code
stringlengths
0
23.9M
// SPDX-License-Identifier: GPL-2.0-or-later /* * Performance counter support for POWER5 (not POWER5++) processors. * * Copyright 2009 Paul Mackerras, IBM Corporation. */ #include <linux/kernel.h> #include <linux/perf_event.h> #include <linux/string.h> #include <asm/reg.h> #include <asm/cputable.h> #include "internal.h" /* * Bits in event code for POWER5 (not POWER5++) */ #define PM_PMC_SH 20 /* PMC number (1-based) for direct events */ #define PM_PMC_MSK 0xf #define PM_PMC_MSKS (PM_PMC_MSK << PM_PMC_SH) #define PM_UNIT_SH 16 /* TTMMUX number and setting - unit select */ #define PM_UNIT_MSK 0xf #define PM_BYTE_SH 12 /* Byte number of event bus to use */ #define PM_BYTE_MSK 7 #define PM_GRS_SH 8 /* Storage subsystem mux select */ #define PM_GRS_MSK 7 #define PM_BUSEVENT_MSK 0x80 /* Set if event uses event bus */ #define PM_PMCSEL_MSK 0x7f /* Values in PM_UNIT field */ #define PM_FPU 0 #define PM_ISU0 1 #define PM_IFU 2 #define PM_ISU1 3 #define PM_IDU 4 #define PM_ISU0_ALT 6 #define PM_GRS 7 #define PM_LSU0 8 #define PM_LSU1 0xc #define PM_LASTUNIT 0xc /* * Bits in MMCR1 for POWER5 */ #define MMCR1_TTM0SEL_SH 62 #define MMCR1_TTM1SEL_SH 60 #define MMCR1_TTM2SEL_SH 58 #define MMCR1_TTM3SEL_SH 56 #define MMCR1_TTMSEL_MSK 3 #define MMCR1_TD_CP_DBG0SEL_SH 54 #define MMCR1_TD_CP_DBG1SEL_SH 52 #define MMCR1_TD_CP_DBG2SEL_SH 50 #define MMCR1_TD_CP_DBG3SEL_SH 48 #define MMCR1_GRS_L2SEL_SH 46 #define MMCR1_GRS_L2SEL_MSK 3 #define MMCR1_GRS_L3SEL_SH 44 #define MMCR1_GRS_L3SEL_MSK 3 #define MMCR1_GRS_MCSEL_SH 41 #define MMCR1_GRS_MCSEL_MSK 7 #define MMCR1_GRS_FABSEL_SH 39 #define MMCR1_GRS_FABSEL_MSK 3 #define MMCR1_PMC1_ADDER_SEL_SH 35 #define MMCR1_PMC2_ADDER_SEL_SH 34 #define MMCR1_PMC3_ADDER_SEL_SH 33 #define MMCR1_PMC4_ADDER_SEL_SH 32 #define MMCR1_PMC1SEL_SH 25 #define MMCR1_PMC2SEL_SH 17 #define MMCR1_PMC3SEL_SH 9 #define MMCR1_PMC4SEL_SH 1 #define MMCR1_PMCSEL_SH(n) (MMCR1_PMC1SEL_SH - (n) * 8) #define MMCR1_PMCSEL_MSK 0x7f /* * Layout of constraint bits: * 6666555555555544444444443333333333222222222211111111110000000000 * 3210987654321098765432109876543210987654321098765432109876543210 * <><>[ ><><>< ><> [ >[ >[ >< >< >< >< ><><><><><><> * T0T1 NC G0G1G2 G3 UC PS1PS2 B0 B1 B2 B3 P6P5P4P3P2P1 * * T0 - TTM0 constraint * 54-55: TTM0SEL value (0=FPU, 2=IFU, 3=ISU1) 0xc0_0000_0000_0000 * * T1 - TTM1 constraint * 52-53: TTM1SEL value (0=IDU, 3=GRS) 0x30_0000_0000_0000 * * NC - number of counters * 51: NC error 0x0008_0000_0000_0000 * 48-50: number of events needing PMC1-4 0x0007_0000_0000_0000 * * G0..G3 - GRS mux constraints * 46-47: GRS_L2SEL value * 44-45: GRS_L3SEL value * 41-44: GRS_MCSEL value * 39-40: GRS_FABSEL value * Note that these match up with their bit positions in MMCR1 * * UC - unit constraint: can't have all three of FPU|IFU|ISU1, ISU0, IDU|GRS * 37: UC3 error 0x20_0000_0000 * 36: FPU|IFU|ISU1 events needed 0x10_0000_0000 * 35: ISU0 events needed 0x08_0000_0000 * 34: IDU|GRS events needed 0x04_0000_0000 * * PS1 * 33: PS1 error 0x2_0000_0000 * 31-32: count of events needing PMC1/2 0x1_8000_0000 * * PS2 * 30: PS2 error 0x4000_0000 * 28-29: count of events needing PMC3/4 0x3000_0000 * * B0 * 24-27: Byte 0 event source 0x0f00_0000 * Encoding as for the event code * * B1, B2, B3 * 20-23, 16-19, 12-15: Byte 1, 2, 3 event sources * * P1..P6 * 0-11: Count of events needing PMC1..PMC6 */ static const int grsel_shift[8] = { MMCR1_GRS_L2SEL_SH, MMCR1_GRS_L2SEL_SH, MMCR1_GRS_L2SEL_SH, MMCR1_GRS_L3SEL_SH, MMCR1_GRS_L3SEL_SH, MMCR1_GRS_L3SEL_SH, MMCR1_GRS_MCSEL_SH, MMCR1_GRS_FABSEL_SH }; /* Masks and values for using events from the various units */ static unsigned long unit_cons[PM_LASTUNIT+1][2] = { [PM_FPU] = { 0xc0002000000000ul, 0x00001000000000ul }, [PM_ISU0] = { 0x00002000000000ul, 0x00000800000000ul }, [PM_ISU1] = { 0xc0002000000000ul, 0xc0001000000000ul }, [PM_IFU] = { 0xc0002000000000ul, 0x80001000000000ul }, [PM_IDU] = { 0x30002000000000ul, 0x00000400000000ul }, [PM_GRS] = { 0x30002000000000ul, 0x30000400000000ul }, }; static int power5_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp, u64 event_config1 __maybe_unused) { int pmc, byte, unit, sh; int bit, fmask; unsigned long mask = 0, value = 0; int grp = -1; pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; if (pmc) { if (pmc > 6) return -1; sh = (pmc - 1) * 2; mask |= 2 << sh; value |= 1 << sh; if (pmc <= 4) grp = (pmc - 1) >> 1; else if (event != 0x500009 && event != 0x600005) return -1; } if (event & PM_BUSEVENT_MSK) { unit = (event >> PM_UNIT_SH) & PM_UNIT_MSK; if (unit > PM_LASTUNIT) return -1; if (unit == PM_ISU0_ALT) unit = PM_ISU0; mask |= unit_cons[unit][0]; value |= unit_cons[unit][1]; byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK; if (byte >= 4) { if (unit != PM_LSU1) return -1; /* Map LSU1 low word (bytes 4-7) to unit LSU1+1 */ ++unit; byte &= 3; } if (unit == PM_GRS) { bit = event & 7; fmask = (bit == 6)? 7: 3; sh = grsel_shift[bit]; mask |= (unsigned long)fmask << sh; value |= (unsigned long)((event >> PM_GRS_SH) & fmask) << sh; } /* * Bus events on bytes 0 and 2 can be counted * on PMC1/2; bytes 1 and 3 on PMC3/4. */ if (!pmc) grp = byte & 1; /* Set byte lane select field */ mask |= 0xfUL << (24 - 4 * byte); value |= (unsigned long)unit << (24 - 4 * byte); } if (grp == 0) { /* increment PMC1/2 field */ mask |= 0x200000000ul; value |= 0x080000000ul; } else if (grp == 1) { /* increment PMC3/4 field */ mask |= 0x40000000ul; value |= 0x10000000ul; } if (pmc < 5) { /* need a counter from PMC1-4 set */ mask |= 0x8000000000000ul; value |= 0x1000000000000ul; } *maskp = mask; *valp = value; return 0; } #define MAX_ALT 3 /* at most 3 alternatives for any event */ static const unsigned int event_alternatives[][MAX_ALT] = { { 0x120e4, 0x400002 }, /* PM_GRP_DISP_REJECT */ { 0x410c7, 0x441084 }, /* PM_THRD_L2MISS_BOTH_CYC */ { 0x100005, 0x600005 }, /* PM_RUN_CYC */ { 0x100009, 0x200009, 0x500009 }, /* PM_INST_CMPL */ { 0x300009, 0x400009 }, /* PM_INST_DISP */ }; /* * Scan the alternatives table for a match and return the * index into the alternatives table if found, else -1. */ static int find_alternative(u64 event) { int i, j; for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) { if (event < event_alternatives[i][0]) break; for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j) if (event == event_alternatives[i][j]) return i; } return -1; } static const unsigned char bytedecode_alternatives[4][4] = { /* PMC 1 */ { 0x21, 0x23, 0x25, 0x27 }, /* PMC 2 */ { 0x07, 0x17, 0x0e, 0x1e }, /* PMC 3 */ { 0x20, 0x22, 0x24, 0x26 }, /* PMC 4 */ { 0x07, 0x17, 0x0e, 0x1e } }; /* * Some direct events for decodes of event bus byte 3 have alternative * PMCSEL values on other counters. This returns the alternative * event code for those that do, or -1 otherwise. */ static s64 find_alternative_bdecode(u64 event) { int pmc, altpmc, pp, j; pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; if (pmc == 0 || pmc > 4) return -1; altpmc = 5 - pmc; /* 1 <-> 4, 2 <-> 3 */ pp = event & PM_PMCSEL_MSK; for (j = 0; j < 4; ++j) { if (bytedecode_alternatives[pmc - 1][j] == pp) { return (event & ~(PM_PMC_MSKS | PM_PMCSEL_MSK)) | (altpmc << PM_PMC_SH) | bytedecode_alternatives[altpmc - 1][j]; } } return -1; } static int power5_get_alternatives(u64 event, unsigned int flags, u64 alt[]) { int i, j, nalt = 1; s64 ae; alt[0] = event; nalt = 1; i = find_alternative(event); if (i >= 0) { for (j = 0; j < MAX_ALT; ++j) { ae = event_alternatives[i][j]; if (ae && ae != event) alt[nalt++] = ae; } } else { ae = find_alternative_bdecode(event); if (ae > 0) alt[nalt++] = ae; } return nalt; } /* * Map of which direct events on which PMCs are marked instruction events. * Indexed by PMCSEL value, bit i (LE) set if PMC i is a marked event. * Bit 0 is set if it is marked for all PMCs. * The 0x80 bit indicates a byte decode PMCSEL value. */ static unsigned char direct_event_is_marked[0x28] = { 0, /* 00 */ 0x1f, /* 01 PM_IOPS_CMPL */ 0x2, /* 02 PM_MRK_GRP_DISP */ 0xe, /* 03 PM_MRK_ST_CMPL, PM_MRK_ST_GPS, PM_MRK_ST_CMPL_INT */ 0, /* 04 */ 0x1c, /* 05 PM_MRK_BRU_FIN, PM_MRK_INST_FIN, PM_MRK_CRU_FIN */ 0x80, /* 06 */ 0x80, /* 07 */ 0, 0, 0,/* 08 - 0a */ 0x18, /* 0b PM_THRESH_TIMEO, PM_MRK_GRP_TIMEO */ 0, /* 0c */ 0x80, /* 0d */ 0x80, /* 0e */ 0, /* 0f */ 0, /* 10 */ 0x14, /* 11 PM_MRK_GRP_BR_REDIR, PM_MRK_GRP_IC_MISS */ 0, /* 12 */ 0x10, /* 13 PM_MRK_GRP_CMPL */ 0x1f, /* 14 PM_GRP_MRK, PM_MRK_{FXU,FPU,LSU}_FIN */ 0x2, /* 15 PM_MRK_GRP_ISSUED */ 0x80, /* 16 */ 0x80, /* 17 */ 0, 0, 0, 0, 0, 0x80, /* 1d */ 0x80, /* 1e */ 0, /* 1f */ 0x80, /* 20 */ 0x80, /* 21 */ 0x80, /* 22 */ 0x80, /* 23 */ 0x80, /* 24 */ 0x80, /* 25 */ 0x80, /* 26 */ 0x80, /* 27 */ }; /* * Returns 1 if event counts things relating to marked instructions * and thus needs the MMCRA_SAMPLE_ENABLE bit set, or 0 if not. */ static int power5_marked_instr_event(u64 event) { int pmc, psel; int bit, byte, unit; u32 mask; pmc = (event >> PM_PMC_SH) & PM_PMC_MSK; psel = event & PM_PMCSEL_MSK; if (pmc >= 5) return 0; bit = -1; if (psel < sizeof(direct_event_is_marked)) { if (direct_event_is_marked[psel] & (1 << pmc)) return 1; if (direct_event_is_marked[psel] & 0x80) bit = 4; else if (psel == 0x08) bit = pmc - 1; else if (psel == 0x10) bit = 4 - pmc; else if (psel == 0x1b && (pmc == 1 || pmc == 3)) bit = 4; } else if ((psel & 0x58) == 0x40) bit = psel & 7; if (!(event & PM_BUSEVENT_MSK)) return 0; byte = (event >> PM_BYTE_SH) & PM_BYTE_MSK; unit = (event >> PM_UNIT_SH) & PM_UNIT_MSK; if (unit == PM_LSU0) { /* byte 1 bits 0-7, byte 2 bits 0,2-4,6 */ mask = 0x5dff00; } else if (unit == PM_LSU1 && byte >= 4) { byte -= 4; /* byte 4 bits 1,3,5,7, byte 5 bits 6-7, byte 7 bits 0-4,6 */ mask = 0x5f00c0aa; } else return 0; return (mask >> (byte * 8 + bit)) & 1; } static int power5_compute_mmcr(u64 event[], int n_ev, unsigned int hwc[], struct mmcr_regs *mmcr, struct perf_event *pevents[], u32 flags __maybe_unused) { unsigned long mmcr1 = 0; unsigned long mmcra = MMCRA_SDAR_DCACHE_MISS | MMCRA_SDAR_ERAT_MISS; unsigned int pmc, unit, byte, psel; unsigned int ttm, grp; int i, isbus, bit, grsel; unsigned int pmc_inuse = 0; unsigned int pmc_grp_use[2]; unsigned char busbyte[4]; unsigned char unituse[16]; int ttmuse; if (n_ev > 6) return -1; /* First pass to count resource use */ pmc_grp_use[0] = pmc_grp_use[1] = 0; memset(busbyte, 0, sizeof(busbyte)); memset(unituse, 0, sizeof(unituse)); for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK; if (pmc) { if (pmc > 6) return -1; if (pmc_inuse & (1 << (pmc - 1))) return -1; pmc_inuse |= 1 << (pmc - 1); /* count 1/2 vs 3/4 use */ if (pmc <= 4) ++pmc_grp_use[(pmc - 1) >> 1]; } if (event[i] & PM_BUSEVENT_MSK) { unit = (event[i] >> PM_UNIT_SH) & PM_UNIT_MSK; byte = (event[i] >> PM_BYTE_SH) & PM_BYTE_MSK; if (unit > PM_LASTUNIT) return -1; if (unit == PM_ISU0_ALT) unit = PM_ISU0; if (byte >= 4) { if (unit != PM_LSU1) return -1; ++unit; byte &= 3; } if (!pmc) ++pmc_grp_use[byte & 1]; if (busbyte[byte] && busbyte[byte] != unit) return -1; busbyte[byte] = unit; unituse[unit] = 1; } } if (pmc_grp_use[0] > 2 || pmc_grp_use[1] > 2) return -1; /* * Assign resources and set multiplexer selects. * * PM_ISU0 can go either on TTM0 or TTM1, but that's the only * choice we have to deal with. */ if (unituse[PM_ISU0] & (unituse[PM_FPU] | unituse[PM_IFU] | unituse[PM_ISU1])) { unituse[PM_ISU0_ALT] = 1; /* move ISU to TTM1 */ unituse[PM_ISU0] = 0; } /* Set TTM[01]SEL fields. */ ttmuse = 0; for (i = PM_FPU; i <= PM_ISU1; ++i) { if (!unituse[i]) continue; if (ttmuse++) return -1; mmcr1 |= (unsigned long)i << MMCR1_TTM0SEL_SH; } ttmuse = 0; for (; i <= PM_GRS; ++i) { if (!unituse[i]) continue; if (ttmuse++) return -1; mmcr1 |= (unsigned long)(i & 3) << MMCR1_TTM1SEL_SH; } if (ttmuse > 1) return -1; /* Set byte lane select fields, TTM[23]SEL and GRS_*SEL. */ for (byte = 0; byte < 4; ++byte) { unit = busbyte[byte]; if (!unit) continue; if (unit == PM_ISU0 && unituse[PM_ISU0_ALT]) { /* get ISU0 through TTM1 rather than TTM0 */ unit = PM_ISU0_ALT; } else if (unit == PM_LSU1 + 1) { /* select lower word of LSU1 for this byte */ mmcr1 |= 1ul << (MMCR1_TTM3SEL_SH + 3 - byte); } ttm = unit >> 2; mmcr1 |= (unsigned long)ttm << (MMCR1_TD_CP_DBG0SEL_SH - 2 * byte); } /* Second pass: assign PMCs, set PMCxSEL and PMCx_ADDER_SEL fields */ for (i = 0; i < n_ev; ++i) { pmc = (event[i] >> PM_PMC_SH) & PM_PMC_MSK; unit = (event[i] >> PM_UNIT_SH) & PM_UNIT_MSK; byte = (event[i] >> PM_BYTE_SH) & PM_BYTE_MSK; psel = event[i] & PM_PMCSEL_MSK; isbus = event[i] & PM_BUSEVENT_MSK; if (!pmc) { /* Bus event or any-PMC direct event */ for (pmc = 0; pmc < 4; ++pmc) { if (pmc_inuse & (1 << pmc)) continue; grp = (pmc >> 1) & 1; if (isbus) { if (grp == (byte & 1)) break; } else if (pmc_grp_use[grp] < 2) { ++pmc_grp_use[grp]; break; } } pmc_inuse |= 1 << pmc; } else if (pmc <= 4) { /* Direct event */ --pmc; if ((psel == 8 || psel == 0x10) && isbus && (byte & 2)) /* add events on higher-numbered bus */ mmcr1 |= 1ul << (MMCR1_PMC1_ADDER_SEL_SH - pmc); } else { /* Instructions or run cycles on PMC5/6 */ --pmc; } if (isbus && unit == PM_GRS) { bit = psel & 7; grsel = (event[i] >> PM_GRS_SH) & PM_GRS_MSK; mmcr1 |= (unsigned long)grsel << grsel_shift[bit]; } if (power5_marked_instr_event(event[i])) mmcra |= MMCRA_SAMPLE_ENABLE; if (pmc <= 3) mmcr1 |= psel << MMCR1_PMCSEL_SH(pmc); hwc[i] = pmc; } /* Return MMCRx values */ mmcr->mmcr0 = 0; if (pmc_inuse & 1) mmcr->mmcr0 = MMCR0_PMC1CE; if (pmc_inuse & 0x3e) mmcr->mmcr0 |= MMCR0_PMCjCE; mmcr->mmcr1 = mmcr1; mmcr->mmcra = mmcra; return 0; } static void power5_disable_pmc(unsigned int pmc, struct mmcr_regs *mmcr) { if (pmc <= 3) mmcr->mmcr1 &= ~(0x7fUL << MMCR1_PMCSEL_SH(pmc)); } static int power5_generic_events[] = { [PERF_COUNT_HW_CPU_CYCLES] = 0xf, [PERF_COUNT_HW_INSTRUCTIONS] = 0x100009, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4c1090, /* LD_REF_L1 */ [PERF_COUNT_HW_CACHE_MISSES] = 0x3c1088, /* LD_MISS_L1 */ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x230e4, /* BR_ISSUED */ [PERF_COUNT_HW_BRANCH_MISSES] = 0x230e5, /* BR_MPRED_CR */ }; #define C(x) PERF_COUNT_HW_CACHE_##x /* * Table of generalized cache-related events. * 0 means not supported, -1 means nonsensical, other values * are event codes. */ static u64 power5_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = { [C(L1D)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0x4c1090, 0x3c1088 }, [C(OP_WRITE)] = { 0x3c1090, 0xc10c3 }, [C(OP_PREFETCH)] = { 0xc70e7, 0 }, }, [C(L1I)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0, 0 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { 0, 0 }, }, [C(LL)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0, 0x3c309b }, [C(OP_WRITE)] = { 0, 0 }, [C(OP_PREFETCH)] = { 0xc50c3, 0 }, }, [C(DTLB)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0x2c4090, 0x800c4 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, [C(ITLB)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0, 0x800c0 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, [C(BPU)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0x230e4, 0x230e5 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, [C(NODE)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { -1, -1 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, }; static struct power_pmu power5_pmu = { .name = "POWER5", .n_counter = 6, .max_alternatives = MAX_ALT, .add_fields = 0x7000090000555ul, .test_adder = 0x3000490000000ul, .compute_mmcr = power5_compute_mmcr, .get_constraint = power5_get_constraint, .get_alternatives = power5_get_alternatives, .disable_pmc = power5_disable_pmc, .n_generic = ARRAY_SIZE(power5_generic_events), .generic_events = power5_generic_events, .cache_events = &power5_cache_events, .flags = PPMU_HAS_SSLOT, }; int __init init_power5_pmu(void) { unsigned int pvr = mfspr(SPRN_PVR); if (PVR_VER(pvr) != PVR_POWER5) return -ENODEV; return register_power_pmu(&power5_pmu); }
// SPDX-License-Identifier: GPL-2.0-or-later /* * Virtio-mem device driver. * * Copyright Red Hat, Inc. 2020 * * Author(s): David Hildenbrand <[email protected]> */ #include <linux/virtio.h> #include <linux/virtio_mem.h> #include <linux/workqueue.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/memory_hotplug.h> #include <linux/memory.h> #include <linux/hrtimer.h> #include <linux/crash_dump.h> #include <linux/mutex.h> #include <linux/bitmap.h> #include <linux/lockdep.h> #include <linux/log2.h> #include <linux/vmalloc.h> #include <linux/suspend.h> #include <acpi/acpi_numa.h> static bool unplug_online = true; module_param(unplug_online, bool, 0644); MODULE_PARM_DESC(unplug_online, "Try to unplug online memory"); static bool force_bbm; module_param(force_bbm, bool, 0444); MODULE_PARM_DESC(force_bbm, "Force Big Block Mode. Default is 0 (auto-selection)"); static unsigned long bbm_block_size; module_param(bbm_block_size, ulong, 0444); MODULE_PARM_DESC(bbm_block_size, "Big Block size in bytes. Default is 0 (auto-detection)."); /* * virtio-mem currently supports the following modes of operation: * * * Sub Block Mode (SBM): A Linux memory block spans 2..X subblocks (SB). The * size of a Sub Block (SB) is determined based on the device block size, the * pageblock size, and the maximum allocation granularity of the buddy. * Subblocks within a Linux memory block might either be plugged or unplugged. * Memory is added/removed to Linux MM in Linux memory block granularity. * * * Big Block Mode (BBM): A Big Block (BB) spans 1..X Linux memory blocks. * Memory is added/removed to Linux MM in Big Block granularity. * * The mode is determined automatically based on the Linux memory block size * and the device block size. * * User space / core MM (auto onlining) is responsible for onlining added * Linux memory blocks - and for selecting a zone. Linux Memory Blocks are * always onlined separately, and all memory within a Linux memory block is * onlined to the same zone - virtio-mem relies on this behavior. */ /* * State of a Linux memory block in SBM. */ enum virtio_mem_sbm_mb_state { /* Unplugged, not added to Linux. Can be reused later. */ VIRTIO_MEM_SBM_MB_UNUSED = 0, /* (Partially) plugged, not added to Linux. Error on add_memory(). */ VIRTIO_MEM_SBM_MB_PLUGGED, /* Fully plugged, fully added to Linux, offline. */ VIRTIO_MEM_SBM_MB_OFFLINE, /* Partially plugged, fully added to Linux, offline. */ VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL, /* Fully plugged, fully added to Linux, onlined to a kernel zone. */ VIRTIO_MEM_SBM_MB_KERNEL, /* Partially plugged, fully added to Linux, online to a kernel zone */ VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL, /* Fully plugged, fully added to Linux, onlined to ZONE_MOVABLE. */ VIRTIO_MEM_SBM_MB_MOVABLE, /* Partially plugged, fully added to Linux, onlined to ZONE_MOVABLE. */ VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL, VIRTIO_MEM_SBM_MB_COUNT }; /* * State of a Big Block (BB) in BBM, covering 1..X Linux memory blocks. */ enum virtio_mem_bbm_bb_state { /* Unplugged, not added to Linux. Can be reused later. */ VIRTIO_MEM_BBM_BB_UNUSED = 0, /* Plugged, not added to Linux. Error on add_memory(). */ VIRTIO_MEM_BBM_BB_PLUGGED, /* Plugged and added to Linux. */ VIRTIO_MEM_BBM_BB_ADDED, /* All online parts are fake-offline, ready to remove. */ VIRTIO_MEM_BBM_BB_FAKE_OFFLINE, VIRTIO_MEM_BBM_BB_COUNT }; struct virtio_mem { struct virtio_device *vdev; /* We might first have to unplug all memory when starting up. */ bool unplug_all_required; /* Workqueue that processes the plug/unplug requests. */ struct work_struct wq; atomic_t wq_active; atomic_t config_changed; /* Virtqueue for guest->host requests. */ struct virtqueue *vq; /* Wait for a host response to a guest request. */ wait_queue_head_t host_resp; /* Space for one guest request and the host response. */ struct virtio_mem_req req; struct virtio_mem_resp resp; /* The current size of the device. */ uint64_t plugged_size; /* The requested size of the device. */ uint64_t requested_size; /* The device block size (for communicating with the device). */ uint64_t device_block_size; /* The determined node id for all memory of the device. */ int nid; /* Physical start address of the memory region. */ uint64_t addr; /* Maximum region size in bytes. */ uint64_t region_size; /* The parent resource for all memory added via this device. */ struct resource *parent_resource; /* * Copy of "System RAM (virtio_mem)" to be used for * add_memory_driver_managed(). */ const char *resource_name; /* Memory group identification. */ int mgid; /* * We don't want to add too much memory if it's not getting onlined, * to avoid running OOM. Besides this threshold, we allow to have at * least two offline blocks at a time (whatever is bigger). */ #define VIRTIO_MEM_DEFAULT_OFFLINE_THRESHOLD (1024 * 1024 * 1024) atomic64_t offline_size; uint64_t offline_threshold; /* If set, the driver is in SBM, otherwise in BBM. */ bool in_sbm; union { struct { /* Id of the first memory block of this device. */ unsigned long first_mb_id; /* Id of the last usable memory block of this device. */ unsigned long last_usable_mb_id; /* Id of the next memory bock to prepare when needed. */ unsigned long next_mb_id; /* The subblock size. */ uint64_t sb_size; /* The number of subblocks per Linux memory block. */ uint32_t sbs_per_mb; /* * Some of the Linux memory blocks tracked as "partially * plugged" are completely unplugged and can be offlined * and removed -- which previously failed. */ bool have_unplugged_mb; /* Summary of all memory block states. */ unsigned long mb_count[VIRTIO_MEM_SBM_MB_COUNT]; /* * One byte state per memory block. Allocated via * vmalloc(). Resized (alloc+copy+free) on demand. * * With 128 MiB memory blocks, we have states for 512 * GiB of memory in one 4 KiB page. */ uint8_t *mb_states; /* * Bitmap: one bit per subblock. Allocated similar to * sbm.mb_states. * * A set bit means the corresponding subblock is * plugged, otherwise it's unblocked. * * With 4 MiB subblocks, we manage 128 GiB of memory * in one 4 KiB page. */ unsigned long *sb_states; } sbm; struct { /* Id of the first big block of this device. */ unsigned long first_bb_id; /* Id of the last usable big block of this device. */ unsigned long last_usable_bb_id; /* Id of the next device bock to prepare when needed. */ unsigned long next_bb_id; /* Summary of all big block states. */ unsigned long bb_count[VIRTIO_MEM_BBM_BB_COUNT]; /* One byte state per big block. See sbm.mb_states. */ uint8_t *bb_states; /* The block size used for plugging/adding/removing. */ uint64_t bb_size; } bbm; }; /* * Mutex that protects the sbm.mb_count, sbm.mb_states, * sbm.sb_states, bbm.bb_count, and bbm.bb_states * * When this lock is held the pointers can't change, ONLINE and * OFFLINE blocks can't change the state and no subblocks will get * plugged/unplugged. * * In kdump mode, used to serialize requests, last_block_addr and * last_block_plugged. */ struct mutex hotplug_mutex; bool hotplug_active; /* An error occurred we cannot handle - stop processing requests. */ bool broken; /* Cached valued of is_kdump_kernel() when the device was probed. */ bool in_kdump; /* The driver is being removed. */ spinlock_t removal_lock; bool removing; /* Timer for retrying to plug/unplug memory. */ struct hrtimer retry_timer; unsigned int retry_timer_ms; #define VIRTIO_MEM_RETRY_TIMER_MIN_MS 50000 #define VIRTIO_MEM_RETRY_TIMER_MAX_MS 300000 /* Memory notifier (online/offline events). */ struct notifier_block memory_notifier; /* Notifier to block hibernation image storing/reloading. */ struct notifier_block pm_notifier; #ifdef CONFIG_PROC_VMCORE /* vmcore callback for /proc/vmcore handling in kdump mode */ struct vmcore_cb vmcore_cb; uint64_t last_block_addr; bool last_block_plugged; #endif /* CONFIG_PROC_VMCORE */ /* Next device in the list of virtio-mem devices. */ struct list_head next; }; /* * We have to share a single online_page callback among all virtio-mem * devices. We use RCU to iterate the list in the callback. */ static DEFINE_MUTEX(virtio_mem_mutex); static LIST_HEAD(virtio_mem_devices); static void virtio_mem_online_page_cb(struct page *page, unsigned int order); static void virtio_mem_fake_offline_going_offline(unsigned long pfn, unsigned long nr_pages); static void virtio_mem_fake_offline_cancel_offline(unsigned long pfn, unsigned long nr_pages); static void virtio_mem_retry(struct virtio_mem *vm); static int virtio_mem_create_resource(struct virtio_mem *vm); static void virtio_mem_delete_resource(struct virtio_mem *vm); /* * Register a virtio-mem device so it will be considered for the online_page * callback. */ static int register_virtio_mem_device(struct virtio_mem *vm) { int rc = 0; /* First device registers the callback. */ mutex_lock(&virtio_mem_mutex); if (list_empty(&virtio_mem_devices)) rc = set_online_page_callback(&virtio_mem_online_page_cb); if (!rc) list_add_rcu(&vm->next, &virtio_mem_devices); mutex_unlock(&virtio_mem_mutex); return rc; } /* * Unregister a virtio-mem device so it will no longer be considered for the * online_page callback. */ static void unregister_virtio_mem_device(struct virtio_mem *vm) { /* Last device unregisters the callback. */ mutex_lock(&virtio_mem_mutex); list_del_rcu(&vm->next); if (list_empty(&virtio_mem_devices)) restore_online_page_callback(&virtio_mem_online_page_cb); mutex_unlock(&virtio_mem_mutex); synchronize_rcu(); } /* * Calculate the memory block id of a given address. */ static unsigned long virtio_mem_phys_to_mb_id(unsigned long addr) { return addr / memory_block_size_bytes(); } /* * Calculate the physical start address of a given memory block id. */ static unsigned long virtio_mem_mb_id_to_phys(unsigned long mb_id) { return mb_id * memory_block_size_bytes(); } /* * Calculate the big block id of a given address. */ static unsigned long virtio_mem_phys_to_bb_id(struct virtio_mem *vm, uint64_t addr) { return addr / vm->bbm.bb_size; } /* * Calculate the physical start address of a given big block id. */ static uint64_t virtio_mem_bb_id_to_phys(struct virtio_mem *vm, unsigned long bb_id) { return bb_id * vm->bbm.bb_size; } /* * Calculate the subblock id of a given address. */ static unsigned long virtio_mem_phys_to_sb_id(struct virtio_mem *vm, unsigned long addr) { const unsigned long mb_id = virtio_mem_phys_to_mb_id(addr); const unsigned long mb_addr = virtio_mem_mb_id_to_phys(mb_id); return (addr - mb_addr) / vm->sbm.sb_size; } /* * Set the state of a big block, taking care of the state counter. */ static void virtio_mem_bbm_set_bb_state(struct virtio_mem *vm, unsigned long bb_id, enum virtio_mem_bbm_bb_state state) { const unsigned long idx = bb_id - vm->bbm.first_bb_id; enum virtio_mem_bbm_bb_state old_state; old_state = vm->bbm.bb_states[idx]; vm->bbm.bb_states[idx] = state; BUG_ON(vm->bbm.bb_count[old_state] == 0); vm->bbm.bb_count[old_state]--; vm->bbm.bb_count[state]++; } /* * Get the state of a big block. */ static enum virtio_mem_bbm_bb_state virtio_mem_bbm_get_bb_state(struct virtio_mem *vm, unsigned long bb_id) { return vm->bbm.bb_states[bb_id - vm->bbm.first_bb_id]; } /* * Prepare the big block state array for the next big block. */ static int virtio_mem_bbm_bb_states_prepare_next_bb(struct virtio_mem *vm) { unsigned long old_bytes = vm->bbm.next_bb_id - vm->bbm.first_bb_id; unsigned long new_bytes = old_bytes + 1; int old_pages = PFN_UP(old_bytes); int new_pages = PFN_UP(new_bytes); uint8_t *new_array; if (vm->bbm.bb_states && old_pages == new_pages) return 0; new_array = vzalloc(new_pages * PAGE_SIZE); if (!new_array) return -ENOMEM; mutex_lock(&vm->hotplug_mutex); if (vm->bbm.bb_states) memcpy(new_array, vm->bbm.bb_states, old_pages * PAGE_SIZE); vfree(vm->bbm.bb_states); vm->bbm.bb_states = new_array; mutex_unlock(&vm->hotplug_mutex); return 0; } #define virtio_mem_bbm_for_each_bb(_vm, _bb_id, _state) \ for (_bb_id = vm->bbm.first_bb_id; \ _bb_id < vm->bbm.next_bb_id && _vm->bbm.bb_count[_state]; \ _bb_id++) \ if (virtio_mem_bbm_get_bb_state(_vm, _bb_id) == _state) #define virtio_mem_bbm_for_each_bb_rev(_vm, _bb_id, _state) \ for (_bb_id = vm->bbm.next_bb_id - 1; \ _bb_id >= vm->bbm.first_bb_id && _vm->bbm.bb_count[_state]; \ _bb_id--) \ if (virtio_mem_bbm_get_bb_state(_vm, _bb_id) == _state) /* * Set the state of a memory block, taking care of the state counter. */ static void virtio_mem_sbm_set_mb_state(struct virtio_mem *vm, unsigned long mb_id, uint8_t state) { const unsigned long idx = mb_id - vm->sbm.first_mb_id; uint8_t old_state; old_state = vm->sbm.mb_states[idx]; vm->sbm.mb_states[idx] = state; BUG_ON(vm->sbm.mb_count[old_state] == 0); vm->sbm.mb_count[old_state]--; vm->sbm.mb_count[state]++; } /* * Get the state of a memory block. */ static uint8_t virtio_mem_sbm_get_mb_state(struct virtio_mem *vm, unsigned long mb_id) { const unsigned long idx = mb_id - vm->sbm.first_mb_id; return vm->sbm.mb_states[idx]; } /* * Prepare the state array for the next memory block. */ static int virtio_mem_sbm_mb_states_prepare_next_mb(struct virtio_mem *vm) { int old_pages = PFN_UP(vm->sbm.next_mb_id - vm->sbm.first_mb_id); int new_pages = PFN_UP(vm->sbm.next_mb_id - vm->sbm.first_mb_id + 1); uint8_t *new_array; if (vm->sbm.mb_states && old_pages == new_pages) return 0; new_array = vzalloc(new_pages * PAGE_SIZE); if (!new_array) return -ENOMEM; mutex_lock(&vm->hotplug_mutex); if (vm->sbm.mb_states) memcpy(new_array, vm->sbm.mb_states, old_pages * PAGE_SIZE); vfree(vm->sbm.mb_states); vm->sbm.mb_states = new_array; mutex_unlock(&vm->hotplug_mutex); return 0; } #define virtio_mem_sbm_for_each_mb(_vm, _mb_id, _state) \ for (_mb_id = _vm->sbm.first_mb_id; \ _mb_id < _vm->sbm.next_mb_id && _vm->sbm.mb_count[_state]; \ _mb_id++) \ if (virtio_mem_sbm_get_mb_state(_vm, _mb_id) == _state) #define virtio_mem_sbm_for_each_mb_rev(_vm, _mb_id, _state) \ for (_mb_id = _vm->sbm.next_mb_id - 1; \ _mb_id >= _vm->sbm.first_mb_id && _vm->sbm.mb_count[_state]; \ _mb_id--) \ if (virtio_mem_sbm_get_mb_state(_vm, _mb_id) == _state) /* * Calculate the bit number in the subblock bitmap for the given subblock * inside the given memory block. */ static int virtio_mem_sbm_sb_state_bit_nr(struct virtio_mem *vm, unsigned long mb_id, int sb_id) { return (mb_id - vm->sbm.first_mb_id) * vm->sbm.sbs_per_mb + sb_id; } /* * Mark all selected subblocks plugged. * * Will not modify the state of the memory block. */ static void virtio_mem_sbm_set_sb_plugged(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const int bit = virtio_mem_sbm_sb_state_bit_nr(vm, mb_id, sb_id); __bitmap_set(vm->sbm.sb_states, bit, count); } /* * Mark all selected subblocks unplugged. * * Will not modify the state of the memory block. */ static void virtio_mem_sbm_set_sb_unplugged(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const int bit = virtio_mem_sbm_sb_state_bit_nr(vm, mb_id, sb_id); __bitmap_clear(vm->sbm.sb_states, bit, count); } /* * Test if all selected subblocks are plugged. */ static bool virtio_mem_sbm_test_sb_plugged(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const int bit = virtio_mem_sbm_sb_state_bit_nr(vm, mb_id, sb_id); if (count == 1) return test_bit(bit, vm->sbm.sb_states); /* TODO: Helper similar to bitmap_set() */ return find_next_zero_bit(vm->sbm.sb_states, bit + count, bit) >= bit + count; } /* * Test if all selected subblocks are unplugged. */ static bool virtio_mem_sbm_test_sb_unplugged(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const int bit = virtio_mem_sbm_sb_state_bit_nr(vm, mb_id, sb_id); /* TODO: Helper similar to bitmap_set() */ return find_next_bit(vm->sbm.sb_states, bit + count, bit) >= bit + count; } /* * Find the first unplugged subblock. Returns vm->sbm.sbs_per_mb in case there is * none. */ static int virtio_mem_sbm_first_unplugged_sb(struct virtio_mem *vm, unsigned long mb_id) { const int bit = virtio_mem_sbm_sb_state_bit_nr(vm, mb_id, 0); return find_next_zero_bit(vm->sbm.sb_states, bit + vm->sbm.sbs_per_mb, bit) - bit; } /* * Prepare the subblock bitmap for the next memory block. */ static int virtio_mem_sbm_sb_states_prepare_next_mb(struct virtio_mem *vm) { const unsigned long old_nb_mb = vm->sbm.next_mb_id - vm->sbm.first_mb_id; const unsigned long old_nb_bits = old_nb_mb * vm->sbm.sbs_per_mb; const unsigned long new_nb_bits = (old_nb_mb + 1) * vm->sbm.sbs_per_mb; int old_pages = PFN_UP(BITS_TO_LONGS(old_nb_bits) * sizeof(long)); int new_pages = PFN_UP(BITS_TO_LONGS(new_nb_bits) * sizeof(long)); unsigned long *new_bitmap, *old_bitmap; if (vm->sbm.sb_states && old_pages == new_pages) return 0; new_bitmap = vzalloc(new_pages * PAGE_SIZE); if (!new_bitmap) return -ENOMEM; mutex_lock(&vm->hotplug_mutex); if (vm->sbm.sb_states) memcpy(new_bitmap, vm->sbm.sb_states, old_pages * PAGE_SIZE); old_bitmap = vm->sbm.sb_states; vm->sbm.sb_states = new_bitmap; mutex_unlock(&vm->hotplug_mutex); vfree(old_bitmap); return 0; } /* * Test if we could add memory without creating too much offline memory - * to avoid running OOM if memory is getting onlined deferred. */ static bool virtio_mem_could_add_memory(struct virtio_mem *vm, uint64_t size) { if (WARN_ON_ONCE(size > vm->offline_threshold)) return false; return atomic64_read(&vm->offline_size) + size <= vm->offline_threshold; } /* * Try adding memory to Linux. Will usually only fail if out of memory. * * Must not be called with the vm->hotplug_mutex held (possible deadlock with * onlining code). * * Will not modify the state of memory blocks in virtio-mem. */ static int virtio_mem_add_memory(struct virtio_mem *vm, uint64_t addr, uint64_t size) { int rc; /* * When force-unloading the driver and we still have memory added to * Linux, the resource name has to stay. */ if (!vm->resource_name) { vm->resource_name = kstrdup_const("System RAM (virtio_mem)", GFP_KERNEL); if (!vm->resource_name) return -ENOMEM; } dev_dbg(&vm->vdev->dev, "adding memory: 0x%llx - 0x%llx\n", addr, addr + size - 1); /* Memory might get onlined immediately. */ atomic64_add(size, &vm->offline_size); rc = add_memory_driver_managed(vm->mgid, addr, size, vm->resource_name, MHP_MERGE_RESOURCE | MHP_NID_IS_MGID); if (rc) { atomic64_sub(size, &vm->offline_size); dev_warn(&vm->vdev->dev, "adding memory failed: %d\n", rc); /* * TODO: Linux MM does not properly clean up yet in all cases * where adding of memory failed - especially on -ENOMEM. */ } return rc; } /* * See virtio_mem_add_memory(): Try adding a single Linux memory block. */ static int virtio_mem_sbm_add_mb(struct virtio_mem *vm, unsigned long mb_id) { const uint64_t addr = virtio_mem_mb_id_to_phys(mb_id); const uint64_t size = memory_block_size_bytes(); return virtio_mem_add_memory(vm, addr, size); } /* * See virtio_mem_add_memory(): Try adding a big block. */ static int virtio_mem_bbm_add_bb(struct virtio_mem *vm, unsigned long bb_id) { const uint64_t addr = virtio_mem_bb_id_to_phys(vm, bb_id); const uint64_t size = vm->bbm.bb_size; return virtio_mem_add_memory(vm, addr, size); } /* * Try removing memory from Linux. Will only fail if memory blocks aren't * offline. * * Must not be called with the vm->hotplug_mutex held (possible deadlock with * onlining code). * * Will not modify the state of memory blocks in virtio-mem. */ static int virtio_mem_remove_memory(struct virtio_mem *vm, uint64_t addr, uint64_t size) { int rc; dev_dbg(&vm->vdev->dev, "removing memory: 0x%llx - 0x%llx\n", addr, addr + size - 1); rc = remove_memory(addr, size); if (!rc) { atomic64_sub(size, &vm->offline_size); /* * We might have freed up memory we can now unplug, retry * immediately instead of waiting. */ virtio_mem_retry(vm); } else { dev_dbg(&vm->vdev->dev, "removing memory failed: %d\n", rc); } return rc; } /* * See virtio_mem_remove_memory(): Try removing a single Linux memory block. */ static int virtio_mem_sbm_remove_mb(struct virtio_mem *vm, unsigned long mb_id) { const uint64_t addr = virtio_mem_mb_id_to_phys(mb_id); const uint64_t size = memory_block_size_bytes(); return virtio_mem_remove_memory(vm, addr, size); } /* * Try offlining and removing memory from Linux. * * Must not be called with the vm->hotplug_mutex held (possible deadlock with * onlining code). * * Will not modify the state of memory blocks in virtio-mem. */ static int virtio_mem_offline_and_remove_memory(struct virtio_mem *vm, uint64_t addr, uint64_t size) { int rc; dev_dbg(&vm->vdev->dev, "offlining and removing memory: 0x%llx - 0x%llx\n", addr, addr + size - 1); rc = offline_and_remove_memory(addr, size); if (!rc) { atomic64_sub(size, &vm->offline_size); /* * We might have freed up memory we can now unplug, retry * immediately instead of waiting. */ virtio_mem_retry(vm); return 0; } dev_dbg(&vm->vdev->dev, "offlining and removing memory failed: %d\n", rc); /* * We don't really expect this to fail, because we fake-offlined all * memory already. But it could fail in corner cases. */ WARN_ON_ONCE(rc != -ENOMEM && rc != -EBUSY); return rc == -ENOMEM ? -ENOMEM : -EBUSY; } /* * See virtio_mem_offline_and_remove_memory(): Try offlining and removing * a single Linux memory block. */ static int virtio_mem_sbm_offline_and_remove_mb(struct virtio_mem *vm, unsigned long mb_id) { const uint64_t addr = virtio_mem_mb_id_to_phys(mb_id); const uint64_t size = memory_block_size_bytes(); return virtio_mem_offline_and_remove_memory(vm, addr, size); } /* * Try (offlining and) removing memory from Linux in case all subblocks are * unplugged. Can be called on online and offline memory blocks. * * May modify the state of memory blocks in virtio-mem. */ static int virtio_mem_sbm_try_remove_unplugged_mb(struct virtio_mem *vm, unsigned long mb_id) { int rc; /* * Once all subblocks of a memory block were unplugged, offline and * remove it. */ if (!virtio_mem_sbm_test_sb_unplugged(vm, mb_id, 0, vm->sbm.sbs_per_mb)) return 0; /* offline_and_remove_memory() works for online and offline memory. */ mutex_unlock(&vm->hotplug_mutex); rc = virtio_mem_sbm_offline_and_remove_mb(vm, mb_id); mutex_lock(&vm->hotplug_mutex); if (!rc) virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_UNUSED); return rc; } /* * See virtio_mem_offline_and_remove_memory(): Try to offline and remove a * all Linux memory blocks covered by the big block. */ static int virtio_mem_bbm_offline_and_remove_bb(struct virtio_mem *vm, unsigned long bb_id) { const uint64_t addr = virtio_mem_bb_id_to_phys(vm, bb_id); const uint64_t size = vm->bbm.bb_size; return virtio_mem_offline_and_remove_memory(vm, addr, size); } /* * Trigger the workqueue so the device can perform its magic. */ static void virtio_mem_retry(struct virtio_mem *vm) { unsigned long flags; spin_lock_irqsave(&vm->removal_lock, flags); if (!vm->removing) queue_work(system_freezable_wq, &vm->wq); spin_unlock_irqrestore(&vm->removal_lock, flags); } static int virtio_mem_translate_node_id(struct virtio_mem *vm, uint16_t node_id) { int node = NUMA_NO_NODE; #if defined(CONFIG_ACPI_NUMA) if (virtio_has_feature(vm->vdev, VIRTIO_MEM_F_ACPI_PXM)) node = pxm_to_node(node_id); #endif return node; } /* * Test if a virtio-mem device overlaps with the given range. Can be called * from (notifier) callbacks lockless. */ static bool virtio_mem_overlaps_range(struct virtio_mem *vm, uint64_t start, uint64_t size) { return start < vm->addr + vm->region_size && vm->addr < start + size; } /* * Test if a virtio-mem device contains a given range. Can be called from * (notifier) callbacks lockless. */ static bool virtio_mem_contains_range(struct virtio_mem *vm, uint64_t start, uint64_t size) { return start >= vm->addr && start + size <= vm->addr + vm->region_size; } static int virtio_mem_sbm_notify_going_online(struct virtio_mem *vm, unsigned long mb_id) { switch (virtio_mem_sbm_get_mb_state(vm, mb_id)) { case VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL: case VIRTIO_MEM_SBM_MB_OFFLINE: return NOTIFY_OK; default: break; } dev_warn_ratelimited(&vm->vdev->dev, "memory block onlining denied\n"); return NOTIFY_BAD; } static void virtio_mem_sbm_notify_offline(struct virtio_mem *vm, unsigned long mb_id) { switch (virtio_mem_sbm_get_mb_state(vm, mb_id)) { case VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL: case VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL: virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL); break; case VIRTIO_MEM_SBM_MB_KERNEL: case VIRTIO_MEM_SBM_MB_MOVABLE: virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_OFFLINE); break; default: BUG(); break; } } static void virtio_mem_sbm_notify_online(struct virtio_mem *vm, unsigned long mb_id, unsigned long start_pfn) { const bool is_movable = is_zone_movable_page(pfn_to_page(start_pfn)); int new_state; switch (virtio_mem_sbm_get_mb_state(vm, mb_id)) { case VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL: new_state = VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL; if (is_movable) new_state = VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL; break; case VIRTIO_MEM_SBM_MB_OFFLINE: new_state = VIRTIO_MEM_SBM_MB_KERNEL; if (is_movable) new_state = VIRTIO_MEM_SBM_MB_MOVABLE; break; default: BUG(); break; } virtio_mem_sbm_set_mb_state(vm, mb_id, new_state); } static void virtio_mem_sbm_notify_going_offline(struct virtio_mem *vm, unsigned long mb_id) { const unsigned long nr_pages = PFN_DOWN(vm->sbm.sb_size); unsigned long pfn; int sb_id; for (sb_id = 0; sb_id < vm->sbm.sbs_per_mb; sb_id++) { if (virtio_mem_sbm_test_sb_plugged(vm, mb_id, sb_id, 1)) continue; pfn = PFN_DOWN(virtio_mem_mb_id_to_phys(mb_id) + sb_id * vm->sbm.sb_size); virtio_mem_fake_offline_going_offline(pfn, nr_pages); } } static void virtio_mem_sbm_notify_cancel_offline(struct virtio_mem *vm, unsigned long mb_id) { const unsigned long nr_pages = PFN_DOWN(vm->sbm.sb_size); unsigned long pfn; int sb_id; for (sb_id = 0; sb_id < vm->sbm.sbs_per_mb; sb_id++) { if (virtio_mem_sbm_test_sb_plugged(vm, mb_id, sb_id, 1)) continue; pfn = PFN_DOWN(virtio_mem_mb_id_to_phys(mb_id) + sb_id * vm->sbm.sb_size); virtio_mem_fake_offline_cancel_offline(pfn, nr_pages); } } static void virtio_mem_bbm_notify_going_offline(struct virtio_mem *vm, unsigned long bb_id, unsigned long pfn, unsigned long nr_pages) { /* * When marked as "fake-offline", all online memory of this device block * is allocated by us. Otherwise, we don't have any memory allocated. */ if (virtio_mem_bbm_get_bb_state(vm, bb_id) != VIRTIO_MEM_BBM_BB_FAKE_OFFLINE) return; virtio_mem_fake_offline_going_offline(pfn, nr_pages); } static void virtio_mem_bbm_notify_cancel_offline(struct virtio_mem *vm, unsigned long bb_id, unsigned long pfn, unsigned long nr_pages) { if (virtio_mem_bbm_get_bb_state(vm, bb_id) != VIRTIO_MEM_BBM_BB_FAKE_OFFLINE) return; virtio_mem_fake_offline_cancel_offline(pfn, nr_pages); } /* * This callback will either be called synchronously from add_memory() or * asynchronously (e.g., triggered via user space). We have to be careful * with locking when calling add_memory(). */ static int virtio_mem_memory_notifier_cb(struct notifier_block *nb, unsigned long action, void *arg) { struct virtio_mem *vm = container_of(nb, struct virtio_mem, memory_notifier); struct memory_notify *mhp = arg; const unsigned long start = PFN_PHYS(mhp->start_pfn); const unsigned long size = PFN_PHYS(mhp->nr_pages); int rc = NOTIFY_OK; unsigned long id; if (!virtio_mem_overlaps_range(vm, start, size)) return NOTIFY_DONE; if (vm->in_sbm) { id = virtio_mem_phys_to_mb_id(start); /* * In SBM, we add memory in separate memory blocks - we expect * it to be onlined/offlined in the same granularity. Bail out * if this ever changes. */ if (WARN_ON_ONCE(size != memory_block_size_bytes() || !IS_ALIGNED(start, memory_block_size_bytes()))) return NOTIFY_BAD; } else { id = virtio_mem_phys_to_bb_id(vm, start); /* * In BBM, we only care about onlining/offlining happening * within a single big block, we don't care about the * actual granularity as we don't track individual Linux * memory blocks. */ if (WARN_ON_ONCE(id != virtio_mem_phys_to_bb_id(vm, start + size - 1))) return NOTIFY_BAD; } /* * Avoid circular locking lockdep warnings. We lock the mutex * e.g., in MEM_GOING_ONLINE and unlock it in MEM_ONLINE. The * blocking_notifier_call_chain() has it's own lock, which gets unlocked * between both notifier calls and will bail out. False positive. */ lockdep_off(); switch (action) { case MEM_GOING_OFFLINE: mutex_lock(&vm->hotplug_mutex); if (vm->removing) { rc = notifier_from_errno(-EBUSY); mutex_unlock(&vm->hotplug_mutex); break; } vm->hotplug_active = true; if (vm->in_sbm) virtio_mem_sbm_notify_going_offline(vm, id); else virtio_mem_bbm_notify_going_offline(vm, id, mhp->start_pfn, mhp->nr_pages); break; case MEM_GOING_ONLINE: mutex_lock(&vm->hotplug_mutex); if (vm->removing) { rc = notifier_from_errno(-EBUSY); mutex_unlock(&vm->hotplug_mutex); break; } vm->hotplug_active = true; if (vm->in_sbm) rc = virtio_mem_sbm_notify_going_online(vm, id); break; case MEM_OFFLINE: if (vm->in_sbm) virtio_mem_sbm_notify_offline(vm, id); atomic64_add(size, &vm->offline_size); /* * Trigger the workqueue. Now that we have some offline memory, * maybe we can handle pending unplug requests. */ if (!unplug_online) virtio_mem_retry(vm); vm->hotplug_active = false; mutex_unlock(&vm->hotplug_mutex); break; case MEM_ONLINE: if (vm->in_sbm) virtio_mem_sbm_notify_online(vm, id, mhp->start_pfn); atomic64_sub(size, &vm->offline_size); /* * Start adding more memory once we onlined half of our * threshold. Don't trigger if it's possibly due to our actipn * (e.g., us adding memory which gets onlined immediately from * the core). */ if (!atomic_read(&vm->wq_active) && virtio_mem_could_add_memory(vm, vm->offline_threshold / 2)) virtio_mem_retry(vm); vm->hotplug_active = false; mutex_unlock(&vm->hotplug_mutex); break; case MEM_CANCEL_OFFLINE: if (!vm->hotplug_active) break; if (vm->in_sbm) virtio_mem_sbm_notify_cancel_offline(vm, id); else virtio_mem_bbm_notify_cancel_offline(vm, id, mhp->start_pfn, mhp->nr_pages); vm->hotplug_active = false; mutex_unlock(&vm->hotplug_mutex); break; case MEM_CANCEL_ONLINE: if (!vm->hotplug_active) break; vm->hotplug_active = false; mutex_unlock(&vm->hotplug_mutex); break; default: break; } lockdep_on(); return rc; } static int virtio_mem_pm_notifier_cb(struct notifier_block *nb, unsigned long action, void *arg) { struct virtio_mem *vm = container_of(nb, struct virtio_mem, pm_notifier); switch (action) { case PM_HIBERNATION_PREPARE: case PM_RESTORE_PREPARE: /* * When restarting the VM, all memory is unplugged. Don't * allow to hibernate and restore from an image. */ dev_err(&vm->vdev->dev, "hibernation is not supported.\n"); return NOTIFY_BAD; default: return NOTIFY_OK; } } /* * Set a range of pages PG_offline. Remember pages that were never onlined * (via generic_online_page()) using PageDirty(). */ static void virtio_mem_set_fake_offline(unsigned long pfn, unsigned long nr_pages, bool onlined) { page_offline_begin(); for (; nr_pages--; pfn++) { struct page *page = pfn_to_page(pfn); if (!onlined) /* * Pages that have not been onlined yet were initialized * to PageOffline(). Remember that we have to route them * through generic_online_page(). */ SetPageDirty(page); else __SetPageOffline(page); VM_WARN_ON_ONCE(!PageOffline(page)); } page_offline_end(); } /* * Clear PG_offline from a range of pages. If the pages were never onlined, * (via generic_online_page()), clear PageDirty(). */ static void virtio_mem_clear_fake_offline(unsigned long pfn, unsigned long nr_pages, bool onlined) { for (; nr_pages--; pfn++) { struct page *page = pfn_to_page(pfn); if (!onlined) /* generic_online_page() will clear PageOffline(). */ ClearPageDirty(page); else __ClearPageOffline(page); } } /* * Release a range of fake-offline pages to the buddy, effectively * fake-onlining them. */ static void virtio_mem_fake_online(unsigned long pfn, unsigned long nr_pages) { unsigned long order = MAX_PAGE_ORDER; unsigned long i; /* * We might get called for ranges that don't cover properly aligned * MAX_PAGE_ORDER pages; however, we can only online properly aligned * pages with an order of MAX_PAGE_ORDER at maximum. */ while (!IS_ALIGNED(pfn | nr_pages, 1 << order)) order--; for (i = 0; i < nr_pages; i += 1 << order) { struct page *page = pfn_to_page(pfn + i); /* * If the page is PageDirty(), it was kept fake-offline when * onlining the memory block. Otherwise, it was allocated * using alloc_contig_range(). All pages in a subblock are * alike. */ if (PageDirty(page)) { virtio_mem_clear_fake_offline(pfn + i, 1 << order, false); generic_online_page(page, order); } else { virtio_mem_clear_fake_offline(pfn + i, 1 << order, true); free_contig_range(pfn + i, 1 << order); adjust_managed_page_count(page, 1 << order); } } } /* * Try to allocate a range, marking pages fake-offline, effectively * fake-offlining them. */ static int virtio_mem_fake_offline(struct virtio_mem *vm, unsigned long pfn, unsigned long nr_pages) { const bool is_movable = is_zone_movable_page(pfn_to_page(pfn)); int rc, retry_count; /* * TODO: We want an alloc_contig_range() mode that tries to allocate * harder (e.g., dealing with temporarily pinned pages, PCP), especially * with ZONE_MOVABLE. So for now, retry a couple of times with * ZONE_MOVABLE before giving up - because that zone is supposed to give * some guarantees. */ for (retry_count = 0; retry_count < 5; retry_count++) { /* * If the config changed, stop immediately and go back to the * main loop: avoid trying to keep unplugging if the device * might have decided to not remove any more memory. */ if (atomic_read(&vm->config_changed)) return -EAGAIN; rc = alloc_contig_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE, GFP_KERNEL); if (rc == -ENOMEM) /* whoops, out of memory */ return rc; else if (rc && !is_movable) break; else if (rc) continue; virtio_mem_set_fake_offline(pfn, nr_pages, true); adjust_managed_page_count(pfn_to_page(pfn), -nr_pages); return 0; } return -EBUSY; } /* * Handle fake-offline pages when memory is going offline - such that the * pages can be skipped by mm-core when offlining. */ static void virtio_mem_fake_offline_going_offline(unsigned long pfn, unsigned long nr_pages) { struct page *page; unsigned long i; /* Drop our reference to the pages so the memory can get offlined. */ for (i = 0; i < nr_pages; i++) { page = pfn_to_page(pfn + i); if (WARN_ON(!page_ref_dec_and_test(page))) dump_page(page, "fake-offline page referenced"); } } /* * Handle fake-offline pages when memory offlining is canceled - to undo * what we did in virtio_mem_fake_offline_going_offline(). */ static void virtio_mem_fake_offline_cancel_offline(unsigned long pfn, unsigned long nr_pages) { unsigned long i; /* * Get the reference again that we dropped via page_ref_dec_and_test() * when going offline. */ for (i = 0; i < nr_pages; i++) page_ref_inc(pfn_to_page(pfn + i)); } static void virtio_mem_online_page(struct virtio_mem *vm, struct page *page, unsigned int order) { const unsigned long start = page_to_phys(page); const unsigned long end = start + PFN_PHYS(1 << order); unsigned long addr, next, id, sb_id, count; bool do_online; /* * We can get called with any order up to MAX_PAGE_ORDER. If our subblock * size is smaller than that and we have a mixture of plugged and * unplugged subblocks within such a page, we have to process in * smaller granularity. In that case we'll adjust the order exactly once * within the loop. */ for (addr = start; addr < end; ) { next = addr + PFN_PHYS(1 << order); if (vm->in_sbm) { id = virtio_mem_phys_to_mb_id(addr); sb_id = virtio_mem_phys_to_sb_id(vm, addr); count = virtio_mem_phys_to_sb_id(vm, next - 1) - sb_id + 1; if (virtio_mem_sbm_test_sb_plugged(vm, id, sb_id, count)) { /* Fully plugged. */ do_online = true; } else if (count == 1 || virtio_mem_sbm_test_sb_unplugged(vm, id, sb_id, count)) { /* Fully unplugged. */ do_online = false; } else { /* * Mixture, process sub-blocks instead. This * will be at least the size of a pageblock. * We'll run into this case exactly once. */ order = ilog2(vm->sbm.sb_size) - PAGE_SHIFT; do_online = virtio_mem_sbm_test_sb_plugged(vm, id, sb_id, 1); continue; } } else { /* * If the whole block is marked fake offline, keep * everything that way. */ id = virtio_mem_phys_to_bb_id(vm, addr); do_online = virtio_mem_bbm_get_bb_state(vm, id) != VIRTIO_MEM_BBM_BB_FAKE_OFFLINE; } if (do_online) generic_online_page(pfn_to_page(PFN_DOWN(addr)), order); else virtio_mem_set_fake_offline(PFN_DOWN(addr), 1 << order, false); addr = next; } } static void virtio_mem_online_page_cb(struct page *page, unsigned int order) { const unsigned long addr = page_to_phys(page); struct virtio_mem *vm; rcu_read_lock(); list_for_each_entry_rcu(vm, &virtio_mem_devices, next) { /* * Pages we're onlining will never cross memory blocks and, * therefore, not virtio-mem devices. */ if (!virtio_mem_contains_range(vm, addr, PFN_PHYS(1 << order))) continue; /* * virtio_mem_set_fake_offline() might sleep. We can safely * drop the RCU lock at this point because the device * cannot go away. See virtio_mem_remove() how races * between memory onlining and device removal are handled. */ rcu_read_unlock(); virtio_mem_online_page(vm, page, order); return; } rcu_read_unlock(); /* not virtio-mem memory, but e.g., a DIMM. online it */ generic_online_page(page, order); } static uint64_t virtio_mem_send_request(struct virtio_mem *vm, const struct virtio_mem_req *req) { struct scatterlist *sgs[2], sg_req, sg_resp; unsigned int len; int rc; /* don't use the request residing on the stack (vaddr) */ vm->req = *req; /* out: buffer for request */ sg_init_one(&sg_req, &vm->req, sizeof(vm->req)); sgs[0] = &sg_req; /* in: buffer for response */ sg_init_one(&sg_resp, &vm->resp, sizeof(vm->resp)); sgs[1] = &sg_resp; rc = virtqueue_add_sgs(vm->vq, sgs, 1, 1, vm, GFP_KERNEL); if (rc < 0) return rc; virtqueue_kick(vm->vq); /* wait for a response */ wait_event(vm->host_resp, virtqueue_get_buf(vm->vq, &len)); return virtio16_to_cpu(vm->vdev, vm->resp.type); } static int virtio_mem_send_plug_request(struct virtio_mem *vm, uint64_t addr, uint64_t size) { const uint64_t nb_vm_blocks = size / vm->device_block_size; const struct virtio_mem_req req = { .type = cpu_to_virtio16(vm->vdev, VIRTIO_MEM_REQ_PLUG), .u.plug.addr = cpu_to_virtio64(vm->vdev, addr), .u.plug.nb_blocks = cpu_to_virtio16(vm->vdev, nb_vm_blocks), }; int rc = -ENOMEM; if (atomic_read(&vm->config_changed)) return -EAGAIN; dev_dbg(&vm->vdev->dev, "plugging memory: 0x%llx - 0x%llx\n", addr, addr + size - 1); switch (virtio_mem_send_request(vm, &req)) { case VIRTIO_MEM_RESP_ACK: vm->plugged_size += size; return 0; case VIRTIO_MEM_RESP_NACK: rc = -EAGAIN; break; case VIRTIO_MEM_RESP_BUSY: rc = -ETXTBSY; break; case VIRTIO_MEM_RESP_ERROR: rc = -EINVAL; break; default: break; } dev_dbg(&vm->vdev->dev, "plugging memory failed: %d\n", rc); return rc; } static int virtio_mem_send_unplug_request(struct virtio_mem *vm, uint64_t addr, uint64_t size) { const uint64_t nb_vm_blocks = size / vm->device_block_size; const struct virtio_mem_req req = { .type = cpu_to_virtio16(vm->vdev, VIRTIO_MEM_REQ_UNPLUG), .u.unplug.addr = cpu_to_virtio64(vm->vdev, addr), .u.unplug.nb_blocks = cpu_to_virtio16(vm->vdev, nb_vm_blocks), }; int rc = -ENOMEM; if (atomic_read(&vm->config_changed)) return -EAGAIN; dev_dbg(&vm->vdev->dev, "unplugging memory: 0x%llx - 0x%llx\n", addr, addr + size - 1); switch (virtio_mem_send_request(vm, &req)) { case VIRTIO_MEM_RESP_ACK: vm->plugged_size -= size; return 0; case VIRTIO_MEM_RESP_BUSY: rc = -ETXTBSY; break; case VIRTIO_MEM_RESP_ERROR: rc = -EINVAL; break; default: break; } dev_dbg(&vm->vdev->dev, "unplugging memory failed: %d\n", rc); return rc; } static int virtio_mem_send_unplug_all_request(struct virtio_mem *vm) { const struct virtio_mem_req req = { .type = cpu_to_virtio16(vm->vdev, VIRTIO_MEM_REQ_UNPLUG_ALL), }; int rc = -ENOMEM; dev_dbg(&vm->vdev->dev, "unplugging all memory"); switch (virtio_mem_send_request(vm, &req)) { case VIRTIO_MEM_RESP_ACK: vm->unplug_all_required = false; vm->plugged_size = 0; /* usable region might have shrunk */ atomic_set(&vm->config_changed, 1); return 0; case VIRTIO_MEM_RESP_BUSY: rc = -ETXTBSY; break; default: break; } dev_dbg(&vm->vdev->dev, "unplugging all memory failed: %d\n", rc); return rc; } /* * Plug selected subblocks. Updates the plugged state, but not the state * of the memory block. */ static int virtio_mem_sbm_plug_sb(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const uint64_t addr = virtio_mem_mb_id_to_phys(mb_id) + sb_id * vm->sbm.sb_size; const uint64_t size = count * vm->sbm.sb_size; int rc; rc = virtio_mem_send_plug_request(vm, addr, size); if (!rc) virtio_mem_sbm_set_sb_plugged(vm, mb_id, sb_id, count); return rc; } /* * Unplug selected subblocks. Updates the plugged state, but not the state * of the memory block. */ static int virtio_mem_sbm_unplug_sb(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const uint64_t addr = virtio_mem_mb_id_to_phys(mb_id) + sb_id * vm->sbm.sb_size; const uint64_t size = count * vm->sbm.sb_size; int rc; rc = virtio_mem_send_unplug_request(vm, addr, size); if (!rc) virtio_mem_sbm_set_sb_unplugged(vm, mb_id, sb_id, count); return rc; } /* * Request to unplug a big block. * * Will not modify the state of the big block. */ static int virtio_mem_bbm_unplug_bb(struct virtio_mem *vm, unsigned long bb_id) { const uint64_t addr = virtio_mem_bb_id_to_phys(vm, bb_id); const uint64_t size = vm->bbm.bb_size; return virtio_mem_send_unplug_request(vm, addr, size); } /* * Request to plug a big block. * * Will not modify the state of the big block. */ static int virtio_mem_bbm_plug_bb(struct virtio_mem *vm, unsigned long bb_id) { const uint64_t addr = virtio_mem_bb_id_to_phys(vm, bb_id); const uint64_t size = vm->bbm.bb_size; return virtio_mem_send_plug_request(vm, addr, size); } /* * Unplug the desired number of plugged subblocks of a offline or not-added * memory block. Will fail if any subblock cannot get unplugged (instead of * skipping it). * * Will not modify the state of the memory block. * * Note: can fail after some subblocks were unplugged. */ static int virtio_mem_sbm_unplug_any_sb_raw(struct virtio_mem *vm, unsigned long mb_id, uint64_t *nb_sb) { int sb_id, count; int rc; sb_id = vm->sbm.sbs_per_mb - 1; while (*nb_sb) { /* Find the next candidate subblock */ while (sb_id >= 0 && virtio_mem_sbm_test_sb_unplugged(vm, mb_id, sb_id, 1)) sb_id--; if (sb_id < 0) break; /* Try to unplug multiple subblocks at a time */ count = 1; while (count < *nb_sb && sb_id > 0 && virtio_mem_sbm_test_sb_plugged(vm, mb_id, sb_id - 1, 1)) { count++; sb_id--; } rc = virtio_mem_sbm_unplug_sb(vm, mb_id, sb_id, count); if (rc) return rc; *nb_sb -= count; sb_id--; } return 0; } /* * Unplug all plugged subblocks of an offline or not-added memory block. * * Will not modify the state of the memory block. * * Note: can fail after some subblocks were unplugged. */ static int virtio_mem_sbm_unplug_mb(struct virtio_mem *vm, unsigned long mb_id) { uint64_t nb_sb = vm->sbm.sbs_per_mb; return virtio_mem_sbm_unplug_any_sb_raw(vm, mb_id, &nb_sb); } /* * Prepare tracking data for the next memory block. */ static int virtio_mem_sbm_prepare_next_mb(struct virtio_mem *vm, unsigned long *mb_id) { int rc; if (vm->sbm.next_mb_id > vm->sbm.last_usable_mb_id) return -ENOSPC; /* Resize the state array if required. */ rc = virtio_mem_sbm_mb_states_prepare_next_mb(vm); if (rc) return rc; /* Resize the subblock bitmap if required. */ rc = virtio_mem_sbm_sb_states_prepare_next_mb(vm); if (rc) return rc; vm->sbm.mb_count[VIRTIO_MEM_SBM_MB_UNUSED]++; *mb_id = vm->sbm.next_mb_id++; return 0; } /* * Try to plug the desired number of subblocks and add the memory block * to Linux. * * Will modify the state of the memory block. */ static int virtio_mem_sbm_plug_and_add_mb(struct virtio_mem *vm, unsigned long mb_id, uint64_t *nb_sb) { const int count = min_t(int, *nb_sb, vm->sbm.sbs_per_mb); int rc; if (WARN_ON_ONCE(!count)) return -EINVAL; /* * Plug the requested number of subblocks before adding it to linux, * so that onlining will directly online all plugged subblocks. */ rc = virtio_mem_sbm_plug_sb(vm, mb_id, 0, count); if (rc) return rc; /* * Mark the block properly offline before adding it to Linux, * so the memory notifiers will find the block in the right state. */ if (count == vm->sbm.sbs_per_mb) virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_OFFLINE); else virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL); /* Add the memory block to linux - if that fails, try to unplug. */ rc = virtio_mem_sbm_add_mb(vm, mb_id); if (rc) { int new_state = VIRTIO_MEM_SBM_MB_UNUSED; if (virtio_mem_sbm_unplug_sb(vm, mb_id, 0, count)) new_state = VIRTIO_MEM_SBM_MB_PLUGGED; virtio_mem_sbm_set_mb_state(vm, mb_id, new_state); return rc; } *nb_sb -= count; return 0; } /* * Try to plug the desired number of subblocks of a memory block that * is already added to Linux. * * Will modify the state of the memory block. * * Note: Can fail after some subblocks were successfully plugged. */ static int virtio_mem_sbm_plug_any_sb(struct virtio_mem *vm, unsigned long mb_id, uint64_t *nb_sb) { const int old_state = virtio_mem_sbm_get_mb_state(vm, mb_id); unsigned long pfn, nr_pages; int sb_id, count; int rc; if (WARN_ON_ONCE(!