!" exit_code = 1 typer.echo("-------------------------------------") typer.echo(typer.style(final_status, fg=final_fg)) raise typer.Exit(code=exit_code) def main(): """Run the checkapidocdir.py cli interface.""" cli = CLI() cli.run() if __name__ == "__main__": main()
py
1a2fb1887626cf76c536e2f273cf98f4340ebff5
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkemr.endpoint import endpoint_data class ListRequiredServiceRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Emr', '2016-04-08', 'ListRequiredService','emr') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_EmrVersion(self): return self.get_query_params().get('EmrVersion') def set_EmrVersion(self,EmrVersion): self.add_query_param('EmrVersion',EmrVersion) def get_ServiceNameList(self): return self.get_query_params().get('ServiceNameList') def set_ServiceNameList(self,ServiceNameList): self.add_query_param('ServiceNameList',ServiceNameList)
py
1a2fb2f57b569902970daef785ec480eca5e29b4
"""The tests for the Restore component.""" from datetime import datetime from unittest.mock import patch from homeassistant.const import EVENT_HOMEASSISTANT_START from homeassistant.core import CoreState, State from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.entity import Entity from homeassistant.helpers.restore_state import ( DATA_RESTORE_STATE_TASK, STORAGE_KEY, RestoreEntity, RestoreStateData, StoredState, ) from homeassistant.util import dt as dt_util async def test_caching_data(hass): """Test that we cache data.""" now = dt_util.utcnow() stored_states = [ StoredState(State("input_boolean.b0", "on"), now), StoredState(State("input_boolean.b1", "on"), now), StoredState(State("input_boolean.b2", "on"), now), ] data = await RestoreStateData.async_get_instance(hass) await hass.async_block_till_done() await data.store.async_save([state.as_dict() for state in stored_states]) # Emulate a fresh load hass.data[DATA_RESTORE_STATE_TASK] = None entity = RestoreEntity() entity.hass = hass entity.entity_id = "input_boolean.b1" # Mock that only b1 is present this run with patch( "homeassistant.helpers.restore_state.Store.async_save" ) as mock_write_data: state = await entity.async_get_last_state() await hass.async_block_till_done() assert state is not None assert state.entity_id == "input_boolean.b1" assert state.state == "on" assert mock_write_data.called async def test_hass_starting(hass): """Test that we cache data.""" hass.state = CoreState.starting now = dt_util.utcnow() stored_states = [ StoredState(State("input_boolean.b0", "on"), now), StoredState(State("input_boolean.b1", "on"), now), StoredState(State("input_boolean.b2", "on"), now), ] data = await RestoreStateData.async_get_instance(hass) await hass.async_block_till_done() await data.store.async_save([state.as_dict() for state in stored_states]) # Emulate a fresh load hass.data[DATA_RESTORE_STATE_TASK] = None entity = RestoreEntity() entity.hass = hass entity.entity_id = "input_boolean.b1" # Mock that only b1 is present this run states = [State("input_boolean.b1", "on")] with patch( "homeassistant.helpers.restore_state.Store.async_save" ) as mock_write_data, patch.object(hass.states, "async_all", return_value=states): state = await entity.async_get_last_state() await hass.async_block_till_done() assert state is not None assert state.entity_id == "input_boolean.b1" assert state.state == "on" # Assert that no data was written yet, since hass is still starting. assert not mock_write_data.called # Finish hass startup with patch( "homeassistant.helpers.restore_state.Store.async_save" ) as mock_write_data: hass.bus.async_fire(EVENT_HOMEASSISTANT_START) await hass.async_block_till_done() # Assert that this session states were written assert mock_write_data.called async def test_dump_data(hass): """Test that we cache data.""" states = [ State("input_boolean.b0", "on"), State("input_boolean.b1", "on"), State("input_boolean.b2", "on"), State("input_boolean.b5", "unavailable", {"restored": True}), ] entity = Entity() entity.hass = hass entity.entity_id = "input_boolean.b0" await entity.async_internal_added_to_hass() entity = RestoreEntity() entity.hass = hass entity.entity_id = "input_boolean.b1" await entity.async_internal_added_to_hass() data = await RestoreStateData.async_get_instance(hass) now = dt_util.utcnow() data.last_states = { "input_boolean.b0": StoredState(State("input_boolean.b0", "off"), now), "input_boolean.b1": StoredState(State("input_boolean.b1", "off"), now), "input_boolean.b2": StoredState(State("input_boolean.b2", "off"), now), "input_boolean.b3": StoredState(State("input_boolean.b3", "off"), now), "input_boolean.b4": StoredState( State("input_boolean.b4", "off"), datetime(1985, 10, 26, 1, 22, tzinfo=dt_util.UTC), ), "input_boolean.b5": StoredState(State("input_boolean.b5", "off"), now), } with patch( "homeassistant.helpers.restore_state.Store.async_save" ) as mock_write_data, patch.object(hass.states, "async_all", return_value=states): await data.async_dump_states() assert mock_write_data.called args = mock_write_data.mock_calls[0][1] written_states = args[0] # b0 should not be written, since it didn't extend RestoreEntity # b1 should be written, since it is present in the current run # b2 should not be written, since it is not registered with the helper # b3 should be written, since it is still not expired # b4 should not be written, since it is now expired # b5 should be written, since current state is restored by entity registry assert len(written_states) == 3 assert written_states[0]["state"]["entity_id"] == "input_boolean.b1" assert written_states[0]["state"]["state"] == "on" assert written_states[1]["state"]["entity_id"] == "input_boolean.b3" assert written_states[1]["state"]["state"] == "off" assert written_states[2]["state"]["entity_id"] == "input_boolean.b5" assert written_states[2]["state"]["state"] == "off" # Test that removed entities are not persisted await entity.async_remove() with patch( "homeassistant.helpers.restore_state.Store.async_save" ) as mock_write_data, patch.object(hass.states, "async_all", return_value=states): await data.async_dump_states() assert mock_write_data.called args = mock_write_data.mock_calls[0][1] written_states = args[0] assert len(written_states) == 2 assert written_states[0]["state"]["entity_id"] == "input_boolean.b3" assert written_states[0]["state"]["state"] == "off" assert written_states[1]["state"]["entity_id"] == "input_boolean.b5" assert written_states[1]["state"]["state"] == "off" async def test_dump_error(hass): """Test that we cache data.""" states = [ State("input_boolean.b0", "on"), State("input_boolean.b1", "on"), State("input_boolean.b2", "on"), ] entity = Entity() entity.hass = hass entity.entity_id = "input_boolean.b0" await entity.async_internal_added_to_hass() entity = RestoreEntity() entity.hass = hass entity.entity_id = "input_boolean.b1" await entity.async_internal_added_to_hass() data = await RestoreStateData.async_get_instance(hass) with patch( "homeassistant.helpers.restore_state.Store.async_save", side_effect=HomeAssistantError, ) as mock_write_data, patch.object(hass.states, "async_all", return_value=states): await data.async_dump_states() assert mock_write_data.called async def test_load_error(hass): """Test that we cache data.""" entity = RestoreEntity() entity.hass = hass entity.entity_id = "input_boolean.b1" with patch( "homeassistant.helpers.storage.Store.async_load", side_effect=HomeAssistantError, ): state = await entity.async_get_last_state() assert state is None async def test_state_saved_on_remove(hass): """Test that we save entity state on removal.""" entity = RestoreEntity() entity.hass = hass entity.entity_id = "input_boolean.b0" await entity.async_internal_added_to_hass() now = dt_util.utcnow() hass.states.async_set( "input_boolean.b0", "on", {"complicated": {"value": {1, 2, now}}} ) data = await RestoreStateData.async_get_instance(hass) # No last states should currently be saved assert not data.last_states await entity.async_remove() # We should store the input boolean state when it is removed state = data.last_states["input_boolean.b0"].state assert state.state == "on" assert isinstance(state.attributes["complicated"]["value"], list) assert set(state.attributes["complicated"]["value"]) == {1, 2, now.isoformat()} async def test_restoring_invalid_entity_id(hass, hass_storage): """Test restoring invalid entity IDs.""" entity = RestoreEntity() entity.hass = hass entity.entity_id = "test.invalid__entity_id" now = dt_util.utcnow().isoformat() hass_storage[STORAGE_KEY] = { "version": 1, "key": STORAGE_KEY, "data": [ { "state": { "entity_id": "test.invalid__entity_id", "state": "off", "attributes": {}, "last_changed": now, "last_updated": now, "context": { "id": "3c2243ff5f30447eb12e7348cfd5b8ff", "user_id": None, }, }, "last_seen": dt_util.utcnow().isoformat(), } ], } state = await entity.async_get_last_state() assert state is None
py
1a2fb3864acac51c2808eb3aa0e7ffbcde0d3200
"""Implement a query class.""" from dataclasses import dataclass from typing import List, Container from .keyword import Keyword from .first_class_collection import FirstClassSequence @dataclass class Query(FirstClassSequence): """Represent a query.""" keywords: List[Keyword] @property def sequence(self): """Return :py:attr:`keywords`.""" return self.keywords def get_query_filtered_by_container(self, container: Container[str]): """Filter by a container. Returns ------- Query """ return Query([keyword for keyword in self.keywords if keyword.keyword in container])
py
1a2fb470ba622f19ebdc5d1aa4ba2b377e0a971f
import hmac from hashlib import sha1 from time import time import urllib2 import simplejson from django.conf import settings from django_hpcloud.models import AuthToken def generate_form_post_key(path, redirect, expires=2147483647, max_file_size=1073741824, method='POST'): ''' Generates the key for the FormPOST signatures. This is used for the file upload forms. :param path: :class:`str` The path of the directory to upload to, this should not include the name of the file you're uploading. :param expires: :class:`int` The Unix timestamp of the expiry date of the form. :param max_file_size: :class:`int` The maximum file size of the files allowed to be uploaded with this form. :param method: :class:`str` The method which the form will be using, defaults to POST because that's all that's supported but allows others just in case. ''' path = "/v1/%s/%s/" % (settings.TENANT_ID, path) hmac_body = "%s\n%s\n%s\n%s\n%s" % ( path, redirect, max_file_size, "10", expires, ) return "%s:%s:%s" % ( settings.TENANT_ID, settings.HP_ACCESS_KEY, hmac.new(settings.HP_SECRET_KEY, hmac_body, sha1).hexdigest() ) def generate_share_url(path, expires=2147483647): ''' Generates the URL for which you can create a time-sensitive link to any item in your object store. :param expires: :class:`int` The Unix timestamp of the expiry date of the form. ''' hmac_path = "/v1/%s/%s" % (settings.TENANT_ID, path) hmac_body = "%s\n%s\n%s" % ("GET",expires, hmac_path) hmac_code = "%s:%s:%s" % ( settings.TENANT_ID, settings.HP_ACCESS_KEY, hmac.new(settings.HP_SECRET_KEY, hmac_body, sha1).hexdigest() ) path = "%s%s/%s?temp_url_sig=%s&temp_url_expires=%s" % ( settings.OBJECT_STORE_URL, settings.TENANT_ID, path, hmac_code, expires) return path def get_object_list(container): '''Returns a list of objects inside a container. :param container: :class:`str` The name of the container to list. ''' container = "%s%s/%s?format=json" % (settings.OBJECT_STORE_URL, settings.TENANT_ID, container) req = urllib2.Request(container) req.add_header("Content-type", "application/json") req.add_header("X-Auth-Token", get_auth_token()) response = urllib2.urlopen(req) return simplejson.loads(response.read()) def get_auth_token(): '''Returns the auth_token currently being used. If the auth_token has expired, it will generate a new one and return that. ''' if AuthToken.objects.all().count() > 0: token = AuthToken.objects.all()[0] if token.is_valid(): return token.token AuthToken.objects.all().delete() json_data = { "auth": { "passwordCredentials": { "username": settings.HPCLOUD_USERNAME, "password": settings.HPCLOUD_PASSWORD }, "tenantId": settings.TENANT_ID } } payload = simplejson.dumps(json_data) req = urllib2.Request( settings.REGION_URL + "tokens", ) req.add_header("Content-type", "application/json") json = simplejson.loads(urllib2.urlopen(req, payload).read()) AuthToken(token=json['access']['token']['id'], expires=json['access']['token']['expires']).save() return json['access']['token']['id']
py
1a2fb594f98416859fabd33085c931d2e5be1adb
import numpy as np import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, Flatten, Dense, Conv2DTranspose, Lambda, Reshape, Layer from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras import backend as K INPUT_DIM = (64,64,3) CONV_FILTERS = [32,64,64, 128] CONV_KERNEL_SIZES = [4,4,4,4] CONV_STRIDES = [2,2,2,2] CONV_ACTIVATIONS = ['relu','relu','relu','relu'] DENSE_SIZE = 1024 CONV_T_FILTERS = [64,64,32,3] CONV_T_KERNEL_SIZES = [5,5,6,6] CONV_T_STRIDES = [2,2,2,2] CONV_T_ACTIVATIONS = ['relu','relu','relu','sigmoid'] Z_DIM = 32 BATCH_SIZE = 100 LEARNING_RATE = 0.0001 KL_TOLERANCE = 0.5 class Sampling(Layer): def call(self, inputs): mu, log_var = inputs epsilon = K.random_normal(shape=K.shape(mu), mean=0., stddev=1.) return mu + K.exp(log_var / 2) * epsilon class VAEModel(Model): def __init__(self, encoder, decoder, r_loss_factor, **kwargs): super(VAEModel, self).__init__(**kwargs) self.encoder = encoder self.decoder = decoder self.r_loss_factor = r_loss_factor def train_step(self, data): if isinstance(data, tuple): data = data[0] with tf.GradientTape() as tape: z_mean, z_log_var, z = self.encoder(data) reconstruction = self.decoder(z) reconstruction_loss = tf.reduce_mean( tf.square(data - reconstruction), axis = [1,2,3] ) reconstruction_loss *= self.r_loss_factor kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var) kl_loss = tf.reduce_sum(kl_loss, axis = 1) kl_loss *= -0.5 total_loss = reconstruction_loss + kl_loss grads = tape.gradient(total_loss, self.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.trainable_weights)) return { "loss": total_loss, "reconstruction_loss": reconstruction_loss, "kl_loss": kl_loss, } def call(self,inputs): latent = self.encoder(inputs) return self.decoder(latent) class VAEGAN(tf.keras.Model): """a VAEGAN class for tensorflow Extends: tf.keras.Model """ def __init__(self, **kwargs): super(VAEGAN, self).__init__() self.__dict__.update(kwargs) self.enc = tf.keras.Sequential(self.enc) self.dec = tf.keras.Sequential(self.dec) inputs, disc_l, outputs = self.vae_disc_function() self.disc = tf.keras.Model(inputs=[inputs], outputs=[outputs, disc_l]) self.enc_optimizer = tf.keras.optimizers.Adam(self.lr_base_gen, beta_1=0.5) self.dec_optimizer = tf.keras.optimizers.Adam(self.lr_base_gen, beta_1=0.5) self.disc_optimizer = tf.keras.optimizers.Adam(self.get_lr_d, beta_1=0.5) def encode(self, x): mu, sigma = tf.split(self.enc(x), num_or_size_splits=2, axis=1) return mu, sigma def dist_encode(self, x): mu, sigma = self.encode(x) return ds.MultivariateNormalDiag(loc=mu, scale_diag=sigma) def get_lr_d(self): return self.lr_base_disc * self.D_prop def decode(self, z): return self.dec(z) def discriminate(self, x): return self.disc(x) def reconstruct(self, x): mean, _ = self.encode(x) return self.decode(mean) def reparameterize(self, mean, logvar): eps = tf.random.normal(shape=mean.shape) return eps * tf.exp(logvar * 0.5) + mean # @tf.function def compute_loss(self, x): # pass through network q_z = self.dist_encode(x) z = q_z.sample() p_z = ds.MultivariateNormalDiag( loc=[0.0] * z.shape[-1], scale_diag=[1.0] * z.shape[-1] ) xg = self.decode(z) z_samp = tf.random.normal([x.shape[0], 1, 1, z.shape[-1]]) xg_samp = self.decode(z_samp) d_xg, ld_xg = self.discriminate(xg) d_x, ld_x = self.discriminate(x) d_xg_samp, ld_xg_samp = self.discriminate(xg_samp) # GAN losses disc_real_loss = gan_loss(logits=d_x, is_real=True) disc_fake_loss = gan_loss(logits=d_xg_samp, is_real=False) gen_fake_loss = gan_loss(logits=d_xg_samp, is_real=True) discrim_layer_recon_loss = ( tf.reduce_mean(tf.reduce_mean(tf.math.square(ld_x - ld_xg), axis=0)) / self.recon_loss_div ) self.D_prop = sigmoid( disc_fake_loss - gen_fake_loss, shift=0.0, mult=self.sig_mult ) kl_div = ds.kl_divergence(q_z, p_z) latent_loss = tf.reduce_mean(tf.maximum(kl_div, 0)) / self.latent_loss_div return ( self.D_prop, latent_loss, discrim_layer_recon_loss, gen_fake_loss, disc_fake_loss, disc_real_loss, ) # @tf.function def compute_gradients(self, x): with tf.GradientTape() as enc_tape, tf.GradientTape() as dec_tape, tf.GradientTape() as disc_tape: ( _, latent_loss, discrim_layer_recon_loss, gen_fake_loss, disc_fake_loss, disc_real_loss, ) = self.compute_loss(x) enc_loss = latent_loss + discrim_layer_recon_loss dec_loss = gen_fake_loss + discrim_layer_recon_loss disc_loss = disc_fake_loss + disc_real_loss enc_gradients = enc_tape.gradient(enc_loss, self.enc.trainable_variables) dec_gradients = dec_tape.gradient(dec_loss, self.dec.trainable_variables) disc_gradients = disc_tape.gradient(disc_loss, self.disc.trainable_variables) return enc_gradients, dec_gradients, disc_gradients @tf.function def apply_gradients(self, enc_gradients, dec_gradients, disc_gradients): self.enc_optimizer.apply_gradients( zip(enc_gradients, self.enc.trainable_variables) ) self.dec_optimizer.apply_gradients( zip(dec_gradients, self.dec.trainable_variables) ) self.disc_optimizer.apply_gradients( zip(disc_gradients, self.disc.trainable_variables) ) def train(self, x): enc_gradients, dec_gradients, disc_gradients = self.compute_gradients(x) self.apply_gradients(enc_gradients, dec_gradients, disc_gradients) def gan_loss(logits, is_real=True): """Computes standard gan loss between logits and labels Arguments: logits {[type]} -- output of discriminator Keyword Arguments: isreal {bool} -- whether labels should be 0 (fake) or 1 (real) (default: {True}) """ if is_real: labels = tf.ones_like(logits) else: labels = tf.zeros_like(logits) return tf.compat.v1.losses.sigmoid_cross_entropy( multi_class_labels=labels, logits=logits ) def sigmoid(x, shift=0.0, mult=20): """ squashes a value with a sigmoid """ return tf.constant(1.0) / ( tf.constant(1.0) + tf.exp(-tf.constant(1.0) * (x * mult)) ) class VAE(): def __init__(self): self.models = self._build() self.full_model = self.models[0] self.encoder = self.models[1] self.decoder = self.models[2] self.input_dim = INPUT_DIM self.z_dim = Z_DIM self.learning_rate = LEARNING_RATE self.kl_tolerance = KL_TOLERANCE def _build(self): vae_x = Input(shape=INPUT_DIM, name='observation_input') vae_c1 = Conv2D(filters = CONV_FILTERS[0], kernel_size = CONV_KERNEL_SIZES[0], strides = CONV_STRIDES[0], activation=CONV_ACTIVATIONS[0], name='conv_layer_1')(vae_x) vae_c2 = Conv2D(filters = CONV_FILTERS[1], kernel_size = CONV_KERNEL_SIZES[1], strides = CONV_STRIDES[1], activation=CONV_ACTIVATIONS[0], name='conv_layer_2')(vae_c1) vae_c3= Conv2D(filters = CONV_FILTERS[2], kernel_size = CONV_KERNEL_SIZES[2], strides = CONV_STRIDES[2], activation=CONV_ACTIVATIONS[0], name='conv_layer_3')(vae_c2) vae_c4= Conv2D(filters = CONV_FILTERS[3], kernel_size = CONV_KERNEL_SIZES[3], strides = CONV_STRIDES[3], activation=CONV_ACTIVATIONS[0], name='conv_layer_4')(vae_c3) vae_z_in = Flatten()(vae_c4) vae_z_mean = Dense(Z_DIM, name='mu')(vae_z_in) vae_z_log_var = Dense(Z_DIM, name='log_var')(vae_z_in) vae_z = Sampling(name='z')([vae_z_mean, vae_z_log_var]) #### DECODER: vae_z_input = Input(shape=(Z_DIM,), name='z_input') vae_dense = Dense(1024, name='dense_layer')(vae_z_input) vae_unflatten = Reshape((1,1,DENSE_SIZE), name='unflatten')(vae_dense) vae_d1 = Conv2DTranspose(filters = CONV_T_FILTERS[0], kernel_size = CONV_T_KERNEL_SIZES[0] , strides = CONV_T_STRIDES[0], activation=CONV_T_ACTIVATIONS[0], name='deconv_layer_1')(vae_unflatten) vae_d2 = Conv2DTranspose(filters = CONV_T_FILTERS[1], kernel_size = CONV_T_KERNEL_SIZES[1] , strides = CONV_T_STRIDES[1], activation=CONV_T_ACTIVATIONS[1], name='deconv_layer_2')(vae_d1) vae_d3 = Conv2DTranspose(filters = CONV_T_FILTERS[2], kernel_size = CONV_T_KERNEL_SIZES[2] , strides = CONV_T_STRIDES[2], activation=CONV_T_ACTIVATIONS[2], name='deconv_layer_3')(vae_d2) vae_d4 = Conv2DTranspose(filters = CONV_T_FILTERS[3], kernel_size = CONV_T_KERNEL_SIZES[3] , strides = CONV_T_STRIDES[3], activation=CONV_T_ACTIVATIONS[3], name='deconv_layer_4')(vae_d3) #### MODELS vae_encoder = Model(vae_x, [vae_z_mean, vae_z_log_var, vae_z], name = 'encoder') vae_decoder = Model(vae_z_input, vae_d4, name = 'decoder') vae_full = VAEModel(vae_encoder, vae_decoder, 10000) opti = Adam(lr=LEARNING_RATE) vae_full.compile(optimizer=opti) return (vae_full,vae_encoder, vae_decoder) def set_weights(self, filepath): self.full_model.load_weights(filepath) def train(self, data): self.full_model.fit(data, data, shuffle=True, epochs=1, batch_size=BATCH_SIZE) def save_weights(self, filepath): self.full_model.save_weights(filepath)
py
1a2fb744396bccd3b48b313776264cdfe8dd0a7c
from utils import prefer_envar from logs.logger import log from logs.log_utils import log_json from config.reddit.reddit_sub_lists import REDDIT_APPROVED_SUBS from config.reddit.config_gen import config_gen import sys import json import os if os.path.isfile('config.json'): file = open("config.json", "r") AUTH = prefer_envar(json.loads(file.read())) else: AUTH = prefer_envar({ # app creds "reddit_client_id":"", "reddit_client_secret":"", # reddit account creds "reddit_username":"", "reddit_password":"", }) for envar in AUTH: if AUTH[envar] == "": # reddit auth not configured correctly. # instruct user to generate a .env file config_gen() log.info(f"REDDIT AUTH CONFIG:\n {log_json(AUTH)}") CONFIG = prefer_envar({ "reddit_crosspost_enabled": False, # the chance the bot will repost a post "reddit_post_chance": 0.005, # the chance the bot will make a comment "reddit_comment_chance": 0.005, # the chance the bot will reply to a comment # otherwise it will reply to a post "reddit_reply_to_comment": 0.002, # chance the bot will remove poor performing # posts and comments "reddit_remove_low_scores": 0.002, # posts/comments that get downvoted to this score will be deleted "reddit_low_score_threshold": 0, # chance to check if the bot is shadowbanned, # and shut down the script automatically "reddit_shadowban_check": 0.002, # list of subreddits for the bot to use "reddit_sub_list": REDDIT_APPROVED_SUBS, # bot schedules. all times are UTC # add the schedule number to the array # and the bot will run within that time range # leave the array empty for no schedule: [] # 1 - 7am-10am ((7,00),(10,00)) # 2 - 10am-2pm ((10,00),(14,00)) # 3 - 2pm-6pm ((14,00),(18,00)) # 4 - 6pm-10pm ((18,00),(22,00)) # 5 - 10pm-2am ((22,00),(2,00)) "reddit_sleep_schedule": [2, 4] }) log.info(f"REDDIT CONNFIG:\n {log_json(CONFIG)}")
py
1a2fba1a886ca8bda4185af80c3157d5a5d9f4a5
from django.http import JsonResponse from django.utils import timezone from django.contrib.sessions.models import Session from rest_framework import views, viewsets, authentication from rest_framework.decorators import action from rest_framework.response import Response from rest_framework.parsers import JSONParser from rest_framework.exceptions import APIException from liliapi.serializers import * from liliapi.models import * from liliapi.permissions import * from liliapi.paginations import * from liliapi.authentication import * from liliapi.tasks import * ######################################################################################################################## # # copyright: 2017 WiM - USGS # authors: Aaron Stephenson USGS WiM (Web Informatics and Mapping) # # In Django, a view is what takes a Web request and returns a Web response. The response can be many things, but most # of the time it will be a Web page, a redirect, or a document. In this case, the response will almost always be data # in JSON format. # # All these views are written as Class-Based Views (https://docs.djangoproject.com/en/1.11/topics/class-based-views/) # because that is the paradigm used by Django Rest Framework (http://www.django-rest-framework.org/api-guide/views/) # which is the toolkit we used to create web services in Django. # # ######################################################################################################################## LIST_DELIMETER = settings.LIST_DELIMETER ###### # # Abstract Base Classes # ###### class HistoryViewSet(viewsets.ModelViewSet): """ This class will automatically assign the User ID to the created_by and modified_by history fields when appropriate """ permission_classes = (permissions.IsAuthenticated,) pagination_class = StandardResultsSetPagination def perform_create(self, serializer): serializer.save(created_by=self.request.user, modified_by=self.request.user) def perform_update(self, serializer): serializer.save(modified_by=self.request.user) # override the default pagination to allow disabling of pagination def paginate_queryset(self, *args, **kwargs): if self.request and 'paginate' in self.request.query_params: return super().paginate_queryset(*args, **kwargs) return None ###### # # Samples # ###### class SampleViewSet(HistoryViewSet): serializer_class = SampleSerializer def get_serializer_class(self): if self.request and 'slim' in self.request.query_params: return SampleSlimSerializer else: return SampleSerializer @action(detail=False) def finalsamplemeanconcentrations(self, request): queryset = Sample.objects.prefetch_related('finalsamplemeanconcentrations').distinct() query_params = self.request.query_params # filter by sample IDs, exact list sample = query_params.get('sample', None) if sample is not None: if LIST_DELIMETER in sample: sample_list = sample.split(LIST_DELIMETER) queryset = queryset.filter(id__in=sample_list) else: queryset = queryset.filter(id__exact=sample) # filter by target IDs, exact list target = query_params.get('target', None) target_list = [] if target is not None: if LIST_DELIMETER in target: target_list = target.split(LIST_DELIMETER) queryset = queryset.filter(finalsamplemeanconcentrations__target__in=target_list) else: target_list = [target] queryset = queryset.filter(finalsamplemeanconcentrations__target__exact=target) # recalc reps validity for sample in queryset: fsmcs = FinalSampleMeanConcentration.objects.filter(sample=sample.id, target__in=target_list) for fsmc in fsmcs: recalc_reps('FinalSampleMeanConcentration', sample.id, target=fsmc.target.id, recalc_rep_conc=False) # start building up the response object resp = [] for sample in queryset: sample_target_list = [int(target) for target in target_list] item = { "id": sample.id, "collaborator_sample_id": sample.collaborator_sample_id, "collection_start_date": sample.collection_start_date, "final_sample_mean_concentrations": [] } fsmcs = list(FinalSampleMeanConcentration.objects.filter(sample=sample.id)) for fsmc in fsmcs: # attempt to find the matching target in the fsmc list try: sample_target_index = sample_target_list.index(fsmc.target.id) # pop the matching fsmc target from its list so that we eventually end up with an empty list, # or a list of extraneous targets sample_target_list.pop(sample_target_index) # start building up the nested response object item["final_sample_mean_concentrations"].append({ "target": fsmc.target.id, "target_string": fsmc.target.name, "final_sample_mean_concentration": fsmc.final_sample_mean_concentration }) # no matching target was found in the fsmc list except ValueError: # do not include this fsmc in the response because its target was not requested continue # now list out the other targets that were requested but do not exist for this sample for extraneous_target in sample_target_list: # start building up the nested response object target_name = list(Target.objects.filter(id=extraneous_target).values_list('name', flat=True)) item["final_sample_mean_concentrations"].append({ "target": extraneous_target, "target_string": target_name[0], "final_sample_mean_concentration": "N/A" }) resp.append(item) return Response(resp) @action(detail=False) def get_count(self, request): # Sample.objects.filter(matrix__in=matrix_list).count() query_params = self.request.query_params return Response({"count": self.build_queryset(query_params).count()}) @action(detail=False) def get_sampler_names(self, request): sampler_names = set(list(Sample.objects.values_list('sampler_name', flat=True))) return Response({"sampler_names": sampler_names}) @action(detail=False) def get_recent_pegnegs(self, request): pegneg_record_type = RecordType.objects.filter(id=2).first() recent_pegnegs = Sample.objects.filter(record_type=pegneg_record_type).order_by('-id')[:20] return Response(self.serializer_class(recent_pegnegs, many=True).data) # override the default queryset to allow filtering by URL arguments def get_queryset(self): query_params = self.request.query_params return self.build_queryset(query_params) # build a queryset using query_params # NOTE: this is being done in its own method to adhere to the DRY Principle def build_queryset(self, query_params): queryset = Sample.objects.all() # filter by sample IDs, exact list sample = query_params.get('id', None) if sample is not None: if LIST_DELIMETER in sample: sample_list = sample.split(LIST_DELIMETER) queryset = queryset.filter(id__in=sample_list) else: queryset = queryset.filter(id__exact=sample) # filter by sample ID, range from_sample = query_params.get('from_id', None) to_sample = query_params.get('to_id', None) if from_sample is not None and to_sample is not None: # the filter below using __range is value-inclusive queryset = queryset.filter(id__range=(from_sample, to_sample)) elif to_sample is not None: queryset = queryset.filter(id__lte=to_sample) elif from_sample is not None: queryset = queryset.filter(id__gte=from_sample) # filter by study ID, exact list study = query_params.get('study', None) if study is not None: if LIST_DELIMETER in study: study_list = study.split(LIST_DELIMETER) queryset = queryset.filter(study__in=study_list) else: queryset = queryset.filter(study__exact=study) # filter by collection_start_date, range from_collection_start_date = query_params.get('from_collection_start_date', None) to_collection_start_date = query_params.get('to_collection_start_date', None) if from_collection_start_date is not None and to_collection_start_date is not None: # the filter below using __range is value-inclusive queryset = queryset.filter(collection_start_date__range=( from_collection_start_date, to_collection_start_date)) elif to_collection_start_date is not None: queryset = queryset.filter(collection_start_date__lte=to_collection_start_date) elif from_collection_start_date is not None: queryset = queryset.filter(collection_start_date__gte=from_collection_start_date) # filter by collaborator_sample_id, exact list collaborator_sample_id = query_params.get('collaborator_sample_id', None) if collaborator_sample_id is not None: if LIST_DELIMETER in collaborator_sample_id: collaborator_sample_id_list = collaborator_sample_id.split(LIST_DELIMETER) queryset = queryset.filter(collaborator_sample_id__in=collaborator_sample_id_list) else: queryset = queryset.filter(collaborator_sample_id__exact=collaborator_sample_id) # filter by sample type, exact list sample_type = query_params.get('sample_type', None) if sample_type is not None: if LIST_DELIMETER in sample_type: sample_type_list = sample_type.split(LIST_DELIMETER) queryset = queryset.filter(sample_type__in=sample_type_list) else: queryset = queryset.filter(sample_type__exact=sample_type) # filter by matrix, exact list matrix = query_params.get('matrix', None) if matrix is not None: if LIST_DELIMETER in matrix: matrix_list = matrix.split(LIST_DELIMETER) queryset = queryset.filter(matrix__in=matrix_list) else: queryset = queryset.filter(matrix__exact=matrix) # filter by record_type, exact list record_type = query_params.get('record_type', None) if record_type is not None: if LIST_DELIMETER in record_type: record_type_list = record_type.split(LIST_DELIMETER) queryset = queryset.filter(record_type__in=record_type_list) else: queryset = queryset.filter(record_type__exact=record_type) # filter by peg_neg, exact list peg_neg = query_params.get('peg_neg', None) if peg_neg is not None: if LIST_DELIMETER in peg_neg: peg_neg_list = peg_neg.split(LIST_DELIMETER) queryset = queryset.filter(peg_neg__in=peg_neg_list) else: queryset = queryset.filter(peg_neg__exact=peg_neg) return queryset class AliquotViewSet(HistoryViewSet): queryset = Aliquot.objects.all() serializer_class = AliquotCustomSerializer @action(detail=False) def get_location(self, request): # get the freezer from the request query freezer = request.query_params.get('freezer', None) # get the rack from the request query rack = request.query_params.get('rack', None) # get the box from the request query box = request.query_params.get('box', None) # if a freezer was included in the query, use it, otherwise default to the first freezer freezer = freezer if freezer else 1 # find all aliquots in the requested rack and/or box (and freezer) if rack and box: queryset = Aliquot.objects.filter(freezer_location__freezer=freezer, freezer_location__rack=rack, freezer_location__box=box) elif rack: queryset = Aliquot.objects.filter(freezer_location__freezer=freezer, freezer_location__rack=rack) elif box: queryset = Aliquot.objects.filter(freezer_location__freezer=freezer, freezer_location__box=box) else: queryset = Aliquot.objects.none() return Response(AliquotSlimSerializer(queryset, many=True).data) @action(methods=['post'], detail=False) def bulk_delete(self, request): # ensure submitted data is a list of only IDs or a list of only aliquot_strings (SampleID-AliquotNumber) if all([str(item).isdigit() for item in request.data]): aliquots = Aliquot.objects.filter(id__in=request.data) if len(aliquots) != len(request.data): aliquot_ids = [aliquot.id for aliquot in aliquots] invalid_ids = list(set(request.data).difference(aliquot_ids)) message = "Invalid request. No aliquots deleted. The following submitted values could not be found" message += " in the database: " + str(invalid_ids) return JsonResponse({"message": message}, status=400) else: freezer_location_ids = [aliquot.freezer_location_id for aliquot in aliquots] Aliquot.objects.filter(id__in=request.data).delete() FreezerLocation.objects.filter(id__in=freezer_location_ids).delete() return JsonResponse({"message": "Aliquots deleted."}, status=200) elif all([isinstance(item, str) and '-' in item for item in request.data]): aliquot_ids = [] freezer_location_ids = [] invalid_ids = [] for item in request.data: item_split = item.split('-') aliquot = Aliquot.objects.filter(sample=item_split[0], aliquot_number=item_split[1]).first() if aliquot: aliquot_ids.append(aliquot.id) freezer_location_ids.append(aliquot.freezer_location_id) else: invalid_ids.append(item) if len(invalid_ids) > 0: message = "Invalid request. No aliquots deleted. The following submitted values could not be found" message += " in the database: " + str(invalid_ids) return JsonResponse({"message": message}, status=400) else: Aliquot.objects.filter(id__in=aliquot_ids).delete() FreezerLocation.objects.filter(id__in=freezer_location_ids).delete() return JsonResponse({"message": "Aliquots deleted."}, status=200) else: message = "Invalid request. Submitted data must be a list/array of aliquot IDs" message += "or sample_id-aliquot_number combinations (e.g., '1001-3')" return JsonResponse({"message": message}, status=400) def get_serializer_class(self): if not isinstance(self.request.data, list): return AliquotSerializer else: return self.serializer_class def get_serializer(self, *args, **kwargs): if 'data' in kwargs: data = kwargs['data'] # check if many is required if isinstance(data, list) and len(data) > 0 and 'aliquot_count' in data[0]: kwargs['many'] = True return super(AliquotViewSet, self).get_serializer(*args, **kwargs) class SampleTypeViewSet(HistoryViewSet): queryset = SampleType.objects.all() serializer_class = SampleTypeSerializer class MatrixViewSet(HistoryViewSet): queryset = Matrix.objects.all() serializer_class = MatrixSerializer class FilterTypeViewSet(HistoryViewSet): queryset = FilterType.objects.all() serializer_class = FilterTypeSerializer class StudyViewSet(HistoryViewSet): queryset = Study.objects.all() serializer_class = StudySerializer class UnitViewSet(HistoryViewSet): queryset = Unit.objects.all() serializer_class = UnitSerializer ###### # # Freezer Locations # ###### class FreezerLocationViewSet(HistoryViewSet): queryset = FreezerLocation.objects.all() serializer_class = FreezerLocationSerializer @action(methods=['get'], detail=False) def get_next_available(self, request): # get the first empty box in the any freezer first_empty_box = FreezerLocation.objects.get_first_empty_box() if first_empty_box is None: first_empty_box = "There are no more empty boxes in this freezer!" # get the study_id from the request query study_id = request.query_params.get('study', None) last_spot = FreezerLocation.objects.get_last_occupied_spot(study_id) # if a last spot is found look up the next available spot if last_spot is not None: next_spot = FreezerLocation.objects.get_next_available_spot(last_spot) # if there is a next spot if next_spot is not None: # start building the full response object resp = next_spot # determine maximum available spots in a box in this freezer (for an empty box) rows_in_box = last_spot.freezer.rows spots_in_row = last_spot.freezer.spots spots_in_box = rows_in_box * spots_in_row # ensure next spot and next empty box are not the same get_second_empty_box = True if next_spot['available_spots_in_box'] == spots_in_box else False next_empty_box = FreezerLocation.objects.get_next_empty_box(last_spot, get_second_empty_box) # then add the next empty box to the response object resp.update({"next_empty_box": next_empty_box}) # no next spot was found else: resp = {"not_found": "There are no more empty boxes in this freezer!"} # otherwise no last spot has been found else: # if a study_id was included in the query, mention it in the response if study_id is not None: study = Study.objects.filter(id=study_id).first() message = "No aliquots for " if study is not None: message += study.name + " " message += "(Study ID #" + str(study_id) + ") are stored in any freezer." # otherwise inform the user that no freezer locations have been used else: message = "No aliquots are stored in any freezer." resp = {"not_found": message} resp.update({"next_empty_box": first_empty_box}) return Response(resp) class FreezerViewSet(HistoryViewSet): queryset = Freezer.objects.all() serializer_class = FreezerSerializer ###### # # Final Sample Values # ###### class FinalConcentratedSampleVolumeViewSet(HistoryViewSet): serializer_class = FinalConcentratedSampleVolumeSerializer # override the default queryset to allow filtering by URL arguments def get_queryset(self): queryset = FinalConcentratedSampleVolume.objects.all() # filter by sample ID, exact list sample = self.request.query_params.get('sample', None) if sample is not None: sample_list = sample.split(',') queryset = queryset.filter(sample__in=sample_list) return queryset def get_serializer(self, *args, **kwargs): if 'data' in kwargs: data = kwargs['data'] # check if many is required if isinstance(data, list): kwargs['many'] = True return super(FinalConcentratedSampleVolumeViewSet, self).get_serializer(*args, **kwargs) class ConcentrationTypeViewSet(HistoryViewSet): queryset = ConcentrationType.objects.all() serializer_class = ConcentrationTypeSerializer class FinalSampleMeanConcentrationViewSet(HistoryViewSet): serializer_class = FinalSampleMeanConcentrationSerializer @action(detail=False) def summary_statistics(self, request): sample = request.query_params.get('sample', None) target = request.query_params.get('target', None) statistic = request.query_params.get('statistic', None) report_type = ReportType.objects.filter(id=2).first() status = Status.objects.filter(id=1).first() report_file = ReportFile.objects.create( report_type=report_type, status=status, created_by=request.user, modified_by=request.user) task = generate_results_summary_report.delay(sample, target, statistic, report_file.id, request.user.username) monitor_task.delay(task.id, datetime.now().strftime('%Y-%m-%d_%H:%M:%S'), report_file.id) return JsonResponse({"message": "Request for Results Summary Report received."}, status=200) @action(detail=False) def results(self, request): sample = request.query_params.get('sample', None) target = request.query_params.get('target', None) report_type = ReportType.objects.filter(id=3).first() status = Status.objects.filter(id=1).first() report_file = ReportFile.objects.create( report_type=report_type, status=status, created_by=request.user, modified_by=request.user) task = generate_individual_sample_report.delay(sample, target, report_file.id, request.user.username) monitor_task.delay(task.id, datetime.now().strftime('%Y-%m-%d_%H:%M:%S'), report_file.id) return JsonResponse({"message": "Request for Individual Sample Report received."}, status=200) # override the default queryset to allow filtering by URL arguments def get_queryset(self): query_params = self.request.query_params return self.build_queryset(query_params) # build a queryset using query_params # NOTE: this is being done in its own method to adhere to the DRY Principle def build_queryset(self, query_params): queryset = FinalSampleMeanConcentration.objects.all() # filter by sample ID, exact list sample = query_params.get('sample', None) if sample is not None: sample_list = sample.split(',') queryset = queryset.filter(sample__in=sample_list) # filter by target ID, exact list target = query_params.get('target', None) if target is not None: target_list = target.split(',') queryset = queryset.filter(target__in=target_list) # filter by study ID, exact list study = query_params.get('study', None) if study is not None: study_list = sample.split(',') queryset = queryset.filter(sample__study__in=study_list) # filter by collection_start_date, exact list collection_start_date = query_params.get('collection_start_date', None) if collection_start_date is not None: collection_start_date_list = sample.split(',') queryset = queryset.filter(sample__collection_start_date__in=collection_start_date_list) # filter by collaborator_sample_id, exact list collaborator_sample_id = query_params.get('collaborator_sample_id', None) if collaborator_sample_id is not None: collaborator_sample_id_list = sample.split(',') queryset = queryset.filter(sample__collaborator_sample_id__in=collaborator_sample_id_list) # recalc reps validity for fsmc in queryset: recalc_reps('FinalSampleMeanConcentration', fsmc.sample.id, target=fsmc.target.id, recalc_rep_conc=False) return queryset # override the default GET method to recalc all child PCR Replicates first before the FSMC Select query def retrieve(self, request, *args, **kwargs): recalc_reps('FinalSampleMeanConcentration', self.get_object().sample.id, target=self.get_object().target.id, recalc_rep_conc=False) return super(FinalSampleMeanConcentrationViewSet, self).retrieve(request, *args, **kwargs) ###### # # Sample Groups # ###### class SampleSampleGroupViewSet(HistoryViewSet): queryset = SampleSampleGroup.objects.all() serializer_class = SampleSampleGroupSerializer class SampleGroupViewSet(HistoryViewSet): queryset = SampleGroup.objects.all() serializer_class = SampleGroupSerializer ###### # # Analyses # ###### class SampleAnalysisBatchViewSet(HistoryViewSet): queryset = SampleAnalysisBatch.objects.all() serializer_class = SampleAnalysisBatchSerializer class AnalysisBatchViewSet(HistoryViewSet): queryset = AnalysisBatch.objects.all() serializer_class = AnalysisBatchSerializer # override the default DELETE method to prevent deletion of an AnalysisBatch with any results data entered def destroy(self, request, *args, **kwargs): nonnull_pcrreplicates = PCRReplicate.objects.filter( pcrreplicate_batch__extraction_batch__analysis_batch=self.get_object().id).exclude(cq_value__isnull=True) if any(nonnull_pcrreplicates): message = "An Analysis Batch may not be deleted if any related PCR Replicates have results data entered." raise APIException(message) return super(AnalysisBatchViewSet, self).destroy(request, *args, **kwargs) class AnalysisBatchDetailViewSet(HistoryViewSet): serializer_class = AnalysisBatchDetailSerializer # override the default queryset to allow filtering by URL arguments def get_queryset(self): queryset = AnalysisBatch.objects.all() batch = self.request.query_params.get('id', None) if batch is not None: if LIST_DELIMETER in batch: batch_list = batch.split(',') queryset = queryset.filter(id__in=batch_list) else: queryset = queryset.filter(id__exact=batch) return queryset class AnalysisBatchSummaryViewSet(HistoryViewSet): serializer_class = AnalysisBatchSummarySerializer @action(detail=False) def get_count(self, request): query_params = self.request.query_params return Response({"count": self.build_queryset(query_params).count()}) # override the default queryset to allow filtering by URL arguments def get_queryset(self): query_params = self.request.query_params return self.build_queryset(query_params) # build a queryset using query_params # NOTE: this is being done in its own method to adhere to the DRY Principle def build_queryset(self, query_params): study = self.request.query_params.get('study', None) if study is not None: queryset = AnalysisBatch.objects.prefetch_related('samples').all() else: queryset = AnalysisBatch.objects.all() # filter by batch ID, exact list batch = self.request.query_params.get('id', None) if batch is not None: if LIST_DELIMETER in batch: batch_list = batch.split(',') queryset = queryset.filter(id__in=batch_list) else: queryset = queryset.filter(id__exact=batch) # filter by batch ID, range from_batch = query_params.get('from_id', None) to_batch = query_params.get('to_id', None) if from_batch is not None and to_batch is not None: # the filter below using __range is value-inclusive queryset = queryset.filter(id__range=(from_batch, to_batch)) elif to_batch is not None: queryset = queryset.filter(id__lte=to_batch) elif from_batch is not None: queryset = queryset.filter(id__gte=from_batch) # filter by study ID, exact list if study is not None: if LIST_DELIMETER in study: study_list = study.split(',') queryset = queryset.filter(samples__study__in=study_list).distinct() else: queryset = queryset.filter(samples__study__exact=study).distinct() return queryset class AnalysisBatchTemplateViewSet(HistoryViewSet): queryset = AnalysisBatchTemplate.objects.all() serializer_class = AnalysisBatchTemplateSerializer ###### # # Extractions # ###### class ExtractionMethodViewSet(HistoryViewSet): queryset = ExtractionMethod.objects.all() serializer_class = ExtractionMethodSerializer class ExtractionBatchViewSet(HistoryViewSet): queryset = ExtractionBatch.objects.all() # override the default serializer_class if summary fields are requested def get_serializer_class(self): include_summary_fields = self.request.query_params.get('includeSummaryFields', None) if include_summary_fields is not None and include_summary_fields.lower() == 'true': return ExtractionBatchSummarySerializer else: return ExtractionBatchSerializer def get_serializer(self, *args, **kwargs): if 'data' in kwargs: data = kwargs['data'] # check if many is required if isinstance(data, list): kwargs['many'] = True return super(ExtractionBatchViewSet, self).get_serializer(*args, **kwargs) # override the default DELETE method to prevent deletion of an ExtractionBatch with any results data entered def destroy(self, request, *args, **kwargs): nonnull_pcrreplicates = PCRReplicate.objects.filter( pcrreplicate_batch__extraction_batch=self.get_object().id).exclude(cq_value__isnull=True) if any(nonnull_pcrreplicates): message = "An Extraction Batch may not be deleted if any related PCR Replicates have results data entered." raise APIException(message) return super(ExtractionBatchViewSet, self).destroy(request, *args, **kwargs) # override the default PATCH method to allow bulk processing def patch(self, request, pk=None): request_data = JSONParser().parse(request) # if there is no pk, assume this is a bulk request if not pk: is_valid = True response_data = [] valid_data = [] response_errors = [] for item in request_data: # ensure the id field is present, otherwise nothing can be updated if not item.get('id'): is_valid = False response_errors.append({"id": "This field is required."}) else: eb_id = item.pop('id') eb = ExtractionBatch.objects.filter(id=eb_id).first() item['modified_by'] = request.user # remove nulls coming from client (user not actually sending nulls, so no need to trigger recalcs) if 'ext_pos_rna_rt_cq_value' in item and item['ext_pos_rna_rt_cq_value'] is None: item.pop('ext_pos_rna_rt_cq_value') if 'ext_pos_dna_cq_value' in item and item['ext_pos_dna_cq_value'] is None: item.pop('ext_pos_dna_cq_value') if eb: serializer = self.get_serializer(eb, data=item, partial=True) # if this item is valid, temporarily hold it until all items are proven valid, then save all # if even one item is invalid, none will be saved, and the user will be returned the error(s) if serializer.is_valid(): valid_data.append(serializer) else: is_valid = False response_errors.append(serializer.errors) else: is_valid = False message = "No ExtractionBatch exists with this ID: " + str(eb_id) response_errors.append({"extractionbatch": message}) if is_valid: # now that all items are proven valid, save and return them to the user for item in valid_data: item.save() response_data.append(item.data) return JsonResponse(response_data, safe=False, status=200) else: return JsonResponse(response_errors, safe=False, status=400) # otherwise, if there is a pk, update the instance indicated by the pk else: rep = ExtractionBatch.objects.filter(id=pk).first() if rep: serializer = self.serializer_class(rep, data=request_data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=200) else: return Response(serializer.errors, status=400) else: message = "No ExtractionBatch exists with this ID: " + str(pk) return JsonResponse({"extractionbatch": message}, status=400) class ReverseTranscriptionViewSet(HistoryViewSet): queryset = ReverseTranscription.objects.all() serializer_class = ReverseTranscriptionSerializer def get_serializer(self, *args, **kwargs): if 'data' in kwargs: data = kwargs['data'] # check if many is required if isinstance(data, list): kwargs['many'] = True return super(ReverseTranscriptionViewSet, self).get_serializer(*args, **kwargs) # override the default DELETE method to prevent deletion of a ReverseTranscription with any results data entered def destroy(self, request, *args, **kwargs): nonnull_pcrreplicates = PCRReplicate.objects.filter( pcrreplicate_batch__extraction_batch__reversetranscriptions=self.get_object().id).exclude( cq_value__isnull=True) if any(nonnull_pcrreplicates): message = "A Reverse Transcription may not be deleted" message += " if any related PCR Replicates have results data entered." raise APIException(message) return super(ReverseTranscriptionViewSet, self).destroy(request, *args, **kwargs) # override the default PATCH method to allow bulk processing def patch(self, request, pk=None): request_data = JSONParser().parse(request) # if there is no pk, assume this is a bulk request if not pk: is_valid = True response_data = [] valid_data = [] response_errors = [] for item in request_data: # ensure the id field is present, otherwise nothing can be updated if not item.get('id'): is_valid = False response_errors.append({"id": "This field is required."}) else: rt_id = item.pop('id') rt = ReverseTranscription.objects.filter(id=rt_id).first() if rt: serializer = self.serializer_class(rt, data=item, partial=True) # if this item is valid, temporarily hold it until all items are proven valid, then save all # if even one item is invalid, none will be saved, and the user will be returned the error(s) if serializer.is_valid(): valid_data.append(serializer) else: is_valid = False response_errors.append(serializer.errors) else: is_valid = False response_errors.append( {"reversetranscription": "No ReverseTranscription exists with this ID: " + str(rt_id)}) if is_valid: # now that all items are proven valid, save and return them to the user for item in valid_data: item.save() response_data.append(item.data) return JsonResponse(response_data, safe=False, status=200) else: return JsonResponse(response_errors, safe=False, status=400) # otherwise, if there is a pk, update the instance indicated by the pk else: rep = ReverseTranscription.objects.filter(id=pk).first() if rep: serializer = self.serializer_class(rep, data=request_data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=200) else: return Response(serializer.errors, status=400) else: return JsonResponse( {"reversetranscription": "No ReverseTranscription exists with this ID: " + str(pk)}, status=400) class SampleExtractionViewSet(HistoryViewSet): queryset = SampleExtraction.objects.all() serializer_class = SampleExtractionSerializer @action(detail=False) def inhibition_report(self, request): sample = request.query_params.get('sample', None) report_type = ReportType.objects.filter(id=1).first() status = Status.objects.filter(id=1).first() report_file = ReportFile.objects.create( report_type=report_type, status=status, created_by=request.user, modified_by=request.user) task = generate_inhibition_report.delay(sample, report_file.id, request.user.username) monitor_task.delay(task.id, datetime.now().strftime('%Y-%m-%d_%H:%M:%S'), report_file.id) return JsonResponse({"message": "Request for Inhibition Report received."}, status=200) # override the default DELETE method to prevent deletion of a SampleExtraction with any results data entered def destroy(self, request, *args, **kwargs): nonnull_pcrreplicates = PCRReplicate.objects.filter( sample_extraction=self.get_object().id).exclude(cq_value__isnull=True) if any(nonnull_pcrreplicates): message = "A Sample Extraction may not be deleted if any related PCR Replicates have results data entered." raise APIException(message) return super(SampleExtractionViewSet, self).destroy(request, *args, **kwargs) class PCRReplicateViewSet(HistoryViewSet): serializer_class = PCRReplicateSerializer def get_serializer(self, *args, **kwargs): if 'data' in kwargs: data = kwargs['data'] # check if many is required if isinstance(data, list): kwargs['many'] = True return super(PCRReplicateViewSet, self).get_serializer(*args, **kwargs) def get_queryset(self): queryset = PCRReplicate.objects.all() id = self.request.query_params.get('id', None) if id is not None: if LIST_DELIMETER in id: id_list = id.split(',') queryset = queryset.filter(id__in=id_list) else: queryset = queryset.filter(id__exact=id) return queryset # override the default PATCH method to allow bulk processing def patch(self, request, pk=None): request_data = JSONParser().parse(request) # if there is no pk, assume this is a bulk request if not pk: is_valid = True response_data = [] valid_data = [] response_errors = [] for item in request_data: # ensure the id field is present, otherwise nothing can be updated if not item.get('id'): is_valid = False response_errors.append({"id": "This field is required."}) else: rep_id = item.pop('id') rep = PCRReplicate.objects.filter(id=rep_id).first() if rep: new_invalid = item.get('invalid', None) if new_invalid is not None and new_invalid != rep.invalid: item['invalid_override'] = request.user.id rep.replicate_concentration = rep.calc_rep_conc() serializer = self.serializer_class(rep, data=item, partial=True) # if this item is valid, temporarily hold it until all items are proven valid, then save all # if even one item is invalid, none will be saved, and the user will be returned the error(s) if serializer.is_valid(): valid_data.append(serializer) else: is_valid = False response_errors.append(serializer.errors) else: is_valid = False response_errors.append({"pcrreplicate": "No PCRReplicate exists with this ID: " + str(rep_id)}) if is_valid: # now that all items are proven valid, save and return them to the user for item in valid_data: item.save() response_data.append(item.data) return JsonResponse(response_data, safe=False, status=200) else: return JsonResponse(response_errors, safe=False, status=400) # otherwise, if there is a pk, update the instance indicated by the pk else: rep = PCRReplicate.objects.filter(id=pk).first() if rep: new_invalid = request_data.get('invalid', None) if new_invalid is not None and new_invalid != rep.invalid: if request_data.get('invalid_override', None) is None: request_data['invalid_override'] = request.user.id serializer = self.serializer_class(rep, data=request_data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=200) else: return Response(serializer.errors, status=400) else: return JsonResponse({"pcrreplicate": "No PCRReplicate exists with this ID: " + str(pk)}, status=400) class PCRReplicateBatchViewSet(HistoryViewSet): serializer_class = PCRReplicateBatchSerializer def isnumber(self, val): try: return True if float(val) == 0 else float(val) except ValueError: return False def err_obj(self, field, message, severity): return {"field": field, "message": message, "severity": severity} def validate_controls(self, field): synonym = " ('cp')" if 'cq_value' in field else " ('concentration')" if 'gc_reaction' in field else '' invalid_reason = None if field not in self.request.data: invalid_reason = self.err_obj(field, field + synonym + " is missing", 2) elif self.request.data[field] is not None: if not self.isnumber(self.request.data[field]): invalid_reason = self.err_obj(field, field + synonym + " is not a number", 1) elif self.request.data[field] > Decimal('0') and field not in ['pcr_pos_cq_value', 'pcr_pos_gc_reaction']: # eventually we will also validate pcr_pos_cq_value by testing if it is >0.5 cylces from expected invalid_reason = self.err_obj(field, field + synonym + " is positive", 1) return invalid_reason @action(methods=['post'], detail=False) def bulk_load_negatives(self, request): is_valid = True valid_data = [] response_errors = [] for item in request.data: item_validation_errors = [] if 'extraction_batch' not in item: item_validation_errors.append("extraction_batch is required") if 'target' not in item: item_validation_errors.append("target is required") if 'replicate_number' not in item: item_validation_errors.append("replicate_number is required") if 'pcr_pos_cq_value' not in item: item_validation_errors.append("pcr_pos_cq_value is required") if len(item_validation_errors) > 0: is_valid = False response_errors.append(item_validation_errors) continue pcrreplicate_batch = PCRReplicateBatch.objects.filter( extraction_batch=item['extraction_batch'], target=item['target'], replicate_number=item['replicate_number']).first() if pcrreplicate_batch: if not is_valid: continue else: item.pop('extraction_batch') item.pop('target') item.pop('replicate_number') item['ext_neg_cq_value'] = 0 item['ext_neg_gc_reaction'] = 0 item['rt_neg_cq_value'] = 0 item['rt_neg_gc_reaction'] = 0 item['pcr_neg_cq_value'] = 0 item['pcr_neg_gc_reaction'] = 0 item['pcr_pos_gc_reaction'] = 0 item['updated_pcrreplicates'] = [] pcrreplicates = PCRReplicate.objects.filter(pcrreplicate_batch=pcrreplicate_batch.id) for rep in pcrreplicates: item['updated_pcrreplicates'].append( {"sample": rep.sample_extraction.sample.id, "cq_value": 0, "gc_reaction": 0}) serializer = self.serializer_class(pcrreplicate_batch, data=item, partial=True) # if this item is valid, temporarily hold it until all items are proven valid, then save all # if even one item is invalid, none will be saved, and the user will be returned the error(s) if serializer.is_valid(): valid_data.append(serializer) else: is_valid = False response_errors.append(serializer.errors) else: message = "No PCR replicate batch was found with extraction batch of " + str(item['extraction_batch']) message += " and target of " + str(item['target']) message += " and replicate number of " + str(item['replicate_number']) is_valid = False response_errors.append({"pcrreplicatebatch": message}) if is_valid: # now that all items are proven valid, save and return them to the user response_data = [] for item in valid_data: item.save() # recalc the child rep validity reps = PCRReplicate.objects.filter(pcrreplicate_batch=item.data['id']) for rep in reps: if rep.invalid_override is None: rep.invalid = rep.calc_invalid() rep.save() response_data.append(item.data) return JsonResponse(response_data, safe=False, status=200) else: return JsonResponse(response_errors, safe=False, status=400) @action(methods=['post'], detail=False) def validate(self, request): validation_errors = [] if 'analysis_batch' not in request.data: validation_errors.append("analysis_batch is required") if 'extraction_number' not in request.data: validation_errors.append("extraction_number is required") if 'target' not in request.data: validation_errors.append("target is required") if 'replicate_number' not in request.data: validation_errors.append("replicate_number is required") if len(validation_errors) > 0: return Response(validation_errors) extraction_batch = ExtractionBatch.objects.filter( analysis_batch=request.data['analysis_batch'], extraction_number=request.data['extraction_number'] ).first() if not extraction_batch: message = "No extraction batch was found with analysis batch of " + str(request.data['analysis_batch']) message += " and extraction number of " + str(request.data['extraction_number']) return Response({"extraction_batch": message}) target = Target.objects.filter(id=request.data['target']).first() if not target: message = "No target was found with ID of " + str(request.data['target']) return Response({"target": message}) pcrreplicate_batch = PCRReplicateBatch.objects.filter( extraction_batch=extraction_batch.id, target=target.id, replicate_number=request.data['replicate_number'] ).first() if not pcrreplicate_batch: message = "No PCR replicate batch was found with extraction batch of " + str(extraction_batch.id) message += " and target of " + str(request.data['target']) message += " and replicate number of " + str(request.data['replicate_number']) return Response({"pcrreplicate_batch": message}, status=400) rna = True if target.nucleic_acid_type.name == 'RNA' else False # start building up the response object field_validations = { "id": pcrreplicate_batch.id, "ext_neg_invalid": False, "rt_neg_invalid": False, "pcr_neg_invalid": False, "pcr_pos_invalid": False } # populate the response object with the submitted control values and the control validations control_fields = ['ext_neg_cq_value', 'ext_neg_gc_reaction', 'rt_neg_cq_value', 'rt_neg_gc_reaction', 'pcr_neg_cq_value', 'pcr_neg_gc_reaction', 'pcr_pos_cq_value', 'pcr_pos_gc_reaction'] control_validations = [] for field in control_fields: field_validations[field] = request.data[field] if field in request.data else None # exclude RT fields if this is a DNA target if 'rt' not in field or rna: validation_error = self.validate_controls(field) if validation_error: control_validations.append(validation_error) if "ext_neg" in field: field_validations["ext_neg_invalid"] = True elif "rt_neg" in field: field_validations["rt_neg_invalid"] = True elif "pcr_neg" in field: field_validations["pcr_neg_invalid"] = True elif "pcr_pos" in field: field_validations["pcr_pos_invalid"] = True field_validations["validation_errors"] = control_validations # check that pcrreplicates have been submitted if 'updated_pcrreplicates' not in request.data or not request.data['updated_pcrreplicates']: field_validations["updated_pcrreplicates"] = [("updated_pcrreplicates is missing", 2)] else: # validate pcrreplicates existing_pcrreplicates = PCRReplicate.objects.filter( pcrreplicate_batch=pcrreplicate_batch.id).order_by('sample_extraction__sample__id') all_pcrreplicates_validations = [] updated_pcrreplicates = request.data.get('updated_pcrreplicates') updated_pcrreplicates_sample_ids = [rep['sample'] for rep in updated_pcrreplicates] for existing_rep in existing_pcrreplicates: sample_id = existing_rep.sample_extraction.sample.id rep_validations = [] # attempt to find the matching updated rep try: rep_index = updated_pcrreplicates_sample_ids.index(sample_id) # pop the matching updated rep from its list so that we eventually end up with an empty list, # or a list of extraneous reps updated_rep = updated_pcrreplicates.pop(rep_index) # also remove the parallel sample ID so that the two lists continue to have matching indexes del updated_pcrreplicates_sample_ids[rep_index] # start building up the response object response_rep = {"sample": sample_id} rep_validations = [] # check if this rep has already been uploaded if existing_rep.cq_value is not None: message = "sample " + str(sample_id) + " has already been uploaded for this PCR replicate batch" rep_validations.append(self.err_obj("cq_value", message, 1)) # validate cq_value # remember that null is an acceptable value if 'cq_value' not in updated_rep: rep_validations.append(self.err_obj("cq_value", "cq_value ('cp') is missing", 2)) else: rep_cq_value = updated_rep['cq_value'] response_rep['cq_value'] = rep_cq_value if rep_cq_value is not None: if not self.isnumber(rep_cq_value): rep_validations.append(self.err_obj("cq_value", "cq_value ('cp') is not a number", 1)) elif rep_cq_value < Decimal('0'): rep_validations.append(self.err_obj("cq_value", "cq_value ('cp') is less than zero", 2)) # validate gc_reaction # remember that null is an acceptable value if 'gc_reaction' not in updated_rep: message = "gc_reaction ('concentration') is missing" rep_validations.append(self.err_obj("gc_reaction", message, 2)) else: rep_gc_reaction = updated_rep['gc_reaction'] response_rep['gc_reaction'] = rep_gc_reaction if rep_gc_reaction is not None: if not self.isnumber(rep_gc_reaction): message = "gc_reaction ('concentration') is not a number" rep_validations.append(self.err_obj("gc_reaction", message, 1)) response_rep['gc_reaction_sci'] = '' elif rep_gc_reaction < Decimal('0'): message = "gc_reaction ('concentration') is less than zero" rep_validations.append(self.err_obj("gc_reaction", message, 2)) response_rep['gc_reaction_sci'] = get_sci_val(rep_gc_reaction) else: response_rep['gc_reaction_sci'] = get_sci_val(rep_gc_reaction) else: response_rep['gc_reaction'] = None response_rep['gc_reaction_sci'] = '' response_rep['validation_errors'] = rep_validations all_pcrreplicates_validations.append(response_rep) # no matching updated_rep was found except ValueError: # start building up the response object response_rep = {"sample": sample_id} message = "sample " + str(sample_id) + " expected but not found in submission" rep_validations.append(self.err_obj("sample", message, 2)) response_rep['validation_errors'] = rep_validations all_pcrreplicates_validations.append(response_rep) # now list out the other updated reps that were submitted but do not belong to this batch for extraneous_rep in updated_pcrreplicates: rep_validations = [] sample_id = "(No Sample ID)" if 'sample' not in extraneous_rep or extraneous_rep['sample'] is None: validation_error = self.err_obj("sample", "sample is a required field", 1) else: sample_id = str(extraneous_rep.get('sample')) message = "sample " + sample_id + " is not in this PCR replicate batch" validation_error = self.err_obj("sample", message, 1) # start building up the response object response_rep = {"sample": sample_id} if 'cq_value' not in extraneous_rep: continue else: rep_cq_value = extraneous_rep['cq_value'] response_rep['cq_value'] = rep_cq_value if 'gc_reaction' not in extraneous_rep: continue else: rep_gc_reaction = extraneous_rep['gc_reaction'] response_rep['gc_reaction'] = rep_gc_reaction if not self.isnumber(rep_gc_reaction): response_rep['gc_reaction_sci'] = '' else: response_rep['gc_reaction_sci'] = get_sci_val(rep_gc_reaction) rep_validations.append(validation_error) response_rep['validation_errors'] = rep_validations all_pcrreplicates_validations.append(response_rep) field_validations["updated_pcrreplicates"] = all_pcrreplicates_validations return JsonResponse(field_validations, safe=False, status=200) # override the default queryset to allow filtering by URL arguments def get_queryset(self): queryset = PCRReplicateBatch.objects.all() # if ID is in query, only search by ID and ignore other params batch = self.request.query_params.get('id', None) if batch is not None: queryset = queryset.filter(id__exact=batch) # else, search by other params (that don't include ID) else: analysis_batch = self.request.query_params.get('analysis_batch', None) extraction_number = self.request.query_params.get('extraction_number', None) if analysis_batch is not None and extraction_number is not None: queryset = queryset.filter(extraction_batch__analysis_batch__exact=analysis_batch, extraction_batch__extraction_number__exact=extraction_number) target = self.request.query_params.get('target', None) if target is not None: queryset = queryset.filter(target__exact=target) replicate_number = self.request.query_params.get('replicate_number', None) if replicate_number is not None: queryset = queryset.filter(replicate_number__exact=replicate_number) return queryset # override the default DELETE method to prevent deletion of a PCRReplicateBatch with any results data entered def destroy(self, request, *args, **kwargs): nonnull_pcrreplicates = PCRReplicate.objects.filter( pcrreplicate_batch=self.get_object().id).exclude(cq_value__isnull=True) if any(nonnull_pcrreplicates): message = "A PCR Replicate Batch may not be deleted" message += " if any related PCR Replicates have results data entered." raise APIException(message) return super(PCRReplicateBatchViewSet, self).destroy(request, *args, **kwargs) class StandardCurveViewSet(HistoryViewSet): queryset = StandardCurve.objects.all() serializer_class = StandardCurveSerializer class InhibitionViewSet(HistoryViewSet): queryset = Inhibition.objects.all() serializer_class = InhibitionSerializer def get_serializer(self, *args, **kwargs): if 'data' in kwargs: data = kwargs['data'] # check if many is required if isinstance(data, list): kwargs['many'] = True return super(InhibitionViewSet, self).get_serializer(*args, **kwargs) # override the default DELETE method to prevent deletion of an Inhibition with any results data entered def destroy(self, request, *args, **kwargs): nonnull_pcrreplicates_dna = PCRReplicate.objects.filter( sample_extraction__inhibition_dna=self.get_object().id).exclude(cq_value__isnull=True) nonnull_pcrreplicates_rna = PCRReplicate.objects.filter( sample_extraction__inhibition_rna=self.get_object().id).exclude(cq_value__isnull=True) nonnull_pcrreplicates = nonnull_pcrreplicates_dna.union(nonnull_pcrreplicates_rna).distinct() if any(nonnull_pcrreplicates): message = "An Inhibition may not be deleted if any related PCR Replicates have results data entered." raise APIException(message) return super(InhibitionViewSet, self).destroy(request, *args, **kwargs) # override the default PATCH method to allow bulk processing def patch(self, request, pk=None): request_data = JSONParser().parse(request) # if there is no pk, assume this is a bulk request if not pk: is_valid = True response_data = [] valid_data = [] response_errors = [] for item in request_data: # ensure the id field is present, otherwise nothing can be updated if not item.get('id'): is_valid = False response_errors.append({"id": "This field is required."}) else: inhib = item.pop('id') inhibition = Inhibition.objects.filter(id=inhib).first() if inhibition: serializer = self.serializer_class(inhibition, data=item, partial=True) # if this item is valid, temporarily hold it until all items are proven valid, then save all # if even one item is invalid, none will be saved, and the user will be returned the error(s) if serializer.is_valid(): valid_data.append(serializer) else: is_valid = False response_errors.append(serializer.errors) else: is_valid = False response_errors.append({"inhibition": "No Inhibition exists with this ID: " + str(inhib)}) if is_valid: # now that all items are proven valid, save and return them to the user for item in valid_data: item.save() response_data.append(item.data) return JsonResponse(response_data, safe=False, status=200) else: return JsonResponse(response_errors, safe=False, status=400) # otherwise, if there is a pk, update the instance indicated by the pk else: inhibition = Inhibition.objects.filter(id=pk).first() if inhibition: serializer = self.serializer_class(inhibition, data=request_data, partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=200) else: return Response(serializer.errors, status=400) else: return JsonResponse({"inhibition": "No Inhibition exists with this ID: " + str(pk)}, status=400) class SampleInhibitionViewSet(HistoryViewSet): serializer_class = SampleInhibitionSerializer # override the default queryset to allow filtering by URL arguments # if sample ID is in query, only search by sample ID and ignore other params def get_queryset(self): queryset = Sample.objects.all() # filter by sample IDs, exact list sample = self.request.query_params.get('id', None) if sample is not None: sample_list = sample.split(',') queryset = queryset.filter(id__in=sample_list) # else, search by other params (that don't include sample ID) else: # filter by analysis batch ID, exact analysis_batch = self.request.query_params.get('analysis_batch', None) if analysis_batch is not None: queryset = queryset.filter(analysis_batches__in=analysis_batch) return queryset class InhibitionCalculateDilutionFactorView(views.APIView): permission_classes = (permissions.IsAuthenticated,) def post(self, request): request_data = JSONParser().parse(request) ab = request_data.get('analysis_batch', None) en = request_data.get('extraction_number', None) na = request_data.get('nucleic_acid_type', None) eb = ExtractionBatch.objects.filter(analysis_batch=ab, extraction_number=en).first() if eb: serializer = InhibitionCalculateDilutionFactorSerializer(data=request_data) if serializer.is_valid(): is_valid = True response_data = [] response_errors = [] pos = request_data.get('inh_pos_cq_value', None) inhibitions = request_data.get('inhibitions', None) for inhibition in inhibitions: cq = inhibition.get('cq_value', None) sample = inhibition.get('sample', None) inhib = Inhibition.objects.filter(sample=sample, extraction_batch=eb, nucleic_acid_type=na).first() if inhib: suggested_dilution_factor = None diff = abs(pos - cq) # If INH CONT Cq minus Sample Cq<2 cycles, then dilution factor = 1 (no dilution) # If INH CONT Cq minus Sample Cq>=2 cycles AND Sample Cq<36, then dilution factor = 5 # If INH CONT Cq minus Sample Cq>2 cycles AND Sample Cq>36 or no Cq, then dilution factor = 10 if not cq: suggested_dilution_factor = 10 elif 0.0 <= diff < 2.0: suggested_dilution_factor = 1 elif diff >= 2.0 and cq < 36.0: suggested_dilution_factor = 5 elif diff > 2.0 and cq > 36.0: suggested_dilution_factor = 10 new_data = {"id": inhib.id, "sample": sample, "cq_value": cq, "suggested_dilution_factor": suggested_dilution_factor, "extraction_batch": eb.id} response_data.append(new_data) else: is_valid = False message = "No Inhibition exists with Sample ID: " + str(sample) message += ", Extraction Batch ID: " + str(eb) + ", Nucleic Acid Type ID: " + str(na) response_errors.append({"inhibition": message}) if is_valid: return JsonResponse(response_data, safe=False, status=200) else: return JsonResponse(response_errors, safe=False, status=400) return Response(serializer.errors, status=400) else: message = "No Extraction Batch exists with Analysis Batch ID: " + str(ab) message += " and Extraction Number: " + str(en) return JsonResponse({"extraction_batch": message}, status=400) class TargetViewSet(HistoryViewSet): queryset = Target.objects.all() serializer_class = TargetSerializer ###### # # Misc # ###### class FieldUnitViewSet(HistoryViewSet): queryset = FieldUnit.objects.all() serializer_class = FieldUnitSerializer class NucleicAcidTypeViewSet(HistoryViewSet): queryset = NucleicAcidType.objects.all() serializer_class = NucleicAcidTypeSerializer class RecordTypeViewSet(HistoryViewSet): queryset = RecordType.objects.all() serializer_class = RecordTypeSerializer class OtherAnalysisViewSet(HistoryViewSet): queryset = OtherAnalysis.objects.all() serializer_class = OtherAnalysisSerializer ###### # # Users # ###### class UserViewSet(HistoryViewSet): serializer_class = UserSerializer def get_queryset(self): # do not return the admin and public users queryset = User.objects.all().exclude(id__in=[1]) # filter by username, exact username = self.request.query_params.get('username', None) if username is not None: queryset = queryset.filter(username__exact=username) return queryset class AuthView(views.APIView): authentication_classes = (CustomBasicAuthentication,) serializer_class = UserSerializer def post(self, request): # remove all sessions to prevent CSRF missing error on subsequent basic auth requests if request.user: user_sessions = [] all_sessions = Session.objects.filter(expire_date__gte=timezone.now()) for session in all_sessions: if str(request.user.id) == session.get_decoded().get('_auth_user_id'): user_sessions.append(session.pk) Session.objects.filter(pk__in=user_sessions).delete() resp = Response(self.serializer_class(request.user).data) # attempt to remove CSRF and session cookies resp.delete_cookie('csrftoken') resp.delete_cookie('sessionid') return resp ###### # # Reports # ###### class QualityControlReportView(views.APIView): permission_classes = (permissions.IsAuthenticated,) def post(self, request): request_data = JSONParser().parse(request) samples = request_data.get('samples', None) report_type = ReportType.objects.filter(id=4).first() status = Status.objects.filter(id=1).first() report_file = ReportFile.objects.create( report_type=report_type, status=status, created_by=request.user, modified_by=request.user) task = generate_quality_control_report.delay(samples, report_file.id, request.user.username) monitor_task.delay(task.id, datetime.now().strftime('%Y-%m-%d_%H:%M:%S'), report_file.id) return JsonResponse({"message": "Request for Inhibition Report received."}, status=200) class ControlsResultsReportView(views.APIView): permission_classes = (permissions.IsAuthenticated,) def post(self, request): request_data = JSONParser().parse(request) sample_ids = request_data.get('samples', None) target_ids = request_data.get('targets', None) report_type = ReportType.objects.filter(id=5).first() status = Status.objects.filter(id=1).first() report_file = ReportFile.objects.create( report_type=report_type, status=status, created_by=request.user, modified_by=request.user) task = generate_control_results_report.delay(sample_ids, target_ids, report_file.id, request.user.username) monitor_task.delay(task.id, datetime.now().strftime('%Y-%m-%d_%H:%M:%S'), report_file.id) return JsonResponse({"message": "Request for Control Results Report received."}, status=200) class ReportFileViewSet(viewsets.ReadOnlyModelViewSet): permission_classes = (permissions.IsAuthenticated,) serializer_class = ReportFileSerializer def get_queryset(self): queryset = ReportFile.objects.all() query_params = self.request.query_params # filter by report_type, exact list report_type = query_params.get('report_type', None) if report_type is not None: if LIST_DELIMETER in report_type: report_type_list = report_type.split(LIST_DELIMETER) queryset = queryset.filter(report_type__in=report_type_list) else: queryset = queryset.filter(report_type__exact=report_type) return queryset class ReportTypeViewSet(viewsets.ModelViewSet): permission_classes = (permissions.IsAuthenticated,) queryset = ReportType.objects.all() serializer_class = ReportTypeSerializer class StatusViewSet(viewsets.ModelViewSet): permission_classes = (permissions.IsAuthenticated,) queryset = Status.objects.all() serializer_class = StatusSerializer
py
1a2fbb3f9d4cbb78cfc718b436a869fb005a7f82
import typing def format_exc(): pass
py
1a2fbdc42aa0037a08ad5b5a9976d8cf322a2c7d
class AlreadyBoundException(Exception): """Raised when either x or y has been bound with the other.""" def __init__(self, *args): Exception.__init__(self, 'Already Bound', *args) # Bijection Mapper class BiMapper(): def __init__(self): self.x2y = {} self.y2x = {} def bind(self, x, y): """ Raises ------ AlreadyBoundException: Raises AlreadyBoundException if x and y have been already bound. """ if x in self.x2y or y in self.y2x: raise AlreadyBoundException() self.x2y[x] = y self.y2x[y] = x def unbind_x(self, x): if not x in self.x2y: return y = self.x2y.pop(x) self.y2x.pop(y) def unbind_y(self, y): if not y in self.y2x: return x = self.y2x.pop(y) self.x2y.pop(x)
py
1a2fbe136ea46d2b8933a72cc64d2ad3d78dd0e4
from decimal import Decimal from . import exchanges from .user import User from .utils import log # TODO this logic isn't scientific in any way, mostly a playground def determine_limit_price(user: User, symbol: str, purchasing_currency: str) -> Decimal: # TODO this is binance-specific right now, refactor this out trading_pair = symbol + purchasing_currency client = user.binance_client() # order depth returns the lowest asks and the highest bids # increasing limits returns lower bids and higher asks # grab a long-ish order book to get some analytics on the order book order_book = client.get_order_book(symbol=trading_pair, limit=100) # price that binance reports is at the bottom of the order book # looks like they use the bottom of the ask stack to clear market orders (makes sense) # cannot determine if the orders in the book are market, limit, or other order types. # I wonder if other exchanges expose that sort of information? lowest_ask = order_book["asks"][0][0] highest_bid = order_book["bids"][0][0] ask_difference = Decimal(highest_bid) - Decimal(lowest_ask) # TODO can we inspect the low price and determine the volume that was traded at that price point? last_day_low = low_over_last_day(user, trading_pair) log.warn( "price analytics", symbol=trading_pair, ask_bid_difference=ask_difference, ask_bid_percentage_difference=ask_difference / Decimal(lowest_ask) * -100, last_day_low_difference=100 - (last_day_low / Decimal(lowest_ask) * 100), bid=highest_bid, ask=lowest_ask, last_day_low=last_day_low, reported_price=exchanges.binance_price_for_symbol(trading_pair), ) # TODO calculate momentum, or low price over last 24hrs, to determine the ideal drop price # TODO pull percentage drop attempt from user model limit_price = min(Decimal(highest_bid), Decimal(lowest_ask) * Decimal(0.97)) limit_price = min(last_day_low, limit_price) # TODO can we inspect the order book depth here? Or general liquidity for the market? # what else can we do to improve our purchase strategy? # TODO add option to use the midpoint, or some other position, of the order book instead of the lowest ask return limit_price def low_over_last_day(user: User, trading_pair: str) -> Decimal: # import datetime # TODO coinbase option is below, but ran into some issues with it that I can't remember # candles = coinbase_public_client.get_product_historic_rates( # product_id="PAXG-USD", # granularity=60*60, # start=(datetime.datetime.now() - datetime.timedelta(hours=24)).isoformat(), # stop=datetime.datetime.now().isoformat() # ) # min([candle['low'] for candle in candles]) # https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-data # the API just returns an ordered array, which is insane """ [ 1499040000000, // Open time "0.01634790", // Open "0.80000000", // High "0.01575800", // Low "0.01577100", // Close "148976.11427815", // Volume 1499644799999, // Close time "2434.19055334", // Quote asset volume 308, // Number of trades "1756.87402397", // Taker buy base asset volume "28.46694368", // Taker buy quote asset volume "17928899.62484339" // Ignore. ] """ candles = user.binance_client().get_klines(symbol=trading_pair, interval="1h") return Decimal(min([candle[3] for candle in candles]))
py
1a2fc15b74332b0e1ff63e13e6914abfc9334f42
# Copyright (c) 2017 The Verde Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause # # This code is part of the Fatiando a Terra project (https://www.fatiando.org) # """ Add license notice to every source file if not present """ import sys from argparse import ArgumentParser from pathlib import Path from pathspec import PathSpec PROJECT = "verde" YEAR = "2017" NOTICE = f""" # Copyright (c) {YEAR} The {PROJECT.title()} Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause # # This code is part of the Fatiando a Terra project (https://www.fatiando.org) # """.strip() CHECK_HELP = """ Don't write the files, just return the status. Return code 0 means nothing would change. Return code 1 means some files lacks the license notice. """ def get_gitignore(root): """ Return a PathSpec matching gitignore content if present. This function is a modified version of the one present in Black (https://github.com/psf/black) available under MIT License. """ gitignore = root / ".gitignore" lines = [] if gitignore.is_file(): with gitignore.open() as gi_file: lines = gi_file.readlines() return PathSpec.from_lines("gitwildmatch", lines) def main(): """ Add license notice to every source file if not present or just check """ # Create option parser parser = ArgumentParser( description=" Add license notice to every source file if not present." ) parser.add_argument( "--check", action="store_true", dest="check", default=False, help=CHECK_HELP ) args = parser.parse_args() gitignore = get_gitignore(Path(".")) python_files = [ path for path in Path(".").glob("**/*.py") if not str(path).startswith(".") if not gitignore.match_file(path) ] missing_notice_files = [] for pyfile in python_files: code = pyfile.read_text() if not code.startswith(NOTICE): missing_notice_files.append(pyfile) if args.check: if missing_notice_files: print("License notice is missing in some source files! 💔") for pyfile in missing_notice_files: print(f" {pyfile}") sys.exit(1) else: print("All source files have the license notice! 🎉") sys.exit(0) else: print("Successfully added license notice to:") for pyfile in missing_notice_files: code = pyfile.read_text() pyfile.write_text("\n".join([NOTICE, code])) print(f" {pyfile}") sys.exit(0) if __name__ == "__main__": main()
py
1a2fc40ddc164c90b62b6dc082080f9f5f1fd070
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import tensorflow as tf import tensorflow_federated as tff from tensorflow_federated.python.research.utils import aggregate_fns def create_weights_delta(input_size=2, hidden_size=5, constant=0): """Returns deterministic weights delta for a linear model.""" kernel = constant + tf.reshape( tf.range(input_size * hidden_size, dtype=tf.float32), [input_size, hidden_size]) bias = constant + tf.range(hidden_size, dtype=tf.float32) return collections.OrderedDict([('dense/kernel', kernel), ('dense/bias', bias)]) class ClipNormAggregateFnTest(tf.test.TestCase): def global_norm(self, value): return tf.linalg.global_norm(tf.nest.flatten(value)) def test_clip_by_global_norm(self): clip_norm = 20.0 aggregate_fn = aggregate_fns.build_clip_norm_aggregate_fn(clip_norm) # Global l2 norms [17.74824, 53.99074]. deltas = [create_weights_delta(), create_weights_delta(constant=10)] deltas_type = tff.framework.type_from_tensors(deltas[0]) weights = [1., 1.] @tff.federated_computation( tff.FederatedType(deltas_type, tff.CLIENTS), tff.FederatedType(tf.float32, tff.CLIENTS)) def federated_aggregate_test(deltas, weights): state = tff.federated_value(aggregate_fn.initialize(), tff.SERVER) return aggregate_fn(state, deltas, weights) federated_aggregate_test.type_signature.result.check_equivalent_to( tff.StructType(( tff.FederatedType( aggregate_fns.ClipNormAggregateState( clip_norm=tf.float32, max_norm=tf.float32), tff.SERVER), tff.FederatedType(deltas_type, tff.SERVER), ))) state, mean = federated_aggregate_test(deltas, weights) expected_clipped = [] for delta in deltas: flat = tf.nest.flatten(delta) clipped, _ = tf.clip_by_global_norm(flat, clip_norm) expected_clipped.append(tf.nest.pack_sequence_as(delta, clipped)) expected_mean = tf.nest.map_structure(lambda a, b: (a + b) / 2, *expected_clipped) self.assertEqual(state.clip_norm, tf.constant(20.0, tf.float32)) self.assertEqual(state.max_norm, tf.constant(53.99074, tf.float32)) tf.nest.map_structure(self.assertAllEqual, expected_mean, mean) class FixedClipNormProcessTest(tf.test.TestCase): def test_clip_by_global_norm(self): clip_norm = 20.0 test_deltas = [create_weights_delta(), create_weights_delta(constant=10)] update_type = tff.framework.type_from_tensors(test_deltas[0]) aggregate_fn = aggregate_fns.build_fixed_clip_norm_mean_process( clip_norm=clip_norm, model_update_type=update_type) self.assertEqual( aggregate_fn.next.type_signature, tff.FunctionType( parameter=( tff.FederatedType((), tff.SERVER), tff.FederatedType(update_type, tff.CLIENTS), tff.FederatedType(tf.float32, tff.CLIENTS), ), result=collections.OrderedDict( state=tff.FederatedType((), tff.SERVER), result=tff.FederatedType(update_type, tff.SERVER), measurements=tff.FederatedType( aggregate_fns.NormClippedAggregationMetrics( max_global_norm=tf.float32, num_clipped=tf.int32), tff.SERVER)), )) state = aggregate_fn.initialize() weights = [1., 1.] output = aggregate_fn.next(state, test_deltas, weights) expected_clipped = [] for delta in test_deltas: clipped, _ = tf.clip_by_global_norm(tf.nest.flatten(delta), clip_norm) expected_clipped.append(tf.nest.pack_sequence_as(delta, clipped)) expected_mean = tf.nest.map_structure(lambda a, b: (a + b) / 2, *expected_clipped) self.assertAllClose(expected_mean, output['result']) # Global l2 norms [17.74824, 53.99074]. metrics = output['measurements'] self.assertAlmostEqual(metrics.max_global_norm, 53.99074, places=5) self.assertEqual(metrics.num_clipped, 1) if __name__ == '__main__': tf.test.main()
py
1a2fc42564e0d25ea3508aa3521acc4641688c8b
#!/usr/bin/env python3 # Copyright (c) 2018-2021 The Xaya developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test spendability of premine and that P2SH is enforced correctly for it.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.messages import * from test_framework.util import * import codecs PREMINE_VALUE = Decimal ('222222222') PREMINE_ADDRESS = 'dHNvNaqcD7XPDnoRjAoyfcMpHRi5upJD7p' PREMINE_PRIVKEYS = ['b69iyynFSWcU54LqXisbbqZ8uTJ7Dawk3V3yhht6ykxgttqMQFjb', 'b3fgAKVQpMj24gbuh6DiXVwCCjCbo1cWiZC2fXgWEU9nXy6sdxD5'] PREMINE_PUBKEYS = [ '03c278d06b977e67b8ea45ef24e3c96a9258c47bc4cce3d0b497b690d672497b6e', '0221ac9dc97fe12a98374344d08b458a9c2c1df9afb29dd6089b94a3b4dc9ad570', ] class PremineTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def skip_test_if_missing_module (self): self.skip_if_no_wallet () def run_test(self): node = self.nodes[0] node.importaddress (PREMINE_ADDRESS) # Find basic data about the genesis coinbase tx. genesis = node.getblock (node.getblockhash (0), 2) assert_equal (len (genesis['tx']), 1) tx = genesis['tx'][0] txid = tx['hash'] assert_equal (len (tx['vout']), 1) out = tx['vout'][0] assert_equal (out['value'], PREMINE_VALUE) assert_equal (out['scriptPubKey']['address'], PREMINE_ADDRESS) # Accessing it should work normally (upstream Bitcoin/Namecoin have a # special check that disallows the genesis coinbase with getrawtransaction, # as it is not spendable). node.gettransaction (txid) assert_equal (node.getrawtransaction (txid, False, genesis['hash']), tx['hex']) # The coinbase txout should be in the UTXO set. utxo = node.gettxout (txid, 0) assert utxo is not None # Check balance of node and then import the keys for the premine # and check again. It should be available as spendable. assert_equal (node.getbalance (), 0) for key in PREMINE_PRIVKEYS: node.importprivkey (key, 'premine') pubkeys = [] for addr in node.getaddressesbylabel ('premine'): data = node.getaddressinfo (addr) if (not data['isscript']) and (not data['iswitness']): pubkeys.append (data['pubkey']) assert_equal (set (pubkeys), set (PREMINE_PUBKEYS)) p2sh = node.addmultisigaddress (1, PREMINE_PUBKEYS) assert_equal (p2sh['address'], PREMINE_ADDRESS) node.rescanblockchain () assert_equal (node.getbalance (), PREMINE_VALUE) # Construct a raw tx spending the premine. addr = node.getnewaddress () inputs = [{"txid": txid, "vout": 0}] outputs = {addr: Decimal ('123456')} rawTx = node.createrawtransaction (inputs, outputs) # Try to "sign" it by just adding the redeem script, which would have been # valid before the P2SH softfork. Doing so should fail, which verifies that # P2SH is enforced right from the start and thus that the premine is safe. data = node.getaddressinfo (PREMINE_ADDRESS) redeemScript = data['hex'] # Prepend script size, so that it will correctly push the script hash # to the stack. redeemScript = ("%02x" % (len (redeemScript) // 2)) + redeemScript forgedTx = tx_from_hex (rawTx) forgedTx.vin[0].scriptSig = codecs.decode (redeemScript, 'hex_codec') forgedTx = forgedTx.serialize ().hex () assert_raises_rpc_error (-26, "not valid", node.sendrawtransaction, forgedTx, 0) # Sign and send the raw tx, should succeed. signed = node.signrawtransactionwithwallet (rawTx) assert signed['complete'] signedTx = signed['hex'] sendId = node.sendrawtransaction (signedTx, 0) node.generate (1) assert_equal (node.gettransaction (sendId)['confirmations'], 1) if __name__ == '__main__': PremineTest().main()
