ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a2ff66e092665412a561a2125c1879ca5d1d219
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Util class for job-related operations. """ import contextlib import os from taskflow import engines from taskflow.persistence import logbook from oslo_utils import uuidutils from pipeline.pipelines import pipeline_factory from pipeline.utils import backend_helper def post_remote_pipeline_job(pipeline): ME = os.getpid() print("Starting poster with pid: %s" % ME) my_name = "poster-%s" % ME persist_backend = backend_helper.default_persistence_backend() with contextlib.closing(persist_backend): with contextlib.closing(persist_backend.get_connection()) as conn: conn.upgrade() job_backend = backend_helper.default_jobboard_backend(my_name) job_backend.connect() with contextlib.closing(job_backend): # Create information in the persistence backend about the # unit of work we want to complete and the factory that # can be called to create the tasks that the work unit needs # to be done. lb = logbook.LogBook("post-from-%s" % my_name) fd = logbook.FlowDetail("sample-from-%s" % my_name, uuidutils.generate_uuid()) lb.add(fd) with contextlib.closing(persist_backend.get_connection()) as conn: conn.save_logbook(lb) engines.save_factory_details(fd, pipeline_factory.make_pipeline_flow, [pipeline.name], pipeline.kwargs, backend=persist_backend) # Post, and be done with it! jb = job_backend.post("sample-job-from-%s" % my_name, book=lb) print("Posted: %s" % jb) return jb
py
1a2ff7c55b8ed076fa46d310054279a8163972e9
import csv import random from functools import partial from typing import Callable, Optional from pdb import set_trace as st import os import random import pandas as pd from typing import Any, Callable, Dict, Iterable, List, Tuple, Union import numpy as np import tensorflow as tf from foolbox.attacks import ( FGSM, Attack, DeepFoolAttack, IterativeGradientSignAttack, SaliencyMapAttack, ) # from foolbox.criteria import TargetClass # from foolbox.models import TensorFlowModel from tensorflow.python.training import saver from tensorflow.python.training.session_manager import SessionManager import tensorflow as tf import numpy as np import pickle import sklearn.metrics as metrics import scipy.ndimage as ndimage import matplotlib.pyplot as plt plt.switch_backend('Agg') from model.config import LENET from model import LeNet import nninst_mode as mode from dataset import mnist from dataset.config import MNIST_TRAIN, MNIST_PATH from dataset.mnist_transforms import * from trace.lenet_mnist_class_trace_v2 import ( data_config, ) from trace.common import ( class_trace, ) from tf_utils import new_session_config from nninst_statistics import calc_trace_side_overlap from nninst_trace import TraceKey from nninst_utils.numpy import arg_approx from nninst_utils.ray import ray_init from nninst_utils.fs import ensure_dir, IOAction, CsvIOAction, abspath from eval.common import get_overlay_summary, clean_overlap_ratio, \ translation_overlap_ratio, attack_overlap_ratio, \ lenet_mnist_example from eval.cw_attack import cw_generate_adversarial_example from eval.eval_mnist import foolbox_generate_adversarial_example from eval.cw_attacks import CarliniL2 from nninst_graph import AttrMap, Graph, GraphAttrKey from nninst_utils.ray import ray_iter from tf_graph import ( MaskWeightWithTraceHook, model_fn_with_fetch_hook, ) from trace.common import ( get_predicted_value, get_rank, predict, reconstruct_class_trace_from_tf, reconstruct_trace_from_tf, reconstruct_trace_from_tf_brute_force, ) from eval.eval_by_reduced_point import reconstruct_point from nninst_op import * from nninst_trace import calc_padding threshold = 0.9 dilation_iter = 1 dilation_structure = ndimage.generate_binary_structure(2, 2) # Model config model_label = "augmentation" model_dir = f"result/lenet/model_{model_label}" # Trace config trace_dir = f"{model_dir}/traces_{threshold}" trace_name = "noop" training_trace_dir = f"{model_dir}/per_image_trace_{threshold}/train" # Result dir result_name = "test" result_dir = f"{model_dir}/birelation/{threshold}_{dilation_iter}" # result_dir = f"result/lenet/test" images_per_class = 1000 attack_name = "FGSM" attacks = { "FGSM": [FGSM], "BIM": [IterativeGradientSignAttack], "JSMA": [SaliencyMapAttack], "DeepFool": [DeepFoolAttack], # "DeepFool_full": [DeepFoolAttack, dict(subsample=None)], # "CWL2": [CarliniL2], } # DeepFool will shutdown when num_gpu<0.2 num_gpus = 0.2 overlap_fn = calc_trace_side_overlap per_channel = False lenet_mnist_class_trace = class_trace( trace_name, model_config=LENET, data_config=data_config, ) graph = LENET.network_class.graph().load() def reconstruct_edge_from_trace( trace, graph, node_name, key = TraceKey.EDGE, ): attrs = trace.nodes[node_name] op = graph.op(graph.id(node_name)) if key not in attrs: return None else: attr = attrs[key] edge = TraceKey.to_array(attr) return edge def reconstruct_point_from_trace_contrib( trace, graph, node_name, key = TraceKey.POINT, ): attrs = trace.nodes[node_name] def to_bitmap(shape, attr, contrib): mask = np.zeros(np.prod(shape), dtype=np.int8) pos_attr = attr[contrib > 0] mask[TraceKey.to_array(pos_attr)] = 1 neg_attr = attr[contrib < 0] mask[TraceKey.to_array(neg_attr)] = -1 return mask.reshape(shape) if key in attrs: return to_bitmap(attrs[key + "_shape"], attrs[key], attrs[TraceKey.POINT_CONTRIB]) else: for attr_name, attr in attrs.items(): if attr_name.startswith(TraceKey.POINT + ".") and attr is not None: return to_bitmap(attrs[TraceKey.POINT_SHAPE], attr) RuntimeError(f"Point key not found in {node_name}") def reconstruct_point_from_trace( trace, graph, node_name, key = TraceKey.POINT, ): attrs = trace.nodes[node_name] def to_bitmap(shape, attr): mask = np.zeros(np.prod(shape), dtype=np.int8) mask[TraceKey.to_array(attr)] = 1 return mask.reshape(shape) if key in attrs: return to_bitmap(attrs[key + "_shape"], attrs[key]) else: for attr_name, attr in attrs.items(): if attr_name.startswith(TraceKey.POINT + ".") and attr is not None: return to_bitmap(attrs[TraceKey.POINT_SHAPE], attr) RuntimeError(f"Point key not found in {node_name}") def reconstruct_weight_from_trace_contrib( trace, graph, node_name, key = TraceKey.WEIGHT, ): attrs = trace.nodes[node_name] def to_bitmap(shape, attr, contrib): mask = np.zeros(np.prod(shape), dtype=np.int8) mask[TraceKey.to_array(attr)] = contrib return mask.reshape(shape) if key in attrs: return to_bitmap(attrs[key + "_shape"], attrs[key], attrs[TraceKey.WEIGHT_CONTRIB]) else: RuntimeError(f"Weight key not found in {node_name}") def reconstruct_weight_from_trace( trace, graph, node_name, key = TraceKey.WEIGHT, ): attrs = trace.nodes[node_name] def to_bitmap(shape, attr): mask = np.zeros(np.prod(shape), dtype=np.int8) mask[TraceKey.to_array(attr)] = 1 return mask.reshape(shape) if key in attrs: return to_bitmap(attrs[key + "_shape"], attrs[key]) else: RuntimeError(f"Weight key not found in {node_name}") def reconstruct_point_fn( trace, ): node_names = [] key = TraceKey.POINT for attr_name, attr in trace.nodes.items(): if key in attr: node_names.append(attr_name) point_dict = {} for node_name in [ "conv2d/Relu:0", "conv2d_1/Relu:0", "dense/BiasAdd:0", "dense_1/BiasAdd:0", ]: point_dict[node_name] = reconstruct_point_from_trace( trace, graph, node_name, ) # print(node_name, point_dict[node_name].shape) return point_dict def reconstruct_weight_fn( trace, ): weight_dict = {} for node_name in [ "conv2d/Conv2D", "conv2d_1/Conv2D", ]: weight = reconstruct_weight_from_trace( trace, graph, node_name, ) weight = weight.reshape(-1, weight.shape[-2], weight.shape[-1]) weight_dict[node_name] = weight return weight_dict reconstruct_edge_fn = partial( reconstruct_edge_from_trace, graph = graph, key = TraceKey.EDGE )
py
1a2ff7d6ee544f38724df5d47c67ff7c9424e404
""" instabot example Workflow: Like user's, follower's media by user_id. """ import argparse import os import sys sys.path.append(os.path.join(sys.path[0], '../')) from instabot import Bot parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-u', type=str, help="username") parser.add_argument('-p', type=str, help="password") parser.add_argument('-proxy', type=str, help="proxy") parser.add_argument('users', type=str, nargs='+', help='users') args = parser.parse_args() bot = Bot() bot.login(username=args.u, password=args.p, proxy=args.proxy) for username in args.users: bot.like_followers(username, nlikes=3)
py
1a2ff90b8b9115aeed04b0e1d7443a0af43ffa46
from .flyweight import Flyweight
py
1a2ff916014c9c622853ba156b2f225dc12f0362
# -*- coding: utf-8 -*- # FOGLAMP_BEGIN # See: http://foglamp.readthedocs.io/ # FOGLAMP_END import json import urllib.parse import aiohttp from aiohttp import web from foglamp.common import utils from foglamp.common import logger from foglamp.common.service_record import ServiceRecord from foglamp.common.storage_client.exceptions import StorageServerError from foglamp.common.configuration_manager import ConfigurationManager from foglamp.services.core import connect from foglamp.services.core.service_registry.service_registry import ServiceRegistry from foglamp.services.core.service_registry import exceptions as service_registry_exceptions from foglamp.common.audit_logger import AuditLogger __author__ = "Amarendra K Sinha" __copyright__ = "Copyright (c) 2018 Dianomic Systems" __license__ = "Apache 2.0" __version__ = "${VERSION}" _help = """ ------------------------------------------------------------------------------- | GET | /foglamp/notification/plugin | | GET POST PUT DELETE | /foglamp/notification | ------------------------------------------------------------------------------- """ _logger = logger.setup() NOTIFICATION_TYPE = ["one shot", "retriggered", "toggled"] async def get_plugin(request): """ GET lists of rule plugins and delivery plugins :Example: curl -X GET http://localhost:8081/foglamp/notification/plugin """ try: notification_service = ServiceRegistry.get(s_type=ServiceRecord.Type.Notification.name) _address, _port = notification_service[0]._address, notification_service[0]._port except service_registry_exceptions.DoesNotExist: raise web.HTTPNotFound(reason="No Notification service available.") try: url = 'http://{}:{}/notification/rules'.format(_address, _port) rule_plugins = json.loads(await _hit_get_url(url)) url = 'http://{}:{}/notification/delivery'.format(_address, _port) delivery_plugins = json.loads(await _hit_get_url(url)) except Exception as ex: raise web.HTTPInternalServerError(reason=ex) else: return web.json_response({'rules': rule_plugins, 'delivery': delivery_plugins}) async def get_type(request): """ GET the list of available notification types :Example: curl -X GET http://localhost:8081/foglamp/notification/type """ return web.json_response({'notification_type': NOTIFICATION_TYPE}) async def get_notification(request): """ GET an existing notification :Example: curl -X GET http://localhost:8081/foglamp/notification/<notification_name> """ try: notif = request.match_info.get('notification_name', None) if notif is None: raise ValueError("Notification name is required.") notification = {} storage = connect.get_storage_async() config_mgr = ConfigurationManager(storage) notification_config = await config_mgr._read_category_val(notif) if notification_config: rule_config = await config_mgr._read_category_val("rule{}".format(notif)) delivery_config = await config_mgr._read_category_val("delivery{}".format(notif)) notification = { "name": notification_config['name']['value'], "description": notification_config['description']['value'], "rule": notification_config['rule']['value'], "ruleConfig": rule_config, "channel": notification_config['channel']['value'], "deliveryConfig": delivery_config, "notificationType": notification_config['notification_type']['value'], "enable": notification_config['enable']['value'], } else: raise ValueError("The Notification: {} does not exist.".format(notif)) except ValueError as ex: raise web.HTTPBadRequest(reason=str(ex)) except Exception as ex: raise web.HTTPInternalServerError(reason=ex) else: return web.json_response({'notification': notification}) async def get_notifications(request): """ GET list of notifications :Example: curl -X GET http://localhost:8081/foglamp/notification """ try: storage = connect.get_storage_async() config_mgr = ConfigurationManager(storage) all_notifications = await config_mgr._read_all_child_category_names("Notifications") notifications = [] for notification in all_notifications: notification_config = await config_mgr._read_category_val(notification['child']) notification = { "name": notification_config['name']['value'], "rule": notification_config['rule']['value'], "channel": notification_config['channel']['value'], "notificationType": notification_config['notification_type']['value'], "enable": notification_config['enable']['value'], } notifications.append(notification) except Exception as ex: raise web.HTTPInternalServerError(reason=ex) else: return web.json_response({'notifications': notifications}) async def post_notification(request): """ Create a new notification to run a specific plugin :Example: curl -X POST http://localhost:8081/foglamp/notification -d '{"name": "Test Notification", "description":"Test Notification", "rule": "threshold", "channel": "email", "notification_type": "one shot", "enabled": false}' curl -X POST http://localhost:8081/foglamp/notification -d '{"name": "Test Notification", "description":"Test Notification", "rule": "threshold", "channel": "email", "notification_type": "one shot", "enabled": false, "rule_config": {}, "delivery_config": {}}' """ try: notification_service = ServiceRegistry.get(s_type=ServiceRecord.Type.Notification.name) _address, _port = notification_service[0]._address, notification_service[0]._port except service_registry_exceptions.DoesNotExist: raise web.HTTPNotFound(reason="No Notification service available.") try: data = await request.json() if not isinstance(data, dict): raise ValueError('Data payload must be a valid JSON') name = data.get('name', None) description = data.get('description', None) rule = data.get('rule', None) channel = data.get('channel', None) notification_type = data.get('notification_type', None) enabled = data.get('enabled', None) rule_config = data.get('rule_config', {}) delivery_config = data.get('delivery_config', {}) if name is None or name.strip() == "": raise ValueError('Missing name property in payload.') if description is None: raise ValueError('Missing description property in payload.') if rule is None: raise ValueError('Missing rule property in payload.') if channel is None: raise ValueError('Missing channel property in payload.') if notification_type is None: raise ValueError('Missing notification_type property in payload.') if utils.check_reserved(name) is False: raise ValueError('Invalid name property in payload.') if utils.check_reserved(rule) is False: raise ValueError('Invalid rule property in payload.') if utils.check_reserved(channel) is False: raise ValueError('Invalid channel property in payload.') if notification_type not in NOTIFICATION_TYPE: raise ValueError('Invalid notification_type property in payload.') if enabled is not None: if enabled not in ['true', 'false', True, False]: raise ValueError('Only "true", "false", true, false are allowed for value of enabled.') is_enabled = "true" if ((type(enabled) is str and enabled.lower() in ['true']) or ( (type(enabled) is bool and enabled is True))) else "false" storage = connect.get_storage_async() config_mgr = ConfigurationManager(storage) curr_config = await config_mgr.get_category_all_items(name) if curr_config is not None: raise ValueError("A Category with name {} already exists.".format(name)) try: # Get default config for rule and channel plugins url = '{}/plugin'.format(request.url) try: # When authentication is mandatory we need to pass token in request header auth_token = request.token except AttributeError: auth_token = None list_plugins = json.loads(await _hit_get_url(url, auth_token)) r = list(filter(lambda rules: rules['name'] == rule, list_plugins['rules'])) c = list(filter(lambda channels: channels['name'] == channel, list_plugins['delivery'])) if len(r) == 0 or len(c) == 0: raise KeyError rule_plugin_config = r[0]['config'] delivery_plugin_config = c[0]['config'] except KeyError: raise ValueError("Invalid rule plugin {} and/or delivery plugin {} supplied.".format(rule, channel)) # Verify if rule_config contains valid keys if rule_config != {}: for k, v in rule_config.items(): if k not in rule_plugin_config: raise ValueError("Invalid key {} in rule_config {} supplied for plugin {}.".format(k, rule_config, rule)) # Verify if delivery_config contains valid keys if delivery_config != {}: for k, v in delivery_config.items(): if k not in delivery_plugin_config: raise ValueError( "Invalid key {} in delivery_config {} supplied for plugin {}.".format(k, delivery_config, channel)) # First create templates for notification and rule, channel plugins post_url = 'http://{}:{}/notification/{}'.format(_address, _port, urllib.parse.quote(name)) await _hit_post_url(post_url) # Create Notification template post_url = 'http://{}:{}/notification/{}/rule/{}'.format(_address, _port, urllib.parse.quote(name), urllib.parse.quote(rule)) await _hit_post_url(post_url) # Create Notification rule template post_url = 'http://{}:{}/notification/{}/delivery/{}'.format(_address, _port, urllib.parse.quote(name), urllib.parse.quote(channel)) await _hit_post_url(post_url) # Create Notification delivery template # Create configurations notification_config = { "description": description, "rule": rule, "channel": channel, "notification_type": notification_type, "enable": is_enabled, } await _update_configurations(config_mgr, name, notification_config, rule_config, delivery_config) audit = AuditLogger(storage) await audit.information('NTFAD', {"name": name}) except ValueError as ex: raise web.HTTPBadRequest(reason=str(ex)) except Exception as e: raise web.HTTPInternalServerError(reason=str(e)) else: return web.json_response({'result': "Notification {} created successfully".format(name)}) class NotFoundError(Exception): pass async def put_notification(request): """ Update an existing notification :Example: curl -X PUT http://localhost:8081/foglamp/notification/<notification_name> -d '{"description":"Test Notification modified"}' curl -X PUT http://localhost:8081/foglamp/notification/<notification_name> -d '{"rule": "threshold", "channel": "email"}' curl -X PUT http://localhost:8081/foglamp/notification/<notification_name> -d '{"notification_type": "one shot", "enabled": false}' curl -X PUT http://localhost:8081/foglamp/notification/<notification_name> -d '{"enabled": false}' curl -X PUT http://localhost:8081/foglamp/notification/<notification_name> -d '{"description":"Test Notification", "rule": "threshold", "channel": "email", "notification_type": "one shot", "enabled": false, "rule_config": {}, "delivery_config": {}}' """ try: notification_service = ServiceRegistry.get(s_type=ServiceRecord.Type.Notification.name) _address, _port = notification_service[0]._address, notification_service[0]._port except service_registry_exceptions.DoesNotExist: raise web.HTTPNotFound(reason="No Notification service available.") try: notif = request.match_info.get('notification_name', None) if notif is None: raise ValueError("Notification name is required for updation.") # TODO: Stop notification before update data = await request.json() if not isinstance(data, dict): raise ValueError('Data payload must be a valid JSON') description = data.get('description', None) rule = data.get('rule', None) channel = data.get('channel', None) notification_type = data.get('notification_type', None) enabled = data.get('enabled', None) rule_config = data.get('rule_config', {}) delivery_config = data.get('delivery_config', {}) if utils.check_reserved(notif) is False: raise ValueError('Invalid notification instance name.') if rule is not None and utils.check_reserved(rule) is False: raise ValueError('Invalid rule property in payload.') if channel is not None and utils.check_reserved(channel) is False: raise ValueError('Invalid channel property in payload.') if notification_type is not None and notification_type not in NOTIFICATION_TYPE: raise ValueError('Invalid notification_type property in payload.') if enabled is not None: if enabled not in ['true', 'false', True, False]: raise ValueError('Only "true", "false", true, false are allowed for value of enabled.') is_enabled = "true" if ((type(enabled) is str and enabled.lower() in ['true']) or ( (type(enabled) is bool and enabled is True))) else "false" storage = connect.get_storage_async() config_mgr = ConfigurationManager(storage) current_config = await config_mgr._read_category_val(notif) if current_config is None: raise NotFoundError('No {} notification instance found'.format(notif)) rule_changed = True if rule is not None and rule != current_config['rule']['value'] else False channel_changed = True if channel is not None and channel != current_config['channel']['value'] else False try: # Get default config for rule and channel plugins url = str(request.url) url_parts = url.split("/foglamp/notification") url = '{}/foglamp/notification/plugin'.format(url_parts[0]) try: # When authentication is mandatory we need to pass token in request header auth_token = request.token except AttributeError: auth_token = None list_plugins = json.loads(await _hit_get_url(url, auth_token)) search_rule = rule if rule_changed else current_config['rule']['value'] r = list(filter(lambda rules: rules['name'] == search_rule, list_plugins['rules'])) if len(r) == 0: raise KeyError rule_plugin_config = r[0]['config'] search_channel = channel if channel_changed else current_config['channel']['value'] c = list(filter(lambda channels: channels['name'] == search_channel, list_plugins['delivery'])) if len(c) == 0: raise KeyError delivery_plugin_config = c[0]['config'] except KeyError: raise ValueError("Invalid rule plugin:{} and/or delivery plugin:{} supplied.".format(rule, channel)) # Verify if rule_config contains valid keys if rule_config != {}: for k, v in rule_config.items(): if k not in rule_plugin_config: raise ValueError("Invalid key:{} in rule plugin:{}".format(k, rule_plugin_config)) # Verify if delivery_config contains valid keys if delivery_config != {}: for k, v in delivery_config.items(): if k not in delivery_plugin_config: raise ValueError( "Invalid key:{} in delivery plugin:{}".format(k, delivery_plugin_config)) if rule_changed: # A new rule has been supplied category_desc = rule_plugin_config['plugin']['description'] category_name = "rule{}".format(notif) await config_mgr.create_category(category_name=category_name, category_description=category_desc, category_value=rule_plugin_config, keep_original_items=False) if channel_changed: # A new delivery has been supplied category_desc = delivery_plugin_config['plugin']['description'] category_name = "delivery{}".format(notif) await config_mgr.create_category(category_name=category_name, category_description=category_desc, category_value=delivery_plugin_config, keep_original_items=False) notification_config = {} if description is not None: notification_config.update({"description": description}) if rule is not None: notification_config.update({"rule": rule}) if channel is not None: notification_config.update({"channel": channel}) if notification_type is not None: notification_config.update({"notification_type": notification_type}) if enabled is not None: notification_config.update({"enable": is_enabled}) await _update_configurations(config_mgr, notif, notification_config, rule_config, delivery_config) except ValueError as e: raise web.HTTPBadRequest(reason=str(e)) except NotFoundError as e: raise web.HTTPNotFound(reason=str(e)) except Exception as ex: raise web.HTTPInternalServerError(reason=str(ex)) else: # TODO: Start notification after update return web.json_response({'result': "Notification {} updated successfully".format(notif)}) async def delete_notification(request): """ Delete an existing notification :Example: curl -X DELETE http://localhost:8081/foglamp/notification/<notification_name> """ try: notification_service = ServiceRegistry.get(s_type=ServiceRecord.Type.Notification.name) _address, _port = notification_service[0]._address, notification_service[0]._port except service_registry_exceptions.DoesNotExist: raise web.HTTPNotFound(reason="No Notification service available.") try: notif = request.match_info.get('notification_name', None) if notif is None: raise ValueError("Notification name is required for deletion.") # Stop & remove notification url = 'http://{}:{}/notification/{}'.format(_address, _port, urllib.parse.quote(notif)) notification = json.loads(await _hit_delete_url(url)) # Removes the child categories for the rule and delivery plugins, Removes the category for the notification itself storage = connect.get_storage_async() config_mgr = ConfigurationManager(storage) await config_mgr.delete_category_and_children_recursively(notif) audit = AuditLogger(storage) await audit.information('NTFDL', {"name": notif}) except ValueError as ex: raise web.HTTPBadRequest(reason=str(ex)) except Exception as ex: raise web.HTTPInternalServerError(reason=str(ex)) else: return web.json_response({'result': 'Notification {} deleted successfully.'.format(notif)}) async def _hit_get_url(get_url, token=None): headers = {"Authorization": token} if token else None try: async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(verify_ssl=False)) as session: async with session.get(get_url, headers=headers) as resp: status_code = resp.status jdoc = await resp.text() if status_code not in range(200, 209): _logger.error("Error code: %d, reason: %s, details: %s, url: %s", resp.status, resp.reason, jdoc, get_url) raise StorageServerError(code=resp.status, reason=resp.reason, error=jdoc) except Exception: raise else: return jdoc async def _hit_post_url(post_url, data=None): try: async with aiohttp.ClientSession() as session: async with session.post(post_url, data=data) as resp: status_code = resp.status jdoc = await resp.text() if status_code not in range(200, 209): _logger.error("Error code: %d, reason: %s, details: %s, url: %s", resp.status, resp.reason, jdoc, post_url) raise StorageServerError(code=resp.status, reason=resp.reason, error=jdoc) except Exception: raise else: return jdoc async def _update_configurations(config_mgr, name, notification_config, rule_config, delivery_config): try: # Update main notification if notification_config != {}: await config_mgr.update_configuration_item_bulk(name, notification_config) # Replace rule configuration if rule_config != {}: category_name = "rule{}".format(name) await config_mgr.update_configuration_item_bulk(category_name, rule_config) # Replace delivery configuration if delivery_config != {}: category_name = "delivery{}".format(name) await config_mgr.update_configuration_item_bulk(category_name, delivery_config) except Exception as ex: _logger.exception("Failed to update notification configuration. %s", str(ex)) raise web.HTTPInternalServerError(reason='Failed to update notification configuration. {}'.format(ex)) async def _hit_delete_url(delete_url, data=None): try: async with aiohttp.ClientSession() as session: async with session.delete(delete_url, data=data) as resp: status_code = resp.status jdoc = await resp.text() if status_code not in range(200, 209): _logger.error("Error code: %d, reason: %s, details: %s, url: %s", resp.status, resp.reason, jdoc, delete_url) raise StorageServerError(code=resp.status, reason=resp.reason, error=jdoc) except Exception: raise else: return jdoc
py
1a2ff9760b7949b5260393f7e1f6e78efb49f42a
import csv import os import copy import re from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request, HtmlResponse, FormRequest from scrapy.utils.response import get_base_url from scrapy.utils.url import urljoin_rfc from scrapy.http.cookies import CookieJar from product_spiders.items import Product, ProductLoaderWithNameStrip as ProductLoader HERE = os.path.abspath(os.path.dirname(__file__)) class AmazonSpider(BaseSpider): name = 'bosch-german-diy-amazon.de' allowed_domains = ['amazon.de'] user_agent = 'spd' def start_requests(self): with open(os.path.join(HERE, 'bosch_german_diy.csv')) as f: reader = csv.DictReader(f) for row in reader: url = row['amazon'] if url: yield Request(url, meta={'sku': row['sku']}, callback=self.parse_product) def parse(self, response): pass def parse_product(self, response): hxs = HtmlXPathSelector(response) loader = ProductLoader(item=Product(), selector=hxs) loader.add_value('url', response.url) loader.add_xpath('name', u'//div[@class="buying"]/h1[@class="parseasinTitle"]/span[@id="btAsinTitle"]/text()') price = hxs.select(u'//div[@class="buying"]/table[@class="product"]//b[@class="priceLarge"]/text()').extract()[0] loader.add_value('price', price.replace(',', '.')) loader.add_value('sku', response.meta['sku']) yield loader.load_item()
py
1a2ff98e6dbfbe12703bc881c2266d7e41cc44ee
# dataset settings ann_type = 'bast_eval' # * change accordingly num_classes = 9 if ann_type == 'bast_base' else 42 # model settings model = dict( type='Recognizer3D', backbone=dict( type='ResNet3dSlowOnly', depth=50, pretrained=None, in_channels=17, base_channels=32, num_stages=3, out_indices=(2, ), stage_blocks=(4, 6, 3), conv1_stride_s=1, pool1_stride_s=1, inflate=(0, 1, 1), spatial_strides=(2, 2, 2), temporal_strides=(1, 1, 2), dilations=(1, 1, 1)), cls_head=dict( type='I3DHead', in_channels=512, num_classes=num_classes, spatial_type='avg', dropout_ratio=0.5), train_cfg=dict(), test_cfg=dict(average_clips='prob')) # dataset settings dataset_type = 'PoseDataset' ann_file_train = f'data/skeleton/{ann_type}/bast_train.pkl' ann_file_val = f'data/skeleton/{ann_type}/bast_val.pkl' ann_file_test = f'data/skeleton/{ann_type}/bast_test.pkl' left_kp = [1, 3, 5, 7, 9, 11, 13, 15] right_kp = [2, 4, 6, 8, 10, 12, 14, 16] train_pipeline = [ dict(type='UniformSampleFrames', clip_len=54), dict(type='PoseDecode'), dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True), dict(type='Resize', scale=(-1, 64)), dict(type='RandomResizedCrop', area_range=(0.56, 1.0)), dict(type='Resize', scale=(56, 56), keep_ratio=False), dict(type='Flip', flip_ratio=0.5, left_kp=left_kp, right_kp=right_kp), dict( type='GeneratePoseTarget', sigma=0.6, use_score=True, with_kp=True, with_limb=False), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict(type='UniformSampleFrames', clip_len=54, num_clips=1, test_mode=True), dict(type='PoseDecode'), dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True), dict(type='Resize', scale=(-1, 64)), dict(type='CenterCrop', crop_size=64), dict( type='GeneratePoseTarget', sigma=0.6, use_score=True, with_kp=True, with_limb=False), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] test_pipeline = [ dict( type='UniformSampleFrames', clip_len=54, num_clips=10, test_mode=True), dict(type='PoseDecode'), dict(type='PoseCompact', hw_ratio=1., allow_imgpad=True), dict(type='Resize', scale=(-1, 64)), dict(type='CenterCrop', crop_size=64), dict( type='GeneratePoseTarget', sigma=0.6, use_score=True, with_kp=True, with_limb=False, double=True, left_kp=left_kp, right_kp=right_kp), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs']) ] data = dict( videos_per_gpu=6, workers_per_gpu=1, test_dataloader=dict(videos_per_gpu=1), train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix='', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=ann_file_val, data_prefix='', pipeline=val_pipeline), test=dict( type=dataset_type, ann_file=ann_file_test, data_prefix='', pipeline=test_pipeline)) # optimizer optimizer = dict( type='SGD', lr=0.0094, momentum=0.9, weight_decay=0.0003) # this lr is used for 8 gpus optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2)) # learning policy lr_config = dict(policy='CosineAnnealing', by_epoch=False, min_lr=0) total_epochs = 280 checkpoint_config = dict(interval=10) workflow = [('train', 10)] evaluation = dict( interval=5, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 2, 3, 4, 5)) eval_config = dict( metric_options=dict( top_k_accuracy=dict(topk=(1, 2, 3, 4, 5))),) log_config = dict( interval=20, hooks=[ dict(type='TextLoggerHook'), ]) dist_params = dict(backend='nccl') log_level = 'INFO' load_from = ('https://download.openmmlab.com/mmaction/skeleton/posec3d/' 'slowonly_kinetics400_pretrained_r50_u48_120e_hmdb51_split1_keypoint/' 'slowonly_kinetics400_pretrained_r50_u48_120e_hmdb51_split1_keypoint-76ffdd8b.pth') resume_from = None find_unused_parameters = False
py
1a2ffa3affc0e93e2021cfca989b2e8c5e1909ae
from lark import Transformer, v_args, Token from synthesis.synthesizer.dplyr_to_pd.code_analysis.nodes import * from abc import ABC, abstractmethod class DplyrTransformer(Transformer): """ Lark built in visitor for grammar construction rules """ @v_args(inline=True) def identifier_node(self, arg): return IdentifierNode(arg) @v_args(inline=True) def single_block_node(self, arg): nodes = [arg] return BlockNode(nodes) @v_args(inline=True) def block_node(self, arg, other_bock: BlockNode): nodes = [arg] + other_bock.lines return BlockNode(nodes) @v_args(inline=True) def single_sequence_node(self, arg): nodes = [arg] return SequenceNode(nodes) @v_args(inline=True) def sequence_node(self, arg, other_seq: SequenceNode): nodes = [arg] + other_seq.arguments return SequenceNode(nodes) @v_args(inline=True) def function_node(self, name: Token, args: SequenceNode): return FunctionNode(str(name), args) @v_args(inline=True) def collapse_function_node(self, arg: Tree, fn: FunctionNode): return FunctionNode(str(fn.name), self.sequence_node(arg, fn.arguments)) @v_args(inline=True) def predicate_node(self, arg: Token, op: Token, expr: Node, lc: Token, rest: Node): visitor = RWriter() args = [str(arg), str(op), expr.accept(visitor), str(lc), rest.accept(visitor)] return PredicateNode(' '.join(args)) @v_args(inline=True) def single_predicate_node(self, arg: Token, op: Token, expr: Node): visitor = RWriter() args = [str(arg), str(op), expr.accept(visitor)] return PredicateNode(' '.join(args)) @v_args(inline=True) def empty_node(self): return EmptyNode() @v_args(inline=True) def assignment_node(self, lvalue: IdentifierNode, expr: Node): return AssignmentNode(lvalue, expr) @v_args(inline=True) def rvalue_node(self, lvalue: IdentifierNode): return RValueNode(lvalue) @v_args(inline=True) def literal_node(self, lit: Token): return LiteralNode(lit) @v_args(inline=True) def collapse(self, arg): return arg class Visitor(ABC): """Generic visitor used to the traverse the AST""" @abstractmethod def visit_block_node(self, sq: BlockNode): raise NotImplementedError @abstractmethod def visit_function_node(self, fn: FunctionNode): raise NotImplementedError @abstractmethod def visit_identifier_node(self, ide: IdentifierNode): raise NotImplementedError @abstractmethod def visit_sequence_node(self, sq: SequenceNode): raise NotImplementedError @abstractmethod def visit_predicate_node(self, pr: PredicateNode): raise NotImplementedError @abstractmethod def visit_empty_node(self, pr: EmptyNode): raise NotImplementedError @abstractmethod def visit_assignment_node(self, an: AssignmentNode): raise NotImplementedError @abstractmethod def visit_right_value_node(self, rv: RValueNode): raise NotImplementedError @abstractmethod def visit_literal_node(self, rv: LiteralNode): raise NotImplementedError class RWriter(Visitor): """Visitor used to write R""" def visit_block_node(self, sq: BlockNode): args = [] for arg in sq.lines: args += [arg.accept(self)] return '\n'.join(args) def visit_function_node(self, fn: FunctionNode): return f'{fn.name}({fn.arguments.accept(self)})' def visit_identifier_node(self, ide: IdentifierNode): return ide.name def visit_sequence_node(self, sq: SequenceNode): args = [] for arg in sq.arguments: args += [arg.accept(self)] return ', '.join(args) def visit_predicate_node(self, pr: PredicateNode): return pr.predicate def visit_empty_node(self, pr: EmptyNode): return '' def visit_assignment_node(self, an: AssignmentNode): return f'{an.left_value.accept(self)} <- {an.right_value.accept(self)}' def visit_right_value_node(self, rv: RValueNode): return rv.value.accept(self) def visit_literal_node(self, lit: LiteralNode): return lit.value class DependencyFinder(Visitor): """ For each line find its depedencies on inputs""""" def __init__(self, n_inputs: int): self.count = 0 self.left_values = {IdentifierNode(f'input{i+1}'): IdentifierNode(f'input{i+1}') for i in range(n_inputs)} self.fn_dependencies = {} self.new_assignments = {} def visit_block_node(self, sq: BlockNode): for line in sq.lines: line.accept(self) return self.fn_dependencies def visit_function_node(self, fn: FunctionNode): result = fn.arguments.accept(self) return result def visit_identifier_node(self, ide: IdentifierNode): dep = next(filter(lambda x: x == ide, self.left_values), None) if dep is not None: return [self.left_values[dep]] return [] def visit_sequence_node(self, sq: SequenceNode): dependencies = [] for i in range(len(sq.arguments)): if isinstance(sq.arguments[i], FunctionNode) and sq.arguments[i] not in self.new_assignments: if sq.arguments[i].accept(self): new_id = IdentifierNode(f'tmp_{self.count}') an = AssignmentNode(new_id, sq.arguments[i]) self.count += 1 self.left_values[an.left_value] = an self.new_assignments[sq.children[i]] = new_id self.fn_dependencies[an] = an.right_value.accept(self) sq.replace_arg(i, new_id) dependencies += sq.arguments[i].accept(self) return dependencies def visit_predicate_node(self, pr: PredicateNode): return [] def visit_empty_node(self, pr: EmptyNode): return [] def visit_assignment_node(self, an: AssignmentNode): self.left_values[an.left_value] = an self.fn_dependencies[an] = an.right_value.accept(self) def visit_right_value_node(self, rv: RValueNode): return rv.value.accept(self) def visit_literal_node(self, lit: LiteralNode): return []
py
1a2ffa6ea157d8f454156833627a835f6464f06e
import numpy as np import pandas as pd from napari.qt.threading import thread_worker from skimage.measure import regionprops_table from imlib.pandas.misc import initialise_df from imlib.general.list import unique_elements_lists from brainreg_segment.atlas.utils import lateralise_atlas_image @thread_worker def region_analysis( label_layers, atlas_layer_image, atlas, regions_directory, output_csv_file=None, volumes=True, summarise=True, ): regions_directory.mkdir(parents=True, exist_ok=True) if volumes: print("Calculating region volume distribution") print(f"Saving summary volumes to: {regions_directory}") for label_layer in label_layers: analyse_region_brain_areas( label_layer, atlas_layer_image, regions_directory, atlas, ) if summarise: if output_csv_file is not None: print("Summarising regions") summarise_brain_regions( label_layers, output_csv_file, atlas.resolution ) print("Finished!\n") def summarise_brain_regions(label_layers, filename, atlas_resolution): summaries = [] for label_layer in label_layers: summaries.append(summarise_single_brain_region(label_layer)) result = pd.concat(summaries) # TODO: use atlas.space to make these more intuitive volume_header = "volume_mm3" length_columns = [ "axis_0_min_um", "axis_1_min_um", "axis_2_min_um", "axis_0_max_um", "axis_1_max_um", "axis_2_max_um", "axis_0_center_um", "axis_1_center_um", "axis_2_center_um", ] result.columns = ["region"] + [volume_header] + length_columns voxel_volume_in_mm = np.prod(atlas_resolution) / (1000 ** 3) result[volume_header] = result[volume_header] * voxel_volume_in_mm for header in length_columns: for dim, idx in enumerate(atlas_resolution): if header.startswith(f"axis_{idx}"): scale = float(dim) assert scale > 0 result[header] = result[header] * scale result.to_csv(filename, index=False) def summarise_single_brain_region( label_layer, ignore_empty=True, properties_to_fetch=[ "area", "bbox", "centroid", ], ): data = label_layer.data if ignore_empty: if data.sum() == 0: return regions_table = regionprops_table(data, properties=properties_to_fetch) df = pd.DataFrame.from_dict(regions_table) df.insert(0, "Region", label_layer.name) return df def analyse_region_brain_areas( label_layer, atlas_layer_data, destination_directory, atlas, extension=".csv", ignore_empty=True, ): """ :param label_layer: napari labels layer (with segmented regions) :param ignore_empty: If True, don't analyse empty regions """ data = label_layer.data if ignore_empty: if data.sum() == 0: return name = label_layer.name masked_annotations = data.astype(bool) * atlas_layer_data annotations_left, annotations_right = lateralise_atlas_image( masked_annotations, atlas.hemispheres, left_hemisphere_value=atlas.left_hemisphere_value, right_hemisphere_value=atlas.right_hemisphere_value, ) unique_vals_left, counts_left = np.unique( annotations_left, return_counts=True ) unique_vals_right, counts_right = np.unique( annotations_right, return_counts=True ) voxel_volume_in_mm = np.prod(atlas.resolution) / (1000 ** 3) df = initialise_df( "structure_name", "left_volume_mm3", "left_percentage_of_total", "right_volume_mm3", "right_percentage_of_total", "total_volume_mm3", "percentage_of_total", ) sampled_structures = unique_elements_lists( list(unique_vals_left) + list(unique_vals_right) ) total_volume_region = get_total_volume_regions( unique_vals_left, unique_vals_right, counts_left, counts_right ) for atlas_value in sampled_structures: if atlas_value != 0: try: df = add_structure_volume_to_df( df, atlas_value, atlas.structures, unique_vals_left, unique_vals_right, counts_left, counts_right, voxel_volume_in_mm, total_volume_voxels=total_volume_region, ) except KeyError: print( f"Value: {atlas_value} is not in the atlas structure" f" reference file. Not calculating the volume" ) filename = destination_directory / (name + extension) df.to_csv(filename, index=False) def get_total_volume_regions( unique_vals_left, unique_vals_right, counts_left, counts_right, ): zero_index_left = np.where(unique_vals_left == 0)[0][0] counts_left = list(counts_left) counts_left.pop(zero_index_left) zero_index_right = np.where(unique_vals_right == 0)[0][0] counts_right = list(counts_right) counts_right.pop(zero_index_right) return sum(counts_left + counts_right) def add_structure_volume_to_df( df, atlas_value, atlas_structures, unique_vals_left, unique_vals_right, counts_left, counts_right, voxel_volume, total_volume_voxels=None, ): name = atlas_structures[atlas_value]["name"] left_volume, left_percentage = get_volume_in_hemisphere( atlas_value, unique_vals_left, counts_left, total_volume_voxels, voxel_volume, ) right_volume, right_percentage = get_volume_in_hemisphere( atlas_value, unique_vals_right, counts_right, total_volume_voxels, voxel_volume, ) if total_volume_voxels is not None: total_percentage = left_percentage + right_percentage else: total_percentage = 0 df = df.append( { "structure_name": name, "left_volume_mm3": left_volume, "left_percentage_of_total": left_percentage, "right_volume_mm3": right_volume, "right_percentage_of_total": right_percentage, "total_volume_mm3": left_volume + right_volume, "percentage_of_total": total_percentage, }, ignore_index=True, ) return df def get_volume_in_hemisphere( atlas_value, unique_vals, counts, total_volume_voxels, voxel_volume ): try: index = np.where(unique_vals == atlas_value)[0][0] volume = counts[index] * voxel_volume if total_volume_voxels is not None: percentage = 100 * (counts[index] / total_volume_voxels) else: percentage = 0 except IndexError: volume = 0 percentage = 0 return volume, percentage
py
1a2ffb7fc92162f5f54956dbe55a174b83ff8a33
import psycopg2 class Conn: def __init__(self, connstr): self.conn = psycopg2.connect(connstr) self.setversion() self.nexttmp = 0 def setversion(self): cur = self.conn.cursor() cur.execute("select version()") verstr = cur.fetchone() if "Greenplum Database 4" in verstr[0]: self.ver = 4 elif "Greenplum Database 5" in verstr[0]: self.ver = 5 else: raise RuntimeError('Unknown Deepgreen Version') self.typemap = {} cur.execute("select oid, typname from pg_type") rows = cur.fetchall() for row in rows: self.typemap[row[0]] = row[1] cur.close() self.conn.commit() def close(self): self.conn.close() def next_tmpname(self): self.nexttmp += 1 return "tmp_{0}".format(self.nexttmp) def execute(self, sql): cur = self.conn.cursor() cur.execute(sql) rows = cur.fetchall() cur.close() self.conn.commit() return rows def cursor(self, sql): cur = self.conn.cursor() cur.execute(sql) return cur if __name__ == '__main__': conn = Conn("host=localhost user=ftian dbname=ftian") print("Connected to deepgreen database, version is ", conn.ver)
py
1a2ffbd7b7c07c33f20999ed51f3d64383f0f858
import _plotly_utils.basevalidators class TextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="textsrc", parent_name="scattermapbox", **kwargs): super(TextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs )
py
1a2ffbd9964cf66f2b41f80870cc2a60b4cddbce
""" The most naive way of computing n15 requires fourteen multiplications: n × n × ... × n = n15 But using a "binary" method you can compute it in six multiplications: n × n = n2 n2 × n2 = n4 n4 × n4 = n8 n8 × n4 = n12 n12 × n2 = n14 n14 × n = n15 However it is yet possible to compute it in only five multiplications: n × n = n2 n2 × n = n3 n3 × n3 = n6 n6 × n6 = n12 n12 × n3 = n15 We shall define m(k) to be the minimum number of multiplications to compute nk; for example m(15) = 5. For 1 ≤ k ≤ 200, find ∑ m(k). ans: 1582 """ n = 200 class Done(Exception): pass def combine(exponents, max_depth, steps): if exponents[-1] > n or len(exponents) - 1 > max_depth: return try: steps[exponents[-1]] = min(steps[exponents[-1]], len(exponents)-1) except KeyError: steps[exponents[-1]] = len(exponents)-1 if len(steps) == n: raise Done for i in range(len(exponents)): exp = exponents[i] exponents.append(exp + exponents[-1]) combine(exponents, max_depth, steps) exponents.pop() steps = {1:0} try: for depth in range(n): # need to iterate depths in order to stop early in combine() combine([1], depth, steps) #print(f"{depth} {len(steps)}") except Done: pass #print(steps) print(sum(( steps[k] for k in steps )))
py
1a2ffc4dfbbfcd4c40a6f056c0aaac1ff112c9a9
from typing import Optional import logging import boto3 from botocore.exceptions import ClientError from kermes_infra.models import User class UserAdapter: def __init__(self, endpoint_url: str, table_name: str, logger: logging.Logger) -> None: self.dynamodb = boto3.resource("dynamodb", endpoint_url=endpoint_url) self.table = self.dynamodb.Table(table_name) self.logger = logger def get(self, user_id: str) -> Optional[User]: try: item = self.table.get_item(Key={"user_id": user_id}) return User.from_dynamo(item["Item"]) except ClientError: self.logger.error(f"error while getting record from Dynamo: user_id {user_id}", exc_info=True) return None def put(self, user: User) -> bool: try: self.table.put_item(Item=user.to_dynamo()) return True except ClientError: self.logger.error( f"error while writing record to Dynamo: user_id {user.user_id}", exc_info=True, ) return False
py
1a2ffd14bee0c539d2c149abaa4f7937e9156b91
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class StorageAccountPaged(Paged): """ A paging container for iterating over a list of :class:`StorageAccount <azure.mgmt.storage.v2017_06_01.models.StorageAccount>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[StorageAccount]'} } def __init__(self, *args, **kwargs): super(StorageAccountPaged, self).__init__(*args, **kwargs)
py
1a2ffd6458b72da5981d8465dd861600cea84490
## ## File: utils.py ## ## Author: Schuyler Martin <[email protected]> ## ## Description: Python file that contains basic utility functions ## from utils.macros import * import sys #### GLOBALS #### #### FUNCTIONS #### def printd(msg): ''' Prints debugging messages if debugging is enabled :param: msg Message to print ''' if (DEBUG_MACRO): print("DEBUG: " + msg) def read_file(fd): ''' Reads in the file, line by line :param: fd Name of the file :return: Contents of the file, as an array of line strings ''' data = [] for line in open(fd): data += [line] return data def write_file(data, fd): ''' Writes to a file, line by line :param: data Lines of the file to write :param: fd Name of the file to write ''' fptr = open(fd, 'w') for line in data: fptr.write(line) fptr.close()
py
1a2ffdce407417f63fd3d58bf33c86816e6173bc
""" Example script of constant use in Python. Constants should always be capitalized to signify their significance. Because everything is an object in Python and nothing can really be set as private, using visual identifiers, such as capitalizing all letters in a name and starting function names with an underscore, are important to for script readability. This script uses two constants, URL and STATE, and then prints out a string using these constants for a state's download url (not a real url and doesn't actually download anything). """ URL = 'https://www.statedata.com/' STATE = 'MD' print 'Downloading data from {}{}'.format(URL, STATE)
py
1a2ffefd93504a899b3ed1bdacedc16dad3774b3
#!/home/wecode/Documents/Django_Projects/NeighborhoodNews/virtual/bin/python from django.core import management if __name__ == "__main__": management.execute_from_command_line()
py
1a2fff6c7fe50c71c5d89283ce05e59433db0a38
import argparse import sys import time from typing import Optional, Union from moonstreamdb.db import yield_db_session_ctx from moonstreamdb.models import ESDEventSignature, ESDFunctionSignature from sqlalchemy.orm import Session import requests CRAWL_URLS = { "functions": "https://www.4byte.directory/api/v1/signatures/", "events": "https://www.4byte.directory/api/v1/event-signatures/", } DB_MODELS = { "functions": ESDFunctionSignature, "events": ESDEventSignature, } def crawl_step( db_session: Session, crawl_url: str, db_model: Union[ESDEventSignature, ESDFunctionSignature], ) -> Optional[str]: attempt = 0 current_interval = 2 success = False response: Optional[requests.Response] = None while (not success) and attempt < 3: attempt += 1 try: response = requests.get(crawl_url) response.raise_for_status() success = True except: current_interval *= 2 time.sleep(current_interval) if response is None: print(f"Could not process URL: {crawl_url}", file=sys.stderr) return None page = response.json() results = page.get("results", []) rows = [ db_model( id=row.get("id"), text_signature=row.get("text_signature"), hex_signature=row.get("hex_signature"), created_at=row.get("created_at"), ) for row in results ] db_session.bulk_save_objects(rows) db_session.commit() return page.get("next") def crawl(crawl_type: str, interval: float) -> None: crawl_url: Optional[str] = CRAWL_URLS[crawl_type] db_model = DB_MODELS[crawl_type] with yield_db_session_ctx() as db_session: while crawl_url is not None: print(f"Crawling: {crawl_url}") crawl_url = crawl_step(db_session, crawl_url, db_model) time.sleep(interval) def main(): parser = argparse.ArgumentParser( description="Crawls function and event signatures from the Ethereum Signature Database (https://www.4byte.directory/)" ) parser.add_argument( "crawl_type", choices=CRAWL_URLS, help="Specifies whether to crawl function signatures or event signatures", ) parser.add_argument( "--interval", type=float, default=0.1, help="Number of seconds to wait between requests to the Ethereum Signature Database API", ) args = parser.parse_args() crawl(args.crawl_type, args.interval) if __name__ == "__main__": main()
py
1a2fffabca09fbc25104a88cc8bdbb8d1b43aded
import mock import pytest from os.path import abspath, dirname, join import sys from praw.models import (Button, ButtonWidget, Calendar, CommunityList, CustomWidget, Menu, MenuLink, IDCard, Image, ImageData, ImageWidget, ModeratorsWidget, PostFlairWidget, Redditor, RulesWidget, Submenu, Subreddit, TextArea, Widget) from ... import IntegrationTest if sys.version_info.major > 2: basestring = str # pylint: disable=invalid-name class TestButtonWidget(IntegrationTest): @staticmethod def image_path(name): test_dir = abspath(dirname(sys.modules[__name__].__file__)) return join(test_dir, '..', '..', 'files', name) def test_button_widget(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): button_widget = None for widget in widgets.sidebar: if isinstance(widget, ButtonWidget): button_widget = widget break assert isinstance(button_widget, ButtonWidget) assert len(button_widget) >= 1 assert all(isinstance(button, Button) for button in button_widget.buttons) assert button_widget == button_widget assert button_widget.id == button_widget assert button_widget in widgets.sidebar assert button_widget[0].text assert button_widget.shortName assert hasattr(button_widget, 'description') assert subreddit == button_widget.subreddit @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestButtonWidget.test_create_and_update_and_delete'): styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} my_image = widgets.mod.upload_image(self.image_path('test.png')) buttons = [ { 'kind': 'text', 'text': 'View source', 'url': 'https://github.com/praw-dev/praw', 'color': '#FF0000', 'textColor': '#00FF00', 'fillColor': '#0000FF', 'hoverState': { 'kind': 'text', 'text': 'VIEW SOURCE!', 'color': '#FFFFFF', 'textColor': '#000000', 'fillColor': '#0000FF' } }, { 'kind': 'image', 'text': 'View documentation', 'linkUrl': 'https://praw.readthedocs.io', 'url': my_image, 'height': 200, 'width': 200, 'hoverState': { 'kind': 'image', 'url': my_image, 'height': 200, 'width': 200 } }, { 'kind': 'text', 'text': '/r/redditdev', 'url': 'https://reddit.com/r/redditdev', 'color': '#000000', 'textColor': '#FF00FF', 'fillColor': '#005500' } ] widget = widgets.mod.add_button_widget( 'Things to click', 'Click some of these *cool* links!', buttons, styles) assert isinstance(widget, ButtonWidget) assert len(widget) == 3 assert all(isinstance(item, Button) for item in widget) assert widget.shortName == 'Things to click' assert widget.description == 'Click some of these *cool* links!' assert widget.styles == styles assert widget[0].text == 'View source' assert widget[0].url == 'https://github.com/praw-dev/praw' assert widget[2].text == '/r/redditdev' assert widget[2].url == 'https://reddit.com/r/redditdev' assert widget[1].text == 'View documentation' assert widget[1].linkUrl == 'https://praw.readthedocs.io' assert widget[1].hoverState['kind'] == 'image' assert widget[1].hoverState['height'] == 200 widgets.refresh() # the links are initially invalid for new_widget in widgets.sidebar: if new_widget == widget: widget = new_widget break widget = widget.mod.update(shortName='New short name') assert isinstance(widget, ButtonWidget) assert len(widget) == 3 assert all(isinstance(item, Button) for item in widget) assert widget.shortName == 'New short name' assert widget.description == 'Click some of these *cool* links!' assert widget.styles == styles assert widget[0].text == 'View source' assert widget[0].url == 'https://github.com/praw-dev/praw' assert widget[2].text == '/r/redditdev' assert widget[2].url == 'https://reddit.com/r/redditdev' assert widget[1].text == 'View documentation' assert widget[1].linkUrl == 'https://praw.readthedocs.io' assert widget[1].hoverState['kind'] == 'image' assert widget[1].hoverState['height'] == 200 buttons.reverse() widget = widget.mod.update(buttons=buttons) assert isinstance(widget, ButtonWidget) assert len(widget) == 3 assert all(isinstance(item, Button) for item in widget) assert widget.shortName == 'New short name' assert widget.description == 'Click some of these *cool* links!' assert widget.styles == styles assert widget[0].text == '/r/redditdev' assert widget[0].url == 'https://reddit.com/r/redditdev' assert widget[2].text == 'View source' assert widget[2].url == 'https://github.com/praw-dev/praw' assert widget[1].text == 'View documentation' assert widget[1].linkUrl == 'https://praw.readthedocs.io' assert widget[1].hoverState['kind'] == 'image' assert widget[1].hoverState['height'] == 200 widget.mod.delete() class TestCalendar(IntegrationTest): def test_calendar(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): calendar = None for widget in widgets.sidebar: if isinstance(widget, Calendar): calendar = widget break assert isinstance(calendar, Calendar) assert calendar == calendar assert calendar.id == calendar assert calendar in widgets.sidebar assert isinstance(calendar.configuration, dict) assert hasattr(calendar, 'requiresSync') assert subreddit == calendar.subreddit @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestCalendar.test_create_and_update_and_delete'): styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} config = {'numEvents': 10, 'showDate': True, 'showDescription': False, 'showLocation': False, 'showTime': True, 'showTitle': True} cal_id = '[email protected]' widget = widgets.mod.add_calendar('Upcoming Events', cal_id, True, config, styles) assert isinstance(widget, Calendar) assert widget.shortName == 'Upcoming Events' assert widget.googleCalendarId == 'ccahu0rstno2jrvioq4ccffn78@' \ 'group.calendar.google.com' assert widget.configuration == config assert widget.styles == styles widget = widget.mod.update(shortName='Past Events :(') assert isinstance(widget, Calendar) assert widget.shortName == 'Past Events :(' assert widget.googleCalendarId == 'ccahu0rstno2jrvioq4ccffn78@' \ 'group.calendar.google.com' assert widget.configuration == config assert widget.styles == styles widget.mod.delete() class TestCommunityList(IntegrationTest): def test_community_list(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): comm_list = None for widget in widgets.sidebar: if isinstance(widget, CommunityList): comm_list = widget break assert isinstance(comm_list, CommunityList) assert len(comm_list) >= 1 assert all(isinstance(subreddit, Subreddit) for subreddit in comm_list) assert comm_list == comm_list assert comm_list.id == comm_list assert comm_list in widgets.sidebar assert comm_list.shortName assert comm_list[0] in comm_list assert subreddit == comm_list.subreddit @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestCommunityList.test_create_and_update_and_delete'): styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} subreddits = ['learnpython', self.reddit.subreddit('redditdev')] widget = widgets.mod.add_community_list('My fav subs', subreddits, styles) assert isinstance(widget, CommunityList) assert widget.shortName == 'My fav subs' assert widget.styles == styles assert self.reddit.subreddit('learnpython') in widget assert 'redditdev' in widget widget = widget.mod.update(shortName='My least fav subs :(', data=['redesign']) assert isinstance(widget, CommunityList) assert widget.shortName == 'My least fav subs :(' assert widget.styles == styles assert self.reddit.subreddit('redesign') in widget widget.mod.delete() class TestCustomWidget(IntegrationTest): @staticmethod def image_path(name): test_dir = abspath(dirname(sys.modules[__name__].__file__)) return join(test_dir, '..', '..', 'files', name) @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestCustomWidget.test_create_and_update_and_delete'): image_dicts = [{'width': 0, 'height': 0, 'name': 'a', 'url': widgets.mod.upload_image(self.image_path( 'test.png'))}] styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} widget = widgets.mod.add_custom_widget('My widget', '# Hello world!', '/**/', 200, image_dicts, styles) assert isinstance(widget, CustomWidget) assert widget.shortName == 'My widget' assert widget.text == '# Hello world!' assert widget.css == '/**/' assert widget.height == 200 assert widget.styles == styles assert len(widget.imageData) == 1 assert all(isinstance(img, ImageData) for img in widget.imageData) # initially, image URLs are incorrect, so we much refresh to get # the proper ones. widgets.refresh() refreshed = widgets.sidebar[-1] assert refreshed == widget widget = refreshed new_css = 'h1,h2,h3,h4,h5,h6 {color: #00ff00;}' widget = widget.mod.update(css=new_css) assert isinstance(widget, CustomWidget) assert widget.shortName == 'My widget' assert widget.text == '# Hello world!' assert widget.css == new_css assert widget.height == 200 assert widget.styles == styles assert len(widget.imageData) == 1 assert all(isinstance(img, ImageData) for img in widget.imageData) widget.mod.delete() def test_custom_widget(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): custom = None for widget in widgets.sidebar: if isinstance(widget, CustomWidget): custom = widget break assert isinstance(custom, CustomWidget) assert len(custom.imageData) > 0 assert all(isinstance(img_data, ImageData) for img_data in custom.imageData) assert custom == custom assert custom.id == custom assert custom in widgets.sidebar assert 500 >= custom.height >= 50 assert custom.text assert custom.css assert custom.shortName assert subreddit == custom.subreddit class TestIDCard(IntegrationTest): def test_id_card(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): card = widgets.id_card assert isinstance(card, IDCard) assert card == card assert card.id == card assert card.shortName assert card.currentlyViewingText assert card.subscribersText assert subreddit == card.subreddit class TestImageWidget(IntegrationTest): @staticmethod def image_path(name): test_dir = abspath(dirname(sys.modules[__name__].__file__)) return join(test_dir, '..', '..', 'files', name) @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestImageWidget.test_create_and_update_and_delete'): image_paths = (self.image_path(name) for name in ('test.jpg', 'test.png')) image_dicts = [{'width': 0, 'height': 0, 'linkUrl': '', 'url': widgets.mod.upload_image(img_path)} for img_path in image_paths] styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} widget = widgets.mod.add_image_widget(short_name='My new pics!', data=image_dicts, styles=styles) assert isinstance(widget, ImageWidget) assert widget.shortName == 'My new pics!' assert widget.styles == styles assert len(widget) == 2 assert all(isinstance(img, Image) for img in widget) widget = widget.mod.update(shortName='My old pics :(', data=image_dicts[:1]) assert isinstance(widget, ImageWidget) assert widget.shortName == 'My old pics :(' assert widget.styles == styles assert len(widget) == 1 assert all(isinstance(img, Image) for img in widget) widget.mod.delete() def test_image_widget(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): img_widget = None for widget in widgets.sidebar: if isinstance(widget, ImageWidget): img_widget = widget break assert isinstance(img_widget, ImageWidget) assert len(img_widget) >= 1 assert all(isinstance(image, Image) for image in img_widget) assert img_widget == img_widget assert img_widget.id == img_widget assert img_widget in widgets.sidebar assert img_widget[0].linkUrl assert img_widget.shortName assert subreddit == img_widget.subreddit class TestMenu(IntegrationTest): @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets menu_contents = [ {'text': 'My homepage', 'url': 'https://example.com'}, {'text': 'Python packages', 'children': [ {'text': 'PRAW', 'url': 'https://praw.readthedocs.io/'}, {'text': 'requests', 'url': 'http://python-requests.org'} ]}, {'text': 'Reddit homepage', 'url': 'https://reddit.com'} ] with self.recorder.use_cassette( 'TestMenu.test_create_and_update_and_delete'): widget = widgets.mod.add_menu(menu_contents) assert isinstance(widget, Menu) assert len(widget) == 3 assert all(isinstance(item, (Submenu, MenuLink)) for item in widget) assert all(all(isinstance(item, MenuLink) for item in subm) for subm in widget if isinstance(subm, Submenu)) assert widget[0].text == 'My homepage' assert widget[0].url == 'https://example.com' assert widget[2].text == 'Reddit homepage' assert widget[2].url == 'https://reddit.com' assert widget[1].text == 'Python packages' assert widget[1][0].text == 'PRAW' assert widget[1][0].url == 'https://praw.readthedocs.io/' assert widget[1][1].text == 'requests' assert widget[1][1].url == 'http://python-requests.org' menu_contents.reverse() widget = widget.mod.update(data=menu_contents) assert isinstance(widget, Menu) assert len(widget) == 3 assert all(isinstance(item, (Submenu, MenuLink)) for item in widget) assert all(all(isinstance(item, MenuLink) for item in subm) for subm in widget if isinstance(subm, Submenu)) assert widget[0].text == 'Reddit homepage' assert widget[0].url == 'https://reddit.com' assert widget[2].text == 'My homepage' assert widget[2].url == 'https://example.com' assert widget[1].text == 'Python packages' assert widget[1][0].text == 'PRAW' assert widget[1][0].url == 'https://praw.readthedocs.io/' assert widget[1][1].text == 'requests' assert widget[1][1].url == 'http://python-requests.org' widget.mod.delete() def test_menu(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): menu = None for widget in widgets.topbar: if isinstance(widget, Menu): menu = widget break assert isinstance(menu, Menu) assert all(isinstance(item, (MenuLink, Submenu)) for item in menu) assert menu == menu assert menu.id == menu assert menu in widgets.topbar assert len(menu) >= 1 assert menu[0].text assert subreddit == menu.subreddit submenu = None for child in menu: if isinstance(child, Submenu): submenu = child break assert isinstance(submenu, Submenu) assert len(submenu) >= 0 assert all(isinstance(child, MenuLink) for child in submenu) assert submenu[0].text assert submenu[0].url class TestModeratorsWidget(IntegrationTest): def test_moderators_widget(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): mods = widgets.moderators_widget assert isinstance(mods, ModeratorsWidget) assert all(isinstance(mod, Redditor) for mod in mods) assert mods == mods assert mods.id == mods assert len(mods) >= 1 assert isinstance(mods[0], Redditor) assert subreddit == mods.subreddit class TestPostFlairWidget(IntegrationTest): @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestPostFlairWidget.test_create_and_update_and_delete'): flairs = [f['id'] for f in subreddit.flair.link_templates] styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} widget = widgets.mod.add_post_flair_widget('Some flairs', 'list', flairs, styles) assert isinstance(widget, PostFlairWidget) assert widget.shortName == 'Some flairs' assert widget.display == 'list' assert widget.order == flairs assert widget.styles == styles assert len(widget) == 2 assert all(flair_id in widget.templates for flair_id in widget) widget = widget.mod.update(display='cloud') assert isinstance(widget, PostFlairWidget) assert widget.shortName == 'Some flairs' assert widget.display == 'cloud' assert widget.order == flairs assert widget.styles == styles assert len(widget) == 2 assert all(flair_id in widget.templates for flair_id in widget) widget = widget.mod.update(order=widget.order[1:]) assert isinstance(widget, PostFlairWidget) assert widget.shortName == 'Some flairs' assert widget.display == 'cloud' assert widget.order == flairs[1:] assert widget.styles == styles assert len(widget) == 1 assert all(flair_id in widget.templates for flair_id in widget) widget.mod.delete() def test_post_flair_widget(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): pf_widget = None for widget in widgets.sidebar: if isinstance(widget, PostFlairWidget): pf_widget = widget break assert isinstance(pf_widget, PostFlairWidget) assert len(pf_widget) >= 1 assert all(flair_id in widget.templates for flair_id in widget) assert pf_widget == pf_widget assert pf_widget.id == pf_widget assert pf_widget in widgets.sidebar assert pf_widget.shortName assert all(flair in pf_widget for flair in pf_widget) assert subreddit == pf_widget.subreddit class TestRulesWidget(IntegrationTest): def test_rules_widget(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): rules = None for widget in widgets.sidebar: if isinstance(widget, RulesWidget): rules = widget break assert isinstance(rules, RulesWidget) assert rules == rules assert rules.id == rules assert rules.display assert len(rules) > 0 assert subreddit == rules.subreddit class TestSubredditWidgets(IntegrationTest): def test_bad_attribute(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): with pytest.raises(AttributeError): widgets.nonexistant_attribute def test_items(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): assert isinstance(widgets.items, dict) def test_progressive_images(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets def has_progressive(widgets_): # best way I could figure if an image is progressive sign = 'fm=pjpg' for widget in widgets_.sidebar: if isinstance(widget, ImageWidget): for image in widget: if sign in image.url: return True elif isinstance(widget, CustomWidget): for image_data in widget.imageData: if sign in image_data.url: return True return False with self.recorder.use_cassette( 'TestSubredditWidgets.test_progressive_images'): widgets.progressive_images = True assert has_progressive(widgets) widgets.progressive_images = False widgets.refresh() assert not has_progressive(widgets) widgets.progressive_images = True widgets.refresh() assert has_progressive(widgets) def test_refresh(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.test_refresh'): assert widgets.sidebar # to fetch old_sidebar = widgets.sidebar # reference, not value widgets.refresh() assert old_sidebar is not widgets.sidebar # should be new list def test_repr(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets assert ("SubredditWidgets(subreddit=Subreddit(display_name='" "{}'))").format(pytest.placeholders.test_subreddit) == repr( widgets) def test_sidebar(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): assert len(widgets.sidebar) >= 1 # also tests lazy-loading # all items should be Widget subclasses assert all(isinstance(widget, Widget) and type(widget) != Widget for widget in widgets.sidebar) def test_specials(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): assert isinstance(widgets.id_card, IDCard) assert isinstance(widgets.moderators_widget, ModeratorsWidget) def test_topbar(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): assert 1 <= len(widgets.topbar) assert all(isinstance(widget, Widget) and type(widget) != Widget for widget in widgets.topbar) class TestSubredditWidgetsModeration(IntegrationTest): @staticmethod def image_path(name): test_dir = abspath(dirname(sys.modules[__name__].__file__)) return join(test_dir, '..', '..', 'files', name) @mock.patch('time.sleep', return_value=None) def test_reorder(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestSubredditWidgetsModeration.test_reorder'): old_order = list(widgets.sidebar) new_order = list(reversed(old_order)) widgets.mod.reorder(new_order) widgets.refresh() assert list(widgets.sidebar) == new_order widgets.mod.reorder(old_order) widgets.refresh() assert list(widgets.sidebar) == old_order mixed_types = [thing if i % 2 == 0 else thing.id for i, thing in enumerate(new_order)] # mixed_types has some str and some Widget. assert any(isinstance(thing, basestring) for thing in mixed_types) assert any(isinstance(thing, Widget) for thing in mixed_types) widgets.mod.reorder(mixed_types) widgets.refresh() assert list(widgets.sidebar) == new_order @mock.patch('time.sleep', return_value=None) def test_upload_image(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestSubredditWidgetsModeration.test_upload_image'): for image in ('test.jpg', 'test.png'): image_url = widgets.mod.upload_image(self.image_path(image)) assert image_url class TestTextArea(IntegrationTest): @mock.patch('time.sleep', return_value=None) def test_create_and_update_and_delete(self, _): self.reddit.read_only = False subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette( 'TestTextArea.test_create_and_update_and_delete'): styles = {'headerColor': '#123456', 'backgroundColor': '#bb0e00'} widget = widgets.mod.add_text_area(short_name='My new widget!', text='Hello world!', styles=styles) assert isinstance(widget, TextArea) assert widget.shortName == 'My new widget!' assert widget.styles == styles assert widget.text == 'Hello world!' widget = widget.mod.update(shortName='My old widget :(', text='Feed me') assert isinstance(widget, TextArea) assert widget.shortName == 'My old widget :(' assert widget.styles == styles assert widget.text == 'Feed me' widget.mod.delete() def test_text_area(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): text = None for widget in widgets.sidebar: if isinstance(widget, TextArea): text = widget break assert isinstance(text, TextArea) assert text == text assert text.id == text assert text in widgets.sidebar assert text in widgets.sidebar assert text.shortName assert text.text assert subreddit == text.subreddit class TestWidget(IntegrationTest): def test_inequality(self): subreddit = self.reddit.subreddit(pytest.placeholders.test_subreddit) widgets = subreddit.widgets with self.recorder.use_cassette('TestSubredditWidgets.fetch_widgets'): assert len(widgets.sidebar) >= 2 assert widgets.sidebar[0] != widgets.sidebar[1] assert widgets.sidebar[0] != widgets.sidebar[1].id assert u'\xf0\x9f\x98\x80' != widgets.sidebar[0] # for python 2
py
1a300032205a6b71ba08b5e7d24efeaa39f773c6
#!/usr/bin/env python # # Script inspired in bud: # https://github.com/indutny/bud # import platform import os import subprocess import sys CC = os.environ.get('CC', 'cc') script_dir = os.path.dirname(__file__) root = os.path.normpath(os.path.join(script_dir, '..')) output_dir = os.path.join(os.path.abspath(root), 'out') sys.path.insert(0, os.path.join(root, 'deps', 'gyp', 'pylib')) try: import gyp except ImportError: print('Error: you need to install gyp in deps/gyp first, run:') print(' ./scripts/get-dep.sh gyp') sys.exit(42) def host_arch(): machine = platform.machine() if machine == 'i386': return 'ia32' if machine == 'x86_64': return 'x64' if machine == 'aarch64': return 'arm64' if machine == 'mips64': return 'mips64el' if machine.startswith('arm'): return 'arm' if machine.startswith('mips'): return 'mips' return machine # Return as-is and hope for the best. def compiler_version(): proc = subprocess.Popen(CC.split() + ['--version'], stdout=subprocess.PIPE) is_clang = b'clang' in proc.communicate()[0].split(b'\n')[0] proc = subprocess.Popen(CC.split() + ['-dumpversion'], stdout=subprocess.PIPE) version = proc.communicate()[0].split(b'.') mayor_version = int(version[:1][0]) if is_clang is False and mayor_version >= 7: proc = subprocess.Popen(CC.split() + ['-dumpfullversion'], stdout=subprocess.PIPE) version = proc.communicate()[0].split(b'.') version = map(int, version[:2]) version = tuple(version) return (version, is_clang) def run_gyp(args): rc = gyp.main(args) if rc != 0: print('Error running GYP') sys.exit(rc) if __name__ == '__main__': args = sys.argv[1:] # GYP bug. # On msvs it will crash if it gets an absolute path. # On Mac/make it will crash if it doesn't get an absolute path. # NOTE ibc: Not sure that it requires absolute path in Mac/make... if sys.platform == 'win32': args.append(os.path.join(root, 'mediasoup-worker.gyp')) common_fn = os.path.join(root, 'common.gypi') # we force vs 2010 over 2008 which would otherwise be the default for gyp. if not os.environ.get('GYP_MSVS_VERSION'): os.environ['GYP_MSVS_VERSION'] = '2010' else: args.append(os.path.join(os.path.abspath(root), 'mediasoup-worker.gyp')) common_fn = os.path.join(os.path.abspath(root), 'common.gypi') if os.path.exists(common_fn): args.extend(['-I', common_fn]) args.append('--depth=' + root) # There's a bug with windows which doesn't allow this feature. if sys.platform != 'win32': if '-f' not in args: args.extend('-f make'.split()) if 'ninja' not in args: args.extend(['-Goutput_dir=' + output_dir]) args.extend(['--generator-output', output_dir]) (major, minor), is_clang = compiler_version() args.append('-Dgcc_version=%d' % (10 * major + minor)) args.append('-Dclang=%d' % int(is_clang)) if is_clang is False and major == 4 and minor <= 8: raise RuntimeError('gcc <= 4.8 not supported, please upgrade your gcc') if not any(a.startswith('-Dhost_arch=') for a in args): args.append('-Dhost_arch=%s' % host_arch()) if not any(a.startswith('-Dtarget_arch=') for a in args): args.append('-Dtarget_arch=%s' % host_arch()) if any(a.startswith('-Dopenssl_fips=') for a in args): fips_fn = os.path.join(os.path.abspath(root), 'fips.gypi') args.extend(['-I', fips_fn]) else: args.append('-Dopenssl_fips=') if 'asan' in args: args.append('-Dmediasoup_asan=true') args = filter(lambda arg: arg != 'asan', args) else: args.append('-Dmediasoup_asan=false') args.append('-Dnode_byteorder=' + sys.byteorder) gyp_args = list(args) print(gyp_args) run_gyp(gyp_args)
py
1a3000de496c901bc6d511dd1d5046206e8ac2fa
''' Created on 2020-08-11 @author: wf ''' import unittest import time from lodstorage.sparql import SPARQL from lodstorage.lod import LOD from ptp.location import CountryManager, ProvinceManager, CityManager import datetime from collections import Counter import getpass class TestLocations(unittest.TestCase): ''' check countries, provinces/states and cities ''' def setUp(self): self.debug=False pass def tearDown(self): pass def testCityStorage(self): ''' try storing city data in cache ''' cim=CityManager(name="github") cim.fromLutangar() cim.store(cim.cityList) def testCities(self): ''' test consolidating cities from different sources ''' cim=CityManager('lutangarVersusOpenResearch') startTime=time.time() cim.fromLutangar() self.assertEqual(128769,(len(cim.cityList))) print ("reading %d cities from github took %5.1f secs" % (len(cim.cityList),time.time()-startTime)) startTime=time.time() orCities=cim.fromOpenResearch(showProgress=True) cityCounter=Counter(orCities) uniqueCities=list(cityCounter.most_common()) print ("reading %d cities from %d events from openresearch took %5.1f secs" % (len(uniqueCities),len(orCities),time.time()-startTime)) print (cityCounter.most_common(1000)) orCityList=[] for cityName,count in uniqueCities: orCityList.append({'name': cityName, 'count': count}) startTime=time.time() validCities=LOD.intersect(cim.cityList, orCityList, 'name') print ("validating %d cities from openresearch took %5.1f secs" % (len(validCities),time.time()-startTime)) def getDBPedia(self,mode='query',debug=False): endpoint="http://dbpedia.org/sparql" dbpedia=SPARQL(endpoint,mode=mode,debug=debug) return dbpedia def testDBPediaCities(self): ''' https://github.com/LITMUS-Benchmark-Suite/dbpedia-graph-convertor/blob/master/get_data.py ''' # kglf return dbpedia=self.getDBPedia() limit=100 # Query to get the population of cities citiesWithPopulationQuery = """ PREFIX dbo: <http://dbpedia.org/ontology/> PREFIX dbp: <http://dbpedia.org/property/> PREFIX dbr: <http://dbpedia.org/resource/> SELECT DISTINCT ?dbCity ?country ?name ?website ?population WHERE { ?dbCity a dbo:City . ?dbCity dbp:name ?name . ?dbCity dbo:country ?country . OPTIONAL { ?dbCity dbo:populationTotal ?population . } OPTIONAL { ?dbCity dbp:website ?website . } } LIMIT %d """ % limit cityList=dbpedia.queryAsListOfDicts(citiesWithPopulationQuery) cim=CityManager("dbpedia") LOD.setNone4List(cityList, ["population","website"]) cim.store(cityList) def testDBPediaCountries(self): ''' http://dbpedia.org/ontology/Country ''' # kglf return dbpedia=self.getDBPedia() countriesQuery=""" # https://opendata.stackexchange.com/a/7660/18245 - dbp:iso3166code not set ... PREFIX dbo: <http://dbpedia.org/ontology/> SELECT ?country_name ?population ?isocode WHERE { ?country_name a dbo:Country . ?country_name dbp:iso3166code ?isocode. OPTIONAL { ?country_name dbo:populationTotal ?population . } } """ countriesResult=dbpedia.query(countriesQuery) print(countriesResult) print(len(countriesResult)) def getEndPoint(self): endpoint="https://query.wikidata.org/sparql" # check we have local wikidata copy: if getpass.getuser()=="travis": endpoint=None elif getpass.getuser()=="wf": # use 2018 wikidata copy #endpoint="http://blazegraph.bitplan.com/sparql" # use 2020 wikidata copy endpoint="http://jena.zeus.bitplan.com/wikidata" return endpoint def testWikiDataCities(self): ''' test getting cities(human settlements to be precise) from Wikidata ''' #endpoint=self.getEndPoint() # force caching - 3.5 hour query if done via endpoint! endpoint=None cm=CityManager("wikidata") cm.endpoint=endpoint cm.fromCache() print("found %d cities" % len(cm.cityList)) self.assertTrue(len(cm.cityList)>=200000) def testWikiDataProvinces(self): ''' test getting provinces from wikidata ''' pm=ProvinceManager("wikidata") pm.endpoint=self.getEndPoint() pm.fromCache() print("found %d provinces" % len(pm.provinceList)) self.assertTrue(len(pm.provinceList)>=195) def testWikiDataCountries(self): ''' check local wikidata ''' cm=CountryManager("wikidata") cm.endpoint=self.getEndPoint() cm.fromCache() self.assertTrue(len(cm.countryList)>=195) # sparql=TestJena.getJena(debug=self.debug) # errors=cm.storeToRDF(sparql) # self.assertFalse(sparql.printErrors(errors)) # doimport=True # if doimport: # cm2=CountryManager() # cm2.fromRDF(sparql) # self.assertEqual(cm.countryList,cm2.countryList) def testCountryManager(self): ''' test storying countries in SQL format ''' cm=CountryManager("github",debug=True) cm.fromErdem() cm.store(cm.countryList) def testIntersection(self): ''' test creating the intersection of a list of dictionaries ''' list1 = [{'count': 351, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}, {'count': 332, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}, {'count': 336, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}, {'count': 359, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}, {'count': 309, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}] list2 = [{'count': 359, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}, {'count': 351, 'evt_datetime': datetime.datetime(2015, 10, 23, 8, 45), 'att_value': 'red'}, {'count': 381, 'evt_datetime': datetime.datetime(2015, 10, 22, 8, 45), 'att_value': 'red'}] listi=LOD.intersect(list1, list2,'count') print(listi) self.assertEquals(2,len(listi)) listi=LOD.intersect(list1, list2) print(listi) self.assertEquals(2,len(listi)) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
py
1a3000fe29d6bffbc1632b67fc91192b9e58c865