*nb_sb)) return -EINVAL; while (*nb_sb) { sb_id = virtio_mem_sbm_first_unplugged_sb(vm, mb_id); if (sb_id >= vm->sbm.sbs_per_mb) break; count = 1; while (count < *nb_sb && sb_id + count < vm->sbm.sbs_per_mb && !virtio_mem_sbm_test_sb_plugged(vm, mb_id, sb_id + count, 1)) count++; rc = virtio_mem_sbm_plug_sb(vm, mb_id, sb_id, count); if (rc) return rc; *nb_sb -= count; if (old_state == VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL) continue; /* fake-online the pages if the memory block is online */ pfn = PFN_DOWN(virtio_mem_mb_id_to_phys(mb_id) + sb_id * vm->sbm.sb_size); nr_pages = PFN_DOWN(count * vm->sbm.sb_size); virtio_mem_fake_online(pfn, nr_pages); } if (virtio_mem_sbm_test_sb_plugged(vm, mb_id, 0, vm->sbm.sbs_per_mb)) virtio_mem_sbm_set_mb_state(vm, mb_id, old_state - 1); return 0; } static int virtio_mem_sbm_plug_request(struct virtio_mem *vm, uint64_t diff) { const int mb_states[] = { VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL, VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL, VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL, }; uint64_t nb_sb = diff / vm->sbm.sb_size; unsigned long mb_id; int rc, i; if (!nb_sb) return 0; /* Don't race with onlining/offlining */ mutex_lock(&vm->hotplug_mutex); for (i = 0; i < ARRAY_SIZE(mb_states); i++) { virtio_mem_sbm_for_each_mb(vm, mb_id, mb_states[i]) { rc = virtio_mem_sbm_plug_any_sb(vm, mb_id, &nb_sb); if (rc || !nb_sb) goto out_unlock; cond_resched(); } } /* * We won't be working on online/offline memory blocks from this point, * so we can't race with memory onlining/offlining. Drop the mutex. */ mutex_unlock(&vm->hotplug_mutex); /* Try to plug and add unused blocks */ virtio_mem_sbm_for_each_mb(vm, mb_id, VIRTIO_MEM_SBM_MB_UNUSED) { if (!virtio_mem_could_add_memory(vm, memory_block_size_bytes())) return -ENOSPC; rc = virtio_mem_sbm_plug_and_add_mb(vm, mb_id, &nb_sb); if (rc || !nb_sb) return rc; cond_resched(); } /* Try to prepare, plug and add new blocks */ while (nb_sb) { if (!virtio_mem_could_add_memory(vm, memory_block_size_bytes())) return -ENOSPC; rc = virtio_mem_sbm_prepare_next_mb(vm, &mb_id); if (rc) return rc; rc = virtio_mem_sbm_plug_and_add_mb(vm, mb_id, &nb_sb); if (rc) return rc; cond_resched(); } return 0; out_unlock: mutex_unlock(&vm->hotplug_mutex); return rc; } /* * Plug a big block and add it to Linux. * * Will modify the state of the big block. */ static int virtio_mem_bbm_plug_and_add_bb(struct virtio_mem *vm, unsigned long bb_id) { int rc; if (WARN_ON_ONCE(virtio_mem_bbm_get_bb_state(vm, bb_id) != VIRTIO_MEM_BBM_BB_UNUSED)) return -EINVAL; rc = virtio_mem_bbm_plug_bb(vm, bb_id); if (rc) return rc; virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_ADDED); rc = virtio_mem_bbm_add_bb(vm, bb_id); if (rc) { if (!virtio_mem_bbm_unplug_bb(vm, bb_id)) virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_UNUSED); else /* Retry from the main loop. */ virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_PLUGGED); return rc; } return 0; } /* * Prepare tracking data for the next big block. */ static int virtio_mem_bbm_prepare_next_bb(struct virtio_mem *vm, unsigned long *bb_id) { int rc; if (vm->bbm.next_bb_id > vm->bbm.last_usable_bb_id) return -ENOSPC; /* Resize the big block state array if required. */ rc = virtio_mem_bbm_bb_states_prepare_next_bb(vm); if (rc) return rc; vm->bbm.bb_count[VIRTIO_MEM_BBM_BB_UNUSED]++; *bb_id = vm->bbm.next_bb_id; vm->bbm.next_bb_id++; return 0; } static int virtio_mem_bbm_plug_request(struct virtio_mem *vm, uint64_t diff) { uint64_t nb_bb = diff / vm->bbm.bb_size; unsigned long bb_id; int rc; if (!nb_bb) return 0; /* Try to plug and add unused big blocks */ virtio_mem_bbm_for_each_bb(vm, bb_id, VIRTIO_MEM_BBM_BB_UNUSED) { if (!virtio_mem_could_add_memory(vm, vm->bbm.bb_size)) return -ENOSPC; rc = virtio_mem_bbm_plug_and_add_bb(vm, bb_id); if (!rc) nb_bb--; if (rc || !nb_bb) return rc; cond_resched(); } /* Try to prepare, plug and add new big blocks */ while (nb_bb) { if (!virtio_mem_could_add_memory(vm, vm->bbm.bb_size)) return -ENOSPC; rc = virtio_mem_bbm_prepare_next_bb(vm, &bb_id); if (rc) return rc; rc = virtio_mem_bbm_plug_and_add_bb(vm, bb_id); if (!rc) nb_bb--; if (rc) return rc; cond_resched(); } return 0; } /* * Try to plug the requested amount of memory. */ static int virtio_mem_plug_request(struct virtio_mem *vm, uint64_t diff) { if (vm->in_sbm) return virtio_mem_sbm_plug_request(vm, diff); return virtio_mem_bbm_plug_request(vm, diff); } /* * Unplug the desired number of plugged subblocks of an offline memory block. * Will fail if any subblock cannot get unplugged (instead of skipping it). * * Will modify the state of the memory block. Might temporarily drop the * hotplug_mutex. * * Note: Can fail after some subblocks were successfully unplugged. */ static int virtio_mem_sbm_unplug_any_sb_offline(struct virtio_mem *vm, unsigned long mb_id, uint64_t *nb_sb) { int rc; rc = virtio_mem_sbm_unplug_any_sb_raw(vm, mb_id, nb_sb); /* some subblocks might have been unplugged even on failure */ if (!virtio_mem_sbm_test_sb_plugged(vm, mb_id, 0, vm->sbm.sbs_per_mb)) virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL); if (rc) return rc; if (virtio_mem_sbm_test_sb_unplugged(vm, mb_id, 0, vm->sbm.sbs_per_mb)) { /* * Remove the block from Linux - this should never fail. * Hinder the block from getting onlined by marking it * unplugged. Temporarily drop the mutex, so * any pending GOING_ONLINE requests can be serviced/rejected. */ virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_UNUSED); mutex_unlock(&vm->hotplug_mutex); rc = virtio_mem_sbm_remove_mb(vm, mb_id); BUG_ON(rc); mutex_lock(&vm->hotplug_mutex); } return 0; } /* * Unplug the given plugged subblocks of an online memory block. * * Will modify the state of the memory block. */ static int virtio_mem_sbm_unplug_sb_online(struct virtio_mem *vm, unsigned long mb_id, int sb_id, int count) { const unsigned long nr_pages = PFN_DOWN(vm->sbm.sb_size) * count; const int old_state = virtio_mem_sbm_get_mb_state(vm, mb_id); unsigned long start_pfn; int rc; start_pfn = PFN_DOWN(virtio_mem_mb_id_to_phys(mb_id) + sb_id * vm->sbm.sb_size); rc = virtio_mem_fake_offline(vm, start_pfn, nr_pages); if (rc) return rc; /* Try to unplug the allocated memory */ rc = virtio_mem_sbm_unplug_sb(vm, mb_id, sb_id, count); if (rc) { /* Return the memory to the buddy. */ virtio_mem_fake_online(start_pfn, nr_pages); return rc; } switch (old_state) { case VIRTIO_MEM_SBM_MB_KERNEL: virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL); break; case VIRTIO_MEM_SBM_MB_MOVABLE: virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL); break; } return 0; } /* * Unplug the desired number of plugged subblocks of an online memory block. * Will skip subblock that are busy. * * Will modify the state of the memory block. Might temporarily drop the * hotplug_mutex. * * Note: Can fail after some subblocks were successfully unplugged. Can * return 0 even if subblocks were busy and could not get unplugged. */ static int virtio_mem_sbm_unplug_any_sb_online(struct virtio_mem *vm, unsigned long mb_id, uint64_t *nb_sb) { int rc, sb_id; /* If possible, try to unplug the complete block in one shot. */ if (*nb_sb >= vm->sbm.sbs_per_mb && virtio_mem_sbm_test_sb_plugged(vm, mb_id, 0, vm->sbm.sbs_per_mb)) { rc = virtio_mem_sbm_unplug_sb_online(vm, mb_id, 0, vm->sbm.sbs_per_mb); if (!rc) { *nb_sb -= vm->sbm.sbs_per_mb; goto unplugged; } else if (rc != -EBUSY) return rc; } /* Fallback to single subblocks. */ for (sb_id = vm->sbm.sbs_per_mb - 1; sb_id >= 0 && *nb_sb; sb_id--) { /* Find the next candidate subblock */ while (sb_id >= 0 && !virtio_mem_sbm_test_sb_plugged(vm, mb_id, sb_id, 1)) sb_id--; if (sb_id < 0) break; rc = virtio_mem_sbm_unplug_sb_online(vm, mb_id, sb_id, 1); if (rc == -EBUSY) continue; else if (rc) return rc; *nb_sb -= 1; } unplugged: rc = virtio_mem_sbm_try_remove_unplugged_mb(vm, mb_id); if (rc) vm->sbm.have_unplugged_mb = 1; /* Ignore errors, this is not critical. We'll retry later. */ return 0; } /* * Unplug the desired number of plugged subblocks of a memory block that is * already added to Linux. Will skip subblock of online memory blocks that are * busy (by the OS). Will fail if any subblock that's not busy cannot get * unplugged. * * Will modify the state of the memory block. Might temporarily drop the * hotplug_mutex. * * Note: Can fail after some subblocks were successfully unplugged. Can * return 0 even if subblocks were busy and could not get unplugged. */ static int virtio_mem_sbm_unplug_any_sb(struct virtio_mem *vm, unsigned long mb_id, uint64_t *nb_sb) { const int old_state = virtio_mem_sbm_get_mb_state(vm, mb_id); switch (old_state) { case VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL: case VIRTIO_MEM_SBM_MB_KERNEL: case VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL: case VIRTIO_MEM_SBM_MB_MOVABLE: return virtio_mem_sbm_unplug_any_sb_online(vm, mb_id, nb_sb); case VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL: case VIRTIO_MEM_SBM_MB_OFFLINE: return virtio_mem_sbm_unplug_any_sb_offline(vm, mb_id, nb_sb); } return -EINVAL; } static int virtio_mem_sbm_unplug_request(struct virtio_mem *vm, uint64_t diff) { const int mb_states[] = { VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL, VIRTIO_MEM_SBM_MB_OFFLINE, VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL, VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL, VIRTIO_MEM_SBM_MB_MOVABLE, VIRTIO_MEM_SBM_MB_KERNEL, }; uint64_t nb_sb = diff / vm->sbm.sb_size; unsigned long mb_id; int rc, i; if (!nb_sb) return 0; /* * We'll drop the mutex a couple of times when it is safe to do so. * This might result in some blocks switching the state (online/offline) * and we could miss them in this run - we will retry again later. */ mutex_lock(&vm->hotplug_mutex); /* * We try unplug from partially plugged blocks first, to try removing * whole memory blocks along with metadata. We prioritize ZONE_MOVABLE * as it's more reliable to unplug memory and remove whole memory * blocks, and we don't want to trigger a zone imbalances by * accidentially removing too much kernel memory. */ for (i = 0; i < ARRAY_SIZE(mb_states); i++) { virtio_mem_sbm_for_each_mb_rev(vm, mb_id, mb_states[i]) { rc = virtio_mem_sbm_unplug_any_sb(vm, mb_id, &nb_sb); if (rc || !nb_sb) goto out_unlock; mutex_unlock(&vm->hotplug_mutex); cond_resched(); mutex_lock(&vm->hotplug_mutex); } if (!unplug_online && i == 1) { mutex_unlock(&vm->hotplug_mutex); return 0; } } mutex_unlock(&vm->hotplug_mutex); return nb_sb ? -EBUSY : 0; out_unlock: mutex_unlock(&vm->hotplug_mutex); return rc; } /* * Try to offline and remove a big block from Linux and unplug it. Will fail * with -EBUSY if some memory is busy and cannot get unplugged. * * Will modify the state of the memory block. Might temporarily drop the * hotplug_mutex. */ static int virtio_mem_bbm_offline_remove_and_unplug_bb(struct virtio_mem *vm, unsigned long bb_id) { const unsigned long start_pfn = PFN_DOWN(virtio_mem_bb_id_to_phys(vm, bb_id)); const unsigned long nr_pages = PFN_DOWN(vm->bbm.bb_size); unsigned long end_pfn = start_pfn + nr_pages; unsigned long pfn; struct page *page; int rc; if (WARN_ON_ONCE(virtio_mem_bbm_get_bb_state(vm, bb_id) != VIRTIO_MEM_BBM_BB_ADDED)) return -EINVAL; /* * Start by fake-offlining all memory. Once we marked the device * block as fake-offline, all newly onlined memory will * automatically be kept fake-offline. Protect from concurrent * onlining/offlining until we have a consistent state. */ mutex_lock(&vm->hotplug_mutex); virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_FAKE_OFFLINE); for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { page = pfn_to_online_page(pfn); if (!page) continue; rc = virtio_mem_fake_offline(vm, pfn, PAGES_PER_SECTION); if (rc) { end_pfn = pfn; goto rollback; } } mutex_unlock(&vm->hotplug_mutex); rc = virtio_mem_bbm_offline_and_remove_bb(vm, bb_id); if (rc) { mutex_lock(&vm->hotplug_mutex); goto rollback; } rc = virtio_mem_bbm_unplug_bb(vm, bb_id); if (rc) virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_PLUGGED); else virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_UNUSED); return rc; rollback: for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { page = pfn_to_online_page(pfn); if (!page) continue; virtio_mem_fake_online(pfn, PAGES_PER_SECTION); } virtio_mem_bbm_set_bb_state(vm, bb_id, VIRTIO_MEM_BBM_BB_ADDED); mutex_unlock(&vm->hotplug_mutex); return rc; } /* * Test if a big block is completely offline. */ static bool virtio_mem_bbm_bb_is_offline(struct virtio_mem *vm, unsigned long bb_id) { const unsigned long start_pfn = PFN_DOWN(virtio_mem_bb_id_to_phys(vm, bb_id)); const unsigned long nr_pages = PFN_DOWN(vm->bbm.bb_size); unsigned long pfn; for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn += PAGES_PER_SECTION) { if (pfn_to_online_page(pfn)) return false; } return true; } /* * Test if a big block is completely onlined to ZONE_MOVABLE (or offline). */ static bool virtio_mem_bbm_bb_is_movable(struct virtio_mem *vm, unsigned long bb_id) { const unsigned long start_pfn = PFN_DOWN(virtio_mem_bb_id_to_phys(vm, bb_id)); const unsigned long nr_pages = PFN_DOWN(vm->bbm.bb_size); struct page *page; unsigned long pfn; for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn += PAGES_PER_SECTION) { page = pfn_to_online_page(pfn); if (!page) continue; if (page_zonenum(page) != ZONE_MOVABLE) return false; } return true; } static int virtio_mem_bbm_unplug_request(struct virtio_mem *vm, uint64_t diff) { uint64_t nb_bb = diff / vm->bbm.bb_size; uint64_t bb_id; int rc, i; if (!nb_bb) return 0; /* * Try to unplug big blocks. Similar to SBM, start with offline * big blocks. */ for (i = 0; i < 3; i++) { virtio_mem_bbm_for_each_bb_rev(vm, bb_id, VIRTIO_MEM_BBM_BB_ADDED) { cond_resched(); /* * As we're holding no locks, these checks are racy, * but we don't care. */ if (i == 0 && !virtio_mem_bbm_bb_is_offline(vm, bb_id)) continue; if (i == 1 && !virtio_mem_bbm_bb_is_movable(vm, bb_id)) continue; rc = virtio_mem_bbm_offline_remove_and_unplug_bb(vm, bb_id); if (rc == -EBUSY) continue; if (!rc) nb_bb--; if (rc || !nb_bb) return rc; } if (i == 0 && !unplug_online) return 0; } return nb_bb ? -EBUSY : 0; } /* * Try to unplug the requested amount of memory. */ static int virtio_mem_unplug_request(struct virtio_mem *vm, uint64_t diff) { if (vm->in_sbm) return virtio_mem_sbm_unplug_request(vm, diff); return virtio_mem_bbm_unplug_request(vm, diff); } /* * Try to unplug all blocks that couldn't be unplugged before, for example, * because the hypervisor was busy. Further, offline and remove any memory * blocks where we previously failed. */ static int virtio_mem_cleanup_pending_mb(struct virtio_mem *vm) { unsigned long id; int rc = 0; if (!vm->in_sbm) { virtio_mem_bbm_for_each_bb(vm, id, VIRTIO_MEM_BBM_BB_PLUGGED) { rc = virtio_mem_bbm_unplug_bb(vm, id); if (rc) return rc; virtio_mem_bbm_set_bb_state(vm, id, VIRTIO_MEM_BBM_BB_UNUSED); } return 0; } virtio_mem_sbm_for_each_mb(vm, id, VIRTIO_MEM_SBM_MB_PLUGGED) { rc = virtio_mem_sbm_unplug_mb(vm, id); if (rc) return rc; virtio_mem_sbm_set_mb_state(vm, id, VIRTIO_MEM_SBM_MB_UNUSED); } if (!vm->sbm.have_unplugged_mb) return 0; /* * Let's retry (offlining and) removing completely unplugged Linux * memory blocks. */ vm->sbm.have_unplugged_mb = false; mutex_lock(&vm->hotplug_mutex); virtio_mem_sbm_for_each_mb(vm, id, VIRTIO_MEM_SBM_MB_MOVABLE_PARTIAL) rc |= virtio_mem_sbm_try_remove_unplugged_mb(vm, id); virtio_mem_sbm_for_each_mb(vm, id, VIRTIO_MEM_SBM_MB_KERNEL_PARTIAL) rc |= virtio_mem_sbm_try_remove_unplugged_mb(vm, id); virtio_mem_sbm_for_each_mb(vm, id, VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL) rc |= virtio_mem_sbm_try_remove_unplugged_mb(vm, id); mutex_unlock(&vm->hotplug_mutex); if (rc) vm->sbm.have_unplugged_mb = true; /* Ignore errors, this is not critical. We'll retry later. */ return 0; } /* * Update all parts of the config that could have changed. */ static void virtio_mem_refresh_config(struct virtio_mem *vm) { const struct range pluggable_range = mhp_get_pluggable_range(true); uint64_t new_plugged_size, usable_region_size, end_addr; /* the plugged_size is just a reflection of what _we_ did previously */ virtio_cread_le(vm->vdev, struct virtio_mem_config, plugged_size, &new_plugged_size); if (WARN_ON_ONCE(new_plugged_size != vm->plugged_size)) vm->plugged_size = new_plugged_size; /* calculate the last usable memory block id */ virtio_cread_le(vm->vdev, struct virtio_mem_config, usable_region_size, &usable_region_size); end_addr = min(vm->addr + usable_region_size - 1, pluggable_range.end); if (vm->in_sbm) { vm->sbm.last_usable_mb_id = virtio_mem_phys_to_mb_id(end_addr); if (!IS_ALIGNED(end_addr + 1, memory_block_size_bytes())) vm->sbm.last_usable_mb_id--; } else { vm->bbm.last_usable_bb_id = virtio_mem_phys_to_bb_id(vm, end_addr); if (!IS_ALIGNED(end_addr + 1, vm->bbm.bb_size)) vm->bbm.last_usable_bb_id--; } /* * If we cannot plug any of our device memory (e.g., nothing in the * usable region is addressable), the last usable memory block id will * be smaller than the first usable memory block id. We'll stop * attempting to add memory with -ENOSPC from our main loop. */ /* see if there is a request to change the size */ virtio_cread_le(vm->vdev, struct virtio_mem_config, requested_size, &vm->requested_size); dev_info(&vm->vdev->dev, "plugged size: 0x%llx", vm->plugged_size); dev_info(&vm->vdev->dev, "requested size: 0x%llx", vm->requested_size); } /* * Workqueue function for handling plug/unplug requests and config updates. */ static void virtio_mem_run_wq(struct work_struct *work) { struct virtio_mem *vm = container_of(work, struct virtio_mem, wq); uint64_t diff; int rc; if (unlikely(vm->in_kdump)) { dev_warn_once(&vm->vdev->dev, "unexpected workqueue run in kdump kernel\n"); return; } hrtimer_cancel(&vm->retry_timer); if (vm->broken) return; atomic_set(&vm->wq_active, 1); retry: rc = 0; /* Make sure we start with a clean state if there are leftovers. */ if (unlikely(vm->unplug_all_required)) rc = virtio_mem_send_unplug_all_request(vm); if (atomic_read(&vm->config_changed)) { atomic_set(&vm->config_changed, 0); virtio_mem_refresh_config(vm); } /* Cleanup any leftovers from previous runs */ if (!rc) rc = virtio_mem_cleanup_pending_mb(vm); if (!rc && vm->requested_size != vm->plugged_size) { if (vm->requested_size > vm->plugged_size) { diff = vm->requested_size - vm->plugged_size; rc = virtio_mem_plug_request(vm, diff); } else { diff = vm->plugged_size - vm->requested_size; rc = virtio_mem_unplug_request(vm, diff); } } /* * Keep retrying to offline and remove completely unplugged Linux * memory blocks. */ if (!rc && vm->in_sbm && vm->sbm.have_unplugged_mb) rc = -EBUSY; switch (rc) { case 0: vm->retry_timer_ms = VIRTIO_MEM_RETRY_TIMER_MIN_MS; break; case -ENOSPC: /* * We cannot add any more memory (alignment, physical limit) * or we have too many offline memory blocks. */ break; case -ETXTBSY: /* * The hypervisor cannot process our request right now * (e.g., out of memory, migrating); */ case -EBUSY: /* * We cannot free up any memory to unplug it (all plugged memory * is busy). */ case -ENOMEM: /* Out of memory, try again later. */ hrtimer_start(&vm->retry_timer, ms_to_ktime(vm->retry_timer_ms), HRTIMER_MODE_REL); break; case -EAGAIN: /* Retry immediately (e.g., the config changed). */ goto retry; default: /* Unknown error, mark as broken */ dev_err(&vm->vdev->dev, "unknown error, marking device broken: %d\n", rc); vm->broken = true; } atomic_set(&vm->wq_active, 0); } static enum hrtimer_restart virtio_mem_timer_expired(struct hrtimer *timer) { struct virtio_mem *vm = container_of(timer, struct virtio_mem, retry_timer); virtio_mem_retry(vm); vm->retry_timer_ms = min_t(unsigned int, vm->retry_timer_ms * 2, VIRTIO_MEM_RETRY_TIMER_MAX_MS); return HRTIMER_NORESTART; } static void virtio_mem_handle_response(struct virtqueue *vq) { struct virtio_mem *vm = vq->vdev->priv; wake_up(&vm->host_resp); } static int virtio_mem_init_vq(struct virtio_mem *vm) { struct virtqueue *vq; vq = virtio_find_single_vq(vm->vdev, virtio_mem_handle_response, "guest-request"); if (IS_ERR(vq)) return PTR_ERR(vq); vm->vq = vq; return 0; } static int virtio_mem_init_hotplug(struct virtio_mem *vm) { const struct range pluggable_range = mhp_get_pluggable_range(true); uint64_t unit_pages, sb_size, addr; int rc; /* bad device setup - warn only */ if (!IS_ALIGNED(vm->addr, memory_block_size_bytes())) dev_warn(&vm->vdev->dev, "The alignment of the physical start address can make some memory unusable.\n"); if (!IS_ALIGNED(vm->addr + vm->region_size, memory_block_size_bytes())) dev_warn(&vm->vdev->dev, "The alignment of the physical end address can make some memory unusable.\n"); if (vm->addr < pluggable_range.start || vm->addr + vm->region_size - 1 > pluggable_range.end) dev_warn(&vm->vdev->dev, "Some device memory is not addressable/pluggable. This can make some memory unusable.\n"); /* Prepare the offline threshold - make sure we can add two blocks. */ vm->offline_threshold = max_t(uint64_t, 2 * memory_block_size_bytes(), VIRTIO_MEM_DEFAULT_OFFLINE_THRESHOLD); /* * alloc_contig_range() works reliably with pageblock * granularity on ZONE_NORMAL, use pageblock_nr_pages. */ sb_size = PAGE_SIZE * pageblock_nr_pages; sb_size = max_t(uint64_t, vm->device_block_size, sb_size); if (sb_size < memory_block_size_bytes() && !force_bbm) { /* SBM: At least two subblocks per Linux memory block. */ vm->in_sbm = true; vm->sbm.sb_size = sb_size; vm->sbm.sbs_per_mb = memory_block_size_bytes() / vm->sbm.sb_size; /* Round up to the next full memory block */ addr = max_t(uint64_t, vm->addr, pluggable_range.start) + memory_block_size_bytes() - 1; vm->sbm.first_mb_id = virtio_mem_phys_to_mb_id(addr); vm->sbm.next_mb_id = vm->sbm.first_mb_id; } else { /* BBM: At least one Linux memory block. */ vm->bbm.bb_size = max_t(uint64_t, vm->device_block_size, memory_block_size_bytes()); if (bbm_block_size) { if (!is_power_of_2(bbm_block_size)) { dev_warn(&vm->vdev->dev, "bbm_block_size is not a power of 2"); } else if (bbm_block_size < vm->bbm.bb_size) { dev_warn(&vm->vdev->dev, "bbm_block_size is too small"); } else { vm->bbm.bb_size = bbm_block_size; } } /* Round up to the next aligned big block */ addr = max_t(uint64_t, vm->addr, pluggable_range.start) + vm->bbm.bb_size - 1; vm->bbm.first_bb_id = virtio_mem_phys_to_bb_id(vm, addr); vm->bbm.next_bb_id = vm->bbm.first_bb_id; /* Make sure we can add two big blocks. */ vm->offline_threshold = max_t(uint64_t, 2 * vm->bbm.bb_size, vm->offline_threshold); } dev_info(&vm->vdev->dev, "memory block size: 0x%lx", memory_block_size_bytes()); if (vm->in_sbm) dev_info(&vm->vdev->dev, "subblock size: 0x%llx", (unsigned long long)vm->sbm.sb_size); else dev_info(&vm->vdev->dev, "big block size: 0x%llx", (unsigned long long)vm->bbm.bb_size); /* create the parent resource for all memory */ rc = virtio_mem_create_resource(vm); if (rc) return rc; /* use a single dynamic memory group to cover the whole memory device */ if (vm->in_sbm) unit_pages = PHYS_PFN(memory_block_size_bytes()); else unit_pages = PHYS_PFN(vm->bbm.bb_size); rc = memory_group_register_dynamic(vm->nid, unit_pages); if (rc < 0) goto out_del_resource; vm->mgid = rc; /* * If we still have memory plugged, we have to unplug all memory first. * Registering our parent resource makes sure that this memory isn't * actually in use (e.g., trying to reload the driver). */ if (vm->plugged_size) { vm->unplug_all_required = true; dev_info(&vm->vdev->dev, "unplugging all memory is required\n"); } /* register callbacks */ vm->memory_notifier.notifier_call = virtio_mem_memory_notifier_cb; rc = register_memory_notifier(&vm->memory_notifier); if (rc) goto out_unreg_group; /* Block hibernation as early as possible. */ vm->pm_notifier.priority = INT_MAX; vm->pm_notifier.notifier_call = virtio_mem_pm_notifier_cb; rc = register_pm_notifier(&vm->pm_notifier); if (rc) goto out_unreg_mem; rc = register_virtio_mem_device(vm); if (rc) goto out_unreg_pm; return 0; out_unreg_pm: unregister_pm_notifier(&vm->pm_notifier); out_unreg_mem: unregister_memory_notifier(&vm->memory_notifier); out_unreg_group: memory_group_unregister(vm->mgid); out_del_resource: virtio_mem_delete_resource(vm); return rc; } #ifdef CONFIG_PROC_VMCORE static int virtio_mem_send_state_request(struct virtio_mem *vm, uint64_t addr, uint64_t size) { const uint64_t nb_vm_blocks = size / vm->device_block_size; const struct virtio_mem_req req = { .type = cpu_to_virtio16(vm->vdev, VIRTIO_MEM_REQ_STATE), .u.state.addr = cpu_to_virtio64(vm->vdev, addr), .u.state.nb_blocks = cpu_to_virtio16(vm->vdev, nb_vm_blocks), }; int rc = -ENOMEM; dev_dbg(&vm->vdev->dev, "requesting state: 0x%llx - 0x%llx\n", addr, addr + size - 1); switch (virtio_mem_send_request(vm, &req)) { case VIRTIO_MEM_RESP_ACK: return virtio16_to_cpu(vm->vdev, vm->resp.u.state.state); case VIRTIO_MEM_RESP_ERROR: rc = -EINVAL; break; default: break; } dev_dbg(&vm->vdev->dev, "requesting state failed: %d\n", rc); return rc; } static bool virtio_mem_vmcore_pfn_is_ram(struct vmcore_cb *cb, unsigned long pfn) { struct virtio_mem *vm = container_of(cb, struct virtio_mem, vmcore_cb); uint64_t addr = PFN_PHYS(pfn); bool is_ram; int rc; if (!virtio_mem_contains_range(vm, addr, PAGE_SIZE)) return true; if (!vm->plugged_size) return false; /* * We have to serialize device requests and access to the information * about the block queried last. */ mutex_lock(&vm->hotplug_mutex); addr = ALIGN_DOWN(addr, vm->device_block_size); if (addr != vm->last_block_addr) { rc = virtio_mem_send_state_request(vm, addr, vm->device_block_size); /* On any kind of error, we're going to signal !ram. */ if (rc == VIRTIO_MEM_STATE_PLUGGED) vm->last_block_plugged = true; else vm->last_block_plugged = false; vm->last_block_addr = addr; } is_ram = vm->last_block_plugged; mutex_unlock(&vm->hotplug_mutex); return is_ram; } #endif /* CONFIG_PROC_VMCORE */ static int virtio_mem_init_kdump(struct virtio_mem *vm) { #ifdef CONFIG_PROC_VMCORE dev_info(&vm->vdev->dev, "memory hot(un)plug disabled in kdump kernel\n"); vm->vmcore_cb.pfn_is_ram = virtio_mem_vmcore_pfn_is_ram; register_vmcore_cb(&vm->vmcore_cb); return 0; #else /* CONFIG_PROC_VMCORE */ dev_warn(&vm->vdev->dev, "disabled in kdump kernel without vmcore\n"); return -EBUSY; #endif /* CONFIG_PROC_VMCORE */ } static int virtio_mem_init(struct virtio_mem *vm) { uint16_t node_id; if (!vm->vdev->config->get) { dev_err(&vm->vdev->dev, "config access disabled\n"); return -EINVAL; } /* Fetch all properties that can't change. */ virtio_cread_le(vm->vdev, struct virtio_mem_config, plugged_size, &vm->plugged_size); virtio_cread_le(vm->vdev, struct virtio_mem_config, block_size, &vm->device_block_size); virtio_cread_le(vm->vdev, struct virtio_mem_config, node_id, &node_id); vm->nid = virtio_mem_translate_node_id(vm, node_id); virtio_cread_le(vm->vdev, struct virtio_mem_config, addr, &vm->addr); virtio_cread_le(vm->vdev, struct virtio_mem_config, region_size, &vm->region_size); /* Determine the nid for the device based on the lowest address. */ if (vm->nid == NUMA_NO_NODE) vm->nid = memory_add_physaddr_to_nid(vm->addr); dev_info(&vm->vdev->dev, "start address: 0x%llx", vm->addr); dev_info(&vm->vdev->dev, "region size: 0x%llx", vm->region_size); dev_info(&vm->vdev->dev, "device block size: 0x%llx", (unsigned long long)vm->device_block_size); if (vm->nid != NUMA_NO_NODE && IS_ENABLED(CONFIG_NUMA)) dev_info(&vm->vdev->dev, "nid: %d", vm->nid); /* * We don't want to (un)plug or reuse any memory when in kdump. The * memory is still accessible (but not exposed to Linux). */ if (vm->in_kdump) return virtio_mem_init_kdump(vm); return virtio_mem_init_hotplug(vm); } static int virtio_mem_create_resource(struct virtio_mem *vm) { /* * When force-unloading the driver and removing the device, we * could have a garbage pointer. Duplicate the string. */ const char *name = kstrdup(dev_name(&vm->vdev->dev), GFP_KERNEL); if (!name) return -ENOMEM; /* Disallow mapping device memory via /dev/mem completely. */ vm->parent_resource = __request_mem_region(vm->addr, vm->region_size, name, IORESOURCE_SYSTEM_RAM | IORESOURCE_EXCLUSIVE); if (!vm->parent_resource) { kfree(name); dev_warn(&vm->vdev->dev, "could not reserve device region\n"); dev_info(&vm->vdev->dev, "reloading the driver is not supported\n"); return -EBUSY; } /* The memory is not actually busy - make add_memory() work. */ vm->parent_resource->flags &= ~IORESOURCE_BUSY; return 0; } static void virtio_mem_delete_resource(struct virtio_mem *vm) { const char *name; if (!vm->parent_resource) return; name = vm->parent_resource->name; release_resource(vm->parent_resource); kfree(vm->parent_resource); kfree(name); vm->parent_resource = NULL; } static int virtio_mem_range_has_system_ram(struct resource *res, void *arg) { return 1; } static bool virtio_mem_has_memory_added(struct virtio_mem *vm) { const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; return walk_iomem_res_desc(IORES_DESC_NONE, flags, vm->addr, vm->addr + vm->region_size, NULL, virtio_mem_range_has_system_ram) == 1; } static int virtio_mem_probe(struct virtio_device *vdev) { struct virtio_mem *vm; int rc; BUILD_BUG_ON(sizeof(struct virtio_mem_req) != 24); BUILD_BUG_ON(sizeof(struct virtio_mem_resp) != 10); vdev->priv = vm = kzalloc(sizeof(*vm), GFP_KERNEL); if (!vm) return -ENOMEM; init_waitqueue_head(&vm->host_resp); vm->vdev = vdev; INIT_WORK(&vm->wq, virtio_mem_run_wq); mutex_init(&vm->hotplug_mutex); INIT_LIST_HEAD(&vm->next); spin_lock_init(&vm->removal_lock); hrtimer_init(&vm->retry_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); vm->retry_timer.function = virtio_mem_timer_expired; vm->retry_timer_ms = VIRTIO_MEM_RETRY_TIMER_MIN_MS; vm->in_kdump = is_kdump_kernel(); /* register the virtqueue */ rc = virtio_mem_init_vq(vm); if (rc) goto out_free_vm; /* initialize the device by querying the config */ rc = virtio_mem_init(vm); if (rc) goto out_del_vq; virtio_device_ready(vdev); /* trigger a config update to start processing the requested_size */ if (!vm->in_kdump) { atomic_set(&vm->config_changed, 1); queue_work(system_freezable_wq, &vm->wq); } return 0; out_del_vq: vdev->config->del_vqs(vdev); out_free_vm: kfree(vm); vdev->priv = NULL; return rc; } static void virtio_mem_deinit_hotplug(struct virtio_mem *vm) { unsigned long mb_id; int rc; /* * Make sure the workqueue won't be triggered anymore and no memory * blocks can be onlined/offlined until we're finished here. */ mutex_lock(&vm->hotplug_mutex); spin_lock_irq(&vm->removal_lock); vm->removing = true; spin_unlock_irq(&vm->removal_lock); mutex_unlock(&vm->hotplug_mutex); /* wait until the workqueue stopped */ cancel_work_sync(&vm->wq); hrtimer_cancel(&vm->retry_timer); if (vm->in_sbm) { /* * After we unregistered our callbacks, user space can online * partially plugged offline blocks. Make sure to remove them. */ virtio_mem_sbm_for_each_mb(vm, mb_id, VIRTIO_MEM_SBM_MB_OFFLINE_PARTIAL) { rc = virtio_mem_sbm_remove_mb(vm, mb_id); BUG_ON(rc); virtio_mem_sbm_set_mb_state(vm, mb_id, VIRTIO_MEM_SBM_MB_UNUSED); } /* * After we unregistered our callbacks, user space can no longer * offline partially plugged online memory blocks. No need to * worry about them. */ } /* unregister callbacks */ unregister_virtio_mem_device(vm); unregister_pm_notifier(&vm->pm_notifier); unregister_memory_notifier(&vm->memory_notifier); /* * There is no way we could reliably remove all memory we have added to * the system. And there is no way to stop the driver/device from going * away. Warn at least. */ if (virtio_mem_has_memory_added(vm)) { dev_warn(&vm->vdev->dev, "device still has system memory added\n"); } else { virtio_mem_delete_resource(vm); kfree_const(vm->resource_name); memory_group_unregister(vm->mgid); } /* remove all tracking data - no locking needed */ if (vm->in_sbm) { vfree(vm->sbm.mb_states); vfree(vm->sbm.sb_states); } else { vfree(vm->bbm.bb_states); } } static void virtio_mem_deinit_kdump(struct virtio_mem *vm) { #ifdef CONFIG_PROC_VMCORE unregister_vmcore_cb(&vm->vmcore_cb); #endif /* CONFIG_PROC_VMCORE */ } static void virtio_mem_remove(struct virtio_device *vdev) { struct virtio_mem *vm = vdev->priv; if (vm->in_kdump) virtio_mem_deinit_kdump(vm); else virtio_mem_deinit_hotplug(vm); /* reset the device and cleanup the queues */ virtio_reset_device(vdev); vdev->config->del_vqs(vdev); kfree(vm); vdev->priv = NULL; } static void virtio_mem_config_changed(struct virtio_device *vdev) { struct virtio_mem *vm = vdev->priv; if (unlikely(vm->in_kdump)) return; atomic_set(&vm->config_changed, 1); virtio_mem_retry(vm); } #ifdef CONFIG_PM_SLEEP static int virtio_mem_freeze(struct virtio_device *vdev) { struct virtio_mem *vm = vdev->priv; /* * We block hibernation using the PM notifier completely. The workqueue * is already frozen by the PM core at this point, so we simply * reset the device and cleanup the queues. */ if (pm_suspend_target_state != PM_SUSPEND_TO_IDLE && vm->plugged_size && !virtio_has_feature(vm->vdev, VIRTIO_MEM_F_PERSISTENT_SUSPEND)) { dev_err(&vm->vdev->dev, "suspending with plugged memory is not supported\n"); return -EPERM; } virtio_reset_device(vdev); vdev->config->del_vqs(vdev); vm->vq = NULL; return 0; } static int virtio_mem_restore(struct virtio_device *vdev) { struct virtio_mem *vm = vdev->priv; int ret; ret = virtio_mem_init_vq(vm); if (ret) return ret; virtio_device_ready(vdev); /* Let's check if anything changed. */ virtio_mem_config_changed(vdev); return 0; } #endif static unsigned int virtio_mem_features[] = { #if defined(CONFIG_NUMA) && defined(CONFIG_ACPI_NUMA) VIRTIO_MEM_F_ACPI_PXM, #endif VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE, VIRTIO_MEM_F_PERSISTENT_SUSPEND, }; static const struct virtio_device_id virtio_mem_id_table[] = { { VIRTIO_ID_MEM, VIRTIO_DEV_ANY_ID }, { 0 }, }; static struct virtio_driver virtio_mem_driver = { .feature_table = virtio_mem_features, .feature_table_size = ARRAY_SIZE(virtio_mem_features), .driver.name = KBUILD_MODNAME, .id_table = virtio_mem_id_table, .probe = virtio_mem_probe, .remove = virtio_mem_remove, .config_changed = virtio_mem_config_changed, #ifdef CONFIG_PM_SLEEP .freeze = virtio_mem_freeze, .restore = virtio_mem_restore, #endif }; module_virtio_driver(virtio_mem_driver); MODULE_DEVICE_TABLE(virtio, virtio_mem_id_table); MODULE_AUTHOR("David Hildenbrand <[email protected]>"); MODULE_DESCRIPTION("Virtio-mem driver"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_bo.h" #include "vmwgfx_drv.h" #include "vmwgfx_devcaps.h" #include <drm/ttm/ttm_placement.h> #include <linux/sched/signal.h> #include <linux/vmalloc.h> bool vmw_supports_3d(struct vmw_private *dev_priv) { uint32_t fifo_min, hwversion; const struct vmw_fifo_state *fifo = dev_priv->fifo; if (!(dev_priv->capabilities & SVGA_CAP_3D)) return false; if (dev_priv->capabilities & SVGA_CAP_GBOBJECTS) { uint32_t result; if (!dev_priv->has_mob) return false; result = vmw_devcap_get(dev_priv, SVGA3D_DEVCAP_3D); return (result != 0); } if (!(dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO)) return false; BUG_ON(vmw_is_svga_v3(dev_priv)); fifo_min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); if (fifo_min <= SVGA_FIFO_3D_HWVERSION * sizeof(unsigned int)) return false; hwversion = vmw_fifo_mem_read(dev_priv, ((fifo->capabilities & SVGA_FIFO_CAP_3D_HWVERSION_REVISED) ? SVGA_FIFO_3D_HWVERSION_REVISED : SVGA_FIFO_3D_HWVERSION)); if (hwversion == 0) return false; if (hwversion < SVGA3D_HWVERSION_WS8_B1) return false; /* Legacy Display Unit does not support surfaces */ if (dev_priv->active_display_unit == vmw_du_legacy) return false; return true; } bool vmw_fifo_have_pitchlock(struct vmw_private *dev_priv) { uint32_t caps; if (!(dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO)) return false; caps = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CAPABILITIES); if (caps & SVGA_FIFO_CAP_PITCHLOCK) return true; return false; } struct vmw_fifo_state *vmw_fifo_create(struct vmw_private *dev_priv) { struct vmw_fifo_state *fifo; uint32_t max; uint32_t min; if (!dev_priv->fifo_mem) return NULL; fifo = kzalloc(sizeof(*fifo), GFP_KERNEL); if (!fifo) return ERR_PTR(-ENOMEM); fifo->static_buffer_size = VMWGFX_FIFO_STATIC_SIZE; fifo->static_buffer = vmalloc(fifo->static_buffer_size); if (unlikely(fifo->static_buffer == NULL)) { kfree(fifo); return ERR_PTR(-ENOMEM); } fifo->dynamic_buffer = NULL; fifo->reserved_size = 0; fifo->using_bounce_buffer = false; mutex_init(&fifo->fifo_mutex); init_rwsem(&fifo->rwsem); min = 4; if (dev_priv->capabilities & SVGA_CAP_EXTENDED_FIFO) min = vmw_read(dev_priv, SVGA_REG_MEM_REGS); min <<= 2; if (min < PAGE_SIZE) min = PAGE_SIZE; vmw_fifo_mem_write(dev_priv, SVGA_FIFO_MIN, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_MAX, dev_priv->fifo_mem_size); wmb(); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_NEXT_CMD, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_STOP, min); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_BUSY, 0); mb(); vmw_write(dev_priv, SVGA_REG_CONFIG_DONE, 1); max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); fifo->capabilities = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_CAPABILITIES); drm_info(&dev_priv->drm, "Fifo max 0x%08x min 0x%08x cap 0x%08x\n", (unsigned int) max, (unsigned int) min, (unsigned int) fifo->capabilities); if (unlikely(min >= max)) { drm_warn(&dev_priv->drm, "FIFO memory is not usable. Driver failed to initialize."); return ERR_PTR(-ENXIO); } return fifo; } void vmw_fifo_ping_host(struct vmw_private *dev_priv, uint32_t reason) { u32 *fifo_mem = dev_priv->fifo_mem; if (fifo_mem && cmpxchg(fifo_mem + SVGA_FIFO_BUSY, 0, 1) == 0) vmw_write(dev_priv, SVGA_REG_SYNC, reason); } void vmw_fifo_destroy(struct vmw_private *dev_priv) { struct vmw_fifo_state *fifo = dev_priv->fifo; if (!fifo) return; if (likely(fifo->static_buffer != NULL)) { vfree(fifo->static_buffer); fifo->static_buffer = NULL; } if (likely(fifo->dynamic_buffer != NULL)) { vfree(fifo->dynamic_buffer); fifo->dynamic_buffer = NULL; } kfree(fifo); dev_priv->fifo = NULL; } static bool vmw_fifo_is_full(struct vmw_private *dev_priv, uint32_t bytes) { uint32_t max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); uint32_t next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); uint32_t min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); uint32_t stop = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_STOP); return ((max - next_cmd) + (stop - min) <= bytes); } static int vmw_fifo_wait_noirq(struct vmw_private *dev_priv, uint32_t bytes, bool interruptible, unsigned long timeout) { int ret = 0; unsigned long end_jiffies = jiffies + timeout; DEFINE_WAIT(__wait); DRM_INFO("Fifo wait noirq.\n"); for (;;) { prepare_to_wait(&dev_priv->fifo_queue, &__wait, (interruptible) ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE); if (!vmw_fifo_is_full(dev_priv, bytes)) break; if (time_after_eq(jiffies, end_jiffies)) { ret = -EBUSY; DRM_ERROR("SVGA device lockup.\n"); break; } schedule_timeout(1); if (interruptible && signal_pending(current)) { ret = -ERESTARTSYS; break; } } finish_wait(&dev_priv->fifo_queue, &__wait); wake_up_all(&dev_priv->fifo_queue); DRM_INFO("Fifo noirq exit.\n"); return ret; } static int vmw_fifo_wait(struct vmw_private *dev_priv, uint32_t bytes, bool interruptible, unsigned long timeout) { long ret = 1L; if (likely(!vmw_fifo_is_full(dev_priv, bytes))) return 0; vmw_fifo_ping_host(dev_priv, SVGA_SYNC_FIFOFULL); if (!(dev_priv->capabilities & SVGA_CAP_IRQMASK)) return vmw_fifo_wait_noirq(dev_priv, bytes, interruptible, timeout); vmw_generic_waiter_add(dev_priv, SVGA_IRQFLAG_FIFO_PROGRESS, &dev_priv->fifo_queue_waiters); if (interruptible) ret = wait_event_interruptible_timeout (dev_priv->fifo_queue, !vmw_fifo_is_full(dev_priv, bytes), timeout); else ret = wait_event_timeout (dev_priv->fifo_queue, !vmw_fifo_is_full(dev_priv, bytes), timeout); if (unlikely(ret == 0)) ret = -EBUSY; else if (likely(ret > 0)) ret = 0; vmw_generic_waiter_remove(dev_priv, SVGA_IRQFLAG_FIFO_PROGRESS, &dev_priv->fifo_queue_waiters); return ret; } /* * Reserve @bytes number of bytes in the fifo. * * This function will return NULL (error) on two conditions: * If it timeouts waiting for fifo space, or if @bytes is larger than the * available fifo space. * * Returns: * Pointer to the fifo, or null on error (possible hardware hang). */ static void *vmw_local_fifo_reserve(struct vmw_private *dev_priv, uint32_t bytes) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; u32 *fifo_mem = dev_priv->fifo_mem; uint32_t max; uint32_t min; uint32_t next_cmd; uint32_t reserveable = fifo_state->capabilities & SVGA_FIFO_CAP_RESERVE; int ret; mutex_lock(&fifo_state->fifo_mutex); max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); if (unlikely(bytes >= (max - min))) goto out_err; BUG_ON(fifo_state->reserved_size != 0); BUG_ON(fifo_state->dynamic_buffer != NULL); fifo_state->reserved_size = bytes; while (1) { uint32_t stop = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_STOP); bool need_bounce = false; bool reserve_in_place = false; if (next_cmd >= stop) { if (likely((next_cmd + bytes < max || (next_cmd + bytes == max && stop > min)))) reserve_in_place = true; else if (vmw_fifo_is_full(dev_priv, bytes)) { ret = vmw_fifo_wait(dev_priv, bytes, false, 3 * HZ); if (unlikely(ret != 0)) goto out_err; } else need_bounce = true; } else { if (likely((next_cmd + bytes < stop))) reserve_in_place = true; else { ret = vmw_fifo_wait(dev_priv, bytes, false, 3 * HZ); if (unlikely(ret != 0)) goto out_err; } } if (reserve_in_place) { if (reserveable || bytes <= sizeof(uint32_t)) { fifo_state->using_bounce_buffer = false; if (reserveable) vmw_fifo_mem_write(dev_priv, SVGA_FIFO_RESERVED, bytes); return (void __force *) (fifo_mem + (next_cmd >> 2)); } else { need_bounce = true; } } if (need_bounce) { fifo_state->using_bounce_buffer = true; if (bytes < fifo_state->static_buffer_size) return fifo_state->static_buffer; else { fifo_state->dynamic_buffer = vmalloc(bytes); if (!fifo_state->dynamic_buffer) goto out_err; return fifo_state->dynamic_buffer; } } } out_err: fifo_state->reserved_size = 0; mutex_unlock(&fifo_state->fifo_mutex); return NULL; } void *vmw_cmd_ctx_reserve(struct vmw_private *dev_priv, uint32_t bytes, int ctx_id) { void *ret; if (dev_priv->cman) ret = vmw_cmdbuf_reserve(dev_priv->cman, bytes, ctx_id, false, NULL); else if (ctx_id == SVGA3D_INVALID_ID) ret = vmw_local_fifo_reserve(dev_priv, bytes); else { WARN(1, "Command buffer has not been allocated.\n"); ret = NULL; } if (IS_ERR_OR_NULL(ret)) return NULL; return ret; } static void vmw_fifo_res_copy(struct vmw_fifo_state *fifo_state, struct vmw_private *vmw, uint32_t next_cmd, uint32_t max, uint32_t min, uint32_t bytes) { u32 *fifo_mem = vmw->fifo_mem; uint32_t chunk_size = max - next_cmd; uint32_t rest; uint32_t *buffer = (fifo_state->dynamic_buffer != NULL) ? fifo_state->dynamic_buffer : fifo_state->static_buffer; if (bytes < chunk_size) chunk_size = bytes; vmw_fifo_mem_write(vmw, SVGA_FIFO_RESERVED, bytes); mb(); memcpy(fifo_mem + (next_cmd >> 2), buffer, chunk_size); rest = bytes - chunk_size; if (rest) memcpy(fifo_mem + (min >> 2), buffer + (chunk_size >> 2), rest); } static void vmw_fifo_slow_copy(struct vmw_fifo_state *fifo_state, struct vmw_private *vmw, uint32_t next_cmd, uint32_t max, uint32_t min, uint32_t bytes) { uint32_t *buffer = (fifo_state->dynamic_buffer != NULL) ? fifo_state->dynamic_buffer : fifo_state->static_buffer; while (bytes > 0) { vmw_fifo_mem_write(vmw, (next_cmd >> 2), *buffer++); next_cmd += sizeof(uint32_t); if (unlikely(next_cmd == max)) next_cmd = min; mb(); vmw_fifo_mem_write(vmw, SVGA_FIFO_NEXT_CMD, next_cmd); mb(); bytes -= sizeof(uint32_t); } } static void vmw_local_fifo_commit(struct vmw_private *dev_priv, uint32_t bytes) { struct vmw_fifo_state *fifo_state = dev_priv->fifo; uint32_t next_cmd = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_NEXT_CMD); uint32_t max = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MAX); uint32_t min = vmw_fifo_mem_read(dev_priv, SVGA_FIFO_MIN); bool reserveable = fifo_state->capabilities & SVGA_FIFO_CAP_RESERVE; BUG_ON((bytes & 3) != 0); BUG_ON(bytes > fifo_state->reserved_size); fifo_state->reserved_size = 0; if (fifo_state->using_bounce_buffer) { if (reserveable) vmw_fifo_res_copy(fifo_state, dev_priv, next_cmd, max, min, bytes); else vmw_fifo_slow_copy(fifo_state, dev_priv, next_cmd, max, min, bytes); if (fifo_state->dynamic_buffer) { vfree(fifo_state->dynamic_buffer); fifo_state->dynamic_buffer = NULL; } } down_write(&fifo_state->rwsem); if (fifo_state->using_bounce_buffer || reserveable) { next_cmd += bytes; if (next_cmd >= max) next_cmd -= max - min; mb(); vmw_fifo_mem_write(dev_priv, SVGA_FIFO_NEXT_CMD, next_cmd); } if (reserveable) vmw_fifo_mem_write(dev_priv, SVGA_FIFO_RESERVED, 0); mb(); up_write(&fifo_state->rwsem); vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC); mutex_unlock(&fifo_state->fifo_mutex); } void vmw_cmd_commit(struct vmw_private *dev_priv, uint32_t bytes) { if (dev_priv->cman) vmw_cmdbuf_commit(dev_priv->cman, bytes, NULL, false); else vmw_local_fifo_commit(dev_priv, bytes); } /** * vmw_cmd_commit_flush - Commit fifo space and flush any buffered commands. * * @dev_priv: Pointer to device private structure. * @bytes: Number of bytes to commit. */ void vmw_cmd_commit_flush(struct vmw_private *dev_priv, uint32_t bytes) { if (dev_priv->cman) vmw_cmdbuf_commit(dev_priv->cman, bytes, NULL, true); else vmw_local_fifo_commit(dev_priv, bytes); } /** * vmw_cmd_flush - Flush any buffered commands and make sure command processing * starts. * * @dev_priv: Pointer to device private structure. * @interruptible: Whether to wait interruptible if function needs to sleep. */ int vmw_cmd_flush(struct vmw_private *dev_priv, bool interruptible) { might_sleep(); if (dev_priv->cman) return vmw_cmdbuf_cur_flush(dev_priv->cman, interruptible); else return 0; } int vmw_cmd_send_fence(struct vmw_private *dev_priv, uint32_t *seqno) { struct svga_fifo_cmd_fence *cmd_fence; u32 *fm; int ret = 0; uint32_t bytes = sizeof(u32) + sizeof(*cmd_fence); fm = VMW_CMD_RESERVE(dev_priv, bytes); if (unlikely(fm == NULL)) { *seqno = atomic_read(&dev_priv->marker_seq); ret = -ENOMEM; (void)vmw_fallback_wait(dev_priv, false, true, *seqno, false, 3*HZ); goto out_err; } do { *seqno = atomic_add_return(1, &dev_priv->marker_seq); } while (*seqno == 0); if (!vmw_has_fences(dev_priv)) { /* * Don't request hardware to send a fence. The * waiting code in vmwgfx_irq.c will emulate this. */ vmw_cmd_commit(dev_priv, 0); return 0; } *fm++ = SVGA_CMD_FENCE; cmd_fence = (struct svga_fifo_cmd_fence *) fm; cmd_fence->fence = *seqno; vmw_cmd_commit_flush(dev_priv, bytes); vmw_update_seqno(dev_priv); out_err: return ret; } /** * vmw_cmd_emit_dummy_legacy_query - emits a dummy query to the fifo using * legacy query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * See the vmw_cmd_emit_dummy_query documentation. */ static int vmw_cmd_emit_dummy_legacy_query(struct vmw_private *dev_priv, uint32_t cid) { /* * A query wait without a preceding query end will * actually finish all queries for this cid * without writing to the query result structure. */ struct ttm_buffer_object *bo = &dev_priv->dummy_query_bo->tbo; struct { SVGA3dCmdHeader header; SVGA3dCmdWaitForQuery body; } *cmd; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_WAIT_FOR_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = cid; cmd->body.type = SVGA3D_QUERYTYPE_OCCLUSION; if (bo->resource->mem_type == TTM_PL_VRAM) { cmd->body.guestResult.gmrId = SVGA_GMR_FRAMEBUFFER; cmd->body.guestResult.offset = bo->resource->start << PAGE_SHIFT; } else { cmd->body.guestResult.gmrId = bo->resource->start; cmd->body.guestResult.offset = 0; } vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_cmd_emit_dummy_gb_query - emits a dummy query to the fifo using * guest-backed resource query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * See the vmw_cmd_emit_dummy_query documentation. */ static int vmw_cmd_emit_dummy_gb_query(struct vmw_private *dev_priv, uint32_t cid) { /* * A query wait without a preceding query end will * actually finish all queries for this cid * without writing to the query result structure. */ struct ttm_buffer_object *bo = &dev_priv->dummy_query_bo->tbo; struct { SVGA3dCmdHeader header; SVGA3dCmdWaitForGBQuery body; } *cmd; cmd = VMW_CMD_RESERVE(dev_priv, sizeof(*cmd)); if (unlikely(cmd == NULL)) return -ENOMEM; cmd->header.id = SVGA_3D_CMD_WAIT_FOR_GB_QUERY; cmd->header.size = sizeof(cmd->body); cmd->body.cid = cid; cmd->body.type = SVGA3D_QUERYTYPE_OCCLUSION; BUG_ON(bo->resource->mem_type != VMW_PL_MOB); cmd->body.mobid = bo->resource->start; cmd->body.offset = 0; vmw_cmd_commit(dev_priv, sizeof(*cmd)); return 0; } /** * vmw_cmd_emit_dummy_query - emits a dummy query to the fifo using * appropriate resource query commands. * * @dev_priv: The device private structure. * @cid: The hardware context id used for the query. * * This function is used to emit a dummy occlusion query with * no primitives rendered between query begin and query end. * It's used to provide a query barrier, in order to know that when * this query is finished, all preceding queries are also finished. * * A Query results structure should have been initialized at the start * of the dev_priv->dummy_query_bo buffer object. And that buffer object * must also be either reserved or pinned when this function is called. * * Returns -ENOMEM on failure to reserve fifo space. */ int vmw_cmd_emit_dummy_query(struct vmw_private *dev_priv, uint32_t cid) { if (dev_priv->has_mob) return vmw_cmd_emit_dummy_gb_query(dev_priv, cid); return vmw_cmd_emit_dummy_legacy_query(dev_priv, cid); } /** * vmw_cmd_supported - returns true if the given device supports * command queues. * * @vmw: The device private structure. * * Returns true if we can issue commands. */ bool vmw_cmd_supported(struct vmw_private *vmw) { bool has_cmdbufs = (vmw->capabilities & (SVGA_CAP_COMMAND_BUFFERS | SVGA_CAP_CMD_BUFFERS_2)) != 0; if (vmw_is_svga_v3(vmw)) return (has_cmdbufs && (vmw->capabilities & SVGA_CAP_GBOBJECTS) != 0); /* * We have FIFO cmd's */ return has_cmdbufs || vmw->fifo_mem != NULL; }
// SPDX-License-Identifier: GPL-2.0+ /* * vio driver interface to hvc_console.c * * This code was moved here to allow the remaining code to be reused as a * generic polling mode with semi-reliable transport driver core to the * console and tty subsystems. * * * Copyright (C) 2001 Anton Blanchard <[email protected]>, IBM * Copyright (C) 2001 Paul Mackerras <[email protected]>, IBM * Copyright (C) 2004 Benjamin Herrenschmidt <[email protected]>, IBM Corp. * Copyright (C) 2004 IBM Corporation * * Additional Author(s): * Ryan S. Arnold <[email protected]> * * TODO: * * - handle error in sending hvsi protocol packets * - retry nego on subsequent sends ? */ #undef DEBUG #include <linux/types.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/console.h> #include <linux/of.h> #include <asm/hvconsole.h> #include <asm/vio.h> #include <asm/hvsi.h> #include <asm/udbg.h> #include <asm/machdep.h> #include "hvc_console.h" static const char hvc_driver_name[] = "hvc_console"; static const struct vio_device_id hvc_driver_table[] = { {"serial", "hvterm1"}, #ifndef HVC_OLD_HVSI {"serial", "hvterm-protocol"}, #endif { "", "" } }; typedef enum hv_protocol { HV_PROTOCOL_RAW, HV_PROTOCOL_HVSI } hv_protocol_t; struct hvterm_priv { u32 termno; /* HV term number */ hv_protocol_t proto; /* Raw data or HVSI packets */ struct hvsi_priv hvsi; /* HVSI specific data */ spinlock_t buf_lock; u8 buf[SIZE_VIO_GET_CHARS]; size_t left; size_t offset; }; static struct hvterm_priv *hvterm_privs[MAX_NR_HVC_CONSOLES]; /* For early boot console */ static struct hvterm_priv hvterm_priv0; static ssize_t hvterm_raw_get_chars(uint32_t vtermno, u8 *buf, size_t count) { struct hvterm_priv *pv = hvterm_privs[vtermno]; unsigned long i; unsigned long flags; size_t got; if (WARN_ON(!pv)) return 0; spin_lock_irqsave(&pv->buf_lock, flags); if (pv->left == 0) { pv->offset = 0; pv->left = hvc_get_chars(pv->termno, pv->buf, count); /* * Work around a HV bug where it gives us a null * after every \r. -- paulus */ for (i = 1; i < pv->left; ++i) { if (pv->buf[i] == 0 && pv->buf[i-1] == '\r') { --pv->left; if (i < pv->left) { memmove(&pv->buf[i], &pv->buf[i+1], pv->left - i); } } } } got = min(count, pv->left); memcpy(buf, &pv->buf[pv->offset], got); pv->offset += got; pv->left -= got; spin_unlock_irqrestore(&pv->buf_lock, flags); return got; } /** * hvterm_raw_put_chars: send characters to firmware for given vterm adapter * @vtermno: The virtual terminal number. * @buf: The characters to send. Because of the underlying hypercall in * hvc_put_chars(), this buffer must be at least 16 bytes long, even if * you are sending fewer chars. * @count: number of chars to send. */ static ssize_t hvterm_raw_put_chars(uint32_t vtermno, const u8 *buf, size_t count) { struct hvterm_priv *pv = hvterm_privs[vtermno]; if (WARN_ON(!pv)) return 0; return hvc_put_chars(pv->termno, buf, count); } static const struct hv_ops hvterm_raw_ops = { .get_chars = hvterm_raw_get_chars, .put_chars = hvterm_raw_put_chars, .notifier_add = notifier_add_irq, .notifier_del = notifier_del_irq, .notifier_hangup = notifier_hangup_irq, }; static ssize_t hvterm_hvsi_get_chars(uint32_t vtermno, u8 *buf, size_t count) { struct hvterm_priv *pv = hvterm_privs[vtermno]; if (WARN_ON(!pv)) return 0; return hvsilib_get_chars(&pv->hvsi, buf, count); } static ssize_t hvterm_hvsi_put_chars(uint32_t vtermno, const u8 *buf, size_t count) { struct hvterm_priv *pv = hvterm_privs[vtermno]; if (WARN_ON(!pv)) return 0; return hvsilib_put_chars(&pv->hvsi, buf, count); } static int hvterm_hvsi_open(struct hvc_struct *hp, int data) { struct hvterm_priv *pv = hvterm_privs[hp->vtermno]; int rc; pr_devel("HVSI@%x: open !\n", pv->termno); rc = notifier_add_irq(hp, data); if (rc) return rc; return hvsilib_open(&pv->hvsi, hp); } static void hvterm_hvsi_close(struct hvc_struct *hp, int data) { struct hvterm_priv *pv = hvterm_privs[hp->vtermno]; pr_devel("HVSI@%x: do close !\n", pv->termno); hvsilib_close(&pv->hvsi, hp); notifier_del_irq(hp, data); } static void hvterm_hvsi_hangup(struct hvc_struct *hp, int data) { struct hvterm_priv *pv = hvterm_privs[hp->vtermno]; pr_devel("HVSI@%x: do hangup !\n", pv->termno); hvsilib_close(&pv->hvsi, hp); notifier_hangup_irq(hp, data); } static int hvterm_hvsi_tiocmget(struct hvc_struct *hp) { struct hvterm_priv *pv = hvterm_privs[hp->vtermno]; if (!pv) return -EINVAL; return pv->hvsi.mctrl; } static int hvterm_hvsi_tiocmset(struct hvc_struct *hp, unsigned int set, unsigned int clear) { struct hvterm_priv *pv = hvterm_privs[hp->vtermno]; pr_devel("HVSI@%x: Set modem control, set=%x,clr=%x\n", pv->termno, set, clear); if (set & TIOCM_DTR) hvsilib_write_mctrl(&pv->hvsi, 1); else if (clear & TIOCM_DTR) hvsilib_write_mctrl(&pv->hvsi, 0); return 0; } static const struct hv_ops hvterm_hvsi_ops = { .get_chars = hvterm_hvsi_get_chars, .put_chars = hvterm_hvsi_put_chars, .notifier_add = hvterm_hvsi_open, .notifier_del = hvterm_hvsi_close, .notifier_hangup = hvterm_hvsi_hangup, .tiocmget = hvterm_hvsi_tiocmget, .tiocmset = hvterm_hvsi_tiocmset, }; static void udbg_hvc_putc(char c) { int count = -1; unsigned char bounce_buffer[16]; if (!hvterm_privs[0]) return; if (c == '\n') udbg_hvc_putc('\r'); do { switch(hvterm_privs[0]->proto) { case HV_PROTOCOL_RAW: /* * hvterm_raw_put_chars requires at least a 16-byte * buffer, so go via the bounce buffer */ bounce_buffer[0] = c; count = hvterm_raw_put_chars(0, bounce_buffer, 1); break; case HV_PROTOCOL_HVSI: count = hvterm_hvsi_put_chars(0, &c, 1); break; } } while (count == 0 || count == -EAGAIN); } static int udbg_hvc_getc_poll(void) { int rc = 0; char c; if (!hvterm_privs[0]) return -1; switch(hvterm_privs[0]->proto) { case HV_PROTOCOL_RAW: rc = hvterm_raw_get_chars(0, &c, 1); break; case HV_PROTOCOL_HVSI: rc = hvterm_hvsi_get_chars(0, &c, 1); break; } if (!rc) return -1; return c; } static int udbg_hvc_getc(void) { int ch; if (!hvterm_privs[0]) return -1; for (;;) { ch = udbg_hvc_getc_poll(); if (ch == -1) { /* This shouldn't be needed...but... */ volatile unsigned long delay; for (delay=0; delay < 2000000; delay++) ; } else { return ch; } } } static int hvc_vio_probe(struct vio_dev *vdev, const struct vio_device_id *id) { const struct hv_ops *ops; struct hvc_struct *hp; struct hvterm_priv *pv; hv_protocol_t proto; int i, termno = -1; /* probed with invalid parameters. */ if (!vdev || !id) return -EPERM; if (of_device_is_compatible(vdev->dev.of_node, "hvterm1")) { proto = HV_PROTOCOL_RAW; ops = &hvterm_raw_ops; } else if (of_device_is_compatible(vdev->dev.of_node, "hvterm-protocol")) { proto = HV_PROTOCOL_HVSI; ops = &hvterm_hvsi_ops; } else { pr_err("hvc_vio: Unknown protocol for %pOF\n", vdev->dev.of_node); return -ENXIO; } pr_devel("hvc_vio_probe() device %pOF, using %s protocol\n", vdev->dev.of_node, proto == HV_PROTOCOL_RAW ? "raw" : "hvsi"); /* Is it our boot one ? */ if (hvterm_privs[0] == &hvterm_priv0 && vdev->unit_address == hvterm_priv0.termno) { pv = hvterm_privs[0]; termno = 0; pr_devel("->boot console, using termno 0\n"); } /* nope, allocate a new one */ else { for (i = 0; i < MAX_NR_HVC_CONSOLES && termno < 0; i++) if (!hvterm_privs[i]) termno = i; pr_devel("->non-boot console, using termno %d\n", termno); if (termno < 0) return -ENODEV; pv = kzalloc(sizeof(struct hvterm_priv), GFP_KERNEL); if (!pv) return -ENOMEM; pv->termno = vdev->unit_address; pv->proto = proto; spin_lock_init(&pv->buf_lock); hvterm_privs[termno] = pv; hvsilib_init(&pv->hvsi, hvc_get_chars, hvc_put_chars, pv->termno, 0); } hp = hvc_alloc(termno, vdev->irq, ops, MAX_VIO_PUT_CHARS); if (IS_ERR(hp)) return PTR_ERR(hp); dev_set_drvdata(&vdev->dev, hp); /* register udbg if it's not there already for console 0 */ if (hp->index == 0 && !udbg_putc) { udbg_putc = udbg_hvc_putc; udbg_getc = udbg_hvc_getc; udbg_getc_poll = udbg_hvc_getc_poll; } return 0; } static struct vio_driver hvc_vio_driver = { .id_table = hvc_driver_table, .probe = hvc_vio_probe, .name = hvc_driver_name, .driver = { .suppress_bind_attrs = true, }, }; static int __init hvc_vio_init(void) { int rc; /* Register as a vio device to receive callbacks */ rc = vio_register_driver(&hvc_vio_driver); return rc; } device_initcall(hvc_vio_init); /* after drivers/tty/hvc/hvc_console.c */ void __init hvc_vio_init_early(void) { const __be32 *termno; const struct hv_ops *ops; /* find the boot console from /chosen/stdout */ /* Check if it's a virtual terminal */ if (!of_node_name_prefix(of_stdout, "vty")) return; termno = of_get_property(of_stdout, "reg", NULL); if (termno == NULL) return; hvterm_priv0.termno = of_read_number(termno, 1); spin_lock_init(&hvterm_priv0.buf_lock); hvterm_privs[0] = &hvterm_priv0; /* Check the protocol */ if (of_device_is_compatible(of_stdout, "hvterm1")) { hvterm_priv0.proto = HV_PROTOCOL_RAW; ops = &hvterm_raw_ops; } else if (of_device_is_compatible(of_stdout, "hvterm-protocol")) { hvterm_priv0.proto = HV_PROTOCOL_HVSI; ops = &hvterm_hvsi_ops; hvsilib_init(&hvterm_priv0.hvsi, hvc_get_chars, hvc_put_chars, hvterm_priv0.termno, 1); /* HVSI, perform the handshake now */ hvsilib_establish(&hvterm_priv0.hvsi); } else return; udbg_putc = udbg_hvc_putc; udbg_getc = udbg_hvc_getc; udbg_getc_poll = udbg_hvc_getc_poll; #ifdef HVC_OLD_HVSI /* When using the old HVSI driver don't register the HVC * backend for HVSI, only do udbg */ if (hvterm_priv0.proto == HV_PROTOCOL_HVSI) return; #endif /* Check whether the user has requested a different console. */ if (!strstr(boot_command_line, "console=")) add_preferred_console("hvc", 0, NULL); hvc_instantiate(0, 0, ops); } /* call this from early_init() for a working debug console on * vterm capable LPAR machines */ #ifdef CONFIG_PPC_EARLY_DEBUG_LPAR void __init udbg_init_debug_lpar(void) { /* * If we're running as a hypervisor then we definitely can't call the * hypervisor to print debug output (we *are* the hypervisor), so don't * register if we detect that MSR_HV=1. */ if (mfmsr() & MSR_HV) return; hvterm_privs[0] = &hvterm_priv0; hvterm_priv0.termno = 0; hvterm_priv0.proto = HV_PROTOCOL_RAW; spin_lock_init(&hvterm_priv0.buf_lock); udbg_putc = udbg_hvc_putc; udbg_getc = udbg_hvc_getc; udbg_getc_poll = udbg_hvc_getc_poll; } #endif /* CONFIG_PPC_EARLY_DEBUG_LPAR */ #ifdef CONFIG_PPC_EARLY_DEBUG_LPAR_HVSI void __init udbg_init_debug_lpar_hvsi(void) { /* See comment above in udbg_init_debug_lpar() */ if (mfmsr() & MSR_HV) return; hvterm_privs[0] = &hvterm_priv0; hvterm_priv0.termno = CONFIG_PPC_EARLY_DEBUG_HVSI_VTERMNO; hvterm_priv0.proto = HV_PROTOCOL_HVSI; spin_lock_init(&hvterm_priv0.buf_lock); udbg_putc = udbg_hvc_putc; udbg_getc = udbg_hvc_getc; udbg_getc_poll = udbg_hvc_getc_poll; hvsilib_init(&hvterm_priv0.hvsi, hvc_get_chars, hvc_put_chars, hvterm_priv0.termno, 1); hvsilib_establish(&hvterm_priv0.hvsi); } #endif /* CONFIG_PPC_EARLY_DEBUG_LPAR_HVSI */
/* file-mmu.c: ramfs MMU-based file operations * * Resizable simple ram filesystem for Linux. * * Copyright (C) 2000 Linus Torvalds. * 2000 Transmeta Corp. * * Usage limits added by David Gibson, Linuxcare Australia. * This file is released under the GPL. */ /* * NOTE! This filesystem is probably most useful * not as a real filesystem, but as an example of * how virtual filesystems can be written. * * It doesn't get much simpler than this. Consider * that this file implements the full semantics of * a POSIX-compliant read-write filesystem. * * Note in particular how the filesystem does not * need to implement any data structures of its own * to keep track of the virtual data: using the VFS * caches is sufficient. */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/ramfs.h> #include <linux/sched.h> #include "internal.h" static unsigned long ramfs_mmu_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); } const struct file_operations ramfs_file_operations = { .read_iter = generic_file_read_iter, .write_iter = generic_file_write_iter, .mmap = generic_file_mmap, .fsync = noop_fsync, .splice_read = filemap_splice_read, .splice_write = iter_file_splice_write, .llseek = generic_file_llseek, .get_unmapped_area = ramfs_mmu_get_unmapped_area, }; const struct inode_operations ramfs_file_inode_operations = { .setattr = simple_setattr, .getattr = simple_getattr, };
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef __MMHUB_V2_3_H__ #define __MMHUB_V2_3_H__ extern const struct amdgpu_mmhub_funcs mmhub_v2_3_funcs; #endif
#include <linux/lockdep.h>
/* SPDX-License-Identifier: GPL-2.0-only */ /* * * Copyright (C) 2005 Mike Isely <[email protected]> * Copyright (C) 2004 Aurelien Alleaume <[email protected]> */ #ifndef __PVRUSB2_CX2584X_V4L_H #define __PVRUSB2_CX2584X_V4L_H /* This module connects the pvrusb2 driver to the I2C chip level driver which handles combined device audio & video processing. This interface is used internally by the driver; higher level code should only interact through the interface provided by pvrusb2-hdw.h. */ #include "pvrusb2-hdw-internal.h" void pvr2_cx25840_subdev_update(struct pvr2_hdw *, struct v4l2_subdev *sd); #endif /* __PVRUSB2_CX2584X_V4L_H */