py
1a2fc4c1e27cfa944455dd9e15fa7f96ace3d7d8
from re import search from setuptools import setup, find_packages with open("graphql/__init__.py") as init_file: version = search('__version__ = "(.*)"', init_file.read()).group(1) with open("README.md") as readme_file: readme = readme_file.read() setup( name="GraphQL-core-next", version=version, description="GraphQL-core-next is a Python port of GraphQL.js," " the JavaScript reference implementation for GraphQL.", long_description=readme, long_description_content_type="text/markdown", keywords="graphql", url="https://github.com/graphql-python/graphql-core-next", author="Christoph Zwerschke", author_email="[email protected]", license="MIT license", # PEP-561: https://www.python.org/dev/peps/pep-0561/ package_data={"graphql": ["py.typed"]}, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], install_requires=[], python_requires=">=3.6", test_suite="tests", tests_require=[ "pytest", "pytest-asyncio", "pytest-cov", "pytest-describe", "black", "flake8", "mypy", "tox", "python-coveralls", ], packages=find_packages(include=["graphql"]), include_package_data=True, zip_safe=False, )
py
1a2fc4e313fbc3ebe872bc603357771bf264967c
''' Flask-Admin has issues when used with Application Factory pattern. Since I had issues when using it with pytest, I had to move the admin instance to "register_admin" method. https://github.com/flask-admin/flask-admin/issues/910 ''' from flask import redirect, url_for, request from flask_admin import Admin from flask_admin.menu import MenuLink from flask_admin.contrib.sqla import ModelView from flask_login import current_user from app.extensions import db from app.auth.models import User, Role, PreAllowedUser from app.main.models import ( Product, Specification, StockProduct, Stock, Order, OrderItem, Transaction) class ProtectedModelView(ModelView): column_display_pk = True def is_accessible(self): return (current_user.is_authenticated and current_user.is_administrator()) def inaccessible_callback(self, name, **kwargs): return redirect(url_for('auth.login', next=request.url)) def register_admin(app): admin = Admin(app=app, template_mode='bootstrap3') admin.add_link(MenuLink(name='Voltar', url=('/'))) admin.add_views( ProtectedModelView(User, db.session), ProtectedModelView(Role, db.session), ProtectedModelView(PreAllowedUser, db.session), ProtectedModelView(Product, db.session), ProtectedModelView(Specification, db.session), ProtectedModelView(StockProduct, db.session), ProtectedModelView(Stock, db.session), ProtectedModelView(Order, db.session), ProtectedModelView(OrderItem, db.session), ProtectedModelView(Transaction, db.session), )
py
1a2fc5a8fc13c30248bcafa6f23e14668fd26734
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import sys from datetime import datetime, timedelta import operator import string from inspect import getargspec from itertools import product, starmap from distutils.version import LooseVersion import nose from numpy import nan, inf import numpy as np import numpy.ma as ma import pandas as pd from pandas import (Index, Series, DataFrame, isnull, notnull, bdate_range, date_range, period_range, timedelta_range) from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.period import PeriodIndex from pandas.tseries.index import Timestamp, DatetimeIndex from pandas.tseries.tdi import Timedelta, TimedeltaIndex import pandas.core.common as com import pandas.core.config as cf import pandas.lib as lib import pandas.core.datetools as datetools import pandas.core.nanops as nanops from pandas.compat import StringIO, lrange, range, zip, u, OrderedDict, long from pandas import compat from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal, ensure_clean) import pandas.util.testing as tm #------------------------------------------------------------------------------ # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): _multiprocess_can_split_ = True def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEqual(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEqual(result.name, self.ts.name) def test_copy_index_name_checking(self): # don't want to be able to modify the index stored elsewhere after # making a copy self.ts.index.name = None self.assertIsNone(self.ts.index.name) self.assertIs(self.ts, self.ts) cp = self.ts.copy() cp.index.name = 'foo' com.pprint_thing(self.ts.index.name) self.assertIsNone(self.ts.index.name) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEqual(result.name, self.ts.name) def test_dt_namespace_accessor(self): # GH 7207 # test .dt namespace accessor ok_for_base = ['year','month','day','hour','minute','second','weekofyear','week','dayofweek','weekday','dayofyear','quarter','freq'] ok_for_period = ok_for_base + ['qyear'] ok_for_dt = ok_for_base + ['date','time','microsecond','nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'tz'] ok_for_dt_methods = ['to_period','to_pydatetime','tz_localize','tz_convert'] ok_for_td = ['days','seconds','microseconds','nanoseconds'] ok_for_td_methods = ['components','to_pytimedelta'] def get_expected(s, name): result = getattr(Index(s.values),prop) if isinstance(result, np.ndarray): if com.is_integer_dtype(result): result = result.astype('int64') elif not com.is_list_like(result): return result return Series(result,index=s.index) def compare(s, name): a = getattr(s.dt,prop) b = get_expected(s,prop) if not (com.is_list_like(a) and com.is_list_like(b)): self.assertEqual(a,b) else: tm.assert_series_equal(a,b) # invalids for s in [Series(np.arange(5)), Series(list('abcde')), Series(np.random.randn(5))]: self.assertRaises(TypeError, lambda : s.dt) # datetimeindex for s in [Series(date_range('20130101',periods=5)), Series(date_range('20130101',periods=5,freq='s')), Series(date_range('20130101 00:00:00',periods=5,freq='ms'))]: for prop in ok_for_dt: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_dt_methods: getattr(s.dt,prop) result = s.dt.to_pydatetime() self.assertIsInstance(result,np.ndarray) self.assertTrue(result.dtype == object) result = s.dt.tz_localize('US/Eastern') expected = Series(DatetimeIndex(s.values).tz_localize('US/Eastern'),index=s.index) tm.assert_series_equal(result, expected) tz_result = result.dt.tz self.assertEqual(str(tz_result), 'US/Eastern') freq_result = s.dt.freq self.assertEqual(freq_result, DatetimeIndex(s.values, freq='infer').freq) # let's localize, then convert result = s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern') expected = Series(DatetimeIndex(s.values).tz_localize('UTC').tz_convert('US/Eastern'),index=s.index) tm.assert_series_equal(result, expected) # timedeltaindex for s in [Series(timedelta_range('1 day',periods=5),index=list('abcde')), Series(timedelta_range('1 day 01:23:45',periods=5,freq='s')), Series(timedelta_range('2 days 01:23:45.012345',periods=5,freq='ms'))]: for prop in ok_for_td: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_td_methods: getattr(s.dt,prop) result = s.dt.components self.assertIsInstance(result,DataFrame) tm.assert_index_equal(result.index,s.index) result = s.dt.to_pytimedelta() self.assertIsInstance(result,np.ndarray) self.assertTrue(result.dtype == object) freq_result = s.dt.freq self.assertEqual(freq_result, TimedeltaIndex(s.values, freq='infer').freq) # both index = date_range('20130101',periods=3,freq='D') s = Series(date_range('20140204',periods=3,freq='s'),index=index) tm.assert_series_equal(s.dt.year,Series(np.array([2014,2014,2014],dtype='int64'),index=index)) tm.assert_series_equal(s.dt.month,Series(np.array([2,2,2],dtype='int64'),index=index)) tm.assert_series_equal(s.dt.second,Series(np.array([0,1,2],dtype='int64'),index=index)) # periodindex for s in [Series(period_range('20130101',periods=5,freq='D'))]: for prop in ok_for_period: # we test freq below if prop != 'freq': compare(s, prop) freq_result = s.dt.freq self.assertEqual(freq_result, PeriodIndex(s.values).freq) # test limited display api def get_dir(s): results = [ r for r in s.dt.__dir__() if not r.startswith('_') ] return list(sorted(set(results))) s = Series(date_range('20130101',periods=5,freq='D')) results = get_dir(s) tm.assert_almost_equal(results,list(sorted(set(ok_for_dt + ok_for_dt_methods)))) s = Series(period_range('20130101',periods=5,freq='D').asobject) results = get_dir(s) tm.assert_almost_equal(results,list(sorted(set(ok_for_period)))) # no setting allowed s = Series(date_range('20130101',periods=5,freq='D')) with tm.assertRaisesRegexp(ValueError, "modifications"): s.dt.hour = 5 # trying to set a copy with pd.option_context('chained_assignment','raise'): def f(): s.dt.hour[0] = 5 self.assertRaises(com.SettingWithCopyError, f) def test_valid_dt_with_missing_values(self): from datetime import date, time # GH 8689 s = Series(date_range('20130101',periods=5,freq='D')) s_orig = s.copy() s.iloc[2] = pd.NaT for attr in ['microsecond','nanosecond','second','minute','hour','day']: expected = getattr(s.dt,attr).copy() expected.iloc[2] = np.nan result = getattr(s.dt,attr) tm.assert_series_equal(result, expected) result = s.dt.date expected = Series([date(2013,1,1),date(2013,1,2),np.nan,date(2013,1,4),date(2013,1,5)],dtype='object') tm.assert_series_equal(result, expected) result = s.dt.time expected = Series([time(0),time(0),np.nan,time(0),time(0)],dtype='object') tm.assert_series_equal(result, expected) def test_dt_accessor_api(self): # GH 9322 from pandas.tseries.common import (CombinedDatetimelikeProperties, DatetimeProperties) self.assertIs(Series.dt, CombinedDatetimelikeProperties) s = Series(date_range('2000-01-01', periods=3)) self.assertIsInstance(s.dt, DatetimeProperties) with tm.assertRaisesRegexp(TypeError, "only use .dt accessor"): Series([1]).dt def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEqual(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEqual(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assertIsNone(result.name) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEqual(result.name, self.ts.name) def test_combine_first_dt64(self): from pandas.tseries.tools import to_datetime s0 = to_datetime(Series(["2010", np.NaN])) s1 = to_datetime(Series([np.NaN, "2011"])) rs = s0.combine_first(s1) xp = to_datetime(Series(['2010', '2011'])) assert_series_equal(rs, xp) s0 = to_datetime(Series(["2010", np.NaN])) s1 = Series([np.NaN, "2011"]) rs = s0.combine_first(s1) xp = Series([datetime(2010, 1, 1), '2011']) assert_series_equal(rs, xp) def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result,expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index([25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result,expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i':[0]*3, 'b':[False]*3}) vc = df.i.value_counts() result = vc.get(99,default='Missing') self.assertEqual(result,'Missing') vc = df.b.value_counts() result = vc.get(False,default='Missing') self.assertEqual(result,3) result = vc.get(True,default='Missing') self.assertEqual(result,'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1,5),index=lrange(1,5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2,5),index=lrange(2,5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64')) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64')) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEqual(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEqual(result.name, self.ts.name) result = self.ts[5:10] self.assertEqual(result.name, self.ts.name) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(lrange(0, len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth, dtype: int64"] expected = "\n".join(expected) self.assertEqual(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEqual(result.name, s.name) self.assertEqual(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assertIn("Name: test", repr(s)) s.name = None self.assertNotIn("Name:", repr(s)) # test big series (diff code path) s = Series(lrange(0, 1000)) s.name = "test" self.assertIn("Name: test", repr(s)) s.name = None self.assertNotIn("Name:", repr(s)) s = Series(index=date_range('20010101', '20020101'), name='test') self.assertIn("Name: test", repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip_name(self.ts) self.assertEqual(unpickled.name, self.ts.name) def _pickle_roundtrip_name(self, obj): with ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEqual(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEqual(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEqual(result.name, self.ts.name) class TestNanops(tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! s == s2 s2 == s def test_none_comparison(self): # bug brought up by #1079 s = Series(np.random.randn(10), index=lrange(0, 20, 2)) self.assertRaises(TypeError, s.__eq__, None) def test_sum_zero(self): arr = np.array([]) self.assertEqual(nanops.nansum(arr), 0) arr = np.empty((10, 0)) self.assertTrue((nanops.nansum(arr, axis=1) == 0).all()) # GH #844 s = Series([], index=[]) self.assertEqual(s.sum(), 0) df = DataFrame(np.empty((10, 0))) self.assertTrue((df.sum(1) == 0).all()) def test_nansum_buglet(self): s = Series([1.0, np.nan], index=[0, 1]) result = np.nansum(s) assert_almost_equal(result, 1) def test_overflow(self): # GH 6915 # overflowing on the smaller int dtypes for dtype in ['int32','int64']: v = np.arange(5000000,dtype=dtype) s = Series(v) # no bottleneck result = s.sum(skipna=False) self.assertEqual(int(result),v.sum(dtype='int64')) result = s.min(skipna=False) self.assertEqual(int(result),0) result = s.max(skipna=False) self.assertEqual(int(result),v[-1]) # use bottleneck if available result = s.sum() self.assertEqual(int(result),v.sum(dtype='int64')) result = s.min() self.assertEqual(int(result),0) result = s.max() self.assertEqual(int(result),v[-1]) for dtype in ['float32','float64']: v = np.arange(5000000,dtype=dtype) s = Series(v) # no bottleneck result = s.sum(skipna=False) self.assertTrue(np.allclose(float(result),v.sum(dtype='float64'))) result = s.min(skipna=False) self.assertTrue(np.allclose(float(result),0.0)) result = s.max(skipna=False) self.assertTrue(np.allclose(float(result),v[-1])) # use bottleneck if available result = s.sum() self.assertTrue(np.allclose(float(result),v.sum(dtype='float64'))) result = s.min() self.assertTrue(np.allclose(float(result),0.0)) result = s.max() self.assertTrue(np.allclose(float(result),v[-1])) class SafeForSparse(object): pass _ts = tm.makeTimeSeries() class TestSeries(tm.TestCase, CheckNameIntegration): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.ts = _ts.copy() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) self.assertNotIsInstance(scalar, float) # coercion self.assertEqual(float(Series([1.])), 1.0) self.assertEqual(int(Series([1.])), 1) self.assertEqual(long(Series([1.])), 1) def test_astype(self): s = Series(np.random.randn(5),name='foo') for dtype in ['float32','float64','int64','int32']: astyped = s.astype(dtype) self.assertEqual(astyped.dtype, dtype) self.assertEqual(astyped.name, s.name) def test_constructor(self): # Recognize TimeSeries self.assertTrue(self.ts.is_time_series) # Pass in Series derived = Series(self.ts) self.assertTrue(derived.is_time_series) self.assertTrue(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEqual(id(self.ts.index), id(derived.index)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assertEqual(mixed.dtype, np.object_) self.assertIs(mixed[1], np.NaN) self.assertFalse(self.empty.is_time_series) self.assertFalse(Series({}).is_time_series) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) mixed.name = 'Series' rs = Series(mixed).name xp = 'Series' self.assertEqual(rs, xp) # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) self.assertRaises(NotImplementedError, Series, m) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=lrange(10)) empty2 = Series(np.nan, index=lrange(10)) assert_series_equal(empty, empty2) def test_constructor_series(self): index1 = ['d', 'b', 'a', 'c'] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) assert_series_equal(s2, s1.sort_index()) def test_constructor_iterator(self): expected = Series(list(range(10)),dtype='int64') result = Series(range(10),dtype='int64') assert_series_equal(result, expected) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(lrange(10)) assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=lrange(10, 20)) exp.index = lrange(10, 20) assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(lrange(10)) assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=lrange(10, 20)) exp.index = lrange(10, 20) assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ['a', 'b', 'c'], fastpath=True) cat.name = 'foo' res = Series(cat) self.assertEqual(res.name, cat.name) self.assertTrue(res.values.equals(cat)) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([nan, nan, nan], dtype=float) assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0, nan, 2], index=index, dtype=float) assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([nan, nan, nan], dtype=object) assert_series_equal(result, expected) data[0] = True data[2] = False index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([True, nan, False], index=index, dtype=object) assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) assert_series_equal(result, expected) from pandas import tslib data = ma.masked_all((3,), dtype='M8[ns]') result = Series(data) expected = Series([tslib.iNaT, tslib.iNaT, tslib.iNaT], dtype='M8[ns]') assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([datetime(2001, 1, 1), tslib.iNaT, datetime(2001, 1, 3)], index=index, dtype='M8[ns]') assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series([datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype='M8[ns]') assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) tm.assert_isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1., 1., 8.]), dtype='i8') self.assertEqual(s.dtype, np.dtype('i8')) s = Series(np.array([1., 1., np.nan]), copy=True, dtype='i8') self.assertEqual(s.dtype, np.dtype('f8')) def test_constructor_pass_none(self): s = Series(None, index=lrange(5)) self.assertEqual(s.dtype, np.float64) s = Series(None, index=lrange(5), dtype=object) self.assertEqual(s.dtype, np.object_) # GH 7431 # inference on the index s = Series(index=np.array([None])) expected = Series(index=Index([None])) assert_series_equal(s,expected) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dtype_nocast(self): # 1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 self.assertEqual(s[1], 5) def test_constructor_dtype_datetime64(self): import pandas.tslib as tslib s = Series(tslib.iNaT, dtype='M8[ns]', index=lrange(5)) self.assertTrue(isnull(s).all()) # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(tslib.iNaT, index=lrange(5)) self.assertFalse(isnull(s).all()) s = Series(nan, dtype='M8[ns]', index=lrange(5)) self.assertTrue(isnull(s).all()) s = Series([datetime(2001, 1, 2, 0, 0), tslib.iNaT], dtype='M8[ns]') self.assertTrue(isnull(s[1])) self.assertEqual(s.dtype, 'M8[ns]') s = Series([datetime(2001, 1, 2, 0, 0), nan], dtype='M8[ns]') self.assertTrue(isnull(s[1])) self.assertEqual(s.dtype, 'M8[ns]') # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) self.assertEqual(s.dtype, 'M8[ns]') s.ix[0] = np.nan self.assertEqual(s.dtype, 'M8[ns]') # invalid astypes for t in ['s', 'D', 'us', 'ms']: self.assertRaises(TypeError, s.astype, 'M8[%s]' % t) # GH3414 related self.assertRaises(TypeError, lambda x: Series( Series(dates).astype('int') / 1000000, dtype='M8[ms]')) self.assertRaises( TypeError, lambda x: Series(dates, dtype='datetime64')) # invalid dates can be help as object result = Series([datetime(2,1,1)]) self.assertEqual(result[0], datetime(2,1,1,0,0)) result = Series([datetime(3000,1,1)]) self.assertEqual(result[0], datetime(3000,1,1,0,0)) # don't mix types result = Series([ Timestamp('20130101'), 1],index=['a','b']) self.assertEqual(result['a'], Timestamp('20130101')) self.assertEqual(result['b'], 1) # GH6529 # coerce datetime64 non-ns properly dates = date_range('01-Jan-2015', '01-Dec-2015', freq='M') values2 = dates.view(np.ndarray).astype('datetime64[ns]') expected = Series(values2, dates) for dtype in ['s', 'D', 'ms', 'us', 'ns']: values1 = dates.view(np.ndarray).astype('M8[{0}]'.format(dtype)) result = Series(values1, dates) assert_series_equal(result,expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) self.assert_numpy_array_equal(series1.values,dates2) self.assertEqual(series1.dtype,object) # these will correctly infer a datetime s = Series([None, pd.NaT, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') s = Series([np.nan, pd.NaT, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') s = Series([pd.NaT, None, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') s = Series([pd.NaT, np.nan, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101',periods=3) self.assertTrue(Series(dr).iloc[0].tz is None) dr = date_range('20130101',periods=3,tz='UTC') self.assertTrue(str(Series(dr).iloc[0].tz) == 'UTC') dr = date_range('20130101',periods=3,tz='US/Eastern') self.assertTrue(str(Series(dr).iloc[0].tz) == 'US/Eastern') def test_constructor_periodindex(self): # GH7932 # converting a PeriodIndex when put in a Series pi = period_range('20130101',periods=5,freq='D') s = Series(pi) expected = Series(pi.asobject) assert_series_equal(s, expected) def test_constructor_dict(self): d = {'a': 0., 'b': 1., 'c': 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) pidx = tm.makePeriodIndex(100) d = {pidx[0]: 0, pidx[1]: 1} result = Series(d, index=pidx) expected = Series(np.nan, pidx) expected.ix[0] = 0 expected.ix[1] = 1 assert_series_equal(result, expected) def test_constructor_dict_multiindex(self): check = lambda result, expected: tm.assert_series_equal( result, expected, check_dtype=True, check_index_type=True, check_series_type=True) d = {('a', 'a'): 0., ('b', 'a'): 1., ('b', 'c'): 2.} _d = sorted(d.items()) ser = Series(d) expected = Series([x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])) check(ser, expected) d['z'] = 111. _d.insert(0, ('z', d['z'])) ser = Series(d) expected = Series( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)) ser = ser.reindex(index=expected.index) check(ser, expected) def test_constructor_subclass_dict(self): data = tm.TestSubDict((x, 10.0 * x) for x in range(10)) series = Series(data) refseries = Series(dict(compat.iteritems(data))) assert_series_equal(refseries, series) def test_orderedDict_ctor(self): # GH3283 import pandas import random data = OrderedDict([('col%s' % i, random.random()) for i in range(12)]) s = pandas.Series(data) self.assertTrue(all(s.values == list(data.values()))) def test_orderedDict_subclass_ctor(self): # GH3283 import pandas import random class A(OrderedDict): pass data = A([('col%s' % i, random.random()) for i in range(12)]) s = pandas.Series(data) self.assertTrue(all(s.values == list(data.values()))) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_constructor_set(self): values = set([1, 2, 3, 4, 5]) self.assertRaises(TypeError, Series, values) values = frozenset(values) self.assertRaises(TypeError, Series, values) def test_fromDict(self): data = {'a': 0, 'b': 1, 'c': 2, 'd': 3} series = Series(data) self.assertTrue(tm.is_sorted(series.index)) data = {'a': 0, 'b': '1', 'c': '2', 'd': datetime.now()} series = Series(data) self.assertEqual(series.dtype, np.object_) data = {'a': 0, 'b': '1', 'c': '2', 'd': '3'} series = Series(data) self.assertEqual(series.dtype, np.object_) data = {'a': '0', 'b': '1'} series = Series(data, dtype=float) self.assertEqual(series.dtype, np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(Exception, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) tm.assert_isinstance(series.index, Index) def test_array_finalize(self): pass def test_pop(self): # GH 6600 df = DataFrame({ 'A': 0, 'B': np.arange(5,dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0,0],index=['A','C']) assert_series_equal(k, expected) def test_not_hashable(self): s_empty = Series() s = Series([1]) self.assertRaises(TypeError, hash, s_empty) self.assertRaises(TypeError, hash, s) def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assertEqual(nans.dtype, np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assertEqual(strings.dtype, np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assertEqual(dates.dtype, 'M8[ns]') self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): with ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iget([0, 2, 3, 4, 5]) expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iget(2), 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_numpy_array_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan,index=['C'],dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=datetools.bday) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) #ts[mask_shifted] #ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) #ts.ix[mask_shifted] #ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assert_isinstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(np.isscalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5),index=['A','A','B','C','C'],dtype=np.int64) expected = Series([3,4],index=['C','C'],dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df>5) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5],index=[1])) assert_series_equal(s2,expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5],index=[1])) assert_series_equal(s2,expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda : self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 expected = self.series.append(Series([1],index=['foobar'])) assert_series_equal(s,expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan,2,3]) s = Series([1,2,3]) s.iloc[0] = np.nan assert_series_equal(s,expected) s = Series([1,2,3]) s.loc[0] = np.nan assert_series_equal(s,expected) s = Series([1,2,3]) s[0] = np.nan assert_series_equal(s,expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s,Series([np.nan])) s = Series([False,True]) s.loc[0] = np.nan assert_series_equal(s,Series([np.nan,1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_reshape_non_2d(self): # GH 4554 x = Series(np.random.random(201), name='x') self.assertTrue(x.reshape(x.shape,) is x) # GH 2719 a = Series([1, 2, 3, 4]) result = a.reshape(2, 2) expected = a.values.reshape(2, 2) np.testing.assert_array_equal(result, expected) self.assertTrue(type(result) is type(expected)) def test_reshape_2d_return_array(self): x = Series(np.random.random(201), name='x') result = x.reshape((-1, 1)) self.assertNotIsInstance(result, Series) result2 = np.reshape(x, (-1, 1)) self.assertNotIsInstance(result2, Series) result = x[:, None] expected = x.reshape((-1, 1)) assert_almost_equal(result, expected) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert(s.shape == rs.shape) assert(rs is not s) # test alignment cond = Series([True,False,False,True,False],index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises( ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises( ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5,4,3,2,1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1,2,3,4]) result = s.where(s>2,np.nan) expected = Series([np.nan,np.nan,3,4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan,index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0,1,2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0,'b',1,'d','e','f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a','b','c',0,1,'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0,1,2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0,1,2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)),'b','c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [np.resize([True, False, False, False, False], size), # First element should be set # Set alternating elements] np.resize([True, False], size), np.resize([False], size)]: # No element should be set # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item,)]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1,s2]) result = comb.where(comb < 2) expected = Series([0,1,np.nan,0,1,np.nan],index=[0,1,2,0,1,2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb<1] = 5 expected = Series([5,1,2,5,1,2],index=[0,1,2,0,1,2]) assert_series_equal(comb, expected) comb[comb<2] += 10 expected = Series([5,11,2,5,11,2],index=[0,1,2,0,1,2]) assert_series_equal(comb, expected) def test_mask(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond, np.nan) assert_series_equal(rs, s.mask(~cond)) def test_drop(self): # unique s = Series([1,2],index=['one','two']) expected = Series([1],index=['one']) result = s.drop(['two']) assert_series_equal(result,expected) result = s.drop('two', axis='rows') assert_series_equal(result,expected) # non-unique # GH 5248 s = Series([1,1,2],index=['one','two','one']) expected = Series([1,2],index=['one','one']) result = s.drop(['two'], axis=0) assert_series_equal(result,expected) result = s.drop('two') assert_series_equal(result,expected) expected = Series([1],index=['two']) result = s.drop(['one']) assert_series_equal(result,expected) result = s.drop('one') assert_series_equal(result,expected) # single string/tuple-like s = Series(range(3),index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a',)) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2,3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3],index=[False]) assert_series_equal(result,expected) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s>1, 'X') self.assertFalse(com.is_integer(w[0])) self.assertTrue(com.is_integer(w[1])) self.assertTrue(com.is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s>1, ['X', 'Y', 'Z']) self.assertFalse(com.is_integer(w[0])) self.assertTrue(com.is_integer(w[1])) self.assertTrue(com.is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s>1, np.array(['X', 'Y', 'Z'])) self.assertFalse(com.is_integer(w[0])) self.assertTrue(com.is_integer(w[1])) self.assertTrue(com.is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.order() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # with Nones ots = self.ts.astype('O') ots[::2] = None repr(ots) # various names for name in ['', 1, 1.2, 'foo', u('\u03B1\u03B2\u03B3'), 'loooooooooooooooooooooooooooooooooooooooooooooooooooong', ('foo', 'bar', 'baz'), (1, 2), ('foo', 1, 2.3), (u('\u03B1'), u('\u03B2'), u('\u03B3')), (u('\u03B1'), 'bar')]: self.series.name = name repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) # 0 as name ser = Series(np.random.randn(100), name=0) rep_str = repr(ser) self.assertIn("Name: 0", rep_str) # tidy repr ser = Series(np.random.randn(1001), name=0) rep_str = repr(ser) self.assertIn("Name: 0", rep_str) ser = Series(["a\n\r\tb"], name=["a\n\r\td"], index=["a\n\r\tf"]) self.assertFalse("\t" in repr(ser)) self.assertFalse("\r" in repr(ser)) self.assertFalse("a\n" in repr(ser)) # with empty series (#4651) s = Series([], dtype=np.int64, name='foo') self.assertEqual(repr(s), 'Series([], name: foo, dtype: int64)') s = Series([], dtype=np.int64, name=None) self.assertEqual(repr(s), 'Series([], dtype: int64)') def test_tidy_repr(self): a = Series([u("\u05d0")] * 1000) a.name = 'title1' repr(a) # should not raise exception def test_repr_bool_fails(self): s = Series([DataFrame(np.random.randn(2, 2)) for i in range(5)]) import sys buf = StringIO() tmp = sys.stderr sys.stderr = buf try: # it works (with no Cython exception barf)! repr(s) finally: sys.stderr = tmp self.assertEqual(buf.getvalue(), '') def test_repr_name_iterable_indexable(self): s = Series([1, 2, 3], name=np.int64(3)) # it works! repr(s) s.name = (u("\u05d0"),) * 2 repr(s) def test_repr_should_return_str(self): # http://docs.python.org/py3k/reference/datamodel.html#object.__repr__ # http://docs.python.org/reference/datamodel.html#object.__repr__ # ...The return value must be a string object. # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = [u("\u03c3"), u("\u03c4"), u("\u03c5"), u("\u03c6")] df = Series(data, index=index1) self.assertTrue(type(df.__repr__() == str)) # both py2 / 3 def test_repr_max_rows(self): # GH 6863 with pd.option_context('max_rows', None): str(Series(range(1001))) # should not raise exception def test_unicode_string_with_unicode(self): df = Series([u("\u05d0")], name=u("\u05d1")) if compat.PY3: str(df) else: compat.text_type(df) def test_bytestring_with_unicode(self): df = Series([u("\u05d0")], name=u("\u05d1")) if compat.PY3: bytes(df) else: str(df) def test_timeseries_repr_object_dtype(self): index = Index([datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], dtype=object) ts = Series(np.random.randn(len(index)), index) repr(ts) ts = tm.makeTimeSeries(1000) self.assertTrue(repr(ts).splitlines()[-1].startswith('Freq:')) ts2 = ts.ix[np.random.randint(0, len(ts) - 1, 400)] repr(ts2).splitlines()[-1] def test_timeseries_periodindex(self): # GH2891 from pandas import period_range prng = period_range('1/1/2011', '1/1/2012', freq='M') ts = Series(np.random.randn(len(prng)), prng) new_ts = self.round_trip_pickle(ts) self.assertEqual(new_ts.index.freq, 'M') def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assertIs(getkeys(), self.ts.index) def test_values(self): self.assert_numpy_array_equal(self.ts, self.ts.values) def test_iteritems(self): for idx, val in compat.iteritems(self.series): self.assertEqual(val, self.series[idx]) for idx, val in compat.iteritems(self.ts): self.assertEqual(val, self.ts[idx]) # assert is lazy (genrators don't define reverse, lists do) self.assertFalse(hasattr(self.series.iteritems(), 'reverse')) def test_sum(self): self._check_stat_op('sum', np.sum) def test_sum_inf(self): import pandas.core.nanops as nanops s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan self.assertTrue(np.isinf(s.sum())) arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf with cf.option_context("mode.use_inf_as_null", True): assert_almost_equal(s.sum(), s2.sum()) res = nanops.nansum(arr, axis=1) self.assertTrue(np.isinf(res).all()) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = Series(np.ones(10, dtype=int), index=lrange(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_mode(self): s = Series([12, 12, 11, 10, 19, 11]) exp = Series([11, 12]) assert_series_equal(s.mode(), exp) assert_series_equal(Series([1, 2, 3]).mode(), Series([], dtype='int64')) lst = [5] * 20 + [1] * 10 + [6] * 25 np.random.shuffle(lst) s = Series(lst) assert_series_equal(s.mode(), Series([6])) s = Series([5] * 10) assert_series_equal(s.mode(), Series([5])) s = Series(lst) s[0] = np.nan assert_series_equal(s.mode(), Series([6.])) s = Series(list('adfasbasfwewefwefweeeeasdfasnbam')) assert_series_equal(s.mode(), Series(['e'])) s = Series(['2011-01-03', '2013-01-02', '1900-05-03'], dtype='M8[ns]') assert_series_equal(s.mode(), Series([], dtype="M8[ns]")) s = Series(['2011-01-03', '2013-01-02', '1900-05-03', '2011-01-03', '2013-01-02'], dtype='M8[ns]') assert_series_equal(s.mode(), Series(['2011-01-03', '2013-01-02'], dtype='M8[ns]')) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_var_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) result = self.ts.std(ddof=4) expected = np.std(self.ts.values, ddof=4) assert_almost_equal(result, expected) result = self.ts.var(ddof=4) expected = np.var(self.ts.values, ddof=4) assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = self.ts.iloc[[0]] result = s.var(ddof=1) self.assertTrue(isnull(result)) result = s.std(ddof=1) self.assertTrue(isnull(result)) def test_sem(self): alt = lambda x: np.std(x, ddof=1)/np.sqrt(len(x)) self._check_stat_op('sem', alt) result = self.ts.sem(ddof=4) expected = np.std(self.ts.values, ddof=4)/np.sqrt(len(self.ts.values)) assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = self.ts.iloc[[0]] result = s.sem(ddof=1) self.assertTrue(isnull(result)) def test_skew(self): tm._skip_if_no_scipy() from scipy.stats import skew alt = lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) # test corner cases, skew() returns NaN unless there's at least 3 values min_N = 3 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: self.assertTrue(np.isnan(s.skew())) self.assertTrue(np.isnan(df.skew()).all()) else: self.assertEqual(0, s.skew()) self.assertTrue((df.skew() == 0).all()) def test_kurt(self): tm._skip_if_no_scipy() from scipy.stats import kurtosis alt = lambda x: kurtosis(x, bias=False) self._check_stat_op('kurt', alt) index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) self.assertAlmostEqual(s.kurt(), s.kurt(level=0)['bar']) # test corner cases, kurt() returns NaN unless there's at least 4 values min_N = 4 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: self.assertTrue(np.isnan(s.kurt())) self.assertTrue(np.isnan(df.kurt()).all()) else: self.assertEqual(0, s.kurt()) self.assertTrue((df.kurt() == 0).all()) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assertTrue(issubclass(argsorted.dtype.type, np.integer)) # GH 2967 (introduced bug in 0.11-dev I think) s = Series([Timestamp('201301%02d' % (i + 1)) for i in range(5)]) self.assertEqual(s.dtype, 'datetime64[ns]') shifted = s.shift(-1) self.assertEqual(shifted.dtype, 'datetime64[ns]') self.assertTrue(isnull(shifted[4])) result = s.argsort() expected = Series(lrange(5), dtype='int64') assert_series_equal(result, expected) result = shifted.argsort() expected = Series(lrange(4) + [-1], dtype='int64') assert_series_equal(result, expected) def test_argsort_stable(self): s = Series(np.random.randint(0, 100, size=10000)) mindexer = s.argsort(kind='mergesort') qindexer = s.argsort() mexpected = np.argsort(s.values, kind='mergesort') qexpected = np.argsort(s.values, kind='quicksort') self.assert_numpy_array_equal(mindexer, mexpected) self.assert_numpy_array_equal(qindexer, qexpected) self.assertFalse(np.array_equal(qindexer, mindexer)) def test_reorder_levels(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=['L0', 'L1', 'L2']) s = Series(np.arange(6), index=index) # no change, position result = s.reorder_levels([0, 1, 2]) assert_series_equal(s, result) # no change, labels result = s.reorder_levels(['L0', 'L1', 'L2']) assert_series_equal(s, result) # rotate, position result = s.reorder_levels([1, 2, 0]) e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']], labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=['L1', 'L2', 'L0']) expected = Series(np.arange(6), index=e_idx) assert_series_equal(result, expected) result = s.reorder_levels([0, 0, 0]) e_idx = MultiIndex(levels=[['bar'], ['bar'], ['bar']], labels=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=['L0', 'L0', 'L0']) expected = Series(range(6), index=e_idx) assert_series_equal(result, expected) result = s.reorder_levels(['L0', 'L0', 'L0']) assert_series_equal(result, expected) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def test_cummin(self): self.assert_numpy_array_equal(self.ts.cummin(), np.minimum.accumulate(np.array(self.ts))) ts = self.ts.copy() ts[::2] = np.NaN result = ts.cummin()[1::2] expected = np.minimum.accumulate(ts.valid()) self.assert_numpy_array_equal(result, expected) def test_cummax(self): self.assert_numpy_array_equal(self.ts.cummax(), np.maximum.accumulate(np.array(self.ts))) ts = self.ts.copy() ts[::2] = np.NaN result = ts.cummax()[1::2] expected = np.maximum.accumulate(ts.valid()) self.assert_numpy_array_equal(result, expected) def test_cummin_datetime64(self): s = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-1', 'NaT', '2000-1-3'])) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-1', 'NaT', '2000-1-1'])) result = s.cummin(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', '2000-1-2', '2000-1-1', '2000-1-1', '2000-1-1'])) result = s.cummin(skipna=False) self.assert_series_equal(expected, result) def test_cummax_datetime64(self): s = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-1', 'NaT', '2000-1-3'])) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-2', 'NaT', '2000-1-3'])) result = s.cummax(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', '2000-1-2', '2000-1-2', '2000-1-2', '2000-1-3'])) result = s.cummax(skipna=False) self.assert_series_equal(expected, result) def test_cummin_timedelta64(self): s = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '1 min', 'NaT', '3 min', ])) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '1 min', 'NaT', '1 min', ])) result = s.cummin(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', '2 min', '1 min', '1 min', '1 min', ])) result = s.cummin(skipna=False) self.assert_series_equal(expected, result) def test_cummax_timedelta64(self): s = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '1 min', 'NaT', '3 min', ])) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '2 min', 'NaT', '3 min', ])) result = s.cummax(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', '2 min', '2 min', '2 min', '3 min', ])) result = s.cummax(skipna=False) self.assert_series_equal(expected, result) def test_npdiff(self): raise nose.SkipTest("skipping due to Series no longer being an " "ndarray") # no longer works as the return type of np.diff is now nd.array s = Series(np.arange(5)) r = np.diff(s) assert_series_equal(Series([nan, 0, 0, 0, nan]), r) def _check_stat_op(self, name, alternate, check_objects=False): import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # idxmax, idxmin, min, and max are valid for dates if name not in ['max','min']: ds = Series(date_range('1/1/2001', periods=10)) self.assertRaises(TypeError, f, ds) # skipna or no self.assertTrue(notnull(f(self.series))) self.assertTrue(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona.values)) assert_almost_equal(f(self.series), alternate(nona.values)) allna = self.series * nan self.assertTrue(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # 2888 l = [0] l.extend(lrange(2 ** 40, 2 ** 40+1000)) s = Series(l, dtype='int64') assert_almost_equal(float(f(s)), float(alternate(s.values))) # check date range if check_objects: s = Series(bdate_range('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) # Invalid axis. self.assertRaises(ValueError, f, self.series, axis=1) # Unimplemented numeric_only parameter. if 'numeric_only' in getargspec(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, self.series, numeric_only=True) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_numpy_array_equal(func(self.ts), func(np.array(self.ts))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_numpy_array_equal(result, expected) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index) assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.], index=lrange(3)) result = s.prod() self.assertNotIsInstance(result, Series) def test_quantile(self): from numpy import percentile q = self.ts.quantile(0.1) self.assertEqual(q, percentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, percentile(self.ts.valid(), 90)) # object dtype q = Series(self.ts,dtype=object).quantile(0.9) self.assertEqual(q, percentile(self.ts.valid(), 90)) # datetime64[ns] dtype dts = self.ts.index.to_series() q = dts.quantile(.2) self.assertEqual(q, Timestamp('2000-01-10 19:12:00')) # timedelta64[ns] dtype tds = dts.diff() q = tds.quantile(.25) self.assertEqual(q, pd.to_timedelta('24:00:00')) # GH7661 result = Series([np.timedelta64('NaT')]).sum() self.assertTrue(result is pd.NaT) def test_quantile_multi(self): from numpy import percentile qs = [.1, .9] result = self.ts.quantile(qs) expected = pd.Series([percentile(self.ts.valid(), 10), percentile(self.ts.valid(), 90)], index=qs) assert_series_equal(result, expected) dts = self.ts.index.to_series() result = dts.quantile((.2, .2)) assert_series_equal(result, Series([Timestamp('2000-01-10 19:12:00'), Timestamp('2000-01-10 19:12:00')], index=[.2, .2])) def test_append(self): appendedSeries = self.series.append(self.objSeries) for idx, value in compat.iteritems(appendedSeries): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.objSeries.index: self.assertEqual(value, self.objSeries[idx]) else: self.fail("orphaned index!") self.assertRaises(ValueError, self.ts.append, self.ts, verify_integrity=True) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): ts = tm.makeTimeSeries() bool_series = ts > 0 self.assertFalse(bool_series.all()) self.assertTrue(bool_series.any()) # Alternative types, with implicit 'object' dtype. s = Series(['abc', True]) self.assertEqual('abc', s.any()) # 'abc' || True => 'abc' def test_all_any_params(self): # Check skipna, with implicit 'object' dtype. s1 = Series([np.nan, True]) s2 = Series([np.nan, False]) self.assertTrue(s1.all(skipna=False)) # nan && True => True self.assertTrue(s1.all(skipna=True)) self.assertTrue(np.isnan(s2.any(skipna=False))) # nan || False => nan self.assertFalse(s2.any(skipna=True)) # Check level. s = pd.Series([False, False, True, True, False, True], index=[0, 0, 1, 1, 2, 2]) assert_series_equal(s.all(level=0), Series([False, True, False])) assert_series_equal(s.any(level=0), Series([False, True, True])) # bool_only is not implemented with level option. self.assertRaises(NotImplementedError, s.any, bool_only=True, level=0) self.assertRaises(NotImplementedError, s.all, bool_only=True, level=0) # bool_only is not implemented alone. self.assertRaises(NotImplementedError, s.any, bool_only=True) self.assertRaises(NotImplementedError, s.all, bool_only=True) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_modulo(self): # GH3590, modulo as ints p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] % p['second'] expected = Series(p['first'].values % p['second'].values, dtype='float64') expected.iloc[0:3] = np.nan assert_series_equal(result, expected) result = p['first'] % 0 expected = Series(np.nan, index=p.index) assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] % p['second'] expected = Series(p['first'].values % p['second'].values) assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] % p['second'] result2 = p['second'] % p['first'] self.assertFalse(np.array_equal(result, result2)) # GH 9144 s = Series([0, 1]) result = s % 0 expected = Series([nan, nan]) assert_series_equal(result, expected) result = 0 % s expected = Series([nan, 0.0]) assert_series_equal(result, expected) def test_div(self): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index) assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64')) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan,1.,-1.]) result = s / 0 expected = Series([np.nan,np.inf,-np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1,0), 'second': (-0.01,-0.02)}) expected = Series([-0.01,-np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other): _check_op(series, other, operator.gt) _check_op(series, other, operator.ge) _check_op(series, other, operator.eq) _check_op(series, other, operator.lt) _check_op(series, other, operator.le) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_constructor_dtype_timedelta64(self): # basic td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([timedelta(days=1)]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([timedelta(days=1),timedelta(days=2),np.timedelta64(1,'s')]) self.assertEqual(td.dtype, 'timedelta64[ns]') # mixed with NaT from pandas import tslib td = Series([timedelta(days=1),tslib.NaT ], dtype='m8[ns]' ) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([timedelta(days=1),np.nan ], dtype='m8[ns]' ) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(300000000), pd.NaT],dtype='m8[ns]') self.assertEqual(td.dtype, 'timedelta64[ns]') # improved inference # GH5689 td = Series([np.timedelta64(300000000), pd.NaT]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(300000000), tslib.iNaT]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(300000000), np.nan]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([pd.NaT, np.timedelta64(300000000)]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(1,'s')]) self.assertEqual(td.dtype, 'timedelta64[ns]') # these are frequency conversion astypes #for t in ['s', 'D', 'us', 'ms']: # self.assertRaises(TypeError, td.astype, 'm8[%s]' % t) # valid astype td.astype('int64') # invalid casting self.assertRaises(TypeError, td.astype, 'int32') # this is an invalid casting def f(): Series([timedelta(days=1), 'foo'],dtype='m8[ns]') self.assertRaises(Exception, f) # leave as object here td = Series([timedelta(days=i) for i in range(3)] + ['foo']) self.assertEqual(td.dtype, 'object') # these will correctly infer a timedelta s = Series([None, pd.NaT, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') s = Series([np.nan, pd.NaT, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') s = Series([pd.NaT, None, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') s = Series([pd.NaT, np.nan, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises( Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises( Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype( 'int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assert_isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] expected = Series( [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series([timedelta(days=4017 + i) for i in range(3)]) assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5,seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5,seconds=1)) self.assertEqual(rs[2], value) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series( [Timestamp('20130101 9:01:05'), Timestamp('20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp('20130101 9:06:00.005'), Timestamp('20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series( [Timestamp('20130101 9:01:01'), Timestamp('20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series( [Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in [ 'Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano' ]: op = getattr(pd.offsets,do) s + op(5) op(5) + s # invalid DateOffsets for do in [ 'Week', 'BDay', 'BQuarterEnd', 'BMonthEnd', 'BYearEnd', 'BYearBegin','BQuarterBegin', 'BMonthBegin', 'MonthEnd','YearBegin', 'YearEnd', 'MonthBegin', 'QuarterBegin' ]: op = getattr(pd.offsets,do) self.assertRaises(TypeError, s.__add__, op(5)) self.assertRaises(TypeError, s.__radd__, op(5)) def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) -Series( [timedelta(seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2,td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) -Series( [timedelta(seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2,td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result,expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result,expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result,expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result,expected) for dtype in ['int32','int16','uint32','uint64','uint32','uint16','uint8']: s2 = Series([20, 30, 40],dtype=dtype) expected = Series(s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result,expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result,expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result,expected) # invalid ops for op in ['__true_div__','__div__','__mul__']: sop = getattr(s1,op,None) if sop is not None: self.assertRaises(TypeError, sop, s2.astype(float)) self.assertRaises(TypeError, sop, 2.) for op in ['__add__','__sub__']: sop = getattr(s1,op,None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D','h','m','s','ms','us','ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m,unit)) result = s1 / np.timedelta64(m,unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply(lambda x: np.timedelta64(m,unit) / x) result = np.timedelta64(m,unit) / s1 # astype s = Series(date_range('20130101',periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0],datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0],timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp('20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' npy16_mappings = {'D': 24 * 60 * 60 * 1000000, 'h': 60 * 60 * 1000000, 'm': 60 * 1000000, 's': 1000000, 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3},s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s,Series(Timedelta('1 days'),index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s,Series([np.nan,Timedelta('1 days')],index=['A','B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'),index=['A','B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): for op in ops: try: op = getattr(get_ser, op, None) if op is not None: self.assertRaises(TypeError, op, test_ser) except: com.pprint_thing("Failed on op %r" % op) raise ### timedelta64 ### td1 = Series([timedelta(minutes=5,seconds=3)]*3) td2 = timedelta(minutes=5,seconds=4) ops = ['__mul__','__floordiv__','__pow__', '__rmul__','__rfloordiv__','__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 ### datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 ### datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 ### timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rsub__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0),timedelta(0),pd.NaT]) result = dt2-dt assert_series_equal(result,expected) result = (dt2.to_frame()-dt.to_frame())[0] assert_series_equal(result,expected) def test_timedelta64_functions(self): from datetime import timedelta from pandas import date_range # index min/max td = Series(date_range('2012-1-1', periods=3, freq='D')) - \ Timestamp('20120101') result = td.idxmin() self.assertEqual(result, 0) result = td.idxmax() self.assertEqual(result, 2) # GH 2982 # with NaT td[0] = np.nan result = td.idxmin() self.assertEqual(result, 1) result = td.idxmax() self.assertEqual(result, 2) # abs s1 = Series(date_range('20120101', periods=3)) s2 = Series(date_range('20120102', periods=3)) expected = Series(s2 - s1) # this fails as numpy returns timedelta64[us] #result = np.abs(s1-s2) # assert_frame_equal(result,expected) result = (s1 - s2).abs() assert_series_equal(result, expected) # max/min result = td.max() expected = Timedelta('2 days') self.assertEqual(result, expected) result = td.min() expected = Timedelta('1 days') self.assertEqual(result, expected) def test_ops_consistency_on_empty(self): # GH 7869 # consistency on empty # float result = Series(dtype=float).sum() self.assertEqual(result,0) result = Series(dtype=float).mean() self.assertTrue(isnull(result)) result = Series(dtype=float).median() self.assertTrue(isnull(result)) # timedelta64[ns] result = Series(dtype='m8[ns]').sum() self.assertEqual(result, Timedelta(0)) result = Series(dtype='m8[ns]').mean() self.assertTrue(result is pd.NaT) result = Series(dtype='m8[ns]').median() self.assertTrue(result is pd.NaT) def test_timedelta_fillna(self): #GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9*3600+60+1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series(['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_fillna_int(self): s = Series(np.random.randint(-100, 100, 50)) s.fillna(method='ffill', inplace=True) assert_series_equal(s.fillna(method='ffill', inplace=False), s) def test_fillna_raise(self): s = Series(np.random.randint(-100, 100, 50)) self.assertRaises(TypeError, s.fillna, [1, 2]) self.assertRaises(TypeError, s.fillna, (1, 2)) def test_raise_on_info(self): s = Series(np.random.randn(10)) with tm.assertRaises(AttributeError): s.info() def test_isnull_for_inf(self): s = Series(['a', np.inf, np.nan, 1.0]) with pd.option_context('mode.use_inf_as_null', True): r = s.isnull() dr = s.dropna() e = Series([False, True, True, False]) de = Series(['a', 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) # TimeSeries-specific def test_fillna(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) self.assert_numpy_array_equal(ts, ts.fillna(method='ffill')) ts[2] = np.NaN self.assert_numpy_array_equal(ts.fillna(method='ffill'), [0., 1., 1., 3., 4.]) self.assert_numpy_array_equal(ts.fillna(method='backfill'), [0., 1., 3., 3., 4.]) self.assert_numpy_array_equal(ts.fillna(value=5), [0., 1., 5., 3., 4.]) self.assertRaises(ValueError, ts.fillna) self.assertRaises(ValueError, self.ts.fillna, value=0, method='ffill') # GH 5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.]) assert_series_equal(result,expected) result = s1.fillna({}) assert_series_equal(result,s1) result = s1.fillna(Series(())) assert_series_equal(result,s1) result = s2.fillna(s1) assert_series_equal(result,s2) result = s1.fillna({ 0 : 1}) assert_series_equal(result,expected) result = s1.fillna({ 1 : 1}) assert_series_equal(result,Series([np.nan])) result = s1.fillna({ 0 : 1, 1 : 1}) assert_series_equal(result,expected) result = s1.fillna(Series({ 0 : 1, 1 : 1})) assert_series_equal(result,expected) result = s1.fillna(Series({ 0 : 1, 1 : 1},index=[4,5])) assert_series_equal(result,s1) s1 = Series([0, 1, 2], list('abc')) s2 = Series([0, np.nan, 2], list('bac')) result = s2.fillna(s1) expected = Series([0,0,2.], list('bac')) assert_series_equal(result,expected) # limit s = Series(np.nan,index=[0,1,2]) result = s.fillna(999,limit=1) expected = Series([999,np.nan,np.nan],index=[0,1,2]) assert_series_equal(result,expected) result = s.fillna(999,limit=2) expected = Series([999,999,np.nan],index=[0,1,2]) assert_series_equal(result,expected) def test_fillna_bug(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) filled = x.fillna(method='ffill') expected = Series([nan, 1., 1., 3., 3.], x.index) assert_series_equal(filled, expected) filled = x.fillna(method='bfill') expected = Series([1., 1., 3., 3., nan], x.index) assert_series_equal(filled, expected) def test_fillna_inplace(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) y = x.copy() y.fillna(value=0, inplace=True) expected = x.fillna(value=0) assert_series_equal(y, expected) def test_fillna_invalid_method(self): try: self.ts.fillna(method='ffil') except ValueError as inst: self.assertIn('ffil', str(inst)) def test_ffill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.ffill(), ts.fillna(method='ffill')) def test_bfill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.bfill(), ts.fillna(method='bfill')) def test_sub_of_datetime_from_TimeSeries(self): from pandas.tseries.timedeltas import to_timedelta from datetime import datetime a = Timestamp(datetime(1993, 0o1, 0o7, 13, 30, 00)) b = datetime(1993, 6, 22, 13, 30) a = Series([a]) result = to_timedelta(np.abs(a - b)) self.assertEqual(result.dtype, 'timedelta64[ns]') def test_datetime64_with_index(self): # arithmetic integer ops with an index s = Series(np.random.randn(5)) expected = s-s.index.to_series() result = s-s.index assert_series_equal(result,expected) # GH 4629 # arithmetic datetime64 ops with an index s = Series(date_range('20130101',periods=5),index=date_range('20130101',periods=5)) expected = s-s.index.to_series() result = s-s.index assert_series_equal(result,expected) result = s-s.index.to_period() assert_series_equal(result,expected) df = DataFrame(np.random.randn(5,2),index=date_range('20130101',periods=5)) df['date'] = Timestamp('20130102') df['expected'] = df['date'] - df.index.to_series() df['result'] = df['date'] - df.index assert_series_equal(df['result'],df['expected']) def test_timedelta64_nan(self): from pandas import tslib td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan self.assertTrue(isnull(td1[0])) self.assertEqual(td1[0].value, tslib.iNaT) td1[0] = td[0] self.assertFalse(isnull(td1[0])) td1[1] = tslib.iNaT self.assertTrue(isnull(td1[1])) self.assertEqual(td1[1].value, tslib.iNaT) td1[1] = td[1] self.assertFalse(isnull(td1[1])) td1[2] = tslib.NaT self.assertTrue(isnull(td1[2])) self.assertEqual(td1[2].value, tslib.iNaT) td1[2] = td[2] self.assertFalse(isnull(td1[2])) # boolean setting # this doesn't work, not sure numpy even supports it #result = td[(td>np.timedelta64(timedelta(days=3))) & (td<np.timedelta64(timedelta(days=7)))] = np.nan #self.assertEqual(isnull(result).sum(), 7) # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_operators_na_handling(self): from decimal import Decimal from datetime import date s = Series([Decimal('1.3'), Decimal('2.3')], index=[date(2012, 1, 1), date(2012, 1, 2)]) result = s + s.shift(1) result2 = s.shift(1) + s self.assertTrue(isnull(result[0])) self.assertTrue(isnull(result2[0])) s = Series(['foo', 'bar', 'baz', np.nan]) result = 'prefix_' + s expected = Series(['prefix_foo', 'prefix_bar', 'prefix_baz', np.nan]) assert_series_equal(result, expected) result = s + '_suffix' expected = Series(['foo_suffix', 'bar_suffix', 'baz_suffix', np.nan]) assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s,s2),(s2,s)]: self.assertRaises(TypeError, lambda : x == y) self.assertRaises(TypeError, lambda : x != y) self.assertRaises(TypeError, lambda : x >= y) self.assertRaises(TypeError, lambda : x > y) self.assertRaises(TypeError, lambda : x < y) self.assertRaises(TypeError, lambda : x <= y) def test_more_na_comparisons(self): left = Series(['a', np.nan, 'c']) right = Series(['a', np.nan, 'd']) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_comparison_different_length(self): a = Series(['a', 'b', 'c']) b = Series(['b', 'a']) self.assertRaises(ValueError, a.__lt__, b) a = Series([1, 2]) b = Series([2, 3, 4]) self.assertRaises(ValueError, a.__eq__, b) def test_comparison_label_based(self): # GH 4947 # comparisons should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([True, False, False], list('bca')) result = a & b assert_series_equal(result,expected) expected = Series([True, False, True], list('bca')) result = a | b assert_series_equal(result,expected) expected = Series([False, False, True], list('bca')) result = a ^ b assert_series_equal(result,expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([True, False, False], list('bca')) result = a & b assert_series_equal(result,expected) expected = Series([True, False, True], list('bca')) result = a | b assert_series_equal(result,expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result,expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result,expected) # vs non-matching result = a & Series([1],['z']) expected = Series([False, False, False], list('bca')) assert_series_equal(result,expected) result = a | Series([1],['z']) expected = Series([True, False, True], list('bca')) assert_series_equal(result,expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]),Series([1],['z']),Series(['z']),Series(np.nan,b.index),Series(np.nan,a.index)]: result = a[a | e] assert_series_equal(result,a[a]) # vs scalars index = list('bca') t = Series([True,False,True]) for v in [True,1,2]: result = Series([True,False,True],index=index) | v expected = Series([True,True,True],index=index) assert_series_equal(result,expected) for v in [np.nan,'foo']: self.assertRaises(TypeError, lambda : t | v) for v in [False,0]: result = Series([True,False,True],index=index) | v expected = Series([True,False,True],index=index) assert_series_equal(result,expected) for v in [True,1]: result = Series([True,False,True],index=index) & v expected = Series([True,False,True],index=index) assert_series_equal(result,expected) for v in [False,0]: result = Series([True,False,True],index=index) & v expected = Series([False,False,False],index=index) assert_series_equal(result,expected) for v in [np.nan]: self.assertRaises(TypeError, lambda : t & v) def test_operators_bitwise(self): # GH 9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) s_0101 = Series([0,1,0,1]) s_0123 = Series(range(4),dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4),dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8),dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1]*4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) self.assertRaises(TypeError, lambda: s_1111 & 'a') self.assertRaises(TypeError, lambda: s_1111 & ['a','b','c','d']) self.assertRaises(TypeError, lambda: s_0123 & np.NaN) self.assertRaises(TypeError, lambda: s_0123 & 3.14) self.assertRaises(TypeError, lambda: s_0123 & [0.1, 4, 3.14, 2]) # s_0123 will be all false now because of reindexing like s_tft assert_series_equal(s_tft & s_0123, Series([False] * 3, list('bca'))) # s_tft will be all false now because of reindexing like s_0123 assert_series_equal(s_0123 & s_tft, Series([False] * 4)) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a','b',np.NaN,'d']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_between(self): s = Series(bdate_range('1/1/2000', periods=20).asobject) s[::2] = np.nan result = s[s.between(s[3], s[17])] expected = s[3:18].dropna() assert_series_equal(result, expected) result = s[s.between(s[3], s[17], inclusive=False)] expected = s[5:16].dropna() assert_series_equal(result, expected) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_scalar_na_cmp_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) def tester(a, b): return a & b self.assertRaises(TypeError, tester, s, datetime(2005, 1, 1)) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True,index=s.index) expected[::2] = False assert_series_equal(tester(s, list(s)), expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented self.assertRaises(ValueError, tester, s, d) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assertTrue(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assertTrue(isnull(allna.idxmin())) # datetime64[ns] from pandas import date_range s = Series(date_range('20130102', periods=6)) result = s.idxmin() self.assertEqual(result, 0) s[0] = np.nan result = s.idxmin() self.assertEqual(result, 1) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assertTrue(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assertTrue(isnull(allna.idxmax())) from pandas import date_range s = Series(date_range('20130102', periods=6)) result = s.idxmax() self.assertEqual(result, 5) s[5] = np.nan result = s.idxmax() self.assertEqual(result, 4) # Float64Index # GH 5914 s = pd.Series([1,2,3],[1.1,2.1,3.1]) result = s.idxmax() self.assertEqual(result, 3.1) result = s.idxmin() self.assertEqual(result, 1.1) s = pd.Series(s.index, s.index) result = s.idxmax() self.assertEqual(result, 3.1) result = s.idxmin() self.assertEqual(result, 1.1) def test_ndarray_compat(self): # test numpy compat with Series as sub-class of NDFrame tsdf = DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=1000)) def f(x): return x[x.argmax()] result = tsdf.apply(f) expected = tsdf.max() assert_series_equal(result,expected) # .item() s = Series([1]) result = s.item() self.assertEqual(result, 1) self.assertEqual(s.item(), s.iloc[0]) # using an ndarray like function s = Series(np.random.randn(10)) result = np.ones_like(s) expected = Series(1,index=range(10),dtype='float64') #assert_series_equal(result,expected) # ravel s = Series(np.random.randn(10)) tm.assert_almost_equal(s.ravel(order='F'),s.values.ravel(order='F')) # compress # GH 6658 s = Series([0,1.,-1],index=list('abc')) result = np.compress(s>0,s) assert_series_equal(result, Series([1.],index=['b'])) result = np.compress(s<-1,s) assert_series_equal(result, Series([],dtype='float64')) def test_complexx(self): # GH4819 # complex access for ndarray compat a = np.arange(5) b = Series(a + 4j*a) tm.assert_almost_equal(a,b.real) tm.assert_almost_equal(4*a,b.imag) b.real = np.arange(5)+5 tm.assert_almost_equal(a+5,b.real) tm.assert_almost_equal(4*a,b.imag) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1,2,3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2,2,2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame(dict(a = [1,2,3], b = [1,2,3], c = [1,2,3], val = [0,1,0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df,expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment',None) df = DataFrame({ "aa":range(5), "bb":[2.2]*5}) df["cc"] = 0.0 ck = [True]*len(df) df["bb"].iloc[0] = .13 df_tmp = df.iloc[ck] df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment','raise') # GH 3217 df = DataFrame(dict(a = [1,3], b = [np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'],index=[0])) expected = DataFrame(dict(a = [1,3], b = [np.nan, 2], c = ['foo',np.nan])) tm.assert_frame_equal(df,expected) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assertTrue(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assertEqual(len(result), 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_numpy_array_equal(added[:-5], expected) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): import operator # GH 353 vals = Series(tm.rands_array(5, 10)) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals': vals}) result = 'foo_' + frame expected = DataFrame({'vals': vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A': self.ts}) tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A']) tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A']) tm.assert_almost_equal(self.ts < self.ts, (self.ts < df)['A']) tm.assert_almost_equal(self.ts / self.ts, (self.ts / df)['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) pairings = [] for op in ['add', 'sub', 'mul', 'pow', 'truediv', 'floordiv']: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, 'r' + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) if compat.PY3: pairings.append((Series.div, operator.truediv, 1)) pairings.append((Series.rdiv, lambda x, y: operator.truediv(y, x), 1)) else: pairings.append((Series.div, operator.div, 1)) pairings.append((Series.rdiv, lambda x, y: operator.div(y, x), 1)) for op, equiv_op, fv in pairings: result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) # should accept axis=0 or axis='rows' op(a, b, axis=0) def test_combine_first(self): values = tm.makeIntIndex(20).values.astype(float) series = Series(values, index=tm.makeIntIndex(20)) series_copy = series * 2 series_copy[::2] = np.NaN # nothing used from the input combined = series.combine_first(series_copy) self.assert_numpy_array_equal(combined, series) # Holes filled from input combined = series_copy.combine_first(series) self.assertTrue(np.isfinite(combined).all()) self.assert_numpy_array_equal(combined[::2], series[::2]) self.assert_numpy_array_equal(combined[1::2], series_copy[1::2]) # mixed types index = tm.makeStringIndex(20) floats = Series(tm.randn(20), index=index) strings = Series(tm.makeStringIndex(10), index=index[::2]) combined = strings.combine_first(floats) tm.assert_dict_equal(strings, combined, compare_keys=False) tm.assert_dict_equal(floats[1::2], combined, compare_keys=False) # corner case s = Series([1., 2, 3], index=[0, 1, 2]) result = s.combine_first(Series([], index=[])) assert_series_equal(s, result) def test_update(self): s = Series([1.5, nan, 3., 4., nan]) s2 = Series([nan, 3.5, nan, 5.]) s.update(s2) expected = Series([1.5, 3.5, 3., 5., np.nan]) assert_series_equal(s, expected) # GH 3217 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan # this will fail as long as series is a sub-class of ndarray # df['c'].update(Series(['foo'],index=[0])) ##### def test_corr(self): tm._skip_if_no_scipy() import scipy.stats as stats # full overlap self.assertAlmostEqual(self.ts.corr(self.ts), 1) # partial overlap self.assertAlmostEqual(self.ts[:15].corr(self.ts[5:]), 1) self.assertTrue(isnull(self.ts[:15].corr(self.ts[5:], min_periods=12))) ts1 = self.ts[:15].reindex(self.ts.index) ts2 = self.ts[5:].reindex(self.ts.index) self.assertTrue(isnull(ts1.corr(ts2, min_periods=12))) # No overlap self.assertTrue(np.isnan(self.ts[::2].corr(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assertTrue(isnull(cp.corr(cp))) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) self.assertAlmostEqual(result, expected) def test_corr_rank(self): tm._skip_if_no_scipy() import scipy import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method='kendall') expected = stats.kendalltau(A, B)[0] self.assertAlmostEqual(result, expected) result = A.corr(B, method='spearman') expected = stats.spearmanr(A, B)[0] self.assertAlmostEqual(result, expected) # these methods got rewritten in 0.8 if scipy.__version__ < LooseVersion('0.9'): raise nose.SkipTest("skipping corr rank because of scipy version " "{0}".format(scipy.__version__)) # results from R A = Series([-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606]) B = Series([-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375]) kexp = 0.4319297 sexp = 0.5853767 self.assertAlmostEqual(A.corr(B, method='kendall'), kexp) self.assertAlmostEqual(A.corr(B, method='spearman'), sexp) def test_cov(self): # full overlap self.assertAlmostEqual(self.ts.cov(self.ts), self.ts.std() ** 2) # partial overlap self.assertAlmostEqual( self.ts[:15].cov(self.ts[5:]), self.ts[5:15].std() ** 2) # No overlap self.assertTrue(np.isnan(self.ts[::2].cov(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assertTrue(isnull(cp.cov(cp))) # min_periods self.assertTrue(isnull(self.ts[:15].cov(self.ts[5:], min_periods=12))) ts1 = self.ts[:15].reindex(self.ts.index) ts2 = self.ts[5:].reindex(self.ts.index) self.assertTrue(isnull(ts1.cov(ts2, min_periods=12))) def test_copy(self): ts = self.ts.copy() ts[::2] = np.NaN # Did not modify original Series self.assertFalse(np.isnan(self.ts[0])) def test_count(self): self.assertEqual(self.ts.count(), len(self.ts)) self.ts[::2] = np.NaN self.assertEqual(self.ts.count(), np.isfinite(self.ts).sum()) def test_dtype(self): self.assertEqual(self.ts.dtype, np.dtype('float64')) self.assertEqual(self.ts.dtypes, np.dtype('float64')) self.assertEqual(self.ts.ftype, 'float64:dense') self.assertEqual(self.ts.ftypes, 'float64:dense') assert_series_equal(self.ts.get_dtype_counts(),Series(1,['float64'])) assert_series_equal(self.ts.get_ftype_counts(),Series(1,['float64:dense'])) def test_dot(self): a = Series(np.random.randn(4), index=['p', 'q', 'r', 's']) b = DataFrame(np.random.randn(3, 4), index=['1', '2', '3'], columns=['p', 'q', 'r', 's']).T result = a.dot(b) expected = Series(np.dot(a.values, b.values), index=['1', '2', '3']) assert_series_equal(result, expected) # Check index alignment b2 = b.reindex(index=reversed(b.index)) result = a.dot(b) assert_series_equal(result, expected) # Check ndarray argument result = a.dot(b.values) self.assertTrue(np.all(result == expected.values)) assert_almost_equal(a.dot(b['2'].values), expected['2']) # Check series argument assert_almost_equal(a.dot(b['1']), expected['1']) assert_almost_equal(a.dot(b2['1']), expected['1']) self.assertRaises(Exception, a.dot, a.values[:3]) self.assertRaises(ValueError, a.dot, b.T) def test_value_counts_nunique(self): # basics.rst doc example series = Series(np.random.randn(500)) series[20:500] = np.nan series[10:20] = 5000 result = series.nunique() self.assertEqual(result, 11) def test_unique(self): # 714 also, dtype=float s = Series([1.2345] * 100) s[::2] = np.nan result = s.unique() self.assertEqual(len(result), 2) s = Series([1.2345] * 100, dtype='f4') s[::2] = np.nan result = s.unique() self.assertEqual(len(result), 2) # NAs in object arrays #714 s = Series(['foo'] * 100, dtype='O') s[::2] = np.nan result = s.unique() self.assertEqual(len(result), 2) # decision about None s = Series([1, 2, 3, None, None, None], dtype=object) result = s.unique() expected = np.array([1, 2, 3, None], dtype=object) self.assert_numpy_array_equal(result, expected) def test_dropna_empty(self): s = Series([]) self.assertEqual(len(s.dropna()), 0) s.dropna(inplace=True) self.assertEqual(len(s), 0) # invalid axis self.assertRaises(ValueError, s.dropna, axis=1) def test_axis_alias(self): s = Series([1, 2, np.nan]) assert_series_equal(s.dropna(axis='rows'), s.dropna(axis='index')) self.assertEqual(s.dropna().sum('rows'), 3) self.assertEqual(s._get_axis_number('rows'), 0) self.assertEqual(s._get_axis_name('rows'), 'index') def test_drop_duplicates(self): s = Series([1, 2, 3, 3]) result = s.duplicated() expected = Series([False, False, False, True]) assert_series_equal(result, expected) result = s.duplicated(take_last=True) expected = Series([False, False, True, False]) assert_series_equal(result, expected) result = s.drop_duplicates() expected = s[[True, True, True, False]] assert_series_equal(result, expected) sc = s.copy() sc.drop_duplicates(inplace=True) assert_series_equal(sc, expected) result = s.drop_duplicates(take_last=True) expected = s[[True, True, False, True]] assert_series_equal(result, expected) sc = s.copy() sc.drop_duplicates(take_last=True, inplace=True) assert_series_equal(sc, expected) def test_sort(self): ts = self.ts.copy() ts.sort() self.assert_numpy_array_equal(ts, self.ts.order()) self.assert_numpy_array_equal(ts.index, self.ts.order().index) ts.sort(ascending=False) self.assert_numpy_array_equal(ts, self.ts.order(ascending=False)) self.assert_numpy_array_equal(ts.index, self.ts.order(ascending=False).index) # GH 5856/5853 # Series.sort operating on a view df = DataFrame(np.random.randn(10,4)) s = df.iloc[:,0] def f(): s.sort() self.assertRaises(ValueError, f) # test order/sort inplace # GH6859 ts1 = self.ts.copy() ts1.sort(ascending=False) ts2 = self.ts.copy() ts2.order(ascending=False,inplace=True) assert_series_equal(ts1,ts2) ts1 = self.ts.copy() ts1 = ts1.sort(ascending=False,inplace=False) ts2 = self.ts.copy() ts2 = ts.order(ascending=False) assert_series_equal(ts1,ts2) def test_sort_index(self): import random rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index() assert_series_equal(sorted_series, self.ts) # descending sorted_series = random_order.sort_index(ascending=False) assert_series_equal(sorted_series, self.ts.reindex(self.ts.index[::-1])) def test_order(self): ts = self.ts.copy() ts[:5] = np.NaN vals = ts.values result = ts.order() self.assertTrue(np.isnan(result[-5:]).all()) self.assert_numpy_array_equal(result[:-5], np.sort(vals[5:])) result = ts.order(na_position='first') self.assertTrue(np.isnan(result[:5]).all()) self.assert_numpy_array_equal(result[5:], np.sort(vals[5:])) # something object-type ser = Series(['A', 'B'], [1, 2]) # no failure ser.order() # ascending=False ordered = ts.order(ascending=False) expected = np.sort(ts.valid().values)[::-1] assert_almost_equal(expected, ordered.valid().values) ordered = ts.order(ascending=False, na_position='first') assert_almost_equal(expected, ordered.valid().values) def test_nsmallest_nlargest(self): # float, int, datetime64 (use i8), timedelts64 (same), # object that are numbers, object that are strings base = [3, 2, 1, 2, 5] s_list = [ Series(base, dtype='int8'), Series(base, dtype='int16'), Series(base, dtype='int32'), Series(base, dtype='int64'), Series(base, dtype='float32'), Series(base, dtype='float64'), Series(base, dtype='uint8'), Series(base, dtype='uint16'), Series(base, dtype='uint32'), Series(base, dtype='uint64'), Series(base).astype('timedelta64[ns]'), Series(pd.to_datetime(['2003', '2002', '2001', '2002', '2005'])), ] raising = [ Series([3., 2, 1, 2, '5'], dtype='object'), Series([3., 2, 1, 2, 5], dtype='object'), # not supported on some archs # Series([3., 2, 1, 2, 5], dtype='complex256'), Series([3., 2, 1, 2, 5], dtype='complex128'), ] for r in raising: dt = r.dtype msg = "Cannot use method 'n(larg|small)est' with dtype %s" % dt args = 2, len(r), 0, -1 methods = r.nlargest, r.nsmallest for method, arg in product(methods, args): with tm.assertRaisesRegexp(TypeError, msg): method(arg) for s in s_list: assert_series_equal(s.nsmallest(2), s.iloc[[2, 1]]) assert_series_equal(s.nsmallest(2, take_last=True), s.iloc[[2, 3]]) assert_series_equal(s.nlargest(3), s.iloc[[4, 0, 1]]) assert_series_equal(s.nlargest(3, take_last=True), s.iloc[[4, 0, 3]]) empty = s.iloc[0:0] assert_series_equal(s.nsmallest(0), empty) assert_series_equal(s.nsmallest(-1), empty) assert_series_equal(s.nlargest(0), empty) assert_series_equal(s.nlargest(-1), empty) assert_series_equal(s.nsmallest(len(s)), s.order()) assert_series_equal(s.nsmallest(len(s) + 1), s.order()) assert_series_equal(s.nlargest(len(s)), s.iloc[[4, 0, 1, 3, 2]]) assert_series_equal(s.nlargest(len(s) + 1), s.iloc[[4, 0, 1, 3, 2]]) s = Series([3., np.nan, 1, 2, 5]) assert_series_equal(s.nlargest(), s.iloc[[4, 0, 3, 2]]) assert_series_equal(s.nsmallest(), s.iloc[[2, 3, 0, 4]]) def test_rank(self): tm._skip_if_no_scipy() from scipy.stats import rankdata self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) # rankdata returns a ndarray exp = Series(rankdata(filled),index=filled.index) exp[mask] = np.nan assert_almost_equal(ranks, exp) iseries = Series(np.arange(5).repeat(2)) iranks = iseries.rank() exp = iseries.astype(float).rank() assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 exp = iseries / 5.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.repeat(1, 100)) exp = Series(np.repeat(0.505, 100)) iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries[1] = np.nan exp = Series(np.repeat(50.0 / 99.0, 100)) exp[1] = np.nan iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.repeat(np.nan, 100)) exp = iseries.copy() iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) rng = date_range('1/1/1990', periods=5) iseries = Series(np.arange(5), rng) + 1 iseries.ix[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20+1e-30, 1e-1]) exp = Series([2, 1, 3.5, 5, 3.5, 6]) iranks = iseries.rank() assert_series_equal(iranks, exp) values = np.array([-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_rank_inf(self): raise nose.SkipTest('DataFrame.rank does not currently rank np.inf and -np.inf properly') values = np.array([-np.inf, -50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_from_csv(self): with ensure_clean() as path: self.ts.to_csv(path) ts = Series.from_csv(path) assert_series_equal(self.ts, ts) self.assertTrue(ts.index.name is None) self.series.to_csv(path) series = Series.from_csv(path) self.assertIsNone(series.name) self.assertIsNone(series.index.name) assert_series_equal(self.series, series) outfile = open(path, 'w') outfile.write('1998-01-01|1.0\n1999-01-01|2.0') outfile.close() series = Series.from_csv(path, sep='|') checkseries = Series( {datetime(1998, 1, 1): 1.0, datetime(1999, 1, 1): 2.0}) assert_series_equal(checkseries, series) series = Series.from_csv(path, sep='|', parse_dates=False) checkseries = Series({'1998-01-01': 1.0, '1999-01-01': 2.0}) assert_series_equal(checkseries, series) def test_to_csv(self): import io with ensure_clean() as path: self.ts.to_csv(path) lines = io.open(path, newline=None).readlines() assert(lines[1] != '\n') self.ts.to_csv(path, index=False) arr = np.loadtxt(path) assert_almost_equal(arr, self.ts.values) def test_to_csv_unicode_index(self): buf = StringIO() s = Series([u("\u05d0"), "d2"], index=[u("\u05d0"), u("\u05d1")]) s.to_csv(buf, encoding='UTF-8') buf.seek(0) s2 = Series.from_csv(buf, index_col=0, encoding='UTF-8') assert_series_equal(s, s2) def test_tolist(self): rs = self.ts.tolist() xp = self.ts.values.tolist() assert_almost_equal(rs, xp) # datetime64 s = Series(self.ts.index) rs = s.tolist() self.assertEqual(self.ts.index[0], rs[0]) def test_to_frame(self): self.ts.name = None rs = self.ts.to_frame() xp = pd.DataFrame(self.ts.values, index=self.ts.index) assert_frame_equal(rs, xp) self.ts.name = 'testname' rs = self.ts.to_frame() xp = pd.DataFrame(dict(testname=self.ts.values), index=self.ts.index) assert_frame_equal(rs, xp) rs = self.ts.to_frame(name='testdifferent') xp = pd.DataFrame(dict(testdifferent=self.ts.values), index=self.ts.index) assert_frame_equal(rs, xp) def test_to_dict(self): self.assert_numpy_array_equal(Series(self.ts.to_dict()), self.ts) def test_to_csv_float_format(self): with ensure_clean() as filename: ser = Series([0.123456, 0.234567, 0.567567]) ser.to_csv(filename, float_format='%.2f') rs = Series.from_csv(filename) xp = Series([0.12, 0.23, 0.57]) assert_series_equal(rs, xp) def test_to_csv_list_entries(self): s = Series(['jack and jill', 'jesse and frank']) split = s.str.split(r'\s+and\s+') buf = StringIO() split.to_csv(buf) def test_to_csv_path_is_none(self): # GH 8215 # Series.to_csv() was returning None, inconsistent with # DataFrame.to_csv() which returned string s = Series([1, 2, 3]) csv_str = s.to_csv(path=None) self.assertIsInstance(csv_str, str) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5) assert_series_equal(result, expected) tm.assert_isinstance(expected, Series) def test_clip_types_and_nulls(self): sers = [Series([np.nan, 1.0, 2.0, 3.0]), Series([None, 'a', 'b', 'c']), Series(pd.to_datetime([np.nan, 1, 2, 3], unit='D'))] for s in sers: thresh = s[2] l = s.clip_lower(thresh) u = s.clip_upper(thresh) self.assertEqual(l[notnull(l)].min(), thresh) self.assertEqual(u[notnull(u)].max(), thresh) self.assertEqual(list(isnull(s)), list(isnull(l))) self.assertEqual(list(isnull(s)), list(isnull(u))) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_dict_equal(result, ts, compare_keys=False) def test_isnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal( ser.isnull(), Series([False, False, False, True, False]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.isnull(), Series([False, False, True]).values) def test_notnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal( ser.notnull(), Series([True, True, True, False, True]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.notnull(), Series([True, True, False]).values) def test_shift(self): shifted = self.ts.shift(1) unshifted = shifted.shift(-1) tm.assert_dict_equal(unshifted.valid(), self.ts, compare_keys=False) offset = datetools.bday shifted = self.ts.shift(1, freq=offset) unshifted = shifted.shift(-1, freq=offset) assert_series_equal(unshifted, self.ts) unshifted = self.ts.shift(0, freq=offset) assert_series_equal(unshifted, self.ts) shifted = self.ts.shift(1, freq='B') unshifted = shifted.shift(-1, freq='B') assert_series_equal(unshifted, self.ts) # corner case unshifted = self.ts.shift(0) assert_series_equal(unshifted, self.ts) # Shifting with PeriodIndex ps = tm.makePeriodSeries() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_dict_equal(unshifted.valid(), ps, compare_keys=False) shifted2 = ps.shift(1, 'B') shifted3 = ps.shift(1, datetools.bday) assert_series_equal(shifted2, shifted3) assert_series_equal(ps, shifted2.shift(-1, 'B')) self.assertRaises(ValueError, ps.shift, freq='D') # legacy support shifted4 = ps.shift(1, timeRule='B') assert_series_equal(shifted2, shifted4) shifted5 = ps.shift(1, offset=datetools.bday) assert_series_equal(shifted5, shifted4) # 32-bit taking # GH 8129 index=date_range('2000-01-01',periods=5) for dtype in ['int32','int64']: s1 = Series(np.arange(5,dtype=dtype),index=index) p = s1.iloc[1] result = s1.shift(periods=p) expected = Series([np.nan,0,1,2,3],index=index) assert_series_equal(result,expected) def test_tshift(self): # PeriodIndex ps = tm.makePeriodSeries() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_series_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_series_equal(shifted, shifted2) shifted3 = ps.tshift(freq=datetools.bday) assert_series_equal(shifted, shifted3) self.assertRaises(ValueError, ps.tshift, freq='M') # DatetimeIndex shifted = self.ts.tshift(1) unshifted = shifted.tshift(-1) assert_series_equal(self.ts, unshifted) shifted2 = self.ts.tshift(freq=self.ts.index.freq) assert_series_equal(shifted, shifted2) inferred_ts = Series(self.ts.values, Index(np.asarray(self.ts.index))) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_series_equal(shifted, self.ts.tshift(1)) assert_series_equal(unshifted, inferred_ts) no_freq = self.ts[[0, 5, 7]] self.assertRaises(ValueError, no_freq.tshift) def test_shift_int(self): ts = self.ts.astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) assert_series_equal(shifted, expected) def test_truncate(self): offset = datetools.bday ts = self.ts[::3] start, end = self.ts.index[3], self.ts.index[6] start_missing, end_missing = self.ts.index[2], self.ts.index[7] # neither specified truncated = ts.truncate() assert_series_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_series_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_series_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_series_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_series_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_series_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_series_equal(truncated, expected) # corner case, empty series returned truncated = ts.truncate(after=self.ts.index[0] - offset) assert(len(truncated) == 0) truncated = ts.truncate(before=self.ts.index[-1] + offset) assert(len(truncated) == 0) self.assertRaises(ValueError, ts.truncate, before=self.ts.index[-1] + offset, after=self.ts.index[0] - offset) def test_ptp(self): N = 1000 arr = np.random.randn(N) ser = Series(arr) self.assertEqual(np.ptp(ser), np.ptp(arr)) def test_asof(self): # array or list or dates N = 50 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='25s') result = ts.asof(dates) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] mask = (result.index >= lb) & (result.index < ub) rs = result[mask] self.assertTrue((rs == ts[lb]).all()) val = result[result.index[result.index >= ub][0]] self.assertEqual(ts[ub], val) self.ts[5:10] = np.NaN self.ts[15:20] = np.NaN val1 = self.ts.asof(self.ts.index[7]) val2 = self.ts.asof(self.ts.index[19]) self.assertEqual(val1, self.ts[4]) self.assertEqual(val2, self.ts[14]) # accepts strings val1 = self.ts.asof(str(self.ts.index[7])) self.assertEqual(val1, self.ts[4]) # in there self.assertEqual(self.ts.asof(self.ts.index[3]), self.ts[3]) # no as of value d = self.ts.index[0] - datetools.bday self.assertTrue(np.isnan(self.ts.asof(d))) def test_getitem_setitem_datetimeindex(self): from pandas import date_range N = 50 # testing with timezone, GH #2785 rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern') ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04:00:00"] expected = ts[4] self.assertEqual(result, expected) result = ts.copy() result["1990-01-01 04:00:00"] = 0 result["1990-01-01 04:00:00"] = ts[4] assert_series_equal(result, ts) result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] assert_series_equal(result, ts) lb = "1990-01-01 04:00:00" rb = "1990-01-01 07:00:00" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] assert_series_equal(result, expected) # repeat all the above with naive datetimes result = ts[datetime(1990, 1, 1, 4)] expected = ts[4] self.assertEqual(result, expected) result = ts.copy() result[datetime(1990, 1, 1, 4)] = 0 result[datetime(1990, 1, 1, 4)] = ts[4] assert_series_equal(result, ts) result = ts[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] = 0 result[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] = ts[4:8] assert_series_equal(result, ts) lb = datetime(1990, 1, 1, 4) rb = datetime(1990, 1, 1, 7) result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] assert_series_equal(result, expected) result = ts[ts.index[4]] expected = ts[4] self.assertEqual(result, expected) result = ts[ts.index[4:8]] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result[4:8] = ts[4:8] assert_series_equal(result, ts) # also test partial date slicing result = ts["1990-01-02"] expected = ts[24:48] assert_series_equal(result, expected) result = ts.copy() result["1990-01-02"] = 0 result["1990-01-02"] = ts[24:48] assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_pytz(self): tm._skip_if_no_pytz(); from pytz import timezone as tz from pandas import date_range N = 50 # testing with timezone, GH #2785 rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern') ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = ts[4] assert_series_equal(result, ts) result = ts.copy() # comparison dates with datetime MUST be localized! date = tz('US/Central').localize(datetime(1990, 1, 1, 3)) result[date] = 0 result[date] = ts[4] assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_dateutil(self): tm._skip_if_no_dateutil(); from dateutil.tz import tzutc from dateutil.zoneinfo import gettz tz = lambda x: tzutc() if x == 'UTC' else gettz(x) # handle special case for utc in dateutil from pandas import date_range N = 50 # testing with timezone, GH #2785 rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern') ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = ts[4] assert_series_equal(result, ts) result = ts.copy() result[datetime(1990, 1, 1, 3, tzinfo=tz('US/Central'))] = 0 result[datetime(1990, 1, 1, 3, tzinfo=tz('US/Central'))] = ts[4] assert_series_equal(result, ts) def test_getitem_setitem_periodindex(self): from pandas import period_range N = 50 rng = period_range('1/1/1990', periods=N, freq='H') ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04"] expected = ts[4] self.assertEqual(result, expected) result = ts.copy() result["1990-01-01 04"] = 0 result["1990-01-01 04"] = ts[4] assert_series_equal(result, ts) result = ts["1990-01-01 04":"1990-01-01 07"] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04":"1990-01-01 07"] = 0 result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] assert_series_equal(result, ts) lb = "1990-01-01 04" rb = "1990-01-01 07" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] assert_series_equal(result, expected) # GH 2782 result = ts[ts.index[4]] expected = ts[4] self.assertEqual(result, expected) result = ts[ts.index[4:8]] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result[4:8] = ts[4:8] assert_series_equal(result, ts) def test_asof_periodindex(self): from pandas import period_range, PeriodIndex # array or list or dates N = 50 rng = period_range('1/1/1990', periods=N, freq='H') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='37min') result = ts.asof(dates) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] pix = PeriodIndex(result.index.values, freq='H') mask = (pix >= lb) & (pix < ub) rs = result[mask] self.assertTrue((rs == ts[lb]).all()) ts[5:10] = np.NaN ts[15:20] = np.NaN val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) self.assertEqual(val1, ts[4]) self.assertEqual(val2, ts[14]) # accepts strings val1 = ts.asof(str(ts.index[7])) self.assertEqual(val1, ts[4]) # in there self.assertEqual(ts.asof(ts.index[3]), ts[3]) # no as of value d = ts.index[0].to_timestamp() - datetools.bday self.assertTrue(np.isnan(ts.asof(d))) def test_asof_more(self): from pandas import date_range s = Series([nan, nan, 1, 2, nan, nan, 3, 4, 5], index=date_range('1/1/2000', periods=9)) dates = s.index[[4, 5, 6, 2, 1]] result = s.asof(dates) expected = Series([2, 2, 3, 1, np.nan], index=dates) assert_series_equal(result, expected) s = Series([1.5, 2.5, 1, 2, nan, nan, 3, 4, 5], index=date_range('1/1/2000', periods=9)) result = s.asof(s.index[0]) self.assertEqual(result, s[0]) def test_cast_on_putmask(self): # GH 2746 # need to upcast s = Series([1, 2], index=[1, 2], dtype='int64') s[[True, False]] = Series([0], index=[1], dtype='int64') expected = Series([0, 2], index=[1, 2], dtype='int64') assert_series_equal(s, expected) def test_type_promote_putmask(self): # GH8387: test that changing types does not break alignment ts = Series(np.random.randn(100), index=np.arange(100,0,-1)).round(5) left, mask = ts.copy(), ts > 0 right = ts[mask].copy().map(str) left[mask] = right assert_series_equal(left, ts.map(lambda t: str(t) if t > 0 else t)) s = Series([0, 1, 2, 0 ]) mask = s > 0 s2 = s[ mask ].map( str ) s[mask] = s2 assert_series_equal(s, Series([0, '1', '2', 0])) s = Series([0, 'foo', 'bar', 0 ]) mask = Series([False, True, True, False]) s2 = s[ mask ] s[mask] = s2 assert_series_equal(s, Series([0, 'foo','bar', 0])) def test_astype_cast_nan_int(self): df = Series([1.0, 2.0, 3.0, np.nan]) self.assertRaises(ValueError, df.astype, np.int64) def test_astype_cast_object_int(self): arr = Series(["car", "house", "tree", "1"]) self.assertRaises(ValueError, arr.astype, int) self.assertRaises(ValueError, arr.astype, np.int64) self.assertRaises(ValueError, arr.astype, np.int8) arr = Series(['1', '2', '3', '4'], dtype=object) result = arr.astype(int) self.assert_numpy_array_equal(result, np.arange(1, 5)) def test_astype_datetimes(self): import pandas.tslib as tslib s = Series(tslib.iNaT, dtype='M8[ns]', index=lrange(5)) s = s.astype('O') self.assertEqual(s.dtype, np.object_) s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype('O') self.assertEqual(s.dtype, np.object_) s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan self.assertEqual(s.dtype, 'M8[ns]') s = s.astype('O') self.assertEqual(s.dtype, np.object_) def test_astype_str(self): # GH4405 digits = string.digits s1 = Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]) s2 = Series([digits * 10, tm.rands(63), tm.rands(64), nan, 1.0]) types = (compat.text_type, np.str_) for typ in types: for s in (s1, s2): res = s.astype(typ) expec = s.map(compat.text_type) assert_series_equal(res, expec) def test_astype_unicode(self): # GH7758 # a bit of magic is required to set default encoding encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([u('データーサイエンス、お前はもう死んでいる')]), ] former_encoding = None if not compat.PY3: # in python we can force the default encoding # for this test former_encoding = sys.getdefaultencoding() reload(sys) sys.setdefaultencoding("utf-8") if sys.getdefaultencoding() == "utf-8": test_series.append(Series([u('野菜食べないとやばい').encode("utf-8")])) for s in test_series: res = s.astype("unicode") expec = s.map(compat.text_type) assert_series_equal(res, expec) # restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): self.assertEqual(v, source[target[k]]) # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): self.assertEqual(v, source[target[k]]) # function result = self.ts.map(lambda x: x * 2) self.assert_numpy_array_equal(result, self.ts * 2) def test_map_compat(self): # related GH 8024 s = Series([True,True,False],index=[1,2,3]) result = s.map({ True : 'foo', False : 'bar' }) expected = Series(['foo','foo','bar'],index=[1,2,3]) assert_series_equal(result,expected) def test_map_int(self): left = Series({'a': 1., 'b': 2., 'c': 3., 'd': 4}) right = Series({1: 11, 2: 22, 3: 33}) self.assertEqual(left.dtype, np.float_) self.assertTrue(issubclass(right.dtype.type, np.integer)) merged = left.map(right) self.assertEqual(merged.dtype, np.float_) self.assertTrue(isnull(merged['d'])) self.assertTrue(not isnull(merged['c'])) def test_map_type_inference(self): s = Series(lrange(3)) s2 = s.map(lambda x: np.where(x == 0, 0, 1)) self.assertTrue(issubclass(s2.dtype.type, np.integer)) def test_map_decimal(self): from decimal import Decimal result = self.series.map(lambda x: Decimal(str(x))) self.assertEqual(result.dtype, np.object_) tm.assert_isinstance(result[0], Decimal) def test_map_na_exclusion(self): s = Series([1.5, np.nan, 3, np.nan, 5]) result = s.map(lambda x: x * 2, na_action='ignore') exp = s * 2 assert_series_equal(result, exp) def test_map_dict_with_tuple_keys(self): ''' Due to new MultiIndex-ing behaviour in v0.14.0, dicts with tuple keys passed to map were being converted to a multi-index, preventing tuple values from being mapped properly. ''' df = pd.DataFrame({'a': [(1,), (2,), (3, 4), (5, 6)]}) label_mappings = { (1,): 'A', (2,): 'B', (3, 4): 'A', (5, 6): 'B' } df['labels'] = df['a'].map(label_mappings) df['expected_labels'] = pd.Series(['A', 'B', 'A', 'B'], index=df.index) # All labels should be filled now tm.assert_series_equal(df['labels'], df['expected_labels']) def test_apply(self): assert_series_equal(self.ts.apply(np.sqrt), np.sqrt(self.ts)) # elementwise-apply import math assert_series_equal(self.ts.apply(math.exp), np.exp(self.ts)) # how to handle Series result, #2316 result = self.ts.apply(lambda x: Series([x, x ** 2], index=['x', 'x^2'])) expected = DataFrame({'x': self.ts, 'x^2': self.ts ** 2}) tm.assert_frame_equal(result, expected) # empty series s = Series(dtype=object, name='foo', index=pd.Index([], name='bar')) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) # check all metadata (GH 9322) self.assertIsNot(s, rs) self.assertIs(s.index, rs.index) self.assertEqual(s.dtype, rs.dtype) self.assertEqual(s.name, rs.name) # index but no data s = Series(index=[1, 2, 3]) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) def test_apply_same_length_inference_bug(self): s = Series([1, 2]) f = lambda x: (x, x + 1) result = s.apply(f) expected = s.map(f) assert_series_equal(result, expected) s = Series([1, 2, 3]) result = s.apply(f) expected = s.map(f) assert_series_equal(result, expected) def test_apply_dont_convert_dtype(self): s = Series(np.random.randn(10)) f = lambda x: x if x > 0 else np.nan result = s.apply(f, convert_dtype=False) self.assertEqual(result.dtype, object) def test_convert_objects(self): s = Series([1., 2, 3], index=['a', 'b', 'c']) result = s.