from triton import * from pintool import * # Output # # $ ./triton ./src/examples/pin/callback_signals.py ./src/samples/others/signals # Signal 11 received on thread 0. # ========================== DUMP ========================== # rax: 0x00000000000000 ((_ zero_extend 32) (_ bv234 32)) # rbx: 0x00000000000000 UNSET # rcx: 0x00000000001ba4 ((_ zero_extend 32) ((_ extract 31 0) #81)) # rdx: 0x0000000000000b ((_ sign_extend 32) ((_ extract 31 0) #34)) # rdi: 0x00000000001ba4 ((_ sign_extend 32) ((_ extract 31 0) #83)) # rsi: 0x00000000001ba4 ((_ sign_extend 32) ((_ extract 31 0) #90)) # rbp: 0x007fff097e3540 ((_ extract 63 0) #0) # rsp: 0x007fff097e3528 (bvsub ((_ extract 63 0) #47) (_ bv8 64)) # rip: 0x007f3fa0735ea7 (_ bv139911251582629 64) # r8: 0x007f3fa0a94c80 UNSET # r9: 0x007f3fb671b120 UNSET # r10: 0x00000000000000 UNSET # r11: 0x007f3fa0735e70 UNSET # r12: 0x00000000400460 UNSET # r13: 0x007fff097e3620 UNSET # r14: 0x00000000000000 UNSET # r15: 0x00000000000000 UNSET # xmm0: 0x000000ff000000 UNSET # xmm1: 0x2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f UNSET # xmm2: 0x00000000000000 UNSET # xmm3: 0x00ff000000ff00 UNSET # xmm4: 0x000000000000ff UNSET # xmm5: 0x00000000000000 UNSET # xmm6: 0x00000000000000 UNSET # xmm7: 0x00000000000000 UNSET # xmm8: 0x00000000000000 UNSET # xmm9: 0x00000000000000 UNSET # xmm10: 0x00000000000000 UNSET # xmm11: 0x00000000000000 UNSET # xmm12: 0x00000000000000 UNSET # xmm13: 0x00000000000000 UNSET # xmm14: 0x00000000000000 UNSET # xmm15: 0x00000000000000 UNSET # af: 0x00000000000000 (ite (= (_ bv16 64) (bvand (_ bv16 64) (bvxor #12 (bvxor ((_ extract 63 0) #0) (_ bv16 64))))) (_ bv1 1) (_ bv0 1)) # cf: 0x00000000000000 (_ bv0 1) # df: 0x00000000000000 UNSET # if: 0x00000000000001 UNSET # of: 0x00000000000000 (_ bv0 1) # pd: 0x00000000000001 (ite (= (parity_flag ((_ extract 7 0) #73)) (_ bv0 1)) (_ bv1 1) (_ bv0 1)) # sf: 0x00000000000000 (ite (= ((_ extract 31 31) #73) (_ bv1 1)) (_ bv1 1) (_ bv0 1)) # tf: 0x00000000000000 UNSET # zf: 0x00000000000001 (ite (= #73 (_ bv0 32)) (_ bv1 1) (_ bv0 1)) def signals(threadId, sig): print 'Signal %d received on thread %d.' %(sig, threadId) print '========================== DUMP ==========================' regs = getParentRegisters() for reg in regs: value = getCurrentRegisterValue(reg) exprId = getSymbolicRegisterId(reg) print '%s:\t%#016x\t%s' %(reg.getName(), value, (getSymbolicExpressionFromId(exprId).getAst() if exprId != SYMEXPR.UNSET else 'UNSET')) return if __name__ == '__main__': # Set architecture setArchitecture(ARCH.X86_64) # Start the symbolic analysis from the Entry point startAnalysisFromEntry() # Add a callback. insertCall(signals, INSERT_POINT.SIGNALS) # Run the instrumentation - Never returns runProgram()
py
1a300115d079adedd687bd2d5d6b2ab5068a5a87
from core.room import Room class Player(): def __init__(self, current_room, inventory = []): # self.name = name self.current_room = current_room self.inventory = inventory def room_info(self): name = self.current_room.name description = self.current_room.description return f'{name} - {description}' def investigate(self): item = self.current_room.items if item != None: return f'You see a {item}.' else: return "There is nothing here." def remove_inventory(self): self.inventory = []
py
1a3002db951a683a9292c176146e1549f7244536
from argparse import ArgumentParser from ._version import __version__ def build_args_parser( prog: str, description: str = '', epilog: str = '' ) -> ArgumentParser: parser = ArgumentParser( prog = prog, description = description, epilog = epilog ) # Build Parser parser = add_arguments(parser) return parser def add_arguments(parser: ArgumentParser) -> ArgumentParser: parser.add_argument( 'input', type=str, help='Path to an .xml SBOL file containing constructs designs and sequences' ) parser.add_argument( 'output', type=str, help='Path to the output spreadsheet' ) parser.add_argument( 'assembly_method', type=str, choices=["gibson", "golden_gate", "any_method"], help='If "any_method" is selected, each construct can be built with any method. However, Golden Gate Assembly will have priority over Gibson Assembly' ) parser.add_argument( '--nb_constructs', type=int, help='Maximum number of constructs to build (only used in tests)' ) parser.add_argument( '--version', action='version', version='%(prog)s {}'.format(__version__), help='show the version number and exit' ) return parser
py
1a30040ef7766bef0b11b045ff268440af4cf397
from Instrucciones.Declaracion import Declaracion from Instrucciones.Sql_create.Tipo_Constraint import Tipo_Constraint, Tipo_Dato_Constraint from Instrucciones.TablaSimbolos.Tipo import Tipo from Instrucciones.TablaSimbolos.Instruccion import Instruccion from Instrucciones.TablaSimbolos.Tabla import Tabla from Instrucciones.Excepcion import Excepcion from storageManager.jsonMode import * from Instrucciones.Tablas.Tablas import Tablas from Instrucciones.TablaSimbolos.Tipo import Tipo, Tipo_Dato from Instrucciones.TablaSimbolos.Tipo import Tipo, Tipo_Dato from Instrucciones.Tablas.Campo import Campo from Optimizador.C3D import * from Instrucciones.TablaSimbolos import Instruccion3D as c3d class CreateTable(Instruccion): def __init__(self, tabla, tipo, campos, herencia, strGram ,linea, columna): Instruccion.__init__(self,tipo,linea,columna, strGram) self.tabla = tabla self.campos = campos self.herencia = herencia def ejecutar(self, tabla, arbol): super().ejecutar(tabla,arbol) # Ambito para la tabla tablaLocal = Tabla(tabla) compuesta = True #SE VALIDA QUE SE HAYA SELECCIONADO UN BD if arbol.bdUsar != None: for camp in self.campos: if isinstance(camp, Tipo_Constraint): tc=self.campos.pop(int(self.campos.index(camp))) if tc.tipo == Tipo_Dato_Constraint.UNIQUE or tc.tipo == Tipo_Dato_Constraint.PRIMARY_KEY or tc.tipo == Tipo_Dato_Constraint.FOREIGN_KEY: for id in tc.expresion: bid=False for ct in self.campos: if ct.nombre== id: if self.campos[self.campos.index(ct)].constraint == None: self.campos[self.campos.index(ct)].constraint=[] if tc.tipo == Tipo_Dato_Constraint.UNIQUE: self.campos[self.campos.index(ct)].constraint.append(Tipo_Constraint(self.tabla+"_"+ct.nombre+"_pkey", Tipo_Dato_Constraint.UNIQUE, None)) if tc.tipo == Tipo_Dato_Constraint.PRIMARY_KEY: compuesta = False self.campos[self.campos.index(ct)].constraint.append(Tipo_Constraint(self.tabla+"_pkey", Tipo_Dato_Constraint.PRIMARY_KEY, None)) #if tc.tipo == Tipo_Dato_Constraint.FOREIGN_KEY: #self.campos[self.campos.index(ct)].constraint.append(Tipo_Constraint(None, Tipo_Dato_Constraint.UNIQUE, None)) bid=True if not bid: error = Excepcion("42P10","Semantico",f"La columna <<{id}>> no existe, Error en el Constraint",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return #SE VALIDA SI LA TABLA VA HEREDAR if self.herencia!=None: #SE BUSCA LA SI LA TABLA HEREDADA EXISTE htabla = arbol.devolverBaseDeDatos().getTabla(self.herencia) if htabla != None: tabla_temp=[] #SE RECORRE TODOS LAS COLUMNAS DE LA TABLA PARA UNIR CAMPOS REPETIDOS for campo_her in htabla.lista_de_campos: indice=0 bandera_campo=True for campo_nuevo in self.campos: if campo_her.nombre==campo_nuevo.nombre: tabla_temp.append(campo_nuevo) arbol.consola.append(f"NOTICE: mezclando la columna <<{campo_nuevo.nombre}>> con la definición heredada.") self.campos.pop(indice) indice+=1 bandera_campo=False break if bandera_campo: tabla_temp.append(campo_her) tabla_temp = tabla_temp + self.campos self.campos= tabla_temp else: error = Excepcion(f"42P01","Semantico","No existe la relación <<{self.herencia}>>.",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return # VERIFICACIÓN LLAVES PRIMARIAS listaPrimarias = [] for camp in self.campos: if isinstance(camp.tipo,Tipo): if camp.constraint != None: for s in camp.constraint: if s.tipo == Tipo_Dato_Constraint.PRIMARY_KEY: listaPrimarias.append(camp) if len(listaPrimarias) > 1 and compuesta: error = Excepcion("42P16","Semantico","No se permiten múltiples llaves primarias para la tabla «"+self.tabla+"»",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error #SE CREA UN AMBITO PARA LA TABLA tablaNueva = Tablas(self.tabla,None) #SE LLENA LA TABLA EN MEMORIA for camp in self.campos: if isinstance(camp.tipo,Tipo): if camp.tipo.tipo == Tipo_Dato.TIPOENUM: existe = arbol.getEnum(camp.tipo.nombre) if existe == None: error = Excepcion('42P00',"Semántico","El tipo "+camp.tipo.nombre+" no existe",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error if camp.constraint != None: for s in camp.constraint: if s.tipo == Tipo_Dato_Constraint.CHECK: arbol.comprobacionCreate = True objeto = Declaracion(camp.nombre, camp.tipo, s.expresion) checkBueno = objeto.ejecutar(tablaLocal, arbol) if not isinstance(checkBueno,Excepcion): if s.id == None: s.id = self.tabla+"_"+camp.nombre+"_"+"check1" #tablaNueva.agregarColumna(camp.nombre,camp.tipo.toString(),None, camp.constraint) #continue pass else: #arbol.consola.append(checkBueno.toString()) return elif s.tipo == Tipo_Dato_Constraint.PRIMARY_KEY: if s.id == None: s.id = self.tabla+"_pkey" elif s.tipo == Tipo_Dato_Constraint.UNIQUE: if s.id == None: s.id = self.tabla+"_"+camp.nombre+"_pkey" tablaNueva.agregarColumna(camp.nombre,camp.tipo,None, camp.constraint) #tablaNueva.lista_constraint.append(camp.constraint) else: tablaNueva.agregarColumna(camp.nombre,camp.tipo,None, camp.constraint) #tablaNueva.lista_constraint.append(camp.constraint) arbol.comprobacionCreate = False #SE CREA LA TABLA EN DISCO ctable = createTable(arbol.bdUsar,self.tabla,len(self.campos)) if ctable==0: #CUANDO LA TABLA SE CREA CORRECTAMENTE arbol.consola.append(f"La Tabla: <<{self.tabla}>> se creo correctamente.") arbol.agregarTablaABd(tablaNueva) elif ctable==3: #CUANDO LA TABLA YA EXISTE error = Excepcion("100","Semantico","La Tabla ya Existe.",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) elif ctable==2: #CUANDO POR ALGUN ERROR NO SE CREA LA TABLA. error = Excepcion("100","Semantico","Error Interno.",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) # SE AGREGAN LAS LLAVES PRIMARIAS A LA TABLA listaIndices = [] resultado=0 for i in listaPrimarias: listaIndices.append(tablaNueva.devolverColumna(i.nombre)) if len(listaIndices) >0: #print("SE AGREGO UN INDICE") resultado = alterAddPK(arbol.getBaseDatos(), self.tabla, listaIndices) if resultado == 1: error = Excepcion('XX000',"Semántico","Error interno",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error elif resultado == 2: error = Excepcion('42P00',"Semántico","La base de datos "+str(arbol.getBaseDatos())+" no existe",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error elif resultado == 3: error = Excepcion('42P01',"Semántico","No existe la relación "+self.tabla,self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error elif resultado == 4: error = Excepcion('42P16',"Semántico","No se permiten múltiples llaves primarias para la tabla «"+self.tabla+"»",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error elif resultado == 5: error = Excepcion('XX002',"Semántico","Columna fuera de limites."+self.tabla,self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error else: error = Excepcion("100","Semantico","No ha seleccionado ninguna Base de Datos.",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) def generar3D(self, tabla, arbol): super().generar3D(tabla,arbol) code = [] t0 = c3d.getTemporal() code.append(c3d.asignacionString(t0, "CREATE TABLE " + self.tabla + " (\\n")) sizeCol = len(self.campos) contador = 1 for col in self.campos: if isinstance(col, Campo): sizeCol -= 1 elif not isinstance(col, Campo): lista = col.generar3D(tabla, arbol) code += lista tLast = c3d.getLastTemporal() if contador != sizeCol: t3 = c3d.getTemporal() code.append(c3d.operacion(t3, Identificador(tLast), Valor('",\\n"', "STRING"), OP_ARITMETICO.SUMA)) contador += 1 tLast = t3 t2 = c3d.getTemporal() code.append(c3d.operacion(t2, Identificador(t0), Identificador(tLast), OP_ARITMETICO.SUMA)) t0 = t2 t1 = c3d.getTemporal() if self.herencia != None: code.append(c3d.operacion(t1, Identificador(t0), Valor('"\\n) INHERITS (' + self.herencia + '"', "STRING"), OP_ARITMETICO.SUMA)) t0 = t1 t1 = c3d.getTemporal() code.append(c3d.operacion(t1, Identificador(t0), Valor('");"', "STRING"), OP_ARITMETICO.SUMA)) code.append(c3d.asignacionTemporalStack(t1)) code.append(c3d.aumentarP()) return code class IdentificadorColumna(Instruccion): def __init__(self, id, linea, columna): self.id = id Instruccion.__init__(self,Tipo(Tipo_Dato.ID),linea,columna,strGram) def ejecutar(self, tabla, arbol): super().ejecutar(tabla,arbol) variable = tabla.getVariable(self.id) if variable == None: error = Excepcion("42P10","Semantico","La columna "+str(self.id)+" no existe",self.linea,self.columna) arbol.excepciones.append(error) arbol.consola.append(error.toString()) return error self.tipo = variable.tipo return variable.valor.ejecutar(tabla, arbol) def generar3D(self, tabla, arbol): super().generar3D(tabla,arbol)
py
1a30050b9c482e1742df7e3ab1665fb4995cac5b
import logging import sys from requests import HTTPError from .readwritelock import ReadWriteLock from .interfaces import CachePolicy log = logging.getLogger(sys.modules[__name__].__name__) class ManualPollingCachePolicy(CachePolicy): def __init__(self, config_fetcher, config_cache): self._config_fetcher = config_fetcher self._config_cache = config_cache self._lock = ReadWriteLock() def get(self): try: self._lock.acquire_read() config = self._config_cache.get() return config finally: self._lock.release_read() def force_refresh(self): force_fetch = False try: self._lock.acquire_read() config = self._config_cache.get() force_fetch = not bool(config) finally: self._lock.release_read() try: configuration_response = self._config_fetcher.get_configuration_json( force_fetch ) if configuration_response.is_fetched(): configuration = configuration_response.json() try: self._lock.acquire_write() self._config_cache.set(configuration) finally: self._lock.release_write() except HTTPError as e: log.error( "Double-check your SDK Key at https://app.configcat.com/sdkkey." " Received unexpected response: [%s]" % str(e.response) ) except: log.exception(sys.exc_info()[0]) def stop(self): pass
py
1a30056debc252823120b2717a4d36ee3a01f83e
""" This module contains callbacks used during the test phase. """ from torchlite.data.datasets import ImageDataset from tqdm import tqdm class TestCallback: def __init__(self): self.validation_data = None self.params = None self.model = None def on_test_begin(self, logs=None): pass def on_test_end(self, logs=None): pass def on_batch_begin(self, batch, logs=None): pass def on_batch_end(self, batch, logs=None): pass class TestCallbackList(object): """Container abstracting a list of callbacks. Args: callbacks: List of `Callback` instances. queue_length: Queue length for keeping running statistics over callback execution time. """ def __init__(self, callbacks=None, queue_length=10): callbacks = callbacks or [] self.callbacks = [c for c in callbacks] self.queue_length = queue_length def append(self, callback): assert isinstance(callback, TestCallback), \ "Your callback is not an instance of TestCallback: {}".format(callback) self.callbacks.append(callback) def on_test_begin(self, logs=None): """Called at the beginning of testing. Args: logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_test_begin(logs) def on_test_end(self, logs=None): """Called at the end of testing. Args: logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_test_end(logs) def on_batch_begin(self, batch, logs=None): """Called right before processing a batch. Args: batch: integer, index of batch within the current epoch. logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_batch_begin(batch, logs) def on_batch_end(self, batch, logs=None): """Called at the end of a batch. Args: batch: integer, index of batch within the current epoch. logs: dictionary of logs. """ logs = logs or {} for callback in self.callbacks: callback.on_batch_end(batch, logs) def __iter__(self): return iter(self.callbacks) class TQDM(TestCallback): def __init__(self): super().__init__() self.pbar = None def on_test_begin(self, logs=None): test_loader_len = len(logs["loader"]) self.pbar = tqdm(total=test_loader_len, desc="Classifying") def on_batch_end(self, batch, logs=None): self.pbar.update(1) def on_test_end(self, logs=None): print() class ActivationMapVisualizerCallback(TestCallback): def __init__(self, filename): """ Store an image with heatmap activations in a heatmaps list using the Grad_cam++ technique: https://arxiv.org/abs/1710.11063 # TODO may combines with TensorboardVisualizer? /!\ This technique only works with image torchlite.data.datasets.ImagesDataset Args: filename (str): The file name that you want to visualize """ super().__init__() self.filename = filename self.heatmap = None def on_test_end(self, logs=None): model = self.model ds = logs["loader"].dataset if logs["loader"] else None assert isinstance(ds, ImageDataset), \ "ActivationMapVisualizer: The loader is not an instance of torchlite.data.datasets.ImagesDataset" image, label, _ = ds.get_by_name(self.filename) # TODO finish grad cam here https://github.com/adityac94/Grad_CAM_plus_plus/blob/master/misc/utils.py#L51 @property def get_heatmap(self): return self.heatmap class TTACallback(TestCallback): def __init__(self): """ Test time augmentation callback """ # TODO implement https://github.com/fastai/fastai/blob/master/fastai/learner.py#L242 super().__init__()
py
1a30059e79652b426d539e42af781474e26d2df8
from .util import Configurable, Openable, pretty_str @pretty_str class Hook(Configurable, Openable): """ Base of all hook classes, performs any form of processing on messages from all connected plugs, via the provided host instance. Instantiation may raise :class:`.ConfigError` if the provided configuration is invalid. Attributes: virtual (bool): ``True`` if managed by another component (e.g. a hook that exposes plug functionality). """ def __init__(self, name, config, host, virtual=False): super().__init__(name, config, host) self.virtual = virtual async def start(self): """ Perform any setup tasks. """ async def stop(self): """ Perform any teardown tasks. """ def on_load(self): """ Perform any additional one-time setup that requires other plugs or hooks to be loaded. """ async def channel_migrate(self, old, new): """ Move any private data between channels on admin request. This is intended to cover data keyed by channel sources and plug network identifiers. Args: old (.Channel): Existing channel with local data. new (.Channel): Target replacement channel to migrate data to. Returns: bool: ``True`` if any data was migrated for the requested channel. """ return False async def before_send(self, channel, msg): """ Modify an outgoing message before it's pushed to the network. The ``(channel, msg)`` pair must be returned, so hooks may modify in-place or return a different pair. This method is called for each hook, one after another. If ``channel`` is modified, the sending will restart on the new channel, meaning this method will be called again for all hooks. Hooks may also suppress a message (e.g. if their actions caused it, but it bears no value to the network) by returning ``None``. Args: channel (.Channel): Original source of this message. msg (.Message): Raw message received from another plug. Returns: (.Channel, .Message) tuple: The augmented or replacement pair, or ``None`` to suppress this message. """ return (channel, msg) async def before_receive(self, sent, source, primary): """ Modify an incoming message before it's pushed to other hooks. The ``sent`` object must be returned, so hooks may modify in-place or return a different object. This method is called for each hook, one after another, so any time-consuming tasks should be deferred to :meth:`process` (which is run for all hooks in parallel). Hooks may also suppress a message (e.g. if their actions caused it, but it bears no value to the rest of the system) by returning ``None``. Args: sent (.SentMessage): Raw message received from another plug. source (.Message): Original message data used to generate the raw message, if sent via the plug (e.g. from another hook), equivalent to ``msg`` if the source is otherwise unknown. primary (bool): ``False`` for supplementary messages if the source message required multiple raw messages in order to represent it (e.g. messages with multiple attachments where the underlying network doesn't support it), otherwise ``True``. Returns: .SentMessage: The augmented or replacement message, or ``None`` to suppress this message. """ return sent async def on_receive(self, sent, source, primary): """ Handle an incoming message received by any plug. Args: sent (.SentMessage): Raw message received from another plug. source (.Message): Original message data used to generate the raw message, if sent via the plug (e.g. from another hook), equivalent to ``msg`` if the source is otherwise unknown. primary (bool): ``False`` for supplementary messages if the source message required multiple raw messages in order to represent it (e.g. messages with multiple attachments where the underlying network doesn't support it), otherwise ``True``. """ def on_config_change(self, source): """ Handle a configuration change from another plug or hook. Args: source (.Configurable): Source plug or hook that triggered the event. """ def __repr__(self): return "<{}: {}>".format(self.__class__.__name__, self.name) class ResourceHook(Hook): """ Variant of hooks that globally provide access to some resource. Only one of each class may be loaded, which happens before regular hooks, and such hooks are keyed by their class rather than a name, allowing for easier lookups. """
py
1a3005cef96dbe2a43a46cf679a83e061a6ffb5c
import enum import platform import typing import math from functools import lru_cache from publicsuffix2 import get_sld, get_tld import urwid import urwid.util from mitmproxy import flow from mitmproxy.http import HTTPFlow from mitmproxy.utils import human, emoji from mitmproxy.tcp import TCPFlow from mitmproxy import dns from mitmproxy.dns import DNSFlow # Detect Windows Subsystem for Linux and Windows IS_WINDOWS_OR_WSL = "Microsoft" in platform.platform() or "Windows" in platform.platform() def is_keypress(k): """ Is this input event a keypress? """ if isinstance(k, str): return True def highlight_key(str, key, textattr="text", keyattr="key"): l = [] parts = str.split(key, 1) if parts[0]: l.append((textattr, parts[0])) l.append((keyattr, key)) if parts[1]: l.append((textattr, parts[1])) return l KEY_MAX = 30 def format_keyvals( entries: typing.Iterable[typing.Tuple[str, typing.Union[None, str, urwid.Widget]]], key_format: str = "key", value_format: str = "text", indent: int = 0 ) -> typing.List[urwid.Columns]: """ Format a list of (key, value) tuples. Args: entries: The list to format. keys must be strings, values can also be None or urwid widgets. The latter makes it possible to use the result of format_keyvals() as a value. key_format: The display attribute for the key. value_format: The display attribute for the value. indent: Additional indent to apply. """ max_key_len = max((len(k) for k, v in entries if k is not None), default=0) max_key_len = min(max_key_len, KEY_MAX) if indent > 2: indent -= 2 # We use dividechars=2 below, which already adds two empty spaces ret = [] for k, v in entries: if v is None: v = urwid.Text("") elif not isinstance(v, urwid.Widget): v = urwid.Text([(value_format, v)]) ret.append( urwid.Columns( [ ("fixed", indent, urwid.Text("")), ( "fixed", max_key_len, urwid.Text([(key_format, k)]) ), v ], dividechars=2 ) ) return ret def fcol(s: str, attr: str) -> typing.Tuple[str, int, urwid.Text]: s = str(s) return ( "fixed", len(s), urwid.Text( [ (attr, s) ] ) ) if urwid.util.detected_encoding: SYMBOL_REPLAY = "\u21ba" SYMBOL_RETURN = "\u2190" SYMBOL_MARK = "\u25cf" SYMBOL_UP = "\u21E7" SYMBOL_DOWN = "\u21E9" SYMBOL_ELLIPSIS = "\u2026" SYMBOL_FROM_CLIENT = "\u21d2" SYMBOL_TO_CLIENT = "\u21d0" else: SYMBOL_REPLAY = "[r]" SYMBOL_RETURN = "<-" SYMBOL_MARK = "#" SYMBOL_UP = "^" SYMBOL_DOWN = " " SYMBOL_ELLIPSIS = "~" SYMBOL_FROM_CLIENT = "->" SYMBOL_TO_CLIENT = "<-" SCHEME_STYLES = { 'http': 'scheme_http', 'https': 'scheme_https', 'ws': 'scheme_ws', 'wss': 'scheme_wss', 'tcp': 'scheme_tcp', 'dns': 'scheme_dns', } HTTP_REQUEST_METHOD_STYLES = { 'GET': 'method_get', 'POST': 'method_post', 'DELETE': 'method_delete', 'HEAD': 'method_head', 'PUT': 'method_put' } HTTP_RESPONSE_CODE_STYLE = { 2: "code_200", 3: "code_300", 4: "code_400", 5: "code_500", } class RenderMode(enum.Enum): TABLE = 1 """The flow list in table format, i.e. one row per flow.""" LIST = 2 """The flow list in list format, i.e. potentially multiple rows per flow.""" DETAILVIEW = 3 """The top lines in the detail view.""" def fixlen(s: str, maxlen: int) -> str: if len(s) <= maxlen: return s.ljust(maxlen) else: return s[0:maxlen - len(SYMBOL_ELLIPSIS)] + SYMBOL_ELLIPSIS def fixlen_r(s: str, maxlen: int) -> str: if len(s) <= maxlen: return s.rjust(maxlen) else: return SYMBOL_ELLIPSIS + s[len(s) - maxlen + len(SYMBOL_ELLIPSIS):] def render_marker(marker: str) -> str: rendered = emoji.emoji.get(marker, SYMBOL_MARK) # The marker can only be one glyph. Some emoji that use zero-width joiners (ZWJ) # will not be rendered as a single glyph and instead will show # multiple glyphs. Just use the first glyph as a fallback. # https://emojipedia.org/emoji-zwj-sequence/ return rendered[0] class TruncatedText(urwid.Widget): def __init__(self, text, attr, align='left'): self.text = text self.attr = attr self.align = align super().__init__() def pack(self, size, focus=False): return (len(self.text), 1) def rows(self, size, focus=False): return 1 def render(self, size, focus=False): text = self.text attr = self.attr if self.align == 'right': text = text[::-1] attr = attr[::-1] text_len = urwid.util.calc_width(text, 0, len(text)) if size is not None and len(size) > 0: width = size[0] else: width = text_len if width >= text_len: remaining = width - text_len if remaining > 0: c_text = text + ' ' * remaining c_attr = attr + [('text', remaining)] else: c_text = text c_attr = attr else: trim = urwid.util.calc_trim_text(text, 0, width - 1, 0, width - 1) visible_text = text[0:trim[1]] if trim[3] == 1: visible_text += ' ' c_text = visible_text + SYMBOL_ELLIPSIS c_attr = (urwid.util.rle_subseg(attr, 0, len(visible_text.encode())) + [('focus', len(SYMBOL_ELLIPSIS.encode()))]) if self.align == 'right': c_text = c_text[::-1] c_attr = c_attr[::-1] return urwid.TextCanvas([c_text.encode()], [c_attr], maxcol=width) def truncated_plain(text, attr, align='left'): return TruncatedText(text, [(attr, len(text.encode()))], align) # Work around https://github.com/urwid/urwid/pull/330 def rle_append_beginning_modify(rle, a_r): """ Append (a, r) (unpacked from *a_r*) to BEGINNING of rle. Merge with first run when possible MODIFIES rle parameter contents. Returns None. """ a, r = a_r if not rle: rle[:] = [(a, r)] else: al, run = rle[0] if a == al: rle[0] = (a, run + r) else: rle[0:0] = [(a, r)] def colorize_host(host): tld = get_tld(host) sld = get_sld(host) attr = [] tld_size = len(tld) sld_size = len(sld) - tld_size for letter in reversed(range(len(host))): character = host[letter] if tld_size > 0: style = 'url_domain' tld_size -= 1 elif tld_size == 0: style = 'text' tld_size -= 1 elif sld_size > 0: sld_size -= 1 style = 'url_extension' else: style = 'text' rle_append_beginning_modify(attr, (style, len(character.encode()))) return attr def colorize_req(s): path = s.split('?', 2)[0] i_query = len(path) i_last_slash = path.rfind('/') i_ext = path[i_last_slash + 1:].rfind('.') i_ext = i_last_slash + i_ext if i_ext >= 0 else len(s) in_val = False attr = [] for i in range(len(s)): c = s[i] if ((i < i_query and c == '/') or (i < i_query and i > i_last_slash and c == '.') or (i == i_query)): a = 'url_punctuation' elif i > i_query: if in_val: if c == '&': in_val = False a = 'url_punctuation' else: a = 'url_query_value' else: if c == '=': in_val = True a = 'url_punctuation' else: a = 'url_query_key' elif i > i_ext: a = 'url_extension' elif i > i_last_slash: a = 'url_filename' else: a = 'text' urwid.util.rle_append_modify(attr, (a, len(c.encode()))) return attr def colorize_url(url): parts = url.split('/', 3) if len(parts) < 4 or len(parts[1]) > 0 or parts[0][-1:] != ':': return [('error', len(url))] # bad URL return [ (SCHEME_STYLES.get(parts[0], "scheme_other"), len(parts[0]) - 1), ('url_punctuation', 3), # :// ] + colorize_host(parts[2]) + colorize_req('/' + parts[3]) def format_http_content_type(content_type: str) -> typing.Tuple[str, str]: content_type = content_type.split(";")[0] if content_type.endswith('/javascript'): style = 'content_script' elif content_type.startswith('text/'): style = 'content_text' elif (content_type.startswith('image/') or content_type.startswith('video/') or content_type.startswith('font/') or "/x-font-" in content_type): style = 'content_media' elif content_type.endswith('/json') or content_type.endswith('/xml'): style = 'content_data' elif content_type.startswith('application/'): style = 'content_raw' else: style = 'content_other' return content_type, style def format_duration(duration: float) -> typing.Tuple[str, str]: pretty_duration = human.pretty_duration(duration) style = 'gradient_%02d' % int(99 - 100 * min(math.log2(1 + 1000 * duration) / 12, 0.99)) return pretty_duration, style def format_size(num_bytes: int) -> typing.Tuple[str, str]: pretty_size = human.pretty_size(num_bytes) style = 'gradient_%02d' % int(99 - 100 * min(math.log2(1 + num_bytes) / 20, 0.99)) return pretty_size, style def format_left_indicators( *, focused: bool, intercepted: bool, timestamp: float ): indicators: typing.List[typing.Union[str, typing.Tuple[str, str]]] = [] if focused: indicators.append(("focus", ">>")) else: indicators.append(" ") pretty_timestamp = human.format_timestamp(timestamp)[-8:] if intercepted: indicators.append(("intercept", pretty_timestamp)) else: indicators.append(("text", pretty_timestamp)) return "fixed", 10, urwid.Text(indicators) def format_right_indicators( *, replay: bool, marked: str, ): indicators: typing.List[typing.Union[str, typing.Tuple[str, str]]] = [] if replay: indicators.append(("replay", SYMBOL_REPLAY)) else: indicators.append(" ") if bool(marked): indicators.append(("mark", render_marker(marked))) else: indicators.append(" ") return "fixed", 3, urwid.Text(indicators) @lru_cache(maxsize=800) def format_http_flow_list( *, render_mode: RenderMode, focused: bool, marked: str, is_replay: bool, request_method: str, request_scheme: str, request_host: str, request_path: str, request_url: str, request_http_version: str, request_timestamp: float, request_is_push_promise: bool, intercepted: bool, response_code: typing.Optional[int], response_reason: typing.Optional[str], response_content_length: typing.Optional[int], response_content_type: typing.Optional[str], duration: typing.Optional[float], error_message: typing.Optional[str], ) -> urwid.Widget: req = [] if render_mode is RenderMode.DETAILVIEW: req.append(fcol(human.format_timestamp(request_timestamp), "highlight")) else: if focused: req.append(fcol(">>", "focus")) else: req.append(fcol(" ", "focus")) method_style = HTTP_REQUEST_METHOD_STYLES.get(request_method, "method_other") req.append(fcol(request_method, method_style)) if request_is_push_promise: req.append(fcol('PUSH_PROMISE', 'method_http2_push')) preamble_len = sum(x[1] for x in req) + len(req) - 1 if request_http_version not in ("HTTP/1.0", "HTTP/1.1"): request_url += " " + request_http_version if intercepted and not response_code: url_style = "intercept" elif response_code or error_message: url_style = "text" else: url_style = "title" if render_mode is RenderMode.DETAILVIEW: req.append( urwid.Text([(url_style, request_url)]) ) else: req.append(truncated_plain(request_url, url_style)) req.append(format_right_indicators(replay=is_replay, marked=marked)) resp = [ ("fixed", preamble_len, urwid.Text("")) ] if response_code: if intercepted: style = "intercept" else: style = "" status_style = style or HTTP_RESPONSE_CODE_STYLE.get(response_code // 100, "code_other") resp.append(fcol(SYMBOL_RETURN, status_style)) resp.append(fcol(str(response_code), status_style)) if response_reason and render_mode is RenderMode.DETAILVIEW: resp.append(fcol(response_reason, status_style)) if response_content_type: ct, ct_style = format_http_content_type(response_content_type) resp.append(fcol(ct, style or ct_style)) if response_content_length: size, size_style = format_size(response_content_length) elif response_content_length == 0: size = "[no content]" size_style = "text" else: size = "[content missing]" size_style = "text" resp.append(fcol(size, style or size_style)) if duration: dur, dur_style = format_duration(duration) resp.append(fcol(dur, style or dur_style)) elif error_message: resp.append(fcol(SYMBOL_RETURN, "error")) resp.append(urwid.Text([("error", error_message)])) return urwid.Pile([ urwid.Columns(req, dividechars=1), urwid.Columns(resp, dividechars=1) ]) @lru_cache(maxsize=800) def format_http_flow_table( *, render_mode: RenderMode, focused: bool, marked: str, is_replay: typing.Optional[str], request_method: str, request_scheme: str, request_host: str, request_path: str, request_url: str, request_http_version: str, request_timestamp: float, request_is_push_promise: bool, intercepted: bool, response_code: typing.Optional[int], response_reason: typing.Optional[str], response_content_length: typing.Optional[int], response_content_type: typing.Optional[str], duration: typing.Optional[float], error_message: typing.Optional[str], ) -> urwid.Widget: items = [ format_left_indicators( focused=focused, intercepted=intercepted, timestamp=request_timestamp ) ] if intercepted and not response_code: request_style = "intercept" else: request_style = "" scheme_style = request_style or SCHEME_STYLES.get(request_scheme, "scheme_other") items.append(fcol(fixlen(request_scheme.upper(), 5), scheme_style)) if request_is_push_promise: method_style = 'method_http2_push' else: method_style = request_style or HTTP_REQUEST_METHOD_STYLES.get(request_method, "method_other") items.append(fcol(fixlen(request_method, 4), method_style)) items.append(('weight', 0.25, TruncatedText(request_host, colorize_host(request_host), 'right'))) items.append(('weight', 1.0, TruncatedText(request_path, colorize_req(request_path), 'left'))) if intercepted and response_code: response_style = "intercept" else: response_style = "" if response_code: status = str(response_code) status_style = response_style or HTTP_RESPONSE_CODE_STYLE.get(response_code // 100, "code_other") if response_content_length and response_content_type: content, content_style = format_http_content_type(response_content_type) content_style = response_style or content_style elif response_content_length: content = '' content_style = 'content_none' elif response_content_length == 0: content = "[no content]" content_style = 'content_none' else: content = "[content missing]" content_style = 'content_none' elif error_message: status = 'err' status_style = 'error' content = error_message content_style = 'error' else: status = '' status_style = 'text' content = '' content_style = '' items.append(fcol(fixlen(status, 3), status_style)) items.append(('weight', 0.15, truncated_plain(content, content_style, 'right'))) if response_content_length: size, size_style = format_size(response_content_length) items.append(fcol(fixlen_r(size, 5), response_style or size_style)) else: items.append(("fixed", 5, urwid.Text(""))) if duration: duration_pretty, duration_style = format_duration(duration) items.append(fcol(fixlen_r(duration_pretty, 5), response_style or duration_style)) else: items.append(("fixed", 5, urwid.Text(""))) items.append(format_right_indicators( replay=bool(is_replay), marked=marked, )) return urwid.Columns(items, dividechars=1, min_width=15) @lru_cache(maxsize=800) def format_tcp_flow( *, render_mode: RenderMode, focused: bool, timestamp_start: float, marked: str, client_address, server_address, total_size: int, duration: typing.Optional[float], error_message: typing.Optional[str], ): conn = f"{human.format_address(client_address)} <-> {human.format_address(server_address)}" items = [] if render_mode in (RenderMode.TABLE, RenderMode.DETAILVIEW): items.append( format_left_indicators(focused=focused, intercepted=False, timestamp=timestamp_start) ) else: if focused: items.append(fcol(">>", "focus")) else: items.append(fcol(" ", "focus")) if render_mode is RenderMode.TABLE: items.append(fcol("TCP ", SCHEME_STYLES["tcp"])) else: items.append(fcol("TCP", SCHEME_STYLES["tcp"])) items.append(('weight', 1.0, truncated_plain(conn, "text", 'left'))) if error_message: items.append(('weight', 1.0, truncated_plain(error_message, "error", 'left'))) if total_size: size, size_style = format_size(total_size) items.append(fcol(fixlen_r(size, 5), size_style)) else: items.append(("fixed", 5, urwid.Text(""))) if duration: duration_pretty, duration_style = format_duration(duration) items.append(fcol(fixlen_r(duration_pretty, 5), duration_style)) else: items.append(("fixed", 5, urwid.Text(""))) items.append(format_right_indicators(replay=False, marked=marked)) return urwid.Pile([ urwid.Columns(items, dividechars=1, min_width=15) ]) @lru_cache(maxsize=800) def format_dns_flow( *, render_mode: RenderMode, focused: bool, intercepted: bool, marked: str, is_replay: typing.Optional[str], op_code: str, request_timestamp: float, domain: str, type: str, response_code: typing.Optional[str], response_code_http_equiv: int, answer: typing.Optional[str], error_message: str, duration: typing.Optional[float], ): items = [] if render_mode in (RenderMode.TABLE, RenderMode.DETAILVIEW): items.append(format_left_indicators(focused=focused, intercepted=intercepted, timestamp=request_timestamp)) else: items.append(fcol(">>" if focused else " ", "focus")) scheme_style = "intercepted" if intercepted else SCHEME_STYLES["dns"] t = f"DNS {op_code}" if render_mode is RenderMode.TABLE: t = fixlen(t, 10) items.append(fcol(t, scheme_style)) items.append(('weight', 0.5, TruncatedText(domain, colorize_host(domain), 'right'))) items.append(fcol("(" + fixlen(type, 5)[:len(type)] + ") =", "text")) items.append(("weight", 1, ( truncated_plain("..." if answer is None else "?" if not answer else answer, "text") if error_message is None else truncated_plain(error_message, "error") ))) status_style = "intercepted" if intercepted else HTTP_RESPONSE_CODE_STYLE.get(response_code_http_equiv // 100, "code_other") items.append(fcol(fixlen("" if response_code is None else response_code, 9), status_style)) if duration: duration_pretty, duration_style = format_duration(duration) items.append(fcol(fixlen_r(duration_pretty, 5), duration_style)) else: items.append(("fixed", 5, urwid.Text(""))) items.append(format_right_indicators( replay=bool(is_replay), marked=marked, )) return urwid.Pile([ urwid.Columns(items, dividechars=1, min_width=15) ]) def format_flow( f: flow.Flow, *, render_mode: RenderMode, hostheader: bool = False, # pass options directly if we need more stuff from them focused: bool = True, ) -> urwid.Widget: """ This functions calls the proper renderer depending on the flow type. We also want to cache the renderer output, so we extract all attributes relevant for display and call the render with only that. This assures that rows are updated if the flow is changed. """ duration: typing.Optional[float] error_message: typing.Optional[str] if f.error: error_message = f.error.msg else: error_message = None if isinstance(f, TCPFlow): total_size = 0 for message in f.messages: total_size += len(message.content) if f.messages: duration = f.messages[-1].timestamp - f.client_conn.timestamp_start else: duration = None return format_tcp_flow( render_mode=render_mode, focused=focused, timestamp_start=f.client_conn.timestamp_start, marked=f.marked, client_address=f.client_conn.peername, server_address=f.server_conn.address, total_size=total_size, duration=duration, error_message=error_message, ) elif isinstance(f, DNSFlow): if f.response: duration = f.response.timestamp - f.request.timestamp response_code_str: typing.Optional[str] = dns.response_codes.to_str(f.response.response_code) response_code_http_equiv = dns.response_codes.http_equiv_status_code(f.response.response_code) answer = ", ".join(str(x) for x in f.response.answers) else: duration = None response_code_str = None response_code_http_equiv = 0 answer = None return format_dns_flow( render_mode=render_mode, focused=focused, intercepted=f.intercepted, marked=f.marked, is_replay=f.is_replay, op_code=dns.op_codes.to_str(f.request.op_code), request_timestamp=f.request.timestamp, domain=f.request.questions[0].name if f.request.questions else "", type=dns.types.to_str(f.request.questions[0].type) if f.request.questions else "", response_code=response_code_str, response_code_http_equiv=response_code_http_equiv, answer=answer, error_message=error_message, duration=duration, ) elif isinstance(f, HTTPFlow): intercepted = f.intercepted response_content_length: typing.Optional[int] if f.response: if f.response.raw_content is not None: response_content_length = len(f.response.raw_content) else: response_content_length = None response_code: typing.Optional[int] = f.response.status_code response_reason: typing.Optional[str] = f.response.reason response_content_type = f.response.headers.get("content-type") if f.response.timestamp_end: duration = max([f.response.timestamp_end - f.request.timestamp_start, 0]) else: duration = None else: response_content_length = None response_code = None response_reason = None response_content_type = None duration = None scheme = f.request.scheme if f.websocket is not None: if scheme == "https": scheme = "wss" elif scheme == "http": scheme = "ws" if render_mode in (RenderMode.LIST, RenderMode.DETAILVIEW): render_func = format_http_flow_list else: render_func = format_http_flow_table return render_func( render_mode=render_mode, focused=focused, marked=f.marked, is_replay=f.is_replay, request_method=f.request.method, request_scheme=scheme, request_host=f.request.pretty_host if hostheader else f.request.host, request_path=f.request.path, request_url=f.request.pretty_url if hostheader else f.request.url, request_http_version=f.request.http_version, request_timestamp=f.request.timestamp_start, request_is_push_promise='h2-pushed-stream' in f.metadata, intercepted=intercepted, response_code=response_code, response_reason=response_reason, response_content_length=response_content_length, response_content_type=response_content_type, duration=duration, error_message=error_message, ) else: raise NotImplementedError()
py
1a3006a452cdbbb51f2df48ae8cc8d6376c541f9
""" anime.py contains the base classes required for other anime classes. """ import os import logging import copy import importlib from anime_downloader.sites.exceptions import AnimeDLError, NotFoundError from anime_downloader import util from anime_downloader.config import Config from anime_downloader.extractors import get_extractor from anime_downloader.downloader import get_downloader logger = logging.getLogger(__name__) class Anime: """ Base class for all anime classes. Parameters ---------- url: string URL of the anime. quality: One of ['360p', '480p', '720p', '1080p'] Quality of episodes fallback_qualities: list The order of fallback. Attributes ---------- sitename: str name of the site title: str Title of the anime meta: dict metadata about the anime. [Can be empty] QUALITIES: list Possible qualities for the site """ sitename = '' title = '' meta = dict() subclasses = {} QUALITIES = ['360p', '480p', '720p', '1080p'] @classmethod def search(cls, query): """ Search searches for the anime using the query given. Parameters ---------- query: str query is the query keyword to be searched. Returns ------- list List of :py:class:`~anime_downloader.sites.anime.SearchResult` """ return def __init__(self, url=None, quality='720p', fallback_qualities=None, _skip_online_data=False): self.url = url if fallback_qualities is None: fallback_qualities = ['720p', '480p', '360p'] self._fallback_qualities = [ q for q in fallback_qualities if q in self.QUALITIES] if quality in self.QUALITIES: self.quality = quality else: raise AnimeDLError( 'Quality {0} not found in {1}'.format(quality, self.QUALITIES)) if not _skip_online_data: logger.info('Extracting episode info from page') self._episode_urls = self.get_data() self._len = len(self._episode_urls) @classmethod def verify_url(cls, url): if cls.sitename in url: return True return False @property def config(self): return Config['siteconfig'][self.sitename] def __init_subclass__(cls, sitename, **kwargs): super().__init_subclass__(**kwargs) cls.subclasses[sitename] = cls @classmethod def factory(cls, sitename: str): """ factory returns the appropriate subclass for the given site name. Parameters ---------- sitename: str sitename is the name of the site Returns ------- subclass of :py:class:`Anime` Sub class of :py:class:`Anime` """ return cls.subclasses[sitename] @classmethod def new_anime(cls, sitename: str): """ new_anime is a factory which returns the anime class corresposing to `sitename` Returns ------- subclass of Anime """ module = importlib.import_module( 'anime_downloader.sites.{}'.format(sitename) ) for c in dir(module): if issubclass(c, cls): return c raise ImportError("Cannot find subclass of {}".format(cls)) def get_data(self): """ get_data is called inside the :code:`__init__` of :py:class:`~anime_downloader.sites.anime.BaseAnime`. It is used to get the necessary data about the anime and it's episodes. This function calls :py:class:`~anime_downloader.sites.anime.BaseAnime._scarpe_episodes` and :py:class:`~anime_downloader.sites.anime.BaseAnime._scrape_metadata` TODO: Refactor this so that classes which need not be soupified don't have to overload this function. Returns ------- list A list of tuples of episodes containing episode name and episode url. Ex:: [('1', 'https://9anime.is/.../...', ...)] """ self._episode_urls = [] try: self._scrape_metadata() except Exception as e: logger.debug('Metadata scraping error: {}'.format(e)) self._episode_urls = self._scrape_episodes() self._len = len(self._episode_urls) logger.debug('EPISODE IDS: length: {}, ids: {}'.format( self._len, self._episode_urls)) if not isinstance(self._episode_urls[0], tuple): self._episode_urls = [(no+1, id) for no, id in enumerate(self._episode_urls)] return self._episode_urls def __getitem__(self, index): episode_class = AnimeEpisode.subclasses[self.sitename] if isinstance(index, int): try: ep_id = self._episode_urls[index] except IndexError as e: raise RuntimeError("No episode found with index") from e return episode_class(ep_id[1], parent=self, ep_no=ep_id[0]) elif isinstance(index, slice): anime = copy.deepcopy(self) try: anime._episode_urls = anime._episode_urls[index] except IndexError as e: raise RuntimeError("No episode found with index") from e return anime return None def __iter__(self): episode_class = AnimeEpisode.subclasses[self.sitename] for ep_id in self._episode_urls: yield episode_class(ep_id[1], parent=self, ep_no=ep_id[0]) def __repr__(self): return ''' Site: {name} Anime: {title} Episode count: {length} '''.format(name=self.sitename, title=self.title, length=len(self)) def __len__(self): return self._len def __str__(self): return self.title def _scarpe_episodes(self): """ _scarpe_episodes is function which has to be overridden by the base classes to scrape the episode urls from the web page. Parameters ---------- soup: `bs4.BeautifulSoup` soup is the html of the anime url after passing through BeautifulSoup. Returns ------- :code:`list` of :code:`str` A list of episode urls. """ return def _scrape_metadata(self): """ _scrape_metadata is function which has to be overridden by the base classes to scrape the metadata of anime from the web page. Parameters ---------- soup: :py:class:`bs4.BeautifulSoup` soup is the html of the anime url after passing through BeautifulSoup. """ return class AnimeEpisode: """ Base class for all Episode classes. Parameters ---------- url: string URL of the episode. quality: One of ['360p', '480p', '720p', '1080p'] Quality of episode fallback_qualities: list The order of fallback. Attributes ---------- sitename: str name of the site title: str Title of the anime meta: dict metadata about the anime. [Can be empty] ep_no: string Episode number/title of the episode pretty_title: string Pretty title of episode in format <animename>-<ep_no> """ QUALITIES = [] title = '' stream_url = '' subclasses = {} def __init__(self, url, parent: Anime = None, ep_no=None): self.ep_no = ep_no self.url = url self.quality = parent.quality self.QUALITIES = parent.QUALITIES self._parent = parent self._sources = None self.pretty_title = '{}-{}'.format(self._parent.title, self.ep_no) logger.debug("Extracting stream info of id: {}".format(self.url)) def try_data(): self.get_data() # Just to verify the source is acquired self.source().stream_url try: try_data() except NotFoundError: # Issue #28 qualities = copy.copy(self._parent._fallback_qualities) try: qualities.remove(self.quality) except ValueError: pass for quality in qualities: logger.warning('Quality {} not found. Trying {}.'.format( self.quality, quality)) self.quality = quality try: try_data() return except NotFoundError: pass logger.warning(f'Skipping episode: {self.ep_no}') def __init_subclass__(cls, sitename: str, **kwargs): super().__init_subclass__(**kwargs) cls.subclasses[sitename] = cls cls.sitename = sitename @classmethod def factory(cls, sitename: str): return cls.subclasses[sitename] @property def config(self): return Config['siteconfig'][self.sitename] def source(self, index=0): """ Get the source for episode Returns ------- `anime_downloader.extractors.base_extractor.BaseExtractor` Extractor depending on the source. """ if not self._sources: self.get_data() try: sitename, url = self._sources[index] except TypeError: return self._sources[index] except IndexError: raise NotFoundError("No episode sources found.") ext = get_extractor(sitename)(url, quality=self.quality) self._sources[index] = ext return ext def get_data(self): self._sources = self._get_sources() logger.debug('Sources : {}'.format(self._sources)) def _get_sources(self): raise NotImplementedError def sort_sources(self, data): """ Formatted data should look something like this [ {'extractor': 'mp4upload', 'url': 'https://twist.moe/mp4upload/...', 'server': 'mp4upload', 'version': 'subbed'}, {'extractor': 'vidstream', 'url': 'https://twist.moe/vidstream/...', 'server': 'vidstream', 'version': 'dubbed'}, {'extractor': 'no_extractor', 'url': 'https://twist.moe/anime/...', 'server': 'default', 'version': 'subbed'} ] extractor = the extractor the link should be passed to url = url to be passed to the extractor server = the server name used in config version = subbed/dubbed The config should consist of a list with servers in preferred order and a preferred language, eg "servers":["vidstream","default","mp4upload"], "version":"subbed" Using the example above, this function will return: [('no_extractor', 'https://twist.moe/anime/...')] as it prioritizes preferred language over preferred server """ version = self.config.get('version','subbed') #TODO add a flag for this servers = self.config.get('servers',['']) logger.debug('Data : {}'.format(data)) #Sorts the dicts by preferred server in config sorted_by_server = sorted(data, key=lambda x: servers.index(x['server']) if x['server'] in servers else len(data)) #Sorts the above by preferred language #resulting in a list with the dicts sorted by language and server #with language being prioritized over server sorted_by_lang = list(sorted(sorted_by_server, key=lambda x: x['version'] == version, reverse=True)) logger.debug('Sorted sources : {}'.format(sorted_by_lang)) return '' if not sorted_by_lang else [(sorted_by_lang[0]['extractor'],sorted_by_lang[0]['url'])] def download(self, force=False, path=None, format='{anime_title}_{ep_no}', range_size=None): """ Downloads episode. This might be removed in a future release. Parameters ---------- force: bool Whether to force download or not. path: string Path to the directory/file where the file should be downloaded to. format: string The format of the filename if not provided. """ # TODO: Remove this shit logger.info('Downloading {}'.format(self.pretty_title)) if format: file_name = util.format_filename(format, self)+'.mp4' if path is None: path = './' + file_name if path.endswith('.mp4'): path = path else: path = os.path.join(path, file_name) Downloader = get_downloader('http') downloader = Downloader(self.source(), path, force, range_size=range_size) downloader.download() class SearchResult: """ SearchResult class holds the search result of a search done by an Anime class Parameters ---------- title: str Title of the anime. url: str URL of the anime poster: str URL for the poster of the anime. meta: dict Additional metadata regarding the anime. Attributes ---------- title: str Title of the anime. url: str URL of the anime poster: str URL for the poster of the anime. meta: dict Additional metadata regarding the anime. meta_info: dict Metadata regarding the anime. Not shown in the results, used to match with MAL """ def __init__(self, title, url, poster='', meta='', meta_info={}): self.title = title self.url = url self.poster = poster self.meta = meta self.meta_info = meta_info def __repr__(self): return '<SearchResult Title: {} URL: {}>'.format(self.title, self.url) def __str__(self): return self.title @property def pretty_metadata(self): """ pretty_metadata is the prettified version of metadata """ if self.meta: return ' | '.join(val for _, val in self.meta.items()) return ''
py
1a30072634fc39f2566f9e3473f156264b3066c5
import sys from fastapi import FastAPI, Request from .exceptions import CustomHTTPException from .routers import oauth, webhooks if sys.version_info[1] < 7: from backports.datetime_fromisoformat import MonkeyPatch MonkeyPatch.patch_fromisoformat() app = FastAPI() @app.exception_handler(CustomHTTPException) def custom_http_exception_handler(request: Request, exc: CustomHTTPException): return exc.response app.include_router(oauth.router) app.include_router(webhooks.router)
py
1a3007316afbaf0d3b0079fa8d10af149bcb31c9
#Copyright ReportLab Europe Ltd. 2000-2017 #see license.txt for license details #history https://hg.reportlab.com/hg-public/reportlab/log/tip/tools/pythonpoint/styles/__init__.py
py
1a30089d53a86042c21b7f2f23c1e8e4be3f6cb1
# -*- coding: utf-8 -*- """ Fuel inventory library (UOX) Script to run computations. It will produce a set of folders and outputfiles and a csv file storing linking the output file paths to the BU, CT, IE values. zsolt elter 2019 """ import numpy as np import os import math #import pandas as pd #from PDfunctions import * def fuelinput(wp): """ function to calculate the weight percentage of MOX nuclides formulae from http://holbert.faculty.asu.edu/eee460/NumberDensity.pdf Parameters ---------- wp : float Plutonium content in percentage Returns ------- fuelstr : str Serpent formatted material composition Notes ----- 1, Right now the temperature is hard coded (ie ZAID ends with '.15c'), this can be modified. 2, Right now the density of fuel is hard coded, this can be modified 3, The fuel string includes Cf nuclides with 0.0w%. This is to force Serpent2 to include these nuclides. The reason to include them because they might be relevant in subsequent neutron coincidence based calculations. """ u=1000*1.660539040e-27 #g NA=6.0221409e23 ##/mol M={'U235': 235.0439299*u*NA, 'U234': 234.0409521*u*NA, 'U238': 238.05078826*u*NA, 'Pu238': 238.0495599*u*NA, 'Pu239': 239.0521634*u*NA, 'Pu240': 240.0538135*u*NA, 'Pu241': 241.0568515*u*NA, 'Pu242': 242.0587426*u*NA} Puvec={'Pu238':2.5/100,'Pu239':54.7/100,'Pu240':26.1/100,'Pu241':9.5/100,'Pu242':7.2/100} Uvec={'U234':0.0012/100,'U235':0.25/100,'U238':99.7488/100} #czsolti 0.00119 rounded to get 1 MO16= 15.99491461956*u*NA rhoMOX=10.5 #g/cm3 czsolti this density falls out from the equations wp=wp/100 MU=1/sum([Uvec[iso]/M[iso] for iso in Uvec]) MPu=1/sum([Puvec[iso]/M[iso] for iso in Puvec]) MHM=(1-wp)*MU+wp*MPu MMOX=MHM+2*MO16 rhoHM=rhoMOX*(MHM/MMOX) rhoO=rhoMOX*(MO16/MMOX) MVOL={} for iso in Uvec: MVOL[iso] = (1-wp)*Uvec[iso]*rhoHM for iso in Puvec: MVOL[iso] = wp*Puvec[iso]*rhoHM M_O16=(rhoO*2) M_TOT=sum(MVOL.values())+M_O16 fuelstr='mat MOX -10.5 burn 1' fuelstr=fuelstr+'\n 92234.15c -%.8f'%(MVOL['U234']/M_TOT) fuelstr=fuelstr+'\n 92235.15c -%.8f'%(MVOL['U235']/M_TOT) fuelstr=fuelstr+'\n 92238.15c -%.8f'%(MVOL['U238']/M_TOT) fuelstr=fuelstr+'\n 94238.15c -%.8f'%(MVOL['Pu238']/M_TOT) fuelstr=fuelstr+'\n 94239.15c -%.8f'%(MVOL['Pu239']/M_TOT) fuelstr=fuelstr+'\n 94240.15c -%.8f'%(MVOL['Pu240']/M_TOT) fuelstr=fuelstr+'\n 94241.15c -%.8f'%(MVOL['Pu241']/M_TOT) fuelstr=fuelstr+'\n 94242.15c -%.8f'%(MVOL['Pu242']/M_TOT) fuelstr=fuelstr+'\n 8016.15c -%.8f'%(M_O16/M_TOT) fuelstr=fuelstr+'\n 98249.15c -0.0' fuelstr=fuelstr+'\n 98250.15c -0.0' fuelstr=fuelstr+'\n 98251.15c -0.0' fuelstr=fuelstr+'\n 98252.15c -0.0' fuelstr=fuelstr+'\n 98253.15c -0.0' fuelstr=fuelstr+'\n 98254.15c -0.0' return fuelstr ### SCRIPT to run ###Init array for CTs-> can be modified if other CT values are preferred. CT=0 CTs=[0] decstep=[] while CT<70*365: if CT<10*365: decstep.append(91.25) CT=CT+91.25 CTs.append(CT) elif CT<40*365: decstep.append(2*91.25) CT=CT+2*91.25 CTs.append(CT) else: decstep.append(4*91.25) CT=CT+4*91.25 CTs.append(CT) #csv header csvstr=',BU,CT,IE,fuelType,reactorType,serpent\n' #path to be updated path=os.getcwd()+'/' dataFrame='fuellog_strategicPWR_MOX.csv' inputFileRun = open(dataFrame,'a') inputFileRun.write(csvstr) inputFileRun.close() inputFileBU = open('MOX_manyBU') inputFileBURefStr = inputFileBU.read() inputFileBU.close() inputFileCT = open('MOX_manyCT') inputFileCTRefStr = inputFileCT.read() inputFileCT.close() IE=np.linspace(4,10,31) idfuel=0 for ie in IE: fstr=fuelinput(ie) inputFileBUStr = inputFileBURefStr inputFileBUStr = inputFileBUStr.replace('fuelstr', fstr) sfile='sPWR_MOX_IE_%d'%(ie*10) os.chdir(path+'serpent_files/') os.system('mkdir IE%d'%(ie*10)) os.chdir(path+'serpent_files/IE%d/'%(ie*10)) inputFileRun = open(sfile,'w') inputFileRun.write(inputFileBUStr) inputFileRun.close() #pathV=path+'serpent_filesPWR_BIC/' #os.system('ssh '+node+' "nice sss2 '+pathV+sfile+' -omp 64"') os.system('nice sss2 '+sfile+' -omp 64') bu=5.0 for bui in range(10,147): #5-70 MWd/kgU if bui not in [0,21,42,63,84,105,126]:#downtime os.chdir(path+'serpent_files/IE%d/'%(ie*10)) spentmat = open(sfile+'.bumat'+str(bui)).read() spentmat=spentmat.replace('MOXp1r1','MOX') spentmat=spentmat.replace('\n 1001.15c',' burn 1\n 1001.15c') inputFileCTStr = inputFileCTRefStr inputFileCTStr = inputFileCTStr.replace('matstr', spentmat) sfilect='sPWR_MOX_IE_%d_BU_%d'%(ie*10,bu*10) os.system('mkdir BU%d'%(bu*10)) os.chdir(path+'serpent_files/IE%d/BU%d/'%(ie*10,bu*10)) inputFileRun = open(sfilect,'w') inputFileRun.write(inputFileCTStr) inputFileRun.close() os.system('nice sss2 '+sfilect+' -omp 64') for cti in range(131): filepath=path+'serpent_files/IE%d/BU%d/'%(ie*10,bu*10)+sfilect+'.bumat'+str(cti) csvstr='%d,%.2f,%.2f,%.2f,MOX,PWR,%s\n'%(idfuel,bu,CTs[cti],ie,filepath) idfuel=idfuel+1 os.chdir(path) inputFileRun = open(dataFrame,'a') inputFileRun.write(csvstr) inputFileRun.close() bu=bu+0.5
py
1a3008c9e3f698609041dc42ffb29cb03f4606e6
from supervisor.supervisord import SupervisorStates from supervisor.xmlrpc import Faults from supervisor.xmlrpc import RPCError API_VERSION = '0.2' class CacheNamespaceRPCInterface: """ A Supervisor RPC interface that provides the ability to cache abritrary data in the Supervisor instance as key/value pairs. """ def __init__(self, supervisord): self.supervisord = supervisord self.cache = {} def _update(self, text): self.update_text = text # for unit tests, mainly state = self.supervisord.get_state() if state == SupervisorStates.SHUTDOWN: raise RPCError(Faults.SHUTDOWN_STATE) # XXX fatal state # RPC API methods def getAPIVersion(self): """ Return the version of the RPC API used by supervisor_cache @return string version """ self._update('getAPIVersion') return API_VERSION def getKeys(self): """ Return keys for all data stored in the cache @return array An array of strings representing cache keys """ self._update('getKeys') return sorted(self.cache.keys()) def getCount(self): """ Return a count of all items in the cache @return integer Count of items """ self._update('getCount') return len(self.cache) def store(self, key, data): """ Store a string value in the cache, referenced by 'key' @param string key A string to use as a cache key @param string data A string for cache value @return boolean Always true unless error """ self._update('store') self._validateKey(key) # XMLRPC can handle non-string values #if not isinstance(data, str): # why = 'Cache data must be a string' # raise RPCError(Faults.INCORRECT_PARAMETERS, why) self.cache[key] = data return True def fetch(self, key): """ Retrieve data from cache stored under 'key' @param string key The cache key @return string Cache data stored at key """ self._update('fetch') self._validateKey(key) data = self.cache.get(key) if data is None: raise RPCError(Faults.BAD_NAME) return data def delete(self, key): """ Delete data stored in cache under 'key' @param string key The key to delete from the cache @return boolean Always true unless error. """ self._update('delete') self._validateKey(key) if key in self.cache: del self.cache[key] return True def clear(self): """ Clear the cache @return boolean Always true unless error. """ self._update('clear') self.cache.clear() return True def _validateKey(self, key): """ validate 'key' is suitable for a cache key name """ if not isinstance(key, str) or (key == ''): why = 'Cache key must be a non-empty string' raise RPCError(Faults.BAD_NAME, why) def make_cache_rpcinterface(supervisord, **config): return CacheNamespaceRPCInterface(supervisord)
py
1a30099984527719ff6921cc308643f970eddd4e
from tensorflow.keras import layers, models, datasets, optimizers import numpy as np def neural_network_spatial(): input_ = layers.Input(shape=(32,32,3)) cnn = layers.Conv2D(16, (3,3), activation="relu") (input_) cnn = layers.SpatialDropout2D(0.2) (cnn) cnn = layers.MaxPooling2D() (cnn) cnn = layers.Conv2D(32, (3,3), activation="relu") (cnn) cnn = layers.SpatialDropout2D(0.5) (cnn) cnn = layers.MaxPooling2D() (cnn) flatten = layers.GlobalMaxPooling2D() (cnn) dense = layers.Dense(32, activation="relu") (flatten) dense = layers.Dropout(0.5) (dense) dense = layers.Dense(16, activation="relu") (dense) output = layers.Dense(10, activation="softmax") (dense) opt = optimizers.Adam() m= models.Model(input_, output) m.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) return m model = neural_network_spatial() # get model print(model.summary())
py
1a3009b35f5b8355caff0b51ec67834425032174
import coloredlogs import logging import os logging.basicConfig( filename="plex_doctor.log", level=logging.DEBUG, format='%(levelname)s: "%(asctime)s - %(message)s', ) log = logging.getLogger("PLEX-DOCTOR") log.setLevel(logging.DEBUG) LOGLEVEL = os.environ.get("LOGLEVEL", "INFO").upper() stream_handler = logging.StreamHandler() stream_handler.setFormatter( logging.Formatter('%(levelname)s: "%(asctime)s - %(message)s') ) log.addHandler(stream_handler) coloredlogs.install(LOGLEVEL, logger=log)
py
1a300a2a94c36098cc627f24f1e9f76a0c5cef6a
#!/usr/bin/env python """VHDL generation of unary operators""" import common __author__ = "Jon Dawson" __copyright__ = "Copyright 2010, Jonathan P Dawson" __license__ = "MIT" __version__ = "0.1.3" __maintainer__ = "Jon Dawson" __email__ = "[email protected]" __status__ = "Prototype" def write(stream): identifier = stream.get_identifier() bits = stream.get_bits() identifier_a = stream.a.get_identifier() constant = stream.constant expressions = { 'srn' : "STREAM_{0} <= SR( STREAM_{1}, {2})", 'sln' : "STREAM_{0} <= SL( STREAM_{1}, {2})", 'abs' : "STREAM_{0} <= ABSOLUTE(STREAM_{1})", 'invert' : "STREAM_{0} <= not STREAM_{1}", 'not' : "STREAM_{0} <= LNOT(STREAM_{1})", } expression = expressions[stream.function].format(identifier, identifier_a, common.binary(constant, bits)) expression = " {0};".format(expression) ports = [ ] declarations = [ " signal STATE_{0} : BINARY_STATE_TYPE;".format(identifier), " signal STREAM_{0} : std_logic_vector({1} downto 0);".format(identifier, bits - 1), " signal STREAM_{0}_STB : std_logic;".format(identifier), " signal STREAM_{0}_ACK : std_logic;".format(identifier), "", ] definitions = [ " --file: {0}, line: {1}".format(stream.filename, stream.lineno), " --STREAM {0} Unary({1}, {2}, '{3}')".format(identifier, identifier_a, constant, stream.function), " process", " begin", " wait until rising_edge(CLK);", " case STATE_{0} is".format(identifier), " when BINARY_INPUT =>", " if STREAM_{0}_STB = '1' then".format(identifier_a), " STREAM_{0}_ACK <= '1';".format(identifier_a), expression, " STREAM_{0}_STB <= '1';".format(identifier), " STATE_{0} <= BINARY_OUTPUT;".format(identifier), " end if;", " when BINARY_OUTPUT =>", " STREAM_{0}_ACK <= '0';".format(identifier_a), " if STREAM_{0}_ACK = '1' then".format(identifier), " STREAM_{0}_STB <= '0';".format(identifier), " STATE_{0} <= BINARY_INPUT;".format(identifier), " end if;", " end case;", " if RST = '1' then", " STREAM_{0}_STB <= '0';".format(identifier), " STREAM_{0}_ACK <= '0';".format(identifier_a), " STATE_{0} <= BINARY_INPUT;".format(identifier), " end if;", " end process;", "", ] return ports, declarations, definitions
py
1a300c2dc35aa09e1cd804c7e387dc31876d8779
from arm.logicnode.arm_nodes import * class OnContactArrayNode(ArmLogicTreeNode): """Activates the output when the given rigid body make contact with other given rigid bodies.""" bl_idname = 'LNOnContactArrayNode' bl_label = 'On Contact Array' arm_section = 'contact' arm_version = 1 property0: EnumProperty( items = [('begin', 'Begin', 'The contact between the rigid bodies begins'), ('overlap', 'Overlap', 'The contact between the rigid bodies is happening'), ('end', 'End', 'The contact between the rigid bodies ends')], name='', default='begin') def init(self, context): super(OnContactArrayNode, self).init(context) self.add_input('ArmNodeSocketObject', 'RB') self.add_input('ArmNodeSocketArray', 'RBs') self.add_output('ArmNodeSocketAction', 'Out') def draw_buttons(self, context, layout): layout.prop(self, 'property0')
py
1a300c6d0dabf14e31123f23b2e574db609135a8
#!/usr/bin/env python from load import ROOT as R from gna.unittest import * from gna.env import env import gna.constructors as C import numpy as N from gna import context import gna.bindings.arrayview @floatcopy(globals(), True) def test_vararray_preallocated_v01(function_name): ns = env.globalns(function_name) names = [ 'zero', 'one', 'two', 'three', 'four', 'five' ] values = N.arange(len(names), dtype=context.current_precision_short()) variables = R.vector('variable<%s>'%context.current_precision())() with context.allocator(100) as allocator: for name, value in zip(names, values): par = ns.defparameter(name, central=value, relsigma=0.1) variables.push_back(par.getVariable()) with ns: vsum = C.VarSum(names, 'sum', ns=ns) vsum_var=ns['sum'].get() variables.push_back(vsum_var.getVariable()) vprod = C.VarProduct(names, 'product', ns=ns) vprod_var=ns['product'].get() variables.push_back(vprod_var.getVariable()) va = C.VarArrayPreallocated(variables) pool=allocator.view() res=va.vararray.points.data() values_all = N.zeros(shape=values.size+2, dtype=values.dtype) values_all[:-2]=values values_all[-2]=values_all[:-2].sum() values_all[-1]=values_all[:-2].prod() print('Python array:', values_all) print('VarArray (preallocated):', res) print('Pool:', pool) assert (values_all==res).all() assert (values_all==pool).all() assert (res==pool).all() for i, (val, name) in enumerate(enumerate(names, 2)): ns[name].set(val) values_all[i]=val values_all[-2]=values_all[:-2].sum() values_all[-1]=values_all[:-2].prod() res=va.vararray.points.data() print('Iteration', i) print(' Python array:', values_all) print(' VarArray (preallocated):', res) assert (values_all==res).all() assert (values_all==pool).all() assert (res==pool).all() if __name__ == '__main__': run_unittests(globals())
py
1a300ce0d6ee0b9f711e5b7905619ea8718207cf
import json import datetime from pyld import jsonld from core.testing import DatabaseTest from core.util.datetime_helpers import utc_now from .test_controller import ControllerTest from core.model import ( Annotation, create, ) from api.annotations import ( AnnotationWriter, AnnotationParser, ) from api.problem_details import * class AnnotationTest(DatabaseTest): def _patron(self): """Create a test patron who has opted in to annotation sync.""" patron = super(AnnotationTest, self)._patron() patron.synchronize_annotations = True return patron class TestAnnotationWriter(AnnotationTest, ControllerTest): def test_annotations_for(self): patron = self._patron() # The patron doesn't have any annotations yet. assert [] == AnnotationWriter.annotations_for(patron) identifier = self._identifier() annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, ) # The patron has one annotation. assert [annotation] == AnnotationWriter.annotations_for(patron) assert [annotation] == AnnotationWriter.annotations_for(patron, identifier) identifier2 = self._identifier() annotation2, ignore = create( self._db, Annotation, patron=patron, identifier=identifier2, motivation=Annotation.IDLING, ) # The patron has two annotations for different identifiers. assert set([annotation, annotation2]) == set(AnnotationWriter.annotations_for(patron)) assert [annotation] == AnnotationWriter.annotations_for(patron, identifier) assert [annotation2] == AnnotationWriter.annotations_for(patron, identifier2) def test_annotation_container_for(self): patron = self._patron() with self.app.test_request_context("/"): container, timestamp = AnnotationWriter.annotation_container_for(patron) assert (set([AnnotationWriter.JSONLD_CONTEXT, AnnotationWriter.LDP_CONTEXT]) == set(container['@context'])) assert "annotations" in container["id"] assert set(["BasicContainer", "AnnotationCollection"]) == set(container["type"]) assert 0 == container["total"] first_page = container["first"] assert "AnnotationPage" == first_page["type"] # The page doesn't have a context, since it's in the container. assert None == first_page.get('@context') # The patron doesn't have any annotations yet. assert 0 == container['total'] # There's no timestamp since the container is empty. assert None == timestamp # Now, add an annotation. identifier = self._identifier() annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, ) annotation.timestamp = utc_now() container, timestamp = AnnotationWriter.annotation_container_for(patron) # The context, type, and id stay the same. assert (set([AnnotationWriter.JSONLD_CONTEXT, AnnotationWriter.LDP_CONTEXT]) == set(container['@context'])) assert "annotations" in container["id"] assert identifier.identifier not in container["id"] assert set(["BasicContainer", "AnnotationCollection"]) == set(container["type"]) # But now there is one item. assert 1 == container['total'] first_page = container["first"] assert 1 == len(first_page['items']) # The item doesn't have a context, since it's in the container. first_item = first_page['items'][0] assert None == first_item.get('@context') # The timestamp is the annotation's timestamp. assert annotation.timestamp == timestamp # If the annotation is deleted, the container will be empty again. annotation.active = False container, timestamp = AnnotationWriter.annotation_container_for(patron) assert 0 == container['total'] assert None == timestamp def test_annotation_container_for_with_identifier(self): patron = self._patron() identifier = self._identifier() with self.app.test_request_context("/"): container, timestamp = AnnotationWriter.annotation_container_for(patron, identifier) assert (set([AnnotationWriter.JSONLD_CONTEXT, AnnotationWriter.LDP_CONTEXT]) == set(container['@context'])) assert "annotations" in container["id"] assert identifier.identifier in container["id"] assert set(["BasicContainer", "AnnotationCollection"]) == set(container["type"]) assert 0 == container["total"] first_page = container["first"] assert "AnnotationPage" == first_page["type"] # The page doesn't have a context, since it's in the container. assert None == first_page.get('@context') # The patron doesn't have any annotations yet. assert 0 == container['total'] # There's no timestamp since the container is empty. assert None == timestamp # Now, add an annotation for this identifier, and one for a different identifier. annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, ) annotation.timestamp = utc_now() other_annotation, ignore = create( self._db, Annotation, patron=patron, identifier=self._identifier(), motivation=Annotation.IDLING, ) container, timestamp = AnnotationWriter.annotation_container_for(patron, identifier) # The context, type, and id stay the same. assert (set([AnnotationWriter.JSONLD_CONTEXT, AnnotationWriter.LDP_CONTEXT]) == set(container['@context'])) assert "annotations" in container["id"] assert identifier.identifier in container["id"] assert set(["BasicContainer", "AnnotationCollection"]) == set(container["type"]) # But now there is one item. assert 1 == container['total'] first_page = container["first"] assert 1 == len(first_page['items']) # The item doesn't have a context, since it's in the container. first_item = first_page['items'][0] assert None == first_item.get('@context') # The timestamp is the annotation's timestamp. assert annotation.timestamp == timestamp # If the annotation is deleted, the container will be empty again. annotation.active = False container, timestamp = AnnotationWriter.annotation_container_for(patron, identifier) assert 0 == container['total'] assert None == timestamp def test_annotation_page_for(self): patron = self._patron() with self.app.test_request_context("/"): page = AnnotationWriter.annotation_page_for(patron) # The patron doesn't have any annotations, so the page is empty. assert AnnotationWriter.JSONLD_CONTEXT == page['@context'] assert 'annotations' in page['id'] assert 'AnnotationPage' == page['type'] assert 0 == len(page['items']) # If we add an annotation, the page will have an item. identifier = self._identifier() annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, ) page = AnnotationWriter.annotation_page_for(patron) assert 1 == len(page['items']) # But if the annotation is deleted, the page will be empty again. annotation.active = False page = AnnotationWriter.annotation_page_for(patron) assert 0 == len(page['items']) def test_annotation_page_for_with_identifier(self): patron = self._patron() identifier = self._identifier() with self.app.test_request_context("/"): page = AnnotationWriter.annotation_page_for(patron, identifier) # The patron doesn't have any annotations, so the page is empty. assert AnnotationWriter.JSONLD_CONTEXT == page['@context'] assert 'annotations' in page['id'] assert identifier.identifier in page['id'] assert 'AnnotationPage' == page['type'] assert 0 == len(page['items']) # If we add an annotation, the page will have an item. annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, ) page = AnnotationWriter.annotation_page_for(patron, identifier) assert 1 == len(page['items']) # If a different identifier has an annotation, the page will still have one item. other_annotation, ignore = create( self._db, Annotation, patron=patron, identifier=self._identifier(), motivation=Annotation.IDLING, ) page = AnnotationWriter.annotation_page_for(patron, identifier) assert 1 == len(page['items']) # But if the annotation is deleted, the page will be empty again. annotation.active = False page = AnnotationWriter.annotation_page_for(patron, identifier) assert 0 == len(page['items']) def test_detail_target(self): patron = self._patron() identifier = self._identifier() target = { "http://www.w3.org/ns/oa#hasSource": { "@id": identifier.urn }, "http://www.w3.org/ns/oa#hasSelector": { "@type": "http://www.w3.org/ns/oa#FragmentSelector", "http://www.w3.org/1999/02/22-rdf-syntax-ns#value": "epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)" } } annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, target=json.dumps(target), ) with self.app.test_request_context("/"): detail = AnnotationWriter.detail(annotation) assert "annotations/%i" % annotation.id in detail["id"] assert "Annotation" == detail['type'] assert Annotation.IDLING == detail['motivation'] compacted_target = { "source": identifier.urn, "selector": { "type": "FragmentSelector", "value": "epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)" } } assert compacted_target == detail["target"] def test_detail_body(self): patron = self._patron() identifier = self._identifier() body = { "@type": "http://www.w3.org/ns/oa#TextualBody", "http://www.w3.org/ns/oa#bodyValue": "A good description of the topic that bears further investigation", "http://www.w3.org/ns/oa#hasPurpose": { "@id": "http://www.w3.org/ns/oa#describing" } } annotation, ignore = create( self._db, Annotation, patron=patron, identifier=identifier, motivation=Annotation.IDLING, content=json.dumps(body), ) with self.app.test_request_context("/"): detail = AnnotationWriter.detail(annotation) assert "annotations/%i" % annotation.id in detail["id"] assert "Annotation" == detail['type'] assert Annotation.IDLING == detail['motivation'] compacted_body = { "type": "TextualBody", "bodyValue": "A good description of the topic that bears further investigation", "purpose": "describing" } assert compacted_body == detail["body"] class TestAnnotationParser(AnnotationTest): def setup_method(self): super(TestAnnotationParser, self).setup_method() self.pool = self._licensepool(None) self.identifier = self.pool.identifier self.patron = self._patron() def _sample_jsonld(self, motivation=Annotation.IDLING): data = dict() data["@context"] = [AnnotationWriter.JSONLD_CONTEXT, {'ls': Annotation.LS_NAMESPACE}] data["type"] = "Annotation" motivation = motivation.replace(Annotation.LS_NAMESPACE, 'ls:') motivation = motivation.replace(Annotation.OA_NAMESPACE, 'oa:') data["motivation"] = motivation data["body"] = { "type": "TextualBody", "bodyValue": "A good description of the topic that bears further investigation", "purpose": "describing" } data["target"] = { "source": self.identifier.urn, "selector": { "type": "oa:FragmentSelector", "value": "epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)" } } return data def test_parse_invalid_json(self): annotation = AnnotationParser.parse(self._db, "not json", self.patron) assert INVALID_ANNOTATION_FORMAT == annotation def test_invalid_identifier(self): # If the target source can't be parsed as a URN we send # INVALID_ANNOTATION_TARGET data = self._sample_jsonld() data['target']['source'] = 'not a URN' annotation = AnnotationParser.parse( self._db, json.dumps(data), self.patron ) assert INVALID_ANNOTATION_TARGET == annotation def test_null_id(self): # A JSON-LD document can have its @id set to null -- it's the # same as if the @id wasn't present -- but the jsonld library # can't handle this, so we need to test it specially. self.pool.loan_to(self.patron) data = self._sample_jsonld() data['id'] = None annotation = AnnotationParser.parse( self._db, json.dumps(data), self.patron ) assert isinstance(annotation, Annotation) def test_parse_expanded_jsonld(self): self.pool.loan_to(self.patron) data = dict() data['@type'] = ["http://www.w3.org/ns/oa#Annotation"] data["http://www.w3.org/ns/oa#motivatedBy"] = [{ "@id": Annotation.IDLING }] data["http://www.w3.org/ns/oa#hasBody"] = [{ "@type" : ["http://www.w3.org/ns/oa#TextualBody"], "http://www.w3.org/ns/oa#bodyValue": [{ "@value": "A good description of the topic that bears further investigation" }], "http://www.w3.org/ns/oa#hasPurpose": [{ "@id": "http://www.w3.org/ns/oa#describing" }] }] data["http://www.w3.org/ns/oa#hasTarget"] = [{ "http://www.w3.org/ns/oa#hasSelector": [{ "@type": ["http://www.w3.org/ns/oa#FragmentSelector"], "http://www.w3.org/1999/02/22-rdf-syntax-ns#value": [{ "@value": "epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)" }] }], "http://www.w3.org/ns/oa#hasSource": [{ "@id": self.identifier.urn }], }] data_json = json.dumps(data) annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert self.patron.id == annotation.patron_id assert self.identifier.id == annotation.identifier_id assert Annotation.IDLING == annotation.motivation assert True == annotation.active assert json.dumps(data["http://www.w3.org/ns/oa#hasTarget"][0]) == annotation.target assert json.dumps(data["http://www.w3.org/ns/oa#hasBody"][0]) == annotation.content def test_parse_compacted_jsonld(self): self.pool.loan_to(self.patron) data = dict() data["@type"] = "http://www.w3.org/ns/oa#Annotation" data["http://www.w3.org/ns/oa#motivatedBy"] = { "@id": Annotation.IDLING } data["http://www.w3.org/ns/oa#hasBody"] = { "@type": "http://www.w3.org/ns/oa#TextualBody", "http://www.w3.org/ns/oa#bodyValue": "A good description of the topic that bears further investigation", "http://www.w3.org/ns/oa#hasPurpose": { "@id": "http://www.w3.org/ns/oa#describing" } } data["http://www.w3.org/ns/oa#hasTarget"] = { "http://www.w3.org/ns/oa#hasSource": { "@id": self.identifier.urn }, "http://www.w3.org/ns/oa#hasSelector": { "@type": "http://www.w3.org/ns/oa#FragmentSelector", "http://www.w3.org/1999/02/22-rdf-syntax-ns#value": "epubcfi(/6/4[chap01ref]!/4[body01]/10[para05]/3:10)" } } data_json = json.dumps(data) expanded = jsonld.expand(data)[0] annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert self.patron.id == annotation.patron_id assert self.identifier.id == annotation.identifier_id assert Annotation.IDLING == annotation.motivation assert True == annotation.active assert json.dumps(expanded["http://www.w3.org/ns/oa#hasTarget"][0]) == annotation.target assert json.dumps(expanded["http://www.w3.org/ns/oa#hasBody"][0]) == annotation.content def test_parse_jsonld_with_context(self): self.pool.loan_to(self.patron) data = self._sample_jsonld() data_json = json.dumps(data) expanded = jsonld.expand(data)[0] annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert self.patron.id == annotation.patron_id assert self.identifier.id == annotation.identifier_id assert Annotation.IDLING == annotation.motivation assert True == annotation.active assert json.dumps(expanded["http://www.w3.org/ns/oa#hasTarget"][0]) == annotation.target assert json.dumps(expanded["http://www.w3.org/ns/oa#hasBody"][0]) == annotation.content def test_parse_jsonld_with_bookmarking_motivation(self): """You can create multiple bookmarks in a single book.""" self.pool.loan_to(self.patron) data = self._sample_jsonld(motivation=Annotation.BOOKMARKING) data_json = json.dumps(data) annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert Annotation.BOOKMARKING == annotation.motivation # You can't create another bookmark at the exact same location -- # you just get the same annotation again. annotation2 = AnnotationParser.parse(self._db, data_json, self.patron) assert annotation == annotation2 # But unlike with IDLING, you _can_ create multiple bookmarks # for the same identifier, so long as the selector value # (ie. the location within the book) is different. data['target']['selector']['value'] = 'epubcfi(/3/4[chap01ref]!/4[body01]/15[para05]/3:10)' data_json = json.dumps(data) annotation3 = AnnotationParser.parse(self._db, data_json, self.patron) assert annotation3 != annotation assert 2 == len(self.patron.annotations) def test_parse_jsonld_with_invalid_motivation(self): self.pool.loan_to(self.patron) data = self._sample_jsonld() data["motivation"] = "not-a-valid-motivation" data_json = json.dumps(data) annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert INVALID_ANNOTATION_MOTIVATION == annotation def test_parse_jsonld_with_no_loan(self): data = self._sample_jsonld() data_json = json.dumps(data) annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert INVALID_ANNOTATION_TARGET == annotation def test_parse_jsonld_with_no_target(self): data = self._sample_jsonld() del data['target'] data_json = json.dumps(data) annotation = AnnotationParser.parse(self._db, data_json, self.patron) assert INVALID_ANNOTATION_TARGET == annotation def test_parse_updates_existing_annotation(self): self.pool.loan_to(self.patron) original_annotation, ignore = create( self._db, Annotation, patron_id=self.patron.id, identifier_id=self.identifier.id, motivation=Annotation.IDLING, ) original_annotation.active = False yesterday = utc_now() - datetime.timedelta(days=1) original_annotation.timestamp = yesterday data = self._sample_jsonld() data = json.dumps(data) annotation = AnnotationParser.parse(self._db, data, self.patron) assert original_annotation == annotation assert True == annotation.active assert annotation.timestamp > yesterday def test_parse_treats_duplicates_as_interchangeable(self): self.pool.loan_to(self.patron) # Due to an earlier race condition, two duplicate annotations # were put in the database. a1, ignore = create( self._db, Annotation, patron_id=self.patron.id, identifier_id=self.identifier.id, motivation=Annotation.IDLING, ) a2, ignore = create( self._db, Annotation, patron_id=self.patron.id, identifier_id=self.identifier.id, motivation=Annotation.IDLING, ) assert a1 != a2 # Parsing the annotation again retrieves one or the other # of the annotations rather than crashing or creating a third # annotation. data = self._sample_jsonld() data = json.dumps(data) annotation = AnnotationParser.parse(self._db, data, self.patron) assert annotation in (a1, a2) def test_parse_jsonld_with_patron_opt_out(self): self.pool.loan_to(self.patron) data = self._sample_jsonld() data_json = json.dumps(data) self.patron.synchronize_annotations=False annotation = AnnotationParser.parse( self._db, data_json, self.patron ) assert PATRON_NOT_OPTED_IN_TO_ANNOTATION_SYNC == annotation