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2018 MediaTek Inc. * * Author: ZH Chen <[email protected]> * */ #ifndef __PINCTRL_MTK_MT6765_H #define __PINCTRL_MTK_MT6765_H #include "pinctrl-paris.h" static struct mtk_pin_desc mtk_pins_mt6765[] = { MTK_PIN( 0, "GPIO0", MTK_EINT_FUNCTION(0, 0), DRV_GRP4, MTK_FUNCTION(0, "GPIO0"), MTK_FUNCTION(1, "UTXD1"), MTK_FUNCTION(2, "CLKM0"), MTK_FUNCTION(3, "MD_INT0"), MTK_FUNCTION(4, "I2S0_MCK"), MTK_FUNCTION(5, "MD_UTXD1"), MTK_FUNCTION(6, "TP_GPIO0_AO"), MTK_FUNCTION(7, "DBG_MON_B9") ), MTK_PIN( 1, "GPIO1", MTK_EINT_FUNCTION(0, 1), DRV_GRP4, MTK_FUNCTION(0, "GPIO1"), MTK_FUNCTION(1, "URXD1"), MTK_FUNCTION(2, "CLKM1"), MTK_FUNCTION(4, "I2S0_BCK"), MTK_FUNCTION(5, "MD_URXD1"), MTK_FUNCTION(6, "TP_GPIO1_AO"), MTK_FUNCTION(7, "DBG_MON_B10") ), MTK_PIN( 2, "GPIO2", MTK_EINT_FUNCTION(0, 2), DRV_GRP4, MTK_FUNCTION(0, "GPIO2"), MTK_FUNCTION(1, "UCTS0"), MTK_FUNCTION(2, "CLKM2"), MTK_FUNCTION(3, "UTXD1"), MTK_FUNCTION(4, "I2S0_LRCK"), MTK_FUNCTION(5, "ANT_SEL6"), MTK_FUNCTION(6, "TP_GPIO2_AO"), MTK_FUNCTION(7, "DBG_MON_B11") ), MTK_PIN( 3, "GPIO3", MTK_EINT_FUNCTION(0, 3), DRV_GRP4, MTK_FUNCTION(0, "GPIO3"), MTK_FUNCTION(1, "URTS0"), MTK_FUNCTION(2, "CLKM3"), MTK_FUNCTION(3, "URXD1"), MTK_FUNCTION(4, "I2S0_DI"), MTK_FUNCTION(5, "ANT_SEL7"), MTK_FUNCTION(6, "TP_GPIO3_AO"), MTK_FUNCTION(7, "DBG_MON_B12") ), MTK_PIN( 4, "GPIO4", MTK_EINT_FUNCTION(0, 4), DRV_GRP4, MTK_FUNCTION(0, "GPIO4"), MTK_FUNCTION(1, "SPI1_B_MI"), MTK_FUNCTION(2, "SCP_SPI1_MI"), MTK_FUNCTION(3, "UCTS0"), MTK_FUNCTION(4, "I2S3_MCK"), MTK_FUNCTION(5, "SSPM_URXD_AO"), MTK_FUNCTION(6, "TP_GPIO4_AO") ), MTK_PIN( 5, "GPIO5", MTK_EINT_FUNCTION(0, 5), DRV_GRP4, MTK_FUNCTION(0, "GPIO5"), MTK_FUNCTION(1, "SPI1_B_CSB"), MTK_FUNCTION(2, "SCP_SPI1_CS"), MTK_FUNCTION(3, "URTS0"), MTK_FUNCTION(4, "I2S3_BCK"), MTK_FUNCTION(5, "SSPM_UTXD_AO"), MTK_FUNCTION(6, "TP_GPIO5_AO") ), MTK_PIN( 6, "GPIO6", MTK_EINT_FUNCTION(0, 6), DRV_GRP4, MTK_FUNCTION(0, "GPIO6"), MTK_FUNCTION(1, "SPI1_B_MO"), MTK_FUNCTION(2, "SCP_SPI1_MO"), MTK_FUNCTION(3, "PWM0"), MTK_FUNCTION(4, "I2S3_LRCK"), MTK_FUNCTION(5, "MD_UTXD0"), MTK_FUNCTION(6, "TP_GPIO6_AO") ), MTK_PIN( 7, "GPIO7", MTK_EINT_FUNCTION(0, 7), DRV_GRP4, MTK_FUNCTION(0, "GPIO7"), MTK_FUNCTION(1, "SPI1_B_CLK"), MTK_FUNCTION(2, "SCP_SPI1_CK"), MTK_FUNCTION(3, "PWM1"), MTK_FUNCTION(4, "I2S3_DO"), MTK_FUNCTION(5, "MD_URXD0"), MTK_FUNCTION(6, "TP_GPIO7_AO") ), MTK_PIN( 8, "GPIO8", MTK_EINT_FUNCTION(0, 8), DRV_GRP4, MTK_FUNCTION(0, "GPIO8"), MTK_FUNCTION(1, "UTXD1"), MTK_FUNCTION(2, "SRCLKENAI0"), MTK_FUNCTION(3, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(4, "ANT_SEL3"), MTK_FUNCTION(5, "MFG_JTAG_TRSTN"), MTK_FUNCTION(6, "I2S2_MCK"), MTK_FUNCTION(7, "JTRSTN_SEL1") ), MTK_PIN( 9, "GPIO9", MTK_EINT_FUNCTION(0, 9), DRV_GRP4, MTK_FUNCTION(0, "GPIO9"), MTK_FUNCTION(1, "MD_INT0"), MTK_FUNCTION(2, "CMMCLK2"), MTK_FUNCTION(3, "CONN_MCU_TRST_B"), MTK_FUNCTION(4, "IDDIG"), MTK_FUNCTION(5, "SDA_6306"), MTK_FUNCTION(6, "MCUPM_JTAG_TRSTN"), MTK_FUNCTION(7, "DBG_MON_B22") ), MTK_PIN( 10, "GPIO10", MTK_EINT_FUNCTION(0, 10), DRV_GRP4, MTK_FUNCTION(0, "GPIO10"), MTK_FUNCTION(1, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(3, "CONN_MCU_DBGI_N"), MTK_FUNCTION(4, "SRCLKENAI1"), MTK_FUNCTION(5, "EXT_FRAME_SYNC"), MTK_FUNCTION(6, "CMVREF1"), MTK_FUNCTION(7, "DBG_MON_B23") ), MTK_PIN( 11, "GPIO11", MTK_EINT_FUNCTION(0, 11), DRV_GRP4, MTK_FUNCTION(0, "GPIO11"), MTK_FUNCTION(1, "MD_INT2_C2K_UIM1_HOT_PLUG"), MTK_FUNCTION(2, "CLKM3"), MTK_FUNCTION(3, "ANT_SEL6"), MTK_FUNCTION(4, "SRCLKENAI0"), MTK_FUNCTION(5, "EXT_FRAME_SYNC"), MTK_FUNCTION(6, "UCTS1"), MTK_FUNCTION(7, "DBG_MON_B24") ), MTK_PIN( 12, "GPIO12", MTK_EINT_FUNCTION(0, 12), DRV_GRP4, MTK_FUNCTION(0, "GPIO12"), MTK_FUNCTION(1, "PWM0"), MTK_FUNCTION(2, "SRCLKENAI1"), MTK_FUNCTION(3, "EXT_FRAME_SYNC"), MTK_FUNCTION(4, "MD_INT0"), MTK_FUNCTION(5, "DVFSRC_EXT_REQ"), MTK_FUNCTION(6, "URTS1") ), MTK_PIN( 13, "GPIO13", MTK_EINT_FUNCTION(0, 13), DRV_GRP4, MTK_FUNCTION(0, "GPIO13"), MTK_FUNCTION(1, "ANT_SEL0"), MTK_FUNCTION(2, "SPI4_MI"), MTK_FUNCTION(3, "SCP_SPI0_MI"), MTK_FUNCTION(4, "MD_URXD0"), MTK_FUNCTION(5, "CLKM0"), MTK_FUNCTION(6, "I2S0_MCK"), MTK_FUNCTION(7, "DBG_MON_A0") ), MTK_PIN( 14, "GPIO14", MTK_EINT_FUNCTION(0, 14), DRV_GRP4, MTK_FUNCTION(0, "GPIO14"), MTK_FUNCTION(1, "ANT_SEL1"), MTK_FUNCTION(2, "SPI4_CSB"), MTK_FUNCTION(3, "SCP_SPI0_CS"), MTK_FUNCTION(4, "MD_UTXD0"), MTK_FUNCTION(5, "CLKM1"), MTK_FUNCTION(6, "I2S0_BCK"), MTK_FUNCTION(7, "DBG_MON_A1") ), MTK_PIN( 15, "GPIO15", MTK_EINT_FUNCTION(0, 15), DRV_GRP4, MTK_FUNCTION(0, "GPIO15"), MTK_FUNCTION(1, "ANT_SEL2"), MTK_FUNCTION(2, "SPI4_MO"), MTK_FUNCTION(3, "SCP_SPI0_MO"), MTK_FUNCTION(4, "MD_URXD1"), MTK_FUNCTION(5, "CLKM2"), MTK_FUNCTION(6, "I2S0_LRCK"), MTK_FUNCTION(7, "DBG_MON_A2") ), MTK_PIN( 16, "GPIO16", MTK_EINT_FUNCTION(0, 16), DRV_GRP4, MTK_FUNCTION(0, "GPIO16"), MTK_FUNCTION(1, "ANT_SEL3"), MTK_FUNCTION(2, "SPI4_CLK"), MTK_FUNCTION(3, "SCP_SPI0_CK"), MTK_FUNCTION(4, "MD_UTXD1"), MTK_FUNCTION(5, "CLKM3"), MTK_FUNCTION(6, "I2S3_MCK"), MTK_FUNCTION(7, "DBG_MON_A3") ), MTK_PIN( 17, "GPIO17", MTK_EINT_FUNCTION(0, 17), DRV_GRP4, MTK_FUNCTION(0, "GPIO17"), MTK_FUNCTION(1, "ANT_SEL4"), MTK_FUNCTION(2, "SPI2_MO"), MTK_FUNCTION(3, "SCP_SPI0_MO"), MTK_FUNCTION(4, "PWM1"), MTK_FUNCTION(5, "IDDIG"), MTK_FUNCTION(6, "I2S0_DI"), MTK_FUNCTION(7, "DBG_MON_A4") ), MTK_PIN( 18, "GPIO18", MTK_EINT_FUNCTION(0, 18), DRV_GRP4, MTK_FUNCTION(0, "GPIO18"), MTK_FUNCTION(1, "ANT_SEL5"), MTK_FUNCTION(2, "SPI2_CLK"), MTK_FUNCTION(3, "SCP_SPI0_CK"), MTK_FUNCTION(4, "MD_INT0"), MTK_FUNCTION(5, "USB_DRVVBUS"), MTK_FUNCTION(6, "I2S3_BCK"), MTK_FUNCTION(7, "DBG_MON_A5") ), MTK_PIN( 19, "GPIO19", MTK_EINT_FUNCTION(0, 19), DRV_GRP4, MTK_FUNCTION(0, "GPIO19"), MTK_FUNCTION(1, "ANT_SEL6"), MTK_FUNCTION(2, "SPI2_MI"), MTK_FUNCTION(3, "SCP_SPI0_MI"), MTK_FUNCTION(4, "MD_INT2_C2K_UIM1_HOT_PLUG"), MTK_FUNCTION(6, "I2S3_LRCK"), MTK_FUNCTION(7, "DBG_MON_A6") ), MTK_PIN( 20, "GPIO20", MTK_EINT_FUNCTION(0, 20), DRV_GRP4, MTK_FUNCTION(0, "GPIO20"), MTK_FUNCTION(1, "ANT_SEL7"), MTK_FUNCTION(2, "SPI2_CSB"), MTK_FUNCTION(3, "SCP_SPI0_CS"), MTK_FUNCTION(4, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(5, "CMMCLK3"), MTK_FUNCTION(6, "I2S3_DO"), MTK_FUNCTION(7, "DBG_MON_A7") ), MTK_PIN( 21, "GPIO21", MTK_EINT_FUNCTION(0, 21), DRV_GRP4, MTK_FUNCTION(0, "GPIO21"), MTK_FUNCTION(1, "SPI3_MI"), MTK_FUNCTION(2, "SRCLKENAI1"), MTK_FUNCTION(3, "DAP_MD32_SWD"), MTK_FUNCTION(4, "CMVREF0"), MTK_FUNCTION(5, "SCP_SPI0_MI"), MTK_FUNCTION(6, "I2S2_MCK"), MTK_FUNCTION(7, "DBG_MON_A8") ), MTK_PIN( 22, "GPIO22", MTK_EINT_FUNCTION(0, 22), DRV_GRP4, MTK_FUNCTION(0, "GPIO22"), MTK_FUNCTION(1, "SPI3_CSB"), MTK_FUNCTION(2, "SRCLKENAI0"), MTK_FUNCTION(3, "DAP_MD32_SWCK"), MTK_FUNCTION(4, "CMVREF1"), MTK_FUNCTION(5, "SCP_SPI0_CS"), MTK_FUNCTION(6, "I2S2_BCK"), MTK_FUNCTION(7, "DBG_MON_A9") ), MTK_PIN( 23, "GPIO23", MTK_EINT_FUNCTION(0, 23), DRV_GRP4, MTK_FUNCTION(0, "GPIO23"), MTK_FUNCTION(1, "SPI3_MO"), MTK_FUNCTION(2, "PWM0"), MTK_FUNCTION(3, "KPROW7"), MTK_FUNCTION(4, "ANT_SEL3"), MTK_FUNCTION(5, "SCP_SPI0_MO"), MTK_FUNCTION(6, "I2S2_LRCK"), MTK_FUNCTION(7, "DBG_MON_A10") ), MTK_PIN( 24, "GPIO24", MTK_EINT_FUNCTION(0, 24), DRV_GRP4, MTK_FUNCTION(0, "GPIO24"), MTK_FUNCTION(1, "SPI3_CLK"), MTK_FUNCTION(2, "UDI_TCK"), MTK_FUNCTION(3, "IO_JTAG_TCK"), MTK_FUNCTION(4, "SSPM_JTAG_TCK"), MTK_FUNCTION(5, "SCP_SPI0_CK"), MTK_FUNCTION(6, "I2S2_DI"), MTK_FUNCTION(7, "DBG_MON_A11") ), MTK_PIN( 25, "GPIO25", MTK_EINT_FUNCTION(0, 25), DRV_GRP4, MTK_FUNCTION(0, "GPIO25"), MTK_FUNCTION(1, "SPI1_A_MI"), MTK_FUNCTION(2, "UDI_TMS"), MTK_FUNCTION(3, "IO_JTAG_TMS"), MTK_FUNCTION(4, "SSPM_JTAG_TMS"), MTK_FUNCTION(5, "KPROW3"), MTK_FUNCTION(6, "I2S1_MCK"), MTK_FUNCTION(7, "DBG_MON_A12") ), MTK_PIN( 26, "GPIO26", MTK_EINT_FUNCTION(0, 26), DRV_GRP4, MTK_FUNCTION(0, "GPIO26"), MTK_FUNCTION(1, "SPI1_A_CSB"), MTK_FUNCTION(2, "UDI_TDI"), MTK_FUNCTION(3, "IO_JTAG_TDI"), MTK_FUNCTION(4, "SSPM_JTAG_TDI"), MTK_FUNCTION(5, "KPROW4"), MTK_FUNCTION(6, "I2S1_BCK"), MTK_FUNCTION(7, "DBG_MON_A13") ), MTK_PIN( 27, "GPIO27", MTK_EINT_FUNCTION(0, 27), DRV_GRP4, MTK_FUNCTION(0, "GPIO27"), MTK_FUNCTION(1, "SPI1_A_MO"), MTK_FUNCTION(2, "UDI_TDO"), MTK_FUNCTION(3, "IO_JTAG_TDO"), MTK_FUNCTION(4, "SSPM_JTAG_TDO"), MTK_FUNCTION(5, "KPROW5"), MTK_FUNCTION(6, "I2S1_LRCK"), MTK_FUNCTION(7, "DBG_MON_A14") ), MTK_PIN( 28, "GPIO28", MTK_EINT_FUNCTION(0, 28), DRV_GRP4, MTK_FUNCTION(0, "GPIO28"), MTK_FUNCTION(1, "SPI1_A_CLK"), MTK_FUNCTION(2, "UDI_NTRST"), MTK_FUNCTION(3, "IO_JTAG_TRSTN"), MTK_FUNCTION(4, "SSPM_JTAG_TRSTN"), MTK_FUNCTION(5, "KPROW6"), MTK_FUNCTION(6, "I2S1_DO"), MTK_FUNCTION(7, "DBG_MON_A15") ), MTK_PIN( 29, "GPIO29", MTK_EINT_FUNCTION(0, 29), DRV_GRP4, MTK_FUNCTION(0, "GPIO29"), MTK_FUNCTION(1, "MSDC1_CLK"), MTK_FUNCTION(2, "IO_JTAG_TCK"), MTK_FUNCTION(3, "UDI_TCK"), MTK_FUNCTION(4, "CONN_DSP_JCK"), MTK_FUNCTION(5, "SSPM_JTAG_TCK"), MTK_FUNCTION(6, "CONN_MCU_AICE_TCKC"), MTK_FUNCTION(7, "DAP_MD32_SWCK") ), MTK_PIN( 30, "GPIO30", MTK_EINT_FUNCTION(0, 30), DRV_GRP4, MTK_FUNCTION(0, "GPIO30"), MTK_FUNCTION(1, "MSDC1_CMD"), MTK_FUNCTION(2, "IO_JTAG_TMS"), MTK_FUNCTION(3, "UDI_TMS"), MTK_FUNCTION(4, "CONN_DSP_JMS"), MTK_FUNCTION(5, "SSPM_JTAG_TMS"), MTK_FUNCTION(6, "CONN_MCU_AICE_TMSC"), MTK_FUNCTION(7, "DAP_MD32_SWD") ), MTK_PIN( 31, "GPIO31", MTK_EINT_FUNCTION(0, 31), DRV_GRP4, MTK_FUNCTION(0, "GPIO31"), MTK_FUNCTION(1, "MSDC1_DAT3") ), MTK_PIN( 32, "GPIO32", MTK_EINT_FUNCTION(0, 32), DRV_GRP4, MTK_FUNCTION(0, "GPIO32"), MTK_FUNCTION(1, "MSDC1_DAT0"), MTK_FUNCTION(2, "IO_JTAG_TDI"), MTK_FUNCTION(3, "UDI_TDI"), MTK_FUNCTION(4, "CONN_DSP_JDI"), MTK_FUNCTION(5, "SSPM_JTAG_TDI") ), MTK_PIN( 33, "GPIO33", MTK_EINT_FUNCTION(0, 33), DRV_GRP4, MTK_FUNCTION(0, "GPIO33"), MTK_FUNCTION(1, "MSDC1_DAT2"), MTK_FUNCTION(2, "IO_JTAG_TRSTN"), MTK_FUNCTION(3, "UDI_NTRST"), MTK_FUNCTION(4, "CONN_DSP_JINTP"), MTK_FUNCTION(5, "SSPM_JTAG_TRSTN") ), MTK_PIN( 34, "GPIO34", MTK_EINT_FUNCTION(0, 34), DRV_GRP4, MTK_FUNCTION(0, "GPIO34"), MTK_FUNCTION(1, "MSDC1_DAT1"), MTK_FUNCTION(2, "IO_JTAG_TDO"), MTK_FUNCTION(3, "UDI_TDO"), MTK_FUNCTION(4, "CONN_DSP_JDO"), MTK_FUNCTION(5, "SSPM_JTAG_TDO") ), MTK_PIN( 35, "GPIO35", MTK_EINT_FUNCTION(0, 35), DRV_GRP4, MTK_FUNCTION(0, "GPIO35"), MTK_FUNCTION(1, "MD1_SIM2_SIO"), MTK_FUNCTION(2, "CCU_JTAG_TDO"), MTK_FUNCTION(3, "MD1_SIM1_SIO"), MTK_FUNCTION(5, "SCP_JTAG_TDO"), MTK_FUNCTION(6, "CONN_DSP_JDO"), MTK_FUNCTION(7, "DBG_MON_A16") ), MTK_PIN( 36, "GPIO36", MTK_EINT_FUNCTION(0, 36), DRV_GRP0, MTK_FUNCTION(0, "GPIO36"), MTK_FUNCTION(1, "MD1_SIM2_SRST"), MTK_FUNCTION(2, "CCU_JTAG_TMS"), MTK_FUNCTION(3, "MD1_SIM1_SRST"), MTK_FUNCTION(4, "CONN_MCU_AICE_TMSC"), MTK_FUNCTION(5, "SCP_JTAG_TMS"), MTK_FUNCTION(6, "CONN_DSP_JMS"), MTK_FUNCTION(7, "DBG_MON_A17") ), MTK_PIN( 37, "GPIO37", MTK_EINT_FUNCTION(0, 37), DRV_GRP0, MTK_FUNCTION(0, "GPIO37"), MTK_FUNCTION(1, "MD1_SIM2_SCLK"), MTK_FUNCTION(2, "CCU_JTAG_TDI"), MTK_FUNCTION(3, "MD1_SIM1_SCLK"), MTK_FUNCTION(5, "SCP_JTAG_TDI"), MTK_FUNCTION(6, "CONN_DSP_JDI"), MTK_FUNCTION(7, "DBG_MON_A18") ), MTK_PIN( 38, "GPIO38", MTK_EINT_FUNCTION(0, 38), DRV_GRP0, MTK_FUNCTION(0, "GPIO38"), MTK_FUNCTION(1, "MD1_SIM1_SCLK"), MTK_FUNCTION(3, "MD1_SIM2_SCLK"), MTK_FUNCTION(7, "DBG_MON_A19") ), MTK_PIN( 39, "GPIO39", MTK_EINT_FUNCTION(0, 39), DRV_GRP0, MTK_FUNCTION(0, "GPIO39"), MTK_FUNCTION(1, "MD1_SIM1_SRST"), MTK_FUNCTION(2, "CCU_JTAG_TCK"), MTK_FUNCTION(3, "MD1_SIM2_SRST"), MTK_FUNCTION(4, "CONN_MCU_AICE_TCKC"), MTK_FUNCTION(5, "SCP_JTAG_TCK"), MTK_FUNCTION(6, "CONN_DSP_JCK"), MTK_FUNCTION(7, "DBG_MON_A20") ), MTK_PIN( 40, "GPIO40", MTK_EINT_FUNCTION(0, 40), DRV_GRP0, MTK_FUNCTION(0, "GPIO40"), MTK_FUNCTION(1, "MD1_SIM1_SIO"), MTK_FUNCTION(2, "CCU_JTAG_TRST"), MTK_FUNCTION(3, "MD1_SIM2_SIO"), MTK_FUNCTION(5, "SCP_JTAG_TRSTN"), MTK_FUNCTION(6, "CONN_DSP_JINTP"), MTK_FUNCTION(7, "DBG_MON_A21") ), MTK_PIN( 41, "GPIO41", MTK_EINT_FUNCTION(0, 41), DRV_GRP4, MTK_FUNCTION(0, "GPIO41"), MTK_FUNCTION(1, "IDDIG"), MTK_FUNCTION(2, "URXD1"), MTK_FUNCTION(3, "UCTS0"), MTK_FUNCTION(4, "KPCOL2"), MTK_FUNCTION(5, "SSPM_UTXD_AO"), MTK_FUNCTION(6, "MD_INT0"), MTK_FUNCTION(7, "DBG_MON_A22") ), MTK_PIN( 42, "GPIO42", MTK_EINT_FUNCTION(0, 42), DRV_GRP4, MTK_FUNCTION(0, "GPIO42"), MTK_FUNCTION(1, "USB_DRVVBUS"), MTK_FUNCTION(2, "UTXD1"), MTK_FUNCTION(3, "URTS0"), MTK_FUNCTION(4, "KPROW2"), MTK_FUNCTION(5, "SSPM_URXD_AO"), MTK_FUNCTION(6, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(7, "DBG_MON_A23") ), MTK_PIN( 43, "GPIO43", MTK_EINT_FUNCTION(0, 43), DRV_GRP4, MTK_FUNCTION(0, "GPIO43"), MTK_FUNCTION(1, "DISP_PWM"), MTK_FUNCTION(7, "DBG_MON_A24") ), MTK_PIN( 44, "GPIO44", MTK_EINT_FUNCTION(0, 44), DRV_GRP4, MTK_FUNCTION(0, "GPIO44"), MTK_FUNCTION(1, "DSI_TE"), MTK_FUNCTION(7, "DBG_MON_A25") ), MTK_PIN( 45, "GPIO45", MTK_EINT_FUNCTION(0, 45), DRV_GRP4, MTK_FUNCTION(0, "GPIO45"), MTK_FUNCTION(1, "LCM_RST"), MTK_FUNCTION(7, "DBG_MON_A26") ), MTK_PIN( 46, "GPIO46", MTK_EINT_FUNCTION(0, 46), DRV_GRP4, MTK_FUNCTION(0, "GPIO46"), MTK_FUNCTION(1, "MD_INT2_C2K_UIM1_HOT_PLUG"), MTK_FUNCTION(2, "UCTS0"), MTK_FUNCTION(3, "UCTS1"), MTK_FUNCTION(4, "IDDIG"), MTK_FUNCTION(5, "SCL_6306"), MTK_FUNCTION(6, "TP_UCTS1_AO"), MTK_FUNCTION(7, "DBG_MON_A27") ), MTK_PIN( 47, "GPIO47", MTK_EINT_FUNCTION(0, 47), DRV_GRP4, MTK_FUNCTION(0, "GPIO47"), MTK_FUNCTION(1, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(2, "URTS0"), MTK_FUNCTION(3, "URTS1"), MTK_FUNCTION(4, "USB_DRVVBUS"), MTK_FUNCTION(5, "SDA_6306"), MTK_FUNCTION(6, "TP_URTS1_AO"), MTK_FUNCTION(7, "DBG_MON_A28") ), MTK_PIN( 48, "GPIO48", MTK_EINT_FUNCTION(0, 48), DRV_GRP4, MTK_FUNCTION(0, "GPIO48"), MTK_FUNCTION(1, "SCL5"), MTK_FUNCTION(7, "DBG_MON_A29") ), MTK_PIN( 49, "GPIO49", MTK_EINT_FUNCTION(0, 49), DRV_GRP4, MTK_FUNCTION(0, "GPIO49"), MTK_FUNCTION(1, "SDA5"), MTK_FUNCTION(7, "DBG_MON_A30") ), MTK_PIN( 50, "GPIO50", MTK_EINT_FUNCTION(0, 50), DRV_GRP4, MTK_FUNCTION(0, "GPIO50"), MTK_FUNCTION(1, "SCL3"), MTK_FUNCTION(2, "URXD1"), MTK_FUNCTION(3, "MD_URXD1"), MTK_FUNCTION(4, "SSPM_URXD_AO"), MTK_FUNCTION(5, "IDDIG"), MTK_FUNCTION(6, "TP_URXD1_AO"), MTK_FUNCTION(7, "DBG_MON_A31") ), MTK_PIN( 51, "GPIO51", MTK_EINT_FUNCTION(0, 51), DRV_GRP4, MTK_FUNCTION(0, "GPIO51"), MTK_FUNCTION(1, "SDA3"), MTK_FUNCTION(2, "UTXD1"), MTK_FUNCTION(3, "MD_UTXD1"), MTK_FUNCTION(4, "SSPM_UTXD_AO"), MTK_FUNCTION(5, "USB_DRVVBUS"), MTK_FUNCTION(6, "TP_UTXD1_AO"), MTK_FUNCTION(7, "DBG_MON_A32") ), MTK_PIN( 52, "GPIO52", MTK_EINT_FUNCTION(0, 52), DRV_GRP4, MTK_FUNCTION(0, "GPIO52"), MTK_FUNCTION(1, "BPI_BUS15") ), MTK_PIN( 53, "GPIO53", MTK_EINT_FUNCTION(0, 53), DRV_GRP4, MTK_FUNCTION(0, "GPIO53"), MTK_FUNCTION(1, "BPI_BUS13") ), MTK_PIN( 54, "GPIO54", MTK_EINT_FUNCTION(0, 54), DRV_GRP4, MTK_FUNCTION(0, "GPIO54"), MTK_FUNCTION(1, "BPI_BUS12") ), MTK_PIN( 55, "GPIO55", MTK_EINT_FUNCTION(0, 55), DRV_GRP4, MTK_FUNCTION(0, "GPIO55"), MTK_FUNCTION(1, "BPI_BUS8") ), MTK_PIN( 56, "GPIO56", MTK_EINT_FUNCTION(0, 56), DRV_GRP4, MTK_FUNCTION(0, "GPIO56"), MTK_FUNCTION(1, "BPI_BUS9"), MTK_FUNCTION(2, "SCL_6306") ), MTK_PIN( 57, "GPIO57", MTK_EINT_FUNCTION(0, 57), DRV_GRP4, MTK_FUNCTION(0, "GPIO57"), MTK_FUNCTION(1, "BPI_BUS10"), MTK_FUNCTION(2, "SDA_6306") ), MTK_PIN( 58, "GPIO58", MTK_EINT_FUNCTION(0, 58), DRV_GRP4, MTK_FUNCTION(0, "GPIO58"), MTK_FUNCTION(1, "RFIC0_BSI_D2") ), MTK_PIN( 59, "GPIO59", MTK_EINT_FUNCTION(0, 59), DRV_GRP4, MTK_FUNCTION(0, "GPIO59"), MTK_FUNCTION(1, "RFIC0_BSI_D1") ), MTK_PIN( 60, "GPIO60", MTK_EINT_FUNCTION(0, 60), DRV_GRP4, MTK_FUNCTION(0, "GPIO60"), MTK_FUNCTION(1, "RFIC0_BSI_D0") ), MTK_PIN( 61, "GPIO61", MTK_EINT_FUNCTION(0, 61), DRV_GRP4, MTK_FUNCTION(0, "GPIO61"), MTK_FUNCTION(1, "MIPI1_SDATA") ), MTK_PIN( 62, "GPIO62", MTK_EINT_FUNCTION(0, 62), DRV_GRP4, MTK_FUNCTION(0, "GPIO62"), MTK_FUNCTION(1, "MIPI1_SCLK") ), MTK_PIN( 63, "GPIO63", MTK_EINT_FUNCTION(0, 63), DRV_GRP4, MTK_FUNCTION(0, "GPIO63"), MTK_FUNCTION(1, "MIPI0_SDATA") ), MTK_PIN( 64, "GPIO64", MTK_EINT_FUNCTION(0, 64), DRV_GRP4, MTK_FUNCTION(0, "GPIO64"), MTK_FUNCTION(1, "MIPI0_SCLK") ), MTK_PIN( 65, "GPIO65", MTK_EINT_FUNCTION(0, 65), DRV_GRP4, MTK_FUNCTION(0, "GPIO65"), MTK_FUNCTION(1, "MIPI3_SDATA"), MTK_FUNCTION(2, "BPI_BUS16") ), MTK_PIN( 66, "GPIO66", MTK_EINT_FUNCTION(0, 66), DRV_GRP4, MTK_FUNCTION(0, "GPIO66"), MTK_FUNCTION(1, "MIPI3_SCLK"), MTK_FUNCTION(2, "BPI_BUS17") ), MTK_PIN( 67, "GPIO67", MTK_EINT_FUNCTION(0, 67), DRV_GRP4, MTK_FUNCTION(0, "GPIO67"), MTK_FUNCTION(1, "MIPI2_SDATA") ), MTK_PIN( 68, "GPIO68", MTK_EINT_FUNCTION(0, 68), DRV_GRP4, MTK_FUNCTION(0, "GPIO68"), MTK_FUNCTION(1, "MIPI2_SCLK") ), MTK_PIN( 69, "GPIO69", MTK_EINT_FUNCTION(0, 69), DRV_GRP4, MTK_FUNCTION(0, "GPIO69"), MTK_FUNCTION(1, "BPI_BUS7") ), MTK_PIN( 70, "GPIO70", MTK_EINT_FUNCTION(0, 70), DRV_GRP4, MTK_FUNCTION(0, "GPIO70"), MTK_FUNCTION(1, "BPI_BUS6") ), MTK_PIN( 71, "GPIO71", MTK_EINT_FUNCTION(0, 71), DRV_GRP4, MTK_FUNCTION(0, "GPIO71"), MTK_FUNCTION(1, "BPI_BUS5") ), MTK_PIN( 72, "GPIO72", MTK_EINT_FUNCTION(0, 72), DRV_GRP4, MTK_FUNCTION(0, "GPIO72"), MTK_FUNCTION(1, "BPI_BUS4") ), MTK_PIN( 73, "GPIO73", MTK_EINT_FUNCTION(0, 73), DRV_GRP4, MTK_FUNCTION(0, "GPIO73"), MTK_FUNCTION(1, "BPI_BUS3") ), MTK_PIN( 74, "GPIO74", MTK_EINT_FUNCTION(0, 74), DRV_GRP4, MTK_FUNCTION(0, "GPIO74"), MTK_FUNCTION(1, "BPI_BUS2") ), MTK_PIN( 75, "GPIO75", MTK_EINT_FUNCTION(0, 75), DRV_GRP4, MTK_FUNCTION(0, "GPIO75"), MTK_FUNCTION(1, "BPI_BUS1") ), MTK_PIN( 76, "GPIO76", MTK_EINT_FUNCTION(0, 76), DRV_GRP4, MTK_FUNCTION(0, "GPIO76"), MTK_FUNCTION(1, "BPI_BUS0") ), MTK_PIN( 77, "GPIO77", MTK_EINT_FUNCTION(0, 77), DRV_GRP4, MTK_FUNCTION(0, "GPIO77"), MTK_FUNCTION(1, "BPI_BUS14") ), MTK_PIN( 78, "GPIO78", MTK_EINT_FUNCTION(0, 78), DRV_GRP4, MTK_FUNCTION(0, "GPIO78"), MTK_FUNCTION(1, "BPI_BUS11") ), MTK_PIN( 79, "GPIO79", MTK_EINT_FUNCTION(0, 79), DRV_GRP4, MTK_FUNCTION(0, "GPIO79"), MTK_FUNCTION(1, "BPI_PA_VM1"), MTK_FUNCTION(2, "MIPI4_SDATA") ), MTK_PIN( 80, "GPIO80", MTK_EINT_FUNCTION(0, 80), DRV_GRP4, MTK_FUNCTION(0, "GPIO80"), MTK_FUNCTION(1, "BPI_PA_VM0"), MTK_FUNCTION(2, "MIPI4_SCLK") ), MTK_PIN( 81, "GPIO81", MTK_EINT_FUNCTION(0, 81), DRV_GRP4, MTK_FUNCTION(0, "GPIO81"), MTK_FUNCTION(1, "SDA1"), MTK_FUNCTION(7, "DBG_MON_B0") ), MTK_PIN( 82, "GPIO82", MTK_EINT_FUNCTION(0, 82), DRV_GRP4, MTK_FUNCTION(0, "GPIO82"), MTK_FUNCTION(1, "SDA0"), MTK_FUNCTION(7, "DBG_MON_B1") ), MTK_PIN( 83, "GPIO83", MTK_EINT_FUNCTION(0, 83), DRV_GRP4, MTK_FUNCTION(0, "GPIO83"), MTK_FUNCTION(1, "SCL0"), MTK_FUNCTION(7, "DBG_MON_B2") ), MTK_PIN( 84, "GPIO84", MTK_EINT_FUNCTION(0, 84), DRV_GRP4, MTK_FUNCTION(0, "GPIO84"), MTK_FUNCTION(1, "SCL1"), MTK_FUNCTION(7, "DBG_MON_B3") ), MTK_PIN( 85, "GPIO85", MTK_EINT_FUNCTION(0, 85), DRV_GRP4, MTK_FUNCTION(0, "GPIO85"), MTK_FUNCTION(1, "RFIC0_BSI_EN") ), MTK_PIN( 86, "GPIO86", MTK_EINT_FUNCTION(0, 86), DRV_GRP4, MTK_FUNCTION(0, "GPIO86"), MTK_FUNCTION(1, "RFIC0_BSI_CK") ), MTK_PIN( 87, "GPIO87", MTK_EINT_FUNCTION(0, 87), DRV_GRP4, MTK_FUNCTION(0, "GPIO87"), MTK_FUNCTION(2, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(3, "CMVREF0"), MTK_FUNCTION(4, "MD_URXD0"), MTK_FUNCTION(5, "AGPS_SYNC"), MTK_FUNCTION(6, "EXT_FRAME_SYNC") ), MTK_PIN( 88, "GPIO88", MTK_EINT_FUNCTION(0, 88), DRV_GRP4, MTK_FUNCTION(0, "GPIO88"), MTK_FUNCTION(1, "CMMCLK3"), MTK_FUNCTION(2, "MD_INT2_C2K_UIM1_HOT_PLUG"), MTK_FUNCTION(3, "CMVREF1"), MTK_FUNCTION(4, "MD_UTXD0"), MTK_FUNCTION(5, "AGPS_SYNC"), MTK_FUNCTION(6, "DVFSRC_EXT_REQ") ), MTK_PIN( 89, "GPIO89", MTK_EINT_FUNCTION(0, 89), DRV_GRP4, MTK_FUNCTION(0, "GPIO89"), MTK_FUNCTION(1, "SRCLKENAI0"), MTK_FUNCTION(2, "PWM2"), MTK_FUNCTION(3, "MD_INT0"), MTK_FUNCTION(4, "USB_DRVVBUS"), MTK_FUNCTION(5, "SCL_6306"), MTK_FUNCTION(6, "TP_GPIO4_AO"), MTK_FUNCTION(7, "DBG_MON_B21") ), MTK_PIN( 90, "GPIO90", MTK_EINT_FUNCTION(0, 90), DRV_GRP4, MTK_FUNCTION(0, "GPIO90"), MTK_FUNCTION(1, "URXD1"), MTK_FUNCTION(2, "PWM0"), MTK_FUNCTION(3, "MD_INT2_C2K_UIM1_HOT_PLUG"), MTK_FUNCTION(4, "ANT_SEL4"), MTK_FUNCTION(5, "USB_DRVVBUS"), MTK_FUNCTION(6, "I2S2_BCK"), MTK_FUNCTION(7, "DBG_MON_B4") ), MTK_PIN( 91, "GPIO91", MTK_EINT_FUNCTION(0, 91), DRV_GRP4, MTK_FUNCTION(0, "GPIO91"), MTK_FUNCTION(1, "KPROW1"), MTK_FUNCTION(2, "PWM2"), MTK_FUNCTION(3, "MD_INT0"), MTK_FUNCTION(4, "ANT_SEL5"), MTK_FUNCTION(5, "IDDIG"), MTK_FUNCTION(6, "I2S2_LRCK"), MTK_FUNCTION(7, "DBG_MON_B5") ), MTK_PIN( 92, "GPIO92", MTK_EINT_FUNCTION(0, 92), DRV_GRP4, MTK_FUNCTION(0, "GPIO92"), MTK_FUNCTION(1, "KPROW0"), MTK_FUNCTION(5, "DVFSRC_EXT_REQ"), MTK_FUNCTION(6, "I2S2_DI"), MTK_FUNCTION(7, "DBG_MON_B6") ), MTK_PIN( 93, "GPIO93", MTK_EINT_FUNCTION(0, 93), DRV_GRP4, MTK_FUNCTION(0, "GPIO93"), MTK_FUNCTION(1, "KPCOL0"), MTK_FUNCTION(7, "DBG_MON_B7") ), MTK_PIN( 94, "GPIO94", MTK_EINT_FUNCTION(0, 94), DRV_GRP4, MTK_FUNCTION(0, "GPIO94"), MTK_FUNCTION(1, "KPCOL1"), MTK_FUNCTION(5, "CMFLASH"), MTK_FUNCTION(6, "CMVREF0"), MTK_FUNCTION(7, "DBG_MON_B8") ), MTK_PIN( 95, "GPIO95", MTK_EINT_FUNCTION(0, 95), DRV_GRP4, MTK_FUNCTION(0, "GPIO95"), MTK_FUNCTION(1, "URXD0"), MTK_FUNCTION(2, "UTXD0"), MTK_FUNCTION(3, "MD_URXD0"), MTK_FUNCTION(4, "PTA_RXD"), MTK_FUNCTION(5, "SSPM_URXD_AO"), MTK_FUNCTION(6, "WIFI_RXD") ), MTK_PIN( 96, "GPIO96", MTK_EINT_FUNCTION(0, 96), DRV_GRP4, MTK_FUNCTION(0, "GPIO96"), MTK_FUNCTION(1, "UTXD0"), MTK_FUNCTION(2, "URXD0"), MTK_FUNCTION(3, "MD_UTXD0"), MTK_FUNCTION(4, "PTA_TXD"), MTK_FUNCTION(5, "SSPM_UTXD_AO"), MTK_FUNCTION(6, "WIFI_TXD") ), MTK_PIN( 97, "GPIO97", MTK_EINT_FUNCTION(0, 97), DRV_GRP4, MTK_FUNCTION(0, "GPIO97"), MTK_FUNCTION(1, "UCTS0"), MTK_FUNCTION(2, "I2S1_MCK"), MTK_FUNCTION(3, "CONN_MCU_TDO"), MTK_FUNCTION(4, "SPI5_MI"), MTK_FUNCTION(5, "SCL_6306"), MTK_FUNCTION(6, "MCUPM_JTAG_TDO"), MTK_FUNCTION(7, "DBG_MON_B15") ), MTK_PIN( 98, "GPIO98", MTK_EINT_FUNCTION(0, 98), DRV_GRP4, MTK_FUNCTION(0, "GPIO98"), MTK_FUNCTION(1, "URTS0"), MTK_FUNCTION(2, "I2S1_BCK"), MTK_FUNCTION(3, "CONN_MCU_TMS"), MTK_FUNCTION(4, "SPI5_CSB"), MTK_FUNCTION(6, "MCUPM_JTAG_TMS"), MTK_FUNCTION(7, "DBG_MON_B16") ), MTK_PIN( 99, "GPIO99", MTK_EINT_FUNCTION(0, 99), DRV_GRP4, MTK_FUNCTION(0, "GPIO99"), MTK_FUNCTION(1, "CMMCLK0"), MTK_FUNCTION(4, "AUXIF_CLK"), MTK_FUNCTION(5, "PTA_RXD"), MTK_FUNCTION(6, "CONN_UART0_RXD"), MTK_FUNCTION(7, "DBG_MON_B17") ), MTK_PIN( 100, "GPIO100", MTK_EINT_FUNCTION(0, 100), DRV_GRP4, MTK_FUNCTION(0, "GPIO100"), MTK_FUNCTION(1, "CMMCLK1"), MTK_FUNCTION(4, "AUXIF_ST"), MTK_FUNCTION(5, "PTA_TXD"), MTK_FUNCTION(6, "CONN_UART0_TXD"), MTK_FUNCTION(7, "DBG_MON_B18") ), MTK_PIN( 101, "GPIO101", MTK_EINT_FUNCTION(0, 101), DRV_GRP4, MTK_FUNCTION(0, "GPIO101"), MTK_FUNCTION(1, "CMFLASH"), MTK_FUNCTION(2, "I2S1_LRCK"), MTK_FUNCTION(3, "CONN_MCU_TCK"), MTK_FUNCTION(4, "SPI5_MO"), MTK_FUNCTION(6, "MCUPM_JTAG_TCK"), MTK_FUNCTION(7, "DBG_MON_B19") ), MTK_PIN( 102, "GPIO102", MTK_EINT_FUNCTION(0, 102), DRV_GRP4, MTK_FUNCTION(0, "GPIO102"), MTK_FUNCTION(1, "CMVREF0"), MTK_FUNCTION(2, "I2S1_DO"), MTK_FUNCTION(3, "CONN_MCU_TDI"), MTK_FUNCTION(4, "SPI5_CLK"), MTK_FUNCTION(5, "AGPS_SYNC"), MTK_FUNCTION(6, "MCUPM_JTAG_TDI"), MTK_FUNCTION(7, "DBG_MON_B20") ), MTK_PIN( 103, "GPIO103", MTK_EINT_FUNCTION(0, 103), DRV_GRP4, MTK_FUNCTION(0, "GPIO103"), MTK_FUNCTION(1, "SCL2"), MTK_FUNCTION(2, "TP_UTXD1_AO"), MTK_FUNCTION(3, "MD_UTXD0"), MTK_FUNCTION(4, "MD_UTXD1"), MTK_FUNCTION(5, "TP_URTS2_AO"), MTK_FUNCTION(6, "WIFI_TXD"), MTK_FUNCTION(7, "DBG_MON_B25") ), MTK_PIN( 104, "GPIO104", MTK_EINT_FUNCTION(0, 104), DRV_GRP4, MTK_FUNCTION(0, "GPIO104"), MTK_FUNCTION(1, "SDA2"), MTK_FUNCTION(2, "TP_URXD1_AO"), MTK_FUNCTION(3, "MD_URXD0"), MTK_FUNCTION(4, "MD_URXD1"), MTK_FUNCTION(5, "TP_UCTS2_AO"), MTK_FUNCTION(6, "WIFI_RXD"), MTK_FUNCTION(7, "DBG_MON_B26") ), MTK_PIN( 105, "GPIO105", MTK_EINT_FUNCTION(0, 105), DRV_GRP4, MTK_FUNCTION(0, "GPIO105"), MTK_FUNCTION(1, "SCL4"), MTK_FUNCTION(3, "MD_UTXD1"), MTK_FUNCTION(4, "MD_UTXD0"), MTK_FUNCTION(5, "TP_UTXD2_AO"), MTK_FUNCTION(6, "PTA_TXD"), MTK_FUNCTION(7, "DBG_MON_B27") ), MTK_PIN( 106, "GPIO106", MTK_EINT_FUNCTION(0, 106), DRV_GRP4, MTK_FUNCTION(0, "GPIO106"), MTK_FUNCTION(1, "SDA4"), MTK_FUNCTION(3, "MD_URXD1"), MTK_FUNCTION(4, "MD_URXD0"), MTK_FUNCTION(5, "TP_URXD2_AO"), MTK_FUNCTION(6, "PTA_RXD"), MTK_FUNCTION(7, "DBG_MON_B28") ), MTK_PIN( 107, "GPIO107", MTK_EINT_FUNCTION(0, 107), DRV_GRP4, MTK_FUNCTION(0, "GPIO107"), MTK_FUNCTION(1, "UTXD1"), MTK_FUNCTION(2, "MD_UTXD0"), MTK_FUNCTION(3, "SDA_6306"), MTK_FUNCTION(4, "KPCOL3"), MTK_FUNCTION(5, "CMVREF0"), MTK_FUNCTION(6, "URTS0"), MTK_FUNCTION(7, "DBG_MON_B29") ), MTK_PIN( 108, "GPIO108", MTK_EINT_FUNCTION(0, 108), DRV_GRP4, MTK_FUNCTION(0, "GPIO108"), MTK_FUNCTION(1, "CMMCLK2"), MTK_FUNCTION(2, "MD_INT0"), MTK_FUNCTION(3, "CONN_MCU_DBGACK_N"), MTK_FUNCTION(4, "KPCOL4"), MTK_FUNCTION(6, "I2S3_MCK"), MTK_FUNCTION(7, "DBG_MON_B30") ), MTK_PIN( 109, "GPIO109", MTK_EINT_FUNCTION(0, 109), DRV_GRP4, MTK_FUNCTION(0, "GPIO109"), MTK_FUNCTION(1, "URXD1"), MTK_FUNCTION(2, "MD_URXD0"), MTK_FUNCTION(3, "ANT_SEL7"), MTK_FUNCTION(4, "KPCOL5"), MTK_FUNCTION(5, "CMVREF1"), MTK_FUNCTION(6, "UCTS0"), MTK_FUNCTION(7, "DBG_MON_B31") ), MTK_PIN( 110, "GPIO110", MTK_EINT_FUNCTION(0, 110), DRV_GRP4, MTK_FUNCTION(0, "GPIO110"), MTK_FUNCTION(1, "ANT_SEL0"), MTK_FUNCTION(2, "CLKM0"), MTK_FUNCTION(3, "PWM3"), MTK_FUNCTION(4, "MD_INT0"), MTK_FUNCTION(5, "IDDIG"), MTK_FUNCTION(6, "I2S3_BCK"), MTK_FUNCTION(7, "DBG_MON_B13") ), MTK_PIN( 111, "GPIO111", MTK_EINT_FUNCTION(0, 111), DRV_GRP4, MTK_FUNCTION(0, "GPIO111"), MTK_FUNCTION(1, "ANT_SEL1"), MTK_FUNCTION(2, "CLKM1"), MTK_FUNCTION(3, "PWM4"), MTK_FUNCTION(4, "PTA_RXD"), MTK_FUNCTION(5, "CMVREF0"), MTK_FUNCTION(6, "I2S3_LRCK"), MTK_FUNCTION(7, "DBG_MON_B14") ), MTK_PIN( 112, "GPIO112", MTK_EINT_FUNCTION(0, 112), DRV_GRP4, MTK_FUNCTION(0, "GPIO112"), MTK_FUNCTION(1, "ANT_SEL2"), MTK_FUNCTION(2, "CLKM2"), MTK_FUNCTION(3, "PWM5"), MTK_FUNCTION(4, "PTA_TXD"), MTK_FUNCTION(5, "CMVREF1"), MTK_FUNCTION(6, "I2S3_DO") ), MTK_PIN( 113, "GPIO113", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO113"), MTK_FUNCTION(1, "CONN_TOP_CLK") ), MTK_PIN( 114, "GPIO114", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO114"), MTK_FUNCTION(1, "CONN_TOP_DATA") ), MTK_PIN( 115, "GPIO115", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO115"), MTK_FUNCTION(1, "CONN_BT_CLK") ), MTK_PIN( 116, "GPIO116", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO116"), MTK_FUNCTION(1, "CONN_BT_DATA") ), MTK_PIN( 117, "GPIO117", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO117"), MTK_FUNCTION(1, "CONN_WF_CTRL0") ), MTK_PIN( 118, "GPIO118", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO118"), MTK_FUNCTION(1, "CONN_WF_CTRL1") ), MTK_PIN( 119, "GPIO119", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO119"), MTK_FUNCTION(1, "CONN_WF_CTRL2") ), MTK_PIN( 120, "GPIO120", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO120"), MTK_FUNCTION(1, "CONN_WB_PTA") ), MTK_PIN( 121, "GPIO121", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO121"), MTK_FUNCTION(1, "CONN_HRST_B") ), MTK_PIN( 122, "GPIO122", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO122"), MTK_FUNCTION(1, "MSDC0_CMD"), MTK_FUNCTION(2, "MSDC0_CMD") ), MTK_PIN( 123, "GPIO123", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO123"), MTK_FUNCTION(1, "MSDC0_DAT0"), MTK_FUNCTION(2, "MSDC0_DAT4") ), MTK_PIN( 124, "GPIO124", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO124"), MTK_FUNCTION(1, "MSDC0_CLK"), MTK_FUNCTION(2, "MSDC0_CLK") ), MTK_PIN( 125, "GPIO125", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO125"), MTK_FUNCTION(1, "MSDC0_DAT2"), MTK_FUNCTION(2, "MSDC0_DAT5") ), MTK_PIN( 126, "GPIO126", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO126"), MTK_FUNCTION(1, "MSDC0_DAT4"), MTK_FUNCTION(2, "MSDC0_DAT2") ), MTK_PIN( 127, "GPIO127", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO127"), MTK_FUNCTION(1, "MSDC0_DAT6"), MTK_FUNCTION(2, "MSDC0_DAT1") ), MTK_PIN( 128, "GPIO128", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO128"), MTK_FUNCTION(1, "MSDC0_DAT1"), MTK_FUNCTION(2, "MSDC0_DAT6") ), MTK_PIN( 129, "GPIO129", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO129"), MTK_FUNCTION(1, "MSDC0_DAT5"), MTK_FUNCTION(2, "MSDC0_DAT0") ), MTK_PIN( 130, "GPIO130", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO130"), MTK_FUNCTION(1, "MSDC0_DAT7"), MTK_FUNCTION(2, "MSDC0_DAT7") ), MTK_PIN( 131, "GPIO131", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO131"), MTK_FUNCTION(1, "MSDC0_DSL"), MTK_FUNCTION(2, "MSDC0_DSL") ), MTK_PIN( 132, "GPIO132", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO132"), MTK_FUNCTION(1, "MSDC0_DAT3"), MTK_FUNCTION(2, "MSDC0_DAT3") ), MTK_PIN( 133, "GPIO133", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO133"), MTK_FUNCTION(1, "MSDC0_RSTB"), MTK_FUNCTION(2, "MSDC0_RSTB") ), MTK_PIN( 134, "GPIO134", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO134"), MTK_FUNCTION(1, "RTC32K_CK") ), MTK_PIN( 135, "GPIO135", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO135"), MTK_FUNCTION(1, "WATCHDOG") ), MTK_PIN( 136, "GPIO136", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO136"), MTK_FUNCTION(1, "AUD_CLK_MOSI"), MTK_FUNCTION(2, "AUD_CLK_MISO"), MTK_FUNCTION(3, "I2S1_MCK") ), MTK_PIN( 137, "GPIO137", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO137"), MTK_FUNCTION(1, "AUD_SYNC_MOSI"), MTK_FUNCTION(2, "AUD_SYNC_MISO"), MTK_FUNCTION(3, "I2S1_BCK") ), MTK_PIN( 138, "GPIO138", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO138"), MTK_FUNCTION(1, "AUD_DAT_MOSI0"), MTK_FUNCTION(2, "AUD_DAT_MISO0"), MTK_FUNCTION(3, "I2S1_LRCK") ), MTK_PIN( 139, "GPIO139", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO139"), MTK_FUNCTION(1, "AUD_DAT_MOSI1"), MTK_FUNCTION(2, "AUD_DAT_MISO1"), MTK_FUNCTION(3, "I2S1_DO") ), MTK_PIN( 140, "GPIO140", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO140"), MTK_FUNCTION(1, "AUD_CLK_MISO"), MTK_FUNCTION(2, "AUD_CLK_MOSI"), MTK_FUNCTION(3, "I2S2_MCK") ), MTK_PIN( 141, "GPIO141", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO141"), MTK_FUNCTION(1, "AUD_SYNC_MISO"), MTK_FUNCTION(2, "AUD_SYNC_MOSI"), MTK_FUNCTION(3, "I2S2_BCK") ), MTK_PIN( 142, "GPIO142", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO142"), MTK_FUNCTION(1, "AUD_DAT_MISO0"), MTK_FUNCTION(2, "AUD_DAT_MOSI0"), MTK_FUNCTION(3, "I2S2_LRCK") ), MTK_PIN( 143, "GPIO143", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO143"), MTK_FUNCTION(1, "AUD_DAT_MISO1"), MTK_FUNCTION(2, "AUD_DAT_MOSI1"), MTK_FUNCTION(3, "I2S2_DI") ), MTK_PIN( 144, "GPIO144", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO144"), MTK_FUNCTION(1, "PWRAP_SPI0_MI"), MTK_FUNCTION(2, "PWRAP_SPI0_MO") ), MTK_PIN( 145, "GPIO145", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO145"), MTK_FUNCTION(1, "PWRAP_SPI0_CSN") ), MTK_PIN( 146, "GPIO146", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO146"), MTK_FUNCTION(1, "PWRAP_SPI0_MO"), MTK_FUNCTION(2, "PWRAP_SPI0_MI") ), MTK_PIN( 147, "GPIO147", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO147"), MTK_FUNCTION(1, "PWRAP_SPI0_CK") ), MTK_PIN( 148, "GPIO148", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO148"), MTK_FUNCTION(1, "SRCLKENA0") ), MTK_PIN( 149, "GPIO149", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO149"), MTK_FUNCTION(1, "SRCLKENA1") ), MTK_PIN( 150, "GPIO150", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO150"), MTK_FUNCTION(1, "PWM0"), MTK_FUNCTION(2, "CMFLASH"), MTK_FUNCTION(3, "ANT_SEL3"), MTK_FUNCTION(5, "MD_URXD0"), MTK_FUNCTION(6, "TP_URXD2_AO") ), MTK_PIN( 151, "GPIO151", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO151"), MTK_FUNCTION(1, "PWM1"), MTK_FUNCTION(2, "CMVREF0"), MTK_FUNCTION(3, "ANT_SEL4"), MTK_FUNCTION(5, "MD_UTXD0"), MTK_FUNCTION(6, "TP_UTXD2_AO") ), MTK_PIN( 152, "GPIO152", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO152"), MTK_FUNCTION(1, "PWM2"), MTK_FUNCTION(2, "CMVREF1"), MTK_FUNCTION(3, "ANT_SEL5"), MTK_FUNCTION(5, "MD_URXD1"), MTK_FUNCTION(6, "TP_UCTS1_AO") ), MTK_PIN( 153, "GPIO153", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO153"), MTK_FUNCTION(1, "PWM3"), MTK_FUNCTION(2, "CLKM0"), MTK_FUNCTION(3, "ANT_SEL6"), MTK_FUNCTION(5, "MD_UTXD1"), MTK_FUNCTION(6, "TP_URTS1_AO") ), MTK_PIN( 154, "GPIO154", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO154"), MTK_FUNCTION(1, "PWM5"), MTK_FUNCTION(2, "CLKM2"), MTK_FUNCTION(3, "USB_DRVVBUS"), MTK_FUNCTION(5, "PTA_TXD"), MTK_FUNCTION(6, "CONN_UART0_TXD") ), MTK_PIN( 155, "GPIO155", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO155"), MTK_FUNCTION(1, "SPI0_MI"), MTK_FUNCTION(2, "IDDIG"), MTK_FUNCTION(3, "AGPS_SYNC"), MTK_FUNCTION(4, "TP_GPIO0_AO"), MTK_FUNCTION(5, "MFG_JTAG_TDO"), MTK_FUNCTION(6, "DFD_TDO"), MTK_FUNCTION(7, "JTDO_SEL1") ), MTK_PIN( 156, "GPIO156", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO156"), MTK_FUNCTION(1, "SPI0_CSB"), MTK_FUNCTION(2, "USB_DRVVBUS"), MTK_FUNCTION(3, "DVFSRC_EXT_REQ"), MTK_FUNCTION(4, "TP_GPIO1_AO"), MTK_FUNCTION(5, "MFG_JTAG_TMS"), MTK_FUNCTION(6, "DFD_TMS"), MTK_FUNCTION(7, "JTMS_SEL1") ), MTK_PIN( 157, "GPIO157", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO157"), MTK_FUNCTION(1, "SPI0_MO"), MTK_FUNCTION(2, "MD_INT1_C2K_UIM0_HOT_PLUG"), MTK_FUNCTION(3, "CLKM0"), MTK_FUNCTION(4, "TP_GPIO2_AO"), MTK_FUNCTION(5, "MFG_JTAG_TDI"), MTK_FUNCTION(6, "DFD_TDI"), MTK_FUNCTION(7, "JTDI_SEL1") ), MTK_PIN( 158, "GPIO158", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO158"), MTK_FUNCTION(1, "SPI0_CLK"), MTK_FUNCTION(2, "MD_INT2_C2K_UIM1_HOT_PLUG"), MTK_FUNCTION(3, "EXT_FRAME_SYNC"), MTK_FUNCTION(4, "TP_GPIO3_AO"), MTK_FUNCTION(5, "MFG_JTAG_TCK"), MTK_FUNCTION(6, "DFD_TCK_XI"), MTK_FUNCTION(7, "JTCK_SEL1") ), MTK_PIN( 159, "GPIO159", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO159"), MTK_FUNCTION(1, "PWM4"), MTK_FUNCTION(2, "CLKM1"), MTK_FUNCTION(3, "ANT_SEL7"), MTK_FUNCTION(5, "PTA_RXD"), MTK_FUNCTION(6, "CONN_UART0_RXD") ), MTK_PIN( 160, "GPIO160", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO160"), MTK_FUNCTION(1, "CLKM0"), MTK_FUNCTION(2, "PWM2"), MTK_FUNCTION(3, "EXT_FRAME_SYNC"), MTK_FUNCTION(4, "TP_GPIO5_AO"), MTK_FUNCTION(5, "AGPS_SYNC"), MTK_FUNCTION(6, "DVFSRC_EXT_REQ") ), MTK_PIN( 161, "GPIO161", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO161"), MTK_FUNCTION(1, "SCL6"), MTK_FUNCTION(2, "SCL_6306"), MTK_FUNCTION(3, "TP_GPIO6_AO"), MTK_FUNCTION(4, "KPCOL6"), MTK_FUNCTION(5, "PTA_RXD"), MTK_FUNCTION(6, "CONN_UART0_RXD") ), MTK_PIN( 162, "GPIO162", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO162"), MTK_FUNCTION(1, "SDA6"), MTK_FUNCTION(2, "SDA_6306"), MTK_FUNCTION(3, "TP_GPIO7_AO"), MTK_FUNCTION(4, "KPCOL7"), MTK_FUNCTION(5, "PTA_TXD"), MTK_FUNCTION(6, "CONN_UART0_TXD") ), MTK_PIN( 163, "GPIO163", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO163") ), MTK_PIN( 164, "GPIO164", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO164") ), MTK_PIN( 165, "GPIO165", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO165") ), MTK_PIN( 166, "GPIO166", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO166") ), MTK_PIN( 167, "GPIO167", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO167") ), MTK_PIN( 168, "GPIO168", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO168") ), MTK_PIN( 169, "GPIO169", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO169") ), MTK_PIN( 170, "GPIO170", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO170") ), MTK_PIN( 171, "GPIO171", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO171") ), MTK_PIN( 172, "GPIO172", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO172") ), MTK_PIN( 173, "GPIO173", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO173") ), MTK_PIN( 174, "GPIO174", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO174") ), MTK_PIN( 175, "GPIO175", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO175") ), MTK_PIN( 176, "GPIO176", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO176") ), MTK_PIN( 177, "GPIO177", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO177") ), MTK_PIN( 178, "GPIO178", MTK_EINT_FUNCTION(0, NO_EINT_SUPPORT), DRV_GRP4, MTK_FUNCTION(0, "GPIO178") ), MTK_PIN( 179, "GPIO179", MTK_EINT_FUNCTION(0, 151), DRV_GRP4, MTK_FUNCTION(0, "GPIO179") ), }; #endif /* __PINCTRL_MTK_MT6765_H */
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2019, Intel Corporation. */ #ifndef _ICE_FLEX_PIPE_H_ #define _ICE_FLEX_PIPE_H_ #include "ice_type.h" #define ICE_FDIR_REG_SET_SIZE 4 int ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access); void ice_release_change_lock(struct ice_hw *hw); int ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx, u8 *prot, u16 *off); void ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type type, unsigned long *bm); void ice_init_prof_result_bm(struct ice_hw *hw); int ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups, unsigned long *bm, struct list_head *fv_list); int ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size, struct ice_sq_cd *cd); bool ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port, enum ice_tunnel_type type); int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti); int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti); int ice_set_dvm_boost_entries(struct ice_hw *hw); /* Rx parser PTYPE functions */ bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype); /* XLT2/VSI group functions */ int ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[], const struct ice_ptype_attributes *attr, u16 attr_cnt, struct ice_fv_word *es, u16 *masks, bool symm, bool fd_swap); struct ice_prof_map * ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id); int ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl); int ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl); int ice_flow_assoc_fdir_prof(struct ice_hw *hw, enum ice_block blk, u16 dest_vsi, u16 fdir_vsi, u64 hdl); enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buff, u32 len); enum ice_ddp_state ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len); bool ice_is_init_pkg_successful(enum ice_ddp_state state); int ice_init_hw_tbls(struct ice_hw *hw); void ice_free_seg(struct ice_hw *hw); void ice_fill_blk_tbls(struct ice_hw *hw); void ice_clear_hw_tbls(struct ice_hw *hw); void ice_free_hw_tbls(struct ice_hw *hw); int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id); struct ice_buf_build * ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size, void **section); struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld); void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld); #endif /* _ICE_FLEX_PIPE_H_ */
// SPDX-License-Identifier: GPL-2.0-only /* Marvell RVU Admin Function driver * * Copyright (C) 2020 Marvell. * */ #include <linux/bitfield.h> #include <linux/pci.h> #include "rvu_struct.h" #include "rvu_reg.h" #include "mbox.h" #include "rvu.h" /* CPT PF device id */ #define PCI_DEVID_OTX2_CPT_PF 0xA0FD #define PCI_DEVID_OTX2_CPT10K_PF 0xA0F2 /* Length of initial context fetch in 128 byte words */ #define CPT_CTX_ILEN 1ULL /* Interrupt vector count of CPT RVU and RAS interrupts */ #define CPT_10K_AF_RVU_RAS_INT_VEC_CNT 2 /* Default CPT_AF_RXC_CFG1:max_rxc_icb_cnt */ #define CPT_DFLT_MAX_RXC_ICB_CNT 0xC0ULL #define cpt_get_eng_sts(e_min, e_max, rsp, etype) \ ({ \ u64 free_sts = 0, busy_sts = 0; \ typeof(rsp) _rsp = rsp; \ u32 e, i; \ \ for (e = (e_min), i = 0; e < (e_max); e++, i++) { \ reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \ if (reg & 0x1) \ busy_sts |= 1ULL << i; \ \ if (reg & 0x2) \ free_sts |= 1ULL << i; \ } \ (_rsp)->busy_sts_##etype = busy_sts; \ (_rsp)->free_sts_##etype = free_sts; \ }) #define MAX_AE GENMASK_ULL(47, 32) #define MAX_IE GENMASK_ULL(31, 16) #define MAX_SE GENMASK_ULL(15, 0) static u16 cpt_max_engines_get(struct rvu *rvu) { u16 max_ses, max_ies, max_aes; u64 reg; reg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS1); max_ses = FIELD_GET(MAX_SE, reg); max_ies = FIELD_GET(MAX_IE, reg); max_aes = FIELD_GET(MAX_AE, reg); return max_ses + max_ies + max_aes; } /* Number of flt interrupt vectors are depends on number of engines that the * chip has. Each flt vector represents 64 engines. */ static int cpt_10k_flt_nvecs_get(struct rvu *rvu, u16 max_engs) { int flt_vecs; flt_vecs = DIV_ROUND_UP(max_engs, 64); if (flt_vecs > CPT_10K_AF_INT_VEC_FLT_MAX) { dev_warn_once(rvu->dev, "flt_vecs:%d exceeds the max vectors:%d\n", flt_vecs, CPT_10K_AF_INT_VEC_FLT_MAX); flt_vecs = CPT_10K_AF_INT_VEC_FLT_MAX; } return flt_vecs; } static irqreturn_t cpt_af_flt_intr_handler(int vec, void *ptr) { struct rvu_block *block = ptr; struct rvu *rvu = block->rvu; int blkaddr = block->addr; u64 reg, val; int i, eng; u8 grp; reg = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(vec)); dev_err_ratelimited(rvu->dev, "Received CPTAF FLT%d irq : 0x%llx", vec, reg); i = -1; while ((i = find_next_bit((unsigned long *)&reg, 64, i + 1)) < 64) { switch (vec) { case 0: eng = i; break; case 1: eng = i + 64; break; case 2: eng = i + 128; break; } grp = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng)) & 0xFF; /* Disable and enable the engine which triggers fault */ rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), 0x0); val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng)); rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val & ~1ULL); rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), grp); rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val | 1ULL); spin_lock(&rvu->cpt_intr_lock); block->cpt_flt_eng_map[vec] |= BIT_ULL(i); val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(eng)); val = val & 0x3; if (val == 0x1 || val == 0x2) block->cpt_rcvrd_eng_map[vec] |= BIT_ULL(i); spin_unlock(&rvu->cpt_intr_lock); } rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(vec), reg); return IRQ_HANDLED; } static irqreturn_t rvu_cpt_af_flt0_intr_handler(int irq, void *ptr) { return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT0, ptr); } static irqreturn_t rvu_cpt_af_flt1_intr_handler(int irq, void *ptr) { return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT1, ptr); } static irqreturn_t rvu_cpt_af_flt2_intr_handler(int irq, void *ptr) { return cpt_af_flt_intr_handler(CPT_10K_AF_INT_VEC_FLT2, ptr); } static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr) { struct rvu_block *block = ptr; struct rvu *rvu = block->rvu; int blkaddr = block->addr; u64 reg; reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT); dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg); rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg); return IRQ_HANDLED; } static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr) { struct rvu_block *block = ptr; struct rvu *rvu = block->rvu; int blkaddr = block->addr; u64 reg; reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT); dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg); rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg); return IRQ_HANDLED; } static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs, irq_handler_t handler, const char *name) { struct rvu *rvu = block->rvu; int ret; ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0, name, block); if (ret) { dev_err(rvu->dev, "RVUAF: %s irq registration failed", name); return ret; } WARN_ON(rvu->irq_allocated[irq_offs]); rvu->irq_allocated[irq_offs] = true; return 0; } static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off) { struct rvu *rvu = block->rvu; int blkaddr = block->addr; int i, flt_vecs; u16 max_engs; u8 nr; max_engs = cpt_max_engines_get(rvu); flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs); /* Disable all CPT AF interrupts */ for (i = CPT_10K_AF_INT_VEC_FLT0; i < flt_vecs; i++) { nr = (max_engs > 64) ? 64 : max_engs; max_engs -= nr; rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), INTR_MASK(nr)); } rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1); rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1); /* CPT AF interrupt vectors are flt_int, rvu_int and ras_int. */ for (i = 0; i < flt_vecs + CPT_10K_AF_RVU_RAS_INT_VEC_CNT; i++) if (rvu->irq_allocated[off + i]) { free_irq(pci_irq_vector(rvu->pdev, off + i), block); rvu->irq_allocated[off + i] = false; } } static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; int i, offs; if (!is_block_implemented(rvu->hw, blkaddr)) return; offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF; if (!offs) { dev_warn(rvu->dev, "Failed to get CPT_AF_INT vector offsets\n"); return; } block = &hw->block[blkaddr]; if (!is_rvu_otx2(rvu)) return cpt_10k_unregister_interrupts(block, offs); /* Disable all CPT AF interrupts */ for (i = 0; i < CPT_AF_INT_VEC_RVU; i++) rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), ~0ULL); rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1); rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1); for (i = 0; i < CPT_AF_INT_VEC_CNT; i++) if (rvu->irq_allocated[offs + i]) { free_irq(pci_irq_vector(rvu->pdev, offs + i), block); rvu->irq_allocated[offs + i] = false; } } void rvu_cpt_unregister_interrupts(struct rvu *rvu) { cpt_unregister_interrupts(rvu, BLKADDR_CPT0); cpt_unregister_interrupts(rvu, BLKADDR_CPT1); } static int cpt_10k_register_interrupts(struct rvu_block *block, int off) { int rvu_intr_vec, ras_intr_vec; struct rvu *rvu = block->rvu; int blkaddr = block->addr; irq_handler_t flt_fn; int i, ret, flt_vecs; u16 max_engs; u8 nr; max_engs = cpt_max_engines_get(rvu); flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs); for (i = CPT_10K_AF_INT_VEC_FLT0; i < flt_vecs; i++) { sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i); switch (i) { case CPT_10K_AF_INT_VEC_FLT0: flt_fn = rvu_cpt_af_flt0_intr_handler; break; case CPT_10K_AF_INT_VEC_FLT1: flt_fn = rvu_cpt_af_flt1_intr_handler; break; case CPT_10K_AF_INT_VEC_FLT2: flt_fn = rvu_cpt_af_flt2_intr_handler; break; } ret = rvu_cpt_do_register_interrupt(block, off + i, flt_fn, &rvu->irq_name[(off + i) * NAME_SIZE]); if (ret) goto err; nr = (max_engs > 64) ? 64 : max_engs; max_engs -= nr; rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), INTR_MASK(nr)); } rvu_intr_vec = flt_vecs; ras_intr_vec = rvu_intr_vec + 1; ret = rvu_cpt_do_register_interrupt(block, off + rvu_intr_vec, rvu_cpt_af_rvu_intr_handler, "CPTAF RVU"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1); ret = rvu_cpt_do_register_interrupt(block, off + ras_intr_vec, rvu_cpt_af_ras_intr_handler, "CPTAF RAS"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1); return 0; err: rvu_cpt_unregister_interrupts(rvu); return ret; } static int cpt_register_interrupts(struct rvu *rvu, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; struct rvu_block *block; irq_handler_t flt_fn; int i, offs, ret = 0; if (!is_block_implemented(rvu->hw, blkaddr)) return 0; block = &hw->block[blkaddr]; offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF; if (!offs) { dev_warn(rvu->dev, "Failed to get CPT_AF_INT vector offsets\n"); return 0; } if (!is_rvu_otx2(rvu)) return cpt_10k_register_interrupts(block, offs); for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) { sprintf(&rvu->irq_name[(offs + i) * NAME_SIZE], "CPTAF FLT%d", i); switch (i) { case CPT_AF_INT_VEC_FLT0: flt_fn = rvu_cpt_af_flt0_intr_handler; break; case CPT_AF_INT_VEC_FLT1: flt_fn = rvu_cpt_af_flt1_intr_handler; break; } ret = rvu_cpt_do_register_interrupt(block, offs + i, flt_fn, &rvu->irq_name[(offs + i) * NAME_SIZE]); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL); } ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU, rvu_cpt_af_rvu_intr_handler, "CPTAF RVU"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1); ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS, rvu_cpt_af_ras_intr_handler, "CPTAF RAS"); if (ret) goto err; rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1); return 0; err: rvu_cpt_unregister_interrupts(rvu); return ret; } int rvu_cpt_register_interrupts(struct rvu *rvu) { int ret; ret = cpt_register_interrupts(rvu, BLKADDR_CPT0); if (ret) return ret; return cpt_register_interrupts(rvu, BLKADDR_CPT1); } static int get_cpt_pf_num(struct rvu *rvu) { int i, domain_nr, cpt_pf_num = -1; struct pci_dev *pdev; domain_nr = pci_domain_nr(rvu->pdev->bus); for (i = 0; i < rvu->hw->total_pfs; i++) { pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0); if (!pdev) continue; if (pdev->device == PCI_DEVID_OTX2_CPT_PF || pdev->device == PCI_DEVID_OTX2_CPT10K_PF) { cpt_pf_num = i; put_device(&pdev->dev); break; } put_device(&pdev->dev); } return cpt_pf_num; } static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc) { int cpt_pf_num = rvu->cpt_pf_num; if (rvu_get_pf(pcifunc) != cpt_pf_num) return false; if (pcifunc & RVU_PFVF_FUNC_MASK) return false; return true; } static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc) { int cpt_pf_num = rvu->cpt_pf_num; if (rvu_get_pf(pcifunc) != cpt_pf_num) return false; if (!(pcifunc & RVU_PFVF_FUNC_MASK)) return false; return true; } static int validate_and_get_cpt_blkaddr(int req_blkaddr) { int blkaddr; blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0; if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1) return -EINVAL; return blkaddr; } int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu, struct cpt_lf_alloc_req_msg *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int cptlf, blkaddr; int num_lfs, slot; u64 val; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; if (req->eng_grpmsk == 0x0) return CPT_AF_ERR_GRP_INVALID; block = &rvu->hw->block[blkaddr]; num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), block->addr); if (!num_lfs) return CPT_AF_ERR_LF_INVALID; /* Check if requested 'CPTLF <=> NIXLF' mapping is valid */ if (req->nix_pf_func) { /* If default, use 'this' CPTLF's PFFUNC */ if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC) req->nix_pf_func = pcifunc; if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX)) return CPT_AF_ERR_NIX_PF_FUNC_INVALID; } /* Check if requested 'CPTLF <=> SSOLF' mapping is valid */ if (req->sso_pf_func) { /* If default, use 'this' CPTLF's PFFUNC */ if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC) req->sso_pf_func = pcifunc; if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO)) return CPT_AF_ERR_SSO_PF_FUNC_INVALID; } for (slot = 0; slot < num_lfs; slot++) { cptlf = rvu_get_lf(rvu, block, pcifunc, slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; /* Set CPT LF group and priority */ val = (u64)req->eng_grpmsk << 48 | 1; if (!is_rvu_otx2(rvu)) { if (req->ctx_ilen_valid) val |= (req->ctx_ilen << 17); else val |= (CPT_CTX_ILEN << 17); } rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); /* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set * on reset. */ val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32)); val |= ((u64)req->nix_pf_func << 48 | (u64)req->sso_pf_func << 32); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); } return 0; } static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr) { u16 pcifunc = req->hdr.pcifunc; int num_lfs, cptlf, slot, err; struct rvu_block *block; block = &rvu->hw->block[blkaddr]; num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), block->addr); if (!num_lfs) return 0; for (slot = 0; slot < num_lfs; slot++) { cptlf = rvu_get_lf(rvu, block, pcifunc, slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; /* Perform teardown */ rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot); /* Reset LF */ err = rvu_lf_reset(rvu, block, cptlf); if (err) { dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", block->addr, cptlf); } } return 0; } int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { int ret; ret = cpt_lf_free(rvu, req, BLKADDR_CPT0); if (ret) return ret; if (is_block_implemented(rvu->hw, BLKADDR_CPT1)) ret = cpt_lf_free(rvu, req, BLKADDR_CPT1); return ret; } static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf, struct cpt_inline_ipsec_cfg_msg *req) { u16 sso_pf_func = req->sso_pf_func; u8 nix_sel; u64 val; val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); if (req->enable && (val & BIT_ULL(16))) { /* IPSec inline outbound path is already enabled for a given * CPT LF, HRM states that inline inbound & outbound paths * must not be enabled at the same time for a given CPT LF */ return CPT_AF_ERR_INLINE_IPSEC_INB_ENA; } /* Check if requested 'CPTLF <=> SSOLF' mapping is valid */ if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO)) return CPT_AF_ERR_SSO_PF_FUNC_INVALID; nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0; /* Enable CPT LF for IPsec inline inbound operations */ if (req->enable) val |= BIT_ULL(9); else val &= ~BIT_ULL(9); val |= (u64)nix_sel << 8; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); if (sso_pf_func) { /* Set SSO_PF_FUNC */ val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); val |= (u64)sso_pf_func << 32; val |= (u64)req->nix_pf_func << 48; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); } if (req->sso_pf_func_ovrd) /* Set SSO_PF_FUNC_OVRD for inline IPSec */ rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1); /* Configure the X2P Link register with the cpt base channel number and * range of channels it should propagate to X2P */ if (!is_rvu_otx2(rvu)) { val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16); val |= (u64)rvu->hw->cpt_chan_base; rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val); rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val); } return 0; } static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf, struct cpt_inline_ipsec_cfg_msg *req) { u16 nix_pf_func = req->nix_pf_func; int nix_blkaddr; u8 nix_sel; u64 val; val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); if (req->enable && (val & BIT_ULL(9))) { /* IPSec inline inbound path is already enabled for a given * CPT LF, HRM states that inline inbound & outbound paths * must not be enabled at the same time for a given CPT LF */ return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA; } /* Check if requested 'CPTLF <=> NIXLF' mapping is valid */ if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX)) return CPT_AF_ERR_NIX_PF_FUNC_INVALID; /* Enable CPT LF for IPsec inline outbound operations */ if (req->enable) val |= BIT_ULL(16); else val &= ~BIT_ULL(16); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); if (nix_pf_func) { /* Set NIX_PF_FUNC */ val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); val |= (u64)nix_pf_func << 48; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func); nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1; val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); val |= (u64)nix_sel << 8; rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); } return 0; } int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu, struct cpt_inline_ipsec_cfg_msg *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int cptlf, blkaddr, ret; u16 actual_slot; blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc, req->slot, &actual_slot); if (blkaddr < 0) return CPT_AF_ERR_LF_INVALID; block = &rvu->hw->block[blkaddr]; cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; switch (req->dir) { case CPT_INLINE_INBOUND: ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req); break; case CPT_INLINE_OUTBOUND: ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req); break; default: return CPT_AF_ERR_PARAM; } return ret; } static bool validate_and_update_reg_offset(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req, u64 *reg_offset) { u64 offset = req->reg_offset; int blkaddr, num_lfs, lf; struct rvu_block *block; struct rvu_pfvf *pfvf; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return false; /* Registers that can be accessed from PF/VF */ if ((offset & 0xFF000) == CPT_AF_LFX_CTL(0) || (offset & 0xFF000) == CPT_AF_LFX_CTL2(0)) { if (offset & 7) return false; lf = (offset & 0xFFF) >> 3; block = &rvu->hw->block[blkaddr]; pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr); if (lf >= num_lfs) /* Slot is not valid for that PF/VF */ return false; /* Translate local LF used by VFs to global CPT LF */ lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr], req->hdr.pcifunc, lf); if (lf < 0) return false; /* Translate local LF's offset to global CPT LF's offset to * access LFX register. */ *reg_offset = (req->reg_offset & 0xFF000) + (lf << 3); return true; } else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) { /* Registers that can be accessed from PF */ switch (offset) { case CPT_AF_DIAG: case CPT_AF_CTL: case CPT_AF_PF_FUNC: case CPT_AF_BLK_RST: case CPT_AF_CONSTANTS1: case CPT_AF_CTX_FLUSH_TIMER: case CPT_AF_RXC_CFG1: return true; } switch (offset & 0xFF000) { case CPT_AF_EXEX_STS(0): case CPT_AF_EXEX_CTL(0): case CPT_AF_EXEX_CTL2(0): case CPT_AF_EXEX_UCODE_BASE(0): if (offset & 7) return false; break; default: return false; } return true; } return false; } int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req, struct cpt_rd_wr_reg_msg *rsp) { u64 offset = req->reg_offset; int blkaddr; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; /* This message is accepted only if sent from CPT PF/VF */ if (!is_cpt_pf(rvu, req->hdr.pcifunc) && !is_cpt_vf(rvu, req->hdr.pcifunc)) return CPT_AF_ERR_ACCESS_DENIED; if (!validate_and_update_reg_offset(rvu, req, &offset)) return CPT_AF_ERR_ACCESS_DENIED; rsp->reg_offset = req->reg_offset; rsp->ret_val = req->ret_val; rsp->is_write = req->is_write; if (req->is_write) rvu_write64(rvu, blkaddr, offset, req->val); else rsp->val = rvu_read64(rvu, blkaddr, offset); return 0; } static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr) { struct rvu_hwinfo *hw = rvu->hw; if (is_rvu_otx2(rvu)) return; rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC); rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC); rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC); rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_LATENCY_PC); rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC); rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_LATENCY_PC); rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_LATENCY_PC); rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_LATENCY_PC); rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_LATENCY_PC); rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR); rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID); rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER); rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0)); rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1)); if (!hw->cap.cpt_rxc) return; rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME); rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG); rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS); rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS); rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG); } static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr) { u16 max_ses, max_ies, max_aes; u32 e_min = 0, e_max = 0; u64 reg; reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1); max_ses = reg & 0xffff; max_ies = (reg >> 16) & 0xffff; max_aes = (reg >> 32) & 0xffff; /* Get AE status */ e_min = max_ses + max_ies; e_max = max_ses + max_ies + max_aes; cpt_get_eng_sts(e_min, e_max, rsp, ae); /* Get SE status */ e_min = 0; e_max = max_ses; cpt_get_eng_sts(e_min, e_max, rsp, se); /* Get IE status */ e_min = max_ses; e_max = max_ses + max_ies; cpt_get_eng_sts(e_min, e_max, rsp, ie); } int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req, struct cpt_sts_rsp *rsp) { int blkaddr; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; /* This message is accepted only if sent from CPT PF/VF */ if (!is_cpt_pf(rvu, req->hdr.pcifunc) && !is_cpt_vf(rvu, req->hdr.pcifunc)) return CPT_AF_ERR_ACCESS_DENIED; get_ctx_pc(rvu, rsp, blkaddr); /* Get CPT engines status */ get_eng_sts(rvu, rsp, blkaddr); /* Read CPT instruction PC registers */ rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC); rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC); rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC); rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC); rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC); rsp->active_cycles_pc = rvu_read64(rvu, blkaddr, CPT_AF_ACTIVE_CYCLES_PC); rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO); rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT); rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG); return 0; } #define RXC_ZOMBIE_THRES GENMASK_ULL(59, 48) #define RXC_ZOMBIE_LIMIT GENMASK_ULL(43, 32) #define RXC_ACTIVE_THRES GENMASK_ULL(27, 16) #define RXC_ACTIVE_LIMIT GENMASK_ULL(11, 0) #define RXC_ACTIVE_COUNT GENMASK_ULL(60, 48) #define RXC_ZOMBIE_COUNT GENMASK_ULL(60, 48) static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req, int blkaddr, struct cpt_rxc_time_cfg_req *save) { u64 dfrg_reg; if (save) { /* Save older config */ dfrg_reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG); save->zombie_thres = FIELD_GET(RXC_ZOMBIE_THRES, dfrg_reg); save->zombie_limit = FIELD_GET(RXC_ZOMBIE_LIMIT, dfrg_reg); save->active_thres = FIELD_GET(RXC_ACTIVE_THRES, dfrg_reg); save->active_limit = FIELD_GET(RXC_ACTIVE_LIMIT, dfrg_reg); save->step = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG); } dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres); dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit); dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres); dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit); rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step); rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg); } int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req, struct msg_rsp *rsp) { int blkaddr; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; /* This message is accepted only if sent from CPT PF/VF */ if (!is_cpt_pf(rvu, req->hdr.pcifunc) && !is_cpt_vf(rvu, req->hdr.pcifunc)) return CPT_AF_ERR_ACCESS_DENIED; cpt_rxc_time_cfg(rvu, req, blkaddr, NULL); return 0; } int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req, struct msg_rsp *rsp) { return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc); } int rvu_mbox_handler_cpt_lf_reset(struct rvu *rvu, struct cpt_lf_rst_req *req, struct msg_rsp *rsp) { u16 pcifunc = req->hdr.pcifunc; struct rvu_block *block; int cptlf, blkaddr, ret; u16 actual_slot; u64 ctl, ctl2; blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc, req->slot, &actual_slot); if (blkaddr < 0) return CPT_AF_ERR_LF_INVALID; block = &rvu->hw->block[blkaddr]; cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot); if (cptlf < 0) return CPT_AF_ERR_LF_INVALID; ctl = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); ctl2 = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); ret = rvu_lf_reset(rvu, block, cptlf); if (ret) dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", block->addr, cptlf); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), ctl); rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), ctl2); return 0; } int rvu_mbox_handler_cpt_flt_eng_info(struct rvu *rvu, struct cpt_flt_eng_info_req *req, struct cpt_flt_eng_info_rsp *rsp) { struct rvu_block *block; unsigned long flags; int blkaddr, vec; int flt_vecs; u16 max_engs; blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); if (blkaddr < 0) return blkaddr; block = &rvu->hw->block[blkaddr]; max_engs = cpt_max_engines_get(rvu); flt_vecs = cpt_10k_flt_nvecs_get(rvu, max_engs); for (vec = 0; vec < flt_vecs; vec++) { spin_lock_irqsave(&rvu->cpt_intr_lock, flags); rsp->flt_eng_map[vec] = block->cpt_flt_eng_map[vec]; rsp->rcvrd_eng_map[vec] = block->cpt_rcvrd_eng_map[vec]; if (req->reset) { block->cpt_flt_eng_map[vec] = 0x0; block->cpt_rcvrd_eng_map[vec] = 0x0; } spin_unlock_irqrestore(&rvu->cpt_intr_lock, flags); } return 0; } static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr) { struct cpt_rxc_time_cfg_req req, prev; struct rvu_hwinfo *hw = rvu->hw; int timeout = 2000; u64 reg; if (!hw->cap.cpt_rxc) return; /* Set time limit to minimum values, so that rxc entries will be * flushed out quickly. */ req.step = 1; req.zombie_thres = 1; req.zombie_limit = 1; req.active_thres = 1; req.active_limit = 1; cpt_rxc_time_cfg(rvu, &req, blkaddr, &prev); do { reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS); udelay(1); if (FIELD_GET(RXC_ACTIVE_COUNT, reg)) timeout--; else break; } while (timeout); if (timeout == 0) dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n"); timeout = 2000; do { reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS); udelay(1); if (FIELD_GET(RXC_ZOMBIE_COUNT, reg)) timeout--; else break; } while (timeout); if (timeout == 0) dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n"); /* Restore config */ cpt_rxc_time_cfg(rvu, &prev, blkaddr, NULL); } #define INFLIGHT GENMASK_ULL(8, 0) #define GRB_CNT GENMASK_ULL(39, 32) #define GWB_CNT GENMASK_ULL(47, 40) #define XQ_XOR GENMASK_ULL(63, 63) #define DQPTR GENMASK_ULL(19, 0) #define NQPTR GENMASK_ULL(51, 32) static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot) { int timeout = 1000000; u64 inprog, inst_ptr; u64 qsize, pending; int i = 0; /* Disable instructions enqueuing */ rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0); inprog = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG)); inprog |= BIT_ULL(16); rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog); qsize = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_SIZE)) & 0x7FFF; do { inst_ptr = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_INST_PTR)); pending = (FIELD_GET(XQ_XOR, inst_ptr) * qsize * 40) + FIELD_GET(NQPTR, inst_ptr) - FIELD_GET(DQPTR, inst_ptr); udelay(1); timeout--; } while ((pending != 0) && (timeout != 0)); if (timeout == 0) dev_warn(rvu->dev, "TIMEOUT: CPT poll on pending instructions\n"); timeout = 1000000; /* Wait for CPT queue to become execution-quiescent */ do { inprog = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG)); if ((FIELD_GET(INFLIGHT, inprog) == 0) && (FIELD_GET(GRB_CNT, inprog) == 0)) { i++; } else { i = 0; timeout--; } } while ((timeout != 0) && (i < 10)); if (timeout == 0) dev_warn(rvu->dev, "TIMEOUT: CPT poll on inflight count\n"); /* Wait for 2 us to flush all queue writes to memory */ udelay(2); } int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot) { u64 reg; if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc)) cpt_rxc_teardown(rvu, blkaddr); mutex_lock(&rvu->alias_lock); /* Enable BAR2 ALIAS for this pcifunc. */ reg = BIT_ULL(16) | pcifunc; rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg); cpt_lf_disable_iqueue(rvu, blkaddr, slot); rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0); mutex_unlock(&rvu->alias_lock); return 0; } #define CPT_RES_LEN 16 #define CPT_SE_IE_EGRP 1ULL static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr, int nix_blkaddr) { int cpt_pf_num = rvu->cpt_pf_num; struct cpt_inst_lmtst_req *req; dma_addr_t res_daddr; int timeout = 3000; u8 cpt_idx; u64 *inst; u16 *res; int rc; res = kzalloc(CPT_RES_LEN, GFP_KERNEL); if (!res) return -ENOMEM; res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN, DMA_BIDIRECTIONAL); if (dma_mapping_error(rvu->dev, res_daddr)) { dev_err(rvu->dev, "DMA mapping failed for CPT result\n"); rc = -EFAULT; goto res_free; } *res = 0xFFFF; /* Send mbox message to CPT PF */ req = (struct cpt_inst_lmtst_req *) otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num, sizeof(*req), sizeof(struct msg_rsp)); if (!req) { rc = -ENOMEM; goto res_daddr_unmap; } req->hdr.sig = OTX2_MBOX_REQ_SIG; req->hdr.id = MBOX_MSG_CPT_INST_LMTST; inst = req->inst; /* Prepare CPT_INST_S */ inst[0] = 0; inst[1] = res_daddr; /* AF PF FUNC */ inst[2] = 0; /* Set QORD */ inst[3] = 1; inst[4] = 0; inst[5] = 0; inst[6] = 0; /* Set EGRP */ inst[7] = CPT_SE_IE_EGRP << 61; /* Subtract 1 from the NIX-CPT credit count to preserve * credit counts. */ cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1; rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx), BIT_ULL(22) - 1); otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num); rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num); if (rc) dev_warn(rvu->dev, "notification to pf %d failed\n", cpt_pf_num); /* Wait for CPT instruction to be completed */ do { mdelay(1); if (*res == 0xFFFF) timeout--; else break; } while (timeout); if (timeout == 0) dev_warn(rvu->dev, "Poll for result hits hard loop counter\n"); res_daddr_unmap: dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL); res_free: kfree(res); return 0; } #define CTX_CAM_PF_FUNC GENMASK_ULL(61, 46) #define CTX_CAM_CPTR GENMASK_ULL(45, 0) int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc) { int nix_blkaddr, blkaddr; u16 max_ctx_entries, i; int slot = 0, num_lfs; u64 reg, cam_data; int rc; nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); if (nix_blkaddr < 0) return -EINVAL; if (is_rvu_otx2(rvu)) return 0; blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0; /* Submit CPT_INST_S to track when all packets have been * flushed through for the NIX PF FUNC in inline inbound case. */ rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr); if (rc) return rc; /* Wait for rxc entries to be flushed out */ cpt_rxc_teardown(rvu, blkaddr); reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0); max_ctx_entries = (reg >> 48) & 0xFFF; mutex_lock(&rvu->rsrc_lock); num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), blkaddr); if (num_lfs == 0) { dev_warn(rvu->dev, "CPT LF is not configured\n"); goto unlock; } /* Enable BAR2 ALIAS for this pcifunc. */ reg = BIT_ULL(16) | pcifunc; rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg); for (i = 0; i < max_ctx_entries; i++) { cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i)); if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) && FIELD_GET(CTX_CAM_CPTR, cam_data)) { reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data); rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH), reg); } } rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0); unlock: mutex_unlock(&rvu->rsrc_lock); return 0; } #define MAX_RXC_ICB_CNT GENMASK_ULL(40, 32) int rvu_cpt_init(struct rvu *rvu) { struct rvu_hwinfo *hw = rvu->hw; u64 reg_val; /* Retrieve CPT PF number */ rvu->cpt_pf_num = get_cpt_pf_num(rvu); if (is_block_implemented(rvu->hw, BLKADDR_CPT0) && !is_rvu_otx2(rvu) && !is_cn10kb(rvu)) hw->cap.cpt_rxc = true; if (hw->cap.cpt_rxc && !is_cn10ka_a0(rvu) && !is_cn10ka_a1(rvu)) { /* Set CPT_AF_RXC_CFG1:max_rxc_icb_cnt to 0xc0 to not effect * inline inbound peak performance */ reg_val = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_RXC_CFG1); reg_val &= ~MAX_RXC_ICB_CNT; reg_val |= FIELD_PREP(MAX_RXC_ICB_CNT, CPT_DFLT_MAX_RXC_ICB_CNT); rvu_write64(rvu, BLKADDR_CPT0, CPT_AF_RXC_CFG1, reg_val); } spin_lock_init(&rvu->cpt_intr_lock); return 0; }