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, s) # force numeric conversion r = s.copy().astype('O') r['a'] = '1' result = r.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, s) r = s.copy().astype('O') r['a'] = '1.' result = r.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, s) r = s.copy().astype('O') r['a'] = 'garbled' expected = s.copy() expected['a'] = np.nan result = r.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, expected) # GH 4119, not converting a mixed type (e.g.floats and object) s = Series([1, 'na', 3, 4]) result = s.convert_objects(convert_numeric=True) expected = Series([1, np.nan, 3, 4]) assert_series_equal(result, expected) s = Series([1, '', 3, 4]) result = s.convert_objects(convert_numeric=True) expected = Series([1, np.nan, 3, 4]) assert_series_equal(result, expected) # dates s = Series( [datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 2, 0, 0), datetime(2001, 1, 3, 0, 0)]) s2 = Series([datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 2, 0, 0), datetime( 2001, 1, 3, 0, 0), 'foo', 1.0, 1, Timestamp('20010104'), '20010105'], dtype='O') result = s.convert_objects(convert_dates=True, convert_numeric=False) expected = Series( [Timestamp('20010101'), Timestamp('20010102'), Timestamp('20010103')], dtype='M8[ns]') assert_series_equal(result, expected) result = s.convert_objects( convert_dates='coerce', convert_numeric=False) result = s.convert_objects( convert_dates='coerce', convert_numeric=True) assert_series_equal(result, expected) expected = Series( [Timestamp( '20010101'), Timestamp('20010102'), Timestamp('20010103'), lib.NaT, lib.NaT, lib.NaT, Timestamp('20010104'), Timestamp('20010105')], dtype='M8[ns]') result = s2.convert_objects( convert_dates='coerce', convert_numeric=False) assert_series_equal(result, expected) result = s2.convert_objects( convert_dates='coerce', convert_numeric=True) assert_series_equal(result, expected) # preserver all-nans (if convert_dates='coerce') s = Series(['foo', 'bar', 1, 1.0], dtype='O') result = s.convert_objects( convert_dates='coerce', convert_numeric=False) assert_series_equal(result, s) # preserver if non-object s = Series([1], dtype='float32') result = s.convert_objects( convert_dates='coerce', convert_numeric=False) assert_series_equal(result, s) #r = s.copy() #r[0] = np.nan #result = r.convert_objects(convert_dates=True,convert_numeric=False) #self.assertEqual(result.dtype, 'M8[ns]') # dateutil parses some single letters into today's value as a date for x in 'abcdefghijklmnopqrstuvwxyz': s = Series([x]) result = s.convert_objects(convert_dates='coerce') assert_series_equal(result, s) s = Series([x.upper()]) result = s.convert_objects(convert_dates='coerce') assert_series_equal(result, s) def test_convert_objects_preserve_bool(self): s = Series([1, True, 3, 5], dtype=object) r = s.convert_objects(convert_numeric=True) e = Series([1, 1, 3, 5], dtype='i8') tm.assert_series_equal(r, e) def test_convert_objects_preserve_all_bool(self): s = Series([False, True, False, False], dtype=object) r = s.convert_objects(convert_numeric=True) e = Series([False, True, False, False], dtype=bool) tm.assert_series_equal(r, e) def test_apply_args(self): s = Series(['foo,bar']) result = s.apply(str.split, args=(',',)) self.assertEqual(result[0], ['foo', 'bar']) tm.assert_isinstance(result[0], list) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assertTrue(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): self.assertEqual(val, self.ts[idx]) # return a copy the same index here result = self.ts.reindex() self.assertFalse((result is self.ts)) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed reindexed_dep = self.empty.reindex(self.ts.index, method='pad') # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10),dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1,2,3,4,5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a','g','c','f'] expected = Series([1,1,3,3],index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) # invalid because we can't forward fill on this type of index self.assertRaises(ValueError, lambda : s.reindex(new_index, method='ffill')) # inferrence of new dtype s = Series([True,False,False,True],index=list('abcd')) new_index='agc' result = s.reindex(list(new_index)).ffill() expected = Series([True,True,False],index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False,index=lrange(0,5)) result = s.shift(1).fillna(method='bfill') expected = Series(False,index=lrange(0,5)) assert_series_equal(result, expected) def test_reindex_backfill(self): pass def test_reindex_int(self): ts = self.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_int.dtype, np.float_) # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) self.assertEqual(reindexed_int.dtype, np.int_) def test_reindex_bool(self): # A series other than float, int, string, or object ts = self.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_bool.dtype, np.object_) # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) self.assertEqual(reindexed_bool.dtype, np.bool_) def test_reindex_bool_pad(self): # fail ts = self.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(self.ts.index, method='pad') self.assertTrue(isnull(filled_bool[:5]).all()) def test_reindex_like(self): other = self.ts[::2] assert_series_equal(self.ts.reindex(other.index), self.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013,3,5) day2 = datetime(2013,5,5) day3 = datetime(2014,3,5) series1 = Series([5, None, None],[day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected = Series([5, np.nan], index=[day1, day3]) assert_series_equal(result, expected) def test_reindex_fill_value(self): #------------------------------------------------------------ # floats floats = Series([1., 2., 3.]) result = floats.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2., 3., 0], index=[1, 2, 3]) assert_series_equal(result, expected) #------------------------------------------------------------ # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) self.assertTrue(issubclass(result.dtype.type, np.integer)) assert_series_equal(result, expected) #------------------------------------------------------------ # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = objects.reindex([1, 2, 3], fill_value='foo') expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) #------------------------------------------------------------ # bools bools = Series([True, False, True]) result = bools.reindex([1, 2, 3]) expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = bools.reindex([1, 2, 3], fill_value=False) expected = Series([False, True, False], index=[1, 2, 3]) assert_series_equal(result, expected) def test_rename(self): renamer = lambda x: x.strftime('%Y%m%d') renamed = self.ts.rename(renamer) self.assertEqual(renamed.index[0], renamer(self.ts.index[0])) # dict rename_dict = dict(zip(self.ts.index, renamed.index)) renamed2 = self.ts.rename(rename_dict) assert_series_equal(renamed, renamed2) # partial dict s = Series(np.arange(4), index=['a', 'b', 'c', 'd'], dtype='int64') renamed = s.rename({'b': 'foo', 'd': 'bar'}) self.assert_numpy_array_equal(renamed.index, ['a', 'foo', 'c', 'bar']) # index with name renamer = Series( np.arange(4), index=Index(['a', 'b', 'c', 'd'], name='name'), dtype='int64') renamed = renamer.rename({}) self.assertEqual(renamed.index.name, renamer.index.name) def test_rename_inplace(self): renamer = lambda x: x.strftime('%Y%m%d') expected = renamer(self.ts.index[0]) self.ts.rename(renamer, inplace=True) self.assertEqual(self.ts.index[0], expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_ne(self): ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) expected = [True, True, False, True, True] self.assertTrue(tm.equalContents(ts.index != 5, expected)) self.assertTrue(tm.equalContents(~(ts.index == 5), expected)) def test_pad_nan(self): x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x.fillna(method='pad', inplace=True) expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assertTrue(np.isnan(x[0]), np.isnan(expected[0])) def test_unstack(self): from numpy import nan from pandas.util.testing import assert_frame_equal index = MultiIndex(levels=[['bar', 'foo'], ['one', 'three', 'two']], labels=[[1, 1, 0, 0], [0, 1, 0, 2]]) s = Series(np.arange(4.), index=index) unstacked = s.unstack() expected = DataFrame([[2., nan, 3.], [0., 1., nan]], index=['bar', 'foo'], columns=['one', 'three', 'two']) assert_frame_equal(unstacked, expected) unstacked = s.unstack(level=0) assert_frame_equal(unstacked, expected.T) index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) exp_index = MultiIndex(levels=[['one', 'two', 'three'], [0, 1]], labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) expected = DataFrame({'bar': s.values}, index=exp_index).sortlevel(0) unstacked = s.unstack(0) assert_frame_equal(unstacked, expected) # GH5873 idx = pd.MultiIndex.from_arrays([[101, 102], [3.5, np.nan]]) ts = pd.Series([1,2], index=idx) left = ts.unstack() right = DataFrame([[nan, 1], [2, nan]], index=[101, 102], columns=[nan, 3.5]) assert_frame_equal(left, right) idx = pd.MultiIndex.from_arrays([['cat', 'cat', 'cat', 'dog', 'dog'], ['a', 'a', 'b', 'a', 'b'], [1, 2, 1, 1, np.nan]]) ts = pd.Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx) right = DataFrame([[1.0, 1.3], [1.1, nan], [nan, 1.4], [1.2, nan]], columns=['cat', 'dog']) tpls = [('a', 1), ('a', 2), ('b', nan), ('b', 1)] right.index = pd.MultiIndex.from_tuples(tpls) assert_frame_equal(ts.unstack(level=0), right) def test_sortlevel(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) s = Series([1, 2], mi) backwards = s.iloc[[1, 0]] res = s.sortlevel('A') assert_series_equal(backwards, res) res = s.sortlevel(['A', 'B']) assert_series_equal(backwards, res) res = s.sortlevel('A', sort_remaining=False) assert_series_equal(s, res) res = s.sortlevel(['A', 'B'], sort_remaining=False) assert_series_equal(s, res) def test_head_tail(self): assert_series_equal(self.series.head(), self.series[:5]) assert_series_equal(self.series.tail(), self.series[-5:]) def test_isin(self): s = Series(['A', 'B', 'C', 'a', 'B', 'B', 'A', 'C']) result = s.isin(['A', 'C']) expected = Series([True, False, True, False, False, False, True, True]) assert_series_equal(result, expected) def test_isin_with_string_scalar(self): # GH4763 s = Series(['A', 'B', 'C', 'a', 'B', 'B', 'A', 'C']) with tm.assertRaises(TypeError): s.isin('a') with tm.assertRaises(TypeError): s = Series(['aaa', 'b', 'c']) s.isin('aaa') def test_isin_with_i8(self): # GH 5021 expected = Series([True,True,False,False,False]) expected2 = Series([False,True,False,False,False]) # datetime64[ns] s = Series(date_range('jan-01-2013','jan-05-2013')) result = s.isin(s[0:2]) assert_series_equal(result, expected) result = s.isin(s[0:2].values) assert_series_equal(result, expected) # fails on dtype conversion in the first place result = s.isin(s[0:2].values.astype('datetime64[D]')) assert_series_equal(result, expected) result = s.isin([s[1]]) assert_series_equal(result, expected2) result = s.isin([np.datetime64(s[1])]) assert_series_equal(result, expected2) # timedelta64[ns] s = Series(pd.to_timedelta(lrange(5),unit='d')) result = s.isin(s[0:2]) assert_series_equal(result, expected) #------------------------------------------------------------------------------ # TimeSeries-specific def test_cummethods_bool(self): # GH 6270 # looks like a buggy np.maximum.accumulate for numpy 1.6.1, py 3.2 def cummin(x): return np.minimum.accumulate(x) def cummax(x): return np.maximum.accumulate(x) a = pd.Series([False, False, False, True, True, False, False]) b = ~a c = pd.Series([False] * len(b)) d = ~c methods = {'cumsum': np.cumsum, 'cumprod': np.cumprod, 'cummin': cummin, 'cummax': cummax} args = product((a, b, c, d), methods) for s, method in args: expected = Series(methods[method](s.values)) result = getattr(s, method)() assert_series_equal(result, expected) e = pd.Series([False, True, nan, False]) cse = pd.Series([0, 1, nan, 1], dtype=object) cpe = pd.Series([False, 0, nan, 0]) cmin = pd.Series([False, False, nan, False]) cmax = pd.Series([False, True, nan, True]) expecteds = {'cumsum': cse, 'cumprod': cpe, 'cummin': cmin, 'cummax': cmax} for method in methods: res = getattr(e, method)() assert_series_equal(res, expecteds[method]) def test_replace(self): N = 100 ser = Series(np.random.randn(N)) ser[0:4] = np.nan ser[6:10] = 0 # replace list with a single value ser.replace([np.nan], -1, inplace=True) exp = ser.fillna(-1) assert_series_equal(ser, exp) rs = ser.replace(0., np.nan) ser[ser == 0.] = np.nan assert_series_equal(rs, ser) ser = Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = 'foo' ser[20:30] = 'bar' # replace list with a single value rs = ser.replace([np.nan, 'foo', 'bar'], -1) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -1).all()) self.assertTrue((rs[20:30] == -1).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values rs = ser.replace({np.nan: -1, 'foo': -2, 'bar': -3}) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -2).all()) self.assertTrue((rs[20:30] == -3).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values with 2 lists rs2 = ser.replace([np.nan, 'foo', 'bar'], [-1, -2, -3]) assert_series_equal(rs, rs2) # replace inplace ser.replace([np.nan, 'foo', 'bar'], -1, inplace=True) self.assertTrue((ser[:5] == -1).all()) self.assertTrue((ser[6:10] == -1).all()) self.assertTrue((ser[20:30] == -1).all()) ser = Series([np.nan, 0, np.inf]) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) ser = Series([np.nan, 0, 'foo', 'bar', np.inf, None, lib.NaT]) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) filled = ser.copy() filled[4] = 0 assert_series_equal(ser.replace(np.inf, 0), filled) ser = Series(self.ts.index) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) # malformed self.assertRaises(ValueError, ser.replace, [1, 2, 3], [np.nan, 0]) # make sure that we aren't just masking a TypeError because bools don't # implement indexing with tm.assertRaisesRegexp(TypeError, 'Cannot compare types .+'): ser.replace([1, 2], [np.nan, 0]) ser = Series([0, 1, 2, 3, 4]) result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) assert_series_equal(result, Series([4, 3, 2, 1, 0])) # API change from 0.12? # GH 5319 ser = Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace([np.nan]) assert_series_equal(result, expected) ser = Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace(np.nan) assert_series_equal(result, expected) #GH 5797 ser = Series(date_range('20130101', periods=5)) expected = ser.copy() expected.loc[2] = Timestamp('20120101') result = ser.replace({Timestamp('20130103'): Timestamp('20120101')}) assert_series_equal(result, expected) result = ser.replace(Timestamp('20130103'), Timestamp('20120101')) assert_series_equal(result, expected) def test_replace_with_single_list(self): ser = Series([0, 1, 2, 3, 4]) result = ser.replace([1,2,3]) assert_series_equal(result, Series([0,0,0,0,4])) s = ser.copy() s.replace([1,2,3],inplace=True) assert_series_equal(s, Series([0,0,0,0,4])) # make sure things don't get corrupted when fillna call fails s = ser.copy() with tm.assertRaises(ValueError): s.replace([1,2,3],inplace=True,method='crash_cymbal') assert_series_equal(s, ser) def test_replace_mixed_types(self): s = Series(np.arange(5),dtype='int64') def check_replace(to_rep, val, expected): sc = s.copy() r = s.replace(to_rep, val) sc.replace(to_rep, val, inplace=True) assert_series_equal(expected, r) assert_series_equal(expected, sc) # should NOT upcast to float e = Series([0,1,2,3,4]) tr, v = [3], [3.0] check_replace(tr, v, e) # MUST upcast to float e = Series([0,1,2,3.5,4]) tr, v = [3], [3.5] check_replace(tr, v, e) # casts to object e = Series([0,1,2,3.5,'a']) tr, v = [3,4], [3.5,'a'] check_replace(tr, v, e) # again casts to object e = Series([0,1,2,3.5,Timestamp('20130101')]) tr, v = [3,4],[3.5,Timestamp('20130101')] check_replace(tr, v, e) # casts to float e = Series([0,1,2,3.5,1]) tr, v = [3,4],[3.5,True] check_replace(tr, v, e) # test an object with dates + floats + integers + strings dr = date_range('1/1/2001', '1/10/2001', freq='D').to_series().reset_index(drop=True) r = dr.astype(object).replace([dr[0],dr[1],dr[2]], [1.0,2,'a']) assert_series_equal(r, Series([1.0,2,'a'] + dr[3:].tolist(),dtype=object)) def test_replace_bool_with_string_no_op(self): s = Series([True, False, True]) result = s.replace('fun', 'in-the-sun') tm.assert_series_equal(s, result) def test_replace_bool_with_string(self): # nonexistent elements s = Series([True, False, True]) result = s.replace(True, '2u') expected = Series(['2u', False, '2u']) tm.assert_series_equal(expected, result) def test_replace_bool_with_bool(self): s = Series([True, False, True]) result = s.replace(True, False) expected = Series([False] * len(s)) tm.assert_series_equal(expected, result) def test_replace_with_dict_with_bool_keys(self): s = Series([True, False, True]) with tm.assertRaisesRegexp(TypeError, 'Cannot compare types .+'): s.replace({'asdf': 'asdb', True: 'yes'}) def test_asfreq(self): ts = Series([0., 1., 2.], index=[datetime(2009, 10, 30), datetime(2009, 11, 30), datetime(2009, 12, 31)]) daily_ts = ts.asfreq('B') monthly_ts = daily_ts.asfreq('BM') self.assert_numpy_array_equal(monthly_ts, ts) daily_ts = ts.asfreq('B', method='pad') monthly_ts = daily_ts.asfreq('BM') self.assert_numpy_array_equal(monthly_ts, ts) daily_ts = ts.asfreq(datetools.bday) monthly_ts = daily_ts.asfreq(datetools.bmonthEnd) self.assert_numpy_array_equal(monthly_ts, ts) result = ts[:0].asfreq('M') self.assertEqual(len(result), 0) self.assertIsNot(result, ts) def test_diff(self): # Just run the function self.ts.diff() # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = s.diff() self.assertEqual(rs[1], 1) # neg n rs = self.ts.diff(-1) xp = self.ts - self.ts.shift(-1) assert_series_equal(rs, xp) # 0 rs = self.ts.diff(0) xp = self.ts - self.ts assert_series_equal(rs, xp) # datetime diff (GH3100) s = Series(date_range('20130102', periods=5)) rs = s - s.shift(1) xp = s.diff() assert_series_equal(rs, xp) # timedelta diff nrs = rs - rs.shift(1) nxp = xp.diff() assert_series_equal(nrs, nxp) def test_pct_change(self): rs = self.ts.pct_change(fill_method=None) assert_series_equal(rs, self.ts / self.ts.shift(1) - 1) rs = self.ts.pct_change(2) filled = self.ts.fillna(method='pad') assert_series_equal(rs, filled / filled.shift(2) - 1) rs = self.ts.pct_change(fill_method='bfill', limit=1) filled = self.ts.fillna(method='bfill', limit=1) assert_series_equal(rs, filled / filled.shift(1) - 1) rs = self.ts.pct_change(freq='5D') filled = self.ts.fillna(method='pad') assert_series_equal(rs, filled / filled.shift(freq='5D') - 1) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) chg = s.pct_change() expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2]) assert_series_equal(chg, expected) def test_autocorr(self): # Just run the function corr1 = self.ts.autocorr() # Now run it with the lag parameter corr2 = self.ts.autocorr(lag=1) # corr() with lag needs Series of at least length 2 if len(self.ts) <= 2: self.assertTrue(np.isnan(corr1)) self.assertTrue(np.isnan(corr2)) else: self.assertEqual(corr1, corr2) # Choose a random lag between 1 and length of Series - 2 # and compare the result with the Series corr() function n = 1 + np.random.randint(max(1, len(self.ts) - 2)) corr1 = self.ts.corr(self.ts.shift(n)) corr2 = self.ts.autocorr(lag=n) # corr() with lag needs Series of at least length 2 if len(self.ts) <= 2: self.assertTrue(np.isnan(corr1)) self.assertTrue(np.isnan(corr2)) else: self.assertEqual(corr1, corr2) def test_first_last_valid(self): ts = self.ts.copy() ts[:5] = np.NaN index = ts.first_valid_index() self.assertEqual(index, ts.index[5]) ts[-5:] = np.NaN index = ts.last_valid_index() self.assertEqual(index, ts.index[-6]) ts[:] = np.nan self.assertIsNone(ts.last_valid_index()) self.assertIsNone(ts.first_valid_index()) ser = Series([], index=[]) self.assertIsNone(ser.last_valid_index()) self.assertIsNone(ser.first_valid_index()) def test_mpl_compat_hack(self): result = self.ts[:, np.newaxis] expected = self.ts.values[:, np.newaxis] assert_almost_equal(result, expected) #------------------------------------------------------------------------------ # GroupBy def test_select(self): n = len(self.ts) result = self.ts.select(lambda x: x >= self.ts.index[n // 2]) expected = self.ts.reindex(self.ts.index[n // 2:]) assert_series_equal(result, expected) result = self.ts.select(lambda x: x.weekday() == 2) expected = self.ts[self.ts.index.weekday == 2] assert_series_equal(result, expected) #------------------------------------------------------------------------------ # Misc not safe for sparse def test_dropna_preserve_name(self): self.ts[:5] = np.nan result = self.ts.dropna() self.assertEqual(result.name, self.ts.name) name = self.ts.name ts = self.ts.copy() ts.dropna(inplace=True) self.assertEqual(ts.name, name) def test_numpy_unique(self): # it works! result = np.unique(self.ts) def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype,['float64','int8','uint8','bool','m8[ns]','M8[ns]']) for dtype in dtypes: self.assertEqual(pd.concat([Series(dtype=dtype)]).dtype, dtype) self.assertEqual(pd.concat([Series(dtype=dtype), Series(dtype=dtype)]).dtype, dtype) def int_result_type(dtype, dtype2): typs = set([dtype.kind,dtype2.kind]) if not len(typs-set(['i','u','b'])) and (dtype.kind == 'i' or dtype2.kind == 'i'): return 'i' elif not len(typs-set(['u','b'])) and (dtype.kind == 'u' or dtype2.kind == 'u'): return 'u' return None def float_result_type(dtype, dtype2): typs = set([dtype.kind,dtype2.kind]) if not len(typs-set(['f','i','u'])) and (dtype.kind == 'f' or dtype2.kind == 'f'): return 'f' return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return 'O' for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype self.assertEqual(result.kind, expected) def test_concat_empty_series_dtypes(self): # bools self.assertEqual(pd.concat([Series(dtype=np.bool_), Series(dtype=np.int32)]).dtype, np.int32) self.assertEqual(pd.concat([Series(dtype=np.bool_), Series(dtype=np.float32)]).dtype, np.object_) # datetimelike self.assertEqual(pd.concat([Series(dtype='m8[ns]'), Series(dtype=np.bool)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='m8[ns]'), Series(dtype=np.int64)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='M8[ns]'), Series(dtype=np.bool)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='M8[ns]'), Series(dtype=np.int64)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='M8[ns]'), Series(dtype=np.bool_), Series(dtype=np.int64)]).dtype, np.object_) # categorical self.assertEqual(pd.concat([Series(dtype='category'), Series(dtype='category')]).dtype, 'category') self.assertEqual(pd.concat([Series(dtype='category'), Series(dtype='float64')]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='category'), Series(dtype='object')]).dtype, 'category') # sparse result = pd.concat([Series(dtype='float64').to_sparse(), Series(dtype='float64').to_sparse()]) self.assertEqual(result.dtype,np.float64) self.assertEqual(result.ftype,'float64:sparse') result = pd.concat([Series(dtype='float64').to_sparse(), Series(dtype='float64')]) self.assertEqual(result.dtype,np.float64) self.assertEqual(result.ftype,'float64:sparse') result = pd.concat([Series(dtype='float64').to_sparse(), Series(dtype='object')]) self.assertEqual(result.dtype,np.object_) self.assertEqual(result.ftype,'object:dense') def test_searchsorted_numeric_dtypes_scalar(self): s = Series([1, 2, 90, 1000, 3e9]) r = s.searchsorted(30) e = 2 tm.assert_equal(r, e) r = s.searchsorted([30]) e = np.array([2]) tm.assert_array_equal(r, e) def test_searchsorted_numeric_dtypes_vector(self): s = Series([1, 2, 90, 1000, 3e9]) r = s.searchsorted([91, 2e6]) e = np.array([3, 4]) tm.assert_array_equal(r, e) def test_search_sorted_datetime64_scalar(self): s = Series(pd.date_range('20120101', periods=10, freq='2D')) v = pd.Timestamp('20120102') r = s.searchsorted(v) e = 1 tm.assert_equal(r, e) def test_search_sorted_datetime64_list(self): s = Series(pd.date_range('20120101', periods=10, freq='2D')) v = [pd.Timestamp('20120102'), pd.Timestamp('20120104')] r = s.searchsorted(v) e = np.array([1, 2]) tm.assert_array_equal(r, e) def test_searchsorted_sorter(self): # GH8490 s = Series([3, 1, 2]) r = s.searchsorted([0, 3], sorter=np.argsort(s)) e = np.array([0, 2]) tm.assert_array_equal(r, e) class TestSeriesNonUnique(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_reset_index(self): df = tm.makeDataFrame()[:5] ser = df.stack() ser.index.names = ['hash', 'category'] ser.name = 'value' df = ser.reset_index() self.assertIn('value', df) df = ser.reset_index(name='value2') self.assertIn('value2', df) # check inplace s = ser.reset_index(drop=True) s2 = ser s2.reset_index(drop=True, inplace=True) assert_series_equal(s, s2) # level index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) rs = s.reset_index(level=1) self.assertEqual(len(rs.columns), 2) rs = s.reset_index(level=[0, 2], drop=True) self.assertTrue(rs.index.equals(Index(index.get_level_values(1)))) tm.assert_isinstance(rs, Series) def test_set_index_makes_timeseries(self): idx = tm.makeDateIndex(10) s = Series(lrange(10)) s.index = idx self.assertTrue(s.is_time_series == True) def test_timeseries_coercion(self): idx = tm.makeDateIndex(10000) ser = Series(np.random.randn(len(idx)), idx.astype(object)) self.assertTrue(ser.is_time_series) self.assertIsInstance(ser.index, DatetimeIndex) def test_replace(self): N = 100 ser = Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = 'foo' ser[20:30] = 'bar' # replace list with a single value rs = ser.replace([np.nan, 'foo', 'bar'], -1) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -1).all()) self.assertTrue((rs[20:30] == -1).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values rs = ser.replace({np.nan: -1, 'foo': -2, 'bar': -3}) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -2).all()) self.assertTrue((rs[20:30] == -3).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values with 2 lists rs2 = ser.replace([np.nan, 'foo', 'bar'], [-1, -2, -3]) assert_series_equal(rs, rs2) # replace inplace ser.replace([np.nan, 'foo', 'bar'], -1, inplace=True) self.assertTrue((ser[:5] == -1).all()) self.assertTrue((ser[6:10] == -1).all()) self.assertTrue((ser[20:30] == -1).all()) def test_repeat(self): s = Series(np.random.randn(3), index=['a', 'b', 'c']) reps = s.repeat(5) exp = Series(s.values.repeat(5), index=s.index.values.repeat(5)) assert_series_equal(reps, exp) to_rep = [2, 3, 4] reps = s.repeat(to_rep) exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep)) assert_series_equal(reps, exp) def test_unique_data_ownership(self): # it works! #1807 Series(Series(["a", "c", "b"]).unique()).sort() if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
py
1a2fc5fef9537c0af5cbc7caa7253d9e1dc9a7cc
import os from os import path from pathlib import Path from shutil import rmtree from typing import Union from pyspark.sql.types import DataType from pyspark.sql.types import StructType from spark_fhir_schemas.r4.complex_types.address import AddressSchema from spark_fhir_schemas.r4.resources.explanationofbenefit import ( ExplanationOfBenefitSchema, ) from spark_fhir_schemas.r4.resources.patient import PatientSchema def test_simple() -> None: data_dir: Path = Path(__file__).parent.joinpath("./") temp_folder = data_dir.joinpath("./temp") if path.isdir(temp_folder): rmtree(temp_folder) os.mkdir(temp_folder) schema: Union[StructType, DataType] = PatientSchema.get_schema() assert isinstance(schema, StructType) # print(schema) print("------- Patient --------") print(schema.json()) with open(temp_folder.joinpath("patient_schema.json"), "w+") as file: file.write(schema.json()) print("------- Address --------") schema = AddressSchema.get_schema() print(schema.json()) with open(temp_folder.joinpath("address_schema.json"), "w+") as file: file.write(schema.json()) print("------- ExplanationOfBenefitSchema --------") schema = ExplanationOfBenefitSchema.get_schema() print(schema.json()) # noinspection SpellCheckingInspection with open(temp_folder.joinpath("explanationofbenefit_schema.json"), "w") as file: file.write(schema.json()) assert 1 == 1
py
1a2fc664e4da7f455d63942dd2554fa8b531bffc
from __future__ import division from __future__ import print_function import os # disable autotune os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0' import argparse import glob import logging logging.basicConfig(level=logging.INFO) import time import numpy as np import mxnet as mx from tqdm import tqdm from mxnet import nd from mxnet import gluon import gluoncv as gcv gcv.utils.check_version('0.6.0') from gluoncv import data as gdata from gluoncv.data import batchify from gluoncv.data.transforms.presets.rcnn import FasterRCNNDefaultValTransform from gluoncv.utils.metrics.voc_detection import VOC07MApMetric from gluoncv.utils.metrics.coco_detection import COCODetectionMetric def parse_args(): parser = argparse.ArgumentParser(description='Validate Faster-RCNN networks.') parser.add_argument('--network', type=str, default='resnet50_v1b', help="Base feature extraction network name") parser.add_argument('--dataset', type=str, default='voc', help='Training dataset.') parser.add_argument('--num-workers', '-j', dest='num_workers', type=int, default=4, help='Number of data workers') parser.add_argument('--gpus', type=str, default='0', help='Training with GPUs, you can specify 1,3 for example.') parser.add_argument('--pretrained', type=str, default='True', help='Load weights from previously saved parameters.') parser.add_argument('--save-prefix', type=str, default='', help='Saving parameter prefix') parser.add_argument('--save-json', action='store_true', help='Save coco output json') parser.add_argument('--eval-all', action='store_true', help='Eval all models begins with save prefix. Use with pretrained.') parser.add_argument('--norm-layer', type=str, default=None, help='Type of normalization layer to use. ' 'If set to None, backbone normalization layer will be fixed,' ' and no normalization layer will be used. ' 'Currently supports \'bn\', and None, default is None') parser.add_argument('--use-fpn', action='store_true', help='Whether to use feature pyramid network.') args = parser.parse_args() return args def get_dataset(dataset, args): if dataset.lower() == 'voc': val_dataset = gdata.VOCDetection( splits=[(2007, 'test')]) val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes) elif dataset.lower() == 'coco': val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False) val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=not args.save_json) else: raise NotImplementedError('Dataset: {} not implemented.'.format(dataset)) return val_dataset, val_metric def get_dataloader(net, val_dataset, batch_size, num_workers): """Get dataloader.""" val_bfn = batchify.Tuple(*[batchify.Append() for _ in range(3)]) val_loader = mx.gluon.data.DataLoader( val_dataset.transform(FasterRCNNDefaultValTransform(net.short, net.max_size)), batch_size, False, batchify_fn=val_bfn, last_batch='keep', num_workers=num_workers) return val_loader def split_and_load(batch, ctx_list): """Split data to 1 batch each device.""" num_ctx = len(ctx_list) new_batch = [] for i, data in enumerate(batch): new_data = [x.as_in_context(ctx) for x, ctx in zip(data, ctx_list)] new_batch.append(new_data) return new_batch def validate(net, val_data, ctx, eval_metric, size): """Test on validation dataset.""" clipper = gcv.nn.bbox.BBoxClipToImage() eval_metric.reset() net.hybridize(static_alloc=True) with tqdm(total=size) as pbar: for ib, batch in enumerate(val_data): batch = split_and_load(batch, ctx_list=ctx) det_bboxes = [] det_ids = [] det_scores = [] gt_bboxes = [] gt_ids = [] gt_difficults = [] for x, y, im_scale in zip(*batch): # get prediction results ids, scores, bboxes = net(x) det_ids.append(ids) det_scores.append(scores) # clip to image size det_bboxes.append(clipper(bboxes, x)) # rescale to original resolution im_scale = im_scale.reshape((-1)).asscalar() det_bboxes[-1] *= im_scale # split ground truths gt_ids.append(y.slice_axis(axis=-1, begin=4, end=5)) gt_bboxes.append(y.slice_axis(axis=-1, begin=0, end=4)) gt_bboxes[-1] *= im_scale gt_difficults.append(y.slice_axis(axis=-1, begin=5, end=6) if y.shape[-1] > 5 else None) # update metric for det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff in zip(det_bboxes, det_ids, det_scores, gt_bboxes, gt_ids, gt_difficults): eval_metric.update(det_bbox, det_id, det_score, gt_bbox, gt_id, gt_diff) pbar.update(len(ctx)) return eval_metric.get() if __name__ == '__main__': args = parse_args() # contexts ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()] ctx = ctx if ctx else [mx.cpu()] args.batch_size = len(ctx) # 1 batch per device # network kwargs = {} module_list = [] if args.use_fpn: module_list.append('fpn') if args.norm_layer is not None: module_list.append(args.norm_layer) if args.norm_layer == 'bn': kwargs['num_devices'] = len(args.gpus.split(',')) net_name = '_'.join(('faster_rcnn', *module_list, args.network, args.dataset)) args.save_prefix += net_name if args.pretrained.lower() in ['true', '1', 'yes', 't']: net = gcv.model_zoo.get_model(net_name, pretrained=True, **kwargs) else: net = gcv.model_zoo.get_model(net_name, pretrained=False, **kwargs) net.load_parameters(args.pretrained.strip(), cast_dtype=True) net.collect_params().reset_ctx(ctx) # validation data val_dataset, eval_metric = get_dataset(args.dataset, args) val_data = get_dataloader( net, val_dataset, args.batch_size, args.num_workers) # validation if not args.eval_all: names, values = validate(net, val_data, ctx, eval_metric, len(val_dataset)) for k, v in zip(names, values): print(k, v) else: saved_models = glob.glob(args.save_prefix + '*.params') for epoch, saved_model in enumerate(sorted(saved_models)): print('[Epoch {}] Validating from {}'.format(epoch, saved_model)) net.load_parameters(saved_model) net.collect_params().reset_ctx(ctx) map_name, mean_ap = validate(net, val_data, ctx, eval_metric, len(val_dataset)) val_msg = '\n'.join(['{}={}'.format(k, v) for k, v in zip(map_name, mean_ap)]) print('[Epoch {}] Validation: \n{}'.format(epoch, val_msg)) current_map = float(mean_ap[-1]) with open(args.save_prefix+'_best_map.log', 'a') as f: f.write('\n{:04d}:\t{:.4f}'.format(epoch, current_map))
py
1a2fc6a45177c4fb910e60a72147540646329b18
# -*- coding: utf-8 -*- """ pygments.styles.rrt ~~~~~~~~~~~~~~~~~~~ pygments "rrt" theme, based on Zap and Emacs defaults. :copyright: Copyright 2006-2013 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Comment, Name, Keyword, String class RrtStyle(Style): """ Minimalistic "rrt" theme, based on Zap and Emacs defaults. """ background_color = '#000000' highlight_color = '#0000ff' styles = { Comment: '#00ff00', Name.Function: '#ffff00', Name.Variable: '#eedd82', Name.Constant: '#7fffd4', Keyword: '#ff0000', Comment.Preproc: '#e5e5e5', String: '#87ceeb', Keyword.Type: '#ee82ee', }
py
1a2fc6d60a0e0c27df3ace927b3016c87b619670
from scraping.funtion import html_convert_python def get_data_page_locate(url): soup = html_convert_python( url ) data = [] for row in soup.find("ul", {"id": "postcode-list"}).find_all("li"): url = row.find('a').attrs['href'] data.append(url) return data def get_data_page_region(url): soup = html_convert_python( url ) data = [] for row in soup.find_all("div", {"class": "col-md-3 col-xs-4"}): url = row.a.get('href') print(url) data.append(url) return data def get_data_page_postcode(url): soup = html_convert_python( url ) data = [] for row in soup.find_all("div", {"class": "col-md-3 col-xs-12"}): url = row.a.string print(url) data.append(url) return data
py
1a2fc6f2e7b702b78f689e41f3dc9f0edb25c1c4
#!/usr/bin/env python #encoding: utf8 # # Copyright © Burak Arslan <burak at arskom dot com dot tr>, # Arskom Ltd. http://www.arskom.com.tr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the owner nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import logging import random import sys import base64 from Cookie import SimpleCookie # bcrypt seems to be among the latest consensus around cryptograpic circles on # storing passwords. # You need the package from http://code.google.com/p/py-bcrypt/ # You can install it by running easy_install py-bcrypt. try: import bcrypt except ImportError: print('easy_install --user py-bcrypt to get it.') raise from spyne.application import Application from spyne.decorator import rpc from spyne.error import ResourceNotFoundError from spyne.model.complex import ComplexModel from spyne.model.fault import Fault from spyne.model.primitive import Mandatory from spyne.model.primitive import String from spyne.protocol.soap import Soap11 from spyne.server.wsgi import WsgiApplication from spyne.service import ServiceBase class PublicKeyError(ResourceNotFoundError): __namespace__ = 'spyne.examples.authentication' def __init__(self, value): Fault.__init__(self, faultcode='Client.KeyError', faultstring='Value %r not found' % value ) class AuthenticationError(Fault): __namespace__ = 'spyne.examples.authentication' def __init__(self, user_name): # TODO: self.transport.http.resp_code = HTTP_401 Fault.__init__(self, faultcode='Client.AuthenticationError', faultstring='Invalid authentication request for %r' % user_name ) class AuthorizationError(Fault): __namespace__ = 'spyne.examples.authentication' def __init__(self): # TODO: self.transport.http.resp_code = HTTP_401 Fault.__init__(self, faultcode='Client.AuthorizationError', faultstring='You are not authorized to access this resource.' ) class UnauthenticatedError(Fault): __namespace__ = 'spyne.examples.authentication' def __init__(self): Fault.__init__(self, faultcode='Client.UnauthenticatedError', faultstring='This resource can only be accessed after authentication.' ) class SpyneDict(dict): def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: raise PublicKeyError(key) class Preferences(ComplexModel): __namespace__ = 'spyne.examples.authentication' language = String(max_len=2) time_zone = String user_db = { 'neo': bcrypt.hashpw('Wh1teR@bbit', bcrypt.gensalt()), } session_db = set() preferences_db = SpyneDict({ 'neo': Preferences(language='en', time_zone='Underground/Zion'), 'smith': Preferences(language='xx', time_zone='Matrix/Core'), }) class UserService(ServiceBase): __tns__ = 'spyne.examples.authentication' @rpc(Mandatory.String, Mandatory.String, _returns=None, _throws=AuthenticationError) def authenticate(ctx, user_name, password): password_hash = user_db.get(user_name, None) if password_hash is None: raise AuthenticationError(user_name) if bcrypt.hashpw(password, password_hash) != password_hash: raise AuthenticationError(user_name) session_id = (user_name, '%x' % random.randint(1<<128, (1<<132)-1)) session_db.add(session_id) cookie = SimpleCookie() cookie["session-id"] = base64.urlsafe_b64encode(str(session_id[0]) + "\0" + str(session_id[1])) cookie["session-id"]["max-age"] = 3600 header_name, header_value = cookie.output().split(":", 1) ctx.transport.resp_headers[header_name] = header_value.strip() from pprint import pprint pprint(ctx.transport.resp_headers) @rpc(Mandatory.String, _throws=PublicKeyError, _returns=Preferences) def get_preferences(ctx, user_name): # Only allow access to the users own preferences. if user_name != ctx.udc: raise AuthorizationError() retval = preferences_db[user_name] return retval def _on_method_call(ctx): if ctx.descriptor.name == "authenticate": # No checking of session cookie for call to authenticate return cookie = SimpleCookie() http_cookie = ctx.transport.req_env.get("HTTP_COOKIE") if http_cookie: cookie.load(http_cookie) if "session-id" not in cookie: raise UnauthenticatedError() session_cookie = cookie["session-id"].value session_id = tuple(base64.urlsafe_b64decode(session_cookie).split("\0", 1)) if not session_id in session_db: raise AuthenticationError(session_id[0]) ctx.udc = session_id[0] # user name UserService.event_manager.add_listener('method_call', _on_method_call) if __name__=='__main__': from spyne.util.wsgi_wrapper import run_twisted logging.basicConfig(level=logging.DEBUG) logging.getLogger('spyne.protocol.xml').setLevel(logging.DEBUG) logging.getLogger('twisted').setLevel(logging.DEBUG) application = Application([UserService], tns='spyne.examples.authentication', in_protocol=Soap11(validator='lxml'), out_protocol=Soap11() ) twisted_apps = [ (WsgiApplication(application), 'app'), ] sys.exit(run_twisted(twisted_apps, 7789))
py
1a2fc7ee57cb4ab1366ee1f2bd9e223a48a4f673
__author__ = 'dereyly' import sys #sys.path.append('/home/dereyly/progs/caffe_cudnn33/python_33') #sys.path.append('/home/dereyly/progs/caffe-master-triplet/python') import caffe import numpy as np ''' layer { name: 'rcls_lost_my' type: 'Python' bottom: 'feats' bottom: 'labels' top: 'cls_lost_my' python_param { module: 'fast_rcnn.skip_softmax_loss' layer: 'SoftmaxLossLayer' #param_str: "{'ratios': [0.5, 1, 2], 'scales': [2, 4, 8, 16, 32]}" } loss_weight: 1 } ''' def softmax(x): """Compute softmax values for each sets of scores in x.""" sf = np.exp(x) sum_sf=np.sum(sf, axis=1) for i in range(x.shape[0]): sf[i]/=sum_sf[i] return sf class SoftmaxLossLayer(caffe.Layer): def setup(self, bottom, top): # check input pair if len(bottom) != 2: raise Exception("Need two inputs to compute distance.") # DBG self.count = 0 self.skip_count = 0 top[0].reshape(1) def reshape(self, bottom, top): # check input dimensions match # difference is shape of inputs sz=bottom[0].data.shape self.batch_sz=sz[0] self.diff = np.zeros((sz[0],sz[1]),dtype=np.float32) self.lbl_gt=np.zeros((sz[0],sz[1]),dtype=np.float32) # loss output is scalar #top[1].reshape(self.batch_sz) def forward(self, bottom, top): self.count+=1 sz=bottom[0].data.shape self.lbl_gt=np.zeros((sz[0],sz[1]),dtype=np.float32) lbl_idx=bottom[1].data lbl_idx=lbl_idx.astype(dtype= int) for i in range(self.batch_sz): self.lbl_gt[i,lbl_idx[i]]=1 soft_max=softmax(bottom[0].data) #loss = -self.lbl_gt*np.log(np.maximum(soft_max,np.finfo(np.float32).eps)) loss=0 for i in range(self.batch_sz): loss -= np.log(np.maximum(soft_max[i][lbl_idx[i]],np.finfo(np.float32).eps)) #loss2=-np.log(soft_max) #for i in range(self.batch_sz): # loss[i,lbl_idx[i]]=0 #print bottom[1].data.shape self.diff[...] = soft_max-self.lbl_gt for i in range(self.batch_sz): coeff=soft_max[i,lbl_idx[i]] self.diff[i]*=coeff self.skip_count+=coeff if self.count%100==0: print('-- skip count -- ',self.skip_count/(100.0*self.batch_sz)) self.skip_count=0 top[0].data[...] = np.sum(loss) / bottom[0].num #top[1].data[...] = loss def backward(self, top, propagate_down, bottom): #pass bottom[0].diff[...] = self.diff / bottom[0].num
py
1a2fc822be9317ed37f6e3aa7339504f9dd0a7a2
from typing import Optional, Tuple ################################################################ # Zulip Server settings. # # This file controls settings that affect the whole Zulip server. # See our documentation at: # https://zulip.readthedocs.io/en/latest/production/settings.html # # For developer documentation on the Zulip settings system, see: # https://zulip.readthedocs.io/en/latest/subsystems/settings.html # # Remember to restart the server after making changes here! # su zulip -c /home/zulip/deployments/current/scripts/restart-server ################################ # Mandatory settings. # # These settings MUST be set in production. In a development environment, # sensible default values will be used. # The email address for the person or team who maintains the Zulip # installation. Note that this is a public-facing email address; it may # appear on 404 pages, is used as the sender's address for many automated # emails, and is advertised as a support address. An email address like # [email protected] is totally reasonable, as is [email protected]. # Do not put a display name; e.g. '[email protected]', not # 'Zulip Support <[email protected]>'. ZULIP_ADMINISTRATOR = '[email protected]' # The user-accessible Zulip hostname for this installation, e.g. # zulip.example.com. This should match what users will put in their # web browser. If you want to allow multiple hostnames, add the rest # to ALLOWED_HOSTS. # # If you need to access the server on a specific port, you should set # EXTERNAL_HOST to e.g. zulip.example.com:1234 here. EXTERNAL_HOST = 'zulip.example.com' # Alternative hostnames. A comma-separated list of strings # representing the host/domain names that your users can enter in # their browsers to access Zulip. This is a security measure; for # details, see the Django documentation: # https://docs.djangoproject.com/en/1.11/ref/settings/#allowed-hosts # # Zulip automatically adds to this list 'localhost', '127.0.0.1', and # patterns representing EXTERNAL_HOST and subdomains of it. If you are # accessing your server by other hostnames, list them here. # # Note that these should just be hostnames, without port numbers. #ALLOWED_HOSTS = ['zulip-alias.example.com', '192.0.2.1'] # If EXTERNAL_HOST is not a valid domain name (e.g. an IP address), # set FAKE_EMAIL_DOMAIN below to a domain that Zulip can use when # generating (fake) email addresses for bots, dummy users, etc. #FAKE_EMAIL_DOMAIN = 'fake-domain.example.com' ################ # Outgoing email (SMTP) settings. # # Zulip needs to be able to send email (that is, use SMTP) so it can # confirm new users' email addresses and send notifications. # # If you don't already have an SMTP provider, free ones are available. # # For more details, including a list of free SMTP providers and # advice for troubleshooting, see the Zulip documentation: # https://zulip.readthedocs.io/en/latest/production/email.html # EMAIL_HOST and EMAIL_HOST_USER are generally required. #EMAIL_HOST = 'smtp.example.com' #EMAIL_HOST_USER = '' # Passwords and secrets are not stored in this file. The password # for user EMAIL_HOST_USER goes in `/etc/zulip/zulip-secrets.conf`. # In that file, set `email_password`. For example: # email_password = abcd1234 # EMAIL_USE_TLS and EMAIL_PORT are required for most SMTP providers. #EMAIL_USE_TLS = True #EMAIL_PORT = 587 # The noreply address to be used as the sender for certain generated # emails. Messages sent to this address could contain sensitive user # data and should not be delivered anywhere. The default is # e.g. noreply-{random_token}@zulip.example.com (if EXTERNAL_HOST is # zulip.example.com). There are potential security issues if you set # ADD_TOKENS_TO_NOREPLY_ADDRESS=False to remove the token; see # https://zulip.readthedocs.io/en/latest/production/email.html for details. #ADD_TOKENS_TO_NOREPLY_ADDRESS = True #TOKENIZED_NOREPLY_EMAIL_ADDRESS = "noreply-{token}@example.com" # NOREPLY_EMAIL_ADDRESS is the sender for noreply emails that don't # contain confirmation links (where the security problem fixed by # ADD_TOKENS_TO_NOREPLY_ADDRESS does not exist), as well as for # confirmation emails when ADD_TOKENS_TO_NOREPLY_ADDRESS=False. #NOREPLY_EMAIL_ADDRESS = '[email protected]' # Many countries and bulk mailers require certain types of email to display # a physical mailing address to comply with anti-spam legislation. # Non-commercial and non-public-facing installations are unlikely to need # this setting. # The address should have no newlines. #PHYSICAL_ADDRESS = '' ################ # Authentication settings. # Enable at least one of the following authentication backends. # See https://zulip.readthedocs.io/en/latest/production/authentication-methods.html # for documentation on our authentication backends. # # The install process requires EmailAuthBackend (the default) to be # enabled. If you want to disable it, do so after creating the # initial realm and user. AUTHENTICATION_BACKENDS = ( 'zproject.backends.EmailAuthBackend', # Email and password; just requires SMTP setup # 'zproject.backends.GoogleAuthBackend', # Google auth, setup below # 'zproject.backends.GitHubAuthBackend', # GitHub auth, setup below # 'zproject.backends.AzureADAuthBackend', # Microsoft Azure Active Directory auth, setup below # 'zproject.backends.SAMLAuthBackend', # SAML, setup below # 'zproject.backends.ZulipLDAPAuthBackend', # LDAP, setup below # 'zproject.backends.ZulipRemoteUserBackend', # Local SSO, setup docs on readthedocs ) # type: Tuple[str, ...] ######## # Google OAuth. # # To set up Google authentication, you'll need to do the following: # # (1) Visit https://console.developers.google.com/ , navigate to # "APIs & Services" > "Credentials", and create a "Project" which will # correspond to your Zulip instance. # # (2) Navigate to "APIs & services" > "Library", and find the # "Identity Toolkit API". Choose "Enable". # # (3) Return to "Credentials", and select "Create credentials". # Choose "OAuth client ID", and follow prompts to create a consent # screen. Fill in "Authorized redirect URIs" with a value like # https://zulip.example.com/accounts/login/google/done/ # based on your value for EXTERNAL_HOST. # # (4) You should get a client ID and a client secret. Copy them. # Use the client ID as `SOCIAL_AUTH_GOOGLE_KEY` here, and put the # client secret in zulip-secrets.conf as `social_auth_google_secret`. #SOCIAL_AUTH_GOOGLE_KEY = <your client ID from Google> ######## # GitHub OAuth. # # To set up GitHub authentication, you'll need to do the following: # # (1) Register an OAuth2 application with GitHub at one of: # https://github.com/settings/developers # https://github.com/organizations/ORGNAME/settings/developers # Fill in "Callback URL" with a value like # https://zulip.example.com/complete/github/ as # based on your values for EXTERNAL_HOST and SOCIAL_AUTH_SUBDOMAIN. # # (2) You should get a page with settings for your new application, # showing a client ID and a client secret. Use the client ID as # `SOCIAL_AUTH_GITHUB_KEY` here, and put the client secret in # zulip-secrets.conf as `social_auth_github_secret`. #SOCIAL_AUTH_GITHUB_KEY = <your client ID from GitHub> # (3) Optionally, you can configure the GitHub integration to only # allow members of a particular GitHub team or organization to log # into your Zulip server through GitHub authentication. To enable # this, set one of the two parameters below: #SOCIAL_AUTH_GITHUB_TEAM_ID = <your team id> #SOCIAL_AUTH_GITHUB_ORG_NAME = <your org name> # (4) If you are serving multiple Zulip organizations on different # subdomains, you need to set SOCIAL_AUTH_SUBDOMAIN. You can set it # to any subdomain on which you do not plan to host a Zulip # organization. The default recommendation, `auth`, is a reserved # subdomain; if you're using this setting, the "Callback URL" should be e.g.: # https://auth.zulip.example.com/complete/github/ # # If you end up using a subdomain other then the default # recommendation, you must also set the 'ROOT_SUBDOMAIN_ALIASES' list # to include this subdomain. # #SOCIAL_AUTH_SUBDOMAIN = 'auth' ######## # SAML Authentication # # For SAML authentication, you will need to configure the settings # below using information from your SAML Identity Provider, as # explained in: # # https://zulip.readthedocs.io/en/latest/production/authentication-methods.html#saml # # You will need to modify these SAML settings: SOCIAL_AUTH_SAML_ORG_INFO = { "en-US": { "displayname": "Example, Inc. Zulip", "name": "zulip", "url": "%s%s" % ('https://', EXTERNAL_HOST), } } SOCIAL_AUTH_SAML_ENABLED_IDPS = { # The fields are explained in detail here: # https://python-social-auth-docs.readthedocs.io/en/latest/backends/saml.html "idp_name": { # Configure entity_id and url according to information provided to you by your IdP: "entity_id": "https://idp.testshib.org/idp/shibboleth", "url": "https://idp.testshib.org/idp/profile/SAML2/Redirect/SSO", # The part below corresponds to what's likely referred to as something like # "Attribute Statements" (with Okta as your IdP) or "Attribute Mapping" (with G Suite). # The names on the right side need to correspond to the names under which # the IdP will send the user attributes. With these defaults, it's expected # that the user's email will be sent with the "email" attribute name, # the first name and the last name with the "first_name", "last_name" attribute names. "attr_user_permanent_id": "email", "attr_first_name": "first_name", "attr_last_name": "last_name", "attr_username": "email", "attr_email": "email", # The "x509cert" attribute is automatically read from # /etc/zulip/saml/idps/{idp_name}.crt; don't specify it here. # Optionally, you can edit display_name and display_icon # settings below to change the name and icon that will show on # the login button. "display_name": "SAML", # Path to a square image file containing a logo to appear at # the left end of the login/register buttons for this IDP. # The default of None results in a text-only button. # "display_icon": "/path/to/icon.png", } } SOCIAL_AUTH_SAML_SECURITY_CONFIG = { # If you've set up the optional private and public server keys, # set this to True to enable signing of SAMLRequests using the # private key. "authnRequestsSigned": False, } # These SAML settings you likely won't need to modify. SOCIAL_AUTH_SAML_SP_ENTITY_ID = 'https://' + EXTERNAL_HOST SOCIAL_AUTH_SAML_TECHNICAL_CONTACT = { "givenName": "Technical team", "emailAddress": ZULIP_ADMINISTRATOR, } SOCIAL_AUTH_SAML_SUPPORT_CONTACT = { "givenName": "Support team", "emailAddress": ZULIP_ADMINISTRATOR, } ######## # Azure Active Directory OAuth. # # To set up Microsoft Azure AD authentication, you'll need to do the following: # # (1) Register an OAuth2 application with Microsoft at: # https://apps.dev.microsoft.com # Generate a new password under Application Secrets # Generate a new platform (web) under Platforms. For Redirect URL, enter: # https://zulip.example.com/complete/azuread-oauth2/ # Add User.Read permission under Microsoft Graph Permissions # # (2) Enter the application ID for the app as SOCIAL_AUTH_AZUREAD_OAUTH2_KEY here # (3) Put the application password in zulip-secrets.conf as 'azure_oauth2_secret'. #SOCIAL_AUTH_AZUREAD_OAUTH2_KEY = '' ######## # SSO via REMOTE_USER. # # If you are using the ZulipRemoteUserBackend authentication backend, # set this to your domain (e.g. if REMOTE_USER is "username" and the # corresponding email address is "[email protected]", set # SSO_APPEND_DOMAIN = "example.com") SSO_APPEND_DOMAIN = None # type: Optional[str] ################ # Miscellaneous settings. # Support for mobile push notifications. Setting controls whether # push notifications will be forwarded through a Zulip push # notification bouncer server to the mobile apps. See # https://zulip.readthedocs.io/en/latest/production/mobile-push-notifications.html # for information on how to sign up for and configure this. #PUSH_NOTIFICATION_BOUNCER_URL = 'https://push.zulipchat.com' # Whether to redact the content of push notifications. This is less # usable, but avoids sending message content over the wire. In the # future, we're likely to replace this with an end-to-end push # notification encryption feature. #PUSH_NOTIFICATION_REDACT_CONTENT = False # Whether to submit basic usage statistics to help the Zulip core team. Details at # # https://zulip.readthedocs.io/en/latest/production/mobile-push-notifications.html # # Defaults to True if and only if the Mobile Push Notifications Service is enabled. #SUBMIT_USAGE_STATISTICS = True # Controls whether session cookies expire when the browser closes SESSION_EXPIRE_AT_BROWSER_CLOSE = False # Session cookie expiry in seconds after the last page load SESSION_COOKIE_AGE = 60 * 60 * 24 * 7 * 2 # 2 weeks # Password strength requirements; learn about configuration at # https://zulip.readthedocs.io/en/latest/production/security-model.html. # PASSWORD_MIN_LENGTH = 6 # PASSWORD_MIN_GUESSES = 10000 # Controls whether Zulip sends "new login" email notifications. #SEND_LOGIN_EMAILS = True # Controls whether or not there is a feedback button in the UI. ENABLE_FEEDBACK = False # Feedback sent by your users will be sent to this email address. FEEDBACK_EMAIL = ZULIP_ADMINISTRATOR # Controls whether or not error reports (tracebacks) are emailed to the # server administrators. #ERROR_REPORTING = True # For frontend (JavaScript) tracebacks #BROWSER_ERROR_REPORTING = False # If True, each log message in the server logs will identify the # Python module where it came from. Useful for tracking down a # mysterious log message, but a little verbose. #LOGGING_SHOW_MODULE = False # If True, each log message in the server logs will identify the # process ID. Useful for correlating logs with information from # system-level monitoring tools. #LOGGING_SHOW_PID = False # Controls whether or not Zulip will provide inline image preview when # a link to an image is referenced in a message. Note: this feature # can also be disabled in a realm's organization settings. #INLINE_IMAGE_PREVIEW = True # Controls whether or not Zulip will provide inline previews of # websites that are referenced in links in messages. Note: this feature # can also be disabled in a realm's organization settings. #INLINE_URL_EMBED_PREVIEW = True # Controls whether or not Zulip will parse links starting with # "file:///" as a hyperlink (useful if you have e.g. an NFS share). ENABLE_FILE_LINKS = False # By default, files uploaded by users and profile pictures are stored # directly on the Zulip server. You can configure files being instead # stored in Amazon S3 or another scalable data store here. See docs at: # # https://zulip.readthedocs.io/en/latest/production/upload-backends.html # # If you change LOCAL_UPLOADS_DIR to a different path, you will also # need to manually edit Zulip's nginx configuration to use the new # path. For that reason, we recommend replacing /home/zulip/uploads # with a symlink instead of changing LOCAL_UPLOADS_DIR. LOCAL_UPLOADS_DIR = "/home/zulip/uploads" #S3_AUTH_UPLOADS_BUCKET = "" #S3_AVATAR_BUCKET = "" #S3_REGION = "" # Maximum allowed size of uploaded files, in megabytes. DO NOT SET # ABOVE 80MB. The file upload implementation doesn't support chunked # uploads, so browsers will crash if you try uploading larger files. # Set MAX_FILE_UPLOAD_SIZE to 0 to disable file uploads completely # (including hiding upload-related options from UI). MAX_FILE_UPLOAD_SIZE = 25 # Controls whether name changes are completely disabled for this # installation. This is useful when you're syncing names from an # integrated LDAP/Active Directory. NAME_CHANGES_DISABLED = False # Controls whether avatar changes are completely disabled for this # installation. This is useful when you're syncing avatars from an # integrated LDAP/Active Directory. AVATAR_CHANGES_DISABLED = False # Controls whether users who have not uploaded an avatar will receive an avatar # from gravatar.com. ENABLE_GRAVATAR = True # To override the default avatar image if ENABLE_GRAVATAR is False, place your # custom default avatar image at /home/zulip/local-static/default-avatar.png # and uncomment the following line. #DEFAULT_AVATAR_URI = '/local-static/default-avatar.png' # To access an external postgres database you should define the host name in # REMOTE_POSTGRES_HOST, you can define the password in the secrets file in the # property postgres_password, and the SSL connection mode in REMOTE_POSTGRES_SSLMODE # Valid values for REMOTE_POSTGRES_SSLMODE are documented in the # "SSL Mode Descriptions" table in # https://www.postgresql.org/docs/9.5/static/libpq-ssl.html #REMOTE_POSTGRES_HOST = 'dbserver.example.com' #REMOTE_POSTGRES_SSLMODE = 'require' # If you want to set a Terms of Service for your server, set the path # to your markdown file, and uncomment the following line. #TERMS_OF_SERVICE = '/etc/zulip/terms.md' # Similarly if you want to set a Privacy Policy. #PRIVACY_POLICY = '/etc/zulip/privacy.md' ################ # Twitter integration. # Zulip supports showing inline Tweet previews when a tweet is linked # to in a message. To support this, Zulip must have access to the # Twitter API via OAuth. To obtain the various access tokens needed # below, you must register a new application under your Twitter # account by doing the following: # # 1. Log in to http://dev.twitter.com. # 2. In the menu under your username, click My Applications. From this page, create a new application. # 3. Click on the application you created and click "create my access token". # 4. Fill in the values for twitter_consumer_key, twitter_consumer_secret, twitter_access_token_key, # and twitter_access_token_secret in /etc/zulip/zulip-secrets.conf. ################ # Email gateway integration. # # The Email gateway integration supports sending messages into Zulip # by sending an email. # For details, see the documentation: # https://zulip.readthedocs.io/en/latest/production/settings.html#email-gateway EMAIL_GATEWAY_PATTERN = "" # If you are using polling, edit the IMAP settings below: # # The IMAP login; username here and password as email_gateway_password in # zulip-secrets.conf. EMAIL_GATEWAY_LOGIN = "" # The IMAP server & port to connect to EMAIL_GATEWAY_IMAP_SERVER = "" EMAIL_GATEWAY_IMAP_PORT = 993 # The IMAP folder name to check for emails. All emails sent to EMAIL_GATEWAY_PATTERN above # must be delivered to this folder EMAIL_GATEWAY_IMAP_FOLDER = "INBOX" ################ # LDAP integration. # # Zulip supports retrieving information about users via LDAP, and # optionally using LDAP as an authentication mechanism. import ldap from django_auth_ldap.config import LDAPSearch ######## # LDAP integration, part 1: Connecting to the LDAP server. # # For detailed instructions, see the Zulip documentation: # https://zulip.readthedocs.io/en/latest/production/authentication-methods.html#ldap # The LDAP server to connect to. Setting this enables Zulip # automatically fetching each new user's name from LDAP. # Example: "ldaps://ldap.example.com" AUTH_LDAP_SERVER_URI = "" # The DN of the user to bind as (i.e., authenticate as) in order to # query LDAP. If unset, Zulip does an anonymous bind. AUTH_LDAP_BIND_DN = "" # Passwords and secrets are not stored in this file. The password # corresponding to AUTH_LDAP_BIND_DN goes in `/etc/zulip/zulip-secrets.conf`. # In that file, set `auth_ldap_bind_password`. For example: # auth_ldap_bind_password = abcd1234 ######## # LDAP integration, part 2: Mapping user info from LDAP to Zulip. # # For detailed instructions, see the Zulip documentation: # https://zulip.readthedocs.io/en/latest/production/authentication-methods.html#ldap # The LDAP search query to find a given user. # # The arguments to `LDAPSearch` are (base DN, scope, filter). In the # filter, the string `%(user)s` is a Python placeholder. The Zulip # server will replace this with the user's Zulip username, i.e. the # name they type into the Zulip login form. # # For more details and alternatives, see the documentation linked above. AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=users,dc=example,dc=com", ldap.SCOPE_SUBTREE, "(uid=%(user)s)") # Configuration to lookup a user's LDAP data given their email address # (For Zulip reverse mapping). If users log in as e.g. "sam" when # their email address is "[email protected]", set LDAP_APPEND_DOMAIN to # "example.com". Otherwise, leave LDAP_APPEND_DOMAIN=None and set # AUTH_LDAP_REVERSE_EMAIL_SEARCH and AUTH_LDAP_USERNAME_ATTR below. LDAP_APPEND_DOMAIN = None # type: Optional[str] # LDAP attribute to find a user's email address. # # Leave as None if users log in with their email addresses, # or if using LDAP_APPEND_DOMAIN. LDAP_EMAIL_ATTR = None # type: Optional[str] # AUTH_LDAP_REVERSE_EMAIL_SEARCH works like AUTH_LDAP_USER_SEARCH and # should query an LDAP user given their email address. It and # AUTH_LDAP_USERNAME_ATTR are required when LDAP_APPEND_DOMAIN is None. #AUTH_LDAP_REVERSE_EMAIL_SEARCH = LDAPSearch("ou=users,dc=example,dc=com", # ldap.SCOPE_SUBTREE, "(email=%(email)s)") # AUTH_LDAP_USERNAME_ATTR should be the Zulip username attribute # (defined in AUTH_LDAP_USER_SEARCH). #AUTH_LDAP_USERNAME_ATTR = "uid" # This map defines how to populate attributes of a Zulip user from LDAP. # # The format is `zulip_name: ldap_name`; each entry maps a Zulip # concept (on the left) to the LDAP attribute name (on the right) your # LDAP database uses for the same concept. AUTH_LDAP_USER_ATTR_MAP = { # full_name is required; common values include "cn" or "displayName". # If names are encoded in your LDAP directory as first and last # name, you can instead specify first_name and last_name, and # Zulip will combine those to construct a full_name automatically. "full_name": "cn", # "first_name": "fn", # "last_name": "ln", # Profile pictures can be pulled from the LDAP "thumbnailPhoto"/"jpegPhoto" field. # "avatar": "thumbnailPhoto", # This line is for having Zulip to automatically deactivate users # who are disabled in LDAP/Active Directory (and reactivate users who are not). # See docs for usage details and precise semantics. # "userAccountControl": "userAccountControl", } # Whether to automatically deactivate users not found in LDAP. If LDAP # is the only authentication method, then this setting defaults to # True. If other authentication methods are enabled, it defaults to # False. #LDAP_DEACTIVATE_NON_MATCHING_USERS = True ################ # Miscellaneous settings. # The default CAMO_URI of '/external_content/' is served by the camo # setup in the default Voyager nginx configuration. Setting CAMO_URI # to '' will disable the Camo integration. CAMO_URI = '/external_content/' # RabbitMQ configuration # # By default, Zulip connects to rabbitmq running locally on the machine, # but Zulip also supports connecting to RabbitMQ over the network; # to use a remote RabbitMQ instance, set RABBITMQ_HOST to the hostname here. # RABBITMQ_HOST = "127.0.0.1" # To use another rabbitmq user than the default 'zulip', set RABBITMQ_USERNAME here. # RABBITMQ_USERNAME = 'zulip' # Memcached configuration # # By default, Zulip connects to memcached running locally on the machine, # but Zulip also supports connecting to memcached over the network; # to use a remote Memcached instance, set MEMCACHED_LOCATION here. # Format HOST:PORT # MEMCACHED_LOCATION = 127.0.0.1:11211 # Redis configuration # # By default, Zulip connects to redis running locally on the machine, # but Zulip also supports connecting to redis over the network; # to use a remote Redis instance, set REDIS_HOST here. # REDIS_HOST = '127.0.0.1' # For a different redis port set the REDIS_PORT here. # REDIS_PORT = 6379 # If you set redis_password in zulip-secrets.conf, Zulip will use that password # to connect to the redis server. # Controls whether Zulip will rate-limit user requests. # RATE_LIMITING = True # By default, Zulip connects to the thumbor (the thumbnailing software # we use) service running locally on the machine. If you're running # thumbor on a different server, you can configure that by setting # THUMBOR_URL here. Setting THUMBOR_URL='' will let Zulip server know that # thumbor is not running or configured. #THUMBOR_URL = 'http://127.0.0.1:9995' # # This setting controls whether images shown in Zulip's inline image # previews should be thumbnailed by thumbor, which saves bandwidth but # can modify the image's appearance. #THUMBNAIL_IMAGES = True # Controls the Jitsi Meet video call integration. By default, the # integration uses the SaaS meet.jit.si server. You can specify # your own Jitsi Meet server, or if you'd like to disable the # integration, set JITSI_SERVER_URL = None. #JITSI_SERVER_URL = 'jitsi.example.com'
py
1a2fc8666597869658455165ed41e12d1dcdac07
""" Runs one instance of the Atari environment and optimizes using DQN algorithm. Can use a GPU for the agent (applies to both sample and train). No parallelism employed, so everything happens in one python process; can be easier to debug. The kwarg snapshot_mode="last" to logger context will save the latest model at every log point (see inside the logger for other options). In viskit, whatever (nested) key-value pairs appear in config will become plottable keys for showing several experiments. If you need to add more after an experiment, use rlpyt.utils.logging.context.add_exp_param(). """ from rlpyt.samplers.serial.sampler import SerialSampler from rlpyt.envs.atari.atari_env import AtariEnv, AtariTrajInfo from rlpyt.algos.dqn.dqn import DQN from rlpyt.agents.dqn.atari.atari_dqn_agent import AtariDqnAgent from rlpyt.runners.minibatch_rl import MinibatchRlEval from rlpyt.utils.logging.context import logger_context from polyaxon_client.tracking import get_outputs_path def build_and_train(game="pong", run_ID=0, cuda_idx=None): sampler = SerialSampler( EnvCls=AtariEnv, TrajInfoCls=AtariTrajInfo, # default traj info + GameScore env_kwargs=dict(game=game), eval_env_kwargs=dict(game=game), batch_T=4, # Four time-steps per sampler iteration. batch_B=1, max_decorrelation_steps=0, eval_n_envs=10, eval_max_steps=int(10e3), eval_max_trajectories=5, ) algo = DQN(min_steps_learn=1e3) # Run with defaults. agent = AtariDqnAgent() runner = MinibatchRlEval( algo=algo, agent=agent, sampler=sampler, n_steps=50e6, log_interval_steps=1e3, affinity=dict(cuda_idx=cuda_idx), ) config = dict(game=game) name = "dqn_" + game #log_dir = "example_1" log_dir = get_outputs_path() with logger_context(log_dir, run_ID, name, config, snapshot_mode="last"): runner.train() if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--game', help='Atari game', default='pong') parser.add_argument('--run_ID', help='run identifier (logging)', type=int, default=0) parser.add_argument('--cuda_idx', help='gpu to use ', type=int, default=1) args = parser.parse_args() build_and_train( game=args.game, run_ID=args.run_ID, cuda_idx=args.cuda_idx, )
py
1a2fc8b876c35404d5fc43bc110195fcfed87476
"""distutils.command.build_scripts Implements the Distutils 'build_scripts' command.""" __revision__ = "$Id: build_scripts.py 77704 2010-01-23 09:23:15Z tarek.ziade $" import os, re from stat import ST_MODE from distutils.core import Command from distutils.dep_util import newer from distutils.util import convert_path from distutils import log # check if Python is called on the first line with this expression first_line_re = re.compile('^#!.*python[0-9.]*([ \t].*)?$') class build_scripts (Command): description = "\"build\" scripts (copy and fixup #! line)" user_options = [ ('build-dir=', 'd', "directory to \"build\" (copy) to"), ('force', 'f', "forcibly build everything (ignore file timestamps"), ('executable=', 'e', "specify final destination interpreter path"), ] boolean_options = ['force'] def initialize_options (self): self.build_dir = None self.scripts = None self.force = None self.executable = None self.outfiles = None def finalize_options (self): self.set_undefined_options('build', ('build_scripts', 'build_dir'), ('force', 'force'), ('executable', 'executable')) self.scripts = self.distribution.scripts def get_source_files(self): return self.scripts def run (self): if not self.scripts: return self.copy_scripts() def copy_scripts (self): """Copy each script listed in 'self.scripts'; if it's marked as a Python script in the Unix way (first line matches 'first_line_re', ie. starts with "\#!" and contains "python"), then adjust the first line to refer to the current Python interpreter as we copy. """ _sysconfig = __import__('sysconfig') self.mkpath(self.build_dir) outfiles = [] for script in self.scripts: adjust = 0 script = convert_path(script) outfile = os.path.join(self.build_dir, os.path.basename(script)) outfiles.append(outfile) if not self.force and not newer(script, outfile): log.debug("not copying %s (up-to-date)", script) continue # Always open the file, but ignore failures in dry-run mode -- # that way, we'll get accurate feedback if we can read the # script. try: f = open(script, "r") except IOError: if not self.dry_run: raise f = None else: first_line = f.readline() if not first_line: self.warn("%s is an empty file (skipping)" % script) continue match = first_line_re.match(first_line) if match: adjust = 1 post_interp = match.group(1) or '' if adjust: log.info("copying and adjusting %s -> %s", script, self.build_dir) if not self.dry_run: outf = open(outfile, "w") if not _sysconfig.is_python_build(): outf.write("#!%s%s\n" % (self.executable, post_interp)) else: outf.write("#!%s%s\n" % (os.path.join( _sysconfig.get_config_var("BINDIR"), "python%s%s" % (_sysconfig.get_config_var("VERSION"), _sysconfig.get_config_var("EXE"))), post_interp)) outf.writelines(f.readlines()) outf.close() if f: f.close() else: if f: f.close() self.copy_file(script, outfile) if os.name == 'posix': for file in outfiles: if self.dry_run: log.info("changing mode of %s", file) else: oldmode = os.stat(file)[ST_MODE] & 07777 newmode = (oldmode | 0555) & 07777 if newmode != oldmode: log.info("changing mode of %s from %o to %o", file, oldmode, newmode) os.chmod(file, newmode) # copy_scripts () # class build_scripts
py
1a2fc8c2af2a2668dba79d4cb1d14088e7ae64ca
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualNetworkPeeringsOperations: """VirtualNetworkPeeringsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'virtualNetworkPeeringName': self._serialize.url("virtual_network_peering_name", virtual_network_peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def begin_delete( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified virtual network peering. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param virtual_network_peering_name: The name of the virtual network peering. :type virtual_network_peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, virtual_network_name=virtual_network_name, virtual_network_peering_name=virtual_network_peering_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def get( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, **kwargs ) -> "models.VirtualNetworkPeering": """Gets the specified virtual network peering. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param virtual_network_peering_name: The name of the virtual network peering. :type virtual_network_peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualNetworkPeering, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.VirtualNetworkPeering :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'virtualNetworkPeeringName': self._serialize.url("virtual_network_peering_name", virtual_network_peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, virtual_network_peering_parameters: "models.VirtualNetworkPeering", **kwargs ) -> "models.VirtualNetworkPeering": cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeering"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'virtualNetworkPeeringName': self._serialize.url("virtual_network_peering_name", virtual_network_peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(virtual_network_peering_parameters, 'VirtualNetworkPeering') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, virtual_network_name: str, virtual_network_peering_name: str, virtual_network_peering_parameters: "models.VirtualNetworkPeering", **kwargs ) -> AsyncLROPoller["models.VirtualNetworkPeering"]: """Creates or updates a peering in the specified virtual network. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param virtual_network_peering_name: The name of the peering. :type virtual_network_peering_name: str :param virtual_network_peering_parameters: Parameters supplied to the create or update virtual network peering operation. :type virtual_network_peering_parameters: ~azure.mgmt.network.v2020_03_01.models.VirtualNetworkPeering :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualNetworkPeering or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_03_01.models.VirtualNetworkPeering] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeering"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, virtual_network_name=virtual_network_name, virtual_network_peering_name=virtual_network_peering_name, virtual_network_peering_parameters=virtual_network_peering_parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualNetworkPeering', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings/{virtualNetworkPeeringName}'} # type: ignore def list( self, resource_group_name: str, virtual_network_name: str, **kwargs ) -> AsyncIterable["models.VirtualNetworkPeeringListResult"]: """Gets all virtual network peerings in a virtual network. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualNetworkPeeringListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_03_01.models.VirtualNetworkPeeringListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualNetworkPeeringListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('VirtualNetworkPeeringListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/virtualNetworkPeerings'} # type: ignore
py
1a2fc8d575d251990336801076d181ea0608fc89
from datetime import datetime from pathlib import Path from tkinter import * from tkinter import filedialog from docxtpl import DocxTemplate import xlrd import os import configparser import sys def resource_path(relative_path): if getattr(sys, 'frozen', False): base_path = sys._MEIPASS else: base_path = os.path.dirname(os.path.abspath(__file__)) print(os.path.join(base_path, relative_path)) return os.path.join(base_path, relative_path) def valid_count(): config = configparser.ConfigParser() config.read(resource_path(os.path.join('res', 'conf.ini')), encoding="utf8") return config.getint("sys_config", "totalCount"), config.getint("sys_config", "usedCount") def update_valid(count): config = configparser.ConfigParser() config.read(resource_path(os.path.join('res', 'conf.ini')), encoding="utf8") config.set("sys_config", "usedCount", repr(count)) config.write(open(resource_path(os.path.join('res', 'conf.ini')), "w")) class Application(Frame): def __init__(self, master=None): Frame.__init__(self, master, bg='white') self.pack(expand=YES, fill=BOTH) self.window_init() self.createWidgets() def window_init(self): self.master.title('报告批处理系统') self.master.bg = 'white' width, height = self.master.maxsize() self.master.geometry("{}x{}".format(500, 500)) def createWidgets(self): # # fm1 self.fm1 = Frame(self, bg='white') self.openButton = Button(self.fm1, text='选择表格文件', bg='#e4e4e5', fg='black', font=('微软雅黑', 12), command=self.fileOpen) self.openButton.pack(expand=YES) self.fm1.pack(side=TOP, pady=10, expand=NO, fill='x') # fm2 self.fm2 = Frame(self, bg='white') self.predictEntry = Text(self.fm2, font=('微软雅黑', 10), fg='#FF4081', state=DISABLED) self.predictEntry.pack(side=LEFT, fill='y', padx=20, expand=YES) self.fm2.pack(side=TOP, expand=YES, fill="y") def output_predict_sentence(self, r): # self.predictEntry.delete(0, END) self.predictEntry.config(state=NORMAL) self.predictEntry.insert(INSERT, r + "\n") self.predictEntry.config(state=DISABLED) def fileOpen(self): fileName = filedialog.askopenfilename(title='选择表格文件', filetypes=[('Excel', '*.xlsx')]) self.read_excel(fileName) # self.output_predict_sentence("结束") def read_excel(self, fileName): try: self.output_predict_sentence("选择文件为:" + fileName) my_file = Path(fileName) if my_file.exists(): pass else: self.output_predict_sentence("文件不存在,重新选择文件!") my_dir_name = fileName.replace('.xlsx', '') my_dir = Path(my_dir_name) if my_dir.exists(): pass else: os.makedirs(my_dir) # self.output_predict_sentence("创建存储目录") # 打开excel x1 = xlrd.open_workbook(fileName) # 打开sheet1 table = x1.sheet_by_index(0) nrows = table.nrows validCount = valid_count() if nrows - 2 + validCount[1] > validCount[0]: self.output_predict_sentence('数据异常,联系开发人员!') return self.output_predict_sentence('预计生成报告数:' + str(nrows - 2)) self.output_predict_sentence("开始生成报告!") for i in range(nrows - 2): reqTimeStr = str(table.cell_value(i + 2, 0)).strip() companyName = table.cell_value(i + 2, 1) if companyName is None: break productNumber = str(table.cell_value(i + 2, 2)).strip() SCCJ = str(table.cell_value(i + 2, 3)).strip() productName = str(table.cell_value(i + 2, 4)).strip() productTime = table.cell_value(i + 2, 5) PH = table.cell_value(i + 2, 6) LC = str(table.cell_value(i + 2, 7)).strip() GCZCH = table.cell_value(i + 2, 8) YJZH = table.cell_value(i + 2, 9) CYWZ = str(table.cell_value(i + 2, 10)).strip() GH = str(table.cell_value(i + 2, 11)).strip() reportTime = str(table.cell_value(i + 2, 12)).strip() # 日期转换 reqTime = datetime.strptime(reqTimeStr, '%Y.%m.%d') reportTime = datetime.strptime(reportTime, '%Y.%m.%d') tpl = DocxTemplate(resource_path(os.path.join('res', 'tempdoc.docx'))) context = { 'companyName': companyName, 'productNumber': productNumber, # 'SCCJ': SCCJ, # 'productName': productName, # 'productTime': productTime, # 'PH': PH, # 'LC': LC, # 'GCZCH': GCZCH, # 'YJZH': YJZH, 'CYWZ': CYWZ, 'GH': GH, 'reqTime': "{0:%Y}.{0:%m}.{0:%d}".format(reqTime), 'checkTime': "{0:%Y}.{0:%m}.{0:%d}".format(reqTime), 'reportTime': "{0:%Y}.{0:%m}.{0:%d}".format(reportTime), } if productName == 'None': context['productName'] = '' else: context['productName'] = productName if LC == 'None': context['LC'] = '' else: context['LC'] = LC if productTime is None: context['productTime'] = '' else: if isinstance(productTime, float): context['productTime'] = int(float(productTime)) elif isinstance(productTime, int): context['productTime'] = int(productTime) else: context['productTime'] = str( productTime).replace('00:00:00+00:00', '') if PH is None: context['PH'] = '' else: if isinstance(PH, float): context['PH'] = int(float(PH)) else: context['PH'] = PH if SCCJ == 'None': context['SCCJ'] = '' else: context['SCCJ'] = SCCJ if YJZH is None: context['YJZH'] = '' else: if isinstance(YJZH, float): context['YJZH'] = int(float(YJZH)) else: context['YJZH'] = YJZH if GCZCH is None: context['GCZCH'] = '' else: if isinstance(GCZCH, float): context['GCZCH'] = int(float(GCZCH)) else: context['GCZCH'] = GCZCH temp = str(i + 1) saveFileName = my_dir_name + '/' + \ companyName.replace('有限公司', '').strip() + '_' + \ GH + "_" + temp + '.docx' # self.output_predict_sentence("第" + temp + "文件:" + saveFileName) tpl.render(context) tpl.save(saveFileName) update_valid(nrows - 2 + validCount[1]) self.output_predict_sentence("报告生成结束,共生成报告:" + repr(nrows - 2)) except Exception as err: blogpath = resource_path(os.path.join('res', 'log_err.txt')) f = open(blogpath, 'w+') f.writelines(repr(err)) f.close() self.output_predict_sentence("报告生成失败,原因:" + repr(err)) if __name__ == '__main__': app = Application() app.mainloop()
py
1a2fc9698da2f9cf357773e84edacbb806889435