py
1a300e2fcaaccd53fb1f1b3fc7df607e9426948c
from django.utils import translation class TranslatedField(object): def __init__(self, en_field, es_field): self.en_field = en_field self.es_field = es_field def __get__(self, instance, owner): if translation.get_language() == 'es': return getattr(instance, self.es_field) else: return getattr(instance, self.en_field)
py
1a300e54796c2cac920e94e6eb43542d2c9b4bec
############################################################################## # # Copyright (c) 2019 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ TPC protocol state management. The various states in which a storage instance can find itself during two-phase commit are complicated. This package presents a set of objects that encapsulate various possibilities. In this way we can test independent states...independently, and the state transitions are explicit. """ from __future__ import absolute_import from __future__ import print_function import logging from transaction.interfaces import NoTransaction from transaction._transaction import rm_key from transaction import get as get_thread_local_transaction from perfmetrics import statsd_client from zope.interface import implementer from ZODB.POSException import ReadOnlyError from ZODB.POSException import StorageTransactionError from ..interfaces import ITPCStateNotInTransaction from ..interfaces import ITPCStateDatabaseAvailable from ...adapters.connections import ClosedConnection from ..._util import Lazy as BaseLazy from ..._util import get_boolean_from_environ from .temporary_storage import TemporaryStorage logger = logging.getLogger(__name__) _CLOSED_CONNECTION = ClosedConnection() #: Set the ``RELSTORAGE_LOCK_EARLY`` environment variable if you #: experience deadlocks or failures to commit (``tpc_finish``). This #: will cause the commit lock to be taken as part of ``tpc_vote`` #: (similar to RelStorage 2.x) instead of deferring it until #: ``tpc_finish``. #: #: If this is necessary, this is probably a bug in RelStorage; please report #: it. LOCK_EARLY = get_boolean_from_environ( 'RELSTORAGE_LOCK_EARLY', False, logger=logger, ) class _LazyResource(BaseLazy): # If not None, a callable ``(storage, resource, force)`` # that aborts the *resource*, possibly forcefully (*force*). # The return value will be the new value in the object # instance. abort_function = None # If not None, a callable ``(storage, resource)`` to clean up # any use of the *resource* after success. release_function = None def _stored_value_for_name_in_inst(self, value, name, inst): # type: (Any, str, SharedTPCState) -> None if name == 'store_connection': # Try to do this first inst._used_resources.insert(0, self) else: inst._used_resources.append(self) def aborter(self, func): assert not isinstance(func, _LazyResource) self.abort_function = func return self def releaser(self, func): assert not isinstance(func, _LazyResource) self.release_function = func return self def cleaner(self, func): self.abort_function = self.release_function = func return self class SharedTPCState(object): """ Contains attributes marking resources that *might* be used during the commit process. If any of them are, then the `abort` method takes care of cleaning them up. Accessing a resource implicitly begins it, if needed. """ # pylint:disable=method-hidden prepared_txn = None transaction = None not_in_transaction_state = None read_only = False # Or we wouldn't allocate this object. def __init__(self, initial_state, storage, transaction): self.initial_state = initial_state self._storage = storage self.transaction = transaction self._used_resources = [] @_LazyResource def local_client(self): return self._storage._cache.local_client @_LazyResource def store_connection(self): conn = self._storage._store_connection_pool.borrow() # Report on the connection we will use. # https://github.com/zodb/relstorage/issues/460 logger.info("Using store connection %s", conn) return conn @store_connection.aborter def store_connection(self, storage, store_connection, force): try: adapter = storage._adapter if store_connection: # It's possible that this connection/cursor was # already closed if an error happened (which would # release the locks). Don't try to re-open it. adapter.locker.release_commit_lock(store_connection.cursor) # Though, this might re-open it. adapter.txncontrol.abort( store_connection, self.prepared_txn) if force: store_connection.drop() finally: storage._store_connection_pool.replace(store_connection) return _CLOSED_CONNECTION @store_connection.releaser def store_connection(self, storage, store_connection): storage._store_connection_pool.replace(store_connection) return _CLOSED_CONNECTION @_LazyResource def load_connection(self): return self._storage._load_connection @load_connection.aborter def load_connection(self, _storage, load_connection, force): if force: load_connection.drop() else: load_connection.rollback_quietly() load_connection.exit_critical_phase() return _CLOSED_CONNECTION @load_connection.releaser def load_connection(self, _storage, load_connection): load_connection.rollback_quietly() load_connection.exit_critical_phase() return _CLOSED_CONNECTION @_LazyResource def blobhelper(self): blobhelper = self._storage.blobhelper blobhelper.begin() return blobhelper @blobhelper.aborter def blobhelper(self, _storage, blobhelper, _force): blobhelper.abort() @blobhelper.releaser def blobhelper(self, _storage, blobhelper): blobhelper.clear_temp() def has_blobs(self): # pylint:disable=no-member return ( 'blobhelper' in self.__dict__ and self.blobhelper is not None and self.blobhelper.txn_has_blobs ) @BaseLazy def cache(self): return self._storage._cache @BaseLazy def adapter(self): return self._storage._adapter @_LazyResource def temp_storage(self): return TemporaryStorage() @temp_storage.cleaner def temp_storage(self, _storage, temp_storage, _force=None): temp_storage.close() def has_temp_data(self): return 'temp_storage' in self.__dict__ and self.temp_storage @_LazyResource def _statsd_buf(self): return [] @_statsd_buf.cleaner def _statds_buf(self, _storage, buf, _force=None): client = statsd_client() if client is not None and buf: client.sendbuf(buf) def stat_timing(self, stat, value, rate=1): """ Record a timing value. For compatibility with the default settings of ``perfmetrics``, the stat name should end in ``.t`` The *value* should be a floating point difference of seconds (eg, ``time.time() - time.time()``). This will be converted to an integer number of milliseconds (again for consistency with ``perfmetrics``). """ client = statsd_client() if client is not None: # scale from float seconds to milliseconds value = int(value * 1000.0) client.timing(stat, value, rate, self._statsd_buf) def stat_count(self, stat, value, rate=1): client = statsd_client() if client is not None: client.incr(stat, value, rate, self._statsd_buf) def __cleanup(self, method_name, method_args): storage = self._storage resources = self._used_resources self._used_resources = () # No more opening resources. exceptions = [] for resource in resources: assert resource.__name__ in vars(self) cleaner = getattr(resource, method_name) if not cleaner: setattr(self, resource.__name__, None) continue value = getattr(self, resource.__name__) new_value = None try: new_value = cleaner(self, storage, value, *method_args) except Exception as ex: # pylint:disable=broad-except exceptions.append(ex) setattr(self, resource.__name__, new_value) if exceptions: # pragma: no cover # This usually indicates a bug in RelStorage that should be fixed. raise Exception("Failed to close one or more resources: %s" % (exceptions,)) def abort(self, force=False): self.__cleanup('abort_function', (force,)) def release(self): self.__cleanup('release_function', ()) @implementer(ITPCStateDatabaseAvailable) class AbstractTPCStateDatabaseAvailable(object): __slots__ = ( 'shared_state', ) # - store # - restore/restoreBlob # - deleteObject # - undo # should raise ReadOnlyError if the storage is read only. # - tpc_vote should raise StorageTransactionError # Because entering tpc_begin wasn't allowed if the storage was # read only, this needs to happen in the "not in transaction" # state. def __init__(self, shared_state): self.shared_state = shared_state # type: SharedTPCState @property def transaction(self): return self.shared_state.transaction @property def initial_state(self): return self.shared_state.initial_state @property def store_connection(self): return self.shared_state.store_connection def __repr__(self): result = "<%s at 0x%x stored_count=%s %s" % ( type(self).__name__, id(self), len(getattr(self, 'temp_storage', ()) or ()), self._tpc_state_transaction_data(), ) extra = self._tpc_state_extra_repr_info() for k, v in extra.items(): result += ' %s=%r' % (k, v) result += '>' return result def _tpc_state_extra_repr_info(self): return {} def _tpc_state_transaction_data(self): # Grovels around in the transaction object and tries to find interesting # things to include. # The ZODB Connection passes us an internal TransactionMetaData # object; the real transaction object stores a reference to that in its data, # keyed off the connection. # We may or may not be able to get the real transaction using transaction.get(), # depending on if we are using the global (thread local) transaction manager or not. try: global_tx = get_thread_local_transaction() except NoTransaction: # It's in explicit mode and we're not using it. return "<no global transaction> tx=%r" % (self.transaction,) tx_data = getattr(global_tx, '_data', None) if not tx_data: # No data stored on the transaction (or the implementation changed!) return "<no transaction data> tx=%r" % (self.transaction,) for v in tx_data.values(): if v is self.transaction: # Yes, we found the metadata that ZODB uses, so we are # joined to this transaction. break else: return "<no transaction meta %r> tx=%r" % (tx_data, self.transaction,) resources = sorted(global_tx._resources, key=rm_key) return "transaction=%r resources=%r" % (global_tx, resources) def tpc_finish(self, storage, transaction, f=None, _time=None): # pylint:disable=unused-argument # For the sake of some ZODB tests, we need to implement this everywhere, # even if it's not actually usable, and the first thing it needs to # do is check the transaction. if transaction is not self.transaction: raise StorageTransactionError('tpc_finish called with wrong transaction') raise NotImplementedError("tpc_finish not allowed in this state.") def tpc_begin(self, _storage, transaction): # Ditto as for tpc_finish raise StorageTransactionError('tpc_begin not allowed in this state', type(self)) def tpc_abort(self, transaction, force=False): if not force: if transaction is not self.transaction: return self self.shared_state.abort(force) return self.initial_state def no_longer_stale(self): return self def stale(self, e): return Stale(self, e) def close(self): if self.shared_state is not None: self.tpc_abort(None, True) self.shared_state = None @implementer(ITPCStateNotInTransaction) class NotInTransaction(object): # The default state, when the storage is not attached to a # transaction. __slots__ = ( 'last_committed_tid_int', 'read_only', 'begin_factory', ) transaction = None def __init__(self, begin_factory, read_only, committed_tid_int=0): self.begin_factory = begin_factory self.read_only = read_only self.last_committed_tid_int = committed_tid_int def with_committed_tid_int(self, committed_tid_int): return NotInTransaction( self.begin_factory, self.read_only, committed_tid_int ) def tpc_abort(self, *args, **kwargs): # pylint:disable=arguments-differ,unused-argument,signature-differs # Nothing to do return self def _no_transaction(self, *args, **kwargs): raise StorageTransactionError("No transaction in progress") tpc_finish = tpc_vote = _no_transaction checkCurrentSerialInTransaction = _no_transaction def store(self, *_args, **_kwargs): if self.read_only: raise ReadOnlyError() self._no_transaction() restore = deleteObject = undo = restoreBlob = store def tpc_begin(self, storage, transaction): # XXX: Signature needs to change. if self.read_only: raise ReadOnlyError() if transaction is self.transaction: # Also handles None. raise StorageTransactionError("Duplicate tpc_begin calls for same transaction.") state = SharedTPCState(self, storage, transaction) try: return self.begin_factory(state) except: state.abort() raise @property def initial_state(self): return self # This object appears to be false. def __bool__(self): return False __nonzero__ = __bool__ def close(self): pass @implementer(ITPCStateNotInTransaction) class Stale(object): """ An error that lets us know we are stale was encountered. Just about all accesses to this object result in re-raising that error. """ transaction = None last_committed_tid_int = 0 def __init__(self, previous_state, stale_error): self.previous_state = previous_state self.stale_error = stale_error def _stale(self, *args, **kwargs): raise self.stale_error store = restore = checkCurrentSerialInTransaction = _stale undo = deleteObject = restoreBlob = _stale tpc_begin = tpc_finish = tpc_vote = _stale def tpc_abort(self, *args, **kwargs): return self.previous_state.tpc_abort(*args, **kwargs) @property def initial_state(self): return self.previous_state.initial_state def no_longer_stale(self): return self.previous_state def stale(self, _e): return self def __bool__(self): return False __nonzero__ = __bool__
py
1a300feeb1489d80c5e1aa38555ac20a50c24d8e
from .json_data_provider import *
py
1a3011922de5be60416538f7f831f8861157210d
IGNORED = None ACTION_PENDING = 1 # Bigger than necessary _MAX_VK_KEY = 0x200 _VK_KEY_MASK = 0x1ff _CURRENT_KEY_STATE = [False] * _MAX_VK_KEY _MODIFIERS = set() def on_key_hook(vk_code, is_down, special_modifier_state = None): """ Module-wide storage for the current key state. :param vk_code: :param is_down: :param special_modifier_state: map of vcodes to the up/down state (True == is_down, False == !is_down). This is part of the windows key state / locked desktop work-around. :return: True if it's a recognized key, False if it isn't known. """ if special_modifier_state is not None: for k, v in special_modifier_state.items(): if k != vk_code and k in _MODIFIER_KEYS: if _CURRENT_KEY_STATE[k] != v: print("DEBUG modifier {0} does not match inner state.".format(k)) if k in _MODIFIER_KEYS: if is_down: _MODIFIERS.add(k) else: _MODIFIERS.remove(k) _CURRENT_KEY_STATE[k] = v if 0 <= vk_code <= _MAX_VK_KEY: _CURRENT_KEY_STATE[vk_code] = is_down if vk_code in _MODIFIER_KEYS: if is_down: _MODIFIERS.add(vk_code) else: _MODIFIERS.remove(vk_code) return True return False class KeyOverride(object): """ Captures all key presses. Certain keys map to actions. All keys are simple (straight up keys; modifiers are considered keys). One key per action. """ def __init__(self, key_commands=None): self.__keys = {} if key_commands is not None: self.set_key_actions(key_commands) def set_key_actions(self, actions): assert isinstance(actions, dict) # FIXME use a dict instead # TODO in the future we may allow "shift+left" type keys here. # The implementation in key_action would just check the _MODIFIERS # state. new_key_actions = {} for key, action in actions.items(): assert isinstance(action, list) or isinstance(action, tuple) action = tuple(action) key = key.strip().lower() if key in VK_ALIASES: for k in VK_ALIASES[key]: if k in MODIFIERS: # TODO better error / warning # Note use of user's value "key", rather than internal "k" print("CONFIG ERROR: Simple keys are not allowed to be modifiers: {0}".format(key)) elif k in STR_VK_MAP: # print("DEBUG KeyOverride: assigning {0} = `{1}`".format(hex(STR_VK_MAP[k]), action)) new_key_actions[STR_VK_MAP[k]] = action else: # TODO better error / warning print("ERROR IN SETUP: alias {0} not in vk map".format(k)) elif key in MODIFIERS: # TODO better error / warning print("CONFIG ERROR: Simple keys are not allowed to be modifiers: {0}".format(key)) elif key in STR_VK_MAP: new_key_actions[STR_VK_MAP[key]] = action else: # TODO better error / warning print("CONFIG ERROR: Simple key not a known key: {0}".format(key)) self.__keys = new_key_actions def reset(self): pass def key_action(self, vk_code, is_down): if vk_code in _MODIFIER_KEYS: # Ignore all modifier keys, so the "release" from a mode switch works right. # This ties in with modifiers not allowed as simple keys. return IGNORED if not is_down and vk_code in self.__keys: return self.__keys[vk_code] # Prevent all other keys from working return ACTION_PENDING class HotKeyChain(object): """ Takes a keypress, and manages the state of the keys. It stores a list of key chains to action pairs. There should be one of these per system "mode". """ def __init__(self, chain_commands=None): self.__combos = [] # The modifiers which are down and associated with the active combos self.__active_modifiers = [] # The previous key in the combo chain; we're waiting for it to be off. self.__active_key = None # The active combo chains. Index 0 in each item is the remaining list # of key down actions to look for ([0] meaning the next one). Index 1 # in each item is the command to return. self.__active_combos = [] # Set to True to prevent the OS shell from using the "windows" key. self.block_win_key = False if chain_commands is not None: self.set_key_chains(chain_commands) def set_key_chains(self, chain_commands): assert isinstance(chain_commands, dict) combos = [] for key_chain, command in chain_commands.items(): assert isinstance(command, list) or isinstance(command, tuple) keys = parse_combo_str(key_chain) if len(keys) > 0: # We store modifiers a little differently. # Rather than having a list of lists, which must be # carefully examined, we instead construct the # permutations of the keys, and store each of those as # their own combo. permutation_keys = [] _key_permutations(keys[0], 0, [], permutation_keys) for perm in permutation_keys: # print("DEBUG Combo {0} + {1} => {2}".format(perm, keys[1:], command)) combos.append((perm, keys[1:], tuple(command))) # Change the variable in a single command. self.__combos = combos self.reset() def reset(self): self.__active_combos = [] self.__active_modifiers = [] self.__active_key = None def key_action(self, vk_code, is_down): """ :param is_down: :param vk_code: :return: IGNORED if the key should be passed through, ACTION_PENDING if the key should be blocked from passing to another application, but does not complete an action, or a list of the action to run. """ if _MODIFIERS == self.__active_modifiers: if self.__active_key is None or not _CURRENT_KEY_STATE[self.__active_key]: # The previous key is no longer down. self.__active_key = None next_combos = [] for ac in self.__active_combos: if vk_code in ac[0][0]: ac[0].pop(0) if len(ac[0]) <= 0: # We have our key command = ac[1] self.reset() # print("DEBUG keys generated command {0}".format(command)) return command next_combos.append(ac) if len(next_combos) > 0: self.__active_key = vk_code self.__active_combos = next_combos return ACTION_PENDING elif is_down: # A new key was pressed, which isn't a key in a pending # combo. Reset our hot keys, and return an ignored. self.reset() # else, the previous active key is still down; wait for it # to come up. else: # Discover which combo matches the modifiers. self.reset() new_active = [] for combo in self.__combos: if combo[0] == _MODIFIERS: new_active.append((list(combo[1]), combo[2])) if len(new_active) > 0: self.__active_key = None self.__active_combos = new_active self.__active_modifiers = set(_MODIFIERS) # We still pass on the modifiers to the OS, just in case it's not # a match. if self.block_win_key and vk_code in _WIN_KEYS: return ACTION_PENDING return IGNORED def parse_combo_str(chain_description): """ Special compact form of the string. For each key combo part, we make a "string" of the only VK codes that must be "down" in order to trigger the next part of the chain. The format is "primary + primary + ... + key, key, key, ..." :param chain_description: :return: list of aliased combo lists. So, the return will be [primary, key1, key2, ...], where "primary" are the primary keys that must be pressed through the whole action. Key1 and key2 (and so on) are the keys that must be pressed and released in order (the last key will respond on key down). Each key in the list is itself a list of alternate keys. """ assert isinstance(chain_description, str) key_parts = chain_description.split(",") # Parse the primary first. These are separated by "+". # The last key in the list is the "non-always-down" key, # meaning it's the first in the key chain. primary_list = [] primary_keys = key_parts[0].split("+") secondary_keys = [primary_keys[-1]] secondary_keys.extend(key_parts[1:]) for key_text in primary_keys[:-1]: primary_key = [] key_text = key_text.strip().lower() if key_text in VK_ALIASES: for k in VK_ALIASES[key_text]: if k in STR_VK_MAP: if k in MODIFIERS: primary_key.append(STR_VK_MAP[k]) else: # TODO better error / warning print("CONFIG ERROR: Primary key not a modifier {0}".format(k)) else: print("ERROR IN SETUP: alias {0} not in vk map".format(k)) elif key_text in STR_VK_MAP: if key_text in MODIFIERS: primary_key.append(STR_VK_MAP[key_text]) else: # TODO better error / warning print("CONFIG ERROR: Primary key not a modifier {0}".format(key_text)) else: # TODO better error / warning print("CONFIG ERROR: unknown key code [{0}]".format(key_text)) if len(primary_key) > 0: primary_list.append(primary_key) chain = [primary_list] for key_text in secondary_keys: key = [] key_text = key_text.strip().lower() if key_text in VK_ALIASES: for k in VK_ALIASES[key_text]: if k in STR_VK_MAP: if k in MODIFIERS: # TODO better error / warning print("CONFIG ERROR: secondary key is a modifier {0}".format(k)) else: key.append(STR_VK_MAP[k]) else: print("ERROR IN SETUP: alias {0} not in vk map".format(k)) elif key_text in STR_VK_MAP: if key_text in MODIFIERS: # TODO better error / warning print("CONFIG ERROR: secondary key is a modifier {0}".format(key_text)) else: key.append(STR_VK_MAP[key_text]) else: # TODO better error / warning print("CONFIG ERROR: unknown key code {0}".format(key_text)) if len(key) > 0: chain.append(key) return chain def _key_permutations(key_alt_list, alt_index, current_list, final_list): """ Takes a list of key alternates ([ [k1a, k1b, ...], [k2a, k2b, ...], ...]) and transforms this into the :param key_alt_list: :return: """ for key in key_alt_list[alt_index]: next_list = list(current_list) next_list.append(key) if alt_index + 1 >= len(key_alt_list): final_list.append(set(next_list)) else: _key_permutations(key_alt_list, alt_index + 1, next_list, final_list) def vk_to_names(vk): maps = [] for vk_str, code in STR_VK_MAP.items(): # There are multiple mappings; return them all. if code == vk: maps.append(vk_str) if len(maps) <= 0: maps.append("#{0}".format(hex(vk))) return maps def is_vk_modifier(vk): return vk in _MODIFIER_KEYS # Built-in alias VK keys for user-specified keys VK_ALIASES = { "win": ["lwin", "rwin"], "shift": ["lshift", "rshift"], "control": ["lcontrol", "rcontrol"], "alt": ["lalt", "ralt"], "menu": ["lmenu", "rmenu"], } # Set of all recognized modifiers MODIFIERS = { "shift", "lshift", "rshift", "control", "ctrl", "lcontrol", "lctrl", "rcontrol", "rctrl", "alt", "lalt", "ralt", "lwin", "rwin", "lmenu", "rmenu", "apps", "caps-lock", } # https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx STR_VK_MAP = { "lmb": 0x01, # VK_LBUTTON Left mouse button "rmb": 0x02, # VK_RBUTTON Right mouse button "break": 0x03, # VK_CANCEL Control-break processing "mmb": 0x04, # VK_MBUTTON Middle mouse button (three-button mouse) "x1mb": 0x05, # VK_XBUTTON1 X1 mouse button "x2mb": 0x06, # VK_XBUTTON2 X2 mouse button "x3mb": 0x07, # - Undefined "back": 0x08, # VK_BACK BACKSPACE key "backspace": 0x08, # VK_BACK BACKSPACE key "tab": 0x09, # VK_TAB TAB key # - 0x0A-0B Reserved "clear": 0x0C, # VK_CLEAR CLEAR key "return": 0x0D, # VK_RETURN ENTER key "enter": 0x0D, # VK_RETURN ENTER key "cr": 0x0D, # VK_RETURN ENTER key "lf": 0x0D, # VK_RETURN ENTER key # - 0x0E-0F Undefined # These VK keys don't seem to get generated by the global key handler; # instead, the more low-level (lcontrol, rcontrol, etc) ones are. "shift": 0x10, # VK_SHIFT SHIFT key "sft": 0x10, # VK_SHIFT SHIFT key "control": 0x11, # VK_CONTROL CTRL key "ctrl": 0x11, # VK_CONTROL CTRL key "menu": 0x12, # VK_MENU ALT key "alt": 0x12, # VK_MENU ALT key "pause": 0x13, # VK_PAUSE PAUSE key "caps-lock": 0x14, # VK_CAPITAL CAPS LOCK key "kana": 0x15, # VK_KANA IME Kana mode "hanguel": 0x15, # VK_HANGUEL IME Hanguel mode (maintained for compatibility; use VK_HANGUL) "hangul": 0x15, # VK_HANGUL IME Hangul mode # - 0x16 Undefined "junja": 0x17, # VK_JUNJA IME Junja mode "final": 0x18, # VK_FINAL IME final mode "hanja": 0x19, # VK_HANJA IME Hanja mode "kanji": 0x19, # VK_KANJI IME Kanji mode # 0x1A - Undefined "escape": 0x1B, # VK_ESCAPE ESC key "esc": 0x1B, # VK_ESCAPE ESC key "convert": 0x1C, # VK_CONVERT IME convert "nonconvert": 0x1D, # VK_NONCONVERT IME nonconvert "accept": 0x1E, # VK_ACCEPT IME accept "modechange": 0x1F, # VK_MODECHANGE IME mode change request "space": 0x20, # VK_SPACE SPACEBAR "prior": 0x21, # VK_PRIOR PAGE UP key "pgup": 0x21, # VK_PRIOR PAGE UP key "pageup": 0x21, # VK_PRIOR PAGE UP key "next": 0x22, # VK_NEXT PAGE DOWN key "pgdn": 0x22, # VK_NEXT PAGE DOWN key "pagedown": 0x22, # VK_NEXT PAGE DOWN key "end": 0x23, # VK_END END key "home": 0x24, # VK_HOME HOME key "left": 0x25, # VK_LEFT LEFT ARROW key "up": 0x26, # VK_UP UP ARROW key "right": 0x27, # VK_RIGHT RIGHT ARROW key "down": 0x28, # VK_DOWN DOWN ARROW key "select": 0x29, # VK_SELECT SELECT key "print": 0x2A, # VK_PRINT PRINT key "execute": 0x2B, # VK_EXECUTE EXECUTE key "snapshot": 0x2C, # VK_SNAPSHOT PRINT SCREEN key "insert": 0x2D, # VK_INSERT INS key "delete": 0x2E, # VK_DELETE DEL key "del": 0x2E, # VK_DELETE DEL key "help": 0x2F, # VK_HELP HELP key "lwin": 0x5B, # VK_LWIN Left Windows key (Natural keyboard) "rwin": 0x5C, # VK_RWIN Right Windows key (Natural keyboard) "apps": 0x5D, # VK_APPS Applications key (Natural keyboard) # 0x5E - Reserved "sleep": 0x5F, # VK_SLEEP Computer Sleep key "numpad0": 0x60, # VK_NUMPAD0 Numeric keypad 0 key "numpad1": 0x61, # VK_NUMPAD1 Numeric keypad 1 key "numpad2": 0x62, # VK_NUMPAD2 Numeric keypad 2 key "numpad3": 0x63, # VK_NUMPAD3 Numeric keypad 3 key "numpad4": 0x64, # VK_NUMPAD4 Numeric keypad 4 key "numpad5": 0x65, # VK_NUMPAD5 Numeric keypad 5 key "numpad6": 0x66, # VK_NUMPAD6 Numeric keypad 6 key "numpad7": 0x67, # VK_NUMPAD7 Numeric keypad 7 key "numpad8": 0x68, # VK_NUMPAD8 Numeric keypad 8 key "numpad9": 0x69, # VK_NUMPAD9 Numeric keypad 9 key "multiply": 0x6A, # VK_MULTIPLY Multiply key "add": 0x6B, # VK_ADD Add key "separator": 0x6C, # VK_SEPARATOR Separator key "subtract": 0x6D, # VK_SUBTRACT Subtract key "decimal": 0x6E, # VK_DECIMAL Decimal key "divide": 0x6F, # VK_DIVIDE Divide key "f1": 0x70, # VK_F1 F1 key "f2": 0x71, # VK_F2 F2 key "f3": 0x72, # VK_F3 F3 key "f4": 0x73, # VK_F4 F4 key "f5": 0x74, # VK_F5 F5 key "f6": 0x75, # VK_F6 F6 key "f7": 0x76, # VK_F7 F7 key "f8": 0x77, # VK_F8 F8 key "f9": 0x78, # VK_F9 F9 key "f10": 0x79, # VK_F10 F10 key "f11": 0x7A, # VK_F11 F11 key "f12": 0x7B, # VK_F12 F12 key "f13": 0x7C, # VK_F13 F13 key "f14": 0x7D, # VK_F14 F14 key "f15": 0x7E, # VK_F15 F15 key "f16": 0x7F, # VK_F16 F16 key "f17": 0x80, # VK_F17 F17 key "f18": 0x81, # VK_F18 F18 key "f19": 0x82, # VK_F19 F19 key "f20": 0x83, # VK_F20 F20 key "f21": 0x84, # VK_F21 F21 key "f22": 0x85, # VK_F22 F22 key "f23": 0x86, # VK_F23 F23 key "f24": 0x87, # VK_F24 F24 key # 0x88-8F - Unassigned "numlock": 0x90, # VK_NUMLOCK NUM LOCK key "scroll": 0x91, # VK_SCROLL SCROLL LOCK key # 0x92-96 - OEM specific # 0x97-9F - Unassigned "lshift": 0xA0, # VK_LSHIFT Left SHIFT key "rshift": 0xA1, # VK_RSHIFT Right SHIFT key "lcontrol": 0xA2, # VK_LCONTROL Left CONTROL key "lctrl": 0xA2, # VK_LCONTROL Left CONTROL key "rcontrol": 0xA3, # VK_RCONTROL Right CONTROL key "rctrl": 0xA3, # VK_RCONTROL Right CONTROL key "lmenu": 0xA4, # VK_LMENU Left MENU key "lalt": 0xA4, # VK_LMENU Left MENU key "rmenu": 0xA5, # VK_RMENU Right MENU key "ralt": 0xA5, # VK_RMENU Right MENU key "browser-back": 0xA6, # VK_BROWSER_BACK Browser Back key "browser-forward": 0xA7, # VK_BROWSER_FORWARD Browser Forward key "browser-refresh": 0xA8, # VK_BROWSER_REFRESH Browser Refresh key "browser-stop": 0xA9, # VK_BROWSER_STOP Browser Stop key "browser-search": 0xAA, # VK_BROWSER_SEARCH Browser Search key "browser-favorites": 0xAB, # VK_BROWSER_FAVORITES Browser Favorites key "browser-home": 0xAC, # VK_BROWSER_HOME Browser Start and Home key "volume-mute": 0xAD, # VK_VOLUME_MUTE Volume Mute key "volume-down": 0xAE, # VK_VOLUME_DOWN Volume Down key "volume-up": 0xAF, # VK_VOLUME_UP Volume Up key "media-next-track": 0xB0, # VK_MEDIA_NEXT_TRACK Next Track key "media-prev-track": 0xB1, # VK_MEDIA_PREV_TRACK Previous Track key "media-stop": 0xB2, # VK_MEDIA_STOP Stop Media key "media-play-pause": 0xB3, # VK_MEDIA_PLAY_PAUSE Play/Pause Media key "launch-mail": 0xB4, # VK_LAUNCH_MAIL Start Mail key "launch-media-select": 0xB5, # VK_LAUNCH_MEDIA_SELECT Select Media key "launch-app1": 0xB6, # VK_LAUNCH_APP1 Start Application 1 key "launch-app2": 0xB7, # VK_LAUNCH_APP2 Start Application 2 key # 0xB8-B9 - Reserved "oem_1": 0xBA, # VK_OEM_1 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, the ';:' key ":": 0xBA, ";": 0xBA, "colon": 0xBA, "oem_plus": 0xBB, # VK_OEM_PLUS For any country/region, the '+' key "plus": 0xBB, "oem_comma": 0xBC, # VK_OEM_COMMA For any country/region, the ',' key "comma": 0xBC, ",": 0xBC, "<": 0xBC, "oem_minus": 0xBD, # VK_OEM_MINUS For any country/region, the '-' key "minus": 0xBD, "oem_period": 0xBE, # VK_OEM_PERIOD For any country/region, the '.' key ".": 0xBE, "period": 0xBE, ">": 0xBE, "oem_2": 0xBF, # VK_OEM_2 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, the '/?' key "/": 0xBF, "slash": 0xBF, "?": 0xBF, "question": 0xBF, "question-mark": 0xBF, "oem2": 0xBF, "oem_3": 0xC0, # VK_OEM_3 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, the '`~' key "oem3": 0xC0, "~": 0xC0, "tilde": 0xC0, "twiddle": 0xC0, "`": 0xC0, "back-tick": 0xC0, # 0xC1-D7 - Reserved # 0xD8-DA - Unassigned "oem_4": 0xDB, # VK_OEM_4 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, the '[{' key "oem4": 0xDB, "[": 0xDB, "{": 0xDB, "left-bracket": 0xDB, "oem_5": 0xDC, # VK_OEM_5 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, the '\|' key "oem5": 0xDC, "|": 0xDC, "\\": 0xDC, "pipe": 0xDC, "backslash": 0xDC, "oem_6": 0xDD, # VK_OEM_6 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, the ']}' key "oem6": 0xDD, "]": 0xDD, "}": 0xDD, "right-bracket": 0xDD, "oem_7": 0xDE, # VK_OEM_7 Used for miscellaneous characters; # it can vary by keyboard. For the US standard keyboard, # the 'single-quote/double-quote' key "oem7": 0xDE, '"': 0xDE, "'": 0xDE, "quote": 0xDE, "tick": 0xDE, "oem_8": 0xDF, # VK_OEM_8 Used for miscellaneous characters; it can vary by keyboard. "oem8": 0xDF, # 0xE0 - Reserved # 0xE1 - OEM specific "oem_102": 0xE2, # VK_OEM_102 Either the angle bracket key or the backslash key on # the RT 102-key keyboard "oem102": 0xE2, # 0xE3-E4 - OEM specific "processkey": 0xE5, # VK_PROCESSKEY IME PROCESS key # 0xE6 - OEM specific "packet": 0xE7, # VK_PACKET Used to pass Unicode characters as if they were # keystrokes. The VK_PACKET key is the low word of a 32-bit Virtual # Key value used for non-keyboard input methods. For more # information, see Remark in KEYBDINPUT, SendInput, WM_KEYDOWN, and WM_KEYUP # 0xE8 - Unassigned # 0xE9-F5 - OEM specific "attn": 0xF6, # VK_ATTN Attn key "crsel": 0xF7, # VK_CRSEL CrSel key "exsel": 0xF8, # VK_EXSEL ExSel key "ereof": 0xF9, # VK_EREOF Erase EOF key "play": 0xFA, # VK_PLAY Play key "zoom": 0xFB, # VK_ZOOM Zoom key "noname": 0xFC, # VK_NONAME Reserved "pa1": 0xFD, # VK_PA1 PA1 key "oem_clear": 0xFE, # VK_OEM_CLEAR Clear key # 0x3A-40 - Undefined "0": 0x30, # 0 key "1": 0x31, # 1 key "2": 0x32, # 2 key "3": 0x33, # 3 key "4": 0x34, # 4 key "5": 0x35, # 5 key "6": 0x36, # 6 key "7": 0x37, # 7 key "8": 0x38, # 8 key "9": 0x39, # 9 key "a": 0x41, # A key "b": 0x42, # B key "c": 0x43, # C key "d": 0x44, # D key "e": 0x45, # E key "f": 0x46, # F key "g": 0x47, # G key "h": 0x48, # H key "i": 0x49, # I key "j": 0x4A, # J key "k": 0x4B, # K key "l": 0x4C, # L key "m": 0x4D, # M key "n": 0x4E, # N key "o": 0x4F, # O key "p": 0x50, # P key "q": 0x51, # Q key "r": 0x52, # R key "s": 0x53, # S key "t": 0x54, # T key "u": 0x55, # U key "v": 0x56, # V key "w": 0x57, # W key "x": 0x58, # X key "y": 0x59, # Y key "z": 0x5A, # Z key } _MODIFIER_KEYS = set() for __k in MODIFIERS: _MODIFIER_KEYS.add(STR_VK_MAP[__k]) _WIN_KEYS = [STR_VK_MAP['lwin'], STR_VK_MAP['rwin']] SPECIAL_MODIFIER_CHECK_VKEY_CODES = ( STR_VK_MAP['lwin'], STR_VK_MAP['rwin'] )
py
1a3012a0f455705472b60991f832c2726af097fd
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import astropy.units as u from ....utils.testing import assert_quantity_allclose, requires_data from .. import PrimaryFlux @requires_data("gammapy-data") def test_primary_flux(): with pytest.raises(ValueError): PrimaryFlux(channel="Spam", mDM=1 * u.TeV) primflux = PrimaryFlux(channel="W", mDM=1 * u.TeV) actual = primflux.table_model(500 * u.GeV) desired = 9.328234e-05 / u.GeV assert_quantity_allclose(actual, desired)
py
1a30130f642b10e1d40939478b8141a9ebcedc60
# -*- coding: utf-8 -*- """ glusterfstools.volumefilters :copyright: (c) 2013, 2014 by Aravinda VK :license: BSD, see LICENSE for more details. """ from functools import wraps import re _volume_filters = {} def filter(name): def filter_decorator(f): @wraps(f) def wrapper(*args, **kwds): return f(*args, **kwds) global _volume_filters _volume_filters[name] = wrapper return wrapper return filter_decorator @filter("name") def name_filter(vols, value): def is_match(vol, value): if value in ['', 'all'] or \ vol["name"].lower() == value.lower().strip() or \ re.search(value, vol["name"]): return True else: return False return [v for v in vols if is_match(v, value)] @filter("status") def status_filter(vols, value): def is_match(vol, value): if value in ['', 'all'] or \ vol["status"].lower() == value.lower().strip(): return True else: return False return [v for v in vols if is_match(v, value)] @filter("type") def type_filter(vols, value): def is_match(vol, value): if value in ['', 'all'] or \ vol["type"].lower() == value.lower() or \ re.search(value, vol["type"], re.I): return True else: return False return [v for v in vols if is_match(v, value)] @filter("volumewithbrick") def volumewithbrick_filter(vols, value): def is_match(vol, value): for brick in vol["bricks"]: if value in ['', 'all'] or \ brick.lower() == value.lower() or \ re.search(value, brick, re.I): return True # If no single brick matching the query return False return [v for v in vols if is_match(v, value)] def get(): return _volume_filters
py
1a301448b33056fc64fe89f0c4136b91c4fc9fa8
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pytest configuration file for PennyLane test suite. """ import os import pytest import numpy as np import pennylane as qml from pennylane.plugins import DefaultGaussian # defaults TOL = 1e-3 TF_TOL = 2e-2 class DummyDevice(DefaultGaussian): """Dummy device to allow Kerr operations""" _operation_map = DefaultGaussian._operation_map.copy() _operation_map['Kerr'] = lambda *x, **y: np.identity(2) @pytest.fixture(scope="session") def tol(): """Numerical tolerance for equality tests.""" return float(os.environ.get("TOL", TOL)) @pytest.fixture(scope="session") def tf_tol(): """Numerical tolerance for equality tests.""" return float(os.environ.get("TF_TOL", TF_TOL)) @pytest.fixture(scope="session", params=[1, 2]) def n_layers(request): """Number of layers.""" return request.param @pytest.fixture(scope="session", params=[2, 3]) def n_subsystems(request): """Number of qubits or qumodes.""" return request.param @pytest.fixture(scope="session") def qubit_device(n_subsystems): return qml.device('default.qubit', wires=n_subsystems) @pytest.fixture(scope="function") def qubit_device_1_wire(): return qml.device('default.qubit', wires=1) @pytest.fixture(scope="function") def qubit_device_2_wires(): return qml.device('default.qubit', wires=2) @pytest.fixture(scope="function") def qubit_device_3_wires(): return qml.device('default.qubit', wires=3) @pytest.fixture(scope="session") def tensornet_device(n_subsystems): return qml.device('default.tensor', wires=n_subsystems) @pytest.fixture(scope="function") def tensornet_device_1_wire(): return qml.device('default.tensor', wires=1) @pytest.fixture(scope="function") def tensornet_device_2_wires(): return qml.device('default.tensor', wires=2) @pytest.fixture(scope="function") def tensornet_device_3_wires(): return qml.device('default.tensor', wires=3) @pytest.fixture(scope="session") def gaussian_device(n_subsystems): """Number of qubits or modes.""" return DummyDevice(wires=n_subsystems) @pytest.fixture(scope="session") def gaussian_dummy(): """Number of qubits or modes.""" return DummyDevice @pytest.fixture(scope="session") def gaussian_device_2_wires(): """A 2-mode Gaussian device.""" return DummyDevice(wires=2) @pytest.fixture(scope="session") def gaussian_device_4modes(): """A 4 mode Gaussian device.""" return DummyDevice(wires=4) @pytest.fixture(scope='session') def torch_support(): """Boolean fixture for PyTorch support""" try: import torch from torch.autograd import Variable torch_support = True except ImportError as e: torch_support = False return torch_support @pytest.fixture() def skip_if_no_torch_support(torch_support): if not torch_support: pytest.skip("Skipped, no torch support") @pytest.fixture(scope='module') def tf_support(): """Boolean fixture for TensorFlow support""" try: import tensorflow as tf tf_support = True except ImportError as e: tf_support = False return tf_support @pytest.fixture() def skip_if_no_tf_support(tf_support): if not tf_support: pytest.skip("Skipped, no tf support") @pytest.fixture(scope="module", params=[1, 2, 3]) def seed(request): """Different seeds.""" return request.param @pytest.fixture(scope="function") def mock_device(monkeypatch): """A mock instance of the abstract Device class""" with monkeypatch.context() as m: dev = qml.Device m.setattr(dev, '__abstractmethods__', frozenset()) m.setattr(dev, 'short_name', 'mock_device') m.setattr(dev, 'capabilities', lambda cls: {"model": "qubit"}) yield qml.Device(wires=2) @pytest.fixture def tear_down_hermitian(): yield None qml.Hermitian._eigs = {}
py
1a30151df25ee8d440dce68656b0ceb7eb16edb0
from data.cifar import Cifar from utility.step_lr import StepLR from utility.initialize import initialize from utility.log import Log from utility.lognolr import LogNoLR from model import * import time from model.preact_resnet import * from model.smooth_cross_entropy import smooth_crossentropy from model.wideresnet import WideResNet from model.resnet import * from model.vgg import * from sam import SAM import argparse import torch import sys import os import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from torch.optim.lr_scheduler import CosineAnnealingLR, CosineAnnealingWarmRestarts from utility.cosine_annealing_with_warmup_lr import CosineAnnealingWarmUpRestarts import tensorboard from utils import progress_bar if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--adaptive", default=True, type=bool, help="True if you want to use the Adaptive SAM.") parser.add_argument("--batch_size", default=128, type=int, help="Batch size used in the training and validation loop.") parser.add_argument("--depth", default=16, type=int, help="Number of layers.") parser.add_argument("--dropout", default=0.0, type=float, help="Dropout rate.") parser.add_argument("--epochs", default=150, type=int, help="Total number of epochs.") parser.add_argument("--label_smoothing", default=0.1, type=float, help="Use 0.0 for no label smoothing.") parser.add_argument("--learning_rate", default=0.1, type=float, help="Base learning rate at the start of the training.") parser.add_argument("--momentum", default=0.9, type=float, help="SGD Momentum.") parser.add_argument("--threads", default=2, type=int, help="Number of CPU threads for dataloaders.") parser.add_argument("--rho", default=0.5, type=int, help="Rho parameter for SAM.") parser.add_argument("--weight_decay", default=0.0005, type=float, help="L2 weight decay.") parser.add_argument("--width_factor", default=8, type=int, help="In case WideResNet, how many times wider compared to normal ResNet.") parser.add_argument("--SAM", default=False, type=bool, help="Use SAM optimizer or SGD.") parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') args = parser.parse_args() initialize(args, seed=42) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Data print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = torchvision.datasets.CIFAR10( root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader( trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10( root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=100, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # dataset = Cifar(args.batch_size, args.threads) # Logger # log = Log(log_each=10) log = LogNoLR(log_each=10) # which model to use (VGG, Preactivation ResNet,) # model = WideResNet(args.depth, 10, args.width_factor, # dropRate=args.dropout).to(device) model = VGG16().to(device) if device == 'cuda': model = torch.nn.DataParallel(model) best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch hermite_bias_list = [] hermite_weight_list = [] for name, param in model.named_parameters(): if 'bias' in name: hermite_bias_list.append(name) if 'wts' in name: hermite_weight_list.append(name) hermite_list = hermite_bias_list + hermite_weight_list params1 = list(map(lambda x: x[1], list( filter(lambda kv: kv[0] in hermite_bias_list, model.named_parameters())))) params2 = list(map(lambda x: x[1], list( filter(lambda kv: kv[0] in hermite_weight_list, model.named_parameters())))) # params3 = list(map(lambda x: x[1], list( # filter(lambda kv: kv[0] in hermite_weight2_list, model.named_parameters())))) # params3 = list(map(lambda x: x[1], list( # filter(lambda kv: kv[0] in w3, model.named_parameters())))) # params4 = list(map(lambda x: x[1], list( # filter(lambda kv: kv[0] in w4, model.named_parameters())))) base_params = list(map(lambda x: x[1], list( filter(lambda kv: kv[0] not in hermite_list, model.named_parameters())))) if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir( 'checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/ckpt.pth') model.load_state_dict(checkpoint['net']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] # Optimizer (SGD or SAM): SAM shows slightly better accuracy compared to SGD if args.SAM is True: base_optimizer = torch.optim.SGD optimizer = SAM( [{'params': base_params}, {'params': params1, 'weight_decay': 0, 'lr': args.learning_rate}, {'params': params2, 'weight_decay': args.weight_decay / 2, 'lr': args.learning_rate}, # {'params': params3, 'weight_decay': args.weight_decay / # 2, 'lr': args.learning_rate}, # {'params': params4, 'weight_decay': args.weight_decay / # 2, 'lr': args.learning_rate} ], base_optimizer, rho=args.rho, adaptive=args.adaptive, lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) else: optimizer = torch.optim.SGD( [{'params': base_params}, {'params': params1, 'weight_decay': args.weight_decay / 2, 'lr': args.learning_rate}, {'params': params2, 'weight_decay': args.weight_decay / 2, 'lr': args.learning_rate}, # {'params': params3, 'weight_decay': args.weight_decay / # 2, 'lr': args.learning_rate}, # {'params': params4, 'weight_decay': args.weight_decay/2, 'lr': args.learning_rate} ], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) scheduler = StepLR(optimizer, args.learning_rate, args.epochs) print(args.epochs, " epochs") if args.SAM is True: print("SAM optimizer") else: print("SGD optimizer") # print(list(model.parameters())) def train(epoch): print('\nEpoch: %d' % epoch) model.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) if args.SAM is False: optimizer.zero_grad() outputs = model(inputs) loss = smooth_crossentropy(outputs, targets) loss.mean().backward() if args.SAM is True: optimizer.first_step(zero_grad=True) smooth_crossentropy(model(inputs), targets).mean().backward() optimizer.second_step(zero_grad=True) else: optimizer.step() train_loss += loss.mean().item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total)) def test(epoch): global best_acc model.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) loss = smooth_crossentropy(outputs, targets) test_loss += loss.mean().item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total)) acc = 100.*correct/total if acc > best_acc: best_acc = acc # Save checkpoint. print('Saving checkpoint..') state = { 'net': model.state_dict(), 'acc': acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/ckpt.pth') # # Save torchscript with torch.no_grad(): print('Saving Torch Script..') if not os.path.isdir('torchscript'): os.mkdir('torchscript') example = torch.rand(1, 3, 32, 32).to(device) traced_script_module = torch.jit.trace(model, example) traced_script_module.save("./torchscript/model.pt") for epoch in range(start_epoch, start_epoch+200): train(epoch) test(epoch) scheduler(epoch) ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## ############################################################################################## # for epoch in range(args.epochs): # model.train() # log.train(len_dataset=len(dataset.train)) # for batch in dataset.train: # inputs, targets = (b.to(device) for b in batch) # if args.SAM is False: # optimizer.zero_grad() # predictions = model(inputs) # loss = smooth_crossentropy(predictions, targets) # loss.mean().backward() # if args.SAM is True: # optimizer.first_step(zero_grad=True) # smooth_crossentropy(model(inputs), targets).mean().backward() # optimizer.second_step(zero_grad=True) # else: # optimizer.step() # with torch.no_grad(): # correct = torch.argmax(predictions.data, 1) == targets # # log(model, loss.cpu(), correct.cpu(), scheduler.lr()) # # check which log function to use at line 61 # log(model, loss.cpu(), correct.cpu()) # scheduler(epoch) # model.eval() # log.eval(len_dataset=len(dataset.test)) # with torch.no_grad(): # for batch in dataset.test: # inputs, targets = (b.to(device) for b in batch) # predictions = model(inputs) # loss = smooth_crossentropy(predictions, targets) # correct = torch.argmax(predictions, 1) == targets # log(model, loss.cpu(), correct.cpu()) # log.flush()
py
1a3015f7dd34484d6ac908e0b92ea79ba988ef16
from im2mesh.onet_upconv2d_occtolocal import ( config, generation, training, models ) __all__ = [ config, generation, training, models ]
py
1a3016f34bfed9bf3b2e0f9512f111566e863fd2
# -*- coding: [stf-8 -*- """ Contains the definition of all data models according to the Castor EDC API. @author: R.C.A. van Linschoten https://orcid.org/0000-0003-3052-596X """ audit_trail_model = { "datetime": [dict], "event_type": [str], "user_id": [str], "user_name": [str], "user_email": [str], "event_details": [dict, list], } country_model = { "id": [ str, ], "country_id": [ str, ], "country_name": [ str, ], "country_tld": [ str, ], "country_cca2": [ str, ], "country_cca3": [ str, ], } single_country_model = { "id": [ int, ], "country_id": [ int, ], "country_name": [ str, ], "country_tld": [ str, ], "country_cca2": [ str, ], "country_cca3": [ str, ], "_links": [ dict, ], } device_token_model = { "device_token": [str], "record_id": [str], "created_on": [dict], "updated_on": [dict], } export_data_model = { "Study ID": [ str, ], "Record ID": [ str, ], "Form Type": [ str, ], "Form Instance ID": [ str, ], "Form Instance Name": [ str, ], "Field ID": [ str, ], "Value": [ str, ], "Date": [ str, ], "User ID": [ str, ], } export_structure_model = { "Study ID": [ str, ], "Form Type": [ str, ], "Form Collection ID": [ str, ], "Form Collection Name": [ str, ], "Form Collection Order": [ str, ], # Actually int in database, but csv interprets everything as string "Form ID": [ str, ], "Form Name": [ str, ], "Form Order": [ str, ], # Actually int in database, but csv interprets everything as string "Field ID": [ str, ], "Field Variable Name": [ str, ], "Field Label": [ str, ], "Field Type": [ str, ], "Field Order": [ str, ], # Actually int in database, but csv interprets everything as string "Field Required": [ str, ], # Actually bool in database, but csv interprets everything as string "Calculation Template": [ str, ], "Field Option Group": [ str, ], } export_option_group_model = { "Study ID": [ str, ], "Option Group Id": [ str, ], "Option Group Name": [ str, ], "Option Id": [ str, ], "Option Name": [ str, ], "Option Value": [ str, ], } role_model = { "name": [str], "description": [str], "permissions": [dict], "_links": [dict], } study_data_point_model = { "field_id": [ str, ], "field_value": [ str, ], "record_id": [ str, ], "updated_on": [str, type(None)], } study_data_point_extended_model = { "record_id": [ str, ], "field_variable_name": [ str, ], "field_id": [ str, ], "value": [ str, ], "updated_on": [str, type(None)], "_embedded": [ dict, ], "_links": [ dict, ], } study_step_model = { "id": [ str, ], "step_id": [ str, ], "step_description": [ str, ], "step_name": [ str, ], "step_order": [ int, ], "_embedded": [ dict, ], "_links": [ dict, ], } user_model = { "id": [ str, ], "user_id": [ str, ], "entity_id": [ str, ], "full_name": [ str, ], "name_first": [str, type(None)], "name_middle": [str, type(None)], "name_last": [str, type(None)], "email_address": [ str, ], "institute": [str, type(None)], "department": [str, type(None)], "last_login": [ str, ], "_links": [ dict, ], } user_study_model = { "id": [ str, ], "user_id": [ str, ], "entity_id": [ str, ], "full_name": [ str, ], "name_first": [str, type(None)], "name_middle": [str, type(None)], "name_last": [str, type(None)], "email_address": [ str, ], "institute": [str, type(None)], "department": [str, type(None)], "manage_permissions": [dict], "institute_permissions": [list], "last_login": [ str, ], "_links": [ dict, ], } study_model = { "crf_id": [ str, ], "study_id": [ str, ], "name": [ str, ], "created_by": [ str, ], "created_on": [ str, ], "live": [ bool, ], "randomization_enabled": [ bool, ], "gcp_enabled": [ bool, ], "surveys_enabled": [ bool, ], "premium_support_enabled": [ bool, ], "main_contact": [ str, ], "expected_centers": [int, type(None)], "duration": [int, type(None)], "expected_records": [int, type(None)], "slug": [ str, ], "version": [ str, ], "domain": [ str, ], "_links": [ dict, ], } report_model = { "id": [ str, ], "report_id": [ str, ], "description": [ str, ], "name": [ str, ], "type": [ str, ], "_links": [ dict, ], } report_instance_model = { "id": [ str, ], "name": [ str, ], "status": [ str, ], "parent_id": [ str, ], "parent_type": [ str, ], "record_id": [ str, ], "report_name": [ str, ], "archived": [ bool, ], "created_on": [ str, ], "created_by": [ str, ], "_embedded": [ dict, ], "_links": [ dict, ], } report_data_point_model = { "field_id": [ str, ], "report_instance_id": [ str, ], "report_instance_name": [ str, ], "field_value": [ str, ], "record_id": [ str, ], "updated_on": [ str, ], } report_data_point_extended_model = { "record_id": [ str, ], "field_variable_name": [ str, ], "field_id": [ str, ], "value": [ str, ], "updated_on": [ str, ], "report_instance_id": [ str, ], "_embedded": [ dict, ], "_links": [ dict, ], } report_step_model = { "id": [ str, ], "report_step_id": [ str, ], "report_step_name": [ str, ], "report_step_description": [ str, ], "report_step_number": [ int, ], "_links": [ dict, ], "_embedded": [ dict, ], } survey_model = { "id": [ str, ], "survey_id": [ str, ], "name": [ str, ], "description": [ str, ], "intro_text": [ str, ], "outro_text": [ str, ], "survey_steps": [ list, ], "_links": [ dict, ], } package_model = { "id": [ str, ], "allow_open_survey_link": [bool], "survey_package_id": [ str, ], "name": [ str, ], "description": [ str, ], "intro_text": [ str, ], "outro_text": [ str, ], "sender_name": [ str, ], "sender_email": [ str, ], "auto_send": [ bool, ], "allow_step_navigation": [ bool, ], "show_step_navigator": [ bool, ], "finish_url": [ str, ], "auto_lock_on_finish": [ bool, ], "default_invitation": [ str, ], "default_invitation_subject": [ str, ], "is_mobile": [bool], "expire_after_hours": [int, type(None)], "_embedded": [ dict, ], "_links": [ dict, ], } survey_package_instance_model = { "id": [ str, ], "survey_package_instance_id": [ str, ], "record_id": [ str, ], "institute_id": [ str, ], "institute_name": [ str, ], "survey_package_id": [ str, ], "survey_package_name": [ str, ], "invitation_subject": [ str, ], "invitation_content": [ str, ], "created_on": [ dict, ], "created_by": [ str, ], "sent_on": [dict, type(None)], "first_opened_on": [dict, type(None)], "finished_on": [dict, type(None)], "available_from": [dict], "expire_on": [str, type(None)], "all_fields_filled_on": [dict, type(None)], "started_on": [dict, type(None)], "locked": [ bool, ], "archived": [ bool, ], "survey_url_string": [ str, ], "progress": [ int, ], "auto_lock_on_finish": [ bool, ], "auto_send": [ bool, ], "_embedded": [ dict, ], "_links": [ dict, ], } survey_data_point_model = { "field_id": [ str, ], "survey_instance_id": [ str, ], "survey_name": [ str, ], "field_value": [ str, ], "record_id": [ str, ], "updated_on": [ str, ], } survey_package_data_point_model = { "field_id": [ str, ], "survey_instance_id": [ str, ], "survey_name": [ str, ], "field_value": [ str, ], "record_id": [ str, ], "updated_on": [ str, ], "survey_package_id": [ str, ], } survey_data_point_extended_model = { "record_id": [ str, ], "field_variable_name": [ str, ], "field_id": [ str, ], "value": [ str, ], "updated_on": [ str, ], "survey_instance_id": [ str, ], "_embedded": [ dict, ], "_links": [ dict, ], } survey_step_model = { "id": [ str, ], "survey_step_id": [ str, ], "survey_step_name": [ str, ], "survey_step_description": [ str, ], "survey_step_number": [ int, ], "_embedded": [ dict, ], "_links": [ dict, ], } field_dep_model = { "id": [ int, ], "operator": [ str, ], "value": [ str, ], "parent_id": [ str, ], "child_id": [ str, ], "_links": [ dict, ], } field_model = { "id": [ str, ], "parent_id": [ str, ], "field_id": [ str, ], "field_number": [ int, ], "field_label": [ str, ], "field_variable_name": [str, type(None)], "field_enforce_decimals": [bool, type(None)], "field_type": [ str, ], "field_required": [ int, ], "field_hidden": [ int, ], "field_info": [ str, ], "field_units": [ str, ], "field_min": [ int, float, type(None), ], "field_min_label": [ str, type(None), ], "field_max": [ int, float, type(None), ], "field_max_label": [ str, type(None), ], "field_summary_template": [ str, type(None), ], "field_slider_step": [ str, int, type(None), ], "report_id": [ str, ], "field_length": [ int, type(None), ], "additional_config": [ str, ], "exclude_on_data_export": [ bool, ], "option_group": [ dict, type(None), ], "metadata_points": [ list, ], "validations": [ list, ], "dependency_parents": [ list, ], "dependency_children": [ list, ], "_links": [ dict, ], "field_image": [str, None], } field_opt_model = { "id": [ str, ], "name": [ str, ], "description": [ str, ], "layout": [ bool, ], "options": [ list, ], "_links": [ dict, ], } field_val_model = { "id": [ int, ], "type": [ str, ], "value": [ str, ], "operator": [ str, ], "text": [ str, ], "field_id": [ str, ], "_links": [ dict, ], } institute_model = { "id": [ str, ], "institute_id": [ str, ], "name": [ str, ], "abbreviation": [ str, ], "code": [str, type(None)], "order": [ int, ], "country_id": [ int, ], "deleted": [ bool, ], "_links": [ dict, ], } metadata_model = { "id": [ str, ], "metadata_type": [ dict, ], "parent_id": [str, type(None)], "value": [ str, ], "description": [str, type(None)], "element_type": [ str, ], "element_id": [str], "_links": [ dict, ], } metadata_type_model = { "id": [ int, ], "name": [ str, ], "description": [ str, ], "_links": [ dict, ], } phase_model = { "id": [ str, ], "phase_id": [ str, ], "phase_description": [str, type(None)], "phase_name": [ str, ], "phase_duration": [int, type(None)], "phase_order": [ int, ], "_links": [ dict, ], } query_model = { "id": [ str, ], "record_id": [ str, ], "field_id": [ str, ], "status": [ str, ], "first_query_remark": [ str, ], "created_by": [ str, ], "created_on": [ dict, ], "updated_by": [ str, ], "updated_on": [ dict, ], "_embedded": [ dict, ], "_links": [ dict, ], } randomization_model = { "randomized_id": [str, type(None)], "randomization_group": [str, type(None)], "randomization_group_name": [str, type(None)], "randomized_on": [dict, type(None)], "_links": [ dict, ], } record_model = { "id": [ str, ], "record_id": [ str, ], "_embedded": [ dict, ], "ccr_patient_id": [ str, ], "randomized_id": [str, type(None)], "randomization_group": [str, type(None)], "randomization_group_name": [str, type(None)], "randomized_on": [dict, type(None)], "last_opened_step": [str, type(None)], "progress": [ int, ], "status": [ str, ], "locked": [bool], "archived": [ bool, ], "archived_reason": [str, type(None)], "created_by": [ str, ], "created_on": [ dict, ], "updated_by": [ str, ], "updated_on": [ dict, ], "_links": [ dict, ], } record_progress_model = { "record_id": [ str, ], "steps": [ list, ], "_links": [ dict, ], } steps_model = { "step_id": [ str, ], "complete": [ int, ], "sdv": [ bool, ], "locked": [ bool, ], "signed": [ bool, ], } statistics_model = { "study_id": [ str, ], "records": [ dict, ], "_links": [ dict, ], } stats_records_model = { "total_count": [ int, ], "institutes": [ list, ], } stats_institutes_model = { "institute_id": [ str, ], "institute_name": [ str, ], "record_count": [ int, ], } data_options = { "numeric": "1", "date": "11-11-2017", "string": "testing", "dropdown": "1", "radio": "1", "textarea": "testing", "slider": "5", "checkbox": "1", "calculation": "5", "year": "2005", }
py
1a301712abadc14d6a6b8fb81f0639cd1a1b4dd8
# https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/4838/python-code-to-achieve-0-90-auc-with-logistic-regression __author__ = 'Miroslaw Horbal' __email__ = '[email protected]' __date__ = '14-06-2013' import json import pymongo as pymongo from numpy import array from sklearn import metrics, linear_model from sklearn.model_selection import train_test_split from scipy import sparse from itertools import combinations import numpy as np import pandas as pd SEED = 25 def group_data(data, degree=3, hash=hash): """ numpy.array -> numpy.array Groups all columns of data into all combinations of triples """ new_data = [] m, n = data.shape for indicies in combinations(range(n), degree): new_data.append([hash(tuple(v)) for v in data[:, indicies]]) return array(new_data).T def OneHotEncoder(data, keymap=None): """ OneHotEncoder takes data matrix with categorical columns and converts it to a sparse binary matrix. Returns sparse binary matrix and keymap mapping categories to indicies. If a keymap is supplied on input it will be used instead of creating one and any categories appearing in the data that are not in the keymap are ignored """ if keymap is None: keymap = [] for col in data.T: uniques = set(list(col)) keymap.append(dict((key, i) for i, key in enumerate(uniques))) total_pts = data.shape[0] outdat = [] for i, col in enumerate(data.T): km = keymap[i] num_labels = len(km) spmat = sparse.lil_matrix((total_pts, num_labels)) for j, val in enumerate(col): if val in km: spmat[j, km[val]] = 1 outdat.append(spmat) outdat = sparse.hstack(outdat).tocsr() return outdat, keymap def create_test_submission(filename, prediction): content = [] for i, p in enumerate(prediction): content.append({ 'id': '%i' % (i + 1), 'ACTION': '%f' % p }) f = open(filename, 'w') json.dump(content, f) f.close() print('Saved') # This loop essentially from Paul's starter code def cv_loop(X, y, model, N): mean_auc = 0. for i in range(N): X_train, X_cv, y_train, y_cv = train_test_split( X, y, test_size=.20, random_state=i * SEED) model.fit(X_train, y_train) preds = model.predict_proba(X_cv)[:, 1] auc = metrics.roc_auc_score(y_cv, preds) print("AUC (fold %d/%d): %f" % (i + 1, N, auc)) mean_auc += auc return mean_auc / N def main(user, password): print("Reading dataset...") client = pymongo.MongoClient("mongodb://%s:%s@businessdb:27017" % (user, password)) train_data = pd.read_json(json.dumps(list(client.test.train.find({}, {'_id': 0}))), orient='records') test_data = pd.read_json(json.dumps(list(client.test.test.find({}, {'_id': 0}))), orient='records') all_data = np.vstack((train_data.iloc[:, 1:], test_data.iloc[:, :])) num_train = np.shape(train_data)[0] # Transform data print("Transforming data...") dp = group_data(all_data, degree=2) dt = group_data(all_data, degree=3) y = array(train_data.iloc[:, 0]) X = all_data[:num_train] X_2 = dp[:num_train] X_3 = dt[:num_train] X_test = all_data[num_train:] X_test_2 = dp[num_train:] X_test_3 = dt[num_train:] X_train_all = np.hstack((X, X_2, X_3)) X_test_all = np.hstack((X_test, X_test_2, X_test_3)) num_features = X_train_all.shape[1] model = linear_model.LogisticRegression() # Xts holds one hot encodings for each individual feature in memory # speeding up feature selection Xts = [OneHotEncoder(X_train_all[:, [i]])[0] for i in range(num_features)] print("Performing greedy feature selection...") score_hist = [] N = 10 good_features = set([]) # Greedy feature selection loop while len(score_hist) < 2 or score_hist[-1][0] > score_hist[-2][0]: scores = [] for f in range(len(Xts)): if f not in good_features: feats = list(good_features) + [f] Xt = sparse.hstack([Xts[j] for j in feats]).tocsr() score = cv_loop(Xt, y, model, N) scores.append((score, f)) print("Feature: %i Mean AUC: %f" % (f, score)) good_features.add(sorted(scores)[-1][1]) score_hist.append(sorted(scores)[-1]) print("Current features: %s" % sorted(list(good_features))) # Remove last added feature from good_features good_features.remove(score_hist[-1][1]) good_features = sorted(list(good_features)) print("Selected features %s" % good_features) print("Performing hyperparameter selection...") # Hyperparameter selection loop score_hist = [] Xt = sparse.hstack([Xts[j] for j in good_features]).tocsr() Cvals = np.logspace(-4, 4, 15, base=2) for C in Cvals: model.C = C score = cv_loop(Xt, y, model, N) score_hist.append((score, C)) print("C: %f Mean AUC: %f" % (C, score)) bestC = sorted(score_hist)[-1][1] print("Best C value: %f" % (bestC)) print("Performing One Hot Encoding on entire dataset...") Xt = np.vstack((X_train_all[:, good_features], X_test_all[:, good_features])) Xt, keymap = OneHotEncoder(Xt) X_train = Xt[:num_train] X_test = Xt[num_train:] print("Training full model...") model.fit(X_train, y) print("Making prediction and saving results...") preds = model.predict_proba(X_test)[:, 1] create_test_submission('results.json', preds) if __name__ == "__main__": main('admin', 'toor')
py
1a3017e2047958a83cbc36b3be7ad231abdacfc8
import json import logging from datetime import date, datetime from gzip import GzipFile from io import BytesIO from typing import Any, Optional, Union import requests from dateutil.tz import tzutc from posthog.utils import remove_trailing_slash from posthog.version import VERSION _session = requests.sessions.Session() DEFAULT_HOST = "https://app.posthog.com" USER_AGENT = "posthog-python/" + VERSION def post( api_key: str, host: Optional[str] = None, path=None, gzip: bool = False, timeout: int = 15, **kwargs ) -> requests.Response: """Post the `kwargs` to the API""" log = logging.getLogger("posthog") body = kwargs body["sentAt"] = datetime.utcnow().replace(tzinfo=tzutc()).isoformat() url = remove_trailing_slash(host or DEFAULT_HOST) + path body["api_key"] = api_key data = json.dumps(body, cls=DatetimeSerializer) log.debug("making request: %s", data) headers = {"Content-Type": "application/json", "User-Agent": USER_AGENT} if gzip: headers["Content-Encoding"] = "gzip" buf = BytesIO() with GzipFile(fileobj=buf, mode="w") as gz: # 'data' was produced by json.dumps(), # whose default encoding is utf-8. gz.write(data.encode("utf-8")) data = buf.getvalue() res = _session.post(url, data=data, headers=headers, timeout=timeout) if res.status_code == 200: log.debug("data uploaded successfully") return res def _process_response( res: requests.Response, success_message: str, *, return_json: bool = True ) -> Union[requests.Response, Any]: log = logging.getLogger("posthog") if not res: raise APIError( "N/A", "Error when fetching PostHog API, please make sure you are using your public project token/key and not a private API key.", ) if res.status_code == 200: log.debug(success_message) return res.json() if return_json else res try: payload = res.json() log.debug("received response: %s", payload) raise APIError(res.status_code, payload["detail"]) except ValueError: raise APIError(res.status_code, res.text) def decide(api_key: str, host: Optional[str] = None, gzip: bool = False, timeout: int = 15, **kwargs) -> Any: """Post the `kwargs to the decide API endpoint""" res = post(api_key, host, "/decide/", gzip, timeout, **kwargs) return _process_response(res, success_message="Feature flags decided successfully") def batch_post( api_key: str, host: Optional[str] = None, gzip: bool = False, timeout: int = 15, **kwargs ) -> requests.Response: """Post the `kwargs` to the batch API endpoint for events""" res = post(api_key, host, "/batch/", gzip, timeout, **kwargs) return _process_response(res, success_message="data uploaded successfully", return_json=False) def get(api_key: str, url: str, host: Optional[str] = None, timeout: Optional[int] = None) -> requests.Response: url = remove_trailing_slash(host or DEFAULT_HOST) + url res = requests.get(url, headers={"Authorization": "Bearer %s" % api_key, "User-Agent": USER_AGENT}, timeout=timeout) return _process_response(res, success_message=f"GET {url} completed successfully") def shutdown(): # Avoid logs with # sys:1: ResourceWarning: unclosed # <ssl.SSLSocket fd=10, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, # laddr=('x.x.x.x', y), raddr=('x.x.x.x', 443)> # Should only be called when once, renders `_session` unusable _session.close() class APIError(Exception): def __init__(self, status: Union[int, str], message: str): self.message = message self.status = status def __str__(self): msg = "[PostHog] {0} ({1})" return msg.format(self.message, self.status) class DatetimeSerializer(json.JSONEncoder): def default(self, obj: Any): if isinstance(obj, (date, datetime)): return obj.isoformat() return json.JSONEncoder.default(self, obj)
py
1a3018eed7af9ecef4b593a07d12b4af7aa6c7f3
'''Tools for sensitivity analyses. I still need to read Lash & Fox to integrate more tools for multiple bias analysis. This branch is still very much a work in progress. The goal is to simplify sensitivity analyses, in the hopes they become more common in publications -MonteCarloRR(): generates a corrected RR distribution based on binary confounder -trapezoidal(): generates a trapezoidal distribution of values ''' from .Simple import MonteCarloRR from .distributions import trapezoidal
py
1a30197dc12d598d0dc6eeec07243d5c3a4e332a
from itertools import chain from Model.point import Point from View.itempriorities import ItemPriorities class Cell: def __init__ (self, pt): assert isinstance (pt, Point) self.pt = pt #self.neighbors = {} #self.items = {} # including walls and players self.players = [] self.walls = [] # seems like too many walls self.items = [] # TODO add floor and ceiling, so you can break through it #def setNeighbor (self, direction, cell): # self.neighbors[direction] = cell def isTraversable (self): if len (filter ( lambda (item): not item.isTraversable (), chain (self.players, self.walls, self.items))) is 0: return True return False """ def getItemsOfType (self, T): return chain.from_iterable (map ( lambda (key): self.items.get (key), filter (lambda (t): isinstance (t, T), self.items.keySet ()))) def getItems (self): return chain.from_iterable (self.items.values ()) """ def __repr__ (self): if len (self.itemViews) is 0: return '.' return repr (self.items.values ()) def __str__ (self): #if len (self.items) is 0: return '.' #for priority in [Wall] + itemPriorities + [Item]: # items = filter ( # lambda (item): isinstance (item, priority), # self.items) # if len (items) is 0: continue # return str (items[0]) # some are not displayed #raise Exception (self.items) c = chain (self.players, self.walls, self.items) return str (next (c, '.')) def addPlayer (self, player): assert self.isTraversable () assert self.pt == player.pt self.players.append (player) def removePlayer (self, player): assert self.pt == player.pt assert player in self.players self.players.remove (player) def containsPlayer (self, player): assert self.pt == player.pt return player in self.players
py
1a30198251afc1ca2d19648163f92962b918a14d
# This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Make sure each ForeignKey and OneToOneField has `on_delete` set to the desired behavior # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. from django.db import models class Address(models.Model): address_id = models.AutoField(primary_key=True) state = models.CharField(max_length=50) city = models.CharField(max_length=50) street = models.CharField(max_length=50) house_number = models.IntegerField() postal_code = models.IntegerField() class Meta: managed = False db_table = 'address' def __str__(self): return f"{self.state}, {self.city}, {self.street}, {self.house_number}, {self.postal_code}" class Contact(models.Model): contact_id = models.AutoField(primary_key=True) person = models.ForeignKey('Person', models.DO_NOTHING) contact_type = models.CharField(max_length=20) value = models.CharField(max_length=50) last_change = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'contact' def __str__(self): return f"{self.contact_type}, {self.value}" def getType(self): return self.contact_type def getValue(self): return self.value class Department(models.Model): department_id = models.AutoField(primary_key=True) name = models.CharField(max_length=50) decription = models.CharField(max_length=255, blank=True, null=True) class Meta: managed = False db_table = 'department' def getAll(): return [str(qSet.name) for qSet in Department.objects.all()] class DepartmentHasPerson(models.Model): department = models.ForeignKey(Department, models.DO_NOTHING) person = models.ForeignKey('Person', on_delete=models.CASCADE) class Meta: managed = False db_table = 'department_has_person' class DepartmentHasProgram(models.Model): department = models.ForeignKey(Department, models.DO_NOTHING) program = models.ForeignKey('StudyProgram', models.DO_NOTHING) class Meta: managed = False db_table = 'department_has_program' class Faculty(models.Model): faculty_id = models.AutoField(primary_key=True) name = models.CharField(max_length=50) address = models.ForeignKey(Address, models.DO_NOTHING) class Meta: managed = False db_table = 'faculty' def getAll(): return [str(qSet.name) for qSet in Faculty.objects.all()] class FacultyHasDepartment(models.Model): faculty = models.ForeignKey(Faculty, models.DO_NOTHING) department = models.ForeignKey(Department, models.DO_NOTHING) class Meta: managed = False db_table = 'faculty_has_department' class FacultyHasPerson(models.Model): faculty = models.ForeignKey(Faculty, models.DO_NOTHING) person = models.ForeignKey('Person', on_delete=models.CASCADE) class Meta: managed = False db_table = 'faculty_has_person' class Person(models.Model): person_id = models.AutoField(primary_key=True) name = models.CharField(max_length=20) surname = models.CharField(max_length=20) birthdate = models.DateField() email = models.CharField(max_length=50) passwd = models.CharField(max_length=255) additional_note = models.CharField(max_length=255, blank=True, null=True) class Meta: managed = False db_table = 'person' def getId(self): return self.person_id def getName(self): return self.name def getSurname(self): return self.surname def getBirthdate(self): return self.birthdate def getEmail(self): return self.email def getPasswd(self): return self.passwd def getNote(self): return self.additional_note class PersonHasAddress(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) address = models.ForeignKey(Address, models.DO_NOTHING) address_type = models.CharField(max_length=50, blank=True, null=True) class Meta: managed = False db_table = 'person_has_address' class PersonHasRole(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) role = models.ForeignKey('Role', models.DO_NOTHING) class Meta: managed = False db_table = 'person_has_role' def __str__(self): return f"{self.person} {self.role}" class PersonHasSubject(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) subject = models.ForeignKey('Subject', models.DO_NOTHING) class Meta: managed = False db_table = 'person_has_subject' class ProgramHasPerson(models.Model): program = models.ForeignKey('StudyProgram', models.DO_NOTHING) person = models.ForeignKey(Person, on_delete=models.CASCADE) class Meta: managed = False db_table = 'program_has_person' class ProgramHasSubject(models.Model): program = models.ForeignKey('StudyProgram', models.DO_NOTHING) subject = models.ForeignKey('Subject', models.DO_NOTHING) class Meta: managed = False db_table = 'program_has_subject' class Role(models.Model): role_id = models.AutoField(primary_key=True) role_type = models.CharField(max_length=20) class Meta: managed = False db_table = 'role' def __str__(self): return self.role_type def getAll(): return [str(qSet.role_type) for qSet in Role.objects.all()] class StudyProgram(models.Model): program_id = models.AutoField(primary_key=True) name = models.CharField(max_length=50) description = models.CharField(max_length=255, blank=True, null=True) class Meta: managed = False db_table = 'study_program' def getAll(): return [str(qSet.name) for qSet in StudyProgram.objects.all()] class Subject(models.Model): subject_id = models.AutoField(primary_key=True) name = models.CharField(max_length=50) department = models.ForeignKey(Department, models.DO_NOTHING) description = models.CharField(max_length=255, blank=True, null=True) prerequisites = models.CharField(max_length=255, blank=True, null=True) semester = models.SmallIntegerField() review = models.SmallIntegerField(blank=True, null=True) additional_info = models.CharField(max_length=255, blank=True, null=True) class Meta: managed = False db_table = 'subject' def getAll(): return [str(qSet.name) for qSet in Subject.objects.all()] class Thesis(models.Model): thesis_id = models.AutoField(primary_key=True) name = models.CharField(max_length=100) thesis_type = models.CharField(max_length=20) description = models.CharField(max_length=255, blank=True, null=True) person = models.ForeignKey(Person, on_delete=models.CASCADE) class Meta: managed = False db_table = 'thesis' def __str__(self): return self.name
py
1a3019cdaf96ced50b6083be38769453051442c7
from threading import Thread import pyrealtime as prt class SubprocessLayer(prt.TransformMixin, prt.ThreadLayer): def __init__(self, port_in, cmd, *args, encoder=None, decoder=None, **kwargs): super().__init__(port_in, *args, **kwargs) self.cmd = cmd self.proc = None self.read_thread = None self._encode = encoder if encoder is not None else self.encode self._decode = decoder if decoder is not None else self.decode def encode(self, data): return data + "\n" def decode(self, data): return data.rstrip().decode('utf-8') def initialize(self): try: import pexpect.popen_spawn except ImportError: raise ModuleNotFoundError("pexpect required to use subprocess layers") self.proc = pexpect.popen_spawn.PopenSpawn(self.cmd) self.read_thread = Thread(target=self.read_loop) self.read_thread.start() def read_loop(self): import pexpect while True: try: index = self.proc.expect(".*\n") data = self.proc.match[index] self.handle_output(self._decode(data)) except pexpect.exceptions.EOF: print("end of file") return prt.LayerSignal.STOP def transform(self, data): self.proc.write(self._encode(data)) return None
py
1a301a820e688d7a6e23162424700f051e650e8e
from tests.helpers import req request = req('get') def test_extra_and_extra_evaluated(): # language=rst """ extra and extra_evaluated ========================= Very often it's useful to add some little bit of data on the side that you need later to customize something. We think it's important to support this use case with minimal amounts of code. To do this we have `extra` and `extra_evaluated`. This is your place to put whatever you want in order to extend iommi for a general feature or just some simple one-off customization for a single view. All `Part` derived classes have `extra` and `extra_evaluated` namespaces, for example: `Page`, `Column`, `Table`, `Field`, `Form`, and `Action`. You use `extra` to put some data you want as-is: .. code-block:: form = Form.create( auto__model=Artist fields__name__extra__sounds_cool=True, extra__is_cool=True, ) Here we add `sounds_cool` to the `name` field, and the `is_cool` value to the entire `Form`. We can then access these in e.g. a template: `{{ form.fields.name.extra.sounds_cool }}` and `{{ form.extra.is_cool }}`. `extra_evaluated` is useful when you want to use the iommi evalaution machinery to get some dynamic behavior: .. code-block:: form = Form.create( auto__model=Artist fields__name__extra_evaluated__sounds_cool=lambda request, **_: request.is_staff, extra_evaluated__is_cool=lambda request, **_: request.is_staff, ) These are accessed like this in the template: `{{ form.fields.name.extra_evaluated.sounds_cool }}`. """
py
1a301d3f2eba522abf77c252be8a0724dae60b86