// SPDX-License-Identifier: GPL-2.0 /* pci_fire.c: Sun4u platform PCI-E controller support. * * Copyright (C) 2007 David S. Miller ([email protected]) */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/msi.h> #include <linux/export.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/numa.h> #include <asm/prom.h> #include <asm/irq.h> #include <asm/upa.h> #include "pci_impl.h" #define DRIVER_NAME "fire" #define PFX DRIVER_NAME ": " #define FIRE_IOMMU_CONTROL 0x40000UL #define FIRE_IOMMU_TSBBASE 0x40008UL #define FIRE_IOMMU_FLUSH 0x40100UL #define FIRE_IOMMU_FLUSHINV 0x40108UL static int pci_fire_pbm_iommu_init(struct pci_pbm_info *pbm) { struct iommu *iommu = pbm->iommu; u32 vdma[2], dma_mask; u64 control; int tsbsize, err; /* No virtual-dma property on these guys, use largest size. */ vdma[0] = 0xc0000000; /* base */ vdma[1] = 0x40000000; /* size */ dma_mask = 0xffffffff; tsbsize = 128; /* Register addresses. */ iommu->iommu_control = pbm->pbm_regs + FIRE_IOMMU_CONTROL; iommu->iommu_tsbbase = pbm->pbm_regs + FIRE_IOMMU_TSBBASE; iommu->iommu_flush = pbm->pbm_regs + FIRE_IOMMU_FLUSH; iommu->iommu_flushinv = pbm->pbm_regs + FIRE_IOMMU_FLUSHINV; /* We use the main control/status register of FIRE as the write * completion register. */ iommu->write_complete_reg = pbm->controller_regs + 0x410000UL; /* * Invalidate TLB Entries. */ upa_writeq(~(u64)0, iommu->iommu_flushinv); err = iommu_table_init(iommu, tsbsize * 8 * 1024, vdma[0], dma_mask, pbm->numa_node); if (err) return err; upa_writeq(__pa(iommu->page_table) | 0x7UL, iommu->iommu_tsbbase); control = upa_readq(iommu->iommu_control); control |= (0x00000400 /* TSB cache snoop enable */ | 0x00000300 /* Cache mode */ | 0x00000002 /* Bypass enable */ | 0x00000001 /* Translation enable */); upa_writeq(control, iommu->iommu_control); return 0; } #ifdef CONFIG_PCI_MSI struct pci_msiq_entry { u64 word0; #define MSIQ_WORD0_RESV 0x8000000000000000UL #define MSIQ_WORD0_FMT_TYPE 0x7f00000000000000UL #define MSIQ_WORD0_FMT_TYPE_SHIFT 56 #define MSIQ_WORD0_LEN 0x00ffc00000000000UL #define MSIQ_WORD0_LEN_SHIFT 46 #define MSIQ_WORD0_ADDR0 0x00003fff00000000UL #define MSIQ_WORD0_ADDR0_SHIFT 32 #define MSIQ_WORD0_RID 0x00000000ffff0000UL #define MSIQ_WORD0_RID_SHIFT 16 #define MSIQ_WORD0_DATA0 0x000000000000ffffUL #define MSIQ_WORD0_DATA0_SHIFT 0 #define MSIQ_TYPE_MSG 0x6 #define MSIQ_TYPE_MSI32 0xb #define MSIQ_TYPE_MSI64 0xf u64 word1; #define MSIQ_WORD1_ADDR1 0xffffffffffff0000UL #define MSIQ_WORD1_ADDR1_SHIFT 16 #define MSIQ_WORD1_DATA1 0x000000000000ffffUL #define MSIQ_WORD1_DATA1_SHIFT 0 u64 resv[6]; }; /* All MSI registers are offset from pbm->pbm_regs */ #define EVENT_QUEUE_BASE_ADDR_REG 0x010000UL #define EVENT_QUEUE_BASE_ADDR_ALL_ONES 0xfffc000000000000UL #define EVENT_QUEUE_CONTROL_SET(EQ) (0x011000UL + (EQ) * 0x8UL) #define EVENT_QUEUE_CONTROL_SET_OFLOW 0x0200000000000000UL #define EVENT_QUEUE_CONTROL_SET_EN 0x0000100000000000UL #define EVENT_QUEUE_CONTROL_CLEAR(EQ) (0x011200UL + (EQ) * 0x8UL) #define EVENT_QUEUE_CONTROL_CLEAR_OF 0x0200000000000000UL #define EVENT_QUEUE_CONTROL_CLEAR_E2I 0x0000800000000000UL #define EVENT_QUEUE_CONTROL_CLEAR_DIS 0x0000100000000000UL #define EVENT_QUEUE_STATE(EQ) (0x011400UL + (EQ) * 0x8UL) #define EVENT_QUEUE_STATE_MASK 0x0000000000000007UL #define EVENT_QUEUE_STATE_IDLE 0x0000000000000001UL #define EVENT_QUEUE_STATE_ACTIVE 0x0000000000000002UL #define EVENT_QUEUE_STATE_ERROR 0x0000000000000004UL #define EVENT_QUEUE_TAIL(EQ) (0x011600UL + (EQ) * 0x8UL) #define EVENT_QUEUE_TAIL_OFLOW 0x0200000000000000UL #define EVENT_QUEUE_TAIL_VAL 0x000000000000007fUL #define EVENT_QUEUE_HEAD(EQ) (0x011800UL + (EQ) * 0x8UL) #define EVENT_QUEUE_HEAD_VAL 0x000000000000007fUL #define MSI_MAP(MSI) (0x020000UL + (MSI) * 0x8UL) #define MSI_MAP_VALID 0x8000000000000000UL #define MSI_MAP_EQWR_N 0x4000000000000000UL #define MSI_MAP_EQNUM 0x000000000000003fUL #define MSI_CLEAR(MSI) (0x028000UL + (MSI) * 0x8UL) #define MSI_CLEAR_EQWR_N 0x4000000000000000UL #define IMONDO_DATA0 0x02C000UL #define IMONDO_DATA0_DATA 0xffffffffffffffc0UL #define IMONDO_DATA1 0x02C008UL #define IMONDO_DATA1_DATA 0xffffffffffffffffUL #define MSI_32BIT_ADDR 0x034000UL #define MSI_32BIT_ADDR_VAL 0x00000000ffff0000UL #define MSI_64BIT_ADDR 0x034008UL #define MSI_64BIT_ADDR_VAL 0xffffffffffff0000UL static int pci_fire_get_head(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long *head) { *head = upa_readq(pbm->pbm_regs + EVENT_QUEUE_HEAD(msiqid)); return 0; } static int pci_fire_dequeue_msi(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long *head, unsigned long *msi) { unsigned long type_fmt, type, msi_num; struct pci_msiq_entry *base, *ep; base = (pbm->msi_queues + ((msiqid - pbm->msiq_first) * 8192)); ep = &base[*head]; if ((ep->word0 & MSIQ_WORD0_FMT_TYPE) == 0) return 0; type_fmt = ((ep->word0 & MSIQ_WORD0_FMT_TYPE) >> MSIQ_WORD0_FMT_TYPE_SHIFT); type = (type_fmt >> 3); if (unlikely(type != MSIQ_TYPE_MSI32 && type != MSIQ_TYPE_MSI64)) return -EINVAL; *msi = msi_num = ((ep->word0 & MSIQ_WORD0_DATA0) >> MSIQ_WORD0_DATA0_SHIFT); upa_writeq(MSI_CLEAR_EQWR_N, pbm->pbm_regs + MSI_CLEAR(msi_num)); /* Clear the entry. */ ep->word0 &= ~MSIQ_WORD0_FMT_TYPE; /* Go to next entry in ring. */ (*head)++; if (*head >= pbm->msiq_ent_count) *head = 0; return 1; } static int pci_fire_set_head(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long head) { upa_writeq(head, pbm->pbm_regs + EVENT_QUEUE_HEAD(msiqid)); return 0; } static int pci_fire_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long msi, int is_msi64) { u64 val; val = upa_readq(pbm->pbm_regs + MSI_MAP(msi)); val &= ~(MSI_MAP_EQNUM); val |= msiqid; upa_writeq(val, pbm->pbm_regs + MSI_MAP(msi)); upa_writeq(MSI_CLEAR_EQWR_N, pbm->pbm_regs + MSI_CLEAR(msi)); val = upa_readq(pbm->pbm_regs + MSI_MAP(msi)); val |= MSI_MAP_VALID; upa_writeq(val, pbm->pbm_regs + MSI_MAP(msi)); return 0; } static int pci_fire_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi) { u64 val; val = upa_readq(pbm->pbm_regs + MSI_MAP(msi)); val &= ~MSI_MAP_VALID; upa_writeq(val, pbm->pbm_regs + MSI_MAP(msi)); return 0; } static int pci_fire_msiq_alloc(struct pci_pbm_info *pbm) { unsigned long pages, order, i; order = get_order(512 * 1024); pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order); if (pages == 0UL) { printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n", order); return -ENOMEM; } memset((char *)pages, 0, PAGE_SIZE << order); pbm->msi_queues = (void *) pages; upa_writeq((EVENT_QUEUE_BASE_ADDR_ALL_ONES | __pa(pbm->msi_queues)), pbm->pbm_regs + EVENT_QUEUE_BASE_ADDR_REG); upa_writeq(pbm->portid << 6, pbm->pbm_regs + IMONDO_DATA0); upa_writeq(0, pbm->pbm_regs + IMONDO_DATA1); upa_writeq(pbm->msi32_start, pbm->pbm_regs + MSI_32BIT_ADDR); upa_writeq(pbm->msi64_start, pbm->pbm_regs + MSI_64BIT_ADDR); for (i = 0; i < pbm->msiq_num; i++) { upa_writeq(0, pbm->pbm_regs + EVENT_QUEUE_HEAD(i)); upa_writeq(0, pbm->pbm_regs + EVENT_QUEUE_TAIL(i)); } return 0; } static void pci_fire_msiq_free(struct pci_pbm_info *pbm) { unsigned long pages, order; order = get_order(512 * 1024); pages = (unsigned long) pbm->msi_queues; free_pages(pages, order); pbm->msi_queues = NULL; } static int pci_fire_msiq_build_irq(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long devino) { unsigned long cregs = (unsigned long) pbm->pbm_regs; unsigned long imap_reg, iclr_reg, int_ctrlr; unsigned int irq; int fixup; u64 val; imap_reg = cregs + (0x001000UL + (devino * 0x08UL)); iclr_reg = cregs + (0x001400UL + (devino * 0x08UL)); /* XXX iterate amongst the 4 IRQ controllers XXX */ int_ctrlr = (1UL << 6); val = upa_readq(imap_reg); val |= (1UL << 63) | int_ctrlr; upa_writeq(val, imap_reg); fixup = ((pbm->portid << 6) | devino) - int_ctrlr; irq = build_irq(fixup, iclr_reg, imap_reg); if (!irq) return -ENOMEM; upa_writeq(EVENT_QUEUE_CONTROL_SET_EN, pbm->pbm_regs + EVENT_QUEUE_CONTROL_SET(msiqid)); return irq; } static const struct sparc64_msiq_ops pci_fire_msiq_ops = { .get_head = pci_fire_get_head, .dequeue_msi = pci_fire_dequeue_msi, .set_head = pci_fire_set_head, .msi_setup = pci_fire_msi_setup, .msi_teardown = pci_fire_msi_teardown, .msiq_alloc = pci_fire_msiq_alloc, .msiq_free = pci_fire_msiq_free, .msiq_build_irq = pci_fire_msiq_build_irq, }; static void pci_fire_msi_init(struct pci_pbm_info *pbm) { sparc64_pbm_msi_init(pbm, &pci_fire_msiq_ops); } #else /* CONFIG_PCI_MSI */ static void pci_fire_msi_init(struct pci_pbm_info *pbm) { } #endif /* !(CONFIG_PCI_MSI) */ /* Based at pbm->controller_regs */ #define FIRE_PARITY_CONTROL 0x470010UL #define FIRE_PARITY_ENAB 0x8000000000000000UL #define FIRE_FATAL_RESET_CTL 0x471028UL #define FIRE_FATAL_RESET_SPARE 0x0000000004000000UL #define FIRE_FATAL_RESET_MB 0x0000000002000000UL #define FIRE_FATAL_RESET_CPE 0x0000000000008000UL #define FIRE_FATAL_RESET_APE 0x0000000000004000UL #define FIRE_FATAL_RESET_PIO 0x0000000000000040UL #define FIRE_FATAL_RESET_JW 0x0000000000000004UL #define FIRE_FATAL_RESET_JI 0x0000000000000002UL #define FIRE_FATAL_RESET_JR 0x0000000000000001UL #define FIRE_CORE_INTR_ENABLE 0x471800UL /* Based at pbm->pbm_regs */ #define FIRE_TLU_CTRL 0x80000UL #define FIRE_TLU_CTRL_TIM 0x00000000da000000UL #define FIRE_TLU_CTRL_QDET 0x0000000000000100UL #define FIRE_TLU_CTRL_CFG 0x0000000000000001UL #define FIRE_TLU_DEV_CTRL 0x90008UL #define FIRE_TLU_LINK_CTRL 0x90020UL #define FIRE_TLU_LINK_CTRL_CLK 0x0000000000000040UL #define FIRE_LPU_RESET 0xe2008UL #define FIRE_LPU_LLCFG 0xe2200UL #define FIRE_LPU_LLCFG_VC0 0x0000000000000100UL #define FIRE_LPU_FCTRL_UCTRL 0xe2240UL #define FIRE_LPU_FCTRL_UCTRL_N 0x0000000000000002UL #define FIRE_LPU_FCTRL_UCTRL_P 0x0000000000000001UL #define FIRE_LPU_TXL_FIFOP 0xe2430UL #define FIRE_LPU_LTSSM_CFG2 0xe2788UL #define FIRE_LPU_LTSSM_CFG3 0xe2790UL #define FIRE_LPU_LTSSM_CFG4 0xe2798UL #define FIRE_LPU_LTSSM_CFG5 0xe27a0UL #define FIRE_DMC_IENAB 0x31800UL #define FIRE_DMC_DBG_SEL_A 0x53000UL #define FIRE_DMC_DBG_SEL_B 0x53008UL #define FIRE_PEC_IENAB 0x51800UL static void pci_fire_hw_init(struct pci_pbm_info *pbm) { u64 val; upa_writeq(FIRE_PARITY_ENAB, pbm->controller_regs + FIRE_PARITY_CONTROL); upa_writeq((FIRE_FATAL_RESET_SPARE | FIRE_FATAL_RESET_MB | FIRE_FATAL_RESET_CPE | FIRE_FATAL_RESET_APE | FIRE_FATAL_RESET_PIO | FIRE_FATAL_RESET_JW | FIRE_FATAL_RESET_JI | FIRE_FATAL_RESET_JR), pbm->controller_regs + FIRE_FATAL_RESET_CTL); upa_writeq(~(u64)0, pbm->controller_regs + FIRE_CORE_INTR_ENABLE); val = upa_readq(pbm->pbm_regs + FIRE_TLU_CTRL); val |= (FIRE_TLU_CTRL_TIM | FIRE_TLU_CTRL_QDET | FIRE_TLU_CTRL_CFG); upa_writeq(val, pbm->pbm_regs + FIRE_TLU_CTRL); upa_writeq(0, pbm->pbm_regs + FIRE_TLU_DEV_CTRL); upa_writeq(FIRE_TLU_LINK_CTRL_CLK, pbm->pbm_regs + FIRE_TLU_LINK_CTRL); upa_writeq(0, pbm->pbm_regs + FIRE_LPU_RESET); upa_writeq(FIRE_LPU_LLCFG_VC0, pbm->pbm_regs + FIRE_LPU_LLCFG); upa_writeq((FIRE_LPU_FCTRL_UCTRL_N | FIRE_LPU_FCTRL_UCTRL_P), pbm->pbm_regs + FIRE_LPU_FCTRL_UCTRL); upa_writeq(((0xffff << 16) | (0x0000 << 0)), pbm->pbm_regs + FIRE_LPU_TXL_FIFOP); upa_writeq(3000000, pbm->pbm_regs + FIRE_LPU_LTSSM_CFG2); upa_writeq(500000, pbm->pbm_regs + FIRE_LPU_LTSSM_CFG3); upa_writeq((2 << 16) | (140 << 8), pbm->pbm_regs + FIRE_LPU_LTSSM_CFG4); upa_writeq(0, pbm->pbm_regs + FIRE_LPU_LTSSM_CFG5); upa_writeq(~(u64)0, pbm->pbm_regs + FIRE_DMC_IENAB); upa_writeq(0, pbm->pbm_regs + FIRE_DMC_DBG_SEL_A); upa_writeq(0, pbm->pbm_regs + FIRE_DMC_DBG_SEL_B); upa_writeq(~(u64)0, pbm->pbm_regs + FIRE_PEC_IENAB); } static int pci_fire_pbm_init(struct pci_pbm_info *pbm, struct platform_device *op, u32 portid) { const struct linux_prom64_registers *regs; struct device_node *dp = op->dev.of_node; int err; pbm->numa_node = NUMA_NO_NODE; pbm->pci_ops = &sun4u_pci_ops; pbm->config_space_reg_bits = 12; pbm->index = pci_num_pbms++; pbm->portid = portid; pbm->op = op; pbm->name = dp->full_name; regs = of_get_property(dp, "reg", NULL); pbm->pbm_regs = regs[0].phys_addr; pbm->controller_regs = regs[1].phys_addr - 0x410000UL; printk("%s: SUN4U PCIE Bus Module\n", pbm->name); pci_determine_mem_io_space(pbm); pci_get_pbm_props(pbm); pci_fire_hw_init(pbm); err = pci_fire_pbm_iommu_init(pbm); if (err) return err; pci_fire_msi_init(pbm); pbm->pci_bus = pci_scan_one_pbm(pbm, &op->dev); /* XXX register error interrupt handlers XXX */ pbm->next = pci_pbm_root; pci_pbm_root = pbm; return 0; } static int fire_probe(struct platform_device *op) { struct device_node *dp = op->dev.of_node; struct pci_pbm_info *pbm; struct iommu *iommu; u32 portid; int err; portid = of_getintprop_default(dp, "portid", 0xff); err = -ENOMEM; pbm = kzalloc(sizeof(*pbm), GFP_KERNEL); if (!pbm) { printk(KERN_ERR PFX "Cannot allocate pci_pbminfo.\n"); goto out_err; } iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL); if (!iommu) { printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n"); goto out_free_controller; } pbm->iommu = iommu; err = pci_fire_pbm_init(pbm, op, portid); if (err) goto out_free_iommu; dev_set_drvdata(&op->dev, pbm); return 0; out_free_iommu: kfree(pbm->iommu); out_free_controller: kfree(pbm); out_err: return err; } static const struct of_device_id fire_match[] = { { .name = "pci", .compatible = "pciex108e,80f0", }, {}, }; static struct platform_driver fire_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = fire_match, }, .probe = fire_probe, }; static int __init fire_init(void) { return platform_driver_register(&fire_driver); } subsys_initcall(fire_init);
/* SPDX-License-Identifier: GPL-2.0 */ /* * Trace events for the ChromeOS Embedded Controller * * Copyright 2019 Google LLC. */ #undef TRACE_SYSTEM #define TRACE_SYSTEM cros_ec #if !defined(_CROS_EC_TRACE_H_) || defined(TRACE_HEADER_MULTI_READ) #define _CROS_EC_TRACE_H_ #include <linux/bits.h> #include <linux/types.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/tracepoint.h> TRACE_EVENT(cros_ec_request_start, TP_PROTO(struct cros_ec_command *cmd), TP_ARGS(cmd), TP_STRUCT__entry( __field(uint32_t, version) __field(uint32_t, offset) __field(uint32_t, command) __field(uint32_t, outsize) __field(uint32_t, insize) ), TP_fast_assign( __entry->version = cmd->version; __entry->offset = cmd->command / EC_CMD_PASSTHRU_OFFSET(CROS_EC_DEV_PD_INDEX); __entry->command = cmd->command % EC_CMD_PASSTHRU_OFFSET(CROS_EC_DEV_PD_INDEX); __entry->outsize = cmd->outsize; __entry->insize = cmd->insize; ), TP_printk("version: %u, offset: %d, command: %s, outsize: %u, insize: %u", __entry->version, __entry->offset, __print_symbolic(__entry->command, EC_CMDS), __entry->outsize, __entry->insize) ); TRACE_EVENT(cros_ec_request_done, TP_PROTO(struct cros_ec_command *cmd, int retval), TP_ARGS(cmd, retval), TP_STRUCT__entry( __field(uint32_t, version) __field(uint32_t, offset) __field(uint32_t, command) __field(uint32_t, outsize) __field(uint32_t, insize) __field(uint32_t, result) __field(int, retval) ), TP_fast_assign( __entry->version = cmd->version; __entry->offset = cmd->command / EC_CMD_PASSTHRU_OFFSET(CROS_EC_DEV_PD_INDEX); __entry->command = cmd->command % EC_CMD_PASSTHRU_OFFSET(CROS_EC_DEV_PD_INDEX); __entry->outsize = cmd->outsize; __entry->insize = cmd->insize; __entry->result = cmd->result; __entry->retval = retval; ), TP_printk("version: %u, offset: %d, command: %s, outsize: %u, insize: %u, ec result: %s, retval: %u", __entry->version, __entry->offset, __print_symbolic(__entry->command, EC_CMDS), __entry->outsize, __entry->insize, __print_symbolic(__entry->result, EC_RESULT), __entry->retval) ); #endif /* _CROS_EC_TRACE_H_ */ /* this part must be outside header guard */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE cros_ec_trace #include <trace/define_trace.h>
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) STMicroelectronics 2018 // Author: Pascal Paillet <[email protected]> for STMicroelectronics. #include <linux/interrupt.h> #include <linux/mfd/stpmic1.h> #include <linux/module.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #include <linux/regulator/of_regulator.h> #include <dt-bindings/mfd/st,stpmic1.h> /** * struct stpmic1_regulator_cfg - this structure is used as driver data * @desc: regulator framework description * @mask_reset_reg: mask reset register address * @mask_reset_mask: mask rank and mask reset register mask * @icc_reg: icc register address * @icc_mask: icc register mask */ struct stpmic1_regulator_cfg { struct regulator_desc desc; u8 mask_reset_reg; u8 mask_reset_mask; u8 icc_reg; u8 icc_mask; }; static int stpmic1_set_mode(struct regulator_dev *rdev, unsigned int mode); static unsigned int stpmic1_get_mode(struct regulator_dev *rdev); static int stpmic1_set_icc(struct regulator_dev *rdev, int lim, int severity, bool enable); static unsigned int stpmic1_map_mode(unsigned int mode); enum { STPMIC1_BUCK1 = 0, STPMIC1_BUCK2 = 1, STPMIC1_BUCK3 = 2, STPMIC1_BUCK4 = 3, STPMIC1_LDO1 = 4, STPMIC1_LDO2 = 5, STPMIC1_LDO3 = 6, STPMIC1_LDO4 = 7, STPMIC1_LDO5 = 8, STPMIC1_LDO6 = 9, STPMIC1_VREF_DDR = 10, STPMIC1_BOOST = 11, STPMIC1_VBUS_OTG = 12, STPMIC1_SW_OUT = 13, }; /* Enable time worst case is 5000mV/(2250uV/uS) */ #define PMIC_ENABLE_TIME_US 2200 /* Ramp delay worst case is (2250uV/uS) */ #define PMIC_RAMP_DELAY 2200 static const struct linear_range buck1_ranges[] = { REGULATOR_LINEAR_RANGE(725000, 0, 4, 0), REGULATOR_LINEAR_RANGE(725000, 5, 36, 25000), REGULATOR_LINEAR_RANGE(1500000, 37, 63, 0), }; static const struct linear_range buck2_ranges[] = { REGULATOR_LINEAR_RANGE(1000000, 0, 17, 0), REGULATOR_LINEAR_RANGE(1050000, 18, 19, 0), REGULATOR_LINEAR_RANGE(1100000, 20, 21, 0), REGULATOR_LINEAR_RANGE(1150000, 22, 23, 0), REGULATOR_LINEAR_RANGE(1200000, 24, 25, 0), REGULATOR_LINEAR_RANGE(1250000, 26, 27, 0), REGULATOR_LINEAR_RANGE(1300000, 28, 29, 0), REGULATOR_LINEAR_RANGE(1350000, 30, 31, 0), REGULATOR_LINEAR_RANGE(1400000, 32, 33, 0), REGULATOR_LINEAR_RANGE(1450000, 34, 35, 0), REGULATOR_LINEAR_RANGE(1500000, 36, 63, 0), }; static const struct linear_range buck3_ranges[] = { REGULATOR_LINEAR_RANGE(1000000, 0, 19, 0), REGULATOR_LINEAR_RANGE(1100000, 20, 23, 0), REGULATOR_LINEAR_RANGE(1200000, 24, 27, 0), REGULATOR_LINEAR_RANGE(1300000, 28, 31, 0), REGULATOR_LINEAR_RANGE(1400000, 32, 35, 0), REGULATOR_LINEAR_RANGE(1500000, 36, 55, 100000), REGULATOR_LINEAR_RANGE(3400000, 56, 63, 0), }; static const struct linear_range buck4_ranges[] = { REGULATOR_LINEAR_RANGE(600000, 0, 27, 25000), REGULATOR_LINEAR_RANGE(1300000, 28, 29, 0), REGULATOR_LINEAR_RANGE(1350000, 30, 31, 0), REGULATOR_LINEAR_RANGE(1400000, 32, 33, 0), REGULATOR_LINEAR_RANGE(1450000, 34, 35, 0), REGULATOR_LINEAR_RANGE(1500000, 36, 60, 100000), REGULATOR_LINEAR_RANGE(3900000, 61, 63, 0), }; static const struct linear_range ldo1_ranges[] = { REGULATOR_LINEAR_RANGE(1700000, 0, 7, 0), REGULATOR_LINEAR_RANGE(1700000, 8, 24, 100000), REGULATOR_LINEAR_RANGE(3300000, 25, 31, 0), }; static const struct linear_range ldo2_ranges[] = { REGULATOR_LINEAR_RANGE(1700000, 0, 7, 0), REGULATOR_LINEAR_RANGE(1700000, 8, 24, 100000), REGULATOR_LINEAR_RANGE(3300000, 25, 30, 0), }; static const struct linear_range ldo3_ranges[] = { REGULATOR_LINEAR_RANGE(1700000, 0, 7, 0), REGULATOR_LINEAR_RANGE(1700000, 8, 24, 100000), REGULATOR_LINEAR_RANGE(3300000, 25, 30, 0), /* with index 31 LDO3 is in DDR mode */ REGULATOR_LINEAR_RANGE(500000, 31, 31, 0), }; static const struct linear_range ldo5_ranges[] = { REGULATOR_LINEAR_RANGE(1700000, 0, 7, 0), REGULATOR_LINEAR_RANGE(1700000, 8, 30, 100000), REGULATOR_LINEAR_RANGE(3900000, 31, 31, 0), }; static const struct linear_range ldo6_ranges[] = { REGULATOR_LINEAR_RANGE(900000, 0, 24, 100000), REGULATOR_LINEAR_RANGE(3300000, 25, 31, 0), }; static const struct regulator_ops stpmic1_ldo_ops = { .list_voltage = regulator_list_voltage_linear_range, .map_voltage = regulator_map_voltage_linear_range, .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .set_over_current_protection = stpmic1_set_icc, }; static const struct regulator_ops stpmic1_ldo3_ops = { .list_voltage = regulator_list_voltage_linear_range, .map_voltage = regulator_map_voltage_iterate, .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .get_bypass = regulator_get_bypass_regmap, .set_bypass = regulator_set_bypass_regmap, .set_over_current_protection = stpmic1_set_icc, }; static const struct regulator_ops stpmic1_ldo4_fixed_regul_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .set_over_current_protection = stpmic1_set_icc, }; static const struct regulator_ops stpmic1_buck_ops = { .list_voltage = regulator_list_voltage_linear_range, .map_voltage = regulator_map_voltage_linear_range, .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .set_pull_down = regulator_set_pull_down_regmap, .set_mode = stpmic1_set_mode, .get_mode = stpmic1_get_mode, .set_over_current_protection = stpmic1_set_icc, }; static const struct regulator_ops stpmic1_vref_ddr_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, }; static const struct regulator_ops stpmic1_boost_regul_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .set_over_current_protection = stpmic1_set_icc, }; static const struct regulator_ops stpmic1_switch_regul_ops = { .is_enabled = regulator_is_enabled_regmap, .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .set_over_current_protection = stpmic1_set_icc, .set_active_discharge = regulator_set_active_discharge_regmap, }; #define REG_LDO(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 32, \ .ops = &stpmic1_ldo_ops, \ .linear_ranges = base ## _ranges, \ .n_linear_ranges = ARRAY_SIZE(base ## _ranges), \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .vsel_reg = ids##_ACTIVE_CR, \ .vsel_mask = LDO_VOLTAGE_MASK, \ .enable_reg = ids##_ACTIVE_CR, \ .enable_mask = LDO_ENABLE_MASK, \ .enable_val = 1, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .ramp_delay = PMIC_RAMP_DELAY, \ .supply_name = #base, \ } #define REG_LDO3(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 32, \ .ops = &stpmic1_ldo3_ops, \ .linear_ranges = ldo3_ranges, \ .n_linear_ranges = ARRAY_SIZE(ldo3_ranges), \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .vsel_reg = LDO3_ACTIVE_CR, \ .vsel_mask = LDO_VOLTAGE_MASK, \ .enable_reg = LDO3_ACTIVE_CR, \ .enable_mask = LDO_ENABLE_MASK, \ .enable_val = 1, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .ramp_delay = PMIC_RAMP_DELAY, \ .bypass_reg = LDO3_ACTIVE_CR, \ .bypass_mask = LDO_BYPASS_MASK, \ .bypass_val_on = LDO_BYPASS_MASK, \ .bypass_val_off = 0, \ .supply_name = #base, \ } #define REG_LDO4(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 1, \ .ops = &stpmic1_ldo4_fixed_regul_ops, \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .min_uV = 3300000, \ .fixed_uV = 3300000, \ .enable_reg = LDO4_ACTIVE_CR, \ .enable_mask = LDO_ENABLE_MASK, \ .enable_val = 1, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .ramp_delay = PMIC_RAMP_DELAY, \ .supply_name = #base, \ } #define REG_BUCK(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .ops = &stpmic1_buck_ops, \ .n_voltages = 64, \ .linear_ranges = base ## _ranges, \ .n_linear_ranges = ARRAY_SIZE(base ## _ranges), \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .vsel_reg = ids##_ACTIVE_CR, \ .vsel_mask = BUCK_VOLTAGE_MASK, \ .enable_reg = ids##_ACTIVE_CR, \ .enable_mask = BUCK_ENABLE_MASK, \ .enable_val = 1, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .ramp_delay = PMIC_RAMP_DELAY, \ .of_map_mode = stpmic1_map_mode, \ .pull_down_reg = ids##_PULL_DOWN_REG, \ .pull_down_mask = ids##_PULL_DOWN_MASK, \ .supply_name = #base, \ } #define REG_VREF_DDR(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 1, \ .ops = &stpmic1_vref_ddr_ops, \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .min_uV = 500000, \ .fixed_uV = 500000, \ .enable_reg = VREF_DDR_ACTIVE_CR, \ .enable_mask = BUCK_ENABLE_MASK, \ .enable_val = 1, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .supply_name = #base, \ } #define REG_BOOST(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 1, \ .ops = &stpmic1_boost_regul_ops, \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .min_uV = 0, \ .fixed_uV = 5000000, \ .enable_reg = BST_SW_CR, \ .enable_mask = BOOST_ENABLED, \ .enable_val = BOOST_ENABLED, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .supply_name = #base, \ } #define REG_VBUS_OTG(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 1, \ .ops = &stpmic1_switch_regul_ops, \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .min_uV = 0, \ .fixed_uV = 5000000, \ .enable_reg = BST_SW_CR, \ .enable_mask = USBSW_OTG_SWITCH_ENABLED, \ .enable_val = USBSW_OTG_SWITCH_ENABLED, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .supply_name = #base, \ .active_discharge_reg = BST_SW_CR, \ .active_discharge_mask = VBUS_OTG_DISCHARGE, \ .active_discharge_on = VBUS_OTG_DISCHARGE, \ } #define REG_SW_OUT(ids, base) { \ .name = #ids, \ .id = STPMIC1_##ids, \ .n_voltages = 1, \ .ops = &stpmic1_switch_regul_ops, \ .type = REGULATOR_VOLTAGE, \ .owner = THIS_MODULE, \ .min_uV = 0, \ .fixed_uV = 5000000, \ .enable_reg = BST_SW_CR, \ .enable_mask = SWIN_SWOUT_ENABLED, \ .enable_val = SWIN_SWOUT_ENABLED, \ .disable_val = 0, \ .enable_time = PMIC_ENABLE_TIME_US, \ .supply_name = #base, \ .active_discharge_reg = BST_SW_CR, \ .active_discharge_mask = SW_OUT_DISCHARGE, \ .active_discharge_on = SW_OUT_DISCHARGE, \ } static const struct stpmic1_regulator_cfg stpmic1_regulator_cfgs[] = { [STPMIC1_BUCK1] = { .desc = REG_BUCK(BUCK1, buck1), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(0), .mask_reset_reg = BUCKS_MASK_RESET_CR, .mask_reset_mask = BIT(0), }, [STPMIC1_BUCK2] = { .desc = REG_BUCK(BUCK2, buck2), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(1), .mask_reset_reg = BUCKS_MASK_RESET_CR, .mask_reset_mask = BIT(1), }, [STPMIC1_BUCK3] = { .desc = REG_BUCK(BUCK3, buck3), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(2), .mask_reset_reg = BUCKS_MASK_RESET_CR, .mask_reset_mask = BIT(2), }, [STPMIC1_BUCK4] = { .desc = REG_BUCK(BUCK4, buck4), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(3), .mask_reset_reg = BUCKS_MASK_RESET_CR, .mask_reset_mask = BIT(3), }, [STPMIC1_LDO1] = { .desc = REG_LDO(LDO1, ldo1), .icc_reg = LDOS_ICCTO_CR, .icc_mask = BIT(0), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(0), }, [STPMIC1_LDO2] = { .desc = REG_LDO(LDO2, ldo2), .icc_reg = LDOS_ICCTO_CR, .icc_mask = BIT(1), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(1), }, [STPMIC1_LDO3] = { .desc = REG_LDO3(LDO3, ldo3), .icc_reg = LDOS_ICCTO_CR, .icc_mask = BIT(2), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(2), }, [STPMIC1_LDO4] = { .desc = REG_LDO4(LDO4, ldo4), .icc_reg = LDOS_ICCTO_CR, .icc_mask = BIT(3), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(3), }, [STPMIC1_LDO5] = { .desc = REG_LDO(LDO5, ldo5), .icc_reg = LDOS_ICCTO_CR, .icc_mask = BIT(4), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(4), }, [STPMIC1_LDO6] = { .desc = REG_LDO(LDO6, ldo6), .icc_reg = LDOS_ICCTO_CR, .icc_mask = BIT(5), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(5), }, [STPMIC1_VREF_DDR] = { .desc = REG_VREF_DDR(VREF_DDR, vref_ddr), .mask_reset_reg = LDOS_MASK_RESET_CR, .mask_reset_mask = BIT(6), }, [STPMIC1_BOOST] = { .desc = REG_BOOST(BOOST, boost), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(6), }, [STPMIC1_VBUS_OTG] = { .desc = REG_VBUS_OTG(VBUS_OTG, pwr_sw1), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(4), }, [STPMIC1_SW_OUT] = { .desc = REG_SW_OUT(SW_OUT, pwr_sw2), .icc_reg = BUCKS_ICCTO_CR, .icc_mask = BIT(5), }, }; static unsigned int stpmic1_map_mode(unsigned int mode) { switch (mode) { case STPMIC1_BUCK_MODE_NORMAL: return REGULATOR_MODE_NORMAL; case STPMIC1_BUCK_MODE_LP: return REGULATOR_MODE_STANDBY; default: return REGULATOR_MODE_INVALID; } } static unsigned int stpmic1_get_mode(struct regulator_dev *rdev) { int value; struct regmap *regmap = rdev_get_regmap(rdev); regmap_read(regmap, rdev->desc->enable_reg, &value); if (value & STPMIC1_BUCK_MODE_LP) return REGULATOR_MODE_STANDBY; return REGULATOR_MODE_NORMAL; } static int stpmic1_set_mode(struct regulator_dev *rdev, unsigned int mode) { int value; struct regmap *regmap = rdev_get_regmap(rdev); switch (mode) { case REGULATOR_MODE_NORMAL: value = STPMIC1_BUCK_MODE_NORMAL; break; case REGULATOR_MODE_STANDBY: value = STPMIC1_BUCK_MODE_LP; break; default: return -EINVAL; } return regmap_update_bits(regmap, rdev->desc->enable_reg, STPMIC1_BUCK_MODE_LP, value); } static int stpmic1_set_icc(struct regulator_dev *rdev, int lim, int severity, bool enable) { struct stpmic1_regulator_cfg *cfg = rdev_get_drvdata(rdev); struct regmap *regmap = rdev_get_regmap(rdev); /* * The code seems like one bit in a register controls whether OCP is * enabled. So we might be able to turn it off here is if that * was requested. I won't support this because I don't have the HW. * Feel free to try and implement if you have the HW and need kernel * to disable this. * * Also, I don't know if limit can be configured or if we support * error/warning instead of protect. So I just keep existing logic * and assume no. */ if (lim || severity != REGULATOR_SEVERITY_PROT || !enable) return -EINVAL; /* enable switch off in case of over current */ return regmap_update_bits(regmap, cfg->icc_reg, cfg->icc_mask, cfg->icc_mask); } static irqreturn_t stpmic1_curlim_irq_handler(int irq, void *data) { struct regulator_dev *rdev = (struct regulator_dev *)data; /* Send an overcurrent notification */ regulator_notifier_call_chain(rdev, REGULATOR_EVENT_OVER_CURRENT, NULL); return IRQ_HANDLED; } #define MATCH(_name, _id) \ [STPMIC1_##_id] = { \ .name = #_name, \ .desc = &stpmic1_regulator_cfgs[STPMIC1_##_id].desc, \ } static struct of_regulator_match stpmic1_matches[] = { MATCH(buck1, BUCK1), MATCH(buck2, BUCK2), MATCH(buck3, BUCK3), MATCH(buck4, BUCK4), MATCH(ldo1, LDO1), MATCH(ldo2, LDO2), MATCH(ldo3, LDO3), MATCH(ldo4, LDO4), MATCH(ldo5, LDO5), MATCH(ldo6, LDO6), MATCH(vref_ddr, VREF_DDR), MATCH(boost, BOOST), MATCH(pwr_sw1, VBUS_OTG), MATCH(pwr_sw2, SW_OUT), }; static int stpmic1_regulator_register(struct platform_device *pdev, int id, struct of_regulator_match *match, const struct stpmic1_regulator_cfg *cfg) { struct stpmic1 *pmic_dev = dev_get_drvdata(pdev->dev.parent); struct regulator_dev *rdev; struct regulator_config config = {}; int ret = 0; int irq; config.dev = &pdev->dev; config.init_data = match->init_data; config.of_node = match->of_node; config.regmap = pmic_dev->regmap; config.driver_data = (void *)cfg; rdev = devm_regulator_register(&pdev->dev, &cfg->desc, &config); if (IS_ERR(rdev)) { dev_err(&pdev->dev, "failed to register %s regulator\n", cfg->desc.name); return PTR_ERR(rdev); } /* set mask reset */ if (of_property_read_bool(config.of_node, "st,mask-reset") && cfg->mask_reset_reg != 0) { ret = regmap_update_bits(pmic_dev->regmap, cfg->mask_reset_reg, cfg->mask_reset_mask, cfg->mask_reset_mask); if (ret) { dev_err(&pdev->dev, "set mask reset failed\n"); return ret; } } /* setup an irq handler for over-current detection */ irq = of_irq_get(config.of_node, 0); if (irq > 0) { ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, stpmic1_curlim_irq_handler, IRQF_ONESHOT | IRQF_SHARED, pdev->name, rdev); if (ret) { dev_err(&pdev->dev, "Request IRQ failed\n"); return ret; } } return 0; } static int stpmic1_regulator_probe(struct platform_device *pdev) { int i, ret; ret = of_regulator_match(&pdev->dev, pdev->dev.of_node, stpmic1_matches, ARRAY_SIZE(stpmic1_matches)); if (ret < 0) { dev_err(&pdev->dev, "Error in PMIC regulator device tree node"); return ret; } for (i = 0; i < ARRAY_SIZE(stpmic1_regulator_cfgs); i++) { ret = stpmic1_regulator_register(pdev, i, &stpmic1_matches[i], &stpmic1_regulator_cfgs[i]); if (ret < 0) return ret; } dev_dbg(&pdev->dev, "stpmic1_regulator driver probed\n"); return 0; } static const struct of_device_id of_pmic_regulator_match[] = { { .compatible = "st,stpmic1-regulators" }, { }, }; MODULE_DEVICE_TABLE(of, of_pmic_regulator_match); static struct platform_driver stpmic1_regulator_driver = { .driver = { .name = "stpmic1-regulator", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = of_match_ptr(of_pmic_regulator_match), }, .probe = stpmic1_regulator_probe, }; module_platform_driver(stpmic1_regulator_driver); MODULE_DESCRIPTION("STPMIC1 PMIC voltage regulator driver"); MODULE_AUTHOR("Pascal Paillet <[email protected]>"); MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0 #include <stdint.h> #include <pthread.h> int main(void) { pthread_barrier_t barrier; pthread_barrier_init(&barrier, NULL, 1); pthread_barrier_wait(&barrier); return pthread_barrier_destroy(&barrier); }
#define SUBPROGS #include "test_cls_redirect.c"
// SPDX-License-Identifier: GPL-2.0-or-later // Copyright (C) IBM Corporation 2020 #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/fsi.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/spi/spi.h> #define FSI_ENGID_SPI 0x23 #define FSI_MBOX_ROOT_CTRL_8 0x2860 #define FSI_MBOX_ROOT_CTRL_8_SPI_MUX 0xf0000000 #define FSI2SPI_DATA0 0x00 #define FSI2SPI_DATA1 0x04 #define FSI2SPI_CMD 0x08 #define FSI2SPI_CMD_WRITE BIT(31) #define FSI2SPI_RESET 0x18 #define FSI2SPI_STATUS 0x1c #define FSI2SPI_STATUS_ANY_ERROR BIT(31) #define FSI2SPI_IRQ 0x20 #define SPI_FSI_BASE 0x70000 #define SPI_FSI_TIMEOUT_MS 1000 #define SPI_FSI_MAX_RX_SIZE 8 #define SPI_FSI_MAX_TX_SIZE 40 #define SPI_FSI_ERROR 0x0 #define SPI_FSI_COUNTER_CFG 0x1 #define SPI_FSI_CFG1 0x2 #define SPI_FSI_CLOCK_CFG 0x3 #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32) #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33)) #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38)) #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39)) #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42)) #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44) #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51) #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52) #define SPI_FSI_MMAP 0x4 #define SPI_FSI_DATA_TX 0x5 #define SPI_FSI_DATA_RX 0x6 #define SPI_FSI_SEQUENCE 0x7 #define SPI_FSI_SEQUENCE_STOP 0x00 #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf)) #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf)) #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf)) #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0 #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf)) #define SPI_FSI_STATUS 0x8 #define SPI_FSI_STATUS_ERROR \ (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12)) #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48) #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48) #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57) #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58) #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59) #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61) #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62) #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63) #define SPI_FSI_STATUS_ANY_ERROR \ (SPI_FSI_STATUS_ERROR | \ SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \ SPI_FSI_STATUS_RDR_OVERRUN) #define SPI_FSI_PORT_CTRL 0x9 struct fsi2spi { struct fsi_device *fsi; /* FSI2SPI CFAM engine device */ struct mutex lock; /* lock access to the device */ }; struct fsi_spi { struct device *dev; /* SPI controller device */ struct fsi2spi *bridge; /* FSI2SPI device */ u32 base; }; struct fsi_spi_sequence { int bit; u64 data; }; static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev) { int rc; u32 root_ctrl_8; __be32 root_ctrl_8_be; rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be, sizeof(root_ctrl_8_be)); if (rc) return rc; root_ctrl_8 = be32_to_cpu(root_ctrl_8_be); dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8); if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) == FSI_MBOX_ROOT_CTRL_8_SPI_MUX) return 0; return -ENOLINK; } static int fsi_spi_check_status(struct fsi_spi *ctx) { int rc; u32 sts; __be32 sts_be; rc = fsi_device_read(ctx->bridge->fsi, FSI2SPI_STATUS, &sts_be, sizeof(sts_be)); if (rc) return rc; sts = be32_to_cpu(sts_be); if (sts & FSI2SPI_STATUS_ANY_ERROR) { dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts); return -EIO; } return 0; } static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value) { int rc = 0; __be32 cmd_be; __be32 data_be; u32 cmd = offset + ctx->base; struct fsi2spi *bridge = ctx->bridge; *value = 0ULL; if (cmd & FSI2SPI_CMD_WRITE) return -EINVAL; rc = mutex_lock_interruptible(&bridge->lock); if (rc) return rc; cmd_be = cpu_to_be32(cmd); rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be)); if (rc) goto unlock; rc = fsi_spi_check_status(ctx); if (rc) goto unlock; rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA0, &data_be, sizeof(data_be)); if (rc) goto unlock; *value |= (u64)be32_to_cpu(data_be) << 32; rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA1, &data_be, sizeof(data_be)); if (rc) goto unlock; *value |= (u64)be32_to_cpu(data_be); dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value); unlock: mutex_unlock(&bridge->lock); return rc; } static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value) { int rc = 0; __be32 cmd_be; __be32 data_be; u32 cmd = offset + ctx->base; struct fsi2spi *bridge = ctx->bridge; if (cmd & FSI2SPI_CMD_WRITE) return -EINVAL; rc = mutex_lock_interruptible(&bridge->lock); if (rc) return rc; dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value); data_be = cpu_to_be32(upper_32_bits(value)); rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA0, &data_be, sizeof(data_be)); if (rc) goto unlock; data_be = cpu_to_be32(lower_32_bits(value)); rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA1, &data_be, sizeof(data_be)); if (rc) goto unlock; cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE); rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be)); if (rc) goto unlock; rc = fsi_spi_check_status(ctx); unlock: mutex_unlock(&bridge->lock); return rc; } static int fsi_spi_data_in(u64 in, u8 *rx, int len) { int i; int num_bytes = min(len, 8); for (i = 0; i < num_bytes; ++i) rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i))); return num_bytes; } static int fsi_spi_data_out(u64 *out, const u8 *tx, int len) { int i; int num_bytes = min(len, 8); u8 *out_bytes = (u8 *)out; /* Unused bytes of the tx data should be 0. */ *out = 0ULL; for (i = 0; i < num_bytes; ++i) out_bytes[8 - (i + 1)] = tx[i]; return num_bytes; } static int fsi_spi_reset(struct fsi_spi *ctx) { int rc; dev_dbg(ctx->dev, "Resetting SPI controller.\n"); rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, SPI_FSI_CLOCK_CFG_RESET1); if (rc) return rc; rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, SPI_FSI_CLOCK_CFG_RESET2); if (rc) return rc; return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL); } static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir) { int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, status); if (rc) return rc; if (*status & SPI_FSI_STATUS_ANY_ERROR) { dev_err(ctx->dev, "%s error: %016llx\n", dir, *status); rc = fsi_spi_reset(ctx); if (rc) return rc; return -EREMOTEIO; } return 0; } static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val) { /* * Add the next byte of instruction to the 8-byte sequence register. * Then decrement the counter so that the next instruction will go in * the right place. Return the index of the slot we just filled in the * sequence register. */ seq->data |= (u64)val << seq->bit; seq->bit -= 8; } static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq) { seq->bit = 56; seq->data = 0ULL; } static int fsi_spi_transfer_data(struct fsi_spi *ctx, struct spi_transfer *transfer) { int loops; int rc = 0; unsigned long end; u64 status = 0ULL; if (transfer->tx_buf) { int nb; int sent = 0; u64 out = 0ULL; const u8 *tx = transfer->tx_buf; while (transfer->len > sent) { nb = fsi_spi_data_out(&out, &tx[sent], (int)transfer->len - sent); rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out); if (rc) return rc; loops = 0; end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); do { if (loops++ && time_after(jiffies, end)) return -ETIMEDOUT; rc = fsi_spi_status(ctx, &status, "TX"); if (rc) return rc; } while (status & SPI_FSI_STATUS_TDR_FULL); sent += nb; } } else if (transfer->rx_buf) { int recv = 0; u64 in = 0ULL; u8 *rx = transfer->rx_buf; while (transfer->len > recv) { loops = 0; end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); do { if (loops++ && time_after(jiffies, end)) return -ETIMEDOUT; rc = fsi_spi_status(ctx, &status, "RX"); if (rc) return rc; } while (!(status & SPI_FSI_STATUS_RDR_FULL)); rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in); if (rc) return rc; recv += fsi_spi_data_in(in, &rx[recv], (int)transfer->len - recv); } } return 0; } static int fsi_spi_transfer_init(struct fsi_spi *ctx) { int loops = 0; int rc; bool reset = false; unsigned long end; u64 seq_state; u64 clock_cfg = 0ULL; u64 status = 0ULL; u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE | SPI_FSI_CLOCK_CFG_SCK_NO_DEL | FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19); end = jiffies + msecs_to_jiffies(SPI_FSI_TIMEOUT_MS); do { if (loops++ && time_after(jiffies, end)) return -ETIMEDOUT; rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status); if (rc) return rc; seq_state = status & SPI_FSI_STATUS_SEQ_STATE; if (status & (SPI_FSI_STATUS_ANY_ERROR | SPI_FSI_STATUS_TDR_FULL | SPI_FSI_STATUS_RDR_FULL)) { if (reset) { dev_err(ctx->dev, "Initialization error: %08llx\n", status); return -EIO; } rc = fsi_spi_reset(ctx); if (rc) return rc; reset = true; continue; } } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE)); rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL); if (rc) return rc; rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg); if (rc) return rc; if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE | SPI_FSI_CLOCK_CFG_ECC_DISABLE | SPI_FSI_CLOCK_CFG_MODE | SPI_FSI_CLOCK_CFG_SCK_RECV_DEL | SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg) rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, wanted_clock_cfg); return rc; } static int fsi_spi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *mesg) { int rc; u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(spi_get_chipselect(mesg->spi, 0) + 1); unsigned int len; struct spi_transfer *transfer; struct fsi_spi *ctx = spi_controller_get_devdata(ctlr); rc = fsi_spi_check_mux(ctx->bridge->fsi, ctx->dev); if (rc) goto error; list_for_each_entry(transfer, &mesg->transfers, transfer_list) { struct fsi_spi_sequence seq; struct spi_transfer *next = NULL; /* Sequencer must do shift out (tx) first. */ if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) { rc = -EINVAL; goto error; } dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len); rc = fsi_spi_transfer_init(ctx); if (rc < 0) goto error; fsi_spi_sequence_init(&seq); fsi_spi_sequence_add(&seq, seq_slave); len = transfer->len; while (len > 8) { fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(8)); len -= 8; } fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len)); if (!list_is_last(&transfer->transfer_list, &mesg->transfers)) { next = list_next_entry(transfer, transfer_list); /* Sequencer can only do shift in (rx) after tx. */ if (next->rx_buf) { u8 shift; if (next->len > SPI_FSI_MAX_RX_SIZE) { rc = -EINVAL; goto error; } dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n", next->len); shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len); fsi_spi_sequence_add(&seq, shift); } else { next = NULL; } } fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0)); rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data); if (rc) goto error; rc = fsi_spi_transfer_data(ctx, transfer); if (rc) goto error; if (next) { rc = fsi_spi_transfer_data(ctx, next); if (rc) goto error; transfer = next; } } error: mesg->status = rc; spi_finalize_current_message(ctlr); return rc; } static size_t fsi_spi_max_transfer_size(struct spi_device *spi) { return SPI_FSI_MAX_RX_SIZE; } static int fsi_spi_probe(struct device *dev) { int rc; struct device_node *np; int num_controllers_registered = 0; struct fsi2spi *bridge; struct fsi_device *fsi = to_fsi_dev(dev); rc = fsi_spi_check_mux(fsi, dev); if (rc) return -ENODEV; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; bridge->fsi = fsi; mutex_init(&bridge->lock); for_each_available_child_of_node(dev->of_node, np) { u32 base; struct fsi_spi *ctx; struct spi_controller *ctlr; if (of_property_read_u32(np, "reg", &base)) continue; ctlr = spi_alloc_host(dev, sizeof(*ctx)); if (!ctlr) { of_node_put(np); break; } ctlr->dev.of_node = np; ctlr->num_chipselect = of_get_available_child_count(np) ?: 1; ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX; ctlr->max_transfer_size = fsi_spi_max_transfer_size; ctlr->transfer_one_message = fsi_spi_transfer_one_message; ctx = spi_controller_get_devdata(ctlr); ctx->dev = &ctlr->dev; ctx->bridge = bridge; ctx->base = base + SPI_FSI_BASE; rc = devm_spi_register_controller(dev, ctlr); if (rc) spi_controller_put(ctlr); else num_controllers_registered++; } if (!num_controllers_registered) return -ENODEV; return 0; } static const struct fsi_device_id fsi_spi_ids[] = { { FSI_ENGID_SPI, FSI_VERSION_ANY }, { } }; MODULE_DEVICE_TABLE(fsi, fsi_spi_ids); static struct fsi_driver fsi_spi_driver = { .id_table = fsi_spi_ids, .drv = { .name = "spi-fsi", .bus = &fsi_bus_type, .probe = fsi_spi_probe, }, }; module_fsi_driver(fsi_spi_driver); MODULE_AUTHOR("Eddie James <[email protected]>"); MODULE_DESCRIPTION("FSI attached SPI controller"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADXL345/346 Three-Axis Digital Accelerometers * * Enter bugs at http://blackfin.uclinux.org/ * * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. */ #include <linux/device.h> #include <linux/delay.h> #include <linux/input.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/input/adxl34x.h> #include <linux/module.h> #include "adxl34x.h" /* ADXL345/6 Register Map */ #define DEVID 0x00 /* R Device ID */ #define THRESH_TAP 0x1D /* R/W Tap threshold */ #define OFSX 0x1E /* R/W X-axis offset */ #define OFSY 0x1F /* R/W Y-axis offset */ #define OFSZ 0x20 /* R/W Z-axis offset */ #define DUR 0x21 /* R/W Tap duration */ #define LATENT 0x22 /* R/W Tap latency */ #define WINDOW 0x23 /* R/W Tap window */ #define THRESH_ACT 0x24 /* R/W Activity threshold */ #define THRESH_INACT 0x25 /* R/W Inactivity threshold */ #define TIME_INACT 0x26 /* R/W Inactivity time */ #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */ /* inactivity detection */ #define THRESH_FF 0x28 /* R/W Free-fall threshold */ #define TIME_FF 0x29 /* R/W Free-fall time */ #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */ #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */ #define BW_RATE 0x2C /* R/W Data rate and power mode control */ #define POWER_CTL 0x2D /* R/W Power saving features control */ #define INT_ENABLE 0x2E /* R/W Interrupt enable control */ #define INT_MAP 0x2F /* R/W Interrupt mapping control */ #define INT_SOURCE 0x30 /* R Source of interrupts */ #define DATA_FORMAT 0x31 /* R/W Data format control */ #define DATAX0 0x32 /* R X-Axis Data 0 */ #define DATAX1 0x33 /* R X-Axis Data 1 */ #define DATAY0 0x34 /* R Y-Axis Data 0 */ #define DATAY1 0x35 /* R Y-Axis Data 1 */ #define DATAZ0 0x36 /* R Z-Axis Data 0 */ #define DATAZ1 0x37 /* R Z-Axis Data 1 */ #define FIFO_CTL 0x38 /* R/W FIFO control */ #define FIFO_STATUS 0x39 /* R FIFO status */ #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */ /* Orientation ADXL346 only */ #define ORIENT_CONF 0x3B /* R/W Orientation configuration */ #define ORIENT 0x3C /* R Orientation status */ /* DEVIDs */ #define ID_ADXL345 0xE5 #define ID_ADXL346 0xE6 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */ #define DATA_READY (1 << 7) #define SINGLE_TAP (1 << 6) #define DOUBLE_TAP (1 << 5) #define ACTIVITY (1 << 4) #define INACTIVITY (1 << 3) #define FREE_FALL (1 << 2) #define WATERMARK (1 << 1) #define OVERRUN (1 << 0) /* ACT_INACT_CONTROL Bits */ #define ACT_ACDC (1 << 7) #define ACT_X_EN (1 << 6) #define ACT_Y_EN (1 << 5) #define ACT_Z_EN (1 << 4) #define INACT_ACDC (1 << 3) #define INACT_X_EN (1 << 2) #define INACT_Y_EN (1 << 1) #define INACT_Z_EN (1 << 0) /* TAP_AXES Bits */ #define SUPPRESS (1 << 3) #define TAP_X_EN (1 << 2) #define TAP_Y_EN (1 << 1) #define TAP_Z_EN (1 << 0) /* ACT_TAP_STATUS Bits */ #define ACT_X_SRC (1 << 6) #define ACT_Y_SRC (1 << 5) #define ACT_Z_SRC (1 << 4) #define ASLEEP (1 << 3) #define TAP_X_SRC (1 << 2) #define TAP_Y_SRC (1 << 1) #define TAP_Z_SRC (1 << 0) /* BW_RATE Bits */ #define LOW_POWER (1 << 4) #define RATE(x) ((x) & 0xF) /* POWER_CTL Bits */ #define PCTL_LINK (1 << 5) #define PCTL_AUTO_SLEEP (1 << 4) #define PCTL_MEASURE (1 << 3) #define PCTL_SLEEP (1 << 2) #define PCTL_WAKEUP(x) ((x) & 0x3) /* DATA_FORMAT Bits */ #define SELF_TEST (1 << 7) #define SPI (1 << 6) #define INT_INVERT (1 << 5) #define FULL_RES (1 << 3) #define JUSTIFY (1 << 2) #define RANGE(x) ((x) & 0x3) #define RANGE_PM_2g 0 #define RANGE_PM_4g 1 #define RANGE_PM_8g 2 #define RANGE_PM_16g 3 /* * Maximum value our axis may get in full res mode for the input device * (signed 13 bits) */ #define ADXL_FULLRES_MAX_VAL 4096 /* * Maximum value our axis may get in fixed res mode for the input device * (signed 10 bits) */ #define ADXL_FIXEDRES_MAX_VAL 512 /* FIFO_CTL Bits */ #define FIFO_MODE(x) (((x) & 0x3) << 6) #define FIFO_BYPASS 0 #define FIFO_FIFO 1 #define FIFO_STREAM 2 #define FIFO_TRIGGER 3 #define TRIGGER (1 << 5) #define SAMPLES(x) ((x) & 0x1F) /* FIFO_STATUS Bits */ #define FIFO_TRIG (1 << 7) #define ENTRIES(x) ((x) & 0x3F) /* TAP_SIGN Bits ADXL346 only */ #define XSIGN (1 << 6) #define YSIGN (1 << 5) #define ZSIGN (1 << 4) #define XTAP (1 << 3) #define YTAP (1 << 2) #define ZTAP (1 << 1) /* ORIENT_CONF ADXL346 only */ #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4) #define ORIENT_DIVISOR(x) ((x) & 0x7) /* ORIENT ADXL346 only */ #define ADXL346_2D_VALID (1 << 6) #define ADXL346_2D_ORIENT(x) (((x) & 0x30) >> 4) #define ADXL346_3D_VALID (1 << 3) #define ADXL346_3D_ORIENT(x) ((x) & 0x7) #define ADXL346_2D_PORTRAIT_POS 0 /* +X */ #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */ #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */ #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */ #define ADXL346_3D_FRONT 3 /* +X */ #define ADXL346_3D_BACK 4 /* -X */ #define ADXL346_3D_RIGHT 2 /* +Y */ #define ADXL346_3D_LEFT 5 /* -Y */ #define ADXL346_3D_TOP 1 /* +Z */ #define ADXL346_3D_BOTTOM 6 /* -Z */ #undef ADXL_DEBUG #define ADXL_X_AXIS 0 #define ADXL_Y_AXIS 1 #define ADXL_Z_AXIS 2 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg)) #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val)) struct axis_triple { int x; int y; int z; }; struct adxl34x { struct device *dev; struct input_dev *input; struct mutex mutex; /* reentrant protection for struct */ struct adxl34x_platform_data pdata; struct axis_triple swcal; struct axis_triple hwcal; struct axis_triple saved; char phys[32]; unsigned orient2d_saved; unsigned orient3d_saved; bool disabled; /* P: mutex */ bool opened; /* P: mutex */ bool suspended; /* P: mutex */ bool fifo_delay; int irq; unsigned model; unsigned int_mask; const struct adxl34x_bus_ops *bops; }; static const struct adxl34x_platform_data adxl34x_default_init = { .tap_threshold = 35, .tap_duration = 3, .tap_latency = 20, .tap_window = 20, .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN, .act_axis_control = 0xFF, .activity_threshold = 6, .inactivity_threshold = 4, .inactivity_time = 3, .free_fall_threshold = 8, .free_fall_time = 0x20, .data_rate = 8, .data_range = ADXL_FULL_RES, .ev_type = EV_ABS, .ev_code_x = ABS_X, /* EV_REL */ .ev_code_y = ABS_Y, /* EV_REL */ .ev_code_z = ABS_Z, /* EV_REL */ .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */ .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK, .fifo_mode = ADXL_FIFO_STREAM, .watermark = 0, }; static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis) { __le16 buf[3]; ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf); guard(mutex)(&ac->mutex); ac->saved.x = (s16) le16_to_cpu(buf[0]); axis->x = ac->saved.x; ac->saved.y = (s16) le16_to_cpu(buf[1]); axis->y = ac->saved.y; ac->saved.z = (s16) le16_to_cpu(buf[2]); axis->z = ac->saved.z; } static void adxl34x_service_ev_fifo(struct adxl34x *ac) { struct adxl34x_platform_data *pdata = &ac->pdata; struct axis_triple axis; adxl34x_get_triple(ac, &axis); input_event(ac->input, pdata->ev_type, pdata->ev_code_x, axis.x - ac->swcal.x); input_event(ac->input, pdata->ev_type, pdata->ev_code_y, axis.y - ac->swcal.y); input_event(ac->input, pdata->ev_type, pdata->ev_code_z, axis.z - ac->swcal.z); } static void adxl34x_report_key_single(struct input_dev *input, int key) { input_report_key(input, key, true); input_sync(input); input_report_key(input, key, false); } static void adxl34x_send_key_events(struct adxl34x *ac, struct adxl34x_platform_data *pdata, int status, int press) { int i; for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) { if (status & (1 << (ADXL_Z_AXIS - i))) input_report_key(ac->input, pdata->ev_code_tap[i], press); } } static void adxl34x_do_tap(struct adxl34x *ac, struct adxl34x_platform_data *pdata, int status) { adxl34x_send_key_events(ac, pdata, status, true); input_sync(ac->input); adxl34x_send_key_events(ac, pdata, status, false); } static irqreturn_t adxl34x_irq(int irq, void *handle) { struct adxl34x *ac = handle; struct adxl34x_platform_data *pdata = &ac->pdata; int int_stat, tap_stat, samples, orient, orient_code; /* * ACT_TAP_STATUS should be read before clearing the interrupt * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled */ if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) tap_stat = AC_READ(ac, ACT_TAP_STATUS); else tap_stat = 0; int_stat = AC_READ(ac, INT_SOURCE); if (int_stat & FREE_FALL) adxl34x_report_key_single(ac->input, pdata->ev_code_ff); if (int_stat & OVERRUN) dev_dbg(ac->dev, "OVERRUN\n"); if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) { adxl34x_do_tap(ac, pdata, tap_stat); if (int_stat & DOUBLE_TAP) adxl34x_do_tap(ac, pdata, tap_stat); } if (pdata->ev_code_act_inactivity) { if (int_stat & ACTIVITY) input_report_key(ac->input, pdata->ev_code_act_inactivity, 1); if (int_stat & INACTIVITY) input_report_key(ac->input, pdata->ev_code_act_inactivity, 0); } /* * ORIENTATION SENSING ADXL346 only */ if (pdata->orientation_enable) { orient = AC_READ(ac, ORIENT); if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) && (orient & ADXL346_2D_VALID)) { orient_code = ADXL346_2D_ORIENT(orient); /* Report orientation only when it changes */ if (ac->orient2d_saved != orient_code) { ac->orient2d_saved = orient_code; adxl34x_report_key_single(ac->input, pdata->ev_codes_orient_2d[orient_code]); } } if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) && (orient & ADXL346_3D_VALID)) { orient_code = ADXL346_3D_ORIENT(orient) - 1; /* Report orientation only when it changes */ if (ac->orient3d_saved != orient_code) { ac->orient3d_saved = orient_code; adxl34x_report_key_single(ac->input, pdata->ev_codes_orient_3d[orient_code]); } } } if (int_stat & (DATA_READY | WATERMARK)) { if (pdata->fifo_mode) samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1; else samples = 1; for (; samples > 0; samples--) { adxl34x_service_ev_fifo(ac); /* * To ensure that the FIFO has * completely popped, there must be at least 5 us between * the end of reading the data registers, signified by the * transition to register 0x38 from 0x37 or the CS pin * going high, and the start of new reads of the FIFO or * reading the FIFO_STATUS register. For SPI operation at * 1.5 MHz or lower, the register addressing portion of the * transmission is sufficient delay to ensure the FIFO has * completely popped. It is necessary for SPI operation * greater than 1.5 MHz to de-assert the CS pin to ensure a * total of 5 us, which is at most 3.4 us at 5 MHz * operation. */ if (ac->fifo_delay && (samples > 1)) udelay(3); } } input_sync(ac->input); return IRQ_HANDLED; } static void __adxl34x_disable(struct adxl34x *ac) { /* * A '0' places the ADXL34x into standby mode * with minimum power consumption. */ AC_WRITE(ac, POWER_CTL, 0); } static void __adxl34x_enable(struct adxl34x *ac) { AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); } static int adxl34x_suspend(struct device *dev) { struct adxl34x *ac = dev_get_drvdata(dev); guard(mutex)(&ac->mutex); if (!ac->suspended && !ac->disabled && ac->opened) __adxl34x_disable(ac); ac->suspended = true; return 0; } static int adxl34x_resume(struct device *dev) { struct adxl34x *ac = dev_get_drvdata(dev); guard(mutex)(&ac->mutex); if (ac->suspended && !ac->disabled && ac->opened) __adxl34x_enable(ac); ac->suspended = false; return 0; } static ssize_t adxl34x_disable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); return sprintf(buf, "%u\n", ac->disabled); } static ssize_t adxl34x_disable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; guard(mutex)(&ac->mutex); if (!ac->suspended && ac->opened) { if (val) { if (!ac->disabled) __adxl34x_disable(ac); } else { if (ac->disabled) __adxl34x_enable(ac); } } ac->disabled = !!val; return count; } static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store); static ssize_t adxl34x_calibrate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); guard(mutex)(&ac->mutex); return sprintf(buf, "%d,%d,%d\n", ac->hwcal.x * 4 + ac->swcal.x, ac->hwcal.y * 4 + ac->swcal.y, ac->hwcal.z * 4 + ac->swcal.z); } static ssize_t adxl34x_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); /* * Hardware offset calibration has a resolution of 15.6 mg/LSB. * We use HW calibration and handle the remaining bits in SW. (4mg/LSB) */ guard(mutex)(&ac->mutex); ac->hwcal.x -= (ac->saved.x / 4); ac->swcal.x = ac->saved.x % 4; ac->hwcal.y -= (ac->saved.y / 4); ac->swcal.y = ac->saved.y % 4; ac->hwcal.z -= (ac->saved.z / 4); ac->swcal.z = ac->saved.z % 4; AC_WRITE(ac, OFSX, (s8) ac->hwcal.x); AC_WRITE(ac, OFSY, (s8) ac->hwcal.y); AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z); return count; } static DEVICE_ATTR(calibrate, 0664, adxl34x_calibrate_show, adxl34x_calibrate_store); static ssize_t adxl34x_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate)); } static ssize_t adxl34x_rate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned char val; int error; error = kstrtou8(buf, 10, &val); if (error) return error; guard(mutex)(&ac->mutex); ac->pdata.data_rate = RATE(val); AC_WRITE(ac, BW_RATE, ac->pdata.data_rate | (ac->pdata.low_power_mode ? LOW_POWER : 0)); return count; } static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store); static ssize_t adxl34x_autosleep_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); return sprintf(buf, "%u\n", ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0); } static ssize_t adxl34x_autosleep_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned int val; int error; error = kstrtouint(buf, 10, &val); if (error) return error; guard(mutex)(&ac->mutex); if (val) ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK); else ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK); if (!ac->disabled && !ac->suspended && ac->opened) AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); return count; } static DEVICE_ATTR(autosleep, 0664, adxl34x_autosleep_show, adxl34x_autosleep_store); static ssize_t adxl34x_position_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adxl34x *ac = dev_get_drvdata(dev); guard(mutex)(&ac->mutex); return sprintf(buf, "(%d, %d, %d)\n", ac->saved.x, ac->saved.y, ac->saved.z); } static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL); #ifdef ADXL_DEBUG static ssize_t adxl34x_write_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adxl34x *ac = dev_get_drvdata(dev); unsigned int val; int error; /* * This allows basic ADXL register write access for debug purposes. */ error = kstrtouint(buf, 16, &val); if (error) return error; guard(mutex)(&ac->mutex); AC_WRITE(ac, val >> 8, val & 0xFF); return count; } static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store); #endif static struct attribute *adxl34x_attributes[] = { &dev_attr_disable.attr, &dev_attr_calibrate.attr, &dev_attr_rate.attr, &dev_attr_autosleep.attr, &dev_attr_position.attr, #ifdef ADXL_DEBUG &dev_attr_write.attr, #endif NULL }; static const struct attribute_group adxl34x_attr_group = { .attrs = adxl34x_attributes, }; const struct attribute_group *adxl34x_groups[] = { &adxl34x_attr_group, NULL }; EXPORT_SYMBOL_GPL(adxl34x_groups); static int adxl34x_input_open(struct input_dev *input) { struct adxl34x *ac = input_get_drvdata(input); guard(mutex)(&ac->mutex); if (!ac->suspended && !ac->disabled) __adxl34x_enable(ac); ac->opened = true; return 0; } static void adxl34x_input_close(struct input_dev *input) { struct adxl34x *ac = input_get_drvdata(input); guard(mutex)(&ac->mutex); if (!ac->suspended && !ac->disabled) __adxl34x_disable(ac); ac->opened = false; } struct adxl34x *adxl34x_probe(struct device *dev, int irq, bool fifo_delay_default, const struct adxl34x_bus_ops *bops) { struct adxl34x *ac; struct input_dev *input_dev; const struct adxl34x_platform_data *pdata; int error, range, i; int revid; if (!irq) { dev_err(dev, "no IRQ?\n"); return ERR_PTR(-ENODEV); } ac = devm_kzalloc(dev, sizeof(*ac), GFP_KERNEL); if (!ac) return ERR_PTR(-ENOMEM); input_dev = devm_input_allocate_device(dev); if (!input_dev) return ERR_PTR(-ENOMEM); ac->fifo_delay = fifo_delay_default; pdata = dev_get_platdata(dev); if (!pdata) { dev_dbg(dev, "No platform data: Using default initialization\n"); pdata = &adxl34x_default_init; } ac->pdata = *pdata; pdata = &ac->pdata; ac->input = input_dev; ac->dev = dev; ac->irq = irq; ac->bops = bops; mutex_init(&ac->mutex); input_dev->name = "ADXL34x accelerometer"; revid = AC_READ(ac, DEVID); switch (revid) { case ID_ADXL345: ac->model = 345; break; case ID_ADXL346: ac->model = 346; break; default: dev_err(dev, "Failed to probe %s\n", input_dev->name); return ERR_PTR(-ENODEV); } snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev)); input_dev->phys = ac->phys; input_dev->id.product = ac->model; input_dev->id.bustype = bops->bustype; input_dev->open = adxl34x_input_open; input_dev->close = adxl34x_input_close; input_set_drvdata(input_dev, ac); if (ac->pdata.ev_type == EV_REL) { input_set_capability(input_dev, EV_REL, REL_X); input_set_capability(input_dev, EV_REL, REL_Y); input_set_capability(input_dev, EV_REL, REL_Z); } else { /* EV_ABS */ if (pdata->data_range & FULL_RES) range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */ else range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */ input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3); input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3); input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3); } input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_X_AXIS]); input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_Y_AXIS]); input_set_capability(input_dev, EV_KEY, pdata->ev_code_tap[ADXL_Z_AXIS]); if (pdata->ev_code_ff) { ac->int_mask = FREE_FALL; input_set_capability(input_dev, EV_KEY, pdata->ev_code_ff); } if (pdata->ev_code_act_inactivity) input_set_capability(input_dev, EV_KEY, pdata->ev_code_act_inactivity); ac->int_mask |= ACTIVITY | INACTIVITY; if (pdata->watermark) { ac->int_mask |= WATERMARK; if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) ac->pdata.fifo_mode |= FIFO_STREAM; } else { ac->int_mask |= DATA_READY; } if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) ac->int_mask |= SINGLE_TAP | DOUBLE_TAP; if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) ac->fifo_delay = false; AC_WRITE(ac, POWER_CTL, 0); error = devm_request_threaded_irq(dev, ac->irq, NULL, adxl34x_irq, IRQF_ONESHOT, dev_name(dev), ac); if (error) { dev_err(dev, "irq %d busy?\n", ac->irq); return ERR_PTR(error); } error = input_register_device(input_dev); if (error) return ERR_PTR(error); AC_WRITE(ac, OFSX, pdata->x_axis_offset); ac->hwcal.x = pdata->x_axis_offset; AC_WRITE(ac, OFSY, pdata->y_axis_offset); ac->hwcal.y = pdata->y_axis_offset; AC_WRITE(ac, OFSZ, pdata->z_axis_offset); ac->hwcal.z = pdata->z_axis_offset; AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold); AC_WRITE(ac, DUR, pdata->tap_duration); AC_WRITE(ac, LATENT, pdata->tap_latency); AC_WRITE(ac, WINDOW, pdata->tap_window); AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold); AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold); AC_WRITE(ac, TIME_INACT, pdata->inactivity_time); AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold); AC_WRITE(ac, TIME_FF, pdata->free_fall_time); AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control); AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control); AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) | (pdata->low_power_mode ? LOW_POWER : 0)); AC_WRITE(ac, DATA_FORMAT, pdata->data_range); AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) | SAMPLES(pdata->watermark)); if (pdata->use_int2) { /* Map all INTs to INT2 */ AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN); } else { /* Map all INTs to INT1 */ AC_WRITE(ac, INT_MAP, 0); } if (ac->model == 346 && ac->pdata.orientation_enable) { AC_WRITE(ac, ORIENT_CONF, ORIENT_DEADZONE(ac->pdata.deadzone_angle) | ORIENT_DIVISOR(ac->pdata.divisor_length)); ac->orient2d_saved = 1234; ac->orient3d_saved = 1234; if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++) input_set_capability(input_dev, EV_KEY, pdata->ev_codes_orient_3d[i]); if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++) input_set_capability(input_dev, EV_KEY, pdata->ev_codes_orient_2d[i]); } else { ac->pdata.orientation_enable = 0; } AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN); ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK); return ac; } EXPORT_SYMBOL_GPL(adxl34x_probe); EXPORT_GPL_SIMPLE_DEV_PM_OPS(adxl34x_pm, adxl34x_suspend, adxl34x_resume); MODULE_AUTHOR("Michael Hennerich <[email protected]>"); MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver"); MODULE_LICENSE("GPL");