""" Data structures for sparse float data. Life is made simpler by dealing only with float64 data """ # pylint: disable=E1101,E1103,W0231 from numpy import nan, ndarray import numpy as np import warnings import operator from pandas.core.common import isnull, _values_from_object, _maybe_match_name from pandas.core.index import Index, _ensure_index from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.internals import SingleBlockManager from pandas.core import generic import pandas.core.common as com import pandas.core.ops as ops import pandas.index as _index from pandas.sparse.array import (make_sparse, _sparse_array_op, SparseArray) from pandas._sparse import BlockIndex, IntIndex import pandas._sparse as splib from pandas.sparse.scipy_sparse import (_sparse_series_to_coo, _coo_to_sparse_series) # ----------------------------------------------------------------------------- # Wrapper function for Series arithmetic methods def _arith_method(op, name, str_rep=None, default_axis=None, fill_zeros=None, **eval_kwargs): """ Wrapper function for Series arithmetic operations, to avoid code duplication. str_rep, default_axis, fill_zeros and eval_kwargs are not used, but are present for compatibility. """ def wrapper(self, other): if isinstance(other, Series): if not isinstance(other, SparseSeries): other = other.to_sparse(fill_value=self.fill_value) return _sparse_series_op(self, other, op, name) elif isinstance(other, DataFrame): return NotImplemented elif np.isscalar(other): if isnull(other) or isnull(self.fill_value): new_fill_value = np.nan else: new_fill_value = op(np.float64(self.fill_value), np.float64(other)) return SparseSeries(op(self.sp_values, other), index=self.index, sparse_index=self.sp_index, fill_value=new_fill_value, name=self.name) else: # pragma: no cover raise TypeError('operation with %s not supported' % type(other)) wrapper.__name__ = name if name.startswith("__"): # strip special method names, e.g. `__add__` needs to be `add` when # passed to _sparse_series_op name = name[2:-2] return wrapper def _sparse_series_op(left, right, op, name): left, right = left.align(right, join='outer', copy=False) new_index = left.index new_name = _maybe_match_name(left, right) result = _sparse_array_op(left, right, op, name) return SparseSeries(result, index=new_index, name=new_name) class SparseSeries(Series): """Data structure for labeled, sparse floating point data Parameters ---------- data : {array-like, Series, SparseSeries, dict} kind : {'block', 'integer'} fill_value : float Defaults to NaN (code for missing) sparse_index : {BlockIndex, IntIndex}, optional Only if you have one. Mainly used internally Notes ----- SparseSeries objects are immutable via the typical Python means. If you must change values, convert to dense, make your changes, then convert back to sparse """ _subtyp = 'sparse_series' def __init__(self, data=None, index=None, sparse_index=None, kind='block', fill_value=None, name=None, dtype=None, copy=False, fastpath=False): # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined data = SingleBlockManager(data, index, fastpath=True) if copy: data = data.copy() else: if data is None: data = [] if isinstance(data, Series) and name is None: name = data.name is_sparse_array = isinstance(data, SparseArray) if fill_value is None: if is_sparse_array: fill_value = data.fill_value else: fill_value = nan if is_sparse_array: if isinstance(data, SparseSeries) and index is None: index = data.index.view() elif index is not None: assert (len(index) == len(data)) sparse_index = data.sp_index data = np.asarray(data) elif isinstance(data, SparseSeries): if index is None: index = data.index.view() # extract the SingleBlockManager data = data._data elif isinstance(data, (Series, dict)): if index is None: index = data.index.view() data = Series(data) data, sparse_index = make_sparse(data, kind=kind, fill_value=fill_value) elif isinstance(data, (tuple, list, np.ndarray)): # array-like if sparse_index is None: data, sparse_index = make_sparse(data, kind=kind, fill_value=fill_value) else: assert (len(data) == sparse_index.npoints) elif isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype) if index is None: index = data.index.view() else: data = data.reindex(index, copy=False) else: length = len(index) if data == fill_value or (isnull(data) and isnull(fill_value)): if kind == 'block': sparse_index = BlockIndex(length, [], []) else: sparse_index = IntIndex(length, []) data = np.array([]) else: if kind == 'block': locs, lens = ([0], [length]) if length else ([], []) sparse_index = BlockIndex(length, locs, lens) else: sparse_index = IntIndex(length, index) v = data data = np.empty(length) data.fill(v) if index is None: index = com._default_index(sparse_index.length) index = _ensure_index(index) # create/copy the manager if isinstance(data, SingleBlockManager): if copy: data = data.copy() else: # create a sparse array if not isinstance(data, SparseArray): data = SparseArray(data, sparse_index=sparse_index, fill_value=fill_value, dtype=dtype, copy=copy) data = SingleBlockManager(data, index) generic.NDFrame.__init__(self, data) self.index = index self.name = name @property def values(self): """ return the array """ return self.block.values def __array__(self, result=None): """ the array interface, return my values """ return self.block.values def get_values(self): """ same as values """ return self.block.to_dense().view() @property def block(self): return self._data._block @property def fill_value(self): return self.block.fill_value @fill_value.setter def fill_value(self, v): self.block.fill_value = v @property def sp_index(self): return self.block.sp_index @property def sp_values(self): return self.values.sp_values @property def npoints(self): return self.sp_index.npoints @classmethod def from_array(cls, arr, index=None, name=None, copy=False, fill_value=None, fastpath=False): """ Simplified alternate constructor """ return cls(arr, index=index, name=name, copy=copy, fill_value=fill_value, fastpath=fastpath) @property def _constructor(self): return SparseSeries @property def kind(self): if isinstance(self.sp_index, BlockIndex): return 'block' elif isinstance(self.sp_index, IntIndex): return 'integer' def as_sparse_array(self, kind=None, fill_value=None, copy=False): """ return my self as a sparse array, do not copy by default """ if fill_value is None: fill_value = self.fill_value if kind is None: kind = self.kind return SparseArray(self.values, sparse_index=self.sp_index, fill_value=fill_value, kind=kind, copy=copy) def __len__(self): return len(self.block) def __unicode__(self): # currently, unicode is same as repr...fixes infinite loop series_rep = Series.__unicode__(self) rep = '%s\n%s' % (series_rep, repr(self.sp_index)) return rep def __array_wrap__(self, result): """ Gets called prior to a ufunc (and after) """ return self._constructor(result, index=self.index, sparse_index=self.sp_index, fill_value=self.fill_value, copy=False).__finalize__(self) def __array_finalize__(self, obj): """ Gets called after any ufunc or other array operations, necessary to pass on the index. """ self.name = getattr(obj, 'name', None) self.fill_value = getattr(obj, 'fill_value', None) def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform a reduction operation """ return op(self.get_values(), skipna=skipna, **kwds) def __getstate__(self): # pickling return dict(_typ=self._typ, _subtyp=self._subtyp, _data=self._data, fill_value=self.fill_value, name=self.name) def _unpickle_series_compat(self, state): nd_state, own_state = state # recreate the ndarray data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) index, fill_value, sp_index = own_state[:3] name = None if len(own_state) > 3: name = own_state[3] # create a sparse array if not isinstance(data, SparseArray): data = SparseArray(data, sparse_index=sp_index, fill_value=fill_value, copy=False) # recreate data = SingleBlockManager(data, index, fastpath=True) generic.NDFrame.__init__(self, data) self._set_axis(0, index) self.name = name def __iter__(self): """ forward to the array """ return iter(self.values) def _set_subtyp(self, is_all_dates): if is_all_dates: object.__setattr__(self, '_subtyp', 'sparse_time_series') else: object.__setattr__(self, '_subtyp', 'sparse_series') def _get_val_at(self, loc): """ forward to the array """ return self.block.values._get_val_at(loc) def __getitem__(self, key): """ """ try: return self._get_val_at(self.index.get_loc(key)) except KeyError: if isinstance(key, (int, np.integer)): return self._get_val_at(key) raise Exception('Requested index not in this series!') except TypeError: # Could not hash item, must be array-like? pass # is there a case where this would NOT be an ndarray? # need to find an example, I took out the case for now key = _values_from_object(key) dataSlice = self.values[key] new_index = Index(self.index.view(ndarray)[key]) return self._constructor(dataSlice, index=new_index).__finalize__(self) def _set_with_engine(self, key, value): return self.set_value(key, value) def abs(self): """ Return an object with absolute value taken. Only applicable to objects that are all numeric Returns ------- abs: type of caller """ res_sp_values = np.abs(self.sp_values) return self._constructor(res_sp_values, index=self.index, sparse_index=self.sp_index, fill_value=self.fill_value).__finalize__(self) def get(self, label, default=None): """ Returns value occupying requested label, default to specified missing value if not present. Analogous to dict.get Parameters ---------- label : object Label value looking for default : object, optional Value to return if label not in index Returns ------- y : scalar """ if label in self.index: loc = self.index.get_loc(label) return self._get_val_at(loc) else: return default def get_value(self, label, takeable=False): """ Retrieve single value at passed index label Parameters ---------- index : label takeable : interpret the index as indexers, default False Returns ------- value : scalar value """ loc = label if takeable is True else self.index.get_loc(label) return self._get_val_at(loc) def set_value(self, label, value, takeable=False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index Parameters ---------- label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Notes ----- This method *always* returns a new object. It is not particularly efficient but is provided for API compatibility with Series Returns ------- series : SparseSeries """ values = self.to_dense() # if the label doesn't exist, we will create a new object here # and possibily change the index new_values = values.set_value(label, value, takeable=takeable) if new_values is not None: values = new_values new_index = values.index values = SparseArray(values, fill_value=self.fill_value, kind=self.kind) self._data = SingleBlockManager(values, new_index) self._index = new_index def _set_values(self, key, value): # this might be inefficient as we have to recreate the sparse array # rather than setting individual elements, but have to convert # the passed slice/boolean that's in dense space into a sparse indexer # not sure how to do that! if isinstance(key, Series): key = key.values values = self.values.to_dense() values[key] = _index.convert_scalar(values, value) values = SparseArray(values, fill_value=self.fill_value, kind=self.kind) self._data = SingleBlockManager(values, self.index) def to_dense(self, sparse_only=False): """ Convert SparseSeries to (dense) Series """ if sparse_only: int_index = self.sp_index.to_int_index() index = self.index.take(int_index.indices) return Series(self.sp_values, index=index, name=self.name) else: return Series(self.values.to_dense(), index=self.index, name=self.name) @property def density(self): r = float(self.sp_index.npoints) / float(self.sp_index.length) return r def copy(self, deep=True): """ Make a copy of the SparseSeries. Only the actual sparse values need to be copied """ new_data = self._data if deep: new_data = self._data.copy() return self._constructor(new_data, sparse_index=self.sp_index, fill_value=self.fill_value).__finalize__(self) def reindex(self, index=None, method=None, copy=True, limit=None): """ Conform SparseSeries to new Index See Series.reindex docstring for general behavior Returns ------- reindexed : SparseSeries """ new_index = _ensure_index(index) if self.index.equals(new_index): if copy: return self.copy() else: return self return self._constructor(self._data.reindex(new_index, method=method, limit=limit, copy=copy), index=new_index).__finalize__(self) def sparse_reindex(self, new_index): """ Conform sparse values to new SparseIndex Parameters ---------- new_index : {BlockIndex, IntIndex} Returns ------- reindexed : SparseSeries """ if not isinstance(new_index, splib.SparseIndex): raise TypeError('new index must be a SparseIndex') block = self.block.sparse_reindex(new_index) new_data = SingleBlockManager(block, self.index) return self._constructor(new_data, index=self.index, sparse_index=new_index, fill_value=self.fill_value).__finalize__(self) def take(self, indices, axis=0, convert=True): """ Sparse-compatible version of ndarray.take Returns ------- taken : ndarray """ new_values = SparseArray.take(self.values, indices) new_index = self.index.take(indices) return self._constructor(new_values, index=new_index).__finalize__(self) def cumsum(self, axis=0, dtype=None, out=None): """ Cumulative sum of values. Preserves locations of NaN values Returns ------- cumsum : Series or SparseSeries """ new_array = SparseArray.cumsum(self.values) if isinstance(new_array, SparseArray): return self._constructor( new_array, index=self.index, sparse_index=new_array.sp_index).__finalize__(self) return Series(new_array, index=self.index).__finalize__(self) def dropna(self, axis=0, inplace=False, **kwargs): """ Analogous to Series.dropna. If fill_value=NaN, returns a dense Series """ # TODO: make more efficient axis = self._get_axis_number(axis or 0) dense_valid = self.to_dense().valid() if inplace: raise NotImplementedError("Cannot perform inplace dropna" " operations on a SparseSeries") if isnull(self.fill_value): return dense_valid else: dense_valid = dense_valid[dense_valid != self.fill_value] return dense_valid.to_sparse(fill_value=self.fill_value) def shift(self, periods, freq=None): """ Analogous to Series.shift """ # no special handling of fill values yet if not isnull(self.fill_value): # TODO: kwds is not defined...should this work? dense_shifted = self.to_dense().shift(periods, freq=freq, **kwds) # noqa return dense_shifted.to_sparse(fill_value=self.fill_value, kind=self.kind) if periods == 0: return self.copy() if freq is not None: return self._constructor( self.sp_values, sparse_index=self.sp_index, index=self.index.shift(periods, freq), fill_value=self.fill_value).__finalize__(self) int_index = self.sp_index.to_int_index() new_indices = int_index.indices + periods start, end = new_indices.searchsorted([0, int_index.length]) new_indices = new_indices[start:end] new_sp_index = IntIndex(len(self), new_indices) if isinstance(self.sp_index, BlockIndex): new_sp_index = new_sp_index.to_block_index() return self._constructor(self.sp_values[start:end].copy(), index=self.index, sparse_index=new_sp_index, fill_value=self.fill_value).__finalize__(self) def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Result index will be the union of the two indexes Parameters ---------- other : Series Returns ------- y : Series """ if isinstance(other, SparseSeries): other = other.to_dense() dense_combined = self.to_dense().combine_first(other) return dense_combined.to_sparse(fill_value=self.fill_value) def to_coo(self, row_levels=(0, ), column_levels=(1, ), sort_labels=False): """ Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. Use row_levels and column_levels to determine the row and column coordinates respectively. row_levels and column_levels are the names (labels) or numbers of the levels. {row_levels, column_levels} must be a partition of the MultiIndex level names (or numbers). .. versionadded:: 0.16.0 Parameters ---------- row_levels : tuple/list column_levels : tuple/list sort_labels : bool, default False Sort the row and column labels before forming the sparse matrix. Returns ------- y : scipy.sparse.coo_matrix rows : list (row labels) columns : list (column labels) Examples -------- >>> from numpy import nan >>> s = Series([3.0, nan, 1.0, 3.0, nan, nan]) >>> s.index = MultiIndex.from_tuples([(1, 2, 'a', 0), (1, 2, 'a', 1), (1, 1, 'b', 0), (1, 1, 'b', 1), (2, 1, 'b', 0), (2, 1, 'b', 1)], names=['A', 'B', 'C', 'D']) >>> ss = s.to_sparse() >>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'], column_levels=['C', 'D'], sort_labels=True) >>> A <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> >>> A.todense() matrix([[ 0., 0., 1., 3.], [ 3., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> rows [(1, 1), (1, 2), (2, 1)] >>> columns [('a', 0), ('a', 1), ('b', 0), ('b', 1)] """ A, rows, columns = _sparse_series_to_coo(self, row_levels, column_levels, sort_labels=sort_labels) return A, rows, columns @classmethod def from_coo(cls, A, dense_index=False): """ Create a SparseSeries from a scipy.sparse.coo_matrix. .. versionadded:: 0.16.0 Parameters ---------- A : scipy.sparse.coo_matrix dense_index : bool, default False If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix. Returns ------- s : SparseSeries Examples --------- >>> from scipy import sparse >>> A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), shape=(3, 4)) >>> A <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in COOrdinate format> >>> A.todense() matrix([[ 0., 0., 1., 2.], [ 3., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> ss = SparseSeries.from_coo(A) >>> ss 0 2 1 3 2 1 0 3 dtype: float64 BlockIndex Block locations: array([0], dtype=int32) Block lengths: array([3], dtype=int32) """ return _coo_to_sparse_series(A, dense_index=dense_index) # overwrite series methods with unaccelerated versions ops.add_special_arithmetic_methods(SparseSeries, use_numexpr=False, **ops.series_special_funcs) ops.add_flex_arithmetic_methods(SparseSeries, use_numexpr=False, **ops.series_flex_funcs) # overwrite basic arithmetic to use SparseSeries version # force methods to overwrite previous definitions. ops.add_special_arithmetic_methods(SparseSeries, _arith_method, radd_func=operator.add, comp_method=None, bool_method=None, use_numexpr=False, force=True) # backwards compatiblity class SparseTimeSeries(SparseSeries): def __init__(self, *args, **kwargs): # deprecation TimeSeries, #10890 warnings.warn("SparseTimeSeries is deprecated. Please use " "SparseSeries", FutureWarning, stacklevel=2) super(SparseTimeSeries, self).__init__(*args, **kwargs)
py
1a2fca522ef32aec771028190c04f3120ce95cb1
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """BYOL tasks.""" import random from typing import Any, Callable, Dict, Optional, Tuple, cast import torch import torch.nn.functional as F from kornia import augmentation as K from kornia import filters from kornia.geometry import transform as KorniaTransform from pytorch_lightning.core.lightning import LightningModule from torch import Tensor, optim from torch.autograd import Variable from torch.nn.modules import BatchNorm1d, Conv2d, Linear, Module, ReLU, Sequential from torch.optim.lr_scheduler import ReduceLROnPlateau from torchvision.models import resnet18 from torchvision.models.resnet import resnet50 # https://github.com/pytorch/pytorch/issues/60979 # https://github.com/pytorch/pytorch/pull/61045 Module.__module__ = "torch.nn" def normalized_mse(x: Tensor, y: Tensor) -> Tensor: """Computes the normalized mean squared error between x and y. Args: x: tensor x y: tensor y Returns: the normalized MSE between x and y """ x = F.normalize(x, dim=-1) y = F.normalize(y, dim=-1) mse = torch.mean(2 - 2 * (x * y).sum(dim=-1)) return mse # TODO: Move this to transforms class RandomApply(Module): """Applies augmentation function (augm) with probability p.""" def __init__(self, augm: Callable[[Tensor], Tensor], p: float) -> None: """Initialize RandomApply. Args: augm: augmentation function to apply p: probability with which the augmentation function is applied """ super().__init__() self.augm = augm self.p = p def forward(self, x: Tensor) -> Tensor: """Applies an augmentation to the input with some probability. Args: x: a batch of imagery Returns augmented version of ``x`` with probability ``self.p`` else an un-augmented version """ return x if random.random() > self.p else self.augm(x) # TODO: This isn't _really_ applying the augmentations from SimCLR as we have # multispectral imagery and thus can't naively apply color jittering or grayscale # conversions. We should think more about what makes sense here. class SimCLRAugmentation(Module): """A module for applying SimCLR augmentations. SimCLR was one of the first papers to show the effectiveness of random data augmentation in self-supervised-learning setups. See https://arxiv.org/pdf/2002.05709.pdf for more details. """ def __init__(self, image_size: Tuple[int, int] = (256, 256)) -> None: """Initialize a module for applying SimCLR augmentations. Args: image_size: Tuple of integers defining the image size """ super().__init__() self.size = image_size self.augmentation = Sequential( KorniaTransform.Resize(size=image_size, align_corners=False), # Not suitable for multispectral adapt # RandomApply(K.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8), # K.RandomGrayscale(p=0.2), K.RandomHorizontalFlip(), RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1), K.RandomResizedCrop(size=image_size), ) def forward(self, x: Tensor) -> Tensor: """Applys SimCLR augmentations to the input tensor. Args: x: a batch of imagery Returns: an augmented batch of imagery """ return cast(Tensor, self.augmentation(x)) class MLP(Module): """MLP used in the BYOL projection head.""" def __init__( self, dim: int, projection_size: int = 256, hidden_size: int = 4096 ) -> None: """Initializes the MLP projection head. Args: dim: size of layer to project projection_size: size of the output layer hidden_size: size of the hidden layer """ super().__init__() self.mlp = Sequential( Linear(dim, hidden_size), BatchNorm1d(hidden_size), # type: ignore[no-untyped-call] ReLU(inplace=True), Linear(hidden_size, projection_size), ) def forward(self, x: Tensor) -> Tensor: """Forward pass of the MLP model. Args: x: batch of imagery Returns: embedded version of the input """ return cast(Tensor, self.mlp(x)) class EncoderWrapper(Module): """Encoder wrapper for joining a model and a projection head. When we call .forward() on this module the following steps happen: * The input is passed through the base model * When the encoding layer is reached a hook is called * The output of the encoding layer is passed through the projection head * The forward call returns the output of the projection head """ def __init__( self, model: Module, projection_size: int = 256, hidden_size: int = 4096, layer: int = -2, ) -> None: """Initializes EncoderWrapper. Args: model: model to encode projection_size: size of the ouput layer of the projector MLP hidden_size: size of hidden layer of the projector MLP layer: layer from model to project """ super().__init__() self.model = model self.projection_size = projection_size self.hidden_size = hidden_size self.layer = layer self._projector: Optional[Module] = None self._projector_dim: Optional[int] = None self._encoded = torch.empty(0) self._register_hook() @property def projector(self) -> Module: """Wrapper module for the projector head.""" assert self._projector_dim is not None if self._projector is None: self._projector = MLP( self._projector_dim, self.projection_size, self.hidden_size ) return self._projector def _hook(self, module: Any, input: Any, output: Tensor) -> None: """Hook to record the activations at the projection layer. See the following docs page for more details on hooks: https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html Args: module: the calling module input: input to the module this hook was registered to output: output from the module this hook was registered to """ output = output.flatten(start_dim=1) if self._projector_dim is None: # If we haven't already, measure the output size self._projector_dim = output.shape[-1] # Project the output to get encodings, the projector model is created the first # time this is called self._encoded = self.projector(output) def _register_hook(self) -> None: """Register a hook for layer that we will extract features from.""" layer = list(self.model.children())[self.layer] layer.register_forward_hook(self._hook) def forward(self, x: Tensor) -> Tensor: """Pass through the model, and collect the representation from our forward hook. Args: x: tensor of data to run through the model Returns: output from the model """ _ = self.model(x) return self._encoded class BYOL(Module): """BYOL implementation. BYOL contains two identical encoder networks. The first is trained as usual, and its weights are updated with each training batch. The second, "target" network, is updated using a running average of the first encoder's weights. See https://arxiv.org/abs/2006.07733 for more details (and please cite it if you use it in your own work). """ def __init__( self, model: Module, image_size: Tuple[int, int] = (256, 256), hidden_layer: int = -2, in_channels: int = 4, projection_size: int = 256, hidden_size: int = 4096, augment_fn: Optional[Module] = None, beta: float = 0.99, **kwargs: Any, ) -> None: """Sets up a model for pre-training with BYOL using projection heads. Args: model: the model to pretrain using BYOL image_size: the size of the training images hidden_layer: the hidden layer in ``model`` to attach the projection head to, can be the name of the layer or index of the layer in_channels: number of input channels to the model projection_size: size of first layer of the projection MLP hidden_size: size of the hidden layer of the projection MLP augment_fn: an instance of a module that performs data augmentation beta: the speed at which the target encoder is updated using the main encoder """ super().__init__() self.augment: Module if augment_fn is None: self.augment = SimCLRAugmentation(image_size) else: self.augment = augment_fn self.beta = beta self.in_channels = in_channels self.encoder = EncoderWrapper( model, projection_size, hidden_size, layer=hidden_layer ) self.predictor = MLP(projection_size, projection_size, hidden_size) self.target = EncoderWrapper( model, projection_size, hidden_size, layer=hidden_layer ) # Perform a single forward pass to initialize the wrapper correctly self.encoder(torch.zeros(2, self.in_channels, *image_size)) def forward(self, x: Tensor) -> Tensor: """Forward pass of the encoder model through the MLP and prediction head. Args: x: tensor of data to run through the model Returns: output from the model """ return cast(Tensor, self.predictor(self.encoder(x))) def update_target(self) -> None: """Method to update the "target" model weights.""" for p, pt in zip(self.encoder.parameters(), self.target.parameters()): pt.data = self.beta * pt.data + (1 - self.beta) * p.data class BYOLTask(LightningModule): """Class for pre-training any PyTorch model using BYOL.""" def config_task(self) -> None: """Configures the task based on kwargs parameters passed to the constructor.""" in_channels = self.hyperparams["in_channels"] pretrained = self.hyperparams["imagenet_pretraining"] encoder = None if self.hyperparams["encoder_name"] == "resnet18": encoder = resnet18(pretrained=pretrained) elif self.hyperparams["encoder_name"] == "resnet50": encoder = resnet50(pretrained=pretrained) else: raise ValueError( f"Encoder type '{self.hyperparams['encoder_name']}' is not valid." ) layer = encoder.conv1 # Creating new Conv2d layer new_layer = Conv2d( in_channels=in_channels, out_channels=layer.out_channels, kernel_size=layer.kernel_size, stride=layer.stride, padding=layer.padding, bias=layer.bias, ).requires_grad_() # initialize the weights from new channel with the red channel weights copy_weights = 0 # Copying the weights from the old to the new layer new_layer.weight[:, : layer.in_channels, :, :].data[:] = Variable( layer.weight.clone(), requires_grad=True ) # Copying the weights of the old layer to the extra channels for i in range(in_channels - layer.in_channels): channel = layer.in_channels + i new_layer.weight[:, channel : channel + 1, :, :].data[:] = Variable( layer.weight[:, copy_weights : copy_weights + 1, ::].clone(), requires_grad=True, ) encoder.conv1 = new_layer self.model = BYOL(encoder, in_channels=in_channels, image_size=(256, 256)) def __init__(self, **kwargs: Any) -> None: """Initialize a LightningModule for pre-training a model with BYOL. Keyword Args: in_channels: number of channels on the input imagery encoder_name: either "resnet18" or "resnet50" imagenet_pretraining: bool indicating whether to use imagenet pretrained weights Raises: ValueError: if kwargs arguments are invalid """ super().__init__() # Creates `self.hparams` from kwargs self.save_hyperparameters() # type: ignore[operator] self.hyperparams = cast(Dict[str, Any], self.hparams) self.config_task() def forward(self, *args: Any, **kwargs: Any) -> Any: """Forward pass of the model. Args: x: tensor of data to run through the model Returns: output from the model """ return self.model(*args, **kwargs) def configure_optimizers(self) -> Dict[str, Any]: """Initialize the optimizer and learning rate scheduler. Returns: a "lr dict" according to the pytorch lightning documentation -- https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html#configure-optimizers """ optimizer_class = getattr(optim, self.hyperparams.get("optimizer", "Adam")) lr = self.hyperparams.get("lr", 1e-4) weight_decay = self.hyperparams.get("weight_decay", 1e-6) optimizer = optimizer_class(self.parameters(), lr=lr, weight_decay=weight_decay) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": ReduceLROnPlateau( optimizer, patience=self.hyperparams["learning_rate_schedule_patience"], ), "monitor": "val_loss", }, } def training_step(self, *args: Any, **kwargs: Any) -> Tensor: """Compute and return the training loss. Args: batch: the output of your DataLoader Returns: training loss """ batch = args[0] x = batch["image"] with torch.no_grad(): x1, x2 = self.model.augment(x), self.model.augment(x) pred1, pred2 = self.forward(x1), self.forward(x2) with torch.no_grad(): targ1, targ2 = self.model.target(x1), self.model.target(x2) loss = torch.mean(normalized_mse(pred1, targ2) + normalized_mse(pred2, targ1)) self.log("train_loss", loss, on_step=True, on_epoch=False) self.model.update_target() return loss def validation_step(self, *args: Any, **kwargs: Any) -> None: """Compute validation loss. Args: batch: the output of your DataLoader """ batch = args[0] x = batch["image"] x1, x2 = self.model.augment(x), self.model.augment(x) pred1, pred2 = self.forward(x1), self.forward(x2) targ1, targ2 = self.model.target(x1), self.model.target(x2) loss = torch.mean(normalized_mse(pred1, targ2) + normalized_mse(pred2, targ1)) self.log("val_loss", loss, on_step=False, on_epoch=True) def test_step(self, *args: Any, **kwargs: Any) -> Any: """No-op, does nothing."""
py
1a2fca7df226f2bba9bf64f240edd3ed5bdefb39
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class Subnet(object): def __init__(self, region=None, az=None, subnetId=None, name=None, cidr=None, vpcId=None, vpcName=None, availableIpCount=None, totalIpCount=None, networkType=None, description=None, createTime=None): """ :param region: (Optional) 地域代码, 如cn-east-1 :param az: (Optional) 可用区, 如cn-east-1a :param subnetId: (Optional) 子网ID :param name: (Optional) 子网名称 :param cidr: (Optional) 子网CIDR :param vpcId: (Optional) 私有网络Id :param vpcName: (Optional) 私有网络名称 :param availableIpCount: (Optional) 可用ip数量 :param totalIpCount: (Optional) 总ip数量 :param networkType: (Optional) 网络类型 :param description: (Optional) 描述 :param createTime: (Optional) 创建时间 """ self.region = region self.az = az self.subnetId = subnetId self.name = name self.cidr = cidr self.vpcId = vpcId self.vpcName = vpcName self.availableIpCount = availableIpCount self.totalIpCount = totalIpCount self.networkType = networkType self.description = description self.createTime = createTime
py
1a2fcb1b2b6c20c380d179e48985d1ca52ef3f7b
expected_output = { "1":{ "name":"1", "type":"ipv4-acl-type", "acl_type": "standard", "aces":{ "10":{ "name":"10", "actions":{ "forwarding":"deny", "logging":"log-syslog" }, "matches":{ "l3":{ "ipv4":{ "protocol":"ipv4", "source_network":{ "10.9.3.4 0.0.0.0":{ "source_network":"10.9.3.4 0.0.0.0" } } } } }, "statistics":{ "matched_packets":"18" } }, "20":{ "name":"20", "actions":{ "forwarding":"permit" }, "matches":{ "l3":{ "ipv4":{ "protocol":"ipv4", "source_network":{ "any":{ "source_network":"any" } } } } }, "statistics":{ "matched_packets":"58" } } } }, "meraki-fqdn-dns":{ "name":"meraki-fqdn-dns", "type":"ipv4-acl-type", "acl_type": "extended", } }
py
1a2fcc45162161d008efc1854c54852b37f3933d
#!/usr/bin/env python import sys entries = [] total_size = 0; for line in sys.stdin: words = line.split('\t') if len(words) != 2: continue sizeStr = words[1].strip('\n') if not sizeStr.isdigit(): continue size = float(sizeStr) elem = {'table':words[0], 'size':size} entries.append(elem) total_size += size print "Total: %d" % total_size print "Total: %.2f (MB)" % (total_size / 1024 /1024) for elem in entries: print "%02.2f %s" % (elem['size']/total_size*100, elem['table'])
py
1a2fcd0e841ab12011ae0ea23c66a6dcd8429797
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow_hub.feature_column.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint:disable=g-import-not-at-top,g-statement-before-imports try: import mock as mock except ImportError: import unittest.mock as mock # pylint:disable=g-import-not-at-top,g-statement-before-imports import numpy as np import tensorflow as tf import tensorflow_hub as hub from tensorflow_hub import test_utils from tensorflow_hub import tf_v1 # pylint: disable=g-direct-tensorflow-import from tensorflow.python.feature_column import feature_column_v2 from tensorflow.python.ops.lookup_ops import HashTable from tensorflow.python.ops.lookup_ops import KeyValueTensorInitializer # pylint: enable=g-direct-tensorflow-import _dense_features_module = test_utils.get_dense_features_module() def text_module_fn(): embeddings = [ ("", [0, 0, 0, 0]), # OOV items are mapped to this embedding. ("hello world", [1, 2, 3, 4]), ("pair-programming", [5, 5, 5, 5]), ] keys = tf.constant([item[0] for item in embeddings], dtype=tf.string) indices = tf.constant(list(range(len(embeddings))), dtype=tf.int64) tbl_init = KeyValueTensorInitializer(keys, indices) table = HashTable(tbl_init, 0) weights_initializer = tf.cast( tf.constant(list([item[1] for item in embeddings])), tf.float32) weights = tf_v1.get_variable( "weights", dtype=tf.float32, initializer=weights_initializer) text_tensor = tf_v1.placeholder(dtype=tf.string, name="text", shape=[None]) indices_tensor = table.lookup(text_tensor) embedding_tensor = tf.gather(weights, indices_tensor) hub.add_signature(inputs=text_tensor, outputs=embedding_tensor) def invalid_text_module_fn(): text = tf_v1.placeholder(tf.string, shape=[10]) hub.add_signature(inputs=text, outputs=tf.zeros([10, 3])) class CommonColumnTest(tf.test.TestCase): def setUp(self): self.spec = hub.create_module_spec(text_module_fn) @mock.patch.object(feature_column_v2._StateManagerImpl, "add_resource") def testFeatureColumnsWithResources(self, mock_add_resource): feature_column = hub.text_embedding_column("text_a", self.spec) if not isinstance(feature_column, feature_column_v2.FeatureColumn): self.skipTest("Resources not implemented in the state manager of feature " "column v2.") self.assertTrue(feature_column_v2.is_feature_column_v2([feature_column])) @mock.patch.object(feature_column_v2._StateManagerImpl, "add_resource") def testFeatureColumnsWithNoResources(self, mock_add_resource): mock_add_resource.side_effect = NotImplementedError feature_column = hub.text_embedding_column("text_a", self.spec) self.assertFalse(feature_column_v2.is_feature_column_v2([feature_column])) class TextEmbeddingColumnTest(tf.test.TestCase): def setUp(self): self.spec = hub.create_module_spec(text_module_fn) def testVariableShape(self): text_column = hub.text_embedding_column("text", self.spec, trainable=False) self.assertEqual(text_column._variable_shape, [4]) def testParents(self): text_column = hub.text_embedding_column("text", self.spec, trainable=False) self.assertEqual(["text"], text_column.parents) def testMakeParseExampleSpec(self): text_column = hub.text_embedding_column("text", self.spec, trainable=False) parsing_spec = tf_v1.feature_column.make_parse_example_spec([text_column]) self.assertEqual(parsing_spec, {"text": tf_v1.FixedLenFeature([1], dtype=tf.string)}) def testInputLayer(self): features = { "text_a": ["hello world", "pair-programming"], "text_b": ["hello world", "oov token"], } feature_columns = [ hub.text_embedding_column("text_a", self.spec, trainable=False), hub.text_embedding_column("text_b", self.spec, trainable=False), ] with tf.Graph().as_default(): input_layer = tf_v1.feature_column.input_layer(features, feature_columns) with tf_v1.train.MonitoredSession() as sess: output = sess.run(input_layer) self.assertAllEqual( output, [[1, 2, 3, 4, 1, 2, 3, 4], [5, 5, 5, 5, 0, 0, 0, 0]]) def testDenseFeatures(self): features = { "text_a": ["hello world", "pair-programming"], "text_b": ["hello world", "oov token"], } feature_columns = [ hub.text_embedding_column("text_a", self.spec, trainable=False), hub.text_embedding_column("text_b", self.spec, trainable=False), ] if not feature_column_v2.is_feature_column_v2(feature_columns): self.skipTest("Resources not implemented in the state manager of feature " "column v2.") with tf.Graph().as_default(): feature_layer = _dense_features_module.DenseFeatures(feature_columns) feature_layer_out = feature_layer(features) with tf_v1.train.MonitoredSession() as sess: output = sess.run(feature_layer_out) self.assertAllEqual( output, [[1, 2, 3, 4, 1, 2, 3, 4], [5, 5, 5, 5, 0, 0, 0, 0]]) def testDenseFeatures_shareAcrossApplication(self): features = { "text": ["hello world", "pair-programming"], } feature_columns = [ hub.text_embedding_column("text", self.spec, trainable=True), ] if not feature_column_v2.is_feature_column_v2(feature_columns): self.skipTest("Resources not implemented in the state manager of feature " "column v2.") with tf.Graph().as_default(): feature_layer = _dense_features_module.DenseFeatures(feature_columns) feature_layer_out_1 = feature_layer(features) feature_layer_out_2 = feature_layer(features) # We define loss only on the first layer. Since layers should have shared # weights, we expect the second layer will change too. loss = feature_layer_out_1 - tf.constant(0.005) optimizer = tf_v1.train.GradientDescentOptimizer(learning_rate=0.7) train_op = optimizer.minimize(loss) with tf_v1.train.MonitoredSession() as sess: before_update_1 = sess.run(feature_layer_out_1) sess.run(train_op) after_update_1 = sess.run(feature_layer_out_1) after_update_2 = sess.run(feature_layer_out_2) self.assertAllEqual(before_update_1, [[1, 2, 3, 4], [5, 5, 5, 5]]) self.assertAllEqual(after_update_1, after_update_2) def testWorksWithCannedEstimator(self): comment_embedding_column = hub.text_embedding_column( "comment", self.spec, trainable=False) upvotes = tf_v1.feature_column.numeric_column("upvotes") feature_columns = [comment_embedding_column, upvotes] estimator = tf_v1.estimator.DNNClassifier( hidden_units=[10], feature_columns=feature_columns, model_dir=self.get_temp_dir()) # This only tests that estimator apis are working with the feature # column without throwing exceptions. features = { "comment": np.array([ ["the quick brown fox"], ["spam spam spam"], ]), "upvotes": np.array([ [20], [1], ]), } labels = np.array([[1], [0]]) if hasattr(tf.compat, "v1"): numpy_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn else: numpy_input_fn = tf_v1.estimator.inputs.numpy_input_fn input_fn = numpy_input_fn(features, labels, shuffle=True) estimator.train(input_fn, max_steps=1) estimator.evaluate(input_fn, steps=1) estimator.predict(input_fn) def testTrainableEmbeddingColumn(self): feature_columns = [ hub.text_embedding_column("text", self.spec, trainable=True), ] with tf.Graph().as_default(): features = { "text": ["hello world", "pair-programming"], } target = [[1, 1, 1, 1], [4, 3, 2, 1]] input_layer = tf_v1.feature_column.input_layer(features, feature_columns) loss = tf.cast( tf_v1.losses.mean_squared_error(input_layer, target), tf.float64) optimizer = tf_v1.train.GradientDescentOptimizer(learning_rate=0.97) train_op = optimizer.minimize(loss) with tf_v1.train.MonitoredSession() as sess: self.assertAllEqual(sess.run(input_layer), [[1, 2, 3, 4], [5, 5, 5, 5]]) for _ in range(10): sess.run(train_op) self.assertAllClose(sess.run(input_layer), target, atol=0.5) def testInvalidTextModule(self): spec = hub.create_module_spec(invalid_text_module_fn) with self.assertRaisesRegexp(ValueError, "only one input"): hub.text_embedding_column("coment", spec, trainable=False) def create_image_module_fn(randomly_initialized=False): def image_module_fn(): """Maps 1x2 images to sums of each color channel.""" images = tf_v1.placeholder(dtype=tf.float32, shape=[None, 1, 2, 3]) if randomly_initialized: initializer = tf_v1.random_uniform_initializer( minval=-1, maxval=1, dtype=tf.float32) else: initializer = tf_v1.constant_initializer(1.0, dtype=tf.float32) weight = tf_v1.get_variable( name="weight", shape=[1], initializer=initializer) sum_channels = tf.reduce_sum(images, axis=[1, 2]) * weight hub.add_signature(inputs={"images": images}, outputs=sum_channels) return image_module_fn class ImageEmbeddingColumnTest(tf.test.TestCase): def setUp(self): self.spec = hub.create_module_spec(create_image_module_fn()) self.randomly_initialized_spec = hub.create_module_spec( create_image_module_fn(randomly_initialized=True)) def testExpectedImageSize(self): image_column = hub.image_embedding_column("image", self.spec) # The usage comment recommends this code pattern, so we test it here. self.assertSequenceEqual( hub.get_expected_image_size(image_column.module_spec), [1, 2]) def testVariableShape(self): image_column = hub.image_embedding_column("image", self.spec) self.assertEqual(image_column.variable_shape, [3]) def testParents(self): image_column = hub.image_embedding_column("image", self.spec) self.assertEqual(["image"], image_column.parents) def testMakeParseExampleSpec(self): image_column = hub.image_embedding_column("image", self.spec) parsing_spec = tf_v1.feature_column.make_parse_example_spec([image_column]) self.assertEqual( parsing_spec, {"image": tf_v1.FixedLenFeature([1, 2, 3], dtype=tf.float32)}) def testInputLayer(self): features = { "image_a": [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]], [[[0.7, 0.7, 0.7], [0.1, 0.2, 0.3]]]], "image_b": [[[[0.1, 0.2, 0.1], [0.2, 0.1, 0.2]]], [[[0.1, 0.2, 0.3], [0.3, 0.2, 0.1]]]], } feature_columns = [ hub.image_embedding_column("image_a", self.spec), hub.image_embedding_column("image_b", self.spec), ] with tf.Graph().as_default(): input_layer = tf_v1.feature_column.input_layer(features, feature_columns) with tf_v1.train.MonitoredSession() as sess: output = sess.run(input_layer) self.assertAllClose( output, [[0.5, 0.7, 0.9, 0.3, 0.3, 0.3], [0.8, 0.9, 1.0, 0.4, 0.4, 0.4]]) def testDenseFeatures(self): features = { "image_a": [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]], [[[0.7, 0.7, 0.7], [0.1, 0.2, 0.3]]]], "image_b": [[[[0.1, 0.2, 0.1], [0.2, 0.1, 0.2]]], [[[0.1, 0.2, 0.3], [0.3, 0.2, 0.1]]]], } feature_columns = [ hub.image_embedding_column("image_a", self.spec), hub.image_embedding_column("image_b", self.spec), ] if not feature_column_v2.is_feature_column_v2(feature_columns): self.skipTest("Resources not implemented in the state manager of feature " "column v2.") with tf.Graph().as_default(): feature_layer = _dense_features_module.DenseFeatures(feature_columns) feature_layer_out = feature_layer(features) with tf_v1.train.MonitoredSession() as sess: output = sess.run(feature_layer_out) self.assertAllClose( output, [[0.5, 0.7, 0.9, 0.3, 0.3, 0.3], [0.8, 0.9, 1.0, 0.4, 0.4, 0.4]]) def testDenseFeatures_shareAcrossApplication(self): features = { "image": [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]], [[[0.7, 0.7, 0.7], [0.1, 0.2, 0.3]]]], } feature_columns = [ hub.image_embedding_column("image", self.randomly_initialized_spec), ] if not feature_column_v2.is_feature_column_v2(feature_columns): self.skipTest("Resources not implemented in the state manager of feature " "column v2.") with tf.Graph().as_default(): feature_layer = _dense_features_module.DenseFeatures(feature_columns) feature_layer_out_1 = feature_layer(features) feature_layer_out_2 = feature_layer(features) with tf_v1.train.MonitoredSession() as sess: output_1 = sess.run(feature_layer_out_1) output_2 = sess.run(feature_layer_out_2) self.assertAllClose(output_1, output_2) def testWorksWithCannedEstimator(self): image_column = hub.image_embedding_column("image", self.spec) other_column = tf_v1.feature_column.numeric_column("number") feature_columns = [image_column, other_column] estimator = tf_v1.estimator.DNNClassifier( hidden_units=[10], feature_columns=feature_columns, model_dir=self.get_temp_dir()) # This only tests that estimator apis are working with the feature # column without throwing exceptions. features = { "image": np.array([[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]], [[[0.7, 0.7, 0.7], [0.1, 0.2, 0.3]]]], dtype=np.float32), "number": np.array([[20], [1]]), } labels = np.array([[1], [0]]) if hasattr(tf.compat, "v1"): numpy_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn else: numpy_input_fn = tf_v1.estimator.inputs.numpy_input_fn input_fn = numpy_input_fn(features, labels, shuffle=True) estimator.train(input_fn, max_steps=1) estimator.evaluate(input_fn, steps=1) estimator.predict(input_fn) class SparseTextEmbeddingColumnTest(tf.test.TestCase): def setUp(self): self.spec = hub.create_module_spec(text_module_fn) def testVariableShape(self): text_column = hub.sparse_text_embedding_column( "text", self.spec, combiner="mean", default_value=None, trainable=False) self.assertEqual(text_column._variable_shape, [4]) def testMakeParseExampleSpec(self): text_column = hub.sparse_text_embedding_column( "text", self.spec, combiner="mean", default_value=None, trainable=False) parsing_spec = tf_v1.feature_column.make_parse_example_spec([text_column]) self.assertEqual(parsing_spec, {"text": tf_v1.VarLenFeature(tf.string)}) def testParents(self): text_column = hub.sparse_text_embedding_column( "text", self.spec, "sum", "", trainable=False) self.assertEqual(["text"], text_column.parents) def testInputLayer(self): with tf.Graph().as_default(): text_a = tf.SparseTensor( values=["hello world", "pair-programming", "hello world"], indices=[[0, 0], [0, 1], [1, 0]], dense_shape=[2, 2]) text_b = tf.SparseTensor( values=["hello world", "oov token"], indices=[[0, 0], [0, 1]], dense_shape=[2, 3]) features = { "text_a": text_a, "text_b": text_b, } feature_columns = [ hub.sparse_text_embedding_column( "text_a", self.spec, combiner="mean", default_value="__UNKNOWN__", trainable=False), hub.sparse_text_embedding_column( "text_b", self.spec, combiner="mean", default_value="__UNKNOWN__", trainable=False), ] input_layer = tf_v1.feature_column.input_layer(features, feature_columns) with tf_v1.train.MonitoredSession() as sess: output = sess.run(input_layer) self.assertAllEqual( output, [[3, 3.5, 4, 4.5, 0.5, 1, 1.5, 2], [1, 2, 3, 4, 0, 0, 0, 0]]) # ([1, 2, 3, 4] + [5, 5, 5, 5])/2 extend ([1, 2, 3, 4] + [0, 0, 0, 0])/2 # [1, 2, 3, 4] extend [0, 0, 0, 0] def testTrainableEmbeddingColumn(self): feature_columns = [ hub.sparse_text_embedding_column( "text", self.spec, combiner="mean", default_value=None, trainable=True), ] with tf.Graph().as_default(): text = tf.SparseTensor( values=["hello world", "pair-programming"], indices=[[0, 0], [1, 0]], dense_shape=[2, 2]) target = [[1, 1, 1, 1], [4, 3, 2, 1]] input_layer = tf_v1.feature_column.input_layer({"text": text}, feature_columns) loss = tf_v1.losses.mean_squared_error(input_layer, target) optimizer = tf_v1.train.GradientDescentOptimizer(learning_rate=0.97) train_op = optimizer.minimize(loss) with tf_v1.train.MonitoredSession() as sess: self.assertAllEqual(sess.run(input_layer), [[1, 2, 3, 4], [5, 5, 5, 5]]) for _ in range(10): sess.run(train_op) self.assertAllClose(sess.run(input_layer), target, atol=0.5) def testEmptySparseTensorBatch(self): feature_columns = [ hub.sparse_text_embedding_column( "text", self.spec, combiner="mean", default_value="default", trainable=True), ] with tf.Graph().as_default(): text = tf.SparseTensor( values=tf_v1.constant([], dtype=tf_v1.string, shape=[0]), indices=tf_v1.constant([], dtype=tf_v1.int64, shape=[0, 2]), dense_shape=[3, 0]) input_layer = tf_v1.feature_column.input_layer({"text": text}, feature_columns) with tf_v1.train.MonitoredSession() as sess: embeddings = sess.run(input_layer) self.assertAllEqual(embeddings, [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) def testEmptySparseTensorRow(self): feature_columns = [ hub.sparse_text_embedding_column( "text", self.spec, combiner="mean", default_value="default", trainable=True), ] with tf.Graph().as_default(): text = tf.SparseTensor( values=tf_v1.constant(["hello world"], dtype=tf_v1.string, shape=[1]), indices=tf_v1.constant([[0, 0]], dtype=tf_v1.int64, shape=[1, 2]), dense_shape=[2, 1]) input_layer = tf_v1.feature_column.input_layer({"text": text}, feature_columns) with tf_v1.train.MonitoredSession() as sess: embeddings = sess.run(input_layer) self.assertAllEqual(embeddings, [[1, 2, 3, 4], [0, 0, 0, 0]]) if __name__ == "__main__": tf.test.main()
py
1a2fcd9d775da7ad6e0fbffbd09813c027c38413
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.utils.translation import ugettext_lazy as _ from django.template import TemplateDoesNotExist from django.template.loader import select_template from cms.plugin_base import CMSPluginBase from cms.plugin_pool import plugin_pool from js_services import models, forms from .constants import ( IS_THERE_COMPANIES, ) if IS_THERE_COMPANIES: from js_companies.models import Company @plugin_pool.register_plugin class RelatedServicesPlugin(CMSPluginBase): TEMPLATE_NAME = 'js_services/plugins/related_services__%s.html' module = 'Services' render_template = 'js_services/plugins/related_services.html' name = _('Related Services') model = models.RelatedServicesPlugin form = forms.RelatedServicesPluginForm def render(self, context, instance, placeholder): request = context.get('request') context['instance'] = instance context['title'] = instance.title context['icon'] = instance.icon context['image'] = instance.image context['background_color'] = instance.background_color context['full_screen'] = instance.full_screen qs = instance.related_services.published() related_sections = instance.related_sections.all() related_people = instance.related_people.all() if IS_THERE_COMPANIES: related_companies = instance.related_companies.all() related_categories = instance.related_categories.all() if not qs.exists(): selected = False qs = models.Service.objects.published().distinct() if related_sections.exists(): selected = True qs = qs.filter(sections__in=related_sections) if related_people.exists(): selected = True qs = qs.filter(person__in=related_people) if IS_THERE_COMPANIES and related_companies.exists(): selected = True qs = qs.filter(companies__in=related_companies) if related_categories.exists(): selected = True qs = qs.filter(categories__in=related_categories) if not selected: qs = models.Service.objects.none() context['related_services_all'] = qs context['related_services'] = qs[:int(instance.count)] return context def get_render_template(self, context, instance, placeholder): if instance.layout: template = self.TEMPLATE_NAME % instance.layout try: select_template([template]) return template except TemplateDoesNotExist: pass return self.render_template def save_model(self, request, obj, form, change): super().save_model(request, obj, form, change) if IS_THERE_COMPANIES: obj.related_companies.set(Company.objects.filter(pk__in=form.cleaned_data.get('related_companies')))
py
1a2fcdd43365079c42475bbfe897908520e51365
# -*- encoding: utf-8 -*- def log(*args, **kwargs): print(args, kwargs)
py
1a2fcde7cf410f5cc6185fb6821140640453ed7a
import sys import yaml import os def getcsv(argv): if len(argv) == 0: print("No input files given.") else: flag = True out_string = '' keys = ['L1c', 'L1b', 'L1a', 'L2c', 'L2b', 'L2a', 'L2prf', 'TLBe', 'TLBp', 'TLBa', 'IPC', 'Total_Instructions', 'Total_Cycles', 'L1-Total-Misses', 'L1-Load-Misses', 'L1-Store-Misses', 'L2-Total-Misses', 'L2-Load-Misses', 'L2-Store-Misses', 'Tlb-Total-Misses', 'Tlb-Load-Misses', 'Tlb-Store-Misses'] header = '' for key in keys: header += key header += ';' out_string = out_string + header + '\n' for i in range(0, len(argv)): if os.path.exists(argv[i]): with open(argv[i], 'r') as in_file: l_key = '' try: in_stream = yaml.safe_load(in_file) line = '' for key in keys: l_key = key line += str(in_stream[key]) line += ';' out_string = out_string + line + '\n' except KeyError: sys.stderr.write("--Error-- {} does not contain key: {}.\n".format(argv[i], l_key)) flag = False else: sys.stderr.write("File {} does not exist.".format(argv[i])) if flag: print('Process finished without errors.') return out_string else: sys.stderr.write('Process finished with errors.' + '\n') return False
py
1a2fce9e7dc4970a5b9f7925ba30476dbc1fe827
import random import numpy as np from tensorflow.keras.preprocessing.image import ImageDataGenerator from .auto_augment import cutout, apply_policy from .utils import * class Cifar10ImageDataGenerator: def __init__(self, args): self.datagen = ImageDataGenerator(width_shift_range=0.1, height_shift_range=0.1, fill_mode='constant', cval=0, horizontal_flip=True) self.means = np.array([0.4914009 , 0.48215896, 0.4465308]) self.stds = np.array([0.24703279, 0.24348423, 0.26158753]) self.args = args if args.auto_augment: self.policies = [ ['Invert', 0.1, 7, 'Contrast', 0.2, 6], ['Rotate', 0.7, 2, 'TranslateX', 0.3, 9], ['Sharpness', 0.8, 1, 'Sharpness', 0.9, 3], ['ShearY', 0.5, 8, 'TranslateY', 0.7, 9], ['AutoContrast', 0.5, 8, 'Equalize', 0.9, 2], ['ShearY', 0.2, 7, 'Posterize', 0.3, 7], ['Color', 0.4, 3, 'Brightness', 0.6, 7], ['Sharpness', 0.3, 9, 'Brightness', 0.7, 9], ['Equalize', 0.6, 5, 'Equalize', 0.5, 1], ['Contrast', 0.6, 7, 'Sharpness', 0.6, 5], ['Color', 0.7, 7, 'TranslateX', 0.5, 8], ['Equalize', 0.3, 7, 'AutoContrast', 0.4, 8], ['TranslateY', 0.4, 3, 'Sharpness', 0.2, 6], ['Brightness', 0.9, 6, 'Color', 0.2, 8], ['Solarize', 0.5, 2, 'Invert', 0, 0.3], ['Equalize', 0.2, 0, 'AutoContrast', 0.6, 0], ['Equalize', 0.2, 8, 'Equalize', 0.6, 4], ['Color', 0.9, 9, 'Equalize', 0.6, 6], ['AutoContrast', 0.8, 4, 'Solarize', 0.2, 8], ['Brightness', 0.1, 3, 'Color', 0.7, 0], ['Solarize', 0.4, 5, 'AutoContrast', 0.9, 3], ['TranslateY', 0.9, 9, 'TranslateY', 0.7, 9], ['AutoContrast', 0.9, 2, 'Solarize', 0.8, 3], ['Equalize', 0.8, 8, 'Invert', 0.1, 3], ['TranslateY', 0.7, 9, 'AutoContrast', 0.9, 1], ] def standardize(self, x): x = x.astype('float32') / 255 means = self.means.reshape(1, 1, 1, 3) stds = self.stds.reshape(1, 1, 1, 3) x -= means x /= (stds + 1e-6) return x def flow(self, x, y=None, batch_size=32, shuffle=True, sample_weight=None, seed=None, save_to_dir=None, save_prefix='', save_format='png', subset=None): batches = self.datagen.flow(x, y, batch_size, shuffle, sample_weight, seed, save_to_dir, save_prefix, save_format, subset) while True: x_batch, y_batch = next(batches) if self.args.cutout: for i in range(x_batch.shape[0]): x_batch[i] = cutout(x_batch[i]) if self.args.auto_augment: x_batch = x_batch.astype('uint8') for i in range(x_batch.shape[0]): x_batch[i] = apply_policy(x_batch[i], self.policies[random.randrange(len(self.policies))]) x_batch = self.standardize(x_batch) yield x_batch, y_batch def main(): import argparse import matplotlib.pyplot as plt from tensorflow.keras.datasets import cifar10 parser = argparse.ArgumentParser() parser.add_argument('--cutout', default=True, type=str2bool) parser.add_argument('--auto-augment', default=True, type=str2bool) args = parser.parse_args() datagen = Cifar10ImageDataGenerator(args) (x_train, y_train), (x_test, y_test) = cifar10.load_data() for imgs, _ in datagen.flow(x_train, y_train): plt.imshow(imgs[0].astype('uint8')) plt.axis('off') plt.show() if __name__ == '__main__': main()
py
1a2fcead660347520d44efaf9167beda4251c435
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class UsersTodoListsOperations(object): """UsersTodoListsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~users_functions.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def delta( self, user_id, # type: str **kwargs # type: Any ): # type: (...) -> List["models.MicrosoftGraphTodoTaskList"] """Invoke function delta. Invoke function delta. :param user_id: key: id of user. :type user_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of MicrosoftGraphTodoTaskList, or the result of cls(response) :rtype: list[~users_functions.models.MicrosoftGraphTodoTaskList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["models.MicrosoftGraphTodoTaskList"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) accept = "application/json" # Construct URL url = self.delta.metadata['url'] # type: ignore path_format_arguments = { 'user-id': self._serialize.url("user_id", user_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.OdataError, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('[MicrosoftGraphTodoTaskList]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized delta.metadata = {'url': '/users/{user-id}/todo/lists/microsoft.graph.delta()'} # type: ignore
py
1a2fd193df9535e53e3f04f4eb03da31d7714631
#!/usr/bin/env python """Implementation of various cryptographic types.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import binascii import hashlib import logging import os from cryptography import exceptions from cryptography import x509 from cryptography.hazmat.backends import openssl from cryptography.hazmat.primitives import ciphers from cryptography.hazmat.primitives import constant_time from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives import hmac from cryptography.hazmat.primitives import padding as sym_padding from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import padding from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives.ciphers import algorithms from cryptography.hazmat.primitives.ciphers import modes from cryptography.hazmat.primitives.kdf import pbkdf2 from cryptography.x509 import oid from future.builtins import str from future.utils import string_types from typing import Text from grr_response_core.lib import config_lib from grr_response_core.lib import rdfvalue from grr_response_core.lib import type_info from grr_response_core.lib import utils from grr_response_core.lib.rdfvalues import standard as rdf_standard from grr_response_core.lib.rdfvalues import structs as rdf_structs from grr_response_core.lib.util import precondition from grr_response_core.lib.util import random from grr_response_proto import jobs_pb2 class Error(Exception): pass class VerificationError(Error): pass class InvalidSignature(Error): pass class CipherError(rdfvalue.DecodeError): """Raised when decryption failed.""" class Certificate(rdf_structs.RDFProtoStruct): protobuf = jobs_pb2.Certificate class RDFX509Cert(rdfvalue.RDFPrimitive): """X509 certificates used to communicate with this client.""" def __init__(self, initializer=None, age=None): super(RDFX509Cert, self).__init__(initializer=initializer, age=age) if self._value is None and initializer is not None: if isinstance(initializer, x509.Certificate): self._value = initializer elif isinstance(initializer, bytes): self.ParseFromString(initializer) else: raise rdfvalue.InitializeError( "Cannot initialize %s from %s." % (self.__class__, initializer)) def GetRawCertificate(self): return self._value def GetCN(self): subject = self._value.subject try: cn_attributes = subject.get_attributes_for_oid(oid.NameOID.COMMON_NAME) if len(cn_attributes) > 1: raise rdfvalue.DecodeError("Cert has more than 1 CN entries.") cn_attribute = cn_attributes[0] except IndexError: raise rdfvalue.DecodeError("Cert has no CN") return cn_attribute.value def GetPublicKey(self): return RSAPublicKey(self._value.public_key()) def GetSerialNumber(self): return self._value.serial_number def GetIssuer(self): return self._value.issuer def ParseFromString(self, string): try: self._value = x509.load_pem_x509_certificate( string, backend=openssl.backend) except (ValueError, TypeError) as e: raise rdfvalue.DecodeError("Invalid certificate %s: %s" % (string, e)) # This can also raise if there isn't exactly one CN entry. self.GetCN() def ParseFromHumanReadable(self, string): precondition.AssertType(string, Text) self.ParseFromString(string.encode("ascii")) def ParseFromDatastore(self, value): precondition.AssertType(value, bytes) self.ParseFromString(value) def SerializeToString(self): if self._value is None: return "" return self._value.public_bytes(encoding=serialization.Encoding.PEM) def AsPEM(self): return self.SerializeToString() def __str__(self): return self.SerializeToString() def Verify(self, public_key): """Verifies the certificate using the given key. Args: public_key: The public key to use. Returns: True: Everything went well. Raises: VerificationError: The certificate did not verify. """ # TODO(amoser): We have to do this manually for now since cryptography does # not yet support cert verification. There is PR 2460: # https://github.com/pyca/cryptography/pull/2460/files # that will add it, once it's in we should switch to using this. # Note that all times here are in UTC. now = rdfvalue.RDFDatetime.Now().AsDatetime() if now > self._value.not_valid_after: raise VerificationError("Certificate expired!") if now < self._value.not_valid_before: raise VerificationError("Certificate not yet valid!") public_key.Verify( self._value.tbs_certificate_bytes, self._value.signature, hash_algorithm=self._value.signature_hash_algorithm) return True @classmethod def ClientCertFromCSR(cls, csr): """Creates a new cert for the given common name. Args: csr: A CertificateSigningRequest. Returns: The signed cert. """ builder = x509.CertificateBuilder() # Use the client CN for a cert serial_id. This will ensure we do # not have clashing cert id. common_name = csr.GetCN() serial = int(common_name.split(".")[1], 16) builder = builder.serial_number(serial) builder = builder.subject_name( x509.Name( [x509.NameAttribute(oid.NameOID.COMMON_NAME, str(common_name))])) now = rdfvalue.RDFDatetime.Now() now_plus_year = now + rdfvalue.Duration("52w") builder = builder.not_valid_after(now_plus_year.AsDatetime()) now_minus_ten = now - rdfvalue.Duration("10s") builder = builder.not_valid_before(now_minus_ten.AsDatetime()) # TODO(user): dependency loop with # grr/core/grr_response_core/config/client.py. # pylint: disable=protected-access ca_cert = config_lib._CONFIG["CA.certificate"] # pylint: enable=protected-access builder = builder.issuer_name(ca_cert.GetIssuer()) builder = builder.public_key(csr.GetPublicKey().GetRawPublicKey()) # TODO(user): dependency loop with # grr/core/grr_response_core/config/client.py. # pylint: disable=protected-access ca_key = config_lib._CONFIG["PrivateKeys.ca_key"] # pylint: enable=protected-access return RDFX509Cert( builder.sign( private_key=ca_key.GetRawPrivateKey(), algorithm=hashes.SHA256(), backend=openssl.backend)) class CertificateSigningRequest(rdfvalue.RDFValue): """A CSR Rdfvalue.""" def __init__(self, initializer=None, common_name=None, private_key=None, age=None): super(CertificateSigningRequest, self).__init__( initializer=initializer, age=age) if self._value is None: if isinstance(initializer, x509.CertificateSigningRequest): self._value = initializer elif isinstance(initializer, string_types): self.ParseFromString(initializer) elif common_name and private_key: self._value = x509.CertificateSigningRequestBuilder().subject_name( x509.Name( [x509.NameAttribute(oid.NameOID.COMMON_NAME, str(common_name))])).sign( private_key.GetRawPrivateKey(), hashes.SHA256(), backend=openssl.backend) elif initializer is not None: raise rdfvalue.InitializeError( "Cannot initialize %s from %s." % (self.__class__, initializer)) def ParseFromString(self, csr_as_pem): self._value = x509.load_pem_x509_csr(csr_as_pem, backend=openssl.backend) def ParseFromDatastore(self, value): precondition.AssertType(value, bytes) self.ParseFromString(value) def SerializeToString(self): if self._value is None: return "" return self._value.public_bytes(serialization.Encoding.PEM) def AsPEM(self): return self.SerializeToString() def __str__(self): return self.SerializeToString() def GetCN(self): subject = self._value.subject try: cn_attributes = subject.get_attributes_for_oid(oid.NameOID.COMMON_NAME) if len(cn_attributes) > 1: raise rdfvalue.DecodeError("CSR has more than 1 CN entries.") cn_attribute = cn_attributes[0] except IndexError: raise rdfvalue.DecodeError("CSR has no CN") return cn_attribute.value def GetPublicKey(self): return RSAPublicKey(self._value.public_key()) def Verify(self, public_key): public_key.Verify( self._value.tbs_certrequest_bytes, self._value.signature, hash_algorithm=self._value.signature_hash_algorithm) return True class RSAPublicKey(rdfvalue.RDFPrimitive): """An RSA public key.""" def __init__(self, initializer=None, age=None): super(RSAPublicKey, self).__init__(initializer=initializer, age=age) if self._value is None and initializer is not None: if isinstance(initializer, rsa.RSAPublicKey): self._value = initializer elif isinstance(initializer, bytes): self.ParseFromString(initializer) elif isinstance(initializer, Text): self.ParseFromString(initializer.encode("ascii")) else: raise rdfvalue.InitializeError( "Cannot initialize %s from %s." % (self.__class__, initializer)) def GetRawPublicKey(self): return self._value def ParseFromString(self, pem_string): precondition.AssertType(pem_string, bytes) try: self._value = serialization.load_pem_public_key( pem_string, backend=openssl.backend) except (TypeError, ValueError, exceptions.UnsupportedAlgorithm) as e: raise type_info.TypeValueError("Public key invalid: %s" % e) def ParseFromDatastore(self, value): precondition.AssertType(value, bytes) self.ParseFromString(value) def ParseFromHumanReadable(self, string): precondition.AssertType(string, Text) self.ParseFromString(string.encode("ascii")) def SerializeToString(self): if self._value is None: return "" return self._value.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo) def GetN(self): return self._value.public_numbers().n def __str__(self): return self.SerializeToString() def AsPEM(self): return self.SerializeToString() def KeyLen(self): if self._value is None: return 0 return self._value.key_size def Encrypt(self, message): if self._value is None: raise ValueError("Can't Encrypt with empty key.") try: return self._value.encrypt( message, padding.OAEP( mgf=padding.MGF1(algorithm=hashes.SHA1()), algorithm=hashes.SHA1(), label=None)) except ValueError as e: raise CipherError(e) def Verify(self, message, signature, hash_algorithm=None): """Verifies a given message.""" # This method accepts both PSS and PKCS1v15 padding. PSS is preferred but # old clients only support PKCS1v15. if hash_algorithm is None: hash_algorithm = hashes.SHA256() last_e = None for padding_algorithm in [ padding.PSS( mgf=padding.MGF1(hash_algorithm), salt_length=padding.PSS.MAX_LENGTH), padding.PKCS1v15() ]: try: self._value.verify(signature, message, padding_algorithm, hash_algorithm) return True except exceptions.InvalidSignature as e: last_e = e raise VerificationError(last_e) class RSAPrivateKey(rdfvalue.RDFPrimitive): """An RSA private key.""" def __init__(self, initializer=None, age=None, allow_prompt=None): self.allow_prompt = allow_prompt super(RSAPrivateKey, self).__init__(initializer=initializer, age=age) if self._value is None and initializer is not None: if isinstance(initializer, rsa.RSAPrivateKey): self._value = initializer elif isinstance(initializer, bytes): self.ParseFromString(initializer) elif isinstance(initializer, Text): self.ParseFromString(initializer.encode("ascii")) else: raise rdfvalue.InitializeError( "Cannot initialize %s from %s." % (self.__class__, initializer)) def ParseFromHumanReadable(self, string): precondition.AssertType(string, Text) self.ParseFromString(string.encode("ascii")) def GetRawPrivateKey(self): return self._value def GetPublicKey(self): return RSAPublicKey(self._value.public_key()) def Sign(self, message, use_pss=False): """Sign a given message.""" precondition.AssertType(message, bytes) # TODO(amoser): This should use PSS by default at some point. if not use_pss: padding_algorithm = padding.PKCS1v15() else: padding_algorithm = padding.PSS( mgf=padding.MGF1(hashes.SHA256()), salt_length=padding.PSS.MAX_LENGTH) return self._value.sign(message, padding_algorithm, hashes.SHA256()) def Decrypt(self, message): if self._value is None: raise ValueError("Can't Decrypt with empty key.") try: return self._value.decrypt( message, padding.OAEP( mgf=padding.MGF1(algorithm=hashes.SHA1()), algorithm=hashes.SHA1(), label=None)) except ValueError as e: raise CipherError(e) @classmethod def GenerateKey(cls, bits=2048, exponent=65537): key = rsa.generate_private_key( public_exponent=exponent, key_size=bits, backend=openssl.backend) return cls(key) def ParseFromString(self, pem_string): precondition.AssertType(pem_string, bytes) try: self._value = serialization.load_pem_private_key( pem_string, password=None, backend=openssl.backend) return except (TypeError, ValueError, exceptions.UnsupportedAlgorithm) as e: if "private key is encrypted" not in str(e): raise type_info.TypeValueError("Private key invalid: %s" % e) # pylint: disable=g-explicit-bool-comparison, g-equals-none # The private key is passphrase protected, we need to see if we are # allowed to ask the user. # # If allow_prompt is False, we are explicitly told that we are not. if self.allow_prompt == False: raise type_info.TypeValueError("Private key invalid: %s" % e) # allow_prompt was not set, we use the context we are in to see if it # makes sense to ask. elif self.allow_prompt == None: # TODO(user): dependency loop with # core/grr_response_core/grr/config/client.py. # pylint: disable=protected-access if "Commandline Context" not in config_lib._CONFIG.context: raise type_info.TypeValueError("Private key invalid: %s" % e) # pylint: enable=protected-access # pylint: enable=g-explicit-bool-comparison, g-equals-none try: # The private key is encrypted and we can ask the user for the passphrase. password = utils.PassphraseCallback() self._value = serialization.load_pem_private_key( pem_string, password=password, backend=openssl.backend) except (TypeError, ValueError, exceptions.UnsupportedAlgorithm) as e: raise type_info.TypeValueError("Unable to load private key: %s" % e) def ParseFromDatastore(self, value): precondition.AssertType(value, bytes) self.ParseFromString(value) def SerializeToString(self): if self._value is None: return "" return self._value.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption()) def __str__(self): digest = hashlib.sha256(self.AsPEM()).hexdigest() return "%s (%s)" % (self.__class__.__name__, digest) def AsPEM(self): return self.SerializeToString() def AsPassphraseProtectedPEM(self, passphrase): if self._value is None: return "" return self._value.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.BestAvailableEncryption(passphrase)) def KeyLen(self): if self._value is None: return 0 return self._value.key_size # TODO(amoser): Get rid of those. # Conserve old names for backwards compatibility. class PEMPrivateKey(RSAPrivateKey): pass class PEMPublicKey(RSAPublicKey): pass class Hash(rdf_structs.RDFProtoStruct): """A hash object containing multiple digests.""" protobuf = jobs_pb2.Hash rdf_deps = [ rdf_standard.AuthenticodeSignedData, rdfvalue.HashDigest, ] class SignedBlob(rdf_structs.RDFProtoStruct): """A signed blob. The client can receive and verify a signed blob (e.g. driver or executable binary). Once verified, the client may execute this. """ protobuf = jobs_pb2.SignedBlob def Verify(self, public_key): """Verify the data in this blob. Args: public_key: The public key to use for verification. Returns: True when verification succeeds. Raises: rdfvalue.DecodeError if the data is not suitable verified. """ if self.digest_type != self.HashType.SHA256: raise rdfvalue.DecodeError("Unsupported digest.") if self.signature_type not in [ self.SignatureType.RSA_PKCS1v15, self.SignatureType.RSA_PSS ]: raise rdfvalue.DecodeError("Unsupported signature type.") try: public_key.Verify(self.data, self.signature) except InvalidSignature as e: raise rdfvalue.DecodeError("Could not verify blob. Error: %s" % e) return True def Sign(self, data, signing_key, verify_key=None): """Use the data to sign this blob. Args: data: String containing the blob data. signing_key: The key to sign with. verify_key: Key to verify with. If None we assume the signing key also contains the public key. Returns: self for call chaining. """ if signing_key.KeyLen() < 2048: logging.warning("signing key is too short.") self.signature = signing_key.Sign(data) self.signature_type = self.SignatureType.RSA_PKCS1v15 self.digest = hashlib.sha256(data).digest() self.digest_type = self.HashType.SHA256 self.data = data # Test we can verify before we send it off. if verify_key is None: verify_key = signing_key.GetPublicKey() # Verify our own data. self.Verify(verify_key) return self class EncryptionKey(rdfvalue.RDFBytes): """Base class for encryption keys.""" # Size of the key in bits. length = 0 def ParseFromString(self, string): if len(string) % 8: raise CipherError( "Invalid key length %d (%s)." % (len(string) * 8, string)) self._value = string self.length = 8 * len(self._value) if self.length < 128: raise CipherError("Key too short (%d): %s" % (self.length, string)) def __str__(self): digest = hashlib.sha256(self.AsHexDigest()).hexdigest() return "%s (%s)" % (self.__class__.__name__, digest) def AsHexDigest(self): return binascii.hexlify(self._value) @classmethod def FromHex(cls, hex_string): precondition.AssertType(hex_string, Text) return cls(binascii.unhexlify(hex_string)) def SerializeToString(self): return self._value @classmethod def GenerateKey(cls, length=128): return cls(os.urandom(length // 8)) @classmethod def GenerateRandomIV(cls, length=128): return cls.GenerateKey(length=length) def RawBytes(self): return self._value # TODO(amoser): Size is now flexible, this class makes no sense anymore. class AES128Key(EncryptionKey): length = 128 class AutoGeneratedAES128Key(AES128Key): """Like AES128Key, but its UI edit box is prefilled with generated key.""" def __init__(self, initializer=None, **kwargs): if isinstance(initializer, AES128Key): super(AutoGeneratedAES128Key, self).__init__( initializer=initializer.RawBytes(), **kwargs) else: super(AutoGeneratedAES128Key, self).__init__( initializer=initializer, **kwargs) class StreamingCBCEncryptor(object): """A class to stream data to a CBCCipher object.""" def __init__(self, cipher): self._cipher = cipher self._encryptor = cipher.GetEncryptor() self._overflow_buffer = b"" self._block_size = len(cipher.key) def Update(self, data): data = self._overflow_buffer + data overflow_count = len(data) % self._block_size length_to_encrypt = len(data) - overflow_count to_encrypt = data[:length_to_encrypt] self._overflow_buffer = data[length_to_encrypt:] return self._encryptor.update(to_encrypt) def Finalize(self): res = self._encryptor.update(self._cipher.Pad(self._overflow_buffer)) res += self._encryptor.finalize() return res class AES128CBCCipher(object): """A Cipher using AES128 in CBC mode and PKCS7 for padding.""" algorithm = None def __init__(self, key, iv): """Init. Args: key: The key, a rdf_crypto.EncryptionKey instance. iv: The iv, a rdf_crypto.EncryptionKey instance. """ self.key = key.RawBytes() self.iv = iv.RawBytes() def Pad(self, data): padder = sym_padding.PKCS7(128).padder() return padder.update(data) + padder.finalize() def UnPad(self, padded_data): unpadder = sym_padding.PKCS7(128).unpadder() return unpadder.update(padded_data) + unpadder.finalize() def GetEncryptor(self): return ciphers.Cipher( algorithms.AES(self.key), modes.CBC(self.iv), backend=openssl.backend).encryptor() def Encrypt(self, data): """A convenience method which pads and encrypts at once.""" encryptor = self.GetEncryptor() padded_data = self.Pad(data) try: return encryptor.update(padded_data) + encryptor.finalize() except ValueError as e: raise CipherError(e) def GetDecryptor(self): return ciphers.Cipher( algorithms.AES(self.key), modes.CBC(self.iv), backend=openssl.backend).decryptor() def Decrypt(self, data): """A convenience method which pads and decrypts at once.""" decryptor = self.GetDecryptor() try: padded_data = decryptor.update(data) + decryptor.finalize() return self.UnPad(padded_data) except ValueError as e: raise CipherError(e) class SymmetricCipher(rdf_structs.RDFProtoStruct): """Abstract symmetric cipher operations.""" protobuf = jobs_pb2.SymmetricCipher rdf_deps = [ EncryptionKey, ] @classmethod def Generate(cls, algorithm): if algorithm != cls.Algorithm.AES128CBC: raise RuntimeError("Algorithm not supported.") return cls( _algorithm=algorithm, _key=EncryptionKey.GenerateKey(length=128), _iv=EncryptionKey.GenerateKey(length=128)) def _get_cipher(self): if self._algorithm != self.Algorithm.AES128CBC: raise CipherError("Unknown cipher type %s" % self._algorithm) return AES128CBCCipher(self._key, self._iv) def Encrypt(self, data): if self._algorithm == self.Algorithm.NONE: raise TypeError("Empty encryption is not allowed.") return self._get_cipher().Encrypt(data) def Decrypt(self, data): if self._algorithm == self.Algorithm.NONE: raise TypeError("Empty encryption is not allowed.") return self._get_cipher().Decrypt(data) class HMAC(object): """A wrapper for the cryptography HMAC object.""" def __init__(self, key, use_sha256=False): # We store the raw key from cryptography.io. if isinstance(key, EncryptionKey): key = key.RawBytes() self.key = key self._hmac = self._NewHMAC(use_sha256=use_sha256) def _NewHMAC(self, use_sha256=False): if use_sha256: hash_algorithm = hashes.SHA256() else: hash_algorithm = hashes.SHA1() return hmac.HMAC(self.key, hash_algorithm, backend=openssl.backend) def Update(self, data): self._hmac.update(data) def Finalize(self): return self._hmac.finalize() def HMAC(self, message, use_sha256=False): """Calculates the HMAC for a given message.""" h = self._NewHMAC(use_sha256=use_sha256) h.update(message) return h.finalize() def Verify(self, message, signature): """Verifies the signature for a given message.""" siglen = len(signature) if siglen == 20: hash_algorithm = hashes.SHA1() elif siglen == 32: hash_algorithm = hashes.SHA256() else: raise VerificationError("Invalid signature length %d." % siglen) h = hmac.HMAC(self.key, hash_algorithm, backend=openssl.backend) h.update(message) try: h.verify(signature) return True except exceptions.InvalidSignature as e: raise VerificationError(e) class Password(rdf_structs.RDFProtoStruct): """A password stored in the database.""" protobuf = jobs_pb2.Password def _CalculateHash(self, password, salt, iteration_count): kdf = pbkdf2.PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=salt, iterations=iteration_count, backend=openssl.backend) return kdf.derive(password) def SetPassword(self, password): self.salt = b"%016x" % random.UInt64() self.iteration_count = 100000 # prevent non-descriptive 'key_material must be bytes' error later if isinstance(password, string_types): password = password.encode("utf-8") self.hashed_pwd = self._CalculateHash(password, self.salt, self.iteration_count) def CheckPassword(self, password): # prevent non-descriptive 'key_material must be bytes' error later if isinstance(password, string_types): password = password.encode("utf-8") h = self._CalculateHash(password, self.salt, self.iteration_count) return constant_time.bytes_eq(h, self.hashed_pwd)
bzl
1a2fd22700cafa76f737a3dd29aba393dd1c839e
# Copyright 2019 Google LLC # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google LLC nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository") load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") load("@com_google_api_gax_java_properties//:dependencies.properties.bzl", "PROPERTIES") def com_google_api_gax_java_repositories(): # Import dependencies shared between Gradle and Bazel (i.e. maven dependencies) for name, artifact in PROPERTIES.items(): _maybe( native.maven_jar, name = name, strip_repo_prefix = "maven.", artifact = _fix_bazel_artifact_format(artifact), ) # Import Bazel-only dependencies (Gradle version will import maven artifacts of same # version, while Bazel will depend on Bazel workspaces). The versions are shared in the # properties file. _protobuf_version = PROPERTIES["version.com_google_protobuf"] _protobuf_version_in_link = "v%s" % _protobuf_version _maybe( http_archive, name = "com_google_protobuf", urls = ["https://github.com/protocolbuffers/protobuf/archive/%s.zip" % _protobuf_version_in_link], strip_prefix = "protobuf-%s" % _protobuf_version, ) _grpc_version = PROPERTIES["version.io_grpc"] _grpc_version_in_link = "v%s" % _grpc_version _maybe( http_archive, name = "io_grpc_grpc_java", urls = ["https://github.com/grpc/grpc-java/archive/%s.zip" % _grpc_version_in_link], strip_prefix = "grpc-java-%s" % _grpc_version, ) _maybe( http_archive, name = "bazel_skylib", strip_prefix = "bazel-skylib-0.7.0", urls = ["https://github.com/bazelbuild/bazel-skylib/archive/0.7.0.zip"], ) _maybe( native.maven_jar, name = "io_grpc_grpc_netty_shaded", artifact = "io.grpc:grpc-netty-shaded:%s" % PROPERTIES["version.io_grpc"], ) _maybe( native.maven_jar, name = "google_java_format_all_deps", artifact = "com.google.googlejavaformat:google-java-format:jar:all-deps:%s" % PROPERTIES["version.google_java_format"], ) _maybe( native.bind, name = "guava", actual = "@com_google_guava_guava//jar", ) _maybe( native.bind, name = "gson", actual = "@com_google_code_gson_gson//jar", ) _maybe( native.bind, name = "error_prone_annotations", actual = "@com_google_errorprone_error_prone_annotations//jar", ) def _maybe(repo_rule, name, strip_repo_prefix = "", **kwargs): if not name.startswith(strip_repo_prefix): return repo_name = name[len(strip_repo_prefix):] if repo_name in native.existing_rules(): return repo_rule(name = repo_name, **kwargs) def _fix_bazel_artifact_format(artifact_id): # Fix the artifact id format discrepancy between Bazel & Gradle. # This is relevant only when classifier is specified explicitly. # Bazel format: groupId:artifactId:jar:classifier:version # Gradle format: groupId:artifactId:version:classifier ids = artifact_id.split(":") if len(ids) != 4: return artifact_id return "%s:%s:%s:%s:%s" % (ids[0], ids[1], "jar", ids[3], ids[2])
py
1a2fd23a0e2f3b5198b6e8ac5f62026fc8f32429
from torch.autograd import Variable from Model import Decoder import torchsnooper # Batches and Masking class Batch: "此对象用于在训练时进行已屏蔽的批数据处理" def __init__(self, src, trg=None, pad=0): self.src = src self.src_mask = (src != pad).unsqueeze(-2) if trg is not None: self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] self.trg_mask = \ self.make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum() @staticmethod def make_std_mask(tgt, pad): "创建一个mask来隐藏填充和将来的单词" tgt_mask = (tgt != pad).unsqueeze(-2) tgt_mask = tgt_mask & Variable( subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) return tgt_mask # 我们将使用torch 文本进行批处理。在TorchText函数中创建批次,确保填充最大批次大小不超过阈值(如果我们有8个GPU,则为25000)。 global max_src_in_batch, max_tgt_in_batch def batch_size_fn(new, count, sofar): "持续扩大批处理并计算标识+填充的总数" global max_src_in_batch, max_tgt_in_batch if count == 1: max_src_in_batch = 0 max_tgt_in_batch = 0 max_src_in_batch = max(max_src_in_batch, len(new.src)) max_tgt_in_batch = max(max_tgt_in_batch, len(new.src) + 2) src_elements = count * max_src_in_batch tgt_elements = count * max_tgt_in_batch return max(src_elements, tgt_elements) class Batch_kg: "此对象用于在训练时进行已屏蔽的批数据处理" def __init__(self, src, ent, trg=None, pad=0): self.src = src self.ent = ent self.trg = trg self.src_mask = (src != pad).unsqueeze(-2) self.ent_mask = None if self.trg is not None: self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] self.trg_mask = \ self.make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum() @staticmethod def make_std_mask(tgt, pad): "创建一个mask来隐藏填充和将来的单词" tgt_mask = (tgt != pad).unsqueeze(-2) tgt_mask = tgt_mask & Variable( Decoder.subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) return tgt_mask class Batch_ast: "此对象用于在训练时进行已屏蔽的批数据处理" def __init__(self, src, ent, ast, trg=None, pad=0): self.src = src self.ent = ent self.trg = trg self.ast = ast self.src_mask = (src != pad).unsqueeze(-2) self.ent_mask = None self.ast_mask = (src != pad).unsqueeze(-2) if self.trg is not None: self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] self.trg_mask = \ self.make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum() @staticmethod def make_std_mask(tgt, pad): "创建一个mask来隐藏填充和将来的单词" tgt_mask = (tgt != pad).unsqueeze(-2) tgt_mask = tgt_mask & Variable( Decoder.subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) return tgt_mask
py
1a2fd2a6564dbb3f0de3e5aea345a7e5ec29fa0a
#coding=utf-8 HOST = '' PORT = 50008 # maximum sleep time while there is no connect for a smv process MAX_SLEEP_TIME = 5 # time out in seconds TIME_OUT = 5 MU_CHECK_TIMEOUT = 600 MU_CHECK_MEMORY = 1024 # path to NuSMV SMV_PATH = '/home/lyj238/Downloads/NuSMV/bin/NuSMV' MU_PATH = '/home/lyj238/Downloads/cmurphi5.4.9/src/mu' MU_INCLUDE = '/home/lyj238/Downloads/cmurphi5.4.9/include' GXX_PATH = '/usr/bin/g++' # path for storing smv files SMV_FILE_DIR = '/tmp/NuSMV/' MU_FILE_DIR = '/tmp/cmurphi/' dirs = [SMV_FILE_DIR, MU_FILE_DIR] import os for d in dirs: if not os.path.isdir(d): os.makedirs(d)
py
1a2fd3343a3364a08960b27e84d5f7c4cfcef834
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ImportJobRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'body': 'ImportFileReq' } attribute_map = { 'body': 'body' } def __init__(self, body=None): """ImportJobRequest - a model defined in huaweicloud sdk""" self._body = None self.discriminator = None if body is not None: self.body = body @property def body(self): """Gets the body of this ImportJobRequest. :return: The body of this ImportJobRequest. :rtype: ImportFileReq """ return self._body @body.setter def body(self, body): """Sets the body of this ImportJobRequest. :param body: The body of this ImportJobRequest. :type: ImportFileReq """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ImportJobRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a2fd3acdd0c8c8e703a6777cb4c6c209d8f9c7f
import cv2 import os import numpy as np import random # 例子为:在NEU-CLS数据集上操作的。 # 在合成后数据集中随机选取若干张数据作为新的数据集。 image_dir = '/content/drive/MyDrive/colab/multiClass/NEU-CLS' # 打乱原始数据集顺序 img_path = [] for name in os.listdir(image_dir): img_path.append(os.path.join(image_dir, name)) random.shuffle(img_path) new_types = ['PS', 'RS', 'Cr', 'In', 'Pa', 'Sc'] # 处理type def str_to_defect_types(s): defect_types = [] for t in new_types: defect_types.append(s.count(t)) return defect_types s = [] y = [] dataset_list = img_path # 训练或测试需要修改 列表 训练:train_dataset; 测试:test_dataset # size_4_1 = int(len(dataset_list)/4) # 合成图像个数new_dataset_path # randvector = list(range(len(dataset_list))) randvector = list(range(1000)) # 3400 2800 1440 for i in randvector: # img2 = dataset_list[i] img2 = random.choice(dataset_list) # 路径 imgx = img2.split("/")[-1].split("_")[0] # 类别 s.append(imgx) y.append(img2) def to_matrix(x_y, n): ls_4 = [] for i in range(0, len(x_y), n): ls_4.append(x_y[i: i + n]) return ls_4 s = to_matrix(s, 4) y = to_matrix(y, 4) # 合成图片 4 -> 1 img_data = [] img_type = [] num = 0 for i in range(250): x1 = cv2.imread(y[i][0]) # ,as_gray=True) x2 = cv2.imread(y[i][1]) # ,as_gray=True) x3 = cv2.imread(y[i][2]) # ,as_gray=True) x4 = cv2.imread(y[i][3]) # ,as_gray=True) im_h1 = cv2.hconcat([x1, x2]) # 合并函数 im_h2 = cv2.hconcat([x3, x4]) im_f = cv2.vconcat([im_h1, im_h2]) img_data.append(np.array(im_f)) img_type.append(str_to_defect_types(s[i])) # 处理type root_path = '/content/drive/MyDrive/colab/multiClass/Defects' # 保存至此文件夹下 # 类型转换 img_data_np = np.array(img_data) img_type_np = np.array(img_type) # 合成保存文件绝对路径 img_data_file = os.path.join(root_path, 'data文件名.npy') img_types = os.path.join(root_path, 'type文件名.npy') # 保存 np.save(img_data_file, img_data_np) np.save(img_types, img_type_np)
py
1a2fd3c90aadf9f684f07ba1d0ba1cea7b840d49
import discord import random import asyncio import discord from discord.ext import commands, tasks class Prescence(commands.Cog): def __init__(self, bot): self.bot = bot self.prescence_default.start() self.ctfu_rgblighting.start() def cog_unload(self): self.prescence_default.cancel() @tasks.loop(seconds=60.0) async def prescence_default(self): await self.bot.change_presence(activity=discord.Activity(type=discord.ActivityType.listening, name=f'{len(self.bot.users)} users.')) @tasks.loop(seconds=600.0) async def ctfu_rgblighting(self): ctfuserver = self.bot.get_guild(694217343173394432) role = ctfuserver.get_role(701007133994647622) await role.edit(colour=discord.Colour(random.randint(0, 0xFFFFFF))) @prescence_default.before_loop async def before_running(self): print('Bot setting up... Adding presence...') await self.bot.wait_until_ready() @ctfu_rgblighting.before_loop async def before_running(self): print('Bot setting up... Adding RGB Lighting for CTFU...') await self.bot.wait_until_ready() def setup(bot): bot.add_cog(Prescence(bot))
py
1a2fd42c4c82234852097562aea1f7ebd15fb317
import random import string from time import time from settings import URL, CHATS_COLLECTION_NAME from .base import CommandBase class CommandStart(CommandBase): async def __call__(self, payload): self.set_bot(payload) registered_chat = self.sdk.db.find_one(CHATS_COLLECTION_NAME, {'chat': payload['chat'], 'bot': self.bot}) if registered_chat: user_token = registered_chat['user'] else: user_token = self.generate_user_token() new_chat = { 'chat': payload['chat'], 'user': user_token, 'dt_register': time(), 'bot': self.bot } self.sdk.db.insert(CHATS_COLLECTION_NAME, new_chat) self.sdk.log("New user registered with token {}".format(user_token)) message = "Use this webhook for sending notifications to the chat:\n" \ "\n" \ "<code>{}/u/{}</code>\n" \ "\n" \ "Make a POST request with text in «message» param." await self.send( payload["chat"], message.format(URL, user_token), "HTML" ) @staticmethod def generate_user_token(): return ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(8))
py
1a2fd4e0b8c7ae7228d7768503d24b8a68d0a440
import unittest from .framework import selenium_test, SeleniumTestCase class ToolDescribingToursTestCase(SeleniumTestCase): def setUp(self): super().setUp() self.home() @selenium_test def test_generate_tour_no_data(self): """Ensure a tour without data is generated and pops up.""" self._ensure_tdt_available() self.tool_open('environment_variables') self.tool_form_generate_tour() popover_component = self.components.tour.popover._ popover_component.wait_for_visible() title = popover_component.title.wait_for_visible().text assert title == "environment_variables Tour", title # Run tool self.tool_form_execute() self.history_panel_wait_for_hid_ok(1) @selenium_test def test_generate_tour_with_data(self): """Ensure a tour with data populates history.""" self._ensure_tdt_available() self.tool_open('md5sum') self.tool_form_generate_tour() self.history_panel_wait_for_hid_ok(1) popover_component = self.components.tour.popover._ popover_component.wait_for_visible() title = popover_component.title.wait_for_visible().text assert title == "md5sum Tour", title self.screenshot("tool_describing_tour_0_start") popover_component.next.wait_for_and_click() self.sleep_for(self.wait_types.UX_RENDER) text = popover_component.content.wait_for_visible().text assert "Select dataset" in text, text self.screenshot("tool_describing_tour_1_select") popover_component.next.wait_for_and_click() self.sleep_for(self.wait_types.UX_RENDER) title = popover_component.title.wait_for_visible().text assert title == "Execute tool" self.screenshot("tool_describing_tour_2_execute") popover_component.end.wait_for_and_click() popover_component.wait_for_absent_or_hidden() # Run tool self.tool_form_execute() self.history_panel_wait_for_hid_ok(2) self.screenshot("tool_describing_tour_3_after_execute") def _ensure_tdt_available(self): """ Skip a test if the webhook TDT doesn't appear. """ response = self.api_get('webhooks', raw=True) self.assertEqual(response.status_code, 200) data = response.json() webhooks = [x['id'] for x in data] if 'tour_generator' not in webhooks: raise unittest.SkipTest('Skipping test, webhook "Tool-Describing-Tours" doesn\'t appear to be configured.')