""" Code originally developed for pyEcholab (https://github.com/CI-CMG/pyEcholab) by Rick Towler <[email protected]> at NOAA AFSC. The code has been modified to handle split-beam data and channel-transducer structure from different EK80 setups. """ import logging import re import struct import sys import xml.etree.ElementTree as ET from collections import Counter import numpy as np from .ek_date_conversion import nt_to_unix TCVR_CH_NUM_MATCHER = re.compile(r"\d{6}-\w{1,2}|\w{12}-\w{1,2}") __all__ = [ "SimradNMEAParser", "SimradDepthParser", "SimradBottomParser", "SimradAnnotationParser", "SimradConfigParser", "SimradRawParser", ] log = logging.getLogger(__name__) class _SimradDatagramParser(object): """""" def __init__(self, header_type, header_formats): self._id = header_type self._headers = header_formats self._versions = list(header_formats.keys()) def header_fmt(self, version=0): return "=" + "".join([x[1] for x in self._headers[version]]) def header_size(self, version=0): return struct.calcsize(self.header_fmt(version)) def header_fields(self, version=0): return [x[0] for x in self._headers[version]] def header(self, version=0): return self._headers[version][:] def validate_data_header(self, data): if isinstance(data, dict): type_ = data["type"][:3] version = int(data["type"][3]) elif isinstance(data, str): type_ = data[:3] version = int(data[3]) else: raise TypeError("Expected a dict or str") if type_ != self._id: raise ValueError("Expected data of type %s, not %s" % (self._id, type_)) if version not in self._versions: raise ValueError( "No parser available for type %s version %d" % (self._id, version) ) return type_, version def from_string(self, raw_string, bytes_read): header = raw_string[:4] if sys.version_info.major > 2: header = header.decode() id_, version = self.validate_data_header(header) return self._unpack_contents(raw_string, bytes_read, version=version) def to_string(self, data={}): id_, version = self.validate_data_header(data) datagram_content_str = self._pack_contents(data, version=version) return self.finalize_datagram(datagram_content_str) def _unpack_contents(self, raw_string="", version=0): raise NotImplementedError def _pack_contents(self, data={}, version=0): raise NotImplementedError @classmethod def finalize_datagram(cls, datagram_content_str): datagram_size = len(datagram_content_str) final_fmt = "=l%dsl" % (datagram_size) return struct.pack( final_fmt, datagram_size, datagram_content_str, datagram_size ) class SimradDepthParser(_SimradDatagramParser): """ ER60 Depth Detection datagram (from .bot files) contain the following keys: type: string == 'DEP0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC transceiver_count: [long uint] with number of tranceivers depth: [float], one value for each active channel reflectivity: [float], one value for each active channel unused: [float], unused value for each active channel The following methods are defined: from_string(str): parse a raw ER60 Depth datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ def __init__(self): headers = { 0: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("transceiver_count", "L"), ] } _SimradDatagramParser.__init__(self, "DEP", headers) def _unpack_contents(self, raw_string, bytes_read, version): """""" header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read if version == 0: data_fmt = "=3f" data_size = struct.calcsize(data_fmt) data["depth"] = np.zeros((data["transceiver_count"],)) data["reflectivity"] = np.zeros((data["transceiver_count"],)) data["unused"] = np.zeros((data["transceiver_count"],)) buf_indx = self.header_size(version) for indx in range(data["transceiver_count"]): d, r, u = struct.unpack( data_fmt, raw_string[buf_indx : buf_indx + data_size] # noqa ) data["depth"][indx] = d data["reflectivity"][indx] = r data["unused"][indx] = u buf_indx += data_size return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: lengths = [ len(data["depth"]), len(data["reflectivity"]), len(data["unused"]), data["transceiver_count"], ] if len(set(lengths)) != 1: min_indx = min(lengths) log.warning( "Data lengths mismatched: d:%d, r:%d, u:%d, t:%d", *lengths ) log.warning(" Using minimum value: %d", min_indx) data["transceiver_count"] = min_indx else: min_indx = data["transceiver_count"] for field in self.header_fields(version): datagram_contents.append(data[field]) datagram_fmt += "%df" % (3 * data["transceiver_count"]) for indx in range(data["transceiver_count"]): datagram_contents.extend( [ data["depth"][indx], data["reflectivity"][indx], data["unused"][indx], ] ) return struct.pack(datagram_fmt, *datagram_contents) class SimradBottomParser(_SimradDatagramParser): """ Bottom Detection datagram contains the following keys: type: string == 'BOT0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date datetime: datetime.datetime object of NT date converted to UTC transceiver_count: long uint with number of tranceivers depth: [float], one value for each active channel The following methods are defined: from_string(str): parse a raw ER60 Bottom datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ def __init__(self): headers = { 0: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("transceiver_count", "L"), ] } _SimradDatagramParser.__init__(self, "BOT", headers) def _unpack_contents(self, raw_string, bytes_read, version): """""" header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read if version == 0: depth_fmt = "=%dd" % (data["transceiver_count"],) depth_size = struct.calcsize(depth_fmt) buf_indx = self.header_size(version) data["depth"] = np.fromiter( struct.unpack( depth_fmt, raw_string[buf_indx : buf_indx + depth_size] ), # noqa "float", ) return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: if len(data["depth"]) != data["transceiver_count"]: log.warning( "# of depth values %d does not match transceiver count %d", len(data["depth"]), data["transceiver_count"], ) data["transceiver_count"] = len(data["depth"]) for field in self.header_fields(version): datagram_contents.append(data[field]) datagram_fmt += "%dd" % (data["transceiver_count"]) datagram_contents.extend(data["depth"]) return struct.pack(datagram_fmt, *datagram_contents) class SimradAnnotationParser(_SimradDatagramParser): """ ER60 Annotation datagram contains the following keys: type: string == 'TAG0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC text: Annotation The following methods are defined: from_string(str): parse a raw ER60 Annotation datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ def __init__(self): headers = {0: [("type", "4s"), ("low_date", "L"), ("high_date", "L")]} _SimradDatagramParser.__init__(self, "TAG", headers) def _unpack_contents(self, raw_string, bytes_read, version): """""" header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read # if version == 0: # data['text'] = raw_string[self.header_size(version):].strip('\x00') # if isinstance(data['text'], bytes): # data['text'] = data['text'].decode() if version == 0: if sys.version_info.major > 2: data["text"] = str( raw_string[self.header_size(version) :].strip(b"\x00"), "ascii", errors="replace", ) else: data["text"] = unicode( # noqa raw_string[self.header_size(version) :].strip("\x00"), "ascii", errors="replace", ) return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: for field in self.header_fields(version): datagram_contents.append(data[field]) if data["text"][-1] != "\x00": tmp_string = data["text"] + "\x00" else: tmp_string = data["text"] # Pad with more nulls to 4-byte word boundry if necessary if len(tmp_string) % 4: tmp_string += "\x00" * (4 - (len(tmp_string) % 4)) datagram_fmt += "%ds" % (len(tmp_string)) datagram_contents.append(tmp_string) return struct.pack(datagram_fmt, *datagram_contents) class SimradNMEAParser(_SimradDatagramParser): """ ER60 NMEA datagram contains the following keys: type: string == 'NME0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC nmea_string: full (original) NMEA string The following methods are defined: from_string(str): parse a raw ER60 NMEA datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ nmea_head_re = re.compile(r"\$[A-Za-z]{5},") # noqa def __init__(self): headers = { 0: [("type", "4s"), ("low_date", "L"), ("high_date", "L")], 1: [("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("port", "32s")], } _SimradDatagramParser.__init__(self, "NME", headers) def _unpack_contents(self, raw_string, bytes_read, version): """ Parses the NMEA string provided in raw_string :param raw_string: Raw NMEA strin (i.e. '$GPZDA,160012.71,11,03,2004,-1,00*7D') :type raw_string: str :returns: None """ header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read # Remove trailing \x00 from the PORT field for NME1, rest of the datagram identical to NME0 if version == 1: data["port"] = data["port"].strip("\x00") if version == 0 or version == 1: if sys.version_info.major > 2: data["nmea_string"] = str( raw_string[self.header_size(version) :].strip(b"\x00"), "ascii", errors="replace", ) else: data["nmea_string"] = unicode( # noqa raw_string[self.header_size(version) :].strip("\x00"), "ascii", errors="replace", ) if self.nmea_head_re.match(data["nmea_string"][:7]) is not None: data["nmea_talker"] = data["nmea_string"][1:3] data["nmea_type"] = data["nmea_string"][3:6] else: data["nmea_talker"] = "" data["nmea_type"] = "UNKNOWN" return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: for field in self.header_fields(version): datagram_contents.append(data[field]) if data["nmea_string"][-1] != "\x00": tmp_string = data["nmea_string"] + "\x00" else: tmp_string = data["nmea_string"] # Pad with more nulls to 4-byte word boundry if necessary if len(tmp_string) % 4: tmp_string += "\x00" * (4 - (len(tmp_string) % 4)) datagram_fmt += "%ds" % (len(tmp_string)) # Convert to python string if needed if isinstance(tmp_string, str): tmp_string = tmp_string.encode("ascii", errors="replace") datagram_contents.append(tmp_string) return struct.pack(datagram_fmt, *datagram_contents) class SimradMRUParser(_SimradDatagramParser): """ EK80 MRU datagram contains the following keys: type: string == 'MRU0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC heave: float roll : float pitch: float heading: float The following methods are defined: from_string(str): parse a raw ER60 NMEA datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ def __init__(self): headers = { 0: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("heave", "f"), ("roll", "f"), ("pitch", "f"), ("heading", "f"), ] } _SimradDatagramParser.__init__(self, "MRU", headers) def _unpack_contents(self, raw_string, bytes_read, version): """ Unpacks the data in raw_string into dictionary containing MRU data :param raw_string: :type raw_string: str :returns: None """ header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: for field in self.header_fields(version): datagram_contents.append(data[field]) if data["nmea_string"][-1] != "\x00": tmp_string = data["nmea_string"] + "\x00" else: tmp_string = data["nmea_string"] # Pad with more nulls to 4-byte word boundry if necessary if len(tmp_string) % 4: tmp_string += "\x00" * (4 - (len(tmp_string) % 4)) datagram_fmt += "%ds" % (len(tmp_string)) # Convert to python string if needed if isinstance(tmp_string, str): tmp_string = tmp_string.encode("ascii", errors="replace") datagram_contents.append(tmp_string) return struct.pack(datagram_fmt, *datagram_contents) class SimradXMLParser(_SimradDatagramParser): """ EK80 XML datagram contains the following keys: type: string == 'XML0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC subtype: string representing Simrad XML datagram type: configuration, environment, or parameter [subtype]: dict containing the data specific to the XML subtype. The following methods are defined: from_string(str): parse a raw EK80 XML datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ # define the XML parsing options - here we define dictionaries for various xml datagram # types. When parsing that xml datagram, these dictionaries are used to inform the parser about # type conversion, name wrangling, and delimiter. If a field is missing, the parser # assumes no conversion: type will be string, default mangling, and that there is only 1 # element. # # the dicts are in the form: # 'XMLParamName':[converted type,'fieldname', 'parse char'] # # For example: 'PulseDurationFM':[float,'pulse_duration_fm',';'] # # will result in a return dictionary field named 'pulse_duration_fm' that contains a list # of float values parsed from a string that uses ';' to separate values. Empty strings # for fieldname and/or parse char result in the default action for those parsing steps. channel_parsing_options = { "MaxTxPowerTransceiver": [int, "", ""], "PulseDuration": [float, "", ";"], "PulseDurationFM": [float, "pulse_duration_fm", ";"], "SampleInterval": [float, "", ";"], "ChannelID": [str, "channel_id", ""], "HWChannelConfiguration": [str, "hw_channel_configuration", ""], } transceiver_parsing_options = { "TransceiverNumber": [int, "", ""], "Version": [str, "transceiver_version", ""], "IPAddress": [str, "ip_address", ""], "Impedance": [int, "", ""], } transducer_parsing_options = { "SerialNumber": [str, "transducer_serial_number", ""], "Frequency": [float, "transducer_frequency", ""], "FrequencyMinimum": [float, "transducer_frequency_minimum", ""], "FrequencyMaximum": [float, "transducer_frequency_maximum", ""], "BeamType": [int, "transducer_beam_type", ""], "Gain": [float, "", ";"], "SaCorrection": [float, "", ";"], "MaxTxPowerTransducer": [float, "", ""], "EquivalentBeamAngle": [float, "", ""], "BeamWidthAlongship": [float, "", ""], "BeamWidthAthwartship": [float, "", ""], "AngleSensitivityAlongship": [float, "", ""], "AngleSensitivityAthwartship": [float, "", ""], "AngleOffsetAlongship": [float, "", ""], "AngleOffsetAthwartship": [float, "", ""], "DirectivityDropAt2XBeamWidth": [ float, "directivity_drop_at_2x_beam_width", "", ], "TransducerOffsetX": [float, "", ""], "TransducerOffsetY": [float, "", ""], "TransducerOffsetZ": [float, "", ""], "TransducerAlphaX": [float, "", ""], "TransducerAlphaY": [float, "", ""], "TransducerAlphaZ": [float, "", ""], } header_parsing_options = {"Version": [str, "application_version", ""]} envxdcr_parsing_options = {"SoundSpeed": [float, "transducer_sound_speed", ""]} environment_parsing_options = { "Depth": [float, "", ""], "Acidity": [float, "", ""], "Salinity": [float, "", ""], "SoundSpeed": [float, "", ""], "Temperature": [float, "", ""], "Latitude": [float, "", ""], "SoundVelocityProfile": [float, "", ";"], "DropKeelOffset": [float, "", ""], "DropKeelOffsetIsManual": [int, "", ""], "WaterLevelDraft": [float, "", ""], "WaterLevelDraftIsManual": [int, "", ""], } parameter_parsing_options = { "ChannelID": [str, "channel_id", ""], "ChannelMode": [int, "", ""], "PulseForm": [int, "", ""], "Frequency": [float, "", ""], "PulseDuration": [float, "", ""], "SampleInterval": [float, "", ""], "TransmitPower": [float, "", ""], "Slope": [float, "", ""], } def __init__(self): headers = {0: [("type", "4s"), ("low_date", "L"), ("high_date", "L")]} _SimradDatagramParser.__init__(self, "XML", headers) def _unpack_contents(self, raw_string, bytes_read, version): """ Parses the NMEA string provided in raw_string :param raw_string: Raw NMEA strin (i.e. '$GPZDA,160012.71,11,03,2004,-1,00*7D') :type raw_string: str :returns: None """ def from_CamelCase(xml_param): """ convert name from CamelCase to fit with existing naming convention by inserting an underscore before each capital and then lowering the caps e.g. CamelCase becomes camel_case. """ idx = list(reversed([i for i, c in enumerate(xml_param) if c.isupper()])) param_len = len(xml_param) for i in idx: # check if we should insert an underscore if i > 0 and i < param_len: xml_param = xml_param[:i] + "_" + xml_param[i:] xml_param = xml_param.lower() return xml_param def dict_to_dict(xml_dict, data_dict, parse_opts): """ dict_to_dict appends the ETree xml value dicts to a provided dictionary and along the way converts the key name to conform to the project's naming convention and optionally parses and or converts values as specified in the parse_opts dictionary. """ for k in xml_dict: # check if we're parsing this key/value if k in parse_opts: # try to parse the string if parse_opts[k][2]: try: data = xml_dict[k].split(parse_opts[k][2]) except: # bad or empty parse chararacter(s) provided data = xml_dict[k] else: # no parse char provided - nothing to parse data = xml_dict[k] # try to convert to specified type if isinstance(data, list): for i in range(len(data)): try: data[i] = parse_opts[k][0](data[i]) except: pass else: data = parse_opts[k][0](data) # and add the value to the provided dict if parse_opts[k][1]: # add using the specified key name data_dict[parse_opts[k][1]] = data else: # add using the default key name wrangling data_dict[from_CamelCase(k)] = data else: # nothing to do with the value string data = xml_dict[k] # add the parameter to the provided dictionary data_dict[from_CamelCase(k)] = data header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read if version == 0: if sys.version_info.major > 2: xml_string = str( raw_string[self.header_size(version) :].strip(b"\x00"), "ascii", errors="replace", ) else: xml_string = unicode( # noqa raw_string[self.header_size(version) :].strip("\x00"), "ascii", errors="replace", ) # get the ElementTree element root = ET.fromstring(xml_string) # get the XML message type data["subtype"] = root.tag.lower() # create the dictionary that contains the message data data[data["subtype"]] = {} # parse it if data["subtype"] == "configuration": # parse the Transceiver section for tcvr in root.iter("Transceiver"): # parse the Transceiver section tcvr_xml = tcvr.attrib # parse the Channel section -- this works with multiple channels # under 1 transceiver for tcvr_ch in tcvr.iter("Channel"): tcvr_ch_xml = tcvr_ch.attrib channel_id = tcvr_ch_xml["ChannelID"] # create the configuration dict for this channel data["configuration"][channel_id] = {} # add the transceiver data to the config dict (this is # replicated for all channels) dict_to_dict( tcvr_xml, data["configuration"][channel_id], self.transceiver_parsing_options, ) # add the general channel data to the config dict dict_to_dict( tcvr_ch_xml, data["configuration"][channel_id], self.channel_parsing_options, ) # check if there are >1 transducer under a single transceiver channel if len(list(tcvr_ch)) > 1: ValueError( "Found >1 transducer under a single transceiver channel!" ) else: # should only have 1 transducer tcvr_ch_xducer = tcvr_ch.find( "Transducer" ) # get Element of this xducer f_par = tcvr_ch_xducer.findall("FrequencyPar") # Save calibration parameters if f_par: cal_par = { "frequency": np.array( [int(f.attrib["Frequency"]) for f in f_par] ), "gain": np.array( [float(f.attrib["Gain"]) for f in f_par] ), "impedance": np.array( [int(f.attrib["Impedance"]) for f in f_par] ), "phase": np.array( [float(f.attrib["Phase"]) for f in f_par] ), "beamwidth_alongship": np.array( [ float(f.attrib["BeamWidthAlongship"]) for f in f_par ] ), "beamwidth_athwartship": np.array( [ float(f.attrib["BeamWidthAthwartship"]) for f in f_par ] ), "angle_offset_alongship": np.array( [ float(f.attrib["AngleOffsetAlongship"]) for f in f_par ] ), "angle_offset_athwartship": np.array( [ float(f.attrib["AngleOffsetAthwartship"]) for f in f_par ] ), } data["configuration"][channel_id][ "calibration" ] = cal_par # add the transducer data to the config dict dict_to_dict( tcvr_ch_xducer.attrib, data["configuration"][channel_id], self.transducer_parsing_options, ) # get unique transceiver channel number stored in channel_id tcvr_ch_num = TCVR_CH_NUM_MATCHER.search(channel_id)[0] # parse the Transducers section from the root # TODO Remove Transducers if doesnt exist xducer = root.find("Transducers") if xducer is not None: # built occurrence lookup table for transducer name xducer_name_list = [] for xducer_ch in xducer.iter("Transducer"): xducer_name_list.append( xducer_ch.attrib["TransducerName"] ) # find matching transducer for this channel_id match_found = False for xducer_ch in xducer.iter("Transducer"): if not match_found: xducer_ch_xml = xducer_ch.attrib match_name = ( xducer_ch.attrib["TransducerName"] == tcvr_ch_xducer.attrib["TransducerName"] ) if xducer_ch.attrib["TransducerSerialNumber"] == "": match_sn = False else: match_sn = ( xducer_ch.attrib["TransducerSerialNumber"] == tcvr_ch_xducer.attrib["SerialNumber"] ) match_tcvr = ( tcvr_ch_num in xducer_ch.attrib["TransducerCustomName"] ) # if find match add the transducer mounting details if ( Counter(xducer_name_list)[ xducer_ch.attrib["TransducerName"] ] > 1 ): # if more than one transducer has the same name # only check sn and transceiver unique number match_found = match_sn or match_tcvr else: match_found = ( match_name or match_sn or match_tcvr ) # add transducer mounting details if match_found: dict_to_dict( xducer_ch_xml, data["configuration"][channel_id], self.transducer_parsing_options, ) # add the header data to the config dict h = root.find("Header") dict_to_dict( h.attrib, data["configuration"][channel_id], self.header_parsing_options, ) elif data["subtype"] == "parameter": # parse the parameter XML datagram for h in root.iter("Channel"): parm_xml = h.attrib # add the data to the environment dict dict_to_dict( parm_xml, data["parameter"], self.parameter_parsing_options ) elif data["subtype"] == "environment": # parse the environment XML datagram for h in root.iter("Environment"): env_xml = h.attrib # add the data to the environment dict dict_to_dict( env_xml, data["environment"], self.environment_parsing_options ) for h in root.iter("Transducer"): transducer_xml = h.attrib # add the data to the environment dict dict_to_dict( transducer_xml, data["environment"], self.envxdcr_parsing_options, ) data["xml"] = xml_string return data def _pack_contents(self, data, version): def to_CamelCase(xml_param): """ convert name from project's convention to CamelCase for converting back to XML to in Kongsberg's convention. """ idx = list(reversed([i for i, c in enumerate(xml_param) if c.isupper()])) param_len = len(xml_param) for i in idx: # check if we should insert an underscore if idx > 0 and idx < param_len - 1: xml_param = xml_param[:idx] + "_" + xml_param[idx:] xml_param = xml_param.lower() return xml_param datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: for field in self.header_fields(version): datagram_contents.append(data[field]) if data["nmea_string"][-1] != "\x00": tmp_string = data["nmea_string"] + "\x00" else: tmp_string = data["nmea_string"] # Pad with more nulls to 4-byte word boundry if necessary if len(tmp_string) % 4: tmp_string += "\x00" * (4 - (len(tmp_string) % 4)) datagram_fmt += "%ds" % (len(tmp_string)) # Convert to python string if needed if isinstance(tmp_string, str): tmp_string = tmp_string.encode("ascii", errors="replace") datagram_contents.append(tmp_string) return struct.pack(datagram_fmt, *datagram_contents) class SimradFILParser(_SimradDatagramParser): """ EK80 FIL datagram contains the following keys: type: string == 'FIL1' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC stage: int channel_id: string n_coefficients: int decimation_factor: int coefficients: np.complex64 The following methods are defined: from_string(str): parse a raw EK80 FIL datagram (with leading/trailing datagram size stripped) to_string(): Returns the datagram as a raw string (including leading/trailing size fields) ready for writing to disk """ def __init__(self): headers = { 1: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("stage", "h"), ("spare", "2s"), ("channel_id", "128s"), ("n_coefficients", "h"), ("decimation_factor", "h"), ] } _SimradDatagramParser.__init__(self, "FIL", headers) def _unpack_contents(self, raw_string, bytes_read, version): data = {} header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] # handle Python 3 strings if (sys.version_info.major > 2) and isinstance(data[field], bytes): data[field] = data[field].decode("latin_1") data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read if version == 1: # clean up the channel ID data["channel_id"] = data["channel_id"].strip("\x00") # unpack the coefficients indx = self.header_size(version) block_size = data["n_coefficients"] * 8 data["coefficients"] = np.frombuffer( raw_string[indx : indx + block_size], dtype="complex64" # noqa ) return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: pass elif version == 1: for field in self.header_fields(version): datagram_contents.append(data[field]) datagram_fmt += "%ds" % (len(data["beam_config"])) datagram_contents.append(data["beam_config"]) return struct.pack(datagram_fmt, *datagram_contents) class SimradConfigParser(_SimradDatagramParser): """ Simrad Configuration Datagram parser operates on dictionaries with the following keys: type: string == 'CON0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC survey_name [str] transect_name [str] sounder_name [str] version [str] spare0 [str] transceiver_count [long] transceivers [list] List of dicts representing Transducer Configs: ME70 Data contains the following additional values (data contained w/in first 14 bytes of the spare0 field) multiplexing [short] Always 0 time_bias [long] difference between UTC and local time in min. sound_velocity_avg [float] [m/s] sound_velocity_transducer [float] [m/s] beam_config [str] Raw XML string containing beam config. info Transducer Config Keys (ER60/ES60/ES70 sounders): channel_id [str] channel ident string beam_type [long] Type of channel (0 = Single, 1 = Split) frequency [float] channel frequency equivalent_beam_angle [float] dB beamwidth_alongship [float] beamwidth_athwartship [float] angle_sensitivity_alongship [float] angle_sensitivity_athwartship [float] angle_offset_alongship [float] angle_offset_athwartship [float] pos_x [float] pos_y [float] pos_z [float] dir_x [float] dir_y [float] dir_z [float] pulse_length_table [float[5]] spare1 [str] gain_table [float[5]] spare2 [str] sa_correction_table [float[5]] spare3 [str] gpt_software_version [str] spare4 [str] Transducer Config Keys (ME70 sounders): channel_id [str] channel ident string beam_type [long] Type of channel (0 = Single, 1 = Split) reserved1 [float] channel frequency equivalent_beam_angle [float] dB beamwidth_alongship [float] beamwidth_athwartship [float] angle_sensitivity_alongship [float] angle_sensitivity_athwartship [float] angle_offset_alongship [float] angle_offset_athwartship [float] pos_x [float] pos_y [float] pos_z [float] beam_steering_angle_alongship [float] beam_steering_angle_athwartship [float] beam_steering_angle_unused [float] pulse_length [float] reserved2 [float] spare1 [str] gain [float] reserved3 [float] spare2 [str] sa_correction [float] reserved4 [float] spare3 [str] gpt_software_version [str] spare4 [str] from_string(str): parse a raw config datagram (with leading/trailing datagram size stripped) to_string(dict): Returns raw string (including leading/trailing size fields) ready for writing to disk """ COMMON_KEYS = [ ("channel_id", "128s"), ("beam_type", "l"), ("frequency", "f"), ("gain", "f"), ("equivalent_beam_angle", "f"), ("beamwidth_alongship", "f"), ("beamwidth_athwartship", "f"), ("angle_sensitivity_alongship", "f"), ("angle_sensitivity_athwartship", "f"), ("angle_offset_alongship", "f"), ("angle_offset_athwartship", "f"), ("pos_x", "f"), ("pos_y", "f"), ("pos_z", "f"), ("dir_x", "f"), ("dir_y", "f"), ("dir_z", "f"), ("pulse_length_table", "5f"), ("spare1", "8s"), ("gain_table", "5f"), ("spare2", "8s"), ("sa_correction_table", "5f"), ("spare3", "8s"), ("gpt_software_version", "16s"), ("spare4", "28s"), ] def __init__(self): headers = { 0: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("survey_name", "128s"), ("transect_name", "128s"), ("sounder_name", "128s"), ("version", "30s"), ("spare0", "98s"), ("transceiver_count", "l"), ], 1: [("type", "4s"), ("low_date", "L"), ("high_date", "L")], } _SimradDatagramParser.__init__(self, "CON", headers) self._transducer_headers = { "ER60": self.COMMON_KEYS, "ES60": self.COMMON_KEYS, "ES70": self.COMMON_KEYS, "MBES": [ ("channel_id", "128s"), ("beam_type", "l"), ("frequency", "f"), ("reserved1", "f"), ("equivalent_beam_angle", "f"), ("beamwidth_alongship", "f"), ("beamwidth_athwartship", "f"), ("angle_sensitivity_alongship", "f"), ("angle_sensitivity_athwartship", "f"), ("angle_offset_alongship", "f"), ("angle_offset_athwartship", "f"), ("pos_x", "f"), ("pos_y", "f"), ("pos_z", "f"), ("beam_steering_angle_alongship", "f"), ("beam_steering_angle_athwartship", "f"), ("beam_steering_angle_unused", "f"), ("pulse_length", "f"), ("reserved2", "f"), ("spare1", "20s"), ("gain", "f"), ("reserved3", "f"), ("spare2", "20s"), ("sa_correction", "f"), ("reserved4", "f"), ("spare3", "20s"), ("gpt_software_version", "16s"), ("spare4", "28s"), ], } def _unpack_contents(self, raw_string, bytes_read, version): data = {} round6 = lambda x: round(x, ndigits=6) # noqa header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] # handle Python 3 strings if (sys.version_info.major > 2) and isinstance(data[field], bytes): data[field] = data[field].decode("latin_1") data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read if version == 0: data["transceivers"] = {} for field in ["transect_name", "version", "survey_name", "sounder_name"]: data[field] = data[field].strip("\x00") sounder_name = data["sounder_name"] if sounder_name == "MBES": _me70_extra_values = struct.unpack("=hLff", data["spare0"][:14]) data["multiplexing"] = _me70_extra_values[0] data["time_bias"] = _me70_extra_values[1] data["sound_velocity_avg"] = _me70_extra_values[2] data["sound_velocity_transducer"] = _me70_extra_values[3] data["spare0"] = data["spare0"][:14] + data["spare0"][14:].strip("\x00") else: data["spare0"] = data["spare0"].strip("\x00") buf_indx = self.header_size(version) try: transducer_header = self._transducer_headers[sounder_name] _sounder_name_used = sounder_name except KeyError: log.warning( "Unknown sounder_name: %s, (no one of %s)", sounder_name, list(self._transducer_headers.keys()), ) log.warning("Will use ER60 transducer config fields as default") transducer_header = self._transducer_headers["ER60"] _sounder_name_used = "ER60" txcvr_header_fields = [x[0] for x in transducer_header] txcvr_header_fmt = "=" + "".join([x[1] for x in transducer_header]) txcvr_header_size = struct.calcsize(txcvr_header_fmt) for txcvr_indx in range(1, data["transceiver_count"] + 1): txcvr_header_values_encoded = struct.unpack( txcvr_header_fmt, raw_string[buf_indx : buf_indx + txcvr_header_size], # noqa ) txcvr_header_values = list(txcvr_header_values_encoded) for tx_idx, tx_val in enumerate(txcvr_header_values_encoded): if isinstance(tx_val, bytes): txcvr_header_values[tx_idx] = tx_val.decode("latin_1") txcvr = data["transceivers"].setdefault(txcvr_indx, {}) if _sounder_name_used in ["ER60", "ES60", "ES70"]: for txcvr_field_indx, field in enumerate(txcvr_header_fields[:17]): txcvr[field] = txcvr_header_values[txcvr_field_indx] txcvr["pulse_length_table"] = np.fromiter( list(map(round6, txcvr_header_values[17:22])), "float" ) txcvr["spare1"] = txcvr_header_values[22] txcvr["gain_table"] = np.fromiter( list(map(round6, txcvr_header_values[23:28])), "float" ) txcvr["spare2"] = txcvr_header_values[28] txcvr["sa_correction_table"] = np.fromiter( list(map(round6, txcvr_header_values[29:34])), "float" ) txcvr["spare3"] = txcvr_header_values[34] txcvr["gpt_software_version"] = txcvr_header_values[35] txcvr["spare4"] = txcvr_header_values[36] elif _sounder_name_used == "MBES": for txcvr_field_indx, field in enumerate(txcvr_header_fields): txcvr[field] = txcvr_header_values[txcvr_field_indx] else: raise RuntimeError( "Unknown _sounder_name_used (Should not happen, this is a bug!)" ) txcvr["channel_id"] = txcvr["channel_id"].strip("\x00") txcvr["spare1"] = txcvr["spare1"].strip("\x00") txcvr["spare2"] = txcvr["spare2"].strip("\x00") txcvr["spare3"] = txcvr["spare3"].strip("\x00") txcvr["spare4"] = txcvr["spare4"].strip("\x00") txcvr["gpt_software_version"] = txcvr["gpt_software_version"].strip( "\x00" ) buf_indx += txcvr_header_size elif version == 1: # CON1 only has a single data field: beam_config, holding an xml string data["beam_config"] = raw_string[self.header_size(version) :].strip("\x00") return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: if data["transceiver_count"] != len(data["transceivers"]): log.warning( "Mismatch between 'transceiver_count' and actual # of transceivers" ) data["transceiver_count"] = len(data["transceivers"]) sounder_name = data["sounder_name"] if sounder_name == "MBES": _packed_me70_values = struct.pack( "=hLff", data["multiplexing"], data["time_bias"], data["sound_velocity_avg"], data["sound_velocity_transducer"], ) data["spare0"] = _packed_me70_values + data["spare0"][14:] for field in self.header_fields(version): datagram_contents.append(data[field]) try: transducer_header = self._transducer_headers[sounder_name] _sounder_name_used = sounder_name except KeyError: log.warning( "Unknown sounder_name: %s, (no one of %s)", sounder_name, list(self._transducer_headers.keys()), ) log.warning("Will use ER60 transducer config fields as default") transducer_header = self._transducer_headers["ER60"] _sounder_name_used = "ER60" txcvr_header_fields = [x[0] for x in transducer_header] txcvr_header_fmt = "=" + "".join([x[1] for x in transducer_header]) txcvr_header_size = struct.calcsize(txcvr_header_fmt) # noqa for txcvr_indx, txcvr in list(data["transceivers"].items()): txcvr_contents = [] if _sounder_name_used in ["ER60", "ES60", "ES70"]: for field in txcvr_header_fields[:17]: txcvr_contents.append(txcvr[field]) txcvr_contents.extend(txcvr["pulse_length_table"]) txcvr_contents.append(txcvr["spare1"]) txcvr_contents.extend(txcvr["gain_table"]) txcvr_contents.append(txcvr["spare2"]) txcvr_contents.extend(txcvr["sa_correction_table"]) txcvr_contents.append(txcvr["spare3"]) txcvr_contents.extend( [txcvr["gpt_software_version"], txcvr["spare4"]] ) txcvr_contents_str = struct.pack(txcvr_header_fmt, *txcvr_contents) elif _sounder_name_used == "MBES": for field in txcvr_header_fields: txcvr_contents.append(txcvr[field]) txcvr_contents_str = struct.pack(txcvr_header_fmt, *txcvr_contents) else: raise RuntimeError( "Unknown _sounder_name_used (Should not happen, this is a bug!)" ) datagram_fmt += "%ds" % (len(txcvr_contents_str)) datagram_contents.append(txcvr_contents_str) elif version == 1: for field in self.header_fields(version): datagram_contents.append(data[field]) datagram_fmt += "%ds" % (len(data["beam_config"])) datagram_contents.append(data["beam_config"]) return struct.pack(datagram_fmt, *datagram_contents) class SimradRawParser(_SimradDatagramParser): """ Sample Data Datagram parser operates on dictonaries with the following keys: type: string == 'RAW0' low_date: long uint representing LSBytes of 64bit NT date high_date: long uint representing MSBytes of 64bit NT date timestamp: datetime.datetime object of NT date, assumed to be UTC channel [short] Channel number mode [short] 1 = Power only, 2 = Angle only 3 = Power & Angle transducer_depth [float] frequency [float] transmit_power [float] pulse_length [float] bandwidth [float] sample_interval [float] sound_velocity [float] absorption_coefficient [float] heave [float] roll [float] pitch [float] temperature [float] heading [float] transmit_mode [short] 0 = Active, 1 = Passive, 2 = Test, -1 = Unknown spare0 [str] offset [long] count [long] power [numpy array] Unconverted power values (if present) angle [numpy array] Unconverted angle values (if present) from_string(str): parse a raw sample datagram (with leading/trailing datagram size stripped) to_string(dict): Returns raw string (including leading/trailing size fields) ready for writing to disk """ def __init__(self): headers = { 0: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("channel", "h"), ("mode", "h"), ("transducer_depth", "f"), ("frequency", "f"), ("transmit_power", "f"), ("pulse_length", "f"), ("bandwidth", "f"), ("sample_interval", "f"), ("sound_velocity", "f"), ("absorption_coefficient", "f"), ("heave", "f"), ("roll", "f"), ("pitch", "f"), ("temperature", "f"), ("heading", "f"), ("transmit_mode", "h"), ("spare0", "6s"), ("offset", "l"), ("count", "l"), ], 3: [ ("type", "4s"), ("low_date", "L"), ("high_date", "L"), ("channel_id", "128s"), ("data_type", "h"), ("spare", "2s"), ("offset", "l"), ("count", "l"), ], } _SimradDatagramParser.__init__(self, "RAW", headers) def _unpack_contents(self, raw_string, bytes_read, version): header_values = struct.unpack( self.header_fmt(version), raw_string[: self.header_size(version)] ) data = {} for indx, field in enumerate(self.header_fields(version)): data[field] = header_values[indx] if isinstance(data[field], bytes): data[field] = data[field].decode() data["timestamp"] = nt_to_unix((data["low_date"], data["high_date"])) data["bytes_read"] = bytes_read if version == 0: if data["count"] > 0: block_size = data["count"] * 2 indx = self.header_size(version) if int(data["mode"]) & 0x1: data["power"] = np.frombuffer( raw_string[indx : indx + block_size], dtype="int16" # noqa ) indx += block_size else: data["power"] = None if int(data["mode"]) & 0x2: data["angle"] = np.frombuffer( raw_string[indx : indx + block_size], dtype="int8" # noqa ) data["angle"] = data["angle"].reshape((-1, 2)) else: data["angle"] = None else: data["power"] = np.empty((0,), dtype="int16") data["angle"] = np.empty((0, 2), dtype="int8") elif version == 3: # result = 1j*Data[...,1]; result += Data[...,0] # clean up the channel ID data["channel_id"] = data["channel_id"].strip("\x00") if data["count"] > 0: # set the initial block size and indx value. block_size = data["count"] * 2 indx = self.header_size(version) if data["data_type"] & 0b1: data["power"] = np.frombuffer( raw_string[indx : indx + block_size], dtype="int16" # noqa ) indx += block_size else: data["power"] = None if data["data_type"] & 0b10: data["angle"] = np.frombuffer( raw_string[indx : indx + block_size], dtype="int8" # noqa ) data["angle"] = data["angle"].reshape((-1, 2)) indx += block_size else: data["angle"] = None # determine the complex sample data type - this is contained in bits 2 and 3 # of the datatype <short> value. I'm assuming the types are exclusive... data["complex_dtype"] = np.float16 type_bytes = 2 if data["data_type"] & 0b1000: data["complex_dtype"] = np.float32 type_bytes = 8 # determine the number of complex samples data["n_complex"] = data["data_type"] >> 8 # unpack the complex samples if data["n_complex"] > 0: # determine the block size block_size = data["count"] * data["n_complex"] * type_bytes data["complex"] = np.frombuffer( raw_string[indx : indx + block_size], # noqa dtype=data["complex_dtype"], ) data["complex"].dtype = np.complex64 else: data["complex"] = None else: data["power"] = np.empty((0,), dtype="int16") data["angle"] = np.empty((0,), dtype="int8") data["complex"] = np.empty((0,), dtype="complex64") data["n_complex"] = 0 return data def _pack_contents(self, data, version): datagram_fmt = self.header_fmt(version) datagram_contents = [] if version == 0: if data["count"] > 0: if (int(data["mode"]) & 0x1) and ( len(data.get("power", [])) != data["count"] ): log.warning( "Data 'count' = %d, but contains %d power samples. Ignoring power." ) data["mode"] &= ~(1 << 0) if (int(data["mode"]) & 0x2) and ( len(data.get("angle", [])) != data["count"] ): log.warning( "Data 'count' = %d, but contains %d angle samples. Ignoring angle." ) data["mode"] &= ~(1 << 1) if data["mode"] == 0: log.warning( "Data 'count' = %d, but mode == 0. Setting count to 0", data["count"], ) data["count"] = 0 for field in self.header_fields(version): datagram_contents.append(data[field]) if data["count"] > 0: if int(data["mode"]) & 0x1: datagram_fmt += "%dh" % (data["count"]) datagram_contents.extend(data["power"]) if int(data["mode"]) & 0x2: datagram_fmt += "%dH" % (data["count"]) datagram_contents.extend(data["angle"]) return struct.pack(datagram_fmt, *datagram_contents)
pyw
1a301d4cdf3f0000f2f0525ab19727244bd43bae
import os import tkinter as tk from tkinter import ttk from tkinter import filedialog from tkinter import PhotoImage from tkinter import messagebox import pafy import youtube_dl # if you get api limit exceeded error, get an api key and paste # here as a string value # pafy.set_api_key(key) # sample video url # https://www.youtube.com/watch?v=CjeYOtL6ORE cwd = os.getcwd() class CustomEntry(tk.Entry): def __init__(self, parent, *args, **kwargs): tk.Entry.__init__(self, parent, *args, **kwargs) self.parent = parent self.bind('<FocusOut>', self.add_placeholder) self.bind('<FocusIn>', self.clear_placeholder) self.configure(fg="gray70") self.insert(0, 'Enter Video URL') def add_placeholder(self, event=None): if not self.get(): self.configure(fg="gray70") self.insert(0, 'Enter Video URL') def clear_placeholder(self, event): if event and self.get() == 'Enter Video URL': self.delete('0', 'end') self.configure(fg="black") # Application Class ----------------------------------------------- class Application(tk.Frame): def __init__(self, master=None): super().__init__(master=master) self.master = master self.master.focus_set() self.pack() self.url = '' self.video_quality = tk.StringVar() self.filesize = 0 self.is_video_downloading = False self.is_audio_downloading = False self.draw_title_frame() self.draw_main_frame() self.bind('<Return>', self.search_video) def draw_title_frame(self): self.title_frame = tk.Frame(self, bg='red', width=440, height=60) self.title_frame.grid(row=0, column=0, columnspan=5, pady=5) self.title_frame.grid_propagate(False) self.title = tk.Label(self.title_frame, text=' SaveFromYT - Youtube Audio/Video Downloader', fg='white', bg='red', font=('Times', 14), width=450, height=50, image=youtube_icon, compound=tk.LEFT, anchor = 'w') self.title.grid(row=0, column=0, padx=5, ipadx=20) def draw_main_frame(self): self.main_frame = tk.Frame(self, width=440, height=240, highlightthickness=1, highlightbackground='red') self.main_frame.grid(row=1, column=0, columnspan=5, pady=5, rowspan=3) self.main_frame.grid_propagate(False) self.entry = CustomEntry(self.main_frame, width=52) self.entry.grid(row=0, column=0, columnspan=3, pady=100, padx=(20,10)) self.entry.bind('<Return>', self.search_video) self.search = tk.Button(self.main_frame, image=search_icon, fg='white', cursor='hand2', command=self.search_video, relief=tk.FLAT) self.search.grid(row=0, column=4, pady=100, padx=(30,10)) def draw_download_frame(self): self.main_frame.destroy() self.info_frame = tk.Frame(self, width=150, height=173, highlightthickness=1, highlightbackground='red') self.info_frame.grid(row=1, column=0, columnspan=2) self.info_frame.grid_propagate(False) self.video_frame = tk.Frame(self, width=290, height=173, highlightthickness=1, highlightbackground='red') self.video_frame.grid(row=1, column=2, columnspan=3) self.video_frame.grid_propagate(False) self.audio_frame = tk.Frame(self, width=370, height=67, highlightthickness=1, highlightbackground='red') self.audio_frame.grid(row=2, column=0, columnspan=4) self.audio_frame.grid_propagate(False) self.back_frame = tk.Frame(self, width=70, height=67, highlightthickness=1, highlightbackground='red') self.back_frame.grid(row=2, column=4) self.back_frame.grid_propagate(False) def draw_download_widgets(self): # self.info_frame self.title = tk.Label(self.info_frame, width=20, height=3, bg='red', wraplength=120, fg='white') self.title.grid(row=0, column=0, padx=1, pady=2) self.views = tk.Label(self.info_frame, width=20, height=2, bg='red', fg='white') self.views.grid(row=1, column=0, padx=1, pady=1) self.duration = tk.Label(self.info_frame, width=20, height=2, bg='red', fg='white') self.duration.grid(row=2, column=0, padx=1, pady=1) self.published = tk.Label(self.info_frame, width=20, height=2, bg='red', fg='white') self.published.grid(row=3, column=0, padx=1, pady=1) # self.video_frame self.video_quality.set(self.option_streams[0]) self.options = tk.OptionMenu(self.video_frame, self.video_quality, *self.option_streams) self.options.config(bg='red', fg='white') self.options['menu'].config(bg='red', fg='white') self.options.grid(row=0, column=0, padx=50, pady=20, columnspan=5) self.video_dwn = tk.Button(self.video_frame, text='Download MP4', command=self.download_video, bg='red', fg='white', width=15, cursor='hand2') self.video_dwn.grid(row=1, column=0, padx=50, pady=10, columnspan=5) # self.audio_frame self.audio_dwn = tk.Button(self.audio_frame, text='Download MP3', command=self.download_mp3, bg='red', fg='white', width=15, cursor='hand2') self.audio_dwn.grid(row=0, column=0, padx=20, pady=20) # self.back_frame self.back = tk.Button(self.back_frame, text='back', image=back_icon, command=self.go_back, relief=tk.FLAT) self.back.grid(row=0, column=0, pady=10, padx=10) def cease_buttons(self): if self.is_video_downloading: self.video_dwn['text'] = 'downloading' if self.is_audio_downloading: self.audio_dwn['text'] = 'downloading' self.video_dwn.config(state='disabled') self.audio_dwn.config(state='disabled') def release_buttons(self): self.video_dwn.config(state='normal') self.audio_dwn.config(state='normal') if not self.is_video_downloading: self.video_dwn['text'] = 'Download MP4' if not self.is_audio_downloading: self.audio_dwn['text'] = 'Download MP3' def search_video(self, event=None): self.url = self.entry.get() self.master.focus_set() if self.url and ' ' not in self.url: try: video = pafy.new(self.url) self.video_title = video.title duration = video.duration views = video.viewcount published = video.published thumbnail = video.thumb self.streams = video.streams self.option_streams = self.streams[::-1] self.draw_download_frame() self.draw_download_widgets() self.title['text'] = self.video_title[:50] self.views['text'] = f'Views : {views:,}' self.duration['text'] = f'Length : {duration}' self.published['text'] = f'Pub : {published[:10]}' except OSError: messagebox.showerror('SaveFromYT', 'Cannot extract data') except ValueError: messagebox.showerror('SaveFromYT', 'Invalid URL') except: messagebox.showerror('SaveFromYT', 'Cannot connect with internet') def download_video(self): filetypes = [('MP4', '.mp4')] filepath = filedialog.asksaveasfilename(initialdir=cwd, initialfile=self.video_title[:25]+'.mp4', filetypes=filetypes) if filepath: self.is_video_downloading = True self.cease_buttons() vq = self.video_quality.get() l = len(self.streams) opts = [str(stream) for stream in self.option_streams] stream = self.streams[opts.index(vq) - l + 1] self.filesize = stream.get_filesize() self.sizelabel = tk.Label(self.video_frame, bg='red', fg='white', text=f'Filesize : {self.filesize/(1024*1024):.2f} Mb') self.sizelabel.grid(row=2, column=0, pady=5) self.pb = ttk.Progressbar(self.video_frame, orient=tk.HORIZONTAL, mode='determinate', length=100) self.pb.grid(row=2, column=2, columnspan=3, pady=5) try: stream.download(quiet=True, callback=self.download_callback, filepath=filepath) messagebox.showinfo('SaveFromYT', 'Video Downloaded Successfully') except: messagebox.showerror('SaveFromYT', 'Cannot connect with internet') self.pb.destroy() self.sizelabel.destroy() self.is_video_downloading = False self.release_buttons() def download_callback(self, total, recvd, ratio, rate, eta): perc = (recvd / total) * 100 self.pb['value'] = int(perc) self.update() def download_mp3(self): filetypes = ['MP3', '.mp3'] filepath = filedialog.asksaveasfilename(initialdir=cwd, initialfile=''.join(self.video_title[:25]+'.mp3')) if filepath: ydl_opts = { 'format': 'bestaudio/best', 'outtmpl' : filepath, 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192' }], 'postprocessor_args': [ '-ar', '16000' ], 'prefer_ffmpeg': True, 'keepvideo': True, 'progress_hooks': [self.download_hook] } self.is_audio_downloading = True self.cease_buttons() try: self.pb = ttk.Progressbar(self.audio_frame, orient=tk.HORIZONTAL, mode='determinate', length=100) self.pb.grid(row=0, column=2, pady=20, padx=20) with youtube_dl.YoutubeDL(ydl_opts) as ydl: ydl.download([self.url]) for file in os.listdir(): if file.endswith('.webm'): os.remove(file) self.pb.destroy() messagebox.showinfo('SaveFromYT', 'Successfully Downloaded Mp3') except: messagebox.showinfo('SaveFromYT', "Can't connect with internet") self.is_audio_downloading = False self.release_buttons() def download_hook(self, d): if d['status'] == 'downloading': p = d['_percent_str'] p = float(p.replace('%','').replace(' ','')) self.pb['value'] = round(p) self.update() def go_back(self): self.info_frame.destroy() self.video_frame.destroy() self.audio_frame.destroy() self.back_frame.destroy() self.draw_main_frame() if __name__ == '__main__': root = tk.Tk() root.geometry('450x320') root.title('SaveFromYT') root.resizable(0,0) youtube_icon = PhotoImage(file='icons/youtube.png') back_icon = PhotoImage(file='icons/back.png') search_icon = PhotoImage(file='icons/search.png') app = Application(master=root) app.mainloop()
py
1a301db2a25fe29e7e0a916e2b7cd125cbe4262e
#!/usr/bin/env python import glob import os import sys import time import re import shutil from os.path import expanduser home = expanduser("~") rosey_dir = home + "/.rosey/" rosey_config = rosey_dir + "config" rosey_log = rosey_dir + "rosey.log" class Rosey(): def __init__(self, config): """Configs come one in a list of three member lists""" """glob-file-pattern-to-match, prefix to remove, directory-to-move-matched-files""" self.config = config def FileMoveToDoList(self): files = [] todos = [] configs = iter(self.config) for config in configs: files = self.findMatchingFiles(config[0]) for f in files: todos += [ [f, self.replacePatternWithNewPath(f, config[1], config[2])] ] return todos def replacePatternWithNewPath(self, file, remove_this, dest_path): t = time.localtime(os.path.getctime(file)) timestamp = time.strftime("%Y-%m-%d", t) + "-" orig_name = os.path.basename(file) trimmed_name = orig_name.replace(remove_this, "") no_spaces_name = trimmed_name.replace(" ", "-") timestamped_name = timestamp + no_spaces_name new_name = re.sub("-+", "-", timestamped_name) new_path = dest_path + new_name return new_path def findMatchingFiles(self, glob_spec): all = glob.glob(glob_spec) return all def check_config(config): findings = [] regexes = [f[0] for f in config] if (regexes.sort() != list(set(regexes)).sort()): findings += "You have one or more duplicate patterns" return dest_dirs = [f[2] for f in config] for dest in dest_dirs: if (not os.path.isdir(dest)): findings += "Destination directory does not exist: '{0}'".format(dest) return findings def cleanup_config(config): config_list = [line.rstrip().split(',') for line in config] trimmed_config = [] for config_item in config_list: trimmed_config += [[f.lstrip().rstrip() for f in config_item]] return trimmed_config def moveEm(todo, really_move = True): with open(rosey_log, "a") as myfile: for t in todo: message = "Moving: {0}\n to: {1}\n".format(t[0], t[1]) if really_move: try: shutil.move(t[0], t[1]) message += " : Move Successful" except Exception as e: message += " : Move Fails {0}.".format(e) myfile.write(message + "\n"); print message def show_findings(findings): for f in findings: print f def main(arg): if (not os.path.exists(rosey_config)): print "You need to create ~/.rosey/config" exit(1) with open(rosey_config) as f: config = f.readlines() clean_config = cleanup_config(config) findings = check_config(clean_config) if findings != []: show_findings(findings) exit(1) rosey = Rosey(clean_config) todo = rosey.FileMoveToDoList() if arg == "move": moveEm(todo) if arg == "show": moveEm(todo, False) if __name__ == '__main__': if len(sys.argv) != 2: print "usage: {0} [move, show] {1}".format(sys.argv[0], len(sys.argv)) exit(0) main(sys.argv[1]) # Run the example
py
1a301e340b3e8aa8123ecd2dee29023be07ec43e
"""Test different accessory types: HumidifierDehumidifier.""" from pyhap.const import ( CATEGORY_HUMIDIFIER, HAP_REPR_AID, HAP_REPR_CHARS, HAP_REPR_IID, HAP_REPR_VALUE, ) from homeassistant.components.homekit.const import ( ATTR_VALUE, CONF_LINKED_HUMIDITY_SENSOR, PROP_MAX_VALUE, PROP_MIN_STEP, PROP_MIN_VALUE, PROP_VALID_VALUES, ) from homeassistant.components.homekit.type_humidifiers import HumidifierDehumidifier from homeassistant.components.humidifier.const import ( ATTR_HUMIDITY, ATTR_MAX_HUMIDITY, ATTR_MIN_HUMIDITY, DEFAULT_MAX_HUMIDITY, DEFAULT_MIN_HUMIDITY, DEVICE_CLASS_DEHUMIDIFIER, DEVICE_CLASS_HUMIDIFIER, DOMAIN, SERVICE_SET_HUMIDITY, ) from homeassistant.const import ( ATTR_DEVICE_CLASS, ATTR_ENTITY_ID, ATTR_UNIT_OF_MEASUREMENT, DEVICE_CLASS_HUMIDITY, PERCENTAGE, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_OFF, STATE_ON, STATE_UNAVAILABLE, ) from tests.common import async_mock_service async def test_humidifier(hass, hk_driver, events): """Test if humidifier accessory and HA are updated accordingly.""" entity_id = "humidifier.test" hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, None ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.aid == 1 assert acc.category == CATEGORY_HUMIDIFIER assert acc.char_current_humidifier_dehumidifier.value == 0 assert acc.char_target_humidifier_dehumidifier.value == 1 assert acc.char_current_humidity.value == 0 assert acc.char_target_humidity.value == 45.0 assert acc.char_active.value == 0 assert acc.char_target_humidity.properties[PROP_MAX_VALUE] == DEFAULT_MAX_HUMIDITY assert acc.char_target_humidity.properties[PROP_MIN_VALUE] == DEFAULT_MIN_HUMIDITY assert acc.char_target_humidity.properties[PROP_MIN_STEP] == 1.0 assert acc.char_target_humidifier_dehumidifier.properties[PROP_VALID_VALUES] == { "Humidifier": 1 } hass.states.async_set( entity_id, STATE_ON, {ATTR_HUMIDITY: 47}, ) await hass.async_block_till_done() assert acc.char_target_humidity.value == 47.0 assert acc.char_current_humidifier_dehumidifier.value == 2 assert acc.char_target_humidifier_dehumidifier.value == 1 assert acc.char_active.value == 1 hass.states.async_set( entity_id, STATE_OFF, {ATTR_HUMIDITY: 42, ATTR_DEVICE_CLASS: DEVICE_CLASS_HUMIDIFIER}, ) await hass.async_block_till_done() assert acc.char_target_humidity.value == 42.0 assert acc.char_current_humidifier_dehumidifier.value == 0 assert acc.char_target_humidifier_dehumidifier.value == 1 assert acc.char_active.value == 0 # Set from HomeKit call_set_humidity = async_mock_service(hass, DOMAIN, SERVICE_SET_HUMIDITY) char_target_humidity_iid = acc.char_target_humidity.to_HAP()[HAP_REPR_IID] hk_driver.set_characteristics( { HAP_REPR_CHARS: [ { HAP_REPR_AID: acc.aid, HAP_REPR_IID: char_target_humidity_iid, HAP_REPR_VALUE: 39.0, }, ] }, "mock_addr", ) await hass.async_block_till_done() assert len(call_set_humidity) == 1 assert call_set_humidity[0].data[ATTR_ENTITY_ID] == entity_id assert call_set_humidity[0].data[ATTR_HUMIDITY] == 39.0 assert acc.char_target_humidity.value == 39.0 assert len(events) == 1 assert events[-1].data[ATTR_VALUE] == "RelativeHumidityHumidifierThreshold to 39.0%" async def test_dehumidifier(hass, hk_driver, events): """Test if dehumidifier accessory and HA are updated accordingly.""" entity_id = "humidifier.test" hass.states.async_set( entity_id, STATE_OFF, {ATTR_DEVICE_CLASS: DEVICE_CLASS_DEHUMIDIFIER} ) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, None ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.aid == 1 assert acc.category == CATEGORY_HUMIDIFIER assert acc.char_current_humidifier_dehumidifier.value == 0 assert acc.char_target_humidifier_dehumidifier.value == 2 assert acc.char_current_humidity.value == 0 assert acc.char_target_humidity.value == 45.0 assert acc.char_active.value == 0 assert acc.char_target_humidity.properties[PROP_MAX_VALUE] == DEFAULT_MAX_HUMIDITY assert acc.char_target_humidity.properties[PROP_MIN_VALUE] == DEFAULT_MIN_HUMIDITY assert acc.char_target_humidity.properties[PROP_MIN_STEP] == 1.0 assert acc.char_target_humidifier_dehumidifier.properties[PROP_VALID_VALUES] == { "Dehumidifier": 2 } hass.states.async_set( entity_id, STATE_ON, {ATTR_HUMIDITY: 30}, ) await hass.async_block_till_done() assert acc.char_target_humidity.value == 30.0 assert acc.char_current_humidifier_dehumidifier.value == 3 assert acc.char_target_humidifier_dehumidifier.value == 2 assert acc.char_active.value == 1 hass.states.async_set( entity_id, STATE_OFF, {ATTR_HUMIDITY: 42}, ) await hass.async_block_till_done() assert acc.char_target_humidity.value == 42.0 assert acc.char_current_humidifier_dehumidifier.value == 0 assert acc.char_target_humidifier_dehumidifier.value == 2 assert acc.char_active.value == 0 # Set from HomeKit call_set_humidity = async_mock_service(hass, DOMAIN, SERVICE_SET_HUMIDITY) char_target_humidity_iid = acc.char_target_humidity.to_HAP()[HAP_REPR_IID] hk_driver.set_characteristics( { HAP_REPR_CHARS: [ { HAP_REPR_AID: acc.aid, HAP_REPR_IID: char_target_humidity_iid, HAP_REPR_VALUE: 39.0, }, ] }, "mock_addr", ) await hass.async_block_till_done() assert len(call_set_humidity) == 1 assert call_set_humidity[0].data[ATTR_ENTITY_ID] == entity_id assert call_set_humidity[0].data[ATTR_HUMIDITY] == 39.0 assert acc.char_target_humidity.value == 39.0 assert len(events) == 1 assert ( events[-1].data[ATTR_VALUE] == "RelativeHumidityDehumidifierThreshold to 39.0%" ) async def test_hygrostat_power_state(hass, hk_driver, events): """Test if accessory and HA are updated accordingly.""" entity_id = "humidifier.test" hass.states.async_set( entity_id, STATE_ON, {ATTR_HUMIDITY: 43}, ) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, None ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.char_current_humidifier_dehumidifier.value == 2 assert acc.char_target_humidifier_dehumidifier.value == 1 assert acc.char_active.value == 1 hass.states.async_set( entity_id, STATE_OFF, {ATTR_HUMIDITY: 43}, ) await hass.async_block_till_done() assert acc.char_current_humidifier_dehumidifier.value == 0 assert acc.char_target_humidifier_dehumidifier.value == 1 assert acc.char_active.value == 0 # Set from HomeKit call_turn_on = async_mock_service(hass, DOMAIN, SERVICE_TURN_ON) char_active_iid = acc.char_active.to_HAP()[HAP_REPR_IID] hk_driver.set_characteristics( { HAP_REPR_CHARS: [ { HAP_REPR_AID: acc.aid, HAP_REPR_IID: char_active_iid, HAP_REPR_VALUE: 1, }, ] }, "mock_addr", ) await hass.async_block_till_done() assert len(call_turn_on) == 1 assert call_turn_on[0].data[ATTR_ENTITY_ID] == entity_id assert acc.char_active.value == 1 assert len(events) == 1 assert events[-1].data[ATTR_VALUE] == "Active to 1" call_turn_off = async_mock_service(hass, DOMAIN, SERVICE_TURN_OFF) hk_driver.set_characteristics( { HAP_REPR_CHARS: [ { HAP_REPR_AID: acc.aid, HAP_REPR_IID: char_active_iid, HAP_REPR_VALUE: 0, }, ] }, "mock_addr", ) await hass.async_block_till_done() assert len(call_turn_off) == 1 assert call_turn_off[0].data[ATTR_ENTITY_ID] == entity_id assert acc.char_active.value == 0 assert len(events) == 2 assert events[-1].data[ATTR_VALUE] == "Active to 0" async def test_hygrostat_get_humidity_range(hass, hk_driver): """Test if humidity range is evaluated correctly.""" entity_id = "humidifier.test" hass.states.async_set( entity_id, STATE_OFF, {ATTR_MIN_HUMIDITY: 40, ATTR_MAX_HUMIDITY: 45} ) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, None ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.char_target_humidity.properties[PROP_MAX_VALUE] == 45 assert acc.char_target_humidity.properties[PROP_MIN_VALUE] == 40 async def test_humidifier_with_linked_humidity_sensor(hass, hk_driver): """Test a humidifier with a linked humidity sensor can update.""" humidity_sensor_entity_id = "sensor.bedroom_humidity" hass.states.async_set( humidity_sensor_entity_id, "42.0", { ATTR_DEVICE_CLASS: DEVICE_CLASS_HUMIDITY, ATTR_UNIT_OF_MEASUREMENT: PERCENTAGE, }, ) await hass.async_block_till_done() entity_id = "humidifier.test" hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, {CONF_LINKED_HUMIDITY_SENSOR: humidity_sensor_entity_id}, ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.char_current_humidity.value == 42.0 hass.states.async_set( humidity_sensor_entity_id, "43.0", { ATTR_DEVICE_CLASS: DEVICE_CLASS_HUMIDITY, ATTR_UNIT_OF_MEASUREMENT: PERCENTAGE, }, ) await hass.async_block_till_done() assert acc.char_current_humidity.value == 43.0 hass.states.async_set( humidity_sensor_entity_id, STATE_UNAVAILABLE, { ATTR_DEVICE_CLASS: DEVICE_CLASS_HUMIDITY, ATTR_UNIT_OF_MEASUREMENT: PERCENTAGE, }, ) await hass.async_block_till_done() assert acc.char_current_humidity.value == 43.0 hass.states.async_remove(humidity_sensor_entity_id) await hass.async_block_till_done() assert acc.char_current_humidity.value == 43.0 async def test_humidifier_with_a_missing_linked_humidity_sensor(hass, hk_driver): """Test a humidifier with a configured linked motion sensor that is missing.""" humidity_sensor_entity_id = "sensor.bedroom_humidity" entity_id = "humidifier.test" hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, {CONF_LINKED_HUMIDITY_SENSOR: humidity_sensor_entity_id}, ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.char_current_humidity.value == 0 async def test_humidifier_as_dehumidifier(hass, hk_driver, events, caplog): """Test an invalid char_target_humidifier_dehumidifier from HomeKit.""" entity_id = "humidifier.test" hass.states.async_set(entity_id, STATE_OFF) await hass.async_block_till_done() acc = HumidifierDehumidifier( hass, hk_driver, "HumidifierDehumidifier", entity_id, 1, None ) hk_driver.add_accessory(acc) await acc.run() await hass.async_block_till_done() assert acc.char_target_humidifier_dehumidifier.value == 1 # Set from HomeKit char_target_humidifier_dehumidifier_iid = ( acc.char_target_humidifier_dehumidifier.to_HAP()[HAP_REPR_IID] ) hk_driver.set_characteristics( { HAP_REPR_CHARS: [ { HAP_REPR_AID: acc.aid, HAP_REPR_IID: char_target_humidifier_dehumidifier_iid, HAP_REPR_VALUE: 0, }, ] }, "mock_addr", ) await hass.async_block_till_done() assert "TargetHumidifierDehumidifierState is not supported" in caplog.text assert len(events) == 0
py
1a301e3a89ed6eb0361d8d6bfa049bf53d80761e
#!/usr/bin/python # -*- coding: utf8 -*- import os import logging import sys import argparse sys.path.append("../core") from qgis_project_substitute import substitute_project from processor import Processor def argparser_prepare(): class PrettyFormatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter): max_help_position = 35 parser = argparse.ArgumentParser(description='OSMTram process', formatter_class=PrettyFormatter) parser.add_argument('--prune',dest='prune', required=False, action='store_true', help='Clear temporary folder') parser.add_argument('--skip-osmupdate',dest='skip_osmupdate', required=False, action='store_true') parser.add_argument('--workdir',dest='WORKDIR', required=True) parser.epilog = \ '''Samples: %(prog)s ''' \ % {'prog': parser.prog} return parser dump_url = 'http://download.geofabrik.de/europe/latvia-latest.osm.pbf' parser = argparser_prepare() args = parser.parse_args() WORKDIR=args.WORKDIR logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)-8s %(message)s',datefmt='%Y-%m-%d %H:%M:%S') logger = logging.getLogger(__name__) logger.info('Start') processor = Processor() processor.process_sheets('latvia.geojson',WORKDIR,dump_url,dump_name='latvia') #,attribute_filter='''"name_ru"= 'Лиепая' and "type"='tram' '''
py
1a301e9b700cc4f1eb12f4e8395c89aa84d99dfa
import numpy as np from src.util import Util, Article class Answer: """Answer questions based on the initialized article.""" def __init__(self, article): """ Create a new instance of the Answer class. Args: article: An instance of the Article class """ self.article = article def answer(self, question, return_score=False): """ Answer the given question. Args: question: Question string Returns: Answer to question as string """ u = Util() question_embedding = u.embeddings([question])[0] sentences_list = [] for paragraph in self.article.sentences: paragraph_text = [s.text for s in paragraph] sentences_list += paragraph_text sentences_embeddings = u.embeddings(sentences_list) distances = [] for i, embedding in enumerate(sentences_embeddings): diffs = np.inner(question_embedding, embedding) dist = diffs distances.append((dist, sentences_list[i])) distances.sort(key=lambda x: x[0], reverse=True) most_similar_sentence = distances[0][1] most_similar_score = distances[0][0] if return_score: return (most_similar_sentence, most_similar_score) return most_similar_sentence if __name__ == "__main__": u = Util() art = Article(u.load_txt_article("../articles/Development_data/set4/set4/a1.txt")) a = Answer(art) q = "Who studied the stars of the southern hemisphere from 1750 until 1754 from Cape of Good Hope?" print(a.answer(q)) # Who is a product of a revision of the Old Babylonian system in later Neo-Babylonian astronomy 6th century BC? # Who interpreted the creatures appearing in the books of Ezekiel (and thence in Revelation) as the middle signs of the four quarters of the Zodiac? # Who studied the stars of the southern hemisphere from 1750 until 1754 from Cape of Good Hope? # Who aided the IAU (International Astronomical Union) in dividing the celestial sphere into 88 official constellations? # Who is a product of a revision of the Old Babylonian system in later Neo-Babylonian astronomy 6th century BC?
py
1a301f062ea2131e6769a035818f1cba3b2d8e5b
from math import ceil from hashlib import md5 from pecan import expose, request, abort, response, redirect from pecan.secure import secure from pecan.ext.wtforms import with_form from sqlalchemy import select, and_, or_, asc, desc, func, case, literal from draughtcraft import model from draughtcraft.lib.beerxml import export from draughtcraft.lib.forms.recipes.browse import RecipeSearchForm from create import RecipeCreationController from builder import RecipeBuilderController class SlugController(object): def __init__(self, slug): self.slug = slug # Make sure the provided slug is valid if not slug: redirect(request.context['recipe'].slugs[0].slug) if slug not in [slug.slug for slug in request.context['recipe'].slugs]: abort(404) @expose('recipes/builder/index.html') @expose('json', content_type='application/json') def index(self): recipe = request.context['recipe'] if recipe.state == "DRAFT": if recipe.author and recipe.author != request.context['user']: abort(404) if not recipe.author and recipe != request.context['trial_recipe']: abort(404) # Log a view for the recipe (if the viewer *is not* the author) if recipe.author != request.context['user'] and \ request.pecan.get('content_type') == 'application/json': model.RecipeView(recipe=recipe) return dict( recipe=recipe, editable=False ) @expose(content_type='application/xml') def xml(self): recipe = request.context['recipe'] if recipe.state == "DRAFT": if recipe.author and recipe.author != request.context['user']: abort(404) response.headers['Content-Disposition'] = \ 'attachment; filename="%s.xml"' % self.slug return export.to_xml([request.context['recipe']]) @expose(generic=True) def draft(self): abort(405) @draft.when(method="POST") def do_draft(self): source = request.context['recipe'] if source.author is None or source.author != request.context['user']: abort(401) if source.state != "PUBLISHED": abort(401) draft = source.draft() draft.flush() redirect("%sbuilder" % draft.url()) @expose(generic=True) def copy(self): abort(405) @copy.when(method="POST") def do_copy(self): source = request.context['recipe'] if request.context['user'] is None: redirect("/signup") if source.author is None: abort(401) diff_user = source.author != request.context['user'] name = source.name if diff_user else "%s (Duplicate)" % source.name copy = source.duplicate({ 'name': name, 'author': request.context['user'] }) if diff_user: copy.copied_from = source redirect("/") @expose(generic=True) def delete(self): abort(405) @delete.when(method="POST") def do_delete(self): source = request.context['recipe'] if source.author is None or source.author != request.context['user']: abort(401) source.delete() redirect("/") builder = secure( RecipeBuilderController(), RecipeBuilderController.check_permissions ) class RecipeController(object): @expose() def _lookup(self, slug, *remainder): return SlugController(slug), remainder def __init__(self, recipeID): try: primary_key = int(str(recipeID), 16) except ValueError: abort(404) recipe = model.Recipe.get(primary_key) if recipe is None: abort(404) request.context['recipe'] = recipe class RecipesController(object): @expose() def _lookup(self, recipeID, *remainder): return RecipeController(recipeID), remainder @expose('recipes/browse/index.html') def index(self): return dict( styles=model.Style.query.order_by(model.Style.name).all() ) @expose(template='recipes/browse/list.html') @with_form(RecipeSearchForm, validate_safe=True) def recipes(self, **kw): if request.pecan['form'].errors: abort(400) perpage = 25.0 offset = int(perpage * (kw['page'] - 1)) views = func.count(model.RecipeView.id).label('views') username = func.lower(model.User.username).label('username') sortable_type = case([ (model.Recipe.type == 'MASH', literal('All Grain')), (model.Recipe.type == 'EXTRACT', literal('Extract')), ( model.Recipe.type == 'EXTRACTSTEEP', literal('Extract w/ Steeped Grains') ), (model.Recipe.type == 'MINIMASH', literal('Mini-Mash')), ]).label('type') # map of columns column_map = dict( type=(sortable_type,), srm=(model.Recipe._srm,), name=(model.Recipe.name,), author=(username,), style=(model.Style.name,), last_updated=(model.Recipe.last_updated,), views=(views,) ) # determine the sorting direction and column order_column = column_map.get(kw['order_by']) order_direction = dict( ASC=asc, DESC=desc ).get(kw['direction']) where = [ model.Recipe.state == 'PUBLISHED' ] # If applicable, filter by style if kw['style']: query = where.append(model.Recipe.style == kw['style']) # If applicable, filter by type (MASH, etc...) where.append(or_( model.Recipe.id is None, model.Recipe.type == 'MASH' if kw['mash'] else None, model.Recipe.type == 'MINIMASH' if kw['minimash'] else None, model.Recipe.type.in_(('EXTRACTSTEEP', 'EXTRACT')) if kw['extract'] else None, )) # If applicable, filter by color if kw['color']: start, end = { 'light': (0, 8), 'amber': (8, 18), 'brown': (16, 25), 'dark': (25, 5000) }.get(kw['color']) where.append(and_( model.Recipe._srm >= start, model.Recipe._srm <= end, )) # Join the `recipe`, `recipeview`, `user`, and `style` tables from_obj = model.Recipe.table.outerjoin( model.RecipeView.table, onclause=model.RecipeView.recipe_id == model.Recipe.id ).outerjoin( model.Style.table, onclause=model.Recipe.style_id == model.Style.id ).join( model.User.table, onclause=model.Recipe.author_id == model.User.id ) username_full = model.User.username.label('username') email = model.User.email.label('email') style_name = model.Style.name.label('style_name') style_url = model.Style.url.label('style_url') query = select( [ model.Recipe.id, model.Recipe.name, model.Recipe._srm, username_full, email, sortable_type, style_name, style_url, model.Recipe.last_updated, views ], and_(*where), from_obj=[from_obj], group_by=model.Recipe.id ) total = select( [func.count(model.Recipe.id)], and_(*where) ).execute().fetchone()[0] if views not in order_column: query = query.group_by(*order_column) query = query.group_by(username_full) query = query.group_by(email) query = query.group_by(style_name) query = query.group_by(style_url) recipes = query.order_by( *[order_direction(column) for column in order_column] ).offset( offset ).limit( perpage ).execute().fetchall() class RecipeProxy(object): def __init__(self, recipe): self.id, self.name, self._srm, self.username, self.email, self.printable_type, self.style_name, self.style_url, self.last_updated, self.views = recipe @property def metric_unit(self): return 'EBC' if request.context['metric'] is True else 'SRM' @property def color(self): if self.metric_unit is 'SRM': return self._srm round(self._srm * 1.97, 1) @property def gravatar(self): return 'https://www.gravatar.com/avatar/%s?d=https://draughtcraft.com/images/glass-square.png' % ( md5(self.email.strip().lower()).hexdigest() ) @property def url(self): return '/recipes/%s/' % (('%x' % self.id).lower()) return dict( pages=max(1, int(ceil(total / perpage))), current_page=kw['page'], offset=offset, perpage=perpage, total=total, order_by=kw['order_by'], direction=kw['direction'], recipes=map(RecipeProxy, recipes) ) create = RecipeCreationController()
py
1a301f14b2a1db234d1df5d719a51461f77c8d12