/* * Core definitions and data structures shareable across OS platforms. * * Copyright (c) 1994-2001 Justin T. Gibbs. * Copyright (c) 2000-2001 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/aic7xxx/aic7xxx/aic7xxx.h#85 $ * * $FreeBSD$ */ #ifndef _AIC7XXX_H_ #define _AIC7XXX_H_ /* Register Definitions */ #include "aic7xxx_reg.h" /************************* Forward Declarations *******************************/ struct ahc_platform_data; struct scb_platform_data; struct seeprom_descriptor; /****************************** Useful Macros *********************************/ #ifndef TRUE #define TRUE 1 #endif #ifndef FALSE #define FALSE 0 #endif #define ALL_CHANNELS '\0' #define ALL_TARGETS_MASK 0xFFFF #define INITIATOR_WILDCARD (~0) #define SCSIID_TARGET(ahc, scsiid) \ (((scsiid) & ((((ahc)->features & AHC_TWIN) != 0) ? TWIN_TID : TID)) \ >> TID_SHIFT) #define SCSIID_OUR_ID(scsiid) \ ((scsiid) & OID) #define SCSIID_CHANNEL(ahc, scsiid) \ ((((ahc)->features & AHC_TWIN) != 0) \ ? ((((scsiid) & TWIN_CHNLB) != 0) ? 'B' : 'A') \ : 'A') #define SCB_IS_SCSIBUS_B(ahc, scb) \ (SCSIID_CHANNEL(ahc, (scb)->hscb->scsiid) == 'B') #define SCB_GET_OUR_ID(scb) \ SCSIID_OUR_ID((scb)->hscb->scsiid) #define SCB_GET_TARGET(ahc, scb) \ SCSIID_TARGET((ahc), (scb)->hscb->scsiid) #define SCB_GET_CHANNEL(ahc, scb) \ SCSIID_CHANNEL(ahc, (scb)->hscb->scsiid) #define SCB_GET_LUN(scb) \ ((scb)->hscb->lun & LID) #define SCB_GET_TARGET_OFFSET(ahc, scb) \ (SCB_GET_TARGET(ahc, scb) + (SCB_IS_SCSIBUS_B(ahc, scb) ? 8 : 0)) #define SCB_GET_TARGET_MASK(ahc, scb) \ (0x01 << (SCB_GET_TARGET_OFFSET(ahc, scb))) #ifdef AHC_DEBUG #define SCB_IS_SILENT(scb) \ ((ahc_debug & AHC_SHOW_MASKED_ERRORS) == 0 \ && (((scb)->flags & SCB_SILENT) != 0)) #else #define SCB_IS_SILENT(scb) \ (((scb)->flags & SCB_SILENT) != 0) #endif #define TCL_TARGET_OFFSET(tcl) \ ((((tcl) >> 4) & TID) >> 4) #define TCL_LUN(tcl) \ (tcl & (AHC_NUM_LUNS - 1)) #define BUILD_TCL(scsiid, lun) \ ((lun) | (((scsiid) & TID) << 4)) #ifndef AHC_TARGET_MODE #undef AHC_TMODE_ENABLE #define AHC_TMODE_ENABLE 0 #endif /**************************** Driver Constants ********************************/ /* * The maximum number of supported targets. */ #define AHC_NUM_TARGETS 16 /* * The maximum number of supported luns. * The identify message only supports 64 luns in SPI3. * You can have 2^64 luns when information unit transfers are enabled, * but it is doubtful this driver will ever support IUTs. */ #define AHC_NUM_LUNS 64 /* * The maximum transfer per S/G segment. */ #define AHC_MAXTRANSFER_SIZE 0x00ffffff /* limited by 24bit counter */ /* * The maximum amount of SCB storage in hardware on a controller. * This value represents an upper bound. Controllers vary in the number * they actually support. */ #define AHC_SCB_MAX 255 /* * The maximum number of concurrent transactions supported per driver instance. * Sequencer Control Blocks (SCBs) store per-transaction information. Although * the space for SCBs on the host adapter varies by model, the driver will * page the SCBs between host and controller memory as needed. We are limited * to 253 because: * 1) The 8bit nature of the RISC engine holds us to an 8bit value. * 2) We reserve one value, 255, to represent the invalid element. * 3) Our input queue scheme requires one SCB to always be reserved * in advance of queuing any SCBs. This takes us down to 254. * 4) To handle our output queue correctly on machines that only * support 32bit stores, we must clear the array 4 bytes at a * time. To avoid colliding with a DMA write from the sequencer, * we must be sure that 4 slots are empty when we write to clear * the queue. This reduces us to 253 SCBs: 1 that just completed * and the known three additional empty slots in the queue that * precede it. */ #define AHC_MAX_QUEUE 253 /* * The maximum amount of SCB storage we allocate in host memory. This * number should reflect the 1 additional SCB we require to handle our * qinfifo mechanism. */ #define AHC_SCB_MAX_ALLOC (AHC_MAX_QUEUE+1) /* * Ring Buffer of incoming target commands. * We allocate 256 to simplify the logic in the sequencer * by using the natural wrap point of an 8bit counter. */ #define AHC_TMODE_CMDS 256 /* Reset line assertion time in us */ #define AHC_BUSRESET_DELAY 25 /******************* Chip Characteristics/Operating Settings *****************/ /* * Chip Type * The chip order is from least sophisticated to most sophisticated. */ typedef enum { AHC_NONE = 0x0000, AHC_CHIPID_MASK = 0x00FF, AHC_AIC7770 = 0x0001, AHC_AIC7850 = 0x0002, AHC_AIC7855 = 0x0003, AHC_AIC7859 = 0x0004, AHC_AIC7860 = 0x0005, AHC_AIC7870 = 0x0006, AHC_AIC7880 = 0x0007, AHC_AIC7895 = 0x0008, AHC_AIC7895C = 0x0009, AHC_AIC7890 = 0x000a, AHC_AIC7896 = 0x000b, AHC_AIC7892 = 0x000c, AHC_AIC7899 = 0x000d, AHC_VL = 0x0100, /* Bus type VL */ AHC_EISA = 0x0200, /* Bus type EISA */ AHC_PCI = 0x0400, /* Bus type PCI */ AHC_BUS_MASK = 0x0F00 } ahc_chip; /* * Features available in each chip type. */ typedef enum { AHC_FENONE = 0x00000, AHC_ULTRA = 0x00001, /* Supports 20MHz Transfers */ AHC_ULTRA2 = 0x00002, /* Supports 40MHz Transfers */ AHC_WIDE = 0x00004, /* Wide Channel */ AHC_TWIN = 0x00008, /* Twin Channel */ AHC_MORE_SRAM = 0x00010, /* 80 bytes instead of 64 */ AHC_CMD_CHAN = 0x00020, /* Has a Command DMA Channel */ AHC_QUEUE_REGS = 0x00040, /* Has Queue management registers */ AHC_SG_PRELOAD = 0x00080, /* Can perform auto-SG preload */ AHC_SPIOCAP = 0x00100, /* Has a Serial Port I/O Cap Register */ AHC_MULTI_TID = 0x00200, /* Has bitmask of TIDs for select-in */ AHC_HS_MAILBOX = 0x00400, /* Has HS_MAILBOX register */ AHC_DT = 0x00800, /* Double Transition transfers */ AHC_NEW_TERMCTL = 0x01000, /* Newer termination scheme */ AHC_MULTI_FUNC = 0x02000, /* Multi-Function Twin Channel Device */ AHC_LARGE_SCBS = 0x04000, /* 64byte SCBs */ AHC_AUTORATE = 0x08000, /* Automatic update of SCSIRATE/OFFSET*/ AHC_AUTOPAUSE = 0x10000, /* Automatic pause on register access */ AHC_TARGETMODE = 0x20000, /* Has tested target mode support */ AHC_MULTIROLE = 0x40000, /* Space for two roles at a time */ AHC_REMOVABLE = 0x80000, /* Hot-Swap supported */ AHC_HVD = 0x100000, /* HVD rather than SE */ AHC_AIC7770_FE = AHC_FENONE, /* * The real 7850 does not support Ultra modes, but there are * several cards that use the generic 7850 PCI ID even though * they are using an Ultra capable chip (7859/7860). We start * out with the AHC_ULTRA feature set and then check the DEVSTATUS * register to determine if the capability is really present. */ AHC_AIC7850_FE = AHC_SPIOCAP|AHC_AUTOPAUSE|AHC_TARGETMODE|AHC_ULTRA, AHC_AIC7860_FE = AHC_AIC7850_FE, AHC_AIC7870_FE = AHC_TARGETMODE|AHC_AUTOPAUSE, AHC_AIC7880_FE = AHC_AIC7870_FE|AHC_ULTRA, /* * Although we have space for both the initiator and * target roles on ULTRA2 chips, we currently disable * the initiator role to allow multi-scsi-id target mode * configurations. We can only respond on the same SCSI * ID as our initiator role if we allow initiator operation. * At some point, we should add a configuration knob to * allow both roles to be loaded. */ AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2 |AHC_QUEUE_REGS|AHC_SG_PRELOAD|AHC_MULTI_TID |AHC_HS_MAILBOX|AHC_NEW_TERMCTL|AHC_LARGE_SCBS |AHC_TARGETMODE, AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_DT|AHC_AUTORATE|AHC_AUTOPAUSE, AHC_AIC7895_FE = AHC_AIC7880_FE|AHC_MORE_SRAM|AHC_AUTOPAUSE |AHC_CMD_CHAN|AHC_MULTI_FUNC|AHC_LARGE_SCBS, AHC_AIC7895C_FE = AHC_AIC7895_FE|AHC_MULTI_TID, AHC_AIC7896_FE = AHC_AIC7890_FE|AHC_MULTI_FUNC, AHC_AIC7899_FE = AHC_AIC7892_FE|AHC_MULTI_FUNC } ahc_feature; /* * Bugs in the silicon that we work around in software. */ typedef enum { AHC_BUGNONE = 0x00, /* * On all chips prior to the U2 product line, * the WIDEODD S/G segment feature does not * work during scsi->HostBus transfers. */ AHC_TMODE_WIDEODD_BUG = 0x01, /* * On the aic7890/91 Rev 0 chips, the autoflush * feature does not work. A manual flush of * the DMA FIFO is required. */ AHC_AUTOFLUSH_BUG = 0x02, /* * On many chips, cacheline streaming does not work. */ AHC_CACHETHEN_BUG = 0x04, /* * On the aic7896/97 chips, cacheline * streaming must be enabled. */ AHC_CACHETHEN_DIS_BUG = 0x08, /* * PCI 2.1 Retry failure on non-empty data fifo. */ AHC_PCI_2_1_RETRY_BUG = 0x10, /* * Controller does not handle cacheline residuals * properly on S/G segments if PCI MWI instructions * are allowed. */ AHC_PCI_MWI_BUG = 0x20, /* * An SCB upload using the SCB channel's * auto array entry copy feature may * corrupt data. This appears to only * occur on 66MHz systems. */ AHC_SCBCHAN_UPLOAD_BUG = 0x40 } ahc_bug; /* * Configuration specific settings. * The driver determines these settings by probing the * chip/controller's configuration. */ typedef enum { AHC_FNONE = 0x000, AHC_PRIMARY_CHANNEL = 0x003, /* * The channel that should * be probed first. */ AHC_USEDEFAULTS = 0x004, /* * For cards without an seeprom * or a BIOS to initialize the chip's * SRAM, we use the default target * settings. */ AHC_SEQUENCER_DEBUG = 0x008, AHC_SHARED_SRAM = 0x010, AHC_LARGE_SEEPROM = 0x020, /* Uses C56_66 not C46 */ AHC_RESET_BUS_A = 0x040, AHC_RESET_BUS_B = 0x080, AHC_EXTENDED_TRANS_A = 0x100, AHC_EXTENDED_TRANS_B = 0x200, AHC_TERM_ENB_A = 0x400, AHC_TERM_ENB_B = 0x800, AHC_INITIATORROLE = 0x1000, /* * Allow initiator operations on * this controller. */ AHC_TARGETROLE = 0x2000, /* * Allow target operations on this * controller. */ AHC_NEWEEPROM_FMT = 0x4000, AHC_TQINFIFO_BLOCKED = 0x10000, /* Blocked waiting for ATIOs */ AHC_INT50_SPEEDFLEX = 0x20000, /* * Internal 50pin connector * sits behind an aic3860 */ AHC_SCB_BTT = 0x40000, /* * The busy targets table is * stored in SCB space rather * than SRAM. */ AHC_BIOS_ENABLED = 0x80000, AHC_ALL_INTERRUPTS = 0x100000, AHC_PAGESCBS = 0x400000, /* Enable SCB paging */ AHC_EDGE_INTERRUPT = 0x800000, /* Device uses edge triggered ints */ AHC_39BIT_ADDRESSING = 0x1000000, /* Use 39 bit addressing scheme. */ AHC_LSCBS_ENABLED = 0x2000000, /* 64Byte SCBs enabled */ AHC_SCB_CONFIG_USED = 0x4000000, /* No SEEPROM but SCB2 had info. */ AHC_NO_BIOS_INIT = 0x8000000, /* No BIOS left over settings. */ AHC_DISABLE_PCI_PERR = 0x10000000, AHC_HAS_TERM_LOGIC = 0x20000000 } ahc_flag; /************************* Hardware SCB Definition ***************************/ /* * The driver keeps up to MAX_SCB scb structures per card in memory. The SCB * consists of a "hardware SCB" mirroring the fields available on the card * and additional information the kernel stores for each transaction. * * To minimize space utilization, a portion of the hardware scb stores * different data during different portions of a SCSI transaction. * As initialized by the host driver for the initiator role, this area * contains the SCSI cdb (or a pointer to the cdb) to be executed. After * the cdb has been presented to the target, this area serves to store * residual transfer information and the SCSI status byte. * For the target role, the contents of this area do not change, but * still serve a different purpose than for the initiator role. See * struct target_data for details. */ /* * Status information embedded in the shared poriton of * an SCB after passing the cdb to the target. The kernel * driver will only read this data for transactions that * complete abnormally (non-zero status byte). */ struct status_pkt { uint32_t residual_datacnt; /* Residual in the current S/G seg */ uint32_t residual_sg_ptr; /* The next S/G for this transfer */ uint8_t scsi_status; /* Standard SCSI status byte */ }; /* * Target mode version of the shared data SCB segment. */ struct target_data { uint32_t residual_datacnt; /* Residual in the current S/G seg */ uint32_t residual_sg_ptr; /* The next S/G for this transfer */ uint8_t scsi_status; /* SCSI status to give to initiator */ uint8_t target_phases; /* Bitmap of phases to execute */ uint8_t data_phase; /* Data-In or Data-Out */ uint8_t initiator_tag; /* Initiator's transaction tag */ }; struct hardware_scb { /*0*/ union { /* * If the cdb is 12 bytes or less, we embed it directly * in the SCB. For longer cdbs, we embed the address * of the cdb payload as seen by the chip and a DMA * is used to pull it in. */ uint8_t cdb[12]; uint32_t cdb_ptr; struct status_pkt status; struct target_data tdata; } shared_data; /* * A word about residuals. * The scb is presented to the sequencer with the dataptr and datacnt * fields initialized to the contents of the first S/G element to * transfer. The sgptr field is initialized to the bus address for * the S/G element that follows the first in the in core S/G array * or'ed with the SG_FULL_RESID flag. Sgptr may point to an invalid * S/G entry for this transfer (single S/G element transfer with the * first elements address and length preloaded in the dataptr/datacnt * fields). If no transfer is to occur, sgptr is set to SG_LIST_NULL. * The SG_FULL_RESID flag ensures that the residual will be correctly * noted even if no data transfers occur. Once the data phase is entered, * the residual sgptr and datacnt are loaded from the sgptr and the * datacnt fields. After each S/G element's dataptr and length are * loaded into the hardware, the residual sgptr is advanced. After * each S/G element is expired, its datacnt field is checked to see * if the LAST_SEG flag is set. If so, SG_LIST_NULL is set in the * residual sg ptr and the transfer is considered complete. If the * sequencer determines that there is a residual in the tranfer, it * will set the SG_RESID_VALID flag in sgptr and dma the scb back into * host memory. To sumarize: * * Sequencer: * o A residual has occurred if SG_FULL_RESID is set in sgptr, * or residual_sgptr does not have SG_LIST_NULL set. * * o We are transferring the last segment if residual_datacnt has * the SG_LAST_SEG flag set. * * Host: * o A residual has occurred if a completed scb has the * SG_RESID_VALID flag set. * * o residual_sgptr and sgptr refer to the "next" sg entry * and so may point beyond the last valid sg entry for the * transfer. */ /*12*/ uint32_t dataptr; /*16*/ uint32_t datacnt; /* * Byte 3 (numbered from 0) of * the datacnt is really the * 4th byte in that data address. */ /*20*/ uint32_t sgptr; #define SG_PTR_MASK 0xFFFFFFF8 /*24*/ uint8_t control; /* See SCB_CONTROL in aic7xxx.reg for details */ /*25*/ uint8_t scsiid; /* what to load in the SCSIID register */ /*26*/ uint8_t lun; /*27*/ uint8_t tag; /* * Index into our kernel SCB array. * Also used as the tag for tagged I/O */ /*28*/ uint8_t cdb_len; /*29*/ uint8_t scsirate; /* Value for SCSIRATE register */ /*30*/ uint8_t scsioffset; /* Value for SCSIOFFSET register */ /*31*/ uint8_t next; /* * Used for threading SCBs in the * "Waiting for Selection" and * "Disconnected SCB" lists down * in the sequencer. */ /*32*/ uint8_t cdb32[32]; /* * CDB storage for cdbs of size * 13->32. We store them here * because hardware scbs are * allocated from DMA safe * memory so we are guaranteed * the controller can access * this data. */ }; /************************ Kernel SCB Definitions ******************************/ /* * Some fields of the SCB are OS dependent. Here we collect the * definitions for elements that all OS platforms need to include * in there SCB definition. */ /* * Definition of a scatter/gather element as transferred to the controller. * The aic7xxx chips only support a 24bit length. We use the top byte of * the length to store additional address bits and a flag to indicate * that a given segment terminates the transfer. This gives us an * addressable range of 512GB on machines with 64bit PCI or with chips * that can support dual address cycles on 32bit PCI busses. */ struct ahc_dma_seg { uint32_t addr; uint32_t len; #define AHC_DMA_LAST_SEG 0x80000000 #define AHC_SG_HIGH_ADDR_MASK 0x7F000000 #define AHC_SG_LEN_MASK 0x00FFFFFF }; struct sg_map_node { bus_dmamap_t sg_dmamap; dma_addr_t sg_physaddr; struct ahc_dma_seg* sg_vaddr; SLIST_ENTRY(sg_map_node) links; }; /* * The current state of this SCB. */ typedef enum { SCB_FREE = 0x0000, SCB_OTHERTCL_TIMEOUT = 0x0002,/* * Another device was active * during the first timeout for * this SCB so we gave ourselves * an additional timeout period * in case it was hogging the * bus. */ SCB_DEVICE_RESET = 0x0004, SCB_SENSE = 0x0008, SCB_CDB32_PTR = 0x0010, SCB_RECOVERY_SCB = 0x0020, SCB_AUTO_NEGOTIATE = 0x0040,/* Negotiate to achieve goal. */ SCB_NEGOTIATE = 0x0080,/* Negotiation forced for command. */ SCB_ABORT = 0x0100, SCB_UNTAGGEDQ = 0x0200, SCB_ACTIVE = 0x0400, SCB_TARGET_IMMEDIATE = 0x0800, SCB_TRANSMISSION_ERROR = 0x1000,/* * We detected a parity or CRC * error that has effected the * payload of the command. This * flag is checked when normal * status is returned to catch * the case of a target not * responding to our attempt * to report the error. */ SCB_TARGET_SCB = 0x2000, SCB_SILENT = 0x4000 /* * Be quiet about transmission type * errors. They are expected and we * don't want to upset the user. This * flag is typically used during DV. */ } scb_flag; struct scb { struct hardware_scb *hscb; union { SLIST_ENTRY(scb) sle; TAILQ_ENTRY(scb) tqe; } links; LIST_ENTRY(scb) pending_links; ahc_io_ctx_t io_ctx; struct ahc_softc *ahc_softc; scb_flag flags; struct scb_platform_data *platform_data; struct sg_map_node *sg_map; struct ahc_dma_seg *sg_list; dma_addr_t sg_list_phys; u_int sg_count;/* How full ahc_dma_seg is */ }; struct scb_data { SLIST_HEAD(, scb) free_scbs; /* * Pool of SCBs ready to be assigned * commands to execute. */ struct scb *scbindex[256]; /* * Mapping from tag to SCB. * As tag identifiers are an * 8bit value, we provide space * for all possible tag values. * Any lookups to entries at or * above AHC_SCB_MAX_ALLOC will * always fail. */ struct hardware_scb *hscbs; /* Array of hardware SCBs */ struct scb *scbarray; /* Array of kernel SCBs */ struct scsi_sense_data *sense; /* Per SCB sense data */ /* * "Bus" addresses of our data structures. */ bus_dma_tag_t hscb_dmat; /* dmat for our hardware SCB array */ bus_dmamap_t hscb_dmamap; dma_addr_t hscb_busaddr; bus_dma_tag_t sense_dmat; bus_dmamap_t sense_dmamap; dma_addr_t sense_busaddr; bus_dma_tag_t sg_dmat; /* dmat for our sg segments */ SLIST_HEAD(, sg_map_node) sg_maps; uint8_t numscbs; uint8_t maxhscbs; /* Number of SCBs on the card */ uint8_t init_level; /* * How far we've initialized * this structure. */ }; /************************ Target Mode Definitions *****************************/ /* * Connection descriptor for select-in requests in target mode. */ struct target_cmd { uint8_t scsiid; /* Our ID and the initiator's ID */ uint8_t identify; /* Identify message */ uint8_t bytes[22]; /* * Bytes contains any additional message * bytes terminated by 0xFF. The remainder * is the cdb to execute. */ uint8_t cmd_valid; /* * When a command is complete, the firmware * will set cmd_valid to all bits set. * After the host has seen the command, * the bits are cleared. This allows us * to just peek at host memory to determine * if more work is complete. cmd_valid is on * an 8 byte boundary to simplify setting * it on aic7880 hardware which only has * limited direct access to the DMA FIFO. */ uint8_t pad[7]; }; /* * Number of events we can buffer up if we run out * of immediate notify ccbs. */ #define AHC_TMODE_EVENT_BUFFER_SIZE 8 struct ahc_tmode_event { uint8_t initiator_id; uint8_t event_type; /* MSG type or EVENT_TYPE_BUS_RESET */ #define EVENT_TYPE_BUS_RESET 0xFF uint8_t event_arg; }; /* * Per enabled lun target mode state. * As this state is directly influenced by the host OS'es target mode * environment, we let the OS module define it. Forward declare the * structure here so we can store arrays of them, etc. in OS neutral * data structures. */ #ifdef AHC_TARGET_MODE struct ahc_tmode_lstate { struct cam_path *path; struct ccb_hdr_slist accept_tios; struct ccb_hdr_slist immed_notifies; struct ahc_tmode_event event_buffer[AHC_TMODE_EVENT_BUFFER_SIZE]; uint8_t event_r_idx; uint8_t event_w_idx; }; #else struct ahc_tmode_lstate; #endif /******************** Transfer Negotiation Datastructures *********************/ #define AHC_TRANS_CUR 0x01 /* Modify current neogtiation status */ #define AHC_TRANS_ACTIVE 0x03 /* Assume this target is on the bus */ #define AHC_TRANS_GOAL 0x04 /* Modify negotiation goal */ #define AHC_TRANS_USER 0x08 /* Modify user negotiation settings */ #define AHC_WIDTH_UNKNOWN 0xFF #define AHC_PERIOD_UNKNOWN 0xFF #define AHC_OFFSET_UNKNOWN 0xFF #define AHC_PPR_OPTS_UNKNOWN 0xFF /* * Transfer Negotiation Information. */ struct ahc_transinfo { uint8_t protocol_version; /* SCSI Revision level */ uint8_t transport_version; /* SPI Revision level */ uint8_t width; /* Bus width */ uint8_t period; /* Sync rate factor */ uint8_t offset; /* Sync offset */ uint8_t ppr_options; /* Parallel Protocol Request options */ }; /* * Per-initiator current, goal and user transfer negotiation information. */ struct ahc_initiator_tinfo { uint8_t scsirate; /* Computed value for SCSIRATE reg */ struct ahc_transinfo curr; struct ahc_transinfo goal; struct ahc_transinfo user; }; /* * Per enabled target ID state. * Pointers to lun target state as well as sync/wide negotiation information * for each initiator<->target mapping. For the initiator role we pretend * that we are the target and the targets are the initiators since the * negotiation is the same regardless of role. */ struct ahc_tmode_tstate { struct ahc_tmode_lstate* enabled_luns[AHC_NUM_LUNS]; struct ahc_initiator_tinfo transinfo[AHC_NUM_TARGETS]; /* * Per initiator state bitmasks. */ uint16_t auto_negotiate;/* Auto Negotiation Required */ uint16_t ultraenb; /* Using ultra sync rate */ uint16_t discenable; /* Disconnection allowed */ uint16_t tagenable; /* Tagged Queuing allowed */ }; /* * Data structure for our table of allowed synchronous transfer rates. */ struct ahc_syncrate { u_int sxfr_u2; /* Value of the SXFR parameter for Ultra2+ Chips */ u_int sxfr; /* Value of the SXFR parameter for <= Ultra Chips */ #define ULTRA_SXFR 0x100 /* Rate Requires Ultra Mode set */ #define ST_SXFR 0x010 /* Rate Single Transition Only */ #define DT_SXFR 0x040 /* Rate Double Transition Only */ uint8_t period; /* Period to send to SCSI target */ const char *rate; }; /* Safe and valid period for async negotiations. */ #define AHC_ASYNC_XFER_PERIOD 0x45 #define AHC_ULTRA2_XFER_PERIOD 0x0a /* * Indexes into our table of syncronous transfer rates. */ #define AHC_SYNCRATE_DT 0 #define AHC_SYNCRATE_ULTRA2 1 #define AHC_SYNCRATE_ULTRA 3 #define AHC_SYNCRATE_FAST 6 #define AHC_SYNCRATE_MAX AHC_SYNCRATE_DT #define AHC_SYNCRATE_MIN 13 /***************************** Lookup Tables **********************************/ /* * Phase -> name and message out response * to parity errors in each phase table. */ struct ahc_phase_table_entry { uint8_t phase; uint8_t mesg_out; /* Message response to parity errors */ char *phasemsg; }; /************************** Serial EEPROM Format ******************************/ struct seeprom_config { /* * Per SCSI ID Configuration Flags */ uint16_t device_flags[16]; /* words 0-15 */ #define CFXFER 0x0007 /* synchronous transfer rate */ #define CFSYNCH 0x0008 /* enable synchronous transfer */ #define CFDISC 0x0010 /* enable disconnection */ #define CFWIDEB 0x0020 /* wide bus device */ #define CFSYNCHISULTRA 0x0040 /* CFSYNCH is an ultra offset (2940AU)*/ #define CFSYNCSINGLE 0x0080 /* Single-Transition signalling */ #define CFSTART 0x0100 /* send start unit SCSI command */ #define CFINCBIOS 0x0200 /* include in BIOS scan */ #define CFRNFOUND 0x0400 /* report even if not found */ #define CFMULTILUNDEV 0x0800 /* Probe multiple luns in BIOS scan */ #define CFWBCACHEENB 0x4000 /* Enable W-Behind Cache on disks */ #define CFWBCACHENOP 0xc000 /* Don't touch W-Behind Cache */ /* * BIOS Control Bits */ uint16_t bios_control; /* word 16 */ #define CFSUPREM 0x0001 /* support all removeable drives */ #define CFSUPREMB 0x0002 /* support removeable boot drives */ #define CFBIOSEN 0x0004 /* BIOS enabled */ #define CFBIOS_BUSSCAN 0x0008 /* Have the BIOS Scan the Bus */ #define CFSM2DRV 0x0010 /* support more than two drives */ #define CFSTPWLEVEL 0x0010 /* Termination level control */ #define CF284XEXTEND 0x0020 /* extended translation (284x cards) */ #define CFCTRL_A 0x0020 /* BIOS displays Ctrl-A message */ #define CFTERM_MENU 0x0040 /* BIOS displays termination menu */ #define CFEXTEND 0x0080 /* extended translation enabled */ #define CFSCAMEN 0x0100 /* SCAM enable */ #define CFMSG_LEVEL 0x0600 /* BIOS Message Level */ #define CFMSG_VERBOSE 0x0000 #define CFMSG_SILENT 0x0200 #define CFMSG_DIAG 0x0400 #define CFBOOTCD 0x0800 /* Support Bootable CD-ROM */ /* UNUSED 0xff00 */ /* * Host Adapter Control Bits */ uint16_t adapter_control; /* word 17 */ #define CFAUTOTERM 0x0001 /* Perform Auto termination */ #define CFULTRAEN 0x0002 /* Ultra SCSI speed enable */ #define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */ #define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */ #define CFSTERM 0x0004 /* SCSI low byte termination */ #define CFWSTERM 0x0008 /* SCSI high byte termination */ #define CFSPARITY 0x0010 /* SCSI parity */ #define CF284XSTERM 0x0020 /* SCSI low byte term (284x cards) */ #define CFMULTILUN 0x0020 #define CFRESETB 0x0040 /* reset SCSI bus at boot */ #define CFCLUSTERENB 0x0080 /* Cluster Enable */ #define CFBOOTCHAN 0x0300 /* probe this channel first */ #define CFBOOTCHANSHIFT 8 #define CFSEAUTOTERM 0x0400 /* Ultra2 Perform secondary Auto Term*/ #define CFSELOWTERM 0x0800 /* Ultra2 secondary low term */ #define CFSEHIGHTERM 0x1000 /* Ultra2 secondary high term */ #define CFENABLEDV 0x4000 /* Perform Domain Validation*/ /* * Bus Release Time, Host Adapter ID */ uint16_t brtime_id; /* word 18 */ #define CFSCSIID 0x000f /* host adapter SCSI ID */ /* UNUSED 0x00f0 */ #define CFBRTIME 0xff00 /* bus release time */ /* * Maximum targets */ uint16_t max_targets; /* word 19 */ #define CFMAXTARG 0x00ff /* maximum targets */ #define CFBOOTLUN 0x0f00 /* Lun to boot from */ #define CFBOOTID 0xf000 /* Target to boot from */ uint16_t res_1[10]; /* words 20-29 */ uint16_t signature; /* Signature == 0x250 */ #define CFSIGNATURE 0x250 #define CFSIGNATURE2 0x300 uint16_t checksum; /* word 31 */ }; /**************************** Message Buffer *********************************/ typedef enum { MSG_TYPE_NONE = 0x00, MSG_TYPE_INITIATOR_MSGOUT = 0x01, MSG_TYPE_INITIATOR_MSGIN = 0x02, MSG_TYPE_TARGET_MSGOUT = 0x03, MSG_TYPE_TARGET_MSGIN = 0x04 } ahc_msg_type; typedef enum { MSGLOOP_IN_PROG, MSGLOOP_MSGCOMPLETE, MSGLOOP_TERMINATED } msg_loop_stat; /*********************** Software Configuration Structure *********************/ TAILQ_HEAD(scb_tailq, scb); struct ahc_aic7770_softc { /* * Saved register state used for chip_init(). */ uint8_t busspd; uint8_t bustime; }; struct ahc_pci_softc { /* * Saved register state used for chip_init(). */ uint32_t devconfig; uint16_t targcrccnt; uint8_t command; uint8_t csize_lattime; uint8_t optionmode; uint8_t crccontrol1; uint8_t dscommand0; uint8_t dspcistatus; uint8_t scbbaddr; uint8_t dff_thrsh; }; union ahc_bus_softc { struct ahc_aic7770_softc aic7770_softc; struct ahc_pci_softc pci_softc; }; typedef void (*ahc_bus_intr_t)(struct ahc_softc *); typedef int (*ahc_bus_chip_init_t)(struct ahc_softc *); typedef void ahc_callback_t (void *); struct ahc_softc { bus_space_tag_t tag; bus_space_handle_t bsh; struct scb_data *scb_data; struct scb *next_queued_scb; /* * SCBs that have been sent to the controller */ BSD_LIST_HEAD(, scb) pending_scbs; /* * Counting lock for deferring the release of additional * untagged transactions from the untagged_queues. When * the lock is decremented to 0, all queues in the * untagged_queues array are run. */ u_int untagged_queue_lock; /* * Per-target queue of untagged-transactions. The * transaction at the head of the queue is the * currently pending untagged transaction for the * target. The driver only allows a single untagged * transaction per target. */ struct scb_tailq untagged_queues[AHC_NUM_TARGETS]; /* * Bus attachment specific data. */ union ahc_bus_softc bus_softc; /* * Platform specific data. */ struct ahc_platform_data *platform_data; /* * Platform specific device information. */ ahc_dev_softc_t dev_softc; struct device *dev; /* * Bus specific device information. */ ahc_bus_intr_t bus_intr; /* * Bus specific initialization required * after a chip reset. */ ahc_bus_chip_init_t bus_chip_init; /* * Target mode related state kept on a per enabled lun basis. * Targets that are not enabled will have null entries. * As an initiator, we keep one target entry for our initiator * ID to store our sync/wide transfer settings. */ struct ahc_tmode_tstate *enabled_targets[AHC_NUM_TARGETS]; /* * The black hole device responsible for handling requests for * disabled luns on enabled targets. */ struct ahc_tmode_lstate *black_hole; /* * Device instance currently on the bus awaiting a continue TIO * for a command that was not given the disconnect priveledge. */ struct ahc_tmode_lstate *pending_device; /* * Card characteristics */ ahc_chip chip; ahc_feature features; ahc_bug bugs; ahc_flag flags; struct seeprom_config *seep_config; /* Values to store in the SEQCTL register for pause and unpause */ uint8_t unpause; uint8_t pause; /* Command Queues */ uint8_t qoutfifonext; uint8_t qinfifonext; uint8_t *qoutfifo; uint8_t *qinfifo; /* Critical Section Data */ struct cs *critical_sections; u_int num_critical_sections; /* Channel Names ('A', 'B', etc.) */ char channel; char channel_b; /* Initiator Bus ID */ uint8_t our_id; uint8_t our_id_b; /* * PCI error detection. */ int unsolicited_ints; /* * Target incoming command FIFO. */ struct target_cmd *targetcmds; uint8_t tqinfifonext; /* * Cached copy of the sequencer control register. */ uint8_t seqctl; /* * Incoming and outgoing message handling. */ uint8_t send_msg_perror; ahc_msg_type msg_type; uint8_t msgout_buf[12];/* Message we are sending */ uint8_t msgin_buf[12];/* Message we are receiving */ u_int msgout_len; /* Length of message to send */ u_int msgout_index; /* Current index in msgout */ u_int msgin_index; /* Current index in msgin */ /* * Mapping information for data structures shared * between the sequencer and kernel. */ bus_dma_tag_t parent_dmat; bus_dma_tag_t shared_data_dmat; bus_dmamap_t shared_data_dmamap; dma_addr_t shared_data_busaddr; /* * Bus address of the one byte buffer used to * work-around a DMA bug for chips <= aic7880 * in target mode. */ dma_addr_t dma_bug_buf; /* Number of enabled target mode device on this card */ u_int enabled_luns; /* Initialization level of this data structure */ u_int init_level; /* PCI cacheline size. */ u_int pci_cachesize; /* * Count of parity errors we have seen as a target. * We auto-disable parity error checking after seeing * AHC_PCI_TARGET_PERR_THRESH number of errors. */ u_int pci_target_perr_count; #define AHC_PCI_TARGET_PERR_THRESH 10 /* Maximum number of sequencer instructions supported. */ u_int instruction_ram_size; /* Per-Unit descriptive information */ const char *description; char *name; int unit; /* Selection Timer settings */ int seltime; int seltime_b; uint16_t user_discenable;/* Disconnection allowed */ uint16_t user_tagenable;/* Tagged Queuing allowed */ }; /************************ Active Device Information ***************************/ typedef enum { ROLE_UNKNOWN, ROLE_INITIATOR, ROLE_TARGET } role_t; struct ahc_devinfo { int our_scsiid; int target_offset; uint16_t target_mask; u_int target; u_int lun; char channel; role_t role; /* * Only guaranteed to be correct if not * in the busfree state. */ }; /****************************** PCI Structures ********************************/ typedef int (ahc_device_setup_t)(struct ahc_softc *); struct ahc_pci_identity { uint64_t full_id; uint64_t id_mask; const char *name; ahc_device_setup_t *setup; }; /***************************** VL/EISA Declarations ***************************/ struct aic7770_identity { uint32_t full_id; uint32_t id_mask; const char *name; ahc_device_setup_t *setup; }; extern struct aic7770_identity aic7770_ident_table[]; #define AHC_EISA_SLOT_OFFSET 0xc00 #define AHC_EISA_IOSIZE 0x100 /*************************** Function Declarations ****************************/ /******************************************************************************/ /***************************** PCI Front End *********************************/ const struct ahc_pci_identity *ahc_find_pci_device(ahc_dev_softc_t); int ahc_pci_config(struct ahc_softc *, const struct ahc_pci_identity *); int ahc_pci_test_register_access(struct ahc_softc *); void __maybe_unused ahc_pci_resume(struct ahc_softc *ahc); /*************************** EISA/VL Front End ********************************/ int aic7770_config(struct ahc_softc *ahc, struct aic7770_identity *, u_int port); /************************** SCB and SCB queue management **********************/ int ahc_probe_scbs(struct ahc_softc *); void ahc_qinfifo_requeue_tail(struct ahc_softc *ahc, struct scb *scb); int ahc_match_scb(struct ahc_softc *ahc, struct scb *scb, int target, char channel, int lun, u_int tag, role_t role); /****************************** Initialization ********************************/ struct ahc_softc *ahc_alloc(void *platform_arg, char *name); int ahc_softc_init(struct ahc_softc *); void ahc_controller_info(struct ahc_softc *ahc, char *buf); int ahc_chip_init(struct ahc_softc *ahc); int ahc_init(struct ahc_softc *ahc); void ahc_intr_enable(struct ahc_softc *ahc, int enable); void ahc_pause_and_flushwork(struct ahc_softc *ahc); int __maybe_unused ahc_suspend(struct ahc_softc *ahc); int __maybe_unused ahc_resume(struct ahc_softc *ahc); void ahc_set_unit(struct ahc_softc *, int); void ahc_set_name(struct ahc_softc *, char *); void ahc_free(struct ahc_softc *ahc); int ahc_reset(struct ahc_softc *ahc, int reinit); /***************************** Error Recovery *********************************/ typedef enum { SEARCH_COMPLETE, SEARCH_COUNT, SEARCH_REMOVE } ahc_search_action; int ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel, int lun, u_int tag, role_t role, uint32_t status, ahc_search_action action); int ahc_search_untagged_queues(struct ahc_softc *ahc, ahc_io_ctx_t ctx, int target, char channel, int lun, uint32_t status, ahc_search_action action); int ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel, int lun, u_int tag, int stop_on_first, int remove, int save_state); int ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset); /*************************** Utility Functions ********************************/ void ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target, u_int lun, char channel, role_t role); /************************** Transfer Negotiation ******************************/ const struct ahc_syncrate* ahc_find_syncrate(struct ahc_softc *ahc, u_int *period, u_int *ppr_options, u_int maxsync); u_int ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync); /* * Negotiation types. These are used to qualify if we should renegotiate * even if our goal and current transport parameters are identical. */ typedef enum { AHC_NEG_TO_GOAL, /* Renegotiate only if goal and curr differ. */ AHC_NEG_IF_NON_ASYNC, /* Renegotiate so long as goal is non-async. */ AHC_NEG_ALWAYS /* Renegotiat even if goal is async. */ } ahc_neg_type; int ahc_update_neg_request(struct ahc_softc*, struct ahc_devinfo*, struct ahc_tmode_tstate*, struct ahc_initiator_tinfo*, ahc_neg_type); void ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, u_int width, u_int type, int paused); void ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, const struct ahc_syncrate *syncrate, u_int period, u_int offset, u_int ppr_options, u_int type, int paused); typedef enum { AHC_QUEUE_NONE, AHC_QUEUE_BASIC, AHC_QUEUE_TAGGED } ahc_queue_alg; /**************************** Target Mode *************************************/ #ifdef AHC_TARGET_MODE void ahc_send_lstate_events(struct ahc_softc *, struct ahc_tmode_lstate *); void ahc_handle_en_lun(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb); cam_status ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb, struct ahc_tmode_tstate **tstate, struct ahc_tmode_lstate **lstate, int notfound_failure); #ifndef AHC_TMODE_ENABLE #define AHC_TMODE_ENABLE 0 #endif #endif /******************************* Debug ***************************************/ #ifdef AHC_DEBUG extern uint32_t ahc_debug; #define AHC_SHOW_MISC 0x0001 #define AHC_SHOW_SENSE 0x0002 #define AHC_DUMP_SEEPROM 0x0004 #define AHC_SHOW_TERMCTL 0x0008 #define AHC_SHOW_MEMORY 0x0010 #define AHC_SHOW_MESSAGES 0x0020 #define AHC_SHOW_DV 0x0040 #define AHC_SHOW_SELTO 0x0080 #define AHC_SHOW_QFULL 0x0200 #define AHC_SHOW_QUEUE 0x0400 #define AHC_SHOW_TQIN 0x0800 #define AHC_SHOW_MASKED_ERRORS 0x1000 #define AHC_DEBUG_SEQUENCER 0x2000 #endif void ahc_print_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *dev); void ahc_dump_card_state(struct ahc_softc *ahc); int ahc_print_register(const ahc_reg_parse_entry_t *table, u_int num_entries, const char *name, u_int address, u_int value, u_int *cur_column, u_int wrap_point); /******************************* SEEPROM *************************************/ int ahc_acquire_seeprom(struct ahc_softc *ahc, struct seeprom_descriptor *sd); void ahc_release_seeprom(struct seeprom_descriptor *sd); #endif /* _AIC7XXX_H_ */
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 1996-2001 Vojtech Pavlik */ /* * This is just a very simple driver that can dump the data * out of the joystick port into the syslog ... */ #include <linux/module.h> #include <linux/gameport.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/slab.h> #define DRIVER_DESC "Gameport data dumper module" MODULE_AUTHOR("Vojtech Pavlik <[email protected]>"); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); #define BUF_SIZE 256 struct joydump { unsigned int time; unsigned char data; }; static int joydump_connect(struct gameport *gameport, struct gameport_driver *drv) { struct joydump *buf; /* all entries */ struct joydump *dump, *prev; /* one entry each */ int axes[4], buttons; int i, j, t, timeout; unsigned long flags; unsigned char u; printk(KERN_INFO "joydump: ,------------------ START ----------------.\n"); printk(KERN_INFO "joydump: | Dumping: %30s |\n", gameport->phys); printk(KERN_INFO "joydump: | Speed: %28d kHz |\n", gameport->speed); if (gameport_open(gameport, drv, GAMEPORT_MODE_RAW)) { printk(KERN_INFO "joydump: | Raw mode not available - trying cooked. |\n"); if (gameport_open(gameport, drv, GAMEPORT_MODE_COOKED)) { printk(KERN_INFO "joydump: | Cooked not available either. Failing. |\n"); printk(KERN_INFO "joydump: `------------------- END -----------------'\n"); return -ENODEV; } gameport_cooked_read(gameport, axes, &buttons); for (i = 0; i < 4; i++) printk(KERN_INFO "joydump: | Axis %d: %4d. |\n", i, axes[i]); printk(KERN_INFO "joydump: | Buttons %02x. |\n", buttons); printk(KERN_INFO "joydump: `------------------- END -----------------'\n"); } timeout = gameport_time(gameport, 10000); /* 10 ms */ buf = kmalloc_array(BUF_SIZE, sizeof(struct joydump), GFP_KERNEL); if (!buf) { printk(KERN_INFO "joydump: no memory for testing\n"); goto jd_end; } dump = buf; t = 0; i = 1; local_irq_save(flags); u = gameport_read(gameport); dump->data = u; dump->time = t; dump++; gameport_trigger(gameport); while (i < BUF_SIZE && t < timeout) { dump->data = gameport_read(gameport); if (dump->data ^ u) { u = dump->data; dump->time = t; i++; dump++; } t++; } local_irq_restore(flags); /* * Dump data. */ t = i; dump = buf; prev = dump; printk(KERN_INFO "joydump: >------------------ DATA -----------------<\n"); printk(KERN_INFO "joydump: | index: %3d delta: %3d us data: ", 0, 0); for (j = 7; j >= 0; j--) printk("%d", (dump->data >> j) & 1); printk(" |\n"); dump++; for (i = 1; i < t; i++, dump++, prev++) { printk(KERN_INFO "joydump: | index: %3d delta: %3d us data: ", i, dump->time - prev->time); for (j = 7; j >= 0; j--) printk("%d", (dump->data >> j) & 1); printk(" |\n"); } kfree(buf); jd_end: printk(KERN_INFO "joydump: `------------------- END -----------------'\n"); return 0; } static void joydump_disconnect(struct gameport *gameport) { gameport_close(gameport); } static struct gameport_driver joydump_drv = { .driver = { .name = "joydump", }, .description = DRIVER_DESC, .connect = joydump_connect, .disconnect = joydump_disconnect, }; module_gameport_driver(joydump_drv);
// SPDX-License-Identifier: GPL-2.0+ /* Siemens ID Mouse driver v0.6 Copyright (C) 2004-5 by Florian 'Floe' Echtler <[email protected]> and Andreas 'ad' Deresch <[email protected]> Derived from the USB Skeleton driver 1.1, Copyright (C) 2003 Greg Kroah-Hartman ([email protected]) Additional information provided by Martin Reising <[email protected]> */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/completion.h> #include <linux/mutex.h> #include <linux/uaccess.h> #include <linux/usb.h> /* image constants */ #define WIDTH 225 #define HEIGHT 289 #define HEADER "P5 225 289 255 " #define IMGSIZE ((WIDTH * HEIGHT) + sizeof(HEADER)-1) #define DRIVER_SHORT "idmouse" #define DRIVER_AUTHOR "Florian 'Floe' Echtler <[email protected]>" #define DRIVER_DESC "Siemens ID Mouse FingerTIP Sensor Driver" /* minor number for misc USB devices */ #define USB_IDMOUSE_MINOR_BASE 132 /* vendor and device IDs */ #define ID_SIEMENS 0x0681 #define ID_IDMOUSE 0x0005 #define ID_CHERRY 0x0010 /* device ID table */ static const struct usb_device_id idmouse_table[] = { {USB_DEVICE(ID_SIEMENS, ID_IDMOUSE)}, /* Siemens ID Mouse (Professional) */ {USB_DEVICE(ID_SIEMENS, ID_CHERRY )}, /* Cherry FingerTIP ID Board */ {} /* terminating null entry */ }; /* sensor commands */ #define FTIP_RESET 0x20 #define FTIP_ACQUIRE 0x21 #define FTIP_RELEASE 0x22 #define FTIP_BLINK 0x23 /* LSB of value = blink pulse width */ #define FTIP_SCROLL 0x24 #define ftip_command(dev, command, value, index) \ usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0), command, \ USB_TYPE_VENDOR | USB_RECIP_ENDPOINT | USB_DIR_OUT, value, index, NULL, 0, 1000) MODULE_DEVICE_TABLE(usb, idmouse_table); /* structure to hold all of our device specific stuff */ struct usb_idmouse { struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; /* the interface for this device */ unsigned char *bulk_in_buffer; /* the buffer to receive data */ size_t bulk_in_size; /* the maximum bulk packet size */ size_t orig_bi_size; /* same as above, but reported by the device */ __u8 bulk_in_endpointAddr; /* the address of the bulk in endpoint */ int open; /* if the port is open or not */ int present; /* if the device is not disconnected */ struct mutex lock; /* locks this structure */ }; /* local function prototypes */ static ssize_t idmouse_read(struct file *file, char __user *buffer, size_t count, loff_t * ppos); static int idmouse_open(struct inode *inode, struct file *file); static int idmouse_release(struct inode *inode, struct file *file); static int idmouse_probe(struct usb_interface *interface, const struct usb_device_id *id); static void idmouse_disconnect(struct usb_interface *interface); static int idmouse_suspend(struct usb_interface *intf, pm_message_t message); static int idmouse_resume(struct usb_interface *intf); /* file operation pointers */ static const struct file_operations idmouse_fops = { .owner = THIS_MODULE, .read = idmouse_read, .open = idmouse_open, .release = idmouse_release, .llseek = default_llseek, }; /* class driver information */ static struct usb_class_driver idmouse_class = { .name = "idmouse%d", .fops = &idmouse_fops, .minor_base = USB_IDMOUSE_MINOR_BASE, }; /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver idmouse_driver = { .name = DRIVER_SHORT, .probe = idmouse_probe, .disconnect = idmouse_disconnect, .suspend = idmouse_suspend, .resume = idmouse_resume, .reset_resume = idmouse_resume, .id_table = idmouse_table, .supports_autosuspend = 1, }; static int idmouse_create_image(struct usb_idmouse *dev) { int bytes_read; int bulk_read; int result; memcpy(dev->bulk_in_buffer, HEADER, sizeof(HEADER)-1); bytes_read = sizeof(HEADER)-1; /* reset the device and set a fast blink rate */ result = ftip_command(dev, FTIP_RELEASE, 0, 0); if (result < 0) goto reset; result = ftip_command(dev, FTIP_BLINK, 1, 0); if (result < 0) goto reset; /* initialize the sensor - sending this command twice */ /* significantly reduces the rate of failed reads */ result = ftip_command(dev, FTIP_ACQUIRE, 0, 0); if (result < 0) goto reset; result = ftip_command(dev, FTIP_ACQUIRE, 0, 0); if (result < 0) goto reset; /* start the readout - sending this command twice */ /* presumably enables the high dynamic range mode */ result = ftip_command(dev, FTIP_RESET, 0, 0); if (result < 0) goto reset; result = ftip_command(dev, FTIP_RESET, 0, 0); if (result < 0) goto reset; /* loop over a blocking bulk read to get data from the device */ while (bytes_read < IMGSIZE) { result = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr), dev->bulk_in_buffer + bytes_read, dev->bulk_in_size, &bulk_read, 5000); if (result < 0) { /* Maybe this error was caused by the increased packet size? */ /* Reset to the original value and tell userspace to retry. */ if (dev->bulk_in_size != dev->orig_bi_size) { dev->bulk_in_size = dev->orig_bi_size; result = -EAGAIN; } break; } if (signal_pending(current)) { result = -EINTR; break; } bytes_read += bulk_read; } /* check for valid image */ /* right border should be black (0x00) */ for (bytes_read = sizeof(HEADER)-1 + WIDTH-1; bytes_read < IMGSIZE; bytes_read += WIDTH) if (dev->bulk_in_buffer[bytes_read] != 0x00) return -EAGAIN; /* lower border should be white (0xFF) */ for (bytes_read = IMGSIZE-WIDTH; bytes_read < IMGSIZE-1; bytes_read++) if (dev->bulk_in_buffer[bytes_read] != 0xFF) return -EAGAIN; /* reset the device */ reset: ftip_command(dev, FTIP_RELEASE, 0, 0); /* should be IMGSIZE == 65040 */ dev_dbg(&dev->interface->dev, "read %d bytes fingerprint data\n", bytes_read); return result; } /* PM operations are nops as this driver does IO only during open() */ static int idmouse_suspend(struct usb_interface *intf, pm_message_t message) { return 0; } static int idmouse_resume(struct usb_interface *intf) { return 0; } static inline void idmouse_delete(struct usb_idmouse *dev) { kfree(dev->bulk_in_buffer); kfree(dev); } static int idmouse_open(struct inode *inode, struct file *file) { struct usb_idmouse *dev; struct usb_interface *interface; int result; /* get the interface from minor number and driver information */ interface = usb_find_interface(&idmouse_driver, iminor(inode)); if (!interface) return -ENODEV; /* get the device information block from the interface */ dev = usb_get_intfdata(interface); if (!dev) return -ENODEV; /* lock this device */ mutex_lock(&dev->lock); /* check if already open */ if (dev->open) { /* already open, so fail */ result = -EBUSY; } else { /* create a new image and check for success */ result = usb_autopm_get_interface(interface); if (result) goto error; result = idmouse_create_image(dev); usb_autopm_put_interface(interface); if (result) goto error; /* increment our usage count for the driver */ ++dev->open; /* save our object in the file's private structure */ file->private_data = dev; } error: /* unlock this device */ mutex_unlock(&dev->lock); return result; } static int idmouse_release(struct inode *inode, struct file *file) { struct usb_idmouse *dev; dev = file->private_data; if (dev == NULL) return -ENODEV; /* lock our device */ mutex_lock(&dev->lock); --dev->open; if (!dev->present) { /* the device was unplugged before the file was released */ mutex_unlock(&dev->lock); idmouse_delete(dev); } else { mutex_unlock(&dev->lock); } return 0; } static ssize_t idmouse_read(struct file *file, char __user *buffer, size_t count, loff_t * ppos) { struct usb_idmouse *dev = file->private_data; int result; /* lock this object */ mutex_lock(&dev->lock); /* verify that the device wasn't unplugged */ if (!dev->present) { mutex_unlock(&dev->lock); return -ENODEV; } result = simple_read_from_buffer(buffer, count, ppos, dev->bulk_in_buffer, IMGSIZE); /* unlock the device */ mutex_unlock(&dev->lock); return result; } static int idmouse_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct usb_idmouse *dev; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int result; /* check if we have gotten the data or the hid interface */ iface_desc = interface->cur_altsetting; if (iface_desc->desc.bInterfaceClass != 0x0A) return -ENODEV; if (iface_desc->desc.bNumEndpoints < 1) return -ENODEV; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (dev == NULL) return -ENOMEM; mutex_init(&dev->lock); dev->udev = udev; dev->interface = interface; /* set up the endpoint information - use only the first bulk-in endpoint */ result = usb_find_bulk_in_endpoint(iface_desc, &endpoint); if (result) { dev_err(&interface->dev, "Unable to find bulk-in endpoint.\n"); idmouse_delete(dev); return result; } dev->orig_bi_size = usb_endpoint_maxp(endpoint); dev->bulk_in_size = 0x200; /* works _much_ faster */ dev->bulk_in_endpointAddr = endpoint->bEndpointAddress; dev->bulk_in_buffer = kmalloc(IMGSIZE + dev->bulk_in_size, GFP_KERNEL); if (!dev->bulk_in_buffer) { idmouse_delete(dev); return -ENOMEM; } /* allow device read, write and ioctl */ dev->present = 1; /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); result = usb_register_dev(interface, &idmouse_class); if (result) { /* something prevented us from registering this device */ dev_err(&interface->dev, "Unable to allocate minor number.\n"); idmouse_delete(dev); return result; } /* be noisy */ dev_info(&interface->dev,"%s now attached\n",DRIVER_DESC); return 0; } static void idmouse_disconnect(struct usb_interface *interface) { struct usb_idmouse *dev = usb_get_intfdata(interface); /* give back our minor */ usb_deregister_dev(interface, &idmouse_class); /* lock the device */ mutex_lock(&dev->lock); /* prevent device read, write and ioctl */ dev->present = 0; /* if the device is opened, idmouse_release will clean this up */ if (!dev->open) { mutex_unlock(&dev->lock); idmouse_delete(dev); } else { /* unlock */ mutex_unlock(&dev->lock); } dev_info(&interface->dev, "disconnected\n"); } module_usb_driver(idmouse_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-or-later /* saa7146.o - driver for generic saa7146-based hardware Copyright (C) 1998-2003 Michael Hunold <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <media/drv-intf/saa7146.h> #include <linux/module.h> static int saa7146_num; unsigned int saa7146_debug; module_param(saa7146_debug, uint, 0644); MODULE_PARM_DESC(saa7146_debug, "debug level (default: 0)"); #if 0 static void dump_registers(struct saa7146_dev* dev) { int i = 0; pr_info(" @ %li jiffies:\n", jiffies); for (i = 0; i <= 0x148; i += 4) pr_info("0x%03x: 0x%08x\n", i, saa7146_read(dev, i)); } #endif /**************************************************************************** * gpio and debi helper functions ****************************************************************************/ void saa7146_setgpio(struct saa7146_dev *dev, int port, u32 data) { u32 value = 0; if (WARN_ON(port > 3)) return; value = saa7146_read(dev, GPIO_CTRL); value &= ~(0xff << (8*port)); value |= (data << (8*port)); saa7146_write(dev, GPIO_CTRL, value); } /* This DEBI code is based on the saa7146 Stradis driver by Nathan Laredo */ static inline int saa7146_wait_for_debi_done_sleep(struct saa7146_dev *dev, unsigned long us1, unsigned long us2) { unsigned long timeout; int err; /* wait for registers to be programmed */ timeout = jiffies + usecs_to_jiffies(us1); while (1) { err = time_after(jiffies, timeout); if (saa7146_read(dev, MC2) & 2) break; if (err) { pr_debug("%s: %s timed out while waiting for registers getting programmed\n", dev->name, __func__); return -ETIMEDOUT; } msleep(1); } /* wait for transfer to complete */ timeout = jiffies + usecs_to_jiffies(us2); while (1) { err = time_after(jiffies, timeout); if (!(saa7146_read(dev, PSR) & SPCI_DEBI_S)) break; saa7146_read(dev, MC2); if (err) { DEB_S("%s: %s timed out while waiting for transfer completion\n", dev->name, __func__); return -ETIMEDOUT; } msleep(1); } return 0; } static inline int saa7146_wait_for_debi_done_busyloop(struct saa7146_dev *dev, unsigned long us1, unsigned long us2) { unsigned long loops; /* wait for registers to be programmed */ loops = us1; while (1) { if (saa7146_read(dev, MC2) & 2) break; if (!loops--) { pr_err("%s: %s timed out while waiting for registers getting programmed\n", dev->name, __func__); return -ETIMEDOUT; } udelay(1); } /* wait for transfer to complete */ loops = us2 / 5; while (1) { if (!(saa7146_read(dev, PSR) & SPCI_DEBI_S)) break; saa7146_read(dev, MC2); if (!loops--) { DEB_S("%s: %s timed out while waiting for transfer completion\n", dev->name, __func__); return -ETIMEDOUT; } udelay(5); } return 0; } int saa7146_wait_for_debi_done(struct saa7146_dev *dev, int nobusyloop) { if (nobusyloop) return saa7146_wait_for_debi_done_sleep(dev, 50000, 250000); else return saa7146_wait_for_debi_done_busyloop(dev, 50000, 250000); } /**************************************************************************** * general helper functions ****************************************************************************/ /* this is videobuf_vmalloc_to_sg() from videobuf-dma-sg.c make sure virt has been allocated with vmalloc_32(), otherwise return NULL on highmem machines */ static struct scatterlist* vmalloc_to_sg(unsigned char *virt, int nr_pages) { struct scatterlist *sglist; struct page *pg; int i; sglist = kmalloc_array(nr_pages, sizeof(struct scatterlist), GFP_KERNEL); if (NULL == sglist) return NULL; sg_init_table(sglist, nr_pages); for (i = 0; i < nr_pages; i++, virt += PAGE_SIZE) { pg = vmalloc_to_page(virt); if (NULL == pg) goto err; if (WARN_ON(PageHighMem(pg))) goto err; sg_set_page(&sglist[i], pg, PAGE_SIZE, 0); } return sglist; err: kfree(sglist); return NULL; } /********************************************************************************/ /* common page table functions */ void *saa7146_vmalloc_build_pgtable(struct pci_dev *pci, long length, struct saa7146_pgtable *pt) { int pages = (length+PAGE_SIZE-1)/PAGE_SIZE; void *mem = vmalloc_32(length); int slen = 0; if (NULL == mem) goto err_null; if (!(pt->slist = vmalloc_to_sg(mem, pages))) goto err_free_mem; if (saa7146_pgtable_alloc(pci, pt)) goto err_free_slist; pt->nents = pages; slen = dma_map_sg(&pci->dev, pt->slist, pt->nents, DMA_FROM_DEVICE); if (0 == slen) goto err_free_pgtable; if (0 != saa7146_pgtable_build_single(pci, pt, pt->slist, slen)) goto err_unmap_sg; return mem; err_unmap_sg: dma_unmap_sg(&pci->dev, pt->slist, pt->nents, DMA_FROM_DEVICE); err_free_pgtable: saa7146_pgtable_free(pci, pt); err_free_slist: kfree(pt->slist); pt->slist = NULL; err_free_mem: vfree(mem); err_null: return NULL; } void saa7146_vfree_destroy_pgtable(struct pci_dev *pci, void *mem, struct saa7146_pgtable *pt) { dma_unmap_sg(&pci->dev, pt->slist, pt->nents, DMA_FROM_DEVICE); saa7146_pgtable_free(pci, pt); kfree(pt->slist); pt->slist = NULL; vfree(mem); } void saa7146_pgtable_free(struct pci_dev *pci, struct saa7146_pgtable *pt) { if (NULL == pt->cpu) return; dma_free_coherent(&pci->dev, pt->size, pt->cpu, pt->dma); pt->cpu = NULL; } int saa7146_pgtable_alloc(struct pci_dev *pci, struct saa7146_pgtable *pt) { __le32 *cpu; dma_addr_t dma_addr = 0; cpu = dma_alloc_coherent(&pci->dev, PAGE_SIZE, &dma_addr, GFP_KERNEL); if (NULL == cpu) { return -ENOMEM; } pt->size = PAGE_SIZE; pt->cpu = cpu; pt->dma = dma_addr; return 0; } int saa7146_pgtable_build_single(struct pci_dev *pci, struct saa7146_pgtable *pt, struct scatterlist *list, int sglen) { struct sg_dma_page_iter dma_iter; __le32 *ptr, fill; int nr_pages = 0; int i; if (WARN_ON(!sglen) || WARN_ON(list->offset > PAGE_SIZE)) return -EIO; /* if we have a user buffer, the first page may not be aligned to a page boundary. */ pt->offset = list->offset; ptr = pt->cpu; for_each_sg_dma_page(list, &dma_iter, sglen, 0) { *ptr++ = cpu_to_le32(sg_page_iter_dma_address(&dma_iter)); nr_pages++; } /* safety; fill the page table up with the last valid page */ fill = *(ptr-1); for (i = nr_pages; i < 1024; i++) *ptr++ = fill; return 0; } /********************************************************************************/ /* interrupt handler */ static irqreturn_t interrupt_hw(int irq, void *dev_id) { struct saa7146_dev *dev = dev_id; u32 isr; u32 ack_isr; /* read out the interrupt status register */ ack_isr = isr = saa7146_read(dev, ISR); /* is this our interrupt? */ if ( 0 == isr ) { /* nope, some other device */ return IRQ_NONE; } if (dev->ext) { if (dev->ext->irq_mask & isr) { if (dev->ext->irq_func) dev->ext->irq_func(dev, &isr); isr &= ~dev->ext->irq_mask; } } if (0 != (isr & (MASK_27))) { DEB_INT("irq: RPS0 (0x%08x)\n", isr); if (dev->vv_data && dev->vv_callback) dev->vv_callback(dev,isr); isr &= ~MASK_27; } if (0 != (isr & (MASK_28))) { if (dev->vv_data && dev->vv_callback) dev->vv_callback(dev,isr); isr &= ~MASK_28; } if (0 != (isr & (MASK_16|MASK_17))) { SAA7146_IER_DISABLE(dev, MASK_16|MASK_17); /* only wake up if we expect something */ if (0 != dev->i2c_op) { dev->i2c_op = 0; wake_up(&dev->i2c_wq); } else { u32 psr = saa7146_read(dev, PSR); u32 ssr = saa7146_read(dev, SSR); pr_warn("%s: unexpected i2c irq: isr %08x psr %08x ssr %08x\n", dev->name, isr, psr, ssr); } isr &= ~(MASK_16|MASK_17); } if( 0 != isr ) { ERR("warning: interrupt enabled, but not handled properly.(0x%08x)\n", isr); ERR("disabling interrupt source(s)!\n"); SAA7146_IER_DISABLE(dev,isr); } saa7146_write(dev, ISR, ack_isr); return IRQ_HANDLED; } /*********************************************************************************/ /* configuration-functions */ static int saa7146_init_one(struct pci_dev *pci, const struct pci_device_id *ent) { struct saa7146_pci_extension_data *pci_ext = (struct saa7146_pci_extension_data *)ent->driver_data; struct saa7146_extension *ext = pci_ext->ext; struct saa7146_dev *dev; int err = -ENOMEM; /* clear out mem for sure */ dev = kzalloc(sizeof(struct saa7146_dev), GFP_KERNEL); if (!dev) { ERR("out of memory\n"); goto out; } /* create a nice device name */ sprintf(dev->name, "saa7146 (%d)", saa7146_num); DEB_EE("pci:%p\n", pci); err = pci_enable_device(pci); if (err < 0) { ERR("pci_enable_device() failed\n"); goto err_free; } /* enable bus-mastering */ pci_set_master(pci); dev->pci = pci; /* get chip-revision; this is needed to enable bug-fixes */ dev->revision = pci->revision; /* remap the memory from virtual to physical address */ err = pci_request_region(pci, 0, "saa7146"); if (err < 0) goto err_disable; dev->mem = ioremap(pci_resource_start(pci, 0), pci_resource_len(pci, 0)); if (!dev->mem) { ERR("ioremap() failed\n"); err = -ENODEV; goto err_release; } /* we don't do a master reset here anymore, it screws up some boards that don't have an i2c-eeprom for configuration values */ /* saa7146_write(dev, MC1, MASK_31); */ /* disable all irqs */ saa7146_write(dev, IER, 0); /* shut down all dma transfers and rps tasks */ saa7146_write(dev, MC1, 0x30ff0000); /* clear out any rps-signals pending */ saa7146_write(dev, MC2, 0xf8000000); /* request an interrupt for the saa7146 */ err = request_irq(pci->irq, interrupt_hw, IRQF_SHARED, dev->name, dev); if (err < 0) { ERR("request_irq() failed\n"); goto err_unmap; } err = -ENOMEM; /* get memory for various stuff */ dev->d_rps0.cpu_addr = dma_alloc_coherent(&pci->dev, SAA7146_RPS_MEM, &dev->d_rps0.dma_handle, GFP_KERNEL); if (!dev->d_rps0.cpu_addr) goto err_free_irq; dev->d_rps1.cpu_addr = dma_alloc_coherent(&pci->dev, SAA7146_RPS_MEM, &dev->d_rps1.dma_handle, GFP_KERNEL); if (!dev->d_rps1.cpu_addr) goto err_free_rps0; dev->d_i2c.cpu_addr = dma_alloc_coherent(&pci->dev, SAA7146_RPS_MEM, &dev->d_i2c.dma_handle, GFP_KERNEL); if (!dev->d_i2c.cpu_addr) goto err_free_rps1; /* the rest + print status message */ pr_info("found saa7146 @ mem %p (revision %d, irq %d) (0x%04x,0x%04x)\n", dev->mem, dev->revision, pci->irq, pci->subsystem_vendor, pci->subsystem_device); dev->ext = ext; mutex_init(&dev->v4l2_lock); spin_lock_init(&dev->int_slock); spin_lock_init(&dev->slock); mutex_init(&dev->i2c_lock); dev->module = THIS_MODULE; init_waitqueue_head(&dev->i2c_wq); /* set some sane pci arbitrition values */ saa7146_write(dev, PCI_BT_V1, 0x1c00101f); /* TODO: use the status code of the callback */ err = -ENODEV; if (ext->probe && ext->probe(dev)) { DEB_D("ext->probe() failed for %p. skipping device.\n", dev); goto err_free_i2c; } if (ext->attach(dev, pci_ext)) { DEB_D("ext->attach() failed for %p. skipping device.\n", dev); goto err_free_i2c; } /* V4L extensions will set the pci drvdata to the v4l2_device in the attach() above. So for those cards that do not use V4L we have to set it explicitly. */ pci_set_drvdata(pci, &dev->v4l2_dev); saa7146_num++; err = 0; out: return err; err_free_i2c: dma_free_coherent(&pci->dev, SAA7146_RPS_MEM, dev->d_i2c.cpu_addr, dev->d_i2c.dma_handle); err_free_rps1: dma_free_coherent(&pci->dev, SAA7146_RPS_MEM, dev->d_rps1.cpu_addr, dev->d_rps1.dma_handle); err_free_rps0: dma_free_coherent(&pci->dev, SAA7146_RPS_MEM, dev->d_rps0.cpu_addr, dev->d_rps0.dma_handle); err_free_irq: free_irq(pci->irq, (void *)dev); err_unmap: iounmap(dev->mem); err_release: pci_release_region(pci, 0); err_disable: pci_disable_device(pci); err_free: kfree(dev); goto out; } static void saa7146_remove_one(struct pci_dev *pdev) { struct v4l2_device *v4l2_dev = pci_get_drvdata(pdev); struct saa7146_dev *dev = to_saa7146_dev(v4l2_dev); struct { void *addr; dma_addr_t dma; } dev_map[] = { { dev->d_i2c.cpu_addr, dev->d_i2c.dma_handle }, { dev->d_rps1.cpu_addr, dev->d_rps1.dma_handle }, { dev->d_rps0.cpu_addr, dev->d_rps0.dma_handle }, { NULL, 0 } }, *p; DEB_EE("dev:%p\n", dev); dev->ext->detach(dev); /* shut down all video dma transfers */ saa7146_write(dev, MC1, 0x00ff0000); /* disable all irqs, release irq-routine */ saa7146_write(dev, IER, 0); free_irq(pdev->irq, dev); for (p = dev_map; p->addr; p++) dma_free_coherent(&pdev->dev, SAA7146_RPS_MEM, p->addr, p->dma); iounmap(dev->mem); pci_release_region(pdev, 0); pci_disable_device(pdev); kfree(dev); saa7146_num--; } /*********************************************************************************/ /* extension handling functions */ int saa7146_register_extension(struct saa7146_extension* ext) { DEB_EE("ext:%p\n", ext); ext->driver.name = ext->name; ext->driver.id_table = ext->pci_tbl; ext->driver.probe = saa7146_init_one; ext->driver.remove = saa7146_remove_one; pr_info("register extension '%s'\n", ext->name); return pci_register_driver(&ext->driver); } int saa7146_unregister_extension(struct saa7146_extension* ext) { DEB_EE("ext:%p\n", ext); pr_info("unregister extension '%s'\n", ext->name); pci_unregister_driver(&ext->driver); return 0; } EXPORT_SYMBOL_GPL(saa7146_register_extension); EXPORT_SYMBOL_GPL(saa7146_unregister_extension); /* misc functions used by extension modules */ EXPORT_SYMBOL_GPL(saa7146_pgtable_alloc); EXPORT_SYMBOL_GPL(saa7146_pgtable_free); EXPORT_SYMBOL_GPL(saa7146_pgtable_build_single); EXPORT_SYMBOL_GPL(saa7146_vmalloc_build_pgtable); EXPORT_SYMBOL_GPL(saa7146_vfree_destroy_pgtable); EXPORT_SYMBOL_GPL(saa7146_wait_for_debi_done); EXPORT_SYMBOL_GPL(saa7146_setgpio); EXPORT_SYMBOL_GPL(saa7146_i2c_adapter_prepare); EXPORT_SYMBOL_GPL(saa7146_debug); MODULE_AUTHOR("Michael Hunold <[email protected]>"); MODULE_DESCRIPTION("driver for generic saa7146-based hardware"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0-or-later /* * Marvell Armada 375 pinctrl driver based on mvebu pinctrl core * * Copyright (C) 2012 Marvell * * Thomas Petazzoni <[email protected]> */ #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/pinctrl/pinctrl.h> #include "pinctrl-mvebu.h" static struct mvebu_mpp_mode mv88f6720_mpp_modes[] = { MPP_MODE(0, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad2"), MPP_FUNCTION(0x2, "spi0", "cs1"), MPP_FUNCTION(0x3, "spi1", "cs1"), MPP_FUNCTION(0x5, "nand", "io2")), MPP_MODE(1, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad3"), MPP_FUNCTION(0x2, "spi0", "mosi"), MPP_FUNCTION(0x3, "spi1", "mosi"), MPP_FUNCTION(0x5, "nand", "io3")), MPP_MODE(2, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad4"), MPP_FUNCTION(0x2, "ptp", "evreq"), MPP_FUNCTION(0x3, "led", "c0"), MPP_FUNCTION(0x4, "audio", "sdi"), MPP_FUNCTION(0x5, "nand", "io4"), MPP_FUNCTION(0x6, "spi1", "mosi")), MPP_MODE(3, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad5"), MPP_FUNCTION(0x2, "ptp", "trig"), MPP_FUNCTION(0x3, "led", "p3"), MPP_FUNCTION(0x4, "audio", "mclk"), MPP_FUNCTION(0x5, "nand", "io5"), MPP_FUNCTION(0x6, "spi1", "miso")), MPP_MODE(4, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad6"), MPP_FUNCTION(0x2, "spi0", "miso"), MPP_FUNCTION(0x3, "spi1", "miso"), MPP_FUNCTION(0x5, "nand", "io6")), MPP_MODE(5, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad7"), MPP_FUNCTION(0x2, "spi0", "cs2"), MPP_FUNCTION(0x3, "spi1", "cs2"), MPP_FUNCTION(0x5, "nand", "io7"), MPP_FUNCTION(0x6, "spi1", "miso")), MPP_MODE(6, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad0"), MPP_FUNCTION(0x3, "led", "p1"), MPP_FUNCTION(0x4, "audio", "lrclk"), MPP_FUNCTION(0x5, "nand", "io0")), MPP_MODE(7, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ad1"), MPP_FUNCTION(0x2, "ptp", "clk"), MPP_FUNCTION(0x3, "led", "p2"), MPP_FUNCTION(0x4, "audio", "extclk"), MPP_FUNCTION(0x5, "nand", "io1")), MPP_MODE(8, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "bootcs"), MPP_FUNCTION(0x2, "spi0", "cs0"), MPP_FUNCTION(0x3, "spi1", "cs0"), MPP_FUNCTION(0x5, "nand", "ce")), MPP_MODE(9, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "spi0", "sck"), MPP_FUNCTION(0x3, "spi1", "sck"), MPP_FUNCTION(0x5, "nand", "we")), MPP_MODE(10, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "dram", "vttctrl"), MPP_FUNCTION(0x3, "led", "c1"), MPP_FUNCTION(0x5, "nand", "re"), MPP_FUNCTION(0x6, "spi1", "sck")), MPP_MODE(11, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "a0"), MPP_FUNCTION(0x3, "led", "c2"), MPP_FUNCTION(0x4, "audio", "sdo"), MPP_FUNCTION(0x5, "nand", "cle")), MPP_MODE(12, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "a1"), MPP_FUNCTION(0x4, "audio", "bclk"), MPP_FUNCTION(0x5, "nand", "ale")), MPP_MODE(13, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "dev", "ready"), MPP_FUNCTION(0x2, "pcie0", "rstout"), MPP_FUNCTION(0x3, "pcie1", "rstout"), MPP_FUNCTION(0x5, "nand", "rb"), MPP_FUNCTION(0x6, "spi1", "mosi")), MPP_MODE(14, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "i2c0", "sda"), MPP_FUNCTION(0x3, "uart1", "txd")), MPP_MODE(15, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "i2c0", "sck"), MPP_FUNCTION(0x3, "uart1", "rxd")), MPP_MODE(16, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "uart0", "txd")), MPP_MODE(17, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "uart0", "rxd")), MPP_MODE(18, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "tdm", "int")), MPP_MODE(19, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "tdm", "rst")), MPP_MODE(20, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "tdm", "pclk")), MPP_MODE(21, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "tdm", "fsync")), MPP_MODE(22, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "tdm", "drx")), MPP_MODE(23, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "tdm", "dtx")), MPP_MODE(24, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p0"), MPP_FUNCTION(0x2, "ge1", "rxd0"), MPP_FUNCTION(0x3, "sd", "cmd"), MPP_FUNCTION(0x4, "uart0", "rts"), MPP_FUNCTION(0x5, "spi0", "cs0"), MPP_FUNCTION(0x6, "dev", "cs1")), MPP_MODE(25, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p2"), MPP_FUNCTION(0x2, "ge1", "rxd1"), MPP_FUNCTION(0x3, "sd", "d0"), MPP_FUNCTION(0x4, "uart0", "cts"), MPP_FUNCTION(0x5, "spi0", "mosi"), MPP_FUNCTION(0x6, "dev", "cs2")), MPP_MODE(26, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie0", "clkreq"), MPP_FUNCTION(0x2, "ge1", "rxd2"), MPP_FUNCTION(0x3, "sd", "d2"), MPP_FUNCTION(0x4, "uart1", "rts"), MPP_FUNCTION(0x5, "spi0", "cs1"), MPP_FUNCTION(0x6, "led", "c1")), MPP_MODE(27, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie1", "clkreq"), MPP_FUNCTION(0x2, "ge1", "rxd3"), MPP_FUNCTION(0x3, "sd", "d1"), MPP_FUNCTION(0x4, "uart1", "cts"), MPP_FUNCTION(0x5, "spi0", "miso"), MPP_FUNCTION(0x6, "led", "c2")), MPP_MODE(28, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p3"), MPP_FUNCTION(0x2, "ge1", "txctl"), MPP_FUNCTION(0x3, "sd", "clk"), MPP_FUNCTION(0x5, "dram", "vttctrl")), MPP_MODE(29, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie1", "clkreq"), MPP_FUNCTION(0x2, "ge1", "rxclk"), MPP_FUNCTION(0x3, "sd", "d3"), MPP_FUNCTION(0x5, "spi0", "sck"), MPP_FUNCTION(0x6, "pcie0", "rstout")), MPP_MODE(30, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge1", "txd0"), MPP_FUNCTION(0x3, "spi1", "cs0"), MPP_FUNCTION(0x5, "led", "p3"), MPP_FUNCTION(0x6, "ptp", "evreq")), MPP_MODE(31, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge1", "txd1"), MPP_FUNCTION(0x3, "spi1", "mosi"), MPP_FUNCTION(0x5, "led", "p0")), MPP_MODE(32, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge1", "txd2"), MPP_FUNCTION(0x3, "spi1", "sck"), MPP_FUNCTION(0x4, "ptp", "trig"), MPP_FUNCTION(0x5, "led", "c0")), MPP_MODE(33, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge1", "txd3"), MPP_FUNCTION(0x3, "spi1", "miso"), MPP_FUNCTION(0x5, "led", "p2")), MPP_MODE(34, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge1", "txclkout"), MPP_FUNCTION(0x3, "spi1", "sck"), MPP_FUNCTION(0x5, "led", "c1")), MPP_MODE(35, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge1", "rxctl"), MPP_FUNCTION(0x3, "spi1", "cs1"), MPP_FUNCTION(0x4, "spi0", "cs2"), MPP_FUNCTION(0x5, "led", "p1")), MPP_MODE(36, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie0", "clkreq"), MPP_FUNCTION(0x5, "led", "c2")), MPP_MODE(37, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie0", "clkreq"), MPP_FUNCTION(0x2, "tdm", "int"), MPP_FUNCTION(0x4, "ge", "mdc")), MPP_MODE(38, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie1", "clkreq"), MPP_FUNCTION(0x4, "ge", "mdio")), MPP_MODE(39, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x4, "ref", "clkout"), MPP_FUNCTION(0x5, "led", "p3")), MPP_MODE(40, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x4, "uart1", "txd"), MPP_FUNCTION(0x5, "led", "p0")), MPP_MODE(41, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x4, "uart1", "rxd"), MPP_FUNCTION(0x5, "led", "p1")), MPP_MODE(42, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x3, "spi1", "cs2"), MPP_FUNCTION(0x4, "led", "c0"), MPP_FUNCTION(0x6, "ptp", "clk")), MPP_MODE(43, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "sata0", "prsnt"), MPP_FUNCTION(0x4, "dram", "vttctrl"), MPP_FUNCTION(0x5, "led", "c1")), MPP_MODE(44, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x4, "sata0", "prsnt")), MPP_MODE(45, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "spi0", "cs2"), MPP_FUNCTION(0x4, "pcie0", "rstout"), MPP_FUNCTION(0x5, "led", "c2"), MPP_FUNCTION(0x6, "spi1", "cs2")), MPP_MODE(46, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p0"), MPP_FUNCTION(0x2, "ge0", "txd0"), MPP_FUNCTION(0x3, "ge1", "txd0"), MPP_FUNCTION(0x6, "dev", "we1")), MPP_MODE(47, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p1"), MPP_FUNCTION(0x2, "ge0", "txd1"), MPP_FUNCTION(0x3, "ge1", "txd1"), MPP_FUNCTION(0x5, "ptp", "trig"), MPP_FUNCTION(0x6, "dev", "ale0")), MPP_MODE(48, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p2"), MPP_FUNCTION(0x2, "ge0", "txd2"), MPP_FUNCTION(0x3, "ge1", "txd2"), MPP_FUNCTION(0x6, "dev", "ale1")), MPP_MODE(49, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "p3"), MPP_FUNCTION(0x2, "ge0", "txd3"), MPP_FUNCTION(0x3, "ge1", "txd3"), MPP_FUNCTION(0x6, "dev", "a2")), MPP_MODE(50, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "c0"), MPP_FUNCTION(0x2, "ge0", "rxd0"), MPP_FUNCTION(0x3, "ge1", "rxd0"), MPP_FUNCTION(0x5, "ptp", "evreq"), MPP_FUNCTION(0x6, "dev", "ad12")), MPP_MODE(51, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "c1"), MPP_FUNCTION(0x2, "ge0", "rxd1"), MPP_FUNCTION(0x3, "ge1", "rxd1"), MPP_FUNCTION(0x6, "dev", "ad8")), MPP_MODE(52, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "led", "c2"), MPP_FUNCTION(0x2, "ge0", "rxd2"), MPP_FUNCTION(0x3, "ge1", "rxd2"), MPP_FUNCTION(0x5, "i2c0", "sda"), MPP_FUNCTION(0x6, "dev", "ad9")), MPP_MODE(53, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie1", "rstout"), MPP_FUNCTION(0x2, "ge0", "rxd3"), MPP_FUNCTION(0x3, "ge1", "rxd3"), MPP_FUNCTION(0x5, "i2c0", "sck"), MPP_FUNCTION(0x6, "dev", "ad10")), MPP_MODE(54, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "pcie0", "rstout"), MPP_FUNCTION(0x2, "ge0", "rxctl"), MPP_FUNCTION(0x3, "ge1", "rxctl"), MPP_FUNCTION(0x6, "dev", "ad11")), MPP_MODE(55, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge0", "rxclk"), MPP_FUNCTION(0x3, "ge1", "rxclk"), MPP_FUNCTION(0x6, "dev", "cs0")), MPP_MODE(56, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge0", "txclkout"), MPP_FUNCTION(0x3, "ge1", "txclkout"), MPP_FUNCTION(0x6, "dev", "oe")), MPP_MODE(57, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ge0", "txctl"), MPP_FUNCTION(0x3, "ge1", "txctl"), MPP_FUNCTION(0x6, "dev", "we0")), MPP_MODE(58, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x4, "led", "c0")), MPP_MODE(59, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x4, "led", "c1")), MPP_MODE(60, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "uart1", "txd"), MPP_FUNCTION(0x4, "led", "c2"), MPP_FUNCTION(0x6, "dev", "ad13")), MPP_MODE(61, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "i2c1", "sda"), MPP_FUNCTION(0x2, "uart1", "rxd"), MPP_FUNCTION(0x3, "spi1", "cs2"), MPP_FUNCTION(0x4, "led", "p0"), MPP_FUNCTION(0x6, "dev", "ad14")), MPP_MODE(62, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "i2c1", "sck"), MPP_FUNCTION(0x4, "led", "p1"), MPP_FUNCTION(0x6, "dev", "ad15")), MPP_MODE(63, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ptp", "trig"), MPP_FUNCTION(0x4, "led", "p2"), MPP_FUNCTION(0x6, "dev", "burst/last")), MPP_MODE(64, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "dram", "vttctrl"), MPP_FUNCTION(0x4, "led", "p3")), MPP_MODE(65, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x1, "sata1", "prsnt")), MPP_MODE(66, MPP_FUNCTION(0x0, "gpio", NULL), MPP_FUNCTION(0x2, "ptp", "evreq"), MPP_FUNCTION(0x4, "spi1", "cs3"), MPP_FUNCTION(0x5, "pcie0", "rstout"), MPP_FUNCTION(0x6, "dev", "cs3")), }; static struct mvebu_pinctrl_soc_info armada_375_pinctrl_info; static const struct of_device_id armada_375_pinctrl_of_match[] = { { .compatible = "marvell,mv88f6720-pinctrl" }, { }, }; static const struct mvebu_mpp_ctrl mv88f6720_mpp_controls[] = { MPP_FUNC_CTRL(0, 69, NULL, mvebu_mmio_mpp_ctrl), }; static struct pinctrl_gpio_range mv88f6720_mpp_gpio_ranges[] = { MPP_GPIO_RANGE(0, 0, 0, 32), MPP_GPIO_RANGE(1, 32, 32, 32), MPP_GPIO_RANGE(2, 64, 64, 3), }; static int armada_375_pinctrl_probe(struct platform_device *pdev) { struct mvebu_pinctrl_soc_info *soc = &armada_375_pinctrl_info; soc->variant = 0; /* no variants for Armada 375 */ soc->controls = mv88f6720_mpp_controls; soc->ncontrols = ARRAY_SIZE(mv88f6720_mpp_controls); soc->modes = mv88f6720_mpp_modes; soc->nmodes = ARRAY_SIZE(mv88f6720_mpp_modes); soc->gpioranges = mv88f6720_mpp_gpio_ranges; soc->ngpioranges = ARRAY_SIZE(mv88f6720_mpp_gpio_ranges); pdev->dev.platform_data = soc; return mvebu_pinctrl_simple_mmio_probe(pdev); } static struct platform_driver armada_375_pinctrl_driver = { .driver = { .name = "armada-375-pinctrl", .of_match_table = of_match_ptr(armada_375_pinctrl_of_match), }, .probe = armada_375_pinctrl_probe, }; builtin_platform_driver(armada_375_pinctrl_driver);