py
1a2fd5114444d7e16b700dc1146c193c859ccf76
#!/usr/bin/env python import fileinput jumps = [int(jump) for jump in fileinput.input()] clock, pc, max_pc = 0, 0, 0 while pc < len(jumps): jump = jumps[pc] jumps[pc] += 1 pc += jump clock += 1 if pc > max_pc: max_pc = pc print("%09d: %04d" % (clock, pc)) print(clock)
py
1a2fd5154fb5ea99a0ee7df2a192dfa2d82c21de
from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse_lazy from django.shortcuts import redirect from django.views.generic import CreateView, FormView from ..forms import CreateBoaLeagueForm, JoinBoaLeagueForm from ..models import League, Manager class JoinLeague(LoginRequiredMixin, CreateView): model = Manager form_class = JoinBoaLeagueForm http_method_names = [u'get', u'post'] template_name = 'boa/join_league.html' object = None def get(self, request, *args, **kwargs): context = {} my_league_id = kwargs['pk'] league = League.objects.get(id=my_league_id) if league.password: form = JoinBoaLeagueForm(pw=True) else: form = JoinBoaLeagueForm(pw=False) context.update({ 'league': league, 'form': form, }) return self.render_to_response(context) def get_success_url(self): return self.object.league.get_absolute_url() def post(self, request, *args, **kwargs): print(request.POST) my_league_id = kwargs['pk'] league = League.objects.get(id=my_league_id) has_password = bool(league.password) form = JoinBoaLeagueForm(request.POST, pw=has_password) if form.is_valid(): manager = form.save(commit=False) manager.league = league manager.user = self.request.user # check password if league.password and not('password' in form.cleaned_data and form.cleaned_data['password'] == league.password): form.add_error( None, f'Invalid password.' ) return self.form_invalid(form) #check team count if Manager.objects.filter(league=league).count() >= league.max_teams_per_league: form.add_error( None, f'This league is full.' ) return self.form_invalid(form) #check if already in league and team name for other_manager in Manager.objects.filter(league=league): if manager.user == other_manager.user: form.add_error( None, f'You already manage a team in this league' ) return self.form_invalid(form) if manager.name == other_manager.name: form.add_error( None, f'There is already a team named {manager.name} in this league' ) return self.form_invalid(form) manager.save() messages.success( request, f'Successfully joined league {league}' ) return self.form_valid(form) else: return self.form_invalid(form)
py
1a2fd57ef5f3ecb75738f551fdb7c30b59a4b6ff
# vim:ts=4:sts=4:sw=4:expandtab """Matching Clients with event queues. """ import collections from satori.objects import Object from satori.events.misc import Namespace class Dispatcher(Object): """Abstract. Dispatches Events to Clients. """ def __init__(self): self.queues = dict() self.clients = dict() def _qdata(self, queue_id): if queue_id not in self.queues: qdata = Namespace() qdata.references = 0 qdata.events = collections.deque() qdata.clients = collections.deque() self.queues[queue_id] = qdata return self.queues[queue_id] def _cdata(self, client): if client not in self.clients: cdata = Namespace() cdata.queue_ids = set() cdata.active = False self.clients[client] = cdata return self.clients[client] def attach(self, client, queue_id): """Declare Client's interest in events from a given queue. """ qdata = self._qdata(queue_id) cdata = self._cdata(client) if queue_id not in cdata.queue_ids: cdata.queue_ids.add(queue_id) qdata.references += 1 def detach(self, client, queue_id): """Revoke Client's interest in events from a given queue. """ qdata = self._qdata(queue_id) cdata = self._cdata(client) if queue_id in cdata.queues: cdata.queue_ids.remove(queue_id) qdata.references -= 1 if qdata.references == 0: yield queue_id del self.queues[queue_id] def activate(self, client): """Mark a Client as ready to receive a (single) event. """ cdata = self._cdata(client) best = None for queue_id in cdata.queue_ids: qdata = self._qdata(queue_id) if len(qdata.events) > 0: event = qdata.events[0] if best is None or best[1] > event.serial: best = (queue_id, event.serial) if best is not None: qdata = self._qdata(best[0]) client.sendResponse((best[0], qdata.events.popleft())) return for queue_id in cdata.queue_ids: qdata = self._qdata(queue_id) qdata.clients.append(client) cdata.active = True def enqueue(self, queue_id, event): """Add a new event to a given queue. """ qdata = self._qdata(queue_id) qdata.events.append(event) while len(qdata.clients) > 0: client = qdata.clients.popleft() cdata = self._cdata(client) if not cdata.active: continue if queue_id not in cdata.queue_ids: continue cdata.active = False client.sendResponse((queue_id, qdata.events.popleft())) return
py
1a2fd5b5d2ad163433446939e5563b3bda14e61b
import os.path import tensorflow as tf import helper import warnings from distutils.version import LooseVersion import project_tests as tests # Check TensorFlow Version assert LooseVersion(tf.__version__) >= LooseVersion( '1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__) print('TensorFlow Version: {}'.format(tf.__version__)) # Check for a GPU if not tf.test.gpu_device_name(): warnings.warn('No GPU found. Please use a GPU to train your neural network.') else: print('Default GPU Device: {}'.format(tf.test.gpu_device_name())) def load_vgg(sess, vgg_path): """ Load Pretrained VGG Model into TensorFlow. :param sess: TensorFlow Session :param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb" :return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out) """ # TODO: Implement function # Use tf.saved_model.loader.load to load the model and weights vgg_tag = 'vgg16' vgg_input_tensor_name = 'image_input:0' vgg_keep_prob_tensor_name = 'keep_prob:0' vgg_layer3_out_tensor_name = 'layer3_out:0' vgg_layer4_out_tensor_name = 'layer4_out:0' vgg_layer7_out_tensor_name = 'layer7_out:0' ## pretrain tf.saved_model.loader.load(sess, [vgg_tag], vgg_path) ## extract layers graph = tf.get_default_graph() image_input = graph.get_tensor_by_name(vgg_input_tensor_name) keep_prob = tf.get_default_graph().get_tensor_by_name(vgg_keep_prob_tensor_name) layer3_out = tf.get_default_graph().get_tensor_by_name(vgg_layer3_out_tensor_name) layer4_out = tf.get_default_graph().get_tensor_by_name(vgg_layer4_out_tensor_name) layer7_out = tf.get_default_graph().get_tensor_by_name(vgg_layer7_out_tensor_name) return image_input, keep_prob, layer3_out, layer4_out, layer7_out tests.test_load_vgg(load_vgg, tf) def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, num_classes): """ Create the layers for a fully convolutional network. Build skip-layers using the vgg layers. :param vgg_layer7_out: TF Tensor for VGG Layer 3 output :param vgg_layer4_out: TF Tensor for VGG Layer 4 output :param vgg_layer3_out: TF Tensor for VGG Layer 7 output :param num_classes: Number of classes to classify :return: The Tensor for the last layer of output """ # TODO: Implement function # 1x1 convolution of vgg layer 7 layer7_conv_1x1 = tf.layers.conv2d(vgg_layer7_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) # upsample layer7_out = tf.layers.conv2d_transpose(layer7_conv_1x1, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) # 1x1 convolution of vgg layer 4 layer4_conv_1x1 = tf.layers.conv2d(vgg_layer4_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) layer4_skip_conns = tf.add(layer7_out, layer4_conv_1x1) layer4_out = tf.layers.conv2d_transpose(layer4_skip_conns, num_classes, 4, strides=(2, 2), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) # 1x1 convolution of vgg layer 3 layer3_conv_1x1 = tf.layers.conv2d(vgg_layer3_out, num_classes, 1, padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) layer3_skip_conns = tf.add(layer4_out, layer3_conv_1x1) layer3_out = tf.layers.conv2d_transpose(layer3_skip_conns, num_classes, 16, strides=(8, 8), padding='same', kernel_initializer=tf.random_normal_initializer(stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-3)) return layer3_out tests.test_layers(layers) def optimize(nn_last_layer, correct_label, learning_rate, num_classes): """ Build the TensorFLow loss and optimizer operations. :param nn_last_layer: TF Tensor of the last layer in the neural network :param correct_label: TF Placeholder for the correct label image :param learning_rate: TF Placeholder for the learning rate :param num_classes: Number of classes to classify :return: Tuple of (logits, train_op, cross_entropy_loss) """ # TODO: Implement function logits = tf.reshape(nn_last_layer, (-1, num_classes)) correct_label = tf.reshape(correct_label, (-1, num_classes)) # Loss function cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=correct_label)) # Training operation optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(cross_entropy_loss) return logits, train_op, cross_entropy_loss tests.test_optimize(optimize) def train_nn(sess, epochs, batch_size, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate): """ Train neural network and print out the loss during training. :param sess: TF Session :param epochs: Number of epochs :param batch_size: Batch size :param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size) :param train_op: TF Operation to train the neural network :param cross_entropy_loss: TF Tensor for the amount of loss :param input_image: TF Placeholder for input images :param correct_label: TF Placeholder for label images :param keep_prob: TF Placeholder for dropout keep probability :param learning_rate: TF Placeholder for learning rate """ # TODO: Implement function sess.run(tf.global_variables_initializer()) print("Training Neural Network\n\n") for itr in range(epochs): print("Epoch No. {}".format(itr + 1)) for image, label in get_batches_fn(batch_size): _, loss = sess.run([train_op, cross_entropy_loss], feed_dict={input_image: image, correct_label: label, keep_prob: 0.5, learning_rate: 0.0009}) print("Training Loss: {:.3f}".format(loss)) print() tests.test_train_nn(train_nn) def run(): num_classes = 2 image_shape = (160, 576) data_dir = './data' runs_dir = './runs' tests.test_for_kitti_dataset(data_dir) # Download pretrained vgg model helper.maybe_download_pretrained_vgg(data_dir) # OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset. # You'll need a GPU with at least 10 teraFLOPS to train on. # https://www.cityscapes-dataset.com/ with tf.Session() as sess: # Path to vgg model vgg_path = os.path.join(data_dir, 'vgg') # Create function to get batches get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), image_shape) # OPTIONAL: Augment Images for better results # https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network # Build NN using load_vgg, layers, and optimize function BATCH_SIZE = 5 EPOCHS = 50 # Placeholders for Tensorflow correct_label = tf.placeholder(tf.int32, [None, None, None, num_classes], name='correct_label') learning_rate = tf.placeholder(tf.float32, name='learning_rate') input_image, keep_prob, layer3_out, layer4_out, layer7_out = load_vgg(sess, vgg_path) last_layer_out = layers(layer3_out, layer4_out, layer7_out, num_classes) logits, train_op, cross_entropy_loss = optimize(last_layer_out, correct_label, learning_rate, num_classes) # Train NN using the train_nn function train_nn(sess, EPOCHS, BATCH_SIZE, get_batches_fn, train_op, cross_entropy_loss, input_image, correct_label, keep_prob, learning_rate) # Save inference data using helper.save_inference_samples helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image) # OPTIONAL: Apply the trained model to a video if __name__ == '__main__': run()
py
1a2fd60e4d1beee6888ddba7ed6af1def3c7d255
import logging log = logging.getLogger('onegov.form') # noqa log.addHandler(logging.NullHandler()) # noqa from translationstring import TranslationStringFactory _ = TranslationStringFactory('onegov.form') # noqa from onegov.form.collection import ( FormCollection, FormSubmissionCollection, FormDefinitionCollection ) from onegov.form.core import ( FieldDependency, Form, merge_forms, move_fields, ) from onegov.form.display import render_field from onegov.form.extensions import FormExtension, Extendable from onegov.form.integration import FormApp from onegov.form.models import ( FormDefinition, FormFile, FormSubmission, FormRegistrationWindow, PendingFormSubmission, CompleteFormSubmission ) from onegov.form.parser import find_field from onegov.form.parser import flatten_fieldsets from onegov.form.parser import parse_form from onegov.form.parser import parse_formcode from onegov.form.parser import WTFormsClassBuilder from onegov.form.utils import decimal_range, as_internal_id, with_options __all__ = [ 'as_internal_id', 'CompleteFormSubmission', 'decimal_range', 'find_field', 'flatten_fieldsets', 'Extendable', 'FieldDependency', 'Form', 'FormApp', 'FormCollection', 'FormDefinition', 'FormDefinitionCollection', 'FormExtension', 'FormFile', 'FormRegistrationWindow', 'FormSubmission', 'FormSubmissionCollection', 'merge_forms', 'move_fields', 'parse_form', 'parse_formcode', 'PendingFormSubmission', 'render_field', 'with_options', 'WTFormsClassBuilder', ]
py
1a2fd613b9bdb475afb052b7c1456d1191c09bb1
"""Base email backend class.""" class BaseEmailBackend(object): """ Base class for email backend implementations. Subclasses must at least overwrite send_messages(). """ def __init__(self, fail_silently=False, **kwargs): self.fail_silently = fail_silently def open(self, callback=False): """Open a network connection. This method can be overwritten by backend implementations to open a network connection. It's up to the backend implementation to track the status of a network connection if it's needed by the backend. This method can be called by applications to force a single network connection to be used when sending mails. See the send_messages() method of the SMTP backend for a reference implementation. The default implementation does nothing. """ pass def close(self): """Close a network connection.""" pass def send_messages(self, email_messages, callback=False): """ Sends one or more EmailMessage objects and returns the number of email messages sent. """ raise NotImplementedError
py
1a2fd7440c6a08e2a23e68232183b39370f64bad
# -*- coding: utf-8 -*- # import numpy from . import cielab from .illuminants import whitepoints_cie1931 class CIELCH(object): def __init__(self, whitepoint=whitepoints_cie1931['D65']): self.cielab = cielab.CIELAB(whitepoint=whitepoint) return def from_xyz100(self, xyz): L, u, v = self.cielab.from_xyz100(xyz) C = numpy.hypot(u, v) h = numpy.mod(numpy.arctan2(v, u), 2*numpy.pi) / numpy.pi * 180 return numpy.array([L, C, h]) def to_xyz100(self, lch): L, C, h = lch h_ = h * numpy.pi / 180 lab = numpy.array([L, C * numpy.cos(h_), C * numpy.sin(h_)]) return self.cielab.to_xyz100(lab)
py
1a2fd90970a101f64c169389990865b6d19a55bc
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2019 Snowflake Computing Inc. All right reserved. # import os import random import re import string import time import pytest from conftest import get_engine from mock import patch from parameters import CONNECTION_PARAMETERS from snowflake.connector import ProgrammingError, connect from snowflake.sqlalchemy import URL, MergeInto, dialect from sqlalchemy import ( REAL, Boolean, Column, DateTime, ForeignKey, Integer, LargeBinary, MetaData, Numeric, Sequence, String, Table, create_engine, dialects, inspect, text, ) from sqlalchemy.sql import and_, not_, or_, select try: from parameters import (CONNECTION_PARAMETERS2) except ImportError: CONNECTION_PARAMETERS2 = CONNECTION_PARAMETERS THIS_DIR = os.path.dirname(os.path.realpath(__file__)) def _create_users_addresses_tables(engine_testaccount, metadata, fk=None): users = Table('users', metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String), ) addresses = Table('addresses', metadata, Column('id', Integer, Sequence('address_id_seq'), primary_key=True), Column('user_id', None, ForeignKey('users.id', name=fk)), Column('email_address', String, nullable=False) ) metadata.create_all(engine_testaccount) return users, addresses def _create_users_addresses_tables_without_sequence(engine_testaccount, metadata): users = Table('users', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('fullname', String), ) addresses = Table('addresses', metadata, Column('id', Integer, primary_key=True), Column('user_id', None, ForeignKey('users.id')), Column('email_address', String, nullable=False) ) metadata.create_all(engine_testaccount) return users, addresses def test_connect_args(): """ Tests connect string Snowflake connect string supports account name as a replacement of host:port """ from sqlalchemy import create_engine engine = create_engine( 'snowflake://{user}:{password}@{account}/{database}/{schema}'.format( user=CONNECTION_PARAMETERS2['user'], password=CONNECTION_PARAMETERS2['password'], account=CONNECTION_PARAMETERS2['account'], database=CONNECTION_PARAMETERS2['database'], schema=CONNECTION_PARAMETERS2['schema'], ) ) try: results = engine.execute('select current_version()').fetchone() assert results is not None finally: engine.dispose() engine = create_engine( 'snowflake://{user}:{password}@{account}/'.format( user=CONNECTION_PARAMETERS2['user'], password=CONNECTION_PARAMETERS2['password'], account=CONNECTION_PARAMETERS2['account'], ) ) try: results = engine.execute('select current_version()').fetchone() assert results is not None finally: engine.dispose() engine = create_engine(URL( user=CONNECTION_PARAMETERS2['user'], password=CONNECTION_PARAMETERS2['password'], account=CONNECTION_PARAMETERS2['account'], ) ) try: results = engine.execute('select current_version()').fetchone() assert results is not None finally: engine.dispose() engine = create_engine(URL( user=CONNECTION_PARAMETERS2['user'], password=CONNECTION_PARAMETERS2['password'], account=CONNECTION_PARAMETERS2['account'], warehouse='testwh' ) ) try: results = engine.execute('select current_version()').fetchone() assert results is not None finally: engine.dispose() def test_simple_sql(engine_testaccount): """ Simple SQL by SQLAlchemy """ result = engine_testaccount.execute('show databases') rows = [row for row in result] assert len(rows) >= 0, 'show database results' def test_create_drop_tables(engine_testaccount): """ Creates and Drops tables """ metadata = MetaData() users, addresses = _create_users_addresses_tables_without_sequence( engine_testaccount, metadata) try: # validate the tables exists results = engine_testaccount.execute('desc table users') assert len([row for row in results]) > 0, "users table doesn't exist" # validate the tables exists results = engine_testaccount.execute('desc table addresses') assert len([row for row in results]) > 0, \ "addresses table doesn't exist" finally: # drop tables addresses.drop(engine_testaccount) users.drop(engine_testaccount) def test_insert_tables(engine_testaccount): """ Inserts data into tables """ metadata = MetaData() users, addresses = _create_users_addresses_tables( engine_testaccount, metadata) conn = engine_testaccount.connect() try: # inserts data with an implicitly generated id ins = users.insert().values(name='jack', fullname='Jack Jones') results = engine_testaccount.execute(ins) assert results.inserted_primary_key == [1], 'sequence value' results.close() # inserts data with the given id ins = users.insert() conn.execute(ins, id=2, name='wendy', fullname='Wendy Williams') # verify the results s = select([users]) results = conn.execute(s) assert len([row for row in results]) == 2, \ 'number of rows from users table' results.close() # fetchone s = select([users]).order_by('id') results = conn.execute(s) row = results.fetchone() results.close() assert row[2] == 'Jack Jones', 'user name' assert row['fullname'] == 'Jack Jones', "user name by dict" assert row[users.c.fullname] == 'Jack Jones', \ 'user name by Column object' conn.execute(addresses.insert(), [ {'user_id': 1, 'email_address': '[email protected]'}, {'user_id': 1, 'email_address': '[email protected]'}, {'user_id': 2, 'email_address': '[email protected]'}, {'user_id': 2, 'email_address': '[email protected]'}, ]) # more records s = select([addresses]) results = conn.execute(s) assert len([row for row in results]) == 4, \ 'number of rows from addresses table' results.close() # select specified column names s = select([users.c.name, users.c.fullname]).order_by('name') results = conn.execute(s) results.fetchone() row = results.fetchone() assert row['name'] == 'wendy', 'name' # join s = select([users, addresses]).where(users.c.id == addresses.c.user_id) results = conn.execute(s) results.fetchone() results.fetchone() results.fetchone() row = results.fetchone() assert row['email_address'] == '[email protected]', 'email address' # Operator assert str(users.c.id == addresses.c.user_id) == \ 'users.id = addresses.user_id', 'equal operator' assert str(users.c.id == 7) == 'users.id = :id_1', \ 'equal to a static number' assert str(users.c.name == None) # NOQA assert str(users.c.id + addresses.c.id) == 'users.id + addresses.id', \ 'number + number' assert str(users.c.name + users.c.fullname) == \ 'users.name || users.fullname', 'str + str' # Conjunctions # example 1 obj = and_( users.c.name.like('j%'), users.c.id == addresses.c.user_id, or_( addresses.c.email_address == '[email protected]', addresses.c.email_address == '[email protected]' ), not_(users.c.id > 5) ) expected_sql = """users.name LIKE :name_1 AND users.id = addresses.user_id AND (addresses.email_address = :email_address_1 OR addresses.email_address = :email_address_2) AND users.id <= :id_1""" assert str(obj) == ''.join(expected_sql.split('\n')), \ "complex condition" # example 2 obj = users.c.name.like('j%') & (users.c.id == addresses.c.user_id) & \ ( (addresses.c.email_address == '[email protected]') | (addresses.c.email_address == '[email protected]') ) \ & ~(users.c.id > 5) assert str(obj) == ''.join(expected_sql.split('\n')), \ "complex condition using python operators" # example 3 s = select([(users.c.fullname + ", " + addresses.c.email_address). label('title')]). \ where( and_( users.c.id == addresses.c.user_id, users.c.name.between('m', 'z'), or_( addresses.c.email_address.like('%@aol.com'), addresses.c.email_address.like('%@msn.com') ) ) ) results = engine_testaccount.execute(s).fetchall() assert results[0][0] == 'Wendy Williams, [email protected]' # Aliases a1 = addresses.alias() a2 = addresses.alias() s = select([users]).where(and_( users.c.id == a1.c.user_id, users.c.id == a2.c.user_id, a1.c.email_address == '[email protected]', a2.c.email_address == '[email protected]')) results = engine_testaccount.execute(s).fetchone() assert results == (1, 'jack', 'Jack Jones') # Joins assert str(users.join(addresses)) == 'users JOIN addresses ON ' \ 'users.id = addresses.user_id' assert str(users.join(addresses, addresses.c.email_address.like( users.c.name + '%'))) == \ 'users JOIN addresses ' \ 'ON addresses.email_address LIKE users.name || :name_1' s = select([users.c.fullname]).select_from( users.join(addresses, addresses.c.email_address.like(users.c.name + '%'))) results = engine_testaccount.execute(s).fetchall() assert results[1] == ('Jack Jones',) s = select([users.c.fullname]).select_from(users.outerjoin( addresses)).order_by(users.c.fullname) results = engine_testaccount.execute(s).fetchall() assert results[-1] == ('Wendy Williams',) finally: conn.close() # drop tables addresses.drop(engine_testaccount) users.drop(engine_testaccount) @pytest.mark.skip(""" Reflection is not implemented yet. """) def test_reflextion(engine_testaccount): """ Tests Reflection """ engine_testaccount.execute(""" CREATE OR REPLACE TABLE user ( id Integer primary key, name String, fullname String ) """) try: meta = MetaData() user_reflected = Table('user', meta, autoload=True, autoload_with=engine_testaccount) assert user_reflected.c == ['user.id', 'user.name', 'user.fullname'] finally: engine_testaccount.execute(""" DROP TABLE IF EXISTS user """) def test_inspect_column(engine_testaccount): """ Tests Inspect """ metadata = MetaData() users, addresses = _create_users_addresses_tables_without_sequence( engine_testaccount, metadata) try: inspector = inspect(engine_testaccount) all_table_names = inspector.get_table_names() assert 'users' in all_table_names assert 'addresses' in all_table_names columns_in_users = inspector.get_columns('users') assert columns_in_users[0]['autoincrement'], 'autoincrement' assert columns_in_users[0]['default'] is None, 'default' assert columns_in_users[0]['name'] == 'id', 'name' assert columns_in_users[0]['primary_key'], 'primary key' assert not columns_in_users[1]['autoincrement'], 'autoincrement' assert columns_in_users[1]['default'] is None, 'default' assert columns_in_users[1]['name'] == 'name', 'name' assert not columns_in_users[1]['primary_key'], 'primary key' assert not columns_in_users[2]['autoincrement'], 'autoincrement' assert columns_in_users[2]['default'] is None, 'default' assert columns_in_users[2]['name'] == 'fullname', 'name' assert not columns_in_users[2]['primary_key'], 'primary key' finally: addresses.drop(engine_testaccount) users.drop(engine_testaccount) def test_get_indexes(engine_testaccount): """ Tests get indexes NOTE: Snowflake doesn't support indexes """ metadata = MetaData() users, addresses = _create_users_addresses_tables_without_sequence( engine_testaccount, metadata) try: inspector = inspect(engine_testaccount) assert inspector.get_indexes("users") == [] finally: addresses.drop(engine_testaccount) users.drop(engine_testaccount) def test_get_primary_keys(engine_testaccount): """ Tests get primary keys """ metadata = MetaData() users, addresses = _create_users_addresses_tables_without_sequence( engine_testaccount, metadata) try: inspector = inspect(engine_testaccount) primary_keys = inspector.get_pk_constraint('users') assert primary_keys['constrained_columns'] == ['id'] primary_keys = inspector.get_pk_constraint('addresses') assert primary_keys['constrained_columns'] == ['id'] finally: addresses.drop(engine_testaccount) users.drop(engine_testaccount) def test_get_foreign_keys(engine_testaccount): """ Tests foreign keys """ metadata = MetaData() fk_name = 'fk_users_id_from_addresses' users, addresses = _create_users_addresses_tables( engine_testaccount, metadata, fk=fk_name) try: inspector = inspect(engine_testaccount) foreign_keys = inspector.get_foreign_keys('addresses') assert foreign_keys[0]['name'] == fk_name assert foreign_keys[0]['constrained_columns'] == ['user_id'] finally: addresses.drop(engine_testaccount) users.drop(engine_testaccount) def test_get_multile_column_primary_key(engine_testaccount): """ Tests multicolumn primary key with and without autoincrement """ metadata = MetaData() mytable = Table('mytable', metadata, Column('gid', Integer, primary_key=True, autoincrement=False), Column('id', Integer, primary_key=True, autoincrement=True)) metadata.create_all(engine_testaccount) try: inspector = inspect(engine_testaccount) columns_in_mytable = inspector.get_columns('mytable') assert not columns_in_mytable[0]['autoincrement'], 'autoincrement' assert columns_in_mytable[0]['default'] is None, 'default' assert columns_in_mytable[0]['name'] == 'gid', 'name' assert columns_in_mytable[0]['primary_key'], 'primary key' assert columns_in_mytable[1]['autoincrement'], 'autoincrement' assert columns_in_mytable[1]['default'] is None, 'default' assert columns_in_mytable[1]['name'] == 'id', 'name' assert columns_in_mytable[1]['primary_key'], 'primary key' primary_keys = inspector.get_pk_constraint('mytable') assert primary_keys['constrained_columns'] == ['gid', 'id'] finally: mytable.drop(engine_testaccount) def test_create_table_with_cluster_by(engine_testaccount): # Test case for https://github.com/snowflakedb/snowflake-sqlalchemy/pull/14 metadata = MetaData() user = Table('clustered_user', metadata, Column('Id', Integer, primary_key=True), Column('name', String), snowflake_clusterby=['Id', 'name']) metadata.create_all(engine_testaccount) try: inspector = inspect(engine_testaccount) columns_in_table = inspector.get_columns('clustered_user') assert columns_in_table[0]['name'] == 'Id', 'name' finally: user.drop(engine_testaccount) def test_view_names(engine_testaccount): """ Tests all views """ inspector = inspect(engine_testaccount) information_schema_views = inspector.get_view_names( schema='information_schema') assert 'columns' in information_schema_views assert 'table_constraints' in information_schema_views def test_view_definition(engine_testaccount, db_parameters): """ Tests view definition """ test_table_name = "test_table_sqlalchemy" test_view_name = "testview_sqlalchemy" engine_testaccount.execute(""" CREATE OR REPLACE TABLE {0} ( id INTEGER, name STRING ) """.format(test_table_name)) sql = """ CREATE OR REPLACE VIEW {0} AS SELECT * FROM {1} WHERE id > 10""".format( test_view_name, test_table_name) engine_testaccount.execute(text(sql).execution_options( autocommit=True)) try: inspector = inspect(engine_testaccount) assert inspector.get_view_definition(test_view_name) == sql.strip() assert inspector.get_view_definition(test_view_name, db_parameters['schema']) == \ sql.strip() assert inspector.get_view_names() == [test_view_name] finally: engine_testaccount.execute(text( "DROP TABLE IF EXISTS {0}".format(test_table_name))) engine_testaccount.execute(text( "DROP VIEW IF EXISTS {0}".format(test_view_name))) def test_view_comment_reading(engine_testaccount, db_parameters): """ Tests reading a comment from a view once it's defined """ test_table_name = "test_table_sqlalchemy" test_view_name = "testview_sqlalchemy" engine_testaccount.execute(""" CREATE OR REPLACE TABLE {} ( id INTEGER, name STRING ) """.format(test_table_name)) sql = """ CREATE OR REPLACE VIEW {} AS SELECT * FROM {} WHERE id > 10""".format( test_view_name, test_table_name) engine_testaccount.execute(text(sql).execution_options( autocommit=True)) comment_text = "hello my viewing friends" sql = "COMMENT ON VIEW {} IS '{}';".format( test_view_name, comment_text) engine_testaccount.execute(text(sql).execution_options( autocommit=True)) try: inspector = inspect(engine_testaccount) # NOTE: sqlalchemy doesn't have a way to get view comments specifically, # but the code to get table comments should work for views too assert inspector.get_table_comment(test_view_name) == {'text': comment_text} assert inspector.get_table_comment(test_table_name) == {'text': None} assert str(inspector.get_columns(test_table_name)) == str(inspector.get_columns(test_view_name)) finally: engine_testaccount.execute(text( "DROP TABLE IF EXISTS {0}".format(test_table_name))) engine_testaccount.execute(text( "DROP VIEW IF EXISTS {0}".format(test_view_name))) @pytest.mark.skip("Temp table cannot be viewed for some reason") def test_get_temp_table_names(engine_testaccount): num_of_temp_tables = 2 temp_table_name = "temp_table" for idx in range(num_of_temp_tables): engine_testaccount.execute(text(""" CREATE TEMPORARY TABLE {0} (col1 integer, col2 string) """.format(temp_table_name + str(idx))).execution_options( autocommit=True)) for row in engine_testaccount.execute("SHOW TABLES"): print(row) try: inspector = inspect(engine_testaccount) temp_table_names = inspector.get_temp_table_names() assert len(temp_table_names) == num_of_temp_tables finally: pass def test_create_table_with_schema(engine_testaccount, db_parameters): metadata = MetaData() new_schema = db_parameters['schema'] + "_NEW" engine_testaccount.execute(text( "CREATE OR REPLACE SCHEMA \"{0}\"".format(new_schema))) Table('users', metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String), schema=new_schema ) metadata.create_all(engine_testaccount) try: inspector = inspect(engine_testaccount) columns_in_users = inspector.get_columns('users', schema=new_schema) assert columns_in_users is not None finally: metadata.drop_all(engine_testaccount) engine_testaccount.execute( text("DROP SCHEMA IF EXISTS \"{0}\"".format(new_schema))) @pytest.mark.skipif(os.getenv("SNOWFLAKE_GCP") is not None, reason="PUT and GET is not supported for GCP yet") def test_copy(engine_testaccount): """ COPY must be in a transaction """ metadata = MetaData() users, addresses = _create_users_addresses_tables_without_sequence( engine_testaccount, metadata) try: engine_testaccount.execute( "PUT file://{file_name} @%users".format( file_name=os.path.join(THIS_DIR, "data", "users.txt"))) engine_testaccount.execute("COPY INTO users") results = engine_testaccount.execute("SELECT * FROM USERS").fetchall() assert results is not None and len(results) > 0 finally: addresses.drop(engine_testaccount) users.drop(engine_testaccount) @pytest.mark.skip(""" No transaction works yet in the core API. Use orm API or Python Connector directly if needed at the moment. Note Snowflake DB supports DML transaction natively, but we have not figured out how to integrate with SQLAlchemy core API yet. """) def test_transaction(engine_testaccount, db_parameters): engine_testaccount.execute(text(""" CREATE TABLE {0} (c1 number)""".format(db_parameters['name']))) trans = engine_testaccount.connect().begin() try: engine_testaccount.execute(text(""" INSERT INTO {0} VALUES(123) """.format(db_parameters['name']))) trans.commit() engine_testaccount.execute(text(""" INSERT INTO {0} VALUES(456) """.format(db_parameters['name']))) trans.rollback() results = engine_testaccount.execute(""" SELECT * FROM {0} """.format(db_parameters['name'])).fetchall() assert results == [(123,)] finally: engine_testaccount.execute(text(""" DROP TABLE IF EXISTS {0} """.format(db_parameters['name']))) def test_get_schemas(engine_testaccount): """ Tests get schemas from inspect. Although the method get_schema_names is not part of DefaultDialect, inspect() may call the method if exists. """ inspector = inspect(engine_testaccount) schemas = inspector.get_schema_names() assert 'information_schema' in schemas def test_column_metadata(engine_testaccount): from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class Appointment(Base): __tablename__ = 'appointment' id = Column(Numeric(38, 3), primary_key=True) string_with_len = Column(String(100)) binary_data = Column(LargeBinary) real_data = Column(REAL) Base.metadata.create_all(engine_testaccount) metadata = Base.metadata t = Table('appointment', metadata) inspector = inspect(engine_testaccount) inspector.reflecttable(t, None) assert str(t.columns['id'].type) == 'DECIMAL(38, 3)' assert str(t.columns['string_with_len'].type) == 'VARCHAR(100)' assert str(t.columns['binary_data'].type) == 'BINARY' assert str(t.columns['real_data'].type) == 'FLOAT' def _get_engine_with_columm_metadata_cache( db_parameters, user=None, password=None, account=None): """ Creates a connection with column metadata cache """ if user is not None: db_parameters['user'] = user if password is not None: db_parameters['password'] = password if account is not None: db_parameters['account'] = account from sqlalchemy.pool import NullPool from sqlalchemy import create_engine from snowflake.sqlalchemy import URL engine = create_engine(URL( user=db_parameters['user'], password=db_parameters['password'], host=db_parameters['host'], port=db_parameters['port'], database=db_parameters['database'], schema=db_parameters['schema'], account=db_parameters['account'], protocol=db_parameters['protocol'], cache_column_metadata=True, ), poolclass=NullPool) return engine def test_many_table_column_metadta(db_parameters): """ Get dozens of table metadata with column metadata cache. cache_column_metadata=True will cache all column metadata for all tables in the schema. """ engine = _get_engine_with_columm_metadata_cache(db_parameters) RE_SUFFIX_NUM = re.compile(r'.*(\d+)$') metadata = MetaData() total_objects = 10 for idx in range(total_objects): Table('mainusers' + str(idx), metadata, Column('id' + str(idx), Integer, Sequence('user_id_seq'), primary_key=True), Column('name' + str(idx), String), Column('fullname', String), Column('password', String) ) Table('mainaddresses' + str(idx), metadata, Column('id' + str(idx), Integer, Sequence('address_id_seq'), primary_key=True), Column('user_id' + str(idx), None, ForeignKey('mainusers' + str(idx) + '.id' + str(idx))), Column('email_address' + str(idx), String, nullable=False) ) metadata.create_all(engine) inspector = inspect(engine) cnt = 0 schema = inspector.default_schema_name for table_name in inspector.get_table_names(schema): m = RE_SUFFIX_NUM.match(table_name) if m: suffix = m.group(1) cs = inspector.get_columns(table_name, schema) if table_name.startswith("mainusers"): assert len(cs) == 4 assert cs[1]['name'] == 'name' + suffix cnt += 1 elif table_name.startswith("mainaddresses"): assert len(cs) == 3 assert cs[2]['name'] == 'email_address' + suffix cnt += 1 ps = inspector.get_pk_constraint(table_name, schema) if table_name.startswith("mainusers"): assert ps['constrained_columns'] == ['id' + suffix] elif table_name.startswith("mainaddresses"): assert ps['constrained_columns'] == ['id' + suffix] fs = inspector.get_foreign_keys(table_name, schema) if table_name.startswith("mainusers"): assert len(fs) == 0 elif table_name.startswith("mainaddresses"): assert len(fs) == 1 assert fs[0]['constrained_columns'] == ['user_id' + suffix] assert fs[0]['referred_table'] == 'mainusers' + suffix assert cnt == total_objects * 2, 'total number of test objects' def test_cache_time(engine_testaccount, db_parameters): """Check whether Inspector cache is working""" # Set up necessary tables metadata = MetaData() total_objects = 10 for idx in range(total_objects): Table('mainusers' + str(idx), metadata, Column('id' + str(idx), Integer, Sequence('user_id_seq'), primary_key=True), Column('name' + str(idx), String), Column('fullname', String), Column('password', String) ) Table('mainaddresses' + str(idx), metadata, Column('id' + str(idx), Integer, Sequence('address_id_seq'), primary_key=True), Column('user_id' + str(idx), None, ForeignKey('mainusers' + str(idx) + '.id' + str(idx))), Column('email_address' + str(idx), String, nullable=False) ) metadata.create_all(engine_testaccount) inspector = inspect(engine_testaccount) schema = db_parameters['schema'] def harass_inspector(): for table_name in inspector.get_table_names(schema): inspector.get_columns(table_name, schema) inspector.get_pk_constraint(table_name, schema) inspector.get_foreign_keys(table_name, schema) outcome = False # Allow up to 5 times for the speed test to pass to avoid flaky test for _ in range(5): # Python 2.7 has no timeit.timeit with globals and locals parameters s_time = time.time() harass_inspector() m_time = time.time() harass_inspector() time2 = time.time() - m_time time1 = m_time - s_time print("Ran inspector through tables twice, times:\n\tfirst: {0}\n\tsecond: {1}".format(time1, time2)) if time2 < time1 * 0.01: outcome = True break else: # Reset inspector to reset cache inspector = inspect(engine_testaccount) metadata.drop_all(engine_testaccount) assert outcome @pytest.mark.timeout(15) def test_region(): from sqlalchemy import create_engine engine = create_engine(URL( user='testuser', password='testpassword', account='testaccount', region='eu-central-1', login_timeout=5 )) try: engine.execute('select current_version()').fetchone() pytest.fail('should not run') except Exception as ex: assert ex.orig.errno == 250001 assert 'Failed to connect to DB' in ex.orig.msg assert 'testaccount.eu-central-1.snowflakecomputing.com' in ex.orig.msg @pytest.mark.timeout(15) def test_azure(): from sqlalchemy import create_engine engine = create_engine(URL( user='testuser', password='testpassword', account='testaccount', region='east-us-2.azure', login_timeout=5 )) try: engine.execute('select current_version()').fetchone() pytest.fail('should not run') except Exception as ex: assert ex.orig.errno == 250001 assert 'Failed to connect to DB' in ex.orig.msg assert 'testaccount.east-us-2.azure.snowflakecomputing.com' in \ ex.orig.msg def test_load_dialect(): """ Test loading Snowflake SQLAlchemy dialect class """ assert isinstance(dialects.registry.load('snowflake')(), dialect) @pytest.mark.parametrize('conditional_flag', [True, False]) @pytest.mark.parametrize('update_flag,insert_flag,delete_flag', [ (True, False, False), (False, True, False), (False, False, True), (False, True, True), (True, True, False)]) def test_upsert(engine_testaccount, update_flag, insert_flag, delete_flag, conditional_flag): meta = MetaData() users = Table('users', meta, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String)) onboarding_users = Table('onboarding_users', meta, Column('id', Integer, Sequence('new_user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String), Column('delete', Boolean)) meta.create_all(engine_testaccount) conn = engine_testaccount.connect() try: conn.execute(users.insert(), [ {'id': 1, 'name': 'mark', 'fullname': 'Mark Keller'}, {'id': 4, 'name': 'luke', 'fullname': 'Luke Lorimer'}, {'id': 2, 'name': 'amanda', 'fullname': 'Amanda Harris'}]) conn.execute(onboarding_users.insert(), [ {'id': 2, 'name': 'amanda', 'fullname': 'Amanda Charlotte Harris', 'delete': True}, {'id': 3, 'name': 'jim', 'fullname': 'Jim Wang', 'delete': False}, {'id': 4, 'name': 'lukas', 'fullname': 'Lukas Lorimer', 'delete': False}, {'id': 5, 'name': 'andras', 'fullname': None, 'delete': False} ]) merge = MergeInto(users, onboarding_users, users.c.id == onboarding_users.c.id) if update_flag: clause = merge.when_matched_then_update().values(name=onboarding_users.c.name, fullname=onboarding_users.c.fullname) if conditional_flag: clause.where(onboarding_users.c.name != 'amanda') if insert_flag: clause = merge.when_not_matched_then_insert().values( id=onboarding_users.c.id, name=onboarding_users.c.name, fullname=onboarding_users.c.fullname, ) if conditional_flag: clause.where(onboarding_users.c.fullname != None) # NOQA if delete_flag: clause = merge.when_matched_then_delete() if conditional_flag: clause.where(onboarding_users.c.delete == True) # NOQA conn.execute(merge) users_tuples = {tuple(row) for row in conn.execute(select([users]))} onboarding_users_tuples = {tuple(row) for row in conn.execute(select([onboarding_users]))} expected_users = { (1, 'mark', 'Mark Keller'), (2, 'amanda', 'Amanda Harris'), (4, 'luke', 'Luke Lorimer') } if update_flag: if not conditional_flag: expected_users.remove((2, 'amanda', 'Amanda Harris')) expected_users.add((2, 'amanda', 'Amanda Charlotte Harris')) expected_users.remove((4, 'luke', 'Luke Lorimer')) expected_users.add((4, 'lukas', 'Lukas Lorimer')) elif delete_flag: if not conditional_flag: expected_users.remove((4, 'luke', 'Luke Lorimer')) expected_users.remove((2, 'amanda', 'Amanda Harris')) if insert_flag: if not conditional_flag: expected_users.add((5, 'andras', None)) expected_users.add((3, 'jim', 'Jim Wang')) expected_onboarding_users = { (2, 'amanda', 'Amanda Charlotte Harris', True), (3, 'jim', 'Jim Wang', False), (4, 'lukas', 'Lukas Lorimer', False), (5, 'andras', None, False) } assert users_tuples == expected_users assert onboarding_users_tuples == expected_onboarding_users finally: conn.close() users.drop(engine_testaccount) onboarding_users.drop(engine_testaccount) def test_deterministic_merge_into(sql_compiler): meta = MetaData() users = Table('users', meta, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String)) onboarding_users = Table('onboarding_users', meta, Column('id', Integer, Sequence('new_user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String), Column('delete', Boolean)) merge = MergeInto(users, onboarding_users, users.c.id == onboarding_users.c.id) merge.when_matched_then_update().values(name=onboarding_users.c.name, fullname=onboarding_users.c.fullname) merge.when_not_matched_then_insert().values( id=onboarding_users.c.id, name=onboarding_users.c.name, fullname=onboarding_users.c.fullname, ).where(onboarding_users.c.fullname != None) # NOQA assert sql_compiler(merge) == "MERGE INTO users USING onboarding_users ON users.id = onboarding_users.id " \ "WHEN MATCHED THEN UPDATE SET fullname = onboarding_users.fullname, " \ "name = onboarding_users.name WHEN NOT MATCHED AND onboarding_users.fullname " \ "IS NOT NULL THEN INSERT (fullname, id, name) VALUES (onboarding_users.fullname, " \ "onboarding_users.id, onboarding_users.name)" def test_comments(engine_testaccount): """Tests strictly reading column comment through SQLAlchemy""" table_name = ''.join(random.choice(string.ascii_uppercase) for _ in range(5)) try: engine_testaccount.execute("create table public.{} (\"col1\" text);".format(table_name)) engine_testaccount.execute("alter table public.{} alter \"col1\" comment 'this is my comment'".format(table_name)) engine_testaccount.execute("select comment from information_schema.columns where table_name='{}'".format(table_name)).fetchall() inspector = inspect(engine_testaccount) columns = inspector.get_columns(table_name, schema='PUBLIC') assert columns[0].get('comment') == u'this is my comment' finally: engine_testaccount.execute("drop table public.{}".format(table_name)) def test_comment_sqlalchemy(db_parameters, engine_testaccount, on_public_ci): """Testing adding/reading column and table comments through SQLAlchemy""" new_schema = db_parameters['schema'] + '2' # Use same table name in 2 different schemas to make sure comment retrieval works properly table_name = ''.join(random.choice(string.ascii_uppercase) for _ in range(5)) table_comment1 = ''.join(random.choice(string.ascii_uppercase) for _ in range(10)) column_comment1 = ''.join(random.choice(string.ascii_uppercase) for _ in range(10)) table_comment2 = ''.join(random.choice(string.ascii_uppercase) for _ in range(10)) column_comment2 = ''.join(random.choice(string.ascii_uppercase) for _ in range(10)) engine2, _ = get_engine(schema=new_schema) con2 = None if not on_public_ci: con2 = engine2.connect() con2.execute("CREATE SCHEMA IF NOT EXISTS {0}".format(new_schema)) inspector = inspect(engine_testaccount) metadata1 = MetaData() metadata2 = MetaData() mytable1 = Table(table_name, metadata1, Column("tstamp", DateTime, comment=column_comment1), comment=table_comment1) mytable2 = Table(table_name, metadata2, Column("tstamp", DateTime, comment=column_comment2), comment=table_comment2) metadata1.create_all(engine_testaccount, tables=[mytable1]) if not on_public_ci: metadata2.create_all(engine2, tables=[mytable2]) try: assert inspector.get_columns(table_name)[0]['comment'] == column_comment1 assert inspector.get_table_comment(table_name)['text'] == table_comment1 if not on_public_ci: assert inspector.get_columns(table_name, schema=new_schema)[0]['comment'] == column_comment2 assert inspector.get_table_comment( table_name, schema=new_schema.upper() # Note: since did not quote schema name it was uppercase'd )['text'] == table_comment2 finally: mytable1.drop(engine_testaccount) if not on_public_ci: mytable2.drop(engine2) con2.execute("DROP SCHEMA IF EXISTS {0}".format(new_schema)) con2.close() engine2.dispose() def test_special_schema_character(db_parameters, on_public_ci): """Make sure we decode special characters correctly""" if on_public_ci: pytest.skip("Public CIs cannot create Schemas and Databases") # Constants database = "a/b/c" # "'/'.join([choice(ascii_lowercase) for _ in range(3)]) schema = "d/e/f" # '/'.join([choice(ascii_lowercase) for _ in range(3)]) # Setup options = dict(**db_parameters) conn = connect(**options) conn.cursor().execute("CREATE OR REPLACE DATABASE \"{0}\"".format(database)) conn.cursor().execute("CREATE OR REPLACE SCHEMA \"{0}\"".format(schema)) conn.close() # Test options.update({'database': '"' + database + '"', 'schema': '"' + schema + '"'}) sf_conn = connect(**options) sf_connection = [res for res in sf_conn.cursor().execute("select current_database(), " "current_schema();")] sa_conn = create_engine(URL(**options)).connect() sa_connection = [res for res in sa_conn.execute("select current_database(), " "current_schema();")] sa_conn.close() sf_conn.close() # Teardown conn = connect(**options) conn.cursor().execute("DROP DATABASE IF EXISTS \"{0}\"".format(database)) conn.close() assert [(database, schema)] == sf_connection == sa_connection def test_autoincrement(engine_testaccount): metadata = MetaData() users = Table('users', metadata, Column('uid', Integer, Sequence('id_seq'), primary_key=True), Column('name', String(39))) try: users.create(engine_testaccount) connection = engine_testaccount.connect() connection.execute(users.insert(), [{'name': 'sf1'}]) assert connection.execute(select([users])).fetchall() == [ (1, 'sf1') ] connection.execute(users.insert(), {'name': 'sf2'}, {'name': 'sf3'}) assert connection.execute(select([users])).fetchall() == [ (1, 'sf1'), (2, 'sf2'), (3, 'sf3') ] connection.execute(users.insert(), {'name': 'sf4'}) assert connection.execute(select([users])).fetchall() == [ (1, 'sf1'), (2, 'sf2'), (3, 'sf3'), (4, 'sf4') ] seq = Sequence('id_seq') nextid = connection.execute(seq) connection.execute(users.insert(), [{'uid': nextid, 'name': 'sf5'}]) assert connection.execute(select([users])).fetchall() == [ (1, 'sf1'), (2, 'sf2'), (3, 'sf3'), (4, 'sf4'), (5, 'sf5') ] finally: users.drop(engine_testaccount) def test_get_too_many_columns(engine_testaccount, db_parameters): """Check whether Inspector cache is working, when there are too many column to cache whole schema's columns""" # Set up necessary tables metadata = MetaData() total_objects = 10 for idx in range(total_objects): Table('mainuserss' + str(idx), metadata, Column('id' + str(idx), Integer, Sequence('user_id_seq'), primary_key=True), Column('name' + str(idx), String), Column('fullname', String), Column('password', String) ) Table('mainaddressess' + str(idx), metadata, Column('id' + str(idx), Integer, Sequence('address_id_seq'), primary_key=True), Column('user_id' + str(idx), None, ForeignKey('mainuserss' + str(idx) + '.id' + str(idx))), Column('email_address' + str(idx), String, nullable=False) ) metadata.create_all(engine_testaccount) inspector = inspect(engine_testaccount) schema = db_parameters['schema'] # Emulate error with patch.object(inspector.dialect, '_get_schema_columns', return_value=None) as mock_method: def harass_inspector(): for table_name in inspector.get_table_names(schema): column_metadata = inspector.get_columns(table_name, schema) inspector.get_pk_constraint(table_name, schema) inspector.get_foreign_keys(table_name, schema) assert 3 <= len(column_metadata) <= 4 # Either one of the tables should have 3 or 4 columns outcome = False # Allow up to 5 times for the speed test to pass to avoid flaky test for _ in range(5): # Python 2.7 has no timeit.timeit with globals and locals parameters s_time = time.time() harass_inspector() m_time = time.time() harass_inspector() time2 = time.time() - m_time time1 = m_time - s_time print("Ran inspector through tables twice, times:\n\tfirst: {0}\n\tsecond: {1}".format(time1, time2)) if time2 < time1 * 0.01: outcome = True break else: # Reset inspector to reset cache inspector = inspect(engine_testaccount) metadata.drop_all(engine_testaccount) assert mock_method.call_count > 0 # Make sure we actually mocked the issue happening assert outcome def test_too_many_columns_detection(engine_testaccount, db_parameters): """This tests whether a too many column error actually triggers the more granular table version""" # Set up a single table metadata = MetaData() Table('users', metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String), Column('password', String) ) metadata.create_all(engine_testaccount) inspector = inspect(engine_testaccount) # Do test original_execute = inspector.bind.execute def mock_helper(command, *args, **kwargs): if '_get_schema_columns' in command: raise ProgrammingError("Information schema query returned too much data. Please repeat query with more " "selective predicates.", 90030) else: return original_execute(command, *args, **kwargs) with patch.object(inspector.bind, 'execute', side_effect=mock_helper): column_metadata = inspector.get_columns('users', db_parameters['schema']) assert len(column_metadata) == 4 # Clean up metadata.drop_all(engine_testaccount) def test_empty_comments(engine_testaccount): """Test that no comment returns None""" table_name = ''.join(random.choice(string.ascii_uppercase) for _ in range(5)) try: engine_testaccount.execute("create table public.{} (\"col1\" text);".format(table_name)) engine_testaccount.execute("select comment from information_schema.columns where table_name='{}'".format(table_name)).fetchall() inspector = inspect(engine_testaccount) columns = inspector.get_columns(table_name, schema='PUBLIC') assert inspector.get_table_comment(table_name, schema='PUBLIC') == {'text': None} assert all([c['comment'] is None for c in columns]) finally: engine_testaccount.execute("drop table public.{}".format(table_name))
py
1a2fd9b881bcb20c6a7d72e836aff2941ba30a0c
""" ZetCode PyQt5 tutorial This example shows an icon in the titlebar of the window. Author: Jan Bodnar Website: zetcode.com Last edited: August 2017 """ import sys from PyQt5.QtWidgets import QApplication, QWidget from PyQt5.QtGui import QIcon class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 300, 220) self.setWindowTitle('Icon') self.setWindowIcon(QIcon('web.png')) self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
py
1a2fdb0ecb858371470a0abd13011cb82b8f8dc1
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import json import freezegun import pytest import update_ext_version TEST_DATETIME = "2022-03-14 01:23:45" # The build ID is calculated via: # "1" + datetime.datetime.strptime(TEST_DATETIME,"%Y-%m-%d %H:%M:%S").strftime('%j%H%M') EXPECTED_BUILD_ID = "10730123" def create_package_json(directory, version): """Create `package.json` in `directory` with a specified version of `version`.""" package_json = directory / "package.json" package_json.write_text(json.dumps({"version": version}), encoding="utf-8") return package_json def run_test(tmp_path, version, args, expected): package_json = create_package_json(tmp_path, version) update_ext_version.main(package_json, args) package = json.loads(package_json.read_text(encoding="utf-8")) assert expected == update_ext_version.parse_version(package["version"]) @pytest.mark.parametrize( "version, args", [ ("1.0.0-rc", []), ("1.1.0-rc", ["--release"]), ("1.0.0-rc", ["--release", "--build-id", "-1"]), ("1.0.0-rc", ["--release", "--for-publishing", "--build-id", "-1"]), ("1.0.0-rc", ["--release", "--for-publishing", "--build-id", "999999999999"]), ("1.1.0-rc", ["--build-id", "-1"]), ("1.1.0-rc", ["--for-publishing", "--build-id", "-1"]), ("1.1.0-rc", ["--for-publishing", "--build-id", "999999999999"]), ], ) def test_invalid_args(tmp_path, version, args): with pytest.raises(ValueError): run_test(tmp_path, version, args, None) @pytest.mark.parametrize( "version, args, expected", [ ("1.1.0-rc", ["--build-id", "12345"], ("1", "1", "12345", "rc")), ("1.0.0-rc", ["--release", "--build-id", "12345"], ("1", "0", "12345", "")), ( "1.1.0-rc", ["--for-publishing", "--build-id", "12345"], ("1", "1", "12345", ""), ), ( "1.0.0-rc", ["--release", "--for-publishing", "--build-id", "12345"], ("1", "0", "12345", ""), ), ( "1.0.0-rc", ["--release", "--build-id", "999999999999"], ("1", "0", "999999999999", ""), ), ( "1.1.0-rc", ["--build-id", "999999999999"], ("1", "1", "999999999999", "rc"), ), ("1.1.0-rc", [], ("1", "1", EXPECTED_BUILD_ID, "rc")), ( "1.0.0-rc", ["--release"], ("1", "0", "0", ""), ), ( "1.1.0-rc", ["--for-publishing"], ("1", "1", EXPECTED_BUILD_ID, ""), ), ( "1.0.0-rc", ["--release", "--for-publishing"], ("1", "0", "0", ""), ), ( "1.0.0-rc", ["--release"], ("1", "0", "0", ""), ), ( "1.1.0-rc", [], ("1", "1", EXPECTED_BUILD_ID, "rc"), ), ], ) @freezegun.freeze_time("2022-03-14 01:23:45") def test_update_ext_version(tmp_path, version, args, expected): run_test(tmp_path, version, args, expected)
py
1a2fdb91f2a3778bbd6edcb216c365f3b450590c
import simplejson as json from collections import namedtuple def json2obj(data): return json.loads(data, object_hook=_json_object_hook) def _json_object_hook(dobj): dobj['json_dict'] = dobj.copy() X = namedtuple('X', dobj.keys(), rename=True) X.remove = lambda x: None return(X(*dobj.values()))
py
1a2fdccfb072d8e8a94167ef8fee28278425beb9
from core.project.project import Project from core.graph.region_chunk import RegionChunk import numpy as np import matplotlib.pyplot as plt from skimage.segmentation import random_walker from skimage.data import binary_blobs import skimage if __name__ == '__main__': p = Project() p.load('/Users/flipajs/Documents/wd/FERDA/Cam1_') ch = p.chm[257] rch = RegionChunk(ch, p.gm, p.rm) start_vertex = ch.start_vertex() in_regions = [] for n in start_vertex.in_neighbors(): r = p.gm.region(n) in_regions.append(r) r = rch[0] r.frame() from utils.video_manager import get_auto_video_manager from skimage.morphology import skeletonize_3d import cv2 vm = get_auto_video_manager(p) # TODO: idea - label erosion before each nex iteration... from scipy.ndimage.morphology import binary_erosion whole_labels = None for r1 in rch.regions_gen(): markers = np.zeros((1000, 1000), dtype=np.int32) r1_im = np.zeros((1000, 1000), dtype=np.bool) r1_im[r1.pts()[:, 0], r1.pts()[:, 1]] = True markers[np.logical_not(r1_im)] = -1 img = vm.get_frame(r1.frame()) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for i, r in enumerate(in_regions): if whole_labels is None: im2 = np.zeros((1000, 1000), dtype=np.bool) im2[r.pts()[:, 0], r.pts()[:, 1]] = True markers[np.logical_and(r1_im, im2)] = i+1 else: l_ = whole_labels==i+1 l_ = binary_erosion(l_, iterations=5) markers[np.logical_and(r1_im, l_)] = i+1 tl = r1.roi().top_left_corner() br = r1.roi().bottom_right_corner() gray = gray[tl[0]:br[0], tl[1]:br[1]].copy() markers = markers[tl[0]:br[0], tl[1]:br[1]].copy() r1_im = r1_im[tl[0]:br[0], tl[1]:br[1]].copy() skel = skeletonize_3d(r1_im) data=np.asarray(r1_im, dtype=np.uint8)*255 labels = random_walker(gray, markers, beta=500000, mode='bf') whole_labels = np.zeros((1000, 1000), dtype=np.int32) whole_labels[tl[0]:br[0], tl[1]:br[1]] = labels.copy() # Plot results fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(8, 3.2), sharex=True, sharey=True) ax1.imshow(gray, cmap='gray', interpolation='nearest') ax1.axis('off') ax1.set_adjustable('box-forced') ax1.set_title('Noisy data') ax2.imshow(markers, cmap='hot', interpolation='nearest') ax2.axis('off') ax2.set_adjustable('box-forced') ax2.set_title('Markers') ax3.imshow(labels, cmap='hot', interpolation='nearest') ax3.axis('off') ax3.set_adjustable('box-forced') ax3.set_title('Segmentation') ax4.imshow(skel) ax4.axis('off') ax4.set_adjustable('box-forced') ax4.set_title('skeleton') fig.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show() plt.ion() plt.waitforbuttonpress() plt.close()
py
1a2fdcd2a8cab6de6db5933a0757a8beb063ac74
from typing import Optional from botocore.client import BaseClient from typing import Dict from botocore.paginate import Paginator from datetime import datetime from botocore.waiter import Waiter from typing import Union from typing import List class Client(BaseClient): def can_paginate(self, operation_name: str = None): """ Check if an operation can be paginated. :type operation_name: string :param operation_name: The operation name. This is the same name as the method name on the client. For example, if the method name is ``create_foo``, and you\'d normally invoke the operation as ``client.create_foo(**kwargs)``, if the ``create_foo`` operation can be paginated, you can use the call ``client.get_paginator(\"create_foo\")``. :return: ``True`` if the operation can be paginated, ``False`` otherwise. """ pass def create_configuration_set(self, ConfigurationSetName: str = None, TrackingOptions: Dict = None, DeliveryOptions: Dict = None, ReputationOptions: Dict = None, SendingOptions: Dict = None, Tags: List = None) -> Dict: """ Create a configuration set. *Configuration sets* are groups of rules that you can apply to the emails you send using Amazon Pinpoint. You apply a configuration set to an email by including a reference to the configuration set in the headers of the email. When you apply a configuration set to an email, all of the rules in that configuration set are applied to the email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/CreateConfigurationSet>`_ **Request Syntax** :: response = client.create_configuration_set( ConfigurationSetName='string', TrackingOptions={ 'CustomRedirectDomain': 'string' }, DeliveryOptions={ 'SendingPoolName': 'string' }, ReputationOptions={ 'ReputationMetricsEnabled': True|False, 'LastFreshStart': datetime(2015, 1, 1) }, SendingOptions={ 'SendingEnabled': True|False }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: The name of the configuration set. :type TrackingOptions: dict :param TrackingOptions: An object that defines the open and click tracking options for emails that you send using the configuration set. - **CustomRedirectDomain** *(string) --* **[REQUIRED]** The domain that you want to use for tracking open and click events. :type DeliveryOptions: dict :param DeliveryOptions: An object that defines the dedicated IP pool that is used to send emails that you send using the configuration set. - **SendingPoolName** *(string) --* The name of the dedicated IP pool that you want to associate with the configuration set. :type ReputationOptions: dict :param ReputationOptions: An object that defines whether or not Amazon Pinpoint collects reputation metrics for the emails that you send that use the configuration set. - **ReputationMetricsEnabled** *(boolean) --* If ``true`` , tracking of reputation metrics is enabled for the configuration set. If ``false`` , tracking of reputation metrics is disabled for the configuration set. - **LastFreshStart** *(datetime) --* The date and time (in Unix time) when the reputation metrics were last given a fresh start. When your account is given a fresh start, your reputation metrics are calculated starting from the date of the fresh start. :type SendingOptions: dict :param SendingOptions: An object that defines whether or not Amazon Pinpoint can send email that you send using the configuration set. - **SendingEnabled** *(boolean) --* If ``true`` , email sending is enabled for the configuration set. If ``false`` , email sending is disabled for the configuration set. :type Tags: list :param Tags: An object that defines the tags (keys and values) that you want to associate with the configuration set. - *(dict) --* An object that defines the tags that are associated with a resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for a more specific tag value. A tag value acts as a descriptor within a tag key. For example, if you have two versions of an Amazon Pinpoint project, one for internal testing and another for external use, you might assign a ``Stack`` tag key to both projects. The value of the ``Stack`` tag key might be ``Test`` for one project and ``Production`` for the other project. A tag key can contain as many as 128 characters. A tag value can contain as many as 256 characters. The characters can be Unicode letters, digits, white space, or one of the following symbols: _ . : / = + -. The following additional restrictions apply to tags: * Tag keys and values are case sensitive. * For each associated resource, each tag key must be unique and it can have only one value. * The ``aws:`` prefix is reserved for use by AWS; you can’t use it in any tag keys or values that you define. In addition, you can\'t edit or remove tag keys or values that use this prefix. Tags that use this prefix don’t count against the limit of 50 tags per resource. * You can associate tags with public or shared resources, but the tags are available only for your AWS account, not any other accounts that share the resource. In addition, the tags are available only for resources that are located in the specified AWS Region for your AWS account. - **Key** *(string) --* **[REQUIRED]** One part of a key-value pair that defines a tag. The maximum length of a tag key is 128 characters. The minimum length is 1 character. - **Value** *(string) --* **[REQUIRED]** The optional part of a key-value pair that defines a tag. The maximum length of a tag value is 256 characters. The minimum length is 0 characters. If you don’t want a resource to have a specific tag value, don’t specify a value for this parameter. Amazon Pinpoint will set the value to an empty string. :rtype: dict :returns: """ pass def create_configuration_set_event_destination(self, ConfigurationSetName: str, EventDestinationName: str, EventDestination: Dict) -> Dict: """ Create an event destination. In Amazon Pinpoint, *events* include message sends, deliveries, opens, clicks, bounces, and complaints. *Event destinations* are places that you can send information about these events to. For example, you can send event data to Amazon SNS to receive notifications when you receive bounces or complaints, or you can use Amazon Kinesis Data Firehose to stream data to Amazon S3 for long-term storage. A single configuration set can include more than one event destination. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/CreateConfigurationSetEventDestination>`_ **Request Syntax** :: response = client.create_configuration_set_event_destination( ConfigurationSetName='string', EventDestinationName='string', EventDestination={ 'Enabled': True|False, 'MatchingEventTypes': [ 'SEND'|'REJECT'|'BOUNCE'|'COMPLAINT'|'DELIVERY'|'OPEN'|'CLICK'|'RENDERING_FAILURE', ], 'KinesisFirehoseDestination': { 'IamRoleArn': 'string', 'DeliveryStreamArn': 'string' }, 'CloudWatchDestination': { 'DimensionConfigurations': [ { 'DimensionName': 'string', 'DimensionValueSource': 'MESSAGE_TAG'|'EMAIL_HEADER'|'LINK_TAG', 'DefaultDimensionValue': 'string' }, ] }, 'SnsDestination': { 'TopicArn': 'string' }, 'PinpointDestination': { 'ApplicationArn': 'string' } } ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to add an event destination to. :type EventDestinationName: string :param EventDestinationName: **[REQUIRED]** A name that identifies the event destination within the configuration set. :type EventDestination: dict :param EventDestination: **[REQUIRED]** An object that defines the event destination. - **Enabled** *(boolean) --* If ``true`` , the event destination is enabled. When the event destination is enabled, the specified event types are sent to the destinations in this ``EventDestinationDefinition`` . If ``false`` , the event destination is disabled. When the event destination is disabled, events aren\'t sent to the specified destinations. - **MatchingEventTypes** *(list) --* An array that specifies which events Amazon Pinpoint should send to the destinations in this ``EventDestinationDefinition`` . - *(string) --* An email sending event type. For example, email sends, opens, and bounces are all email events. - **KinesisFirehoseDestination** *(dict) --* An object that defines an Amazon Kinesis Data Firehose destination for email events. You can use Amazon Kinesis Data Firehose to stream data to other services, such as Amazon S3 and Amazon Redshift. - **IamRoleArn** *(string) --* **[REQUIRED]** The Amazon Resource Name (ARN) of the IAM role that Amazon Pinpoint uses when sending email events to the Amazon Kinesis Data Firehose stream. - **DeliveryStreamArn** *(string) --* **[REQUIRED]** The Amazon Resource Name (ARN) of the Amazon Kinesis Data Firehose stream that Amazon Pinpoint sends email events to. - **CloudWatchDestination** *(dict) --* An object that defines an Amazon CloudWatch destination for email events. You can use Amazon CloudWatch to monitor and gain insights on your email sending metrics. - **DimensionConfigurations** *(list) --* **[REQUIRED]** An array of objects that define the dimensions to use when you send email events to Amazon CloudWatch. - *(dict) --* An object that defines the dimension configuration to use when you send Amazon Pinpoint email events to Amazon CloudWatch. - **DimensionName** *(string) --* **[REQUIRED]** The name of an Amazon CloudWatch dimension associated with an email sending metric. The name has to meet the following criteria: * It can only contain ASCII letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **DimensionValueSource** *(string) --* **[REQUIRED]** The location where Amazon Pinpoint finds the value of a dimension to publish to Amazon CloudWatch. If you want Amazon Pinpoint to use the message tags that you specify using an X-SES-MESSAGE-TAGS header or a parameter to the SendEmail/SendRawEmail API, choose ``messageTag`` . If you want Amazon Pinpoint to use your own email headers, choose ``emailHeader`` . If you want Amazon Pinpoint to use link tags, choose ``linkTags`` . - **DefaultDimensionValue** *(string) --* **[REQUIRED]** The default value of the dimension that is published to Amazon CloudWatch if you don\'t provide the value of the dimension when you send an email. This value has to meet the following criteria: * It can only contain ASCII letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **SnsDestination** *(dict) --* An object that defines an Amazon SNS destination for email events. You can use Amazon SNS to send notification when certain email events occur. - **TopicArn** *(string) --* **[REQUIRED]** The Amazon Resource Name (ARN) of the Amazon SNS topic that you want to publish email events to. For more information about Amazon SNS topics, see the `Amazon SNS Developer Guide <https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html>`__ . - **PinpointDestination** *(dict) --* An object that defines a Amazon Pinpoint destination for email events. You can use Amazon Pinpoint events to create attributes in Amazon Pinpoint projects. You can use these attributes to create segments for your campaigns. - **ApplicationArn** *(string) --* The Amazon Resource Name (ARN) of the Amazon Pinpoint project that you want to send email events to. :rtype: dict :returns: """ pass def create_dedicated_ip_pool(self, PoolName: str, Tags: List = None) -> Dict: """ Create a new pool of dedicated IP addresses. A pool can include one or more dedicated IP addresses that are associated with your Amazon Pinpoint account. You can associate a pool with a configuration set. When you send an email that uses that configuration set, Amazon Pinpoint sends it using only the IP addresses in the associated pool. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/CreateDedicatedIpPool>`_ **Request Syntax** :: response = client.create_dedicated_ip_pool( PoolName='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type PoolName: string :param PoolName: **[REQUIRED]** The name of the dedicated IP pool. :type Tags: list :param Tags: An object that defines the tags (keys and values) that you want to associate with the pool. - *(dict) --* An object that defines the tags that are associated with a resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for a more specific tag value. A tag value acts as a descriptor within a tag key. For example, if you have two versions of an Amazon Pinpoint project, one for internal testing and another for external use, you might assign a ``Stack`` tag key to both projects. The value of the ``Stack`` tag key might be ``Test`` for one project and ``Production`` for the other project. A tag key can contain as many as 128 characters. A tag value can contain as many as 256 characters. The characters can be Unicode letters, digits, white space, or one of the following symbols: _ . : / = + -. The following additional restrictions apply to tags: * Tag keys and values are case sensitive. * For each associated resource, each tag key must be unique and it can have only one value. * The ``aws:`` prefix is reserved for use by AWS; you can’t use it in any tag keys or values that you define. In addition, you can\'t edit or remove tag keys or values that use this prefix. Tags that use this prefix don’t count against the limit of 50 tags per resource. * You can associate tags with public or shared resources, but the tags are available only for your AWS account, not any other accounts that share the resource. In addition, the tags are available only for resources that are located in the specified AWS Region for your AWS account. - **Key** *(string) --* **[REQUIRED]** One part of a key-value pair that defines a tag. The maximum length of a tag key is 128 characters. The minimum length is 1 character. - **Value** *(string) --* **[REQUIRED]** The optional part of a key-value pair that defines a tag. The maximum length of a tag value is 256 characters. The minimum length is 0 characters. If you don’t want a resource to have a specific tag value, don’t specify a value for this parameter. Amazon Pinpoint will set the value to an empty string. :rtype: dict :returns: """ pass def create_deliverability_test_report(self, FromEmailAddress: str, Content: Dict, ReportName: str = None, Tags: List = None) -> Dict: """ Create a new predictive inbox placement test. Predictive inbox placement tests can help you predict how your messages will be handled by various email providers around the world. When you perform a predictive inbox placement test, you provide a sample message that contains the content that you plan to send to your customers. Amazon Pinpoint then sends that message to special email addresses spread across several major email providers. After about 24 hours, the test is complete, and you can use the ``GetDeliverabilityTestReport`` operation to view the results of the test. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/CreateDeliverabilityTestReport>`_ **Request Syntax** :: response = client.create_deliverability_test_report( ReportName='string', FromEmailAddress='string', Content={ 'Simple': { 'Subject': { 'Data': 'string', 'Charset': 'string' }, 'Body': { 'Text': { 'Data': 'string', 'Charset': 'string' }, 'Html': { 'Data': 'string', 'Charset': 'string' } } }, 'Raw': { 'Data': b'bytes' } }, Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) **Response Syntax** :: { 'ReportId': 'string', 'DeliverabilityTestStatus': 'IN_PROGRESS'|'COMPLETED' } **Response Structure** - *(dict) --* Information about the predictive inbox placement test that you created. - **ReportId** *(string) --* A unique string that identifies the predictive inbox placement test. - **DeliverabilityTestStatus** *(string) --* The status of the predictive inbox placement test. If the status is ``IN_PROGRESS`` , then the predictive inbox placement test is currently running. Predictive inbox placement tests are usually complete within 24 hours of creating the test. If the status is ``COMPLETE`` , then the test is finished, and you can use the ``GetDeliverabilityTestReport`` to view the results of the test. :type ReportName: string :param ReportName: A unique name that helps you to identify the predictive inbox placement test when you retrieve the results. :type FromEmailAddress: string :param FromEmailAddress: **[REQUIRED]** The email address that the predictive inbox placement test email was sent from. :type Content: dict :param Content: **[REQUIRED]** The HTML body of the message that you sent when you performed the predictive inbox placement test. - **Simple** *(dict) --* The simple email message. The message consists of a subject and a message body. - **Subject** *(dict) --* **[REQUIRED]** The subject line of the email. The subject line can only contain 7-bit ASCII characters. However, you can specify non-ASCII characters in the subject line by using encoded-word syntax, as described in `RFC 2047 <https://tools.ietf.org/html/rfc2047>`__ . - **Data** *(string) --* **[REQUIRED]** The content of the message itself. - **Charset** *(string) --* The character set for the content. Because of the constraints of the SMTP protocol, Amazon Pinpoint uses 7-bit ASCII by default. If the text includes characters outside of the ASCII range, you have to specify a character set. For example, you could specify ``UTF-8`` , ``ISO-8859-1`` , or ``Shift_JIS`` . - **Body** *(dict) --* **[REQUIRED]** The body of the message. You can specify an HTML version of the message, a text-only version of the message, or both. - **Text** *(dict) --* An object that represents the version of the message that is displayed in email clients that don\'t support HTML, or clients where the recipient has disabled HTML rendering. - **Data** *(string) --* **[REQUIRED]** The content of the message itself. - **Charset** *(string) --* The character set for the content. Because of the constraints of the SMTP protocol, Amazon Pinpoint uses 7-bit ASCII by default. If the text includes characters outside of the ASCII range, you have to specify a character set. For example, you could specify ``UTF-8`` , ``ISO-8859-1`` , or ``Shift_JIS`` . - **Html** *(dict) --* An object that represents the version of the message that is displayed in email clients that support HTML. HTML messages can include formatted text, hyperlinks, images, and more. - **Data** *(string) --* **[REQUIRED]** The content of the message itself. - **Charset** *(string) --* The character set for the content. Because of the constraints of the SMTP protocol, Amazon Pinpoint uses 7-bit ASCII by default. If the text includes characters outside of the ASCII range, you have to specify a character set. For example, you could specify ``UTF-8`` , ``ISO-8859-1`` , or ``Shift_JIS`` . - **Raw** *(dict) --* The raw email message. The message has to meet the following criteria: * The message has to contain a header and a body, separated by one blank line. * All of the required header fields must be present in the message. * Each part of a multipart MIME message must be formatted properly. * If you include attachments, they must be in a file format that Amazon Pinpoint supports. * The entire message must be Base64 encoded. * If any of the MIME parts in your message contain content that is outside of the 7-bit ASCII character range, you should encode that content to ensure that recipients\' email clients render the message properly. * The length of any single line of text in the message can\'t exceed 1,000 characters. This restriction is defined in `RFC 5321 <https://tools.ietf.org/html/rfc5321>`__ . - **Data** *(bytes) --* **[REQUIRED]** The raw email message. The message has to meet the following criteria: * The message has to contain a header and a body, separated by one blank line. * All of the required header fields must be present in the message. * Each part of a multipart MIME message must be formatted properly. * Attachments must be in a file format that Amazon Pinpoint supports. * The entire message must be Base64 encoded. * If any of the MIME parts in your message contain content that is outside of the 7-bit ASCII character range, you should encode that content to ensure that recipients\' email clients render the message properly. * The length of any single line of text in the message can\'t exceed 1,000 characters. This restriction is defined in `RFC 5321 <https://tools.ietf.org/html/rfc5321>`__ . :type Tags: list :param Tags: An object that defines the tags (keys and values) that you want to associate with the predictive inbox placement test. - *(dict) --* An object that defines the tags that are associated with a resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for a more specific tag value. A tag value acts as a descriptor within a tag key. For example, if you have two versions of an Amazon Pinpoint project, one for internal testing and another for external use, you might assign a ``Stack`` tag key to both projects. The value of the ``Stack`` tag key might be ``Test`` for one project and ``Production`` for the other project. A tag key can contain as many as 128 characters. A tag value can contain as many as 256 characters. The characters can be Unicode letters, digits, white space, or one of the following symbols: _ . : / = + -. The following additional restrictions apply to tags: * Tag keys and values are case sensitive. * For each associated resource, each tag key must be unique and it can have only one value. * The ``aws:`` prefix is reserved for use by AWS; you can’t use it in any tag keys or values that you define. In addition, you can\'t edit or remove tag keys or values that use this prefix. Tags that use this prefix don’t count against the limit of 50 tags per resource. * You can associate tags with public or shared resources, but the tags are available only for your AWS account, not any other accounts that share the resource. In addition, the tags are available only for resources that are located in the specified AWS Region for your AWS account. - **Key** *(string) --* **[REQUIRED]** One part of a key-value pair that defines a tag. The maximum length of a tag key is 128 characters. The minimum length is 1 character. - **Value** *(string) --* **[REQUIRED]** The optional part of a key-value pair that defines a tag. The maximum length of a tag value is 256 characters. The minimum length is 0 characters. If you don’t want a resource to have a specific tag value, don’t specify a value for this parameter. Amazon Pinpoint will set the value to an empty string. :rtype: dict :returns: """ pass def create_email_identity(self, EmailIdentity: str, Tags: List = None) -> Dict: """ Verifies an email identity for use with Amazon Pinpoint. In Amazon Pinpoint, an identity is an email address or domain that you use when you send email. Before you can use an identity to send email with Amazon Pinpoint, you first have to verify it. By verifying an address, you demonstrate that you're the owner of the address, and that you've given Amazon Pinpoint permission to send email from the address. When you verify an email address, Amazon Pinpoint sends an email to the address. Your email address is verified as soon as you follow the link in the verification email. When you verify a domain, this operation provides a set of DKIM tokens, which you can convert into CNAME tokens. You add these CNAME tokens to the DNS configuration for your domain. Your domain is verified when Amazon Pinpoint detects these records in the DNS configuration for your domain. It usually takes around 72 hours to complete the domain verification process. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/CreateEmailIdentity>`_ **Request Syntax** :: response = client.create_email_identity( EmailIdentity='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) **Response Syntax** :: { 'IdentityType': 'EMAIL_ADDRESS'|'DOMAIN'|'MANAGED_DOMAIN', 'VerifiedForSendingStatus': True|False, 'DkimAttributes': { 'SigningEnabled': True|False, 'Status': 'PENDING'|'SUCCESS'|'FAILED'|'TEMPORARY_FAILURE'|'NOT_STARTED', 'Tokens': [ 'string', ] } } **Response Structure** - *(dict) --* If the email identity is a domain, this object contains tokens that you can use to create a set of CNAME records. To sucessfully verify your domain, you have to add these records to the DNS configuration for your domain. If the email identity is an email address, this object is empty. - **IdentityType** *(string) --* The email identity type. - **VerifiedForSendingStatus** *(boolean) --* Specifies whether or not the identity is verified. In Amazon Pinpoint, you can only send email from verified email addresses or domains. For more information about verifying identities, see the `Amazon Pinpoint User Guide <https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-email-manage-verify.html>`__ . - **DkimAttributes** *(dict) --* An object that contains information about the DKIM attributes for the identity. This object includes the tokens that you use to create the CNAME records that are required to complete the DKIM verification process. - **SigningEnabled** *(boolean) --* If the value is ``true`` , then the messages that Amazon Pinpoint sends from the identity are DKIM-signed. If the value is ``false`` , then the messages that Amazon Pinpoint sends from the identity aren't DKIM-signed. - **Status** *(string) --* Describes whether or not Amazon Pinpoint has successfully located the DKIM records in the DNS records for the domain. The status can be one of the following: * ``PENDING`` – Amazon Pinpoint hasn't yet located the DKIM records in the DNS configuration for the domain, but will continue to attempt to locate them. * ``SUCCESS`` – Amazon Pinpoint located the DKIM records in the DNS configuration for the domain and determined that they're correct. Amazon Pinpoint can now send DKIM-signed email from the identity. * ``FAILED`` – Amazon Pinpoint was unable to locate the DKIM records in the DNS settings for the domain, and won't continue to search for them. * ``TEMPORARY_FAILURE`` – A temporary issue occurred, which prevented Amazon Pinpoint from determining the DKIM status for the domain. * ``NOT_STARTED`` – Amazon Pinpoint hasn't yet started searching for the DKIM records in the DKIM records for the domain. - **Tokens** *(list) --* A set of unique strings that you use to create a set of CNAME records that you add to the DNS configuration for your domain. When Amazon Pinpoint detects these records in the DNS configuration for your domain, the DKIM authentication process is complete. Amazon Pinpoint usually detects these records within about 72 hours of adding them to the DNS configuration for your domain. - *(string) --* :type EmailIdentity: string :param EmailIdentity: **[REQUIRED]** The email address or domain that you want to verify. :type Tags: list :param Tags: An object that defines the tags (keys and values) that you want to associate with the email identity. - *(dict) --* An object that defines the tags that are associated with a resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for a more specific tag value. A tag value acts as a descriptor within a tag key. For example, if you have two versions of an Amazon Pinpoint project, one for internal testing and another for external use, you might assign a ``Stack`` tag key to both projects. The value of the ``Stack`` tag key might be ``Test`` for one project and ``Production`` for the other project. A tag key can contain as many as 128 characters. A tag value can contain as many as 256 characters. The characters can be Unicode letters, digits, white space, or one of the following symbols: _ . : / = + -. The following additional restrictions apply to tags: * Tag keys and values are case sensitive. * For each associated resource, each tag key must be unique and it can have only one value. * The ``aws:`` prefix is reserved for use by AWS; you can’t use it in any tag keys or values that you define. In addition, you can\'t edit or remove tag keys or values that use this prefix. Tags that use this prefix don’t count against the limit of 50 tags per resource. * You can associate tags with public or shared resources, but the tags are available only for your AWS account, not any other accounts that share the resource. In addition, the tags are available only for resources that are located in the specified AWS Region for your AWS account. - **Key** *(string) --* **[REQUIRED]** One part of a key-value pair that defines a tag. The maximum length of a tag key is 128 characters. The minimum length is 1 character. - **Value** *(string) --* **[REQUIRED]** The optional part of a key-value pair that defines a tag. The maximum length of a tag value is 256 characters. The minimum length is 0 characters. If you don’t want a resource to have a specific tag value, don’t specify a value for this parameter. Amazon Pinpoint will set the value to an empty string. :rtype: dict :returns: """ pass def delete_configuration_set(self, ConfigurationSetName: str) -> Dict: """ Delete an existing configuration set. In Amazon Pinpoint, *configuration sets* are groups of rules that you can apply to the emails you send. You apply a configuration set to an email by including a reference to the configuration set in the headers of the email. When you apply a configuration set to an email, all of the rules in that configuration set are applied to the email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/DeleteConfigurationSet>`_ **Request Syntax** :: response = client.delete_configuration_set( ConfigurationSetName='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to delete. :rtype: dict :returns: """ pass def delete_configuration_set_event_destination(self, ConfigurationSetName: str, EventDestinationName: str) -> Dict: """ Delete an event destination. In Amazon Pinpoint, *events* include message sends, deliveries, opens, clicks, bounces, and complaints. *Event destinations* are places that you can send information about these events to. For example, you can send event data to Amazon SNS to receive notifications when you receive bounces or complaints, or you can use Amazon Kinesis Data Firehose to stream data to Amazon S3 for long-term storage. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/DeleteConfigurationSetEventDestination>`_ **Request Syntax** :: response = client.delete_configuration_set_event_destination( ConfigurationSetName='string', EventDestinationName='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that contains the event destination that you want to delete. :type EventDestinationName: string :param EventDestinationName: **[REQUIRED]** The name of the event destination that you want to delete. :rtype: dict :returns: """ pass def delete_dedicated_ip_pool(self, PoolName: str) -> Dict: """ Delete a dedicated IP pool. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/DeleteDedicatedIpPool>`_ **Request Syntax** :: response = client.delete_dedicated_ip_pool( PoolName='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type PoolName: string :param PoolName: **[REQUIRED]** The name of the dedicated IP pool that you want to delete. :rtype: dict :returns: """ pass def delete_email_identity(self, EmailIdentity: str) -> Dict: """ Deletes an email identity that you previously verified for use with Amazon Pinpoint. An identity can be either an email address or a domain name. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/DeleteEmailIdentity>`_ **Request Syntax** :: response = client.delete_email_identity( EmailIdentity='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type EmailIdentity: string :param EmailIdentity: **[REQUIRED]** The identity (that is, the email address or domain) that you want to delete from your Amazon Pinpoint account. :rtype: dict :returns: """ pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): """ Generate a presigned url given a client, its method, and arguments :type ClientMethod: string :param ClientMethod: The client method to presign for :type Params: dict :param Params: The parameters normally passed to ``ClientMethod``. :type ExpiresIn: int :param ExpiresIn: The number of seconds the presigned url is valid for. By default it expires in an hour (3600 seconds) :type HttpMethod: string :param HttpMethod: The http method to use on the generated url. By default, the http method is whatever is used in the method\'s model. :returns: The presigned url """ pass def get_account(self) -> Dict: """ Obtain information about the email-sending status and capabilities of your Amazon Pinpoint account in the current AWS Region. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetAccount>`_ **Request Syntax** :: response = client.get_account() **Response Syntax** :: { 'SendQuota': { 'Max24HourSend': 123.0, 'MaxSendRate': 123.0, 'SentLast24Hours': 123.0 }, 'SendingEnabled': True|False, 'DedicatedIpAutoWarmupEnabled': True|False, 'EnforcementStatus': 'string', 'ProductionAccessEnabled': True|False } **Response Structure** - *(dict) --* A list of details about the email-sending capabilities of your Amazon Pinpoint account in the current AWS Region. - **SendQuota** *(dict) --* An object that contains information about the per-day and per-second sending limits for your Amazon Pinpoint account in the current AWS Region. - **Max24HourSend** *(float) --* The maximum number of emails that you can send in the current AWS Region over a 24-hour period. This value is also called your *sending quota* . - **MaxSendRate** *(float) --* The maximum number of emails that you can send per second in the current AWS Region. This value is also called your *maximum sending rate* or your *maximum TPS (transactions per second) rate* . - **SentLast24Hours** *(float) --* The number of emails sent from your Amazon Pinpoint account in the current AWS Region over the past 24 hours. - **SendingEnabled** *(boolean) --* Indicates whether or not email sending is enabled for your Amazon Pinpoint account in the current AWS Region. - **DedicatedIpAutoWarmupEnabled** *(boolean) --* Indicates whether or not the automatic warm-up feature is enabled for dedicated IP addresses that are associated with your account. - **EnforcementStatus** *(string) --* The reputation status of your Amazon Pinpoint account. The status can be one of the following: * ``HEALTHY`` – There are no reputation-related issues that currently impact your account. * ``PROBATION`` – We've identified some issues with your Amazon Pinpoint account. We're placing your account under review while you work on correcting these issues. * ``SHUTDOWN`` – Your account's ability to send email is currently paused because of an issue with the email sent from your account. When you correct the issue, you can contact us and request that your account's ability to send email is resumed. - **ProductionAccessEnabled** *(boolean) --* Indicates whether or not your account has production access in the current AWS Region. If the value is ``false`` , then your account is in the *sandbox* . When your account is in the sandbox, you can only send email to verified identities. Additionally, the maximum number of emails you can send in a 24-hour period (your sending quota) is 200, and the maximum number of emails you can send per second (your maximum sending rate) is 1. If the value is ``true`` , then your account has production access. When your account has production access, you can send email to any address. The sending quota and maximum sending rate for your account vary based on your specific use case. :rtype: dict :returns: """ pass def get_blacklist_reports(self, BlacklistItemNames: List) -> Dict: """ Retrieve a list of the blacklists that your dedicated IP addresses appear on. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetBlacklistReports>`_ **Request Syntax** :: response = client.get_blacklist_reports( BlacklistItemNames=[ 'string', ] ) **Response Syntax** :: { 'BlacklistReport': { 'string': [ { 'RblName': 'string', 'ListingTime': datetime(2015, 1, 1), 'Description': 'string' }, ] } } **Response Structure** - *(dict) --* An object that contains information about blacklist events. - **BlacklistReport** *(dict) --* An object that contains information about a blacklist that one of your dedicated IP addresses appears on. - *(string) --* An IP address that you want to obtain blacklist information for. - *(list) --* - *(dict) --* An object that contains information about a blacklisting event that impacts one of the dedicated IP addresses that is associated with your account. - **RblName** *(string) --* The name of the blacklist that the IP address appears on. - **ListingTime** *(datetime) --* The time when the blacklisting event occurred, shown in Unix time format. - **Description** *(string) --* Additional information about the blacklisting event, as provided by the blacklist maintainer. :type BlacklistItemNames: list :param BlacklistItemNames: **[REQUIRED]** A list of IP addresses that you want to retrieve blacklist information about. You can only specify the dedicated IP addresses that you use to send email using Amazon Pinpoint or Amazon SES. - *(string) --* An IP address that you want to obtain blacklist information for. :rtype: dict :returns: """ pass def get_configuration_set(self, ConfigurationSetName: str) -> Dict: """ Get information about an existing configuration set, including the dedicated IP pool that it's associated with, whether or not it's enabled for sending email, and more. In Amazon Pinpoint, *configuration sets* are groups of rules that you can apply to the emails you send. You apply a configuration set to an email by including a reference to the configuration set in the headers of the email. When you apply a configuration set to an email, all of the rules in that configuration set are applied to the email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetConfigurationSet>`_ **Request Syntax** :: response = client.get_configuration_set( ConfigurationSetName='string' ) **Response Syntax** :: { 'ConfigurationSetName': 'string', 'TrackingOptions': { 'CustomRedirectDomain': 'string' }, 'DeliveryOptions': { 'SendingPoolName': 'string' }, 'ReputationOptions': { 'ReputationMetricsEnabled': True|False, 'LastFreshStart': datetime(2015, 1, 1) }, 'SendingOptions': { 'SendingEnabled': True|False } } **Response Structure** - *(dict) --* Information about a configuration set. - **ConfigurationSetName** *(string) --* The name of the configuration set. - **TrackingOptions** *(dict) --* An object that defines the open and click tracking options for emails that you send using the configuration set. - **CustomRedirectDomain** *(string) --* The domain that you want to use for tracking open and click events. - **DeliveryOptions** *(dict) --* An object that defines the dedicated IP pool that is used to send emails that you send using the configuration set. - **SendingPoolName** *(string) --* The name of the dedicated IP pool that you want to associate with the configuration set. - **ReputationOptions** *(dict) --* An object that defines whether or not Amazon Pinpoint collects reputation metrics for the emails that you send that use the configuration set. - **ReputationMetricsEnabled** *(boolean) --* If ``true`` , tracking of reputation metrics is enabled for the configuration set. If ``false`` , tracking of reputation metrics is disabled for the configuration set. - **LastFreshStart** *(datetime) --* The date and time (in Unix time) when the reputation metrics were last given a fresh start. When your account is given a fresh start, your reputation metrics are calculated starting from the date of the fresh start. - **SendingOptions** *(dict) --* An object that defines whether or not Amazon Pinpoint can send email that you send using the configuration set. - **SendingEnabled** *(boolean) --* If ``true`` , email sending is enabled for the configuration set. If ``false`` , email sending is disabled for the configuration set. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to obtain more information about. :rtype: dict :returns: """ pass def get_configuration_set_event_destinations(self, ConfigurationSetName: str) -> Dict: """ Retrieve a list of event destinations that are associated with a configuration set. In Amazon Pinpoint, *events* include message sends, deliveries, opens, clicks, bounces, and complaints. *Event destinations* are places that you can send information about these events to. For example, you can send event data to Amazon SNS to receive notifications when you receive bounces or complaints, or you can use Amazon Kinesis Data Firehose to stream data to Amazon S3 for long-term storage. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetConfigurationSetEventDestinations>`_ **Request Syntax** :: response = client.get_configuration_set_event_destinations( ConfigurationSetName='string' ) **Response Syntax** :: { 'EventDestinations': [ { 'Name': 'string', 'Enabled': True|False, 'MatchingEventTypes': [ 'SEND'|'REJECT'|'BOUNCE'|'COMPLAINT'|'DELIVERY'|'OPEN'|'CLICK'|'RENDERING_FAILURE', ], 'KinesisFirehoseDestination': { 'IamRoleArn': 'string', 'DeliveryStreamArn': 'string' }, 'CloudWatchDestination': { 'DimensionConfigurations': [ { 'DimensionName': 'string', 'DimensionValueSource': 'MESSAGE_TAG'|'EMAIL_HEADER'|'LINK_TAG', 'DefaultDimensionValue': 'string' }, ] }, 'SnsDestination': { 'TopicArn': 'string' }, 'PinpointDestination': { 'ApplicationArn': 'string' } }, ] } **Response Structure** - *(dict) --* Information about an event destination for a configuration set. - **EventDestinations** *(list) --* An array that includes all of the events destinations that have been configured for the configuration set. - *(dict) --* In Amazon Pinpoint, *events* include message sends, deliveries, opens, clicks, bounces, and complaints. *Event destinations* are places that you can send information about these events to. For example, you can send event data to Amazon SNS to receive notifications when you receive bounces or complaints, or you can use Amazon Kinesis Data Firehose to stream data to Amazon S3 for long-term storage. - **Name** *(string) --* A name that identifies the event destination. - **Enabled** *(boolean) --* If ``true`` , the event destination is enabled. When the event destination is enabled, the specified event types are sent to the destinations in this ``EventDestinationDefinition`` . If ``false`` , the event destination is disabled. When the event destination is disabled, events aren't sent to the specified destinations. - **MatchingEventTypes** *(list) --* The types of events that Amazon Pinpoint sends to the specified event destinations. - *(string) --* An email sending event type. For example, email sends, opens, and bounces are all email events. - **KinesisFirehoseDestination** *(dict) --* An object that defines an Amazon Kinesis Data Firehose destination for email events. You can use Amazon Kinesis Data Firehose to stream data to other services, such as Amazon S3 and Amazon Redshift. - **IamRoleArn** *(string) --* The Amazon Resource Name (ARN) of the IAM role that Amazon Pinpoint uses when sending email events to the Amazon Kinesis Data Firehose stream. - **DeliveryStreamArn** *(string) --* The Amazon Resource Name (ARN) of the Amazon Kinesis Data Firehose stream that Amazon Pinpoint sends email events to. - **CloudWatchDestination** *(dict) --* An object that defines an Amazon CloudWatch destination for email events. You can use Amazon CloudWatch to monitor and gain insights on your email sending metrics. - **DimensionConfigurations** *(list) --* An array of objects that define the dimensions to use when you send email events to Amazon CloudWatch. - *(dict) --* An object that defines the dimension configuration to use when you send Amazon Pinpoint email events to Amazon CloudWatch. - **DimensionName** *(string) --* The name of an Amazon CloudWatch dimension associated with an email sending metric. The name has to meet the following criteria: * It can only contain ASCII letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **DimensionValueSource** *(string) --* The location where Amazon Pinpoint finds the value of a dimension to publish to Amazon CloudWatch. If you want Amazon Pinpoint to use the message tags that you specify using an X-SES-MESSAGE-TAGS header or a parameter to the SendEmail/SendRawEmail API, choose ``messageTag`` . If you want Amazon Pinpoint to use your own email headers, choose ``emailHeader`` . If you want Amazon Pinpoint to use link tags, choose ``linkTags`` . - **DefaultDimensionValue** *(string) --* The default value of the dimension that is published to Amazon CloudWatch if you don't provide the value of the dimension when you send an email. This value has to meet the following criteria: * It can only contain ASCII letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **SnsDestination** *(dict) --* An object that defines an Amazon SNS destination for email events. You can use Amazon SNS to send notification when certain email events occur. - **TopicArn** *(string) --* The Amazon Resource Name (ARN) of the Amazon SNS topic that you want to publish email events to. For more information about Amazon SNS topics, see the `Amazon SNS Developer Guide <https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html>`__ . - **PinpointDestination** *(dict) --* An object that defines a Amazon Pinpoint destination for email events. You can use Amazon Pinpoint events to create attributes in Amazon Pinpoint projects. You can use these attributes to create segments for your campaigns. - **ApplicationArn** *(string) --* The Amazon Resource Name (ARN) of the Amazon Pinpoint project that you want to send email events to. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that contains the event destination. :rtype: dict :returns: """ pass def get_dedicated_ip(self, Ip: str) -> Dict: """ Get information about a dedicated IP address, including the name of the dedicated IP pool that it's associated with, as well information about the automatic warm-up process for the address. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetDedicatedIp>`_ **Request Syntax** :: response = client.get_dedicated_ip( Ip='string' ) **Response Syntax** :: { 'DedicatedIp': { 'Ip': 'string', 'WarmupStatus': 'IN_PROGRESS'|'DONE', 'WarmupPercentage': 123, 'PoolName': 'string' } } **Response Structure** - *(dict) --* Information about a dedicated IP address. - **DedicatedIp** *(dict) --* An object that contains information about a dedicated IP address. - **Ip** *(string) --* An IP address that is reserved for use by your Amazon Pinpoint account. - **WarmupStatus** *(string) --* The warm-up status of a dedicated IP address. The status can have one of the following values: * ``IN_PROGRESS`` – The IP address isn't ready to use because the dedicated IP warm-up process is ongoing. * ``DONE`` – The dedicated IP warm-up process is complete, and the IP address is ready to use. - **WarmupPercentage** *(integer) --* Indicates how complete the dedicated IP warm-up process is. When this value equals 1, the address has completed the warm-up process and is ready for use. - **PoolName** *(string) --* The name of the dedicated IP pool that the IP address is associated with. :type Ip: string :param Ip: **[REQUIRED]** The IP address that you want to obtain more information about. The value you specify has to be a dedicated IP address that\'s assocaited with your Amazon Pinpoint account. :rtype: dict :returns: """ pass def get_dedicated_ips(self, PoolName: str = None, NextToken: str = None, PageSize: int = None) -> Dict: """ List the dedicated IP addresses that are associated with your Amazon Pinpoint account. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetDedicatedIps>`_ **Request Syntax** :: response = client.get_dedicated_ips( PoolName='string', NextToken='string', PageSize=123 ) **Response Syntax** :: { 'DedicatedIps': [ { 'Ip': 'string', 'WarmupStatus': 'IN_PROGRESS'|'DONE', 'WarmupPercentage': 123, 'PoolName': 'string' }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* Information about the dedicated IP addresses that are associated with your Amazon Pinpoint account. - **DedicatedIps** *(list) --* A list of dedicated IP addresses that are reserved for use by your Amazon Pinpoint account. - *(dict) --* Contains information about a dedicated IP address that is associated with your Amazon Pinpoint account. - **Ip** *(string) --* An IP address that is reserved for use by your Amazon Pinpoint account. - **WarmupStatus** *(string) --* The warm-up status of a dedicated IP address. The status can have one of the following values: * ``IN_PROGRESS`` – The IP address isn't ready to use because the dedicated IP warm-up process is ongoing. * ``DONE`` – The dedicated IP warm-up process is complete, and the IP address is ready to use. - **WarmupPercentage** *(integer) --* Indicates how complete the dedicated IP warm-up process is. When this value equals 1, the address has completed the warm-up process and is ready for use. - **PoolName** *(string) --* The name of the dedicated IP pool that the IP address is associated with. - **NextToken** *(string) --* A token that indicates that there are additional dedicated IP addresses to list. To view additional addresses, issue another request to ``GetDedicatedIps`` , passing this token in the ``NextToken`` parameter. :type PoolName: string :param PoolName: The name of the IP pool that the dedicated IP address is associated with. :type NextToken: string :param NextToken: A token returned from a previous call to ``GetDedicatedIps`` to indicate the position of the dedicated IP pool in the list of IP pools. :type PageSize: integer :param PageSize: The number of results to show in a single call to ``GetDedicatedIpsRequest`` . If the number of results is larger than the number you specified in this parameter, then the response includes a ``NextToken`` element, which you can use to obtain additional results. :rtype: dict :returns: """ pass def get_deliverability_dashboard_options(self) -> Dict: """ Show the status of the Deliverability dashboard. When the Deliverability dashboard is enabled, you gain access to reputation metrics for the domains that you use to send email using Amazon Pinpoint. You also gain the ability to perform predictive inbox placement tests. When you use the Deliverability dashboard, you pay a monthly charge of USD$1,250.00, in addition to any other fees that you accrue by using Amazon Pinpoint. If you enable the Deliverability dashboard after the first day of a calendar month, AWS prorates the monthly charge based on how many days have elapsed in the current calendar month. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetDeliverabilityDashboardOptions>`_ **Request Syntax** :: response = client.get_deliverability_dashboard_options() **Response Syntax** :: { 'DashboardEnabled': True|False } **Response Structure** - *(dict) --* An object that shows the status of the Deliverability dashboard for your Amazon Pinpoint account. - **DashboardEnabled** *(boolean) --* Indicates whether the Deliverability dashboard is enabled. If the value is ``true`` , then the dashboard is enabled. :rtype: dict :returns: """ pass def get_deliverability_test_report(self, ReportId: str) -> Dict: """ Retrieve the results of a predictive inbox placement test. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetDeliverabilityTestReport>`_ **Request Syntax** :: response = client.get_deliverability_test_report( ReportId='string' ) **Response Syntax** :: { 'DeliverabilityTestReport': { 'ReportId': 'string', 'ReportName': 'string', 'Subject': 'string', 'FromEmailAddress': 'string', 'CreateDate': datetime(2015, 1, 1), 'DeliverabilityTestStatus': 'IN_PROGRESS'|'COMPLETED' }, 'OverallPlacement': { 'InboxPercentage': 123.0, 'SpamPercentage': 123.0, 'MissingPercentage': 123.0, 'SpfPercentage': 123.0, 'DkimPercentage': 123.0 }, 'IspPlacements': [ { 'IspName': 'string', 'PlacementStatistics': { 'InboxPercentage': 123.0, 'SpamPercentage': 123.0, 'MissingPercentage': 123.0, 'SpfPercentage': 123.0, 'DkimPercentage': 123.0 } }, ], 'Message': 'string' } **Response Structure** - *(dict) --* The results of the predictive inbox placement test. - **DeliverabilityTestReport** *(dict) --* An object that contains the results of the predictive inbox placement test. - **ReportId** *(string) --* A unique string that identifies the predictive inbox placement test. - **ReportName** *(string) --* A name that helps you identify a predictive inbox placement test report. - **Subject** *(string) --* The subject line for an email that you submitted in a predictive inbox placement test. - **FromEmailAddress** *(string) --* The sender address that you specified for the predictive inbox placement test. - **CreateDate** *(datetime) --* The date and time when the predictive inbox placement test was created, in Unix time format. - **DeliverabilityTestStatus** *(string) --* The status of the predictive inbox placement test. If the status is ``IN_PROGRESS`` , then the predictive inbox placement test is currently running. Predictive inbox placement tests are usually complete within 24 hours of creating the test. If the status is ``COMPLETE`` , then the test is finished, and you can use the ``GetDeliverabilityTestReport`` to view the results of the test. - **OverallPlacement** *(dict) --* An object that specifies how many test messages that were sent during the predictive inbox placement test were delivered to recipients' inboxes, how many were sent to recipients' spam folders, and how many weren't delivered. - **InboxPercentage** *(float) --* The percentage of emails that arrived in recipients' inboxes during the predictive inbox placement test. - **SpamPercentage** *(float) --* The percentage of emails that arrived in recipients' spam or junk mail folders during the predictive inbox placement test. - **MissingPercentage** *(float) --* The percentage of emails that didn't arrive in recipients' inboxes at all during the predictive inbox placement test. - **SpfPercentage** *(float) --* The percentage of emails that were authenticated by using Sender Policy Framework (SPF) during the predictive inbox placement test. - **DkimPercentage** *(float) --* The percentage of emails that were authenticated by using DomainKeys Identified Mail (DKIM) during the predictive inbox placement test. - **IspPlacements** *(list) --* An object that describes how the test email was handled by several email providers, including Gmail, Hotmail, Yahoo, AOL, and others. - *(dict) --* An object that describes how email sent during the predictive inbox placement test was handled by a certain email provider. - **IspName** *(string) --* The name of the email provider that the inbox placement data applies to. - **PlacementStatistics** *(dict) --* An object that contains inbox placement metrics for a specific email provider. - **InboxPercentage** *(float) --* The percentage of emails that arrived in recipients' inboxes during the predictive inbox placement test. - **SpamPercentage** *(float) --* The percentage of emails that arrived in recipients' spam or junk mail folders during the predictive inbox placement test. - **MissingPercentage** *(float) --* The percentage of emails that didn't arrive in recipients' inboxes at all during the predictive inbox placement test. - **SpfPercentage** *(float) --* The percentage of emails that were authenticated by using Sender Policy Framework (SPF) during the predictive inbox placement test. - **DkimPercentage** *(float) --* The percentage of emails that were authenticated by using DomainKeys Identified Mail (DKIM) during the predictive inbox placement test. - **Message** *(string) --* An object that contains the message that you sent when you performed this predictive inbox placement test. :type ReportId: string :param ReportId: **[REQUIRED]** A unique string that identifies the predictive inbox placement test. :rtype: dict :returns: """ pass def get_domain_statistics_report(self, Domain: str, StartDate: datetime, EndDate: datetime) -> Dict: """ Retrieve inbox placement and engagement rates for the domains that you use to send email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetDomainStatisticsReport>`_ **Request Syntax** :: response = client.get_domain_statistics_report( Domain='string', StartDate=datetime(2015, 1, 1), EndDate=datetime(2015, 1, 1) ) **Response Syntax** :: { 'OverallVolume': { 'VolumeStatistics': { 'InboxRawCount': 123, 'SpamRawCount': 123, 'ProjectedInbox': 123, 'ProjectedSpam': 123 }, 'ReadRatePercent': 123.0, 'DomainIspPlacements': [ { 'IspName': 'string', 'InboxRawCount': 123, 'SpamRawCount': 123, 'InboxPercentage': 123.0, 'SpamPercentage': 123.0 }, ] }, 'DailyVolumes': [ { 'StartDate': datetime(2015, 1, 1), 'VolumeStatistics': { 'InboxRawCount': 123, 'SpamRawCount': 123, 'ProjectedInbox': 123, 'ProjectedSpam': 123 }, 'DomainIspPlacements': [ { 'IspName': 'string', 'InboxRawCount': 123, 'SpamRawCount': 123, 'InboxPercentage': 123.0, 'SpamPercentage': 123.0 }, ] }, ] } **Response Structure** - *(dict) --* An object that includes statistics that are related to the domain that you specified. - **OverallVolume** *(dict) --* An object that contains deliverability metrics for the domain that you specified. The data in this object is a summary of all of the data that was collected from the ``StartDate`` to the ``EndDate`` . - **VolumeStatistics** *(dict) --* An object that contains information about the numbers of messages that arrived in recipients' inboxes and junk mail folders. - **InboxRawCount** *(integer) --* The total number of emails that arrived in recipients' inboxes. - **SpamRawCount** *(integer) --* The total number of emails that arrived in recipients' spam or junk mail folders. - **ProjectedInbox** *(integer) --* An estimate of the percentage of emails sent from the current domain that will arrive in recipients' inboxes. - **ProjectedSpam** *(integer) --* An estimate of the percentage of emails sent from the current domain that will arrive in recipients' spam or junk mail folders. - **ReadRatePercent** *(float) --* The percentage of emails that were sent from the domain that were read by their recipients. - **DomainIspPlacements** *(list) --* An object that contains inbox and junk mail placement metrics for individual email providers. - *(dict) --* An object that contains inbox placement data for email sent from one of your email domains to a specific email provider. - **IspName** *(string) --* The name of the email provider that the inbox placement data applies to. - **InboxRawCount** *(integer) --* The total number of messages that were sent from the selected domain to the specified email provider that arrived in recipients' inboxes. - **SpamRawCount** *(integer) --* The total number of messages that were sent from the selected domain to the specified email provider that arrived in recipients' spam or junk mail folders. - **InboxPercentage** *(float) --* The percentage of messages that were sent from the selected domain to the specified email provider that arrived in recipients' inboxes. - **SpamPercentage** *(float) --* The percentage of messages that were sent from the selected domain to the specified email provider that arrived in recipients' spam or junk mail folders. - **DailyVolumes** *(list) --* An object that contains deliverability metrics for the domain that you specified. This object contains data for each day, starting on the ``StartDate`` and ending on the ``EndDate`` . - *(dict) --* An object that contains information about the volume of email sent on each day of the analysis period. - **StartDate** *(datetime) --* The date that the DailyVolume metrics apply to, in Unix time. - **VolumeStatistics** *(dict) --* An object that contains inbox placement metrics for a specific day in the analysis period. - **InboxRawCount** *(integer) --* The total number of emails that arrived in recipients' inboxes. - **SpamRawCount** *(integer) --* The total number of emails that arrived in recipients' spam or junk mail folders. - **ProjectedInbox** *(integer) --* An estimate of the percentage of emails sent from the current domain that will arrive in recipients' inboxes. - **ProjectedSpam** *(integer) --* An estimate of the percentage of emails sent from the current domain that will arrive in recipients' spam or junk mail folders. - **DomainIspPlacements** *(list) --* An object that contains inbox placement metrics for a specifid day in the analysis period, broken out by the recipient's email provider. - *(dict) --* An object that contains inbox placement data for email sent from one of your email domains to a specific email provider. - **IspName** *(string) --* The name of the email provider that the inbox placement data applies to. - **InboxRawCount** *(integer) --* The total number of messages that were sent from the selected domain to the specified email provider that arrived in recipients' inboxes. - **SpamRawCount** *(integer) --* The total number of messages that were sent from the selected domain to the specified email provider that arrived in recipients' spam or junk mail folders. - **InboxPercentage** *(float) --* The percentage of messages that were sent from the selected domain to the specified email provider that arrived in recipients' inboxes. - **SpamPercentage** *(float) --* The percentage of messages that were sent from the selected domain to the specified email provider that arrived in recipients' spam or junk mail folders. :type Domain: string :param Domain: **[REQUIRED]** The domain that you want to obtain deliverability metrics for. :type StartDate: datetime :param StartDate: **[REQUIRED]** The first day (in Unix time) that you want to obtain domain deliverability metrics for. :type EndDate: datetime :param EndDate: **[REQUIRED]** The last day (in Unix time) that you want to obtain domain deliverability metrics for. The ``EndDate`` that you specify has to be less than or equal to 30 days after the ``StartDate`` . :rtype: dict :returns: """ pass def get_email_identity(self, EmailIdentity: str) -> Dict: """ Provides information about a specific identity associated with your Amazon Pinpoint account, including the identity's verification status, its DKIM authentication status, and its custom Mail-From settings. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/GetEmailIdentity>`_ **Request Syntax** :: response = client.get_email_identity( EmailIdentity='string' ) **Response Syntax** :: { 'IdentityType': 'EMAIL_ADDRESS'|'DOMAIN'|'MANAGED_DOMAIN', 'FeedbackForwardingStatus': True|False, 'VerifiedForSendingStatus': True|False, 'DkimAttributes': { 'SigningEnabled': True|False, 'Status': 'PENDING'|'SUCCESS'|'FAILED'|'TEMPORARY_FAILURE'|'NOT_STARTED', 'Tokens': [ 'string', ] }, 'MailFromAttributes': { 'MailFromDomain': 'string', 'MailFromDomainStatus': 'PENDING'|'SUCCESS'|'FAILED'|'TEMPORARY_FAILURE', 'BehaviorOnMxFailure': 'USE_DEFAULT_VALUE'|'REJECT_MESSAGE' } } **Response Structure** - *(dict) --* Details about an email identity. - **IdentityType** *(string) --* The email identity type. - **FeedbackForwardingStatus** *(boolean) --* The feedback forwarding configuration for the identity. If the value is ``true`` , Amazon Pinpoint sends you email notifications when bounce or complaint events occur. Amazon Pinpoint sends this notification to the address that you specified in the Return-Path header of the original email. When you set this value to ``false`` , Amazon Pinpoint sends notifications through other mechanisms, such as by notifying an Amazon SNS topic or another event destination. You're required to have a method of tracking bounces and complaints. If you haven't set up another mechanism for receiving bounce or complaint notifications, Amazon Pinpoint sends an email notification when these events occur (even if this setting is disabled). - **VerifiedForSendingStatus** *(boolean) --* Specifies whether or not the identity is verified. In Amazon Pinpoint, you can only send email from verified email addresses or domains. For more information about verifying identities, see the `Amazon Pinpoint User Guide <https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-email-manage-verify.html>`__ . - **DkimAttributes** *(dict) --* An object that contains information about the DKIM attributes for the identity. This object includes the tokens that you use to create the CNAME records that are required to complete the DKIM verification process. - **SigningEnabled** *(boolean) --* If the value is ``true`` , then the messages that Amazon Pinpoint sends from the identity are DKIM-signed. If the value is ``false`` , then the messages that Amazon Pinpoint sends from the identity aren't DKIM-signed. - **Status** *(string) --* Describes whether or not Amazon Pinpoint has successfully located the DKIM records in the DNS records for the domain. The status can be one of the following: * ``PENDING`` – Amazon Pinpoint hasn't yet located the DKIM records in the DNS configuration for the domain, but will continue to attempt to locate them. * ``SUCCESS`` – Amazon Pinpoint located the DKIM records in the DNS configuration for the domain and determined that they're correct. Amazon Pinpoint can now send DKIM-signed email from the identity. * ``FAILED`` – Amazon Pinpoint was unable to locate the DKIM records in the DNS settings for the domain, and won't continue to search for them. * ``TEMPORARY_FAILURE`` – A temporary issue occurred, which prevented Amazon Pinpoint from determining the DKIM status for the domain. * ``NOT_STARTED`` – Amazon Pinpoint hasn't yet started searching for the DKIM records in the DKIM records for the domain. - **Tokens** *(list) --* A set of unique strings that you use to create a set of CNAME records that you add to the DNS configuration for your domain. When Amazon Pinpoint detects these records in the DNS configuration for your domain, the DKIM authentication process is complete. Amazon Pinpoint usually detects these records within about 72 hours of adding them to the DNS configuration for your domain. - *(string) --* - **MailFromAttributes** *(dict) --* An object that contains information about the Mail-From attributes for the email identity. - **MailFromDomain** *(string) --* The name of a domain that an email identity uses as a custom MAIL FROM domain. - **MailFromDomainStatus** *(string) --* The status of the MAIL FROM domain. This status can have the following values: * ``PENDING`` – Amazon Pinpoint hasn't started searching for the MX record yet. * ``SUCCESS`` – Amazon Pinpoint detected the required MX record for the MAIL FROM domain. * ``FAILED`` – Amazon Pinpoint can't find the required MX record, or the record no longer exists. * ``TEMPORARY_FAILURE`` – A temporary issue occurred, which prevented Amazon Pinpoint from determining the status of the MAIL FROM domain. - **BehaviorOnMxFailure** *(string) --* The action that Amazon Pinpoint to takes if it can't read the required MX record for a custom MAIL FROM domain. When you set this value to ``UseDefaultValue`` , Amazon Pinpoint uses *amazonses.com* as the MAIL FROM domain. When you set this value to ``RejectMessage`` , Amazon Pinpoint returns a ``MailFromDomainNotVerified`` error, and doesn't attempt to deliver the email. These behaviors are taken when the custom MAIL FROM domain configuration is in the ``Pending`` , ``Failed`` , and ``TemporaryFailure`` states. :type EmailIdentity: string :param EmailIdentity: **[REQUIRED]** The email identity that you want to retrieve details for. :rtype: dict :returns: """ pass def get_paginator(self, operation_name: str = None) -> Paginator: """ Create a paginator for an operation. :type operation_name: string :param operation_name: The operation name. This is the same name as the method name on the client. For example, if the method name is ``create_foo``, and you\'d normally invoke the operation as ``client.create_foo(**kwargs)``, if the ``create_foo`` operation can be paginated, you can use the call ``client.get_paginator(\"create_foo\")``. :raise OperationNotPageableError: Raised if the operation is not pageable. You can use the ``client.can_paginate`` method to check if an operation is pageable. :rtype: L{botocore.paginate.Paginator} :return: A paginator object. """ pass def get_waiter(self, waiter_name: str = None) -> Waiter: """ Returns an object that can wait for some condition. :type waiter_name: str :param waiter_name: The name of the waiter to get. See the waiters section of the service docs for a list of available waiters. :returns: The specified waiter object. :rtype: botocore.waiter.Waiter """ pass def list_configuration_sets(self, NextToken: str = None, PageSize: int = None) -> Dict: """ List all of the configuration sets associated with your Amazon Pinpoint account in the current region. In Amazon Pinpoint, *configuration sets* are groups of rules that you can apply to the emails you send. You apply a configuration set to an email by including a reference to the configuration set in the headers of the email. When you apply a configuration set to an email, all of the rules in that configuration set are applied to the email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/ListConfigurationSets>`_ **Request Syntax** :: response = client.list_configuration_sets( NextToken='string', PageSize=123 ) **Response Syntax** :: { 'ConfigurationSets': [ 'string', ], 'NextToken': 'string' } **Response Structure** - *(dict) --* A list of configuration sets in your Amazon Pinpoint account in the current AWS Region. - **ConfigurationSets** *(list) --* An array that contains all of the configuration sets in your Amazon Pinpoint account in the current AWS Region. - *(string) --* The name of a configuration set. In Amazon Pinpoint, *configuration sets* are groups of rules that you can apply to the emails you send. You apply a configuration set to an email by including a reference to the configuration set in the headers of the email. When you apply a configuration set to an email, all of the rules in that configuration set are applied to the email. - **NextToken** *(string) --* A token that indicates that there are additional configuration sets to list. To view additional configuration sets, issue another request to ``ListConfigurationSets`` , and pass this token in the ``NextToken`` parameter. :type NextToken: string :param NextToken: A token returned from a previous call to ``ListConfigurationSets`` to indicate the position in the list of configuration sets. :type PageSize: integer :param PageSize: The number of results to show in a single call to ``ListConfigurationSets`` . If the number of results is larger than the number you specified in this parameter, then the response includes a ``NextToken`` element, which you can use to obtain additional results. :rtype: dict :returns: """ pass def list_dedicated_ip_pools(self, NextToken: str = None, PageSize: int = None) -> Dict: """ List all of the dedicated IP pools that exist in your Amazon Pinpoint account in the current AWS Region. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/ListDedicatedIpPools>`_ **Request Syntax** :: response = client.list_dedicated_ip_pools( NextToken='string', PageSize=123 ) **Response Syntax** :: { 'DedicatedIpPools': [ 'string', ], 'NextToken': 'string' } **Response Structure** - *(dict) --* A list of dedicated IP pools. - **DedicatedIpPools** *(list) --* A list of all of the dedicated IP pools that are associated with your Amazon Pinpoint account. - *(string) --* The name of a dedicated IP pool. - **NextToken** *(string) --* A token that indicates that there are additional IP pools to list. To view additional IP pools, issue another request to ``ListDedicatedIpPools`` , passing this token in the ``NextToken`` parameter. :type NextToken: string :param NextToken: A token returned from a previous call to ``ListDedicatedIpPools`` to indicate the position in the list of dedicated IP pools. :type PageSize: integer :param PageSize: The number of results to show in a single call to ``ListDedicatedIpPools`` . If the number of results is larger than the number you specified in this parameter, then the response includes a ``NextToken`` element, which you can use to obtain additional results. :rtype: dict :returns: """ pass def list_deliverability_test_reports(self, NextToken: str = None, PageSize: int = None) -> Dict: """ Show a list of the predictive inbox placement tests that you've performed, regardless of their statuses. For predictive inbox placement tests that are complete, you can use the ``GetDeliverabilityTestReport`` operation to view the results. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/ListDeliverabilityTestReports>`_ **Request Syntax** :: response = client.list_deliverability_test_reports( NextToken='string', PageSize=123 ) **Response Syntax** :: { 'DeliverabilityTestReports': [ { 'ReportId': 'string', 'ReportName': 'string', 'Subject': 'string', 'FromEmailAddress': 'string', 'CreateDate': datetime(2015, 1, 1), 'DeliverabilityTestStatus': 'IN_PROGRESS'|'COMPLETED' }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* A list of the predictive inbox placement test reports that are available for your account, regardless of whether or not those tests are complete. - **DeliverabilityTestReports** *(list) --* An object that contains a lists of predictive inbox placement tests that you've performed. - *(dict) --* An object that contains metadata related to a predictive inbox placement test. - **ReportId** *(string) --* A unique string that identifies the predictive inbox placement test. - **ReportName** *(string) --* A name that helps you identify a predictive inbox placement test report. - **Subject** *(string) --* The subject line for an email that you submitted in a predictive inbox placement test. - **FromEmailAddress** *(string) --* The sender address that you specified for the predictive inbox placement test. - **CreateDate** *(datetime) --* The date and time when the predictive inbox placement test was created, in Unix time format. - **DeliverabilityTestStatus** *(string) --* The status of the predictive inbox placement test. If the status is ``IN_PROGRESS`` , then the predictive inbox placement test is currently running. Predictive inbox placement tests are usually complete within 24 hours of creating the test. If the status is ``COMPLETE`` , then the test is finished, and you can use the ``GetDeliverabilityTestReport`` to view the results of the test. - **NextToken** *(string) --* A token that indicates that there are additional predictive inbox placement tests to list. To view additional predictive inbox placement tests, issue another request to ``ListDeliverabilityTestReports`` , and pass this token in the ``NextToken`` parameter. :type NextToken: string :param NextToken: A token returned from a previous call to ``ListDeliverabilityTestReports`` to indicate the position in the list of predictive inbox placement tests. :type PageSize: integer :param PageSize: The number of results to show in a single call to ``ListDeliverabilityTestReports`` . If the number of results is larger than the number you specified in this parameter, then the response includes a ``NextToken`` element, which you can use to obtain additional results. The value you specify has to be at least 0, and can be no more than 1000. :rtype: dict :returns: """ pass def list_email_identities(self, NextToken: str = None, PageSize: int = None) -> Dict: """ Returns a list of all of the email identities that are associated with your Amazon Pinpoint account. An identity can be either an email address or a domain. This operation returns identities that are verified as well as those that aren't. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/ListEmailIdentities>`_ **Request Syntax** :: response = client.list_email_identities( NextToken='string', PageSize=123 ) **Response Syntax** :: { 'EmailIdentities': [ { 'IdentityType': 'EMAIL_ADDRESS'|'DOMAIN'|'MANAGED_DOMAIN', 'IdentityName': 'string', 'SendingEnabled': True|False }, ], 'NextToken': 'string' } **Response Structure** - *(dict) --* A list of all of the identities that you've attempted to verify for use with Amazon Pinpoint, regardless of whether or not those identities were successfully verified. - **EmailIdentities** *(list) --* An array that includes all of the identities associated with your Amazon Pinpoint account. - *(dict) --* Information about an email identity. - **IdentityType** *(string) --* The email identity type. The identity type can be one of the following: * ``EMAIL_ADDRESS`` – The identity is an email address. * ``DOMAIN`` – The identity is a domain. * ``MANAGED_DOMAIN`` – The identity is a domain that is managed by AWS. - **IdentityName** *(string) --* The address or domain of the identity. - **SendingEnabled** *(boolean) --* Indicates whether or not you can send email from the identity. In Amazon Pinpoint, an identity is an email address or domain that you send email from. Before you can send email from an identity, you have to demostrate that you own the identity, and that you authorize Amazon Pinpoint to send email from that identity. - **NextToken** *(string) --* A token that indicates that there are additional configuration sets to list. To view additional configuration sets, issue another request to ``ListEmailIdentities`` , and pass this token in the ``NextToken`` parameter. :type NextToken: string :param NextToken: A token returned from a previous call to ``ListEmailIdentities`` to indicate the position in the list of identities. :type PageSize: integer :param PageSize: The number of results to show in a single call to ``ListEmailIdentities`` . If the number of results is larger than the number you specified in this parameter, then the response includes a ``NextToken`` element, which you can use to obtain additional results. The value you specify has to be at least 0, and can be no more than 1000. :rtype: dict :returns: """ pass def list_tags_for_resource(self, ResourceArn: str) -> Dict: """ Retrieve a list of the tags (keys and values) that are associated with a specific resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Each tag consists of a required *tag key* and an optional associated *tag value* . A tag key is a general label that acts as a category for more specific tag values. A tag value acts as a descriptor within a tag key. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/ListTagsForResource>`_ **Request Syntax** :: response = client.list_tags_for_resource( ResourceArn='string' ) **Response Syntax** :: { 'Tags': [ { 'Key': 'string', 'Value': 'string' }, ] } **Response Structure** - *(dict) --* - **Tags** *(list) --* An array that lists all the tags that are associated with the resource. Each tag consists of a required tag key (``Key`` ) and an associated tag value (``Value`` ) - *(dict) --* An object that defines the tags that are associated with a resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for a more specific tag value. A tag value acts as a descriptor within a tag key. For example, if you have two versions of an Amazon Pinpoint project, one for internal testing and another for external use, you might assign a ``Stack`` tag key to both projects. The value of the ``Stack`` tag key might be ``Test`` for one project and ``Production`` for the other project. A tag key can contain as many as 128 characters. A tag value can contain as many as 256 characters. The characters can be Unicode letters, digits, white space, or one of the following symbols: _ . : / = + -. The following additional restrictions apply to tags: * Tag keys and values are case sensitive. * For each associated resource, each tag key must be unique and it can have only one value. * The ``aws:`` prefix is reserved for use by AWS; you can’t use it in any tag keys or values that you define. In addition, you can't edit or remove tag keys or values that use this prefix. Tags that use this prefix don’t count against the limit of 50 tags per resource. * You can associate tags with public or shared resources, but the tags are available only for your AWS account, not any other accounts that share the resource. In addition, the tags are available only for resources that are located in the specified AWS Region for your AWS account. - **Key** *(string) --* One part of a key-value pair that defines a tag. The maximum length of a tag key is 128 characters. The minimum length is 1 character. - **Value** *(string) --* The optional part of a key-value pair that defines a tag. The maximum length of a tag value is 256 characters. The minimum length is 0 characters. If you don’t want a resource to have a specific tag value, don’t specify a value for this parameter. Amazon Pinpoint will set the value to an empty string. :type ResourceArn: string :param ResourceArn: **[REQUIRED]** The Amazon Resource Name (ARN) of the resource that you want to retrieve tag information for. :rtype: dict :returns: """ pass def put_account_dedicated_ip_warmup_attributes(self, AutoWarmupEnabled: bool = None) -> Dict: """ Enable or disable the automatic warm-up feature for dedicated IP addresses. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutAccountDedicatedIpWarmupAttributes>`_ **Request Syntax** :: response = client.put_account_dedicated_ip_warmup_attributes( AutoWarmupEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type AutoWarmupEnabled: boolean :param AutoWarmupEnabled: Enables or disables the automatic warm-up feature for dedicated IP addresses that are associated with your Amazon Pinpoint account in the current AWS Region. Set to ``true`` to enable the automatic warm-up feature, or set to ``false`` to disable it. :rtype: dict :returns: """ pass def put_account_sending_attributes(self, SendingEnabled: bool = None) -> Dict: """ Enable or disable the ability of your account to send email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutAccountSendingAttributes>`_ **Request Syntax** :: response = client.put_account_sending_attributes( SendingEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type SendingEnabled: boolean :param SendingEnabled: Enables or disables your account\'s ability to send email. Set to ``true`` to enable email sending, or set to ``false`` to disable email sending. .. note:: If AWS paused your account\'s ability to send email, you can\'t use this operation to resume your account\'s ability to send email. :rtype: dict :returns: """ pass def put_configuration_set_delivery_options(self, ConfigurationSetName: str, SendingPoolName: str = None) -> Dict: """ Associate a configuration set with a dedicated IP pool. You can use dedicated IP pools to create groups of dedicated IP addresses for sending specific types of email. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutConfigurationSetDeliveryOptions>`_ **Request Syntax** :: response = client.put_configuration_set_delivery_options( ConfigurationSetName='string', SendingPoolName='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to associate with a dedicated IP pool. :type SendingPoolName: string :param SendingPoolName: The name of the dedicated IP pool that you want to associate with the configuration set. :rtype: dict :returns: """ pass def put_configuration_set_reputation_options(self, ConfigurationSetName: str, ReputationMetricsEnabled: bool = None) -> Dict: """ Enable or disable collection of reputation metrics for emails that you send using a particular configuration set in a specific AWS Region. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutConfigurationSetReputationOptions>`_ **Request Syntax** :: response = client.put_configuration_set_reputation_options( ConfigurationSetName='string', ReputationMetricsEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to enable or disable reputation metric tracking for. :type ReputationMetricsEnabled: boolean :param ReputationMetricsEnabled: If ``true`` , tracking of reputation metrics is enabled for the configuration set. If ``false`` , tracking of reputation metrics is disabled for the configuration set. :rtype: dict :returns: """ pass def put_configuration_set_sending_options(self, ConfigurationSetName: str, SendingEnabled: bool = None) -> Dict: """ Enable or disable email sending for messages that use a particular configuration set in a specific AWS Region. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutConfigurationSetSendingOptions>`_ **Request Syntax** :: response = client.put_configuration_set_sending_options( ConfigurationSetName='string', SendingEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to enable or disable email sending for. :type SendingEnabled: boolean :param SendingEnabled: If ``true`` , email sending is enabled for the configuration set. If ``false`` , email sending is disabled for the configuration set. :rtype: dict :returns: """ pass def put_configuration_set_tracking_options(self, ConfigurationSetName: str, CustomRedirectDomain: str = None) -> Dict: """ Specify a custom domain to use for open and click tracking elements in email that you send using Amazon Pinpoint. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutConfigurationSetTrackingOptions>`_ **Request Syntax** :: response = client.put_configuration_set_tracking_options( ConfigurationSetName='string', CustomRedirectDomain='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that you want to add a custom tracking domain to. :type CustomRedirectDomain: string :param CustomRedirectDomain: The domain that you want to use to track open and click events. :rtype: dict :returns: """ pass def put_dedicated_ip_in_pool(self, Ip: str, DestinationPoolName: str) -> Dict: """ Move a dedicated IP address to an existing dedicated IP pool. .. note:: The dedicated IP address that you specify must already exist, and must be associated with your Amazon Pinpoint account. The dedicated IP pool you specify must already exist. You can create a new pool by using the ``CreateDedicatedIpPool`` operation. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutDedicatedIpInPool>`_ **Request Syntax** :: response = client.put_dedicated_ip_in_pool( Ip='string', DestinationPoolName='string' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type Ip: string :param Ip: **[REQUIRED]** The IP address that you want to move to the dedicated IP pool. The value you specify has to be a dedicated IP address that\'s associated with your Amazon Pinpoint account. :type DestinationPoolName: string :param DestinationPoolName: **[REQUIRED]** The name of the IP pool that you want to add the dedicated IP address to. You have to specify an IP pool that already exists. :rtype: dict :returns: """ pass def put_dedicated_ip_warmup_attributes(self, Ip: str, WarmupPercentage: int) -> Dict: """ See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutDedicatedIpWarmupAttributes>`_ **Request Syntax** :: response = client.put_dedicated_ip_warmup_attributes( Ip='string', WarmupPercentage=123 ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type Ip: string :param Ip: **[REQUIRED]** The dedicated IP address that you want to update the warm-up attributes for. :type WarmupPercentage: integer :param WarmupPercentage: **[REQUIRED]** The warm-up percentage that you want to associate with the dedicated IP address. :rtype: dict :returns: """ pass def put_deliverability_dashboard_option(self, DashboardEnabled: bool) -> Dict: """ Enable or disable the Deliverability dashboard. When you enable the Deliverability dashboard, you gain access to reputation metrics for the domains that you use to send email using Amazon Pinpoint. You also gain the ability to perform predictive inbox placement tests. When you use the Deliverability dashboard, you pay a monthly charge of USD$1,250.00, in addition to any other fees that you accrue by using Amazon Pinpoint. If you enable the Deliverability dashboard after the first day of a calendar month, we prorate the monthly charge based on how many days have elapsed in the current calendar month. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutDeliverabilityDashboardOption>`_ **Request Syntax** :: response = client.put_deliverability_dashboard_option( DashboardEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* A response that indicates whether the Deliverability dashboard is enabled for your Amazon Pinpoint account. :type DashboardEnabled: boolean :param DashboardEnabled: **[REQUIRED]** Indicates whether the Deliverability dashboard is enabled. If the value is ``true`` , then the dashboard is enabled. :rtype: dict :returns: """ pass def put_email_identity_dkim_attributes(self, EmailIdentity: str, SigningEnabled: bool = None) -> Dict: """ Used to enable or disable DKIM authentication for an email identity. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutEmailIdentityDkimAttributes>`_ **Request Syntax** :: response = client.put_email_identity_dkim_attributes( EmailIdentity='string', SigningEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type EmailIdentity: string :param EmailIdentity: **[REQUIRED]** The email identity that you want to change the DKIM settings for. :type SigningEnabled: boolean :param SigningEnabled: Sets the DKIM signing configuration for the identity. When you set this value ``true`` , then the messages that Amazon Pinpoint sends from the identity are DKIM-signed. When you set this value to ``false`` , then the messages that Amazon Pinpoint sends from the identity aren\'t DKIM-signed. :rtype: dict :returns: """ pass def put_email_identity_feedback_attributes(self, EmailIdentity: str, EmailForwardingEnabled: bool = None) -> Dict: """ Used to enable or disable feedback forwarding for an identity. This setting determines what happens when an identity is used to send an email that results in a bounce or complaint event. When you enable feedback forwarding, Amazon Pinpoint sends you email notifications when bounce or complaint events occur. Amazon Pinpoint sends this notification to the address that you specified in the Return-Path header of the original email. When you disable feedback forwarding, Amazon Pinpoint sends notifications through other mechanisms, such as by notifying an Amazon SNS topic. You're required to have a method of tracking bounces and complaints. If you haven't set up another mechanism for receiving bounce or complaint notifications, Amazon Pinpoint sends an email notification when these events occur (even if this setting is disabled). See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutEmailIdentityFeedbackAttributes>`_ **Request Syntax** :: response = client.put_email_identity_feedback_attributes( EmailIdentity='string', EmailForwardingEnabled=True|False ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type EmailIdentity: string :param EmailIdentity: **[REQUIRED]** The email identity that you want to configure bounce and complaint feedback forwarding for. :type EmailForwardingEnabled: boolean :param EmailForwardingEnabled: Sets the feedback forwarding configuration for the identity. If the value is ``true`` , Amazon Pinpoint sends you email notifications when bounce or complaint events occur. Amazon Pinpoint sends this notification to the address that you specified in the Return-Path header of the original email. When you set this value to ``false`` , Amazon Pinpoint sends notifications through other mechanisms, such as by notifying an Amazon SNS topic or another event destination. You\'re required to have a method of tracking bounces and complaints. If you haven\'t set up another mechanism for receiving bounce or complaint notifications, Amazon Pinpoint sends an email notification when these events occur (even if this setting is disabled). :rtype: dict :returns: """ pass def put_email_identity_mail_from_attributes(self, EmailIdentity: str, MailFromDomain: str = None, BehaviorOnMxFailure: str = None) -> Dict: """ Used to enable or disable the custom Mail-From domain configuration for an email identity. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/PutEmailIdentityMailFromAttributes>`_ **Request Syntax** :: response = client.put_email_identity_mail_from_attributes( EmailIdentity='string', MailFromDomain='string', BehaviorOnMxFailure='USE_DEFAULT_VALUE'|'REJECT_MESSAGE' ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type EmailIdentity: string :param EmailIdentity: **[REQUIRED]** The verified email identity that you want to set up the custom MAIL FROM domain for. :type MailFromDomain: string :param MailFromDomain: The custom MAIL FROM domain that you want the verified identity to use. The MAIL FROM domain must meet the following criteria: * It has to be a subdomain of the verified identity. * It can\'t be used to receive email. * It can\'t be used in a \"From\" address if the MAIL FROM domain is a destination for feedback forwarding emails. :type BehaviorOnMxFailure: string :param BehaviorOnMxFailure: The action that you want Amazon Pinpoint to take if it can\'t read the required MX record when you send an email. When you set this value to ``UseDefaultValue`` , Amazon Pinpoint uses *amazonses.com* as the MAIL FROM domain. When you set this value to ``RejectMessage`` , Amazon Pinpoint returns a ``MailFromDomainNotVerified`` error, and doesn\'t attempt to deliver the email. These behaviors are taken when the custom MAIL FROM domain configuration is in the ``Pending`` , ``Failed`` , and ``TemporaryFailure`` states. :rtype: dict :returns: """ pass def send_email(self, Destination: Dict, Content: Dict, FromEmailAddress: str = None, ReplyToAddresses: List = None, FeedbackForwardingEmailAddress: str = None, EmailTags: List = None, ConfigurationSetName: str = None) -> Dict: """ Sends an email message. You can use the Amazon Pinpoint Email API to send two types of messages: * **Simple** – A standard email message. When you create this type of message, you specify the sender, the recipient, and the message body, and Amazon Pinpoint assembles the message for you. * **Raw** – A raw, MIME-formatted email message. When you send this type of email, you have to specify all of the message headers, as well as the message body. You can use this message type to send messages that contain attachments. The message that you specify has to be a valid MIME message. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/SendEmail>`_ **Request Syntax** :: response = client.send_email( FromEmailAddress='string', Destination={ 'ToAddresses': [ 'string', ], 'CcAddresses': [ 'string', ], 'BccAddresses': [ 'string', ] }, ReplyToAddresses=[ 'string', ], FeedbackForwardingEmailAddress='string', Content={ 'Simple': { 'Subject': { 'Data': 'string', 'Charset': 'string' }, 'Body': { 'Text': { 'Data': 'string', 'Charset': 'string' }, 'Html': { 'Data': 'string', 'Charset': 'string' } } }, 'Raw': { 'Data': b'bytes' } }, EmailTags=[ { 'Name': 'string', 'Value': 'string' }, ], ConfigurationSetName='string' ) **Response Syntax** :: { 'MessageId': 'string' } **Response Structure** - *(dict) --* A unique message ID that you receive when Amazon Pinpoint accepts an email for sending. - **MessageId** *(string) --* A unique identifier for the message that is generated when Amazon Pinpoint accepts the message. .. note:: It is possible for Amazon Pinpoint to accept a message without sending it. This can happen when the message you're trying to send has an attachment doesn't pass a virus check, or when you send a templated email that contains invalid personalization content, for example. :type FromEmailAddress: string :param FromEmailAddress: The email address that you want to use as the \"From\" address for the email. The address that you specify has to be verified. :type Destination: dict :param Destination: **[REQUIRED]** An object that contains the recipients of the email message. - **ToAddresses** *(list) --* An array that contains the email addresses of the \"To\" recipients for the email. - *(string) --* - **CcAddresses** *(list) --* An array that contains the email addresses of the \"CC\" (carbon copy) recipients for the email. - *(string) --* - **BccAddresses** *(list) --* An array that contains the email addresses of the \"BCC\" (blind carbon copy) recipients for the email. - *(string) --* :type ReplyToAddresses: list :param ReplyToAddresses: The \"Reply-to\" email addresses for the message. When the recipient replies to the message, each Reply-to address receives the reply. - *(string) --* :type FeedbackForwardingEmailAddress: string :param FeedbackForwardingEmailAddress: The address that Amazon Pinpoint should send bounce and complaint notifications to. :type Content: dict :param Content: **[REQUIRED]** An object that contains the body of the message. You can send either a Simple message or a Raw message. - **Simple** *(dict) --* The simple email message. The message consists of a subject and a message body. - **Subject** *(dict) --* **[REQUIRED]** The subject line of the email. The subject line can only contain 7-bit ASCII characters. However, you can specify non-ASCII characters in the subject line by using encoded-word syntax, as described in `RFC 2047 <https://tools.ietf.org/html/rfc2047>`__ . - **Data** *(string) --* **[REQUIRED]** The content of the message itself. - **Charset** *(string) --* The character set for the content. Because of the constraints of the SMTP protocol, Amazon Pinpoint uses 7-bit ASCII by default. If the text includes characters outside of the ASCII range, you have to specify a character set. For example, you could specify ``UTF-8`` , ``ISO-8859-1`` , or ``Shift_JIS`` . - **Body** *(dict) --* **[REQUIRED]** The body of the message. You can specify an HTML version of the message, a text-only version of the message, or both. - **Text** *(dict) --* An object that represents the version of the message that is displayed in email clients that don\'t support HTML, or clients where the recipient has disabled HTML rendering. - **Data** *(string) --* **[REQUIRED]** The content of the message itself. - **Charset** *(string) --* The character set for the content. Because of the constraints of the SMTP protocol, Amazon Pinpoint uses 7-bit ASCII by default. If the text includes characters outside of the ASCII range, you have to specify a character set. For example, you could specify ``UTF-8`` , ``ISO-8859-1`` , or ``Shift_JIS`` . - **Html** *(dict) --* An object that represents the version of the message that is displayed in email clients that support HTML. HTML messages can include formatted text, hyperlinks, images, and more. - **Data** *(string) --* **[REQUIRED]** The content of the message itself. - **Charset** *(string) --* The character set for the content. Because of the constraints of the SMTP protocol, Amazon Pinpoint uses 7-bit ASCII by default. If the text includes characters outside of the ASCII range, you have to specify a character set. For example, you could specify ``UTF-8`` , ``ISO-8859-1`` , or ``Shift_JIS`` . - **Raw** *(dict) --* The raw email message. The message has to meet the following criteria: * The message has to contain a header and a body, separated by one blank line. * All of the required header fields must be present in the message. * Each part of a multipart MIME message must be formatted properly. * If you include attachments, they must be in a file format that Amazon Pinpoint supports. * The entire message must be Base64 encoded. * If any of the MIME parts in your message contain content that is outside of the 7-bit ASCII character range, you should encode that content to ensure that recipients\' email clients render the message properly. * The length of any single line of text in the message can\'t exceed 1,000 characters. This restriction is defined in `RFC 5321 <https://tools.ietf.org/html/rfc5321>`__ . - **Data** *(bytes) --* **[REQUIRED]** The raw email message. The message has to meet the following criteria: * The message has to contain a header and a body, separated by one blank line. * All of the required header fields must be present in the message. * Each part of a multipart MIME message must be formatted properly. * Attachments must be in a file format that Amazon Pinpoint supports. * The entire message must be Base64 encoded. * If any of the MIME parts in your message contain content that is outside of the 7-bit ASCII character range, you should encode that content to ensure that recipients\' email clients render the message properly. * The length of any single line of text in the message can\'t exceed 1,000 characters. This restriction is defined in `RFC 5321 <https://tools.ietf.org/html/rfc5321>`__ . :type EmailTags: list :param EmailTags: A list of tags, in the form of name/value pairs, to apply to an email that you send using the ``SendEmail`` operation. Tags correspond to characteristics of the email that you define, so that you can publish email sending events. - *(dict) --* Contains the name and value of a tag that you apply to an email. You can use message tags when you publish email sending events. - **Name** *(string) --* **[REQUIRED]** The name of the message tag. The message tag name has to meet the following criteria: * It can only contain ASCII letters (a–z, A–Z), numbers (0–9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **Value** *(string) --* **[REQUIRED]** The value of the message tag. The message tag value has to meet the following criteria: * It can only contain ASCII letters (a–z, A–Z), numbers (0–9), underscores (_), or dashes (-). * It can contain no more than 256 characters. :type ConfigurationSetName: string :param ConfigurationSetName: The name of the configuration set that you want to use when sending the email. :rtype: dict :returns: """ pass def tag_resource(self, ResourceArn: str, Tags: List) -> Dict: """ Add one or more tags (keys and values) to one or more specified resources. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for more specific tag values. A tag value acts as a descriptor within a tag key. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/TagResource>`_ **Request Syntax** :: response = client.tag_resource( ResourceArn='string', Tags=[ { 'Key': 'string', 'Value': 'string' }, ] ) **Response Syntax** :: {} **Response Structure** - *(dict) --* :type ResourceArn: string :param ResourceArn: **[REQUIRED]** The Amazon Resource Name (ARN) of the resource that you want to add one or more tags to. :type Tags: list :param Tags: **[REQUIRED]** A list of the tags that you want to add to the resource. A tag consists of a required tag key (``Key`` ) and an associated tag value (``Value`` ). The maximum length of a tag key is 128 characters. The maximum length of a tag value is 256 characters. - *(dict) --* An object that defines the tags that are associated with a resource. A *tag* is a label that you optionally define and associate with a resource in Amazon Pinpoint. Tags can help you categorize and manage resources in different ways, such as by purpose, owner, environment, or other criteria. A resource can have as many as 50 tags. Each tag consists of a required *tag key* and an associated *tag value* , both of which you define. A tag key is a general label that acts as a category for a more specific tag value. A tag value acts as a descriptor within a tag key. For example, if you have two versions of an Amazon Pinpoint project, one for internal testing and another for external use, you might assign a ``Stack`` tag key to both projects. The value of the ``Stack`` tag key might be ``Test`` for one project and ``Production`` for the other project. A tag key can contain as many as 128 characters. A tag value can contain as many as 256 characters. The characters can be Unicode letters, digits, white space, or one of the following symbols: _ . : / = + -. The following additional restrictions apply to tags: * Tag keys and values are case sensitive. * For each associated resource, each tag key must be unique and it can have only one value. * The ``aws:`` prefix is reserved for use by AWS; you can’t use it in any tag keys or values that you define. In addition, you can\'t edit or remove tag keys or values that use this prefix. Tags that use this prefix don’t count against the limit of 50 tags per resource. * You can associate tags with public or shared resources, but the tags are available only for your AWS account, not any other accounts that share the resource. In addition, the tags are available only for resources that are located in the specified AWS Region for your AWS account. - **Key** *(string) --* **[REQUIRED]** One part of a key-value pair that defines a tag. The maximum length of a tag key is 128 characters. The minimum length is 1 character. - **Value** *(string) --* **[REQUIRED]** The optional part of a key-value pair that defines a tag. The maximum length of a tag value is 256 characters. The minimum length is 0 characters. If you don’t want a resource to have a specific tag value, don’t specify a value for this parameter. Amazon Pinpoint will set the value to an empty string. :rtype: dict :returns: """ pass def untag_resource(self, ResourceArn: str, TagKeys: List) -> Dict: """ Remove one or more tags (keys and values) from a specified resource. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/UntagResource>`_ **Request Syntax** :: response = client.untag_resource( ResourceArn='string', TagKeys=[ 'string', ] ) **Response Syntax** :: {} **Response Structure** - *(dict) --* :type ResourceArn: string :param ResourceArn: **[REQUIRED]** The Amazon Resource Name (ARN) of the resource that you want to remove one or more tags from. :type TagKeys: list :param TagKeys: **[REQUIRED]** The tags (tag keys) that you want to remove from the resource. When you specify a tag key, the action removes both that key and its associated tag value. To remove more than one tag from the resource, append the ``TagKeys`` parameter and argument for each additional tag to remove, separated by an ampersand. For example: ``/v1/email/tags?ResourceArn=ResourceArn&TagKeys=Key1&TagKeys=Key2`` - *(string) --* :rtype: dict :returns: """ pass def update_configuration_set_event_destination(self, ConfigurationSetName: str, EventDestinationName: str, EventDestination: Dict) -> Dict: """ Update the configuration of an event destination for a configuration set. In Amazon Pinpoint, *events* include message sends, deliveries, opens, clicks, bounces, and complaints. *Event destinations* are places that you can send information about these events to. For example, you can send event data to Amazon SNS to receive notifications when you receive bounces or complaints, or you can use Amazon Kinesis Data Firehose to stream data to Amazon S3 for long-term storage. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/pinpoint-email-2018-07-26/UpdateConfigurationSetEventDestination>`_ **Request Syntax** :: response = client.update_configuration_set_event_destination( ConfigurationSetName='string', EventDestinationName='string', EventDestination={ 'Enabled': True|False, 'MatchingEventTypes': [ 'SEND'|'REJECT'|'BOUNCE'|'COMPLAINT'|'DELIVERY'|'OPEN'|'CLICK'|'RENDERING_FAILURE', ], 'KinesisFirehoseDestination': { 'IamRoleArn': 'string', 'DeliveryStreamArn': 'string' }, 'CloudWatchDestination': { 'DimensionConfigurations': [ { 'DimensionName': 'string', 'DimensionValueSource': 'MESSAGE_TAG'|'EMAIL_HEADER'|'LINK_TAG', 'DefaultDimensionValue': 'string' }, ] }, 'SnsDestination': { 'TopicArn': 'string' }, 'PinpointDestination': { 'ApplicationArn': 'string' } } ) **Response Syntax** :: {} **Response Structure** - *(dict) --* An HTTP 200 response if the request succeeds, or an error message if the request fails. :type ConfigurationSetName: string :param ConfigurationSetName: **[REQUIRED]** The name of the configuration set that contains the event destination that you want to modify. :type EventDestinationName: string :param EventDestinationName: **[REQUIRED]** The name of the event destination that you want to modify. :type EventDestination: dict :param EventDestination: **[REQUIRED]** An object that defines the event destination. - **Enabled** *(boolean) --* If ``true`` , the event destination is enabled. When the event destination is enabled, the specified event types are sent to the destinations in this ``EventDestinationDefinition`` . If ``false`` , the event destination is disabled. When the event destination is disabled, events aren\'t sent to the specified destinations. - **MatchingEventTypes** *(list) --* An array that specifies which events Amazon Pinpoint should send to the destinations in this ``EventDestinationDefinition`` . - *(string) --* An email sending event type. For example, email sends, opens, and bounces are all email events. - **KinesisFirehoseDestination** *(dict) --* An object that defines an Amazon Kinesis Data Firehose destination for email events. You can use Amazon Kinesis Data Firehose to stream data to other services, such as Amazon S3 and Amazon Redshift. - **IamRoleArn** *(string) --* **[REQUIRED]** The Amazon Resource Name (ARN) of the IAM role that Amazon Pinpoint uses when sending email events to the Amazon Kinesis Data Firehose stream. - **DeliveryStreamArn** *(string) --* **[REQUIRED]** The Amazon Resource Name (ARN) of the Amazon Kinesis Data Firehose stream that Amazon Pinpoint sends email events to. - **CloudWatchDestination** *(dict) --* An object that defines an Amazon CloudWatch destination for email events. You can use Amazon CloudWatch to monitor and gain insights on your email sending metrics. - **DimensionConfigurations** *(list) --* **[REQUIRED]** An array of objects that define the dimensions to use when you send email events to Amazon CloudWatch. - *(dict) --* An object that defines the dimension configuration to use when you send Amazon Pinpoint email events to Amazon CloudWatch. - **DimensionName** *(string) --* **[REQUIRED]** The name of an Amazon CloudWatch dimension associated with an email sending metric. The name has to meet the following criteria: * It can only contain ASCII letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **DimensionValueSource** *(string) --* **[REQUIRED]** The location where Amazon Pinpoint finds the value of a dimension to publish to Amazon CloudWatch. If you want Amazon Pinpoint to use the message tags that you specify using an X-SES-MESSAGE-TAGS header or a parameter to the SendEmail/SendRawEmail API, choose ``messageTag`` . If you want Amazon Pinpoint to use your own email headers, choose ``emailHeader`` . If you want Amazon Pinpoint to use link tags, choose ``linkTags`` . - **DefaultDimensionValue** *(string) --* **[REQUIRED]** The default value of the dimension that is published to Amazon CloudWatch if you don\'t provide the value of the dimension when you send an email. This value has to meet the following criteria: * It can only contain ASCII letters (a-z, A-Z), numbers (0-9), underscores (_), or dashes (-). * It can contain no more than 256 characters. - **SnsDestination** *(dict) --* An object that defines an Amazon SNS destination for email events. You can use Amazon SNS to send notification when certain email events occur. - **TopicArn** *(string) --* **[REQUIRED]** The Amazon Resource Name (ARN) of the Amazon SNS topic that you want to publish email events to. For more information about Amazon SNS topics, see the `Amazon SNS Developer Guide <https://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html>`__ . - **PinpointDestination** *(dict) --* An object that defines a Amazon Pinpoint destination for email events. You can use Amazon Pinpoint events to create attributes in Amazon Pinpoint projects. You can use these attributes to create segments for your campaigns. - **ApplicationArn** *(string) --* The Amazon Resource Name (ARN) of the Amazon Pinpoint project that you want to send email events to. :rtype: dict :returns: """ pass
py
1a2fdcd5621eb97edc60c038cd9ce943d5bb93d9
# -*- coding: utf-8 -*- """ Contains generic utillity functions used in various different parts of Drogulus. """ from .constants import K def distance(key_one, key_two): """ Calculate the XOR result between two string representations of hex values. Returned as an int. """ val_key_one = int(key_one, 16) val_key_two = int(key_two, 16) return val_key_one ^ val_key_two def sort_peer_nodes(peer_nodes, target_key): """ Given a list of peer nodes, efficiently sorts it so that the peers closest to the target key are at the head. If the list is longer than K then only the K closest contacts will be returned. """ def node_key(node, target_key=target_key): """ Returns the node's distance to the target key. """ return distance(node.network_id, target_key) peer_nodes.sort(key=node_key) return peer_nodes[:K]
py
1a2fdd0290f3811fe758653f2b1b5980f836138d
def imc (peso,altura): valor = peso / altura **2 if valor <18: return "Delgadez" elif valor <25: return "Normal" elif valor <29: return "Sobrepeso" else: return "Obesidad" valor_imc = imc (58,1.55) print (valor_imc)
py
1a2fddce03107c1b6356b81174debceb05409fdc