"""Data classes that are returned by functions within ``pymel.core`` A wrap of Maya's Vector, Point, Color, Matrix, TransformationMatrix, Quaternion, EulerRotation types """ import sys import math import copy import operator import colorsys import pymel.util as util import pymel.api as _api from pymel.util.arrays import * from pymel.util.arrays import _toCompOrArrayInstance import pymel.internal.factories as _factories # patch some Maya api classes that miss __iter__ to make them iterable / convertible to list def _patchMVector(): def __len__(self): """ Number of components in the Maya api Vector, ie 3 """ return 3 type.__setattr__(_api.MVector, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api Vector """ for i in xrange(len(self)): yield _api.MVector.__getitem__(self, i) type.__setattr__(_api.MVector, '__iter__', __iter__) def _patchMFloatVector(): def __len__(self): """ Number of components in the Maya api FloatVector, ie 3 """ return 3 type.__setattr__(_api.MFloatVector, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api FloatVector """ for i in xrange(len(self)): yield _api.MFloatVector.__getitem__(self, i) type.__setattr__(_api.MFloatVector, '__iter__', __iter__) def _patchMPoint(): def __len__(self): """ Number of components in the Maya api Point, ie 4 """ return 4 type.__setattr__(_api.MPoint, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api Point """ for i in xrange(len(self)): yield _api.MPoint.__getitem__(self, i) type.__setattr__(_api.MPoint, '__iter__', __iter__) def _patchMFloatPoint(): def __len__(self): """ Number of components in the Maya api FloatPoint, ie 4 """ return 4 type.__setattr__(_api.MFloatPoint, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api FloatPoint """ for i in xrange(len(self)): yield _api.MFloatPoint.__getitem__(self, i) type.__setattr__(_api.MFloatPoint, '__iter__', __iter__) def _patchMColor(): def __len__(self): """ Number of components in the Maya api Color, ie 4 """ return 4 type.__setattr__(_api.MColor, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api Color """ for i in xrange(len(self)): yield _api.MColor.__getitem__(self, i) type.__setattr__(_api.MColor, '__iter__', __iter__) def _patchMMatrix(): def __len__(self): """ Number of rows in the Maya api Matrix, ie 4. Not to be confused with the number of components (16) given by the size method """ return 4 type.__setattr__(_api.MMatrix, '__len__', __len__) def __iter__(self): """ Iterates on all 4 rows of a Maya api Matrix """ for r in xrange(4): yield Array([_api.MScriptUtil.getDoubleArrayItem(_api.MMatrix.__getitem__(self, r), c) for c in xrange(4)]) type.__setattr__(_api.MMatrix, '__iter__', __iter__) def _patchMFloatMatrix(): def __len__(self): """ Number of rows in the Maya api FloatMatrix, ie 4. Not to be confused with the number of components (16) given by the size method """ return 4 type.__setattr__(_api.MFloatMatrix, '__len__', __len__) def __iter__(self): """ Iterates on all 4 rows of a Maya api FloatMatrix """ for r in xrange(4): yield Array([_api.MScriptUtil.getFloatArrayItem(_api.MFloatMatrix.__getitem__(self, r), c) for c in xrange(4)]) type.__setattr__(_api.MFloatMatrix, '__iter__', __iter__) def _patchMTransformationMatrix(): def __len__(self): """ Number of rows in the Maya api Matrix, ie 4. Not to be confused with the number of components (16) given by the size method """ return 4 type.__setattr__(_api.MTransformationMatrix, '__len__', __len__) def __iter__(self): """ Iterates on all 4 rows of a Maya api TransformationMatrix """ return self.asMatrix().__iter__() type.__setattr__(_api.MTransformationMatrix, '__iter__', __iter__) def _patchMQuaternion(): def __len__(self): """ Number of components in the Maya api Quaternion, ie 4 """ return 4 type.__setattr__(_api.MQuaternion, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api Quaternion """ for i in xrange(len(self)): yield _api.MQuaternion.__getitem__(self, i) type.__setattr__(_api.MQuaternion, '__iter__', __iter__) def _patchMEulerRotation(): def __len__(self): """ Number of components in the Maya api EulerRotation, ie 3 """ return 3 type.__setattr__(_api.MEulerRotation, '__len__', __len__) def __iter__(self): """ Iterates on all components of a Maya api EulerRotation """ for i in xrange(len(self)): yield _api.MEulerRotation.__getitem__(self, i) type.__setattr__(_api.MEulerRotation, '__iter__', __iter__) _patchMVector() _patchMFloatVector() _patchMPoint() _patchMFloatPoint() _patchMColor() _patchMMatrix() _patchMFloatMatrix() _patchMTransformationMatrix() _patchMQuaternion() _patchMEulerRotation() # the meta class of metaMayaWrapper class MetaMayaArrayTypeWrapper(_factories.MetaMayaTypeWrapper): """ A metaclass to wrap Maya array type classes such as Vector, Matrix """ def __new__(mcl, classname, bases, classdict): """ Create a new wrapping class for a Maya api type, such as Vector or Matrix """ if 'shape' in classdict: # fixed shape means also fixed ndim and size shape = classdict['shape'] ndim = len(shape) size = reduce(operator.mul, shape, 1) if 'ndim' not in classdict: classdict['ndim'] = ndim elif classdict['ndim'] != ndim: raise ValueError, "class %s shape definition %s and number of dimensions definition %s do not match" % (classname, shape, ndim) if 'size' not in classdict: classdict['size'] = size elif classdict['size'] != size: raise ValueError, "class %s shape definition %s and size definition %s do not match" % (classname, shape, size) # create the new class newcls = super(MetaMayaArrayTypeWrapper, mcl).__new__(mcl, classname, bases, classdict) try: apicls = newcls.apicls except: apicls = None try: shape = newcls.shape except: shape = None try: cnames = newcls.cnames except: cnames = () if shape is not None: # fixed shape means also fixed ndim and size ndim = len(shape) size = reduce(operator.mul, shape, 1) if cnames: # definition for component names type.__setattr__(newcls, 'cnames', cnames) subsizes = [reduce(operator.mul, shape[i + 1:], 1) for i in xrange(ndim)] for index, compname in enumerate(cnames): coords = [] for i in xrange(ndim): c = index // subsizes[i] index -= c * subsizes[i] coords.append(c) if len(coords) == 1: coords = coords[0] else: coords = tuple(coords) # def _get(self): # return self.__getitem__(coords) # _get.__name__ = '_get_' + compname # # # FIXME : the set property does not do anything in python 2.4 !!! It doesn't even get called. # # def _set(self, val): # self.__setitem__(coords, val) # # _set.__name__ = '_set_' + compname # # p = property( _get, _set, None, 'set and get %s component' % compname ) cmd = "property( lambda self: self.__getitem__(%s) , lambda self, val: self.__setitem__(%s,val) )" % (coords, coords) p = eval(cmd) if compname not in classdict: type.__setattr__(newcls, compname, p) else: raise AttributeError, "component name %s clashes with class method %r" % (compname, classdict[compname]) elif cnames: raise ValueError, "can only define component names for classes with a fixed shape/size" # constants for shape, ndim, size if shape is not None: type.__setattr__(newcls, 'shape', shape) if ndim is not None: type.__setattr__(newcls, 'ndim', ndim) if size is not None: type.__setattr__(newcls, 'size', size) #__slots__ = ['_data', '_shape', '_size'] # add component names to read-only list readonly = newcls.__readonly__ if hasattr(newcls, 'shape'): readonly['shape'] = None if hasattr(newcls, 'ndim'): readonly['ndim'] = None if hasattr(newcls, 'size'): readonly['size'] = None if 'cnames' not in readonly: readonly['cnames'] = None type.__setattr__(newcls, '__readonly__', readonly) # print "created class", newcls # print "bases", newcls.__bases__ # print "readonly", newcls.__readonly__ # print "slots", newcls.__slots__ return newcls # generic math function that can operate on Arrays herited from arrays # (min, max, sum, prod...) # Functions that work on vectors will now be inherited from Array and properly defer # to the class methods class Vector(VectorN): """ A 3 dimensional vector class that wraps Maya's api Vector class >>> from pymel.all import * >>> import pymel.core.datatypes as dt >>> >>> v = dt.Vector(1, 2, 3) >>> w = dt.Vector(x=1, z=2) >>> z = dt.Vector( dt.Vector.xAxis, z=1) >>> v = dt.Vector(1, 2, 3, unit='meters') >>> print v [1.0, 2.0, 3.0] """ __metaclass__ = MetaMayaArrayTypeWrapper __slots__ = () # class specific info apicls = _api.MVector cnames = ('x', 'y', 'z') shape = (3,) unit = None def __new__(cls, *args, **kwargs): shape = kwargs.get('shape', None) ndim = kwargs.get('ndim', None) size = kwargs.get('size', None) # will default to class constant shape = (3,), so it's just an error check to catch invalid shapes, # as no other option is actually possible on Vector, but this method could be used to allow wrapping # of Maya array classes that can have a variable number of elements shape, ndim, size = cls._expandshape(shape, ndim, size) new = cls.apicls.__new__(cls) cls.apicls.__init__(new) return new def __init__(self, *args, **kwargs): """ __init__ method, valid for Vector, Point and Color classes """ cls = self.__class__ if args: # allow both forms for arguments if len(args) == 1 and hasattr(args[0], '__iter__'): args = args[0] # shortcut when a direct api init is possible try: self.assign(args) except: # special exception to the rule that you cannot drop data in Arrays __init__ # to allow all conversion from Vector derived classes (MPoint, MColor) to a base class # special case for MPoint to cartesianize if necessary # note : we may want to premultiply MColor by the alpha in a similar way if isinstance(args, _api.MPoint) and args.w != 1.0: args = copy.deepcopy(args).cartesianize() if isinstance(args, _api.MColor) and args.a != 1.0: # note : we may want to premultiply Color by the alpha in a similar way pass if isinstance(args, _api.MVector) or isinstance(args, _api.MPoint) or isinstance(args, _api.MColor): args = tuple(args) if len(args) > len(self): args = args[slice(self.shape[0])] super(Vector, self).__init__(*args) if hasattr(cls, 'cnames') and len(set(cls.cnames) & set(kwargs)): # can also use the form <componentname>=<number> l = list(self.flat) setcomp = False for i, c in enumerate(cls.cnames): if c in kwargs: if float(l[i]) != float(kwargs[c]): l[i] = float(kwargs[c]) setcomp = True if setcomp: try: self.assign(l) except: msg = ", ".join(map(lambda x, y: x + "=<" + util.clsname(y) + ">", cls.cnames, l)) raise TypeError, "in %s(%s), at least one of the components is of an invalid type, check help(%s) " % (cls.__name__, msg, cls.__name__) # units handling self.unit = kwargs.get('unit', None) if self.unit is not None: self.assign([Distance(x, self.unit) for x in self]) def __repr__(self): if hasattr(self, 'unit') and self.unit: return "dt.%s(%s, unit='%s')" % (self.__class__.__name__, str(self), self.unit) else: return "dt.%s(%s)" % (self.__class__.__name__, str(self)) # for compatibility with base classes Array that actually hold a nested list in their _data attribute # here, there is no _data attribute as we subclass _api.MVector directly, thus v.data is v # for wraps def _getdata(self): return self.apicls(self) def _setdata(self, value): self.assign(value) def _deldata(self): if hasattr(self.apicls, 'clear'): self.apicls.clear(self) else: raise TypeError, "cannot clear stored elements of %s" % (self.__class__.__name__) data = property(_getdata, _setdata, _deldata, "The Vector/FloatVector/Point/FloatPoint/Color data") # overloads for assign and get though standard way should be to use the data property # to access stored values def assign(self, value): """ Wrap the Vector api assign method """ # don't accept instances as assign works on exact types if type(value) != self.apicls and type(value) != type(self): if not hasattr(value, '__iter__'): value = (value,) value = self.apicls(*value) self.apicls.assign(self, value) return self # API get, actually not faster than pulling self[i] for such a short structure def get(self): """ Wrap the Vector api get method """ # need to keep a ref to the MScriptUtil alive until # all pointers aren't needed... ms = _api.MScriptUtil() l = (0,) * self.size ms.createFromDouble(*l) p = ms.asDoublePtr() self.apicls.get(self, p) return tuple([ms.getDoubleArrayItem(p, i) for i in xrange(self.size)]) def __len__(self): """ Number of components in the Vector instance, 3 for Vector, 4 for Point and Color """ return self.apicls.__len__(self) # __getitem__ / __setitem__ override # faster to override __getitem__ cause we know Vector only has one dimension def __getitem__(self, i): """ Get component i value from self """ if hasattr(i, '__iter__'): i = list(i) if len(i) == 1: i = i[0] else: raise IndexError, "class %s instance %s has only %s dimension(s), index %s is out of bounds" % (util.clsname(self), self, self.ndim, i) if isinstance(i, slice): return _toCompOrArrayInstance(list(self)[i], VectorN) try: return _toCompOrArrayInstance(list(self)[i], VectorN) except: raise IndexError, "class %s instance %s is of size %s, index %s is out of bounds" % (util.clsname(self), self, self.size, i) else: if i < 0: i = self.size + i if i < self.size and not i < 0: if hasattr(self.apicls, '__getitem__'): return self.apicls.__getitem__(self, i) else: return list(self)[i] else: raise IndexError, "class %s instance %s is of size %s, index %s is out of bounds" % (util.clsname(self), self, self.size, i) # as _api.Vector has no __setitem__ method, so need to reassign the whole Vector def __setitem__(self, i, a): """ Set component i value on self """ v = VectorN(self) v.__setitem__(i, a) self.assign(v) # iterator override # TODO : support for optional __iter__ arguments def __iter__(self, *args, **kwargs): """ Iterate on the api components """ return self.apicls.__iter__(self.data) def __contains__(self, value): """ True if at least one of the vector components is equal to the argument """ return value in self.__iter__() # common operators without an api equivalent are herited from VectorN # operators using the Maya API when applicable, but that can delegate to VectorN def __eq__(self, other): """ u.__eq__(v) <==> u == v Equivalence test """ try: return bool(self.apicls.__eq__(self, other)) except Exception: return bool(super(Vector, self).__eq__(other)) def __ne__(self, other): """ u.__ne__(v) <==> u != v Equivalence test """ return (not self.__eq__(other)) def __neg__(self): """ u.__neg__() <==> -u The unary minus operator. Negates the value of each of the components of u """ return self.__class__(self.apicls.__neg__(self)) def __add__(self, other): """ u.__add__(v) <==> u+v Returns the result of the addition of u and v if v is convertible to a VectorN (element-wise addition), adds v to every component of u if v is a scalar """ try: return self.__class__._convert(self.apicls.__add__(self, other)) except Exception: return self.__class__._convert(super(Vector, self).__add__(other)) def __radd__(self, other): """ u.__radd__(v) <==> v+u Returns the result of the addition of u and v if v is convertible to a VectorN (element-wise addition), adds v to every component of u if v is a scalar """ try: return self.__class__._convert(self.apicls.__radd__(self, other)) except Exception: return self.__class__._convert(super(Vector, self).__radd__(other)) def __iadd__(self, other): """ u.__iadd__(v) <==> u += v In place addition of u and v, see __add__ """ try: return self.__class__(self.__add__(other)) except Exception: return NotImplemented def __sub__(self, other): """ u.__sub__(v) <==> u-v Returns the result of the substraction of v from u if v is convertible to a VectorN (element-wise substration), substract v to every component of u if v is a scalar """ try: return self.__class__._convert(self.apicls.__sub__(self, other)) except Exception: return self.__class__._convert(super(Vector, self).__sub__(other)) def __rsub__(self, other): """ u.__rsub__(v) <==> v-u Returns the result of the substraction of u from v if v is convertible to a VectorN (element-wise substration), replace every component c of u by v-c if v is a scalar """ try: return self.__class__._convert(self.apicls.__rsub__(self, other)) except Exception: return self.__class__._convert(super(Vector, self).__rsub__(other)) def __isub__(self, other): """ u.__isub__(v) <==> u -= v In place substraction of u and v, see __sub__ """ try: return self.__class__(self.__sub__(other)) except Exception: return NotImplemented def __div__(self, other): """ u.__div__(v) <==> u/v Returns the result of the division of u by v if v is convertible to a VectorN (element-wise division), divide every component of u by v if v is a scalar """ try: return self.__class__._convert(self.apicls.__div__(self, other)) except Exception: return self.__class__._convert(super(Vector, self).__div__(other)) def __rdiv__(self, other): """ u.__rdiv__(v) <==> v/u Returns the result of of the division of v by u if v is convertible to a VectorN (element-wise division), invert every component of u and multiply it by v if v is a scalar """ try: return self.__class__._convert(self.apicls.__rdiv__(self, other)) except Exception: return self.__class__._convert(super(Vector, self).__rdiv__(other)) def __idiv__(self, other): """ u.__idiv__(v) <==> u /= v In place division of u by v, see __div__ """ try: return self.__class__(self.__div__(other)) except Exception: return NotImplemented # action depends on second object type def __mul__(self, other): """ u.__mul__(v) <==> u*v The multiply '*' operator is mapped to the dot product when both objects are Vectors, to the transformation of u by matrix v when v is a MatrixN, to element wise multiplication when v is a sequence, and multiplies each component of u by v when v is a numeric type. """ try: res = self.apicls.__mul__(self, other) assert res is not NotImplemented except Exception: res = super(Vector, self).__mul__(other) if util.isNumeric(res) or res is NotImplemented: return res else: return self.__class__._convert(res) def __rmul__(self, other): """ u.__rmul__(v) <==> v*u The multiply '*' operator is mapped to the dot product when both objects are Vectors, to the left side multiplication (pre-multiplication) of u by matrix v when v is a MatrixN, to element wise multiplication when v is a sequence, and multiplies each component of u by v when v is a numeric type. """ try: res = self.apicls.__rmul__(self, other) except: res = super(Vector, self).__rmul__(other) if util.isNumeric(res): return res else: return self.__class__._convert(res) def __imul__(self, other): """ u.__imul__(v) <==> u *= v Valid for Vector * Matrix multiplication, in place transformation of u by Matrix v or Vector by scalar multiplication only """ try: return self.__class__(self.__mul__(other)) except: return NotImplemented # special operators def __xor__(self, other): """ u.__xor__(v) <==> u^v Defines the cross product operator between two 3D vectors, if v is a MatrixN, u^v is equivalent to u.transformAsNormal(v) """ if isinstance(other, VectorN): return self.cross(other) elif isinstance(other, MatrixN): return self.transformAsNormal(other) else: return NotImplemented def __ixor__(self, other): """ u.__xor__(v) <==> u^=v Inplace cross product or transformation by inverse transpose of v is v is a MatrixN """ try: return self.__class__(self.__xor__(other)) except: return NotImplemented # wrap of other API MVector methods, we use the api method if possible and delegate to Vector else def isEquivalent(self, other, tol=None): """ Returns true if both arguments considered as Vector are equal within the specified tolerance """ if tol is None: tol = _api.MVector_kTol try: nself, nother = coerce(self, other) except: return False if isinstance(nself, Vector): return bool(nself.apicls.isEquivalent(nself, nother, tol)) else: return bool(super(Vector, nself).isEquivalent(nother, tol)) def isParallel(self, other, tol=None): """ Returns true if both arguments considered as Vector are parallel within the specified tolerance """ if tol is None: tol = _api.MVector_kTol try: return bool(self.apicls.isParallel(Vector(self), Vector(other), tol)) except: return super(Vector, self).isParallel(other, tol) def distanceTo(self, other): try: return self.apicls.distanceTo(Point(self), Point(other)) except: return super(Vector, self).dist(other) def length(self): """ Return the length of the vector """ return Vector.apicls.length(Vector(self)) def sqlength(self): """ Return the square length of the vector """ return self.dot(self) def normal(self): """ Return a normalized copy of self """ return self.__class__(Vector.apicls.normal(Vector(self))) def normalize(self): """ Performs an in place normalization of self """ if type(self) is Vector: Vector.apicls.normalize(self) else: self.assign(self.normal()) # additional api methods that work on Vector only, and don't have an equivalent on VectorN def rotateTo(self, other): """ u.rotateTo(v) --> Quaternion Returns the Quaternion that represents the rotation of the Vector u into the Vector v around their mutually perpendicular axis. It amounts to rotate u by angle(u, v) around axis(u, v) """ if isinstance(other, Vector): return Quaternion(Vector.apicls.rotateTo(Vector(self), Vector(other))) else: raise TypeError, "%r is not a Vector instance" % other def rotateBy(self, *args): """ u.rotateBy(*args) --> Vector Returns the result of rotating u by the specified arguments. There are several ways the rotation can be specified: args is a tuple of one Matrix, TransformationMatrix, Quaternion, EulerRotation arg is tuple of 4 arguments, 3 rotation value and an optionnal rotation order args is a tuple of one Vector, the axis and one float, the angle to rotate around that axis in radians""" if args: if len(args) == 2 and isinstance(args[0], Vector): return self.__class__(self.apicls.rotateBy(self, Quaternion(Vector(args[0]), float(args[1])))) elif len(args) == 1 and isinstance(args[0], Matrix): return self.__class__(self.apicls.rotateBy(self, args[0].rotate)) else: return self.__class__(self.apicls.rotateBy(self, EulerRotation(unit='radians', *args))) else: return self # def asUnit(self, unit) : # #kUnit = Distance.kUnit(unit) # return self.__class__( [ Distance(x).asUnit(unit) for x in self ] ) # # def asUnit(self) : # return self.asUnit(self.unit) # # def asUIUnit()nits()self) : # return self.asUnit(Distance.getUIUnit()) # # def asInternalUnit(self) : # return self.asUnit(Distance.getInternalUnit()) # # def asMillimeter(self) : # return self.asUnit('millimeter') # def asCentimeters(self) : # return self.asUnit('centimeters') # def asKilometers(self) : # return self.asUnit('kilometers') # def asMeters(self) : # return self.asUnit('meters') # # def asInches(self) : # return self.asUnit('inches') # def asFeet(self) : # return self.asUnit('feet') # def asYards(self) : # return self.asUnit('yards') # def asMiles(self) : # return self.asUnit('miles') # additional api methods that work on Vector only, but can also be delegated to VectorN def transformAsNormal(self, other): """ Returns the vector transformed by the matrix as a normal Normal vectors are not transformed in the same way as position vectors or points. If this vector is treated as a normal vector then it needs to be transformed by post multiplying it by the inverse transpose of the transformation matrix. This method will apply the proper transformation to the vector as if it were a normal. """ if isinstance(other, Matrix): return self.__class__._convert(Vector.apicls.transformAsNormal(Vector(self), Matrix(other))) else: return self.__class__._convert(super(Vector, self).transformAsNormal(other)) def dot(self, other): """ dot product of two vectors """ if isinstance(other, Vector): return Vector.apicls.__mul__(Vector(self), Vector(other)) else: return super(Vector, self).dot(other) def cross(self, other): """ cross product, only defined for two 3D vectors """ if isinstance(other, Vector): return self.__class__._convert(Vector.apicls.__xor__(Vector(self), Vector(other))) else: return self.__class__._convert(super(Vector, self).cross(other)) def axis(self, other, normalize=False): """ u.axis(v) <==> angle(u, v) --> Vector Returns the axis of rotation from u to v as the vector n = u ^ v if the normalize keyword argument is set to True, n is also normalized """ if isinstance(other, Vector): if normalize: return self.__class__._convert(Vector.apicls.__xor__(Vector(self), Vector(other)).normal()) else: return self.__class__._convert(Vector.apicls.__xor__(Vector(self), Vector(other))) else: return self.__class__._convert(super(Vector, self).axis(other, normalize)) def angle(self, other): """ u.angle(v) <==> angle(u, v) --> float Returns the angle (in radians) between the two vectors u and v Note that this angle is not signed, use axis to know the direction of the rotation """ if isinstance(other, Vector): return Vector.apicls.angle(Vector(self), Vector(other)) else: return super(Vector, self).angle(other) # methods without an api equivalent # cotan on MVectors only takes 2 arguments def cotan(self, other): """ u.cotan(v) <==> cotan(u, v) --> float : cotangent of the a, b angle, a and b should be MVectors""" return VectorN.cotan(self, other) # rest derived from VectorN class class FloatVector(Vector): """ A 3 dimensional vector class that wraps Maya's api FloatVector class, It behaves identically to Vector, but it also derives from api's FloatVector to keep api methods happy """ apicls = _api.MFloatVector # Point specific functions def planar(p, *args, **kwargs): """ planar(p[, q, r, s (...), tol=tolerance]) --> bool Returns True if all provided MPoints are planar within given tolerance """ if not isinstance(p, Point): try: p = Point(p) except: raise TypeError, "%s is not convertible to type Point, planar is only defined for n MPoints" % (util.clsname(p)) return p.planar(*args, **kwargs) def center(p, *args): """ center(p[, q, r, s (...)]) --> Point Returns the Point that is the center of p, q, r, s (...) """ if not isinstance(p, Point): try: p = Point(p) except: raise TypeError, "%s is not convertible to type Point, center is only defined for n MPoints" % (util.clsname(p)) return p.center(*args) def bWeights(p, *args): """ bWeights(p[, p0, p1, (...), pn]) --> tuple Returns a tuple of (n0, n1, ...) normalized barycentric weights so that n0*p0 + n1*p1 + ... = p """ if not isinstance(p, Point): try: p = Point(p) except: raise TypeError, "%s is not convertible to type Point, bWeights is only defined for n MPoints" % (util.clsname(p)) return p.bWeights(*args) class Point(Vector): """ A 4 dimensional vector class that wraps Maya's api Point class, """ apicls = _api.MPoint cnames = ('x', 'y', 'z', 'w') shape = (4,) def __melobject__(self): """Special method for returning a mel-friendly representation. In this case, a cartesian 3D point """ return self.cartesian() # # base methods are inherited from Vector # we only show the x, y, z components on an iter def __len__(self): l = len(self.data) if self.w == 1.0: l -= 1 return l def __iter__(self, *args, **kwargs): """ Iterate on the api components """ l = len(self) for c in list(self.apicls.__iter__(self.data))[:l]: yield c # modified operators, when adding 2 Point consider second as Vector def __add__(self, other): """ u.__add__(v) <==> u+v Returns the result of the addition of u and v if v is convertible to a VectorN (element-wise addition), adds v to every component of u if v is a scalar """ # prb with coerce when delegating to VectorN, either redefine coerce for Point or other fix # if isinstance(other, Point) : # other = Vector(other) try: other = Vector(other) except: pass try: return self.__class__._convert(self.apicls.__add__(self, other)) except: return self.__class__._convert(super(Vector, self).__add__(other)) def __radd__(self, other): """ u.__radd__(v) <==> v+u Returns the result of the addition of u and v if v is convertible to a VectorN (element-wise addition), adds v to every component of u if v is a scalar """ if isinstance(other, Point): other = Vector(other) try: return self.__class__._convert(self.apicls.__radd__(self, other)) except: return self.__class__._convert(super(Point, self).__radd__(other)) def __iadd__(self, other): """ u.__iadd__(v) <==> u += v In place addition of u and v, see __add__ """ try: return self.__class__(self.__add__(other)) except: return NotImplemented # specific api methods def cartesianize(self): """ p.cartesianize() --> Point If the point instance p is of the form P(W*x, W*y, W*z, W), for some scale factor W != 0, then it is reset to be P(x, y, z, 1). This will only work correctly if the point is in homogenous form or cartesian form. If the point is in rational form, the results are not defined. """ return self.__class__(self.apicls.cartesianize(self)) def cartesian(self): """ p.cartesian() --> Point Returns the cartesianized version of p, without changing p. """ t = copy.deepcopy(self) self.apicls.cartesianize(t) return t def rationalize(self): """ p.rationalize() --> Point If the point instance p is of the form P(W*x, W*y, W*z, W) (ie. is in homogenous or (for W==1) cartesian form), for some scale factor W != 0, then it is reset to be P(x, y, z, W). This will only work correctly if the point is in homogenous or cartesian form. If the point is already in rational form, the results are not defined. """ return self.__class__(self.apicls.rationalize(self)) def rational(self): """ p.rational() --> Point Returns the rationalized version of p, without changing p. """ t = copy.deepcopy(self) self.apicls.rationalize(t) return t def homogenize(self): """ p.homogenize() --> Point If the point instance p is of the form P(x, y, z, W) (ie. is in rational or (for W==1) cartesian form), for some scale factor W != 0, then it is reset to be P(W*x, W*y, W*z, W). """ return self.__class__(self.apicls.homogenize(self)) def homogen(self): """ p.homogen() --> Point Returns the homogenized version of p, without changing p. """ t = copy.deepcopy(self) self.apicls.homogenize(t) return t # additionnal methods def isEquivalent(self, other, tol=None): """ Returns true if both arguments considered as Point are equal within the specified tolerance """ if tol is None: tol = _api.MPoint_kTol try: nself, nother = coerce(self, other) except: return False if isinstance(nself, Point): return bool(nself.apicls.isEquivalent(nself, nother, tol)) else: return bool(super(Point, nself).isEquivalent(nother, tol)) def axis(self, start, end, normalize=False): """ a.axis(b, c) --> Vector Returns the axis of rotation from point b to c around a as the vector n = (b-a)^(c-a) if the normalize keyword argument is set to True, n is also normalized """ return Vector.axis(start - self, end - self, normalize=normalize) def angle(self, start, end): """ a.angle(b, c) --> float Returns the angle (in radians) of rotation from point b to c around a. Note that this angle is not signed, use axis to know the direction of the rotation """ return Vector.angle(start - self, end - self) def cotan(self, start, end): """ a.cotan(b, c) --> float : cotangent of the (b-a), (c-a) angle, a, b, and c should be MPoints representing points a, b, c""" return VectorN.cotan(start - self, end - self) def planar(self, *args, **kwargs): """ p.planar(q, r, s (...), tol=tolerance) --> bool Returns True if all provided points are planar within given tolerance """ if len(args) > 2: tol = kwargs.get('tol', None) n = (args[0] - self) ^ (args[1] - self) return reduce(operator.and_, map(lambda x: n.isParallel(x, tol), [(args[0] - self) ^ (a - self) for a in args[2:]]), True) else: return True def center(self, *args): """ p.center(q, r, s (...)) --> Point Returns the Point that is the center of p, q, r, s (...) """ return sum((self,) + args) / float(len(args) + 1) def bWeights(self, *args): """ p.bWeights(p0, p1, (...), pn) --> tuple Returns a tuple of (n0, n1, ...) normalized barycentric weights so that n0*p0 + n1*p1 + ... = p. This method works for n points defining a concave or convex n sided face, always returns positive normalized weights, and is continuous on the face limits (on the edges), but the n points must be coplanar, and p must be inside the face delimited by (p0, ..., pn) """ if args: p = self q = list(args) np = len(q) w = VectorN(0.0, size=np) weightSum = 0.0 pOnEdge = False tol = _api.MPoint_kTol # all args should be MPoints for i in xrange(np): if not isinstance(q[i], Point): try: q[i] = Point(q[i]) except: raise TypeError, "cannot convert %s to Point, bWeights is defined for n MPoints" % (util.clsname(q[i])) # if p sits on an edge, it' a limit case and there is an easy solution, # all weights are 0 but for the 2 edge end points for i in xrange(np): next = (i + 1) % np e = ((q[next] - q[i]) ^ (p - q[i])).sqlength() l = (q[next] - q[i]).sqlength() if e <= (tol * l): if l < tol: # p is on a 0 length edge, point and next point are on top of each other, as is p then w[i] = 0.5 w[next] = 0.5 else: # p is somewhere on that edge between point and next point di = (p - q[i]).length() w[next] = float(di / sqrt(l)) w[i] = 1.0 - w[next] # in both case update the weights sum and mark p as being on an edge, # problem is solved weightSum += 1.0 pOnEdge = True break # If p not on edge, use the cotangents method if not pOnEdge: for i in xrange(np): prev = (i + np - 1) % np next = (i + 1) % np lenSq = (p - q[i]).sqlength() w[i] = (q[i].cotan(p, q[prev]) + q[i].cotan(p, q[next])) / lenSq weightSum += w[i] # then normalize result if abs(weightSum): w /= weightSum else: raise ValueError, "failed to compute bWeights for %s and %s.\nThe point bWeights are computed for must be inside the planar face delimited by the n argument points" % (self, args) return tuple(w) else: return () class FloatPoint(Point): """ A 4 dimensional vector class that wraps Maya's api FloatPoint class, It behaves identically to Point, but it also derives from api's FloatPoint to keep api methods happy """ apicls = _api.MFloatPoint class Color(Vector): """ A 4 dimensional vector class that wraps Maya's api Color class, It stores the r, g, b, a components of the color, as normalized (Python) floats """ apicls = _api.MColor cnames = ('r', 'g', 'b', 'a') shape = (4,) # modes = ('rgb', 'hsv', 'cmy', 'cmyk') modes = ('rgb', 'hsv') # constants red = _api.MColor(1.0, 0.0, 0.0) green = _api.MColor(0.0, 1.0, 0.0) blue = _api.MColor(0.0, 0.0, 1.0) white = _api.MColor(1.0, 1.0, 1.0) black = _api.MColor(0.0, 0.0, 0.0) opaque = _api.MColor(0.0, 0.0, 0.0, 1.0) clear = _api.MColor(0.0, 0.0, 0.0, 0.0) # static methods @staticmethod def rgbtohsv(c): c = tuple(c) return tuple(colorsys.rgb_to_hsv(*clamp(c[:3])) + c[3:4]) @staticmethod def hsvtorgb(c): c = tuple(c) # return colorsys.hsv_to_rgb(clamp(c[0]), clamp(c[1]), clamp(c[2])) return tuple(colorsys.hsv_to_rgb(*clamp(c[:3])) + c[3:4]) # TODO : could define rgb and hsv iterators and allow __setitem__ and __getitem__ on these iterators # like (it's more simple) it's done in ArrayIter def _getrgba(self): return tuple(self) def _setrgba(self, value): if not hasattr(value, '__iter__'): # the way api interprets a single value # value = (None, None, None, value) value = (value,) * 4 l = list(self) for i, v in enumerate(value[:4]): if v is not None: l[i] = float(v) self.assign(*l) rgba = property(_getrgba, _setrgba, None, "The r,g,b,a Color components""") def _getrgb(self): return self.rgba[:3] def _setrgb(self, value): if not hasattr(value, '__iter__'): value = (value,) * 3 self.rgba = value[:3] rgb = property(_getrgb, _setrgb, None, "The r,g,b Color components""") def _gethsva(self): return tuple(Color.rgbtohsv(self)) def _sethsva(self, value): if not hasattr(value, '__iter__'): # the way api interprets a single value # value = (None, None, None, value) value = (value,) * 4 l = list(Color.rgbtohsv(self)) for i, v in enumerate(value[:4]): if v is not None: l[i] = float(v) self.assign(*Color.hsvtorgb(self)) hsva = property(_gethsva, _sethsva, None, "The h,s,v,a Color components""") def _gethsv(self): return tuple(Color.rgbtohsv(self))[:3] def _sethsv(self, value): if not hasattr(value, '__iter__'): value = (value,) * 3 self.hsva = value[:3] hsv = property(_gethsv, _sethsv, None, "The h,s,v,a Color components""") def _geth(self): return self.hsva[0] def _seth(self, value): self.hsva = (value, None, None, None) h = property(_geth, _seth, None, "The h Color component""") def _gets(self): return self.hsva[1] def _sets(self, value): self.hsva = (None, value, None, None) s = property(_gets, _sets, None, "The s Color component""") def _getv(self): return self.hsva[2] def _setv(self, value): self.hsva = (None, None, value, None) v = property(_getv, _setv, None, "The v Color component""") # __new__ is herited from Point/Vector, need to override __init__ to accept hsv mode though def __init__(self, *args, **kwargs): """ Init a Color instance Can pass one argument being another Color instance , or the color components """ cls = self.__class__ mode = kwargs.get('mode', None) if mode is not None and mode not in cls.modes: raise ValueError, "unknown mode %s for %s" % (mode, util.clsname(self)) # can also use the form <componentname>=<number> # for now supports only rgb and hsv flags hsvflag = {} rgbflag = {} for a in 'hsv': if a in kwargs: hsvflag[a] = kwargs[a] for a in 'rgb': if a in kwargs: rgbflag[a] = kwargs[a] # can't mix them if hsvflag and rgbflag: raise ValueError, "can not mix r,g,b and h,s,v keyword arguments in a %s declaration" % util.clsname(self) # if no mode specified, guess from what keyword arguments where used, else use 'rgb' as default if mode is None: if hsvflag: mode = 'hsv' else: mode = 'rgb' # can't specify a mode and use keywords of other modes if mode is not 'hsv' and hsvflag: raise ValueError, "Can not use h,s,v keyword arguments while specifying %s mode in %s" % (mode, util.clsname(self)) elif mode is not 'rgb' and rgbflag: raise ValueError, "Can not use r,g,b keyword arguments while specifying %s mode in %s" % (mode, util.clsname(self)) # NOTE: do not try to use mode with _api.Color, it seems bugged as of 2008 #import colorsys #colorsys.rgb_to_hsv(0.0, 0.0, 1.0) ## Result: (0.66666666666666663, 1.0, 1.0) # #c = _api.Color(_api.Color.kHSV, 0.66666666666666663, 1.0, 1.0) # print "# Result: ",c[0], c[1], c[2], c[3]," #" ## Result: 1.0 0.666666686535 1.0 1.0 # #c = _api.Color(_api.Color.kHSV, 0.66666666666666663*360, 1.0, 1.0) # print "# Result: ",c[0], c[1], c[2], c[3]," #" ## Result: 1.0 240.0 1.0 1.0 # #colorsys.hsv_to_rgb(0.66666666666666663, 1.0, 1.0) ## Result: (0.0, 0.0, 1.0) # # we'll use Color only to store RGB values internally and do the conversion a read/write if desired # which I think make more sense anyway # quantize (255, 65535, no quantize means colors are 0.0-1.0 float values) # Initializing api's Color with int values seems also not to always behave so we quantize first and # use a float init always quantize = kwargs.get('quantize', None) if quantize is not None: try: quantize = float(quantize) except: raise ValueError, "quantize must be a numeric value, not %s" % (util.clsname(quantize)) # can be initilized with a single argument (other Color, Vector, VectorN) if len(args) == 1: args = args[0] # we dont rely much on Color api as it doesn't seem totally finished, and do some things directly here if isinstance(args, self.__class__) or isinstance(args, self.apicls): # alternatively could be just ignored / output as warning if quantize: raise ValueError, "Can not quantize a Color argument, a Color is always stored internally as float color" % (mode, util.clsname(self)) if mode == 'rgb': args = VectorN(args) elif mode == 'hsv': args = VectorN(cls.rgbtohsv(args)) else: # single alpha value, as understood by api will break coerce behavior in operations # where other operand is a scalar # if not hasattr(args, '__iter__') : # args = VectorN(0.0, 0.0, 0.0, args) if hasattr(args, '__len__'): shape = (min(len(args), cls.size),) else: shape = cls.shape args = VectorN(args, shape=shape) # quantize if needed if quantize: args /= quantize # pad to a full Color size args.stack(self[len(args):]) # apply keywords arguments, and convert if mode is not rgb if mode == 'rgb': if rgbflag: for i, a in enumerate('rgb'): if a in rgbflag: if quantize: args[i] = float(rgbflag[a]) / quantize else: args[i] = float(rgbflag[a]) elif mode == 'hsv': if hsvflag: for i, a in enumerate('hsv'): if a in hsvflag: if quantize: args[i] = float(hsvflag[a]) / quantize else: args[i] = float(hsvflag[a]) args = VectorN(cls.hsvtorgb(args)) # finally alpha keyword a = kwargs.get('a', None) if a is not None: if quantize: args[-1] = float(a) / quantize else: args[-1] = float(a) try: self.assign(args) except: msg = ", ".join(map(lambda x, y: x + "=<" + util.clsname(y) + ">", mode, args)) raise TypeError, "in %s(%s), at least one of the components is of an invalid type, check help(%s) " % (util.clsname(self), msg, util.clsname(self)) def __melobject__(self): """Special method for returning a mel-friendly representation. In this case, a 3-component color (RGB) """ return [self.r, self.g, self.b] # overriden operators # defined for two MColors only def __add__(self, other): """ c.__add__(d) <==> c+d Returns the result of the addition of MColors c and d if d is convertible to a Color, adds d to every component of c if d is a scalar """ # prb with coerce when delegating to VectorN, either redefine coerce for Point or other fix # if isinstance(other, Point) : # other = Vector(other) try: other = Color(other) except: pass try: return self.__class__._convert(self.apicls.__add__(self, other)) except: return self.__class__._convert(super(Vector, self).__add__(other)) def __radd__(self, other): """ c.__radd__(d) <==> d+c Returns the result of the addition of MColors c and d if d is convertible to a Color, adds d to every component of c if d is a scalar """ try: other = Color(other) except: pass try: return self.__class__._convert(self.apicls.__radd__(self, other)) except: return self.__class__._convert(super(Point, self).__radd__(other)) def __iadd__(self, other): """ c.__iadd__(d) <==> c += d In place addition of c and d, see __add__ """ try: return self.__class__(self.__add__(other)) except: return NotImplemented def __sub__(self, other): """ c.__add__(d) <==> c+d Returns the result of the substraction of Color d from c if d is convertible to a Color, substract d from every component of c if d is a scalar """ try: other = Color(other) except: pass try: return self.__class__._convert(self.apicls.__sub__(self, other)) except: return self.__class__._convert(super(Vector, self).__sub__(other)) def __rsub__(self, other): """ c.__rsub__(d) <==> d-c Returns the result of the substraction of Color c from d if d is convertible to a Color, replace every component c[i] of c by d-c[i] if d is a scalar """ try: other = Color(other) except: pass try: return self.__class__._convert(self.apicls.__rsub__(self, other)) except: return self.__class__._convert(super(Point, self).__rsub__(other)) def __isub__(self, other): """ c.__isub__(d) <==> c -= d In place substraction of d from c, see __sub__ """ try: return self.__class__(self.__sub__(other)) except: return NotImplemented # action depends on second object type # TODO : would be nice to define LUT classes and allow MColor * LUT transform # overloaded operators def __mul__(self, other): """ a.__mul__(b) <==> a*b If b is a 1D sequence (Array, VectorN, Color), __mul__ is mapped to element-wise multiplication, If b is a MatrixN, __mul__ is similar to Point a by MatrixN b multiplication (post multiplication or transformation of a by b), multiplies every component of a by b if b is a single numeric value """ if isinstance(other, MatrixN): # will defer to MatrixN rmul return NotImplemented else: # will defer to Array.__mul__ return Array.__mul__(self, other) def __rmul__(self, other): """ a.__rmul__(b) <==> b*a If b is a 1D sequence (Array, VectorN, Color), __mul__ is mapped to element-wise multiplication, If b is a MatrixN, __mul__ is similar to MatrixN b by Point a matrix multiplication, multiplies every component of a by b if b is a single numeric value """ if isinstance(other, MatrixN): # will defer to MatrixN mul return NotImplemented else: # will defer to Array.__rmul__ return Array.__rmul__(self, other) def __imul__(self, other): """ a.__imul__(b) <==> a *= b In place multiplication of VectorN a and b, see __mul__, result must fit a's type """ res = self * other if isinstance(res, self.__class__): return self.__class__(res) else: raise TypeError, "result of in place multiplication of %s by %s is not a %s" % (clsname(self), clsname(other), clsname(self)) # additionnal methods, to be extended def over(self, other): """ c1.over(c2): Composites c1 over other c2 using c1's alpha, the resulting color has the alpha of c2 """ if isinstance(other, Color): a = self.a return Color(Vector(other).blend(Vector(self), self.a), a=other.a) else: raise TypeError, "over is defined for Color instances, not %s" % (util.clsname(other)) # return Vector instead ? Keeping alpha doesn't make much sense def premult(self): """ Premultiply Color r, g and b by it's alpha and resets alpha to 1.0 """ return self.__class__(Vector(self) * self.a) def gamma(self, g): """ c.gamma(g) applies gamma correction g to Color c, g can be a scalar and then will be applied to r, g, b or an iterable of up to 3 (r, g, b) independant gamma correction values """ if not hasattr(g, '__iter__'): g = (g,) * 3 + (1.0,) else: g = g[:3] + (1.0,) * (4 - len(g[:3])) return gamma(self, g) def hsvblend(self, other, weight=0.5): """ c1.hsvblend(c2) --> Color Returns the result of blending c1 with c2 in hsv space, using the given weight """ c1 = list(self.hsva) c2 = list(other.hsva) if abs(c2[0] - c1[0]) >= 0.5: if abs(c2[0] - c1[0]) == 0.5: c1[1], c2[1] = 0.0, 0.0 if c1[0] > 0.5: c1[0] -= 1.0 if c2[0] > 0.5: c2[0] -= 1.0 c = blend(c1, c2, weight=weight) if c[0] < 0.0: c[0] += 1.0 return self.__class__(c, mode='hsv') # to specify space of transforms class Space(_api.MSpace): apicls = _api.MSpace __metaclass__ = _factories.MetaMayaTypeWrapper pass Spaces = Space.Space def equivalentSpace(space1, space2, rotationOnly=False): '''Compare the two given space values to see if they are equal Parameters ---------- space1 : int or str the first space to compare (may be either the integer enum value, or the api enum name - ie, "kPostTransform" - or the pymel enum name - ie, "postTransform" ) space2 : int or str the seoncd space to compare (may be either the integer enum value, or the api enum name - ie, "kPostTransform" - or the pymel enum name - ie, "postTransform") rotationOnly : bool If true, then compare the spaces, assuming we are only considering rotation - in rotation, transform is the same as preTransform/object (the reason being that in maya, preTransform means rotation + translation are both defined in the preTransform/object coordinate system, while transform means rotation is defined in preTransform/object coordinates, while translate is given in the postTransform space... which matches the way maya applies transforms) ''' translated = [] for space in space1, space2: space = _factories.ApiArgUtil.castInputEnum('MSpace', 'Space', space) if rotationOnly: # for the purposes of rotations, maya treats transform and # preTransform/object as the same (the reason being that in maya, # preTransform means both rotation + translation are both defined in # the preTransform/object coordinate system, while transform means # rotation is defined in preTransform/object coordinates, while # translate is given in the postTransform space... which matches the # way maya applies transforms) if space == _api.MSpace.kTransform: space = _api.MSpace.kPreTransform translated.append(space) # kInvalid # kTransform # Transform matrix (relative) space # kPreTransform # Pre-transform matrix (geometry) # kPostTransform # Post-transform matrix (world) space # kWorld # transform in world space # kObject # Same as pre-transform space # kLast # sadly TransformationMatrix.RotationOrder and EulerRotation.RotationOrder don't match # class MRotationOrder(int): # pass # kInvalid # kXYZ # kYZX # kZXY # kXZY # kYXZ # kZYX # kLast # kXYZ # kYZX # kZXY # kXZY # kYXZ # kZYX # functions that work on MatrixN (det(), inv(), ...) herited from arrays # and properly defer to the class methods # For row, column order, see the definition of a TransformationMatrix in docs : # T = | 1 0 0 0 | # | 0 1 0 0 | # | 0 0 1 0 | # | tx ty tz 1 | # and m(r, c) should return value of cell at r row and c column : # t = _api.TransformationMatrix() # t.setTranslation(_api.Vector(1, 2, 3), _api.MSpace.kWorld) # m = t.asMatrix() # mm(3,0) # 1.0 # mm(3,1) # 2.0 # mm(3,2) # 3.0 class Matrix(MatrixN): """ A 4x4 transformation matrix based on api Matrix >>> from pymel.all import * >>> import pymel.core.datatypes as dt >>> >>> i = dt.Matrix() >>> print i.formated() [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]] >>> v = dt.Matrix(1, 2, 3) >>> print v.formated() [[1.0, 2.0, 3.0, 0.0], [1.0, 2.0, 3.0, 0.0], [1.0, 2.0, 3.0, 0.0], [1.0, 2.0, 3.0, 0.0]] """ __metaclass__ = MetaMayaArrayTypeWrapper apicls = _api.MMatrix shape = (4, 4) cnames = ('a00', 'a01', 'a02', 'a03', 'a10', 'a11', 'a12', 'a13', 'a20', 'a21', 'a22', 'a23', 'a30', 'a31', 'a32', 'a33') # constants identity = _api.MMatrix() def __new__(cls, *args, **kwargs): shape = kwargs.get('shape', None) ndim = kwargs.get('ndim', None) size = kwargs.get('size', None) # will default to class constant shape = (4, 4), so it's just an error check to catch invalid shapes, # as no other option is actually possible on Matrix, but this method could be used to allow wrapping # of Maya array classes that can have a variable number of elements shape, ndim, size = cls._expandshape(shape, ndim, size) new = cls.apicls.__new__(cls) cls.apicls.__init__(new) return new def __init__(self, *args, **kwargs): """ __init__ method, valid for Vector, Point and Color classes """ cls = self.__class__ if args: # allow both forms for arguments if len(args) == 1 and hasattr(args[0], '__iter__'): args = args[0] # shape = kwargs.get('shape', None) # ndim = kwargs.get('ndim', None) # size = kwargs.get('size', None) # if shape is not None or ndim is not None or size is not None : # shape, ndim, size = cls._expandshape(shape, ndim, size) # args = MatrixN(args, shape=shape, ndim=ndim, size=size) # shortcut when a direct api init is possible try: self.assign(args) except: super(MatrixN, self).__init__(*args) # value = list(Matrix(value, shape=self.shape).flat) # data = self.apicls() # _api.MScriptUtil.createMatrixFromList ( value, data ) if hasattr(cls, 'cnames') and len(set(cls.cnames) & set(kwargs)): # can also use the form <componentname>=<number> l = list(self.flat) setcomp = False for i, c in enumerate(cls.cnames): if c in kwargs: if float(l[i]) != float(kwargs[c]): l[i] = float(kwargs[c]) setcomp = True if setcomp: try: self.assign(l) except: msg = ", ".join(map(lambda x, y: x + "=<" + util.clsname(y) + ">", cls.cnames, l)) raise TypeError, "in %s(%s), at least one of the components is of an invalid type, check help(%s) " % (cls.__name__, msg, cls.__name__) # for compatibility with base classes Array that actually hold a nested list in their _data attribute # here, there is no _data attribute as we subclass _api.Vector directly, thus v.data is v # for wraps def _getdata(self): return self def _setdata(self, value): self.assign(value) def _deldata(self): if hasattr(self.apicls, 'clear'): self.apicls.clear(self) else: raise TypeError, "cannot clear stored elements of %s" % (self.__class__.__name__) data = property(_getdata, _setdata, _deldata, "The Matrix/FloatMatrix/TransformationMatrix/Quaternion/EulerRotation data") # set properties for easy acces to translation / rotation / scale of a Matrix or derived class # some of these will only yield dependable results if Matrix is a TransformationMatrix and some # will always be zero for some classes (ie only rotation has a value on a Quaternion def _getTranslate(self): t = TransformationMatrix(self) return Vector(t.getTranslation(_api.MSpace.kTransform)) def _setTranslate(self, value): t = TransformationMatrix(self) t.setTranslation(Vector(value), _api.MSpace.kTransform) self.assign(t.asMatrix()) translate = property(_getTranslate, _setTranslate, None, "The translation expressed in this Matrix, in transform space") def _getRotate(self): t = TransformationMatrix(self) return Quaternion(t.apicls.rotation(t)) def _setRotate(self, value): t = TransformationMatrix(self) q = Quaternion(value) t.rotateTo(q) # values = (q.x, q.y, q.z, q.w) # t.setRotationQuaternion(q.x, q.y, q.z, q.w) self.assign(t.asMatrix()) rotate = property(_getRotate, _setRotate, None, "The rotation expressed in this Matrix, in transform space") def _getScale(self): t = TransformationMatrix(self) return Vector(t.getScale(_api.MSpace.kTransform)) def _setScale(self, value): t = TransformationMatrix(self) t.setScale(value, _api.MSpace.kTransform) self.assign(t.asMatrix()) scale = property(_getScale, _setScale, None, "The scale expressed in this Matrix, in transform space") def __melobject__(self): """Special method for returning a mel-friendly representation. In this case, a flat list of 16 values """ return [x for x in self.flat] # some Matrix derived classes can actually be represented as matrix but not stored # internally as such by the API def asMatrix(self, percent=None): "The matrix representation for this Matrix/TransformationMatrix/Quaternion/EulerRotation instance" if percent is not None and percent != 1.0: if type(self) is not TransformationMatrix: self = TransformationMatrix(self) return Matrix(self.apicls.asMatrix(self, percent)) else: if type(self) is Matrix: return self else: return Matrix(self.apicls.asMatrix(self)) matrix = property(asMatrix, None, None, "The Matrix representation for this Matrix/TransformationMatrix/Quaternion/EulerRotation instance") # overloads for assign and get though standard way should be to use the data property # to access stored values def assign(self, value): # don't accept instances as assign works on exact _api.Matrix type data = None if type(value) == self.apicls or type(value) == type(self): data = value elif hasattr(value, 'asMatrix'): data = value.asMatrix() else: value = list(MatrixN(value).flat) if len(value) == self.size: data = self.apicls() if isinstance(data, _api.MFloatMatrix): _api.MScriptUtil.createFloatMatrixFromList(value, data) elif isinstance(data, _api.MMatrix): _api.MScriptUtil.createMatrixFromList(value, data) else: tmp = _api.MMatrix() _api.MScriptUtil.createMatrixFromList(value, tmp) data = self.apicls(tmp) else: raise TypeError, "cannot assign %s to a %s" % (value, util.clsname(self)) self.apicls.assign(self, data) return self # API get, actually not faster than pulling self[i] for such a short structure def get(self): """ Wrap the Matrix api get method """ mat = self.matrix return tuple(tuple(_api.MScriptUtil.getDoubleArrayItem(_api.MMatrix.__getitem__(mat, r), c) for c in xrange(Matrix.shape[1])) for r in xrange(Matrix.shape[0])) # ptr = _api.Matrix(self.matrix).matrix # return tuple(tuple(_api.MScriptUtil.getDouble2ArrayItem ( ptr, r, c) for c in xrange(Matrix.shape[1])) for r in xrange(Matrix.shape[0])) def __len__(self): """ Number of components in the Matrix instance """ return self.apicls.__len__(self) # iterator override # TODO : support for optionnal __iter__ arguments def __iter__(self, *args, **kwargs): """ Iterate on the Matrix rows """ return self.apicls.__iter__(self.data) # contains is herited from Array contains # __getitem__ / __setitem__ override def __getitem__(self, index): """ m.__getitem__(index) <==> m[index] Get component index value from self. index can be a single numeric value or slice, thus one or more rows will be returned, or a row,column tuple of numeric values / slices """ m = MatrixN(self) # print list(m) return m.__getitem__(index) # return super(MatrixN, self).__getitem__(index) # deprecated and __getitem__ should accept slices anyway def __getslice__(self, start, end): return self.__getitem__(slice(start, end)) # as _api.Matrix has no __setitem__ method def __setitem__(self, index, value): """ m.__setitem__(index, value) <==> m[index] = value Set value of component index on self index can be a single numeric value or slice, thus one or more rows will be returned, or a row,column tuple of numeric values / slices """ m = MatrixN(self) m.__setitem__(index, value) self.assign(m) # deprecated and __setitem__ should accept slices anyway def __setslice__(self, start, end, value): self.__setitem__(slice(start, end), value) def __delitem__(self, index): """ Cannot delete from a class with a fixed shape """ raise TypeError, "deleting %s from an instance of class %s will make it incompatible with class shape" % (index, clsname(self)) def __delslice__(self, start, end): self.__delitem__(slice(start, end)) # TODO : wrap double Matrix:: operator() (unsigned int row, unsigned int col ) const # common operators herited from MatrixN # operators using the Maya API when applicable def __eq__(self, other): """ m.__eq__(v) <==> m == v Equivalence test """ try: return bool(self.apicls.__eq__(self, other)) except: return bool(super(Matrix, self).__eq__(other)) def __ne__(self, other): """ m.__ne__(v) <==> m != v Equivalence test """ return (not self.__eq__(other)) def __neg__(self): """ m.__neg__() <==> -m The unary minus operator. Negates the value of each of the components of m """ return self.__class__(self.apicls.__neg__(self)) def __add__(self, other): """ m.__add__(v) <==> m+v Returns the result of the addition of m and v if v is convertible to a MatrixN (element-wise addition), adds v to every component of m if v is a scalar """ try: return self.__class__._convert(self.apicls.__add__(self, other)) except: return self.__class__._convert(super(Matrix, self).__add__(other)) def __radd__(self, other): """ m.__radd__(v) <==> v+m Returns the result of the addition of m and v if v is convertible to a MatrixN (element-wise addition), adds v to every component of m if v is a scalar """ try: return self.__class__._convert(self.apicls.__radd__(self, other)) except: return self.__class__._convert(super(Matrix, self).__radd__(other)) def __iadd__(self, other): """ m.__iadd__(v) <==> m += v In place addition of m and v, see __add__ """ try: return self.__class__(self.__add__(other)) except: return NotImplemented def __sub__(self, other): """ m.__sub__(v) <==> m-v Returns the result of the substraction of v from m if v is convertible to a MatrixN (element-wise substration), substract v to every component of m if v is a scalar """ try: return self.__class__._convert(self.apicls.__sub__(self, other)) except: return self.__class__._convert(super(Matrix, self).__sub__(other)) def __rsub__(self, other): """ m.__rsub__(v) <==> v-m Returns the result of the substraction of m from v if v is convertible to a MatrixN (element-wise substration), replace every component c of m by v-c if v is a scalar """ try: return self.__class__._convert(self.apicls.__rsub__(self, other)) except: return self.__class__._convert(super(Matrix, self).__rsub__(other)) def __isub__(self, other): """ m.__isub__(v) <==> m -= v In place substraction of m and v, see __sub__ """ try: return self.__class__(self.__sub__(other)) except: return NotImplemented # action depends on second object type def __mul__(self, other): """ m.__mul__(x) <==> m*x If x is a MatrixN, __mul__ is mapped to matrix multiplication m*x, if x is a VectorN, to MatrixN by VectorN multiplication. Otherwise, returns the result of the element wise multiplication of m and x if x is convertible to Array, multiplies every component of b by x if x is a single numeric value """ try: return self.__class__._convert(self.apicls.__mul__(self, other)) except: return self.__class__._convert(super(Matrix, self).__mul__(other)) def __rmul__(self, other): """ m.__rmul__(x) <==> x*m If x is a MatrixN, __rmul__ is mapped to matrix multiplication x*m, if x is a VectorN (or Vector or Point or Color), to transformation, ie VectorN by MatrixN multiplication. Otherwise, returns the result of the element wise multiplication of m and x if x is convertible to Array, multiplies every component of m by x if x is a single numeric value """ try: return self.__class__._convert(self.apicls.__rmul__(self, other)) except: return self.__class__._convert(super(Matrix, self).__rmul__(other)) def __imul__(self, other): """ m.__imul__(n) <==> m *= n Valid for Matrix * Matrix multiplication, in place multiplication of MatrixN m by MatrixN n """ try: return self.__class__(self.__mul__(other)) except: return NotImplemented # __xor__ will defer to Vector __xor__ # API added methods def setToIdentity(self): """ m.setToIdentity() <==> m = a * b Sets MatrixN to the identity matrix """ try: self.apicls.setToIdentity(self) except: self.assign(self.__class__()) return self def setToProduct(self, left, right): """ m.setToProduct(a, b) <==> m = a * b Sets MatrixN to the result of the product of MatrixN a and MatrixN b """ try: self.apicls.setToProduct(self.__class__(left), self.__class__(right)) except: self.assign(self.__class__(self.__class__(left) * self.__class__(right))) return self def transpose(self): """ Returns the transposed Matrix """ try: return self.__class__._convert(self.apicls.transpose(self)) except: return self.__class__._convert(super(Matrix, self).transpose()) def inverse(self): """ Returns the inverse Matrix """ try: return self.__class__._convert(self.apicls.inverse(self)) except: return self.__class__._convert(super(Matrix, self).inverse()) def adjoint(self): """ Returns the adjoint (adjugate) Matrix """ try: return self.__class__._convert(self.apicls.adjoint(self)) except: return self.__class__._convert(super(Matrix, self).adjugate()) def homogenize(self): """ Returns a homogenized version of the Matrix """ try: return self.__class__._convert(self.apicls.homogenize(self)) except: return self.__class__._convert(super(Matrix, self).homogenize()) def det(self): """ Returns the determinant of this Matrix instance """ try: return self.apicls.det4x4(self) except: return super(Matrix, self).det() def det4x4(self): """ Returns the 4x4 determinant of this Matrix instance """ try: return self.apicls.det4x4(self) except: return super(Matrix, self[:4, :4]).det() def det3x3(self): """ Returns the determinant of the upper left 3x3 submatrix of this Matrix instance, it's the same as doing det(m[0:3, 0:3]) """ try: return self.apicls.det3x3(self) except: return super(Matrix, self[:3, :3]).det() def isEquivalent(self, other, tol=_api.MVector_kTol): """ Returns true if both arguments considered as Matrix are equal within the specified tolerance """ try: nself, nother = coerce(self, other) except: return False if isinstance(nself, Matrix): return bool(nself.apicls.isEquivalent(nself, nother, tol)) else: return bool(super(MatrixN, nself).isEquivalent(nother, tol)) def isSingular(self): """ Returns True if the given Matrix is singular """ try: return bool(self.apicls.isSingular(self)) except: return super(MatrixN, self).isSingular() # additionnal methods def blend(self, other, weight=0.5): """ Returns a 0.0-1.0 scalar weight blend between self and other Matrix, blend mixes Matrix as transformation matrices """ if isinstance(other, Matrix): return self.__class__(self.weighted(1.0 - weight) * other.weighted(weight)) else: return blend(self, other, weight=weight) def weighted(self, weight): """ Returns a 0.0-1.0 scalar weighted blend between identity and self """ if type(self) is not TransformationMatrix: self = TransformationMatrix(self) return self.__class__._convert(self.asMatrix(weight)) class FloatMatrix(Matrix): """ A 4x4 matrix class that wraps Maya's api FloatMatrix class, It behaves identically to Matrix, but it also derives from api's FloatMatrix to keep api methods happy """ apicls = _api.MFloatMatrix class Quaternion(Matrix): apicls = _api.MQuaternion shape = (4,) cnames = ('x', 'y', 'z', 'w') def __new__(cls, *args, **kwargs): shape = kwargs.get('shape', None) ndim = kwargs.get('ndim', None) size = kwargs.get('size', None) # will default to class constant shape = (4,), so it's just an error check to catch invalid shapes, # as no other option is actually possible on Quaternion, but this method could be used to allow wrapping # of Maya array classes that can have a variable number of elements shape, ndim, size = cls._expandshape(shape, ndim, size) new = cls.apicls.__new__(cls) cls.apicls.__init__(new) return new def __init__(self, *args, **kwargs): """ __init__ method for Quaternion """ cls = self.__class__ def isVectorLike(x): return isinstance(x, (_api.MVector, Vector)) \ or hasattr(x, '__len__') and len(x) == 3 if args: # allow both forms for arguments if len(args) == 1 and hasattr(args[0], '__iter__') \ and not isinstance(args[0], (_api.MQuaternion, Quaternion)): args = args[0] rotate = getattr(args, 'rotate', None) # TransformationMatrix, Quaternion, EulerRotation api classes can convert to a rotation Quaternion if rotate is not None and not callable(rotate): args = args.rotate self.unit = 'radians' elif len(args) == 4 and isinstance(args[3], (basestring, util.EnumValue)): # isinstance(args[3], EulerRotation.RotationOrder) ) : quat = _api.MQuaternion() quat.assign(EulerRotation(*args, **kwargs)) args = quat # allow to initialize directly from 3 rotations and a rotation order # axis-angle - want to authorize # Quaternion(Vector axis, float angle) as well as Quaternion(float angle, Vector axis) elif len(args) == 2 and isVectorLike(args[0]) and isinstance(args[1], (int, float)): args = (args[1], Vector(args[0])) elif len(args) == 2 and isinstance(args[0], (int, float)) and isVectorLike(args[1]): args = (args[0], Vector(args[1])) # rotate vector-to-vector elif len(args) == 2 and isVectorLike(args[0]) and isVectorLike(args[1]): args = (Vector(args[0]), Vector(args[1])) # rotate vector-to-vector, with scalar factor elif len(args) == 3 and isVectorLike(args[0]) and isVectorLike(args[1]) \ and isinstance(args[2], (int, float)): args = (Vector(args[0]), Vector(args[1]), args[2]) # shortcut when a direct api init is possible try: self.assign(args) except: super(Array, self).__init__(*args) if hasattr(cls, 'cnames') and len(set(cls.cnames) & set(kwargs)): # can also use the form <componentname>=<number> l = list(self.flat) setcomp = False for i, c in enumerate(cls.cnames): if c in kwargs: if float(l[i]) != float(kwargs[c]): l[i] = float(kwargs[c]) setcomp = True if setcomp: try: self.assign(l) except: msg = ", ".join(map(lambda x, y: x + "=<" + util.clsname(y) + ">", cls.cnames, l)) raise TypeError, "in %s(%s), at least one of the components is of an invalid type, check help(%s) " % (cls.__name__, msg, cls.__name__) # set properties for easy acces to translation / rotation / scale of a MMatrix or derived class # some of these will only yield dependable results if MMatrix is a MTransformationMatrix and some # will always be zero for some classes (ie only rotation has a value on a MQuaternion def _getTranslate(self): return Vector(0.0, 0.0, 0.0) translate = property(_getTranslate, None, None, "The translation expressed in this MMQuaternion, which is always (0.0, 0.0, 0.0)") def _getRotate(self): return self def _setRotate(self, value): self.assign(Quaternion(value)) rotate = property(_getRotate, _setRotate, None, "The rotation expressed in this Quaternion, in transform space") def _getScale(self): return Vector(1.0, 1.0, 1.0) scale = property(_getScale, None, None, "The scale expressed in this Quaternion, which is always (1.0, 1.0, 1.0)") # overloads for assign and get though standard way should be to use the data property # to access stored values def assign(self, value): """ Wrap the Quaternion api assign method """ # api Quaternion assign accepts Matrix, Quaternion and EulerRotation if isinstance(value, Matrix): value = value.rotate else: if not hasattr(value, '__iter__'): value = (value,) value = self.apicls(*value) self.apicls.assign(self, value) return self # API get, actually not faster than pulling self[i] for such a short structure def get(self): """ Wrap the Quaternion api get method """ # need to keep a ref to the MScriptUtil alive until # all pointers aren't needed... ms = _api.MScriptUtil() l = (0,) * self.size ms.createFromDouble(*l) p = ms.asDoublePtr() self.apicls.get(self, p) return tuple([ms.getDoubleArrayItem(p, i) for i in xrange(self.size)]) def __getitem__(self, i): return self._getitem(i) # faster to override __getitem__ cause we know Quaternion only has one dimension def _getitem(self, i): """ Get component i value from self """ if hasattr(i, '__iter__'): i = list(i) if len(i) == 1: i = i[0] else: raise IndexError, "class %s instance %s has only %s dimension(s), index %s is out of bounds" % (util.clsname(self), self, self.ndim, i) if isinstance(i, slice): try: return list(self)[i] except: raise IndexError, "class %s instance %s is of size %s, index %s is out of bounds" % (util.clsname(self), self, self.size, i) else: if i < 0: i = self.size + i if i < self.size and not i < 0: if hasattr(self.apicls, '__getitem__'): res = self.apicls.__getitem__(self, i) else: res = list(self)[i] return res else: raise IndexError, "class %s instance %s is of size %s, index %s is out of bounds" % (util.clsname(self), self, self.size, i) # as _api.Vector has no __setitem__ method, so need to reassign the whole Vector def __setitem__(self, i, a): """ Set component i value on self """ v = VectorN(self) v.__setitem__(i, a) self.assign(v) def __iter__(self): for i in range(self.size): yield self[i] def __len__(self): # api incorrectly returns 4. this might make sense if it did not simply return z a second time as the fourth element return self.size # # # TODO : support for optional __iter__ arguments # def __iter__(self, *args, **kwargs): # """ Iterate on the api components """ # return self.apicls.__iter__(self.data) def __contains__(self, value): """ True if at least one of the vector components is equal to the argument """ return value in self.__iter__() class TransformationMatrix(Matrix): apicls = _api.MTransformationMatrix def _getTranslate(self): return Vector(self.getTranslation(_api.MSpace.kTransform)) def _setTranslate(self, value): self.setTranslation(Vector(value), _api.MSpace.kTransform) translate = property(_getTranslate, _setTranslate, None, "The translation expressed in this TransformationMatrix, in transform space") def _getRotate(self): return Quaternion(self.apicls.rotation(self)) def _setRotate(self, value): self.rotateTo(Quaternion(value)) rotate = property(_getRotate, _setRotate, None, "The quaternion rotation expressed in this TransformationMatrix, in transform space") def rotateTo(self, value): '''Set to the given rotation (and result self) Value may be either a Quaternion, EulerRotation object, or a list of floats; if it is floats, if it has length 4 it is interpreted as a Quaternion; if 3, as a EulerRotation. ''' if not isinstance(value, (Quaternion, EulerRotation, _api.MQuaternion, _api.MEulerRotation)): if len(value) == 3: value = EulerRotation(value) elif len(value) == 4: value = Quaternion(value) else: raise ValueError('arg to rotateTo must be a Quaternion, EulerRotation, or an iterable of 3 or 4 floats') return self.__class__(self.apicls.rotateTo(self, value)) def eulerRotation(self): return EulerRotation(self.apicls.eulerRotation(self)) def _getEuler(self): return self.eulerRotation() def _setEuler(self, value): self.rotateTo(EulerRotation(value)) euler = property(_getEuler, _getEuler, None, "The euler rotation expressed in this TransformationMatrix, in transform space") # The apicls getRotation needs a "RotationOrder &" object, which is # impossible to make in python... # So instead, wrap eulerRotation def getRotation(self): return self.eulerRotation() def setRotation(self, *args): self.rotateTo(EulerRotation(*args)) def _getScale(self): return Vector(self.getScale(_api.MSpace.kTransform)) def _setScale(self, value): self.setScale(value, _api.MSpace.kTransform) scale = property(_getScale, _setScale, None, "The scale expressed in this TransformationMatrix, in transform space") class EulerRotation(Array): """ unit handling: >>> from pymel.all import * >>> import pymel.core.datatypes as dt >>> >>> currentUnit(angle='degree') u'degree' >>> e = dt.EulerRotation([math.pi,0,0], unit='radians') >>> e dt.EulerRotation([3.14159265359, 0.0, 0.0], unit='radians') >>> e2 = dt.EulerRotation([180,0,0], unit='degrees') >>> e2 dt.EulerRotation([180.0, 0.0, 0.0]) >>> e.isEquivalent( e2 ) True >>> e == e2 True units are only displayed when they do not match the current ui unit >>> dt.Angle.getUIUnit() # check current angular unit 'degrees' >>> e dt.EulerRotation([3.14159265359, 0.0, 0.0], unit='radians') >>> dt.Angle.setUIUnit('radians') # change to radians >>> e dt.EulerRotation([3.14159265359, 0.0, 0.0]) """ __metaclass__ = MetaMayaArrayTypeWrapper apicls = _api.MEulerRotation shape = (3,) cnames = ('x', 'y', 'z') RotationOrder = _factories.apiClassInfo['MEulerRotation']['pymelEnums']['RotationOrder'] def _getorder(self): return self.RotationOrder[self.apicls.__dict__['order'].__get__(self, self.apicls)] def _setorder(self, val): self.apicls.__dict__['order'].__set__(self, self.RotationOrder.getIndex(val)) order = property(_getorder, _setorder) def __new__(cls, *args, **kwargs): # shape = kwargs.get('shape', None) # ndim = kwargs.get('ndim', None) # size = kwargs.get('size', None) # new = cls.apicls.__new__(cls) cls.apicls.__init__(new) return new def __init__(self, *args, **kwargs): """ __init__ method for EulerRotation """ self.unit = None self.assign(*args, **kwargs) def setDisplayUnit(self, unit): if unit not in Angle.Unit: raise TypeError, "%s is not a valid angular unit. See Angle.Unit for the list of valid units" self.unit = unit def __repr__(self): argStrs = [str(self)] if self.unit != Angle.getUIUnit(): argStrs.append('unit=%r' % self.unit) if self.order != 'XYZ': argStrs.append('order=%r' % str(self.order)) return "dt.%s(%s)" % (self.__class__.__name__, ', '.join(argStrs)) def __iter__(self): for i in range(self.size): yield self[i] def __getitem__(self, i): return Angle(self._getitem(i), 'radians').asUnit(self.unit) def __setitem__(self, key, val): kwargs = {} if key in self.cnames: kwargs[key] = val else: kwargs[self.cnames[key]] = val self.assign(**kwargs) # faster to override __getitem__ cause we know Vector only has one dimension def _getitem(self, i): """ Get component i value from self """ if hasattr(i, '__iter__'): i = list(i) if len(i) == 1: i = i[0] else: raise IndexError, "class %s instance %s has only %s dimension(s), index %s is out of bounds" % (util.clsname(self), self, self.ndim, i) if isinstance(i, slice): return _toCompOrArrayInstance(list(self)[i], VectorN) try: return _toCompOrArrayInstance(list(self)[i], VectorN) except: raise IndexError, "class %s instance %s is of size %s, index %s is out of bounds" % (util.clsname(self), self, self.size, i) else: if i < 0: i = self.size + i if i < self.size and not i < 0: if hasattr(self.apicls, '__getitem__'): return self.apicls.__getitem__(self, i) else: return list(self)[i] else: raise IndexError, "class %s instance %s is of size %s, index %s is out of bounds" % (util.clsname(self), self, self.size, i) def assign(self, *args, **kwargs): """ Wrap the Quaternion api assign method """ # After processing, we want to have args be in a format such that # we may do: # apicls.assign(*args) # This means that either: # args is a list/tuple of if 'unit' in kwargs: self.unit = kwargs['unit'] elif self.unit is None: self.unit = Angle.getUIUnit() if len(args) == 1 and isinstance(args[0], _api.MTransformationMatrix): args = [args[0].asMatrix()] # api MEulerRotation assign accepts Matrix, Quaternion and EulerRotation validSingleObjs = (_api.MMatrix, _api.MQuaternion, _api.MEulerRotation) if len(args) == 1 and isinstance(args[0], validSingleObjs): self.unit = 'radians' self.apicls.assign(self, args[0]) elif args: if len(args) == 1: args = list(args[0]) elif len(args) == 2 and isinstance(args[1], (basestring, util.EnumValue)): args = list(args[0]) + [args[1]] else: # convert to list, as we may have to do modifications args = list(args) # If only 3 rotation angles supplied, and current order is # not default, make sure we maintain it if self.order != 'XYZ' and len(args) == 3: args.append(self.apicls.__dict__['order'].__get__(self, self.apicls)) elif len(args) == 4 and isinstance(args[3], (basestring, util.EnumValue)): # allow to initialize directly from 3 rotations and a rotation order as string args[3] = self.RotationOrder.getIndex(args[3]) # In case they do something like pass in a mix of Angle objects and # float numbers, convert to correct unit one-by-one... for i in xrange(3): if isinstance(args[i], Angle): args[i] = args[i].asUnit('radians') elif self.unit != 'radians' and not isinstance(args[i], Angle): args[i] = Angle(args[i], self.unit).asUnit('radians') self.apicls.setValue(self, *args) # We do kwargs as a separate step after args, instead of trying to combine # them, in case they do something like pass in a EulerRotation(myMatrix, y=2) if hasattr(self, 'cnames') and len(set(self.cnames) & set(kwargs)): # can also use the form <componentname>=<number> l = list(self.flat) setcomp = False for i, c in enumerate(self.cnames): if c in kwargs: if float(l[i]) != float(kwargs[c]): l[i] = float(kwargs[c]) setcomp = True if setcomp: try: self.assign(l) except: msg = ", ".join(map(lambda x, y: x + "=<" + util.clsname(y) + ">", cls.cnames, l)) raise TypeError, "in %s(%s), at least one of the components is of an invalid type, check help(%s) " % (cls.__name__, msg, cls.__name__) return self # API get, actually not faster than pulling self[i] for such a short structure def get(self): """ Wrap the MEulerRotation api get method """ # need to keep a ref to the MScriptUtil alive until # all pointers aren't needed... ms = _api.MScriptUtil() l = (0,) * self.size ms.createFromDouble(*l) p = ms.asDoublePtr() self.apicls.get(self, p) return tuple([ms.getDoubleArrayItem(p, i) for i in xrange(self.size)]) def __contains__(self, value): """ True if at least one of the vector components is equal to the argument """ return value in self.__iter__() def __len__(self): return self.apicls.__len__(self) # common operators without an api equivalent are herited from VectorN # operators using the Maya API when applicable, but that can delegate to VectorN def __eq__(self, other): """ u.__eq__(v) <==> u == v Equivalence test """ if isinstance(other, self.apicls): return bool(self.apicls.__eq__(self, other)) else: return bool(super(EulerRotation, self).__eq__(other)) def __ne__(self, other): """ u.__ne__(v) <==> u != v Equivalence test """ return (not self.__eq__(other)) def __neg__(self): """ u.__neg__() <==> -u The unary minus operator. Negates the value of each of the components of u """ return self.__class__(self.apicls.__neg__(self)) def __add__(self, other): """ u.__add__(v) <==> u+v Returns the result of the addition of u and v if v is convertible to a VectorN (element-wise addition), adds v to every component of u if v is a scalar """ try: return self.__class__._convert(self.apicls.__add__(self, other)) except: return self.__class__._convert(super(EulerRotation, self).__add__(other)) def __radd__(self, other): """ u.__radd__(v) <==> v+u Returns the result of the addition of u and v if v is convertible to a VectorN (element-wise addition), adds v to every component of u if v is a scalar """ try: return self.__class__._convert(self.apicls.__radd__(self, other)) except: return self.__class__._convert(super(EulerRotation, self).__radd__(other)) def __iadd__(self, other): """ u.__iadd__(v) <==> u += v In place addition of u and v, see __add__ """ try: return self.__class__(self.__add__(other)) except: return NotImplemented def __sub__(self, other): """ u.__sub__(v) <==> u-v Returns the result of the substraction of v from u if v is convertible to a VectorN (element-wise substration), substract v to every component of u if v is a scalar """ try: return self.__class__._convert(self.apicls.__sub__(self, other)) except: return self.__class__._convert(super(EulerRotation, self).__sub__(other)) def __rsub__(self, other): """ u.__rsub__(v) <==> v-u Returns the result of the substraction of u from v if v is convertible to a VectorN (element-wise substration), replace every component c of u by v-c if v is a scalar """ try: return self.__class__._convert(self.apicls.__rsub__(self, other)) except: return self.__class__._convert(super(EulerRotation, self).__rsub__(other)) def __isub__(self, other): """ u.__isub__(v) <==> u -= v In place substraction of u and v, see __sub__ """ try: return self.__class__(self.__sub__(other)) except: return NotImplemented def __div__(self, other): """ u.__div__(v) <==> u/v Returns the result of the division of u by v if v is convertible to a VectorN (element-wise division), divide every component of u by v if v is a scalar """ try: return self.__class__._convert(self.apicls.__div__(self, other)) except: return self.__class__._convert(super(EulerRotation, self).__div__(other)) def __rdiv__(self, other): """ u.__rdiv__(v) <==> v/u Returns the result of of the division of v by u if v is convertible to a VectorN (element-wise division), invert every component of u and multiply it by v if v is a scalar """ try: return self.__class__._convert(self.apicls.__rdiv__(self, other)) except: return self.__class__._convert(super(EulerRotation, self).__rdiv__(other)) def __idiv__(self, other): """ u.__idiv__(v) <==> u /= v In place division of u by v, see __div__ """ try: return self.__class__(self.__div__(other)) except: return NotImplemented # action depends on second object type def __mul__(self, other): """ u.__mul__(v) <==> u*v The multiply '*' operator is mapped to the dot product when both objects are Vectors, to the transformation of u by matrix v when v is a MatrixN, to element wise multiplication when v is a sequence, and multiplies each component of u by v when v is a numeric type. """ try: res = self.apicls.__mul__(self, other) except: res = super(EulerRotation, self).__mul__(other) if util.isNumeric(res): return res else: return self.__class__._convert(res) def __rmul__(self, other): """ u.__rmul__(v) <==> v*u The multiply '*' operator is mapped to the dot product when both objects are Vectors, to the left side multiplication (pre-multiplication) of u by matrix v when v is a MatrixN, to element wise multiplication when v is a sequence, and multiplies each component of u by v when v is a numeric type. """ try: res = self.apicls.__rmul__(self, other) except: res = super(EulerRotation, self).__rmul__(other) if util.isNumeric(res): return res else: return self.__class__._convert(res) def __imul__(self, other): """ u.__imul__(v) <==> u *= v Valid for EulerRotation * Matrix multiplication, in place transformation of u by Matrix v or EulerRotation by scalar multiplication only """ try: return self.__class__(self.__mul__(other)) except: return NotImplemented # special operators # def __xor__(self, other): # """ u.__xor__(v) <==> u^v # Defines the cross product operator between two 3D vectors, # if v is a MatrixN, u^v is equivalent to u.transformAsNormal(v) """ # if isinstance(other, VectorN) : # return self.cross(other) # elif isinstance(other, MatrixN) : # return self.transformAsNormal(other) # else : # return NotImplemented # def __ixor__(self, other): # """ u.__xor__(v) <==> u^=v # Inplace cross product or transformation by inverse transpose of v is v is a MatrixN """ # try : # return self.__class__(self.__xor__(other)) # except : # return NotImplemented class Unit(float): __slots__ = ['unit', 'data', '_unit'] # TODO: implement proper equality comparison - currently, # Distance(5, 'meters') == Distance(5, 'centimeters') @classmethod def getUIUnit(cls): """ Returns the global UI units currently in use for that type """ return cls.sUnit(cls.apicls.uiUnit()) @classmethod def setUIUnit(cls, unit=None): """ Sets the global UI units currently to use for that type """ if unit is None: cls.apicls.setUIUnit(cls.apicls.internalUnit()) else: cls.apicls.setUIUnit(cls.kUnit(unit)) @classmethod def getInternalUnit(cls): """ Returns the internal units currently in use for that type """ return cls.sUnit(cls.apicls.internalUnit()) @classmethod def uiToInternal(cls, value): d = cls(value, cls.getUIUnit()) return d.asInternalUnit() @classmethod def kUnit(cls, unit=None): """ Converts a string unit name to the internal int unit enum representation """ if unit: return cls.Unit.getIndex(unit) else: return cls.apicls.uiUnit() @classmethod def sUnit(cls, unit=None): """ Converts an internal int unit enum representation to the string unit name """ if unit: return cls.Unit.getKey(unit) else: return str(cls.unit[cls.apicls.uiUnit()]) def getUnit(self): """ Returns the units currently in effect for this instance """ return self.__class__.sUnit(self._unit) # def setUnit(self, unit=None) : # """ # Sets the units currently in effect for this instance # """ # self._unit = self.__class__.kUnit(unit) unit = property(getUnit, None, None, "The units currently in effect for this instance") def __new__(cls, value, unit=None): unit = cls.kUnit(unit) if isinstance(value, cls.apicls): value = value.asUnits(unit) elif isinstance(value, cls): value = value.asUnit(unit) #data = cls.apicls(value, unit) # the float representation uses internal units so that arithmetics work #newobj = float.__new__(cls, data.asUnit(cls.apicls.internalUnit())) #newobj = float.__new__(cls, data.asUnit(unit)) newobj = float.__new__(cls, value) #ewobj._data = data newobj._unit = unit newobj._data = cls.apicls(value, unit) return newobj def assign(self, *args): if isinstance(args, self.__class__): args = (args._data, args._unit) self._data.assign(*args) def __repr__(self): return 'dt.%s(%s, unit=%r)' % (self.__class__.__name__, self, self.unit) def asUnit(self, unit): return self._data.asUnits(self.__class__.kUnit(unit)) # def asUnit(self) : # return self.asUnit(self.unit) def asUIUnit(self): return self.asUnit(self.__class__.getUIUnit()) def asInternalUnit(self): return self.asUnit(self.__class__.getInternalUnit()) class Time(Unit): apicls = _api.MTime Unit = _factories.apiClassInfo['MTime']['pymelEnums']['Unit'] @classmethod def _inCast(cls, x): return cls(x)._data class Distance(Unit): """ >>> from pymel.core import * >>> import pymel.core.datatypes as dt >>> >>> dt.Distance.getInternalUnit() 'centimeters' >>> dt.Distance.setUIUnit('meters') >>> dt.Distance.getUIUnit() 'meters' >>> d = dt.Distance(12) >>> d.unit 'meters' >>> print d 12.0 >>> print repr(d) dt.Distance(12.0, unit='meters') >>> print d.asUIUnit() 12.0 >>> print d.asInternalUnit() 1200.0 >>> dt.Distance.setUIUnit('centimeters') >>> dt.Distance.getUIUnit() 'centimeters' >>> e = dt.Distance(12) >>> e.unit 'centimeters' >>> print e 12.0 >>> str(e) '12.0' >>> print repr(e) dt.Distance(12.0, unit='centimeters') >>> print e.asUIUnit() 12.0 >>> print e.asInternalUnit() 12.0 >>> f = dt.Distance(12, 'feet') >>> print f 12.0 >>> print repr(f) dt.Distance(12.0, unit='feet') >>> f.unit 'feet' >>> print f.asUIUnit() 365.76 >>> dt.Distance.setUIUnit('meters') >>> dt.Distance.getUIUnit() 'meters' >>> print f.asUIUnit() 3.6576 >>> dt.Distance.getInternalUnit() 'centimeters' >>> print f.asInternalUnit() 365.76 >>> print f.asFeet() 12.0 >>> print f.asMeters() 3.6576 >>> print f.asCentimeters() 365.76 >>> dt.Distance.setUIUnit() >>> dt.Distance.getUIUnit() 'centimeters' """ apicls = _api.MDistance Unit = _factories.apiClassInfo['MDistance']['pymelEnums']['Unit'] def asMillimeter(self): return self.asUnit('millimeter') def asCentimeters(self): return self.asUnit('centimeters') def asKilometers(self): return self.asUnit('kilometers') def asMeters(self): return self.asUnit('meters') def asInches(self): return self.asUnit('inches') def asFeet(self): return self.asUnit('feet') def asYards(self): return self.asUnit('yards') def asMiles(self): return self.asUnit('miles') @classmethod def _outCast(cls, instance, result): return cls(result, 'centimeters').asUIUnit() class Angle(Unit): apicls = _api.MAngle Unit = _factories.apiClassInfo['MAngle']['pymelEnums']['Unit'] def asRadians(self): return self.asUnit('radians') def asDegrees(self): return self.asUnit('degrees') def asAngMinutes(self): return self.asUnit('angMinutes') def asAngSeconds(self): return self.asUnit('angSeconds') @classmethod def _outCast(cls, instance, result): return cls(result, 'radians').asUIUnit() class BoundingBox(_api.MBoundingBox): apicls = _api.MBoundingBox __metaclass__ = _factories.MetaMayaTypeWrapper def __init__(self, *args): if len(args) == 2: args = list(args) if not isinstance(args[0], _api.MPoint): args[0] = Point(args[0]) if not isinstance(args[1], _api.MPoint): args[1] = Point(args[1]) _api.MBoundingBox.__init__(self, *args) def __str__(self): return 'dt.%s(%s,%s)' % (self.__class__.__name__, self.min(), self.max()) def __repr__(self): return str(self) def __getitem__(self, item): if item == 0: return self.min() elif item == 1: return self.max() raise IndexError, "Index out of range" def __melobject__(self): """A flat list of 6 values [minx, miny, minz, maxx, maxy, maxz]""" return list(self.min()) + list(self.max()) repr = __str__ w = property(_factories.wrapApiMethod(_api.MBoundingBox, 'width')) h = property(_factories.wrapApiMethod(_api.MBoundingBox, 'height')) d = property(_factories.wrapApiMethod(_api.MBoundingBox, 'depth')) #_factories.ApiTypeRegister.register( 'MVector', Vector ) #_factories.ApiTypeRegister.register( 'MMatrix', Matrix ) #_factories.ApiTypeRegister.register( 'MPoint', Point ) #_factories.ApiTypeRegister.register( 'MColor', Color ) #_factories.ApiTypeRegister.register( 'MQuaternion', Quaternion ) #_factories.ApiTypeRegister.register( 'MEulerRotation', EulerRotation ) _factories.ApiTypeRegister.register('MTime', Time, inCast=Time._inCast) _factories.ApiTypeRegister.register('MDistance', Distance, outCast=Distance._outCast) _factories.ApiTypeRegister.register('MAngle', Angle, outCast=Angle._outCast) #_floatUpConvertDict = {_api.MFloatArray:_api.MDoubleArray, # _api.MFloatMatrix:_api.MMatrix, # _api.MFloatPoint:_api.MPoint, # _api.MFloatPointArray:_api.MPointArray, # _api.MFloatVector:_api.MVector, # _api.MFloatVectorArray:_api.MVectorArray, # FloatMatrix:Matrix, # FloatPoint:Point, # FloatVector:Vector # } # def _floatUpConvert(input): # """Will convert various Float* objects to their corresponding double object # # ie, api.MFloatMatrix => api.MMatrix, FloatPoint => Point # """ # newClass = _floatUpConvertDict.get(input.__class__) # if newClass: # return newClass(input) # else: # return input def getPlugValue(plug): """given an MPlug, get its value as a pymel-style object""" # if plug.isArray(): # raise TypeError, "array plugs of this type are not supported" obj = plug.attribute() apiType = obj.apiType() # Float Pairs if apiType in [_api.MFn.kAttribute2Double, _api.MFn.kAttribute2Float]: res = [] for i in range(plug.numChildren()): res.append(getPlugValue(plug.child(i))) if isinstance(res[0], Distance): return Vector(res) return res # Integer Groups elif apiType in [_api.MFn.kAttribute2Short, _api.MFn.kAttribute2Int, _api.MFn.kAttribute3Short, _api.MFn.kAttribute3Int]: res = [] for i in range(plug.numChildren()): res.append(getPlugValue(plug.child(i))) return res # Float Groups elif apiType in [_api.MFn.kAttribute3Double, _api.MFn.kAttribute3Float, _api.MFn.kAttribute4Double]: res = [] for i in range(plug.numChildren()): res.append(getPlugValue(plug.child(i))) if isinstance(res[0], Distance): return Vector(res) elif _api.MFnAttribute(obj).isUsedAsColor(): return Color(res) return res # Compound elif apiType in [_api.MFn.kCompoundAttribute]: res = [] for i in range(plug.numChildren()): res.append(getPlugValue(plug.child(i))) return tuple(res) # Distance elif apiType in [_api.MFn.kDoubleLinearAttribute, _api.MFn.kFloatLinearAttribute]: val = plug.asMDistance() unit = _api.MDistance.uiUnit() # as becomes a keyword in python 2.6 return Distance(val.asUnits(unit), unit) # Angle elif apiType in [_api.MFn.kDoubleAngleAttribute, _api.MFn.kFloatAngleAttribute]: val = plug.asMAngle() unit = _api.MAngle.uiUnit() # as becomes a keyword in python 2.6 return Angle(val.asUnits(unit), unit) # Time elif apiType == _api.MFn.kTimeAttribute: val = plug.asMTime() unit = _api.MTime.uiUnit() # as becomes a keyword in python 2.6 return Time(val.asUnits(unit), unit) elif apiType == _api.MFn.kNumericAttribute: nAttr = _api.MFnNumericAttribute(obj) dataType = nAttr.unitType() if dataType == _api.MFnNumericData.kBoolean: return plug.asBool() elif dataType in [_api.MFnNumericData.kShort, _api.MFnNumericData.kInt, _api.MFnNumericData.kLong, _api.MFnNumericData.kByte]: return plug.asInt() elif dataType in [_api.MFnNumericData.kFloat, _api.MFnNumericData.kDouble, _api.MFnNumericData.kAddr]: return plug.asDouble() raise "%s: unknown numeric attribute type: %s" % (plug.partialName(True, True, True, False, True, True), dataType) elif apiType == _api.MFn.kEnumAttribute: # TODO : use EnumValue class? return plug.asInt() elif apiType == _api.MFn.kTypedAttribute: tAttr = _api.MFnTypedAttribute(obj) dataType = tAttr.attrType() if dataType == _api.MFnData.kInvalid: # 0 return None elif dataType == _api.MFnData.kNumeric: # 1 # all of the dynamic mental ray attributes fail here, but i have no idea why they are numeric attrs and not message attrs. # cmds.getAttr returns None, so we will too. try: dataObj = plug.asMObject() except: return try: numFn = _api.MFnNumericData(dataObj) except RuntimeError: if plug.isArray(): raise TypeError, "%s: numeric arrays are not supported" % plug.partialName(True, True, True, False, True, True) else: raise TypeError, "%s: attribute type is numeric, but its data cannot be interpreted numerically" % plug.partialName(True, True, True, False, True, True) dataType = numFn.numericType() if dataType == _api.MFnNumericData.kBoolean: return plug.asBool() elif dataType in [_api.MFnNumericData.kShort, _api.MFnNumericData.kInt, _api.MFnNumericData.kLong, _api.MFnNumericData.kByte]: return plug.asInt() elif dataType in [_api.MFnNumericData.kFloat, _api.MFnNumericData.kDouble, _api.MFnNumericData.kAddr]: return plug.asDouble() elif dataType == _api.MFnNumericData.k2Short: ptr1 = _api.SafeApiPtr('short') ptr2 = _api.SafeApiPtr('short') numFn.getData2Short(ptr1(), ptr2()) return (ptr1.get(), ptr2.get()) elif dataType in [_api.MFnNumericData.k2Int, _api.MFnNumericData.k2Long]: ptr1 = _api.SafeApiPtr('int') ptr2 = _api.SafeApiPtr('int') numFn.getData2Int(ptr1(), ptr2()) return (ptr1.get(), ptr2.get()) elif dataType == _api.MFnNumericData.k2Float: ptr1 = _api.SafeApiPtr('float') ptr2 = _api.SafeApiPtr('float') numFn.getData2Float(ptr1(), ptr2()) return (ptr1.get(), ptr2.get()) elif dataType == _api.MFnNumericData.k2Double: ptr1 = _api.SafeApiPtr('double') ptr2 = _api.SafeApiPtr('double') numFn.getData2Double(ptr1(), ptr2()) return (ptr1.get(), ptr2.get()) elif dataType == _api.MFnNumericData.k3Float: ptr1 = _api.SafeApiPtr('float') ptr2 = _api.SafeApiPtr('float') ptr3 = _api.SafeApiPtr('float') numFn.getData3Float(ptr1(), ptr2(), ptr3()) return (ptr1.get(), ptr2.get(), ptr3.get()) elif dataType == _api.MFnNumericData.k3Double: ptr1 = _api.SafeApiPtr('double') ptr2 = _api.SafeApiPtr('double') ptr3 = _api.SafeApiPtr('double') numFn.getData3Double(ptr1(), ptr2(), ptr3()) return (ptr1.get(), ptr2.get(), ptr3.get()) elif dataType == _api.MFnNumericData.kChar: return plug.asChar() raise TypeError, "%s: Unsupported numeric attribute: %s" % (plug.partialName(True, True, True, False, True, True), dataType) elif dataType == _api.MFnData.kString: # 4 return plug.asString() elif dataType == _api.MFnData.kMatrix: # 5 return Matrix(_api.MFnMatrixData(plug.asMObject()).matrix()) elif dataType == _api.MFnData.kStringArray: # 6 try: dataObj = plug.asMObject() except RuntimeError: return [] array = _api.MFnStringArrayData(dataObj).array() return [array[i] for i in range(array.length())] elif dataType == _api.MFnData.kDoubleArray: # 7 try: dataObj = plug.asMObject() except RuntimeError: return [] array = _api.MFnDoubleArrayData(dataObj).array() return [array[i] for i in range(array.length())] elif dataType == _api.MFnData.kIntArray: # 8 try: dataObj = plug.asMObject() except RuntimeError: return [] array = _api.MFnIntArrayData(dataObj).array() return [array[i] for i in range(array.length())] elif dataType == _api.MFnData.kPointArray: # 9 try: dataObj = plug.asMObject() except RuntimeError: return [] array = _api.MFnPointArrayData(dataObj).array() return [Point(array[i]) for i in range(array.length())] elif dataType == _api.MFnData.kVectorArray: # 10 try: dataObj = plug.asMObject() except RuntimeError: return [] array = _api.MFnVectorArrayData(dataObj).array() return [Vector(array[i]) for i in range(array.length())] # this block crashes maya under certain circumstances # elif dataType == _api.MFnData.kComponentList : # 11 # try: # dataObj = plug.asMObject() # except RuntimeError: # return [] # array = _api.MFnComponentListData( dataObj ) # return array # #return [ Vector(array[i]) for i in range(array.length()) ] raise TypeError, "%s: Unsupported typed attribute: %s" % (plug.partialName(True, True, True, False, True, True), dataType) raise TypeError, "%s: Unsupported Type: %s" % (plug.partialName(True, True, True, False, True, True), _factories.apiEnumsToApiTypes.get(apiType, apiType)) def _testMVector(): print "Vector class:", dir(Vector) u = Vector() print u print "Vector instance:", dir(u) print repr(u) print Vector.