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021-2022 Digiteq Automotive * author: Martin Tuma <[email protected]> */ #include <linux/ioport.h> #include "mgb4_regs.h" int mgb4_regs_map(struct resource *res, struct mgb4_regs *regs) { regs->mapbase = res->start; regs->mapsize = resource_size(res); if (!request_mem_region(regs->mapbase, regs->mapsize, res->name)) return -EINVAL; regs->membase = ioremap(regs->mapbase, regs->mapsize); if (!regs->membase) { release_mem_region(regs->mapbase, regs->mapsize); return -EINVAL; } return 0; } void mgb4_regs_free(struct mgb4_regs *regs) { iounmap(regs->membase); release_mem_region(regs->mapbase, regs->mapsize); }
// SPDX-License-Identifier: GPL-2.0 #include <test_progs.h> #include <network_helpers.h> void test_skb_ctx(void) { struct __sk_buff skb = { .cb[0] = 1, .cb[1] = 2, .cb[2] = 3, .cb[3] = 4, .cb[4] = 5, .priority = 6, .ingress_ifindex = 11, .ifindex = 1, .tstamp = 7, .wire_len = 100, .gso_segs = 8, .mark = 9, .gso_size = 10, .hwtstamp = 11, }; LIBBPF_OPTS(bpf_test_run_opts, tattr, .data_in = &pkt_v4, .data_size_in = sizeof(pkt_v4), .ctx_in = &skb, .ctx_size_in = sizeof(skb), .ctx_out = &skb, .ctx_size_out = sizeof(skb), ); struct bpf_object *obj; int err, prog_fd, i; err = bpf_prog_test_load("./test_skb_ctx.bpf.o", BPF_PROG_TYPE_SCHED_CLS, &obj, &prog_fd); if (!ASSERT_OK(err, "load")) return; /* ctx_in != NULL, ctx_size_in == 0 */ tattr.ctx_size_in = 0; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_NEQ(err, 0, "ctx_size_in"); tattr.ctx_size_in = sizeof(skb); /* ctx_out != NULL, ctx_size_out == 0 */ tattr.ctx_size_out = 0; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_NEQ(err, 0, "ctx_size_out"); tattr.ctx_size_out = sizeof(skb); /* non-zero [len, tc_index] fields should be rejected*/ skb.len = 1; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_NEQ(err, 0, "len"); skb.len = 0; skb.tc_index = 1; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_NEQ(err, 0, "tc_index"); skb.tc_index = 0; /* non-zero [hash, sk] fields should be rejected */ skb.hash = 1; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_NEQ(err, 0, "hash"); skb.hash = 0; skb.sk = (struct bpf_sock *)1; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_NEQ(err, 0, "sk"); skb.sk = 0; err = bpf_prog_test_run_opts(prog_fd, &tattr); ASSERT_OK(err, "test_run"); ASSERT_OK(tattr.retval, "test_run retval"); ASSERT_EQ(tattr.ctx_size_out, sizeof(skb), "ctx_size_out"); for (i = 0; i < 5; i++) ASSERT_EQ(skb.cb[i], i + 2, "ctx_out_cb"); ASSERT_EQ(skb.priority, 7, "ctx_out_priority"); ASSERT_EQ(skb.ifindex, 1, "ctx_out_ifindex"); ASSERT_EQ(skb.ingress_ifindex, 11, "ctx_out_ingress_ifindex"); ASSERT_EQ(skb.tstamp, 8, "ctx_out_tstamp"); ASSERT_EQ(skb.mark, 10, "ctx_out_mark"); bpf_object__close(obj); }
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2013 - 2018 Intel Corporation. */ #ifndef _IAVF_REGISTER_H_ #define _IAVF_REGISTER_H_ #define IAVF_VF_ARQBAH1 0x00006000 /* Reset: EMPR */ #define IAVF_VF_ARQBAL1 0x00006C00 /* Reset: EMPR */ #define IAVF_VF_ARQH1 0x00007400 /* Reset: EMPR */ #define IAVF_VF_ARQH1_ARQH_SHIFT 0 #define IAVF_VF_ARQH1_ARQH_MASK IAVF_MASK(0x3FF, IAVF_VF_ARQH1_ARQH_SHIFT) #define IAVF_VF_ARQLEN1 0x00008000 /* Reset: EMPR */ #define IAVF_VF_ARQLEN1_ARQVFE_SHIFT 28 #define IAVF_VF_ARQLEN1_ARQVFE_MASK IAVF_MASK(0x1, IAVF_VF_ARQLEN1_ARQVFE_SHIFT) #define IAVF_VF_ARQLEN1_ARQOVFL_SHIFT 29 #define IAVF_VF_ARQLEN1_ARQOVFL_MASK IAVF_MASK(0x1, IAVF_VF_ARQLEN1_ARQOVFL_SHIFT) #define IAVF_VF_ARQLEN1_ARQCRIT_SHIFT 30 #define IAVF_VF_ARQLEN1_ARQCRIT_MASK IAVF_MASK(0x1, IAVF_VF_ARQLEN1_ARQCRIT_SHIFT) #define IAVF_VF_ARQLEN1_ARQENABLE_SHIFT 31 #define IAVF_VF_ARQLEN1_ARQENABLE_MASK IAVF_MASK(0x1, IAVF_VF_ARQLEN1_ARQENABLE_SHIFT) #define IAVF_VF_ARQT1 0x00007000 /* Reset: EMPR */ #define IAVF_VF_ATQBAH1 0x00007800 /* Reset: EMPR */ #define IAVF_VF_ATQBAL1 0x00007C00 /* Reset: EMPR */ #define IAVF_VF_ATQH1 0x00006400 /* Reset: EMPR */ #define IAVF_VF_ATQLEN1 0x00006800 /* Reset: EMPR */ #define IAVF_VF_ATQLEN1_ATQVFE_SHIFT 28 #define IAVF_VF_ATQLEN1_ATQVFE_MASK IAVF_MASK(0x1, IAVF_VF_ATQLEN1_ATQVFE_SHIFT) #define IAVF_VF_ATQLEN1_ATQOVFL_SHIFT 29 #define IAVF_VF_ATQLEN1_ATQOVFL_MASK IAVF_MASK(0x1, IAVF_VF_ATQLEN1_ATQOVFL_SHIFT) #define IAVF_VF_ATQLEN1_ATQCRIT_SHIFT 30 #define IAVF_VF_ATQLEN1_ATQCRIT_MASK IAVF_MASK(0x1, IAVF_VF_ATQLEN1_ATQCRIT_SHIFT) #define IAVF_VF_ATQLEN1_ATQENABLE_SHIFT 31 #define IAVF_VF_ATQLEN1_ATQENABLE_MASK IAVF_MASK(0x1, IAVF_VF_ATQLEN1_ATQENABLE_SHIFT) #define IAVF_VF_ATQT1 0x00008400 /* Reset: EMPR */ #define IAVF_VFGEN_RSTAT 0x00008800 /* Reset: VFR */ #define IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT 0 #define IAVF_VFGEN_RSTAT_VFR_STATE_MASK IAVF_MASK(0x3, IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT) #define IAVF_VFINT_DYN_CTL01 0x00005C00 /* Reset: VFR */ #define IAVF_VFINT_DYN_CTL01_INTENA_SHIFT 0 #define IAVF_VFINT_DYN_CTL01_INTENA_MASK IAVF_MASK(0x1, IAVF_VFINT_DYN_CTL01_INTENA_SHIFT) #define IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT 3 #define IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK IAVF_MASK(0x3, IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) #define IAVF_VFINT_DYN_CTLN1(_INTVF) (0x00003800 + ((_INTVF) * 4)) /* _i=0...63 */ /* Reset: VFR */ #define IAVF_VFINT_DYN_CTLN1_INTENA_SHIFT 0 #define IAVF_VFINT_DYN_CTLN1_INTENA_MASK IAVF_MASK(0x1, IAVF_VFINT_DYN_CTLN1_INTENA_SHIFT) #define IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_SHIFT 2 #define IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK IAVF_MASK(0x1, IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_SHIFT) #define IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT 3 #define IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK IAVF_MASK(0x3, IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) #define IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT 5 #define IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_SHIFT 24 #define IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK IAVF_MASK(0x1, IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_SHIFT) #define IAVF_VFINT_ICR0_ENA1 0x00005000 /* Reset: CORER */ #define IAVF_VFINT_ICR0_ENA1_ADMINQ_SHIFT 30 #define IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK IAVF_MASK(0x1, IAVF_VFINT_ICR0_ENA1_ADMINQ_SHIFT) #define IAVF_VFINT_ICR0_ENA1_RSVD_SHIFT 31 #define IAVF_VFINT_ICR01 0x00004800 /* Reset: CORER */ #define IAVF_VFINT_ITRN1(_i, _INTVF) (0x00002800 + ((_i) * 64 + (_INTVF) * 4)) /* _i=0...2, _INTVF=0...15 */ /* Reset: VFR */ #define IAVF_QRX_TAIL1(_Q) (0x00002000 + ((_Q) * 4)) /* _i=0...15 */ /* Reset: CORER */ #define IAVF_QTX_TAIL1(_Q) (0x00000000 + ((_Q) * 4)) /* _i=0...15 */ /* Reset: PFR */ #define IAVF_VFQF_HENA(_i) (0x0000C400 + ((_i) * 4)) /* _i=0...1 */ /* Reset: CORER */ #define IAVF_VFQF_HKEY(_i) (0x0000CC00 + ((_i) * 4)) /* _i=0...12 */ /* Reset: CORER */ #define IAVF_VFQF_HKEY_MAX_INDEX 12 #define IAVF_VFQF_HLUT(_i) (0x0000D000 + ((_i) * 4)) /* _i=0...15 */ /* Reset: CORER */ #define IAVF_VFQF_HLUT_MAX_INDEX 15 #define IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_SHIFT 30 #define IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK IAVF_MASK(0x1, IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_SHIFT) #endif /* _IAVF_REGISTER_H_ */
/* SPDX-License-Identifier: GPL-2.0 */ /* * linux/drivers/char/hpilo.h * * Copyright (C) 2008 Hewlett-Packard Development Company, L.P. * David Altobelli <[email protected]> */ #ifndef __HPILO_H #define __HPILO_H #define ILO_NAME "hpilo" /* iLO ASIC PCI revision id */ #define PCI_REV_ID_NECHES 7 /* max number of open channel control blocks per device, hw limited to 32 */ #define MAX_CCB 24 /* min number of open channel control blocks per device, hw limited to 32 */ #define MIN_CCB 8 /* max number of supported devices */ #define MAX_ILO_DEV 1 /* max number of files */ #define MAX_OPEN (MAX_CCB * MAX_ILO_DEV) /* total wait time in usec */ #define MAX_WAIT_TIME 10000 /* per spin wait time in usec */ #define WAIT_TIME 10 /* spin counter for open/close delay */ #define MAX_WAIT (MAX_WAIT_TIME / WAIT_TIME) /* * Per device, used to track global memory allocations. */ struct ilo_hwinfo { /* mmio registers on device */ char __iomem *mmio_vaddr; /* doorbell registers on device */ char __iomem *db_vaddr; /* shared memory on device used for channel control blocks */ char __iomem *ram_vaddr; /* files corresponding to this device */ struct ccb_data *ccb_alloc[MAX_CCB]; struct pci_dev *ilo_dev; /* * open_lock serializes ccb_cnt during open and close * [ irq disabled ] * -> alloc_lock used when adding/removing/searching ccb_alloc, * which represents all ccbs open on the device * --> fifo_lock controls access to fifo queues shared with hw * * Locks must be taken in this order, but open_lock and alloc_lock * are optional, they do not need to be held in order to take a * lower level lock. */ spinlock_t open_lock; spinlock_t alloc_lock; spinlock_t fifo_lock; struct cdev cdev; }; /* offset from mmio_vaddr for enabling doorbell interrupts */ #define DB_IRQ 0xB2 /* offset from mmio_vaddr for outbound communications */ #define DB_OUT 0xD4 /* DB_OUT reset bit */ #define DB_RESET 26 /* * Channel control block. Used to manage hardware queues. * The format must match hw's version. The hw ccb is 128 bytes, * but the context area shouldn't be touched by the driver. */ #define ILOSW_CCB_SZ 64 #define ILOHW_CCB_SZ 128 struct ccb { union { char *send_fifobar; u64 send_fifobar_pa; } ccb_u1; union { char *send_desc; u64 send_desc_pa; } ccb_u2; u64 send_ctrl; union { char *recv_fifobar; u64 recv_fifobar_pa; } ccb_u3; union { char *recv_desc; u64 recv_desc_pa; } ccb_u4; u64 recv_ctrl; union { char __iomem *db_base; u64 padding5; } ccb_u5; u64 channel; /* unused context area (64 bytes) */ }; /* ccb queue parameters */ #define SENDQ 1 #define RECVQ 2 #define NR_QENTRY 4 #define L2_QENTRY_SZ 12 /* ccb ctrl bitfields */ #define CTRL_BITPOS_L2SZ 0 #define CTRL_BITPOS_FIFOINDEXMASK 4 #define CTRL_BITPOS_DESCLIMIT 18 #define CTRL_BITPOS_A 30 #define CTRL_BITPOS_G 31 /* ccb doorbell macros */ #define L2_DB_SIZE 14 #define ONE_DB_SIZE (1 << L2_DB_SIZE) /* * Per fd structure used to track the ccb allocated to that dev file. */ struct ccb_data { /* software version of ccb, using virtual addrs */ struct ccb driver_ccb; /* hardware version of ccb, using physical addrs */ struct ccb ilo_ccb; /* hardware ccb is written to this shared mapped device memory */ struct ccb __iomem *mapped_ccb; /* dma'able memory used for send/recv queues */ void *dma_va; dma_addr_t dma_pa; size_t dma_size; /* pointer to hardware device info */ struct ilo_hwinfo *ilo_hw; /* queue for this ccb to wait for recv data */ wait_queue_head_t ccb_waitq; /* usage count, to allow for shared ccb's */ int ccb_cnt; /* open wanted exclusive access to this ccb */ int ccb_excl; }; /* * FIFO queue structure, shared with hw. */ #define ILO_START_ALIGN 4096 #define ILO_CACHE_SZ 128 struct fifo { u64 nrents; /* user requested number of fifo entries */ u64 imask; /* mask to extract valid fifo index */ u64 merge; /* O/C bits to merge in during enqueue operation */ u64 reset; /* set to non-zero when the target device resets */ u8 pad_0[ILO_CACHE_SZ - (sizeof(u64) * 4)]; u64 head; u8 pad_1[ILO_CACHE_SZ - (sizeof(u64))]; u64 tail; u8 pad_2[ILO_CACHE_SZ - (sizeof(u64))]; u64 fifobar[]; }; /* convert between struct fifo, and the fifobar, which is saved in the ccb */ #define FIFOHANDLESIZE (sizeof(struct fifo)) #define FIFOBARTOHANDLE(_fifo) \ ((struct fifo *)(((char *)(_fifo)) - FIFOHANDLESIZE)) /* the number of qwords to consume from the entry descriptor */ #define ENTRY_BITPOS_QWORDS 0 /* descriptor index number (within a specified queue) */ #define ENTRY_BITPOS_DESCRIPTOR 10 /* state bit, fifo entry consumed by consumer */ #define ENTRY_BITPOS_C 22 /* state bit, fifo entry is occupied */ #define ENTRY_BITPOS_O 23 #define ENTRY_BITS_QWORDS 10 #define ENTRY_BITS_DESCRIPTOR 12 #define ENTRY_BITS_C 1 #define ENTRY_BITS_O 1 #define ENTRY_BITS_TOTAL \ (ENTRY_BITS_C + ENTRY_BITS_O + \ ENTRY_BITS_QWORDS + ENTRY_BITS_DESCRIPTOR) /* extract various entry fields */ #define ENTRY_MASK ((1 << ENTRY_BITS_TOTAL) - 1) #define ENTRY_MASK_C (((1 << ENTRY_BITS_C) - 1) << ENTRY_BITPOS_C) #define ENTRY_MASK_O (((1 << ENTRY_BITS_O) - 1) << ENTRY_BITPOS_O) #define ENTRY_MASK_QWORDS \ (((1 << ENTRY_BITS_QWORDS) - 1) << ENTRY_BITPOS_QWORDS) #define ENTRY_MASK_DESCRIPTOR \ (((1 << ENTRY_BITS_DESCRIPTOR) - 1) << ENTRY_BITPOS_DESCRIPTOR) #define ENTRY_MASK_NOSTATE (ENTRY_MASK >> (ENTRY_BITS_C + ENTRY_BITS_O)) #endif /* __HPILO_H */
// SPDX-License-Identifier: GPL-2.0-or-later OR MIT /* * Copyright 2019 Toradex */ #include <dt-bindings/input/linux-event-codes.h> / { aliases { rtc0 = &rtc_i2c; rtc1 = &rtc; }; /* fixed crystal dedicated to mcp25xx */ clk16m: clock-16mhz { compatible = "fixed-clock"; #clock-cells = <0>; clock-frequency = <16000000>; }; }; /* Colibri Analogue Inputs */ &adc0 { status = "okay"; }; /* Colibri PWM_A */ &adma_pwm { status = "okay"; }; &colibri_gpio_keys { status = "okay"; }; &extcon_usbc_det { status = "okay"; }; &i2c1 { status = "okay"; /* M41T0M6 real time clock on carrier board */ rtc_i2c: rtc@68 { compatible = "st,m41t0"; reg = <0x68>; }; }; &iomuxc { pinctrl-names = "default"; pinctrl-0 = <&pinctrl_ext_io0>, <&pinctrl_hog0>, <&pinctrl_hog1>, <&pinctrl_lpspi2_cs2>; }; /* Colibri SPI */ &lpspi2 { status = "okay"; mcp2515: can@0 { compatible = "microchip,mcp2515"; reg = <0>; interrupt-parent = <&lsio_gpio3>; interrupts = <13 IRQ_TYPE_EDGE_FALLING>; pinctrl-0 = <&pinctrl_can_int>; pinctrl-names = "default"; clocks = <&clk16m>; spi-max-frequency = <10000000>; }; }; /* Colibri UART_B */ &lpuart0 { status = "okay"; }; /* Colibri UART_C */ &lpuart2 { status = "okay"; }; /* Colibri PWM_B */ &lsio_pwm0 { status = "okay"; }; /* Colibri PWM_C */ &lsio_pwm1 { status = "okay"; }; /* Colibri PWM_D */ &lsio_pwm2 { status = "okay"; }; /* Colibri UART_A */ &lpuart3 { status = "okay"; }; /* Colibri FastEthernet */ &fec1 { status = "okay"; }; /* USB PHY for usbotg3 */ &usb3_phy { status = "okay"; }; &usbotg1 { status = "okay"; }; &usbotg3 { status = "okay"; }; &usbotg3_cdns3 { status = "okay"; }; /* USB PHY for usbotg1 */ &usbphy1 { status = "okay"; }; /* Colibri SD/MMC Card */ &usdhc2 { status = "okay"; };
// SPDX-License-Identifier: GPL-2.0-only /* * ePAPR para-virtualization support. * * Copyright (C) 2012 Freescale Semiconductor, Inc. */ #include <linux/of.h> #include <linux/of_fdt.h> #include <asm/epapr_hcalls.h> #include <asm/cacheflush.h> #include <asm/text-patching.h> #include <asm/machdep.h> #include <asm/inst.h> #if !defined(CONFIG_64BIT) || defined(CONFIG_PPC_BOOK3E_64) extern void epapr_ev_idle(void); extern u32 epapr_ev_idle_start[]; #endif bool epapr_paravirt_enabled; static bool __maybe_unused epapr_has_idle; static int __init early_init_dt_scan_epapr(unsigned long node, const char *uname, int depth, void *data) { const u32 *insts; int len; int i; insts = of_get_flat_dt_prop(node, "hcall-instructions", &len); if (!insts) return 0; if (len % 4 || len > (4 * 4)) return -1; for (i = 0; i < (len / 4); i++) { ppc_inst_t inst = ppc_inst(be32_to_cpu(insts[i])); patch_instruction(epapr_hypercall_start + i, inst); #if !defined(CONFIG_64BIT) || defined(CONFIG_PPC_BOOK3E_64) patch_instruction(epapr_ev_idle_start + i, inst); #endif } #if !defined(CONFIG_64BIT) || defined(CONFIG_PPC_BOOK3E_64) if (of_get_flat_dt_prop(node, "has-idle", NULL)) epapr_has_idle = true; #endif epapr_paravirt_enabled = true; return 1; } int __init epapr_paravirt_early_init(void) { of_scan_flat_dt(early_init_dt_scan_epapr, NULL); return 0; } static int __init epapr_idle_init(void) { #if !defined(CONFIG_64BIT) || defined(CONFIG_PPC_BOOK3E_64) if (epapr_has_idle) ppc_md.power_save = epapr_ev_idle; #endif return 0; } postcore_initcall(epapr_idle_init);
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ /* Copyright (c) 2022/23 Siemens Mobility GmbH */ #ifndef _LINUX_GSMMUX_H #define _LINUX_GSMMUX_H #include <linux/const.h> #include <linux/if.h> #include <linux/ioctl.h> #include <linux/types.h> /* * flags definition for n_gsm * * Used by: * struct gsm_config_ext.flags * struct gsm_dlci_config.flags */ /* Forces a DLCI reset if set. Otherwise, a DLCI reset is only done if * incompatible settings were provided. Always cleared on retrieval. */ #define GSM_FL_RESTART _BITUL(0) /** * struct gsm_config - n_gsm basic configuration parameters * * This structure is used in combination with GSMIOC_GETCONF and GSMIOC_SETCONF * to retrieve and set the basic parameters of an n_gsm ldisc. * struct gsm_config_ext can be used to configure extended ldisc parameters. * * All timers are in units of 1/100th of a second. * * @adaption: Convergence layer type * @encapsulation: Framing (0 = basic option, 1 = advanced option) * @initiator: Initiator or responder * @t1: Acknowledgment timer * @t2: Response timer for multiplexer control channel * @t3: Response timer for wake-up procedure * @n2: Maximum number of retransmissions * @mru: Maximum incoming frame payload size * @mtu: Maximum outgoing frame payload size * @k: Window size * @i: Frame type (1 = UIH, 2 = UI) * @unused: Can not be used */ struct gsm_config { unsigned int adaption; unsigned int encapsulation; unsigned int initiator; unsigned int t1; unsigned int t2; unsigned int t3; unsigned int n2; unsigned int mru; unsigned int mtu; unsigned int k; unsigned int i; unsigned int unused[8]; }; #define GSMIOC_GETCONF _IOR('G', 0, struct gsm_config) #define GSMIOC_SETCONF _IOW('G', 1, struct gsm_config) /** * struct gsm_netconfig - n_gsm network configuration parameters * * This structure is used in combination with GSMIOC_ENABLE_NET and * GSMIOC_DISABLE_NET to enable or disable a network data connection * over a mux virtual tty channel. This is for modems that support * data connections with raw IP frames instead of PPP. * * @adaption: Adaption to use in network mode. * @protocol: Protocol to use - only ETH_P_IP supported. * @unused2: Can not be used. * @if_name: Interface name format string. * @unused: Can not be used. */ struct gsm_netconfig { unsigned int adaption; unsigned short protocol; unsigned short unused2; char if_name[IFNAMSIZ]; __u8 unused[28]; }; #define GSMIOC_ENABLE_NET _IOW('G', 2, struct gsm_netconfig) #define GSMIOC_DISABLE_NET _IO('G', 3) /* get the base tty number for a configured gsmmux tty */ #define GSMIOC_GETFIRST _IOR('G', 4, __u32) /** * struct gsm_config_ext - n_gsm extended configuration parameters * * This structure is used in combination with GSMIOC_GETCONF_EXT and * GSMIOC_SETCONF_EXT to retrieve and set the extended parameters of an * n_gsm ldisc. * * All timers are in units of 1/100th of a second. * * @keep_alive: Control channel keep-alive in 1/100th of a second (0 to disable). * @wait_config: Wait for DLCI config before opening virtual link? * @flags: Mux specific flags. * @reserved: For future use, must be initialized to zero. */ struct gsm_config_ext { __u32 keep_alive; __u32 wait_config; __u32 flags; __u32 reserved[5]; }; #define GSMIOC_GETCONF_EXT _IOR('G', 5, struct gsm_config_ext) #define GSMIOC_SETCONF_EXT _IOW('G', 6, struct gsm_config_ext) /** * struct gsm_dlci_config - n_gsm channel configuration parameters * * This structure is used in combination with GSMIOC_GETCONF_DLCI and * GSMIOC_SETCONF_DLCI to retrieve and set the channel specific parameters * of an n_gsm ldisc. * * Set the channel accordingly before calling GSMIOC_GETCONF_DLCI. * * @channel: DLCI (0 for the associated DLCI). * @adaption: Convergence layer type. * @mtu: Maximum transfer unit. * @priority: Priority (0 for default value). * @i: Frame type (1 = UIH, 2 = UI). * @k: Window size (0 for default value). * @flags: DLCI specific flags. * @reserved: For future use, must be initialized to zero. */ struct gsm_dlci_config { __u32 channel; __u32 adaption; __u32 mtu; __u32 priority; __u32 i; __u32 k; __u32 flags; __u32 reserved[7]; }; #define GSMIOC_GETCONF_DLCI _IOWR('G', 7, struct gsm_dlci_config) #define GSMIOC_SETCONF_DLCI _IOW('G', 8, struct gsm_dlci_config) #endif
// SPDX-License-Identifier: GPL-2.0-or-later /* * boot.c - Architecture-Specific Low-Level ACPI Boot Support * * Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]> * Copyright (C) 2001 Jun Nakajima <[email protected]> */ #define pr_fmt(fmt) "ACPI: " fmt #include <linux/init.h> #include <linux/acpi.h> #include <linux/acpi_pmtmr.h> #include <linux/efi.h> #include <linux/cpumask.h> #include <linux/export.h> #include <linux/dmi.h> #include <linux/irq.h> #include <linux/slab.h> #include <linux/memblock.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/efi-bgrt.h> #include <linux/serial_core.h> #include <linux/pgtable.h> #include <asm/e820/api.h> #include <asm/irqdomain.h> #include <asm/pci_x86.h> #include <asm/io_apic.h> #include <asm/apic.h> #include <asm/io.h> #include <asm/mpspec.h> #include <asm/smp.h> #include <asm/i8259.h> #include <asm/setup.h> #include "sleep.h" /* To include x86_acpi_suspend_lowlevel */ static int __initdata acpi_force = 0; int acpi_disabled; EXPORT_SYMBOL(acpi_disabled); #ifdef CONFIG_X86_64 # include <asm/proto.h> #endif /* X86 */ int acpi_noirq; /* skip ACPI IRQ initialization */ static int acpi_nobgrt; /* skip ACPI BGRT */ int acpi_pci_disabled; /* skip ACPI PCI scan and IRQ initialization */ EXPORT_SYMBOL(acpi_pci_disabled); int acpi_lapic; int acpi_ioapic; int acpi_strict; int acpi_disable_cmcff; bool acpi_int_src_ovr[NR_IRQS_LEGACY]; /* ACPI SCI override configuration */ u8 acpi_sci_flags __initdata; u32 acpi_sci_override_gsi __initdata = INVALID_ACPI_IRQ; int acpi_skip_timer_override __initdata; int acpi_use_timer_override __initdata; int acpi_fix_pin2_polarity __initdata; #ifdef CONFIG_X86_LOCAL_APIC static u64 acpi_lapic_addr __initdata = APIC_DEFAULT_PHYS_BASE; static bool has_lapic_cpus __initdata; static bool acpi_support_online_capable; #endif #ifdef CONFIG_X86_IO_APIC /* * Locks related to IOAPIC hotplug * Hotplug side: * ->device_hotplug_lock * ->acpi_ioapic_lock * ->ioapic_lock * Interrupt mapping side: * ->acpi_ioapic_lock * ->ioapic_mutex * ->ioapic_lock */ static DEFINE_MUTEX(acpi_ioapic_lock); #endif /* -------------------------------------------------------------------------- Boot-time Configuration -------------------------------------------------------------------------- */ /* * The default interrupt routing model is PIC (8259). This gets * overridden if IOAPICs are enumerated (below). */ enum acpi_irq_model_id acpi_irq_model = ACPI_IRQ_MODEL_PIC; /* * ISA irqs by default are the first 16 gsis but can be * any gsi as specified by an interrupt source override. */ static u32 isa_irq_to_gsi[NR_IRQS_LEGACY] __read_mostly = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; /* * This is just a simple wrapper around early_memremap(), * with sanity checks for phys == 0 and size == 0. */ void __init __iomem *__acpi_map_table(unsigned long phys, unsigned long size) { if (!phys || !size) return NULL; return early_memremap(phys, size); } void __init __acpi_unmap_table(void __iomem *map, unsigned long size) { if (!map || !size) return; early_memunmap(map, size); } #ifdef CONFIG_X86_LOCAL_APIC static int __init acpi_parse_madt(struct acpi_table_header *table) { struct acpi_table_madt *madt = NULL; if (!boot_cpu_has(X86_FEATURE_APIC)) return -EINVAL; madt = (struct acpi_table_madt *)table; if (!madt) { pr_warn("Unable to map MADT\n"); return -ENODEV; } if (madt->address) { acpi_lapic_addr = (u64) madt->address; pr_debug("Local APIC address 0x%08x\n", madt->address); } if (madt->flags & ACPI_MADT_PCAT_COMPAT) legacy_pic_pcat_compat(); /* ACPI 6.3 and newer support the online capable bit. */ if (acpi_gbl_FADT.header.revision > 6 || (acpi_gbl_FADT.header.revision == 6 && acpi_gbl_FADT.minor_revision >= 3)) acpi_support_online_capable = true; default_acpi_madt_oem_check(madt->header.oem_id, madt->header.oem_table_id); return 0; } static bool __init acpi_is_processor_usable(u32 lapic_flags) { if (lapic_flags & ACPI_MADT_ENABLED) return true; if (!acpi_support_online_capable || (lapic_flags & ACPI_MADT_ONLINE_CAPABLE)) return true; return false; } static int __init acpi_parse_x2apic(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_local_x2apic *processor = NULL; #ifdef CONFIG_X86_X2APIC u32 apic_id; u8 enabled; #endif processor = (struct acpi_madt_local_x2apic *)header; if (BAD_MADT_ENTRY(processor, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); #ifdef CONFIG_X86_X2APIC apic_id = processor->local_apic_id; enabled = processor->lapic_flags & ACPI_MADT_ENABLED; /* Ignore invalid ID */ if (apic_id == 0xffffffff) return 0; /* don't register processors that cannot be onlined */ if (!acpi_is_processor_usable(processor->lapic_flags)) return 0; /* * According to https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#processor-local-x2apic-structure * when MADT provides both valid LAPIC and x2APIC entries, the APIC ID * in x2APIC must be equal or greater than 0xff. */ if (has_lapic_cpus && apic_id < 0xff) return 0; /* * We need to register disabled CPU as well to permit * counting disabled CPUs. This allows us to size * cpus_possible_map more accurately, to permit * to not preallocating memory for all NR_CPUS * when we use CPU hotplug. */ if (!apic_id_valid(apic_id)) { if (enabled) pr_warn("x2apic entry ignored\n"); return 0; } topology_register_apic(apic_id, processor->uid, enabled); #else pr_warn("x2apic entry ignored\n"); #endif return 0; } static int __init acpi_parse_lapic(union acpi_subtable_headers * header, const unsigned long end) { struct acpi_madt_local_apic *processor = NULL; processor = (struct acpi_madt_local_apic *)header; if (BAD_MADT_ENTRY(processor, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); /* Ignore invalid ID */ if (processor->id == 0xff) return 0; /* don't register processors that can not be onlined */ if (!acpi_is_processor_usable(processor->lapic_flags)) return 0; /* * We need to register disabled CPU as well to permit * counting disabled CPUs. This allows us to size * cpus_possible_map more accurately, to permit * to not preallocating memory for all NR_CPUS * when we use CPU hotplug. */ topology_register_apic(processor->id, /* APIC ID */ processor->processor_id, /* ACPI ID */ processor->lapic_flags & ACPI_MADT_ENABLED); has_lapic_cpus = true; return 0; } static int __init acpi_parse_sapic(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_local_sapic *processor = NULL; processor = (struct acpi_madt_local_sapic *)header; if (BAD_MADT_ENTRY(processor, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); topology_register_apic((processor->id << 8) | processor->eid,/* APIC ID */ processor->processor_id, /* ACPI ID */ processor->lapic_flags & ACPI_MADT_ENABLED); return 0; } static int __init acpi_parse_lapic_addr_ovr(union acpi_subtable_headers * header, const unsigned long end) { struct acpi_madt_local_apic_override *lapic_addr_ovr = NULL; lapic_addr_ovr = (struct acpi_madt_local_apic_override *)header; if (BAD_MADT_ENTRY(lapic_addr_ovr, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); acpi_lapic_addr = lapic_addr_ovr->address; return 0; } static int __init acpi_parse_x2apic_nmi(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_local_x2apic_nmi *x2apic_nmi = NULL; x2apic_nmi = (struct acpi_madt_local_x2apic_nmi *)header; if (BAD_MADT_ENTRY(x2apic_nmi, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); if (x2apic_nmi->lint != 1) pr_warn("NMI not connected to LINT 1!\n"); return 0; } static int __init acpi_parse_lapic_nmi(union acpi_subtable_headers * header, const unsigned long end) { struct acpi_madt_local_apic_nmi *lapic_nmi = NULL; lapic_nmi = (struct acpi_madt_local_apic_nmi *)header; if (BAD_MADT_ENTRY(lapic_nmi, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); if (lapic_nmi->lint != 1) pr_warn("NMI not connected to LINT 1!\n"); return 0; } #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_X86_IO_APIC #define MP_ISA_BUS 0 static int __init mp_register_ioapic_irq(u8 bus_irq, u8 polarity, u8 trigger, u32 gsi); static void __init mp_override_legacy_irq(u8 bus_irq, u8 polarity, u8 trigger, u32 gsi) { /* * Check bus_irq boundary. */ if (bus_irq >= NR_IRQS_LEGACY) { pr_warn("Invalid bus_irq %u for legacy override\n", bus_irq); return; } /* * TBD: This check is for faulty timer entries, where the override * erroneously sets the trigger to level, resulting in a HUGE * increase of timer interrupts! */ if ((bus_irq == 0) && (trigger == 3)) trigger = 1; if (mp_register_ioapic_irq(bus_irq, polarity, trigger, gsi) < 0) return; /* * Reset default identity mapping if gsi is also an legacy IRQ, * otherwise there will be more than one entry with the same GSI * and acpi_isa_irq_to_gsi() may give wrong result. */ if (gsi < nr_legacy_irqs() && isa_irq_to_gsi[gsi] == gsi) isa_irq_to_gsi[gsi] = INVALID_ACPI_IRQ; isa_irq_to_gsi[bus_irq] = gsi; } static void mp_config_acpi_gsi(struct device *dev, u32 gsi, int trigger, int polarity) { #ifdef CONFIG_X86_MPPARSE struct mpc_intsrc mp_irq; struct pci_dev *pdev; unsigned char number; unsigned int devfn; int ioapic; u8 pin; if (!acpi_ioapic) return; if (!dev || !dev_is_pci(dev)) return; pdev = to_pci_dev(dev); number = pdev->bus->number; devfn = pdev->devfn; pin = pdev->pin; /* print the entry should happen on mptable identically */ mp_irq.type = MP_INTSRC; mp_irq.irqtype = mp_INT; mp_irq.irqflag = (trigger == ACPI_EDGE_SENSITIVE ? 4 : 0x0c) | (polarity == ACPI_ACTIVE_HIGH ? 1 : 3); mp_irq.srcbus = number; mp_irq.srcbusirq = (((devfn >> 3) & 0x1f) << 2) | ((pin - 1) & 3); ioapic = mp_find_ioapic(gsi); mp_irq.dstapic = mpc_ioapic_id(ioapic); mp_irq.dstirq = mp_find_ioapic_pin(ioapic, gsi); mp_save_irq(&mp_irq); #endif } static int __init mp_register_ioapic_irq(u8 bus_irq, u8 polarity, u8 trigger, u32 gsi) { struct mpc_intsrc mp_irq; int ioapic, pin; /* Convert 'gsi' to 'ioapic.pin'(INTIN#) */ ioapic = mp_find_ioapic(gsi); if (ioapic < 0) { pr_warn("Failed to find ioapic for gsi : %u\n", gsi); return ioapic; } pin = mp_find_ioapic_pin(ioapic, gsi); mp_irq.type = MP_INTSRC; mp_irq.irqtype = mp_INT; mp_irq.irqflag = (trigger << 2) | polarity; mp_irq.srcbus = MP_ISA_BUS; mp_irq.srcbusirq = bus_irq; mp_irq.dstapic = mpc_ioapic_id(ioapic); mp_irq.dstirq = pin; mp_save_irq(&mp_irq); return 0; } static int __init acpi_parse_ioapic(union acpi_subtable_headers * header, const unsigned long end) { struct acpi_madt_io_apic *ioapic = NULL; struct ioapic_domain_cfg cfg = { .type = IOAPIC_DOMAIN_DYNAMIC, .ops = &mp_ioapic_irqdomain_ops, }; ioapic = (struct acpi_madt_io_apic *)header; if (BAD_MADT_ENTRY(ioapic, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); /* Statically assign IRQ numbers for IOAPICs hosting legacy IRQs */ if (ioapic->global_irq_base < nr_legacy_irqs()) cfg.type = IOAPIC_DOMAIN_LEGACY; mp_register_ioapic(ioapic->id, ioapic->address, ioapic->global_irq_base, &cfg); return 0; } /* * Parse Interrupt Source Override for the ACPI SCI */ static void __init acpi_sci_ioapic_setup(u8 bus_irq, u16 polarity, u16 trigger, u32 gsi) { if (trigger == 0) /* compatible SCI trigger is level */ trigger = 3; if (polarity == 0) /* compatible SCI polarity is low */ polarity = 3; /* Command-line over-ride via acpi_sci= */ if (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) trigger = (acpi_sci_flags & ACPI_MADT_TRIGGER_MASK) >> 2; if (acpi_sci_flags & ACPI_MADT_POLARITY_MASK) polarity = acpi_sci_flags & ACPI_MADT_POLARITY_MASK; if (bus_irq < NR_IRQS_LEGACY) mp_override_legacy_irq(bus_irq, polarity, trigger, gsi); else mp_register_ioapic_irq(bus_irq, polarity, trigger, gsi); acpi_penalize_sci_irq(bus_irq, trigger, polarity); /* * stash over-ride to indicate we've been here * and for later update of acpi_gbl_FADT */ acpi_sci_override_gsi = gsi; return; } static int __init acpi_parse_int_src_ovr(union acpi_subtable_headers * header, const unsigned long end) { struct acpi_madt_interrupt_override *intsrc = NULL; intsrc = (struct acpi_madt_interrupt_override *)header; if (BAD_MADT_ENTRY(intsrc, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); if (intsrc->source_irq < NR_IRQS_LEGACY) acpi_int_src_ovr[intsrc->source_irq] = true; if (intsrc->source_irq == acpi_gbl_FADT.sci_interrupt) { acpi_sci_ioapic_setup(intsrc->source_irq, intsrc->inti_flags & ACPI_MADT_POLARITY_MASK, (intsrc->inti_flags & ACPI_MADT_TRIGGER_MASK) >> 2, intsrc->global_irq); return 0; } if (intsrc->source_irq == 0) { if (acpi_skip_timer_override) { pr_warn("BIOS IRQ0 override ignored.\n"); return 0; } if ((intsrc->global_irq == 2) && acpi_fix_pin2_polarity && (intsrc->inti_flags & ACPI_MADT_POLARITY_MASK)) { intsrc->inti_flags &= ~ACPI_MADT_POLARITY_MASK; pr_warn("BIOS IRQ0 pin2 override: forcing polarity to high active.\n"); } } mp_override_legacy_irq(intsrc->source_irq, intsrc->inti_flags & ACPI_MADT_POLARITY_MASK, (intsrc->inti_flags & ACPI_MADT_TRIGGER_MASK) >> 2, intsrc->global_irq); return 0; } static int __init acpi_parse_nmi_src(union acpi_subtable_headers * header, const unsigned long end) { struct acpi_madt_nmi_source *nmi_src = NULL; nmi_src = (struct acpi_madt_nmi_source *)header; if (BAD_MADT_ENTRY(nmi_src, end)) return -EINVAL; acpi_table_print_madt_entry(&header->common); /* TBD: Support nimsrc entries? */ return 0; } #endif /* CONFIG_X86_IO_APIC */ /* * acpi_pic_sci_set_trigger() * * use ELCR to set PIC-mode trigger type for SCI * * If a PIC-mode SCI is not recognized or gives spurious IRQ7's * it may require Edge Trigger -- use "acpi_sci=edge" * * Port 0x4d0-4d1 are ELCR1 and ELCR2, the Edge/Level Control Registers * for the 8259 PIC. bit[n] = 1 means irq[n] is Level, otherwise Edge. * ELCR1 is IRQs 0-7 (IRQ 0, 1, 2 must be 0) * ELCR2 is IRQs 8-15 (IRQ 8, 13 must be 0) */ void __init acpi_pic_sci_set_trigger(unsigned int irq, u16 trigger) { unsigned int mask = 1 << irq; unsigned int old, new; /* Real old ELCR mask */ old = inb(PIC_ELCR1) | (inb(PIC_ELCR2) << 8); /* * If we use ACPI to set PCI IRQs, then we should clear ELCR * since we will set it correctly as we enable the PCI irq * routing. */ new = acpi_noirq ? old : 0; /* * Update SCI information in the ELCR, it isn't in the PCI * routing tables.. */ switch (trigger) { case 1: /* Edge - clear */ new &= ~mask; break; case 3: /* Level - set */ new |= mask; break; } if (old == new) return; pr_warn("setting ELCR to %04x (from %04x)\n", new, old); outb(new, PIC_ELCR1); outb(new >> 8, PIC_ELCR2); } int acpi_gsi_to_irq(u32 gsi, unsigned int *irqp) { int rc, irq, trigger, polarity; if (acpi_irq_model == ACPI_IRQ_MODEL_PIC) { *irqp = gsi; return 0; } rc = acpi_get_override_irq(gsi, &trigger, &polarity); if (rc) return rc; trigger = trigger ? ACPI_LEVEL_SENSITIVE : ACPI_EDGE_SENSITIVE; polarity = polarity ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; irq = acpi_register_gsi(NULL, gsi, trigger, polarity); if (irq < 0) return irq; *irqp = irq; return 0; } EXPORT_SYMBOL_GPL(acpi_gsi_to_irq); int acpi_isa_irq_to_gsi(unsigned isa_irq, u32 *gsi) { if (isa_irq < nr_legacy_irqs() && isa_irq_to_gsi[isa_irq] != INVALID_ACPI_IRQ) { *gsi = isa_irq_to_gsi[isa_irq]; return 0; } return -1; } static int acpi_register_gsi_pic(struct device *dev, u32 gsi, int trigger, int polarity) { #ifdef CONFIG_PCI /* * Make sure all (legacy) PCI IRQs are set as level-triggered. */ if (trigger == ACPI_LEVEL_SENSITIVE) elcr_set_level_irq(gsi); #endif return gsi; } #ifdef CONFIG_X86_LOCAL_APIC static int acpi_register_gsi_ioapic(struct device *dev, u32 gsi, int trigger, int polarity) { int irq = gsi; #ifdef CONFIG_X86_IO_APIC int node; struct irq_alloc_info info; node = dev ? dev_to_node(dev) : NUMA_NO_NODE; trigger = trigger == ACPI_EDGE_SENSITIVE ? 0 : 1; polarity = polarity == ACPI_ACTIVE_HIGH ? 0 : 1; ioapic_set_alloc_attr(&info, node, trigger, polarity); mutex_lock(&acpi_ioapic_lock); irq = mp_map_gsi_to_irq(gsi, IOAPIC_MAP_ALLOC, &info); /* Don't set up the ACPI SCI because it's already set up */ if (irq >= 0 && enable_update_mptable && gsi != acpi_gbl_FADT.sci_interrupt) mp_config_acpi_gsi(dev, gsi, trigger, polarity); mutex_unlock(&acpi_ioapic_lock); #endif return irq; } static void acpi_unregister_gsi_ioapic(u32 gsi) { #ifdef CONFIG_X86_IO_APIC int irq; mutex_lock(&acpi_ioapic_lock); irq = mp_map_gsi_to_irq(gsi, 0, NULL); if (irq > 0) mp_unmap_irq(irq); mutex_unlock(&acpi_ioapic_lock); #endif } #endif int (*__acpi_register_gsi)(struct device *dev, u32 gsi, int trigger, int polarity) = acpi_register_gsi_pic; void (*__acpi_unregister_gsi)(u32 gsi) = NULL; #ifdef CONFIG_ACPI_SLEEP int (*acpi_suspend_lowlevel)(void) = x86_acpi_suspend_lowlevel; #else int (*acpi_suspend_lowlevel)(void); #endif /* * success: return IRQ number (>=0) * failure: return < 0 */ int acpi_register_gsi(struct device *dev, u32 gsi, int trigger, int polarity) { return __acpi_register_gsi(dev, gsi, trigger, polarity); } EXPORT_SYMBOL_GPL(acpi_register_gsi); void acpi_unregister_gsi(u32 gsi) { if (__acpi_unregister_gsi) __acpi_unregister_gsi(gsi); } EXPORT_SYMBOL_GPL(acpi_unregister_gsi); #ifdef CONFIG_X86_LOCAL_APIC static void __init acpi_set_irq_model_ioapic(void) { acpi_irq_model = ACPI_IRQ_MODEL_IOAPIC; __acpi_register_gsi = acpi_register_gsi_ioapic; __acpi_unregister_gsi = acpi_unregister_gsi_ioapic; acpi_ioapic = 1; } #endif /* * ACPI based hotplug support for CPU */ #ifdef CONFIG_ACPI_HOTPLUG_CPU #include <acpi/processor.h> static int acpi_map_cpu2node(acpi_handle handle, int cpu, int physid) { #ifdef CONFIG_ACPI_NUMA int nid; nid = acpi_get_node(handle); if (nid != NUMA_NO_NODE) { set_apicid_to_node(physid, nid); numa_set_node(cpu, nid); } #endif return 0; } int acpi_map_cpu(acpi_handle handle, phys_cpuid_t physid, u32 acpi_id, int *pcpu) { int cpu = topology_hotplug_apic(physid, acpi_id); if (cpu < 0) { pr_info("Unable to map lapic to logical cpu number\n"); return cpu; } acpi_processor_set_pdc(handle); acpi_map_cpu2node(handle, cpu, physid); *pcpu = cpu; return 0; } EXPORT_SYMBOL(acpi_map_cpu); int acpi_unmap_cpu(int cpu) { #ifdef CONFIG_ACPI_NUMA set_apicid_to_node(per_cpu(x86_cpu_to_apicid, cpu), NUMA_NO_NODE); #endif topology_hotunplug_apic(cpu); return 0; } EXPORT_SYMBOL(acpi_unmap_cpu); #endif /* CONFIG_ACPI_HOTPLUG_CPU */ int acpi_register_ioapic(acpi_handle handle, u64 phys_addr, u32 gsi_base) { int ret = -ENOSYS; #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC int ioapic_id; u64 addr; struct ioapic_domain_cfg cfg = { .type = IOAPIC_DOMAIN_DYNAMIC, .ops = &mp_ioapic_irqdomain_ops, }; ioapic_id = acpi_get_ioapic_id(handle, gsi_base, &addr); if (ioapic_id < 0) { unsigned long long uid; acpi_status status; status = acpi_evaluate_integer(handle, METHOD_NAME__UID, NULL, &uid); if (ACPI_FAILURE(status)) { acpi_handle_warn(handle, "failed to get IOAPIC ID.\n"); return -EINVAL; } ioapic_id = (int)uid; } mutex_lock(&acpi_ioapic_lock); ret = mp_register_ioapic(ioapic_id, phys_addr, gsi_base, &cfg); mutex_unlock(&acpi_ioapic_lock); #endif return ret; } EXPORT_SYMBOL(acpi_register_ioapic); int acpi_unregister_ioapic(acpi_handle handle, u32 gsi_base) { int ret = -ENOSYS; #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC mutex_lock(&acpi_ioapic_lock); ret = mp_unregister_ioapic(gsi_base); mutex_unlock(&acpi_ioapic_lock); #endif return ret; } EXPORT_SYMBOL(acpi_unregister_ioapic); /** * acpi_ioapic_registered - Check whether IOAPIC associated with @gsi_base * has been registered * @handle: ACPI handle of the IOAPIC device * @gsi_base: GSI base associated with the IOAPIC * * Assume caller holds some type of lock to serialize acpi_ioapic_registered() * with acpi_register_ioapic()/acpi_unregister_ioapic(). */ int acpi_ioapic_registered(acpi_handle handle, u32 gsi_base) { int ret = 0; #ifdef CONFIG_ACPI_HOTPLUG_IOAPIC mutex_lock(&acpi_ioapic_lock); ret = mp_ioapic_registered(gsi_base); mutex_unlock(&acpi_ioapic_lock); #endif return ret; } static int __init acpi_parse_sbf(struct acpi_table_header *table) { struct acpi_table_boot *sb = (struct acpi_table_boot *)table; sbf_port = sb->cmos_index; /* Save CMOS port */ return 0; } #ifdef CONFIG_HPET_TIMER #include <asm/hpet.h> static struct resource *hpet_res __initdata; static int __init acpi_parse_hpet(struct acpi_table_header *table) { struct acpi_table_hpet *hpet_tbl = (struct acpi_table_hpet *)table; if (hpet_tbl->address.space_id != ACPI_SPACE_MEM) { pr_warn("HPET timers must be located in memory.\n"); return -1; } hpet_address = hpet_tbl->address.address; hpet_blockid = hpet_tbl->sequence; /* * Some broken BIOSes advertise HPET at 0x0. We really do not * want to allocate a resource there. */ if (!hpet_address) { pr_warn("HPET id: %#x base: %#lx is invalid\n", hpet_tbl->id, hpet_address); return 0; } #ifdef CONFIG_X86_64 /* * Some even more broken BIOSes advertise HPET at * 0xfed0000000000000 instead of 0xfed00000. Fix it up and add * some noise: */ if (hpet_address == 0xfed0000000000000UL) { if (!hpet_force_user) { pr_warn("HPET id: %#x base: 0xfed0000000000000 is bogus, try hpet=force on the kernel command line to fix it up to 0xfed00000.\n", hpet_tbl->id); hpet_address = 0; return 0; } pr_warn("HPET id: %#x base: 0xfed0000000000000 fixed up to 0xfed00000.\n", hpet_tbl->id); hpet_address >>= 32; } #endif pr_info("HPET id: %#x base: %#lx\n", hpet_tbl->id, hpet_address); /* * Allocate and initialize the HPET firmware resource for adding into * the resource tree during the lateinit timeframe. */ #define HPET_RESOURCE_NAME_SIZE 9 hpet_res = memblock_alloc(sizeof(*hpet_res) + HPET_RESOURCE_NAME_SIZE, SMP_CACHE_BYTES); if (!hpet_res) panic("%s: Failed to allocate %zu bytes\n", __func__, sizeof(*hpet_res) + HPET_RESOURCE_NAME_SIZE); hpet_res->name = (void *)&hpet_res[1]; hpet_res->flags = IORESOURCE_MEM; snprintf((char *)hpet_res->name, HPET_RESOURCE_NAME_SIZE, "HPET %u", hpet_tbl->sequence); hpet_res->start = hpet_address; hpet_res->end = hpet_address + (1 * 1024) - 1; return 0; } /* * hpet_insert_resource inserts the HPET resources used into the resource * tree. */ static __init int hpet_insert_resource(void) { if (!hpet_res) return 1; return insert_resource(&iomem_resource, hpet_res); } late_initcall(hpet_insert_resource); #else #define acpi_parse_hpet NULL #endif static int __init acpi_parse_fadt(struct acpi_table_header *table) { if (!(acpi_gbl_FADT.boot_flags & ACPI_FADT_LEGACY_DEVICES)) { pr_debug("no legacy devices present\n"); x86_platform.legacy.devices.pnpbios = 0; } if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && !(acpi_gbl_FADT.boot_flags & ACPI_FADT_8042) && x86_platform.legacy.i8042 != X86_LEGACY_I8042_PLATFORM_ABSENT) { pr_debug("i8042 controller is absent\n"); x86_platform.legacy.i8042 = X86_LEGACY_I8042_FIRMWARE_ABSENT; } if (acpi_gbl_FADT.boot_flags & ACPI_FADT_NO_CMOS_RTC) { pr_debug("not registering RTC platform device\n"); x86_platform.legacy.rtc = 0; } if (acpi_gbl_FADT.boot_flags & ACPI_FADT_NO_VGA) { pr_debug("probing for VGA not safe\n"); x86_platform.legacy.no_vga = 1; } #ifdef CONFIG_X86_PM_TIMER /* detect the location of the ACPI PM Timer */ if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID) { /* FADT rev. 2 */ if (acpi_gbl_FADT.xpm_timer_block.space_id != ACPI_ADR_SPACE_SYSTEM_IO) return 0; pmtmr_ioport = acpi_gbl_FADT.xpm_timer_block.address; /* * "X" fields are optional extensions to the original V1.0 * fields, so we must selectively expand V1.0 fields if the * corresponding X field is zero. */ if (!pmtmr_ioport) pmtmr_ioport = acpi_gbl_FADT.pm_timer_block; } else { /* FADT rev. 1 */ pmtmr_ioport = acpi_gbl_FADT.pm_timer_block; } if (pmtmr_ioport) pr_info("PM-Timer IO Port: %#x\n", pmtmr_ioport); #endif return 0; } #ifdef CONFIG_X86_LOCAL_APIC /* * Parse LAPIC entries in MADT * returns 0 on success, < 0 on error */ static int __init early_acpi_parse_madt_lapic_addr_ovr(void) { int count; if (!boot_cpu_has(X86_FEATURE_APIC)) return -ENODEV; /* * Note that the LAPIC address is obtained from the MADT (32-bit value) * and (optionally) overridden by a LAPIC_ADDR_OVR entry (64-bit value). */ count = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE, acpi_parse_lapic_addr_ovr, 0); if (count < 0) { pr_err("Error parsing LAPIC address override entry\n"); return count; } register_lapic_address(acpi_lapic_addr); return count; } static int __init acpi_parse_madt_lapic_entries(void) { int count, x2count = 0; if (!boot_cpu_has(X86_FEATURE_APIC)) return -ENODEV; count = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_SAPIC, acpi_parse_sapic, MAX_LOCAL_APIC); if (!count) { count = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_APIC, acpi_parse_lapic, MAX_LOCAL_APIC); x2count = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_X2APIC, acpi_parse_x2apic, MAX_LOCAL_APIC); } if (!count && !x2count) { pr_err("No LAPIC entries present\n"); /* TBD: Cleanup to allow fallback to MPS */ return -ENODEV; } else if (count < 0 || x2count < 0) { pr_err("Error parsing LAPIC entry\n"); /* TBD: Cleanup to allow fallback to MPS */ return count; } x2count = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_X2APIC_NMI, acpi_parse_x2apic_nmi, 0); count = acpi_table_parse_madt(ACPI_MADT_TYPE_LOCAL_APIC_NMI, acpi_parse_lapic_nmi, 0); if (count < 0 || x2count < 0) { pr_err("Error parsing LAPIC NMI entry\n"); /* TBD: Cleanup to allow fallback to MPS */ return count; } return 0; } #endif /* CONFIG_X86_LOCAL_APIC */ #ifdef CONFIG_X86_IO_APIC static void __init mp_config_acpi_legacy_irqs(void) { int i; struct mpc_intsrc mp_irq; #ifdef CONFIG_EISA /* * Fabricate the legacy ISA bus (bus #31). */ mp_bus_id_to_type[MP_ISA_BUS] = MP_BUS_ISA; #endif set_bit(MP_ISA_BUS, mp_bus_not_pci); pr_debug("Bus #%d is ISA (nIRQs: %d)\n", MP_ISA_BUS, nr_legacy_irqs()); /* * Use the default configuration for the IRQs 0-15. Unless * overridden by (MADT) interrupt source override entries. */ for (i = 0; i < nr_legacy_irqs(); i++) { int ioapic, pin; unsigned int dstapic; int idx; u32 gsi; /* Locate the gsi that irq i maps to. */ if (acpi_isa_irq_to_gsi(i, &gsi)) continue; /* * Locate the IOAPIC that manages the ISA IRQ. */ ioapic = mp_find_ioapic(gsi); if (ioapic < 0) continue; pin = mp_find_ioapic_pin(ioapic, gsi); dstapic = mpc_ioapic_id(ioapic); for (idx = 0; idx < mp_irq_entries; idx++) { struct mpc_intsrc *irq = mp_irqs + idx; /* Do we already have a mapping for this ISA IRQ? */ if (irq->srcbus == MP_ISA_BUS && irq->srcbusirq == i) break; /* Do we already have a mapping for this IOAPIC pin */ if (irq->dstapic == dstapic && irq->dstirq == pin) break; } if (idx != mp_irq_entries) { pr_debug("ACPI: IRQ%d used by override.\n", i); continue; /* IRQ already used */ } mp_irq.type = MP_INTSRC; mp_irq.irqflag = 0; /* Conforming */ mp_irq.srcbus = MP_ISA_BUS; mp_irq.dstapic = dstapic; mp_irq.irqtype = mp_INT; mp_irq.srcbusirq = i; /* Identity mapped */ mp_irq.dstirq = pin; mp_save_irq(&mp_irq); } } /* * Parse IOAPIC related entries in MADT * returns 0 on success, < 0 on error */ static int __init acpi_parse_madt_ioapic_entries(void) { int count; /* * ACPI interpreter is required to complete interrupt setup, * so if it is off, don't enumerate the io-apics with ACPI. * If MPS is present, it will handle them, * otherwise the system will stay in PIC mode */ if (acpi_disabled || acpi_noirq) return -ENODEV; if (!boot_cpu_has(X86_FEATURE_APIC)) return -ENODEV; /* * if "noapic" boot option, don't look for IO-APICs */ if (ioapic_is_disabled) { pr_info("Skipping IOAPIC probe due to 'noapic' option.\n"); return -ENODEV; } count = acpi_table_parse_madt(ACPI_MADT_TYPE_IO_APIC, acpi_parse_ioapic, MAX_IO_APICS); if (!count) { pr_err("No IOAPIC entries present\n"); return -ENODEV; } else if (count < 0) { pr_err("Error parsing IOAPIC entry\n"); return count; } count = acpi_table_parse_madt(ACPI_MADT_TYPE_INTERRUPT_OVERRIDE, acpi_parse_int_src_ovr, irq_get_nr_irqs()); if (count < 0) { pr_err("Error parsing interrupt source overrides entry\n"); /* TBD: Cleanup to allow fallback to MPS */ return count; } /* * If BIOS did not supply an INT_SRC_OVR for the SCI * pretend we got one so we can set the SCI flags. * But ignore setting up SCI on hardware reduced platforms. */ if (acpi_sci_override_gsi == INVALID_ACPI_IRQ && !acpi_gbl_reduced_hardware) acpi_sci_ioapic_setup(acpi_gbl_FADT.sci_interrupt, 0, 0, acpi_gbl_FADT.sci_interrupt); /* Fill in identity legacy mappings where no override */ mp_config_acpi_legacy_irqs(); count = acpi_table_parse_madt(ACPI_MADT_TYPE_NMI_SOURCE, acpi_parse_nmi_src, irq_get_nr_irqs()); if (count < 0) { pr_err("Error parsing NMI SRC entry\n"); /* TBD: Cleanup to allow fallback to MPS */ return count; } return 0; } #else static inline int acpi_parse_madt_ioapic_entries(void) { return -1; } #endif /* !CONFIG_X86_IO_APIC */ static void __init early_acpi_process_madt(void) { #ifdef CONFIG_X86_LOCAL_APIC int error; if (!acpi_table_parse(ACPI_SIG_MADT, acpi_parse_madt)) { /* * Parse MADT LAPIC entries */ error = early_acpi_parse_madt_lapic_addr_ovr(); if (!error) { acpi_lapic = 1; smp_found_config = 1; } if (error == -EINVAL) { /* * Dell Precision Workstation 410, 610 come here. */ pr_err("Invalid BIOS MADT, disabling ACPI\n"); disable_acpi(); } } #endif } static void __init acpi_process_madt(void) { #ifdef CONFIG_X86_LOCAL_APIC int error; if (!acpi_table_parse(ACPI_SIG_MADT, acpi_parse_madt)) { /* * Parse MADT LAPIC entries */ error = acpi_parse_madt_lapic_entries(); if (!error) { acpi_lapic = 1; /* * Parse MADT IO-APIC entries */ mutex_lock(&acpi_ioapic_lock); error = acpi_parse_madt_ioapic_entries(); mutex_unlock(&acpi_ioapic_lock); if (!error) { acpi_set_irq_model_ioapic(); smp_found_config = 1; } #ifdef CONFIG_ACPI_MADT_WAKEUP /* * Parse MADT MP Wake entry. */ acpi_table_parse_madt(ACPI_MADT_TYPE_MULTIPROC_WAKEUP, acpi_parse_mp_wake, 1); #endif } if (error == -EINVAL) { /* * Dell Precision Workstation 410, 610 come here. */ pr_err("Invalid BIOS MADT, disabling ACPI\n"); disable_acpi(); } } else { /* * ACPI found no MADT, and so ACPI wants UP PIC mode. * In the event an MPS table was found, forget it. * Boot with "acpi=off" to use MPS on such a system. */ if (smp_found_config) { pr_warn("No APIC-table, disabling MPS\n"); smp_found_config = 0; } } /* * ACPI supports both logical (e.g. Hyper-Threading) and physical * processors, where MPS only supports physical. */ if (acpi_lapic && acpi_ioapic) pr_info("Using ACPI (MADT) for SMP configuration information\n"); else if (acpi_lapic) pr_info("Using ACPI for processor (LAPIC) configuration information\n"); #endif return; } static int __init disable_acpi_irq(const struct dmi_system_id *d) { if (!acpi_force) { pr_notice("%s detected: force use of acpi=noirq\n", d->ident); acpi_noirq_set(); } return 0; } static int __init disable_acpi_pci(const struct dmi_system_id *d) { if (!acpi_force) { pr_notice("%s detected: force use of pci=noacpi\n", d->ident); acpi_disable_pci(); } return 0; } static int __init disable_acpi_xsdt(const struct dmi_system_id *d) { if (!acpi_force) { pr_notice("%s detected: force use of acpi=rsdt\n", d->ident); acpi_gbl_do_not_use_xsdt = TRUE; } else { pr_notice("Warning: DMI blacklist says broken, but acpi XSDT forced\n"); } return 0; } static int __init dmi_disable_acpi(const struct dmi_system_id *d) { if (!acpi_force) { pr_notice("%s detected: acpi off\n", d->ident); disable_acpi(); } else { pr_notice("Warning: DMI blacklist says broken, but acpi forced\n"); } return 0; } /* * Force ignoring BIOS IRQ0 override */ static int __init dmi_ignore_irq0_timer_override(const struct dmi_system_id *d) { if (!acpi_skip_timer_override) { pr_notice("%s detected: Ignoring BIOS IRQ0 override\n", d->ident); acpi_skip_timer_override = 1; } return 0; } /* * ACPI offers an alternative platform interface model that removes * ACPI hardware requirements for platforms that do not implement * the PC Architecture. * * We initialize the Hardware-reduced ACPI model here: */ void __init acpi_generic_reduced_hw_init(void) { /* * Override x86_init functions and bypass legacy PIC in * hardware reduced ACPI mode. */ x86_init.timers.timer_init = x86_init_noop; x86_init.irqs.pre_vector_init = x86_init_noop; legacy_pic = &null_legacy_pic; } static void __init acpi_reduced_hw_init(void) { if (acpi_gbl_reduced_hardware) x86_init.acpi.reduced_hw_early_init(); } /* * If your system is blacklisted here, but you find that acpi=force * works for you, please contact [email protected] */ static const struct dmi_system_id acpi_dmi_table[] __initconst = { /* * Boxes that need ACPI disabled */ { .callback = dmi_disable_acpi, .ident = "IBM Thinkpad", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), DMI_MATCH(DMI_BOARD_NAME, "2629H1G"), }, }, /* * Boxes that need ACPI PCI IRQ routing disabled */ { .callback = disable_acpi_irq, .ident = "ASUS A7V", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC"), DMI_MATCH(DMI_BOARD_NAME, "<A7V>"), /* newer BIOS, Revision 1011, does work */ DMI_MATCH(DMI_BIOS_VERSION, "ASUS A7V ACPI BIOS Revision 1007"), }, }, { /* * Latest BIOS for IBM 600E (1.16) has bad pcinum * for LPC bridge, which is needed for the PCI * interrupt links to work. DSDT fix is in bug 5966. * 2645, 2646 model numbers are shared with 600/600E/600X */ .callback = disable_acpi_irq, .ident = "IBM Thinkpad 600 Series 2645", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), DMI_MATCH(DMI_BOARD_NAME, "2645"), }, }, { .callback = disable_acpi_irq, .ident = "IBM Thinkpad 600 Series 2646", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), DMI_MATCH(DMI_BOARD_NAME, "2646"), }, }, /* * Boxes that need ACPI PCI IRQ routing and PCI scan disabled */ { /* _BBN 0 bug */ .callback = disable_acpi_pci, .ident = "ASUS PR-DLS", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "PR-DLS"), DMI_MATCH(DMI_BIOS_VERSION, "ASUS PR-DLS ACPI BIOS Revision 1010"), DMI_MATCH(DMI_BIOS_DATE, "03/21/2003") }, }, { .callback = disable_acpi_pci, .ident = "Acer TravelMate 36x Laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Acer"), DMI_MATCH(DMI_PRODUCT_NAME, "TravelMate 360"), }, }, /* * Boxes that need ACPI XSDT use disabled due to corrupted tables */ { .callback = disable_acpi_xsdt, .ident = "Advantech DAC-BJ01", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "NEC"), DMI_MATCH(DMI_PRODUCT_NAME, "Bearlake CRB Board"), DMI_MATCH(DMI_BIOS_VERSION, "V1.12"), DMI_MATCH(DMI_BIOS_DATE, "02/01/2011"), }, }, {} }; /* second table for DMI checks that should run after early-quirks */ static const struct dmi_system_id acpi_dmi_table_late[] __initconst = { /* * HP laptops which use a DSDT reporting as HP/SB400/10000, * which includes some code which overrides all temperature * trip points to 16C if the INTIN2 input of the I/O APIC * is enabled. This input is incorrectly designated the * ISA IRQ 0 via an interrupt source override even though * it is wired to the output of the master 8259A and INTIN0 * is not connected at all. Force ignoring BIOS IRQ0 * override in that cases. */ { .callback = dmi_ignore_irq0_timer_override, .ident = "HP nx6115 laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Compaq nx6115"), }, }, { .callback = dmi_ignore_irq0_timer_override, .ident = "HP NX6125 laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Compaq nx6125"), }, }, { .callback = dmi_ignore_irq0_timer_override, .ident = "HP NX6325 laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Compaq nx6325"), }, }, { .callback = dmi_ignore_irq0_timer_override, .ident = "HP 6715b laptop", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP Compaq 6715b"), }, }, { .callback = dmi_ignore_irq0_timer_override, .ident = "FUJITSU SIEMENS", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "FUJITSU SIEMENS"), DMI_MATCH(DMI_PRODUCT_NAME, "AMILO PRO V2030"), }, }, {} }; /* * acpi_boot_table_init() and acpi_boot_init() * called from setup_arch(), always. * 1. checksums all tables * 2. enumerates lapics * 3. enumerates io-apics * * acpi_table_init() is separate to allow reading SRAT without * other side effects. * * side effects of acpi_boot_init: * acpi_lapic = 1 if LAPIC found * acpi_ioapic = 1 if IOAPIC found * if (acpi_lapic && acpi_ioapic) smp_found_config = 1; * if acpi_blacklisted() acpi_disabled = 1; * acpi_irq_model=... * ... */ void __init acpi_boot_table_init(void) { dmi_check_system(acpi_dmi_table); /* * If acpi_disabled, bail out */ if (acpi_disabled) return; /* * Initialize the ACPI boot-time table parser. */ if (acpi_locate_initial_tables()) disable_acpi(); else acpi_reserve_initial_tables(); } int __init early_acpi_boot_init(void) { if (acpi_disabled) return 1; acpi_table_init_complete(); acpi_table_parse(ACPI_SIG_BOOT, acpi_parse_sbf); /* * blacklist may disable ACPI entirely */ if (acpi_blacklisted()) { if (acpi_force) { pr_warn("acpi=force override\n"); } else { pr_warn("Disabling ACPI support\n"); disable_acpi(); return 1; } } /* * Process the Multiple APIC Description Table (MADT), if present */ early_acpi_process_madt(); /* * Hardware-reduced ACPI mode initialization: */ acpi_reduced_hw_init(); return 0; } int __init acpi_boot_init(void) { /* those are executed after early-quirks are executed */ dmi_check_system(acpi_dmi_table_late); /* * If acpi_disabled, bail out */ if (acpi_disabled) return 1; acpi_table_parse(ACPI_SIG_BOOT, acpi_parse_sbf); /* * set sci_int and PM timer address */ acpi_table_parse(ACPI_SIG_FADT, acpi_parse_fadt); /* * Process the Multiple APIC Description Table (MADT), if present */ acpi_process_madt(); acpi_table_parse(ACPI_SIG_HPET, acpi_parse_hpet); if (IS_ENABLED(CONFIG_ACPI_BGRT) && !acpi_nobgrt) acpi_table_parse(ACPI_SIG_BGRT, acpi_parse_bgrt); if (!acpi_noirq) x86_init.pci.init = pci_acpi_init; /* Do not enable ACPI SPCR console by default */ acpi_parse_spcr(earlycon_acpi_spcr_enable, false); return 0; } static int __init parse_acpi(char *arg) { if (!arg) return -EINVAL; /* "acpi=off" disables both ACPI table parsing and interpreter */ if (strcmp(arg, "off") == 0) { disable_acpi(); } /* acpi=force to over-ride black-list */ else if (strcmp(arg, "force") == 0) { acpi_force = 1; acpi_disabled = 0; } /* acpi=strict disables out-of-spec workarounds */ else if (strcmp(arg, "strict") == 0) { acpi_strict = 1; } /* acpi=rsdt use RSDT instead of XSDT */ else if (strcmp(arg, "rsdt") == 0) { acpi_gbl_do_not_use_xsdt = TRUE; } /* "acpi=noirq" disables ACPI interrupt routing */ else if (strcmp(arg, "noirq") == 0) { acpi_noirq_set(); } /* "acpi=copy_dsdt" copies DSDT */ else if (strcmp(arg, "copy_dsdt") == 0) { acpi_gbl_copy_dsdt_locally = 1; } /* "acpi=nocmcff" disables FF mode for corrected errors */ else if (strcmp(arg, "nocmcff") == 0) { acpi_disable_cmcff = 1; } else { /* Core will printk when we return error. */ return -EINVAL; } return 0; } early_param("acpi", parse_acpi); static int __init parse_acpi_bgrt(char *arg) { acpi_nobgrt = true; return 0; } early_param("bgrt_disable", parse_acpi_bgrt); /* FIXME: Using pci= for an ACPI parameter is a travesty. */ static int __init parse_pci(char *arg) { if (arg && strcmp(arg, "noacpi") == 0) acpi_disable_pci(); return 0; } early_param("pci", parse_pci); int __init acpi_mps_check(void) { #if defined(CONFIG_X86_LOCAL_APIC) && !defined(CONFIG_X86_MPPARSE) /* mptable code is not built-in*/ if (acpi_disabled || acpi_noirq) { pr_warn("MPS support code is not built-in, using acpi=off or acpi=noirq or pci=noacpi may have problem\n"); return 1; } #endif return 0; } #ifdef CONFIG_X86_IO_APIC static int __init parse_acpi_skip_timer_override(char *arg) { acpi_skip_timer_override = 1; return 0; } early_param("acpi_skip_timer_override", parse_acpi_skip_timer_override); static int __init parse_acpi_use_timer_override(char *arg) { acpi_use_timer_override = 1; return 0; } early_param("acpi_use_timer_override", parse_acpi_use_timer_override); #endif /* CONFIG_X86_IO_APIC */ static int __init setup_acpi_sci(char *s) { if (!s) return -EINVAL; if (!strcmp(s, "edge")) acpi_sci_flags = ACPI_MADT_TRIGGER_EDGE | (acpi_sci_flags & ~ACPI_MADT_TRIGGER_MASK); else if (!strcmp(s, "level")) acpi_sci_flags = ACPI_MADT_TRIGGER_LEVEL | (acpi_sci_flags & ~ACPI_MADT_TRIGGER_MASK); else if (!strcmp(s, "high")) acpi_sci_flags = ACPI_MADT_POLARITY_ACTIVE_HIGH | (acpi_sci_flags & ~ACPI_MADT_POLARITY_MASK); else if (!strcmp(s, "low")) acpi_sci_flags = ACPI_MADT_POLARITY_ACTIVE_LOW | (acpi_sci_flags & ~ACPI_MADT_POLARITY_MASK); else return -EINVAL; return 0; } early_param("acpi_sci", setup_acpi_sci); int __acpi_acquire_global_lock(unsigned int *lock) { unsigned int old, new, val; old = READ_ONCE(*lock); do { val = (old >> 1) & 0x1; new = (old & ~0x3) + 2 + val; } while (!try_cmpxchg(lock, &old, new)); if (val) return 0; return -1; } int __acpi_release_global_lock(unsigned int *lock) { unsigned int old, new; old = READ_ONCE(*lock); do { new = old & ~0x3; } while (!try_cmpxchg(lock, &old, new)); return old & 0x1; } void __init arch_reserve_mem_area(acpi_physical_address addr, size_t size) { e820__range_add(addr, size, E820_TYPE_NVS); e820__update_table_print(); } void x86_default_set_root_pointer(u64 addr) { boot_params.acpi_rsdp_addr = addr; } u64 x86_default_get_root_pointer(void) { return boot_params.acpi_rsdp_addr; } #ifdef CONFIG_XEN_PV void __iomem *x86_acpi_os_ioremap(acpi_physical_address phys, acpi_size size) { return ioremap_cache(phys, size); } void __iomem * (*acpi_os_ioremap)(acpi_physical_address phys, acpi_size size) = x86_acpi_os_ioremap; EXPORT_SYMBOL_GPL(acpi_os_ioremap); #endif