#!/usr/bin/env python # # Public Domain 2014-2018 MongoDB, Inc. # Public Domain 2008-2014 WiredTiger, Inc. # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # WiredTigerTestCase # parent class for all test cases # # If unittest2 is available, use it in preference to (the old) unittest try: import unittest2 as unittest except ImportError: import unittest from contextlib import contextmanager import glob, os, re, shutil, sys, time, traceback import wiredtiger, wtscenario def shortenWithEllipsis(s, maxlen): if len(s) > maxlen: s = s[0:maxlen-3] + '...' return s class CapturedFd(object): """ CapturedFd encapsulates a file descriptor (e.g. 1 or 2) that is diverted to a file. We use this to capture and check the C stdout/stderr. Meanwhile we reset Python's sys.stdout, sys.stderr, using duped copies of the original 1, 2 fds. The end result is that Python's sys.stdout sys.stderr behave normally (e.g. go to the tty), while the C stdout/stderr ends up in a file that we can verify. """ def __init__(self, filename, desc): self.filename = filename self.desc = desc self.expectpos = 0 self.file = None def readFileFrom(self, filename, pos, maxchars): """ Read a file starting at a given position, returning the beginning of its contents """ with open(filename, 'r') as f: f.seek(pos) return shortenWithEllipsis(f.read(maxchars+1), maxchars) def capture(self): """ Start capturing the file descriptor. Note that the original targetFd is closed, we expect that the caller has duped it and passed the dup to us in the constructor. """ self.file = open(self.filename, 'w') return self.file def release(self): """ Stop capturing. """ self.file.close() self.file = None def check(self, testcase): """ Check to see that there is no unexpected output in the captured output file. If there is, raise it as a test failure. This is generally called after 'release' is called. """ if self.file != None: self.file.flush() filesize = os.path.getsize(self.filename) if filesize > self.expectpos: contents = self.readFileFrom(self.filename, self.expectpos, 10000) WiredTigerTestCase.prout('ERROR: ' + self.filename + ' unexpected ' + self.desc + ', contains:\n"' + contents + '"') testcase.fail('unexpected ' + self.desc + ', contains: "' + contents + '"') self.expectpos = filesize def checkAdditional(self, testcase, expect): """ Check to see that an additional string has been added to the output file. If it has not, raise it as a test failure. In any case, reset the expected pos to account for the new output. """ if self.file != None: self.file.flush() gotstr = self.readFileFrom(self.filename, self.expectpos, 1000) testcase.assertEqual(gotstr, expect, 'in ' + self.desc + ', expected "' + expect + '", but got "' + gotstr + '"') self.expectpos = os.path.getsize(self.filename) def checkAdditionalPattern(self, testcase, pat): """ Check to see that an additional string has been added to the output file. If it has not, raise it as a test failure. In any case, reset the expected pos to account for the new output. """ if self.file != None: self.file.flush() gotstr = self.readFileFrom(self.filename, self.expectpos, 1000) if re.search(pat, gotstr) == None: testcase.fail('in ' + self.desc + ', expected pattern "' + pat + '", but got "' + gotstr + '"') self.expectpos = os.path.getsize(self.filename) class TestSuiteConnection(object): def __init__(self, conn, connlist): connlist.append(conn) self._conn = conn self._connlist = connlist def close(self, config=''): self._connlist.remove(self._conn) return self._conn.close(config) # Proxy everything except what we explicitly define to the # wrapped connection def __getattr__(self, attr): if attr in self.__dict__: return getattr(self, attr) else: return getattr(self._conn, attr) # Just like a list of strings, but with a convenience function class ExtensionList(list): skipIfMissing = False def extension(self, dirname, name, extarg=None): if name != None and name != 'none': ext = '' if extarg == None else '=' + extarg self.append(dirname + '/' + name + ext) class WiredTigerTestCase(unittest.TestCase): _globalSetup = False _printOnceSeen = {} # conn_config can be overridden to add to basic connection configuration. # Can be a string or a callable function or lambda expression. conn_config = '' # session_config can be overridden to add to basic session configuration. # Can be a string or a callable function or lambda expression. session_config = '' # conn_extensions can be overridden to add a list of extensions to load. # Each entry is a string (directory and extension name) and optional config. # Example: # conn_extensions = ('extractors/csv_extractor', # 'test/fail_fs={allow_writes=100}') conn_extensions = () @staticmethod def globalSetup(preserveFiles = False, useTimestamp = False, gdbSub = False, lldbSub = False, verbose = 1, builddir = None, dirarg = None, longtest = False): WiredTigerTestCase._preserveFiles = preserveFiles d = 'WT_TEST' if dirarg == None else dirarg if useTimestamp: d += '.' + time.strftime('%Y%m%d-%H%M%S', time.localtime()) shutil.rmtree(d, ignore_errors=True) os.makedirs(d) wtscenario.set_long_run(longtest) WiredTigerTestCase._parentTestdir = d WiredTigerTestCase._builddir = builddir WiredTigerTestCase._origcwd = os.getcwd() WiredTigerTestCase._resultfile = open(os.path.join(d, 'results.txt'), "w", 0) # unbuffered WiredTigerTestCase._gdbSubprocess = gdbSub WiredTigerTestCase._lldbSubprocess = lldbSub WiredTigerTestCase._longtest = longtest WiredTigerTestCase._verbose = verbose WiredTigerTestCase._dupout = os.dup(sys.stdout.fileno()) WiredTigerTestCase._stdout = sys.stdout WiredTigerTestCase._stderr = sys.stderr WiredTigerTestCase._concurrent = False WiredTigerTestCase._globalSetup = True WiredTigerTestCase._ttyDescriptor = None def fdSetUp(self): self.captureout = CapturedFd('stdout.txt', 'standard output') self.captureerr = CapturedFd('stderr.txt', 'error output') sys.stdout = self.captureout.capture() sys.stderr = self.captureerr.capture() def fdTearDown(self): # restore stderr/stdout self.captureout.release() self.captureerr.release() sys.stdout = WiredTigerTestCase._stdout sys.stderr = WiredTigerTestCase._stderr def __init__(self, *args, **kwargs): if hasattr(self, 'scenarios'): assert(len(self.scenarios) == len(dict(self.scenarios))) unittest.TestCase.__init__(self, *args, **kwargs) if not self._globalSetup: WiredTigerTestCase.globalSetup() def __str__(self): # when running with scenarios, if the number_scenarios() method # is used, then each scenario is given a number, which can # help distinguish tests. scen = '' if hasattr(self, 'scenario_number') and hasattr(self, 'scenario_name'): scen = ' -s ' + str(self.scenario_number) + \ ' (' + self.scenario_name + ')' return self.simpleName() + scen def shortDesc(self): ret_str = '' if hasattr(self, 'scenario_number'): ret_str = ' -s ' + str(self.scenario_number) return self.simpleName() + ret_str def simpleName(self): return "%s.%s.%s" % (self.__module__, self.className(), self._testMethodName) # Return the wiredtiger_open extension argument for # any needed shared library. def extensionsConfig(self): exts = self.conn_extensions if hasattr(exts, '__call__'): exts = ExtensionList() self.conn_extensions(exts) result = '' extfiles = {} skipIfMissing = False if hasattr(exts, 'skip_if_missing'): skipIfMissing = exts.skip_if_missing for ext in exts: extconf = '' if '=' in ext: splits = ext.split('=', 1) ext = splits[0] extconf = '=' + splits[1] splits = ext.split('/') if len(splits) != 2: raise Exception(self.shortid() + ": " + ext + ": extension is not named <dir>/<name>") libname = splits[1] dirname = splits[0] pat = os.path.join(WiredTigerTestCase._builddir, 'ext', dirname, libname, '.libs', 'libwiredtiger_*.so') filenames = glob.glob(pat) if len(filenames) == 0: if skipIfMissing: self.skipTest('extension "' + ext + '" not built') continue else: raise Exception(self.shortid() + ": " + ext + ": no extensions library found matching: " + pat) elif len(filenames) > 1: raise Exception(self.shortid() + ": " + ext + ": multiple extensions libraries found matching: " + pat) complete = '"' + filenames[0] + '"' + extconf if ext in extfiles: if extfiles[ext] != complete: raise Exception(self.shortid() + ": non-matching extension arguments in " + str(exts)) else: extfiles[ext] = complete if len(extfiles) != 0: result = ',extensions=[' + ','.join(extfiles.values()) + ']' return result # Can be overridden, but first consider setting self.conn_config # or self.conn_extensions def setUpConnectionOpen(self, home): self.home = home config = self.conn_config if hasattr(config, '__call__'): config = self.conn_config() config += self.extensionsConfig() # In case the open starts additional threads, flush first to # avoid confusion. sys.stdout.flush() conn_param = 'create,error_prefix="%s",%s' % (self.shortid(), config) try: conn = self.wiredtiger_open(home, conn_param) except wiredtiger.WiredTigerError as e: print "Failed wiredtiger_open: dir '%s', config '%s'" % \ (home, conn_param) raise e self.pr(`conn`) return conn # Replacement for wiredtiger.wiredtiger_open that returns # a proxied connection that knows to close it itself at the # end of the run, unless it was already closed. def wiredtiger_open(self, home=None, config=''): conn = wiredtiger.wiredtiger_open(home, config) return TestSuiteConnection(conn, self._connections) # Can be overridden, but first consider setting self.session_config def setUpSessionOpen(self, conn): config = self.session_config if hasattr(config, '__call__'): config = self.session_config() return conn.open_session(config) # Can be overridden def close_conn(self, config=''): """ Close the connection if already open. """ if self.conn != None: self.conn.close(config) self.conn = None def open_conn(self, directory=".", config=None): """ Open the connection if already closed. """ if self.conn == None: if config != None: self._old_config = self.conn_config self.conn_config = config self.conn = self.setUpConnectionOpen(directory) if config != None: self.conn_config = self._old_config self.session = self.setUpSessionOpen(self.conn) def reopen_conn(self, directory=".", config=None): """ Reopen the connection. """ self.close_conn() self.open_conn(directory, config) def setUp(self): if not hasattr(self.__class__, 'wt_ntests'): self.__class__.wt_ntests = 0 if WiredTigerTestCase._concurrent: self.testsubdir = self.shortid() + '.' + str(self.__class__.wt_ntests) else: self.testsubdir = self.className() + '.' + str(self.__class__.wt_ntests) self.testdir = os.path.join(WiredTigerTestCase._parentTestdir, self.testsubdir) self.__class__.wt_ntests += 1 self.starttime = time.time() if WiredTigerTestCase._verbose > 2: self.prhead('started in ' + self.testdir, True) # tearDown needs connections list, set it here in case the open fails. self._connections = [] self.origcwd = os.getcwd() shutil.rmtree(self.testdir, ignore_errors=True) if os.path.exists(self.testdir): raise Exception(self.testdir + ": cannot remove directory") os.makedirs(self.testdir) os.chdir(self.testdir) with open('testname.txt', 'w+') as namefile: namefile.write(str(self) + '\n') self.fdSetUp() # tearDown needs a conn field, set it here in case the open fails. self.conn = None try: self.conn = self.setUpConnectionOpen(".") self.session = self.setUpSessionOpen(self.conn) except: self.tearDown() raise def tearDown(self): excinfo = sys.exc_info() passed = (excinfo == (None, None, None)) if passed: skipped = False else: skipped = (excinfo[0] == unittest.SkipTest) self.pr('finishing') # Close all connections that weren't explicitly closed. # Connections left open (as a result of a test failure) # can result in cascading errors. We also make sure # self.conn is on the list of active connections. if not self.conn in self._connections: self._connections.append(self.conn) for conn in self._connections: try: conn.close() except: pass self._connections = [] try: self.fdTearDown() # Only check for unexpected output if the test passed if passed: self.captureout.check(self) self.captureerr.check(self) finally: # always get back to original directory os.chdir(self.origcwd) # Make sure no read-only files or directories were left behind os.chmod(self.testdir, 0777) for root, dirs, files in os.walk(self.testdir): for d in dirs: os.chmod(os.path.join(root, d), 0777) for f in files: os.chmod(os.path.join(root, f), 0666) # Clean up unless there's a failure if (passed or skipped) and not WiredTigerTestCase._preserveFiles: shutil.rmtree(self.testdir, ignore_errors=True) else: self.pr('preserving directory ' + self.testdir) elapsed = time.time() - self.starttime if elapsed > 0.001 and WiredTigerTestCase._verbose >= 2: print "%s: %.2f seconds" % (str(self), elapsed) if not passed and not skipped: print "ERROR in " + str(self) self.pr('FAIL') self.prexception(excinfo) self.pr('preserving directory ' + self.testdir) if WiredTigerTestCase._verbose > 2: self.prhead('TEST COMPLETED') def backup(self, backup_dir, session=None): if session is None: session = self.session shutil.rmtree(backup_dir, ignore_errors=True) os.mkdir(backup_dir) bkp_cursor = session.open_cursor('backup:', None, None) while True: ret = bkp_cursor.next() if ret != 0: break shutil.copy(bkp_cursor.get_key(), backup_dir) self.assertEqual(ret, wiredtiger.WT_NOTFOUND) bkp_cursor.close() @contextmanager def expectedStdout(self, expect): self.captureout.check(self) yield self.captureout.checkAdditional(self, expect) @contextmanager def expectedStderr(self, expect): self.captureerr.check(self) yield self.captureerr.checkAdditional(self, expect) @contextmanager def expectedStdoutPattern(self, pat): self.captureout.check(self) yield self.captureout.checkAdditionalPattern(self, pat) @contextmanager def expectedStderrPattern(self, pat): self.captureerr.check(self) yield self.captureerr.checkAdditionalPattern(self, pat) def assertRaisesWithMessage(self, exceptionType, expr, message): """ Like TestCase.assertRaises(), but also checks to see that a message is printed on stderr. If message starts and ends with a slash, it is considered a pattern that must appear in stderr (it need not encompass the entire error output). Otherwise, the message must match verbatim, including any trailing newlines. """ if len(message) > 2 and message[0] == '/' and message[-1] == '/': with self.expectedStderrPattern(message[1:-1]): self.assertRaises(exceptionType, expr) else: with self.expectedStderr(message): self.assertRaises(exceptionType, expr) def assertRaisesException(self, exceptionType, expr, exceptionString=None, optional=False): """ Like TestCase.assertRaises(), with some additional options. If the exceptionString argument is used, the exception's string must match it. If optional is set, then no assertion occurs if the exception doesn't occur. Returns true if the assertion is raised. """ raised = False try: expr() except BaseException, err: if not isinstance(err, exceptionType): self.fail('Exception of incorrect type raised, got type: ' + \ str(type(err))) if exceptionString != None and exceptionString != str(err): self.fail('Exception with incorrect string raised, got: "' + \ str(err) + '"') raised = True if not raised and not optional: self.fail('no assertion raised') return raised def raisesBusy(self, expr): """ Execute the expression, returning true if a 'Resource busy' exception is raised, returning false if no exception is raised. Any other exception raises a test suite failure. """ return self.assertRaisesException(wiredtiger.WiredTigerError, \ expr, exceptionString='Resource busy', optional=True) def assertTimestampsEqual(self, ts1, ts2): """ TestCase.assertEqual() for timestamps """ self.assertEqual(int(ts1, 16), int(ts2, 16)) def exceptionToStderr(self, expr): """ Used by assertRaisesHavingMessage to convert an expression that throws an error to an expression that throws the same error but also has the exception string on stderr. """ try: expr() except BaseException, err: sys.stderr.write('Exception: ' + str(err)) raise def assertRaisesHavingMessage(self, exceptionType, expr, message): """ Like TestCase.assertRaises(), but also checks to see that the assert exception, when string-ified, includes a message. If message starts and ends with a slash, it is considered a pattern that must appear (it need not encompass the entire message). Otherwise, the message must match verbatim. """ self.assertRaisesWithMessage( exceptionType, lambda: self.exceptionToStderr(expr), message) @staticmethod def printOnce(msg): # There's a race condition with multiple threads, # but we won't worry about it. We err on the side # of printing the message too many times. if not msg in WiredTigerTestCase._printOnceSeen: WiredTigerTestCase._printOnceSeen[msg] = msg WiredTigerTestCase.prout(msg) def KNOWN_FAILURE(self, name): myname = self.simpleName() msg = '**** ' + myname + ' HAS A KNOWN FAILURE: ' + name + ' ****' self.printOnce(msg) self.skipTest('KNOWN FAILURE: ' + name) def KNOWN_LIMITATION(self, name): myname = self.simpleName() msg = '**** ' + myname + ' HAS A KNOWN LIMITATION: ' + name + ' ****' self.printOnce(msg) @staticmethod def printVerbose(level, message): if level <= WiredTigerTestCase._verbose: WiredTigerTestCase.prout(message) def verbose(self, level, message): WiredTigerTestCase.printVerbose(level, message) def prout(self, s): WiredTigerTestCase.prout(s) @staticmethod def prout(s): os.write(WiredTigerTestCase._dupout, s + '\n') def pr(self, s): """ print a progress line for testing """ msg = ' ' + self.shortid() + ': ' + s WiredTigerTestCase._resultfile.write(msg + '\n') def prhead(self, s, *beginning): """ print a header line for testing, something important """ msg = '' if len(beginning) > 0: msg += '\n' msg += ' ' + self.shortid() + ': ' + s self.prout(msg) WiredTigerTestCase._resultfile.write(msg + '\n') def prexception(self, excinfo): WiredTigerTestCase._resultfile.write('\n') traceback.print_exception(excinfo[0], excinfo[1], excinfo[2], None, WiredTigerTestCase._resultfile) WiredTigerTestCase._resultfile.write('\n') # print directly to tty, useful for debugging def tty(self, message): WiredTigerTestCase.tty(message) @staticmethod def tty(message): if WiredTigerTestCase._ttyDescriptor == None: WiredTigerTestCase._ttyDescriptor = open('/dev/tty', 'w') WiredTigerTestCase._ttyDescriptor.write(message + '\n') def ttyVerbose(self, level, message): WiredTigerTestCase.ttyVerbose(level, message) @staticmethod def ttyVerbose(level, message): if level <= WiredTigerTestCase._verbose: WiredTigerTestCase.tty(message) def shortid(self): return self.id().replace("__main__.","") def className(self): return self.__class__.__name__ def longtest(description): """ Used as a function decorator, for example, @wttest.longtest("description"). The decorator indicates that this test function should only be included when running the test suite with the --long option. """ def runit_decorator(func): return func if not WiredTigerTestCase._longtest: return unittest.skip(description + ' (enable with --long)') else: return runit_decorator def islongtest(): return WiredTigerTestCase._longtest def runsuite(suite, parallel): suite_to_run = suite if parallel > 1: from concurrencytest import ConcurrentTestSuite, fork_for_tests if not WiredTigerTestCase._globalSetup: WiredTigerTestCase.globalSetup() WiredTigerTestCase._concurrent = True suite_to_run = ConcurrentTestSuite(suite, fork_for_tests(parallel)) try: return unittest.TextTestRunner( verbosity=WiredTigerTestCase._verbose).run(suite_to_run) except BaseException as e: # This should not happen for regular test errors, unittest should catch everything print('ERROR: running test: ', e) raise e def run(name='__main__'): result = runsuite(unittest.TestLoader().loadTestsFromName(name), False) sys.exit(0 if result.wasSuccessful() else 1)
py
1a2fde60eade4ec61d78ac03634d61eca65b86a7
# Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utility functions.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import base64 import collections import datetime import hashlib import imghdr import json import os import random import re import string import sys import time import unicodedata import zlib from constants import constants import feconf import python_utils _YAML_PATH = os.path.join(os.getcwd(), '..', 'oppia_tools', 'pyyaml-5.1.2') sys.path.insert(0, _YAML_PATH) import yaml # isort:skip #pylint: disable=wrong-import-position DATETIME_FORMAT = '%m/%d/%Y, %H:%M:%S:%f' PNG_DATA_URL_PREFIX = 'data:image/png;base64,' SECONDS_IN_HOUR = 60 * 60 SECONDS_IN_MINUTE = 60 class InvalidInputException(Exception): """Error class for invalid input.""" pass class ValidationError(Exception): """Error class for when a domain object fails validation.""" pass class ExplorationConversionError(Exception): """Error class for when an exploration fails to convert from a certain version to a certain version. """ pass def create_enum(*sequential, **names): """Creates a enumerated constant. Args: *sequential: *. Sequence List to generate the enumerations. **names: *. Names of the enumerration. Returns: dict. Dictionary containing the enumerated constants. """ enums = dict(python_utils.ZIP(sequential, sequential), **names) return type(b'Enum', (), enums) def get_file_contents(filepath, raw_bytes=False, mode='r'): """Gets the contents of a file, given a relative filepath from oppia/. Args: filepath: str. A full path to the file. raw_bytes: bool. Flag for the raw_bytes output. mode: str. File opening mode, default is in read mode. Returns: *. Either the raw_bytes stream if the flag is set or the decoded stream in utf-8 format. """ if raw_bytes: mode = 'rb' encoding = None else: encoding = 'utf-8' with python_utils.open_file(filepath, mode, encoding=encoding) as f: return f.read() def get_exploration_components_from_dir(dir_path): """Gets the (yaml, assets) from the contents of an exploration data dir. Args: dir_path: str. A full path to the exploration root directory. Returns: *. A 2-tuple, the first element of which is a yaml string, and the second element of which is a list of (filepath, content) 2-tuples. The filepath does not include the assets/ prefix. Raises: Exception. If the following condition doesn't hold: "There is exactly one file not in assets/, and this file has a .yaml suffix". """ yaml_content = None assets_list = [] dir_path_array = dir_path.split('/') while dir_path_array[-1] == '': dir_path_array = dir_path_array[:-1] dir_path_length = len(dir_path_array) for root, directories, files in os.walk(dir_path): for directory in directories: if root == dir_path and directory != 'assets': raise Exception( 'The only directory in %s should be assets/' % dir_path) for filename in files: filepath = os.path.join(root, filename) if root == dir_path: # These files are added automatically by Mac OS Xsystems. # We ignore them. if not filepath.endswith('.DS_Store'): if yaml_content is not None: raise Exception( 'More than one non-asset file specified ' 'for %s' % dir_path) elif not filepath.endswith('.yaml'): raise Exception( 'Found invalid non-asset file %s. There ' 'should only be a single non-asset file, ' 'and it should have a .yaml suffix.' % filepath) else: yaml_content = get_file_contents(filepath) else: filepath_array = filepath.split('/') # The additional offset is to remove the 'assets/' prefix. filename = '/'.join(filepath_array[dir_path_length + 1:]) assets_list.append((filename, get_file_contents( filepath, raw_bytes=True))) if yaml_content is None: raise Exception('No yaml file specifed for %s' % dir_path) return yaml_content, assets_list def get_comma_sep_string_from_list(items): """Turns a list of items into a comma-separated string. Args: items: list(str). List of the items. Returns: str. String containing the items in the list separated by commas. """ if not items: return '' if len(items) == 1: return items[0] return '%s and %s' % (', '.join(items[:-1]), items[-1]) def to_ascii(input_string): """Change unicode characters in a string to ascii if possible. Args: input_string: str. String to convert. Returns: str. String containing the ascii representation of the input string. """ return unicodedata.normalize( 'NFKD', python_utils.UNICODE(input_string)).encode('ascii', 'ignore') def dict_from_yaml(yaml_str): """Gets the dict representation of a YAML string. Args: yaml_str: str. Yaml string for conversion into dict. Returns: dict. Parsed dict representation of the yaml string. Raises: InavlidInputException. If the yaml string sent as the parameter is unable to get parsed, them this error gets raised. """ try: retrieved_dict = yaml.safe_load(yaml_str) assert isinstance(retrieved_dict, dict) return retrieved_dict except (AssertionError, yaml.YAMLError) as e: raise InvalidInputException(e) def recursively_remove_key(obj, key_to_remove): """Recursively removes keys from a list or dict. Args: obj: *. List or dict passed for which the keys has to be removed. key_to_remove: str. Key value that has to be removed. Returns: *. Dict or list with a particular key value removed. """ if isinstance(obj, list): for item in obj: recursively_remove_key(item, key_to_remove) elif isinstance(obj, dict): if key_to_remove in obj: del obj[key_to_remove] for key, unused_value in obj.items(): recursively_remove_key(obj[key], key_to_remove) def get_random_int(upper_bound): """Returns a random integer in [0, upper_bound). Args: upper_bound: int. Upper limit for generation of random integer. Returns: int. Randomly generated integer less than the upper_bound. """ assert upper_bound >= 0 and isinstance(upper_bound, int) generator = random.SystemRandom() return generator.randrange(0, stop=upper_bound) def get_random_choice(alist): """Gets a random element from a list. Args: alist: list(*). Input to get a random choice. Returns: *. Random element choosen from the passed input list. """ assert isinstance(alist, list) and len(alist) > 0 index = get_random_int(len(alist)) return alist[index] def convert_png_data_url_to_binary(image_data_url): """Converts a PNG base64 data URL to a PNG binary data. Args: image_data_url: str. A string that is to be interpreted as a PNG data URL. Returns: str. Binary content of the PNG created from the data URL. Raises: Exception. The given string does not represent a PNG data URL. """ if image_data_url.startswith(PNG_DATA_URL_PREFIX): return base64.b64decode( python_utils.urllib_unquote( image_data_url[len(PNG_DATA_URL_PREFIX):])) else: raise Exception('The given string does not represent a PNG data URL.') def convert_png_binary_to_data_url(content): """Converts a PNG image string (represented by 'content') to a data URL. Args: content: str. PNG binary file content. Returns: str. Data URL created from the binary content of the PNG. Raises: Exception. The given binary string does not represent a PNG image. """ if imghdr.what(None, h=content) == 'png': return '%s%s' % ( PNG_DATA_URL_PREFIX, python_utils.url_quote(base64.b64encode(content)) ) else: raise Exception('The given string does not represent a PNG image.') def convert_png_to_data_url(filepath): """Converts the png file at filepath to a data URL. Args: filepath: str. A full path to the file. Returns: str. Data url created from the filepath of the PNG. """ file_contents = get_file_contents(filepath, raw_bytes=True, mode='rb') return convert_png_binary_to_data_url(file_contents) def camelcase_to_hyphenated(camelcase_str): """Camelcase to hyhpenated conversion of the passed string. Args: camelcase_str: str. Camelcase string representation. Returns: str. Hypenated string representation of the camelcase string. """ intermediate_str = re.sub('(.)([A-Z][a-z]+)', r'\1-\2', camelcase_str) return re.sub('([a-z0-9])([A-Z])', r'\1-\2', intermediate_str).lower() def camelcase_to_snakecase(camelcase_str): """Camelcase to snake case conversion of the passed string. Args: camelcase_str: str. Camelcase string representation. Returns: str. Snakecase representation of the passed camelcase string. """ intermediate_str = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', camelcase_str) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', intermediate_str).lower() def set_url_query_parameter(url, param_name, param_value): """Set or replace a query parameter, and return the modified URL. Args: url: str. URL string which contains the query parameter. param_name: str. Parameter name to be removed. param_value: str. Set the parameter value, if it exists. Returns: str. Formated URL that has query parameter set or replaced. Raises: Exception. If the query parameter sent is not of string type, them this exception is raised. """ if not isinstance(param_name, python_utils.BASESTRING): raise Exception( 'URL query parameter name must be a string, received %s' % param_name) scheme, netloc, path, query_string, fragment = python_utils.url_split(url) query_params = python_utils.parse_query_string(query_string) query_params[param_name] = [param_value] new_query_string = python_utils.url_encode(query_params, doseq=True) return python_utils.url_unsplit( (scheme, netloc, path, new_query_string, fragment)) class JSONEncoderForHTML(json.JSONEncoder): """Encodes JSON that is safe to embed in HTML.""" def encode(self, o): chunks = self.iterencode(o, True) return ''.join(chunks) if self.ensure_ascii else u''.join(chunks) def iterencode(self, o, _one_shot=False): chunks = super( JSONEncoderForHTML, self).iterencode(o, _one_shot=_one_shot) for chunk in chunks: yield chunk.replace('&', '\\u0026').replace( '<', '\\u003c').replace('>', '\\u003e') def convert_to_hash(input_string, max_length): """Convert a string to a SHA1 hash. Args: input_string: str. Input string for conversion to hash. max_length: int. Maximum Length of the generated hash. Returns: str. Hash Value generated from the input_String of the specified length. Raises: Exception. If the input string is not the instance of the str, them this exception is raised. """ if not isinstance(input_string, python_utils.BASESTRING): raise Exception( 'Expected string, received %s of type %s' % (input_string, type(input_string))) # Encodes strings using the character set [A-Za-z0-9]. # Prefixing altchars with b' to ensure that all characters in encoded_string # remain encoded (otherwise encoded_string would be of type unicode). encoded_string = base64.b64encode( hashlib.sha1(python_utils.convert_to_bytes(input_string)).digest(), altchars=b'ab' ).replace('=', 'c') return encoded_string[:max_length] def base64_from_int(value): """Converts the number into base64 representation. Args: value: int. Integer value for conversion into base64. Returns: *. Returns the base64 representation of the number passed. """ return base64.b64encode(bytes([value])) def get_time_in_millisecs(datetime_obj): """Returns time in milliseconds since the Epoch. Args: datetime_obj: datetime. An object of type datetime.datetime. Returns: float. The time in milliseconds since the Epoch. """ msecs = time.mktime(datetime_obj.timetuple()) * 1000.0 return msecs + python_utils.divide(datetime_obj.microsecond, 1000.0) def convert_naive_datetime_to_string(datetime_obj): """Returns a human-readable string representing the naive datetime object. Args: datetime_obj: datetime. An object of type datetime.datetime. Must be a naive datetime object. Returns: str. The string representing the naive datetime object. """ return datetime_obj.strftime(DATETIME_FORMAT) def convert_string_to_naive_datetime_object(date_time_string): """Returns the naive datetime object equivalent of the date string. Args: date_time_string: str. The string format representing the datetime object in the format: Month/Day/Year, Hour:Minute:Second:MicroSecond. Returns: datetime. An object of type naive datetime.datetime corresponding to that string. """ return datetime.datetime.strptime(date_time_string, DATETIME_FORMAT) def get_current_time_in_millisecs(): """Returns time in milliseconds since the Epoch. Returns: float. The time in milliseconds since the Epoch. """ return get_time_in_millisecs(datetime.datetime.utcnow()) def get_human_readable_time_string(time_msec): """Given a time in milliseconds since the epoch, get a human-readable time string for the admin dashboard. Args: time_msec: float. Time in milliseconds since the Epoch. Returns: str. A string representing the time. """ return time.strftime( '%B %d %H:%M:%S', time.gmtime(python_utils.divide(time_msec, 1000.0))) def create_string_from_largest_unit_in_timedelta(timedelta_obj): """Given the timedelta object, find the largest nonzero time unit and return that value, along with the time unit, as a human readable string. The returned string is not localized. Args: timedelta_obj: datetime.timedelta. A datetime timedelta object. Datetime timedelta objects are created when you subtract two datetime objects. Returns: str. A human readable string representing the value of the largest nonzero time unit, along with the time units. If the largest time unit is seconds, 1 minute is returned. The value is represented as an integer in the string. Raises: Exception. If the provided timedelta is not positive. """ total_seconds = timedelta_obj.total_seconds() if total_seconds <= 0: raise Exception( 'Expected a positive timedelta, received: %s.' % total_seconds) elif timedelta_obj.days != 0: return '%s day%s' % ( int(timedelta_obj.days), 's' if timedelta_obj.days > 1 else '') else: number_of_hours, remainder = divmod(total_seconds, SECONDS_IN_HOUR) number_of_minutes, _ = divmod(remainder, SECONDS_IN_MINUTE) if number_of_hours != 0: return '%s hour%s' % ( int(number_of_hours), 's' if number_of_hours > 1 else '') elif number_of_minutes > 1: return '%s minutes' % int(number_of_minutes) # Round any seconds up to one minute. else: return '1 minute' def are_datetimes_close(later_datetime, earlier_datetime): """Given two datetimes, determines whether they are separated by less than feconf.PROXIMAL_TIMEDELTA_SECS seconds. Args: later_datetime: datetime. The later datetime. earlier_datetime: datetime. The earlier datetime. Returns: bool. True if difference between two datetimes is less than feconf.PROXIMAL_TIMEDELTA_SECS seconds otherwise false. """ difference_in_secs = (later_datetime - earlier_datetime).total_seconds() return difference_in_secs < feconf.PROXIMAL_TIMEDELTA_SECS def generate_random_string(length): """Generates a random string of the specified length. Args: length: int. Length of the string to be generated. Returns: str. Random string of specified length. """ return base64.urlsafe_b64encode(os.urandom(length))[:length] def generate_new_session_id(): """Generates a new session id. Returns: str. Random string of length 24. """ return generate_random_string(24) def vfs_construct_path(base_path, *path_components): """Mimics behavior of os.path.join on Posix machines. Args: base_path: str. The initial path upon which components would be added. *path_components: list(str). Components that would be added to the path. Returns: str. The path that is obtained after adding the components. """ return os.path.join(base_path, *path_components) def vfs_normpath(path): """Normalize path from posixpath.py, eliminating double slashes, etc. Args: path: str. Path that is to be normalized. Returns: str. Path if it is not null else a dot string. """ return os.path.normpath(path) def require_valid_name(name, name_type, allow_empty=False): """Generic name validation. Args: name: str. The name to validate. name_type: str. A human-readable string, like 'the exploration title' or 'a state name'. This will be shown in error messages. allow_empty: bool. If True, empty strings are allowed. Raises: Exception. Name isn't a string. Exception. The length of the name_type isn't between 1 and 50. Exception. Name starts or ends with whitespace. Exception. Adjacent whitespace in name_type isn't collapsed. Exception. Invalid character is present in name. """ if not isinstance(name, python_utils.BASESTRING): raise ValidationError('%s must be a string.' % name) if allow_empty and name == '': return # This check is needed because state names are used in URLs and as ids # for statistics, so the name length should be bounded above. if len(name) > 50 or len(name) < 1: raise ValidationError( 'The length of %s should be between 1 and 50 ' 'characters; received %s' % (name_type, name)) if name[0] in string.whitespace or name[-1] in string.whitespace: raise ValidationError( 'Names should not start or end with whitespace.') if re.search(r'\s\s+', name): raise ValidationError( 'Adjacent whitespace in %s should be collapsed.' % name_type) for character in constants.INVALID_NAME_CHARS: if character in name: raise ValidationError( 'Invalid character %s in %s: %s' % (character, name_type, name)) def require_valid_url_fragment(name, name_type, allowed_length): """Generic URL fragment validation. Args: name: str. The name to validate. name_type: str. A human-readable string, like 'topic url fragment'. This will be shown in error messages. allowed_length: int. Allowed length for the name. Raises: Exception. Name is not a string. Exception. Name is empty. Exception. The length of the name_type is not correct. Exception. Invalid character is present in the name. """ if not isinstance(name, python_utils.BASESTRING): raise ValidationError( '%s field must be a string. Received %s.' % (name_type, name)) if name == '': raise ValidationError( '%s field should not be empty.' % name_type) if len(name) > allowed_length: raise ValidationError( '%s field should not exceed %d characters, ' 'received %s.' % (name_type, allowed_length, name)) if not re.match(constants.VALID_URL_FRAGMENT_REGEX, name): raise ValidationError( '%s field contains invalid characters. Only lowercase words' ' separated by hyphens are allowed. Received %s.' % ( name_type, name)) def require_valid_thumbnail_filename(thumbnail_filename): """Generic thumbnail filename validation. Args: thumbnail_filename: str. The thumbnail filename to validate. """ if thumbnail_filename is not None: if not isinstance(thumbnail_filename, python_utils.BASESTRING): raise ValidationError( 'Expected thumbnail filename to be a string, received %s' % thumbnail_filename) if thumbnail_filename.rfind('.') == 0: raise ValidationError( 'Thumbnail filename should not start with a dot.') if '/' in thumbnail_filename or '..' in thumbnail_filename: raise ValidationError( 'Thumbnail filename should not include slashes or ' 'consecutive dot characters.') if '.' not in thumbnail_filename: raise ValidationError( 'Thumbnail filename should include an extension.') dot_index = thumbnail_filename.rfind('.') extension = thumbnail_filename[dot_index + 1:].lower() if extension != 'svg': raise ValidationError( 'Expected a filename ending in svg, received %s' % thumbnail_filename) def require_valid_meta_tag_content(meta_tag_content): """Generic meta tag content validation. Args: meta_tag_content: str. The meta tag content to validate. """ if not isinstance(meta_tag_content, python_utils.BASESTRING): raise ValidationError( 'Expected meta tag content to be a string, received %s' % meta_tag_content) if len(meta_tag_content) > constants.MAX_CHARS_IN_META_TAG_CONTENT: raise ValidationError( 'Meta tag content should not be longer than %s characters.' % constants.MAX_CHARS_IN_META_TAG_CONTENT) def require_valid_page_title_fragment_for_web(page_title_fragment_for_web): """Generic page title fragment validation. Args: page_title_fragment_for_web: str. The page title fragment to validate. Raises: Exception. Page title fragment is not a string. Exception. Page title fragment is too lengthy. """ max_chars_in_page_title_frag_for_web = ( constants.MAX_CHARS_IN_PAGE_TITLE_FRAGMENT_FOR_WEB) if not isinstance(page_title_fragment_for_web, python_utils.BASESTRING): raise ValidationError( 'Expected page title fragment to be a string, received %s' % page_title_fragment_for_web) if len(page_title_fragment_for_web) > max_chars_in_page_title_frag_for_web: raise ValidationError( 'Page title fragment should not be longer than %s characters.' % constants.MAX_CHARS_IN_PAGE_TITLE_FRAGMENT_FOR_WEB) def capitalize_string(input_string): """Converts the first character of a string to its uppercase equivalent (if it's a letter), and returns the result. Args: input_string: str. String to process (to capitalize). Returns: str. Capitalizes the string. """ # This guards against empty strings. if input_string: return input_string[0].upper() + input_string[1:] else: return input_string def get_hex_color_for_category(category): """Returns the category, it returns the color associated with the category, if the category is present in the app constants else given a default color. Args: category: str. Category to get color. Returns: str. Color assigned to that category. """ return ( constants.CATEGORIES_TO_COLORS[category] if category in constants.CATEGORIES_TO_COLORS else constants.DEFAULT_COLOR) def get_thumbnail_icon_url_for_category(category): """Returns the category, it returns the associated thumbnail icon, if the category is present in the app constants else given a default thumbnail. Args: category: str. Category to get Thumbnail icon. Returns: str. Path to the Thumbnail Icon assigned to that category. """ icon_name = ( category if category in constants.CATEGORIES_TO_COLORS else constants.DEFAULT_THUMBNAIL_ICON) # Remove all spaces from the string. return '/subjects/%s.svg' % (icon_name.replace(' ', '')) def is_supported_audio_language_code(language_code): """Checks if the given language code is a supported audio language code. Args: language_code: str. The language code. Returns: bool. Whether the language code is supported audio language code or not. """ language_codes = [lc['id'] for lc in constants.SUPPORTED_AUDIO_LANGUAGES] return language_code in language_codes def is_valid_language_code(language_code): """Checks if the given language code is a valid language code. Args: language_code: str. The language code. Returns: bool. Whether the language code is valid or not. """ language_codes = [ lc['code'] for lc in constants.SUPPORTED_CONTENT_LANGUAGES] return language_code in language_codes def get_supported_audio_language_description(language_code): """Returns the language description for the given language code. Args: language_code: str. The language code for which the description is required. Returns: str. The language description for the given language code. Raises: Exception. If the given language code is unsupported. """ for language in constants.SUPPORTED_AUDIO_LANGUAGES: if language['id'] == language_code: return language['description'] raise Exception('Unsupported audio language code: %s' % language_code) def is_user_id_valid( user_id, allow_system_user_id=False, allow_pseudonymous_id=False): """Verify that the user ID is in a correct format or that it belongs to a system user. Args: user_id: str. The user ID to be checked. allow_system_user_id: bool. Whether to allow system user ID. allow_pseudonymous_id: bool. Whether to allow pseudonymized ID. Returns: bool. True when the ID is in a correct format or if the ID belongs to a system user, False otherwise. """ if allow_system_user_id and user_id in feconf.SYSTEM_USERS.keys(): return True if allow_pseudonymous_id and is_pseudonymous_id(user_id): return True return bool(re.match(feconf.USER_ID_REGEX, user_id)) def is_pseudonymous_id(user_id): """Check that the ID is a pseudonymous one. Args: user_id: str. The ID to be checked. Returns: bool. Whether the ID represents a pseudonymous user. """ return bool(re.match(feconf.PSEUDONYMOUS_ID_REGEX, user_id)) def unescape_encoded_uri_component(escaped_string): """Unescape a string that is encoded with encodeURIComponent. Args: escaped_string: str. String that is encoded with encodeURIComponent. Returns: str. Decoded string that was initially encoded with encodeURIComponent. """ return python_utils.urllib_unquote(escaped_string).decode('utf-8') def snake_case_to_camel_case(snake_str): """Converts a string in snake_case to camelCase. Args: snake_str: str. String that is in snake_case. Returns: str. Converted string that is in camelCase. """ components = snake_str.split('_') # We capitalize the first letter of each component except the first one # with the 'title' method and join them together. return components[0] + ''.join(x.title() for x in components[1:]) def get_asset_dir_prefix(): """Returns prefix for asset directory depending whether dev or prod. It is used as a prefix in urls for images, css and script files. Returns: str. Prefix '/build' if constants.DEV_MODE is false, otherwise null string. """ asset_dir_prefix = '' if not constants.DEV_MODE: asset_dir_prefix = '/build' return asset_dir_prefix def get_hashable_value(value): """This function returns a hashable version of the input JSON-like value. It converts the built-in sequences into their hashable counterparts {list: tuple, dict: (sorted tuple of pairs)}. Additionally, their elements are converted to hashable values through recursive calls. All other value types are assumed to already be hashable. Args: value: *. Some JSON-like object, that is, an object made-up of only: lists, dicts, strings, ints, bools, None. Types can be nested in each other. Returns: *. A new object that will always have the same hash for "equivalent" values. """ if isinstance(value, list): return tuple(get_hashable_value(e) for e in value) elif isinstance(value, dict): return tuple(sorted( # Dict keys are already hashable, only values need converting. (k, get_hashable_value(v)) for k, v in value.items())) else: return value def compress_to_zlib(data): """Compress the data to zlib format for efficient storage and communication. Args: data: str. Data to be compressed. Returns: str. Compressed data string. """ return zlib.compress(data) def decompress_from_zlib(data): """Decompress the zlib compressed data. Args: data: str. Data to be decompressed. Returns: str. Decompressed data string. """ return zlib.decompress(data) def compute_list_difference(list_a, list_b): """Returns the set difference of two lists. Args: list_a: list. The first list. list_b: list. The second list. Returns: list. List of the set difference of list_a - list_b. """ return list(set(list_a) - set(list_b)) class OrderedCounter(collections.Counter, collections.OrderedDict): """Counter that remembers the order elements are first encountered.""" pass
py
1a2fdf100886bc09e642bf3cf8b1059a3f23e0c7
from .ai import * from .condition import * from .debug import * from .diplomacy import * from .effect import * from .player import * from .resource import * from .tile import * from .trigger import * from .unit import * from .units import *
py
1a2fe071196781a69531862b2a578f9971f3bd29
"""Provides the 'OffshoreSubstationDesign` class.""" __author__ = "Jake Nunemaker" __copyright__ = "Copyright 2020, National Renewable Energy Laboratory" __maintainer__ = "Jake Nunemaker" __email__ = "[email protected]" import numpy as np from ORBIT.phases.design import DesignPhase class OffshoreSubstationDesign(DesignPhase): """Offshore Substation Design Class.""" expected_config = { "site": {"depth": "m"}, "plant": {"num_turbines": "int"}, "turbine": {"turbine_rating": "MW"}, "substation_design": { "mpt_cost_rate": "USD/MW (optional)", "topside_fab_cost_rate": "USD/t (optional)", "topside_design_cost": "USD (optional)", "shunt_cost_rate": "USD/MW (optional)", "switchgear_cost": "USD (optional)", "backup_gen_cost": "USD (optional)", "workspace_cost": "USD (optional)", "other_ancillary_cost": "USD (optional)", "topside_assembly_factor": "float (optional)", "oss_substructure_cost_rate": "USD/t (optional)", "oss_pile_cost_rate": "USD/t (optional)", "num_substations": "int (optional)", }, } output_config = { "num_substations": "int", "offshore_substation_topside": "dict", "offshore_substation_substructure": "dict", } def __init__(self, config, **kwargs): """ Creates an instance of OffshoreSubstationDesign. Parameters ---------- config : dict """ config = self.initialize_library(config, **kwargs) self.config = self.validate_config(config) self._outputs = {} def run(self): """Main run function.""" self.calc_substructure_length() self.calc_substructure_deck_space() self.calc_topside_deck_space() self.calc_num_mpt_and_rating() self.calc_mpt_cost() self.calc_topside_mass_and_cost() self.calc_shunt_reactor_cost() self.calc_switchgear_cost() self.calc_ancillary_system_cost() self.calc_assembly_cost() self.calc_substructure_mass_and_cost() self._outputs["offshore_substation_substructure"] = { "type": "Monopile", # Substation install only supports monopiles "deck_space": self.substructure_deck_space, "mass": self.substructure_mass, "length": self.substructure_length, "unit_cost": self.substructure_cost, } self._outputs["offshore_substation_topside"] = { "deck_space": self.topside_deck_space, "mass": self.topside_mass, "unit_cost": self.substation_cost, } self._outputs["num_substations"] = self.num_substations @property def substation_cost(self): """Returns total procuremet cost of the topside.""" return ( self.mpt_cost + self.topside_cost + self.shunt_reactor_cost + self.switchgear_costs + self.ancillary_system_costs + self.land_assembly_cost ) @property def total_cost(self): """Returns total procurement cost of the substation(s).""" if not self._outputs: raise Exception("Has OffshoreSubstationDesign been ran yet?") return ( self.substructure_cost + self.substation_cost ) * self.num_substations def calc_substructure_length(self): """ Calculates substructure length as the site depth + 10m """ self.substructure_length = self.config["site"]["depth"] + 10 def calc_substructure_deck_space(self): """ Calculates required deck space for the substation substructure. Coming soon! """ self.substructure_deck_space = 1 def calc_topside_deck_space(self): """ Calculates required deck space for the substation topside. Coming soon! """ self.topside_deck_space = 1 def calc_num_mpt_and_rating(self): """ Calculates the number of main power transformers (MPTs) and their rating. Parameters ---------- num_turbines : int turbine_rating : float """ _design = self.config.get("substation_design", {}) num_turbines = self.config["plant"]["num_turbines"] turbine_rating = self.config["turbine"]["turbine_rating"] capacity = num_turbines * turbine_rating self.num_substations = _design.get( "num_substations", int(np.ceil(capacity / 500)) ) self.num_mpt = np.ceil( num_turbines * turbine_rating / (250 * self.num_substations) ) self.mpt_rating = ( round( ( (num_turbines * turbine_rating * 1.15) / (self.num_mpt * self.num_substations) ) / 10.0 ) * 10.0 ) def calc_mpt_cost(self): """ Calculates the total cost for all MPTs. Parameters ---------- mpt_cost_rate : float """ _design = self.config.get("substation_design", {}) mpt_cost_rate = _design.get("mpt_cost_rate", 12500) self.mpt_cost = self.mpt_rating * self.num_mpt * mpt_cost_rate def calc_topside_mass_and_cost(self): """ Calculates the mass and cost of the substation topsides. Parameters ---------- topside_fab_cost_rate : int | float topside_design_cost: int | float """ _design = self.config.get("substation_design", {}) topside_fab_cost_rate = _design.get("topside_fab_cost_rate", 14500) topside_design_cost = _design.get("topside_design_cost", 4.5e6) self.topside_mass = 3.85 * self.mpt_rating * self.num_mpt + 285 self.topside_cost = ( self.topside_mass * topside_fab_cost_rate + topside_design_cost ) def calc_shunt_reactor_cost(self): """ Calculates the cost of the shunt reactor. Parameters ---------- shunt_cost_rate : int | float """ _design = self.config.get("substation_design", {}) shunt_cost_rate = _design.get("shunt_cost_rate", 35000) self.shunt_reactor_cost = ( self.mpt_rating * self.num_mpt * shunt_cost_rate * 0.5 ) def calc_switchgear_cost(self): """ Calculates the cost of the switchgear. Parameters ---------- switchgear_cost : int | float """ _design = self.config.get("substation_design", {}) switchgear_cost = _design.get("switchgear_cost", 14.5e5) self.switchgear_costs = self.num_mpt * switchgear_cost def calc_ancillary_system_cost(self): """ Calculates cost of ancillary systems. Parameters ---------- backup_gen_cost : int | float workspace_cost : int | float other_ancillary_cost : int | float """ _design = self.config.get("substation_design", {}) backup_gen_cost = _design.get("backup_gen_cost", 1e6) workspace_cost = _design.get("workspace_cost", 2e6) other_ancillary_cost = _design.get("other_ancillary_cost", 3e6) self.ancillary_system_costs = ( backup_gen_cost + workspace_cost + other_ancillary_cost ) def calc_assembly_cost(self): """ Calculates the cost of assembly on land. Parameters ---------- topside_assembly_factor : int | float """ _design = self.config.get("substation_design", {}) topside_assembly_factor = _design.get("topside_assembly_factor", 0.075) self.land_assembly_cost = ( self.switchgear_costs + self.shunt_reactor_cost + self.ancillary_system_costs ) * topside_assembly_factor def calc_substructure_mass_and_cost(self): """ Calculates the mass and associated cost of the substation substructure. Parameters ---------- oss_substructure_cost_rate : int | float oss_pile_cost_rate : int | float """ _design = self.config.get("substation_design", {}) oss_substructure_cost_rate = _design.get( "oss_substructure_cost_rate", 3000 ) oss_pile_cost_rate = _design.get("oss_pile_cost_rate", 0) substructure_mass = 0.4 * self.topside_mass substructure_pile_mass = 8 * substructure_mass ** 0.5574 self.substructure_cost = ( substructure_mass * oss_substructure_cost_rate + substructure_pile_mass * oss_pile_cost_rate ) self.substructure_mass = substructure_mass + substructure_pile_mass @property def design_result(self): """ Returns the results of self.run(). """ if not self._outputs: raise Exception("Has OffshoreSubstationDesign been ran yet?") return self._outputs @property def detailed_output(self): """Returns detailed phase information.""" _outputs = { "num_substations": self.num_substations, "substation_mpt_rating": self.mpt_rating, "substation_topside_mass": self.topside_mass, "substation_topside_cost": self.topside_cost, "substation_substructure_mass": self.substructure_mass, "substation_substructure_cost": self.substructure_cost, } return _outputs
py
1a2fe0cee1c38ac5f162959121d9c4410c81ef8d
# ------------------------------------------------------------------------------------------------- # Embroidery # ------------------------------------------------------------------------------------------------- # # The program is to design simple ornament matrices for Christmas fair. It creates a matrix # where 0 means an empty pixel, and positive integers mean different colors. # # ------------------------------------------------------------------------------------------------- NULL_CELL = "" # null cell is a cell to fill with some color in the next step of create triangle function ZERO_CELL = 0 # ---------------------------------------- main functions ----------------------------------------- def draw_rectangle(width, height, border_color=1, fill_color=1, border_width=1): ''' Creats the rectangle matrix like this: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ''' matrix = [] for row_no in range(height): row = [] for col_no in range(width): fill_pattern = border_color if any([ row_no + 1 <= border_width, # first row height - row_no <= border_width, # last row col_no + 1 <= border_width, # first column height - col_no <= border_width # last column ]) else fill_color row.append(fill_pattern) matrix.append(row) return matrix def draw_triangle(height, border_color=1, fill_color=1): ''' Creats the rectangle matrix like this: 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 2 1 0 0 0 1 1 1 1 1 0 0 1 2 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ''' width = 2 * height - 1 return create_triangle(height, width, fill_color, border_color) def draw_christmas_tree(blocks, border_color=1, fill_color=1): ''' Creats the rectangle matrix like this: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 1 2 2 2 2 2 1 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 1 2 2 2 2 2 1 0 0 0 1 2 2 2 2 2 2 2 1 0 0 0 1 2 2 2 2 2 1 0 0 0 1 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 ''' height = 3 width = 5 + (blocks - 1) * 2 # 5 - the base of the tree in the first block; 2 - distance between the bases of the trees of the next blocks base_width = 5 matrix = [] for block in range(blocks - 1): # -1 -> without the last row matrix.extend(create_triangle(height, width, fill_color, border_color, False, base_width + block * 2)) matrix.extend(create_triangle(height, width, fill_color, border_color, True, base_width + (block + 1) * 2)) # the last row with border return matrix def draw_circle(radius, border_color=1, fill_color=1, half=True): ''' Creats the circle matrix like this: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 ''' import math def get_distance_from_center(center_x, center_y, point_x, point_y): ''' Based on Pythagoras' theorem, it calculates the length by the point from the center of the circle. ____________________ |AB| = \\/ (Xa-Xb)² + (Ya-Yb)² ''' return round(math.sqrt(math.pow(abs(center_x - point_x), 2) + math.pow(abs(center_y - point_y), 2)), 0) def create_matrix(size_x, size_y): '''Sets matrix.''' matrix = [] for row_no in range(size_x): row = [] for col_no in range(size_y): row.append(NULL_CELL) matrix.append(row) return matrix def fill_empty(matrix, radius): '''Fills the matrix with empty cells located outside the circle.''' center_x, center_y = 0, 1 circle_center = (radius - 1, radius - 1) for x in range(size_x): for y in range(size_y): distance = get_distance_from_center(circle_center[center_x], circle_center[center_y], x, y) if distance >= radius: matrix[x][y] = ZERO_CELL return matrix def fill_border(matrix, border_color): '''Fills matrix with border cells.''' for x in range(size_x): for y in range(size_y): if matrix[x][y] == NULL_CELL: # cell to fill if x == 0 or x == size_x - 1 or y == 0 or y == size_y - 1: # the first and the last row and column matrix[x][y] = border_color elif matrix[x][y - 1] == ZERO_CELL or matrix[x][y + 1] == ZERO_CELL or matrix[x - 1][y] == ZERO_CELL or matrix[x + 1][y]: # checks whether it is adjacent to zero (before, after, above, under) matrix[x][y] = border_color return matrix # ------- draw_circle main code ------- size_x = radius - 1 if half is True else radius * 2 - 1 size_y = radius * 2 - 1 matrix = create_matrix(size_x, size_y) matrix = fill_empty(matrix, radius) matrix = fill_border(matrix, border_color) matrix = fill_normal(matrix, fill_color) return matrix def embroider(matrix, color_scheme): '''Draws on screen (console) created the matrix with patterns.''' for row in matrix: for cell in row: print(color_scheme[cell], end=' ') print() print() # -------------------------------------- internal functions --------------------------------------- def create_triangle(matrix_height, matrix_width, fill_color, border_color, border_last_row=True, base_width=None): ''' Returns matrix filled with triangle pattern. Default values: base_width = matrix_width 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2 2 2 2 2 1 0 0 0 0 1 2 1 0 0 0 0 1 2 1 0 0 0 0 0 0 1 2 1 0 0 0 0 0 1 2 2 2 2 2 2 2 1 0 0 1 2 2 2 1 0 0 1 2 2 2 1 0 0 0 0 1 1 1 1 1 0 0 0 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 height = 4 matrix_height = 4 matrix_height = None matrix_height = None matrix_width = 7 matrix_width = 7 matrix_width = 11 matrix_width = 11 base_width=None base_width=None base_width=5 base_width=None border_last_row=True border_last_row=False border_last_row=True border_last_row=False ''' def fill_empty(matrix_height, matrix_width, base_width): '''Fills matrix with empty cells (zeros).''' matrix = [] empty_cell = (matrix_width - base_width) / 2 + (matrix_height - 1) # number of empty cells one side from the middle column for row_no in range(matrix_height): row = [] for col_no in range(matrix_width): row.append(ZERO_CELL) if (col_no + 1 <= empty_cell or matrix_width - col_no <= empty_cell) else row.append(NULL_CELL) # empty cells from left or right side matrix.append(row) empty_cell -= 1 return matrix def fill_border(matrix, border_color, border_last_row): '''Fills matrix with border cells.''' for row_no in range(matrix_height): for col_no in range(matrix_width): if matrix[row_no][col_no] == NULL_CELL: # cell to fill if col_no == 0 or matrix[row_no][col_no - 1] == ZERO_CELL or col_no == matrix_width - 1 or matrix[row_no][col_no + 1] == ZERO_CELL: matrix[row_no][col_no] = border_color if border_last_row: for col_no in range(matrix_width): # fills the last row border cell if matrix[row_no][col_no] == NULL_CELL: # cell to fill matrix[matrix_height - 1][col_no] = border_color return matrix # ------- create_triangle main code ------- if base_width is None: # base_width default value base_width = matrix_width elif base_width < matrix_height: # the minimum base fills the entire height base_width = (matrix_height * 2) - 1 matrix = fill_empty(matrix_height, matrix_width, base_width) matrix = fill_border(matrix, border_color, border_last_row) matrix = fill_normal(matrix, fill_color) return matrix def fill_normal(matrix, fill_color): '''Fills matrix with normaln filled cells.''' matrix_height, matrix_width = len(matrix), len(matrix[0]) for row_no in range(matrix_height): for col_no in range(matrix_width): if matrix[row_no][col_no] == NULL_CELL: # cell to fill matrix[row_no][col_no] = fill_color return matrix # ------------------------------------------- main code ------------------------------------------- if __name__ == '__main__': color_scheme = {ZERO_CELL: '0', 1: '1', 2: '2'} print("Rectangle:") embroider(draw_rectangle(19, 19, 1, 2, 3), color_scheme) print("Triangle:") embroider(draw_triangle(10, border_color=1, fill_color=2), color_scheme) print("Christmas tree:") embroider(draw_christmas_tree(8, 1, 2), color_scheme) print("Circle:") embroider(draw_circle(15, 1, 2), color_scheme)
py
1a2fe258a7a0651b5613d4a8e173a6e631ac491d
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Banner.disabled' db.add_column(u'mx_banner', 'disabled', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): # Deleting field 'Banner.disabled' db.delete_column(u'mx_banner', 'disabled') models = { u'downtime.period': { 'Meta': {'object_name': 'Period'}, 'enabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'end_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'start_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}) }, u'mx.banner': { 'Meta': {'object_name': 'Banner'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'days': ('django.db.models.fields.PositiveIntegerField', [], {}), 'disabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.CharField', [], {'max_length': '140'}), 'period': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['downtime.Period']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '25'}) } } complete_apps = ['mx']
py
1a2fe4209f60b2aa39a190e6e08b53c970a9149a
from __future__ import absolute_import from mock import MagicMock, patch from sentry.testutils.cases import RuleTestCase from sentry.rules.actions.notify_event_service import NotifyEventServiceAction from sentry.tasks.sentry_apps import notify_sentry_app class NotifyEventServiceActionTest(RuleTestCase): rule_cls = NotifyEventServiceAction def test_applies_correctly_for_plugins(self): event = self.get_event() plugin = MagicMock() plugin.is_enabled.return_value = True plugin.should_notify.return_value = True rule = self.get_rule(data={"service": "mail"}) with patch("sentry.plugins.plugins.get") as get_plugin: get_plugin.return_value = plugin results = list(rule.after(event=event, state=self.get_state())) assert len(results) is 1 assert plugin.should_notify.call_count is 1 assert results[0].callback is plugin.rule_notify def test_applies_correctly_for_sentry_apps(self): event = self.get_event() self.create_sentry_app( organization=event.organization, name="Test Application", is_alertable=True ) rule = self.get_rule(data={"service": "test-application"}) results = list(rule.after(event=event, state=self.get_state())) assert len(results) is 1 assert results[0].callback is notify_sentry_app
py
1a2fe48ebdb2b88fc6f3dd24f3c29d964431cc31
import pytest import torch as to import torch.nn as nn from functools import partial from tqdm import tqdm from pyrado.sampling.utils import gen_batches, gen_ordered_batches from pyrado.utils.data_types import * from pyrado.utils.functions import noisy_nonlin_fcn from pyrado.utils.math import cosine_similarity, cov from pyrado.environments.pysim.ball_on_beam import BallOnBeamSim from pyrado.policies.dummy import DummyPolicy from pyrado.sampling.rollout import rollout from pyrado.sampling.step_sequence import StepSequence from pyrado.utils.nn_layers import IndiNonlinLayer from pyrado.utils.optimizers import GSS from pyrado.utils.averaging import RunningExpDecayingAverage, RunningMemoryAverage from pyrado.utils.standardizing import RunningStandardizer, Standardizer from pyrado.utils.normalizing import RunningNormalizer, normalize @pytest.mark.parametrize( 'x, data_along_rows', [ (np.random.rand(100, 4), True), (np.random.rand(4, 100), False) ], ids=['100_4', '4_100'] ) def test_cov(x, data_along_rows): rowvar = not data_along_rows cov_np = np.cov(x, rowvar=rowvar) cov_pyrado = cov(to.from_numpy(x), data_along_rows=data_along_rows).numpy() assert cov_pyrado.shape[0] == cov_pyrado.shape[1] if data_along_rows: assert cov_np.shape[0] == x.shape[1] assert cov_pyrado.shape[0] == x.shape[1] else: assert cov_np.shape[0] == x.shape[0] assert cov_pyrado.shape[0] == x.shape[0] assert np.allclose(cov_np, cov_pyrado) @pytest.mark.parametrize( 'env, expl_strat', [ (BallOnBeamSim(dt=0.02, max_steps=100), DummyPolicy(BallOnBeamSim(dt=0.02, max_steps=100).spec)), ], ids=['bob_dummy'] ) def test_concat_rollouts(env, expl_strat): ro1 = rollout(env, expl_strat) ro2 = rollout(env, expl_strat) ro_cat = StepSequence.concat([ro1, ro2]) assert isinstance(ro_cat, StepSequence) assert ro_cat.length == ro1.length + ro2.length @pytest.mark.parametrize( 'x, y', [ (to.tensor([1., 2., 3.]), to.tensor([1., 2., 3.])), (to.tensor([1., 0., 1.]), to.tensor([1., 1e12, 1.])), (to.tensor([0., 0., 0.]), to.tensor([1., 2, 3.])), (to.tensor([1., 2., 3.]), to.tensor([2., 4., 6.])), (to.tensor([1., 2., 3.]), to.tensor([-1., -2., -3.])), ], ids=['same', 'similarity_1', 'similarity_0', 'colinear_scaled', 'colinear_opposite'] ) def test_cosine_similarity(x, y): # Only tested for vector inputs d_cos = cosine_similarity(x, y) assert isinstance(d_cos, to.Tensor) # The examples are chosen to result in 0, 1, or -1 assert to.isclose(d_cos, to.tensor(0.)) or to.isclose(d_cos, to.tensor(1.)) or to.isclose(d_cos, to.tensor(-1.)) @pytest.mark.parametrize( 'x, y', [ ({'a': 1, 'b': 2}, {'c': 1, 'd': 4}), ({'a': 1, 'b': 2}, {'b': 3, 'd': 4}), ], ids=['disjoint', 'overlapping'] ) def test_merge_lod_var_dtype(x, y): z = merge_lod_var_dtype([x, y]) assert z['a'] == 1 if z['b'] == 2: # disjoint assert z['c'] == 1 elif z['b'] == 3: # overlapping assert len(z) == 3 else: assert False assert z['d'] == 4 @pytest.mark.parametrize( 'batch_size, data_size', [ (3, 30), (3, 29), (3, 28), (2, 2) ], ids=['division_mod0', 'division_mod1', 'division_mod2', 'edge_case'] ) def test_gen_ordered_batches(batch_size, data_size): from math import ceil generator = gen_batches(batch_size, data_size) unordered_batches = list(generator) assert len(unordered_batches) == ceil(data_size/batch_size) assert all(len(uob) <= batch_size for uob in unordered_batches) generator = gen_ordered_batches(batch_size, data_size) ordered_batches = list(generator) assert len(ordered_batches) == ceil(data_size/batch_size) assert all(len(ob) <= batch_size for ob in ordered_batches) # Check if each mini-batch is sorted assert all(all(ob[i] <= ob[i + 1] for i in range(len(ob) - 1)) for ob in ordered_batches) @pytest.mark.parametrize('dtype', ['torch', 'numpy'], ids=['to', 'np']) @pytest.mark.parametrize('axis', [0, 1], ids=['ax_0', 'ax_1']) def test_normalize(dtype, axis): for _ in range(10): x = to.rand(5, 3) if dtype == 'torch' else np.random.rand(5, 3) x_norm = normalize(x, axis=axis, order=1) if isinstance(x_norm, to.Tensor): x_norm = x_norm.numpy() # for easier checking with pytest.approx assert np.sum(x_norm, axis=axis) == pytest.approx(1.) @pytest.mark.parametrize( 'data_seq, axis', [ ([np.array([1, 1, 2]), np.array([1, 6, 3]), np.array([1, 6, 3]), np.array([10, -20, 20])], 0), ([np.array([1, 1, 2]), np.array([1, 6, 3]), np.array([1, 6, 3]), np.array([10, -20, 20])], None), ([np.array([1, 1, 2, 2]), np.array([1, 6, 3]), np.array([1, 6, 3]), np.array([10, 10, -20, 20])], 0), ([np.array([1, 1, 2, 2]), np.array([1, 6, 3]), np.array([1, 6, 3]), np.array([10, 10, -20, 20])], None), ( [to.tensor([1., 1., 2]), to.tensor([1., 6., 3.]), to.tensor([1., 6., 3.]), to.tensor([10., -20., 20.])], 0), ( [to.tensor([1., 1., 2]), to.tensor([1., 6., 3.]), to.tensor([1., 6., 3.]), to.tensor([10., -20., 20.])], -1), ( [to.tensor([1., 1, 2, 2]), to.tensor([1., 6, 3]), to.tensor([1., 6, 3]), to.tensor([10., 10, -20, 20])], 0), ( [to.tensor([1., 1, 2, 2]), to.tensor([1., 6, 3]), to.tensor([1., 6, 3]), to.tensor([10., 10, -20, 20])], -1), ], ids=['np_same_length_0', 'np_same_length_None', 'np_mixed_length_0', 'np_mixed_length_None', 'to_same_length_0', 'to_same_length_-1', 'to_mixed_length_0', 'to_mixed_length_-1'] ) def test_running_standardizer(data_seq, axis): rs = RunningStandardizer() for data in data_seq: z = rs(data, axis) assert z is not None rs.reset() assert rs._mean is None and rs._sum_sq_diffs is None and rs._iter == 0 @pytest.mark.parametrize( 'data_seq, alpha', [ ( [np.array([1, 1, 2]), np.array([1, 6, 3]), np.array([1, 6, 3]), np.array([10, -20, 20])], 0.9 ), ( [to.tensor([1., 1., 2]), to.tensor([1., 6., 3.]), to.tensor([1., 6., 3.]), to.tensor([10., -20., 20.])], 0.1 ), ], ids=['np', 'to'] ) def test_running_expdecay_average(data_seq, alpha): reda = RunningExpDecayingAverage(alpha) for data in data_seq: z = reda(data) assert z is not None reda.reset(alpha=0.5) assert reda._alpha == 0.5 and reda._prev_est is None @pytest.mark.parametrize( 'data_seq, capacity', [ ( [np.array([1., 1, 2]), np.array([1., 1, 2]), np.array([1., 1, 2]), np.array([-2., -2, -4])], 3 ), ( [to.tensor([1., 1, 2]), to.tensor([1., 1, 2]), to.tensor([1., 1, 2]), to.tensor([-2., -2, -4])], 3 ), ], ids=['np', 'to'] ) def test_running_mem_average(data_seq, capacity): rma = RunningMemoryAverage(capacity) for i, data in enumerate(data_seq): z = rma(data) if i <= 2: to.testing.assert_allclose(z, to.tensor([1., 1, 2])) # works with PyTorch Tensors and numpy arrays elif i == 3: to.testing.assert_allclose(z, to.tensor([0., 0, 0])) # works with PyTorch Tensors and numpy arrays rma.reset(capacity=5) assert rma.capacity == 5 and rma.memory is None @pytest.mark.parametrize( 'data_seq', [ [5*np.random.rand(25, 3), 0.1*np.random.rand(5, 3), 20*np.random.rand(70, 3)], [5*to.rand(25, 3), 0.1*to.rand(5, 3), 20*to.rand(70, 3)] ], ids=['np', 'to'] ) def test_running_normalizer(data_seq): rn = RunningNormalizer() for data in data_seq: data_norm = rn(data) assert (-1 <= data_norm).all() assert (data_norm <= 1).all() @pytest.mark.parametrize( 'x', [ to.rand(1000, 1), to.rand(1, 1000), to.rand(1000, 1000), np.random.rand(1, 1000), np.random.rand(1000, 1), np.random.rand(1000, 1000) ], ids=['to_1x1000', 'to_1000x1', 'to_1000x1000', 'np_1x1000', 'np_1000x1', 'np_1000x1000'] ) def test_stateful_standardizer(x): ss = Standardizer() if isinstance(x, to.Tensor): x_stdized = ss.standardize(x) assert x_stdized.shape == x.shape assert to.allclose(x_stdized.mean(), to.zeros(1)) assert to.allclose(x_stdized.std(), to.ones(1)) x_restrd = ss.unstandardize(x_stdized) assert x_restrd.shape == x.shape assert to.allclose(x_restrd, x, rtol=1e-02, atol=1e-05) elif isinstance(x, np.ndarray): x_stdized = ss.standardize(x) assert x_stdized.shape == x.shape assert np.allclose(x_stdized.mean(), np.zeros(1)) assert np.allclose(x_stdized.std(), np.ones(1)) x_restrd = ss.unstandardize(x_stdized) assert x_restrd.shape == x.shape assert np.allclose(x_restrd, x, rtol=1e-02, atol=1e-05) @pytest.mark.parametrize( 'g, ed', [ (1., 2.), (np.array([-1., 2.]), np.eye(2)) ], ids=['scalar', 'array'] ) def test_ds_spec(g, ed): # Base class dss = DSSpec(function='name', goal=g) assert isinstance(dss, dict) assert dss['function'] == 'name' if isinstance(g, np.ndarray): assert np.all(dss['goal'] == g) else: assert dss['goal'] == g # Linear first order subclass lds = LinDSSpec(function='lin', goal=g, errorDynamics=ed) assert isinstance(dss, dict) assert lds['function'] == 'lin' if isinstance(g, np.ndarray): assert np.all(lds['goal'] == g) assert np.all(lds['errorDynamics'] == ed) else: assert lds['goal'] == g assert lds['errorDynamics'] == ed # Mass-Spring-Damper subclass msds = MSDDSSpec(function='msd', goal=g, damping=2., attractorStiffness=3., mass=4.) assert isinstance(dss, dict) assert msds['function'] == 'msd' if isinstance(g, np.ndarray): assert np.all(msds['goal'] == g) else: assert msds['goal'] == g assert msds['damping'] == 2. assert msds['attractorStiffness'] == 3. assert msds['mass'] == 4. @pytest.mark.optim @pytest.mark.visualization @pytest.mark.parametrize( 'identical_bounds', [ True, False ], ids=['identical', 'separate'] ) def test_gss_optimizer_identical_bounds(identical_bounds): class Dummy: def loss_fcn(self): # Some function to minimize return (self.x + self.y + 4)**2 def __init__(self): # Test with different lower and upper bounds self.x, self.y = to.tensor([0.]), to.tensor([4.]) x_min, x_max = to.tensor([-10.]), to.tensor([5.]) if identical_bounds: self.optim = GSS([{'params': self.x}, {'params': self.y}], x_min, x_max) else: x_min_override = to.tensor([-6.]) self.optim = GSS([{'params': self.x, 'param_min': x_min_override}, {'params': self.y}], x_min, x_max) print(self.optim) dummy = Dummy() for i in range(2): dummy.optim.step(dummy.loss_fcn) assert dummy.x != dummy.y print(f'x = {dummy.x.item()} \t y = {dummy.y.item()}') @pytest.mark.optim def test_gss_optimizer_functional(): class Dummy: def loss_fcn(self): # Some function to minimize return (self.x + 4)**2 def __init__(self): # Test with different lower and upper bounds self.x = to.tensor([0.]) x_min, x_max = to.tensor([-10.]), to.tensor([10.]) self.optim = GSS([{'params': self.x}], x_min, x_max) dummy = Dummy() for i in range(100): dummy.optim.step(dummy.loss_fcn) assert to.norm(dummy.x + 4) < 1e-4 @pytest.mark.optim @pytest.mark.visualization def test_gss_optimizer_nlin_fcn(): from matplotlib import pyplot as plt # Parameters x_grid = to.linspace(-2., 3., 200) f = 1. noise_std = 0.1 # Init param and optimizer x_init = to.rand(1)*(x_grid.max() - x_grid.min())/2 + x_grid.min() + (x_grid.max() - x_grid.min())/4 # [.25, .75] x = nn.Parameter(to.tensor([x_init]), requires_grad=False) optim = GSS([x], param_min=x_grid.min().unsqueeze(0), param_max=x_grid.max().unsqueeze(0)) obj_fcn = partial(noisy_nonlin_fcn, x=x, f=f, noise_std=noise_std) num_epochs = 10 # Init plotting fig = plt.figure() plt.plot(x_grid, noisy_nonlin_fcn(x=x_grid, f=f), label='noise free fcn') plt.scatter(x.data.numpy(), obj_fcn().numpy(), s=40, marker='x', color='k', label='init guess') colors = plt.get_cmap('inferno')(np.linspace(0, 1, num_epochs)) for e in tqdm(range(num_epochs), total=num_epochs): # Evaluate at a the current point optim.step(obj_fcn) # Plot current evaluation plt.plot(x_grid, noisy_nonlin_fcn(x=x_grid, f=f, noise_std=noise_std), alpha=0.2) plt.scatter(x.data.numpy(), obj_fcn().numpy(), s=16, color=colors[e]) plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.legend() plt.show() assert noisy_nonlin_fcn(x, f=f, noise_std=noise_std) < noisy_nonlin_fcn(x_init, f=f, noise_std=noise_std) @pytest.mark.parametrize('in_features', [1, 3], ids=['1dim', '3dim']) @pytest.mark.parametrize('same_nonlin', [True, False], ids=['same_nonlin', 'different_nonlin']) @pytest.mark.parametrize('bias', [True, False], ids=['bias', 'no_bias']) @pytest.mark.parametrize('weight', [True, False], ids=['weight', 'no_weight']) def test_indi_nonlin_layer(in_features, same_nonlin, bias, weight): if not same_nonlin and in_features > 1: nonlin = in_features*[to.tanh] else: nonlin = to.sigmoid layer = IndiNonlinLayer(in_features, nonlin, bias, weight) assert isinstance(layer, nn.Module) i = to.randn(in_features) o = layer(i) assert isinstance(o, to.Tensor) assert i.shape == o.shape
py
1a2fe54d88c1e5c718bd8552ab2e975dc2d3be6e
# -------------- # import packages import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import re from nltk.corpus import stopwords from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score ,confusion_matrix # Code starts here # load data news = pd.read_csv(path) # subset data news = news[['TITLE','CATEGORY']] # distribution of classes dist = news['CATEGORY'].value_counts() # display class distribution print(dist.head()) # display data print(news.head()) # Code ends here # -------------- # Code starts here # stopwords stop = (set(stopwords.words('english'))) # retain only alphabets news['TITLE'] = news['TITLE'].apply(lambda x : re.sub("[^a-zA-Z]", " ",x) ) # convert to lowercase and tokenize news['TITLE'] = news['TITLE'].apply(lambda x : x.lower().split()) # remove stopwords news['TITLE'] = news['TITLE'].apply(lambda x : [i for i in x if i not in stop]) # join list elements print(news['TITLE'].head(2)) news['TITLE'] = news['TITLE'].apply(lambda x : ' '.join(x)) print(news['TITLE'].head(2)) # split into training and test sets X_train, X_test, y_train, y_test = train_test_split(news['TITLE'], news['CATEGORY'], test_size=0.2, random_state=3) # Code ends here # -------------- # Code starts here # initialize count vectorizer count_vectorizer = CountVectorizer() # initialize tfidf vectorizer tfidf_vectorizer = TfidfVectorizer(ngram_range=(1,3)) # fit and transform with count vectorizer X_train_count= count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # fit and transform with tfidf vectorizer X_train_tfidf= tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # Code ends here # -------------- # Code starts here # initialize multinomial naive bayes nb_1 = MultinomialNB() nb_2 = MultinomialNB() # fit on count vectorizer training data nb_1.fit(X_train_count, y_train) # fit on tfidf vectorizer training data nb_2.fit(X_train_tfidf, y_train) # accuracy with count vectorizer acc_count_nb = accuracy_score(nb_1.predict(X_test_count), y_test) # accuracy with tfidf vectorizer acc_tfidf_nb = accuracy_score(nb_2.predict(X_test_tfidf), y_test) # display accuracies print('Count Vectorizer accuracy is', acc_count_nb) print('TFIDF accuracy is', acc_tfidf_nb) # Code ends here # -------------- import warnings warnings.filterwarnings('ignore') # initialize logistic regression logreg_1 = OneVsRestClassifier(LogisticRegression(random_state=10)) logreg_2 = OneVsRestClassifier(LogisticRegression(random_state=10)) # fit on count vectorizer training data logreg_1.fit(X_train_count, y_train) logreg_2.fit(X_train_tfidf, y_train) # fit on tfidf vectorizer training data acc_count_logreg = accuracy_score(logreg_1.predict(X_test_count), y_test) acc_tfidf_logreg = accuracy_score(logreg_2.predict(X_test_tfidf), y_test) # accuracy with count vectorizer print('Count vectorizer accurancy is', acc_count_logreg) # accuracy with tfidf vectorizer print('TFIDF accuracy is', acc_tfidf_logreg) # display accuracies # Code ends here
py
1a2fe588feedd1327744d61141ef0189c19be486
from bisect import bisect_right from itertools import accumulate from math import inf, sqrt from numbers import Number class ApproximateHistogram: """ Streaming, approximate histogram Based on http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf Performance of adding a point is about 5x faster than https://github.com/carsonfarmer/streamhist (unmaintained). The output of quantile() will match numpy.quantile() exactly until the number of points reaches max_bins, and then gracefully transition to an approximation. """ def __init__(self, max_bins): self._max_bins = max_bins self._bins = [] # (point, count) self._costs = [] # item i is _bins[i+1].point - _bins[i].point self._count = 0 # TODO: maintain min/max as bin entries with infinite merge cost self._min = inf self._max = -inf @staticmethod def _update_costs(costs, l, i, val): """update costs array to reflect l.insert(i, val)""" if i > 0: new_cost = val[0] - l[i - 1][0] costs.insert(i - 1, new_cost) if i < len(costs): costs[i] = l[i + 1][0] - val[0] elif len(l) > 1: costs.insert(0, l[1][0] - val[0]) # assert costs == approx([b - a for (a, _), (b, _) in zip(l, l[1:])], rel=1e-4) @staticmethod def _update_costs_for_merge(costs, l, i, val): """update costs array to reflect l[i:i+2] = (val, )""" # TODO: combine with update_costs() if 0 < i < len(costs) - 1: costs[i - 1:i + 2] = val[0] - l[i - 1][0], l[i + 1][0] - val[0] elif i > 0: costs[i - 1:i + 1] = (val[0] - l[i - 1][0], ) else: costs[i:i + 2] = (l[i + 1][0] - val[0], ) # assert costs == approx([b - a for (a, _), (b, _) in zip(l, l[1:])], rel=1e-4) @classmethod def _insert_with_cost(cls, costs, l, val): i = bisect_right(l, val) l.insert(i, val) cls._update_costs(costs, l, i, val) def add(self, point): """Add point to histogram""" # optimization: maintain cost array self._count += 1 self._min = min(self._min, point) self._max = max(self._max, point) bins = self._bins costs = self._costs self._insert_with_cost(costs, bins, (point, 1)) if len(bins) > self._max_bins: i = costs.index(min(costs)) (q0, k0), (q1, k1) = bins[i:i+2] _count = k0 + k1 median = (q0 * k0 + q1 * k1) / _count bins[i:i+2] = ((median, _count), ) self._update_costs_for_merge(costs, bins, i, (median, _count)) @property def count(self): """Return number of points represented by this histogram.""" return self._count @property def min(self): """Return minimum point represented by this histogram""" return self._min @property def max(self): """Return maximum point represented by this histogram""" return self._max def mean(self): """Return mean; O(max_bins) complexity.""" return sum(p * count for p, count in self._bins) / self._count def std(self): """Return standard deviation; O(max_bins) complexity.""" mean = self.mean() sum_squares = sum((p - mean) ** 2 * count for p, count in self._bins) return sqrt(sum_squares / self._count) def _quantile(self, sums, q): if q <= 0: return self._min if q >= 1: return self._max bins = self._bins target_sum = q * (self._count - 1) + 1 i = bisect_right(sums, target_sum) - 1 left = bins[i] if i >= 0 else (self._min, 0) right = bins[i+1] if i+1 < len(bins) else (self._max, 0) l0, r0 = left[0], right[0] l1, r1 = left[1], right[1] s = target_sum - (sums[i] if i >= 0 else 1) if l1 <= 1 and r1 <= 1: # We have exact info at this quantile. Match linear interpolation # strategy of numpy.quantile(). b = l0 + (r0 - l0) * s / r1 if r1 > 0 else l0 else: if r1 == 1: # For exact bin on RHS, compensate for trapezoid interpolation using # only half of count. r1 = 2 if l1 == r1: bp_ratio = s / l1 else: bp_ratio = (l1 - (l1 ** 2 - 2 * s * (l1 - r1)) ** .5) / (l1 - r1) assert bp_ratio.imag == 0 b = bp_ratio * (r0 - l0) + l0 return b def sum(self): """Return sum of points; O(max_bins) complexity.""" return sum(x * count for x, count in self._bins) def quantile(self, q): """Return list of values at given quantile fraction(s); O(max_bins) complexity.""" # Deviation from Ben-Haim sum strategy: # * treat count 1 bins as "exact" rather than dividing the count at the point # * for neighboring exact bins, use simple linear interpolation matching # numpy.quantile() if isinstance(q, Number): q = (q, ) bins = self._bins sums = [x - (y/2 if y > 1 else 0) for x, (_, y) in \ zip(accumulate(bin[1] for bin in bins), bins)] return list(self._quantile(sums, q_item) for q_item in q)
py
1a2fe743e17247433559d43f10d9b87dd9e11ea7
import numpy as np def scroll(clip, h=None, w=None, x_speed=0, y_speed=0, x_start=0, y_start=0, apply_to="mask"): """ Scrolls horizontally or vertically a clip, e.g. to make fin credits """ if h is None: h = clip.h if w is None: w = clip.w xmax = clip.w-w-1 ymax = clip.h-h-1 def f(gf,t): x = max(0, min(xmax, x_start+ np.round(x_speed*t))) y = max(0, min(ymax, y_start+ np.round(y_speed*t))) return gf(t)[y:y+h, x:x+w] return clip.fl(f, apply_to = apply_to)
py
1a2fe7ee1460e4c36f5e3ec530fe14354abcca3a
"""Non-Maximum Suppression module.""" import numpy as np import torch def nms(detections, threshold): """Apply Non-Maximum Suppression over the detections. The detections must be a tensor with two dimensions: (number of detections, 5). Why 5? Because a detection has x1, y1, x2, y2 and score. Heavily inspired by Adrian Rosebrock at: https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/ Why not the version of GPU? Because I couldn't make it work in my GPU. Args: detections (torch.Tensor): A tensor with all the detections. The shape must be (number of detections, 5) with the score as the last value of the second dimension. threshold (float): The threshold for the IoU (intersection over union) to take two detections as detecting the same object. Returns: torch.Tensor: A tensor with the indexes of the detections to keep. """ # If there aren't detections return empty if detections.shape[0] == 0: return torch.zeros((0)) # Get the numpy version was_cuda = detections.is_cuda detections = detections.cpu().numpy() # Start the picked indexes list empty picked = [] # Get the coordinates x1 = detections[:, 0] y1 = detections[:, 1] x2 = detections[:, 2] y2 = detections[:, 3] scores = detections[:, 4] # Compute the area of the bounding boxes areas = (x2 - x1 + 1) * (y2 - y1 + 1) # Get the indexes of the detections sorted by score indexes = np.argsort(scores) while len(indexes) > 0: # Take the last index (highest score) and add it to the picked last = len(indexes) - 1 actual = indexes[last] picked.append(actual) # We need to find the overlap of the bounding boxes with the actual picked bounding box # Find the largest (more to the bottom-right) (x,y) coordinates for the start # (top-left) of the bounding box xx1 = np.maximum(x1[actual], x1[indexes[:last]]) yy1 = np.maximum(y1[actual], y1[indexes[:last]]) # Find the smallest (more to the top-left) (x,y) coordinates for the end (bottom-right) # of the bounding box xx2 = np.minimum(x2[actual], x2[indexes[:last]]) yy2 = np.minimum(y2[actual], y2[indexes[:last]]) # Compute width and height to compute the intersection over union w = np.maximum(0, xx2 - xx1 + 1) h = np.maximum(0, yy2 - yy1 + 1) intersection = (w * h) union = areas[actual] + areas[indexes[:last]] - intersection iou = intersection / union # Delete the last index and all that overlap is bigger than threshold indexes = np.delete(indexes, np.concatenate(([last], np.where(iou > threshold)[0]))) # Return the picked indexes picked = torch.Tensor(picked).long() if was_cuda: picked = picked.cuda() return picked
py
1a2fe94d05b3883bd5969cc6fc5bcb6944bdaec8