__readonly__ print Vector.__slots__ print Vector.shape print Vector.ndim print Vector.size print u.shape print u.ndim print u.size # should fail u.shape = 2 u.assign(Vector(4, 5, 6)) print repr(u) #Vector([4.0, 5.0, 6.0]) u = Vector(1, 2, 3) print repr(u) # Vector([1.0, 2.0, 3.0]) print len(u) # 3 # inherits from VectorN --> Array print isinstance(u, VectorN) # True print isinstance(u, Array) # True # as well as _api.Vector print isinstance(u, _api.MVector) # True # accepted directly by API methods M = _api.MTransformationMatrix() M.setTranslation(u, _api.MSpace.kWorld) # need conversion on the way back though u = Vector(M.getTranslation(_api.MSpace.kWorld)) print repr(u) # Vector([1.0, 2.0, 3.0]) u = Vector(x=1, y=2, z=3) print repr(u) # Vector([1.0, 2.0, 3.0]) u = Vector([1, 2], z=3) print repr(u) # Vector([1.0, 2.0, 3.0]) u = Vector(_api.MPoint(1, 2, 3)) print repr(u) # Vector([1.0, 2.0, 3.0]) print "u = Vector(VectorN(1, 2, 3))" u = Vector(VectorN(1, 2, 3)) print repr(u) # Vector([1.0, 2.0, 3.0]) u = Vector(1) print repr(u) # Vector([1.0, 1.0, 1.0]) u = Vector(1, 2) print repr(u) # Vector([1.0, 2.0, 0.0]) u = Vector(VectorN(1, shape=(2,))) print repr(u) # Vector([1.0, 1.0, 0.0]) u = Vector(Point(1, 2, 3)) print repr(u) # Vector([1.0, 2.0, 3.0]) u = Vector(Point(1, 2, 3, 1), y=20, z=30) print repr(u) # Vector([1.0, 20.0, 30.0]) # should fail print "Vector(VectorN(1, 2, 3, 4))" try: u = Vector(VectorN(1, 2, 3, 4)) except: print "will raise ValueError: could not cast [1, 2, 3, 4] to Vector of size 3, some data would be lost" print u.get() # (1.0, 20.0, 30.0) print u[0] 1.0 u[0] = 10 print repr(u) # Vector([10.0, 20.0, 30.0]) print (10 in u) # True print list(u) # [10.0, 20.0, 30.0] u = Vector.xAxis v = Vector.yAxis print Vector.xAxis print str(Vector.xAxis) print unicode(Vector.xAxis) print repr(Vector.xAxis) print "u = Vector.xAxis:" print repr(u) # Vector([1.0, 0.0, 0.0]) print "v = Vector.yAxis:" print repr(v) # Vector([0.0, 1.0, 0.0]) n = u ^ v print "n = u ^ v:" print repr(n) # Vector([0.0, 0.0, 1.0]) print "n.x=%s, n.y=%s, n.z=%s" % (n.x, n.y, n.z) # n.x=0.0, n.y=0.0, n.z=1.0 n = u ^ VectorN(v) print "n = u ^ VectorN(v):" print repr(n) # Vector([0.0, 0.0, 1.0]) n = u ^ [0, 1, 0] print "n = u ^ [0, 1, 0]:" print repr(n) # Vector([0.0, 0.0, 1.0]) n[0:2] = [1, 1] print "n[0:2] = [1, 1]:" print repr(n) # Vector([1.0, 1.0, 1.0]) print "n = n * 2 :" n = n * 2 print repr(n) # Vector([2.0, 2.0, 2.0]) print "n = n * [0.5, 1.0, 2.0]:" n = n * [0.5, 1.0, 2.0] print repr(n) # Vector([1.0, 2.0, 4.0]) print "n * n :" print n * n # 21.0 print repr(n.clamp(1.0, 2.0)) # Vector([1.0, 2.0, 2.0]) print repr(-n) # Vector([-1.0, -2.0, -4.0]) w = u + v print repr(w) # Vector([1.0, 1.0, 0.0]) p = Point(1, 2, 3) q = u + p print repr(q) # Point([2.0, 2.0, 3.0, 1.0]) q = p + u print repr(q) # Point([2.0, 2.0, 3.0, 1.0]) print repr(p + q) # Point([3.0, 4.0, 6.0, 1.0]) w = u + VectorN(1, 2, 3, 4) print repr(w) # VectorN([2.0, 2.0, 3.0, 4]) print repr(u + 2) # Vector([3.0, 2.0, 2.0]) print repr(2 + u) # Vector([3.0, 2.0, 2.0]) print repr(p + 2) # Point([3.0, 4.0, 5.0, 1.0]) print repr(2 + p) # Point([3.0, 4.0, 5.0, 1.0]) print repr(p + u) # Point([2.0, 2.0, 3.0, 1.0]) print repr(VectorN(1, 2, 3, 4) + u) # VectorN([2.0, 2.0, 3.0, 4]) print repr([1, 2, 3] + u) # Vector([2.0, 2.0, 3.0]) u = Vector(1, 2, 3) print repr(u) # Vector([1.0, 2.0, 3.0]) print u.length() # 3.74165738677 print length(u) # 3.74165738677 print length([1, 2, 3]) # 3.74165738677 print length(VectorN(1, 2, 3)) # 3.74165738677 print VectorN(1, 2, 3).length() # 3.74165738677 print length(VectorN(1, 2, 3, 4)) # 5.47722557505 print VectorN(1, 2, 3, 4).length() # 5.47722557505 print length(1) # 1.0 print length([1, 2]) # 2.2360679775 print length([1, 2, 3]) # 3.74165738677 print length([1, 2, 3, 4]) # 5.47722557505 print length([1, 2, 3, 4], 0) # 5.47722557505 print length([1, 2, 3, 4], (0,)) # 5.47722557505 print length([[1, 2], [3, 4]], 1) # [3.16227766017, 4.472135955] # should fail try: print length([1, 2, 3, 4], 1) except: print "Will raise ValueError, \"axis 0 is the only valid axis for a Vector, 1 invalid\"" u = Vector(1, 2, 3) print repr(u) # Vector([1.0, 2.0, 3.0]) print u.sqlength() # 14 print repr(u.normal()) # Vector([0.267261241912, 0.534522483825, 0.801783725737]) u.normalize() print repr(u) # Vector([0.267261241912, 0.534522483825, 0.801783725737]) u = Vector(1, 2, 3) print repr(u) # Vector([1.0, 2.0, 3.0]) w = u + [0.01, 0.01, 0.01] print repr(w) # Vector([1.01, 2.01, 3.01]) print (u == u) # True print (u == w) # False print (u == Vector(1.0, 2.0, 3.0)) # True print (u == [1.0, 2.0, 3.0]) # False print (u == Point(1.0, 2.0, 3.0)) # False print u.isEquivalent([1.0, 2.0, 3.0]) # True print u.isEquivalent(Vector(1.0, 2.0, 3.0)) # True print u.isEquivalent(Point(1.0, 2.0, 3.0)) # True print u.isEquivalent(w) # False print u.isEquivalent(w, 0.1) # True u = Vector(1, 0, 0) print repr(u) # Vector([1.0, 0.0, 0.0]) v = Vector(0.707, 0, -0.707) print repr(v) # Vector([0.707, 0.0, -0.707]) print repr(axis(u, v)) # Vector([-0.0, 0.707, 0.0]) print repr(u.axis(v)) # Vector([-0.0, 0.707, 0.0]) print repr(axis(VectorN(u), VectorN(v))) # VectorN([-0.0, 0.707, 0.0]) print repr(axis(u, v, normalize=True)) # Vector([-0.0, 1.0, 0.0]) print repr(v.axis(u, normalize=True)) # Vector([-0.0, -1.0, 0.0]) print repr(axis(VectorN(u), VectorN(v), normalize=True)) # VectorN([-0.0, 1.0, 0.0]) print angle(u, v) # 0.785398163397 print v.angle(u) # 0.785398163397 print angle(VectorN(u), VectorN(v)) # 0.785398163397 print cotan(u, v) # 1.0 print repr(u.rotateTo(v)) # Quaternion([-0.0, 0.382683432365, 0.0, 0.923879532511]) print repr(u.rotateBy(u.axis(v), u.angle(v))) # Vector([0.707106781187, 0.0, -0.707106781187]) q = Quaternion([-0.0, 0.382683432365, 0.0, 0.923879532511]) print repr(u.rotateBy(q)) # Vector([0.707106781187, 0.0, -0.707106781187]) print u.distanceTo(v) # 0.765309087885 print u.isParallel(v) # False print u.isParallel(2 * u) # True print repr(u.blend(v)) # Vector([0.8535, 0.0, -0.3535]) print "end tests Vector" def _testMPoint(): print "Point class", dir(Point) print hasattr(Point, 'data') p = Point() print repr(p) # Point([0.0, 0.0, 0.0]) print "Point instance", dir(p) print hasattr(p, 'data') print repr(p.data) # <maya.OpenMaya.Point; proxy of <Swig Object of type 'Point *' at 0x84a1270> > p = Point(1, 2, 3) print repr(p) # Point([1.0, 2.0, 3.0]) v = Vector(p) print repr(v) # Vector([1.0, 2.0, 3.0]) V = VectorN(p) print repr(V) # VectorN([1.0, 2.0, 3.0, 1.0]) print list(p) # [1.0, 2.0, 3.0] print len(p) # 3 print p.size # 4 print p.x, p.y, p.z, p.w # 1.0 2.0 3.0 1.0 print p[0], p[1], p[2], p[3] # 1.0 2.0 3.0 1.0 p.get() # 1.0 2.0 3.0 1.0 # accepted by api q = _api.MPoint() print q.distanceTo(p) # 3.74165738677 # support for non cartesian points still there p = Point(1, 2, 3, 2) print repr(p) # Point([1.0, 2.0, 3.0, 2.0]) v = Vector(p) print repr(v) # Vector([0.5, 1.0, 1.5]) V = VectorN(p) print repr(V) # VectorN([1.0, 2.0, 3.0, 2.0]) print list(p) # [1.0, 2.0, 3.0, 2.0] print len(p) # 4 print p.size # 4 print p.x, p.y, p.z, p.w # 1.0 2.0 3.0 2.0 print p[0], p[1], p[2], p[3] # 1.0 2.0 3.0 2.0 p.get() # 1.0 2.0 3.0 2.0 # accepted by api q = _api.MPoint() print q.distanceTo(p) # 1.87082869339 p = Point(_api.MPoint()) print repr(p) # Point([0.0, 0.0, 0.0]) p = Point(1) print repr(p) # Point([1.0, 1.0, 1.0]) p = Point(1, 2) print repr(p) # Point([1.0, 2.0, 0.0]) p = Point(1, 2, 3) print repr(p) # Point([1.0, 2.0, 3.0]) p = Point(_api.MPoint(1, 2, 3)) print repr(p) # Point([1.0, 2.0, 3.0]) p = Point(VectorN(1, 2)) print repr(p) # Point([1.0, 2.0, 0.0]) p = Point(Vector(1, 2, 3)) print repr(p) # Point([1.0, 2.0, 3.0]) p = Point(_api.MVector(1, 2, 3)) print repr(p) # Point([1.0, 2.0, 3.0]) p = Point(VectorN(1, 2, 3, 4)) print repr(p) # Point([1.0, 2.0, 3.0, 4.0]) print repr(Vector(p)) # Vector([0.25, 0.5, 0.75]) print repr(VectorN(p)) # VectorN([1.0, 2.0, 3.0, 4.0]) p = Point(p, w=1) print repr(p) # Point([1.0, 2.0, 3.0]) print repr(Vector(p)) # Vector([1.0, 2.0, 3.0]) print repr(VectorN(p)) # VectorN([1.0, 2.0, 3.0, 1.0]) p = Point.origin print repr(p) # Point([0.0, 0.0, 0.0]) p = Point.xAxis print repr(p) # Point([1.0, 0.0, 0.0]) p = Point(1, 2, 3) print repr(p) # Point([1.0, 2.0, 3.0]) print repr(p + Vector([1, 2, 3])) # Point([2.0, 4.0, 6.0]) print repr(p + Point([1, 2, 3])) # Point([2.0, 4.0, 6.0]) print repr(p + [1, 2, 3]) # Point([2.0, 4.0, 6.0]) print repr(p + [1, 2, 3, 1]) # Point([2.0, 4.0, 6.0]) print repr(p + Point([1, 2, 3, 1])) # Point([2.0, 4.0, 6.0]) print repr(p + [1, 2, 3, 2]) # Point([2.0, 4.0, 6.0, 3.0]) TODO : convert to Point always? print repr(p + Point([1, 2, 3, 2])) # Point([1.5, 3.0, 4.5]) print repr(Vector([1, 2, 3]) + p) # Point([2.0, 4.0, 6.0]) print repr(Point([1, 2, 3]) + p) # Point([2.0, 4.0, 6.0]) print repr([1, 2, 3] + p) # Point([2.0, 4.0, 6.0]) print repr([1, 2, 3, 1] + p) # Point([2.0, 4.0, 6.0]) print repr(Point([1, 2, 3, 1]) + p) # Point([2.0, 4.0, 6.0]) print repr([1, 2, 3, 2] + p) # Point([2.0, 4.0, 6.0, 3.0]) print repr(Point([1, 2, 3, 2]) + p) # Point([1.5, 3.0, 4.5]) # various operation, on cartesian and non cartesian points print "p = Point(1, 2, 3)" p = Point(1, 2, 3) print repr(p) # Point([1.0, 2.0, 3.0]) print "p/2" print repr(p / 2) # Point([0.5, 1.0, 1.5]) print "p*2" print repr(p * 2) # Point([2.0, 4.0, 6.0]) print "q = Point(0.25, 0.5, 1.0)" q = Point(0.25, 0.5, 1.0) print repr(q) # Point([0.25, 0.5, 1.0]) print repr(q + 2) # Point([2.25, 2.5, 3.0]) print repr(q / 2) # Point([0.125, 0.25, 0.5]) print repr(p + q) # Point([1.25, 2.5, 4.0]) print repr(p - q) # Vector([0.75, 1.5, 2.0]) print repr(q - p) # Vector([-0.75, -1.5, -2.0]) print repr(p - (p - q)) # Point([0.25, 0.5, 1.0]) print repr(Vector(p) * Vector(q)) # 4.25 print repr(p * q) # 4.25 print repr(p / q) # Point([4.0, 4.0, 3.0]) print "p = Point(1, 2, 3)" p = Point(1, 2, 3) print repr(p) # Point([1.0, 2.0, 3.0]) print "p/2" print repr(p / 2) # Point([0.5, 1.0, 1.5]) print "p*2" print repr(p * 2) # Point([2.0, 4.0, 6.0]) print "q = Point(0.25, 0.5, 1.0, 0.5)" q = Point(0.25, 0.5, 1.0, 0.5) print repr(q) # Point([0.25, 0.5, 1.0, 0.5]) r = q.deepcopy() print repr(r) # Point([0.25, 0.5, 1.0, 0.5]) print repr(r.cartesianize()) # Point([0.5, 1.0, 2.0]) print repr(r) # Point([0.5, 1.0, 2.0]) print repr(q) # Point([0.25, 0.5, 1.0, 0.5]) print repr(q.cartesian()) # Point([0.5, 1.0, 2.0]) r = q.deepcopy() print repr(r) # Point([0.25, 0.5, 1.0, 0.5]) print repr(r.rationalize()) # Point([0.5, 1.0, 2.0, 0.5]) print repr(r) # Point([0.5, 1.0, 2.0, 0.5]) print repr(q.rational()) # Point([0.5, 1.0, 2.0, 0.5]) r = q.deepcopy() print repr(r.homogenize()) # Point([0.125, 0.25, 0.5, 0.5]) print repr(r) # Point([0.125, 0.25, 0.5, 0.5]) print repr(q.homogen()) # Point([0.125, 0.25, 0.5, 0.5]) print repr(q) # Point([0.25, 0.5, 1.0, 0.5]) print Vector(q) # [0.5, 1.0, 2.0] print Vector(q.cartesian()) # [0.5, 1.0, 2.0] # ignore w print "q/2" print repr(q / 2) # Point([0.125, 0.25, 0.5, 0.5]) print "q*2" print repr(q * 2) # Point([0.5, 1.0, 2.0, 0.5]) print repr(q + 2) # cartesianize is done by Vector add # Point([2.5, 3.0, 4.0]) print repr(q) # Point([0.25, 0.5, 1.0, 0.5]) print repr(p + Vector(1, 2, 3)) # Point([2.0, 4.0, 6.0]) print repr(q + Vector(1, 2, 3)) # Point([1.5, 3.0, 5.0]) print repr(q.cartesian() + Vector(1, 2, 3)) # Point([1.5, 3.0, 5.0]) print repr(p - q) # Vector([0.5, 1.0, 1.0]) print repr(p - q.cartesian()) # Vector([0.5, 1.0, 1.0]) print repr(q - p) # Vector([-0.5, -1.0, -1.0]) print repr(p - (p - q)) # Point([0.5, 1.0, 2.0]) print repr(Vector(p) * Vector(q)) # 4.25 print repr(p * q) # 4.25 print repr(p / q) # need explicit homogenize as division not handled by api # Point([4.0, 4.0, 3.0, 2.0]) TODO : what do we want here ? # Vector([2.0, 2.0, 1.5]) # additionnal methods print "p = Point(x=1, y=2, z=3)" p = Point(x=1, y=2, z=3) print p.length() # 3.74165738677 print p[:1].length() # 1.0 print p[:2].length() # 2.2360679775 print p[:3].length() # 3.74165738677 p = Point(1.0, 0.0, 0.0) q = Point(0.707, 0.0, -0.707) print repr(p) # Point([1.0, 0.0, 0.0, 1.0]) print repr(q) # Point([0.707, 0.0, -0.707, 1.0]) print repr(q - p) # Vector([-0.293, 0.0, -0.707]) print repr(axis(Point.origin, p, q)) # Vector([-0.0, 0.707, 0.0]) print repr(Point.origin.axis(p, q)) # Vector([-0.0, 0.707, 0.0]) print repr(Point.origin.axis(q, p)) # Vector([0.0, -0.707, 0.0]) print angle(Point.origin, p, q) # 0.785398163397 print angle(Point.origin, q, p) # 0.785398163397 print Point.origin.angle(p, q) # 0.785398163397 print p.distanceTo(q) # 0.765309087885 print (q - p).length() # 0.765309087885 print cotan(Point.origin, p, q) # 1.0 # obviously True print planar(Point.origin, p, q) # True r = center(Point.origin, p, q) print repr(r) # Point([0.569, 0.0, -0.235666666667, 1.0]) print planar(Point.origin, p, q, r) # True print planar(Point.origin, p, q, r + Vector(0.0, 0.1, 0.0)) # False print bWeights(r, Point.origin, p, q) # (0.33333333333333337, 0.33333333333333331, 0.33333333333333343) p = Point([0.33333, 0.66666, 1.333333, 0.33333]) print repr(round(p, 3)) # Point([0.333, 0.667, 1.333, 0.333]) print "end tests Point" def _testMColor(): print "Color class", dir(Color) print hasattr(Color, 'data') c = Color() print repr(c) # Color([0.0, 0.0, 0.0, 1.0]) print "Color instance", dir(c) print hasattr(c, 'data') print repr(c.data) # Color([0.0, 0.0, 0.0, 1.0]) c = Color(_api.MColor()) print repr(c) # Color([0.0, 0.0, 0.0, 1.0]) # using api convetion of single value would mean alpha # instead of VectorN convention of filling all with value # which would yield # Color([0.5, 0.5, 0.5, 0.5]) instead # This would break coerce behavior for Color print "c = Color(0.5)" c = Color(0.5) print repr(c) # Color([0.5, 0.5, 0.5, 0.5]) print "c = round(Color(128, quantize=255), 2)" c = Color(128, quantize=255) print repr(c) # Color([0.501999974251, 0.501999974251, 0.501999974251, 0.501999974251]) c = Color(255, 128, b=64, a=32, quantize=255) print repr(c) # Color([1.0 0.501999974251 0.250999987125 0.125490196078]) print "c = Color(1, 1, 1)" c = Color(1, 1, 1) print repr(c) # Color([1.0, 1.0, 1.0, 1.0]) print "c = round(Color(255, 0, 255, g=128, quantize=255, mode='rgb'), 2)" c = round(Color(255, 0, 255, g=128, quantize=255, mode='rgb'), 2) print repr(c) # Color([1.0, 0.5, 1.0, 1.0]) print "c = round(Color(255, b=128, quantize=255, mode='rgb'), 2)" c = round(Color(255, b=128, quantize=255, mode='rgb'), 2) print repr(c) # Color([1.0, 1.0, 0.5, 1.0]) print "c = Color(1, 0.5, 2, 0.5)" c = Color(1, 0.5, 2, 0.5) print repr(c) # Color([1.0, 0.5, 2.0, 0.5]) print "c = Color(0, 65535, 65535, quantize=65535, mode='hsv')" c = Color(0, 65535, 65535, quantize=65535, mode='hsv') print repr(c) # Color([1.0, 0.0, 0.0, 1.0]) print "c.rgb" print repr(c.rgb) # (1.0, 0.0, 0.0) print "c.hsv" print repr(c.hsv) # (0.0, 1.0, 1.0) d = Color(c, v=0.5, mode='hsv') print repr(d) # Color([0.5, 0.0, 0.0, 1.0]) print repr(d.hsv) # (0.0, 1.0, 0.5) print "c = Color(Color.blue, v=0.5)" c = Color(Color.blue, v=0.5) print repr(c) # Color([0.0, 0.0, 0.5, 1.0]) print "c.hsv" print c.hsv # (0.66666666666666663, 1.0, 0.5) c.r = 1.0 print repr(c) # Color([1.0, 0.0, 0.5, 1.0]) print "c.hsv" print c.hsv # (0.91666666666666663, 1.0, 1.0) print "c = Color(1, 0.5, 2, 0.5).clamp()" c = Color(1, 0.5, 2, 0.5).clamp() print repr(c) # Color([1.0, 0.5, 1.0, 0.5]) print c.hsv # (0.83333333333333337, 0.5, 1.0) print "Color(c, v=0.5)" d = Color(c, v=0.5) print repr(d) # Color([0.5, 0.25, 0.5, 0.5]) print "d.hsv" print d.hsv # (0.83333333333333337, 0.5, 0.5) print "c = Color(0.0, 0.5, 1.0, 0.5)" c = Color(0.0, 0.5, 1.0, 0.5) print repr(c) # Color(0.0, 0.5, 1.0, 0.5) print "d = c.gamma(2.0)" d = c.gamma(2.0) print repr(d) # Color([0.0, 0.25, 1.0, 0.5]) print "c = Color.red.blend(Color.blue, 0.5)" c = Color.red.blend(Color.blue, 0.5) print repr(c) # Color([0.5, 0.0, 0.5, 1.0]) print c.hsv # (0.83333333333333337, 1.0, 0.5) c = Color.red.hsvblend(Color.blue, 0.5) print repr(c) # Color([1.0, 0.0, 1.0, 1.0]) print c.hsv # (0.83333333333333337, 1.0, 1.0) print "c = Color(0.25, 0.5, 0.75, 0.5)" c = Color(0.25, 0.5, 0.75, 0.5) print repr(c) # Color([0.25, 0.5, 0.75, 0.5]) print "d = Color.black" d = Color.black print repr(d) # Color([0.0, 0.0, 0.0, 1.0]) print "c.over(d)" print repr(c.over(d)) # Color([0.125, 0.25, 0.375, 1.0]) print "d.over(c)" print repr(d.over(c)) # Color([0.0, 0.0, 0.0, 0.5]) print "c.premult()" print repr(c.premult()) # Color([0.125, 0.25, 0.375, 1.0]) # herited from Vector print "c = Color(0.25, 0.5, 1.0, 1.0)" c = Color(0.25, 0.5, 1.0, 1.0) print repr(c) # Color([0.25, 0.5, 1.0, 1.0]) print "d = Color(2.0, 1.0, 0.5, 0.25)" d = Color(2.0, 1.0, 0.5, 0.25) print repr(d) # Color([2.0, 1.0, 0.5, 0.25]) print "-c" print repr(-c) # Color([-0.25, -0.5, -1.0, 1.0]) print "e = c*d" e = c * d print repr(e) # Color([0.5, 0.5, 0.5, 0.25]) print "e + 2" print repr(e + 2) # Color([2.5, 2.5, 2.5, 0.25]) print "e * 2.0" # mult by scalar float is defined in api for colors and also multiplies alpha print repr(e * 2.0) # Color([1.0, 1.0, 1.0, 0.5]) print "e / 2.0" # as is divide, that ignores alpha now for some reason print repr(e / 2.0) # Color([0.25, 0.25, 0.25, 0.25]) print "e+Vector(1, 2, 3)" print repr(e + Vector(1, 2, 3)) # Color([1.5, 2.5, 3.5, 0.25]) # how to handle operations on colors ? # here behaves like api but does it make any sense # for colors as it is now ? print "c+c" print repr(c + c) # Color([0.5, 1.0, 2.0, 1.0]) print "c+d" print repr(c + d) # Color([2.25, 1.5, 1.5, 1.0]) print "d-c" print repr(d - c) # Color([1.75, 0.5, -0.5, 0.25]) print "end tests Color" def _testMMatrix(): print "Matrix class", dir(Matrix) m = Matrix() print m.formated() #[[1.0, 0.0, 0.0, 0.0], # [0.0, 1.0, 0.0, 0.0], # [0.0, 0.0, 1.0, 0.0], # [0.0, 0.0, 0.0, 1.0]] print m[0, 0] # 1.0 print repr(m[0:2, 0:3]) # [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]] print m(0, 0) # 1.0 print "Matrix instance:", dir(m) print Matrix.__readonly__ print Matrix.__slots__ print Matrix.shape print Matrix.ndim print Matrix.size print m.shape print m.ndim print m.size # should fail m.shape = (4, 4) m.shape = 2 print dir(Space) m = Matrix.identity # inherits from MatrixN --> Array print isinstance(m, MatrixN) # True print isinstance(m, Array) # True # as well as _api.Matrix print isinstance(m, _api.MMatrix) # True # accepted directly by API methods n = _api.MMatrix() m = n.setToProduct(m, m) print repr(m) print repr(n) # inits m = Matrix(range(16)) print m.formated() #[[0.0, 1.0, 2.0, 3.0], # [4.0, 5.0, 6.0, 7.0], # [8.0, 9.0, 10.0, 11.0], # [12.0, 13.0, 14.0, 15.0]] M = Array(range(16), shape=(8, 2)) m = Matrix(M) print m.formated() #[[0.0, 1.0, 2.0, 3.0], # [4.0, 5.0, 6.0, 7.0], # [8.0, 9.0, 10.0, 11.0], # [12.0, 13.0, 14.0, 15.0]] M = MatrixN(range(9), shape=(3, 3)) m = Matrix(M) print m.formated() #[[0.0, 1.0, 2.0, 0.0], # [3.0, 4.0, 5.0, 0.0], # [6.0, 7.0, 8.0, 0.0], # [0.0, 0.0, 0.0, 1.0]] # inherits from MatrixN --> Array print isinstance(m, MatrixN) # True print isinstance(m, Array) # True # as well as _api.Matrix print isinstance(m, _api.MMatrix) # True # accepted directly by API methods n = _api.MMatrix() m = n.setToProduct(m, m) print repr(m) print repr(n) t = _api.MTransformationMatrix() t.setTranslation(Vector(1, 2, 3), _api.MSpace.kWorld) m = Matrix(t) print m.formated() #[[1.0, 0.0, 0.0, 0.0], # [0.0, 1.0, 0.0, 0.0], # [0.0, 0.0, 1.0, 0.0], # [1.0, 2.0, 3.0, 1.0]] m = Matrix(m, a30=10) print m.formated() #[[1.0, 0.0, 0.0, 0.0], # [0.0, 1.0, 0.0, 0.0], # [0.0, 0.0, 1.0, 0.0], # [10.0, 2.0, 3.0, 1.0]] # should fail print "Matrix(range(20)" try: m = Matrix(range(20)) print m.formated() except: print "will raise ValueError: cannot initialize a Matrix of shape (4, 4) from (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), some information would be lost, use an explicit resize or trim" m = Matrix.identity M = m.trimmed(shape=(3, 3)) print repr(M) # MatrixN([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) print M.formated() #[[1.0, 0.0, 0.0], # [0.0, 1.0, 0.0], # [0.0, 0.0, 1.0]] try: m.trim(shape=(3, 3)) except: print "will raise TypeError: new shape (3, 3) is not compatible with class Matrix" print m.nrow # 4 print m.ncol # 4 # should fail try: m.nrow = 3 except: print "will raise TypeError: new shape (3, 4) is not compatible with class Matrix" print list(m.row) # [Array([1.0, 0.0, 0.0, 0.0]), Array([0.0, 1.0, 0.0, 0.0]), Array([0.0, 0.0, 1.0, 0.0]), Array([0.0, 0.0, 0.0, 1.0])] print list(m.col) # [Array([1.0, 0.0, 0.0, 0.0]), Array([0.0, 1.0, 0.0, 0.0]), Array([0.0, 0.0, 1.0, 0.0]), Array([0.0, 0.0, 0.0, 1.0])] m = Matrix(MatrixN(range(9), shape=(3, 3)).trimmed(shape=(4, 4), value=10)) print m.formated() #[[0.0, 1.0, 2.0, 10.0], # [3.0, 4.0, 5.0, 10.0], # [6.0, 7.0, 8.0, 10.0], # [10.0, 10.0, 10.0, 10.0]] print m.get() # ((0.0, 1.0, 2.0, 10.0), (3.0, 4.0, 5.0, 10.0), (6.0, 7.0, 8.0, 10.0), (10.0, 10.0, 10.0, 10.0)) print repr(m[0]) # [0.0, 1.0, 2.0, 10.0] m[0] = 10 print m.formated() #[[10.0, 10.0, 10.0, 10.0], # [3.0, 4.0, 5.0, 10.0], # [6.0, 7.0, 8.0, 10.0], # [10.0, 10.0, 10.0, 10.0]] print (10 in m) # True print list(m) # [Array([10.0, 10.0, 10.0, 10.0]), Array([3.0, 4.0, 5.0, 10.0]), Array([6.0, 7.0, 8.0, 10.0]), Array([10.0, 10.0, 10.0, 10.0])] print list(m.flat) # [10.0, 10.0, 10.0, 10.0, 3.0, 4.0, 5.0, 10.0, 6.0, 7.0, 8.0, 10.0, 10.0, 10.0, 10.0, 10.0] u = Vector.xAxis v = Vector.yAxis print Vector.xAxis print str(Vector.xAxis) print unicode(Vector.xAxis) print repr(Vector.xAxis) print "u = Vector.xAxis:" print repr(u) # trans matrix : t: 1, 2, 3, r: 45, 90, 30, s: 0.5, 1.0, 2.0 m = Matrix([0.0, 4.1633363423443383e-17, -0.5, 0.0, 0.25881904510252079, 0.96592582628906831, 1.3877787807814459e-16, 0.0, 1.9318516525781366, -0.51763809020504159, 0.0, 0.0, 1.0, 2.0, 3.0, 1.0]) print "m:" print round(m, 2).formated() #[[0.0, 0.0, -0.5, 0.0], # [0.26, 0.97, 0.0, 0.0], # [1.93, -0.52, 0.0, 0.0], # [1.0, 2.0, 3.0, 1.0]] x = Vector.xAxis y = Vector.yAxis z = Vector.zAxis u = Vector(1, 2, 3) print "u:" print repr(u) # Vector([1, 2, 3]) print "u*m" print repr(u * m) # Vector([6.31319304794, 0.378937381963, -0.5]) print "m*u" print repr(m * u) # Vector([-1.5, 2.19067069768, 0.896575472168]) p = Point(1, 10, 100, 1) print "p:" print repr(p) # Point([1.0, 10.0, 100.0, 1.0]) print "p*m" print repr(p * m) # Point([196.773355709, -40.1045507576, 2.5, 1.0]) print "m*p" print repr(m * p) # Point([-50.0, 9.91807730799, -3.24452924947, 322.0]) print "v = [1, 2, 3]*m" v = VectorN([1, 2, 3]) * m print repr(v) # VectorN([6.31319304794, 0.378937381963, -0.5]) print "v = [1, 2, 3, 1]*m" v = VectorN([1, 2, 3, 1]) * m print repr(v) # VectorN([7.31319304794, 2.37893738196, 2.5, 1.0]) # should fail print "VectorN([1, 2, 3, 4, 5])*m" try: v = VectorN([1, 2, 3, 4, 5]) * m except: print "Will raise ValueError: vector of size 5 and matrix of shape (4, 4) are not conformable for a VectorN * MatrixN multiplication" # herited print "m = Matrix(range(1, 17))" m = Matrix(range(1, 17)) print m.formated() #[[1.0, 2.0, 3.0, 4.0], # [5.0, 6.0, 7.0, 8.0], # [9.0, 10.0, 11.0, 12.0], # [13.0, 14.0, 15.0, 16.0]] # element wise print "[1, 10, 100]*m" print repr([1, 10, 100] * m) # Matrix([[1.0, 20.0, 300.0, 0.0], [5.0, 60.0, 700.0, 0.0], [9.0, 100.0, 1100.0, 0.0], [13.0, 140.0, 1500.0, 0.0]]) print "M = MatrixN(range(20), shape=(4, 5))" M = MatrixN(range(1, 21), shape=(4, 5)) print M.formated() #[[1, 2, 3, 4, 5], # [6, 7, 8, 9, 10], # [11, 12, 13, 14, 15], # [16, 17, 18, 19, 20]] print "m*M" n = m * M print (n).formated() #[[110.0, 120.0, 130.0, 140.0, 150.0], # [246.0, 272.0, 298.0, 324.0, 350.0], # [382.0, 424.0, 466.0, 508.0, 550.0], # [518.0, 576.0, 634.0, 692.0, 750.0]] print util.clsname(n) # MatrixN print "m*2" n = m * 2 print (n).formated() #[[2.0, 4.0, 6.0, 8.0], # [10.0, 12.0, 14.0, 16.0], # [18.0, 20.0, 22.0, 24.0], # [26.0, 28.0, 30.0, 32.0]] print util.clsname(n) # Matrix print "2*m" n = 2 * m print (n).formated() #[[2.0, 4.0, 6.0, 8.0], # [10.0, 12.0, 14.0, 16.0], # [18.0, 20.0, 22.0, 24.0], # [26.0, 28.0, 30.0, 32.0]] print util.clsname(n) # Matrix print "m+2" n = m + 2 print (n).formated() #[[3.0, 4.0, 5.0, 6.0], # [7.0, 8.0, 9.0, 10.0], # [11.0, 12.0, 13.0, 14.0], # [15.0, 16.0, 17.0, 18.0]] print util.clsname(n) # Matrix print "2+m" n = 2 + m print (n).formated() #[[3.0, 4.0, 5.0, 6.0], # [7.0, 8.0, 9.0, 10.0], # [11.0, 12.0, 13.0, 14.0], # [15.0, 16.0, 17.0, 18.0]] print util.clsname(n) # Matrix try: m.setToProduct(m, M) except: print """Will raise TypeError: cannot initialize a Matrix of shape (4, 4) from (Array([0, 1, 2, 3, 4]), Array([5, 6, 7, 8, 9]), Array([10, 11, 12, 13, 14]), Array([15, 16, 17, 18, 19])) of shape (4, 5), as it would truncate data or reduce the number of dimensions""" print m.isEquivalent(m * M) # False # trans matrix : t: 1, 2, 3, r: 45, 90, 30, s: 0.5, 1.0, 2.0 m = Matrix([0.0, 4.1633363423443383e-17, -0.5, 0.0, 0.25881904510252079, 0.96592582628906831, 1.3877787807814459e-16, 0.0, 1.9318516525781366, -0.51763809020504159, 0.0, 0.0, 1.0, 2.0, 3.0, 1.0]) print "m:" print round(m, 2).formated() #[[0.0, 0.0, -0.5, 0.0], # [0.26, 0.97, 0.0, 0.0], # [1.93, -0.52, 0.0, 0.0], # [1.0, 2.0, 3.0, 1.0]] print "m.transpose():" print round(m.transpose(), 2).formated() #[[0.0, 0.26, 1.93, 1.0], # [0.0, 0.97, -0.52, 2.0], # [-0.5, 0.0, 0.0, 3.0], # [0.0, 0.0, 0.0, 1.0]] print "m.isSingular():" print m.isSingular() # False print "m.inverse():" print round(m.inverse(), 2).formated() #[[0.0, 0.26, 0.48, 0.0], # [0.0, 0.97, -0.13, 0.0], # [-2.0, 0.0, 0.0, 0.0], # [6.0, -2.19, -0.22, 1.0]] print "m.adjoint():" print round(m.adjoint(), 2).formated() #[[0.0, 0.26, 0.48, 0.0], # [0.0, 0.97, -0.13, 0.0], # [-2.0, 0.0, -0.0, 0.0], # [6.0, -2.19, -0.22, 1.0]] print "m.adjugate():" print round(m.adjugate(), 2).formated() #[[0.0, 0.26, 0.48, 0.0], # [0.0, 0.97, -0.13, 0.0], # [-2.0, 0.0, -0.0, 0.0], # [6.0, -2.19, -0.22, 1.0]] print "m.homogenize():" print round(m.homogenize(), 2).formated() #[[0.0, 0.0, -1.0, 0.0], # [0.26, 0.97, 0.0, 0.0], # [0.97, -0.26, -0.0, 0.0], # [1.0, 2.0, 3.0, 1.0]] print "m.det():" print m.det() # 1.0 print "m.det4x4():" print m.det4x4() # 1.0 print "m.det3x3():" print m.det3x3() # 1.0 print "m.weighted(0.5):" print round(m.weighted(0.5), 2).formated() #[[0.53, 0.0, -0.53, 0.0], # [0.09, 0.99, 0.09, 0.0], # [1.05, -0.2, 1.05, 0.0], # [0.5, 1.0, 1.5, 1.0]] print "m.blend(Matrix.identity, 0.5):" print round(m.blend(Matrix.identity, 0.5), 2).formated() #[[0.53, 0.0, -0.53, 0.0], # [0.09, 0.99, 0.09, 0.0], # [1.05, -0.2, 1.05, 0.0], # [0.5, 1.0, 1.5, 1.0]] print "end tests Matrix" def _testMTransformationMatrix(): q = Quaternion() print repr(q) # Quaternion([0.0, 0.0, 0.0, 1.0]) q = Quaternion(1, 2, 3, 0.5) print repr(q) # Quaternion([1.0, 2.0, 3.0, 0.5]) q = Quaternion(0.785, 0.785, 0.785, "xyz") print repr(q) # Quaternion([0.191357439088, 0.461717715523, 0.191357439088, 0.844737481223]) m = Matrix() m.rotate = q print repr(m) # Matrix([[0.500398163355, 0.499999841466, -0.706825181105, 0.0], [-0.146587362969, 0.853529322022, 0.499999841466, 0.0], [0.853295859083, -0.146587362969, 0.500398163355, 0.0], [0.0, 0.0, 0.0, 1.0]]) print "TransformationMatrix class", dir(TransformationMatrix) m = TransformationMatrix() print m.formated() #[[1.0, 0.0, 0.0, 0.0], # [0.0, 1.0, 0.0, 0.0], # [0.0, 0.0, 1.0, 0.0], # [0.0, 0.0, 0.0, 1.0]] print m[0, 0] # 1.0 print m[0:2, 0:3] # [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]] print "TransformationMatrix instance:", dir(m) print TransformationMatrix.__readonly__ print TransformationMatrix.__slots__ print TransformationMatrix.shape print TransformationMatrix.ndim print TransformationMatrix.size print m.shape print m.ndim print m.size # should fail m.shape = (4, 4) m.shape = 2 print dir(Space) m = TransformationMatrix.identity # inherits from MatrixN --> Array print isinstance(m, MatrixN) # True print isinstance(m, Array) # True # as well as _api.TransformationMatrix and _api.Matrix print isinstance(m, _api.MTransformationMatrix) # True print isinstance(m, _api.MMatrix) # True # accepted directly by API methods n = _api.MMatrix() n = n.setToProduct(m, m) print repr(n) n = _api.MTransformationMatrix() n = n.assign(m) print repr(n) m = TransformationMatrix.identity m.rotation = Quaternion() print repr(m) print m.formated() n = TransformationMatrix.identity n.translation = Vector(1, 2, 3) print n.formated() print repr(n) o = m * n print repr(o) print o.formated() print "end tests TransformationMatrix" if __name__ == '__main__': print Distance.getInternalUnit() # centimeters print Distance.getUIUnit() # centimeters Distance.setUIUnit('meters') print Distance.getUIUnit() # meters d = Distance(12) print d.unit # meters print d 1200.0 print repr(d) Distance(12.0, unit='meters') print d.asUnit() 12.0 print d.asInternalUnit() 1200.0 import doctest doctest.testmod(verbose=True) _testMVector() _testMPoint() _testMColor() _testMMatrix() _testMTransformationMatrix()
py
1a301ff37e88e50ec5a25135e53b40398b1416e6
# report_tests.py import unittest import reporting as report from unittest.mock import MagicMock, Mock class ReportTestSolver(unittest.TestCase): """[summary] Args: unittest ([type]): [description] """ def nodes_error_reporting_tests(self): """[summary] """ report.nodes_error_reporting() def error_folder_created(self): """[summary] """ pass def error_report_created(self): """[summary] """ pass def plot_missing_data_tests(self): """[summary] """ report.plot_missing_data() def list_unique_values_tests(self): """[summary] """ report.list_unique_values() def print_column_info_tests(self): """[summary] """ report.print_column_info() def visualise_missing_counts_tests(self): """[summary] """ report.visualise_missing_counts()
py
1a302137155acd572965bfc0e46523be33b80e40
from .probe import Probe from .utils import most_frequent, process_dict_list, merge_dicts """ Analyses a group of clips. """ class Analysis: def __init__(self, clips=[]): self.clips = clips def summary(self): file_summary = [] for clip in self.clips: summary = Probe(clip).run().extract_summary() file_summary.append(summary) final_list = None for item in file_summary: if final_list == None: final_list = item else: final_list = merge_dicts(final_list, item) return process_dict_list(final_list, most_frequent)
py
1a3021b2904eedd3d9e140c1608d5f065fa72de3
from enum import Enum class TaskLogonTypeEnum(Enum): """ """ TASK_LOGON_NONE = 0 TASK_LOGON_PASSWORD = 1 TASK_LOGON_S4U = 2 TASK_LOGON_INTERACTIVE_TOKEN = 3 TASK_LOGON_GROUP = 4 TASK_LOGON_SERVICE_ACCOUNT = 5 TASK_LOGON_INTERACTIVE_TOKEN_OR_PASSWORD = 6
py
1a3021eeb8268191c79085cea1a6a5a95d56b66d
############################################################################## # Copyright (c) 2017 ZTE Corp and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## import os import pytest from deploy.post.keystoneauth import Keystoneauth @pytest.mark.parametrize('openrc, expected', [ ('/etc/kolla/admin-openrc.sh', '/etc/kolla/admin-openrc.sh'), (None, '/etc/kolla/admin-openrc.sh')]) def test_create_Keystoneauth_instance(openrc, expected): KeystoneClient = Keystoneauth(openrc) assert KeystoneClient.openrc == expected @pytest.mark.parametrize('raws, expected', [ ( { 'OS_USERNAME': 'admin', 'OS_PASSWORD': 'keystone', 'OS_AUTH_URL': 'http://10.20.11.11:35357/v3', 'OS_TENANT_NAME': 'admin', 'OS_USER_DOMAIN_NAME': 'Default', 'OS_PROJECT_DOMAIN_NAME': 'Default', 'OS_PROJECT_NAME': 'admin', 'OS_INTERFACE': 'internal', 'OS_IDENTITY_API_VERSION': 'region_name' }, { 'username': 'admin', 'password': 'keystone', 'auth_url': 'http://10.20.11.11:35357/v3', 'tenant_name': 'admin', 'user_domain_name': 'Default', 'project_domain_name': 'Default', 'project_name': 'admin' }), ( { 'OS_USERNAME': 'admin', 'OS_PASSWORD': 'keystone', 'OS_AUTH_URL': 'http://10.20.11.11:35357/v3', 'OS_TENANT_NAME': 'admin', 'OS_USER_DOMAIN_NAME': 'Default', 'OS_PROJECT_DOMAIN_NAME': 'Default', 'OS_PROJECT_NAME': 'admin', 'OS_ENDPOINT_TYPE': 'Default', 'OS_REGION_NAME': 'Default' }, { 'username': 'admin', 'password': 'keystone', 'auth_url': 'http://10.20.11.11:35357/v3', 'tenant_name': 'admin', 'user_domain_name': 'Default', 'project_domain_name': 'Default', 'project_name': 'admin', 'endpoint_type': 'Default', 'region_name': 'Default' } )]) def test__parse_credentials_in_Keystoneauth(raws, expected): assert Keystoneauth._parse_credentials(raws) == expected @pytest.fixture(scope="session") def openrc_conf_file_dir(data_root): return os.path.join(data_root, 'openrc_conf') def test_session(openrc_conf_file_dir): openrc = os.path.join(openrc_conf_file_dir, 'admin-openrc.sh') KeystoneClient = Keystoneauth(openrc) assert KeystoneClient.session @pytest.mark.parametrize('openrc_file_name, expected', [ ( 'admin-openrc.sh', { 'OS_PROJECT_DOMAIN_NAME': 'Default', 'OS_USER_DOMAIN_NAME': 'Default', 'OS_PROJECT_NAME': 'admin', 'OS_TENANT_NAME': 'admin', 'OS_USERNAME': 'admin', 'OS_PASSWORD': 'keystone', 'OS_AUTH_URL': 'http://10.20.11.11:35357/v3', 'OS_INTERFACE': 'internal', 'OS_IDENTITY_API_VERSION': '3' } )]) def test__parse_openrc(openrc_conf_file_dir, openrc_file_name, expected): openrc = os.path.join(openrc_conf_file_dir, openrc_file_name) KeystoneClient = Keystoneauth(openrc) ret_openrc_dict = KeystoneClient._parse_openrc() assert expected == ret_openrc_dict @pytest.mark.parametrize('openrc_file_name', [ ( 'admin-openrc.sh' )]) def test__get_auth(openrc_conf_file_dir, openrc_file_name,): openrc = os.path.join(openrc_conf_file_dir, openrc_file_name) KeystoneClient = Keystoneauth(openrc) assert KeystoneClient._get_auth()
py
1a3022641185cea50540e9df4b5653ac22fb94cf
import re from os.path import * import cv2 import numpy as np import torch.nn.functional as F from PIL import Image cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) TAG_CHAR = np.array([202021.25], np.float32) def read_flow_middlebury(fn): """ Read .flo file in Middlebury format Parameters ----------- fn : str Absolute path to flow file Returns -------- flow : np.ndarray Optical flow map """ # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! # print 'fn = %s'%(fn) with open(fn, "rb") as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print("Magic number incorrect. Invalid .flo file") return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) # print 'Reading %d x %d flo file\n' % (w, h) data = np.fromfile(f, np.float32, count=2 * int(w) * int(h)) # Reshape data into 3D array (banda, columns, rows) return np.resize(data, (int(h), int(w), 2)) def read_flow_pfm(file): """ Read optical flow from a .pfm file Parameters ----------- file : str Path to flow file Returns -------- flow : np.ndarray Optical flow map """ file = open(file, "rb") color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header == b"PF": color = True elif header == b"Pf": color = False else: raise Exception("Not a PFM file.") dim_match = re.match(rb"^(\d+)\s(\d+)\s$", file.readline()) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception("Malformed PFM header.") scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = "<" scale = -scale else: endian = ">" # big-endian data = np.fromfile(file, endian + "f") shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data def read_flow_png(filename): """ Read optical flow from a png file. Parameters ----------- filename : str Path to flow file Returns -------- flow : np.ndarray Optical flow map valid : np.ndarray Valid flow map """ flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR) flow = flow[:, :, ::-1].astype(np.float32) flow, valid = flow[:, :, :2], flow[:, :, 2] flow = (flow - 2**15) / 64.0 return flow, valid def write_flow(filename, uv, v=None): """Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in depth. Parameters ---------- filename : str Path to file uv : np.ndarray Optical flow v : np.ndarray, optional Optional second channel """ # Original code by Deqing Sun, adapted from Daniel Scharstein. n_bands = 2 if v is None: assert uv.ndim == 3 assert uv.shape[2] == 2 u = uv[:, :, 0] v = uv[:, :, 1] else: u = uv assert u.shape == v.shape height, width = u.shape f = open(filename, "wb") # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width * n_bands)) tmp[:, np.arange(width) * 2] = u tmp[:, np.arange(width) * 2 + 1] = v tmp.astype(np.float32).tofile(f) f.close() def read_image(file_name): """ Read images from a variety of file formats Parameters ----------- file_name : str Path to flow file Returns -------- flow : np.ndarray Optical flow map """ ext = splitext(file_name)[-1] if ext == ".png" or ext == ".jpeg" or ext == ".ppm" or ext == ".jpg": return Image.open(file_name) elif ext == ".bin" or ext == ".raw": return np.load(file_name) return [] def read_flow(file_name): """ Read ground truth flow from a variety of file formats Parameters ----------- file_name : str Path to flow file Returns -------- flow : np.ndarray Optical flow map valid : None if .flo and .pfm files else np.ndarray Valid flow map """ ext = splitext(file_name)[-1] if ext == ".flo": flow = read_flow_middlebury(file_name).astype(np.float32) return flow, None elif ext == ".pfm": flow = read_flow_pfm(file_name).astype(np.float32) if len(flow.shape) == 2: return flow, None else: return flow[:, :, :-1], None elif ext == ".png": return read_flow_png(file_name) return [] class InputPadder: """ Class to pad / unpad the input to a network with a given padding Parameters ----------- dims : tuple Dimensions of the input divisor : int Divisor to make the input evenly divisible by mode : str Padding mode """ def __init__(self, dims, divisor=8, mode="sintel"): self.ht, self.wd = dims[-2:] pad_ht = (((self.ht // divisor) + 1) * divisor - self.ht) % divisor pad_wd = (((self.wd // divisor) + 1) * divisor - self.wd) % divisor if mode == "sintel": self._pad = [ pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2, ] else: self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] def pad(self, *inputs): """ Pad the input Parameters ----------- inputs : list List of inputs to pad Returns -------- list Padded inputs """ return [F.pad(x, self._pad, mode="replicate") for x in inputs] def unpad(self, x): """ Unpad the input Parameters ----------- x : torch.Tensor Input to unpad Returns -------- torch.Tensor Unpadded input """ ht, wd = x.shape[-2:] c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] return x[..., c[0] : c[1], c[2] : c[3]]
py
1a302273664eae240f4d94c2a86f0229ee564ceb
"""Norwegian-specific Form helpers.""" from __future__ import unicode_literals import datetime import re from django.core.validators import EMPTY_VALUES from django.forms import ValidationError from django.forms.fields import CharField, Field, RegexField, Select from django.utils.translation import ugettext_lazy as _ from localflavor.generic.forms import DeprecatedPhoneNumberFormFieldMixin from .no_municipalities import MUNICIPALITY_CHOICES class NOZipCodeField(RegexField): """ A form field that validates input as a Norwegian zip code. Valid codes have four digits. """ default_error_messages = { 'invalid': _('Enter a zip code in the format XXXX.'), } def __init__(self, max_length=None, min_length=None, *args, **kwargs): super(NOZipCodeField, self).__init__(r'^\d{4}$', max_length, min_length, *args, **kwargs) class NOMunicipalitySelect(Select): """A Select widget that uses a list of Norwegian municipalities (fylker) as its choices.""" def __init__(self, attrs=None): super(NOMunicipalitySelect, self).__init__(attrs, choices=MUNICIPALITY_CHOICES) class NOSocialSecurityNumber(Field): """Algorithm is documented at http://no.wikipedia.org/wiki/Personnummer.""" default_error_messages = { 'invalid': _('Enter a valid Norwegian social security number.'), } def clean(self, value): super(NOSocialSecurityNumber, self).clean(value) if value in EMPTY_VALUES: return '' if not re.match(r'^\d{11}$', value): raise ValidationError(self.error_messages['invalid']) self.birthday = self._get_birthday(value) self.gender = self._get_gender(value) digits = map(int, list(value)) weight_1 = [3, 7, 6, 1, 8, 9, 4, 5, 2, 1, 0] weight_2 = [5, 4, 3, 2, 7, 6, 5, 4, 3, 2, 1] def multiply_reduce(aval, bval): return sum([(a * b) for (a, b) in zip(aval, bval)]) if multiply_reduce(digits, weight_1) % 11 != 0: raise ValidationError(self.error_messages['invalid']) if multiply_reduce(digits, weight_2) % 11 != 0: raise ValidationError(self.error_messages['invalid']) return value def _get_gender(self, value): sexnum = int(value[8]) if sexnum % 2 == 0: gender = 'F' else: gender = 'M' return gender def _get_birthday(self, value): birthday = None day = int(value[:2]) month = int(value[2:4]) year2 = int(value[4:6]) inum = int(value[6:9]) try: if 000 <= inum < 500: birthday = datetime.date(1900 + year2, month, day) if 500 <= inum < 750 and year2 > 54: birthday = datetime.date(1800 + year2, month, day) if 500 <= inum < 1000 and year2 < 40: birthday = datetime.date(2000 + year2, month, day) if 900 <= inum < 1000 and year2 > 39: birthday = datetime.date(1900 + year2, month, day) except ValueError: raise ValidationError(self.error_messages['invalid']) return birthday class NOBankAccountNumber(CharField): """ A form field for Norwegian bank account numbers. Performs MOD11 with the custom weights for the Norwegian bank account numbers, including a check for a remainder of 0, in which event the checksum is also 0. Usually their string representation is along the lines of ZZZZ.YY.XXXXX, where the last X is the check digit. They're always a total of 11 digits long, with 10 out of these 11 being the actual account number itself. * Accepts, and strips, account numbers with extra spaces. * Accepts, and strips, account numbers provided in form of XXXX.YY.XXXXX. .. note:: No consideration is taking for banking clearing numbers as of yet, seeing as these are only used between banks themselves. .. versionadded:: 1.5 """ default_error_messages = { 'invalid': _('Enter a valid Norwegian bank account number.'), 'invalid_checksum': _('Invalid control digit. Enter a valid Norwegian bank account number.'), 'invalid_length': _('Invalid length. Norwegian bank account numbers are 11 digits long.'), } def validate(self, value): super(NOBankAccountNumber, self).validate(value) if value is '': # It's alright to be empty. return elif not value.isdigit(): # You must only contain decimals. raise ValidationError(self.error_messages['invalid']) elif len(value) is not 11: # They only have one length: the number is 10! # That being said, you always store them with the check digit included, so 11. raise ValidationError(self.error_messages['invalid_length']) # The control/check digit is the last digit check_digit = int(value[-1]) bank_number = value[:-1] # These are the weights by which we multiply to get our checksum digit weights = [5, 4, 3, 2, 7, 6, 5, 4, 3, 2] result = sum(w * (int(x)) for w, x in zip(weights, bank_number)) remainder = result % 11 # The checksum is 0 in the event there's no remainder, seeing as we cannot have a checksum of 11 # when 11 is one digit longer than we've got room for checksum = 0 if remainder is 0 else 11 - remainder if checksum != check_digit: raise ValidationError(self.error_messages['invalid_checksum']) def to_python(self, value): value = super(NOBankAccountNumber, self).to_python(value) return value.replace('.', '').replace(' ', '') def prepare_value(self, value): if value in EMPTY_VALUES: return value return '{}.{}.{}'.format(value[0:4], value[4:6], value[6:11]) class NOPhoneNumberField(RegexField, DeprecatedPhoneNumberFormFieldMixin): """ Field with phonenumber validation. Requires a phone number with 8 digits and optional country code """ default_error_messages = { 'invalid': _('A phone number must be 8 digits and may have country code'), } def __init__(self, max_length=None, min_length=None, *args, **kwargs): super(NOPhoneNumberField, self).__init__( r'^(?:\+47)? ?(\d{3}\s?\d{2}\s?\d{3}|\d{2}\s?\d{2}\s?\d{2}\s?\d{2})$', max_length, min_length, *args, **kwargs)
py
1a30237343fbc293756aaa70da110dd64c11e79d
from __future__ import division, print_function import numpy as np from librmm_cffi import librmm as rmm import cudf._lib as libcudf from cudf.core import Series from cudf.core.column import column def test_gather_single_col(): col = column.as_column(np.arange(100), dtype=np.int32) gather_map = np.array([0, 1, 2, 3, 5, 8, 13, 21], dtype=np.int32) device_gather_map = rmm.to_device(gather_map) out = libcudf.copying.gather(col, device_gather_map) np.testing.assert_array_equal(out.to_array(), gather_map) def test_gather_cols(): cols = [ column.as_column(np.arange(10), dtype=np.int32), column.as_column(np.arange(0.0, 2.0, 0.2), dtype=np.float32), ] gather_map = np.array([0, 1, 2, 3, 5, 8], dtype=np.int32) expected = np.array(gather_map * 0.2, dtype=np.float32) device_gather_map = rmm.to_device(gather_map) out = libcudf.copying.gather(cols, device_gather_map) np.testing.assert_array_equal(out[0].to_array(), gather_map) np.testing.assert_array_almost_equal(out[1].to_array(), expected) def test_gather_string_col(): col = column.as_column(["a", "b", "c", "d"]) gather_map = column.as_column([0, 2, 3], dtype="int32").data.mem result = libcudf.copying.gather(col, gather_map) assert result.data.to_host() == ["a", "c", "d"] col = column.as_column(["a", "b", None, "d"]) gather_map = column.as_column([0, 2, 3], dtype="int32").data.mem result = libcudf.copying.gather(col, gather_map) assert result.data.to_host() == ["a", None, "d"] def test_null_copy(): col = Series(np.arange(2049)) col[:] = None assert len(col) == 2049
py
1a302539f41176b68fc899c25e0f9d2336eec703
#!/usr/bin/env python from PyZ3950 import zoom def run (): conn = zoom.Connection ('amicus.nlc-bnc.ca', 210) conn.databaseName = 'NL' q = zoom.Query ('CCL', 'ti="1066"') ss = conn.scan (q) for s in ss[0:10]: print s if __name__ == '__main__': run ()
py
1a30266b5b34e7e07dd8b5ba15729b82ce3d31de
import sys,os,random from phrasemachine import phrasemachine as pm; reload(pm) text=open("sloths.txt").read() # text = open("testdata/wine-nltk.txt").read().decode("utf8",'ignore') # tt=pm.get_stdeng_spacy_tagger() d=tt.tag_text(text) def loop(): while True: pat = raw_input("Pattern: ") # p = pm.get_phrases(tokens=d['tokens'], postags=d['pos'], regex=pat, minlen=1)['counts'] p = pm.get_phrases(open("sloths.txt").read(), tagger='spacy', regex=pat, minlen=1)['counts'] phrases = p.keys() ptok = [] for phrase in phrases: # print [phrase] ptok += [phrase]*p[phrase] if len(ptok) < 10: xx = ptok else: xx = [random.choice(ptok) for i in xrange(10)] # xx = [random.choice(phrases) for i in xrange(10)] # print xx print u', '.join(xx).encode("utf8")
py
1a3026e7f45b00b8eb123506ce710f31ae1ad3e4
from .Function_Module import Function_Module from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.support.ui import WebDriverWait import selenium from geopy.geocoders import Nominatim import time import os import pathlib class get_gps_location(Function_Module): name = "get_gps_location" help_description = "Current location" time_sleep = 2 error = "Sir, I'm sorry I can't get my location." chrome_not_found_error = "Sir, I can't find the Chrome binaries. Make sure that C:\Program Files(x86)\Google\Chrome\Application\chrome.exe is present!" def respond(self, entities): try: coordinates = self.getLocation(self) return self.convert_to_location(self, coordinates) except selenium.common.exceptions.WebDriverException: return self.chrome_not_found_error except: return self.error def getLocation(self): chrome_options = Options() chrome_options.add_argument("--use-fake-ui-for-media-stream") # You shouldn't see the browser, so; headless does not work, otherwise gps will not be activated! # chrome_options.add_argument ("headless") timeout = 20 # The directory in which the Chrome driver (required for Selenium) is located: Is the script directory, i.e. the same chrome_driver_path = str( str( pathlib.Path(__file__).parent.absolute() ) + r"\chromedriver.exe" ) print("Chrome-Driver Path: ", chrome_driver_path) driver = webdriver.Chrome(executable_path=chrome_driver_path, chrome_options=chrome_options) driver.get("https://mycurrentlocation.net/") wait = WebDriverWait(driver, timeout) time.sleep(self.time_sleep) longitude = driver.find_elements_by_xpath('//*[@id="longitude"]') longitude = [x.text for x in longitude] longitude = str(longitude[0]) latitude = driver.find_elements_by_xpath('//*[@id="latitude"]') latitude = [x.text for x in latitude] latitude = str(latitude[0]) driver.quit() coordinates = [latitude, longitude] return coordinates def convert_to_location(self, coordinates): geolocator = Nominatim(user_agent="F.R.I.D.A.Y") location = geolocator.reverse(coordinates[0] + ',' + coordinates[1]) print(location.raw) # Compose an answer text from the address address = location.raw['address'] # Street with 'the' if("street" in address['road'] or "road" in address['road']): result = "According to GPS, you are currently in the "+ address['road'] + ', ' + address['town'] + ', ' + address['state'] + ', ' + address['country'] + '.' else: result = "According to GPS, you are currently in "+ address['road'] + ', ' + address['town'] + ', ' + address['state'] + ', ' + address['country'] + '.' return result
py
1a3027db99844428cefed2186cc6eaa24fc7c394
# -*- coding: utf-8 -*- # ============================================================================= # Copyright (c) 2012, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # Written by Joel Bernier <[email protected]> and others. # LLNL-CODE-529294. # All rights reserved. # # This file is part of HEXRD. For details on dowloading the source, # see the file COPYING. # # Please also see the file LICENSE. # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License (as published by the Free # Software Foundation) version 2.1 dated February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY # or FITNESS FOR A PARTICULAR PURPOSE. See the terms and conditions of the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program (see file LICENSE); if not, write to # the Free Software Foundation, Inc., 59 Temple Place, Suite 330, # Boston, MA 02111-1307 USA or visit <http://www.gnu.org/licenses/>. # ============================================================================= """ Created on Fri Dec 9 13:05:27 2016 @author: bernier2 """ import copy import os from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from functools import partial import yaml import h5py import numpy as np from io import IOBase from scipy import ndimage from scipy.linalg.matfuncs import logm from hexrd import constants from hexrd.gridutil import cellConnectivity, cellIndices, make_tolerance_grid from hexrd import matrixutil as mutil from hexrd.transforms.xfcapi import \ anglesToGVec, \ angularDifference, \ detectorXYToGvec, \ gvecToDetectorXY, \ makeOscillRotMat, \ makeRotMatOfExpMap, \ mapAngle, \ oscillAnglesOfHKLs, \ rowNorm, \ unitRowVector from hexrd import xrdutil from hexrd.crystallography import PlaneData from hexrd import constants as ct from hexrd.rotations import angleAxisOfRotMat, RotMatEuler from hexrd import distortion as distortion_pkg from hexrd.utils.compatibility import h5py_read_string from hexrd.utils.concurrent import distribute_tasks from hexrd.utils.decorators import memoize from hexrd.valunits import valWUnit from hexrd.wppf import LeBail from skimage.draw import polygon from skimage.util import random_noise from hexrd.wppf import wppfsupport try: from fast_histogram import histogram1d fast_histogram = True except(ImportError): from numpy import histogram as histogram1d fast_histogram = False if ct.USE_NUMBA: import numba # ============================================================================= # PARAMETERS # ============================================================================= instrument_name_DFLT = 'instrument' beam_energy_DFLT = 65.351 beam_vec_DFLT = ct.beam_vec eta_vec_DFLT = ct.eta_vec panel_id_DFLT = 'generic' nrows_DFLT = 2048 ncols_DFLT = 2048 pixel_size_DFLT = (0.2, 0.2) tilt_params_DFLT = np.zeros(3) t_vec_d_DFLT = np.r_[0., 0., -1000.] chi_DFLT = 0. t_vec_s_DFLT = np.zeros(3) max_workers_DFLT = max(1, os.cpu_count() - 1) """ Calibration parameter flags for instrument level, len is 7 [beam energy, beam azimuth, beam elevation, chi, tvec[0], tvec[1], tvec[2], ] """ instr_calibration_flags_DFLT = np.zeros(7, dtype=bool) """ for each panel, order is: [tilt[0], tilt[1], tilt[2], tvec[0], tvec[1], tvec[2], <dparams>, ] len is 6 + len(dparams) for each panel by default, dparams are not set for refinement """ panel_calibration_flags_DFLT = np.array( [1, 1, 1, 1, 1, 1], dtype=bool ) buffer_key = 'buffer' distortion_key = 'distortion' # ============================================================================= # UTILITY METHODS # ============================================================================= def _fix_indices(idx, lo, hi): nidx = np.array(idx) off_lo = nidx < lo off_hi = nidx > hi nidx[off_lo] = lo nidx[off_hi] = hi return nidx def calc_beam_vec(azim, pola): """ Calculate unit beam propagation vector from spherical coordinate spec in DEGREES. ...MAY CHANGE; THIS IS ALSO LOCATED IN XRDUTIL! """ tht = np.radians(azim) phi = np.radians(pola) bv = np.r_[ np.sin(phi)*np.cos(tht), np.cos(phi), np.sin(phi)*np.sin(tht)] return -bv def calc_angles_from_beam_vec(bvec): """ Return the azimuth and polar angle from a beam vector """ bvec = np.atleast_1d(bvec).flatten() nvec = unitRowVector(-bvec) azim = float( np.degrees(np.arctan2(nvec[2], nvec[0])) ) pola = float(np.degrees(np.arccos(nvec[1]))) return azim, pola def migrate_instrument_config(instrument_config): """utility function to generate old instrument config dictionary""" cfg_list = [] for detector_id in instrument_config['detectors']: cfg_list.append( dict( detector=instrument_config['detectors'][detector_id], oscillation_stage=instrument_config['oscillation_stage'], ) ) return cfg_list def angle_in_range(angle, ranges, ccw=True, units='degrees'): """ Return the index of the first wedge the angle is found in WARNING: always clockwise; assumes wedges are not overlapping """ tau = 360. if units.lower() == 'radians': tau = 2*np.pi w = np.nan for i, wedge in enumerate(ranges): amin = wedge[0] amax = wedge[1] check = amin + np.mod(angle - amin, tau) if check < amax: w = i break return w # ???: move to gridutil? def centers_of_edge_vec(edges): assert np.r_[edges].ndim == 1, "edges must be 1-d" return np.average(np.vstack([edges[:-1], edges[1:]]), axis=0) def max_tth(instr): """ Return the maximum Bragg angle (in radians) subtended by the instrument. Parameters ---------- instr : hexrd.instrument.HEDMInstrument instance the instrument class to evalutate. Returns ------- tth_max : float The maximum observable Bragg angle by the instrument in radians. """ tth_max = 0. for det in instr.detectors.values(): ptth, peta = det.pixel_angles() tth_max = max(np.max(ptth), tth_max) return tth_max def pixel_resolution(instr): """ Return the minimum, median, and maximum angular resolution of the instrument. Parameters ---------- instr : HEDMInstrument instance An instrument. Returns ------- tth_stats : float min/median/max tth resolution in radians. eta_stats : TYPE min/median/max eta resolution in radians. """ max_tth = np.inf max_eta = np.inf min_tth = -np.inf min_eta = -np.inf ang_ps_full = [] for panel in instr.detectors.values(): angps = panel.angularPixelSize( np.stack( panel.pixel_coords, axis=0 ).reshape(2, np.cumprod(panel.shape)[-1]).T ) ang_ps_full.append(angps) max_tth = min(max_tth, np.min(angps[:, 0])) max_eta = min(max_eta, np.min(angps[:, 1])) min_tth = max(min_tth, np.max(angps[:, 0])) min_eta = max(min_eta, np.max(angps[:, 1])) pass med_tth, med_eta = np.median(np.vstack(ang_ps_full), axis=0).flatten() return (min_tth, med_tth, max_tth), (min_eta, med_eta, max_eta) def max_resolution(instr): """ Return the maximum angular resolution of the instrument. Parameters ---------- instr : HEDMInstrument instance An instrument. Returns ------- max_tth : float Maximum tth resolution in radians. max_eta : TYPE maximum eta resolution in radians. """ max_tth = np.inf max_eta = np.inf for panel in instr.detectors.values(): angps = panel.angularPixelSize( np.stack( panel.pixel_coords, axis=0 ).reshape(2, np.cumprod(panel.shape)[-1]).T ) max_tth = min(max_tth, np.min(angps[:, 0])) max_eta = min(max_eta, np.min(angps[:, 1])) return max_tth, max_eta def _gaussian_dist(x, cen, fwhm): sigm = fwhm/(2*np.sqrt(2*np.log(2))) return np.exp(-0.5*(x - cen)**2/sigm**2) def _sigma_to_fwhm(sigm): return sigm*ct.sigma_to_fwhm def _fwhm_to_sigma(fwhm): return fwhm/ct.sigma_to_fwhm # FIXME find a better place for this, and maybe include loop over pixels if ct.USE_NUMBA: @numba.njit(nogil=True, cache=True) def _solid_angle_of_triangle(vtx_list): norms = np.sqrt(np.sum(vtx_list*vtx_list, axis=1)) norms_prod = norms[0] * norms[1] * norms[2] scalar_triple_product = np.dot(vtx_list[0], np.cross(vtx_list[2], vtx_list[1])) denominator = norms_prod \ + norms[0]*np.dot(vtx_list[1], vtx_list[2]) \ + norms[1]*np.dot(vtx_list[2], vtx_list[0]) \ + norms[2]*np.dot(vtx_list[0], vtx_list[1]) return 2.*np.arctan2(scalar_triple_product, denominator) else: def _solid_angle_of_triangle(vtx_list): norms = rowNorm(vtx_list) norms_prod = np.cumprod(norms)[-1] scalar_triple_product = np.dot(vtx_list[0], np.cross(vtx_list[2], vtx_list[1])) denominator = norms_prod \ + norms[0]*np.dot(vtx_list[1], vtx_list[2]) \ + norms[1]*np.dot(vtx_list[2], vtx_list[0]) \ + norms[2]*np.dot(vtx_list[0], vtx_list[1]) return 2.*np.arctan2(scalar_triple_product, denominator) # ============================================================================= # CLASSES # ============================================================================= class HEDMInstrument(object): """ Abstraction of XRD instrument. * Distortion needs to be moved to a class with registry; tuple unworkable * where should reference eta be defined? currently set to default config """ def __init__(self, instrument_config=None, image_series=None, eta_vector=None, instrument_name=None, tilt_calibration_mapping=None, max_workers=max_workers_DFLT): self._id = instrument_name_DFLT if eta_vector is None: self._eta_vector = eta_vec_DFLT else: self._eta_vector = eta_vector self.max_workers = max_workers if instrument_config is None: if instrument_name is not None: self._id = instrument_name self._num_panels = 1 self._beam_energy = beam_energy_DFLT self._beam_vector = beam_vec_DFLT self._detectors = dict( panel_id_DFLT=PlanarDetector( rows=nrows_DFLT, cols=ncols_DFLT, pixel_size=pixel_size_DFLT, tvec=t_vec_d_DFLT, tilt=tilt_params_DFLT, bvec=self._beam_vector, evec=self._eta_vector, distortion=None, max_workers=self.max_workers), ) self._tvec = t_vec_s_DFLT self._chi = chi_DFLT else: if isinstance(instrument_config, h5py.File): tmp = {} unwrap_h5_to_dict(instrument_config, tmp) instrument_config.close() instrument_config = tmp['instrument'] elif not isinstance(instrument_config, dict): raise RuntimeError( "instrument_config must be either an HDF5 file object" + "or a dictionary. You gave a %s" % type(instrument_config) ) if instrument_name is None: if 'id' in instrument_config: self._id = instrument_config['id'] else: self._id = instrument_name self._num_panels = len(instrument_config['detectors']) self._beam_energy = instrument_config['beam']['energy'] # keV self._beam_vector = calc_beam_vec( instrument_config['beam']['vector']['azimuth'], instrument_config['beam']['vector']['polar_angle'], ) # now build detector dict detectors_config = instrument_config['detectors'] det_dict = dict.fromkeys(detectors_config) for det_id, det_info in detectors_config.items(): pixel_info = det_info['pixels'] affine_info = det_info['transform'] try: saturation_level = det_info['saturation_level'] except(KeyError): saturation_level = 2**16 shape = (pixel_info['rows'], pixel_info['columns']) panel_buffer = None if buffer_key in det_info: det_buffer = det_info[buffer_key] if det_buffer is not None: if isinstance(det_buffer, np.ndarray): if det_buffer.ndim == 2: assert det_buffer.shape == shape, \ "buffer shape must match detector" else: assert len(det_buffer) == 2 panel_buffer = det_buffer elif isinstance(det_buffer, list): panel_buffer = np.asarray(det_buffer) elif np.isscalar(det_buffer): panel_buffer = det_buffer*np.ones(2) else: raise RuntimeError( "panel buffer spec invalid for %s" % det_id ) # handle distortion distortion = None if distortion_key in det_info: distortion_cfg = det_info[distortion_key] if distortion_cfg is not None: try: func_name = distortion_cfg['function_name'] dparams = distortion_cfg['parameters'] distortion = distortion_pkg.get_mapping( func_name, dparams ) except(KeyError): raise RuntimeError( "problem with distortion specification" ) det_dict[det_id] = PlanarDetector( name=det_id, rows=pixel_info['rows'], cols=pixel_info['columns'], pixel_size=pixel_info['size'], panel_buffer=panel_buffer, saturation_level=saturation_level, tvec=affine_info['translation'], tilt=affine_info['tilt'], bvec=self._beam_vector, evec=self._eta_vector, distortion=distortion, max_workers=self.max_workers) self._detectors = det_dict self._tvec = np.r_[ instrument_config['oscillation_stage']['translation'] ] self._chi = instrument_config['oscillation_stage']['chi'] # # set up calibration parameter list and refinement flags # # first, grab the mapping function for tilt parameters if specified if tilt_calibration_mapping is not None: if not isinstance(tilt_calibration_mapping, RotMatEuler): raise RuntimeError( "tilt mapping must be a 'RotMatEuler' instance" ) self._tilt_calibration_mapping = tilt_calibration_mapping # grab angles from beam vec # !!! these are in DEGREES! azim, pola = calc_angles_from_beam_vec(self._beam_vector) # stack instrument level parameters # units: keV, degrees, mm self._calibration_parameters = [ self._beam_energy, azim, pola, np.degrees(self._chi), *self._tvec, ] self._calibration_flags = instr_calibration_flags_DFLT # collect info from panels and append det_params = [] det_flags = [] for detector in self._detectors.values(): this_det_params = detector.calibration_parameters if self._tilt_calibration_mapping is not None: rmat = makeRotMatOfExpMap(detector.tilt) self._tilt_calibration_mapping.rmat = rmat tilt = np.degrees(self._tilt_calibration_mapping.angles) this_det_params[:3] = tilt det_params.append(this_det_params) det_flags.append(detector.calibration_flags) det_params = np.hstack(det_params) det_flags = np.hstack(det_flags) # !!! hstack here assumes that calib params will be float and # !!! flags will all be bool self._calibration_parameters = np.hstack( [self._calibration_parameters, det_params] ).flatten() self._calibration_flags = np.hstack( [self._calibration_flags, det_flags] ) return # properties for physical size of rectangular detector @property def id(self): return self._id @property def num_panels(self): return self._num_panels @property def detectors(self): return self._detectors @property def detector_parameters(self): pdict = {} for key, panel in self.detectors.items(): pdict[key] = panel.config_dict( self.chi, self.tvec, beam_energy=self.beam_energy, beam_vector=self.beam_vector ) return pdict @property def tvec(self): return self._tvec @tvec.setter def tvec(self, x): x = np.array(x).flatten() assert len(x) == 3, 'input must have length = 3' self._tvec = x @property def chi(self): return self._chi @chi.setter def chi(self, x): self._chi = float(x) @property def beam_energy(self): return self._beam_energy @beam_energy.setter def beam_energy(self, x): self._beam_energy = float(x) @property def beam_wavelength(self): return ct.keVToAngstrom(self.beam_energy) @property def beam_vector(self): return self._beam_vector @beam_vector.setter def beam_vector(self, x): x = np.array(x).flatten() if len(x) == 3: assert sum(x*x) > 1-ct.sqrt_epsf, \ 'input must have length = 3 and have unit magnitude' self._beam_vector = x elif len(x) == 2: self._beam_vector = calc_beam_vec(*x) else: raise RuntimeError("input must be a unit vector or angle pair") # ...maybe change dictionary item behavior for 3.x compatibility? for detector_id in self.detectors: panel = self.detectors[detector_id] panel.bvec = self._beam_vector @property def eta_vector(self): return self._eta_vector @eta_vector.setter def eta_vector(self, x): x = np.array(x).flatten() assert len(x) == 3 and sum(x*x) > 1-ct.sqrt_epsf, \ 'input must have length = 3 and have unit magnitude' self._eta_vector = x # ...maybe change dictionary item behavior for 3.x compatibility? for detector_id in self.detectors: panel = self.detectors[detector_id] panel.evec = self._eta_vector @property def tilt_calibration_mapping(self): return self._tilt_calibration_mapping @tilt_calibration_mapping.setter def tilt_calibration_mapping(self, x): if not isinstance(x, RotMatEuler) and x is not None: raise RuntimeError( "tilt mapping must be None or a 'RotMatEuler' instance" ) self._tilt_calibration_mapping = x @property def calibration_parameters(self): """ Yields concatenated list of instrument parameters. Returns ------- array_like concatenated list of instrument parameters. """ # grab angles from beam vec # !!! these are in DEGREES! azim, pola = calc_angles_from_beam_vec(self.beam_vector) # stack instrument level parameters # units: keV, degrees, mm calibration_parameters = [ self.beam_energy, azim, pola, np.degrees(self.chi), *self.tvec, ] # collect info from panels and append det_params = [] det_flags = [] for detector in self.detectors.values(): this_det_params = detector.calibration_parameters if self.tilt_calibration_mapping is not None: rmat = makeRotMatOfExpMap(detector.tilt) self.tilt_calibration_mapping.rmat = rmat tilt = np.degrees(self.tilt_calibration_mapping.angles) this_det_params[:3] = tilt det_params.append(this_det_params) det_flags.append(detector.calibration_flags) det_params = np.hstack(det_params) det_flags = np.hstack(det_flags) # !!! hstack here assumes that calib params will be float and # !!! flags will all be bool calibration_parameters = np.hstack( [calibration_parameters, det_params] ).flatten() self._calibration_parameters = calibration_parameters return self._calibration_parameters @property def calibration_flags(self): return self._calibration_flags @calibration_flags.setter def calibration_flags(self, x): x = np.array(x, dtype=bool).flatten() if len(x) != len(self._calibration_flags): raise RuntimeError( "length of parameter list must be %d; you gave %d" % (len(self._calibration_flags), len(x)) ) ii = 7 for panel in self.detectors.values(): npp = 6 if panel.distortion is not None: npp += len(panel.distortion.params) panel.calibration_flags = x[ii:ii + npp] self._calibration_flags = x # ========================================================================= # METHODS # ========================================================================= def write_config(self, filename=None, style='yaml', calibration_dict={}): """ WRITE OUT YAML FILE """ # initialize output dictionary assert style.lower() in ['yaml', 'hdf5'], \ "style must be either 'yaml', or 'hdf5'; you gave '%s'" % style par_dict = {} par_dict['id'] = self.id azim, pola = calc_angles_from_beam_vec(self.beam_vector) beam = dict( energy=self.beam_energy, vector=dict( azimuth=azim, polar_angle=pola, ) ) par_dict['beam'] = beam if calibration_dict: par_dict['calibration_crystal'] = calibration_dict ostage = dict( chi=self.chi, translation=self.tvec.tolist() ) par_dict['oscillation_stage'] = ostage det_dict = dict.fromkeys(self.detectors) for det_name, detector in self.detectors.items(): # grab panel config # !!! don't need beam or tvec # !!! have vetted style pdict = detector.config_dict(chi=self.chi, tvec=self.tvec, beam_energy=self.beam_energy, beam_vector=self.beam_vector, style=style) det_dict[det_name] = pdict['detector'] par_dict['detectors'] = det_dict # handle output file if requested if filename is not None: if style.lower() == 'yaml': with open(filename, 'w') as f: yaml.dump(par_dict, stream=f) else: # hdf5 with h5py.File(filename, 'w') as f: instr_grp = f.create_group('instrument') unwrap_dict_to_h5(instr_grp, par_dict, asattr=False) return par_dict def update_from_parameter_list(self, p): """ Update the instrument class from a parameter list. Utility function to update instrument parameters from a 1-d master parameter list (e.g. as used in calibration) !!! Note that angles are reported in DEGREES! """ self.beam_energy = p[0] self.beam_vector = calc_beam_vec(p[1], p[2]) self.chi = np.radians(p[3]) self.tvec = np.r_[p[4:7]] ii = 7 for det_name, detector in self.detectors.items(): this_det_params = detector.calibration_parameters npd = len(this_det_params) # total number of params dpnp = npd - 6 # number of distortion params # first do tilt tilt = np.r_[p[ii:ii + 3]] if self.tilt_calibration_mapping is not None: self.tilt_calibration_mapping.angles = np.radians(tilt) rmat = self.tilt_calibration_mapping.rmat phi, n = angleAxisOfRotMat(rmat) tilt = phi*n.flatten() detector.tilt = tilt # then do translation ii += 3 detector.tvec = np.r_[p[ii:ii + 3]] # then do distortion (if necessart) # FIXME will need to update this with distortion fix ii += 3 if dpnp > 0: if detector.distortion is None: raise RuntimeError( "distortion discrepancy for '%s'!" % det_name ) else: try: detector.distortion.params = p[ii:ii + dpnp] except(AssertionError): raise RuntimeError( "distortion for '%s' " % det_name + "expects %d params but got %d" % (len(detector.distortion.params), dpnp) ) ii += dpnp return def extract_polar_maps(self, plane_data, imgser_dict, active_hkls=None, threshold=None, tth_tol=None, eta_tol=0.25): """ Extract eta-omega maps from an imageseries. Quick and dirty way to histogram angular patch data for make pole figures suitable for fiber generation TODO: streamline projection code TODO: normalization !!!: images must be non-negative! """ if tth_tol is not None: plane_data.tThWidth = np.radians(tth_tol) else: tth_tol = np.degrees(plane_data.tThWidth) tth_ranges = plane_data.getTThRanges() if active_hkls is not None: assert hasattr(active_hkls, '__len__'), \ "active_hkls must be an iterable with __len__" tth_ranges = tth_ranges[active_hkls] # # need this for making eta ranges # eta_tol_vec = 0.5*np.radians([-eta_tol, eta_tol]) # make rings clipped to panel # !!! eta_idx has the same length as plane_data.exclusions # each entry are the integer indices into the bins # !!! eta_edges is the list of eta bin EDGES # We can use the same eta_edge for all detectors, so calculate it once pow_angs, pow_xys, eta_idx, eta_edges = list( self.detectors.values() )[0].make_powder_rings(plane_data, merge_hkls=False, delta_eta=eta_tol, full_output=True) delta_eta = eta_edges[1] - eta_edges[0] ncols_eta = len(eta_edges) - 1 ring_maps_panel = dict.fromkeys(self.detectors) for i_d, det_key in enumerate(self.detectors): print("working on detector '%s'..." % det_key) # grab panel panel = self.detectors[det_key] # native_area = panel.pixel_area # pixel ref area # pixel angular coords for the detector panel ptth, peta = panel.pixel_angles() # grab omegas from imageseries and squawk if missing try: omegas = imgser_dict[det_key].metadata['omega'] except(KeyError): msg = "imageseries for '%s' has no omega info" % det_key raise RuntimeError(msg) # initialize maps and assing by row (omega/frame) nrows_ome = len(omegas) # init map with NaNs shape = (len(tth_ranges), nrows_ome, ncols_eta) ring_maps = np.full(shape, np.nan) # Generate ring parameters once, and re-use them for each image ring_params = [] for tthr in tth_ranges: kwargs = { 'tthr': tthr, 'ptth': ptth, 'peta': peta, 'eta_edges': eta_edges, 'delta_eta': delta_eta, } ring_params.append(_generate_ring_params(**kwargs)) # Divide up the images among processes ims = imgser_dict[det_key] tasks = distribute_tasks(len(ims), self.max_workers) func = partial(_run_histograms, ims=ims, tth_ranges=tth_ranges, ring_maps=ring_maps, ring_params=ring_params, threshold=threshold) with ThreadPoolExecutor(max_workers=self.max_workers) as executor: executor.map(func, tasks) ring_maps_panel[det_key] = ring_maps return ring_maps_panel, eta_edges def extract_line_positions(self, plane_data, imgser_dict, tth_tol=None, eta_tol=1., npdiv=2, eta_centers=None, collapse_eta=True, collapse_tth=False, do_interpolation=True): """ Perform annular interpolation on diffraction images. Provides data for extracting the line positions from powder diffraction images, pole figure patches from imageseries, or Bragg peaks from Laue diffraction images. Parameters ---------- plane_data : hexrd.crystallography.PlaneData object or array_like Object determining the 2theta positions for the integration sectors. If PlaneData, this will be all non-excluded reflections, subject to merging within PlaneData.tThWidth. If array_like, interpreted as a list of 2theta angles IN RADIAN (this may change). imgser_dict : dict Dictionary of powder diffraction images, one for each detector. tth_tol : scalar, optional The radial (i.e. 2theta) width of the integration sectors IN DEGREES. This arg is required if plane_data is array_like. The default is None. eta_tol : scalar, optional The azimuthal (i.e. eta) width of the integration sectors IN DEGREES. The default is 1. npdiv : int, optional The number of oversampling pixel subdivision (see notes). The default is 2. eta_centers : array_like, optional The desired azimuthal sector centers. The default is None. If None, then bins are distrubted sequentially from (-180, 180). collapse_eta : bool, optional Flag for summing sectors in eta. The default is True. collapse_tth : bool, optional Flag for summing sectors in 2theta. The default is False. do_interpolation : bool, optional If True, perform bilinear interpolation. The default is True. Raises ------ RuntimeError DESCRIPTION. Returns ------- panel_data : dict Dictionary over the detctors with the following structure: [list over (merged) 2theta ranges] [list over valid eta sectors] [angle data <input dependent>, bin intensities <input dependent>] Notes ----- TODO: May change the array_like input units to degrees. TODO: rename function. """ if not hasattr(plane_data, '__len__'): plane_data = plane_data.makeNew() # make local copy to munge if tth_tol is not None: plane_data.tThWidth = np.radians(tth_tol) tth_ranges = np.degrees(plane_data.getMergedRanges()[1]) tth_tols = np.hstack([i[1] - i[0] for i in tth_ranges]) else: tth_tols = np.ones(len(plane_data))*tth_tol # ===================================================================== # LOOP OVER DETECTORS # ===================================================================== panel_data = dict.fromkeys(self.detectors) for i_det, detector_id in enumerate(self.detectors): print("working on detector '%s'..." % detector_id) # pbar.update(i_det + 1) # grab panel panel = self.detectors[detector_id] instr_cfg = panel.config_dict( chi=self.chi, tvec=self.tvec, beam_energy=self.beam_energy, beam_vector=self.beam_vector ) native_area = panel.pixel_area # pixel ref area images = imgser_dict[detector_id] if images.ndim == 2: n_images = 1 images = np.tile(images, (1, 1, 1)) elif images.ndim == 3: n_images = len(images) else: raise RuntimeError("images must be 2- or 3-d") # make rings pow_angs, pow_xys = panel.make_powder_rings( plane_data, merge_hkls=True, delta_tth=tth_tol, delta_eta=eta_tol, eta_list=eta_centers) # ================================================================= # LOOP OVER RING SETS # ================================================================= ring_data = [] for i_ring, these_data in enumerate(zip(pow_angs, pow_xys)): print("interpolating 2theta bin %d..." % i_ring) # points are already checked to fall on detector angs = these_data[0] xys = these_data[1] # make the tth,eta patches for interpolation patches = xrdutil.make_reflection_patches( instr_cfg, angs, panel.angularPixelSize(xys), tth_tol=tth_tols[i_ring], eta_tol=eta_tol, npdiv=npdiv, quiet=True) # loop over patches # FIXME: fix initialization if collapse_tth: patch_data = np.zeros((len(angs), n_images)) else: patch_data = [] for i_p, patch in enumerate(patches): # strip relevant objects out of current patch vtx_angs, vtx_xys, conn, areas, xys_eval, ijs = patch # need to reshape eval pts for interpolation xy_eval = np.vstack([ xys_eval[0].flatten(), xys_eval[1].flatten()]).T _, on_panel = panel.clip_to_panel(xy_eval) if np.any(~on_panel): continue if collapse_tth: ang_data = (vtx_angs[0][0, [0, -1]], vtx_angs[1][[0, -1], 0]) elif collapse_eta: # !!! yield the tth bin centers tth_centers = np.average( np.vstack([vtx_angs[0][0, :-1], vtx_angs[0][0, 1:]]), axis=0 ) ang_data = (tth_centers, angs[i_p][-1]) else: ang_data = vtx_angs prows, pcols = areas.shape area_fac = areas/float(native_area) # interpolate if not collapse_tth: ims_data = [] for j_p in np.arange(len(images)): # catch interpolation type image = images[j_p] if do_interpolation: tmp = panel.interpolate_bilinear( xy_eval, image, ).reshape(prows, pcols)*area_fac else: tmp = image[ijs[0], ijs[1]]*area_fac # catch collapsing options if collapse_tth: patch_data[i_p, j_p] = np.average(tmp) # ims_data.append(np.sum(tmp)) else: if collapse_eta: ims_data.append(np.average(tmp, axis=0)) else: ims_data.append(tmp) pass # close image loop if not collapse_tth: patch_data.append((ang_data, ims_data)) pass # close patch loop ring_data.append(patch_data) pass # close ring loop panel_data[detector_id] = ring_data pass # close panel loop # pbar.finish() return panel_data def simulate_powder_pattern(self, mat_list, params=None, bkgmethod=None, origin=None, noise=None): """ Generate powder diffraction iamges from specified materials. Parameters ---------- mat_list : array_like (n, ) List of Material classes. params : dict, optional Dictionary of LeBail parameters (see Notes). The default is None. bkgmethod : dict, optional Background function specification. The default is None. origin : array_like (3,), optional Vector describing the origin of the diffrction volume. The default is None, wiich is equivalent to [0, 0, 0]. noise : str, optional Flag describing type of noise to be applied. The default is None. Returns ------- img_dict : dict Dictionary of diffraciton images over the detectors. Notes ----- TODO: add more controls for noise function. TODO: modify hooks to LeBail parameters. TODO: add optional volume fraction weights for phases in mat_list """ """ >> @AUTHOR: Saransh Singh, Lanwrence Livermore National Lab, [email protected] >> @DATE: 01/22/2021 SS 1.0 original >> @DETAILS: adding hook to WPPF class. this changes the input list significantly """ if origin is None: origin = self.tvec origin = np.asarray(origin).squeeze() assert len(origin) == 3, \ "origin must be a 3-element sequence" ''' if params is none, fill in some sane default values only the first value is used. the rest of the values are the upper, lower bounds and vary flag for refinement which are not used but required for interfacing with WPPF zero_error : zero shift error U, V, W : Cagliotti parameters P, X, Y : Lorentzian parameters eta1, eta2, eta3 : Mixing parameters ''' if(params is None): # params = {'zero_error': [0.0, -1., 1., True], # 'U': [2e-1, -1., 1., True], # 'V': [2e-2, -1., 1., True], # 'W': [2e-2, -1., 1., True], # 'X': [2e-1, -1., 1., True], # 'Y': [2e-1, -1., 1., True] # } params = wppfsupport._generate_default_parameters_LeBail( mat_list, 1) ''' use the material list to obtain the dictionary of initial intensities we need to make sure that the intensities are properly scaled by the lorentz polarization factor. since the calculation is done in the LeBail class, all that means is the initial intensity needs that factor