// SPDX-License-Identifier: GPL-2.0 /* * Lontium LT9211 bridge driver * * LT9211 is capable of converting: * 2xDSI/2xLVDS/1xDPI -> 2xDSI/2xLVDS/1xDPI * Currently supported is: * 1xDSI -> 1xLVDS * * Copyright (C) 2022 Marek Vasut <[email protected]> */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/media-bus-format.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_panel.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #define REG_PAGE_CONTROL 0xff #define REG_CHIPID0 0x8100 #define REG_CHIPID0_VALUE 0x18 #define REG_CHIPID1 0x8101 #define REG_CHIPID1_VALUE 0x01 #define REG_CHIPID2 0x8102 #define REG_CHIPID2_VALUE 0xe3 #define REG_DSI_LANE 0xd000 /* DSI lane count - 0 means 4 lanes ; 1, 2, 3 means 1, 2, 3 lanes. */ #define REG_DSI_LANE_COUNT(n) ((n) & 3) struct lt9211 { struct drm_bridge bridge; struct device *dev; struct regmap *regmap; struct mipi_dsi_device *dsi; struct drm_bridge *panel_bridge; struct gpio_desc *reset_gpio; struct regulator *vccio; bool lvds_dual_link; bool lvds_dual_link_even_odd_swap; }; static const struct regmap_range lt9211_rw_ranges[] = { regmap_reg_range(0xff, 0xff), regmap_reg_range(0x8100, 0x816b), regmap_reg_range(0x8200, 0x82aa), regmap_reg_range(0x8500, 0x85ff), regmap_reg_range(0x8600, 0x86a0), regmap_reg_range(0x8700, 0x8746), regmap_reg_range(0xd000, 0xd0a7), regmap_reg_range(0xd400, 0xd42c), regmap_reg_range(0xd800, 0xd838), regmap_reg_range(0xd9c0, 0xd9d5), }; static const struct regmap_access_table lt9211_rw_table = { .yes_ranges = lt9211_rw_ranges, .n_yes_ranges = ARRAY_SIZE(lt9211_rw_ranges), }; static const struct regmap_range_cfg lt9211_range = { .name = "lt9211", .range_min = 0x0000, .range_max = 0xda00, .selector_reg = REG_PAGE_CONTROL, .selector_mask = 0xff, .selector_shift = 0, .window_start = 0, .window_len = 0x100, }; static const struct regmap_config lt9211_regmap_config = { .reg_bits = 8, .val_bits = 8, .rd_table = &lt9211_rw_table, .wr_table = &lt9211_rw_table, .volatile_table = &lt9211_rw_table, .ranges = &lt9211_range, .num_ranges = 1, .cache_type = REGCACHE_MAPLE, .max_register = 0xda00, }; static struct lt9211 *bridge_to_lt9211(struct drm_bridge *bridge) { return container_of(bridge, struct lt9211, bridge); } static int lt9211_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { struct lt9211 *ctx = bridge_to_lt9211(bridge); return drm_bridge_attach(bridge->encoder, ctx->panel_bridge, &ctx->bridge, flags); } static int lt9211_read_chipid(struct lt9211 *ctx) { u8 chipid[3]; int ret; /* Read Chip ID registers and verify the chip can communicate. */ ret = regmap_bulk_read(ctx->regmap, REG_CHIPID0, chipid, 3); if (ret < 0) { dev_err(ctx->dev, "Failed to read Chip ID: %d\n", ret); return ret; } /* Test for known Chip ID. */ if (chipid[0] != REG_CHIPID0_VALUE || chipid[1] != REG_CHIPID1_VALUE || chipid[2] != REG_CHIPID2_VALUE) { dev_err(ctx->dev, "Unknown Chip ID: 0x%02x 0x%02x 0x%02x\n", chipid[0], chipid[1], chipid[2]); return -EINVAL; } return 0; } static int lt9211_system_init(struct lt9211 *ctx) { const struct reg_sequence lt9211_system_init_seq[] = { { 0x8201, 0x18 }, { 0x8606, 0x61 }, { 0x8607, 0xa8 }, { 0x8714, 0x08 }, { 0x8715, 0x00 }, { 0x8718, 0x0f }, { 0x8722, 0x08 }, { 0x8723, 0x00 }, { 0x8726, 0x0f }, { 0x810b, 0xfe }, }; return regmap_multi_reg_write(ctx->regmap, lt9211_system_init_seq, ARRAY_SIZE(lt9211_system_init_seq)); } static int lt9211_configure_rx(struct lt9211 *ctx) { const struct reg_sequence lt9211_rx_phy_seq[] = { { 0x8202, 0x44 }, { 0x8204, 0xa0 }, { 0x8205, 0x22 }, { 0x8207, 0x9f }, { 0x8208, 0xfc }, /* ORR with 0xf8 here to enable DSI DN/DP swap. */ { 0x8209, 0x01 }, { 0x8217, 0x0c }, { 0x8633, 0x1b }, }; const struct reg_sequence lt9211_rx_cal_reset_seq[] = { { 0x8120, 0x7f }, { 0x8120, 0xff }, }; const struct reg_sequence lt9211_rx_dig_seq[] = { { 0x8630, 0x85 }, /* 0x8588: BIT 6 set = MIPI-RX, BIT 4 unset = LVDS-TX */ { 0x8588, 0x40 }, { 0x85ff, 0xd0 }, { REG_DSI_LANE, REG_DSI_LANE_COUNT(ctx->dsi->lanes) }, { 0xd002, 0x05 }, }; const struct reg_sequence lt9211_rx_div_reset_seq[] = { { 0x810a, 0xc0 }, { 0x8120, 0xbf }, }; const struct reg_sequence lt9211_rx_div_clear_seq[] = { { 0x810a, 0xc1 }, { 0x8120, 0xff }, }; int ret; ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_phy_seq, ARRAY_SIZE(lt9211_rx_phy_seq)); if (ret) return ret; ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_cal_reset_seq, ARRAY_SIZE(lt9211_rx_cal_reset_seq)); if (ret) return ret; ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_dig_seq, ARRAY_SIZE(lt9211_rx_dig_seq)); if (ret) return ret; ret = regmap_multi_reg_write(ctx->regmap, lt9211_rx_div_reset_seq, ARRAY_SIZE(lt9211_rx_div_reset_seq)); if (ret) return ret; usleep_range(10000, 15000); return regmap_multi_reg_write(ctx->regmap, lt9211_rx_div_clear_seq, ARRAY_SIZE(lt9211_rx_div_clear_seq)); } static int lt9211_autodetect_rx(struct lt9211 *ctx, const struct drm_display_mode *mode) { u16 width, height; u32 byteclk; u8 buf[5]; u8 format; u8 bc[3]; int ret; /* Measure ByteClock frequency. */ ret = regmap_write(ctx->regmap, 0x8600, 0x01); if (ret) return ret; /* Give the chip time to lock onto RX stream. */ msleep(100); /* Read the ByteClock frequency from the chip. */ ret = regmap_bulk_read(ctx->regmap, 0x8608, bc, sizeof(bc)); if (ret) return ret; /* RX ByteClock in kHz */ byteclk = ((bc[0] & 0xf) << 16) | (bc[1] << 8) | bc[2]; /* Width/Height/Format Auto-detection */ ret = regmap_bulk_read(ctx->regmap, 0xd082, buf, sizeof(buf)); if (ret) return ret; width = (buf[0] << 8) | buf[1]; height = (buf[3] << 8) | buf[4]; format = buf[2] & 0xf; if (format == 0x3) { /* YUV422 16bit */ width /= 2; } else if (format == 0xa) { /* RGB888 24bit */ width /= 3; } else { dev_err(ctx->dev, "Unsupported DSI pixel format 0x%01x\n", format); return -EINVAL; } if (width != mode->hdisplay) { dev_err(ctx->dev, "RX: Detected DSI width (%d) does not match mode hdisplay (%d)\n", width, mode->hdisplay); return -EINVAL; } if (height != mode->vdisplay) { dev_err(ctx->dev, "RX: Detected DSI height (%d) does not match mode vdisplay (%d)\n", height, mode->vdisplay); return -EINVAL; } dev_dbg(ctx->dev, "RX: %dx%d format=0x%01x byteclock=%d kHz\n", width, height, format, byteclk); return 0; } static int lt9211_configure_timing(struct lt9211 *ctx, const struct drm_display_mode *mode) { const struct reg_sequence lt9211_timing[] = { { 0xd00d, (mode->vtotal >> 8) & 0xff }, { 0xd00e, mode->vtotal & 0xff }, { 0xd00f, (mode->vdisplay >> 8) & 0xff }, { 0xd010, mode->vdisplay & 0xff }, { 0xd011, (mode->htotal >> 8) & 0xff }, { 0xd012, mode->htotal & 0xff }, { 0xd013, (mode->hdisplay >> 8) & 0xff }, { 0xd014, mode->hdisplay & 0xff }, { 0xd015, (mode->vsync_end - mode->vsync_start) & 0xff }, { 0xd016, (mode->hsync_end - mode->hsync_start) & 0xff }, { 0xd017, ((mode->vsync_start - mode->vdisplay) >> 8) & 0xff }, { 0xd018, (mode->vsync_start - mode->vdisplay) & 0xff }, { 0xd019, ((mode->hsync_start - mode->hdisplay) >> 8) & 0xff }, { 0xd01a, (mode->hsync_start - mode->hdisplay) & 0xff }, }; return regmap_multi_reg_write(ctx->regmap, lt9211_timing, ARRAY_SIZE(lt9211_timing)); } static int lt9211_configure_plls(struct lt9211 *ctx, const struct drm_display_mode *mode) { const struct reg_sequence lt9211_pcr_seq[] = { { 0xd026, 0x17 }, { 0xd027, 0xc3 }, { 0xd02d, 0x30 }, { 0xd031, 0x10 }, { 0xd023, 0x20 }, { 0xd038, 0x02 }, { 0xd039, 0x10 }, { 0xd03a, 0x20 }, { 0xd03b, 0x60 }, { 0xd03f, 0x04 }, { 0xd040, 0x08 }, { 0xd041, 0x10 }, { 0x810b, 0xee }, { 0x810b, 0xfe }, }; unsigned int pval; int ret; /* DeSSC PLL reference clock is 25 MHz XTal. */ ret = regmap_write(ctx->regmap, 0x822d, 0x48); if (ret) return ret; if (mode->clock < 44000) { ret = regmap_write(ctx->regmap, 0x8235, 0x83); } else if (mode->clock < 88000) { ret = regmap_write(ctx->regmap, 0x8235, 0x82); } else if (mode->clock < 176000) { ret = regmap_write(ctx->regmap, 0x8235, 0x81); } else { dev_err(ctx->dev, "Unsupported mode clock (%d kHz) above 176 MHz.\n", mode->clock); return -EINVAL; } if (ret) return ret; /* Wait for the DeSSC PLL to stabilize. */ msleep(100); ret = regmap_multi_reg_write(ctx->regmap, lt9211_pcr_seq, ARRAY_SIZE(lt9211_pcr_seq)); if (ret) return ret; /* PCR stability test takes seconds. */ ret = regmap_read_poll_timeout(ctx->regmap, 0xd087, pval, pval & 0x8, 20000, 10000000); if (ret) dev_err(ctx->dev, "PCR unstable, ret=%i\n", ret); return ret; } static int lt9211_configure_tx(struct lt9211 *ctx, bool jeida, bool bpp24, bool de) { const struct reg_sequence system_lt9211_tx_phy_seq[] = { /* DPI output disable */ { 0x8262, 0x00 }, /* BIT(7) is LVDS dual-port */ { 0x823b, 0x38 | (ctx->lvds_dual_link ? BIT(7) : 0) }, { 0x823e, 0x92 }, { 0x823f, 0x48 }, { 0x8240, 0x31 }, { 0x8243, 0x80 }, { 0x8244, 0x00 }, { 0x8245, 0x00 }, { 0x8249, 0x00 }, { 0x824a, 0x01 }, { 0x824e, 0x00 }, { 0x824f, 0x00 }, { 0x8250, 0x00 }, { 0x8253, 0x00 }, { 0x8254, 0x01 }, /* LVDS channel order, Odd:Even 0x10..A:B, 0x40..B:A */ { 0x8646, ctx->lvds_dual_link_even_odd_swap ? 0x40 : 0x10 }, { 0x8120, 0x7b }, { 0x816b, 0xff }, }; const struct reg_sequence system_lt9211_tx_dig_seq[] = { { 0x8559, 0x40 | (jeida ? BIT(7) : 0) | (de ? BIT(5) : 0) | (bpp24 ? BIT(4) : 0) }, { 0x855a, 0xaa }, { 0x855b, 0xaa }, { 0x855c, ctx->lvds_dual_link ? BIT(0) : 0 }, { 0x85a1, 0x77 }, { 0x8640, 0x40 }, { 0x8641, 0x34 }, { 0x8642, 0x10 }, { 0x8643, 0x23 }, { 0x8644, 0x41 }, { 0x8645, 0x02 }, }; const struct reg_sequence system_lt9211_tx_pll_seq[] = { /* TX PLL power down */ { 0x8236, 0x01 }, { 0x8237, ctx->lvds_dual_link ? 0x2a : 0x29 }, { 0x8238, 0x06 }, { 0x8239, 0x30 }, { 0x823a, 0x8e }, { 0x8737, 0x14 }, { 0x8713, 0x00 }, { 0x8713, 0x80 }, }; unsigned int pval; int ret; ret = regmap_multi_reg_write(ctx->regmap, system_lt9211_tx_phy_seq, ARRAY_SIZE(system_lt9211_tx_phy_seq)); if (ret) return ret; ret = regmap_multi_reg_write(ctx->regmap, system_lt9211_tx_dig_seq, ARRAY_SIZE(system_lt9211_tx_dig_seq)); if (ret) return ret; ret = regmap_multi_reg_write(ctx->regmap, system_lt9211_tx_pll_seq, ARRAY_SIZE(system_lt9211_tx_pll_seq)); if (ret) return ret; ret = regmap_read_poll_timeout(ctx->regmap, 0x871f, pval, pval & 0x80, 10000, 1000000); if (ret) { dev_err(ctx->dev, "TX PLL unstable, ret=%i\n", ret); return ret; } ret = regmap_read_poll_timeout(ctx->regmap, 0x8720, pval, pval & 0x80, 10000, 1000000); if (ret) { dev_err(ctx->dev, "TX PLL unstable, ret=%i\n", ret); return ret; } return 0; } static void lt9211_atomic_enable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct lt9211 *ctx = bridge_to_lt9211(bridge); struct drm_atomic_state *state = old_bridge_state->base.state; const struct drm_bridge_state *bridge_state; const struct drm_crtc_state *crtc_state; const struct drm_display_mode *mode; struct drm_connector *connector; struct drm_crtc *crtc; bool lvds_format_24bpp; bool lvds_format_jeida; u32 bus_flags; int ret; ret = regulator_enable(ctx->vccio); if (ret) { dev_err(ctx->dev, "Failed to enable vccio: %d\n", ret); return; } /* Deassert reset */ gpiod_set_value(ctx->reset_gpio, 1); usleep_range(20000, 21000); /* Very long post-reset delay. */ /* Get the LVDS format from the bridge state. */ bridge_state = drm_atomic_get_new_bridge_state(state, bridge); bus_flags = bridge_state->output_bus_cfg.flags; switch (bridge_state->output_bus_cfg.format) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: lvds_format_24bpp = false; lvds_format_jeida = true; break; case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: lvds_format_24bpp = true; lvds_format_jeida = true; break; case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: lvds_format_24bpp = true; lvds_format_jeida = false; break; default: /* * Some bridges still don't set the correct * LVDS bus pixel format, use SPWG24 default * format until those are fixed. */ lvds_format_24bpp = true; lvds_format_jeida = false; dev_warn(ctx->dev, "Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n", bridge_state->output_bus_cfg.format); break; } /* * Retrieve the CRTC adjusted mode. This requires a little dance to go * from the bridge to the encoder, to the connector and to the CRTC. */ connector = drm_atomic_get_new_connector_for_encoder(state, bridge->encoder); crtc = drm_atomic_get_new_connector_state(state, connector)->crtc; crtc_state = drm_atomic_get_new_crtc_state(state, crtc); mode = &crtc_state->adjusted_mode; ret = lt9211_read_chipid(ctx); if (ret) return; ret = lt9211_system_init(ctx); if (ret) return; ret = lt9211_configure_rx(ctx); if (ret) return; ret = lt9211_autodetect_rx(ctx, mode); if (ret) return; ret = lt9211_configure_timing(ctx, mode); if (ret) return; ret = lt9211_configure_plls(ctx, mode); if (ret) return; ret = lt9211_configure_tx(ctx, lvds_format_jeida, lvds_format_24bpp, bus_flags & DRM_BUS_FLAG_DE_HIGH); if (ret) return; dev_dbg(ctx->dev, "LT9211 enabled.\n"); } static void lt9211_atomic_disable(struct drm_bridge *bridge, struct drm_bridge_state *old_bridge_state) { struct lt9211 *ctx = bridge_to_lt9211(bridge); int ret; /* * Put the chip in reset, pull nRST line low, * and assure lengthy 10ms reset low timing. */ gpiod_set_value(ctx->reset_gpio, 0); usleep_range(10000, 11000); /* Very long reset duration. */ ret = regulator_disable(ctx->vccio); if (ret) dev_err(ctx->dev, "Failed to disable vccio: %d\n", ret); regcache_mark_dirty(ctx->regmap); } static enum drm_mode_status lt9211_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { /* LVDS output clock range 25..176 MHz */ if (mode->clock < 25000) return MODE_CLOCK_LOW; if (mode->clock > 176000) return MODE_CLOCK_HIGH; return MODE_OK; } #define MAX_INPUT_SEL_FORMATS 1 static u32 * lt9211_atomic_get_input_bus_fmts(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { u32 *input_fmts; *num_input_fmts = 0; input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts), GFP_KERNEL); if (!input_fmts) return NULL; /* This is the DSI-end bus format */ input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24; *num_input_fmts = 1; return input_fmts; } static const struct drm_bridge_funcs lt9211_funcs = { .attach = lt9211_attach, .mode_valid = lt9211_mode_valid, .atomic_enable = lt9211_atomic_enable, .atomic_disable = lt9211_atomic_disable, .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state, .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state, .atomic_get_input_bus_fmts = lt9211_atomic_get_input_bus_fmts, .atomic_reset = drm_atomic_helper_bridge_reset, }; static int lt9211_parse_dt(struct lt9211 *ctx) { struct device_node *port2, *port3; struct drm_bridge *panel_bridge; struct device *dev = ctx->dev; struct drm_panel *panel; int dual_link; int ret; ctx->vccio = devm_regulator_get(dev, "vccio"); if (IS_ERR(ctx->vccio)) return dev_err_probe(dev, PTR_ERR(ctx->vccio), "Failed to get supply 'vccio'\n"); ctx->lvds_dual_link = false; ctx->lvds_dual_link_even_odd_swap = false; port2 = of_graph_get_port_by_id(dev->of_node, 2); port3 = of_graph_get_port_by_id(dev->of_node, 3); dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3); of_node_put(port2); of_node_put(port3); if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) { ctx->lvds_dual_link = true; /* Odd pixels to LVDS Channel A, even pixels to B */ ctx->lvds_dual_link_even_odd_swap = false; } else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) { ctx->lvds_dual_link = true; /* Even pixels to LVDS Channel A, odd pixels to B */ ctx->lvds_dual_link_even_odd_swap = true; } ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &panel, &panel_bridge); if (ret < 0) return ret; if (panel) { panel_bridge = devm_drm_panel_bridge_add(dev, panel); if (IS_ERR(panel_bridge)) return PTR_ERR(panel_bridge); } ctx->panel_bridge = panel_bridge; return 0; } static int lt9211_host_attach(struct lt9211 *ctx) { const struct mipi_dsi_device_info info = { .type = "lt9211", .channel = 0, .node = NULL, }; struct device *dev = ctx->dev; struct device_node *host_node; struct device_node *endpoint; struct mipi_dsi_device *dsi; struct mipi_dsi_host *host; int dsi_lanes; int ret; endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1); dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4); host_node = of_graph_get_remote_port_parent(endpoint); host = of_find_mipi_dsi_host_by_node(host_node); of_node_put(host_node); of_node_put(endpoint); if (!host) return -EPROBE_DEFER; if (dsi_lanes < 0) return dsi_lanes; dsi = devm_mipi_dsi_device_register_full(dev, host, &info); if (IS_ERR(dsi)) return dev_err_probe(dev, PTR_ERR(dsi), "failed to create dsi device\n"); ctx->dsi = dsi; dsi->lanes = dsi_lanes; dsi->format = MIPI_DSI_FMT_RGB888; dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE | MIPI_DSI_MODE_VIDEO_HSE | MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP | MIPI_DSI_MODE_NO_EOT_PACKET; ret = devm_mipi_dsi_attach(dev, dsi); if (ret < 0) { dev_err(dev, "failed to attach dsi to host: %d\n", ret); return ret; } return 0; } static int lt9211_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct lt9211 *ctx; int ret; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = dev; /* * Put the chip in reset, pull nRST line low, * and assure lengthy 10ms reset low timing. */ ctx->reset_gpio = devm_gpiod_get_optional(ctx->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(ctx->reset_gpio)) return PTR_ERR(ctx->reset_gpio); usleep_range(10000, 11000); /* Very long reset duration. */ ret = lt9211_parse_dt(ctx); if (ret) return ret; ctx->regmap = devm_regmap_init_i2c(client, &lt9211_regmap_config); if (IS_ERR(ctx->regmap)) return PTR_ERR(ctx->regmap); dev_set_drvdata(dev, ctx); i2c_set_clientdata(client, ctx); ctx->bridge.funcs = &lt9211_funcs; ctx->bridge.of_node = dev->of_node; drm_bridge_add(&ctx->bridge); ret = lt9211_host_attach(ctx); if (ret) drm_bridge_remove(&ctx->bridge); return ret; } static void lt9211_remove(struct i2c_client *client) { struct lt9211 *ctx = i2c_get_clientdata(client); drm_bridge_remove(&ctx->bridge); } static struct i2c_device_id lt9211_id[] = { { "lontium,lt9211" }, {}, }; MODULE_DEVICE_TABLE(i2c, lt9211_id); static const struct of_device_id lt9211_match_table[] = { { .compatible = "lontium,lt9211" }, {}, }; MODULE_DEVICE_TABLE(of, lt9211_match_table); static struct i2c_driver lt9211_driver = { .probe = lt9211_probe, .remove = lt9211_remove, .id_table = lt9211_id, .driver = { .name = "lt9211", .of_match_table = lt9211_match_table, }, }; module_i2c_driver(lt9211_driver); MODULE_AUTHOR("Marek Vasut <[email protected]>"); MODULE_DESCRIPTION("Lontium LT9211 DSI/LVDS/DPI bridge driver"); MODULE_LICENSE("GPL");
/* * P1020 UTM-PC Device Tree Source stub (no addresses or top-level ranges) * * Copyright 2012 Freescale Semiconductor Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ &lbc { nor@0,0 { #address-cells = <1>; #size-cells = <1>; compatible = "cfi-flash"; reg = <0x0 0x0 0x2000000>; bank-width = <2>; device-width = <1>; partition@0 { /* 256KB for DTB Image */ reg = <0x0 0x00040000>; label = "NOR DTB Image"; }; partition@40000 { /* 3.75 MB for Linux Kernel Image */ reg = <0x00040000 0x003c0000>; label = "NOR Linux Kernel Image"; }; partition@400000 { /* 27MB for Root file System */ reg = <0x00400000 0x01b00000>; label = "NOR Root File System"; }; partition@1f00000 { /* This location must not be altered */ /* 512KB for u-boot Bootloader Image */ /* 512KB for u-boot Environment Variables */ reg = <0x01f00000 0x00100000>; label = "NOR U-Boot Image"; read-only; }; }; }; &soc { i2c@3000 { rtc@68 { compatible = "dallas,ds1339"; reg = <0x68>; }; }; mdio@24000 { phy0: ethernet-phy@0 { interrupts = <3 1 0 0>; reg = <0x0>; }; phy1: ethernet-phy@1 { interrupts = <2 1 0 0>; reg = <0x1>; }; phy2: ethernet-phy@2 { interrupts = <1 1 0 0>; reg = <0x2>; }; }; mdio@25000 { tbi1: tbi-phy@11 { reg = <0x11>; device_type = "tbi-phy"; }; }; mdio@26000 { tbi2: tbi-phy@11 { reg = <0x11>; device_type = "tbi-phy"; }; }; enet0: ethernet@b0000 { phy-handle = <&phy2>; phy-connection-type = "rgmii-id"; }; enet1: ethernet@b1000 { phy-handle = <&phy0>; tbi-handle = <&tbi1>; phy-connection-type = "sgmii"; }; enet2: ethernet@b2000 { phy-handle = <&phy1>; phy-connection-type = "rgmii-id"; }; usb@22000 { phy_type = "ulpi"; }; /* USB2 is shared with localbus, so it must be disabled by default. We can't put 'status = "disabled";' here since U-Boot doesn't clear the status property when it enables USB2. OTOH, U-Boot does create a new node when there isn't any. So, just comment it out. */ usb@23000 { status = "disabled"; phy_type = "ulpi"; }; };
/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */ /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ #ifndef __USDT_BPF_H__ #define __USDT_BPF_H__ #include <linux/errno.h> #include "bpf_helpers.h" #include "bpf_tracing.h" /* Below types and maps are internal implementation details of libbpf's USDT * support and are subjects to change. Also, bpf_usdt_xxx() API helpers should * be considered an unstable API as well and might be adjusted based on user * feedback from using libbpf's USDT support in production. */ /* User can override BPF_USDT_MAX_SPEC_CNT to change default size of internal * map that keeps track of USDT argument specifications. This might be * necessary if there are a lot of USDT attachments. */ #ifndef BPF_USDT_MAX_SPEC_CNT #define BPF_USDT_MAX_SPEC_CNT 256 #endif /* User can override BPF_USDT_MAX_IP_CNT to change default size of internal * map that keeps track of IP (memory address) mapping to USDT argument * specification. * Note, if kernel supports BPF cookies, this map is not used and could be * resized all the way to 1 to save a bit of memory. */ #ifndef BPF_USDT_MAX_IP_CNT #define BPF_USDT_MAX_IP_CNT (4 * BPF_USDT_MAX_SPEC_CNT) #endif enum __bpf_usdt_arg_type { BPF_USDT_ARG_CONST, BPF_USDT_ARG_REG, BPF_USDT_ARG_REG_DEREF, }; struct __bpf_usdt_arg_spec { /* u64 scalar interpreted depending on arg_type, see below */ __u64 val_off; /* arg location case, see bpf_usdt_arg() for details */ enum __bpf_usdt_arg_type arg_type; /* offset of referenced register within struct pt_regs */ short reg_off; /* whether arg should be interpreted as signed value */ bool arg_signed; /* number of bits that need to be cleared and, optionally, * sign-extended to cast arguments that are 1, 2, or 4 bytes * long into final 8-byte u64/s64 value returned to user */ char arg_bitshift; }; /* should match USDT_MAX_ARG_CNT in usdt.c exactly */ #define BPF_USDT_MAX_ARG_CNT 12 struct __bpf_usdt_spec { struct __bpf_usdt_arg_spec args[BPF_USDT_MAX_ARG_CNT]; __u64 usdt_cookie; short arg_cnt; }; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __uint(max_entries, BPF_USDT_MAX_SPEC_CNT); __type(key, int); __type(value, struct __bpf_usdt_spec); } __bpf_usdt_specs SEC(".maps") __weak; struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, BPF_USDT_MAX_IP_CNT); __type(key, long); __type(value, __u32); } __bpf_usdt_ip_to_spec_id SEC(".maps") __weak; extern const _Bool LINUX_HAS_BPF_COOKIE __kconfig; static __always_inline int __bpf_usdt_spec_id(struct pt_regs *ctx) { if (!LINUX_HAS_BPF_COOKIE) { long ip = PT_REGS_IP(ctx); int *spec_id_ptr; spec_id_ptr = bpf_map_lookup_elem(&__bpf_usdt_ip_to_spec_id, &ip); return spec_id_ptr ? *spec_id_ptr : -ESRCH; } return bpf_get_attach_cookie(ctx); } /* Return number of USDT arguments defined for currently traced USDT. */ __weak __hidden int bpf_usdt_arg_cnt(struct pt_regs *ctx) { struct __bpf_usdt_spec *spec; int spec_id; spec_id = __bpf_usdt_spec_id(ctx); if (spec_id < 0) return -ESRCH; spec = bpf_map_lookup_elem(&__bpf_usdt_specs, &spec_id); if (!spec) return -ESRCH; return spec->arg_cnt; } /* Fetch USDT argument #*arg_num* (zero-indexed) and put its value into *res. * Returns 0 on success; negative error, otherwise. * On error *res is guaranteed to be set to zero. */ __weak __hidden int bpf_usdt_arg(struct pt_regs *ctx, __u64 arg_num, long *res) { struct __bpf_usdt_spec *spec; struct __bpf_usdt_arg_spec *arg_spec; unsigned long val; int err, spec_id; *res = 0; spec_id = __bpf_usdt_spec_id(ctx); if (spec_id < 0) return -ESRCH; spec = bpf_map_lookup_elem(&__bpf_usdt_specs, &spec_id); if (!spec) return -ESRCH; if (arg_num >= BPF_USDT_MAX_ARG_CNT) return -ENOENT; barrier_var(arg_num); if (arg_num >= spec->arg_cnt) return -ENOENT; arg_spec = &spec->args[arg_num]; switch (arg_spec->arg_type) { case BPF_USDT_ARG_CONST: /* Arg is just a constant ("-4@$-9" in USDT arg spec). * value is recorded in arg_spec->val_off directly. */ val = arg_spec->val_off; break; case BPF_USDT_ARG_REG: /* Arg is in a register (e.g, "8@%rax" in USDT arg spec), * so we read the contents of that register directly from * struct pt_regs. To keep things simple user-space parts * record offsetof(struct pt_regs, <regname>) in arg_spec->reg_off. */ err = bpf_probe_read_kernel(&val, sizeof(val), (void *)ctx + arg_spec->reg_off); if (err) return err; break; case BPF_USDT_ARG_REG_DEREF: /* Arg is in memory addressed by register, plus some offset * (e.g., "-4@-1204(%rbp)" in USDT arg spec). Register is * identified like with BPF_USDT_ARG_REG case, and the offset * is in arg_spec->val_off. We first fetch register contents * from pt_regs, then do another user-space probe read to * fetch argument value itself. */ err = bpf_probe_read_kernel(&val, sizeof(val), (void *)ctx + arg_spec->reg_off); if (err) return err; err = bpf_probe_read_user(&val, sizeof(val), (void *)val + arg_spec->val_off); if (err) return err; #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ val >>= arg_spec->arg_bitshift; #endif break; default: return -EINVAL; } /* cast arg from 1, 2, or 4 bytes to final 8 byte size clearing * necessary upper arg_bitshift bits, with sign extension if argument * is signed */ val <<= arg_spec->arg_bitshift; if (arg_spec->arg_signed) val = ((long)val) >> arg_spec->arg_bitshift; else val = val >> arg_spec->arg_bitshift; *res = val; return 0; } /* Retrieve user-specified cookie value provided during attach as * bpf_usdt_opts.usdt_cookie. This serves the same purpose as BPF cookie * returned by bpf_get_attach_cookie(). Libbpf's support for USDT is itself * utilizing BPF cookies internally, so user can't use BPF cookie directly * for USDT programs and has to use bpf_usdt_cookie() API instead. */ __weak __hidden long bpf_usdt_cookie(struct pt_regs *ctx) { struct __bpf_usdt_spec *spec; int spec_id; spec_id = __bpf_usdt_spec_id(ctx); if (spec_id < 0) return 0; spec = bpf_map_lookup_elem(&__bpf_usdt_specs, &spec_id); if (!spec) return 0; return spec->usdt_cookie; } /* we rely on ___bpf_apply() and ___bpf_narg() macros already defined in bpf_tracing.h */ #define ___bpf_usdt_args0() ctx #define ___bpf_usdt_args1(x) ___bpf_usdt_args0(), ({ long _x; bpf_usdt_arg(ctx, 0, &_x); _x; }) #define ___bpf_usdt_args2(x, args...) ___bpf_usdt_args1(args), ({ long _x; bpf_usdt_arg(ctx, 1, &_x); _x; }) #define ___bpf_usdt_args3(x, args...) ___bpf_usdt_args2(args), ({ long _x; bpf_usdt_arg(ctx, 2, &_x); _x; }) #define ___bpf_usdt_args4(x, args...) ___bpf_usdt_args3(args), ({ long _x; bpf_usdt_arg(ctx, 3, &_x); _x; }) #define ___bpf_usdt_args5(x, args...) ___bpf_usdt_args4(args), ({ long _x; bpf_usdt_arg(ctx, 4, &_x); _x; }) #define ___bpf_usdt_args6(x, args...) ___bpf_usdt_args5(args), ({ long _x; bpf_usdt_arg(ctx, 5, &_x); _x; }) #define ___bpf_usdt_args7(x, args...) ___bpf_usdt_args6(args), ({ long _x; bpf_usdt_arg(ctx, 6, &_x); _x; }) #define ___bpf_usdt_args8(x, args...) ___bpf_usdt_args7(args), ({ long _x; bpf_usdt_arg(ctx, 7, &_x); _x; }) #define ___bpf_usdt_args9(x, args...) ___bpf_usdt_args8(args), ({ long _x; bpf_usdt_arg(ctx, 8, &_x); _x; }) #define ___bpf_usdt_args10(x, args...) ___bpf_usdt_args9(args), ({ long _x; bpf_usdt_arg(ctx, 9, &_x); _x; }) #define ___bpf_usdt_args11(x, args...) ___bpf_usdt_args10(args), ({ long _x; bpf_usdt_arg(ctx, 10, &_x); _x; }) #define ___bpf_usdt_args12(x, args...) ___bpf_usdt_args11(args), ({ long _x; bpf_usdt_arg(ctx, 11, &_x); _x; }) #define ___bpf_usdt_args(args...) ___bpf_apply(___bpf_usdt_args, ___bpf_narg(args))(args) /* * BPF_USDT serves the same purpose for USDT handlers as BPF_PROG for * tp_btf/fentry/fexit BPF programs and BPF_KPROBE for kprobes. * Original struct pt_regs * context is preserved as 'ctx' argument. */ #define BPF_USDT(name, args...) \ name(struct pt_regs *ctx); \ static __always_inline typeof(name(0)) \ ____##name(struct pt_regs *ctx, ##args); \ typeof(name(0)) name(struct pt_regs *ctx) \ { \ _Pragma("GCC diagnostic push") \ _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \ return ____##name(___bpf_usdt_args(args)); \ _Pragma("GCC diagnostic pop") \ } \ static __always_inline typeof(name(0)) \ ____##name(struct pt_regs *ctx, ##args) #endif /* __USDT_BPF_H__ */
/* * Copyright (c) 2017 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #ifndef MLX5_FPGA_SDK_H #define MLX5_FPGA_SDK_H #include <linux/types.h> #include <linux/dma-direction.h> /** * DOC: Innova SDK * This header defines the in-kernel API for Innova FPGA client drivers. */ #define SBU_QP_QUEUE_SIZE 8 #define MLX5_FPGA_CMD_TIMEOUT_MSEC (60 * 1000) /** * enum mlx5_fpga_access_type - Enumerated the different methods possible for * accessing the device memory address space * * @MLX5_FPGA_ACCESS_TYPE_I2C: Use the slow CX-FPGA I2C bus * @MLX5_FPGA_ACCESS_TYPE_DONTCARE: Use the fastest available method */ enum mlx5_fpga_access_type { MLX5_FPGA_ACCESS_TYPE_I2C = 0x0, MLX5_FPGA_ACCESS_TYPE_DONTCARE = 0x0, }; struct mlx5_fpga_conn; struct mlx5_fpga_device; /** * struct mlx5_fpga_dma_entry - A scatter-gather DMA entry */ struct mlx5_fpga_dma_entry { /** @data: Virtual address pointer to the data */ void *data; /** @size: Size in bytes of the data */ unsigned int size; /** @dma_addr: Private member. Physical DMA-mapped address of the data */ dma_addr_t dma_addr; }; /** * struct mlx5_fpga_dma_buf - A packet buffer * May contain up to 2 scatter-gather data entries */ struct mlx5_fpga_dma_buf { /** @dma_dir: DMA direction */ enum dma_data_direction dma_dir; /** @sg: Scatter-gather entries pointing to the data in memory */ struct mlx5_fpga_dma_entry sg[2]; /** @list: Item in SQ backlog, for TX packets */ struct list_head list; /** * @complete: Completion routine, for TX packets * @conn: FPGA Connection this packet was sent to * @fdev: FPGA device this packet was sent to * @buf: The packet buffer * @status: 0 if successful, or an error code otherwise */ void (*complete)(struct mlx5_fpga_conn *conn, struct mlx5_fpga_device *fdev, struct mlx5_fpga_dma_buf *buf, u8 status); }; /** * struct mlx5_fpga_conn_attr - FPGA connection attributes * Describes the attributes of a connection */ struct mlx5_fpga_conn_attr { /** @tx_size: Size of connection TX queue, in packets */ unsigned int tx_size; /** @rx_size: Size of connection RX queue, in packets */ unsigned int rx_size; /** * @recv_cb: Callback function which is called for received packets * @cb_arg: The value provided in mlx5_fpga_conn_attr.cb_arg * @buf: A buffer containing a received packet * * buf is guaranteed to only contain a single scatter-gather entry. * The size of the actual packet received is specified in buf.sg[0].size * When this callback returns, the packet buffer may be re-used for * subsequent receives. */ void (*recv_cb)(void *cb_arg, struct mlx5_fpga_dma_buf *buf); /** @cb_arg: A context to be passed to recv_cb callback */ void *cb_arg; }; /** * mlx5_fpga_sbu_conn_create() - Initialize a new FPGA SBU connection * @fdev: The FPGA device * @attr: Attributes of the new connection * * Sets up a new FPGA SBU connection with the specified attributes. * The receive callback function may be called for incoming messages even * before this function returns. * * The caller must eventually destroy the connection by calling * mlx5_fpga_sbu_conn_destroy. * * Return: A new connection, or ERR_PTR() error value otherwise. */ struct mlx5_fpga_conn * mlx5_fpga_sbu_conn_create(struct mlx5_fpga_device *fdev, struct mlx5_fpga_conn_attr *attr); /** * mlx5_fpga_sbu_conn_destroy() - Destroy an FPGA SBU connection * @conn: The FPGA SBU connection to destroy * * Cleans up an FPGA SBU connection which was previously created with * mlx5_fpga_sbu_conn_create. */ void mlx5_fpga_sbu_conn_destroy(struct mlx5_fpga_conn *conn); /** * mlx5_fpga_sbu_conn_sendmsg() - Queue the transmission of a packet * @conn: An FPGA SBU connection * @buf: The packet buffer * * Queues a packet for transmission over an FPGA SBU connection. * The buffer should not be modified or freed until completion. * Upon completion, the buf's complete() callback is invoked, indicating the * success or error status of the transmission. * * Return: 0 if successful, or an error value otherwise. */ int mlx5_fpga_sbu_conn_sendmsg(struct mlx5_fpga_conn *conn, struct mlx5_fpga_dma_buf *buf); /** * mlx5_fpga_mem_read() - Read from FPGA memory address space * @fdev: The FPGA device * @size: Size of chunk to read, in bytes * @addr: Starting address to read from, in FPGA address space * @buf: Buffer to read into * @access_type: Method for reading * * Reads from the specified address into the specified buffer. * The address may point to configuration space or to DDR. * Large reads may be performed internally as several non-atomic operations. * This function may sleep, so should not be called from atomic contexts. * * Return: 0 if successful, or an error value otherwise. */ int mlx5_fpga_mem_read(struct mlx5_fpga_device *fdev, size_t size, u64 addr, void *buf, enum mlx5_fpga_access_type access_type); /** * mlx5_fpga_mem_write() - Write to FPGA memory address space * @fdev: The FPGA device * @size: Size of chunk to write, in bytes * @addr: Starting address to write to, in FPGA address space * @buf: Buffer which contains data to write * @access_type: Method for writing * * Writes the specified buffer data to FPGA memory at the specified address. * The address may point to configuration space or to DDR. * Large writes may be performed internally as several non-atomic operations. * This function may sleep, so should not be called from atomic contexts. * * Return: 0 if successful, or an error value otherwise. */ int mlx5_fpga_mem_write(struct mlx5_fpga_device *fdev, size_t size, u64 addr, void *buf, enum mlx5_fpga_access_type access_type); /** * mlx5_fpga_get_sbu_caps() - Read the SBU capabilities * @fdev: The FPGA device * @size: Size of the buffer to read into * @buf: Buffer to read the capabilities into * * Reads the FPGA SBU capabilities into the specified buffer. * The format of the capabilities buffer is SBU-dependent. * * Return: 0 if successful * -EINVAL if the buffer is not large enough to contain SBU caps * or any other error value otherwise. */ int mlx5_fpga_get_sbu_caps(struct mlx5_fpga_device *fdev, int size, void *buf); #endif /* MLX5_FPGA_SDK_H */
// SPDX-License-Identifier: GPL-2.0-only /* IEEE754 floating point arithmetic * single precision */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. */ #include "ieee754sp.h" union ieee754sp ieee754sp_neg(union ieee754sp x) { union ieee754sp y; if (ieee754_csr.abs2008) { y = x; SPSIGN(y) = !SPSIGN(x); } else { unsigned int oldrm; oldrm = ieee754_csr.rm; ieee754_csr.rm = FPU_CSR_RD; y = ieee754sp_sub(ieee754sp_zero(0), x); ieee754_csr.rm = oldrm; } return y; } union ieee754sp ieee754sp_abs(union ieee754sp x) { union ieee754sp y; if (ieee754_csr.abs2008) { y = x; SPSIGN(y) = 0; } else { unsigned int oldrm; oldrm = ieee754_csr.rm; ieee754_csr.rm = FPU_CSR_RD; if (SPSIGN(x)) y = ieee754sp_sub(ieee754sp_zero(0), x); else y = ieee754sp_add(ieee754sp_zero(0), x); ieee754_csr.rm = oldrm; } return y; }
// SPDX-License-Identifier: GPL-2.0-only /* * MC33880 high-side/low-side switch GPIO driver * Copyright (c) 2009 Intel Corporation */ /* Supports: * Freescale MC33880 high-side/low-side switch */ #include <linux/init.h> #include <linux/mutex.h> #include <linux/spi/spi.h> #include <linux/spi/mc33880.h> #include <linux/gpio/driver.h> #include <linux/slab.h> #include <linux/module.h> #define DRIVER_NAME "mc33880" /* * Pin configurations, see MAX7301 datasheet page 6 */ #define PIN_CONFIG_MASK 0x03 #define PIN_CONFIG_IN_PULLUP 0x03 #define PIN_CONFIG_IN_WO_PULLUP 0x02 #define PIN_CONFIG_OUT 0x01 #define PIN_NUMBER 8 /* * Some registers must be read back to modify. * To save time we cache them here in memory */ struct mc33880 { struct mutex lock; /* protect from simultaneous accesses */ u8 port_config; struct gpio_chip chip; struct spi_device *spi; }; static int mc33880_write_config(struct mc33880 *mc) { return spi_write(mc->spi, &mc->port_config, sizeof(mc->port_config)); } static int __mc33880_set(struct mc33880 *mc, unsigned offset, int value) { if (value) mc->port_config |= 1 << offset; else mc->port_config &= ~(1 << offset); return mc33880_write_config(mc); } static void mc33880_set(struct gpio_chip *chip, unsigned offset, int value) { struct mc33880 *mc = gpiochip_get_data(chip); mutex_lock(&mc->lock); __mc33880_set(mc, offset, value); mutex_unlock(&mc->lock); } static int mc33880_probe(struct spi_device *spi) { struct mc33880 *mc; struct mc33880_platform_data *pdata; int ret; pdata = dev_get_platdata(&spi->dev); if (!pdata || !pdata->base) { dev_dbg(&spi->dev, "incorrect or missing platform data\n"); return -EINVAL; } /* * bits_per_word cannot be configured in platform data */ spi->bits_per_word = 8; ret = spi_setup(spi); if (ret < 0) return ret; mc = devm_kzalloc(&spi->dev, sizeof(struct mc33880), GFP_KERNEL); if (!mc) return -ENOMEM; mutex_init(&mc->lock); spi_set_drvdata(spi, mc); mc->spi = spi; mc->chip.label = DRIVER_NAME; mc->chip.set = mc33880_set; mc->chip.base = pdata->base; mc->chip.ngpio = PIN_NUMBER; mc->chip.can_sleep = true; mc->chip.parent = &spi->dev; mc->chip.owner = THIS_MODULE; mc->port_config = 0x00; /* write twice, because during initialisation the first setting * is just for testing SPI communication, and the second is the * "real" configuration */ ret = mc33880_write_config(mc); mc->port_config = 0x00; if (!ret) ret = mc33880_write_config(mc); if (ret) { dev_err(&spi->dev, "Failed writing to " DRIVER_NAME ": %d\n", ret); goto exit_destroy; } ret = gpiochip_add_data(&mc->chip, mc); if (ret) goto exit_destroy; return ret; exit_destroy: mutex_destroy(&mc->lock); return ret; } static void mc33880_remove(struct spi_device *spi) { struct mc33880 *mc; mc = spi_get_drvdata(spi); gpiochip_remove(&mc->chip); mutex_destroy(&mc->lock); } static struct spi_driver mc33880_driver = { .driver = { .name = DRIVER_NAME, }, .probe = mc33880_probe, .remove = mc33880_remove, }; static int __init mc33880_init(void) { return spi_register_driver(&mc33880_driver); } /* register after spi postcore initcall and before * subsys initcalls that may rely on these GPIOs */ subsys_initcall(mc33880_init); static void __exit mc33880_exit(void) { spi_unregister_driver(&mc33880_driver); } module_exit(mc33880_exit); MODULE_AUTHOR("Mocean Laboratories <[email protected]>"); MODULE_DESCRIPTION("MC33880 high-side/low-side switch GPIO driver"); MODULE_LICENSE("GPL v2");
/* CoreChip-sz SR9800 one chip USB 2.0 Ethernet Devices * * Author : Liu Junliang <[email protected]> * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #ifndef _SR9800_H #define _SR9800_H /* SR9800 spec. command table on Linux Platform */ /* command : Software Station Management Control Reg */ #define SR_CMD_SET_SW_MII 0x06 /* command : PHY Read Reg */ #define SR_CMD_READ_MII_REG 0x07 /* command : PHY Write Reg */ #define SR_CMD_WRITE_MII_REG 0x08 /* command : Hardware Station Management Control Reg */ #define SR_CMD_SET_HW_MII 0x0a /* command : SROM Read Reg */ #define SR_CMD_READ_EEPROM 0x0b /* command : SROM Write Reg */ #define SR_CMD_WRITE_EEPROM 0x0c /* command : SROM Write Enable Reg */ #define SR_CMD_WRITE_ENABLE 0x0d /* command : SROM Write Disable Reg */ #define SR_CMD_WRITE_DISABLE 0x0e /* command : RX Control Read Reg */ #define SR_CMD_READ_RX_CTL 0x0f #define SR_RX_CTL_PRO (1 << 0) #define SR_RX_CTL_AMALL (1 << 1) #define SR_RX_CTL_SEP (1 << 2) #define SR_RX_CTL_AB (1 << 3) #define SR_RX_CTL_AM (1 << 4) #define SR_RX_CTL_AP (1 << 5) #define SR_RX_CTL_ARP (1 << 6) #define SR_RX_CTL_SO (1 << 7) #define SR_RX_CTL_RH1M (1 << 8) #define SR_RX_CTL_RH2M (1 << 9) #define SR_RX_CTL_RH3M (1 << 10) /* command : RX Control Write Reg */ #define SR_CMD_WRITE_RX_CTL 0x10 /* command : IPG0/IPG1/IPG2 Control Read Reg */ #define SR_CMD_READ_IPG012 0x11 /* command : IPG0/IPG1/IPG2 Control Write Reg */ #define SR_CMD_WRITE_IPG012 0x12 /* command : Node ID Read Reg */ #define SR_CMD_READ_NODE_ID 0x13 /* command : Node ID Write Reg */ #define SR_CMD_WRITE_NODE_ID 0x14 /* command : Multicast Filter Array Read Reg */ #define SR_CMD_READ_MULTI_FILTER 0x15 /* command : Multicast Filter Array Write Reg */ #define SR_CMD_WRITE_MULTI_FILTER 0x16 /* command : Eth/HomePNA PHY Address Reg */ #define SR_CMD_READ_PHY_ID 0x19 /* command : Medium Status Read Reg */ #define SR_CMD_READ_MEDIUM_STATUS 0x1a #define SR_MONITOR_LINK (1 << 1) #define SR_MONITOR_MAGIC (1 << 2) #define SR_MONITOR_HSFS (1 << 4) /* command : Medium Status Write Reg */ #define SR_CMD_WRITE_MEDIUM_MODE 0x1b #define SR_MEDIUM_GM (1 << 0) #define SR_MEDIUM_FD (1 << 1) #define SR_MEDIUM_AC (1 << 2) #define SR_MEDIUM_ENCK (1 << 3) #define SR_MEDIUM_RFC (1 << 4) #define SR_MEDIUM_TFC (1 << 5) #define SR_MEDIUM_JFE (1 << 6) #define SR_MEDIUM_PF (1 << 7) #define SR_MEDIUM_RE (1 << 8) #define SR_MEDIUM_PS (1 << 9) #define SR_MEDIUM_RSV (1 << 10) #define SR_MEDIUM_SBP (1 << 11) #define SR_MEDIUM_SM (1 << 12) /* command : Monitor Mode Status Read Reg */ #define SR_CMD_READ_MONITOR_MODE 0x1c /* command : Monitor Mode Status Write Reg */ #define SR_CMD_WRITE_MONITOR_MODE 0x1d /* command : GPIO Status Read Reg */ #define SR_CMD_READ_GPIOS 0x1e #define SR_GPIO_GPO0EN (1 << 0) /* GPIO0 Output enable */ #define SR_GPIO_GPO_0 (1 << 1) /* GPIO0 Output value */ #define SR_GPIO_GPO1EN (1 << 2) /* GPIO1 Output enable */ #define SR_GPIO_GPO_1 (1 << 3) /* GPIO1 Output value */ #define SR_GPIO_GPO2EN (1 << 4) /* GPIO2 Output enable */ #define SR_GPIO_GPO_2 (1 << 5) /* GPIO2 Output value */ #define SR_GPIO_RESERVED (1 << 6) /* Reserved */ #define SR_GPIO_RSE (1 << 7) /* Reload serial EEPROM */ /* command : GPIO Status Write Reg */ #define SR_CMD_WRITE_GPIOS 0x1f /* command : Eth PHY Power and Reset Control Reg */ #define SR_CMD_SW_RESET 0x20 #define SR_SWRESET_CLEAR 0x00 #define SR_SWRESET_RR (1 << 0) #define SR_SWRESET_RT (1 << 1) #define SR_SWRESET_PRTE (1 << 2) #define SR_SWRESET_PRL (1 << 3) #define SR_SWRESET_BZ (1 << 4) #define SR_SWRESET_IPRL (1 << 5) #define SR_SWRESET_IPPD (1 << 6) /* command : Software Interface Selection Status Read Reg */ #define SR_CMD_SW_PHY_STATUS 0x21 /* command : Software Interface Selection Status Write Reg */ #define SR_CMD_SW_PHY_SELECT 0x22 /* command : BULK in Buffer Size Reg */ #define SR_CMD_BULKIN_SIZE 0x2A /* command : LED_MUX Control Reg */ #define SR_CMD_LED_MUX 0x70 #define SR_LED_MUX_TX_ACTIVE (1 << 0) #define SR_LED_MUX_RX_ACTIVE (1 << 1) #define SR_LED_MUX_COLLISION (1 << 2) #define SR_LED_MUX_DUP_COL (1 << 3) #define SR_LED_MUX_DUP (1 << 4) #define SR_LED_MUX_SPEED (1 << 5) #define SR_LED_MUX_LINK_ACTIVE (1 << 6) #define SR_LED_MUX_LINK (1 << 7) /* Register Access Flags */ #define SR_REQ_RD_REG (USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE) #define SR_REQ_WR_REG (USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE) /* Multicast Filter Array size & Max Number */ #define SR_MCAST_FILTER_SIZE 8 #define SR_MAX_MCAST 64 /* IPG0/1/2 Default Value */ #define SR9800_IPG0_DEFAULT 0x15 #define SR9800_IPG1_DEFAULT 0x0c #define SR9800_IPG2_DEFAULT 0x12 /* Medium Status Default Mode */ #define SR9800_MEDIUM_DEFAULT \ (SR_MEDIUM_FD | SR_MEDIUM_RFC | \ SR_MEDIUM_TFC | SR_MEDIUM_PS | \ SR_MEDIUM_AC | SR_MEDIUM_RE) /* RX Control Default Setting */ #define SR_DEFAULT_RX_CTL \ (SR_RX_CTL_SO | SR_RX_CTL_AB | SR_RX_CTL_RH1M) /* EEPROM Magic Number & EEPROM Size */ #define SR_EEPROM_MAGIC 0xdeadbeef #define SR9800_EEPROM_LEN 0xff /* SR9800 Driver Version and Driver Name */ #define DRIVER_VERSION "11-Nov-2013" #define DRIVER_NAME "CoreChips" #define DRIVER_FLAG \ (FLAG_ETHER | FLAG_FRAMING_AX | FLAG_LINK_INTR | FLAG_MULTI_PACKET) /* SR9800 BULKIN Buffer Size */ #define SR9800_MAX_BULKIN_2K 0 #define SR9800_MAX_BULKIN_4K 1 #define SR9800_MAX_BULKIN_6K 2 #define SR9800_MAX_BULKIN_8K 3 #define SR9800_MAX_BULKIN_16K 4 #define SR9800_MAX_BULKIN_20K 5 #define SR9800_MAX_BULKIN_24K 6 #define SR9800_MAX_BULKIN_32K 7 static const struct {unsigned short size, byte_cnt, threshold; } SR9800_BULKIN_SIZE[] = { /* 2k */ {2048, 0x8000, 0x8001}, /* 4k */ {4096, 0x8100, 0x8147}, /* 6k */ {6144, 0x8200, 0x81EB}, /* 8k */ {8192, 0x8300, 0x83D7}, /* 16 */ {16384, 0x8400, 0x851E}, /* 20k */ {20480, 0x8500, 0x8666}, /* 24k */ {24576, 0x8600, 0x87AE}, /* 32k */ {32768, 0x8700, 0x8A3D}, }; /* This structure cannot exceed sizeof(unsigned long [5]) AKA 20 bytes */ struct sr_data { u8 multi_filter[SR_MCAST_FILTER_SIZE]; u8 mac_addr[ETH_ALEN]; u8 phymode; u8 ledmode; u8 eeprom_len; }; struct sr9800_int_data { __le16 res1; u8 link; __le16 res2; u8 status; __le16 res3; } __packed; #endif /* _SR9800_H */
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _BCACHEFS_MIGRATE_H #define _BCACHEFS_MIGRATE_H int bch2_dev_data_drop(struct bch_fs *, unsigned, int); #endif /* _BCACHEFS_MIGRATE_H */
/* * Copyright 2016 - Lee Jones <[email protected]> * * This file is dual-licensed: you can use it either under the terms * of the GPL or the X11 license, at your option. Note that this dual * licensing only applies to this file, and not this project as a * whole. * * a) This file is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this file; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA * * Or, alternatively, * * b) Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /dts-v1/; #include "stm32f469.dtsi" #include "stm32f469-pinctrl.dtsi" #include <dt-bindings/gpio/gpio.h> #include <dt-bindings/input/input.h> / { model = "STMicroelectronics STM32F469i-DISCO board"; compatible = "st,stm32f469i-disco", "st,stm32f469"; chosen { bootargs = "root=/dev/ram"; stdout-path = "serial0:115200n8"; }; memory@0 { device_type = "memory"; reg = <0x00000000 0x1000000>; }; aliases { serial0 = &usart3; }; vcc_3v3: vcc-3v3 { compatible = "regulator-fixed"; regulator-name = "vcc_3v3"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; }; soc { dma-ranges = <0xc0000000 0x0 0x10000000>; }; leds { compatible = "gpio-leds"; led-green { gpios = <&gpiog 6 GPIO_ACTIVE_LOW>; linux,default-trigger = "heartbeat"; }; led-orange { gpios = <&gpiod 4 GPIO_ACTIVE_LOW>; }; led-red { gpios = <&gpiod 5 GPIO_ACTIVE_LOW>; }; led-blue { gpios = <&gpiok 3 GPIO_ACTIVE_LOW>; }; }; gpio-keys { compatible = "gpio-keys"; autorepeat; button-0 { label = "User"; linux,code = <KEY_WAKEUP>; gpios = <&gpioa 0 GPIO_ACTIVE_HIGH>; }; }; /* This turns on vbus for otg for host mode (dwc2) */ vcc5v_otg: vcc5v-otg-regulator { compatible = "regulator-fixed"; enable-active-high; gpio = <&gpiob 2 GPIO_ACTIVE_HIGH>; regulator-name = "vcc5_host1"; regulator-always-on; }; }; &rcc { compatible = "st,stm32f469-rcc", "st,stm32f42xx-rcc", "st,stm32-rcc"; }; &clk_hse { clock-frequency = <8000000>; }; &dma2d { status = "okay"; }; &dsi { #address-cells = <1>; #size-cells = <0>; status = "okay"; ports { #address-cells = <1>; #size-cells = <0>; port@0 { reg = <0>; dsi_in: endpoint { remote-endpoint = <&ltdc_out_dsi>; }; }; port@1 { reg = <1>; dsi_out: endpoint { remote-endpoint = <&dsi_panel_in>; }; }; }; panel@0 { compatible = "orisetech,otm8009a"; reg = <0>; /* dsi virtual channel (0..3) */ reset-gpios = <&gpioh 7 GPIO_ACTIVE_LOW>; power-supply = <&vcc_3v3>; status = "okay"; port { dsi_panel_in: endpoint { remote-endpoint = <&dsi_out>; }; }; }; }; &ltdc { status = "okay"; port { ltdc_out_dsi: endpoint { remote-endpoint = <&dsi_in>; }; }; }; &rtc { status = "okay"; }; &timers1 { status = "okay"; pwm { pinctrl-0 = <&pwm1_pins>; pinctrl-names = "default"; status = "okay"; }; timer@0 { status = "okay"; }; }; &timers3 { status = "okay"; pwm { pinctrl-0 = <&pwm3_pins>; pinctrl-names = "default"; status = "okay"; }; timer@2 { status = "okay"; }; }; &sdio { status = "okay"; vmmc-supply = <&vcc_3v3>; cd-gpios = <&gpiog 2 GPIO_ACTIVE_LOW>; broken-cd; pinctrl-names = "default", "opendrain"; pinctrl-0 = <&sdio_pins>; pinctrl-1 = <&sdio_pins_od>; bus-width = <4>; }; &timers5 { /* Override timer5 to act as clockevent */ compatible = "st,stm32-timer"; interrupts = <50>; status = "okay"; /delete-property/#address-cells; /delete-property/#size-cells; /delete-property/clock-names; /delete-node/pwm; /delete-node/timer@4; }; &usart3 { pinctrl-0 = <&usart3_pins_a>; pinctrl-names = "default"; status = "okay"; }; &usbotg_fs { dr_mode = "host"; pinctrl-0 = <&usbotg_fs_pins_a>; pinctrl-names = "default"; status = "okay"; };
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. */ #include <linux/kernel.h> #include <linux/io.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/clk-provider.h> #include "clk.h" #define pll_out_override(p) (BIT((p->shift - 6))) #define div_mask(d) ((1 << (d->width)) - 1) #define get_mul(d) (1 << d->frac_width) #define get_max_div(d) div_mask(d) #define PERIPH_CLK_UART_DIV_ENB BIT(24) static int get_div(struct tegra_clk_frac_div *divider, unsigned long rate, unsigned long parent_rate) { int div; div = div_frac_get(rate, parent_rate, divider->width, divider->frac_width, divider->flags); if (div < 0) return 0; return div; } static unsigned long clk_frac_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct tegra_clk_frac_div *divider = to_clk_frac_div(hw); u32 reg; int div, mul; u64 rate = parent_rate; reg = readl_relaxed(divider->reg); if ((divider->flags & TEGRA_DIVIDER_UART) && !(reg & PERIPH_CLK_UART_DIV_ENB)) return rate; div = (reg >> divider->shift) & div_mask(divider); mul = get_mul(divider); div += mul; rate *= mul; rate += div - 1; do_div(rate, div); return rate; } static long clk_frac_div_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct tegra_clk_frac_div *divider = to_clk_frac_div(hw); int div, mul; unsigned long output_rate = *prate; if (!rate) return output_rate; div = get_div(divider, rate, output_rate); if (div < 0) return *prate; mul = get_mul(divider); return DIV_ROUND_UP(output_rate * mul, div + mul); } static int clk_frac_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct tegra_clk_frac_div *divider = to_clk_frac_div(hw); int div; unsigned long flags = 0; u32 val; div = get_div(divider, rate, parent_rate); if (div < 0) return div; if (divider->lock) spin_lock_irqsave(divider->lock, flags); val = readl_relaxed(divider->reg); val &= ~(div_mask(divider) << divider->shift); val |= div << divider->shift; if (divider->flags & TEGRA_DIVIDER_UART) { if (div) val |= PERIPH_CLK_UART_DIV_ENB; else val &= ~PERIPH_CLK_UART_DIV_ENB; } if (divider->flags & TEGRA_DIVIDER_FIXED) val |= pll_out_override(divider); writel_relaxed(val, divider->reg); if (divider->lock) spin_unlock_irqrestore(divider->lock, flags); return 0; } static void clk_divider_restore_context(struct clk_hw *hw) { struct clk_hw *parent = clk_hw_get_parent(hw); unsigned long parent_rate = clk_hw_get_rate(parent); unsigned long rate = clk_hw_get_rate(hw); if (clk_frac_div_set_rate(hw, rate, parent_rate) < 0) WARN_ON(1); } const struct clk_ops tegra_clk_frac_div_ops = { .recalc_rate = clk_frac_div_recalc_rate, .set_rate = clk_frac_div_set_rate, .round_rate = clk_frac_div_round_rate, .restore_context = clk_divider_restore_context, }; struct clk *tegra_clk_register_divider(const char *name, const char *parent_name, void __iomem *reg, unsigned long flags, u8 clk_divider_flags, u8 shift, u8 width, u8 frac_width, spinlock_t *lock) { struct tegra_clk_frac_div *divider; struct clk *clk; struct clk_init_data init; divider = kzalloc(sizeof(*divider), GFP_KERNEL); if (!divider) { pr_err("%s: could not allocate fractional divider clk\n", __func__); return ERR_PTR(-ENOMEM); } init.name = name; init.ops = &tegra_clk_frac_div_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; divider->reg = reg; divider->shift = shift; divider->width = width; divider->frac_width = frac_width; divider->lock = lock; divider->flags = clk_divider_flags; /* Data in .init is copied by clk_register(), so stack variable OK */ divider->hw.init = &init; clk = clk_register(NULL, &divider->hw); if (IS_ERR(clk)) kfree(divider); return clk; } static const struct clk_div_table mc_div_table[] = { { .val = 0, .div = 2 }, { .val = 1, .div = 1 }, { .val = 0, .div = 0 }, }; struct clk *tegra_clk_register_mc(const char *name, const char *parent_name, void __iomem *reg, spinlock_t *lock) { return clk_register_divider_table(NULL, name, parent_name, CLK_IS_CRITICAL, reg, 16, 1, CLK_DIVIDER_READ_ONLY, mc_div_table, lock); }
/* SPDX-License-Identifier: MIT */ /* * Copyright © 2022 Intel Corporation */ #ifndef _XE_QUERY_H_ #define _XE_QUERY_H_ struct drm_device; struct drm_file; int xe_query_ioctl(struct drm_device *dev, void *data, struct drm_file *file); #endif
// SPDX-License-Identifier: GPL-2.0 /* * Support for Merrifield PNW Camera Imaging ISP subsystem. * * Copyright (c) 2012 Intel Corporation. All Rights Reserved. * * Copyright (c) 2012 Silicon Hive www.siliconhive.com. */ #include "type_support.h" #include "mmu/isp_mmu.h" #include "mmu/sh_mmu_mrfld.h" #include "atomisp_compat.h" #define MERR_VALID_PTE_MASK 0x80000000 /* * include SH header file here */ static unsigned int sh_phys_to_pte(struct isp_mmu *mmu, phys_addr_t phys) { return phys >> ISP_PAGE_OFFSET; } static phys_addr_t sh_pte_to_phys(struct isp_mmu *mmu, unsigned int pte) { unsigned int mask = mmu->driver->pte_valid_mask; return (phys_addr_t)((pte & ~mask) << ISP_PAGE_OFFSET); } static unsigned int sh_get_pd_base(struct isp_mmu *mmu, phys_addr_t phys) { unsigned int pte = sh_phys_to_pte(mmu, phys); return HOST_ADDRESS(pte); } /* * callback to flush tlb. * * tlb_flush_range will at least flush TLBs containing * address mapping from addr to addr + size. * * tlb_flush_all will flush all TLBs. * * tlb_flush_all is must be provided. if tlb_flush_range is * not valid, it will set to tlb_flush_all by default. */ static void sh_tlb_flush(struct isp_mmu *mmu) { ia_css_mmu_invalidate_cache(); } struct isp_mmu_client sh_mmu_mrfld = { .name = "Silicon Hive ISP3000 MMU", .pte_valid_mask = MERR_VALID_PTE_MASK, .null_pte = ~MERR_VALID_PTE_MASK, .get_pd_base = sh_get_pd_base, .tlb_flush_all = sh_tlb_flush, .phys_to_pte = sh_phys_to_pte, .pte_to_phys = sh_pte_to_phys, };
// SPDX-License-Identifier: GPL-2.0 #include <linux/bpf.h> #include <bpf/bpf_helpers.h> struct { __uint(type, BPF_MAP_TYPE_PROG_ARRAY); __uint(max_entries, 1); __uint(key_size, sizeof(__u32)); __uint(value_size, sizeof(__u32)); } jmp_table SEC(".maps"); int count = 0; SEC("tc") int classifier_0(struct __sk_buff *skb) { count++; bpf_tail_call_static(skb, &jmp_table, 0); return 1; } SEC("tc") int entry(struct __sk_buff *skb) { bpf_tail_call_static(skb, &jmp_table, 0); return 0; } char __license[] SEC("license") = "GPL";
// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** AudioScience HPI driver Copyright (C) 1997-2012 AudioScience Inc. <[email protected]> HPI Operating System function implementation for Linux (C) Copyright AudioScience Inc. 1997-2003 ******************************************************************************/ #define SOURCEFILE_NAME "hpios.c" #include "hpi_internal.h" #include "hpidebug.h" #include <linux/delay.h> #include <linux/sched.h> void hpios_delay_micro_seconds(u32 num_micro_sec) { if ((usecs_to_jiffies(num_micro_sec) > 1) && !in_interrupt()) { /* MUST NOT SCHEDULE IN INTERRUPT CONTEXT! */ schedule_timeout_uninterruptible(usecs_to_jiffies (num_micro_sec)); } else if (num_micro_sec <= 2000) udelay(num_micro_sec); else mdelay(num_micro_sec / 1000); } /** Allocate an area of locked memory for bus master DMA operations. If allocation fails, return 1, and *pMemArea.size = 0 */ u16 hpios_locked_mem_alloc(struct consistent_dma_area *p_mem_area, u32 size, struct pci_dev *pdev) { /*?? any benefit in using managed dmam_alloc_coherent? */ p_mem_area->vaddr = dma_alloc_coherent(&pdev->dev, size, &p_mem_area->dma_handle, GFP_KERNEL); if (p_mem_area->vaddr) { HPI_DEBUG_LOG(DEBUG, "allocated %d bytes, dma 0x%x vma %p\n", size, (unsigned int)p_mem_area->dma_handle, p_mem_area->vaddr); p_mem_area->pdev = &pdev->dev; p_mem_area->size = size; return 0; } else { HPI_DEBUG_LOG(WARNING, "failed to allocate %d bytes locked memory\n", size); p_mem_area->size = 0; return 1; } } u16 hpios_locked_mem_free(struct consistent_dma_area *p_mem_area) { if (p_mem_area->size) { dma_free_coherent(p_mem_area->pdev, p_mem_area->size, p_mem_area->vaddr, p_mem_area->dma_handle); HPI_DEBUG_LOG(DEBUG, "freed %lu bytes, dma 0x%x vma %p\n", (unsigned long)p_mem_area->size, (unsigned int)p_mem_area->dma_handle, p_mem_area->vaddr); p_mem_area->size = 0; return 0; } else { return 1; } }
/* * \file amdgpu_ioc32.c * * 32-bit ioctl compatibility routines for the AMDGPU DRM. * * \author Paul Mackerras <[email protected]> * * Copyright (C) Paul Mackerras 2005 * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include <linux/compat.h> #include <drm/amdgpu_drm.h> #include <drm/drm_ioctl.h> #include "amdgpu_drv.h" long amdgpu_kms_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { unsigned int nr = DRM_IOCTL_NR(cmd); if (nr < DRM_COMMAND_BASE) return drm_compat_ioctl(filp, cmd, arg); return amdgpu_drm_ioctl(filp, cmd, arg); }
/* SPDX-License-Identifier: GPL-2.0 */ /* * Header file for Intel Broxton Whiskey Cove PMIC * * Copyright (C) 2015 Intel Corporation. All rights reserved. */ #ifndef __INTEL_BXTWC_H__ #define __INTEL_BXTWC_H__ /* BXT WC devices */ #define BXTWC_DEVICE1_ADDR 0x4E #define BXTWC_DEVICE2_ADDR 0x4F #define BXTWC_DEVICE3_ADDR 0x5E /* device1 Registers */ #define BXTWC_CHIPID 0x4E00 #define BXTWC_CHIPVER 0x4E01 #define BXTWC_SCHGRIRQ0_ADDR 0x5E1A #define BXTWC_CHGRCTRL0_ADDR 0x5E16 #define BXTWC_CHGRCTRL1_ADDR 0x5E17 #define BXTWC_CHGRCTRL2_ADDR 0x5E18 #define BXTWC_CHGRSTATUS_ADDR 0x5E19 #define BXTWC_THRMBATZONE_ADDR 0x4F22 #define BXTWC_USBPATH_ADDR 0x5E19 #define BXTWC_USBPHYCTRL_ADDR 0x5E07 #define BXTWC_USBIDCTRL_ADDR 0x5E05 #define BXTWC_USBIDEN_MASK 0x01 #define BXTWC_USBIDSTAT_ADDR 0x00FF #define BXTWC_USBSRCDETSTATUS_ADDR 0x5E29 #define BXTWC_DBGUSBBC1_ADDR 0x5FE0 #define BXTWC_DBGUSBBC2_ADDR 0x5FE1 #define BXTWC_DBGUSBBCSTAT_ADDR 0x5FE2 #define BXTWC_WAKESRC_ADDR 0x4E22 #define BXTWC_WAKESRC2_ADDR 0x4EE5 #define BXTWC_CHRTTADDR_ADDR 0x5E22 #define BXTWC_CHRTTDATA_ADDR 0x5E23 #define BXTWC_STHRMIRQ0_ADDR 0x4F19 #define WC_MTHRMIRQ1_ADDR 0x4E12 #define WC_STHRMIRQ1_ADDR 0x4F1A #define WC_STHRMIRQ2_ADDR 0x4F1B #define BXTWC_THRMZN0H_ADDR 0x4F44 #define BXTWC_THRMZN0L_ADDR 0x4F45 #define BXTWC_THRMZN1H_ADDR 0x4F46 #define BXTWC_THRMZN1L_ADDR 0x4F47 #define BXTWC_THRMZN2H_ADDR 0x4F48 #define BXTWC_THRMZN2L_ADDR 0x4F49 #define BXTWC_THRMZN3H_ADDR 0x4F4A #define BXTWC_THRMZN3L_ADDR 0x4F4B #define BXTWC_THRMZN4H_ADDR 0x4F4C #define BXTWC_THRMZN4L_ADDR 0x4F4D #endif
// SPDX-License-Identifier: GPL-2.0 #include <linux/cgroup.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/signal.h> #include "cgroup-internal.h" #include <trace/events/cgroup.h> /* * Update CGRP_FROZEN of cgroup.flag * Return true if flags is updated; false if flags has no change */ static bool cgroup_update_frozen_flag(struct cgroup *cgrp, bool frozen) { lockdep_assert_held(&css_set_lock); /* Already there? */ if (test_bit(CGRP_FROZEN, &cgrp->flags) == frozen) return false; if (frozen) set_bit(CGRP_FROZEN, &cgrp->flags); else clear_bit(CGRP_FROZEN, &cgrp->flags); cgroup_file_notify(&cgrp->events_file); TRACE_CGROUP_PATH(notify_frozen, cgrp, frozen); return true; } /* * Propagate the cgroup frozen state upwards by the cgroup tree. */ static void cgroup_propagate_frozen(struct cgroup *cgrp, bool frozen) { int desc = 1; /* * If the new state is frozen, some freezing ancestor cgroups may change * their state too, depending on if all their descendants are frozen. * * Otherwise, all ancestor cgroups are forced into the non-frozen state. */ while ((cgrp = cgroup_parent(cgrp))) { if (frozen) { cgrp->freezer.nr_frozen_descendants += desc; if (!test_bit(CGRP_FREEZE, &cgrp->flags) || (cgrp->freezer.nr_frozen_descendants != cgrp->nr_descendants)) continue; } else { cgrp->freezer.nr_frozen_descendants -= desc; } if (cgroup_update_frozen_flag(cgrp, frozen)) desc++; } } /* * Revisit the cgroup frozen state. * Checks if the cgroup is really frozen and perform all state transitions. */ void cgroup_update_frozen(struct cgroup *cgrp) { bool frozen; /* * If the cgroup has to be frozen (CGRP_FREEZE bit set), * and all tasks are frozen and/or stopped, let's consider * the cgroup frozen. Otherwise it's not frozen. */ frozen = test_bit(CGRP_FREEZE, &cgrp->flags) && cgrp->freezer.nr_frozen_tasks == __cgroup_task_count(cgrp); /* If flags is updated, update the state of ancestor cgroups. */ if (cgroup_update_frozen_flag(cgrp, frozen)) cgroup_propagate_frozen(cgrp, frozen); } /* * Increment cgroup's nr_frozen_tasks. */ static void cgroup_inc_frozen_cnt(struct cgroup *cgrp) { cgrp->freezer.nr_frozen_tasks++; } /* * Decrement cgroup's nr_frozen_tasks. */ static void cgroup_dec_frozen_cnt(struct cgroup *cgrp) { cgrp->freezer.nr_frozen_tasks--; WARN_ON_ONCE(cgrp->freezer.nr_frozen_tasks < 0); } /* * Enter frozen/stopped state, if not yet there. Update cgroup's counters, * and revisit the state of the cgroup, if necessary. */ void cgroup_enter_frozen(void) { struct cgroup *cgrp; if (current->frozen) return; spin_lock_irq(&css_set_lock); current->frozen = true; cgrp = task_dfl_cgroup(current); cgroup_inc_frozen_cnt(cgrp); cgroup_update_frozen(cgrp); spin_unlock_irq(&css_set_lock); } /* * Conditionally leave frozen/stopped state. Update cgroup's counters, * and revisit the state of the cgroup, if necessary. * * If always_leave is not set, and the cgroup is freezing, * we're racing with the cgroup freezing. In this case, we don't * drop the frozen counter to avoid a transient switch to * the unfrozen state. */ void cgroup_leave_frozen(bool always_leave) { struct cgroup *cgrp; spin_lock_irq(&css_set_lock); cgrp = task_dfl_cgroup(current); if (always_leave || !test_bit(CGRP_FREEZE, &cgrp->flags)) { cgroup_dec_frozen_cnt(cgrp); cgroup_update_frozen(cgrp); WARN_ON_ONCE(!current->frozen); current->frozen = false; } else if (!(current->jobctl & JOBCTL_TRAP_FREEZE)) { spin_lock(&current->sighand->siglock); current->jobctl |= JOBCTL_TRAP_FREEZE; set_thread_flag(TIF_SIGPENDING); spin_unlock(&current->sighand->siglock); } spin_unlock_irq(&css_set_lock); } /* * Freeze or unfreeze the task by setting or clearing the JOBCTL_TRAP_FREEZE * jobctl bit. */ static void cgroup_freeze_task(struct task_struct *task, bool freeze) { unsigned long flags; /* If the task is about to die, don't bother with freezing it. */ if (!lock_task_sighand(task, &flags)) return; if (freeze) { task->jobctl |= JOBCTL_TRAP_FREEZE; signal_wake_up(task, false); } else { task->jobctl &= ~JOBCTL_TRAP_FREEZE; wake_up_process(task); } unlock_task_sighand(task, &flags); } /* * Freeze or unfreeze all tasks in the given cgroup. */ static void cgroup_do_freeze(struct cgroup *cgrp, bool freeze) { struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); if (freeze) set_bit(CGRP_FREEZE, &cgrp->flags); else clear_bit(CGRP_FREEZE, &cgrp->flags); spin_unlock_irq(&css_set_lock); if (freeze) TRACE_CGROUP_PATH(freeze, cgrp); else TRACE_CGROUP_PATH(unfreeze, cgrp); css_task_iter_start(&cgrp->self, 0, &it); while ((task = css_task_iter_next(&it))) { /* * Ignore kernel threads here. Freezing cgroups containing * kthreads isn't supported. */ if (task->flags & PF_KTHREAD) continue; cgroup_freeze_task(task, freeze); } css_task_iter_end(&it); /* * Cgroup state should be revisited here to cover empty leaf cgroups * and cgroups which descendants are already in the desired state. */ spin_lock_irq(&css_set_lock); if (cgrp->nr_descendants == cgrp->freezer.nr_frozen_descendants) cgroup_update_frozen(cgrp); spin_unlock_irq(&css_set_lock); } /* * Adjust the task state (freeze or unfreeze) and revisit the state of * source and destination cgroups. */ void cgroup_freezer_migrate_task(struct task_struct *task, struct cgroup *src, struct cgroup *dst) { lockdep_assert_held(&css_set_lock); /* * Kernel threads are not supposed to be frozen at all. */ if (task->flags & PF_KTHREAD) return; /* * It's not necessary to do changes if both of the src and dst cgroups * are not freezing and task is not frozen. */ if (!test_bit(CGRP_FREEZE, &src->flags) && !test_bit(CGRP_FREEZE, &dst->flags) && !task->frozen) return; /* * Adjust counters of freezing and frozen tasks. * Note, that if the task is frozen, but the destination cgroup is not * frozen, we bump both counters to keep them balanced. */ if (task->frozen) { cgroup_inc_frozen_cnt(dst); cgroup_dec_frozen_cnt(src); } cgroup_update_frozen(dst); cgroup_update_frozen(src); /* * Force the task to the desired state. */ cgroup_freeze_task(task, test_bit(CGRP_FREEZE, &dst->flags)); } void cgroup_freeze(struct cgroup *cgrp, bool freeze) { struct cgroup_subsys_state *css; struct cgroup *parent; struct cgroup *dsct; bool applied = false; bool old_e; lockdep_assert_held(&cgroup_mutex); /* * Nothing changed? Just exit. */ if (cgrp->freezer.freeze == freeze) return; cgrp->freezer.freeze = freeze; /* * Propagate changes downwards the cgroup tree. */ css_for_each_descendant_pre(css, &cgrp->self) { dsct = css->cgroup; if (cgroup_is_dead(dsct)) continue; /* * e_freeze is affected by parent's e_freeze and dst's freeze. * If old e_freeze eq new e_freeze, no change, its children * will not be affected. So do nothing and skip the subtree */ old_e = dsct->freezer.e_freeze; parent = cgroup_parent(dsct); dsct->freezer.e_freeze = (dsct->freezer.freeze || parent->freezer.e_freeze); if (dsct->freezer.e_freeze == old_e) { css = css_rightmost_descendant(css); continue; } /* * Do change actual state: freeze or unfreeze. */ cgroup_do_freeze(dsct, freeze); applied = true; } /* * Even if the actual state hasn't changed, let's notify a user. * The state can be enforced by an ancestor cgroup: the cgroup * can already be in the desired state or it can be locked in the * opposite state, so that the transition will never happen. * In both cases it's better to notify a user, that there is * nothing to wait for. */ if (!applied) { TRACE_CGROUP_PATH(notify_frozen, cgrp, test_bit(CGRP_FROZEN, &cgrp->flags)); cgroup_file_notify(&cgrp->events_file); } }
// SPDX-License-Identifier: GPL-2.0 /* * Samsung Exynos5433 TM2E board device tree source * * Copyright (c) 2016 Samsung Electronics Co., Ltd. * * Device tree source file for Samsung's TM2E(TM2 EDGE) board which is based on * Samsung Exynos5433 SoC. */ #include "exynos5433-tm2-common.dtsi" / { model = "Samsung TM2E board"; compatible = "samsung,tm2e", "samsung,exynos5433"; chassis-type = "handset"; }; &cmu_disp { /* * TM2 and TM2e differ only by DISP_PLL rate, but define all assigned * clocks properties for DISP CMU for each board to keep them together * for easier review and maintenance. */ assigned-clocks = <&cmu_disp CLK_FOUT_DISP_PLL>, <&cmu_mif CLK_DIV_SCLK_DECON_TV_ECLK>, <&cmu_disp CLK_MOUT_ACLK_DISP_333_USER>, <&cmu_disp CLK_MOUT_SCLK_DSIM0_USER>, <&cmu_disp CLK_MOUT_SCLK_DSIM0>, <&cmu_disp CLK_MOUT_SCLK_DECON_ECLK_USER>, <&cmu_disp CLK_MOUT_SCLK_DECON_ECLK>, <&cmu_disp CLK_MOUT_PHYCLK_MIPIDPHY0_RXCLKESC0_USER>, <&cmu_disp CLK_MOUT_PHYCLK_MIPIDPHY0_BITCLKDIV8_USER>, <&cmu_disp CLK_MOUT_DISP_PLL>, <&cmu_mif CLK_MOUT_SCLK_DECON_TV_ECLK_A>, <&cmu_disp CLK_MOUT_SCLK_DECON_TV_ECLK_USER>, <&cmu_disp CLK_MOUT_SCLK_DECON_TV_ECLK>; assigned-clock-parents = <0>, <0>, <&cmu_mif CLK_ACLK_DISP_333>, <&cmu_mif CLK_SCLK_DSIM0_DISP>, <&cmu_disp CLK_MOUT_SCLK_DSIM0_USER>, <&cmu_mif CLK_SCLK_DECON_ECLK_DISP>, <&cmu_disp CLK_MOUT_SCLK_DECON_ECLK_USER>, <&cmu_disp CLK_PHYCLK_MIPIDPHY0_RXCLKESC0_PHY>, <&cmu_disp CLK_PHYCLK_MIPIDPHY0_BITCLKDIV8_PHY>, <&cmu_disp CLK_FOUT_DISP_PLL>, <&cmu_mif CLK_MOUT_BUS_PLL_DIV2>, <&cmu_mif CLK_SCLK_DECON_TV_ECLK_DISP>, <&cmu_disp CLK_MOUT_SCLK_DECON_TV_ECLK_USER>; assigned-clock-rates = <278000000>, <400000000>; }; &dsi { panel@0 { compatible = "samsung,s6e3hf2"; reg = <0>; vdd3-supply = <&ldo27_reg>; vci-supply = <&ldo28_reg>; reset-gpios = <&gpg0 0 GPIO_ACTIVE_LOW>; enable-gpios = <&gpf1 5 GPIO_ACTIVE_HIGH>; }; }; &ldo31_reg { regulator-name = "TSP_VDD_1.8V_AP"; regulator-min-microvolt = <1800000>; regulator-max-microvolt = <1800000>; }; &ldo38_reg { regulator-name = "VCC_3.3V_MOTOR_AP"; regulator-min-microvolt = <3300000>; regulator-max-microvolt = <3300000>; }; &stmfts { touchscreen-size-x = <1599>; touchscreen-size-y = <2559>; touch-key-connected; ledvdd-supply = <&ldo33_reg>; };
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{linux.intel,addtoit}.com) */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <termios.h> #include "chan_user.h" #include <os.h> #include <um_malloc.h> struct fd_chan { int fd; int raw; struct termios tt; char str[sizeof("1234567890\0")]; }; static void *fd_init(char *str, int device, const struct chan_opts *opts) { struct fd_chan *data; char *end; int n; if (*str != ':') { printk(UM_KERN_ERR "fd_init : channel type 'fd' must specify a " "file descriptor\n"); return NULL; } str++; n = strtoul(str, &end, 0); if ((*end != '\0') || (end == str)) { printk(UM_KERN_ERR "fd_init : couldn't parse file descriptor " "'%s'\n", str); return NULL; } data = uml_kmalloc(sizeof(*data), UM_GFP_KERNEL); if (data == NULL) return NULL; *data = ((struct fd_chan) { .fd = n, .raw = opts->raw }); return data; } static int fd_open(int input, int output, int primary, void *d, char **dev_out) { struct fd_chan *data = d; int err; if (data->raw && isatty(data->fd)) { CATCH_EINTR(err = tcgetattr(data->fd, &data->tt)); if (err) return err; err = raw(data->fd); if (err) return err; } sprintf(data->str, "%d", data->fd); *dev_out = data->str; return data->fd; } static void fd_close(int fd, void *d) { struct fd_chan *data = d; int err; if (!data->raw || !isatty(fd)) return; CATCH_EINTR(err = tcsetattr(fd, TCSAFLUSH, &data->tt)); if (err) printk(UM_KERN_ERR "Failed to restore terminal state - " "errno = %d\n", -err); data->raw = 0; } const struct chan_ops fd_ops = { .type = "fd", .init = fd_init, .open = fd_open, .close = fd_close, .read = generic_read, .write = generic_write, .console_write = generic_console_write, .window_size = generic_window_size, .free = generic_free, .winch = 1, };