import os from functools import partial import numpy as np import pandas as pd import tables import matplotlib import warnings from PyQt5.QtCore import Qt, QPointF from PyQt5.QtGui import QPixmap, QPainter, QFont, QPen, QPolygonF, QColor, QKeySequence, QBrush from PyQt5.QtWidgets import QApplication, QMessageBox from tierpsy.analysis.ske_create.helperIterROI import getWormROI from tierpsy.analysis.split_fov.FOVMultiWellsSplitter import FOVMultiWellsSplitter from tierpsy.gui.MWTrackerViewer_ui import Ui_MWTrackerViewer from tierpsy.gui.TrackerViewerAux import TrackerViewerAuxGUI from tierpsy.gui.PlotFeatures import PlotFeatures from tierpsy.helper.misc import WLAB, save_modified_table from tierpsy.analysis.split_fov.helper import get_well_color class WellsDrawer(TrackerViewerAuxGUI): ''' Dummy class with the wells division drawer functions ''' def __init__(self, ui): super().__init__(ui) # colour self.fovsplitter_mask = None self.fovsplitter_feat = None self.fovsplitter = None self.is_fov_tosplit = None def updateVideoFile(self, vfilename): super().updateVideoFile(vfilename) # check if /fov_wells exists in masked video if self.fid is not None: if '/fov_wells' not in self.fid: self.is_fov_tosplit = False else: self.is_fov_tosplit = True # if it exists, read it if self.is_fov_tosplit: # self.wells_in_mask = pd.DataFrame( # self.fid.get_node('/fov_wells').read()) self.fovsplitter_mask = FOVMultiWellsSplitter(self.vfilename) def updateSkelFile(self, skeletons_file): super().updateSkelFile(skeletons_file) # if no skeletons, skip if not self.skeletons_file: return # check if /fov_wells exists in features video with tables.File(self.skeletons_file, 'r') as fid: if '/fov_wells' not in fid: self.is_fov_tosplit = False # print("didn't find fov wells though") else: self.is_fov_tosplit = True # print("found fov wells in featuresN") # if it exists, read it if self.is_fov_tosplit: # print('reading fov_wells from featuresN') # print('pre-reading:') # print(self.wells) # self.wells_in_feat = pd.DataFrame( # fid.get_node('/fov_wells').read()) self.fovsplitter_feat = FOVMultiWellsSplitter(self.skeletons_file) def draw_wells(self, image): ''' Draw wells. ''' if self.is_fov_tosplit: if self.fovsplitter_feat is not None: self.fovsplitter = self.fovsplitter_feat else: # fall back to mask ones print('falling back') self.fovsplitter = self.fovsplitter_mask # prepare constants for drawing self.fontsize = max(1, max(image.height(), image.width()) // 60) penwidth = max(1, max(image.height(), image.width()) // 400) self.penwidth = penwidth if penwidth % 2 == 1 else penwidth + 1 # self.wellsC = QColor(250, 140, 0) if 'is_good_well' in self.fovsplitter.wells.columns: is_color_by_well = True else: is_color_by_well = False # Qt drawing code painter = QPainter() painter.begin(image) pen = QPen() pen.setWidth(self.penwidth) painter.setFont(QFont('Decorative', self.fontsize)) # loop on wells for _, well in self.fovsplitter.wells.iterrows(): # update color every time if is_color_by_well: wellC = get_well_color(well['is_good_well'], forCV=True) wellC = QColor(*wellC) else: wellC = QColor(250, 140, 0) pen.setColor(wellC) painter.setPen(pen) # draw well name painter.drawText(well['x_min'] + self.fontsize*0.4, well['y_min'] + self.fontsize*1.2, well['well_name']) # draw rectangle painter.drawRect(well['x_min'], well['y_min'], well['x_max'] - well['x_min'], well['y_max'] - well['y_min']) if well['is_good_well'] == False: painter.drawLine(well['x_min'], well['y_min'], well['x_max'], well['y_max']) painter.end() # super().keyPressEvent(event) class ContourDrawer(TrackerViewerAuxGUI): ''' Dummy class with the contour functions ''' def __init__(self, ui): super().__init__(ui) self.food_coordinates = None self.wlabC = { WLAB['U']: Qt.white, WLAB['WORM']: Qt.green, WLAB['WORMS']: Qt.blue, WLAB['BAD']: Qt.darkRed, WLAB['GOOD_SKE']: Qt.darkCyan } self.ui.checkBox_showFood.stateChanged.connect(self.updateImage) self.ui.checkBox_showFood.setEnabled(False) self.ui.checkBox_showFood.setChecked(True) def updateSkelFile(self, skeletons_file): super().updateSkelFile(skeletons_file) if not self.skeletons_file or self.trajectories_data is None: self.food_coordinates = None return with tables.File(self.skeletons_file, 'r') as fid: if not '/food_cnt_coord' in fid: self.food_coordinates = None self.ui.checkBox_showFood.setEnabled(False) else: #change from microns to pixels self.food_coordinates = fid.get_node('/food_cnt_coord')[:] self.food_coordinates /= self.microns_per_pixel self.ui.checkBox_showFood.setEnabled(True) def draw_food_contour(self, image): if self.food_coordinates is None or not self.ui.checkBox_showFood.isChecked(): return painter = QPainter() painter.begin(image) penwidth = max(1, max(image.height(), image.width()) // 800) col = Qt.darkMagenta p = QPolygonF() for x,y in self.food_coordinates: p.append(QPointF(x,y)) pen = QPen() pen.setWidth(penwidth) pen.setColor(col) painter.setPen(pen) painter.drawPolyline(p) painter.end() class IntensityLabeler(TrackerViewerAuxGUI): def __init__(self, ui): super().__init__(ui) self.mean_intensity = None self.ui.intensity_label.setStyleSheet('') #avoid displaying color at the start of the programı def updateVideoFile(self, vfilename): super().updateVideoFile(vfilename) if self.fid is not None: #get mean intensity information. #Useful for the optogenetic experiments. try: mean_int = self.fid.get_node('/mean_intensity')[:] #calculate the intensity range and normalize the data. #I am ignoring any value less than 1. The viewer only works with uint8 data. dd = mean_int[mean_int>=1] if dd.size == 0: raise ValueError bot = np.min(dd) top = np.max(dd) rr = top-bot # if the mean value change is less than 1 (likely continous image do nothing) if rr <= 1: raise ValueError self.mean_intensity = (mean_int-bot)/(rr) except (tables.exceptions.NoSuchNodeError, ValueError): self.mean_intensity = None self.ui.intensity_label.setStyleSheet('') def display_intensity(self): if self.mean_intensity is not None and self.frame_number < self.mean_intensity.size: d = int(self.mean_intensity[self.frame_number]*255) self.ui.intensity_label.setStyleSheet('QLabel {background-color: rgb(%i, %i, %i);}' % (0, 0, d)) class BlobLabeler(TrackerViewerAuxGUI): def __init__(self, ui): super().__init__(ui) self.wlab = WLAB self.label_type = 'worm_label' self.ui.pushButton_U.clicked.connect( partial(self._h_tag_worm, self.wlab['U'])) self.ui.pushButton_W.clicked.connect( partial(self._h_tag_worm, self.wlab['WORM'])) self.ui.pushButton_WS.clicked.connect( partial(self._h_tag_worm, self.wlab['WORMS'])) self.ui.pushButton_B.clicked.connect( partial(self._h_tag_worm, self.wlab['BAD'])) self.ui.pushButton_W.setShortcut(QKeySequence(Qt.Key_W)) self.ui.pushButton_U.setShortcut(QKeySequence(Qt.Key_U)) self.ui.pushButton_WS.setShortcut(QKeySequence(Qt.Key_C)) self.ui.pushButton_B.setShortcut(QKeySequence(Qt.Key_B)) def enable_label_buttons(self, value): self.ui.pushButton_U.setEnabled(value) self.ui.pushButton_W.setEnabled(value) self.ui.pushButton_WS.setEnabled(value) self.ui.pushButton_B.setEnabled(value) def _h_tag_worm(self, label_ind): if not self.worm_index_type == 'worm_index_manual': return worm_ind = self.current_worm_index if self.frame_data is None: return if not worm_ind in self.frame_data['worm_index_manual'].values: QMessageBox.critical( self, 'The selected worm is not in this frame.', 'Select a worm in the current frame to label.', QMessageBox.Ok) return good = self.trajectories_data['worm_index_manual'] == worm_ind self.trajectories_data.loc[good, 'worm_label'] = label_ind self.updateImage() class ROIWorm(): def __init__(self, wormCanvas, comboBox_ROI, checkBox_ROI): self.worm_index = None self.wormCanvas = wormCanvas self.comboBox_ROI = comboBox_ROI self.checkBox_ROI = checkBox_ROI self.comboBox_ROI.activated.connect(self.selectROI) def selectROI(self, index): try: self.worm_index = int(self.comboBox_ROI.itemText(index)) except ValueError: self.worm_index = None @property def isDrawSkel(self): return self.checkBox_ROI.isChecked() class ROIManager(TrackerViewerAuxGUI): def __init__(self, ui): super().__init__(ui) self.rois = [ ROIWorm( self.ui.wormCanvas1, self.ui.comboBox_ROI1, self.ui.checkBox_ROI1 ), ROIWorm( self.ui.wormCanvas2, self.ui.comboBox_ROI2, self.ui.checkBox_ROI2 ) ] self.ui.radioButton_ROI1.setShortcut(QKeySequence(Qt.Key_Up)) self.ui.radioButton_ROI2.setShortcut(QKeySequence(Qt.Key_Down)) self.ui.checkBox_ROI1.stateChanged.connect(partial(self._updateROI, self.rois[0])) self.ui.checkBox_ROI2.stateChanged.connect(partial(self._updateROI, self.rois[1])) self.ui.comboBox_ROI1.activated.connect(partial(self._updateROI, self.rois[0])) self.ui.comboBox_ROI2.activated.connect(partial(self._updateROI, self.rois[1])) # flags for RW and FF self.RW, self.FF = 1, 2 self.ui.pushButton_ROI1_RW.clicked.connect(partial(self.roiRWFF, self.RW, self.rois[0])) self.ui.pushButton_ROI1_FF.clicked.connect(partial(self.roiRWFF, self.FF, self.rois[0])) self.ui.pushButton_ROI2_RW.clicked.connect(partial(self.roiRWFF, self.RW, self.rois[1])) self.ui.pushButton_ROI2_FF.clicked.connect(partial(self.roiRWFF, self.FF, self.rois[1])) @property def current_roi(self): if self.ui.radioButton_ROI1.isChecked(): return self.rois[0] elif self.ui.radioButton_ROI2.isChecked(): return self.rois[1] else: raise ValueError("I shouldn't be here") @property def current_worm_index(self): return self.current_roi.worm_index def updateSkelFile(self, skeletons_file): for roi in self.rois: roi.worm_index = None super().updateSkelFile(skeletons_file) def keyPressEvent(self, event): #MORE SHORTCUTS # go the the start of end of a trajectory if event.key() == Qt.Key_BracketLeft: self.roiRWFF(self.RW, self.current_roi) elif event.key() == Qt.Key_BracketRight: self.roiRWFF(self.FF, self.current_roi) super().keyPressEvent(event) def updateROIcomboBox(self, roi): # update valid index for the comboBox roi.comboBox_ROI.clear() if roi.worm_index is not None: roi.comboBox_ROI.addItem(str(int(roi.worm_index))) for ind in self.frame_data[self.worm_index_type]: roi.comboBox_ROI.addItem(str(int(ind))) if roi.worm_index is None: w_ind = float(roi.comboBox_ROI.itemText(0)) roi.worm_index = int(w_ind) # function that generalized the updating of the ROI def _updateROI(self, roi): if self.frame_data is None or not self.worm_index_type: # no trajectories data presented, nothing to do here roi.wormCanvas.clear() return self.updateROIcomboBox(roi) # extract individual worm ROI good = self.frame_data[self.worm_index_type] == roi.worm_index row_data = self.frame_data.loc[good].squeeze() if row_data.size == 0 or \ np.isnan(row_data['coord_x']) or \ np.isnan(row_data['coord_y']): # invalid data nothing to do here roi.wormCanvas.clear() return worm_img, roi_corner = getWormROI(self.frame_img, row_data['coord_x'], row_data['coord_y'], row_data['roi_size'] ) roi_ori_size = worm_img.shape worm_img = np.ascontiguousarray(worm_img) worm_qimg = self._convert2Qimg(worm_img) canvas_size = min(roi.wormCanvas.height(), roi.wormCanvas.width()) worm_qimg = worm_qimg.scaled( canvas_size, canvas_size, Qt.KeepAspectRatio) worm_qimg = self.drawSkelResult(worm_img, worm_qimg, row_data, roi.isDrawSkel, roi_corner, read_center=False) pixmap = QPixmap.fromImage(worm_qimg) roi.wormCanvas.setPixmap(pixmap) def updateROIs(self): for roi in self.rois: self._updateROI(roi) def clearROIs(self): for roi in self.rois: roi.wormCanvas.clear() # move to the first or the last frames of a trajectory def roiRWFF(self, rwff, roi): if self.frame_data is None: return # use 1 for rewind RW or 2 of fast forward good = self.trajectories_data[self.worm_index_type] == roi.worm_index frames = self.trajectories_data.loc[good, 'frame_number'] if frames.size == 0: return if rwff == self.RW: self.frame_number = frames.min() elif rwff == self.FF: self.frame_number = frames.max() else: raise ValueError('Invalid rwff value : {} '.format(rwff)) self.ui.spinBox_frame.setValue(self.frame_number) class TrajectoryEditor(ROIManager): def __init__(self, ui): super().__init__(ui) self.ui.pushButton_join.clicked.connect(self.joinTraj) self.ui.pushButton_split.clicked.connect(self.splitTraj) #SHORTCUTS self.ui.pushButton_join.setShortcut(QKeySequence(Qt.Key_J)) self.ui.pushButton_split.setShortcut(QKeySequence(Qt.Key_S)) def enable_trajectories_buttons(self, value): self.ui.pushButton_join.setEnabled(value) self.ui.pushButton_split.setEnabled(value) def joinTraj(self): if self.worm_index_type != 'worm_index_manual' \ or self.frame_data is None: return worm_ind1 = self.rois[0].worm_index worm_ind2 = self.rois[1].worm_index if worm_ind1 == worm_ind2: QMessageBox.critical( self, 'Cannot join the same trajectory with itself', 'Cannot join the same trajectory with itself.', QMessageBox.Ok) return index1 = (self.trajectories_data[ 'worm_index_manual'] == worm_ind1).values index2 = (self.trajectories_data[ 'worm_index_manual'] == worm_ind2).values # if the trajectories do not overlap they shouldn't have frame_number # indexes in commun frame_number = self.trajectories_data.loc[ index1 | index2, 'frame_number'] if frame_number.size != np.unique(frame_number).size: QMessageBox.critical( self, 'Cannot join overlaping trajectories', 'Cannot join overlaping trajectories.', QMessageBox.Ok) return if not (worm_ind1 in self.frame_data[ 'worm_index_manual'].values or worm_ind2 in self.frame_data['worm_index_manual'].values): reply = QMessageBox.question( self, 'Message', "The none of the selected worms to join is not in this frame. Are you sure to continue?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if reply == QMessageBox.No: return # get the first row for each segment to extract some data first_row1 = self.trajectories_data.loc[index1, :].iloc[0] first_row2 = self.trajectories_data.loc[index2, :].iloc[0] # join trajectories self.trajectories_data.loc[ index2, 'worm_label'] = first_row1['worm_label'] self.trajectories_data.loc[index2, 'worm_index_manual'] = worm_ind1 self.rois[0].worm_index = worm_ind1 self.rois[1].worm_index = worm_ind1 #this might be too slow. I might need to change it self.traj_worm_index_grouped = self.trajectories_data.groupby(self.worm_index_type) self.updateImage() def splitTraj(self): if self.worm_index_type != 'worm_index_manual' \ or self.frame_data is None: return worm_ind = self.current_worm_index if not worm_ind in self.frame_data['worm_index_manual'].data: QMessageBox.critical( self, 'Worm index is not in the current frame.', 'Worm index is not in the current frame. Select a valid index.', QMessageBox.Ok) return last_index = self.trajectories_data['worm_index_manual'].max() new_ind1 = last_index + 1 new_ind2 = last_index + 2 good = self.trajectories_data['worm_index_manual'] == worm_ind frames = self.trajectories_data.loc[good, 'frame_number'] frames = frames.sort_values(inplace=False) good = frames < self.frame_number index1 = frames[good].index index2 = frames[~good].index self.trajectories_data.ix[index1, 'worm_index_manual'] = new_ind1 self.trajectories_data.ix[index2, 'worm_index_manual'] = new_ind2 self.rois[0].index = new_ind1 self.rois[1].index = new_ind2 #this might be too slow. I might need to change it self.traj_worm_index_grouped = self.trajectories_data.groupby(self.worm_index_type) self.updateImage() class FeatureReaderBase(TrackerViewerAuxGUI): index_cols = ['worm_index', 'timestamp', 'motion_modes', 'skeleton_id', 'well_name'] valid_fields = ['/timeseries_data', '/features_timeseries'] def __init__(self, ui): self.timeseries_data = None self.feat_column = '' super().__init__(ui) def updateSkelFile(self, skeletons_file): super().updateSkelFile(skeletons_file) try: self.traj_colors = {} with pd.HDFStore(self.skeletons_file, 'r') as ske_file_id: for field in self.valid_fields: if field in ske_file_id: self.timeseries_data = ske_file_id[field] if field == '/timeseries_data': blob_features = ske_file_id['/blob_features'] blob_features.columns = ['blob_' + x for x in blob_features.columns] self.timeseries_data = pd.concat((self.timeseries_data, blob_features), axis=1) break else: raise KeyError if not len(self.timeseries_data) != len(self.trajectories_data): ValueError('timeseries_data and trajectories_data does not match. You might be using an old version of featuresN.hdf5') self.valid_features = [x for x in self.timeseries_data.columns if x not in self.index_cols] except (TypeError, AttributeError, IOError, KeyError, tables.exceptions.HDF5ExtError): self.valid_features = None self.timeseries_data = None class MarkersDrawer(FeatureReaderBase): def __init__(self, ui): super().__init__(ui) self.traj_colors = {} self.n_points_traj = 250 self.n_colors = 256 cmap = matplotlib.cm.get_cmap("bwr") palette = [cmap(x) for x in np.linspace(0, 1, self.n_colors)] #palette = sns.color_palette("RdBu_r", self.n_colors) palette = np.round(np.array(palette)*255).astype(np.int) self.palette = [QColor(*x) for x in palette] self.drawT = {x: self.ui.comboBox_drawType.findText(x , flags=Qt.MatchContains) for x in ['boxes', 'traj']} self.showT = {x: self.ui.comboBox_showLabels.findText(x , flags=Qt.MatchContains) for x in ['hide', 'all', 'filter']} self.ui.comboBox_showLabels.setCurrentIndex(self.showT['all']) self.ui.comboBox_showLabels.currentIndexChanged.connect(self.updateImage) self.ui.comboBox_drawType.currentIndexChanged.connect(self.updateImage) self.ui.feature_column.currentIndexChanged.connect(self.change_feature) self.ui.feat_max_value.valueChanged.connect(self.updateImage) self.ui.feat_min_value.valueChanged.connect(self.updateImage) self.ui.is_color_features.stateChanged.connect(self.updateImage) self.enable_color_feats(False) self.ui.spinBox_step.valueChanged.connect(self.updateImage) def updateSkelFile(self, skeletons_file): self.ui.is_color_features.setChecked(False) super().updateSkelFile(skeletons_file) self.ui.feature_column.clear() if self.timeseries_data is None: #no feature data self.enable_color_feats(False) else: self.enable_color_feats(True) self.ui.feature_column.addItems(self.valid_features) self._h_find_feat_limits() def change_feature(self): self._h_find_feat_limits() self.updateImage() def _h_find_feat_limits(self): self.feat_column = str(self.ui.feature_column.currentText()) print(self.feat_column) if self.feat_column and self.timeseries_data is not None: f_max = self.timeseries_data[self.feat_column].max() f_min = self.timeseries_data[self.feat_column].min() q1, q2 = self.timeseries_data[self.feat_column].quantile([0.02, 0.98]) else: f_min, f_max, q1, q2 = 0,0,0,0 self.ui.feat_max_value.setRange(f_min, f_max) self.ui.feat_min_value.setRange(f_min, f_max) self.ui.feat_min_value.setValue(q1) self.ui.feat_max_value.setValue(q2) def enable_color_feats(self, value): self.ui.feature_column.setEnabled(value) self.ui.feat_min_value.setEnabled(value) self.ui.feat_max_value.setEnabled(value) self.ui.is_color_features.setEnabled(value) def _h_assign_feat_color(self, irow): feat_val = self.timeseries_data.loc[irow, self.feat_column] if (feat_val != feat_val): return Qt.black #this function can and should be optimized f_min = self.ui.feat_min_value.value() f_max = self.ui.feat_max_value.value() if f_min == f_max: #dummy range in case all the values are the same f_min, f_max = -1, 1 elif f_min > f_max: return Qt.black nn = np.clip((feat_val - f_min)/(f_max - f_min), 0, 1) ind = int(np.round(nn*(self.n_colors-1))) col = self.palette[ind] return col def draw_worm_markers(self, image): ''' Draw traj worm trajectory. ''' if not self.worm_index_type in self.frame_data or \ self.ui.comboBox_showLabels.currentIndex() == self.showT['hide']: return if hasattr(self, 'current_worm_index'): current_index = self.current_worm_index else: current_index = -1 painter = QPainter() painter.begin(image) self.fontsize = max(1, max(image.height(), image.width()) // 120) penwidth = max(1, max(image.height(), image.width()) // 800) self.penwidth = penwidth if penwidth % 2 == 1 else penwidth + 1 if not self.label_type in self.frame_data: self.frame_data[self.label_type] = self.wlab['U'] for row_id, row_data in self.frame_data.iterrows(): # check if the coordinates are nan if np.isnan(row_data['coord_x']) or np.isnan(row_data['coord_y']): continue #if select between showing filtered index or not if self.ui.comboBox_showLabels.currentIndex() == self.showT['filter']: continue is_current_index = current_index == int(row_data[self.worm_index_type]) cb_ind = self.ui.comboBox_drawType.currentIndex() if cb_ind == self.drawT['boxes']: self.draw_boxes(painter, row_id, row_data, is_current_index) elif cb_ind == self.drawT['traj']: self.draw_trajectories(painter, row_data, is_current_index) painter.end() def _h_get_trajectory(self, worm_index, current_frame): worm_data = self.traj_worm_index_grouped.get_group(worm_index) valid_index = worm_data.index[worm_data['frame_number']<= current_frame] ini = max(0, valid_index.size - self.frame_step*self.n_points_traj) traj_ind = valid_index.values[ini::self.frame_step] traj_data = worm_data.loc[traj_ind] return traj_data def draw_trajectories(self, painter, row_data, is_current_index): if self.traj_worm_index_grouped is None: return worm_index = int(row_data[self.worm_index_type]) current_frame = row_data['frame_number'] traj_data = self._h_get_trajectory(worm_index, current_frame) traj_data = traj_data.dropna(subset=['coord_x', 'coord_y']) x_v = traj_data['coord_x'].round() y_v = traj_data['coord_y'].round() points = [QPointF(*map(int, c)) for c in zip(x_v, y_v)] if self.ui.is_color_features.isChecked(): vec_color = [self._h_assign_feat_color(x) for x in traj_data.index] pen = QPen() pen.setWidth(self.penwidth) for p1, p2, c in zip(points[1:], points[:-1], vec_color): pen.setColor(c) painter.setPen(pen) painter.drawLine(p1, p2) else: pol = QPolygonF() for p in points: pol.append(p) if not worm_index in self.traj_colors: self.traj_colors[worm_index] = QColor(*np.random.randint(50, 230, 3)) col = self.traj_colors[worm_index] pen = QPen() pen.setWidth(self.penwidth) pen.setColor(col) painter.setPen(pen) painter.drawPolyline(pol) def draw_boxes(self, painter, row_id, row_data, is_current_index): ''' Draw traj worm trajectory. ''' worm_index = int(row_data[self.worm_index_type]) x = int(round(row_data['coord_x'])) y = int(round(row_data['coord_y'])) label_color = self.wlabC[int(row_data[self.label_type])] if not self.ui.is_color_features.isChecked(): label_color = self.wlabC[int(row_data[self.label_type])] else: label_color = self._h_assign_feat_color(row_id) pen = QPen() pen.setColor(label_color) pen.setWidth(self.penwidth) painter.setPen(pen) painter.setFont(QFont('Decorative', self.fontsize)) painter.drawText(x, y, str(worm_index)) bb = row_data['roi_size'] painter.drawRect(x - bb / 2, y - bb / 2, bb, bb) if is_current_index: b_size = bb//5 offset = bb/2 - b_size painter.fillRect(x + offset, y + offset, b_size, b_size, QBrush(label_color)) class PlotCommunicator(FeatureReaderBase, ROIManager): def __init__(self, ui=''): super().__init__(ui) self.ui.pushButton_plot.setEnabled(False) self.ui.pushButton_plot.clicked.connect(self.show_plot) self.plotter = None def closePrev(self): if self.plotter is not None: self.plotter.close() self.plotter = None def updateSkelFile(self, skeletons_file): super().updateSkelFile(skeletons_file) self.closePrev() if self.timeseries_data is None: self.ui.pushButton_plot.setEnabled(False) else: self.ui.pushButton_plot.setEnabled(True) def show_plot(self): self.closePrev() self.plotter = PlotFeatures(self.skeletons_file, self.timeseries_data, self.traj_worm_index_grouped, self.time_units, self.xy_units, self.fps, parent = self) self.plotter.setWindowFlags(self.plotter.windowFlags() | Qt.WindowStaysOnTopHint) self.plotter.show() self.update_plot() def update_plot(self): if self.plotter: self.plotter.plot(self.current_worm_index, self.feat_column) class MWTrackerViewer_GUI( MarkersDrawer, PlotCommunicator, ContourDrawer, BlobLabeler, IntensityLabeler, TrajectoryEditor, WellsDrawer): def __init__(self, ui='', argv=''): if not ui: super().__init__(Ui_MWTrackerViewer()) else: super().__init__(ui) self.setWindowTitle("Multi-Worm Viewer") self.vfilename = '' if len(argv) <= 1 else argv[1] self.videos_dir = r"/Volumes/behavgenom$/GeckoVideo/MaskedVideos/" self.results_dir = '' self.skeletons_file = '' self.worm_index_type = 'worm_index_manual' self.frame_data = None self.ui.comboBox_labelType.currentIndexChanged.connect(self.selectWormIndexType) self.ui.pushButton_save.clicked.connect(self.saveData) # select worm ROI when doubleclick a worm self.mainImage._canvas.mouseDoubleClickEvent = self.selectWorm self.mainImage._canvas.mouseRightClickEvent = self.toggleWellStatus self.ui.comboBox_ROI1.activated.connect(self.update_plot) self.ui.comboBox_ROI2.activated.connect(self.update_plot) def saveData(self): '''save data from manual labelling. pytables saving format is more convenient than pandas''' if os.name == 'nt': # I Windows the paths return by QFileDialog use / as the file # separation character. We need to correct it. for field_name in ['vfilename', 'skeletons_file']: setattr( self, field_name, getattr( self, field_name).replace( '/', os.sep)) has_skeletons_file = ((self.skeletons_file is not None) and (self.skeletons_file != '')) if has_skeletons_file: save_modified_table(self.skeletons_file, self.trajectories_data, 'trajectories_data') if self.is_fov_tosplit: if has_skeletons_file: self.fovsplitter.write_fov_wells_to_file(self.skeletons_file) else: warnings.warn('No skeletons file. Saving wells info in masked video') self.fid.close() self.fovsplitter.write_fov_wells_to_file(self.vfilename) # self.fid = tables.File(self.vfilename, 'r') self.updateVideoFile(self.vfilename) if has_skeletons_file: self.updateSkelFile(self.skeletons_file) def updateVideoFile(self, vfilename): super().updateVideoFile(vfilename) self.updateImage() def updateSkelFile(self, skeletons_file): super().updateSkelFile(skeletons_file) if self.trajectories_data is None: #empty file nothing to do here self.updateImage() return #correct the `worm_index_N` to the actual name `worm_index_manual` if 'worm_index_N' in self.trajectories_data: self.trajectories_data = self.trajectories_data.rename( columns={'worm_index_N': 'worm_index_manual'}) #if this is really a trajectories_data not (_features.hdf5) add `worm_index_manual` if it does not exists if not 'worm_index_manual' in self.trajectories_data and not self.is_estimated_trajectories_data: self.trajectories_data['worm_label'] = self.wlab['U'] self.trajectories_data['worm_index_manual'] = self.trajectories_data['worm_index_joined'] #deactiate the save option if we are dealing with estimated data... self.ui.pushButton_save.setEnabled(not self.is_estimated_trajectories_data) #add this column if it does not exist if not 'has_skeleton' in self.trajectories_data: self.trajectories_data['has_skeleton'] = self.trajectories_data['skeleton_id'] >= 0 self.updateWormIndexTypeMenu() self.updateImage() def updateWormIndexTypeMenu(self): possible_indexes = [x.replace('worm_index_', '') for x in self.trajectories_data.columns if x.startswith('worm_index_')] assert len(set(possible_indexes)) == len(possible_indexes) #all indexes ending must be different menu_names = sorted([x + ' index' for x in possible_indexes]) self.ui.comboBox_labelType.clear() self.ui.comboBox_labelType.addItems(menu_names) if 'manual' in possible_indexes: dd = self.ui.comboBox_labelType.findText('manual index') self.ui.comboBox_labelType.setCurrentIndex(dd); self.selectWormIndexType() def selectWormIndexType(self): index_option = self.ui.comboBox_labelType.currentText() if not index_option: return assert index_option.endswith(' index') self.worm_index_type = 'worm_index_' + index_option.replace(' index', '') # select between automatic and manual worm indexing and label if self.worm_index_type == 'worm_index_manual': self.label_type = 'worm_label' self.enable_trajectories_buttons(True) self.enable_label_buttons(True) else: self.label_type = 'auto_label' self.enable_trajectories_buttons(False) self.enable_label_buttons(False) #recalculate the grouped indexes self.traj_worm_index_grouped = self.trajectories_data.groupby(self.worm_index_type) self.updateImage() # update image def updateImage(self): if (self.image_group is None) and (self.isimgstore is False): return super(TrackerViewerAuxGUI, self).readCurrentFrame() # read the data of the particles that exists in the frame self.frame_data = self.getFrameData(self.frame_number) #draw extra info only if the worm_index_type is valid if self.frame_data is not None and \ self.worm_index_type in self.frame_data: #filter any -1 index self.frame_data = self.frame_data[self.frame_data[self.worm_index_type]>=0] if self.frame_data.size > 0: self.draw_worm_markers(self.frame_qimg) self.draw_food_contour(self.frame_qimg) self.updateROIs() else: self.clearROIs() # plot wells self.draw_wells(self.frame_qimg) # create the pixmap for the label self.mainImage.setPixmap(self.frame_qimg) self.display_intensity() def selectWorm(self, event): x = event.pos().x() y = event.pos().y() print(x,y) if self.frame_data is None or self.frame_data.size == 0: return R = (x - self.frame_data['coord_x'])**2 + \ (y - self.frame_data['coord_y'])**2 ind = R.idxmin() good_row = self.frame_data.loc[ind] if np.sqrt(R.loc[ind]) < good_row['roi_size']: self.current_roi.worm_index = int(good_row[self.worm_index_type]) self.update_plot() self.updateImage() def toggleWellStatus(self, event): # abort if not multifov if self.is_fov_tosplit != True: return # event is for sure a right click or this does not get called x = event.pos().x() y = event.pos().y() # this will always return something. n/a if clicking outside a well well_name = self.fovsplitter.find_well_of_xy(x, y)[0].decode('utf-8') idx = self.fovsplitter.wells['well_name'] == str(well_name) self.fovsplitter.wells.loc[idx, 'is_good_well'] = \ np.mod(self.fovsplitter.wells.loc[idx, 'is_good_well']+1, 2) # print(self.fovsplitter.wells) self.updateImage() def joinTraj(self): super().joinTraj() self.update_plot() def splitTraj(self): super().splitTraj() self.update_plot() def change_feature(self): super().change_feature() self.update_plot() if __name__ == '__main__': import sys app = QApplication(sys.argv) main = MWTrackerViewer_GUI(argv=sys.argv) #mask_file = '/Users/avelinojaver/OneDrive - Imperial College London/tierpsy_examples/mutliworm_example/BRC20067_worms10_food1-10_Set2_Pos5_Ch2_02062017_121709.hdf5' #mask_file = '/Volumes/rescomp1/data/WormData/screenings/Pratheeban/First_Set/MaskedVideos/Old_Adult/16_07_22/W3_ELA_1.0_Ch1_22072016_131149.hdf5' #mask_file = '/Users/avelinojaver/Documents/GitHub/tierpsy-tracker/tests/data/AVI_VIDEOS/MaskedVideos/AVI_VIDEOS_1.hdf5' # mask_file = '/Users/avelinojaver/Documents/GitHub/tierpsy-tracker/tests/data/WT2/MaskedVideos/WT2.hdf5' mask_file = '/Users/lferiani/Hackathon/multiwell_tierpsy/12_FEAT_TIERPSY_forGUI/MaskedVideos/20191205/syngenta_screen_run1_bluelight_20191205_151104.22956805/metadata.hdf5' main.updateVideoFile(mask_file) main.show() sys.exit(app.exec_())
py
1a2fe978c192b9bc4458f081aa6ee8b19d6746e0
from typing import List import numpy as np class DNNLayer: def __init__(self, out_shape, depends_on: List["DNNLayer"] = tuple(), param_count=0): assert out_shape is not None # get around varargs restriction self.extra_repr_params = {} self.unique_idx = "{}{:02d}".format(self.__class__.__name__, id(self) % 100) self.out_shape = out_shape self.depends_on = depends_on self.param_count = param_count def __repr__(self): args = self.extra_repr_params args["out_shape"] = self.out_shape args["param_count"] = self.param_count args["depends_on"] = "[{}]".format(", ".join([x.unique_idx for x in self.depends_on])) return "{}({})".format(self.unique_idx, ",".join(["{}={}".format(k, v) for k, v in args.items()])) class QueryKeyValueMatrix(DNNLayer): # Fusing Query, Key, And Value into 1 def __init__(self, SEQ_LEN, HIDDEN_DIM, I, ATTN_HEADS, input): super().__init__( out_shape=(3 * SEQ_LEN,I,ATTN_HEADS), # [seq_lean X intermediate_vector_dim] for 12 heads depends_on=[input] if input is not None else [], param_count=3 * HIDDEN_DIM*I*ATTN_HEADS) self.flop = 3 * SEQ_LEN*HIDDEN_DIM*I*ATTN_HEADS class QKTMatrix(DNNLayer): # Fusing Masking and Dropout def __init__(self, SEQ_LEN, HIDDEN_DIM, I, ATTN_HEADS, input): super().__init__( out_shape=(SEQ_LEN,I,ATTN_HEADS), depends_on=[input] if input is not None else [], # Different to accept a list param_count=0) self.flop = SEQ_LEN*HIDDEN_DIM*I*ATTN_HEADS + np.prod(self.out_shape) + np.prod(self.out_shape) # QKT + mask + dropout class Mask(DNNLayer): def __init__(self, input: DNNLayer): super().__init__( out_shape=input.out_shape, depends_on=[input] if input is not None else [], param_count=0) self.flop = np.prod(self.out_shape) class QKTVMatrix(DNNLayer): # QKTV + Concat def __init__(self, SEQ_LEN, HIDDEN_DIM, I, ATTN_HEADS, input): super().__init__( out_shape=(SEQ_LEN,I * ATTN_HEADS), depends_on=[input] if input is not None else [], param_count=0) self.flop = SEQ_LEN*HIDDEN_DIM*I*ATTN_HEADS + SEQ_LEN*HIDDEN_DIM*I*ATTN_HEADS # QKTVMatrix + Concat class Concat(DNNLayer): def __init__(self, SEQ_LEN, HIDDEN_DIM, I, ATTN_HEADS, input): super().__init__( out_shape=(SEQ_LEN,I * ATTN_HEADS), depends_on=[input] if input is not None else [], param_count=HIDDEN_DIM*I*ATTN_HEADS) # self.flop = SEQ_LEN*HIDDEN_DIM*I*ATTN_HEADS self.flop = 0 class LinearLayerReLU(DNNLayer): def __init__(self, in_features: int, out_features: int, input: DNNLayer): super().__init__( self.find_outshape(in_features, out_features, input), [input] if input is not None else [], param_count=((in_features + 1) * out_features), ) self.extra_repr_params["in_features"] = in_features self.extra_repr_params["out_features"] = out_features self.in_features = in_features self.out_features = out_features self.flop = 2 * self.param_count + self.out_features + np.prod(self.out_shape) # (Linear) + ReLU def find_outshape(self, in_features, out_features, input): assert len(input.out_shape) == 2 and input.out_shape[1] == in_features, f"{input.out_shape}, {in_features}" return (input.out_shape[0], out_features) def selfattn_flop(B, H, K, Tc, Tg, cache_length=0): assert cache_length >= 0, "cache_length should be non-negative" x = DNNLayer(out_shape=(B, Tc, H)) qkt = QKTMatrix(SEQ_LEN=Tc, HIDDEN_DIM=H, I=H//K, ATTN_HEADS=K, input=x) mask = Mask(input=x) flops = qkt.flop + mask.flop for i in range(1, Tg): x = DNNLayer(out_shape=(B, Tc + i, H)) if i <= cache_length: qkt = QKTMatrix(SEQ_LEN=1, HIDDEN_DIM=H, I=H//K, ATTN_HEADS=K, input=x) else: qkt = QKTMatrix(SEQ_LEN=Tc + i, HIDDEN_DIM=H, I=H//K, ATTN_HEADS=K, input=x) flops += qkt.flop print(f"selfattn_flop: {flops}") return flops if __name__ == "__main__": hparams = {"117M": (12, 768), "345M": (24, 1024), "762M": (36, 1280), "1542M": (48, 1600)} K = 4 B, H = hparams["117M"] Tc = 128 Tg = 128 selfattn_flop(B=B, H=H, K=K, Tc=Tc, Tg=Tg, cache_length=0) selfattn_flop(B=B, H=H, K=K, Tc=Tc, Tg=Tg, cache_length=64) selfattn_flop(B=B, H=H, K=K, Tc=Tc, Tg=Tg, cache_length=128)
py
1a2fe9c92a6d945dfd2ba4172ed35e87e3b9f918
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class TradeFundBillDetail(object): def __init__(self): self._amount = None self._asset_type_code = None self._asset_user_id = None self._biz_pay_type = None self._create_time = None self._payment_no = None @property def amount(self): return self._amount @amount.setter def amount(self, value): self._amount = value @property def asset_type_code(self): return self._asset_type_code @asset_type_code.setter def asset_type_code(self, value): self._asset_type_code = value @property def asset_user_id(self): return self._asset_user_id @asset_user_id.setter def asset_user_id(self, value): self._asset_user_id = value @property def biz_pay_type(self): return self._biz_pay_type @biz_pay_type.setter def biz_pay_type(self, value): self._biz_pay_type = value @property def create_time(self): return self._create_time @create_time.setter def create_time(self, value): self._create_time = value @property def payment_no(self): return self._payment_no @payment_no.setter def payment_no(self, value): self._payment_no = value def to_alipay_dict(self): params = dict() if self.amount: if hasattr(self.amount, 'to_alipay_dict'): params['amount'] = self.amount.to_alipay_dict() else: params['amount'] = self.amount if self.asset_type_code: if hasattr(self.asset_type_code, 'to_alipay_dict'): params['asset_type_code'] = self.asset_type_code.to_alipay_dict() else: params['asset_type_code'] = self.asset_type_code if self.asset_user_id: if hasattr(self.asset_user_id, 'to_alipay_dict'): params['asset_user_id'] = self.asset_user_id.to_alipay_dict() else: params['asset_user_id'] = self.asset_user_id if self.biz_pay_type: if hasattr(self.biz_pay_type, 'to_alipay_dict'): params['biz_pay_type'] = self.biz_pay_type.to_alipay_dict() else: params['biz_pay_type'] = self.biz_pay_type if self.create_time: if hasattr(self.create_time, 'to_alipay_dict'): params['create_time'] = self.create_time.to_alipay_dict() else: params['create_time'] = self.create_time if self.payment_no: if hasattr(self.payment_no, 'to_alipay_dict'): params['payment_no'] = self.payment_no.to_alipay_dict() else: params['payment_no'] = self.payment_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = TradeFundBillDetail() if 'amount' in d: o.amount = d['amount'] if 'asset_type_code' in d: o.asset_type_code = d['asset_type_code'] if 'asset_user_id' in d: o.asset_user_id = d['asset_user_id'] if 'biz_pay_type' in d: o.biz_pay_type = d['biz_pay_type'] if 'create_time' in d: o.create_time = d['create_time'] if 'payment_no' in d: o.payment_no = d['payment_no'] return o
py
1a2fea07750d6014226f0bc33440cd6ceaed26d9
from typing import TYPE_CHECKING # typing doesnt understand aenum so im pretending its stdlib enum while type checking if TYPE_CHECKING: import enum else: import aenum as enum __all__ = ( "ChannelType", "PresenceType", "RelationshipType", "AssetType", "SortType", ) class ChannelType(enum.Enum): saved_message = "SavedMessage" direct_message = "DirectMessage" group = "Group" text_channel = "TextChannel" voice_channel = "VoiceChannel" class PresenceType(enum.Enum): busy = "Busy" idle = "Idle" invisible = "Invisible" online = "Online" class RelationshipType(enum.Enum): blocked = "Blocked" blocked_other = "BlockedOther" friend = "Friend" incoming_friend_request = "Incoming" none = "None" outgoing_friend_request = "Outgoing" user = "User" class AssetType(enum.Enum): image = "Image" video = "Video" text = "Text" audio = "Audio" file = "File" class SortType(enum.Enum): latest = "Latest" oldest = "Oldest" relevance = "Relevance"
py
1a2fea9c884de04b9d8461dfabf1a0c9a9419dee
''' There are a total of numCourses courses you have to take, labeled from 0 to numCourses-1. Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses? **Example 1** `Input: numCourses = 2, prerequisites = [[1,0]]` `Output: true` Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible. **Example 2** `Input: numCourses = 2, prerequisites = [[1,0],[0,1]]` `Output: false` Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible. **Note** You may assume that there are no duplicate edges in the input prerequisites. ''' from collections import defaultdict class Solution(object): def __init__(self): self.eligibleCourses = [] self.visited = [] def seedEligibleCourses(self, g): for index, node in g.items(): if len(node) == 0 and index not in self.visited: self.eligibleCourses.append(index) def dfs(self, node, g): if node in self.visited: return self.visited.append(node) for _, n in g.items(): if node in n: n.remove(node) for successor in g[node]: if successor not in self.visited: self.eligibleCourses.append(successor) self.dfs(node, g) def canFinish(self, numCourses, prerequisites): if not prerequisites: return True graph = defaultdict(list) for relation in prerequisites: currentCourse, prerequisite = relation[0], relation[1] graph[prerequisite].append(currentCourse) # post order!! if currentCourse not in graph: graph[currentCourse] = [] self.seedEligibleCourses(graph) while self.eligibleCourses: current = self.eligibleCourses.pop(0) self.dfs(current, graph) self.seedEligibleCourses(graph) for _, n in graph.items(): if len(n) > 0: return False return True
py
1a2fead4cdba019420ee37f32acc4de5822c2905
#%% load the background from __future__ import print_function, division import torch from torchvision import datasets, transforms import os import matplotlib.pyplot as plt import seaborn as sns; sns.set() import pandas as pd import numpy as np import torch.nn as nn #%% define the datasets list_datasets = ['/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/original', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/normalized_to_HE', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/normalized_to_tumorLymphnode_165', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/normalized_to_onlyH', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/tumorLymphnode/patches/size_165/original', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/tumorLymphnode/patches/size_165/normalized_to_HE_165', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/tumorLymphnode/patches/size_165/normalized_to_camelyon_165', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/tumorLymphnode/patches/size_165/normalized_to_onlyH_165' ] list_dataset_names = ['camelyon_ori', 'camelyon_to_HE', 'camelyon_to_tL', 'camelyon_to_H', 'tumorLymphnode_ori', 'tumorLymphnode_to_HE', 'tumorLymphnode_to_ca', 'tumorLymphnode_to_H'] list_models = ['/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/original/model_ResNet152.pt', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/normalized_to_HE/model_ResNet152.pt', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/normalized_to_tumorLymphnode_165/model_ResNet152.pt', '/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/patchCamelyon/patches/normalized_to_onlyH/model_ResNet152.pt' ] list_model_names = ['ResNet_original', "ResNet_normalized_to_HE", "ResNet_normalized_to_tumorLymphnode", "ResNet_normalized_to_H"] #%% iterate over all datasets (and later over all models) list_model = [] list_dataset = [] list_kappa = [] list_accuracy = [] list_loss = [] for idataset, tdataset in enumerate(list_datasets): #print(idataset) #%% define the folder if tdataset.find("patches") > 0: dataset2use = "val" else: dataset2use = 'test' # %%define the function to get the data def get_datatransform(inputSize, data_dir): data_transforms = { dataset2use: transforms.Compose([ transforms.Resize([inputSize, inputSize]), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in [dataset2use]} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=False, num_workers=4) for x in [dataset2use]} return(data_transforms, image_datasets, dataloaders) #%% prepare the transformations and the dataset data_transforms , image_datasets, dataloaders= get_datatransform(259, tdataset) class_names = dataloaders[dataset2use].dataset.classes nb_classes = len(class_names) confusion_matrix = torch.zeros(nb_classes, nb_classes) #%% visualize the input data (to look if evey class is evenly) class_names = ['normal', 'tumor'] df = pd.DataFrame(dataloaders[dataset2use].dataset.samples) df.columns = ['file', 'class_nr'] df.class_nr = np.array(df.class_nr) class_labels = ['NaN' for x in range(df.shape[0])] for i in range(0,df.shape[0]): class_labels[i] = class_names[df.class_nr[int(i)]] df = df.assign(class_labels = class_labels) sns.set_palette("Set1", n_colors = 12) sns.countplot(df.class_labels) plt.xlabel('Pattern') plt.ylabel('Count [n]') plt.savefig('DataBase_' + dataset2use + '.jpg') plt.show() plt.close() n_normal = sum(map(lambda x : x == "normal", class_labels)) n_tumor = sum(map(lambda x: x == "tumor", class_labels)) print("n = " + str(n_normal) + " tiles without and n = " + str(n_tumor) + " tiles with tumor.") #%% iterate over the models from sklearn.metrics import cohen_kappa_score from sklearn.metrics import accuracy_score device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") n = 0 df_values = pd.DataFrame(list(range(0,len(dataloaders[dataset2use].sampler.data_source.imgs)))) for imodel, tmodel in enumerate(list_models): print(imodel) #%% prepare the dataset inputSize = 224 data_transforms, image_datasets, dataloaders = get_datatransform(inputSize, tdataset) #%% apply model on test data set (and get a confusion matrix) model_ft = torch.load(tmodel) model_ft.eval() vector_prd = [] vector_exp = [] with torch.no_grad(): for i, (inputs, classes) in enumerate(dataloaders[dataset2use]): inputs = inputs.to(device) classes = classes.to(device) outputs = model_ft(inputs) _, preds = torch.max(outputs, 1) if i == 0: outputs_matrix = outputs else: outputs_matrix = torch.cat((outputs_matrix, outputs), 0) vector_prd = vector_prd + preds.view(-1).cpu().tolist() vector_exp = vector_exp + classes.view(-1).cpu().tolist() confusion_matrix = torch.zeros(nb_classes, nb_classes) for x, y in zip(vector_exp, vector_prd): confusion_matrix[y, x] += 1 loss_function = nn.CrossEntropyLoss() loss_value = loss_function(outputs_matrix.to('cpu'), torch.tensor(vector_exp)) print(confusion_matrix) #%% calcualte the comparison values list_model.append(list_model_names[imodel]) list_dataset.append(list_dataset_names[idataset]) list_kappa.append(cohen_kappa_score(vector_prd, vector_exp)) list_accuracy.append(accuracy_score(vector_prd, vector_exp)) list_loss.append(loss_value.tolist()) print('Kappa-value: ' + str(list_kappa[-1])) print('Accurary-value: ' + str(list_accuracy[-1])) #%% plot a confusion matrix matrix2plot = confusion_matrix.numpy() matrix2plot = matrix2plot.astype(int) ax = sns.heatmap(matrix2plot, annot = True, linewidths=5, annot_kws={"size": 10}, xticklabels=class_names, yticklabels=class_names, cmap = "Blues") plt.xlabel('Ground Truth') plt.ylabel('Model ' + list_model[-1] + " on " + list_dataset[-1]) plt.savefig('ConfMat_' +'Model ' + list_model[-1] + " on " + list_dataset[-1] + '.jpg') plt.show() plt.close() #%% make a dataframe df = pd.DataFrame(list(zip(list_model, list_dataset, list_kappa)), columns=['model', 'data', 'kappa']) df = df.pivot_table(index = ["model"], columns = ["data"], values = "kappa") df.to_csv('/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/table.csv') df.to_excel('/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/table.xlsx') with open('/home/cw9/sds_hd/sd18a006/marlen/datasets/stainNormalization/table.tex', 'w') as tf: tf.write(df.to_latex())
py
1a2feae71d87f1c61be44ff563c96ea2e1ff4ca0
def is_element(element): pass
py
1a2feb1d38513c2e04722f0abbb4308498ded0bc
""" Limits ====== Implemented according to the PhD thesis http://www.cybertester.com/data/gruntz.pdf, which contains very thorough descriptions of the algorithm including many examples. We summarize here the gist of it. All functions are sorted according to how rapidly varying they are at infinity using the following rules. Any two functions f and g can be compared using the properties of L: L=lim log|f(x)| / log|g(x)| (for x -> oo) We define >, < ~ according to:: 1. f > g .... L=+-oo we say that: - f is greater than any power of g - f is more rapidly varying than g - f goes to infinity/zero faster than g 2. f < g .... L=0 we say that: - f is lower than any power of g 3. f ~ g .... L!=0, +-oo we say that: - both f and g are bounded from above and below by suitable integral powers of the other Examples ======== :: 2 < x < exp(x) < exp(x**2) < exp(exp(x)) 2 ~ 3 ~ -5 x ~ x**2 ~ x**3 ~ 1/x ~ x**m ~ -x exp(x) ~ exp(-x) ~ exp(2x) ~ exp(x)**2 ~ exp(x+exp(-x)) f ~ 1/f So we can divide all the functions into comparability classes (x and x^2 belong to one class, exp(x) and exp(-x) belong to some other class). In principle, we could compare any two functions, but in our algorithm, we do not compare anything below the class 2~3~-5 (for example log(x) is below this), so we set 2~3~-5 as the lowest comparability class. Given the function f, we find the list of most rapidly varying (mrv set) subexpressions of it. This list belongs to the same comparability class. Let's say it is {exp(x), exp(2x)}. Using the rule f ~ 1/f we find an element "w" (either from the list or a new one) from the same comparability class which goes to zero at infinity. In our example we set w=exp(-x) (but we could also set w=exp(-2x) or w=exp(-3x) ...). We rewrite the mrv set using w, in our case {1/w, 1/w^2}, and substitute it into f. Then we expand f into a series in w:: f = c0*w^e0 + c1*w^e1 + ... + O(w^en), where e0<e1<...<en, c0!=0 but for x->oo, lim f = lim c0*w^e0, because all the other terms go to zero, because w goes to zero faster than the ci and ei. So:: for e0>0, lim f = 0 for e0<0, lim f = +-oo (the sign depends on the sign of c0) for e0=0, lim f = lim c0 We need to recursively compute limits at several places of the algorithm, but as is shown in the PhD thesis, it always finishes. Important functions from the implementation: compare(a, b, x) compares "a" and "b" by computing the limit L. mrv(e, x) returns list of most rapidly varying (mrv) subexpressions of "e" rewrite(e, Omega, x, wsym) rewrites "e" in terms of w leadterm(f, x) returns the lowest power term in the series of f mrv_leadterm(e, x) returns the lead term (c0, e0) for e limitinf(e, x) computes lim e (for x->oo) limit(e, z, z0) computes any limit by converting it to the case x->oo All the functions are really simple and straightforward except rewrite(), which is the most difficult/complex part of the algorithm. When the algorithm fails, the bugs are usually in the series expansion (i.e. in SymPy) or in rewrite. This code is almost exact rewrite of the Maple code inside the Gruntz thesis. Debugging --------- Because the gruntz algorithm is highly recursive, it's difficult to figure out what went wrong inside a debugger. Instead, turn on nice debug prints by defining the environment variable SYMPY_DEBUG. For example: [user@localhost]: SYMPY_DEBUG=True ./bin/isympy In [1]: limit(sin(x)/x, x, 0) limitinf(_x*sin(1/_x), _x) = 1 +-mrv_leadterm(_x*sin(1/_x), _x) = (1, 0) | +-mrv(_x*sin(1/_x), _x) = set([_x]) | | +-mrv(_x, _x) = set([_x]) | | +-mrv(sin(1/_x), _x) = set([_x]) | | +-mrv(1/_x, _x) = set([_x]) | | +-mrv(_x, _x) = set([_x]) | +-mrv_leadterm(exp(_x)*sin(exp(-_x)), _x, set([exp(_x)])) = (1, 0) | +-rewrite(exp(_x)*sin(exp(-_x)), set([exp(_x)]), _x, _w) = (1/_w*sin(_w), -_x) | +-sign(_x, _x) = 1 | +-mrv_leadterm(1, _x) = (1, 0) +-sign(0, _x) = 0 +-limitinf(1, _x) = 1 And check manually which line is wrong. Then go to the source code and debug this function to figure out the exact problem. """ from functools import reduce from sympy.core import Basic, S, Mul, PoleError from sympy.core.cache import cacheit from sympy.core.numbers import ilcm, I, oo from sympy.core.symbol import Dummy, Wild from sympy.core.traversal import bottom_up from sympy.functions import log, exp, sign as _sign from sympy.series.order import Order from sympy.simplify import logcombine from sympy.simplify.powsimp import powsimp, powdenest from sympy.utilities.misc import debug_decorator as debug from sympy.utilities.timeutils import timethis timeit = timethis('gruntz') def compare(a, b, x): """Returns "<" if a<b, "=" for a == b, ">" for a>b""" # log(exp(...)) must always be simplified here for termination la, lb = log(a), log(b) if isinstance(a, Basic) and (isinstance(a, exp) or (a.is_Pow and a.base == S.Exp1)): la = a.exp if isinstance(b, Basic) and (isinstance(b, exp) or (b.is_Pow and b.base == S.Exp1)): lb = b.exp c = limitinf(la/lb, x) if c == 0: return "<" elif c.is_infinite: return ">" else: return "=" class SubsSet(dict): """ Stores (expr, dummy) pairs, and how to rewrite expr-s. Explanation =========== The gruntz algorithm needs to rewrite certain expressions in term of a new variable w. We cannot use subs, because it is just too smart for us. For example:: > Omega=[exp(exp(_p - exp(-_p))/(1 - 1/_p)), exp(exp(_p))] > O2=[exp(-exp(_p) + exp(-exp(-_p))*exp(_p)/(1 - 1/_p))/_w, 1/_w] > e = exp(exp(_p - exp(-_p))/(1 - 1/_p)) - exp(exp(_p)) > e.subs(Omega[0],O2[0]).subs(Omega[1],O2[1]) -1/w + exp(exp(p)*exp(-exp(-p))/(1 - 1/p)) is really not what we want! So we do it the hard way and keep track of all the things we potentially want to substitute by dummy variables. Consider the expression:: exp(x - exp(-x)) + exp(x) + x. The mrv set is {exp(x), exp(-x), exp(x - exp(-x))}. We introduce corresponding dummy variables d1, d2, d3 and rewrite:: d3 + d1 + x. This class first of all keeps track of the mapping expr->variable, i.e. will at this stage be a dictionary:: {exp(x): d1, exp(-x): d2, exp(x - exp(-x)): d3}. [It turns out to be more convenient this way round.] But sometimes expressions in the mrv set have other expressions from the mrv set as subexpressions, and we need to keep track of that as well. In this case, d3 is really exp(x - d2), so rewrites at this stage is:: {d3: exp(x-d2)}. The function rewrite uses all this information to correctly rewrite our expression in terms of w. In this case w can be chosen to be exp(-x), i.e. d2. The correct rewriting then is:: exp(-w)/w + 1/w + x. """ def __init__(self): self.rewrites = {} def __repr__(self): return super().__repr__() + ', ' + self.rewrites.__repr__() def __getitem__(self, key): if not key in self: self[key] = Dummy() return dict.__getitem__(self, key) def do_subs(self, e): """Substitute the variables with expressions""" for expr, var in self.items(): e = e.xreplace({var: expr}) return e def meets(self, s2): """Tell whether or not self and s2 have non-empty intersection""" return set(self.keys()).intersection(list(s2.keys())) != set() def union(self, s2, exps=None): """Compute the union of self and s2, adjusting exps""" res = self.copy() tr = {} for expr, var in s2.items(): if expr in self: if exps: exps = exps.xreplace({var: res[expr]}) tr[var] = res[expr] else: res[expr] = var for var, rewr in s2.rewrites.items(): res.rewrites[var] = rewr.xreplace(tr) return res, exps def copy(self): """Create a shallow copy of SubsSet""" r = SubsSet() r.rewrites = self.rewrites.copy() for expr, var in self.items(): r[expr] = var return r @debug def mrv(e, x): """Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e', and e rewritten in terms of these""" e = powsimp(e, deep=True, combine='exp') if not isinstance(e, Basic): raise TypeError("e should be an instance of Basic") if not e.has(x): return SubsSet(), e elif e == x: s = SubsSet() return s, s[x] elif e.is_Mul or e.is_Add: i, d = e.as_independent(x) # throw away x-independent terms if d.func != e.func: s, expr = mrv(d, x) return s, e.func(i, expr) a, b = d.as_two_terms() s1, e1 = mrv(a, x) s2, e2 = mrv(b, x) return mrv_max1(s1, s2, e.func(i, e1, e2), x) elif e.is_Pow and e.base != S.Exp1: e1 = S.One while e.is_Pow: b1 = e.base e1 *= e.exp e = b1 if b1 == 1: return SubsSet(), b1 if e1.has(x): base_lim = limitinf(b1, x) if base_lim is S.One: return mrv(exp(e1 * (b1 - 1)), x) return mrv(exp(e1 * log(b1)), x) else: s, expr = mrv(b1, x) return s, expr**e1 elif isinstance(e, log): s, expr = mrv(e.args[0], x) return s, log(expr) elif isinstance(e, exp) or (e.is_Pow and e.base == S.Exp1): # We know from the theory of this algorithm that exp(log(...)) may always # be simplified here, and doing so is vital for termination. if isinstance(e.exp, log): return mrv(e.exp.args[0], x) # if a product has an infinite factor the result will be # infinite if there is no zero, otherwise NaN; here, we # consider the result infinite if any factor is infinite li = limitinf(e.exp, x) if any(_.is_infinite for _ in Mul.make_args(li)): s1 = SubsSet() e1 = s1[e] s2, e2 = mrv(e.exp, x) su = s1.union(s2)[0] su.rewrites[e1] = exp(e2) return mrv_max3(s1, e1, s2, exp(e2), su, e1, x) else: s, expr = mrv(e.exp, x) return s, exp(expr) elif e.is_Function: l = [mrv(a, x) for a in e.args] l2 = [s for (s, _) in l if s != SubsSet()] if len(l2) != 1: # e.g. something like BesselJ(x, x) raise NotImplementedError("MRV set computation for functions in" " several variables not implemented.") s, ss = l2[0], SubsSet() args = [ss.do_subs(x[1]) for x in l] return s, e.func(*args) elif e.is_Derivative: raise NotImplementedError("MRV set computation for derviatives" " not implemented yet.") raise NotImplementedError( "Don't know how to calculate the mrv of '%s'" % e) def mrv_max3(f, expsf, g, expsg, union, expsboth, x): """ Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. max() compares (two elements of) f and g and returns either (f, expsf) [if f is larger], (g, expsg) [if g is larger] or (union, expsboth) [if f, g are of the same class]. """ if not isinstance(f, SubsSet): raise TypeError("f should be an instance of SubsSet") if not isinstance(g, SubsSet): raise TypeError("g should be an instance of SubsSet") if f == SubsSet(): return g, expsg elif g == SubsSet(): return f, expsf elif f.meets(g): return union, expsboth c = compare(list(f.keys())[0], list(g.keys())[0], x) if c == ">": return f, expsf elif c == "<": return g, expsg else: if c != "=": raise ValueError("c should be =") return union, expsboth def mrv_max1(f, g, exps, x): """Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. mrv_max1() compares (two elements of) f and g and returns the set, which is in the higher comparability class of the union of both, if they have the same order of variation. Also returns exps, with the appropriate substitutions made. """ u, b = f.union(g, exps) return mrv_max3(f, g.do_subs(exps), g, f.do_subs(exps), u, b, x) @debug @cacheit @timeit def sign(e, x): """ Returns a sign of an expression e(x) for x->oo. :: e > 0 for x sufficiently large ... 1 e == 0 for x sufficiently large ... 0 e < 0 for x sufficiently large ... -1 The result of this function is currently undefined if e changes sign arbitrarily often for arbitrarily large x (e.g. sin(x)). Note that this returns zero only if e is *constantly* zero for x sufficiently large. [If e is constant, of course, this is just the same thing as the sign of e.] """ if not isinstance(e, Basic): raise TypeError("e should be an instance of Basic") if e.is_positive: return 1 elif e.is_negative: return -1 elif e.is_zero: return 0 elif not e.has(x): e = logcombine(e) return _sign(e) elif e == x: return 1 elif e.is_Mul: a, b = e.as_two_terms() sa = sign(a, x) if not sa: return 0 return sa * sign(b, x) elif isinstance(e, exp): return 1 elif e.is_Pow: if e.base == S.Exp1: return 1 s = sign(e.base, x) if s == 1: return 1 if e.exp.is_Integer: return s**e.exp elif isinstance(e, log): return sign(e.args[0] - 1, x) # if all else fails, do it the hard way c0, e0 = mrv_leadterm(e, x) return sign(c0, x) @debug @timeit @cacheit def limitinf(e, x, leadsimp=False): """Limit e(x) for x-> oo. Explanation =========== If ``leadsimp`` is True, an attempt is made to simplify the leading term of the series expansion of ``e``. That may succeed even if ``e`` cannot be simplified. """ # rewrite e in terms of tractable functions only if not e.has(x): return e # e is a constant if e.has(Order): e = e.expand().removeO() if not x.is_positive or x.is_integer: # We make sure that x.is_positive is True and x.is_integer is None # so we get all the correct mathematical behavior from the expression. # We need a fresh variable. p = Dummy('p', positive=True) e = e.subs(x, p) x = p e = e.rewrite('tractable', deep=True, limitvar=x) e = powdenest(e) c0, e0 = mrv_leadterm(e, x) sig = sign(e0, x) if sig == 1: return S.Zero # e0>0: lim f = 0 elif sig == -1: # e0<0: lim f = +-oo (the sign depends on the sign of c0) if c0.match(I*Wild("a", exclude=[I])): return c0*oo s = sign(c0, x) # the leading term shouldn't be 0: if s == 0: raise ValueError("Leading term should not be 0") return s*oo elif sig == 0: if leadsimp: c0 = c0.simplify() return limitinf(c0, x, leadsimp) # e0=0: lim f = lim c0 else: raise ValueError("{} could not be evaluated".format(sig)) def moveup2(s, x): r = SubsSet() for expr, var in s.items(): r[expr.xreplace({x: exp(x)})] = var for var, expr in s.rewrites.items(): r.rewrites[var] = s.rewrites[var].xreplace({x: exp(x)}) return r def moveup(l, x): return [e.xreplace({x: exp(x)}) for e in l] @debug @timeit def calculate_series(e, x, logx=None): """ Calculates at least one term of the series of ``e`` in ``x``. This is a place that fails most often, so it is in its own function. """ from sympy.polys import cancel for t in e.lseries(x, logx=logx): # bottom_up function is required for a specific case - when e is # -exp(p/(p + 1)) + exp(-p**2/(p + 1) + p). No current simplification # methods reduce this to 0 while not expanding polynomials. t = bottom_up(t, lambda w: getattr(w, 'normal', lambda: w)()) t = cancel(t, expand=False).factor() if t.has(exp) and t.has(log): t = powdenest(t) if not t.is_zero: break return t @debug @timeit @cacheit def mrv_leadterm(e, x): """Returns (c0, e0) for e.""" Omega = SubsSet() if not e.has(x): return (e, S.Zero) if Omega == SubsSet(): Omega, exps = mrv(e, x) if not Omega: # e really does not depend on x after simplification return exps, S.Zero if x in Omega: # move the whole omega up (exponentiate each term): Omega_up = moveup2(Omega, x) exps_up = moveup([exps], x)[0] # NOTE: there is no need to move this down! Omega = Omega_up exps = exps_up # # The positive dummy, w, is used here so log(w*2) etc. will expand; # a unique dummy is needed in this algorithm # # For limits of complex functions, the algorithm would have to be # improved, or just find limits of Re and Im components separately. # w = Dummy("w", real=True, positive=True) f, logw = rewrite(exps, Omega, x, w) series = calculate_series(f, w, logx=logw) try: lt = series.leadterm(w, logx=logw) except (ValueError, PoleError): lt = f.as_coeff_exponent(w) # as_coeff_exponent won't always split in required form. It may simply # return (f, 0) when a better form may be obtained. Example (-x)**(-pi) # can be written as (-1**(-pi), -pi) which as_coeff_exponent does not return if lt[0].has(w): base = f.as_base_exp()[0].as_coeff_exponent(w) ex = f.as_base_exp()[1] lt = (base[0]**ex, base[1]*ex) return (lt[0].subs(log(w), logw), lt[1]) def build_expression_tree(Omega, rewrites): r""" Helper function for rewrite. We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:: e1 ---> e2 ---> e3 \ -> e4 Here we can do e1, e2, e3, e4 or e1, e2, e4, e3. To do this we assemble the nodes into a tree, and sort them by height. This function builds the tree, rewrites then sorts the nodes. """ class Node: def __init__(self): self.before = [] self.expr = None self.var = None def ht(self): return reduce(lambda x, y: x + y, [x.ht() for x in self.before], 1) nodes = {} for expr, v in Omega: n = Node() n.var = v n.expr = expr nodes[v] = n for _, v in Omega: if v in rewrites: n = nodes[v] r = rewrites[v] for _, v2 in Omega: if r.has(v2): n.before.append(nodes[v2]) return nodes @debug @timeit def rewrite(e, Omega, x, wsym): """e(x) ... the function Omega ... the mrv set wsym ... the symbol which is going to be used for w Returns the rewritten e in terms of w and log(w). See test_rewrite1() for examples and correct results. """ if not isinstance(Omega, SubsSet): raise TypeError("Omega should be an instance of SubsSet") if len(Omega) == 0: raise ValueError("Length cannot be 0") # all items in Omega must be exponentials for t in Omega.keys(): if not isinstance(t, exp): raise ValueError("Value should be exp") rewrites = Omega.rewrites Omega = list(Omega.items()) nodes = build_expression_tree(Omega, rewrites) Omega.sort(key=lambda x: nodes[x[1]].ht(), reverse=True) # make sure we know the sign of each exp() term; after the loop, # g is going to be the "w" - the simplest one in the mrv set for g, _ in Omega: sig = sign(g.exp, x) if sig != 1 and sig != -1: raise NotImplementedError('Result depends on the sign of %s' % sig) if sig == 1: wsym = 1/wsym # if g goes to oo, substitute 1/w # O2 is a list, which results by rewriting each item in Omega using "w" O2 = [] denominators = [] for f, var in Omega: c = limitinf(f.exp/g.exp, x) if c.is_Rational: denominators.append(c.q) arg = f.exp if var in rewrites: if not isinstance(rewrites[var], exp): raise ValueError("Value should be exp") arg = rewrites[var].args[0] O2.append((var, exp((arg - c*g.exp).expand())*wsym**c)) # Remember that Omega contains subexpressions of "e". So now we find # them in "e" and substitute them for our rewriting, stored in O2 # the following powsimp is necessary to automatically combine exponentials, # so that the .xreplace() below succeeds: # TODO this should not be necessary f = powsimp(e, deep=True, combine='exp') for a, b in O2: f = f.xreplace({a: b}) for _, var in Omega: assert not f.has(var) # finally compute the logarithm of w (logw). logw = g.exp if sig == 1: logw = -logw # log(w)->log(1/w)=-log(w) # Some parts of SymPy have difficulty computing series expansions with # non-integral exponents. The following heuristic improves the situation: exponent = reduce(ilcm, denominators, 1) f = f.subs({wsym: wsym**exponent}) logw /= exponent return f, logw def gruntz(e, z, z0, dir="+"): """ Compute the limit of e(z) at the point z0 using the Gruntz algorithm. Explanation =========== ``z0`` can be any expression, including oo and -oo. For ``dir="+"`` (default) it calculates the limit from the right (z->z0+) and for ``dir="-"`` the limit from the left (z->z0-). For infinite z0 (oo or -oo), the dir argument doesn't matter. This algorithm is fully described in the module docstring in the gruntz.py file. It relies heavily on the series expansion. Most frequently, gruntz() is only used if the faster limit() function (which uses heuristics) fails. """ if not z.is_symbol: raise NotImplementedError("Second argument must be a Symbol") # convert all limits to the limit z->oo; sign of z is handled in limitinf r = None if z0 == oo: e0 = e elif z0 == -oo: e0 = e.subs(z, -z) else: if str(dir) == "-": e0 = e.subs(z, z0 - 1/z) elif str(dir) == "+": e0 = e.subs(z, z0 + 1/z) else: raise NotImplementedError("dir must be '+' or '-'") try: r = limitinf(e0, z) except ValueError: r = limitinf(e0, z, leadsimp=True) # This is a bit of a heuristic for nice results... we always rewrite # tractable functions in terms of familiar intractable ones. # It might be nicer to rewrite the exactly to what they were initially, # but that would take some work to implement. return r.rewrite('intractable', deep=True)
py
1a2fed1e3ee2c697484cfb881c4f54cc98e55ef3
from .control_sequence import ControlSequence from .formatter import format_table class DocumentClass(ControlSequence): def __init__(self, name, descr=''): ControlSequence.__init__(self, name, descr) # A document class may have options. self.has_opts = True return
py
1a2fed5be55c9adffa50acb62c7dc0bd99897820
from unicodedata import name from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Ingredient,Recipe from recipe.serializers import IngredientSerializer INGREDIENTS_URL = reverse('recipe:ingredient-list') class PublicIngredientsApiTests(TestCase): #Test tha publicly available ingredients API def setUp(self): self.client = APIClient() def test_login_required(self): #Test tha login is required to access the endpoint res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateIngredientsApiTests(TestCase): # Test that private ingredient api def setUp(self) -> None: self.client = APIClient() self.user = get_user_model().objects.create_user( '[email protected]', 'pss123' ) self.client.force_authenticate(self.user) def test_retrive_ingredient_list(self): #Test that retrivinng the list of ingredients Ingredient.objects.create(user = self.user,name='Kale') Ingredient.objects.create(user = self.user,name='Salt') res = self.client.get(INGREDIENTS_URL) ingredients = Ingredient.objects.all().order_by('-name') serializer = IngredientSerializer(ingredients, many=True) self.assertEqual(res.status_code,status.HTTP_200_OK) self.assertEqual(res.data,serializer.data) def test_ingredients_limits_to_user(self): #Test that ingredients for authenticated user and return it user2 = get_user_model().objects.create_user( '[email protected]' 'pass321' ) Ingredient.objects.create(user=user2,name='Vinegar') ingredient = Ingredient.objects.create(user = self.user,name = 'Tumeric') res = self.client.get(INGREDIENTS_URL) self.assertEqual(res.status_code,status.HTTP_200_OK) self.assertEqual(len(res.data),1) self.assertEqual(res.data[0]['name'], ingredient.name) def test_create_ingredient_successful(self): #Test creating a new ingredient payload = {'name':'Cabbage'} self.client.post(INGREDIENTS_URL,payload) exists = Ingredient.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertTrue(exists) def test_create_ingredient_invalid(self): #Test creating a new ingredient with invalid payload payload = {'name':''} res = self.client.post(INGREDIENTS_URL,payload) self.assertEqual(res.status_code,status.HTTP_400_BAD_REQUEST) def test_retrieve_ingredients_assigned_to_recipes(self): #Test filtering ingredients by those assigned to recipes ingredient1 = Ingredient.objects.create(user=self.user,name='Apples') ingredient2 = Ingredient.objects.create(user=self.user,name='Turkey') recipe = Recipe.objects.create( title ='Apple crumble', time_minutes=5, price=10, user = self.user ) recipe.ingredients.add(ingredient1) res = self.client.get(INGREDIENTS_URL, {'assigned_only':1}) serializer1 = IngredientSerializer(ingredient1) serializer2 = IngredientSerializer(ingredient2) self.assertIn(serializer1.data, res.data) self.assertNotIn(serializer2.data, res.data) def test_retreive_ingredients_assigned_unique(self): #Test filtering ingredients by assigned return unique items ingredient = Ingredient.objects.create(user=self.user,name='Eggs') Ingredient.objects.create(user=self.user,name='Cheese') recipe1 = Recipe.objects.create( title = 'Eggs benedict', time_minutes = 30, price = 12.00, user=self.user ) recipe1.ingredients.add(ingredient) recipe2 = Recipe.objects.create( title = 'Coriander eggs', time_minutes=20, price=5.00, user=self.user ) recipe2.ingredients.add(ingredient) res = self.client.get(INGREDIENTS_URL,{'assigned_only':1}) self.assertEqual(len(res.data),1)
py
1a2fee16fc06e4ddbb7103d84074920037c39442
import time import numpy as np from equipment.custom import mmwave_source from equipment.hittite import signal_generator from equipment.srs import lockin from xystage import stepper from kid_readout.interactive import * from kid_readout.equipment import hardware from kid_readout.measurement import mmw_source_sweep, core, acquire logger.setLevel(logging.DEBUG) # fg = FunctionGenerator() #hittite = signal_generator.Hittite(ipaddr='192.168.0.200') #hittite.set_power(0) #hittite.on() lockin = lockin.Lockin(LOCKIN_SERIAL_PORT) tic = time.time() # lockin.sensitivity = 17 print lockin.identification print lockin.identification # print time.time()-tic # tic = time.time() # print lockin.state(measurement_only=True) # print time.time()-tic source = mmwave_source.MMWaveSource() source.set_attenuator_turns(6.0,6.0) source.multiplier_input = 'thermal' source.waveguide_twist_angle = 0 source.ttl_modulation_source = 'roach' hwp_motor = stepper.SimpleStepper(port='/dev/ttyACM2') setup = hardware.Hardware(hwp_motor, source, lockin) ri = Roach2Baseband() ri.set_modulation_output(7) initial_f0s = np.load('/data/readout/resonances/2017-06-JPL-8x8-LF-N1_single_horn_4.npy')/1e6 nf = len(initial_f0s) atonce = 4 if nf % atonce > 0: print "extending list of resonators to make a multiple of ", atonce initial_f0s = np.concatenate((initial_f0s, np.arange(1, 1 + atonce - (nf % atonce)) + initial_f0s.max())) print len(initial_f0s) nsamp = 2**20 offsets = np.arange(-16,16)*512./nsamp last_f0s = initial_f0s mmw_freqs = np.linspace(140e9, 165e9, 128) ri.set_dac_atten(35) tic = time.time() f0s = initial_f0s #setup.hittite.off() #high is off for initital ri.set_modulation_output('high') ncf_source_off = new_nc_file(suffix= 'mmw_broadband_source_off') print f0s swpa = acquire.run_sweep(ri,tone_banks=f0s[None,:]+offsets[:,None],num_tone_samples=nsamp, length_seconds=0.2, verbose=True, state=setup.state()) print "resonance sweep done", (time.time()-tic)/60. print "sweep written", (time.time()-tic)/60. current_f0s = [] for sidx in range(swpa.num_channels): swp = swpa.sweep(sidx) res = swp.resonator print res.f_0, res.Q, res.delay*1e6, res.current_result.redchi, (f0s[sidx]*1e6-res.f_0) if np.abs(f0s[sidx]*1e6-res.f_0) > 100e3: current_f0s.append(f0s[sidx]*1e6) logger.info("Resonator index %d moved more than 100 kHz, keeping original value %.1f MHz" % (sidx, f0s[sidx])) else: current_f0s.append(res.f_0) print "fits complete", (time.time()-tic)/60. current_f0s = np.array(current_f0s)/1e6 current_f0s.sort() bad_deltas = np.diff(current_f0s) < (256./2**14)*8 if bad_deltas.sum(): print "found bad deltas", bad_deltas.sum() current_f0s[np.nonzero(bad_deltas)] -= 0.1 bad_deltas = np.diff(current_f0s) < (256./2**14)*8 if bad_deltas.sum(): print "found bad deltas", bad_deltas.sum() current_f0s[np.nonzero(bad_deltas)] -= 0.1 ri.set_tone_freqs(current_f0s,nsamp=nsamp) ri.select_fft_bins(range(len(current_f0s))) print ri.fpga_fft_readout_indexes print np.diff(ri.fpga_fft_readout_indexes.astype('float')).min() meas = ri.get_measurement(num_seconds=30) meas.state = setup.state(fast=True) sweep_stream_array = basic.SweepStreamArray(sweep_array = swpa, stream_array = meas, state = meas.state, description= 'source off') ncf_source_off.write(sweep_stream_array) ncf_source_off.close() turnlist = np.arange(9,-0.1,-0.5) #turnlist = [9,5,1] turnlist = [3] for turn_num in turnlist: ri.set_modulation_output(7) raw_input('set attenuator knobs to %f turns & check lock-in range' %turn_num) source.set_attenuator_turns(turn_num, turn_num) #turn on source ri.set_modulation_output('low') ncf = new_nc_file(suffix='mmw_broadband_source_on_%.2f_turns' %turn_num) swpa = acquire.run_sweep(ri, tone_banks=f0s[None, :] + offsets[:, None], num_tone_samples=nsamp, length_seconds=0.2, verbose=True, state=setup.state()) print "resonance sweep done", (time.time() - tic) / 60. print "sweep written", (time.time() - tic) / 60. current_f0s = [] for sidx in range(swpa.num_channels): swp = swpa.sweep(sidx) res = swp.resonator print res.f_0, res.Q, res.delay * 1e6, res.current_result.redchi, (f0s[sidx] * 1e6 - res.f_0) if np.abs(f0s[sidx] * 1e6 - res.f_0) > 100e3: current_f0s.append(f0s[sidx] * 1e6) logger.info("Resonator index %d moved more than 100 kHz, keeping original value %.1f MHz" % (sidx, f0s[sidx])) else: current_f0s.append(res.f_0) print "fits complete", (time.time() - tic) / 60. current_f0s = np.array(current_f0s) / 1e6 current_f0s.sort() bad_deltas = np.diff(current_f0s) < (256. / 2 ** 14) * 8 if bad_deltas.sum(): print "found bad deltas", bad_deltas.sum() current_f0s[np.nonzero(bad_deltas)] -= 0.1 bad_deltas = np.diff(current_f0s) < (256. / 2 ** 14) * 8 if bad_deltas.sum(): print "found bad deltas", bad_deltas.sum() current_f0s[np.nonzero(bad_deltas)] -= 0.1 ri.set_tone_freqs(current_f0s, nsamp=nsamp) ri.select_fft_bins(range(len(current_f0s))) print ri.fpga_fft_readout_indexes print np.diff(ri.fpga_fft_readout_indexes.astype('float')).min() meas = ri.get_measurement(num_seconds=30) #turn on modulation to get zbd voltage ri.set_modulation_output(7) time.sleep(2) sweep_stream_array = basic.SweepStreamArray(sweep_array=swpa, stream_array=meas, state=setup.state(fast=True), description='source on') ncf.write(sweep_stream_array) meas = ri.get_measurement(num_seconds=30) meas.state = setup.state(fast=True) sweep_stream_array = basic.SweepStreamArray(sweep_array=swpa, stream_array=meas, state=meas.state, description='chopped') ncf.write(sweep_stream_array) ncf.close()
py
1a2fef043bb60b57d450dba7201945e2b51ef1aa
import random from tqdm import tqdm import glob import numpy as np import torch from sparse_ct.reconstructor_2d.n2self import ( N2SelfReconstructor) from sparse_ct.reconstructor_2d.dataset import ( DeepLesionDataset, EllipsesDataset) if __name__ == "__main__": params= {'batch_size': 8, 'shuffle': True, 'num_workers': 8} N_PROJ = 64 pwd_train = '/external/CT_30_000/train' pwd_test = '/external/CT_30_000/test' file_list_train = glob.glob(pwd_train+'/*/*/*/*.png') file_list_test = glob.glob(pwd_test+'/*/*/*/*.png') print("file_list_train", len(file_list_train)) print("file_list_test", len(file_list_test)) # train_loader = torch.utils.data.DataLoader( # DeepLesionDataset( # file_list_train, # return_gt=False, # n_proj=N_PROJ, # img_size=512), # **params # ) # test_loader = torch.utils.data.DataLoader( # DeepLesionDataset( # random.choices(file_list_test, k=1000), # return_gt=True, # n_proj=N_PROJ, # img_size=512), # **params # ) train_loader = torch.utils.data.DataLoader( EllipsesDataset( ellipses_type='train', return_gt=False, n_proj=N_PROJ, img_size=512), **params ) test_loader = torch.utils.data.DataLoader( EllipsesDataset( ellipses_type='validation', return_gt=True, n_proj=N_PROJ, img_size=512), **params ) theta = np.linspace(0.0, 180.0, N_PROJ, endpoint=False) recon_n2self = N2SelfReconstructor( 'N2SelfTrained', net='unet', lr=0.0001, n2self_weights=None,#'selfsuper-ellipses-64-l1-train1/iter_180000.pth',#'iter_15000.pth', #'selfsuper-ellipses-64-train8/iter_58800.pth', #'self-super-train9/iter_199800.pth', learnable_filter=False ) recon_n2self.init_train(theta) recon_n2self._eval(test_loader) for i in range(50): print('--------------- ',i) recon_n2self._train_one_epoch(train_loader, test_loader) recon_n2self._eval(test_loader) recon_n2self._save('epoch_{}.pth'.format(i)) recon_n2self._save('end.pth')
py
1a2feff3c24738113364bd8043fa2206d4733889
# Generated by Django 4.0.1 on 2022-02-08 00:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('items', '0001_initial'), ] operations = [ migrations.AddField( model_name='item', name='ocultar', field=models.BooleanField(default=True), ), ]
py
1a2ff1878fb5b2ace84def751fd6818c96ee7e46
# Hash Table; Bit Manipulation # Given two strings s and t which consist of only lowercase letters. # # String t is generated by random shuffling string s and then add one more letter at a random position. # # Find the letter that was added in t. # # Example: # # Input: # s = "abcd" # t = "abcde" # # Output: # e # # Explanation: # 'e' is the letter that was added. class Solution(object): def findTheDifference(self, s, t): """ :type s: str :type t: str :rtype: str """ sMap = collections.Counter(s) tMap = collections.Counter(t) for x in tMap: if x not in sMap or tMap[x] != sMap[x]: return x return None
py
1a2ff1b61ed8184e6edaf2a24430eb7123687cc3
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : 功能测试 Case Name : overlay函数入参为中文字符 Description : 1.使用overlay函数对中文字符进行处理 Expect : 1.返回结果正确 History : """ import unittest import sys from yat.test import Node from yat.test import macro sys.path.append(sys.path[0] + "/../") from testcase.utils.Logger import Logger from testcase.utils.CommonSH import CommonSH logger = Logger() class Function(unittest.TestCase): def setUp(self): logger.info("--------Opengauss_Function_Innerfunc_Overlay_Case0004.py开始执行--------") self.commonsh = CommonSH('dbuser') self.userNode = Node('dbuser') self.DB_ENV_PATH = macro.DB_ENV_PATH def test_right(self): encoding = ['SQL_ASCII', 'UTF-8'] sql_cmd = "SELECT overlay('和卡拉和梵蒂冈' placing '猕猴桃666' from 4 for 9 );" result = ["和猕猴桃666梵蒂冈", "和卡拉猕猴桃666"] for i in range(2): # 创建数据库 db_create = f"""drop database if exists aaa; create database aaa encoding = '{encoding[i]}';""" msg1 = self.commonsh.execut_db_sql(db_create) logger.info(msg1) self.assertTrue('CREATE' in msg1) # 连接新建的编码类型的库执行sql语句 cmd1 = f'''source {self.DB_ENV_PATH}; gsql -d aaa -p {self.userNode.db_port} -c "{sql_cmd}"''' msg2 = self.userNode.sh(cmd1).result() logger.info(msg2) self.assertTrue(msg2.splitlines()[-2].strip() == result[i]) # 删除数据库 db_drop = f'''drop database aaa;''' msg3 = self.commonsh.execut_db_sql(db_drop) logger.info(msg3) self.assertTrue('DROP' in msg3) def tearDown(self): logger.info('--------Opengauss_Function_Innerfunc_Overlay_Case0004.py执行结束--------')
py
1a2ff2cf5841c7d94e23405e4f6c9a7b0ee641e6
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "gazebo_ros".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "turtlebot3_description_reduced_mesh" PROJECT_SPACE_DIR = "/home/ubuntu/environment/HelloWorld/simulation_ws/build/turtlebot3_description_reduced_mesh/devel" PROJECT_VERSION = "1.1.0"
py
1a2ff3a4303be91e30df11d584e36598bd4917c2
GeometryConf={ 'DBExtended' : 'DB:Extended', 'DBExtendedGFlash' : 'DB:ExtendedGFlash', 'DBExtendedLiMax' : 'DB:ExtendedLiMax', 'DBExtendedLiMin' : 'DB:ExtendedLiMin', 'DBExtendedX0Max' : 'DB:ExtendedX0Max', 'DBExtendedX0Min' : 'DB:ExtendedX0Min', 'DBExtended2015' : 'DB:Extended', 'DBExtended2017' : 'DB:Extended', 'DBExtended2017ZeroMaterial' : 'DB:Extended2017ZeroMaterial', 'DBExtended2018' : 'DB:Extended', 'DBExtended2021' : 'DB:Extended', 'DBExtended2026' : 'DB:Extended2026', 'DBIdeal2015' : 'DB:Ideal2015', 'DBIdeal2015dev' : 'DB:Ideal2015dev', 'Ideal2015' : 'Ideal2015,Ideal2015Reco', 'Ideal2015dev' : 'Ideal2015dev,Ideal2015devReco', 'Extended' : 'Extended,ExtendedReco', 'Extended2015' : 'Extended2015,Extended2015Reco', 'Extended2015dev': 'Extended2015dev,Extended2015devReco', 'Extended2016' : 'Extended2016,Extended2016Reco', 'Extended2017' : 'Extended2017,Extended2017Reco', 'Extended2018' : 'Extended2018,Extended2018Reco', 'Extended2017Plan1' : 'Extended2017Plan1,Extended2017Plan1Reco', 'Extended2017Plan1ZeroMaterial' : 'Extended2017Plan1ZeroMaterial,Extended2017Plan1ZeroMaterialReco', 'Extended2021' : 'Extended2021,Extended2021Reco', 'All' : 'Configuration.Geometry.GeometrySimAll_cff,Reco', 'ECALHCAL' : 'Configuration.Geometry.GeometrySimECALHCAL_cff,Configuration.Geometry.GeometryRecoECALHCAL_cff', 'TrackerOnly' : 'Configuration.Geometry.GeometrySimTracker_cff,Configuration.Geometry.GeometryRecoTracker_cff', 'HCal' : 'Configuration.Geometry.GeometrySimHCAL_cff,Configuration.Geometry.GeometryRecoHCAL_cff', 'Extended2026D35' : 'Extended2026D35,Extended2026D35Reco', 'Extended2026D41' : 'Extended2026D41,Extended2026D41Reco', 'Extended2026D43' : 'Extended2026D43,Extended2026D43Reco', 'Extended2026D44' : 'Extended2026D44,Extended2026D44Reco', 'Extended2026D45' : 'Extended2026D45,Extended2026D45Reco', 'Extended2026D46' : 'Extended2026D46,Extended2026D46Reco', 'Extended2026D47' : 'Extended2026D47,Extended2026D47Reco', }
py
1a2ff41ce31e65dadf81b74360bf9e1cdebdf445
""" Ethereum Virtual Machine (EVM) Interpreter ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. contents:: Table of Contents :backlinks: none :local: Introduction ------------ A straightforward interpreter that executes EVM code. """ from dataclasses import dataclass from typing import Iterable, Set, Tuple, Union from ethereum.base_types import U256, Bytes0, Uint from ethereum.utils.ensure import EnsureError, ensure from ..eth_types import Address, Log from ..state import ( account_has_code_or_nonce, begin_transaction, commit_transaction, get_account, increment_nonce, move_ether, rollback_transaction, set_code, touch_account, ) from ..utils.address import to_address from ..vm import Message from ..vm.error import ( InsufficientFunds, InvalidJumpDestError, InvalidOpcode, OutOfGasError, StackDepthLimitError, StackOverflowError, StackUnderflowError, ) from ..vm.gas import GAS_CODE_DEPOSIT, REFUND_SELF_DESTRUCT, subtract_gas from ..vm.precompiled_contracts.mapping import PRE_COMPILED_CONTRACTS from . import Environment, Evm from .instructions import Ops, op_implementation from .runtime import get_valid_jump_destinations STACK_DEPTH_LIMIT = U256(1024) MAX_CODE_SIZE = 0x6000 RIPEMD160_ADDRESS = to_address(Uint(3)) @dataclass class MessageCallOutput: """ Output of a particular message call Contains the following: 1. `gas_left`: remaining gas after execution. 2. `refund_counter`: gas to refund after execution. 3. `logs`: list of `Log` generated during execution. 4. `accounts_to_delete`: Contracts which have self-destructed. 5. `touched_accounts`: Accounts that have been touched. 6. `has_erred`: True if execution has caused an error. """ gas_left: U256 refund_counter: U256 logs: Union[Tuple[()], Tuple[Log, ...]] accounts_to_delete: Set[Address] touched_accounts: Iterable[Address] has_erred: bool def process_message_call( message: Message, env: Environment ) -> MessageCallOutput: """ If `message.current` is empty then it creates a smart contract else it executes a call from the `message.caller` to the `message.target`. Parameters ---------- message : Transaction specific items. env : External items required for EVM execution. Returns ------- output : `MessageCallOutput` Output of the message call """ if message.target == Bytes0(b""): is_collision = account_has_code_or_nonce( env.state, message.current_target ) if is_collision: return MessageCallOutput( U256(0), U256(0), tuple(), set(), set(), True ) else: evm = process_create_message(message, env) else: evm = process_message(message, env) accounts_to_delete = collect_accounts_to_delete(evm, set()) evm.refund_counter += len(accounts_to_delete) * REFUND_SELF_DESTRUCT return MessageCallOutput( gas_left=evm.gas_left, refund_counter=evm.refund_counter, logs=evm.logs, accounts_to_delete=accounts_to_delete, touched_accounts=collect_touched_accounts(evm), has_erred=evm.has_erred, ) def process_create_message(message: Message, env: Environment) -> Evm: """ Executes a call to create a smart contract. Parameters ---------- message : Transaction specific items. env : External items required for EVM execution. Returns ------- evm: :py:class:`~ethereum.spurious_dragon.vm.Evm` Items containing execution specific objects. """ # take snapshot of state before processing the message begin_transaction(env.state) increment_nonce(env.state, message.current_target) evm = process_message(message, env) if not evm.has_erred: contract_code = evm.output contract_code_gas = len(contract_code) * GAS_CODE_DEPOSIT try: evm.gas_left = subtract_gas(evm.gas_left, contract_code_gas) ensure(len(contract_code) <= MAX_CODE_SIZE, OutOfGasError) except OutOfGasError: rollback_transaction(env.state) evm.gas_left = U256(0) evm.logs = () evm.accounts_to_delete = dict() evm.refund_counter = U256(0) evm.has_erred = True else: set_code(env.state, message.current_target, contract_code) commit_transaction(env.state) else: rollback_transaction(env.state) return evm def process_message(message: Message, env: Environment) -> Evm: """ Executes a call to create a smart contract. Parameters ---------- message : Transaction specific items. env : External items required for EVM execution. Returns ------- evm: :py:class:`~ethereum.spurious_dragon.vm.Evm` Items containing execution specific objects """ if message.depth > STACK_DEPTH_LIMIT: raise StackDepthLimitError("Stack depth limit reached") # take snapshot of state before processing the message begin_transaction(env.state) touch_account(env.state, message.current_target) sender_balance = get_account(env.state, message.caller).balance if message.should_transfer_value and message.value != 0: if sender_balance < message.value: rollback_transaction(env.state) raise InsufficientFunds( f"Insufficient funds: {sender_balance} < {message.value}" ) move_ether( env.state, message.caller, message.current_target, message.value ) evm = execute_code(message, env) if evm.has_erred: # revert state to the last saved checkpoint # since the message call resulted in an error rollback_transaction(env.state) else: commit_transaction(env.state) return evm def execute_code(message: Message, env: Environment) -> Evm: """ Executes bytecode present in the `message`. Parameters ---------- message : Transaction specific items. env : External items required for EVM execution. Returns ------- evm: `ethereum.vm.EVM` Items containing execution specific objects """ code = message.code valid_jump_destinations = get_valid_jump_destinations(code) evm = Evm( pc=Uint(0), stack=[], memory=bytearray(), code=code, gas_left=message.gas, env=env, valid_jump_destinations=valid_jump_destinations, logs=(), refund_counter=U256(0), running=True, message=message, output=b"", accounts_to_delete=dict(), has_erred=False, children=[], ) try: if evm.message.code_address in PRE_COMPILED_CONTRACTS: PRE_COMPILED_CONTRACTS[evm.message.code_address](evm) return evm while evm.running and evm.pc < len(evm.code): try: op = Ops(evm.code[evm.pc]) except ValueError: raise InvalidOpcode(evm.code[evm.pc]) op_implementation[op](evm) except ( OutOfGasError, InvalidOpcode, InvalidJumpDestError, InsufficientFunds, StackOverflowError, StackUnderflowError, StackDepthLimitError, ): evm.gas_left = U256(0) evm.logs = () evm.accounts_to_delete = dict() evm.refund_counter = U256(0) evm.has_erred = True except ( EnsureError, ValueError, ): evm.has_erred = True finally: return evm def collect_touched_accounts( evm: Evm, ancestor_had_error: bool = False ) -> Iterable[Address]: """ Collect all of the accounts that *may* need to be deleted based on `EIP-161 <https://eips.ethereum.org/EIPS/eip-161>`_. Checking whether they *do* need to be deleted happens in the caller. See also: https://github.com/ethereum/EIPs/issues/716 Parameters ---------- evm : The current EVM frame. ancestor_had_error : True if the ancestors of the evm object erred else False Returns ------- touched_accounts: `typing.Iterable` returns all the accounts that were touched and may need to be deleted. """ # collect the coinbase account if it was touched via zero-fee transfer if (evm.message.caller == evm.env.origin) and evm.env.gas_price == 0: yield evm.env.coinbase # collect those explicitly marked for deletion # ("beneficiary" is of SELFDESTRUCT) for beneficiary in sorted(set(evm.accounts_to_delete.values())): if evm.has_erred or ancestor_had_error: # Special case to account for geth+parity bug # https://github.com/ethereum/EIPs/issues/716 if beneficiary == RIPEMD160_ADDRESS: yield beneficiary continue else: yield beneficiary # collect account directly addressed if not isinstance(evm.message.target, Bytes0): if evm.has_erred or ancestor_had_error: # collect RIPEMD160 precompile even if ancestor evm had error. # otherwise, skip collection from children of erred-out evm objects if evm.message.target == RIPEMD160_ADDRESS: yield evm.message.target else: yield evm.message.target # recurse into nested computations # (even erred ones, since looking for RIPEMD160) for child in evm.children: yield from collect_touched_accounts( child, ancestor_had_error=(evm.has_erred or ancestor_had_error) ) def collect_accounts_to_delete( evm: Evm, accounts_to_delete: Set[Address] ) -> Set[Address]: """ Collects all the accounts that need to deleted from the `evm` object and its children Parameters ---------- evm : The current EVM frame. accounts_to_delete : list of accounts that need to be deleted. Note: An empty set should be passed to this parameter. This set is used to store the results obtained by recursively iterating over the child evm objects Returns ------- touched_accounts: `set` returns all the accounts that were touched and may need to be deleted. """ if not evm.has_erred: for address in evm.accounts_to_delete.keys(): accounts_to_delete.add(address) for child in evm.children: collect_accounts_to_delete(child, accounts_to_delete) return accounts_to_delete
py
1a2ff4f07e115816c75cad8a5fba6e76c1da9375
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="simplevae", # Replace with your own username version="1.0.0", author="Chenxi Wu, Yizi Zhang", author_email="[email protected], [email protected]", description="Final project of STA 663: Implementation of Variational Autoencoder", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/yizi0511/sta_663_vae", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], python_requires='>=3.6', install_requires=[ 'numpy', 'tensorflow', ], )
py
1a2ff60432bc1611b23789f0e3b556f4022df84f
from definitions import PATH_INPUT_CSV, PATH_OUTPUT_GEOJSON from modules.geojson.df_to_geojson import df_to_geojson from modules.geojson.export_geojson import export_geojson from modules.init.init_program import init_program import pandas as pd def main(): # init init_program() # actions to perform... df = pd.read_csv(PATH_INPUT_CSV) cols = ["provnum","name","address","city","state","zip","county","bedcert","ownership","employee_cases", "resident_cases", "resident_deaths","cna_hprd",'lpn_hprd',"rn_hprd","total_hprd"] geojson_dict = df_to_geojson(df, cols, lon="google_long", lat="google_lat") export_geojson(geojson_dict, PATH_OUTPUT_GEOJSON) if __name__ == '__main__': main()
py
1a2ff622703e4f13a0742c22b66b54ea0b634262
from lstm import BilstmAttention from config import LSTMConfig import torch import pandas as pd import numpy as np from tqdm import tqdm import os import directory def load_model(weight_path): print(weight_path) model = BilstmAttention(embed_num=859) model.load_state_dict(torch.load(weight_path)) # 返回的是一个OrderDict,存储了网络结构的名字和对应的参数 model.to(device) model.eval() return model @torch.no_grad() def predict(texts): pres_all = [] for text in tqdm(texts): text = [int(i) for i in text.split(' ')] # 统一样本的长度,这里选择55个词语作为样本长度,多的截断,少的补齐(用858补齐) seq_len = LSTMConfig.seq_len if len(text) > seq_len: text = text[:seq_len] else: text = text + [858] * (seq_len - len(text)) text = torch.from_numpy(np.array(text)) text = text.unsqueeze(0) text = text.type(torch.LongTensor).cuda() # for i in range(len(model_list)): model = model_list[i] outputs = model(text) outputs = outputs.sigmoid().detach().cpu().numpy()[0] if i == 0: pres_fold = outputs / len(model_list) else: pres_fold += outputs / len(model_list) # print("bilstm+attention_pres_fold:",pres_fold) # print("bilstm+attention_pres_fold:",type(pres_fold)) pres_fold = [str(p) for p in pres_fold] pres_fold = ' '.join(pres_fold) pres_all.append(pres_fold) return pres_all if __name__ == "__main__": device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_list = [] n_splits = LSTMConfig.n_splits for i in range(n_splits): model_list.append(load_model('./dl/user_data/model_data/label1/LSTMfold_' + str(i + 1) + '_best.pth')) test_df = pd.read_csv(directory.SEMI_TEST_SET_B_PATH, header=None) test_df.columns = ['report_ID', 'description'] submit = test_df.copy() print("test_df:{}".format(test_df.shape)) new_des = [i.strip('|').strip() for i in test_df['description'].values] ''' # 获取停用词 stopwords_path = './dl/code/test/label1/stopwords.txt' stopwords = [] with open(stopwords_path, 'r', encoding='utf-8') as f: for line in f: if len(line) > 0: stopwords.append(line.strip()) # 去掉new_des_test中的停用词 for j in range(0, len(new_des)): str2lst = new_des[j].split() copy = str2lst[:] for i in copy: if i in stopwords: copy.remove(i) str2lst = copy lst2str = " ".join(str(i) for i in str2lst) new_des[j] = lst2str ''' test_df['description'] = new_des sub_id = test_df['report_ID'].values print(sub_id[0]) save_dir = './dl/prediction_result/label1/' if not os.path.exists(save_dir): os.makedirs(save_dir) pres_all = predict(new_des) str_w = '' with open(save_dir + 'submit_lstm.csv', 'w') as f: for i in range(len(sub_id)): str_w += sub_id[i] + ',' + '|' + pres_all[i] + '\n' str_w = str_w.strip('\n') f.write(str_w)