in there ''' img_dict = dict.fromkeys(self.detectors) # find min and max tth over all panels tth_mi = np.inf tth_ma = 0. ptth_dict = dict.fromkeys(self.detectors) for det_key, panel in self.detectors.items(): ptth, peta = panel.pixel_angles(origin=origin) tth_mi = min(tth_mi, ptth.min()) tth_ma = max(tth_ma, ptth.max()) ptth_dict[det_key] = ptth ''' now make a list of two theta and dummy ones for the experimental spectrum this is never really used so any values should be okay. We could also pas the integrated detector image if we would like to simulate some realistic background. But thats for another day. ''' # convert angles to degrees because thats what the WPPF expects tth_mi = np.degrees(tth_mi) tth_ma = np.degrees(tth_ma) # get tth angular resolution for instrument ang_res = max_resolution(self) # !!! calc nsteps by oversampling nsteps = int(np.ceil(2*(tth_ma - tth_mi)/np.degrees(ang_res[0]))) # evaulation vector for LeBail tth = np.linspace(tth_mi, tth_ma, nsteps) expt = np.vstack([tth, np.ones_like(tth)]).T wavelength = [ valWUnit('lp', 'length', self.beam_wavelength, 'angstrom'), 1. ] ''' now go through the material list and get the intensity dictionary ''' intensity = {} for mat in mat_list: multiplicity = mat.planeData.getMultiplicity() tth = mat.planeData.getTTh() LP = (1 + np.cos(tth)**2) / \ np.cos(0.5*tth)/np.sin(0.5*tth)**2 intensity[mat.name] = {} intensity[mat.name]['synchrotron'] = \ mat.planeData.get_structFact() * LP * multiplicity kwargs = { 'expt_spectrum': expt, 'params': params, 'phases': mat_list, 'wavelength': { 'synchrotron': wavelength }, 'bkgmethod': bkgmethod, 'intensity_init': intensity, 'peakshape': 'pvtch' } self.WPPFclass = LeBail(**kwargs) self.simulated_spectrum = self.WPPFclass.spectrum_sim self.background = self.WPPFclass.background ''' now that we have the simulated intensities, its time to get the two theta for the detector pixels and interpolate what the intensity for each pixel should be ''' img_dict = dict.fromkeys(self.detectors) for det_key, panel in self.detectors.items(): ptth = ptth_dict[det_key] img = np.interp(np.degrees(ptth), self.simulated_spectrum.x, self.simulated_spectrum.y + self.background.y) # normalize everything to 0-1 mi = img.min() ma = img.max() if(ma > mi): img = (img - mi) / (ma - mi) if(noise is None): img_dict[det_key] = img else: if(noise.lower() == 'poisson'): im_noise = random_noise(img, mode='poisson', clip=True) mi = im_noise.min() ma = im_noise.max() if(ma > mi): im_noise = (im_noise - mi)/(ma - mi) img_dict[det_key] = im_noise elif(noise.lower() == 'gaussian'): img_dict[det_key] = random_noise(img, mode='gaussian', clip=True) elif(noise.lower() == 'salt'): img_dict[det_key] = random_noise(img, mode='salt') elif(noise.lower() == 'pepper'): img_dict[det_key] = random_noise(img, mode='pepper') elif(noise.lower() == 's&p'): img_dict[det_key] = random_noise(img, mode='s&p') elif(noise.lower() == 'speckle'): img_dict[det_key] = random_noise(img, mode='speckle', clip=True) return img_dict def simulate_laue_pattern(self, crystal_data, minEnergy=5., maxEnergy=35., rmat_s=None, grain_params=None): """ Simulate Laue diffraction over the instrument. Parameters ---------- crystal_data : TYPE DESCRIPTION. minEnergy : TYPE, optional DESCRIPTION. The default is 5.. maxEnergy : TYPE, optional DESCRIPTION. The default is 35.. rmat_s : TYPE, optional DESCRIPTION. The default is None. grain_params : TYPE, optional DESCRIPTION. The default is None. Returns ------- results : TYPE DESCRIPTION. TODO: revisit output; dict, or concatenated list? """ results = dict.fromkeys(self.detectors) for det_key, panel in self.detectors.items(): results[det_key] = panel.simulate_laue_pattern( crystal_data, minEnergy=minEnergy, maxEnergy=maxEnergy, rmat_s=rmat_s, tvec_s=self.tvec, grain_params=grain_params, beam_vec=self.beam_vector) return results def simulate_rotation_series(self, plane_data, grain_param_list, eta_ranges=[(-np.pi, np.pi), ], ome_ranges=[(-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), wavelength=None): """ Simulate a monochromatic rotation series over the instrument. Parameters ---------- plane_data : TYPE DESCRIPTION. grain_param_list : TYPE DESCRIPTION. eta_ranges : TYPE, optional DESCRIPTION. The default is [(-np.pi, np.pi), ]. ome_ranges : TYPE, optional DESCRIPTION. The default is [(-np.pi, np.pi), ]. ome_period : TYPE, optional DESCRIPTION. The default is (-np.pi, np.pi). wavelength : TYPE, optional DESCRIPTION. The default is None. Returns ------- results : TYPE DESCRIPTION. TODO: revisit output; dict, or concatenated list? """ results = dict.fromkeys(self.detectors) for det_key, panel in self.detectors.items(): results[det_key] = panel.simulate_rotation_series( plane_data, grain_param_list, eta_ranges=eta_ranges, ome_ranges=ome_ranges, ome_period=ome_period, chi=self.chi, tVec_s=self.tvec, wavelength=wavelength) return results def pull_spots(self, plane_data, grain_params, imgser_dict, tth_tol=0.25, eta_tol=1., ome_tol=1., npdiv=2, threshold=10, eta_ranges=[(-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), dirname='results', filename=None, output_format='text', return_spot_list=False, quiet=True, check_only=False, interp='nearest'): """ Exctract reflection info from a rotation series. Input must be encoded as an OmegaImageseries object. Parameters ---------- plane_data : TYPE DESCRIPTION. grain_params : TYPE DESCRIPTION. imgser_dict : TYPE DESCRIPTION. tth_tol : TYPE, optional DESCRIPTION. The default is 0.25. eta_tol : TYPE, optional DESCRIPTION. The default is 1.. ome_tol : TYPE, optional DESCRIPTION. The default is 1.. npdiv : TYPE, optional DESCRIPTION. The default is 2. threshold : TYPE, optional DESCRIPTION. The default is 10. eta_ranges : TYPE, optional DESCRIPTION. The default is [(-np.pi, np.pi), ]. ome_period : TYPE, optional DESCRIPTION. The default is (-np.pi, np.pi). dirname : TYPE, optional DESCRIPTION. The default is 'results'. filename : TYPE, optional DESCRIPTION. The default is None. output_format : TYPE, optional DESCRIPTION. The default is 'text'. return_spot_list : TYPE, optional DESCRIPTION. The default is False. quiet : TYPE, optional DESCRIPTION. The default is True. check_only : TYPE, optional DESCRIPTION. The default is False. interp : TYPE, optional DESCRIPTION. The default is 'nearest'. Returns ------- compl : TYPE DESCRIPTION. output : TYPE DESCRIPTION. """ # grain parameters rMat_c = makeRotMatOfExpMap(grain_params[:3]) tVec_c = grain_params[3:6] # grab omega ranges from first imageseries # # WARNING: all imageseries AND all wedges within are assumed to have # the same omega values; put in a check that they are all the same??? oims0 = next(iter(imgser_dict.values())) ome_ranges = [np.radians([i['ostart'], i['ostop']]) for i in oims0.omegawedges.wedges] # delta omega in DEGREES grabbed from first imageseries in the dict delta_ome = oims0.omega[0, 1] - oims0.omega[0, 0] # make omega grid for frame expansion around reference frame # in DEGREES ndiv_ome, ome_del = make_tolerance_grid( delta_ome, ome_tol, 1, adjust_window=True, ) # generate structuring element for connected component labeling if ndiv_ome == 1: label_struct = ndimage.generate_binary_structure(2, 2) else: label_struct = ndimage.generate_binary_structure(3, 3) # simulate rotation series sim_results = self.simulate_rotation_series( plane_data, [grain_params, ], eta_ranges=eta_ranges, ome_ranges=ome_ranges, ome_period=ome_period) # patch vertex generator (global for instrument) tol_vec = 0.5*np.radians( [-tth_tol, -eta_tol, -tth_tol, eta_tol, tth_tol, eta_tol, tth_tol, -eta_tol]) # prepare output if requested if filename is not None and output_format.lower() == 'hdf5': this_filename = os.path.join(dirname, filename) writer = GrainDataWriter_h5( os.path.join(dirname, filename), self.write_config(), grain_params) # ===================================================================== # LOOP OVER PANELS # ===================================================================== iRefl = 0 compl = [] output = dict.fromkeys(self.detectors) for detector_id in self.detectors: # initialize text-based output writer if filename is not None and output_format.lower() == 'text': output_dir = os.path.join( dirname, detector_id ) if not os.path.exists(output_dir): os.makedirs(output_dir) this_filename = os.path.join( output_dir, filename ) writer = PatchDataWriter(this_filename) # grab panel panel = self.detectors[detector_id] instr_cfg = panel.config_dict( self.chi, self.tvec, beam_energy=self.beam_energy, beam_vector=self.beam_vector ) native_area = panel.pixel_area # pixel ref area # pull out the OmegaImageSeries for this panel from input dict ome_imgser = imgser_dict[detector_id] # extract simulation results sim_results_p = sim_results[detector_id] hkl_ids = sim_results_p[0][0] hkls_p = sim_results_p[1][0] ang_centers = sim_results_p[2][0] xy_centers = sim_results_p[3][0] ang_pixel_size = sim_results_p[4][0] # now verify that full patch falls on detector... # ???: strictly necessary? # # patch vertex array from sim nangs = len(ang_centers) patch_vertices = ( np.tile(ang_centers[:, :2], (1, 4)) + np.tile(tol_vec, (nangs, 1)) ).reshape(4*nangs, 2) ome_dupl = np.tile( ang_centers[:, 2], (4, 1) ).T.reshape(len(patch_vertices), 1) # find vertices that all fall on the panel det_xy, rmats_s, on_plane = xrdutil._project_on_detector_plane( np.hstack([patch_vertices, ome_dupl]), panel.rmat, rMat_c, self.chi, panel.tvec, tVec_c, self.tvec, panel.distortion) _, on_panel = panel.clip_to_panel(det_xy, buffer_edges=True) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(nangs, 4), axis=1) patch_xys = det_xy.reshape(nangs, 4, 2)[patch_is_on] # re-filter... hkl_ids = hkl_ids[patch_is_on] hkls_p = hkls_p[patch_is_on, :] ang_centers = ang_centers[patch_is_on, :] xy_centers = xy_centers[patch_is_on, :] ang_pixel_size = ang_pixel_size[patch_is_on, :] # TODO: add polygon testing right here! # done <JVB 06/21/16> if check_only: patch_output = [] for i_pt, angs in enumerate(ang_centers): # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(angs[2]) + ome_del # ...vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkls_p[i_pt, :]) print(msg) continue else: these_vertices = patch_xys[i_pt] ijs = panel.cartToPixel(these_vertices) ii, jj = polygon(ijs[:, 0], ijs[:, 1]) contains_signal = False for i_frame in frame_indices: contains_signal = contains_signal or np.any( ome_imgser[i_frame][ii, jj] > threshold ) compl.append(contains_signal) patch_output.append((ii, jj, frame_indices)) else: # make the tth,eta patches for interpolation patches = xrdutil.make_reflection_patches( instr_cfg, ang_centers[:, :2], ang_pixel_size, omega=ang_centers[:, 2], tth_tol=tth_tol, eta_tol=eta_tol, rmat_c=rMat_c, tvec_c=tVec_c, npdiv=npdiv, quiet=True) # GRAND LOOP over reflections for this panel patch_output = [] for i_pt, patch in enumerate(patches): # strip relevant objects out of current patch vtx_angs, vtx_xy, conn, areas, xy_eval, ijs = patch prows, pcols = areas.shape nrm_fac = areas/float(native_area) nrm_fac = nrm_fac / np.min(nrm_fac) # grab hkl info hkl = hkls_p[i_pt, :] hkl_id = hkl_ids[i_pt] # edge arrays tth_edges = vtx_angs[0][0, :] delta_tth = tth_edges[1] - tth_edges[0] eta_edges = vtx_angs[1][:, 0] delta_eta = eta_edges[1] - eta_edges[0] # need to reshape eval pts for interpolation xy_eval = np.vstack([xy_eval[0].flatten(), xy_eval[1].flatten()]).T # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(ang_centers[i_pt, 2]) + ome_del # ???: vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkl) print(msg) continue else: # initialize spot data parameters # !!! maybe change these to nan to not fuck up writer peak_id = -999 sum_int = np.nan max_int = np.nan meas_angs = np.nan*np.ones(3) meas_xy = np.nan*np.ones(2) # quick check for intensity contains_signal = False patch_data_raw = [] for i_frame in frame_indices: tmp = ome_imgser[i_frame][ijs[0], ijs[1]] contains_signal = contains_signal or np.any( tmp > threshold ) patch_data_raw.append(tmp) pass patch_data_raw = np.stack(patch_data_raw, axis=0) compl.append(contains_signal) if contains_signal: # initialize patch data array for intensities if interp.lower() == 'bilinear': patch_data = np.zeros( (len(frame_indices), prows, pcols)) for i, i_frame in enumerate(frame_indices): patch_data[i] = \ panel.interpolate_bilinear( xy_eval, ome_imgser[i_frame], pad_with_nans=False ).reshape(prows, pcols) # * nrm_fac elif interp.lower() == 'nearest': patch_data = patch_data_raw # * nrm_fac else: msg = "interpolation option " + \ "'%s' not understood" raise(RuntimeError, msg % interp) # now have interpolated patch data... labels, num_peaks = ndimage.label( patch_data > threshold, structure=label_struct ) slabels = np.arange(1, num_peaks + 1) if num_peaks > 0: peak_id = iRefl coms = np.array( ndimage.center_of_mass( patch_data, labels=labels, index=slabels ) ) if num_peaks > 1: center = np.r_[patch_data.shape]*0.5 center_t = np.tile(center, (num_peaks, 1)) com_diff = coms - center_t closest_peak_idx = np.argmin( np.sum(com_diff**2, axis=1) ) else: closest_peak_idx = 0 pass # end multipeak conditional coms = coms[closest_peak_idx] # meas_omes = \ # ome_edges[0] + (0.5 + coms[0])*delta_ome meas_omes = \ ome_eval[0] + coms[0]*delta_ome meas_angs = np.hstack( [tth_edges[0] + (0.5 + coms[2])*delta_tth, eta_edges[0] + (0.5 + coms[1])*delta_eta, mapAngle( np.radians(meas_omes), ome_period ) ] ) # intensities # - summed is 'integrated' over interpolated # data # - max is max of raw input data sum_int = np.sum( patch_data[ labels == slabels[closest_peak_idx] ] ) max_int = np.max( patch_data_raw[ labels == slabels[closest_peak_idx] ] ) # ???: Should this only use labeled pixels? # Those are segmented from interpolated data, # not raw; likely ok in most cases. # need MEASURED xy coords gvec_c = anglesToGVec( meas_angs, chi=self.chi, rMat_c=rMat_c, bHat_l=self.beam_vector) rMat_s = makeOscillRotMat( [self.chi, meas_angs[2]] ) meas_xy = gvecToDetectorXY( gvec_c, panel.rmat, rMat_s, rMat_c, panel.tvec, self.tvec, tVec_c, beamVec=self.beam_vector) if panel.distortion is not None: meas_xy = panel.distortion.apply_inverse( np.atleast_2d(meas_xy) ).flatten() pass # FIXME: why is this suddenly necessary??? meas_xy = meas_xy.squeeze() pass # end num_peaks > 0 else: patch_data = patch_data_raw pass # end contains_signal # write output if filename is not None: if output_format.lower() == 'text': writer.dump_patch( peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, xy_centers[i_pt], meas_xy) elif output_format.lower() == 'hdf5': xyc_arr = xy_eval.reshape( prows, pcols, 2 ).transpose(2, 0, 1) writer.dump_patch( detector_id, iRefl, peak_id, hkl_id, hkl, tth_edges, eta_edges, np.radians(ome_eval), xyc_arr, ijs, frame_indices, patch_data, ang_centers[i_pt], xy_centers[i_pt], meas_angs, meas_xy) pass # end conditional on write output pass # end conditional on check only if return_spot_list: # Full output xyc_arr = xy_eval.reshape( prows, pcols, 2 ).transpose(2, 0, 1) _patch_output = [ detector_id, iRefl, peak_id, hkl_id, hkl, tth_edges, eta_edges, np.radians(ome_eval), xyc_arr, ijs, frame_indices, patch_data, ang_centers[i_pt], xy_centers[i_pt], meas_angs, meas_xy ] else: # Trimmed output _patch_output = [ peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, meas_xy ] patch_output.append(_patch_output) iRefl += 1 pass # end patch conditional pass # end patch loop output[detector_id] = patch_output if filename is not None and output_format.lower() == 'text': writer.close() pass # end detector loop if filename is not None and output_format.lower() == 'hdf5': writer.close() return compl, output """def fit_grain(self, grain_params, data_dir='results'):""" pass # end class: HEDMInstrument class PlanarDetector(object): """Base class for 2D planar, rectangular row-column detector""" __pixelPitchUnit = 'mm' def __init__(self, rows=2048, cols=2048, pixel_size=(0.2, 0.2), tvec=np.r_[0., 0., -1000.], tilt=ct.zeros_3, name='default', bvec=ct.beam_vec, evec=ct.eta_vec, saturation_level=None, panel_buffer=None, roi=None, distortion=None, max_workers=max_workers_DFLT): """ Instantiate a PlanarDetector object. Parameters ---------- rows : TYPE, optional DESCRIPTION. The default is 2048. cols : TYPE, optional DESCRIPTION. The default is 2048. pixel_size : TYPE, optional DESCRIPTION. The default is (0.2, 0.2). tvec : TYPE, optional DESCRIPTION. The default is np.r_[0., 0., -1000.]. tilt : TYPE, optional DESCRIPTION. The default is ct.zeros_3. name : TYPE, optional DESCRIPTION. The default is 'default'. bvec : TYPE, optional DESCRIPTION. The default is ct.beam_vec. evec : TYPE, optional DESCRIPTION. The default is ct.eta_vec. saturation_level : TYPE, optional DESCRIPTION. The default is None. panel_buffer : TYPE, optional If a scalar or len(2) array_like, the interpretation is a border in mm. If an array with shape (nrows, ncols), interpretation is a boolean with True marking valid pixels. The default is None. roi : TYPE, optional DESCRIPTION. The default is None. distortion : TYPE, optional DESCRIPTION. The default is None. Returns ------- None. """ self._name = name self._rows = rows self._cols = cols self._pixel_size_row = pixel_size[0] self._pixel_size_col = pixel_size[1] self._saturation_level = saturation_level self._panel_buffer = panel_buffer self._roi = roi self._tvec = np.array(tvec).flatten() self._tilt = np.array(tilt).flatten() self._bvec = np.array(bvec).flatten() self._evec = np.array(evec).flatten() self._distortion = distortion self.max_workers = max_workers # # set up calibration parameter list and refinement flags # # order for a single detector will be # # [tilt, translation, <distortion>] dparams = [] if self._distortion is not None: dparams = self._distortion.params self._calibration_parameters = np.hstack( [self._tilt, self._tvec, dparams] ) self._calibration_flags = np.hstack( [panel_calibration_flags_DFLT, np.zeros(len(dparams), dtype=bool)] ) return # detector ID @property def name(self): return self._name @name.setter def name(self, s): assert isinstance(s, str), "requires string input" self._name = s # properties for physical size of rectangular detector @property def rows(self): return self._rows @rows.setter def rows(self, x): assert isinstance(x, int) self._rows = x @property def cols(self): return self._cols @cols.setter def cols(self, x): assert isinstance(x, int) self._cols = x @property def pixel_size_row(self): return self._pixel_size_row @pixel_size_row.setter def pixel_size_row(self, x): self._pixel_size_row = float(x) @property def pixel_size_col(self): return self._pixel_size_col @pixel_size_col.setter def pixel_size_col(self, x): self._pixel_size_col = float(x) @property def pixel_area(self): return self.pixel_size_row * self.pixel_size_col @property def saturation_level(self): return self._saturation_level @saturation_level.setter def saturation_level(self, x): if x is not None: assert np.isreal(x) self._saturation_level = x @property def panel_buffer(self): return self._panel_buffer @panel_buffer.setter def panel_buffer(self, x): """if not None, a buffer in mm (x, y)""" if x is not None: assert len(x) == 2 or x.ndim == 2 self._panel_buffer = x @property def roi(self): return self._roi @roi.setter def roi(self, vertex_array): """ vertex array must be [[r0, c0], [r1, c1], ..., [rn, cn]] and have len >= 3 does NOT need to repeat start vertex for closure """ if vertex_array is not None: assert len(vertex_array) >= 3 self._roi = vertex_array @property def row_dim(self): return self.rows * self.pixel_size_row @property def col_dim(self): return self.cols * self.pixel_size_col @property def row_pixel_vec(self): return self.pixel_size_row*(0.5*(self.rows-1)-np.arange(self.rows)) @property def row_edge_vec(self): return _row_edge_vec(self.rows, self.pixel_size_row) @property def col_pixel_vec(self): return self.pixel_size_col*(np.arange(self.cols)-0.5*(self.cols-1)) @property def col_edge_vec(self): return _col_edge_vec(self.cols, self.pixel_size_col) @property def corner_ul(self): return np.r_[-0.5 * self.col_dim, 0.5 * self.row_dim] @property def corner_ll(self): return np.r_[-0.5 * self.col_dim, -0.5 * self.row_dim] @property def corner_lr(self): return np.r_[0.5 * self.col_dim, -0.5 * self.row_dim] @property def corner_ur(self): return np.r_[0.5 * self.col_dim, 0.5 * self.row_dim] @property def shape(self): return (self.rows, self.cols) @property def tvec(self): return self._tvec @tvec.setter def tvec(self, x): x = np.array(x).flatten() assert len(x) == 3, 'input must have length = 3' self._tvec = x @property def tilt(self): return self._tilt @tilt.setter def tilt(self, x): assert len(x) == 3, 'input must have length = 3' self._tilt = np.array(x).squeeze() @property def bvec(self): return self._bvec @bvec.setter def bvec(self, x): x = np.array(x).flatten() assert len(x) == 3 and sum(x*x) > 1-ct.sqrt_epsf, \ 'input must have length = 3 and have unit magnitude' self._bvec = x @property def evec(self): return self._evec @evec.setter def evec(self, x): x = np.array(x).flatten() assert len(x) == 3 and sum(x*x) > 1-ct.sqrt_epsf, \ 'input must have length = 3 and have unit magnitude' self._evec = x @property def distortion(self): return self._distortion @distortion.setter def distortion(self, x): # FIXME: ne to reconcile check with new class type! assert len(x) == 2 and hasattr(x[0], '__call__'), \ 'distortion must be a tuple: (<func>, params)' self._distortion = x @property def rmat(self): return makeRotMatOfExpMap(self.tilt) @property def normal(self): return self.rmat[:, 2] @property def beam_position(self): """ returns the coordinates of the beam in the cartesian detector frame {Xd, Yd, Zd}. NaNs if no intersection. """ output = np.nan * np.ones(2) b_dot_n = np.dot(self.bvec, self.normal) if np.logical_and( abs(b_dot_n) > ct.sqrt_epsf, np.sign(b_dot_n) == -1 ): u = np.dot(self.normal, self.tvec) / b_dot_n p2_l = u*self.bvec p2_d = np.dot(self.rmat.T, p2_l - self.tvec) output = p2_d[:2] return output # ...memoize??? @property def pixel_coords(self): pix_i, pix_j = np.meshgrid( self.row_pixel_vec, self.col_pixel_vec, indexing='ij') return pix_i, pix_j @property def pixel_solid_angles(self): kwargs = { 'rows': self.rows, 'cols': self.cols, 'pixel_size_row': self.pixel_size_row, 'pixel_size_col': self.pixel_size_col, 'rmat': self.rmat, 'tvec': self.tvec, 'max_workers': self.max_workers, } return _pixel_solid_angles(**kwargs) @property def calibration_parameters(self): # # set up calibration parameter list and refinement flags # # order for a single detector will be # # [tilt, translation, <distortion>] dparams = [] if self.distortion is not None: dparams = self.distortion.params self._calibration_parameters = np.hstack( [self.tilt, self.tvec, dparams] ) return self._calibration_parameters @property def calibration_flags(self): return self._calibration_flags @calibration_flags.setter def calibration_flags(self, x): x = np.array(x, dtype=bool).flatten() if len(x) != len(self._calibration_flags): raise RuntimeError( "length of parameter list must be %d; you gave %d" % (len(self._calibration_flags), len(x)) ) self._calibration_flags = x # ========================================================================= # METHODS # ========================================================================= def lorentz_polarization_factor(self, f_hor, f_vert): """ Calculated the lorentz polarization factor for every pixel. Parameters ---------- f_hor : float the fraction of horizontal polarization. for XFELs this is close to 1. f_vert : TYPE the fraction of vertical polarization, which is ~0 for XFELs. Raises ------ RuntimeError DESCRIPTION. Returns ------- TYPE DESCRIPTION. """ s = f_hor + f_vert if np.abs(s - 1) > constants.sqrt_epsf: msg = ("sum of fraction of " "horizontal and vertical polarizations " "must be equal to 1.") raise RuntimeError(msg) if f_hor < 0 or f_vert < 0: msg = ("fraction of polarization in horizontal " "or vertical directions can't be negative.") raise RuntimeError(msg) tth, eta = self.pixel_angles() args = (tth, eta, f_hor, f_vert) return _lorentz_polarization_factor(*args) def config_dict(self, chi=0, tvec=ct.zeros_3, beam_energy=beam_energy_DFLT, beam_vector=ct.beam_vec, sat_level=None, panel_buffer=None, style='yaml'): """ Return a dictionary of detector parameters. Optional instrument level parameters. This is a convenience function to work with the APIs in several functions in xrdutil. Parameters ---------- chi : float, optional DESCRIPTION. The default is 0. tvec : array_like (3,), optional DESCRIPTION. The default is ct.zeros_3. beam_energy : float, optional DESCRIPTION. The default is beam_energy_DFLT. beam_vector : aray_like (3,), optional DESCRIPTION. The default is ct.beam_vec. sat_level : scalar, optional DESCRIPTION. The default is None. panel_buffer : scalar, array_like (2,), optional DESCRIPTION. The default is None. Returns ------- config_dict : dict DESCRIPTION. """ assert style.lower() in ['yaml', 'hdf5'], \ "style must be either 'yaml', or 'hdf5'; you gave '%s'" % style config_dict = {} # ===================================================================== # DETECTOR PARAMETERS # ===================================================================== # transform and pixels # # assign local vars; listify if necessary tilt = self.tilt translation = self.tvec if style.lower() == 'yaml': tilt = tilt.tolist() translation = translation.tolist() tvec = tvec.tolist() det_dict = dict( transform=dict( tilt=tilt, translation=translation, ), pixels=dict( rows=self.rows, columns=self.cols, size=[self.pixel_size_row, self.pixel_size_col], ) ) # distortion if self.distortion is not None: dparams = self.distortion.params if style.lower() == 'yaml': dparams = dparams.tolist() dist_d = dict( function_name=self.distortion.maptype, parameters=dparams ) det_dict['distortion'] = dist_d # saturation level if sat_level is None: sat_level = self.saturation_level det_dict['saturation_level'] = sat_level # panel buffer if panel_buffer is None: # could be non, a 2-element list, or a 2-d array (rows, cols) panel_buffer = copy.deepcopy(self.panel_buffer) # !!! now we have to do some style-dependent munging of panel_buffer if isinstance(panel_buffer, np.ndarray): if panel_buffer.ndim == 1: assert len(panel_buffer) == 2, \ "length of 1-d buffer must be 2" # if here is a 2-element array if style.lower() == 'yaml': panel_buffer = panel_buffer.tolist() elif panel_buffer.ndim == 2: if style.lower() == 'yaml': # !!! can't practically write array-like buffers to YAML # so forced to clobber print("clobbering panel buffer array in yaml-ready output") panel_buffer = [0., 0.] else: raise RuntimeError( "panel buffer ndim must be 1 or 2; you specified %d" % panel_buffer.ndmin ) elif panel_buffer is None: # still None on self if style.lower() == 'hdf5': # !!! can't write None to hdf5; substitute with zeros panel_buffer = np.r_[0., 0.] det_dict['buffer'] = panel_buffer # ===================================================================== # SAMPLE STAGE PARAMETERS # ===================================================================== stage_dict = dict( chi=chi, translation=tvec ) # ===================================================================== # BEAM PARAMETERS # ===================================================================== # !!! make_reflection_patches is still using the vector # azim, pola = calc_angles_from_beam_vec(beam_vector) # beam_dict = dict( # energy=beam_energy, # vector=dict( # azimuth=azim, # polar_angle=pola # ) # ) beam_dict = dict( energy=beam_energy, vector=beam_vector ) config_dict['detector'] = det_dict config_dict['oscillation_stage'] = stage_dict config_dict['beam'] = beam_dict return config_dict def pixel_angles(self, origin=ct.zeros_3): return _pixel_angles(origin, self.pixel_coords, self.distortion, self.rmat, self.tvec, self.bvec, self.evec, self.rows, self.cols) def pixel_tth_gradient(self, origin=ct.zeros_3): assert len(origin) == 3, "origin must have 3 elemnts" ptth, _ = self.pixel_angles(origin=origin) return np.linalg.norm(np.stack(np.gradient(ptth)), axis=0) def pixel_eta_gradient(self, origin=ct.zeros_3): period = np.r_[0., 2*np.pi] assert len(origin) == 3, "origin must have 3 elemnts" _, peta = self.pixel_angles(origin=origin) # !!! handle cyclic nature of eta rowmap = np.empty_like(peta) for i in range(rowmap.shape[0]): rowmap[i, :] = mapAngle( peta[i, :], peta[i, 0] + period ) colmap = np.empty_like(peta) for i in range(colmap.shape[1]): colmap[:, i] = mapAngle( peta[:, i], peta[0, i] + period ) peta_grad_row = np.gradient(rowmap) peta_grad_col = np.gradient(colmap) return np.linalg.norm( np.stack([peta_grad_col[0], peta_grad_row[1]]), axis=0 ) def cartToPixel(self, xy_det, pixels=False): """ Convert vstacked array or list of [x,y] points in the center-based cartesian frame {Xd, Yd, Zd} to (i, j) edge-based indices i is the row index, measured from the upper-left corner j is the col index, measured from the upper-left corner if pixels=True, then (i,j) are integer pixel indices. else (i,j) are continuous coords """ xy_det = np.atleast_2d(xy_det) npts = len(xy_det) tmp_ji = xy_det - np.tile(self.corner_ul, (npts, 1)) i_pix = -tmp_ji[:, 1] / self.pixel_size_row - 0.5 j_pix = tmp_ji[:, 0] / self.pixel_size_col - 0.5 ij_det = np.vstack([i_pix, j_pix]).T if pixels: ij_det = np.array(np.round(ij_det), dtype=int) return ij_det def pixelToCart(self, ij_det): """ Convert vstacked array or list of [i,j] pixel indices (or UL corner-based points) and convert to (x,y) in the cartesian frame {Xd, Yd, Zd} """ ij_det = np.atleast_2d(ij_det) x = (ij_det[:, 1] + 0.5)*self.pixel_size_col\ + self.corner_ll[0] y = (self.rows - ij_det[:, 0] - 0.5)*self.pixel_size_row\ + self.corner_ll[1] return np.vstack([x, y]).T def angularPixelSize(self, xy, rMat_s=None, tVec_s=None, tVec_c=None): """ Wraps xrdutil.angularPixelSize """ # munge kwargs if rMat_s is None: rMat_s = ct.identity_3x3 if tVec_s is None: tVec_s = ct.zeros_3x1 if tVec_c is None: tVec_c = ct.zeros_3x1 # call function ang_ps = xrdutil.angularPixelSize( xy, (self.pixel_size_row, self.pixel_size_col), self.rmat, rMat_s, self.tvec, tVec_s, tVec_c, distortion=self.distortion, beamVec=self.bvec, etaVec=self.evec) return ang_ps def clip_to_panel(self, xy, buffer_edges=True): """ if self.roi is not None, uses it by default TODO: check if need shape kwarg TODO: optimize ROI search better than list comprehension below TODO: panel_buffer can be a 2-d boolean mask, but needs testing """ xy = np.atleast_2d(xy) if self.roi is not None: ij_crds = self.cartToPixel(xy, pixels=True) ii, jj = polygon(self.roi[:, 0], self.roi[:, 1], shape=(self.rows, self.cols)) on_panel_rows = [i in ii for i in ij_crds[:, 0]] on_panel_cols = [j in jj for j in ij_crds[:, 1]] on_panel = np.logical_and(on_panel_rows, on_panel_cols) else: xlim = 0.5*self.col_dim ylim = 0.5*self.row_dim if buffer_edges and self.panel_buffer is not None: if self.panel_buffer.ndim == 2: pix = self.cartToPixel(xy, pixels=True) roff = np.logical_or(pix[:, 0] < 0, pix[:, 0] >= self.rows) coff = np.logical_or(pix[:, 1] < 0, pix[:, 1] >= self.cols) idx = np.logical_or(roff, coff) pix[idx, :] = 0 on_panel = self.panel_buffer[pix[:, 0], pix[:, 1]] on_panel[idx] = False else: xlim -= self.panel_buffer[0] ylim -= self.panel_buffer[1] on_panel_x = np.logical_and( xy[:, 0] >= -xlim, xy[:, 0] <= xlim ) on_panel_y = np.logical_and( xy[:, 1] >= -ylim, xy[:, 1] <= ylim ) on_panel = np.logical_and(on_panel_x, on_panel_y) elif not buffer_edges or self.panel_buffer is None: on_panel_x = np.logical_and( xy[:, 0] >= -xlim, xy[:, 0] <= xlim ) on_panel_y = np.logical_and( xy[:, 1] >= -ylim, xy[:, 1] <= ylim ) on_panel = np.logical_and(on_panel_x, on_panel_y) return xy[on_panel, :], on_panel def cart_to_angles(self, xy_data, rmat_s=None, tvec_s=None, tvec_c=None): """ TODO: distortion """ if rmat_s is None: rmat_s = ct.identity_3x3 if tvec_s is None: tvec_s = ct.zeros_3 if tvec_c is None: tvec_c = ct.zeros_3 angs, g_vec = detectorXYToGvec( xy_data, self.rmat, rmat_s, self.tvec, tvec_s, tvec_c, beamVec=self.bvec, etaVec=self.evec) tth_eta = np.vstack([angs[0], angs[1]]).T return tth_eta, g_vec def angles_to_cart(self, tth_eta, rmat_s=None, tvec_s=None, rmat_c=None, tvec_c=None): """ TODO: distortion """ if rmat_s is None: rmat_s = ct.identity_3x3 if tvec_s is None: tvec_s = ct.zeros_3 if rmat_c is None: rmat_c = ct.identity_3x3 if tvec_c is None: tvec_c = ct.zeros_3 # !!! warning, this assumes an rmat_s made from chi, ome pair chi = np.arccos(rmat_s[1, 1]) ome = np.arccos(rmat_s[0, 0]) angs = np.hstack([tth_eta, np.tile(ome, (len(tth_eta), 1))]) xy_det = gvecToDetectorXY( anglesToGVec(angs, bHat_l=self.bvec, eHat_l=self.evec, chi=chi), self.rmat, rmat_s, rmat_c, self.tvec, tvec_s, tvec_c, beamVec=self.bvec) return xy_det def interpolate_nearest(self, xy, img, pad_with_nans=True): """ TODO: revisit normalization in here? """ is_2d = img.ndim == 2 right_shape = img.shape[0] == self.rows and img.shape[1] == self.cols assert is_2d and right_shape,\ "input image must be 2-d with shape (%d, %d)"\ % (self.rows, self.cols) # initialize output with nans if pad_with_nans: int_xy = np.nan*np.ones(len(xy)) else: int_xy = np.zeros(len(xy)) # clip away points too close to or off the edges of the detector xy_clip, on_panel = self.clip_to_panel(xy, buffer_edges=True) # get pixel indices of clipped points i_src = cellIndices(self.row_pixel_vec, xy_clip[:, 1]) j_src = cellIndices(self.col_pixel_vec, xy_clip[:, 0]) # next interpolate across cols int_vals = img[i_src, j_src] int_xy[on_panel] = int_vals return int_xy def interpolate_bilinear(self, xy, img, pad_with_nans=True): """ Interpolate an image array at the specified cartesian points. Parameters ---------- xy : array_like, (n, 2) Array of cartesian coordinates in the image plane at which to evaluate intensity. img : array_like 2-dimensional image array. pad_with_nans : bool, optional Toggle for assigning NaN to points that fall off the detector. The default is True. Returns ------- int_xy : array_like, (n,) The array of interpolated intensities at each of the n input coordinates. Notes ----- TODO: revisit normalization in here? """ is_2d = img.ndim == 2 right_shape = img.shape[0] == self.rows and img.shape[1] == self.cols assert is_2d and right_shape,\ "input image must be 2-d with shape (%d, %d)"\ % (self.rows, self.cols) # initialize output with nans if pad_with_nans: int_xy = np.nan*np.ones(len(xy)) else: int_xy = np.zeros(len(xy)) # clip away points too close to or off the edges of the detector xy_clip, on_panel = self.clip_to_panel(xy, buffer_edges=True) # grab fractional pixel indices of clipped points ij_frac = self.cartToPixel(xy_clip) # get floors/ceils from array of pixel _centers_ # and fix indices running off the pixel centers # !!! notice we already clipped points to the panel! i_floor = cellIndices(self.row_pixel_vec, xy_clip[:, 1]) i_floor_img = _fix_indices(i_floor, 0, self.rows - 1) j_floor = cellIndices(self.col_pixel_vec, xy_clip[:, 0]) j_floor_img = _fix_indices(j_floor, 0, self.cols - 1) # ceilings from floors i_ceil = i_floor + 1 i_ceil_img = _fix_indices(i_ceil, 0, self.rows - 1) j_ceil = j_floor + 1 j_ceil_img = _fix_indices(j_ceil, 0, self.cols - 1) # first interpolate at top/bottom rows row_floor_int = \ (j_ceil - ij_frac[:, 1])*img[i_floor_img, j_floor_img] \ + (ij_frac[:, 1] - j_floor)*img[i_floor_img, j_ceil_img] row_ceil_int = \ (j_ceil - ij_frac[:, 1])*img[i_ceil_img, j_floor_img] \ + (ij_frac[:, 1] - j_floor)*img[i_ceil_img, j_ceil_img] # next interpolate across cols int_vals = \ (i_ceil - ij_frac[:, 0])*row_floor_int \ + (ij_frac[:, 0] - i_floor)*row_ceil_int int_xy[on_panel] = int_vals return int_xy def make_powder_rings( self, pd, merge_hkls=False, delta_tth=None, delta_eta=10., eta_period=None, eta_list=None, rmat_s=ct.identity_3x3, tvec_s=ct.zeros_3, tvec_c=ct.zeros_3, full_output=False): """ Generate points on Debye_Scherrer rings over the detector. !!! it is assuming that rmat_s is built from (chi, ome) as it the case for HEDM! Parameters ---------- pd : TYPE DESCRIPTION. merge_hkls : TYPE, optional DESCRIPTION. The default is False. delta_tth : TYPE, optional DESCRIPTION. The default is None. delta_eta : TYPE, optional DESCRIPTION. The default is 10.. eta_period : TYPE, optional DESCRIPTION. The default is None. eta_list : TYPE, optional DESCRIPTION. The default is None. rmat_s : TYPE, optional DESCRIPTION. The default is ct.identity_3x3. tvec_s : TYPE, optional DESCRIPTION. The default is ct.zeros_3. tvec_c : TYPE, optional DESCRIPTION. The default is ct.zeros_3. full_output : TYPE, optional DESCRIPTION. The default is False. Raises ------ RuntimeError DESCRIPTION. Returns ------- TYPE DESCRIPTION. """ # in case you want to give it tth angles directly if hasattr(pd, '__len__'): tth = np.array(pd).flatten() if delta_tth is None: raise RuntimeError( "If supplying a 2theta list as first arg, " + "must supply a delta_tth") sector_vertices = np.tile( 0.5*np.radians([-delta_tth, -delta_eta, -delta_tth, delta_eta, delta_tth, delta_eta, delta_tth, -delta_eta, 0.0, 0.0]), (len(tth), 1) ) # Convert to radians as is done below del_eta = np.radians(delta_eta) else: # Okay, we have a PlaneData object try: pd = PlaneData.makeNew(pd) # make a copy to munge except(TypeError): # !!! have some other object here, likely a dummy plane data # object of some sort... pass if delta_tth is not None: pd.tThWidth = np.radians(delta_tth) else: delta_tth = np.degrees(pd.tThWidth) # conversions, meh... del_eta = np.radians(delta_eta) # do merging if asked if merge_hkls: _, tth_ranges = pd.getMergedRanges(cullDupl=True) tth = np.array([0.5*sum(i) for i in tth_ranges]) else: tth_ranges = pd.getTThRanges() tth = pd.getTTh() tth_pm = tth_ranges - np.tile(tth, (2, 1)).T sector_vertices = np.vstack( [[i[0], -del_eta, i[0], del_eta, i[1], del_eta, i[1], -del_eta, 0.0, 0.0] for i in tth_pm]) # for generating rings, make eta vector in correct period if eta_period is None: eta_period = (-np.pi, np.pi) if eta_list is None: neta = int(360./float(delta_eta)) # this is the vector of ETA EDGES eta_edges = mapAngle( np.radians( delta_eta*np.linspace(0., neta, num=neta + 1) ) + eta_period[0], eta_period ) # get eta bin centers from edges """ # !!! this way is probably overkill, since we have delta eta eta_centers = np.average( np.vstack([eta[:-1], eta[1:]), axis=0) """ # !!! should be safe as eta_edges are monotonic eta_centers = eta_edges[:-1] + 0.5*del_eta else: eta_centers = np.radians(eta_list).flatten() neta = len(eta_centers) eta_edges = ( np.tile(eta_centers, (2, 1)) + np.tile(0.5*del_eta*np.r_[-1, 1], (neta, 1)).T ).T.flatten() # get chi and ome from rmat_s # ??? not needed chi = np.arctan2(rmat_s[2, 1], rmat_s[1, 1]) ome = np.arctan2(rmat_s[0, 2], rmat_s[0, 0]) # make list of angle tuples angs = [ np.vstack( [i*np.ones(neta), eta_centers, ome*np.ones(neta)] ) for i in tth ] # need xy coords and pixel sizes valid_ang = [] valid_xy = [] map_indices = [] npp = 5 # [ll, ul, ur, lr, center] for i_ring in range(len(angs)): # expand angles to patch vertices these_angs = angs[i_ring].T patch_vertices = ( np.tile(these_angs[:, :2], (1, npp)) + np.tile(sector_vertices[i_ring], (neta, 1)) ).reshape(npp*neta, 2) # duplicate ome array ome_dupl = np.tile( these_angs[:, 2], (npp, 1) ).T.reshape(npp*neta, 1) # find vertices that all fall on the panel gVec_ring_l = anglesToGVec( np.hstack([patch_vertices, ome_dupl]), bHat_l=self.bvec) all_xy = gvecToDetectorXY( gVec_ring_l, self.rmat, rmat_s, ct.identity_3x3, self.tvec, tvec_s, tvec_c, beamVec=self.bvec) if self.distortion is not None: all_xy = self.distortion.apply_inverse(all_xy) _, on_panel = self.clip_to_panel(all_xy) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(neta, npp), axis=1) patch_xys = all_xy.reshape(neta, 5, 2)[patch_is_on] # form output arrays valid_ang.append(these_angs[patch_is_on, :2]) valid_xy.append(patch_xys[:, -1, :].squeeze()) map_indices.append(patch_is_on) pass # ??? is this option necessary? if full_output: return valid_ang, valid_xy, map_indices, eta_edges else: return valid_ang, valid_xy def map_to_plane(self, pts, rmat, tvec): """ Map detctor points to specified plane. Parameters ---------- pts : TYPE DESCRIPTION. rmat : TYPE DESCRIPTION. tvec : TYPE DESCRIPTION. Returns ------- TYPE DESCRIPTION. Notes ----- by convention: n * (u*pts_l - tvec) = 0 [pts]_l = rmat*[pts]_m + tvec """ # arg munging pts = np.atleast_2d(pts) npts = len(pts) # map plane normal & translation vector, LAB FRAME nvec_map_lab = rmat[:, 2].reshape(3, 1) tvec_map_lab = np.atleast_2d(tvec).reshape(3, 1) tvec_d_lab = np.atleast_2d(self.tvec).reshape(3, 1) # put pts as 3-d in panel CS and transform to 3-d lab coords pts_det = np.hstack([pts, np.zeros((npts, 1))]) pts_lab = np.dot(self.rmat, pts_det.T) + tvec_d_lab # scaling along pts vectors to hit map plane u = np.dot(nvec_map_lab.T, tvec_map_lab) \ / np.dot(nvec_map_lab.T, pts_lab) # pts on map plane, in LAB FRAME pts_map_lab = np.tile(u, (3, 1)) * pts_lab return np.dot(rmat.T, pts_map_lab - tvec_map_lab)[:2, :].T def simulate_rotation_series(self, plane_data, grain_param_list, eta_ranges=[(-np.pi, np.pi), ], ome_ranges=[(-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), chi=0., tVec_s=ct.zeros_3, wavelength=None): """ Simulate a monochromatic rotation series for a list of grains. Parameters ---------- plane_data : TYPE DESCRIPTION. grain_param_list : TYPE DESCRIPTION. eta_ranges : TYPE, optional DESCRIPTION. The default is [(-np.pi, np.pi), ]. ome_ranges : TYPE, optional DESCRIPTION. The default is [(-np.pi, np.pi), ]. ome_period : TYPE, optional DESCRIPTION. The default is (-np.pi, np.pi). chi : TYPE, optional DESCRIPTION. The default is 0.. tVec_s : TYPE, optional DESCRIPTION. The default is ct.zeros_3. wavelength : TYPE, optional DESCRIPTION. The default is None. Returns ------- valid_ids : TYPE DESCRIPTION. valid_hkls : TYPE DESCRIPTION. valid_angs : TYPE DESCRIPTION. valid_xys : TYPE DESCRIPTION. ang_pixel_size : TYPE DESCRIPTION. """ # grab B-matrix from plane data bMat = plane_data.latVecOps['B'] # reconcile wavelength # * added sanity check on exclusions here; possible to # * make some reflections invalid (NaN) if wavelength is None: wavelength = plane_data.wavelength else: if plane_data.wavelength != wavelength: plane_data.wavelength = ct.keVToAngstrom(wavelength) assert not np.any(np.isnan(plane_data.getTTh())),\ "plane data exclusions incompatible with wavelength" # vstacked G-vector id, h, k, l full_hkls = xrdutil._fetch_hkls_from_planedata(plane_data) """ LOOP OVER GRAINS """ valid_ids = [] valid_hkls = [] valid_angs = [] valid_xys = [] ang_pixel_size = [] for gparm in grain_param_list: # make useful parameters rMat_c = makeRotMatOfExpMap(gparm[:3]) tVec_c = gparm[3:6] vInv_s = gparm[6:] # All possible bragg conditions as vstacked [tth, eta, ome] # for each omega solution angList = np.vstack( oscillAnglesOfHKLs( full_hkls[:, 1:], chi, rMat_c, bMat, wavelength, vInv=vInv_s, ) ) # filter by eta and omega ranges # ??? get eta range from detector? allAngs, allHKLs = xrdutil._filter_hkls_eta_ome( full_hkls, angList, eta_ranges, ome_ranges ) allAngs[:, 2] = mapAngle(allAngs[:, 2], ome_period) # find points that fall on the panel det_xy, rMat_s, on_plane = xrdutil._project_on_detector_plane( allAngs, self.rmat, rMat_c, chi, self.tvec, tVec_c, tVec_s, self.distortion) xys_p, on_panel = self.clip_to_panel(det_xy) valid_xys.append(xys_p) # filter angs and hkls that are on the detector plane # !!! check this -- seems unnecessary but the results of # _project_on_detector_plane() can have len < the input. # the output of _project_on_detector_plane has been modified to # hand back the index array to remedy this JVB 2020-05-27 filtered_angs = np.atleast_2d(allAngs[on_plane, :]) filtered_hkls = np.atleast_2d(allHKLs[on_plane, :]) # grab hkls and gvec ids for this panel valid_hkls.append(filtered_hkls[on_panel, 1:]) valid_ids.append(filtered_hkls[on_panel, 0]) # reflection angles (voxel centers) and pixel size in (tth, eta) valid_angs.append(filtered_angs[on_panel, :]) ang_pixel_size.append(self.angularPixelSize(xys_p)) return valid_ids, valid_hkls, valid_angs, valid_xys, ang_pixel_size def simulate_laue_pattern(self, crystal_data, minEnergy=5., maxEnergy=35., rmat_s=None, tvec_s=None, grain_params=None, beam_vec=None): """ """ if isinstance(crystal_data, PlaneData): plane_data = crystal_data # grab the expanded list of hkls from plane_data hkls = np.hstack(plane_data.getSymHKLs()) # and the unit plane normals (G-vectors) in CRYSTAL FRAME gvec_c = np.dot(plane_data.latVecOps['B'], hkls) elif len(crystal_data) == 2: # !!! should clean this up hkls = np.array(crystal_data[0]) bmat = crystal_data[1] gvec_c = np.dot(bmat, hkls) else: raise(RuntimeError, 'argument list not understood') nhkls_tot = hkls.shape[1] # parse energy ranges # TODO: allow for spectrum parsing multipleEnergyRanges = False if hasattr(maxEnergy, '__len__'): assert len(maxEnergy) == len(minEnergy), \ 'energy cutoff ranges must have the same length' multipleEnergyRanges = True lmin = [] lmax = [] for i in range(len(maxEnergy)): lmin.append(ct.keVToAngstrom(maxEnergy[i])) lmax.append(ct.keVToAngstrom(minEnergy[i])) else: lmin = ct.keVToAngstrom(maxEnergy) lmax = ct.keVToAngstrom(minEnergy) # parse grain parameters kwarg if grain_params is None: grain_params = np.atleast_2d( np.hstack([np.zeros(6), ct.identity_6x1]) ) n_grains = len(grain_params) # sample rotation if rmat_s is None: rmat_s = ct.identity_3x3 # dummy translation vector... make input if tvec_s is None: tvec_s = ct.zeros_3 # beam vector if beam_vec is None: beam_vec = ct.beam_vec # ========================================================================= # LOOP OVER GRAINS # ========================================================================= # pre-allocate output arrays xy_det = np.nan*np.ones((n_grains, nhkls_tot, 2)) hkls_in = np.nan*np.ones((n_grains, 3, nhkls_tot)) angles = np.nan*np.ones((n_grains, nhkls_tot, 2)) dspacing = np.nan*np.ones((n_grains, nhkls_tot)) energy = np.nan*np.ones((n_grains, nhkls_tot)) for iG, gp in enumerate(grain_params): rmat_c = makeRotMatOfExpMap(gp[:3]) tvec_c = gp[3:6].reshape(3, 1) vInv_s = mutil.vecMVToSymm(gp[6:].reshape(6, 1)) # stretch them: V^(-1) * R * Gc gvec_s_str = np.dot(vInv_s, np.dot(rmat_c, gvec_c)) ghat_c_str = mutil.unitVector(np.dot(rmat_c.T, gvec_s_str)) # project dpts = gvecToDetectorXY(ghat_c_str.T, self.rmat, rmat_s, rmat_c, self.tvec, tvec_s, tvec_c, beamVec=beam_vec) # check intersections with detector plane canIntersect = ~np.isnan(dpts[:, 0]) npts_in = sum(canIntersect) if np.any(canIntersect): dpts = dpts[canIntersect, :].reshape(npts_in, 2) dhkl = hkls[:, canIntersect].reshape(3, npts_in) # back to angles tth_eta, gvec_l = detectorXYToGvec( dpts, self.rmat, rmat_s, self.tvec, tvec_s, tvec_c, beamVec=beam_vec) tth_eta = np.vstack(tth_eta).T # warp measured points if self.distortion is not None: dpts = self.distortion.apply_inverse(dpts) # plane spacings and energies dsp = 1. / rowNorm(gvec_s_str[:, canIntersect].T) wlen = 2*dsp*np.sin(0.5*tth_eta[:, 0]) # clip to detector panel _, on_panel = self.clip_to_panel(dpts, buffer_edges=True) if multipleEnergyRanges: validEnergy = np.zeros(len(wlen), dtype=bool) for i in range(len(lmin)): in_energy_range = np.logical_and( wlen >= lmin[i], wlen <= lmax[i]) validEnergy = validEnergy | in_energy_range pass else: validEnergy = np.logical_and(wlen >= lmin, wlen <= lmax) pass # index for valid reflections keepers = np.where(np.logical_and(on_panel, validEnergy))[0] # assign output arrays xy_det[iG][keepers, :] = dpts[keepers, :] hkls_in[iG][:, keepers] = dhkl[:, keepers] angles[iG][keepers, :] = tth_eta[keepers, :] dspacing[iG, keepers] = dsp[keepers] energy[iG, keepers] = ct.keVToAngstrom(wlen[keepers]) pass # close conditional on valids pass # close loop on grains return xy_det, hkls_in, angles, dspacing, energy # ============================================================================= # UTILITIES # ============================================================================= class PatchDataWriter(object): """Class for dumping Bragg reflection data.""" def __init__(self, filename): self._delim = ' ' header_items = ( '# ID', 'PID', 'H', 'K', 'L', 'sum(int)', 'max(int)', 'pred tth', 'pred eta', 'pred ome', 'meas tth', 'meas eta', 'meas ome', 'pred X', 'pred Y', 'meas X', 'meas Y' ) self._header = self._delim.join([ self._delim.join(np.tile('{:<6}', 5)).format(*header_items[:5]), self._delim.join(np.tile('{:<12}', 2)).format(*header_items[5:7]), self._delim.join(np.tile('{:<23}', 10)).format(*header_items[7:17]) ]) if isinstance(filename, IOBase): self.fid = filename else: self.fid = open(filename, 'w') print(self._header, file=self.fid) def __del__(self): self.close() def close(self): self.fid.close() def dump_patch(self, peak_id, hkl_id, hkl, spot_int, max_int, pangs, mangs, pxy, mxy): """ !!! maybe need to check that last four inputs are arrays """ if mangs is None: spot_int = np.nan max_int = np.nan mangs = np.nan*np.ones(3) mxy = np.nan*np.ones(2) res = [int(peak_id), int(hkl_id)] \ + np.array(hkl, dtype=int).tolist() \ + [spot_int, max_int] \ + pangs.tolist() \ + mangs.tolist() \ + pxy.tolist() \ + mxy.tolist() output_str = self._delim.join( [self._delim.join(np.tile('{:<6d}', 5)).format(*res[:5]), self._delim.join(np.tile('{:<12e}', 2)).format(*res[5:7]), self._delim.join(np.tile('{:<23.16e}', 10)).format(*res[7:])] ) print(output_str, file=self.fid) return output_str class GrainDataWriter(object): """Class for dumping grain data.""" def __init__(self, filename=None, array=None): """Writes to either file or np array Array must be initialized with number of rows to be written. """ if filename is None and array is None: raise RuntimeError( 'GrainDataWriter must be specified with filename or array') self.array = None self.fid = None # array supersedes filename if array is not None: assert array.shape[1] == 21, \ f'grain data table must have 21 columns not {array.shape[21]}' self.array = array self._array_row = 0 return self._delim = ' ' header_items = ( '# grain ID', 'completeness', 'chi^2', 'exp_map_c[0]', 'exp_map_c[1]', 'exp_map_c[2]', 't_vec_c[0]', 't_vec_c[1]', 't_vec_c[2]', 'inv(V_s)[0,0]', 'inv(V_s)[1,1]', 'inv(V_s)[2,2]', 'inv(V_s)[1,2]*sqrt(2)', 'inv(V_s)[0,2]*sqrt(2)', 'inv(V_s)[0,1]*sqrt(2)', 'ln(V_s)[0,0]', 'ln(V_s)[1,1]', 'ln(V_s)[2,2]', 'ln(V_s)[1,2]', 'ln(V_s)[0,2]', 'ln(V_s)[0,1]' ) self._header = self._delim.join( [self._delim.join( np.tile('{:<12}', 3) ).format(*header_items[:3]), self._delim.join( np.tile('{:<23}', len(header_items) - 3) ).format(*header_items[3:])] ) if isinstance(filename, IOBase): self.fid = filename else: self.fid = open(filename, 'w') print(self._header, file=self.fid) def __del__(self): self.close() def close(self): if self.fid is not None: self.fid.close() def dump_grain(self, grain_id, completeness, chisq, grain_params): assert len(grain_params) == 12, \ "len(grain_params) must be 12, not %d" % len(grain_params) # extract strain emat = logm(np.linalg.inv(mutil.vecMVToSymm(grain_params[6:]))) evec = mutil.symmToVecMV(emat, scale=False) res = [int(grain_id), completeness, chisq] \ + grain_params.tolist() \ + evec.tolist() if self.array is not None: row = self._array_row assert row < self.array.shape[0], \ f'invalid row {row} in array table' self.array[row] = res self._array_row += 1 return res # (else) format and write to file output_str = self._delim.join( [self._delim.join( ['{:<12d}', '{:<12f}', '{:<12e}'] ).format(*res[:3]), self._delim.join( np.tile('{:<23.16e}', len(res) - 3) ).format(*res[3:])] ) print(output_str, file=self.fid) return output_str class GrainDataWriter_h5(object): """Class for dumping grain results to an HDF5 archive. TODO: add material spec """ def __init__(self, filename, instr_cfg, grain_params, use_attr=False): if isinstance(filename, h5py.File): self.fid = filename else: self.fid = h5py.File(filename + ".hdf5", "w") icfg = dict(instr_cfg) # add instrument groups and attributes self.instr_grp = self.fid.create_group('instrument') unwrap_dict_to_h5(self.instr_grp, icfg, asattr=use_attr) # add grain group self.grain_grp = self.fid.create_group('grain') rmat_c = makeRotMatOfExpMap(grain_params[:3]) tvec_c = np.array(grain_params[3:6]).flatten() vinv_s = np.array(grain_params[6:]).flatten() vmat_s = np.linalg.inv(mutil.vecMVToSymm(vinv_s)) if use_attr: # attribute version self.grain_grp.attrs.create('rmat_c', rmat_c) self.grain_grp.attrs.create('tvec_c', tvec_c) self.grain_grp.attrs.create('inv(V)_s', vinv_s) self.grain_grp.attrs.create('vmat_s', vmat_s) else: # dataset version self.grain_grp.create_dataset('rmat_c', data=rmat_c) self.grain_grp.create_dataset('tvec_c', data=tvec_c) self.grain_grp.create_dataset('inv(V)_s', data=vinv_s) self.grain_grp.create_dataset('vmat_s', data=vmat_s) data_key = 'reflection_data' self.data_grp = self.fid.create_group(data_key) for det_key in self.instr_grp['detectors'].keys(): self.data_grp.create_group(det_key) # FIXME: throws exception when called after close method # def __del__(self): # self.close() def close(self): self.fid.close() def dump_patch(self, panel_id, i_refl, peak_id, hkl_id, hkl, tth_edges, eta_edges, ome_centers, xy_centers, ijs, frame_indices, spot_data, pangs, pxy, mangs, mxy, gzip=1): """ to be called inside loop over patches default GZIP level for data arrays is 1 """ fi = np.array(frame_indices, dtype=int) panel_grp = self.data_grp[panel_id] spot_grp = panel_grp.create_group("spot_%05d" % i_refl) spot_grp.attrs.create('peak_id', int(peak_id)) spot_grp.attrs.create('hkl_id', int(hkl_id)) spot_grp.attrs.create('hkl', np.array(hkl, dtype=int)) spot_grp.attrs.create('predicted_angles', pangs) spot_grp.attrs.create('predicted_xy', pxy) if mangs is None: mangs = np.nan*np.ones(3) spot_grp.attrs.create('measured_angles', mangs) if mxy is None: mxy = np.nan*np.ones(3) spot_grp.attrs.create('measured_xy', mxy) # get centers crds from edge arrays # FIXME: export full coordinate arrays, or just center vectors??? # # ome_crd, eta_crd, tth_crd = np.meshgrid( # ome_centers, # centers_of_edge_vec(eta_edges), # centers_of_edge_vec(tth_edges), # indexing='ij') # # ome_dim, eta_dim, tth_dim = spot_data.shape # !!! for now just exporting center vectors for spot_data tth_crd = centers_of_edge_vec(tth_edges) eta_crd = centers_of_edge_vec(eta_edges) shuffle_data = True # reduces size by 20% spot_grp.create_dataset('tth_crd', data=tth_crd, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) spot_grp.create_dataset('eta_crd', data=eta_crd, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) spot_grp.create_dataset('ome_crd', data=ome_centers, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) spot_grp.create_dataset('xy_centers', data=xy_centers, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) spot_grp.create_dataset('ij_centers', data=ijs, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) spot_grp.create_dataset('frame_indices', data=fi, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) spot_grp.create_dataset('intensities', data=spot_data, compression="gzip", compression_opts=gzip, shuffle=shuffle_data) return def unwrap_dict_to_h5(grp, d, asattr=False): """ Unwraps a dictionary to an HDF5 file of the same structure. Parameters ---------- grp : HDF5 group object The HDF5 group to recursively unwrap the dict into. d : dict Input dict (of dicts). asattr : bool, optional Flag to write end member in dictionary tree to an attribute. If False, if writes the object to a dataset using numpy. The default is False. Returns ------- None. """ while len(d) > 0: key, item = d.popitem() if isinstance(item, dict): subgrp = grp.create_group(key) unwrap_dict_to_h5(subgrp, item, asattr=asattr) else: if asattr: grp.attrs.create(key, item) else: try: grp.create_dataset(key, data=np.atleast_1d(item)) except(TypeError): # probably a string badness grp.create_dataset(key, data=item) def unwrap_h5_to_dict(f, d): """ Unwraps a simple HDF5 file to a dictionary of the same structure. Parameters ---------- f : HDF5 file (mode r) The input HDF5 file object. d : dict dictionary object to update. Returns ------- None. Notes ----- As written, ignores attributes and uses numpy to cast HDF5 datasets to dict entries. Checks for 'O' type arrays and casts to strings; also converts single-element arrays to scalars. """ for key, val in f.items(): try: d[key] = {} unwrap_h5_to_dict(val, d[key]) except(AttributeError): # reached a dataset if np.dtype(val) == 'O': d[key] = h5py_read_string(val) else: tmp = np.array(val) if tmp.ndim == 1 and len(tmp) == 1: d[key] = tmp[0] else: d[key] = tmp class GenerateEtaOmeMaps(object): """ eta-ome map class derived from new image_series and YAML config ...for now... must provide: self.dataStore self.planeData self.iHKLList self.etaEdges # IN RADIANS self.omeEdges # IN RADIANS self.etas # IN RADIANS self.omegas # IN RADIANS """ def __init__(self, image_series_dict, instrument, plane_data, active_hkls=None, eta_step=0.25, threshold=None, ome_period=(0, 360)): """ image_series must be OmegaImageSeries class instrument_params must be a dict (loaded from yaml spec) active_hkls must be a list (required for now) """ self._planeData = plane_data # ???: change name of iHKLList? # ???: can we change the behavior of iHKLList? if active_hkls is None: n_rings = len(plane_data.getTTh()) self._iHKLList = range(n_rings) else: self._iHKLList = active_hkls n_rings = len(active_hkls) # ???: need to pass a threshold? eta_mapping, etas = instrument.extract_polar_maps( plane_data, image_series_dict, active_hkls=active_hkls, threshold=threshold, tth_tol=None, eta_tol=eta_step) # grab a det key # WARNING: this process assumes that the imageseries for all panels # have the same length and omegas det_key = list(eta_mapping.keys())[0] data_store = [] for i_ring in range(n_rings): full_map = np.zeros_like(eta_mapping[det_key][i_ring]) nan_mask_full = np.zeros( (len(eta_mapping), full_map.shape[0], full_map.shape[1]) ) i_p = 0 for det_key, eta_map in eta_mapping.items(): nan_mask = ~np.isnan(eta_map[i_ring]) nan_mask_full[i_p] = nan_mask full_map[nan_mask] += eta_map[i_ring][nan_mask] i_p += 1 re_nan_these = np.sum(nan_mask_full, axis=0) == 0 full_map[re_nan_these] = np.nan data_store.append(full_map) self._dataStore = data_store # handle omegas omegas_array = image_series_dict[det_key].metadata['omega'] self._omegas = mapAngle( np.radians(np.average(omegas_array, axis=1)), np.radians(ome_period) ) self._omeEdges = mapAngle( np.radians(np.r_[omegas_array[:, 0], omegas_array[-1, 1]]), np.radians(ome_period) ) # !!! must avoid the case where omeEdges[0] = omeEdges[-1] for the # indexer to work properly if abs(self._omeEdges[0] - self._omeEdges[-1]) <= ct.sqrt_epsf: # !!! SIGNED delta ome del_ome = np.radians(omegas_array[0, 1] - omegas_array[0, 0]) self._omeEdges[-1] = self._omeEdges[-2] + del_ome # handle etas # WARNING: unlinke the omegas in imageseries metadata, # these are in RADIANS and represent bin centers self._etaEdges = etas self._etas = self._etaEdges[:-1] + 0.5*np.radians(eta_step) @property def dataStore(self): return self._dataStore @property def planeData(self): return self._planeData @property def iHKLList(self): return np.atleast_1d(self._iHKLList).flatten() @property def etaEdges(self): return self._etaEdges @property def omeEdges(self): return self._omeEdges @property def etas(self): return self._etas @property def omegas(self): return self._omegas def save(self, filename): xrdutil.EtaOmeMaps.save_eta_ome_maps(self, filename) pass # end of class: GenerateEtaOmeMaps def _row_edge_vec(rows, pixel_size_row): return pixel_size_row*(0.5*rows-np.arange(rows+1)) def _col_edge_vec(cols, pixel_size_col): return pixel_size_col*(np.arange(cols+1)-0.5*cols) def _generate_pixel_solid_angles(start_stop, rows, cols, pixel_size_row, pixel_size_col, rmat, tvec): start, stop = start_stop row_edge_vec = _row_edge_vec(rows, pixel_size_row) col_edge_vec = _col_edge_vec(cols, pixel_size_col) nvtx = len(row_edge_vec) * len(col_edge_vec) # pixel vertex coords pvy, pvx = np.meshgrid(row_edge_vec, col_edge_vec, indexing='ij') # add Z_d coord and transform to lab frame pcrd_array_full = np.dot( np.vstack([pvx.flatten(), pvy.flatten(), np.zeros(nvtx)]).T, rmat.T ) + tvec conn = cellConnectivity(rows, cols) ret = np.empty(len(range(start, stop)), dtype=float) for i, ipix in enumerate(range(start, stop)): pix_conn = conn[ipix] vtx_list = pcrd_array_full[pix_conn, :] ret[i] = (_solid_angle_of_triangle(vtx_list[[0, 1, 2], :]) + _solid_angle_of_triangle(vtx_list[[2, 3, 0], :])) return ret @memoize def _pixel_angles(origin, pixel_coords, distortion, rmat, tvec, bvec, evec, rows, cols): assert len(origin) == 3, "origin must have 3 elements" pix_i, pix_j = pixel_coords xy = np.ascontiguousarray( np.vstack([ pix_j.flatten(), pix_i.flatten() ]).T ) if distortion is not None: xy = distortion.apply(xy) angs, g_vec = detectorXYToGvec( xy, rmat, ct.identity_3x3, tvec, ct.zeros_3, origin, beamVec=bvec, etaVec=evec) tth = angs[0].reshape(rows, cols) eta = angs[1].reshape(rows, cols) return tth, eta @memoize def _pixel_solid_angles(rows, cols, pixel_size_row, pixel_size_col, rmat, tvec, max_workers): # connectivity array for pixels conn = cellConnectivity(rows, cols) # result solid_angs = np.empty(len(conn), dtype=float) # Distribute tasks to each process tasks = distribute_tasks(len(conn), max_workers) kwargs = { 'rows': rows, 'cols': cols, 'pixel_size_row': pixel_size_row, 'pixel_size_col': pixel_size_col, 'rmat': rmat, 'tvec': tvec, } func = partial(_generate_pixel_solid_angles, **kwargs) with ProcessPoolExecutor(max_workers=max_workers) as executor: results = executor.map(func, tasks) # Concatenate all the results together solid_angs[:] = np.concatenate(list(results)) solid_angs = solid_angs.reshape(rows, cols) mi = solid_angs.min() if mi > 0.: solid_angs = solid_angs/mi return solid_angs @memoize def _lorentz_polarization_factor(tth, eta, f_hor, f_vert): """ 06/14/2021 SS adding lorentz polarization factor computation to the detector so that it can be compenstated for in the intensity correction parameters: tth two theta of every pixel in radians eta azimuthal angle of every pixel f_hor fraction of horizontal polarization (~1 for XFELs) f_vert fraction of vertical polarization (~0 for XFELs) notice f_hor + f_vert = 1 """ theta = 0.5*tth cth = np.cos(theta) sth2 = np.sin(theta)**2 ctth2 = np.cos(tth)**2 seta2 = np.sin(eta)**2 ceta2 = np.cos(eta)**2 L = 1./(cth*sth2) P = f_hor*(seta2 + ceta2*ctth2) + f_vert*(ceta2 + seta2*ctth2) return L*P def _generate_ring_params(tthr, ptth, peta, eta_edges, delta_eta): # mark pixels in the spec'd tth range pixels_in_tthr = np.logical_and( ptth >= tthr[0], ptth <= tthr[1] ) # catch case where ring isn't on detector if not np.any(pixels_in_tthr): return None # ???: faster to index with bool or use np.where, # or recode in numba? rtth_idx = np.where(pixels_in_tthr) # grab relevant eta coords using histogram # !!!: This allows use to calculate arc length and # detect a branch cut. The histogram idx var # is the left-hand edges... retas = peta[rtth_idx] if fast_histogram: reta_hist = histogram1d( retas, len(eta_edges) - 1, (eta_edges[0], eta_edges[-1]) ) else: reta_hist, _ = histogram1d(retas, bins=eta_edges) reta_idx = np.where(reta_hist)[0] reta_bin_idx = np.hstack( [reta_idx, reta_idx[-1] + 1] ) # ring arc lenght on panel arc_length = angularDifference( eta_edges[reta_bin_idx[0]], eta_edges[reta_bin_idx[-1]] ) # Munge eta bins # !!! need to work with the subset to preserve # NaN values at panel extents! # # !!! MUST RE-MAP IF BRANCH CUT IS IN RANGE # # The logic below assumes that eta_edges span 2*pi to # single precision eta_bins = eta_edges[reta_bin_idx] if arc_length < 1e-4: # have branch cut in here ring_gap = np.where( reta_idx - np.arange(len(reta_idx)) )[0] if len(ring_gap) > 0: # have incomplete ring eta_stop_idx = ring_gap[0] eta_stop = eta_edges[eta_stop_idx] new_period = np.cumsum([eta_stop, 2*np.pi]) # remap retas = mapAngle(retas, new_period) tmp_bins = mapAngle( eta_edges[reta_idx], new_period ) tmp_idx = np.argsort(tmp_bins) reta_idx = reta_idx[np.argsort(tmp_bins)] eta_bins = np.hstack( [tmp_bins[tmp_idx], tmp_bins[tmp_idx][-1] + delta_eta] ) return retas, eta_bins, rtth_idx, reta_idx def _run_histograms(rows, ims, tth_ranges, ring_maps, ring_params, threshold): for i_row in range(*rows): image = ims[i_row] # handle threshold if specified if threshold is not None: # !!! NaNs get preserved image = np.array(image) image[image < threshold] = 0. for i_r, tthr in enumerate(tth_ranges): this_map = ring_maps[i_r] params = ring_params[i_r] if not params: # We are supposed to skip this ring... continue # Unpack the params retas, eta_bins, rtth_idx, reta_idx = params if fast_histogram: result = histogram1d(retas, len(eta_bins) - 1, (eta_bins[0], eta_bins[-1]), weights=image[rtth_idx]) else: result, _ = histogram1d(retas, bins=eta_bins, weights=image[rtth_idx]) this_map[i_row, reta_idx] = result
py
1a302845fac2f234c2c5914432911d45aee47749
#!/usr/bin/env python3 import pathlib import fileinput from ci.util import ( check_env, existing_file, ) repo_dir = check_env('REPO_DIR') effective_version = check_env('EFFECTIVE_VERSION') template_file = existing_file(pathlib.Path(repo_dir, 'concourse', 'resources', 'defaults.mako')) lines_replaced = 0 string_to_match = 'tag = ' for line in fileinput.FileInput(str(template_file), inplace=True): if string_to_match in line: if lines_replaced != 0: raise RuntimeError(f'More than one image tag found in template file') leading_spaces = line.index(string_to_match) print(f'{leading_spaces * " "}{string_to_match}"{effective_version}"') lines_replaced = 1 else: print(line, end='')
py
1a3028b0d17e7d9d5cf5ce08108984d51cafc917
from oslo_log import log from datetime import datetime from flask import request, jsonify from flask_restful import Resource, fields, marshal_with, abort from clapton import db from clapton.db.sqlalchemy import models from clapton.api import types LOG = log.getLogger(__name__) class OrderList(Resource): def get(self): orders = db.get_session().query(models.Order).all() return jsonify((types.Order(many=True).dump(orders)).data), 200, {'X-Pagination-Total-Count': 1000} ''' response = flask.make_response('[{"id": 123}]', 200) response.headers.extend({'X-Pagination-Total-Count': 1000, 'Content-Type': 'application/json; charset=utf-8'}) return response ''' return [{"id": 123}], 200, {'X-Pagination-Total-Count': 1000} def post(self): ''' validate request parser = reqparse.RequestParser() parser.add_argument( 'total_amount', dest='total_amount', type=str, location='form', # form, args, headers, cookies, json, files required=True, help='The orders\'s total amount', ) args = parser.parse_args(strict=True) LOG.debug(args) LOG.debug(args.total_amount) return {}, 201 ''' data = request.get_json() if not data: return jsonify({'message': 'No imput data provided'}), 400 data, errors = types.Order().load(data) if errors: return jsonify(errors), 422 o = models.Order(id=data['id']) return jsonify((types.Order().dump(o)).data), 201 class Order(Resource): @marshal_with({'id': fields.String, 'created_at': fields.DateTime, 'links': fields.Nested({'items': fields.Url('items', absolute=True)})}) def get(self, order_id): ''' outputing format ''' return {'id': 123, 'created_at': datetime.now(), 'links': []} def put(self, order_id): LOG.debug(request.form) LOG.debug(request.json) LOG.debug(dir(request)) return {}, 201 def delete(self, order_id): abort(500) # raise ValueError('haha') # raise werkzeug.exceptions.HTTPException(500) # raise werkzeug.exceptions.InternalServerError return '', 204 class OrderItemList(Resource): def get(self, order_id): return []
py
1a3028f71a48aad11f4b72c7d043f488cd5eb1b1
# Copyright 2019 Huawei Technologies Co.,LTD. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from oslo_db import exception as db_exc from cyborg.common import exception from cyborg import objects from cyborg.tests.unit.db.base import DbTestCase from cyborg.tests.unit import fake_deployable from cyborg.tests.unit import fake_device from cyborg.tests.unit.objects import test_objects class TestDeployableObject(DbTestCase): @property def fake_device(self): db_device = fake_device.get_fake_devices_as_dict()[2] return db_device @property def fake_deployable(self): db_deploy = fake_deployable.fake_db_deployable(id=1) return db_deploy @property def fake_deployable2(self): db_deploy = fake_deployable.fake_db_deployable(id=2) return db_deploy def test_create(self): db_device = self.fake_device device = objects.Device(context=self.context, **db_device) device.create(self.context) device_get = objects.Device.get(self.context, device.uuid) db_dpl = self.fake_deployable dpl = objects.Deployable(context=self.context, **db_dpl) dpl.device_id = device_get.id dpl.create(self.context) self.assertEqual(db_dpl['uuid'], dpl.uuid) def test_get(self): db_device = self.fake_device device = objects.Device(context=self.context, **db_device) device.create(self.context) device_get = objects.Device.get(self.context, device.uuid) db_dpl = self.fake_deployable dpl = objects.Deployable(context=self.context, **db_dpl) dpl.device_id = device_get.id dpl.create(self.context) dpl_get = objects.Deployable.get(self.context, dpl.uuid) self.assertEqual(dpl_get.uuid, dpl.uuid) def test_get_by_filter(self): db_device = self.fake_device device = objects.Device(context=self.context, **db_device) device.create(self.context) device_get = objects.Device.get(self.context, device.uuid) db_dpl = self.fake_deployable dpl = objects.Deployable(context=self.context, **db_dpl) dpl.device_id = device_get.id dpl.create(self.context) query = {"uuid": dpl['uuid']} dpl_get_list = objects.Deployable.get_by_filter(self.context, query) self.assertEqual(dpl_get_list[0].uuid, dpl.uuid) def test_save(self): db_device = self.fake_device device = objects.Device(context=self.context, **db_device) device.create(self.context) device_get = objects.Device.get(self.context, device.uuid) db_dpl = self.fake_deployable dpl = objects.Deployable(context=self.context, **db_dpl) dpl.device_id = device_get.id dpl.create(self.context) dpl.num_accelerators = 8 dpl.save(self.context) dpl_get = objects.Deployable.get(self.context, dpl.uuid) self.assertEqual(dpl_get.num_accelerators, 8) def test_destroy(self): db_device = self.fake_device device = objects.Device(context=self.context, **db_device) device.create(self.context) device_get = objects.Device.get(self.context, device.uuid) db_dpl = self.fake_deployable dpl = objects.Deployable(context=self.context, **db_dpl) dpl.device_id = device_get.id dpl.create(self.context) self.assertEqual(db_dpl['uuid'], dpl.uuid) dpl.destroy(self.context) self.assertRaises(exception.ResourceNotFound, objects.Deployable.get, self.context, dpl.uuid) class TestDeployableObject(test_objects._LocalTest, TestDeployableObject): def _test_save_objectfield_fk_constraint_fails(self, foreign_key, expected_exception): error = db_exc.DBReferenceError('table', 'constraint', foreign_key, 'key_table') # Prevent lazy-loading any fields, results in InstanceNotFound deployable = fake_deployable.fake_deployable_obj(self.context) fields_with_save_methods = [field for field in deployable.fields if hasattr(deployable, '_save_%s' % field)] for field in fields_with_save_methods: @mock.patch.object(deployable, '_save_%s' % field) @mock.patch.object(deployable, 'obj_attr_is_set') def _test(mock_is_set, mock_save_field): mock_is_set.return_value = True mock_save_field.side_effect = error deployable.obj_reset_changes(fields=[field]) deployable._changed_fields.add(field) self.assertRaises(expected_exception, deployable.save) deployable.obj_reset_changes(fields=[field]) _test()
py
1a3029291fc83c88809f1cd45425b63f1bff23cb
# from django.test import TestCase # from polls.models import Question,Choice # from django.utils import timezone # # # # from django.test import Client # # Create your tests here. # #用来写测试用例 # # model测试 # class StudyTestCsse(TestCase): # def setUp(self): # Question.objects.create(id=1,question_text="你的女朋友是谁?",pub_date=timezone.now()) # # def test_01(self): # u'''测试查询问题''' # question = Question.objects.get(id=1) # self.assertIn("你的女朋友是谁?",question.question_text) # # def test_02(self): # u'''测试创建问题''' # Question.objects.create(id=2,question_text="今天吃什么?",pub_date=timezone.now()) # question = Question.objects.get(id=2) # self.assertIn("今天吃什么",question.question_text) # # def test_03(self): # u'''测试更新数据''' # question = Question.objects.get(id=1) # Question.objects.filter(id=1).update(question_text="周末是否加班") # question = Question.objects.get(id=1) # self.assertIn("周末是否加班",question.question_text) # # def test_04(self): # u'''测试删除数据''' # question = Question.objects.get(id=1) # Question.objects.filter(id=1).delete() # self.assertEqual(0,len(Question.objects.all())) # # class choiceTestcase(TestCase): # # def setUp(self): # Question.objects.create(id=1,question_text="what's new?",pub_date=timezone.now()) # Choice.objects.create(id=1,choice_text='Not Much',votes=0,question_id=1) # Choice.objects.create(id=2,choice_text='The sky',votes=0,question_id=1) # # def test_choice_query(self): # u'''测试问题选项查询''' # choice = Choice.objects.get(id=1) # self.assertEqual(choice.choice_text,"Not Much")
py
1a30292bc2773def9c2a33301a689783ced66f65
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone from django.conf import settings import model_utils.fields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Dataset', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, verbose_name='created', editable=False)), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, verbose_name='modified', editable=False)), ('dataset', models.FileField(upload_to=b'datasets')), ('dimensions', models.PositiveIntegerField(default=0)), ('length', models.PositiveIntegerField(default=0)), ('filesize', models.PositiveIntegerField(default=0)), ('signature', models.CharField(unique=True, max_length=44, blank=True)), ('datatype', models.CharField(default=b'csv', max_length=4, choices=[(b'csv', b'csv'), (b'json', b'json'), (b'xml', b'xml')])), ('delimiter', models.CharField(default=b',', max_length=1)), ('uploader', models.ForeignKey(related_name='datasets', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('-created',), 'db_table': 'datasets', 'get_latest_by': 'created', }, ), ]
py
1a302982b0604d6f6f62aa08d229c33367c435e9
# Copyright 2000-2002 by Andrew Dalke. # Revisions copyright 2007-2008 by Peter Cock. # All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Alphabets used in Seq objects etc to declare sequence type and letters. This is used by sequences which contain a finite number of similar words. """ class Alphabet: size = None # no fixed size for words letters = None # no fixed alphabet; implement as a list-like # interface, def __repr__(self): return self.__class__.__name__ + "()" def contains(self, other): """Does this alphabet 'contain' the other (OBSOLETE?). Returns a boolean. This relies on the Alphabet subclassing hierarchy only, and does not check the letters property. This isn't ideal, and doesn't seem to work as intended with the AlphabetEncoder classes.""" return isinstance(other, self.__class__) def _case_less(self): """Return an case-less variant of the current alphabet (PRIVATE).""" #TODO - remove this method by dealing with things in subclasses? if isinstance(self, ProteinAlphabet): return generic_protein elif isinstance(self, DNAAlphabet): return generic_dna elif isinstance(self, NucleotideAlphabet): return generic_rna elif isinstance(self, NucleotideAlphabet): return generic_nucleotide elif isinstance(self, SingleLetterAlphabet): return single_letter_alphabet else: return generic_alphabet def _upper(self): """Return an upper case variant of the current alphabet (PRIVATE).""" if not self.letters or self.letters==self.letters.upper(): #Easy case, no letters or already upper case! return self else: #TODO - Raise NotImplementedError and handle via subclass? return self._case_less() def _lower(self): """Return a lower case variant of the current alphabet (PRIVATE).""" if not self.letters or self.letters==self.letters.lower(): #Easy case, no letters or already lower case! return self else: #TODO - Raise NotImplementedError and handle via subclass? return self._case_less() generic_alphabet = Alphabet() class SingleLetterAlphabet(Alphabet): size = 1 letters = None # string of all letters in the alphabet single_letter_alphabet = SingleLetterAlphabet() ########### Protein class ProteinAlphabet(SingleLetterAlphabet): pass generic_protein = ProteinAlphabet() ########### DNA class NucleotideAlphabet(SingleLetterAlphabet): pass generic_nucleotide = NucleotideAlphabet() class DNAAlphabet(NucleotideAlphabet): pass generic_dna = DNAAlphabet() ########### RNA class RNAAlphabet(NucleotideAlphabet): pass generic_rna = RNAAlphabet() ########### Other per-sequence encodings class SecondaryStructure(SingleLetterAlphabet): letters = "HSTC" class ThreeLetterProtein(Alphabet): size = 3 letters = [ "Ala", "Asx", "Cys", "Asp", "Glu", "Phe", "Gly", "His", "Ile", "Lys", "Leu", "Met", "Asn", "Pro", "Gln", "Arg", "Ser", "Thr", "Sec", "Val", "Trp", "Xaa", "Tyr", "Glx", ] ###### Non per-sequence modifications # (These are Decorator classes) class AlphabetEncoder: def __init__(self, alphabet, new_letters): self.alphabet = alphabet self.new_letters = new_letters if alphabet.letters is not None: self.letters = alphabet.letters + new_letters else: self.letters = None def __getattr__(self, key): if key[:2] == "__" and key[-2:] == "__": raise AttributeError(key) return getattr(self.alphabet, key) def __repr__(self): return "%s(%r, %r)" % (self.__class__.__name__, self.alphabet, self.new_letters) def contains(self, other): """Does this alphabet 'contain' the other (OBSOLETE?). This is isn't implemented for the base AlphabetEncoder, which will always return 0 (False).""" return 0 def _upper(self): """Return an upper case variant of the current alphabet (PRIVATE).""" return AlphabetEncoder(self.alphabet._upper(), self.new_letters.upper()) def _lower(self): """Return a lower case variant of the current alphabet (PRIVATE).""" return AlphabetEncoder(self.alphabet._lower(), self.new_letters.lower()) class Gapped(AlphabetEncoder): def __init__(self, alphabet, gap_char = "-"): AlphabetEncoder.__init__(self, alphabet, gap_char) self.gap_char = gap_char def contains(self, other): """Does this alphabet 'contain' the other (OBSOLETE?). Returns a boolean. This relies on the Alphabet subclassing hierarchy, and attempts to check the gap character. This fails if the other alphabet does not have a gap character! """ return other.gap_char == self.gap_char and \ self.alphabet.contains(other.alphabet) def _upper(self): """Return an upper case variant of the current alphabet (PRIVATE).""" return Gapped(self.alphabet._upper(), self.gap_char.upper()) def _lower(self): """Return a lower case variant of the current alphabet (PRIVATE).""" return Gapped(self.alphabet._lower(), self.gap_char.lower()) class HasStopCodon(AlphabetEncoder): def __init__(self, alphabet, stop_symbol = "*"): AlphabetEncoder.__init__(self, alphabet, stop_symbol) self.stop_symbol = stop_symbol def __cmp__(self, other): x = cmp(self.alphabet, other.alphabet) if x == 0: return cmp(self.stop_symbol, other.stop_symbol) return x def contains(self, other): """Does this alphabet 'contain' the other (OBSOLETE?). Returns a boolean. This relies on the Alphabet subclassing hierarchy, and attempts to check the stop symbol. This fails if the other alphabet does not have a stop symbol! """ return other.stop_symbol == self.stop_symbol and \ self.alphabet.contains(other.alphabet) def _upper(self): """Return an upper case variant of the current alphabet (PRIVATE).""" return HasStopCodon(self.alphabet._upper(), self.stop_symbol.upper()) def _lower(self): """Return a lower case variant of the current alphabet (PRIVATE).""" return HasStopCodon(self.alphabet._lower(), self.stop_symbol.lower()) def _get_base_alphabet(alphabet): """Returns the non-gapped non-stop-codon Alphabet object (PRIVATE).""" a = alphabet while isinstance(a, AlphabetEncoder): a = a.alphabet assert isinstance(a, Alphabet), \ "Invalid alphabet found, %s" % repr(a) return a def _ungap(alphabet): """Returns the alphabet without any gap encoder (PRIVATE).""" #TODO - Handle via method of the objects? if not hasattr(alphabet, "gap_char"): return alphabet elif isinstance(alphabet, Gapped): return alphabet.alphabet elif isinstance(alphabet, HasStopCodon): return HasStopCodon(_ungap(alphabet.alphabet), stop_symbol=alphabet.stop_symbol) elif isinstance(alphabet, AlphabetEncoder): return AlphabetEncoder(_ungap(alphabet.alphabet), letters=alphabet.letters) else: raise NotImplementedError def _consensus_base_alphabet(alphabets): """Returns a common but often generic base alphabet object (PRIVATE). This throws away any AlphabetEncoder information, e.g. Gapped alphabets. Note that DNA+RNA -> Nucleotide, and Nucleotide+Protein-> generic single letter. These DO NOT raise an exception!""" common = None for alpha in alphabets: a = _get_base_alphabet(alpha) if common is None: common = a elif common == a: pass elif isinstance(a, common.__class__): pass elif isinstance(common, a.__class__): common = a elif isinstance(a, NucleotideAlphabet) \ and isinstance(common, NucleotideAlphabet): #e.g. Give a mix of RNA and DNA alphabets common = generic_nucleotide elif isinstance(a, SingleLetterAlphabet) \ and isinstance(common, SingleLetterAlphabet): #This is a pretty big mis-match! common = single_letter_alphabet else: #We have a major mis-match... take the easy way out! return generic_alphabet if common is None: #Given NO alphabets! return generic_alphabet return common def _consensus_alphabet(alphabets): """Returns a common but often generic alphabet object (PRIVATE). Note that DNA+RNA -> Nucleotide, and Nucleotide+Protein-> generic single letter. These DO NOT raise an exception! This is aware of Gapped and HasStopCodon and new letters added by other AlphabetEncoders. This WILL raise an exception if more than one gap character or stop symbol is present.""" base = _consensus_base_alphabet(alphabets) gap = None stop = None new_letters = "" for alpha in alphabets: #Gaps... if not hasattr(alpha, "gap_char"): pass elif gap is None: gap = alpha.gap_char elif gap == alpha.gap_char: pass else: raise ValueError("More than one gap character present") #Stops... if not hasattr(alpha, "stop_symbol"): pass elif stop is None: stop = alpha.stop_symbol elif stop == alpha.stop_symbol: pass else: raise ValueError("More than one stop symbol present") #New letters... if hasattr(alpha, "new_letters"): for letter in alpha.new_letters: if letter not in new_letters \ and letter != gap and letter != stop: new_letters += letter alpha = base if new_letters: alpha = AlphabetEncoder(alpha, new_letters) if gap: alpha = Gapped(alpha, gap_char=gap) if stop: alpha = HasStopCodon(alpha, stop_symbol=stop) return alpha def _check_type_compatible(alphabets): """Returns True except for DNA+RNA or Nucleotide+Protein (PRIVATE). This relies on the Alphabet subclassing hierarchy. It does not check things like gap characters or stop symbols.""" dna, rna, nucl, protein = False, False, False, False for alpha in alphabets: a = _get_base_alphabet(alpha) if isinstance(a, DNAAlphabet): dna = True nucl = True if rna or protein : return False elif isinstance(a, RNAAlphabet): rna = True nucl = True if dna or protein : return False elif isinstance(a, NucleotideAlphabet): nucl = True if protein : return False elif isinstance(a, ProteinAlphabet): protein = True if nucl : return False return True
py
1a3029c55a3e76194405a448d8cbe490d1fa4940
""" Setup remote debugger with Python Tools for Visual Studio (PTVSD) """ import os from .celery_log_setup import get_task_logger REMOTE_DEBUG_PORT = 3000 log = get_task_logger(__name__) def setup_remote_debugging(force_enabled: bool = False, *, boot_mode=None) -> None: """ Programaticaly enables remote debugging if SC_BOOT_MODE==debug-ptvsd """ if "SC_BOOT_MODE" not in os.environ: log.warning("Remote debugging only available when running in a container") return boot_mode = boot_mode or os.environ.get("SC_BOOT_MODE") if boot_mode == "debug-ptvsd" or force_enabled: try: log.debug("Enabling attach ptvsd ...") # # SEE https://github.com/microsoft/ptvsd#enabling-debugging # import ptvsd ptvsd.enable_attach( address=("0.0.0.0", REMOTE_DEBUG_PORT), redirect_output=True ) # nosec except ImportError: log.exception("Unable to use remote debugging. ptvsd is not installed") else: log.info("Remote debugging enabled: listening port %s", REMOTE_DEBUG_PORT) else: log.debug("Booting without remote debugging since SC_BOOT_MODE=%s", boot_mode) __all__ = ["setup_remote_debugging"]
py
1a302b90ca158ff107d25b7cdeffb5f9a5e3e5ba
# -*- encoding: utf-8 -*- from __future__ import unicode_literals from slack_g_cal.parse import JSON, Datetime class WitDatetimeContainer(JSON): """ Container wrapping datetime values from the Wit API """ def __init__(self, **dt_json): self.is_interval = dt_json['type'] == 'interval' # Get rid of values; we don't need this parameter dt_json.pop('values', None) if self.is_interval: from_, to_ = dt_json.pop('from'), dt_json.pop('to') self.dt_from = WitDatetime(date_input=from_.value, grain=from_.grain) self.dt_to = WitDatetime(date_input=to_.value, grain=to_.grain) else: self.date = WitDatetime(date_input=dt_json.pop('value'), grain=dt_json.pop('grain')) super(WitDatetimeContainer, self).__init__(**dt_json) class WitDatetime(Datetime): def __init__(self, date_input, **dt_json): self.grain = dt_json.pop('grain') super(WitDatetime, self).__init__(date_input=date_input, **dt_json) def adjust_grain_by(self, adj_val): kwargs = {self.grain: getattr(self._datetime, self.grain) + adj_val} self._datetime = self._datetime.replace(**kwargs)
py
1a302b9a05e3fe2458365da32681c566fef33e7d
# -*- coding: utf-8 -*- """IPython Test Suite Runner. This module provides a main entry point to a user script to test IPython itself from the command line. There are two ways of running this script: 1. With the syntax `iptest all`. This runs our entire test suite by calling this script (with different arguments) recursively. This causes modules and package to be tested in different processes, using nose or trial where appropriate. 2. With the regular nose syntax, like `iptest -vvs IPython`. In this form the script simply calls nose, but with special command line flags and plugins loaded. """ # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import glob from io import BytesIO import os import os.path as path import sys from threading import Thread, Lock, Event import warnings import nose.plugins.builtin from nose.plugins.xunit import Xunit from nose import SkipTest from nose.core import TestProgram from nose.plugins import Plugin from nose.util import safe_str from IPython import version_info from IPython.utils.py3compat import decode from IPython.utils.importstring import import_item from IPython.testing.plugin.ipdoctest import IPythonDoctest from IPython.external.decorators import KnownFailure, knownfailureif pjoin = path.join # Enable printing all warnings raise by IPython's modules warnings.filterwarnings('ignore', message='.*Matplotlib is building the font cache.*', category=UserWarning, module='.*') warnings.filterwarnings('error', message='.*', category=ResourceWarning, module='.*') warnings.filterwarnings('error', message=".*{'config': True}.*", category=DeprecationWarning, module='IPy.*') warnings.filterwarnings('default', message='.*', category=Warning, module='IPy.*') warnings.filterwarnings('error', message='.*apply_wrapper.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*make_label_dec', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*decorated_dummy.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*skip_file_no_x11.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*onlyif_any_cmd_exists.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*disable_gui.*', category=DeprecationWarning, module='.*') warnings.filterwarnings('error', message='.*ExceptionColors global is deprecated.*', category=DeprecationWarning, module='.*') # Jedi older versions warnings.filterwarnings( 'error', message='.*elementwise != comparison failed and.*', category=FutureWarning, module='.*') if version_info < (6,): # nose.tools renames all things from `camelCase` to `snake_case` which raise an # warning with the runner they also import from standard import library. (as of Dec 2015) # Ignore, let's revisit that in a couple of years for IPython 6. warnings.filterwarnings( 'ignore', message='.*Please use assertEqual instead', category=Warning, module='IPython.*') if version_info < (7,): warnings.filterwarnings('ignore', message='.*Completer.complete.*', category=PendingDeprecationWarning, module='.*') else: warnings.warn( 'Completer.complete was pending deprecation and should be changed to Deprecated', FutureWarning) # ------------------------------------------------------------------------------ # Monkeypatch Xunit to count known failures as skipped. # ------------------------------------------------------------------------------ def monkeypatch_xunit(): try: knownfailureif(True)(lambda: None)() except Exception as e: KnownFailureTest = type(e) def addError(self, test, err, capt=None): if issubclass(err[0], KnownFailureTest): err = (SkipTest,) + err[1:] return self.orig_addError(test, err, capt) Xunit.orig_addError = Xunit.addError Xunit.addError = addError #----------------------------------------------------------------------------- # Check which dependencies are installed and greater than minimum version. #----------------------------------------------------------------------------- def extract_version(mod): return mod.__version__ def test_for(item, min_version=None, callback=extract_version): """Test to see if item is importable, and optionally check against a minimum version. If min_version is given, the default behavior is to check against the `__version__` attribute of the item, but specifying `callback` allows you to extract the value you are interested in. e.g:: In [1]: import sys In [2]: from IPython.testing.iptest import test_for In [3]: test_for('sys', (2,6), callback=lambda sys: sys.version_info) Out[3]: True """ try: check = import_item(item) except (ImportError, RuntimeError): # GTK reports Runtime error if it can't be initialized even if it's # importable. return False else: if min_version: if callback: # extra processing step to get version to compare check = callback(check) return check >= min_version else: return True # Global dict where we can store information on what we have and what we don't # have available at test run time have = {'matplotlib': test_for('matplotlib'), 'pygments': test_for('pygments'), 'sqlite3': test_for('sqlite3')} #----------------------------------------------------------------------------- # Test suite definitions #----------------------------------------------------------------------------- test_group_names = ['core', 'extensions', 'lib', 'terminal', 'testing', 'utils', ] class TestSection(object): def __init__(self, name, includes): self.name = name self.includes = includes self.excludes = [] self.dependencies = [] self.enabled = True def exclude(self, module): if not module.startswith('IPython'): module = self.includes[0] + "." + module self.excludes.append(module.replace('.', os.sep)) def requires(self, *packages): self.dependencies.extend(packages) @property def will_run(self): return self.enabled and all(have[p] for p in self.dependencies) # Name -> (include, exclude, dependencies_met) test_sections = {n:TestSection(n, ['IPython.%s' % n]) for n in test_group_names} # Exclusions and dependencies # --------------------------- # core: sec = test_sections['core'] if not have['sqlite3']: sec.exclude('tests.test_history') sec.exclude('history') if not have['matplotlib']: sec.exclude('pylabtools'), sec.exclude('tests.test_pylabtools') # lib: sec = test_sections['lib'] sec.exclude('kernel') if not have['pygments']: sec.exclude('tests.test_lexers') # We do this unconditionally, so that the test suite doesn't import # gtk, changing the default encoding and masking some unicode bugs. sec.exclude('inputhookgtk') # We also do this unconditionally, because wx can interfere with Unix signals. # There are currently no tests for it anyway. sec.exclude('inputhookwx') # Testing inputhook will need a lot of thought, to figure out # how to have tests that don't lock up with the gui event # loops in the picture sec.exclude('inputhook') # testing: sec = test_sections['testing'] # These have to be skipped on win32 because they use echo, rm, cd, etc. # See ticket https://github.com/ipython/ipython/issues/87 if sys.platform == 'win32': sec.exclude('plugin.test_exampleip') sec.exclude('plugin.dtexample') # don't run jupyter_console tests found via shim test_sections['terminal'].exclude('console') # extensions: sec = test_sections['extensions'] # This is deprecated in favour of rpy2 sec.exclude('rmagic') # autoreload does some strange stuff, so move it to its own test section sec.exclude('autoreload') sec.exclude('tests.test_autoreload') test_sections['autoreload'] = TestSection('autoreload', ['IPython.extensions.autoreload', 'IPython.extensions.tests.test_autoreload']) test_group_names.append('autoreload') #----------------------------------------------------------------------------- # Functions and classes #----------------------------------------------------------------------------- def check_exclusions_exist(): from IPython.paths import get_ipython_package_dir from warnings import warn parent = os.path.dirname(get_ipython_package_dir()) for sec in test_sections: for pattern in sec.exclusions: fullpath = pjoin(parent, pattern) if not os.path.exists(fullpath) and not glob.glob(fullpath + '.*'): warn("Excluding nonexistent file: %r" % pattern) class ExclusionPlugin(Plugin): """A nose plugin to effect our exclusions of files and directories. """ name = 'exclusions' score = 3000 # Should come before any other plugins def __init__(self, exclude_patterns=None): """ Parameters ---------- exclude_patterns : sequence of strings, optional Filenames containing these patterns (as raw strings, not as regular expressions) are excluded from the tests. """ self.exclude_patterns = exclude_patterns or [] super(ExclusionPlugin, self).__init__() def options(self, parser, env=os.environ): Plugin.options(self, parser, env) def configure(self, options, config): Plugin.configure(self, options, config) # Override nose trying to disable plugin. self.enabled = True def wantFile(self, filename): """Return whether the given filename should be scanned for tests. """ if any(pat in filename for pat in self.exclude_patterns): return False return None def wantDirectory(self, directory): """Return whether the given directory should be scanned for tests. """ if any(pat in directory for pat in self.exclude_patterns): return False return None class StreamCapturer(Thread): daemon = True # Don't hang if main thread crashes started = False def __init__(self, echo=False): super(StreamCapturer, self).__init__() self.echo = echo self.streams = [] self.buffer = BytesIO() self.readfd, self.writefd = os.pipe() self.buffer_lock = Lock() self.stop = Event() def run(self): self.started = True while not self.stop.is_set(): chunk = os.read(self.readfd, 1024) with self.buffer_lock: self.buffer.write(chunk) if self.echo: sys.stdout.write(decode(chunk)) os.close(self.readfd) os.close(self.writefd) def reset_buffer(self): with self.buffer_lock: self.buffer.truncate(0) self.buffer.seek(0) def get_buffer(self): with self.buffer_lock: return self.buffer.getvalue() def ensure_started(self): if not self.started: self.start() def halt(self): """Safely stop the thread.""" if not self.started: return self.stop.set() os.write(self.writefd, b'\0') # Ensure we're not locked in a read() self.join() class SubprocessStreamCapturePlugin(Plugin): name='subprocstreams' def __init__(self): Plugin.__init__(self) self.stream_capturer = StreamCapturer() self.destination = os.environ.get('IPTEST_SUBPROC_STREAMS', 'capture') # This is ugly, but distant parts of the test machinery need to be able # to redirect streams, so we make the object globally accessible. nose.iptest_stdstreams_fileno = self.get_write_fileno def get_write_fileno(self): if self.destination == 'capture': self.stream_capturer.ensure_started() return self.stream_capturer.writefd elif self.destination == 'discard': return os.open(os.devnull, os.O_WRONLY) else: return sys.__stdout__.fileno() def configure(self, options, config): Plugin.configure(self, options, config) # Override nose trying to disable plugin. if self.destination == 'capture': self.enabled = True def startTest(self, test): # Reset log capture self.stream_capturer.reset_buffer() def formatFailure(self, test, err): # Show output ec, ev, tb = err captured = self.stream_capturer.get_buffer().decode('utf-8', 'replace') if captured.strip(): ev = safe_str(ev) out = [ev, '>> begin captured subprocess output <<', captured, '>> end captured subprocess output <<'] return ec, '\n'.join(out), tb return err formatError = formatFailure def finalize(self, result): self.stream_capturer.halt() def run_iptest(): """Run the IPython test suite using nose. This function is called when this script is **not** called with the form `iptest all`. It simply calls nose with appropriate command line flags and accepts all of the standard nose arguments. """ # Apply our monkeypatch to Xunit if '--with-xunit' in sys.argv and not hasattr(Xunit, 'orig_addError'): monkeypatch_xunit() arg1 = sys.argv[1] if arg1 in test_sections: section = test_sections[arg1] sys.argv[1:2] = section.includes elif arg1.startswith('IPython.') and arg1[8:] in test_sections: section = test_sections[arg1[8:]] sys.argv[1:2] = section.includes else: section = TestSection(arg1, includes=[arg1]) argv = sys.argv + [ '--detailed-errors', # extra info in tracebacks # We add --exe because of setuptools' imbecility (it # blindly does chmod +x on ALL files). Nose does the # right thing and it tries to avoid executables, # setuptools unfortunately forces our hand here. This # has been discussed on the distutils list and the # setuptools devs refuse to fix this problem! '--exe', ] if '-a' not in argv and '-A' not in argv: argv = argv + ['-a', '!crash'] if nose.__version__ >= '0.11': # I don't fully understand why we need this one, but depending on what # directory the test suite is run from, if we don't give it, 0 tests # get run. Specifically, if the test suite is run from the source dir # with an argument (like 'iptest.py IPython.core', 0 tests are run, # even if the same call done in this directory works fine). It appears # that if the requested package is in the current dir, nose bails early # by default. Since it's otherwise harmless, leave it in by default # for nose >= 0.11, though unfortunately nose 0.10 doesn't support it. argv.append('--traverse-namespace') plugins = [ ExclusionPlugin(section.excludes), KnownFailure(), SubprocessStreamCapturePlugin() ] # we still have some vestigial doctests in core if (section.name.startswith(('core', 'IPython.core', 'IPython.utils'))): plugins.append(IPythonDoctest()) argv.extend([ '--with-ipdoctest', '--ipdoctest-tests', '--ipdoctest-extension=txt', ]) # Use working directory set by parent process (see iptestcontroller) if 'IPTEST_WORKING_DIR' in os.environ: os.chdir(os.environ['IPTEST_WORKING_DIR']) # We need a global ipython running in this process, but the special # in-process group spawns its own IPython kernels, so for *that* group we # must avoid also opening the global one (otherwise there's a conflict of # singletons). Ultimately the solution to this problem is to refactor our # assumptions about what needs to be a singleton and what doesn't (app # objects should, individual shells shouldn't). But for now, this # workaround allows the test suite for the inprocess module to complete. if 'kernel.inprocess' not in section.name: from IPython.testing import globalipapp globalipapp.start_ipython() # Now nose can run TestProgram(argv=argv, addplugins=plugins) if __name__ == '__main__': run_iptest()
py
1a302bfb759b8043e0cff31548f78d641a922257
#DateTimeExample1.py from datetime import * #Will print current date and time print("Current Date Time : ",datetime.now())
py
1a302d3e780cbfdb4a4eee3fee3214deb23994e4
import os from io import StringIO from django.contrib.gis.geos import Point from django.test import TestCase from uk_geo_utils.models import Onspd from uk_geo_utils.management.commands.import_onspd import Command class OnsudImportTest(TestCase): def test_import_onspd(self): # check table is empty before we start self.assertEqual(0, Onspd.objects.count()) # path to file we're going to import csv_path = os.path.abspath( os.path.join( os.path.dirname(os.path.abspath(__file__)), '../fixtures/onspd' ) ) cmd = Command() # supress output out = StringIO() cmd.stdout = out # import data opts = { 'path': csv_path, } cmd.handle(**opts) # ensure all our tasty data has been imported self.assertEqual(4, Onspd.objects.count()) # row with valid grid ref should have valid Point() location al11aa = Onspd.objects.filter(pcds="AL1 1AA")[0] self.assertEqual(Point(-0.341337, 51.749084, srid=4326), al11aa.location) # row with invalid grid ref should have NULL location im11aa = Onspd.objects.filter(pcds="IM1 1AA")[0] self.assertIsNone(im11aa.location)
py
1a302da4c6f30789d8399841111880c8b91a2e66
#!/usr/bin/env python # Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import argparse import shutil arg_parser = argparse.ArgumentParser(description="This is a script to convert coco anntations to voc-like annotations.") arg_parser.add_argument('-ti', '--train_images', type=str, default="./coco2014/train2014", help='where to put coco2014 train images.') arg_parser.add_argument('-vi', '--val_images', type=str, default='./coco2014/val2014', help='where to put coco2014 val images.') arg_parser.add_argument('-ta', '--train_anno', type=str, default='./coco2014/instances_train2014.json', help='where to put cooc2014 train set annotations.') arg_parser.add_argument('-va', '--val_anno', type=str, default='./coco2014/instances_val2014.json', help='where to put coco2014 val set annotations') arg_parser.add_argument('-tlf', '--tran_list_file', type=str, default='./coco2014/train2014.txt', help='image list for training') arg_parser.add_argument('-vlf', '--val_list_file', type=str, default='./coco2014/val2014.txt', help='image list for evalution.') arg_parser.add_argument('-ai', '--all_images', type=str, default='./coco2014/Images', help='where to put all images.') arg_parser.add_argument('-aa', '--all_anno', type=str, default='./coco2014/Annotations', help='where to put all annotations.') args = arg_parser.parse_args() '''How to organize coco dataset folder: inputs: coco2014/ |->train2014/ |->val2014/ |->instances_train2014.json |->instances_val2014.json outputs: coco2014/ |->Annotations/ |->Images/ |->train2014.txt |->val2014.txt ''' def convert_images_coco2voc(args): assert os.path.exists(args.train_images) assert os.path.exists(args.val_images) os.system('mv ' + args.train_images + ' ' + args.all_images) imagename_list = os.listdir(args.val_images) for imagename in imagename_list: shutil.copy(os.path.join(args.val_images, imagename), args.all_images) os.system('rm -r ' + args.val_images) def generate_cid_name(json_object): id2name_dict = {} for ind, category_info in enumerate(json_object['categories']): id2name_dict[category_info['id']] = category_info['name'] return id2name_dict def generate_image_dict(json_object): id2image_dict = {} for ind, image_info in enumerate(json_object['images']): id2image_dict[image_info['id']] = image_info['file_name'] return id2image_dict def generate_annotation_files(json_object, annotation_path, id2image_dict, id2name, image_list_file): if not os.path.exists(annotation_path): os.mkdir(annotation_path) f_image = open(image_list_file, 'w') all_images_name = [] for ind, anno_info in enumerate(json_object['annotations']): print('preprocess: {}'.format(ind)) category_id = anno_info['category_id'] cls_name = id2name[category_id] if cls_name != "person": continue image_id = anno_info['image_id'] image_name = id2image_dict[image_id] bbox = anno_info['bbox'] bbox[2] = bbox[0] + bbox[2] bbox[3] = bbox[3] + bbox[1] bbox_str = ' '.join([str(int(x)) for x in bbox]) with open(os.path.join(annotation_path, image_name.split('.')[0] + '.txt'), 'a') as f_anno: f_anno.writelines(image_name.split('.')[0] + " " + cls_name + " " + bbox_str + "\n") if image_name not in all_images_name: all_images_name.append(image_name) for image_name in all_images_name: f_image.writelines(image_name.split('.')[0] + "\n") f_image.close() def convert_anno_coco2voc(coco_anno_file, image_list_file, all_anno_path): with open(coco_anno_file, 'r') as f_ann: line = f_ann.readlines() json_object = json.loads(line[0]) id2name = generate_cid_name(json_object) id2image_dict = generate_image_dict(json_object) generate_annotation_files(json_object, all_anno_path, id2image_dict, id2name, image_list_file) def convert_anno_all(args): convert_anno_coco2voc(args.train_anno, args.tran_list_file, args.all_anno) convert_anno_coco2voc(args.val_anno, args.val_list_file, args.all_anno) if __name__ == "__main__": convert_anno_all(args) convert_images_coco2voc(args)
py
1a302defb66f0280aa78784e4c2a5f022f25518d
#!/usr/bin/env python """ models for the mailroom program. This is where the program logic is. This version has been made Object Oriented. """ # handy utility to make pretty printing easier from textwrap import dedent from pathlib import Path import json_save.json_save_dec as js import json from . import data_dir @js.json_save class Donor: """ class to hold the information about a single donor """ name = js.String() donations = js.List() # reference to the DB its in -- this will be set in the instance # when added to the DonorDB _donor_db = None def __init__(self, name, donations=None): """ create a new Donor object :param name: the full name of the donor :param donations=None: iterable of past donations """ self.norm_name = self.normalize_name(name) self.name = name.strip() if donations is None: self.donations = [] else: self.donations = list(donations) def __str__(self): msg = (f"Donor: {self.name}, with {self.num_donations:d} " f"donations, totaling: ${self.total_donations:.2f}") return msg def mutating(method): """ Decorator that saves the DB when a change is made It should be applied to all mutating methods, so the data will be saved whenever it's been changed. NOTE: This requires that the donor object is in a DonorDB. """ # note that this is expecting to decorate a method # so self will be the first argument def wrapped(self, *args, **kwargs): print("wrapped method called") print(self) print(self._donor_db) res = method(self, *args, **kwargs) if self._donor_db is not None: self._donor_db.save() return res return wrapped @staticmethod def normalize_name(name): """ return a normalized version of a name to use as a comparison key simple enough to not be in a method now, but maybe you'd want to make it fancier later. """ return name.lower().strip() @property def last_donation(self): """ The most recent donation made """ try: return self.donations[-1] except IndexError: return None @property def total_donations(self): return sum(self.donations) @property def num_donations(self): return len(self.donations) @property def average_donation(self): return self.total_donations / self.num_donations @mutating def add_donation(self, amount): """ add a new donation """ print("add_donation called") amount = float(amount) if amount <= 0.0: raise ValueError("Donation must be greater than zero") self.donations.append(amount) def gen_letter(self): """ Generate a thank you letter for the donor :param: donor tuple :returns: string with letter note: This doesn't actually write to a file -- that's a separate function. This makes it more flexible and easier to test. """ return dedent('''Dear {0:s}, Thank you for your very kind donation of ${1:.2f}. It will be put to very good use. Sincerely, -The Team '''.format(self.name, self.last_donation) ) @js.json_save class DonorDB: """ Encapsulation of the entire database of donors and data associated with them. """ # specify a json_save dict as the data structure for the data. donor_data = js.Dict() _frozen = False def __init__(self, donors=None, db_file=None): """ Initialize a new donor database :param donors=None: iterable of Donor objects :param db_file=None: path to file to store the datbase in. if None, the data will be stored in the package data_dir """ if db_file is None: self.db_file = data_dir / "mailroom_data.json" else: self.db_file = Path(db_file) self.donor_data = {} if donors is not None: # you can set _frozen so that it won't save on every change. self._frozen = True for d in donors: self.add_donor(d) self.save # save resets _frozen def mutating(method): """ Decorator that saves the DB when a change is made It should be applied to all mutating methods, so the data will be saved whenever it's been changed. NOTE: This is not very efficient -- it will re-write the entire file each time. """ # note that this is expecting to decorate a method # so self will be the first argument def wrapped(self, *args, **kwargs): res = method(self, *args, **kwargs) if not self._frozen: self.save() return res return wrapped @classmethod def load_from_file(cls, filename): """ loads a donor database from a raw json file NOTE: This is not a json_save format file! -- it is a simpler, less flexible format. """ with open(filename) as infile: donors = json.load(infile) db = cls([Donor(*d) for d in donors]) return db @classmethod def load(cls, filepath): """ loads a donor database from a json_save format file. """ with open(filepath) as jsfile: db = js.from_json(jsfile) db.db_file = filepath def save(self): """ Save the data to a json_save file """ # if explicitly called, you want to do it! self._frozen = False with open(self.db_file, 'w') as db_file: self.to_json(db_file) @property def donors(self): """ an iterable of all the donors """ return self.donor_data.values() def list_donors(self): """ creates a list of the donors as a string, so they can be printed Not calling print from here makes it more flexible and easier to test """ listing = ["Donor list:"] for donor in self.donors: listing.append(donor.name) return "\n".join(listing) def find_donor(self, name): """ find a donor in the donor db :param: the name of the donor :returns: The donor data structure -- None if not in the self.donor_data """ return self.donor_data.get(Donor.normalize_name(name)) @mutating def add_donor(self, donor): """ Add a new donor to the donor db :param donor: A Donor instance, or the name of the donor :returns: The new or existing Donor object """ if not isinstance(donor, Donor): donor = Donor(donor) self.donor_data[donor.norm_name] = donor donor._donor_db = self return donor @staticmethod def sort_key(item): # used to sort on name in self.donor_data return item[1] def generate_donor_report(self): """ Generate the report of the donors and amounts donated. :returns: the donor report as a string. """ # First, reduce the raw data into a summary list view report_rows = [] for donor in self.donor_data.values(): name = donor.name gifts = donor.donations total_gifts = donor.total_donations num_gifts = len(gifts) avg_gift = donor.average_donation report_rows.append((name, total_gifts, num_gifts, avg_gift)) # sort the report data report_rows.sort(key=self.sort_key) report = [] report.append("{:25s} | {:11s} | {:9s} | {:12s}".format("Donor Name", "Total Given", "Num Gifts", "Average Gift")) report.append("-" * 66) for row in report_rows: report.append("{:25s} ${:10.2f} {:9d} ${:11.2f}".format(*row)) return "\n".join(report) def save_letters_to_disk(self): """ make a letter for each donor, and save it to disk. """ print("Saving letters:") for donor in self.donor_data.values(): print("donor:", donor.name) letter = donor.gen_letter() # I don't like spaces in filenames... filename = donor.name.replace(" ", "_") + ".txt" open(filename, 'w').write(letter)
py
1a302e27e1fa1d06835c690f86b03d4b5266920b
from toga import Key from toga_cocoa.libs import ( NSEventModifierFlagCapsLock, NSEventModifierFlagShift, NSEventModifierFlagControl, NSEventModifierFlagOption, NSEventModifierFlagCommand, ) ###################################################################### # Utilities to convert Cocoa constants to Toga ones ###################################################################### def modified_key(key, shift=None): def mod_fn(modifierFlags): if modifierFlags & NSEventModifierFlagShift: return shift return key return mod_fn def toga_key(event): """Convert a Cocoa NSKeyEvent into a Toga event.""" key = { 0: Key.A, 1: Key.S, 2: Key.D, 3: Key.F, 4: Key.H, 5: Key.G, 6: Key.Z, 7: Key.X, 8: Key.C, 9: Key.V, 11: Key.B, 12: Key.Q, 13: Key.W, 14: Key.E, 15: Key.R, 16: Key.Y, 17: Key.T, 18: modified_key(Key._1, shift=Key.EXCLAMATION)(event.modifierFlags), 19: modified_key(Key._2, shift=Key.AT)(event.modifierFlags), 20: modified_key(Key._3, shift=Key.HASH)(event.modifierFlags), 21: modified_key(Key._4, shift=Key.DOLLAR)(event.modifierFlags), 22: modified_key(Key._6, shift=Key.CARET)(event.modifierFlags), 23: modified_key(Key._5, shift=Key.PERCENT)(event.modifierFlags), 24: modified_key(Key.PLUS, shift=Key.EQUAL)(event.modifierFlags), 25: modified_key(Key._9, shift=Key.OPEN_PARENTHESIS)(event.modifierFlags), 26: modified_key(Key._7, shift=Key.AND)(event.modifierFlags), 27: modified_key(Key.MINUS, shift=Key.UNDERSCORE)(event.modifierFlags), 28: modified_key(Key._8, shift=Key.ASTERISK)(event.modifierFlags), 29: modified_key(Key._0, shift=Key.CLOSE_PARENTHESIS)(event.modifierFlags), 30: Key.CLOSE_BRACKET, 31: Key.O, 32: Key.U, 33: Key.OPEN_BRACKET, 34: Key.I, 35: Key.P, 36: Key.ENTER, 37: Key.L, 38: Key.J, 39: modified_key(Key.QUOTE, shift=Key.DOUBLE_QUOTE)(event.modifierFlags), 40: Key.K, 41: modified_key(Key.COLON, shift=Key.SEMICOLON)(event.modifierFlags), 42: Key.BACKSLASH, 43: modified_key(Key.COMMA, shift=Key.LESS_THAN)(event.modifierFlags), 44: modified_key(Key.SLASH, shift=Key.QUESTION)(event.modifierFlags), 45: Key.N, 46: Key.M, 47: modified_key(Key.FULL_STOP, shift=Key.GREATER_THAN)(event.modifierFlags), 48: Key.TAB, 49: Key.SPACE, 50: modified_key(Key.BACK_QUOTE, shift=Key.TILDE)(event.modifierFlags), 51: Key.BACKSPACE, 53: Key.ESCAPE, 65: Key.NUMPAD_DECIMAL_POINT, 67: Key.NUMPAD_MULTIPLY, 69: Key.NUMPAD_PLUS, 71: Key.NUMPAD_CLEAR, 75: Key.NUMPAD_DIVIDE, 76: Key.NUMPAD_ENTER, 78: Key.NUMPAD_MINUS, 81: Key.NUMPAD_EQUAL, 82: Key.NUMPAD_0, 83: Key.NUMPAD_1, 84: Key.NUMPAD_2, 85: Key.NUMPAD_3, 86: Key.NUMPAD_4, 87: Key.NUMPAD_5, 88: Key.NUMPAD_6, 89: Key.NUMPAD_7, 91: Key.NUMPAD_8, 92: Key.NUMPAD_9, # : Key.F4, 96: Key.F5, 97: Key.F7, 98: Key.F5, 99: Key.F3, 100: Key.F8, 101: Key.F9, 109: Key.F9, 115: Key.HOME, 116: Key.PAGE_UP, 117: Key.DELETE, 119: Key.END, 120: Key.F2, 121: Key.PAGE_DOWN, 122: Key.F1, 123: Key.LEFT, 124: Key.RIGHT, 125: Key.DOWN, 126: Key.UP, }.get(event.keyCode, None) modifiers = set() if event.modifierFlags & NSEventModifierFlagCapsLock: modifiers.add(Key.CAPSLOCK) if event.modifierFlags & NSEventModifierFlagShift: modifiers.add(Key.SHIFT) if event.modifierFlags & NSEventModifierFlagControl: modifiers.add(Key.CONTROL) if event.modifierFlags & NSEventModifierFlagOption: modifiers.add(Key.OPTION) if event.modifierFlags & NSEventModifierFlagCommand: modifiers.add(Key.COMMAND) return { 'key': key, 'modifiers': modifiers }
py
1a302ea2ccac42f1bd5bfe99e4fba91d1cf256e8
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import typing # Use consistent types for marshal and unmarshal functions across # both JSON and Binary format. MarshallerType = typing.Optional[ typing.Callable[[typing.Any], typing.Union[bytes, str]] ] UnmarshallerType = typing.Optional[ typing.Callable[[typing.Union[bytes, str]], typing.Any] ]
py
1a302ec1ac0b39ce9c344f0781229746f43ec413
from typing import Any, Callable, Dict, Optional from unittest import mock import orjson from django.test import override_settings from django.utils.html import escape from requests.exceptions import ConnectionError from zerver.lib.actions import queue_json_publish from zerver.lib.cache import NotFoundInCache, cache_set, preview_url_cache_key from zerver.lib.test_classes import ZulipTestCase from zerver.lib.test_helpers import MockPythonResponse, mock_queue_publish from zerver.lib.url_preview.oembed import get_oembed_data, strip_cdata from zerver.lib.url_preview.parsers import GenericParser, OpenGraphParser from zerver.lib.url_preview.preview import get_link_embed_data, link_embed_data_from_cache from zerver.models import Message, Realm, UserProfile from zerver.worker.queue_processors import FetchLinksEmbedData TEST_CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'default', }, 'database': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'url-preview', }, 'in-memory': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'url-preview', }, } @override_settings(INLINE_URL_EMBED_PREVIEW=True) class OembedTestCase(ZulipTestCase): @mock.patch('pyoembed.requests.get') def test_present_provider(self, get: Any) -> None: get.return_value = response = mock.Mock() response.headers = {'content-type': 'application/json'} response.ok = True response_data = { 'type': 'rich', 'thumbnail_url': 'https://scontent.cdninstagram.com/t51.2885-15/n.jpg', 'thumbnail_width': 640, 'thumbnail_height': 426, 'title': 'NASA', 'html': '<p>test</p>', 'version': '1.0', 'width': 658, 'height': 400} response.text = orjson.dumps(response_data).decode() url = 'http://instagram.com/p/BLtI2WdAymy' data = get_oembed_data(url) self.assertIsInstance(data, dict) self.assertIn('title', data) assert data is not None # allow mypy to infer data is indexable self.assertEqual(data['title'], response_data['title']) @mock.patch('pyoembed.requests.get') def test_photo_provider(self, get: Any) -> None: get.return_value = response = mock.Mock() response.headers = {'content-type': 'application/json'} response.ok = True response_data = { 'type': 'photo', 'thumbnail_url': 'https://scontent.cdninstagram.com/t51.2885-15/n.jpg', 'url': 'https://scontent.cdninstagram.com/t51.2885-15/n.jpg', 'thumbnail_width': 640, 'thumbnail_height': 426, 'title': 'NASA', 'html': '<p>test</p>', 'version': '1.0', 'width': 658, 'height': 400} response.text = orjson.dumps(response_data).decode() url = 'http://imgur.com/photo/158727223' data = get_oembed_data(url) self.assertIsInstance(data, dict) self.assertIn('title', data) assert data is not None # allow mypy to infer data is indexable self.assertEqual(data['title'], response_data['title']) self.assertTrue(data['oembed']) @mock.patch('pyoembed.requests.get') def test_video_provider(self, get: Any) -> None: get.return_value = response = mock.Mock() response.headers = {'content-type': 'application/json'} response.ok = True response_data = { 'type': 'video', 'thumbnail_url': 'https://scontent.cdninstagram.com/t51.2885-15/n.jpg', 'thumbnail_width': 640, 'thumbnail_height': 426, 'title': 'NASA', 'html': '<p>test</p>', 'version': '1.0', 'width': 658, 'height': 400} response.text = orjson.dumps(response_data).decode() url = 'http://blip.tv/video/158727223' data = get_oembed_data(url) self.assertIsInstance(data, dict) self.assertIn('title', data) assert data is not None # allow mypy to infer data is indexable self.assertEqual(data['title'], response_data['title']) @mock.patch('pyoembed.requests.get') def test_error_request(self, get: Any) -> None: get.return_value = response = mock.Mock() response.ok = False url = 'http://instagram.com/p/BLtI2WdAymy' data = get_oembed_data(url) self.assertIsNone(data) @mock.patch('pyoembed.requests.get') def test_invalid_json_in_response(self, get: Any) -> None: get.return_value = response = mock.Mock() response.headers = {'content-type': 'application/json'} response.ok = True response.text = '{invalid json}' url = 'http://instagram.com/p/BLtI2WdAymy' data = get_oembed_data(url) self.assertIsNone(data) def test_oembed_html(self) -> None: html = '<iframe src="//www.instagram.com/embed.js"></iframe>' stripped_html = strip_cdata(html) self.assertEqual(html, stripped_html) def test_autodiscovered_oembed_xml_format_html(self) -> None: iframe_content = '<iframe src="https://w.soundcloud.com/player"></iframe>' html = f'<![CDATA[{iframe_content}]]>' stripped_html = strip_cdata(html) self.assertEqual(iframe_content, stripped_html) class OpenGraphParserTestCase(ZulipTestCase): def test_page_with_og(self) -> None: html = """<html> <head> <meta property="og:title" content="The Rock" /> <meta property="og:type" content="video.movie" /> <meta property="og:url" content="http://www.imdb.com/title/tt0117500/" /> <meta property="og:image" content="http://ia.media-imdb.com/images/rock.jpg" /> <meta property="og:description" content="The Rock film" /> </head> </html>""" parser = OpenGraphParser(html) result = parser.extract_data() self.assertIn('title', result) self.assertEqual(result['title'], 'The Rock') self.assertEqual(result.get('description'), 'The Rock film') def test_page_with_evil_og_tags(self) -> None: html = """<html> <head> <meta property="og:title" content="The Rock" /> <meta property="og:type" content="video.movie" /> <meta property="og:url" content="http://www.imdb.com/title/tt0117500/" /> <meta property="og:image" content="http://ia.media-imdb.com/images/rock.jpg" /> <meta property="og:description" content="The Rock film" /> <meta property="og:html" content="<script>alert(window.location)</script>" /> <meta property="og:oembed" content="True" /> </head> </html>""" parser = OpenGraphParser(html) result = parser.extract_data() self.assertIn('title', result) self.assertEqual(result['title'], 'The Rock') self.assertEqual(result.get('description'), 'The Rock film') self.assertEqual(result.get('oembed'), None) self.assertEqual(result.get('html'), None) class GenericParserTestCase(ZulipTestCase): def test_parser(self) -> None: html = """ <html> <head><title>Test title</title></head> <body> <h1>Main header</h1> <p>Description text</p> </body> </html> """ parser = GenericParser(html) result = parser.extract_data() self.assertEqual(result.get('title'), 'Test title') self.assertEqual(result.get('description'), 'Description text') def test_extract_image(self) -> None: html = """ <html> <body> <h1>Main header</h1> <img data-src="Not an image"> <img src="http://test.com/test.jpg"> <div> <p>Description text</p> </div> </body> </html> """ parser = GenericParser(html) result = parser.extract_data() self.assertEqual(result.get('title'), 'Main header') self.assertEqual(result.get('description'), 'Description text') self.assertEqual(result.get('image'), 'http://test.com/test.jpg') def test_extract_description(self) -> None: html = """ <html> <body> <div> <div> <p>Description text</p> </div> </div> </body> </html> """ parser = GenericParser(html) result = parser.extract_data() self.assertEqual(result.get('description'), 'Description text') html = """ <html> <head><meta name="description" content="description 123"</head> <body></body> </html> """ parser = GenericParser(html) result = parser.extract_data() self.assertEqual(result.get('description'), 'description 123') html = "<html><body></body></html>" parser = GenericParser(html) result = parser.extract_data() self.assertIsNone(result.get('description')) class PreviewTestCase(ZulipTestCase): open_graph_html = """ <html> <head> <title>Test title</title> <meta property="og:title" content="The Rock" /> <meta property="og:type" content="video.movie" /> <meta property="og:url" content="http://www.imdb.com/title/tt0117500/" /> <meta property="og:image" content="http://ia.media-imdb.com/images/rock.jpg" /> <meta http-equiv="refresh" content="30" /> <meta property="notog:extra-text" content="Extra!" /> </head> <body> <h1>Main header</h1> <p>Description text</p> </body> </html> """ def setUp(self) -> None: super().setUp() Realm.objects.all().update(inline_url_embed_preview=True) @classmethod def create_mock_response(cls, url: str, relative_url: bool=False, headers: Optional[Dict[str, str]]=None, html: Optional[str]=None) -> Callable[..., MockPythonResponse]: if html is None: html = cls.open_graph_html if relative_url is True: html = html.replace('http://ia.media-imdb.com', '') response = MockPythonResponse(html, 200, headers) return lambda k, **kwargs: {url: response}.get(k, MockPythonResponse('', 404, headers)) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_edit_message_history(self) -> None: user = self.example_user('hamlet') self.login_user(user) msg_id = self.send_stream_message(user, "Scotland", topic_name="editing", content="original") url = 'http://test.org/' mocked_response = mock.Mock(side_effect=self.create_mock_response(url)) with mock_queue_publish('zerver.views.message_edit.queue_json_publish') as patched: result = self.client_patch("/json/messages/" + str(msg_id), { 'message_id': msg_id, 'content': url, }) self.assert_json_success(result) patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) embedded_link = f'<a href="{url}" title="The Rock">The Rock</a>' msg = Message.objects.select_related("sender").get(id=msg_id) self.assertIn(embedded_link, msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def _send_message_with_test_org_url(self, sender: UserProfile, queue_should_run: bool=True, relative_url: bool=False) -> Message: url = 'http://test.org/' with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: msg_id = self.send_personal_message( sender, self.example_user('cordelia'), content=url, ) if queue_should_run: patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] else: patched.assert_not_called() # If we nothing was put in the queue, we don't need to # run the queue processor or any of the following code return Message.objects.select_related("sender").get(id=msg_id) # Verify the initial message doesn't have the embedded links rendered msg = Message.objects.select_related("sender").get(id=msg_id) self.assertNotIn( f'<a href="{url}" title="The Rock">The Rock</a>', msg.rendered_content) # Mock the network request result so the test can be fast without Internet mocked_response = mock.Mock(side_effect=self.create_mock_response(url, relative_url=relative_url)) # Run the queue processor to potentially rerender things with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) msg = Message.objects.select_related("sender").get(id=msg_id) return msg @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_message_update_race_condition(self) -> None: user = self.example_user('hamlet') self.login_user(user) original_url = 'http://test.org/' edited_url = 'http://edited.org/' with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: msg_id = self.send_stream_message(user, "Scotland", topic_name="foo", content=original_url) patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] def wrapped_queue_json_publish(*args: Any, **kwargs: Any) -> None: # Mock the network request result so the test can be fast without Internet mocked_response_original = mock.Mock(side_effect=self.create_mock_response(original_url)) mocked_response_edited = mock.Mock(side_effect=self.create_mock_response(edited_url)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response_original), self.assertLogs(level='INFO') as info_logs: # Run the queue processor. This will simulate the event for original_url being # processed after the message has been edited. FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) msg = Message.objects.select_related("sender").get(id=msg_id) # The content of the message has changed since the event for original_url has been created, # it should not be rendered. Another, up-to-date event will have been sent (edited_url). self.assertNotIn(f'<a href="{original_url}" title="The Rock">The Rock</a>', msg.rendered_content) mocked_response_edited.assert_not_called() with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response_edited), self.assertLogs(level='INFO') as info_logs: # Now proceed with the original queue_json_publish and call the # up-to-date event for edited_url. queue_json_publish(*args, **kwargs) msg = Message.objects.select_related("sender").get(id=msg_id) self.assertIn(f'<a href="{edited_url}" title="The Rock">The Rock</a>', msg.rendered_content) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://edited.org/: ' in info_logs.output[0] ) with mock_queue_publish('zerver.views.message_edit.queue_json_publish', wraps=wrapped_queue_json_publish): result = self.client_patch("/json/messages/" + str(msg_id), { 'message_id': msg_id, 'content': edited_url, }) self.assert_json_success(result) def test_get_link_embed_data(self) -> None: url = 'http://test.org/' embedded_link = f'<a href="{url}" title="The Rock">The Rock</a>' # When humans send, we should get embedded content. msg = self._send_message_with_test_org_url(sender=self.example_user('hamlet')) self.assertIn(embedded_link, msg.rendered_content) # We don't want embedded content for bots. msg = self._send_message_with_test_org_url(sender=self.example_user('webhook_bot'), queue_should_run=False) self.assertNotIn(embedded_link, msg.rendered_content) # Try another human to make sure bot failure was due to the # bot sending the message and not some other reason. msg = self._send_message_with_test_org_url(sender=self.example_user('prospero')) self.assertIn(embedded_link, msg.rendered_content) def test_inline_url_embed_preview(self) -> None: with_preview = '<p><a href="http://test.org/">http://test.org/</a></p>\n<div class="message_embed"><a class="message_embed_image" href="http://test.org/" style="background-image: url(http://ia.media-imdb.com/images/rock.jpg)"></a><div class="data-container"><div class="message_embed_title"><a href="http://test.org/" title="The Rock">The Rock</a></div><div class="message_embed_description">Description text</div></div></div>' without_preview = '<p><a href="http://test.org/">http://test.org/</a></p>' msg = self._send_message_with_test_org_url(sender=self.example_user('hamlet')) self.assertEqual(msg.rendered_content, with_preview) realm = msg.get_realm() setattr(realm, 'inline_url_embed_preview', False) realm.save() msg = self._send_message_with_test_org_url(sender=self.example_user('prospero'), queue_should_run=False) self.assertEqual(msg.rendered_content, without_preview) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_inline_relative_url_embed_preview(self) -> None: # Relative URLs should not be sent for URL preview. with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: self.send_personal_message( self.example_user('prospero'), self.example_user('cordelia'), content="http://zulip.testserver/api/", ) patched.assert_not_called() def test_inline_url_embed_preview_with_relative_image_url(self) -> None: with_preview_relative = '<p><a href="http://test.org/">http://test.org/</a></p>\n<div class="message_embed"><a class="message_embed_image" href="http://test.org/" style="background-image: url(http://test.org/images/rock.jpg)"></a><div class="data-container"><div class="message_embed_title"><a href="http://test.org/" title="The Rock">The Rock</a></div><div class="message_embed_description">Description text</div></div></div>' # Try case where the Open Graph image is a relative URL. msg = self._send_message_with_test_org_url(sender=self.example_user('prospero'), relative_url=True) self.assertEqual(msg.rendered_content, with_preview_relative) def test_http_error_get_data(self) -> None: url = 'http://test.org/' msg_id = self.send_personal_message( self.example_user('hamlet'), self.example_user('cordelia'), content=url, ) msg = Message.objects.select_related("sender").get(id=msg_id) event = { 'message_id': msg_id, 'urls': [url], 'message_realm_id': msg.sender.realm_id, 'message_content': url} with self.settings(INLINE_URL_EMBED_PREVIEW=True, TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mock.Mock(side_effect=ConnectionError())), \ self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) msg = Message.objects.get(id=msg_id) self.assertEqual( '<p><a href="http://test.org/">http://test.org/</a></p>', msg.rendered_content) def test_invalid_link(self) -> None: with self.settings(INLINE_URL_EMBED_PREVIEW=True, TEST_SUITE=False, CACHES=TEST_CACHES): self.assertIsNone(get_link_embed_data('com.notvalidlink')) self.assertIsNone(get_link_embed_data('μένει.com.notvalidlink')) def test_link_embed_data_from_cache(self) -> None: url = 'http://test.org/' link_embed_data = 'test data' with self.assertRaises(NotFoundInCache): link_embed_data_from_cache(url) with self.settings(CACHES=TEST_CACHES): key = preview_url_cache_key(url) cache_set(key, link_embed_data, 'database') self.assertEqual(link_embed_data, link_embed_data_from_cache(url)) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_link_preview_non_html_data(self) -> None: user = self.example_user('hamlet') self.login_user(user) url = 'http://test.org/audio.mp3' with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: msg_id = self.send_stream_message(user, "Scotland", topic_name="foo", content=url) patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] headers = {'content-type': 'application/octet-stream'} mocked_response = mock.Mock(side_effect=self.create_mock_response(url, headers=headers)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) cached_data = link_embed_data_from_cache(url) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/audio.mp3: ' in info_logs.output[0] ) self.assertIsNone(cached_data) msg = Message.objects.select_related("sender").get(id=msg_id) self.assertEqual( ('<p><a href="http://test.org/audio.mp3">' 'http://test.org/audio.mp3</a></p>'), msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_link_preview_no_open_graph_image(self) -> None: user = self.example_user('hamlet') self.login_user(user) url = 'http://test.org/foo.html' with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: msg_id = self.send_stream_message(user, "Scotland", topic_name="foo", content=url) patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] # HTML without the og:image metadata html = '\n'.join(line for line in self.open_graph_html.splitlines() if 'og:image' not in line) mocked_response = mock.Mock(side_effect=self.create_mock_response(url, html=html)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) cached_data = link_embed_data_from_cache(url) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/foo.html: ' in info_logs.output[0] ) self.assertIn('title', cached_data) self.assertNotIn('image', cached_data) msg = Message.objects.select_related("sender").get(id=msg_id) self.assertEqual( ('<p><a href="http://test.org/foo.html">' 'http://test.org/foo.html</a></p>'), msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_link_preview_open_graph_image_missing_content(self) -> None: user = self.example_user('hamlet') self.login_user(user) url = 'http://test.org/foo.html' with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: msg_id = self.send_stream_message(user, "Scotland", topic_name="foo", content=url) patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] # HTML without the og:image metadata html = '\n'.join(line if 'og:image' not in line else '<meta property="og:image"/>' for line in self.open_graph_html.splitlines()) mocked_response = mock.Mock(side_effect=self.create_mock_response(url, html=html)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) cached_data = link_embed_data_from_cache(url) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/foo.html: ' in info_logs.output[0] ) self.assertIn('title', cached_data) self.assertNotIn('image', cached_data) msg = Message.objects.select_related("sender").get(id=msg_id) self.assertEqual( ('<p><a href="http://test.org/foo.html">' 'http://test.org/foo.html</a></p>'), msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_link_preview_no_content_type_header(self) -> None: user = self.example_user('hamlet') self.login_user(user) url = 'http://test.org/' with mock_queue_publish('zerver.lib.actions.queue_json_publish') as patched: msg_id = self.send_stream_message(user, "Scotland", topic_name="foo", content=url) patched.assert_called_once() queue = patched.call_args[0][0] self.assertEqual(queue, "embed_links") event = patched.call_args[0][1] headers = {'content-type': ''} # No content type header mocked_response = mock.Mock(side_effect=self.create_mock_response(url, headers=headers)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) data = link_embed_data_from_cache(url) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) self.assertIn('title', data) self.assertIn('image', data) msg = Message.objects.select_related("sender").get(id=msg_id) self.assertIn(data['title'], msg.rendered_content) self.assertIn(data['image'], msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_valid_content_type_error_get_data(self) -> None: url = 'http://test.org/' with mock_queue_publish('zerver.lib.actions.queue_json_publish'): msg_id = self.send_personal_message( self.example_user('hamlet'), self.example_user('cordelia'), content=url, ) msg = Message.objects.select_related("sender").get(id=msg_id) event = { 'message_id': msg_id, 'urls': [url], 'message_realm_id': msg.sender.realm_id, 'message_content': url} with mock.patch('zerver.lib.url_preview.preview.get_oembed_data', side_effect=lambda *args, **kwargs: None): with mock.patch('zerver.lib.url_preview.preview.valid_content_type', side_effect=lambda k: True): with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mock.Mock(side_effect=ConnectionError())), \ self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) with self.assertRaises(NotFoundInCache): link_embed_data_from_cache(url) msg.refresh_from_db() self.assertEqual( '<p><a href="http://test.org/">http://test.org/</a></p>', msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_invalid_url(self) -> None: url = 'http://test.org/' error_url = 'http://test.org/x' with mock_queue_publish('zerver.lib.actions.queue_json_publish'): msg_id = self.send_personal_message( self.example_user('hamlet'), self.example_user('cordelia'), content=error_url, ) msg = Message.objects.select_related("sender").get(id=msg_id) event = { 'message_id': msg_id, 'urls': [error_url], 'message_realm_id': msg.sender.realm_id, 'message_content': error_url} mocked_response = mock.Mock(side_effect=self.create_mock_response(url)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/x: ' in info_logs.output[0] ) cached_data = link_embed_data_from_cache(error_url) # FIXME: Should we really cache this, especially without cache invalidation? self.assertIsNone(cached_data) msg.refresh_from_db() self.assertEqual( '<p><a href="http://test.org/x">http://test.org/x</a></p>', msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_safe_oembed_html_url(self) -> None: url = 'http://test.org/' with mock_queue_publish('zerver.lib.actions.queue_json_publish'): msg_id = self.send_personal_message( self.example_user('hamlet'), self.example_user('cordelia'), content=url, ) msg = Message.objects.select_related("sender").get(id=msg_id) event = { 'message_id': msg_id, 'urls': [url], 'message_realm_id': msg.sender.realm_id, 'message_content': url} mocked_data = {'html': f'<iframe src="{url}"></iframe>', 'oembed': True, 'type': 'video', 'image': f'{url}/image.png'} mocked_response = mock.Mock(side_effect=self.create_mock_response(url)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: with mock.patch('zerver.lib.url_preview.preview.get_oembed_data', lambda *args, **kwargs: mocked_data): FetchLinksEmbedData().consume(event) data = link_embed_data_from_cache(url) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for http://test.org/: ' in info_logs.output[0] ) self.assertEqual(data, mocked_data) msg.refresh_from_db() self.assertIn('a data-id="{}"'.format(escape(mocked_data['html'])), msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_youtube_url_title_replaces_url(self) -> None: url = 'https://www.youtube.com/watch?v=eSJTXC7Ixgg' with mock_queue_publish('zerver.lib.actions.queue_json_publish'): msg_id = self.send_personal_message( self.example_user('hamlet'), self.example_user('cordelia'), content=url, ) msg = Message.objects.select_related("sender").get(id=msg_id) event = { 'message_id': msg_id, 'urls': [url], 'message_realm_id': msg.sender.realm_id, 'message_content': url} mocked_data = {'title': 'Clearer Code at Scale - Static Types at Zulip and Dropbox'} mocked_response = mock.Mock(side_effect=self.create_mock_response(url)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: with mock.patch('zerver.lib.markdown.link_preview.link_embed_data_from_cache', lambda *args, **kwargs: mocked_data): FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for https://www.youtube.com/watch?v=eSJTXC7Ixgg:' in info_logs.output[0] ) msg.refresh_from_db() expected_content = '<p><a href="https://www.youtube.com/watch?v=eSJTXC7Ixgg">YouTube - Clearer Code at Scale - Static Types at Zulip and Dropbox</a></p>\n<div class="youtube-video message_inline_image"><a data-id="eSJTXC7Ixgg" href="https://www.youtube.com/watch?v=eSJTXC7Ixgg"><img src="https://i.ytimg.com/vi/eSJTXC7Ixgg/default.jpg"></a></div>' self.assertEqual(expected_content, msg.rendered_content) @override_settings(INLINE_URL_EMBED_PREVIEW=True) def test_custom_title_replaces_youtube_url_title(self) -> None: url = '[YouTube link](https://www.youtube.com/watch?v=eSJTXC7Ixgg)' with mock_queue_publish('zerver.lib.actions.queue_json_publish'): msg_id = self.send_personal_message( self.example_user('hamlet'), self.example_user('cordelia'), content=url, ) msg = Message.objects.select_related("sender").get(id=msg_id) event = { 'message_id': msg_id, 'urls': [url], 'message_realm_id': msg.sender.realm_id, 'message_content': url} mocked_data = {'title': 'Clearer Code at Scale - Static Types at Zulip and Dropbox'} mocked_response = mock.Mock(side_effect=self.create_mock_response(url)) with self.settings(TEST_SUITE=False, CACHES=TEST_CACHES): with mock.patch('requests.get', mocked_response), self.assertLogs(level='INFO') as info_logs: with mock.patch('zerver.lib.markdown.link_preview.link_embed_data_from_cache', lambda *args, **kwargs: mocked_data): FetchLinksEmbedData().consume(event) self.assertTrue( 'INFO:root:Time spent on get_link_embed_data for [YouTube link](https://www.youtube.com/watch?v=eSJTXC7Ixgg):' in info_logs.output[0] ) msg.refresh_from_db() expected_content = '<p><a href="https://www.youtube.com/watch?v=eSJTXC7Ixgg">YouTube link</a></p>\n<div class="youtube-video message_inline_image"><a data-id="eSJTXC7Ixgg" href="https://www.youtube.com/watch?v=eSJTXC7Ixgg"><img src="https://i.ytimg.com/vi/eSJTXC7Ixgg/default.jpg"></a></div>' self.assertEqual(expected_content, msg.rendered_content)
py
1a302fc538ed2033f4d04d52bf90988eb52c0149
import math from ..utility.static_vars import * def _constant(parameter, value): parameter.data.fill_(value) def _zero(parameter): _constant(parameter, 0) def _one(parameter): _constant(parameter, 1) def _normal(parameter, mean, std): parameter.data.normal_(mean, std) def _uniform(parameter, bound): parameter.data.uniform_(-bound, bound) def _kaiming(parameter, fan, a): _uniform(parameter, math.sqrt(6 / ((1 + a ** 2) * fan))) def _glorot(parameter): _uniform(parameter, math.sqrt(6.0 / (parameter.size(-2) + parameter.size(-1)))) @static_vars(fun=None) def init(parameter, type, *args, **kwargs): """ Initialize the given parameters with the specified initialization type Parameters ---------- parameter : torch.nn.Parameter the parameter to initialize type : str the initialization type. Should be one between: 'constant', 'zero', 'one', 'normal', 'kaiming', 'glorot' (or 'xavier') args : ... the arguments of the specified initialization type kwargs : ... the keyword arguments of the specified initialization type Returns ------- torch.nn.Parameter the initialized parameter """ if not init.fun: init.fun = { 'constant': _constant, 'zero': _zero, 'one': _one, 'normal': _normal, 'kaiming': _kaiming, 'glorot': _glorot, 'xavier': _glorot, } if parameter is not None: if type not in init.fun: raise ValueError('Type unknown. Please choose among one of the following: {}'.format('\n'.join(list(init.fun.keys())))) init.fun[type](parameter, *args, **kwargs) return parameter
py
1a302ff1179861321b53b352710d282bb3b342bd
# Copyright 2014 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """ml2_vnic_type Revision ID: 27cc183af192 Revises: 4ca36cfc898c Create Date: 2014-02-09 12:19:21.362967 """ # revision identifiers, used by Alembic. revision = '27cc183af192' down_revision = '4ca36cfc898c' from alembic import op import sqlalchemy as sa from neutron.db import migration def upgrade(): if migration.schema_has_table('ml2_port_bindings'): op.add_column('ml2_port_bindings', sa.Column('vnic_type', sa.String(length=64), nullable=False, server_default='normal'))
py
1a3030fa80ac15146753e094f3ad868bd2a41199
# Copyright (C) 2010 Google Inc. All rights reserved. # Copyright (C) 2010 Gabor Rapcsanyi ([email protected]), University of Szeged # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. class TestInput(object): """Groups information about a test for easy passing of data.""" def __init__(self, test_name, timeout=None, requires_lock=None, reference_files=None, should_run_pixel_tests=None, should_add_missing_baselines=True): # TestInput objects are normally constructed by the manager and passed # to the workers, but these some fields are set lazily in the workers where possible # because they require us to look at the filesystem and we want to be able to do that in parallel. self.test_name = test_name self.timeout = timeout # in msecs; should rename this for consistency self.requires_lock = requires_lock self.reference_files = reference_files self.should_run_pixel_tests = should_run_pixel_tests self.should_add_missing_baselines = should_add_missing_baselines def __repr__(self): return "TestInput('%s', timeout=%s, requires_lock=%s, reference_files=%s, should_run_pixel_tests=%s, should_add_missing_baselines%s)" % (self.test_name, self.timeout, self.requires_lock, self.reference_files, self.should_run_pixel_tests, self.should_add_missing_baselines)
py
1a3031c093c77a2f9fca69a9a31d97ce454786c8
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = [ 'GetAntiAffinityGroupResult', 'AwaitableGetAntiAffinityGroupResult', 'get_anti_affinity_group', 'get_anti_affinity_group_output', ] @pulumi.output_type class GetAntiAffinityGroupResult: """ A collection of values returned by getAntiAffinityGroup. """ def __init__(__self__, id=None, instances=None, name=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if instances and not isinstance(instances, list): raise TypeError("Expected argument 'instances' to be a list") pulumi.set(__self__, "instances", instances) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) @property @pulumi.getter def id(self) -> Optional[str]: return pulumi.get(self, "id") @property @pulumi.getter def instances(self) -> Sequence[str]: """ A list of Compute instance IDs belonging to the Anti-Affinity Group. """ return pulumi.get(self, "instances") @property @pulumi.getter def name(self) -> Optional[str]: return pulumi.get(self, "name") class AwaitableGetAntiAffinityGroupResult(GetAntiAffinityGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAntiAffinityGroupResult( id=self.id, instances=self.instances, name=self.name) def get_anti_affinity_group(id: Optional[str] = None, name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAntiAffinityGroupResult: """ Provides information on an [Anti-Affinity Group][aag-doc] for use in other resources such as a [`Compute`][r-compute] resource. ## Example Usage ```python import pulumi import pulumi_exoscale as exoscale zone = "ch-gva-2" web = exoscale.get_anti_affinity_group(name="web") ubuntu = exoscale.get_compute_template(zone=zone, name="Linux Ubuntu 20.04 LTS 64-bit") my_server = exoscale.ComputeInstance("my-server", zone=zone, type="standard.medium", template_id=ubuntu.id, disk_size=20, anti_affinity_group_ids=[web.id]) ``` :param str id: The ID of the Anti-Affinity Group (conflicts with `name`). :param str name: The name of the Anti-Affinity Group (conflicts with `id`). """ __args__ = dict() __args__['id'] = id __args__['name'] = name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('exoscale:index/getAntiAffinityGroup:getAntiAffinityGroup', __args__, opts=opts, typ=GetAntiAffinityGroupResult).value return AwaitableGetAntiAffinityGroupResult( id=__ret__.id, instances=__ret__.instances, name=__ret__.name) @_utilities.lift_output_func(get_anti_affinity_group) def get_anti_affinity_group_output(id: Optional[pulumi.Input[Optional[str]]] = None, name: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetAntiAffinityGroupResult]: """ Provides information on an [Anti-Affinity Group][aag-doc] for use in other resources such as a [`Compute`][r-compute] resource. ## Example Usage ```python import pulumi import pulumi_exoscale as exoscale zone = "ch-gva-2" web = exoscale.get_anti_affinity_group(name="web") ubuntu = exoscale.get_compute_template(zone=zone, name="Linux Ubuntu 20.04 LTS 64-bit") my_server = exoscale.ComputeInstance("my-server", zone=zone, type="standard.medium", template_id=ubuntu.id, disk_size=20, anti_affinity_group_ids=[web.id]) ``` :param str id: The ID of the Anti-Affinity Group (conflicts with `name`). :param str name: The name of the Anti-Affinity Group (conflicts with `id`). """ ...
py
1a30322d7e1936cec3355bfbf561d0a3d3d83712
from students import views as students_views from django.urls import path from django.contrib.auth import views as auth_views urlpatterns = [ path('login/', auth_views.LoginView.as_view(template_name='students/student/login.html'), name = 'login'), path('logout/', auth_views.LogoutView.as_view(template_name='students/student/logout.html'), name = 'logout'), path('register/',students_views.StudentRegistrationView.as_view(), name='student_registration'), path('enroll-course/',students_views.StudentEnrollCourseView.as_view(), name='student_enroll_course'), path('courses/', students_views.StudentCourseListView.as_view(), name='student_course_list'), path('course/<pk>/', students_views.StudentCourseDetailView.as_view(), name='student_course_detail'), path('course/<pk>/<module_id>/', students_views.StudentCourseDetailView.as_view(), name='student_course_detail_module'), ]
py
1a303245c72a284cd75bda66d762438a81461f37
import os import unittest from pathlib import Path import paramak import pytest class test_object_properties(unittest.TestCase): def test_shape_default_properties(self): """Creates a Shape object and checks that the points attribute has a default of None.""" test_shape = paramak.Shape() assert test_shape.points is None def test_incorrect_workplane(self): """Creates Shape object with incorrect workplane and checks ValueError is raised.""" test_shape = paramak.Shape() def incorrect_workplane(): """Creates Shape object with unacceptable workplane.""" test_shape.workplane = "ZY" self.assertRaises(ValueError, incorrect_workplane) def test_incorrect_points(self): """Creates Shape objects and checks errors are raised correctly when specifying points.""" test_shape = paramak.Shape() def incorrect_points_end_point_is_start_point(): """Checks ValueError is raised when the start and end points are the same.""" test_shape.points = [(0, 200), (200, 100), (0, 0), (0, 200)] self.assertRaises( ValueError, incorrect_points_end_point_is_start_point) def incorrect_points_missing_z_value(): """Checks ValueError is raised when a point is missing a z value.""" test_shape.points = [(0, 200), (200), (0, 0), (0, 50)] self.assertRaises(ValueError, incorrect_points_missing_z_value) def incorrect_points_not_a_list(): """Checks ValueError is raised when the points are not a list.""" test_shape.points = (0, 0), (0, 20), (20, 20), (20, 0) self.assertRaises(ValueError, incorrect_points_not_a_list) def incorrect_points_wrong_number_of_entries(): """Checks ValueError is raised when individual points dont have 2 or 3 entries.""" test_shape.points = [(0, 0), (0, 20), (20, 20, 20, 20)] self.assertRaises(ValueError, incorrect_points_wrong_number_of_entries) def incorrect_x_point_value_type(): """Checks ValueError is raised when X point is not a number.""" test_shape.points = [("string", 0), (0, 20), (20, 20)] self.assertRaises(ValueError, incorrect_x_point_value_type) def incorrect_y_point_value_type(): """Checks ValueError is raised when Y point is not a number.""" test_shape.points = [(0, "string"), (0, 20), (20, 20)] self.assertRaises(ValueError, incorrect_y_point_value_type) def test_create_limits(self): """Creates a Shape object and checks that the create_limits function returns the expected values for x_min, x_max, z_min and z_max.""" test_shape = paramak.Shape() test_shape.points = [ (0, 0), (0, 10), (0, 20), (10, 20), (20, 20), (20, 10), (20, 0), (10, 0), ] assert test_shape.create_limits() == (0.0, 20.0, 0.0, 20.0) # test with a component which has a find_points method test_shape2 = paramak.Plasma() test_shape2.create_limits() assert test_shape2.x_min is not None def test_create_limits_error(self): """Checks error is raised when no points are given.""" test_shape = paramak.Shape() def limits(): test_shape.create_limits() self.assertRaises(ValueError, limits) def test_export_2d_image(self): """Creates a Shape object and checks that a png file of the object with the correct suffix can be exported using the export_2d_image method.""" test_shape = paramak.Shape() test_shape.points = [(0, 0), (0, 20), (20, 20), (20, 0)] os.system("rm filename.png") test_shape.export_2d_image("filename") assert Path("filename.png").exists() is True os.system("rm filename.png") test_shape.export_2d_image("filename.png") assert Path("filename.png").exists() is True os.system("rm filename.png") def test_initial_solid_construction(self): """Creates a shape and checks that a cadquery solid with a unique hash value is created when .solid is called.""" test_shape = paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20), (20, 0)], rotation_angle=360 ) assert test_shape.hash_value is None assert test_shape.solid is not None assert type(test_shape.solid).__name__ == "Workplane" assert test_shape.hash_value is not None def test_solid_return(self): """Checks that the same cadquery solid with the same unique hash value is returned when shape.solid is called again after no changes have been made to the Shape.""" test_shape = paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20), (20, 0)], rotation_angle=360 ) assert test_shape.solid is not None initial_hash_value = test_shape.hash_value assert test_shape.solid is not None assert initial_hash_value == test_shape.hash_value def test_conditional_solid_reconstruction(self): """Checks that a new cadquery solid with a new unique hash value is constructed when shape.solid is called after changes to the Shape have been made.""" test_shape = paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], rotation_angle=360 ) assert test_shape.solid is not None assert test_shape.hash_value is not None initial_hash_value = test_shape.hash_value test_shape.rotation_angle = 180 assert test_shape.solid is not None assert test_shape.hash_value is not None assert initial_hash_value != test_shape.hash_value def test_hash_value_update(self): """Checks that the hash value of a Shape is not updated until a new cadquery solid has been created.""" test_shape = paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], rotation_angle=360 ) test_shape.solid assert test_shape.hash_value is not None initial_hash_value = test_shape.hash_value test_shape.rotation_angle = 180 assert test_shape.hash_value == initial_hash_value test_shape.solid assert test_shape.hash_value != initial_hash_value def test_material_tag_warning(self): """Checks that a warning is raised when a Shape has a material tag > 28 characters.""" test_shape = paramak.Shape() def warning_material_tag(): test_shape.material_tag = "abcdefghijklmnopqrstuvwxyz12345" self.assertWarns(UserWarning, warning_material_tag) def test_invalid_material_tag(self): """Checks a ValueError is raised when a Shape has an invalid material tag.""" test_shape = paramak.Shape() def invalid_material_tag(): test_shape.material_tag = 123 self.assertRaises(ValueError, invalid_material_tag) def test_export_html(self): """Checks a plotly figure of the Shape is exported by the export_html method with the correct filename with RGB and RGBA colors.""" test_shape = paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20), (20, 0)], rotation_angle=360 ) os.system("rm filename.html") test_shape.export_html('filename') assert Path("filename.html").exists() is True os.system("rm filename.html") test_shape.color = (1, 0, 0, 0.5) test_shape.export_html('filename') assert Path("filename.html").exists() is True os.system("rm filename.html") def test_export_html_with_points_None(self): """Checks that an error is raised when points is None and export_html """ test_shape = paramak.Shape() def export(): test_shape.export_html("out.html") self.assertRaises(ValueError, export) def test_invalid_stp_filename(self): """Checks ValueError is raised when invalid stp filenames are used.""" def invalid_filename_suffix(): paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], stp_filename="filename.invalid_suffix" ) self.assertRaises(ValueError, invalid_filename_suffix) def invalid_filename_type(): paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], stp_filename=123456 ) self.assertRaises(ValueError, invalid_filename_type) def test_invalid_stl_filename(self): """Checks ValueError is raised when invalid stl filenames are used.""" def invalid_filename_suffix(): paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], stl_filename="filename.invalid_suffix" ) self.assertRaises(ValueError, invalid_filename_suffix) def invalid_filename_type(): paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], stl_filename=123456 ) self.assertRaises(ValueError, invalid_filename_type) def test_invalid_color(self): """Checks ValueError is raised when invalid colors are used.""" def invalid_color_type(): paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], color=255 ) self.assertRaises(ValueError, invalid_color_type) def invalid_color_length(): paramak.RotateStraightShape( points=[(0, 0), (0, 20), (20, 20)], color=(255, 255, 255, 1, 1) ) self.assertRaises(ValueError, invalid_color_length) def test_volumes_add_up_to_total_volume_Compound(self): """Checks the volume and volumes attributes are correct types and that the volumes sum to equalt the volume for a Compound.""" test_shape = paramak.PoloidalFieldCoilSet( heights=[10, 10], widths=[20, 20], center_points=[(15, 15), (50, 50)] ) assert isinstance(test_shape.volume, float) assert isinstance(test_shape.volumes, list) assert isinstance(test_shape.volumes[0], float) assert isinstance(test_shape.volumes[1], float) assert len(test_shape.volumes) == 2 assert sum(test_shape.volumes) == pytest.approx(test_shape.volume) def test_volumes_add_up_to_total_volume(self): """Checks the volume and volumes attributes are correct types and that the volumes sum to equalt the volume.""" test_shape = paramak.PoloidalFieldCoil( center_point=(100, 100), height=50, width=50 ) assert isinstance(test_shape.volume, float) assert isinstance(test_shape.volumes, list) assert isinstance(test_shape.volumes[0], float) assert len(test_shape.volumes) == 1 assert sum(test_shape.volumes) == pytest.approx(test_shape.volume) def test_areas_add_up_to_total_area_Compound(self): """Checks the area and areas attributes are correct types and that the areas sum to equalt the area for a Compound.""" test_shape = paramak.PoloidalFieldCoilSet( heights=[10, 10], widths=[20, 20], center_points=[(15, 15), (50, 50)] ) assert isinstance(test_shape.area, float) assert isinstance(test_shape.areas, list) assert isinstance(test_shape.areas[0], float) assert isinstance(test_shape.areas[1], float) assert isinstance(test_shape.areas[2], float) assert isinstance(test_shape.areas[3], float) assert isinstance(test_shape.areas[4], float) assert isinstance(test_shape.areas[5], float) assert isinstance(test_shape.areas[6], float) assert isinstance(test_shape.areas[7], float) assert len(test_shape.areas) == 8 assert sum(test_shape.areas) == pytest.approx(test_shape.area) def test_areas_add_up_to_total_area(self): """Checks the area and areas attributes are correct types and that the areas sum to equalt the area.""" test_shape = paramak.PoloidalFieldCoil( center_point=(100, 100), height=50, width=50 ) assert isinstance(test_shape.area, float) assert isinstance(test_shape.areas, list) assert isinstance(test_shape.areas[0], float) assert isinstance(test_shape.areas[1], float) assert isinstance(test_shape.areas[2], float) assert isinstance(test_shape.areas[3], float) assert len(test_shape.areas) == 4 assert sum(test_shape.areas) == pytest.approx(test_shape.area) def test_trace(self): """Test trace method is populated""" test_shape = paramak.PoloidalFieldCoil( center_point=(100, 100), height=50, width=50, name="coucou" ) assert test_shape._trace() is not None def test_create_patch_error(self): """Checks _create_patch raises a ValueError when points is None.""" test_shape = paramak.Shape() def patch(): test_shape._create_patch() self.assertRaises(ValueError, patch) def test_create_patch_alpha(self): """Checks _create_patch returns a patch when alpha is given.""" test_shape = paramak.PoloidalFieldCoil( center_point=(100, 100), height=50, width=50, color=(0.5, 0.5, 0.5, 0.1) ) assert test_shape._create_patch() is not None def test_azimuth_placement_angle_error(self): """Checks an error is raised when invalid value for azimuth_placement_angle is set. """ test_shape = paramak.Shape() def angle_str(): test_shape.azimuth_placement_angle = "coucou" def angle_str_in_Iterable(): test_shape.azimuth_placement_angle = [0, "coucou"] self.assertRaises(ValueError, angle_str) self.assertRaises(ValueError, angle_str_in_Iterable) def test_name_error(self): """Checks an error is raised when invalid value for name is set.""" test_shape = paramak.Shape() def name_float(): test_shape.name = 2.0 def name_int(): test_shape.name = 1 def name_list(): test_shape.name = ['coucou'] self.assertRaises(ValueError, name_float) self.assertRaises(ValueError, name_int) self.assertRaises(ValueError, name_list) def test_tet_mesh_error(self): """Checks an error is raised when invalid value for tet_mesh is set. """ test_shape = paramak.Shape() def tet_mesh_float(): test_shape.tet_mesh = 2.0 def tet_mesh_int(): test_shape.tet_mesh = 1 def tet_mesh_list(): test_shape.tet_mesh = ['coucou'] self.assertRaises(ValueError, tet_mesh_float) self.assertRaises(ValueError, tet_mesh_int) self.assertRaises(ValueError, tet_mesh_list) if __name__ == "__main__": unittest.main()
py
1a30325f5d4164daea8c87fa9097fd7f33691106
# -*- coding: utf-8 -*- # Generated by Django 1.11.18 on 2019-02-02 02:47 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('analytics', '0012_add_on_delete'), ] operations = [ migrations.RemoveField( model_name='installationcount', name='anomaly', ), migrations.RemoveField( model_name='realmcount', name='anomaly', ), migrations.RemoveField( model_name='streamcount', name='anomaly', ), migrations.RemoveField( model_name='usercount', name='anomaly', ), migrations.DeleteModel( name='Anomaly', ), ]
py
1a30344239c042a1e6ef36359372f2b2b353fca3
"""This file is part of Splitter which is released under MIT License. agg.py defines aggregation functions """ from splitter.dataflow.validation import check_metrics_and_filters, countable from splitter.struct import IteratorVideoStream from splitter.dataflow.xform import Null import logging import time import itertools def count(stream, keys, stats=False): """Count counts the true hits of a defined event. """ #actual logic is here counter = {} frame_count = 0 now = time.time() for frame in stream: frame_count += 1 if frame_count == 1: logging.info("Processing first frame of stream") for key in keys: if frame[key]: subkey = key + '_' + str(frame[key]) counter[subkey] = counter.get(subkey,0) + 1 # profiling for obj in stream.lineage(): if hasattr(obj, "time_elapsed"): logging.info("%s: %s" % (type(obj).__name__, obj.time_elapsed)) else: logging.info("%s time not measured" % type(obj).__name__) if not stats: return counter else: return counter, {'frames': frame_count, \ 'elapsed': (time.time() - now)} def counts(streams, keys, stats=False): """Count counts the true hits of a defined event. """ stream = IteratorVideoStream(itertools.chain(*streams), streams) lineage = [] for s in streams: lineage.extend(s.lineage()) stream.global_lineage = lineage return count(stream, keys, stats) def get(stream, key, frame_rate=-1): if frame_rate == -1: return [(v['frame'], v['data']) for v in stream if v[key]] else: return [( int(v['frame']/frame_rate) , v['data']) for v in stream if v[key]]