// SPDX-License-Identifier: GPL-2.0-only /* * net/dccp/ccid.c * * An implementation of the DCCP protocol * Arnaldo Carvalho de Melo <[email protected]> * * CCID infrastructure */ #include <linux/slab.h> #include "ccid.h" #include "ccids/lib/tfrc.h" static struct ccid_operations *ccids[] = { &ccid2_ops, #ifdef CONFIG_IP_DCCP_CCID3 &ccid3_ops, #endif }; static struct ccid_operations *ccid_by_number(const u8 id) { int i; for (i = 0; i < ARRAY_SIZE(ccids); i++) if (ccids[i]->ccid_id == id) return ccids[i]; return NULL; } /* check that up to @array_len members in @ccid_array are supported */ bool ccid_support_check(u8 const *ccid_array, u8 array_len) { while (array_len > 0) if (ccid_by_number(ccid_array[--array_len]) == NULL) return false; return true; } /** * ccid_get_builtin_ccids - Populate a list of built-in CCIDs * @ccid_array: pointer to copy into * @array_len: value to return length into * * This function allocates memory - caller must see that it is freed after use. */ int ccid_get_builtin_ccids(u8 **ccid_array, u8 *array_len) { *ccid_array = kmalloc(ARRAY_SIZE(ccids), gfp_any()); if (*ccid_array == NULL) return -ENOBUFS; for (*array_len = 0; *array_len < ARRAY_SIZE(ccids); *array_len += 1) (*ccid_array)[*array_len] = ccids[*array_len]->ccid_id; return 0; } int ccid_getsockopt_builtin_ccids(struct sock *sk, int len, char __user *optval, int __user *optlen) { u8 *ccid_array, array_len; int err = 0; if (ccid_get_builtin_ccids(&ccid_array, &array_len)) return -ENOBUFS; if (put_user(array_len, optlen)) err = -EFAULT; else if (len > 0 && copy_to_user(optval, ccid_array, len > array_len ? array_len : len)) err = -EFAULT; kfree(ccid_array); return err; } static __printf(3, 4) struct kmem_cache *ccid_kmem_cache_create(int obj_size, char *slab_name_fmt, const char *fmt,...) { struct kmem_cache *slab; va_list args; va_start(args, fmt); vsnprintf(slab_name_fmt, CCID_SLAB_NAME_LENGTH, fmt, args); va_end(args); slab = kmem_cache_create(slab_name_fmt, sizeof(struct ccid) + obj_size, 0, SLAB_HWCACHE_ALIGN, NULL); return slab; } static void ccid_kmem_cache_destroy(struct kmem_cache *slab) { kmem_cache_destroy(slab); } static int __init ccid_activate(struct ccid_operations *ccid_ops) { int err = -ENOBUFS; ccid_ops->ccid_hc_rx_slab = ccid_kmem_cache_create(ccid_ops->ccid_hc_rx_obj_size, ccid_ops->ccid_hc_rx_slab_name, "ccid%u_hc_rx_sock", ccid_ops->ccid_id); if (ccid_ops->ccid_hc_rx_slab == NULL) goto out; ccid_ops->ccid_hc_tx_slab = ccid_kmem_cache_create(ccid_ops->ccid_hc_tx_obj_size, ccid_ops->ccid_hc_tx_slab_name, "ccid%u_hc_tx_sock", ccid_ops->ccid_id); if (ccid_ops->ccid_hc_tx_slab == NULL) goto out_free_rx_slab; pr_info("DCCP: Activated CCID %d (%s)\n", ccid_ops->ccid_id, ccid_ops->ccid_name); err = 0; out: return err; out_free_rx_slab: ccid_kmem_cache_destroy(ccid_ops->ccid_hc_rx_slab); ccid_ops->ccid_hc_rx_slab = NULL; goto out; } static void ccid_deactivate(struct ccid_operations *ccid_ops) { ccid_kmem_cache_destroy(ccid_ops->ccid_hc_tx_slab); ccid_ops->ccid_hc_tx_slab = NULL; ccid_kmem_cache_destroy(ccid_ops->ccid_hc_rx_slab); ccid_ops->ccid_hc_rx_slab = NULL; pr_info("DCCP: Deactivated CCID %d (%s)\n", ccid_ops->ccid_id, ccid_ops->ccid_name); } struct ccid *ccid_new(const u8 id, struct sock *sk, bool rx) { struct ccid_operations *ccid_ops = ccid_by_number(id); struct ccid *ccid = NULL; if (ccid_ops == NULL) goto out; ccid = kmem_cache_alloc(rx ? ccid_ops->ccid_hc_rx_slab : ccid_ops->ccid_hc_tx_slab, gfp_any()); if (ccid == NULL) goto out; ccid->ccid_ops = ccid_ops; if (rx) { memset(ccid + 1, 0, ccid_ops->ccid_hc_rx_obj_size); if (ccid->ccid_ops->ccid_hc_rx_init != NULL && ccid->ccid_ops->ccid_hc_rx_init(ccid, sk) != 0) goto out_free_ccid; } else { memset(ccid + 1, 0, ccid_ops->ccid_hc_tx_obj_size); if (ccid->ccid_ops->ccid_hc_tx_init != NULL && ccid->ccid_ops->ccid_hc_tx_init(ccid, sk) != 0) goto out_free_ccid; } out: return ccid; out_free_ccid: kmem_cache_free(rx ? ccid_ops->ccid_hc_rx_slab : ccid_ops->ccid_hc_tx_slab, ccid); ccid = NULL; goto out; } void ccid_hc_rx_delete(struct ccid *ccid, struct sock *sk) { if (ccid != NULL) { if (ccid->ccid_ops->ccid_hc_rx_exit != NULL) ccid->ccid_ops->ccid_hc_rx_exit(sk); kmem_cache_free(ccid->ccid_ops->ccid_hc_rx_slab, ccid); } } void ccid_hc_tx_delete(struct ccid *ccid, struct sock *sk) { if (ccid != NULL) { if (ccid->ccid_ops->ccid_hc_tx_exit != NULL) ccid->ccid_ops->ccid_hc_tx_exit(sk); kmem_cache_free(ccid->ccid_ops->ccid_hc_tx_slab, ccid); } } int __init ccid_initialize_builtins(void) { int i, err = tfrc_lib_init(); if (err) return err; for (i = 0; i < ARRAY_SIZE(ccids); i++) { err = ccid_activate(ccids[i]); if (err) goto unwind_registrations; } return 0; unwind_registrations: while(--i >= 0) ccid_deactivate(ccids[i]); tfrc_lib_exit(); return err; } void ccid_cleanup_builtins(void) { int i; for (i = 0; i < ARRAY_SIZE(ccids); i++) ccid_deactivate(ccids[i]); tfrc_lib_exit(); }
/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #ifndef __DAL_COMMAND_TABLE_HELPER_DCE110_H__ #define __DAL_COMMAND_TABLE_HELPER_DCE110_H__ struct command_table_helper; /* Initialize command table helper functions */ const struct command_table_helper *dal_cmd_tbl_helper_dce110_get_table(void); #endif /* __DAL_COMMAND_TABLE_HELPER_DCE110_H__ */
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_INSTRUCTION_POINTER_H #define _LINUX_INSTRUCTION_POINTER_H #include <asm/linkage.h> #define _RET_IP_ (unsigned long)__builtin_return_address(0) #ifndef _THIS_IP_ #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) #endif #endif /* _LINUX_INSTRUCTION_POINTER_H */
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */ /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #ifndef __ISCSI_COMMON__ #define __ISCSI_COMMON__ /**********************/ /* ISCSI FW CONSTANTS */ /**********************/ /* iSCSI HSI constants */ #define ISCSI_DEFAULT_MTU (1500) /* KWQ (kernel work queue) layer codes */ #define ISCSI_SLOW_PATH_LAYER_CODE (6) /* iSCSI parameter defaults */ #define ISCSI_DEFAULT_HEADER_DIGEST (0) #define ISCSI_DEFAULT_DATA_DIGEST (0) #define ISCSI_DEFAULT_INITIAL_R2T (1) #define ISCSI_DEFAULT_IMMEDIATE_DATA (1) #define ISCSI_DEFAULT_MAX_PDU_LENGTH (0x2000) #define ISCSI_DEFAULT_FIRST_BURST_LENGTH (0x10000) #define ISCSI_DEFAULT_MAX_BURST_LENGTH (0x40000) #define ISCSI_DEFAULT_MAX_OUTSTANDING_R2T (1) /* iSCSI parameter limits */ #define ISCSI_MIN_VAL_MAX_PDU_LENGTH (0x200) #define ISCSI_MAX_VAL_MAX_PDU_LENGTH (0xffffff) #define ISCSI_MIN_VAL_BURST_LENGTH (0x200) #define ISCSI_MAX_VAL_BURST_LENGTH (0xffffff) #define ISCSI_MIN_VAL_MAX_OUTSTANDING_R2T (1) #define ISCSI_MAX_VAL_MAX_OUTSTANDING_R2T (0xff) #define ISCSI_AHS_CNTL_SIZE 4 #define ISCSI_WQE_NUM_SGES_SLOWIO (0xf) /* iSCSI reserved params */ #define ISCSI_ITT_ALL_ONES (0xffffffff) #define ISCSI_TTT_ALL_ONES (0xffffffff) #define ISCSI_OPTION_1_OFF_CHIP_TCP 1 #define ISCSI_OPTION_2_ON_CHIP_TCP 2 #define ISCSI_INITIATOR_MODE 0 #define ISCSI_TARGET_MODE 1 /* iSCSI request op codes */ #define ISCSI_OPCODE_NOP_OUT (0) #define ISCSI_OPCODE_SCSI_CMD (1) #define ISCSI_OPCODE_TMF_REQUEST (2) #define ISCSI_OPCODE_LOGIN_REQUEST (3) #define ISCSI_OPCODE_TEXT_REQUEST (4) #define ISCSI_OPCODE_DATA_OUT (5) #define ISCSI_OPCODE_LOGOUT_REQUEST (6) /* iSCSI response/messages op codes */ #define ISCSI_OPCODE_NOP_IN (0x20) #define ISCSI_OPCODE_SCSI_RESPONSE (0x21) #define ISCSI_OPCODE_TMF_RESPONSE (0x22) #define ISCSI_OPCODE_LOGIN_RESPONSE (0x23) #define ISCSI_OPCODE_TEXT_RESPONSE (0x24) #define ISCSI_OPCODE_DATA_IN (0x25) #define ISCSI_OPCODE_LOGOUT_RESPONSE (0x26) #define ISCSI_OPCODE_R2T (0x31) #define ISCSI_OPCODE_ASYNC_MSG (0x32) #define ISCSI_OPCODE_REJECT (0x3f) /* iSCSI stages */ #define ISCSI_STAGE_SECURITY_NEGOTIATION (0) #define ISCSI_STAGE_LOGIN_OPERATIONAL_NEGOTIATION (1) #define ISCSI_STAGE_FULL_FEATURE_PHASE (3) /* iSCSI CQE errors */ #define CQE_ERROR_BITMAP_DATA_DIGEST (0x08) #define CQE_ERROR_BITMAP_RCV_ON_INVALID_CONN (0x10) #define CQE_ERROR_BITMAP_DATA_TRUNCATED (0x20) /* Union of data bd_opaque/ tq_tid */ union bd_opaque_tq_union { __le16 bd_opaque; __le16 tq_tid; }; /* ISCSI SGL entry */ struct cqe_error_bitmap { u8 cqe_error_status_bits; #define CQE_ERROR_BITMAP_DIF_ERR_BITS_MASK 0x7 #define CQE_ERROR_BITMAP_DIF_ERR_BITS_SHIFT 0 #define CQE_ERROR_BITMAP_DATA_DIGEST_ERR_MASK 0x1 #define CQE_ERROR_BITMAP_DATA_DIGEST_ERR_SHIFT 3 #define CQE_ERROR_BITMAP_RCV_ON_INVALID_CONN_MASK 0x1 #define CQE_ERROR_BITMAP_RCV_ON_INVALID_CONN_SHIFT 4 #define CQE_ERROR_BITMAP_DATA_TRUNCATED_ERR_MASK 0x1 #define CQE_ERROR_BITMAP_DATA_TRUNCATED_ERR_SHIFT 5 #define CQE_ERROR_BITMAP_UNDER_RUN_ERR_MASK 0x1 #define CQE_ERROR_BITMAP_UNDER_RUN_ERR_SHIFT 6 #define CQE_ERROR_BITMAP_RESERVED2_MASK 0x1 #define CQE_ERROR_BITMAP_RESERVED2_SHIFT 7 }; union cqe_error_status { u8 error_status; struct cqe_error_bitmap error_bits; }; /* iSCSI Login Response PDU header */ struct data_hdr { __le32 data[12]; }; struct lun_mapper_addr_reserved { struct regpair lun_mapper_addr; u8 reserved0[8]; }; /* rdif conetxt for dif on immediate */ struct dif_on_immediate_params { __le32 initial_ref_tag; __le16 application_tag; __le16 application_tag_mask; __le16 flags1; #define DIF_ON_IMMEDIATE_PARAMS_VALIDATE_GUARD_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_VALIDATE_GUARD_SHIFT 0 #define DIF_ON_IMMEDIATE_PARAMS_VALIDATE_APP_TAG_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_VALIDATE_APP_TAG_SHIFT 1 #define DIF_ON_IMMEDIATE_PARAMS_VALIDATE_REF_TAG_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_VALIDATE_REF_TAG_SHIFT 2 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_GUARD_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_GUARD_SHIFT 3 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_APP_TAG_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_APP_TAG_SHIFT 4 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_REF_TAG_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_REF_TAG_SHIFT 5 #define DIF_ON_IMMEDIATE_PARAMS_INTERVAL_SIZE_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_INTERVAL_SIZE_SHIFT 6 #define DIF_ON_IMMEDIATE_PARAMS_NETWORK_INTERFACE_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_NETWORK_INTERFACE_SHIFT 7 #define DIF_ON_IMMEDIATE_PARAMS_HOST_INTERFACE_MASK 0x3 #define DIF_ON_IMMEDIATE_PARAMS_HOST_INTERFACE_SHIFT 8 #define DIF_ON_IMMEDIATE_PARAMS_REF_TAG_MASK_MASK 0xF #define DIF_ON_IMMEDIATE_PARAMS_REF_TAG_MASK_SHIFT 10 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_APP_TAG_WITH_MASK_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_APP_TAG_WITH_MASK_SHIFT 14 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_REF_TAG_WITH_MASK_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_FORWARD_REF_TAG_WITH_MASK_SHIFT 15 u8 flags0; #define DIF_ON_IMMEDIATE_PARAMS_RESERVED_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_RESERVED_SHIFT 0 #define DIF_ON_IMMEDIATE_PARAMS_IGNORE_APP_TAG_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_IGNORE_APP_TAG_SHIFT 1 #define DIF_ON_IMMEDIATE_PARAMS_INITIAL_REF_TAG_IS_VALID_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_INITIAL_REF_TAG_IS_VALID_SHIFT 2 #define DIF_ON_IMMEDIATE_PARAMS_HOST_GUARD_TYPE_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_HOST_GUARD_TYPE_SHIFT 3 #define DIF_ON_IMMEDIATE_PARAMS_PROTECTION_TYPE_MASK 0x3 #define DIF_ON_IMMEDIATE_PARAMS_PROTECTION_TYPE_SHIFT 4 #define DIF_ON_IMMEDIATE_PARAMS_CRC_SEED_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_CRC_SEED_SHIFT 6 #define DIF_ON_IMMEDIATE_PARAMS_KEEP_REF_TAG_CONST_MASK 0x1 #define DIF_ON_IMMEDIATE_PARAMS_KEEP_REF_TAG_CONST_SHIFT 7 u8 reserved_zero[5]; }; /* iSCSI dif on immediate mode attributes union */ union dif_configuration_params { struct lun_mapper_addr_reserved lun_mapper_address; struct dif_on_immediate_params def_dif_conf; }; /* Union of data/r2t sequence number */ union iscsi_seq_num { __le16 data_sn; __le16 r2t_sn; }; /* iSCSI DIF flags */ struct iscsi_dif_flags { u8 flags; #define ISCSI_DIF_FLAGS_PROT_INTERVAL_SIZE_LOG_MASK 0xF #define ISCSI_DIF_FLAGS_PROT_INTERVAL_SIZE_LOG_SHIFT 0 #define ISCSI_DIF_FLAGS_DIF_TO_PEER_MASK 0x1 #define ISCSI_DIF_FLAGS_DIF_TO_PEER_SHIFT 4 #define ISCSI_DIF_FLAGS_HOST_INTERFACE_MASK 0x7 #define ISCSI_DIF_FLAGS_HOST_INTERFACE_SHIFT 5 }; /* The iscsi storm task context of Ystorm */ struct ystorm_iscsi_task_state { struct scsi_cached_sges data_desc; struct scsi_sgl_params sgl_params; __le32 exp_r2t_sn; __le32 buffer_offset; union iscsi_seq_num seq_num; struct iscsi_dif_flags dif_flags; u8 flags; #define YSTORM_ISCSI_TASK_STATE_LOCAL_COMP_MASK 0x1 #define YSTORM_ISCSI_TASK_STATE_LOCAL_COMP_SHIFT 0 #define YSTORM_ISCSI_TASK_STATE_SLOW_IO_MASK 0x1 #define YSTORM_ISCSI_TASK_STATE_SLOW_IO_SHIFT 1 #define YSTORM_ISCSI_TASK_STATE_SET_DIF_OFFSET_MASK 0x1 #define YSTORM_ISCSI_TASK_STATE_SET_DIF_OFFSET_SHIFT 2 #define YSTORM_ISCSI_TASK_STATE_RESERVED0_MASK 0x1F #define YSTORM_ISCSI_TASK_STATE_RESERVED0_SHIFT 3 }; /* The iscsi storm task context of Ystorm */ struct ystorm_iscsi_task_rxmit_opt { __le32 fast_rxmit_sge_offset; __le32 scan_start_buffer_offset; __le32 fast_rxmit_buffer_offset; u8 scan_start_sgl_index; u8 fast_rxmit_sgl_index; __le16 reserved; }; /* iSCSI Common PDU header */ struct iscsi_common_hdr { u8 hdr_status; u8 hdr_response; u8 hdr_flags; u8 hdr_first_byte; #define ISCSI_COMMON_HDR_OPCODE_MASK 0x3F #define ISCSI_COMMON_HDR_OPCODE_SHIFT 0 #define ISCSI_COMMON_HDR_IMM_MASK 0x1 #define ISCSI_COMMON_HDR_IMM_SHIFT 6 #define ISCSI_COMMON_HDR_RSRV_MASK 0x1 #define ISCSI_COMMON_HDR_RSRV_SHIFT 7 __le32 hdr_second_dword; #define ISCSI_COMMON_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_COMMON_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_COMMON_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_COMMON_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun_reserved; __le32 itt; __le32 ttt; __le32 cmdstat_sn; __le32 exp_statcmd_sn; __le32 max_cmd_sn; __le32 data[3]; }; /* iSCSI Command PDU header */ struct iscsi_cmd_hdr { __le16 reserved1; u8 flags_attr; #define ISCSI_CMD_HDR_ATTR_MASK 0x7 #define ISCSI_CMD_HDR_ATTR_SHIFT 0 #define ISCSI_CMD_HDR_RSRV_MASK 0x3 #define ISCSI_CMD_HDR_RSRV_SHIFT 3 #define ISCSI_CMD_HDR_WRITE_MASK 0x1 #define ISCSI_CMD_HDR_WRITE_SHIFT 5 #define ISCSI_CMD_HDR_READ_MASK 0x1 #define ISCSI_CMD_HDR_READ_SHIFT 6 #define ISCSI_CMD_HDR_FINAL_MASK 0x1 #define ISCSI_CMD_HDR_FINAL_SHIFT 7 u8 hdr_first_byte; #define ISCSI_CMD_HDR_OPCODE_MASK 0x3F #define ISCSI_CMD_HDR_OPCODE_SHIFT 0 #define ISCSI_CMD_HDR_IMM_MASK 0x1 #define ISCSI_CMD_HDR_IMM_SHIFT 6 #define ISCSI_CMD_HDR_RSRV1_MASK 0x1 #define ISCSI_CMD_HDR_RSRV1_SHIFT 7 __le32 hdr_second_dword; #define ISCSI_CMD_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_CMD_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_CMD_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_CMD_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 itt; __le32 expected_transfer_length; __le32 cmd_sn; __le32 exp_stat_sn; __le32 cdb[4]; }; /* iSCSI Command PDU header with Extended CDB (Initiator Mode) */ struct iscsi_ext_cdb_cmd_hdr { __le16 reserved1; u8 flags_attr; #define ISCSI_EXT_CDB_CMD_HDR_ATTR_MASK 0x7 #define ISCSI_EXT_CDB_CMD_HDR_ATTR_SHIFT 0 #define ISCSI_EXT_CDB_CMD_HDR_RSRV_MASK 0x3 #define ISCSI_EXT_CDB_CMD_HDR_RSRV_SHIFT 3 #define ISCSI_EXT_CDB_CMD_HDR_WRITE_MASK 0x1 #define ISCSI_EXT_CDB_CMD_HDR_WRITE_SHIFT 5 #define ISCSI_EXT_CDB_CMD_HDR_READ_MASK 0x1 #define ISCSI_EXT_CDB_CMD_HDR_READ_SHIFT 6 #define ISCSI_EXT_CDB_CMD_HDR_FINAL_MASK 0x1 #define ISCSI_EXT_CDB_CMD_HDR_FINAL_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_EXT_CDB_CMD_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_EXT_CDB_CMD_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_EXT_CDB_CMD_HDR_CDB_SIZE_MASK 0xFF #define ISCSI_EXT_CDB_CMD_HDR_CDB_SIZE_SHIFT 24 struct regpair lun; __le32 itt; __le32 expected_transfer_length; __le32 cmd_sn; __le32 exp_stat_sn; struct scsi_sge cdb_sge; }; /* iSCSI login request PDU header */ struct iscsi_login_req_hdr { u8 version_min; u8 version_max; u8 flags_attr; #define ISCSI_LOGIN_REQ_HDR_NSG_MASK 0x3 #define ISCSI_LOGIN_REQ_HDR_NSG_SHIFT 0 #define ISCSI_LOGIN_REQ_HDR_CSG_MASK 0x3 #define ISCSI_LOGIN_REQ_HDR_CSG_SHIFT 2 #define ISCSI_LOGIN_REQ_HDR_RSRV_MASK 0x3 #define ISCSI_LOGIN_REQ_HDR_RSRV_SHIFT 4 #define ISCSI_LOGIN_REQ_HDR_C_MASK 0x1 #define ISCSI_LOGIN_REQ_HDR_C_SHIFT 6 #define ISCSI_LOGIN_REQ_HDR_T_MASK 0x1 #define ISCSI_LOGIN_REQ_HDR_T_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_LOGIN_REQ_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_LOGIN_REQ_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_LOGIN_REQ_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_LOGIN_REQ_HDR_TOTAL_AHS_LEN_SHIFT 24 __le32 isid_tabc; __le16 tsih; __le16 isid_d; __le32 itt; __le16 reserved1; __le16 cid; __le32 cmd_sn; __le32 exp_stat_sn; __le32 reserved2[4]; }; /* iSCSI logout request PDU header */ struct iscsi_logout_req_hdr { __le16 reserved0; u8 reason_code; u8 opcode; __le32 reserved1; __le32 reserved2[2]; __le32 itt; __le16 reserved3; __le16 cid; __le32 cmd_sn; __le32 exp_stat_sn; __le32 reserved4[4]; }; /* iSCSI Data-out PDU header */ struct iscsi_data_out_hdr { __le16 reserved1; u8 flags_attr; #define ISCSI_DATA_OUT_HDR_RSRV_MASK 0x7F #define ISCSI_DATA_OUT_HDR_RSRV_SHIFT 0 #define ISCSI_DATA_OUT_HDR_FINAL_MASK 0x1 #define ISCSI_DATA_OUT_HDR_FINAL_SHIFT 7 u8 opcode; __le32 reserved2; struct regpair lun; __le32 itt; __le32 ttt; __le32 reserved3; __le32 exp_stat_sn; __le32 reserved4; __le32 data_sn; __le32 buffer_offset; __le32 reserved5; }; /* iSCSI Data-in PDU header */ struct iscsi_data_in_hdr { u8 status_rsvd; u8 reserved1; u8 flags; #define ISCSI_DATA_IN_HDR_STATUS_MASK 0x1 #define ISCSI_DATA_IN_HDR_STATUS_SHIFT 0 #define ISCSI_DATA_IN_HDR_UNDERFLOW_MASK 0x1 #define ISCSI_DATA_IN_HDR_UNDERFLOW_SHIFT 1 #define ISCSI_DATA_IN_HDR_OVERFLOW_MASK 0x1 #define ISCSI_DATA_IN_HDR_OVERFLOW_SHIFT 2 #define ISCSI_DATA_IN_HDR_RSRV_MASK 0x7 #define ISCSI_DATA_IN_HDR_RSRV_SHIFT 3 #define ISCSI_DATA_IN_HDR_ACK_MASK 0x1 #define ISCSI_DATA_IN_HDR_ACK_SHIFT 6 #define ISCSI_DATA_IN_HDR_FINAL_MASK 0x1 #define ISCSI_DATA_IN_HDR_FINAL_SHIFT 7 u8 opcode; __le32 reserved2; struct regpair lun; __le32 itt; __le32 ttt; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 data_sn; __le32 buffer_offset; __le32 residual_count; }; /* iSCSI R2T PDU header */ struct iscsi_r2t_hdr { u8 reserved0[3]; u8 opcode; __le32 reserved2; struct regpair lun; __le32 itt; __le32 ttt; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 r2t_sn; __le32 buffer_offset; __le32 desired_data_trns_len; }; /* iSCSI NOP-out PDU header */ struct iscsi_nop_out_hdr { __le16 reserved1; u8 flags_attr; #define ISCSI_NOP_OUT_HDR_RSRV_MASK 0x7F #define ISCSI_NOP_OUT_HDR_RSRV_SHIFT 0 #define ISCSI_NOP_OUT_HDR_CONST1_MASK 0x1 #define ISCSI_NOP_OUT_HDR_CONST1_SHIFT 7 u8 opcode; __le32 reserved2; struct regpair lun; __le32 itt; __le32 ttt; __le32 cmd_sn; __le32 exp_stat_sn; __le32 reserved3; __le32 reserved4; __le32 reserved5; __le32 reserved6; }; /* iSCSI NOP-in PDU header */ struct iscsi_nop_in_hdr { __le16 reserved0; u8 flags_attr; #define ISCSI_NOP_IN_HDR_RSRV_MASK 0x7F #define ISCSI_NOP_IN_HDR_RSRV_SHIFT 0 #define ISCSI_NOP_IN_HDR_CONST1_MASK 0x1 #define ISCSI_NOP_IN_HDR_CONST1_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_NOP_IN_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_NOP_IN_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_NOP_IN_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_NOP_IN_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 itt; __le32 ttt; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 reserved5; __le32 reserved6; __le32 reserved7; }; /* iSCSI Login Response PDU header */ struct iscsi_login_response_hdr { u8 version_active; u8 version_max; u8 flags_attr; #define ISCSI_LOGIN_RESPONSE_HDR_NSG_MASK 0x3 #define ISCSI_LOGIN_RESPONSE_HDR_NSG_SHIFT 0 #define ISCSI_LOGIN_RESPONSE_HDR_CSG_MASK 0x3 #define ISCSI_LOGIN_RESPONSE_HDR_CSG_SHIFT 2 #define ISCSI_LOGIN_RESPONSE_HDR_RSRV_MASK 0x3 #define ISCSI_LOGIN_RESPONSE_HDR_RSRV_SHIFT 4 #define ISCSI_LOGIN_RESPONSE_HDR_C_MASK 0x1 #define ISCSI_LOGIN_RESPONSE_HDR_C_SHIFT 6 #define ISCSI_LOGIN_RESPONSE_HDR_T_MASK 0x1 #define ISCSI_LOGIN_RESPONSE_HDR_T_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_LOGIN_RESPONSE_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_LOGIN_RESPONSE_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_LOGIN_RESPONSE_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_LOGIN_RESPONSE_HDR_TOTAL_AHS_LEN_SHIFT 24 __le32 isid_tabc; __le16 tsih; __le16 isid_d; __le32 itt; __le32 reserved1; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le16 reserved2; u8 status_detail; u8 status_class; __le32 reserved4[2]; }; /* iSCSI Logout Response PDU header */ struct iscsi_logout_response_hdr { u8 reserved1; u8 response; u8 flags; u8 opcode; __le32 hdr_second_dword; #define ISCSI_LOGOUT_RESPONSE_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_LOGOUT_RESPONSE_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_LOGOUT_RESPONSE_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_LOGOUT_RESPONSE_HDR_TOTAL_AHS_LEN_SHIFT 24 __le32 reserved2[2]; __le32 itt; __le32 reserved3; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 reserved4; __le16 time_2_retain; __le16 time_2_wait; __le32 reserved5[1]; }; /* iSCSI Text Request PDU header */ struct iscsi_text_request_hdr { __le16 reserved0; u8 flags_attr; #define ISCSI_TEXT_REQUEST_HDR_RSRV_MASK 0x3F #define ISCSI_TEXT_REQUEST_HDR_RSRV_SHIFT 0 #define ISCSI_TEXT_REQUEST_HDR_C_MASK 0x1 #define ISCSI_TEXT_REQUEST_HDR_C_SHIFT 6 #define ISCSI_TEXT_REQUEST_HDR_F_MASK 0x1 #define ISCSI_TEXT_REQUEST_HDR_F_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_TEXT_REQUEST_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_TEXT_REQUEST_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_TEXT_REQUEST_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_TEXT_REQUEST_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 itt; __le32 ttt; __le32 cmd_sn; __le32 exp_stat_sn; __le32 reserved4[4]; }; /* iSCSI Text Response PDU header */ struct iscsi_text_response_hdr { __le16 reserved1; u8 flags; #define ISCSI_TEXT_RESPONSE_HDR_RSRV_MASK 0x3F #define ISCSI_TEXT_RESPONSE_HDR_RSRV_SHIFT 0 #define ISCSI_TEXT_RESPONSE_HDR_C_MASK 0x1 #define ISCSI_TEXT_RESPONSE_HDR_C_SHIFT 6 #define ISCSI_TEXT_RESPONSE_HDR_F_MASK 0x1 #define ISCSI_TEXT_RESPONSE_HDR_F_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_TEXT_RESPONSE_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_TEXT_RESPONSE_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_TEXT_RESPONSE_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_TEXT_RESPONSE_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 itt; __le32 ttt; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 reserved4[3]; }; /* iSCSI TMF Request PDU header */ struct iscsi_tmf_request_hdr { __le16 reserved0; u8 function; u8 opcode; __le32 hdr_second_dword; #define ISCSI_TMF_REQUEST_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_TMF_REQUEST_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_TMF_REQUEST_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_TMF_REQUEST_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 itt; __le32 rtt; __le32 cmd_sn; __le32 exp_stat_sn; __le32 ref_cmd_sn; __le32 exp_data_sn; __le32 reserved4[2]; }; struct iscsi_tmf_response_hdr { u8 reserved2; u8 hdr_response; u8 hdr_flags; u8 opcode; __le32 hdr_second_dword; #define ISCSI_TMF_RESPONSE_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_TMF_RESPONSE_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_TMF_RESPONSE_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_TMF_RESPONSE_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair reserved0; __le32 itt; __le32 reserved1; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 reserved4[3]; }; /* iSCSI Response PDU header */ struct iscsi_response_hdr { u8 hdr_status; u8 hdr_response; u8 hdr_flags; u8 opcode; __le32 hdr_second_dword; #define ISCSI_RESPONSE_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_RESPONSE_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_RESPONSE_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_RESPONSE_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 itt; __le32 snack_tag; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 exp_data_sn; __le32 bi_residual_count; __le32 residual_count; }; /* iSCSI Reject PDU header */ struct iscsi_reject_hdr { u8 reserved4; u8 hdr_reason; u8 hdr_flags; u8 opcode; __le32 hdr_second_dword; #define ISCSI_REJECT_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_REJECT_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_REJECT_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_REJECT_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair reserved0; __le32 all_ones; __le32 reserved2; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le32 data_sn; __le32 reserved3[2]; }; /* iSCSI Asynchronous Message PDU header */ struct iscsi_async_msg_hdr { __le16 reserved0; u8 flags_attr; #define ISCSI_ASYNC_MSG_HDR_RSRV_MASK 0x7F #define ISCSI_ASYNC_MSG_HDR_RSRV_SHIFT 0 #define ISCSI_ASYNC_MSG_HDR_CONST1_MASK 0x1 #define ISCSI_ASYNC_MSG_HDR_CONST1_SHIFT 7 u8 opcode; __le32 hdr_second_dword; #define ISCSI_ASYNC_MSG_HDR_DATA_SEG_LEN_MASK 0xFFFFFF #define ISCSI_ASYNC_MSG_HDR_DATA_SEG_LEN_SHIFT 0 #define ISCSI_ASYNC_MSG_HDR_TOTAL_AHS_LEN_MASK 0xFF #define ISCSI_ASYNC_MSG_HDR_TOTAL_AHS_LEN_SHIFT 24 struct regpair lun; __le32 all_ones; __le32 reserved1; __le32 stat_sn; __le32 exp_cmd_sn; __le32 max_cmd_sn; __le16 param1_rsrv; u8 async_vcode; u8 async_event; __le16 param3_rsrv; __le16 param2_rsrv; __le32 reserved7; }; /* PDU header part of Ystorm task context */ union iscsi_task_hdr { struct iscsi_common_hdr common; struct data_hdr data; struct iscsi_cmd_hdr cmd; struct iscsi_ext_cdb_cmd_hdr ext_cdb_cmd; struct iscsi_login_req_hdr login_req; struct iscsi_logout_req_hdr logout_req; struct iscsi_data_out_hdr data_out; struct iscsi_data_in_hdr data_in; struct iscsi_r2t_hdr r2t; struct iscsi_nop_out_hdr nop_out; struct iscsi_nop_in_hdr nop_in; struct iscsi_login_response_hdr login_response; struct iscsi_logout_response_hdr logout_response; struct iscsi_text_request_hdr text_request; struct iscsi_text_response_hdr text_response; struct iscsi_tmf_request_hdr tmf_request; struct iscsi_tmf_response_hdr tmf_response; struct iscsi_response_hdr response; struct iscsi_reject_hdr reject; struct iscsi_async_msg_hdr async_msg; }; /* The iscsi storm task context of Ystorm */ struct ystorm_iscsi_task_st_ctx { struct ystorm_iscsi_task_state state; struct ystorm_iscsi_task_rxmit_opt rxmit_opt; union iscsi_task_hdr pdu_hdr; }; struct ystorm_iscsi_task_ag_ctx { u8 reserved; u8 byte1; __le16 word0; u8 flags0; #define YSTORM_ISCSI_TASK_AG_CTX_NIBBLE0_MASK 0xF #define YSTORM_ISCSI_TASK_AG_CTX_NIBBLE0_SHIFT 0 #define YSTORM_ISCSI_TASK_AG_CTX_BIT0_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_BIT0_SHIFT 4 #define YSTORM_ISCSI_TASK_AG_CTX_BIT1_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_BIT1_SHIFT 5 #define YSTORM_ISCSI_TASK_AG_CTX_VALID_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_VALID_SHIFT 6 #define YSTORM_ISCSI_TASK_AG_CTX_TTT_VALID_MASK 0x1 /* bit3 */ #define YSTORM_ISCSI_TASK_AG_CTX_TTT_VALID_SHIFT 7 u8 flags1; #define YSTORM_ISCSI_TASK_AG_CTX_CF0_MASK 0x3 #define YSTORM_ISCSI_TASK_AG_CTX_CF0_SHIFT 0 #define YSTORM_ISCSI_TASK_AG_CTX_CF1_MASK 0x3 #define YSTORM_ISCSI_TASK_AG_CTX_CF1_SHIFT 2 #define YSTORM_ISCSI_TASK_AG_CTX_CF2SPECIAL_MASK 0x3 #define YSTORM_ISCSI_TASK_AG_CTX_CF2SPECIAL_SHIFT 4 #define YSTORM_ISCSI_TASK_AG_CTX_CF0EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_CF0EN_SHIFT 6 #define YSTORM_ISCSI_TASK_AG_CTX_CF1EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_CF1EN_SHIFT 7 u8 flags2; #define YSTORM_ISCSI_TASK_AG_CTX_BIT4_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_BIT4_SHIFT 0 #define YSTORM_ISCSI_TASK_AG_CTX_RULE0EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE0EN_SHIFT 1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE1EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE1EN_SHIFT 2 #define YSTORM_ISCSI_TASK_AG_CTX_RULE2EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE2EN_SHIFT 3 #define YSTORM_ISCSI_TASK_AG_CTX_RULE3EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE3EN_SHIFT 4 #define YSTORM_ISCSI_TASK_AG_CTX_RULE4EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE4EN_SHIFT 5 #define YSTORM_ISCSI_TASK_AG_CTX_RULE5EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE5EN_SHIFT 6 #define YSTORM_ISCSI_TASK_AG_CTX_RULE6EN_MASK 0x1 #define YSTORM_ISCSI_TASK_AG_CTX_RULE6EN_SHIFT 7 u8 byte2; __le32 TTT; u8 byte3; u8 byte4; __le16 word1; }; struct mstorm_iscsi_task_ag_ctx { u8 cdu_validation; u8 byte1; __le16 task_cid; u8 flags0; #define MSTORM_ISCSI_TASK_AG_CTX_CONNECTION_TYPE_MASK 0xF #define MSTORM_ISCSI_TASK_AG_CTX_CONNECTION_TYPE_SHIFT 0 #define MSTORM_ISCSI_TASK_AG_CTX_EXIST_IN_QM0_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_EXIST_IN_QM0_SHIFT 4 #define MSTORM_ISCSI_TASK_AG_CTX_CONN_CLEAR_SQ_FLAG_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_CONN_CLEAR_SQ_FLAG_SHIFT 5 #define MSTORM_ISCSI_TASK_AG_CTX_VALID_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_VALID_SHIFT 6 #define MSTORM_ISCSI_TASK_AG_CTX_TASK_CLEANUP_FLAG_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_TASK_CLEANUP_FLAG_SHIFT 7 u8 flags1; #define MSTORM_ISCSI_TASK_AG_CTX_TASK_CLEANUP_CF_MASK 0x3 #define MSTORM_ISCSI_TASK_AG_CTX_TASK_CLEANUP_CF_SHIFT 0 #define MSTORM_ISCSI_TASK_AG_CTX_CF1_MASK 0x3 #define MSTORM_ISCSI_TASK_AG_CTX_CF1_SHIFT 2 #define MSTORM_ISCSI_TASK_AG_CTX_CF2_MASK 0x3 #define MSTORM_ISCSI_TASK_AG_CTX_CF2_SHIFT 4 #define MSTORM_ISCSI_TASK_AG_CTX_TASK_CLEANUP_CF_EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_TASK_CLEANUP_CF_EN_SHIFT 6 #define MSTORM_ISCSI_TASK_AG_CTX_CF1EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_CF1EN_SHIFT 7 u8 flags2; #define MSTORM_ISCSI_TASK_AG_CTX_CF2EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_CF2EN_SHIFT 0 #define MSTORM_ISCSI_TASK_AG_CTX_RULE0EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE0EN_SHIFT 1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE1EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE1EN_SHIFT 2 #define MSTORM_ISCSI_TASK_AG_CTX_RULE2EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE2EN_SHIFT 3 #define MSTORM_ISCSI_TASK_AG_CTX_RULE3EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE3EN_SHIFT 4 #define MSTORM_ISCSI_TASK_AG_CTX_RULE4EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE4EN_SHIFT 5 #define MSTORM_ISCSI_TASK_AG_CTX_RULE5EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE5EN_SHIFT 6 #define MSTORM_ISCSI_TASK_AG_CTX_RULE6EN_MASK 0x1 #define MSTORM_ISCSI_TASK_AG_CTX_RULE6EN_SHIFT 7 u8 byte2; __le32 reg0; u8 byte3; u8 byte4; __le16 word1; }; struct ustorm_iscsi_task_ag_ctx { u8 reserved; u8 state; __le16 icid; u8 flags0; #define USTORM_ISCSI_TASK_AG_CTX_CONNECTION_TYPE_MASK 0xF #define USTORM_ISCSI_TASK_AG_CTX_CONNECTION_TYPE_SHIFT 0 #define USTORM_ISCSI_TASK_AG_CTX_EXIST_IN_QM0_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_EXIST_IN_QM0_SHIFT 4 #define USTORM_ISCSI_TASK_AG_CTX_CONN_CLEAR_SQ_FLAG_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_CONN_CLEAR_SQ_FLAG_SHIFT 5 #define USTORM_ISCSI_TASK_AG_CTX_HQ_SCANNED_CF_MASK 0x3 #define USTORM_ISCSI_TASK_AG_CTX_HQ_SCANNED_CF_SHIFT 6 u8 flags1; #define USTORM_ISCSI_TASK_AG_CTX_RESERVED1_MASK 0x3 #define USTORM_ISCSI_TASK_AG_CTX_RESERVED1_SHIFT 0 #define USTORM_ISCSI_TASK_AG_CTX_R2T2RECV_MASK 0x3 #define USTORM_ISCSI_TASK_AG_CTX_R2T2RECV_SHIFT 2 #define USTORM_ISCSI_TASK_AG_CTX_CF3_MASK 0x3 #define USTORM_ISCSI_TASK_AG_CTX_CF3_SHIFT 4 #define USTORM_ISCSI_TASK_AG_CTX_DIF_ERROR_CF_MASK 0x3 #define USTORM_ISCSI_TASK_AG_CTX_DIF_ERROR_CF_SHIFT 6 u8 flags2; #define USTORM_ISCSI_TASK_AG_CTX_HQ_SCANNED_CF_EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_HQ_SCANNED_CF_EN_SHIFT 0 #define USTORM_ISCSI_TASK_AG_CTX_DISABLE_DATA_ACKED_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_DISABLE_DATA_ACKED_SHIFT 1 #define USTORM_ISCSI_TASK_AG_CTX_R2T2RECV_EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_R2T2RECV_EN_SHIFT 2 #define USTORM_ISCSI_TASK_AG_CTX_CF3EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_CF3EN_SHIFT 3 #define USTORM_ISCSI_TASK_AG_CTX_DIF_ERROR_CF_EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_DIF_ERROR_CF_EN_SHIFT 4 #define USTORM_ISCSI_TASK_AG_CTX_CMP_DATA_TOTAL_EXP_EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_CMP_DATA_TOTAL_EXP_EN_SHIFT 5 #define USTORM_ISCSI_TASK_AG_CTX_RULE1EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_RULE1EN_SHIFT 6 #define USTORM_ISCSI_TASK_AG_CTX_CMP_CONT_RCV_EXP_EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_CMP_CONT_RCV_EXP_EN_SHIFT 7 u8 flags3; #define USTORM_ISCSI_TASK_AG_CTX_RULE3EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_RULE3EN_SHIFT 0 #define USTORM_ISCSI_TASK_AG_CTX_RULE4EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_RULE4EN_SHIFT 1 #define USTORM_ISCSI_TASK_AG_CTX_RULE5EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_RULE5EN_SHIFT 2 #define USTORM_ISCSI_TASK_AG_CTX_RULE6EN_MASK 0x1 #define USTORM_ISCSI_TASK_AG_CTX_RULE6EN_SHIFT 3 #define USTORM_ISCSI_TASK_AG_CTX_DIF_ERROR_TYPE_MASK 0xF #define USTORM_ISCSI_TASK_AG_CTX_DIF_ERROR_TYPE_SHIFT 4 __le32 dif_err_intervals; __le32 dif_error_1st_interval; __le32 rcv_cont_len; __le32 exp_cont_len; __le32 total_data_acked; __le32 exp_data_acked; u8 byte2; u8 byte3; __le16 word1; __le16 next_tid; __le16 word3; __le32 hdr_residual_count; __le32 exp_r2t_sn; }; /* The iscsi storm task context of Mstorm */ struct mstorm_iscsi_task_st_ctx { struct scsi_cached_sges data_desc; struct scsi_sgl_params sgl_params; __le32 rem_task_size; __le32 data_buffer_offset; u8 task_type; struct iscsi_dif_flags dif_flags; __le16 dif_task_icid; struct regpair sense_db; __le32 expected_itt; __le32 reserved1; }; struct iscsi_reg1 { __le32 reg1_map; #define ISCSI_REG1_NUM_SGES_MASK 0xF #define ISCSI_REG1_NUM_SGES_SHIFT 0 #define ISCSI_REG1_RESERVED1_MASK 0xFFFFFFF #define ISCSI_REG1_RESERVED1_SHIFT 4 }; struct tqe_opaque { __le16 opaque[2]; }; /* The iscsi storm task context of Ustorm */ struct ustorm_iscsi_task_st_ctx { __le32 rem_rcv_len; __le32 exp_data_transfer_len; __le32 exp_data_sn; struct regpair lun; struct iscsi_reg1 reg1; u8 flags2; #define USTORM_ISCSI_TASK_ST_CTX_AHS_EXIST_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_AHS_EXIST_SHIFT 0 #define USTORM_ISCSI_TASK_ST_CTX_RESERVED1_MASK 0x7F #define USTORM_ISCSI_TASK_ST_CTX_RESERVED1_SHIFT 1 struct iscsi_dif_flags dif_flags; __le16 reserved3; struct tqe_opaque tqe_opaque_list; __le32 reserved5; __le32 reserved6; __le32 reserved7; u8 task_type; u8 error_flags; #define USTORM_ISCSI_TASK_ST_CTX_DATA_DIGEST_ERROR_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_DATA_DIGEST_ERROR_SHIFT 0 #define USTORM_ISCSI_TASK_ST_CTX_DATA_TRUNCATED_ERROR_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_DATA_TRUNCATED_ERROR_SHIFT 1 #define USTORM_ISCSI_TASK_ST_CTX_UNDER_RUN_ERROR_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_UNDER_RUN_ERROR_SHIFT 2 #define USTORM_ISCSI_TASK_ST_CTX_RESERVED8_MASK 0x1F #define USTORM_ISCSI_TASK_ST_CTX_RESERVED8_SHIFT 3 u8 flags; #define USTORM_ISCSI_TASK_ST_CTX_CQE_WRITE_MASK 0x3 #define USTORM_ISCSI_TASK_ST_CTX_CQE_WRITE_SHIFT 0 #define USTORM_ISCSI_TASK_ST_CTX_LOCAL_COMP_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_LOCAL_COMP_SHIFT 2 #define USTORM_ISCSI_TASK_ST_CTX_Q0_R2TQE_WRITE_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_Q0_R2TQE_WRITE_SHIFT 3 #define USTORM_ISCSI_TASK_ST_CTX_TOTAL_DATA_ACKED_DONE_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_TOTAL_DATA_ACKED_DONE_SHIFT 4 #define USTORM_ISCSI_TASK_ST_CTX_HQ_SCANNED_DONE_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_HQ_SCANNED_DONE_SHIFT 5 #define USTORM_ISCSI_TASK_ST_CTX_R2T2RECV_DONE_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_R2T2RECV_DONE_SHIFT 6 #define USTORM_ISCSI_TASK_ST_CTX_RESERVED0_MASK 0x1 #define USTORM_ISCSI_TASK_ST_CTX_RESERVED0_SHIFT 7 u8 cq_rss_number; }; /* iscsi task context */ struct iscsi_task_context { struct ystorm_iscsi_task_st_ctx ystorm_st_context; struct ystorm_iscsi_task_ag_ctx ystorm_ag_context; struct regpair ystorm_ag_padding[2]; struct tdif_task_context tdif_context; struct mstorm_iscsi_task_ag_ctx mstorm_ag_context; struct regpair mstorm_ag_padding[2]; struct ustorm_iscsi_task_ag_ctx ustorm_ag_context; struct mstorm_iscsi_task_st_ctx mstorm_st_context; struct ustorm_iscsi_task_st_ctx ustorm_st_context; struct rdif_task_context rdif_context; }; /* iSCSI connection offload params passed by driver to FW in ISCSI offload * ramrod. */ struct iscsi_conn_offload_params { struct regpair sq_pbl_addr; struct regpair r2tq_pbl_addr; struct regpair xhq_pbl_addr; struct regpair uhq_pbl_addr; __le16 physical_q0; __le16 physical_q1; u8 flags; #define ISCSI_CONN_OFFLOAD_PARAMS_TCP_ON_CHIP_1B_MASK 0x1 #define ISCSI_CONN_OFFLOAD_PARAMS_TCP_ON_CHIP_1B_SHIFT 0 #define ISCSI_CONN_OFFLOAD_PARAMS_TARGET_MODE_MASK 0x1 #define ISCSI_CONN_OFFLOAD_PARAMS_TARGET_MODE_SHIFT 1 #define ISCSI_CONN_OFFLOAD_PARAMS_RESTRICTED_MODE_MASK 0x1 #define ISCSI_CONN_OFFLOAD_PARAMS_RESTRICTED_MODE_SHIFT 2 #define ISCSI_CONN_OFFLOAD_PARAMS_RESERVED1_MASK 0x1F #define ISCSI_CONN_OFFLOAD_PARAMS_RESERVED1_SHIFT 3 u8 default_cq; __le16 reserved0; __le32 stat_sn; __le32 initial_ack; }; /* iSCSI connection statistics */ struct iscsi_conn_stats_params { struct regpair iscsi_tcp_tx_packets_cnt; struct regpair iscsi_tcp_tx_bytes_cnt; struct regpair iscsi_tcp_tx_rxmit_cnt; struct regpair iscsi_tcp_rx_packets_cnt; struct regpair iscsi_tcp_rx_bytes_cnt; struct regpair iscsi_tcp_rx_dup_ack_cnt; __le32 iscsi_tcp_rx_chksum_err_cnt; __le32 reserved; }; /* iSCSI connection update params passed by driver to FW in ISCSI update *ramrod. */ struct iscsi_conn_update_ramrod_params { __le16 reserved0; __le16 conn_id; __le32 reserved1; u8 flags; #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_HD_EN_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_HD_EN_SHIFT 0 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DD_EN_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DD_EN_SHIFT 1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_INITIAL_R2T_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_INITIAL_R2T_SHIFT 2 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_IMMEDIATE_DATA_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_IMMEDIATE_DATA_SHIFT 3 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DIF_BLOCK_SIZE_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DIF_BLOCK_SIZE_SHIFT 4 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DIF_ON_HOST_EN_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DIF_ON_HOST_EN_SHIFT 5 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DIF_ON_IMM_EN_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_DIF_ON_IMM_EN_SHIFT 6 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_LUN_MAPPER_EN_MASK 0x1 #define ISCSI_CONN_UPDATE_RAMROD_PARAMS_LUN_MAPPER_EN_SHIFT 7 u8 reserved3[3]; __le32 max_seq_size; __le32 max_send_pdu_length; __le32 max_recv_pdu_length; __le32 first_seq_length; __le32 exp_stat_sn; union dif_configuration_params dif_on_imme_params; }; /* iSCSI CQ element */ struct iscsi_cqe_common { __le16 conn_id; u8 cqe_type; union cqe_error_status error_bitmap; __le32 reserved[3]; union iscsi_task_hdr iscsi_hdr; }; /* iSCSI CQ element */ struct iscsi_cqe_solicited { __le16 conn_id; u8 cqe_type; union cqe_error_status error_bitmap; __le16 itid; u8 task_type; u8 fw_dbg_field; u8 caused_conn_err; u8 reserved0[3]; __le32 data_truncated_bytes; union iscsi_task_hdr iscsi_hdr; }; /* iSCSI CQ element */ struct iscsi_cqe_unsolicited { __le16 conn_id; u8 cqe_type; union cqe_error_status error_bitmap; __le16 reserved0; u8 reserved1; u8 unsol_cqe_type; __le16 rqe_opaque; __le16 reserved2[3]; union iscsi_task_hdr iscsi_hdr; }; /* iSCSI CQ element */ union iscsi_cqe { struct iscsi_cqe_common cqe_common; struct iscsi_cqe_solicited cqe_solicited; struct iscsi_cqe_unsolicited cqe_unsolicited; }; /* iSCSI CQE type */ enum iscsi_cqes_type { ISCSI_CQE_TYPE_SOLICITED = 1, ISCSI_CQE_TYPE_UNSOLICITED, ISCSI_CQE_TYPE_SOLICITED_WITH_SENSE, ISCSI_CQE_TYPE_TASK_CLEANUP, ISCSI_CQE_TYPE_DUMMY, MAX_ISCSI_CQES_TYPE }; /* iSCSI CQE type */ enum iscsi_cqe_unsolicited_type { ISCSI_CQE_UNSOLICITED_NONE, ISCSI_CQE_UNSOLICITED_SINGLE, ISCSI_CQE_UNSOLICITED_FIRST, ISCSI_CQE_UNSOLICITED_MIDDLE, ISCSI_CQE_UNSOLICITED_LAST, MAX_ISCSI_CQE_UNSOLICITED_TYPE }; /* iscsi debug modes */ struct iscsi_debug_modes { u8 flags; #define ISCSI_DEBUG_MODES_ASSERT_IF_RX_CONN_ERROR_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RX_CONN_ERROR_SHIFT 0 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_RESET_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_RESET_SHIFT 1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_FIN_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_FIN_SHIFT 2 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_CLEANUP_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_CLEANUP_SHIFT 3 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_REJECT_OR_ASYNC_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_REJECT_OR_ASYNC_SHIFT 4 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_NOP_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_RECV_NOP_SHIFT 5 #define ISCSI_DEBUG_MODES_ASSERT_IF_DIF_OR_DATA_DIGEST_ERROR_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_DIF_OR_DATA_DIGEST_ERROR_SHIFT 6 #define ISCSI_DEBUG_MODES_ASSERT_IF_HQ_CORRUPT_MASK 0x1 #define ISCSI_DEBUG_MODES_ASSERT_IF_HQ_CORRUPT_SHIFT 7 }; /* iSCSI kernel completion queue IDs */ enum iscsi_eqe_opcode { ISCSI_EVENT_TYPE_INIT_FUNC = 0, ISCSI_EVENT_TYPE_DESTROY_FUNC, ISCSI_EVENT_TYPE_OFFLOAD_CONN, ISCSI_EVENT_TYPE_UPDATE_CONN, ISCSI_EVENT_TYPE_CLEAR_SQ, ISCSI_EVENT_TYPE_TERMINATE_CONN, ISCSI_EVENT_TYPE_MAC_UPDATE_CONN, ISCSI_EVENT_TYPE_COLLECT_STATS_CONN, ISCSI_EVENT_TYPE_ASYN_CONNECT_COMPLETE, ISCSI_EVENT_TYPE_ASYN_TERMINATE_DONE, ISCSI_EVENT_TYPE_START_OF_ERROR_TYPES = 10, ISCSI_EVENT_TYPE_ASYN_ABORT_RCVD, ISCSI_EVENT_TYPE_ASYN_CLOSE_RCVD, ISCSI_EVENT_TYPE_ASYN_SYN_RCVD, ISCSI_EVENT_TYPE_ASYN_MAX_RT_TIME, ISCSI_EVENT_TYPE_ASYN_MAX_RT_CNT, ISCSI_EVENT_TYPE_ASYN_MAX_KA_PROBES_CNT, ISCSI_EVENT_TYPE_ASYN_FIN_WAIT2, ISCSI_EVENT_TYPE_ISCSI_CONN_ERROR, ISCSI_EVENT_TYPE_TCP_CONN_ERROR, MAX_ISCSI_EQE_OPCODE }; /* iSCSI EQE and CQE completion status */ enum iscsi_error_types { ISCSI_STATUS_NONE = 0, ISCSI_CQE_ERROR_UNSOLICITED_RCV_ON_INVALID_CONN = 1, ISCSI_CONN_ERROR_TASK_CID_MISMATCH, ISCSI_CONN_ERROR_TASK_NOT_VALID, ISCSI_CONN_ERROR_RQ_RING_IS_FULL, ISCSI_CONN_ERROR_CMDQ_RING_IS_FULL, ISCSI_CONN_ERROR_HQE_CACHING_FAILED, ISCSI_CONN_ERROR_HEADER_DIGEST_ERROR, ISCSI_CONN_ERROR_LOCAL_COMPLETION_ERROR, ISCSI_CONN_ERROR_DATA_OVERRUN, ISCSI_CONN_ERROR_OUT_OF_SGES_ERROR, ISCSI_CONN_ERROR_IP_OPTIONS_ERROR, ISCSI_CONN_ERROR_PRS_ERRORS, ISCSI_CONN_ERROR_CONNECT_INVALID_TCP_OPTION, ISCSI_CONN_ERROR_TCP_IP_FRAGMENT_ERROR, ISCSI_CONN_ERROR_PROTOCOL_ERR_AHS_LEN, ISCSI_CONN_ERROR_PROTOCOL_ERR_AHS_TYPE, ISCSI_CONN_ERROR_PROTOCOL_ERR_ITT_OUT_OF_RANGE, ISCSI_CONN_ERROR_PROTOCOL_ERR_TTT_OUT_OF_RANGE, ISCSI_CONN_ERROR_PROTOCOL_ERR_DATA_SEG_LEN_EXCEEDS_PDU_SIZE, ISCSI_CONN_ERROR_PROTOCOL_ERR_INVALID_OPCODE, ISCSI_CONN_ERROR_PROTOCOL_ERR_INVALID_OPCODE_BEFORE_UPDATE, ISCSI_CONN_ERROR_UNVALID_NOPIN_DSL, ISCSI_CONN_ERROR_PROTOCOL_ERR_R2T_CARRIES_NO_DATA, ISCSI_CONN_ERROR_PROTOCOL_ERR_DATA_SN, ISCSI_CONN_ERROR_PROTOCOL_ERR_DATA_IN_TTT, ISCSI_CONN_ERROR_PROTOCOL_ERR_DATA_OUT_ITT, ISCSI_CONN_ERROR_PROTOCOL_ERR_R2T_TTT, ISCSI_CONN_ERROR_PROTOCOL_ERR_R2T_BUFFER_OFFSET, ISCSI_CONN_ERROR_PROTOCOL_ERR_BUFFER_OFFSET_OOO, ISCSI_CONN_ERROR_PROTOCOL_ERR_R2T_SN, ISCSI_CONN_ERROR_PROTOCOL_ERR_DESIRED_DATA_TRNS_LEN_0, ISCSI_CONN_ERROR_PROTOCOL_ERR_DESIRED_DATA_TRNS_LEN_1, ISCSI_CONN_ERROR_PROTOCOL_ERR_DESIRED_DATA_TRNS_LEN_2, ISCSI_CONN_ERROR_PROTOCOL_ERR_LUN, ISCSI_CONN_ERROR_PROTOCOL_ERR_F_BIT_ZERO, ISCSI_CONN_ERROR_PROTOCOL_ERR_F_BIT_ZERO_S_BIT_ONE, ISCSI_CONN_ERROR_PROTOCOL_ERR_EXP_STAT_SN, ISCSI_CONN_ERROR_PROTOCOL_ERR_DSL_NOT_ZERO, ISCSI_CONN_ERROR_PROTOCOL_ERR_INVALID_DSL, ISCSI_CONN_ERROR_PROTOCOL_ERR_DATA_SEG_LEN_TOO_BIG, ISCSI_CONN_ERROR_PROTOCOL_ERR_OUTSTANDING_R2T_COUNT, ISCSI_CONN_ERROR_PROTOCOL_ERR_DIF_TX, ISCSI_CONN_ERROR_SENSE_DATA_LENGTH, ISCSI_CONN_ERROR_DATA_PLACEMENT_ERROR, ISCSI_CONN_ERROR_INVALID_ITT, ISCSI_ERROR_UNKNOWN, MAX_ISCSI_ERROR_TYPES }; /* iSCSI Ramrod Command IDs */ enum iscsi_ramrod_cmd_id { ISCSI_RAMROD_CMD_ID_UNUSED = 0, ISCSI_RAMROD_CMD_ID_INIT_FUNC = 1, ISCSI_RAMROD_CMD_ID_DESTROY_FUNC = 2, ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN = 3, ISCSI_RAMROD_CMD_ID_UPDATE_CONN = 4, ISCSI_RAMROD_CMD_ID_TERMINATION_CONN = 5, ISCSI_RAMROD_CMD_ID_CLEAR_SQ = 6, ISCSI_RAMROD_CMD_ID_MAC_UPDATE = 7, ISCSI_RAMROD_CMD_ID_CONN_STATS = 8, MAX_ISCSI_RAMROD_CMD_ID }; /* iSCSI connection termination request */ struct iscsi_spe_conn_mac_update { __le16 reserved0; __le16 conn_id; __le32 reserved1; __le16 remote_mac_addr_lo; __le16 remote_mac_addr_mid; __le16 remote_mac_addr_hi; u8 reserved2[2]; }; /* iSCSI and TCP connection (Option 1) offload params passed by driver to FW in * iSCSI offload ramrod. */ struct iscsi_spe_conn_offload { __le16 reserved0; __le16 conn_id; __le32 reserved1; struct iscsi_conn_offload_params iscsi; struct tcp_offload_params tcp; }; /* iSCSI and TCP connection(Option 2) offload params passed by driver to FW in * iSCSI offload ramrod. */ struct iscsi_spe_conn_offload_option2 { __le16 reserved0; __le16 conn_id; __le32 reserved1; struct iscsi_conn_offload_params iscsi; struct tcp_offload_params_opt2 tcp; }; /* iSCSI collect connection statistics request */ struct iscsi_spe_conn_statistics { __le16 reserved0; __le16 conn_id; __le32 reserved1; u8 reset_stats; u8 reserved2[7]; struct regpair stats_cnts_addr; }; /* iSCSI connection termination request */ struct iscsi_spe_conn_termination { __le16 reserved0; __le16 conn_id; __le32 reserved1; u8 abortive; u8 reserved2[7]; struct regpair queue_cnts_addr; struct regpair query_params_addr; }; /* iSCSI firmware function init parameters */ struct iscsi_spe_func_init { __le16 half_way_close_timeout; u8 num_sq_pages_in_ring; u8 num_r2tq_pages_in_ring; u8 num_uhq_pages_in_ring; u8 ll2_rx_queue_id; u8 flags; #define ISCSI_SPE_FUNC_INIT_COUNTERS_EN_MASK 0x1 #define ISCSI_SPE_FUNC_INIT_COUNTERS_EN_SHIFT 0 #define ISCSI_SPE_FUNC_INIT_RESERVED0_MASK 0x7F #define ISCSI_SPE_FUNC_INIT_RESERVED0_SHIFT 1 struct iscsi_debug_modes debug_mode; u8 params; #define ISCSI_SPE_FUNC_INIT_MAX_SYN_RT_MASK 0xF #define ISCSI_SPE_FUNC_INIT_MAX_SYN_RT_SHIFT 0 #define ISCSI_SPE_FUNC_INIT_RESERVED1_MASK 0xF #define ISCSI_SPE_FUNC_INIT_RESERVED1_SHIFT 4 u8 reserved2[7]; struct scsi_init_func_params func_params; struct scsi_init_func_queues q_params; }; /* iSCSI task type */ enum iscsi_task_type { ISCSI_TASK_TYPE_INITIATOR_WRITE, ISCSI_TASK_TYPE_INITIATOR_READ, ISCSI_TASK_TYPE_MIDPATH, ISCSI_TASK_TYPE_UNSOLIC, ISCSI_TASK_TYPE_EXCHCLEANUP, ISCSI_TASK_TYPE_IRRELEVANT, ISCSI_TASK_TYPE_TARGET_WRITE, ISCSI_TASK_TYPE_TARGET_READ, ISCSI_TASK_TYPE_TARGET_RESPONSE, ISCSI_TASK_TYPE_LOGIN_RESPONSE, ISCSI_TASK_TYPE_TARGET_IMM_W_DIF, MAX_ISCSI_TASK_TYPE }; /* iSCSI DesiredDataTransferLength/ttt union */ union iscsi_ttt_txlen_union { __le32 desired_tx_len; __le32 ttt; }; /* iSCSI uHQ element */ struct iscsi_uhqe { __le32 reg1; #define ISCSI_UHQE_PDU_PAYLOAD_LEN_MASK 0xFFFFF #define ISCSI_UHQE_PDU_PAYLOAD_LEN_SHIFT 0 #define ISCSI_UHQE_LOCAL_COMP_MASK 0x1 #define ISCSI_UHQE_LOCAL_COMP_SHIFT 20 #define ISCSI_UHQE_TOGGLE_BIT_MASK 0x1 #define ISCSI_UHQE_TOGGLE_BIT_SHIFT 21 #define ISCSI_UHQE_PURE_PAYLOAD_MASK 0x1 #define ISCSI_UHQE_PURE_PAYLOAD_SHIFT 22 #define ISCSI_UHQE_LOGIN_RESPONSE_PDU_MASK 0x1 #define ISCSI_UHQE_LOGIN_RESPONSE_PDU_SHIFT 23 #define ISCSI_UHQE_TASK_ID_HI_MASK 0xFF #define ISCSI_UHQE_TASK_ID_HI_SHIFT 24 __le32 reg2; #define ISCSI_UHQE_BUFFER_OFFSET_MASK 0xFFFFFF #define ISCSI_UHQE_BUFFER_OFFSET_SHIFT 0 #define ISCSI_UHQE_TASK_ID_LO_MASK 0xFF #define ISCSI_UHQE_TASK_ID_LO_SHIFT 24 }; /* iSCSI WQ element */ struct iscsi_wqe { __le16 task_id; u8 flags; #define ISCSI_WQE_WQE_TYPE_MASK 0x7 #define ISCSI_WQE_WQE_TYPE_SHIFT 0 #define ISCSI_WQE_NUM_SGES_MASK 0xF #define ISCSI_WQE_NUM_SGES_SHIFT 3 #define ISCSI_WQE_RESPONSE_MASK 0x1 #define ISCSI_WQE_RESPONSE_SHIFT 7 struct iscsi_dif_flags prot_flags; __le32 contlen_cdbsize; #define ISCSI_WQE_CONT_LEN_MASK 0xFFFFFF #define ISCSI_WQE_CONT_LEN_SHIFT 0 #define ISCSI_WQE_CDB_SIZE_MASK 0xFF #define ISCSI_WQE_CDB_SIZE_SHIFT 24 }; /* iSCSI wqe type */ enum iscsi_wqe_type { ISCSI_WQE_TYPE_NORMAL, ISCSI_WQE_TYPE_TASK_CLEANUP, ISCSI_WQE_TYPE_MIDDLE_PATH, ISCSI_WQE_TYPE_LOGIN, ISCSI_WQE_TYPE_FIRST_R2T_CONT, ISCSI_WQE_TYPE_NONFIRST_R2T_CONT, ISCSI_WQE_TYPE_RESPONSE, MAX_ISCSI_WQE_TYPE }; /* iSCSI xHQ element */ struct iscsi_xhqe { union iscsi_ttt_txlen_union ttt_or_txlen; __le32 exp_stat_sn; struct iscsi_dif_flags prot_flags; u8 total_ahs_length; u8 opcode; u8 flags; #define ISCSI_XHQE_FINAL_MASK 0x1 #define ISCSI_XHQE_FINAL_SHIFT 0 #define ISCSI_XHQE_STATUS_BIT_MASK 0x1 #define ISCSI_XHQE_STATUS_BIT_SHIFT 1 #define ISCSI_XHQE_NUM_SGES_MASK 0xF #define ISCSI_XHQE_NUM_SGES_SHIFT 2 #define ISCSI_XHQE_RESERVED0_MASK 0x3 #define ISCSI_XHQE_RESERVED0_SHIFT 6 union iscsi_seq_num seq_num; __le16 reserved1; }; /* Per PF iSCSI receive path statistics - mStorm RAM structure */ struct mstorm_iscsi_stats_drv { struct regpair iscsi_rx_dropped_pdus_task_not_valid; struct regpair iscsi_rx_dup_ack_cnt; }; /* Per PF iSCSI transmit path statistics - pStorm RAM structure */ struct pstorm_iscsi_stats_drv { struct regpair iscsi_tx_bytes_cnt; struct regpair iscsi_tx_packet_cnt; }; /* Per PF iSCSI receive path statistics - tStorm RAM structure */ struct tstorm_iscsi_stats_drv { struct regpair iscsi_rx_bytes_cnt; struct regpair iscsi_rx_packet_cnt; struct regpair iscsi_rx_new_ooo_isle_events_cnt; struct regpair iscsi_rx_tcp_payload_bytes_cnt; struct regpair iscsi_rx_tcp_pkt_cnt; struct regpair iscsi_rx_pure_ack_cnt; __le32 iscsi_cmdq_threshold_cnt; __le32 iscsi_rq_threshold_cnt; __le32 iscsi_immq_threshold_cnt; }; /* Per PF iSCSI receive path statistics - uStorm RAM structure */ struct ustorm_iscsi_stats_drv { struct regpair iscsi_rx_data_pdu_cnt; struct regpair iscsi_rx_r2t_pdu_cnt; struct regpair iscsi_rx_total_pdu_cnt; }; /* Per PF iSCSI transmit path statistics - xStorm RAM structure */ struct xstorm_iscsi_stats_drv { struct regpair iscsi_tx_go_to_slow_start_event_cnt; struct regpair iscsi_tx_fast_retransmit_event_cnt; struct regpair iscsi_tx_pure_ack_cnt; struct regpair iscsi_tx_delayed_ack_cnt; }; /* Per PF iSCSI transmit path statistics - yStorm RAM structure */ struct ystorm_iscsi_stats_drv { struct regpair iscsi_tx_data_pdu_cnt; struct regpair iscsi_tx_r2t_pdu_cnt; struct regpair iscsi_tx_total_pdu_cnt; struct regpair iscsi_tx_tcp_payload_bytes_cnt; struct regpair iscsi_tx_tcp_pkt_cnt; }; struct tstorm_iscsi_task_ag_ctx { u8 byte0; u8 byte1; __le16 word0; u8 flags0; #define TSTORM_ISCSI_TASK_AG_CTX_NIBBLE0_MASK 0xF #define TSTORM_ISCSI_TASK_AG_CTX_NIBBLE0_SHIFT 0 #define TSTORM_ISCSI_TASK_AG_CTX_BIT0_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_BIT0_SHIFT 4 #define TSTORM_ISCSI_TASK_AG_CTX_BIT1_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_BIT1_SHIFT 5 #define TSTORM_ISCSI_TASK_AG_CTX_BIT2_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_BIT2_SHIFT 6 #define TSTORM_ISCSI_TASK_AG_CTX_BIT3_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_BIT3_SHIFT 7 u8 flags1; #define TSTORM_ISCSI_TASK_AG_CTX_BIT4_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_BIT4_SHIFT 0 #define TSTORM_ISCSI_TASK_AG_CTX_BIT5_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_BIT5_SHIFT 1 #define TSTORM_ISCSI_TASK_AG_CTX_CF0_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF0_SHIFT 2 #define TSTORM_ISCSI_TASK_AG_CTX_CF1_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF1_SHIFT 4 #define TSTORM_ISCSI_TASK_AG_CTX_CF2_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF2_SHIFT 6 u8 flags2; #define TSTORM_ISCSI_TASK_AG_CTX_CF3_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF3_SHIFT 0 #define TSTORM_ISCSI_TASK_AG_CTX_CF4_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF4_SHIFT 2 #define TSTORM_ISCSI_TASK_AG_CTX_CF5_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF5_SHIFT 4 #define TSTORM_ISCSI_TASK_AG_CTX_CF6_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF6_SHIFT 6 u8 flags3; #define TSTORM_ISCSI_TASK_AG_CTX_CF7_MASK 0x3 #define TSTORM_ISCSI_TASK_AG_CTX_CF7_SHIFT 0 #define TSTORM_ISCSI_TASK_AG_CTX_CF0EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF0EN_SHIFT 2 #define TSTORM_ISCSI_TASK_AG_CTX_CF1EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF1EN_SHIFT 3 #define TSTORM_ISCSI_TASK_AG_CTX_CF2EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF2EN_SHIFT 4 #define TSTORM_ISCSI_TASK_AG_CTX_CF3EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF3EN_SHIFT 5 #define TSTORM_ISCSI_TASK_AG_CTX_CF4EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF4EN_SHIFT 6 #define TSTORM_ISCSI_TASK_AG_CTX_CF5EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF5EN_SHIFT 7 u8 flags4; #define TSTORM_ISCSI_TASK_AG_CTX_CF6EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF6EN_SHIFT 0 #define TSTORM_ISCSI_TASK_AG_CTX_CF7EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_CF7EN_SHIFT 1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE0EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE0EN_SHIFT 2 #define TSTORM_ISCSI_TASK_AG_CTX_RULE1EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE1EN_SHIFT 3 #define TSTORM_ISCSI_TASK_AG_CTX_RULE2EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE2EN_SHIFT 4 #define TSTORM_ISCSI_TASK_AG_CTX_RULE3EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE3EN_SHIFT 5 #define TSTORM_ISCSI_TASK_AG_CTX_RULE4EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE4EN_SHIFT 6 #define TSTORM_ISCSI_TASK_AG_CTX_RULE5EN_MASK 0x1 #define TSTORM_ISCSI_TASK_AG_CTX_RULE5EN_SHIFT 7 u8 byte2; __le16 word1; __le32 reg0; u8 byte3; u8 byte4; __le16 word2; __le16 word3; __le16 word4; __le32 reg1; __le32 reg2; }; /* iSCSI doorbell data */ struct iscsi_db_data { u8 params; #define ISCSI_DB_DATA_DEST_MASK 0x3 #define ISCSI_DB_DATA_DEST_SHIFT 0 #define ISCSI_DB_DATA_AGG_CMD_MASK 0x3 #define ISCSI_DB_DATA_AGG_CMD_SHIFT 2 #define ISCSI_DB_DATA_BYPASS_EN_MASK 0x1 #define ISCSI_DB_DATA_BYPASS_EN_SHIFT 4 #define ISCSI_DB_DATA_RESERVED_MASK 0x1 #define ISCSI_DB_DATA_RESERVED_SHIFT 5 #define ISCSI_DB_DATA_AGG_VAL_SEL_MASK 0x3 #define ISCSI_DB_DATA_AGG_VAL_SEL_SHIFT 6 u8 agg_flags; __le16 sq_prod; }; #endif /* __ISCSI_COMMON__ */
/* SPDX-License-Identifier: GPL-2.0 */ /* * Support for Intel Camera Imaging ISP subsystem. * Copyright (c) 2015, Intel Corporation. */ #ifndef _PixelGen_SysBlock_defs_h #define _PixelGen_SysBlock_defs_h /* Parematers and User_Parameters for HSS */ #define _PXG_PPC Ppc #define _PXG_PIXEL_BITS PixelWidth #define _PXG_MAX_NOF_SID MaxNofSids #define _PXG_DATA_BITS DataWidth #define _PXG_CNT_BITS CntWidth #define _PXG_FIFODEPTH FifoDepth #define _PXG_DBG Dbg_device_not_included /* ID's and Address */ #define _PXG_ADRRESS_ALIGN_REG 4 #define _PXG_COM_ENABLE_REG_IDX 0 #define _PXG_PRBS_RSTVAL_REG0_IDX 1 #define _PXG_PRBS_RSTVAL_REG1_IDX 2 #define _PXG_SYNG_SID_REG_IDX 3 #define _PXG_SYNG_FREE_RUN_REG_IDX 4 #define _PXG_SYNG_PAUSE_REG_IDX 5 #define _PXG_SYNG_NOF_FRAME_REG_IDX 6 #define _PXG_SYNG_NOF_PIXEL_REG_IDX 7 #define _PXG_SYNG_NOF_LINE_REG_IDX 8 #define _PXG_SYNG_HBLANK_CYC_REG_IDX 9 #define _PXG_SYNG_VBLANK_CYC_REG_IDX 10 #define _PXG_SYNG_STAT_HCNT_REG_IDX 11 #define _PXG_SYNG_STAT_VCNT_REG_IDX 12 #define _PXG_SYNG_STAT_FCNT_REG_IDX 13 #define _PXG_SYNG_STAT_DONE_REG_IDX 14 #define _PXG_TPG_MODE_REG_IDX 15 #define _PXG_TPG_HCNT_MASK_REG_IDX 16 #define _PXG_TPG_VCNT_MASK_REG_IDX 17 #define _PXG_TPG_XYCNT_MASK_REG_IDX 18 #define _PXG_TPG_HCNT_DELTA_REG_IDX 19 #define _PXG_TPG_VCNT_DELTA_REG_IDX 20 #define _PXG_TPG_R1_REG_IDX 21 #define _PXG_TPG_G1_REG_IDX 22 #define _PXG_TPG_B1_REG_IDX 23 #define _PXG_TPG_R2_REG_IDX 24 #define _PXG_TPG_G2_REG_IDX 25 #define _PXG_TPG_B2_REG_IDX 26 /* */ #define _PXG_SYNG_PAUSE_CYCLES 0 /* Subblock ID's */ #define _PXG_DISABLE_IDX 0 #define _PXG_PRBS_IDX 0 #define _PXG_TPG_IDX 1 #define _PXG_SYNG_IDX 2 #define _PXG_SMUX_IDX 3 /* Register Widths */ #define _PXG_COM_ENABLE_REG_WIDTH 2 #define _PXG_COM_SRST_REG_WIDTH 4 #define _PXG_PRBS_RSTVAL_REG0_WIDTH 31 #define _PXG_PRBS_RSTVAL_REG1_WIDTH 31 #define _PXG_SYNG_SID_REG_WIDTH 3 #define _PXG_SYNG_FREE_RUN_REG_WIDTH 1 #define _PXG_SYNG_PAUSE_REG_WIDTH 1 /* #define _PXG_SYNG_NOF_FRAME_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_NOF_PIXEL_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_NOF_LINE_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_HBLANK_CYC_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_VBLANK_CYC_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_STAT_HCNT_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_STAT_VCNT_REG_WIDTH <sync_gen_cnt_width> #define _PXG_SYNG_STAT_FCNT_REG_WIDTH <sync_gen_cnt_width> */ #define _PXG_SYNG_STAT_DONE_REG_WIDTH 1 #define _PXG_TPG_MODE_REG_WIDTH 2 /* #define _PXG_TPG_HCNT_MASK_REG_WIDTH <sync_gen_cnt_width> #define _PXG_TPG_VCNT_MASK_REG_WIDTH <sync_gen_cnt_width> #define _PXG_TPG_XYCNT_MASK_REG_WIDTH <pixle_width> */ #define _PXG_TPG_HCNT_DELTA_REG_WIDTH 4 #define _PXG_TPG_VCNT_DELTA_REG_WIDTH 4 /* #define _PXG_TPG_R1_REG_WIDTH <pixle_width> #define _PXG_TPG_G1_REG_WIDTH <pixle_width> #define _PXG_TPG_B1_REG_WIDTH <pixle_width> #define _PXG_TPG_R2_REG_WIDTH <pixle_width> #define _PXG_TPG_G2_REG_WIDTH <pixle_width> #define _PXG_TPG_B2_REG_WIDTH <pixle_width> */ #define _PXG_FIFO_DEPTH 2 /* MISC */ #define _PXG_ENABLE_REG_VAL 1 #define _PXG_PRBS_ENABLE_REG_VAL 1 #define _PXG_TPG_ENABLE_REG_VAL 2 #define _PXG_SYNG_ENABLE_REG_VAL 4 #define _PXG_FIFO_ENABLE_REG_VAL 8 #define _PXG_PXL_BITS 14 #define _PXG_INVALID_FLAG 0xDEADBEEF #define _PXG_CAFE_FLAG 0xCAFEBABE #endif /* _PixelGen_SysBlock_defs_h */
// SPDX-License-Identifier: GPL-2.0+ /* * Comedi driver for National Instruments AT-A2150 boards * Copyright (C) 2001, 2002 Frank Mori Hess <[email protected]> * * COMEDI - Linux Control and Measurement Device Interface * Copyright (C) 2000 David A. Schleef <[email protected]> */ /* * Driver: ni_at_a2150 * Description: National Instruments AT-A2150 * Author: Frank Mori Hess * Status: works * Devices: [National Instruments] AT-A2150C (at_a2150c), AT-2150S (at_a2150s) * * Configuration options: * [0] - I/O port base address * [1] - IRQ (optional, required for timed conversions) * [2] - DMA (optional, required for timed conversions) * * Yet another driver for obsolete hardware brought to you by Frank Hess. * Testing and debugging help provided by Dave Andruczyk. * * If you want to ac couple the board's inputs, use AREF_OTHER. * * The only difference in the boards is their master clock frequencies. * * References (from ftp://ftp.natinst.com/support/manuals): * 320360.pdf AT-A2150 User Manual * * TODO: * - analog level triggering * - TRIG_WAKE_EOS */ #include <linux/module.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/comedi/comedidev.h> #include <linux/comedi/comedi_8254.h> #include <linux/comedi/comedi_isadma.h> #define A2150_DMA_BUFFER_SIZE 0xff00 /* size in bytes of dma buffer */ /* Registers and bits */ #define CONFIG_REG 0x0 #define CHANNEL_BITS(x) ((x) & 0x7) #define CHANNEL_MASK 0x7 #define CLOCK_SELECT_BITS(x) (((x) & 0x3) << 3) #define CLOCK_DIVISOR_BITS(x) (((x) & 0x3) << 5) #define CLOCK_MASK (0xf << 3) /* enable (don't internally ground) channels 0 and 1 */ #define ENABLE0_BIT 0x80 /* enable (don't internally ground) channels 2 and 3 */ #define ENABLE1_BIT 0x100 #define AC0_BIT 0x200 /* ac couple channels 0,1 */ #define AC1_BIT 0x400 /* ac couple channels 2,3 */ #define APD_BIT 0x800 /* analog power down */ #define DPD_BIT 0x1000 /* digital power down */ #define TRIGGER_REG 0x2 /* trigger config register */ #define POST_TRIGGER_BITS 0x2 #define DELAY_TRIGGER_BITS 0x3 #define HW_TRIG_EN 0x10 /* enable hardware trigger */ #define FIFO_START_REG 0x6 /* software start aquistion trigger */ #define FIFO_RESET_REG 0x8 /* clears fifo + fifo flags */ #define FIFO_DATA_REG 0xa /* read data */ #define DMA_TC_CLEAR_REG 0xe /* clear dma terminal count interrupt */ #define STATUS_REG 0x12 /* read only */ #define FNE_BIT 0x1 /* fifo not empty */ #define OVFL_BIT 0x8 /* fifo overflow */ #define EDAQ_BIT 0x10 /* end of acquisition interrupt */ #define DCAL_BIT 0x20 /* offset calibration in progress */ #define INTR_BIT 0x40 /* interrupt has occurred */ /* dma terminal count interrupt has occurred */ #define DMA_TC_BIT 0x80 #define ID_BITS(x) (((x) >> 8) & 0x3) #define IRQ_DMA_CNTRL_REG 0x12 /* write only */ #define DMA_CHAN_BITS(x) ((x) & 0x7) /* sets dma channel */ #define DMA_EN_BIT 0x8 /* enables dma */ #define IRQ_LVL_BITS(x) (((x) & 0xf) << 4) /* sets irq level */ #define FIFO_INTR_EN_BIT 0x100 /* enable fifo interrupts */ #define FIFO_INTR_FHF_BIT 0x200 /* interrupt fifo half full */ /* enable interrupt on dma terminal count */ #define DMA_INTR_EN_BIT 0x800 #define DMA_DEM_EN_BIT 0x1000 /* enables demand mode dma */ #define I8253_BASE_REG 0x14 struct a2150_board { const char *name; int clock[4]; /* master clock periods, in nanoseconds */ int num_clocks; /* number of available master clock speeds */ int ai_speed; /* maximum conversion rate in nanoseconds */ }; /* analog input range */ static const struct comedi_lrange range_a2150 = { 1, { BIP_RANGE(2.828) } }; /* enum must match board indices */ enum { a2150_c, a2150_s }; static const struct a2150_board a2150_boards[] = { { .name = "at-a2150c", .clock = {31250, 22676, 20833, 19531}, .num_clocks = 4, .ai_speed = 19531, }, { .name = "at-a2150s", .clock = {62500, 50000, 41667, 0}, .num_clocks = 3, .ai_speed = 41667, }, }; struct a2150_private { struct comedi_isadma *dma; unsigned int count; /* number of data points left to be taken */ int irq_dma_bits; /* irq/dma register bits */ int config_bits; /* config register bits */ }; /* interrupt service routine */ static irqreturn_t a2150_interrupt(int irq, void *d) { struct comedi_device *dev = d; struct a2150_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_isadma_desc *desc = &dma->desc[0]; struct comedi_subdevice *s = dev->read_subdev; struct comedi_async *async = s->async; struct comedi_cmd *cmd = &async->cmd; unsigned short *buf = desc->virt_addr; unsigned int max_points, num_points, residue, leftover; unsigned short dpnt; int status; int i; if (!dev->attached) return IRQ_HANDLED; status = inw(dev->iobase + STATUS_REG); if ((status & INTR_BIT) == 0) return IRQ_NONE; if (status & OVFL_BIT) { async->events |= COMEDI_CB_ERROR; comedi_handle_events(dev, s); } if ((status & DMA_TC_BIT) == 0) { async->events |= COMEDI_CB_ERROR; comedi_handle_events(dev, s); return IRQ_HANDLED; } /* * residue is the number of bytes left to be done on the dma * transfer. It should always be zero at this point unless * the stop_src is set to external triggering. */ residue = comedi_isadma_disable(desc->chan); /* figure out how many points to read */ max_points = comedi_bytes_to_samples(s, desc->size); num_points = max_points - comedi_bytes_to_samples(s, residue); if (devpriv->count < num_points && cmd->stop_src == TRIG_COUNT) num_points = devpriv->count; /* figure out how many points will be stored next time */ leftover = 0; if (cmd->stop_src == TRIG_NONE) { leftover = comedi_bytes_to_samples(s, desc->size); } else if (devpriv->count > max_points) { leftover = devpriv->count - max_points; if (leftover > max_points) leftover = max_points; } /* * There should only be a residue if collection was stopped by having * the stop_src set to an external trigger, in which case there * will be no more data */ if (residue) leftover = 0; for (i = 0; i < num_points; i++) { /* write data point to comedi buffer */ dpnt = buf[i]; /* convert from 2's complement to unsigned coding */ dpnt ^= 0x8000; comedi_buf_write_samples(s, &dpnt, 1); if (cmd->stop_src == TRIG_COUNT) { if (--devpriv->count == 0) { /* end of acquisition */ async->events |= COMEDI_CB_EOA; break; } } } /* re-enable dma */ if (leftover) { desc->size = comedi_samples_to_bytes(s, leftover); comedi_isadma_program(desc); } comedi_handle_events(dev, s); /* clear interrupt */ outw(0x00, dev->iobase + DMA_TC_CLEAR_REG); return IRQ_HANDLED; } static int a2150_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { struct a2150_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_isadma_desc *desc = &dma->desc[0]; /* disable dma on card */ devpriv->irq_dma_bits &= ~DMA_INTR_EN_BIT & ~DMA_EN_BIT; outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG); /* disable computer's dma */ comedi_isadma_disable(desc->chan); /* clear fifo and reset triggering circuitry */ outw(0, dev->iobase + FIFO_RESET_REG); return 0; } /* * sets bits in devpriv->clock_bits to nearest approximation of requested * period, adjusts requested period to actual timing. */ static int a2150_get_timing(struct comedi_device *dev, unsigned int *period, unsigned int flags) { const struct a2150_board *board = dev->board_ptr; struct a2150_private *devpriv = dev->private; int lub, glb, temp; int lub_divisor_shift, lub_index, glb_divisor_shift, glb_index; int i, j; /* initialize greatest lower and least upper bounds */ lub_divisor_shift = 3; lub_index = 0; lub = board->clock[lub_index] * (1 << lub_divisor_shift); glb_divisor_shift = 0; glb_index = board->num_clocks - 1; glb = board->clock[glb_index] * (1 << glb_divisor_shift); /* make sure period is in available range */ if (*period < glb) *period = glb; if (*period > lub) *period = lub; /* we can multiply period by 1, 2, 4, or 8, using (1 << i) */ for (i = 0; i < 4; i++) { /* there are a maximum of 4 master clocks */ for (j = 0; j < board->num_clocks; j++) { /* temp is the period in nanosec we are evaluating */ temp = board->clock[j] * (1 << i); /* if it is the best match yet */ if (temp < lub && temp >= *period) { lub_divisor_shift = i; lub_index = j; lub = temp; } if (temp > glb && temp <= *period) { glb_divisor_shift = i; glb_index = j; glb = temp; } } } switch (flags & CMDF_ROUND_MASK) { case CMDF_ROUND_NEAREST: default: /* if least upper bound is better approximation */ if (lub - *period < *period - glb) *period = lub; else *period = glb; break; case CMDF_ROUND_UP: *period = lub; break; case CMDF_ROUND_DOWN: *period = glb; break; } /* set clock bits for config register appropriately */ devpriv->config_bits &= ~CLOCK_MASK; if (*period == lub) { devpriv->config_bits |= CLOCK_SELECT_BITS(lub_index) | CLOCK_DIVISOR_BITS(lub_divisor_shift); } else { devpriv->config_bits |= CLOCK_SELECT_BITS(glb_index) | CLOCK_DIVISOR_BITS(glb_divisor_shift); } return 0; } static int a2150_set_chanlist(struct comedi_device *dev, unsigned int start_channel, unsigned int num_channels) { struct a2150_private *devpriv = dev->private; if (start_channel + num_channels > 4) return -1; devpriv->config_bits &= ~CHANNEL_MASK; switch (num_channels) { case 1: devpriv->config_bits |= CHANNEL_BITS(0x4 | start_channel); break; case 2: if (start_channel == 0) devpriv->config_bits |= CHANNEL_BITS(0x2); else if (start_channel == 2) devpriv->config_bits |= CHANNEL_BITS(0x3); else return -1; break; case 4: devpriv->config_bits |= CHANNEL_BITS(0x1); break; default: return -1; } return 0; } static int a2150_ai_check_chanlist(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { unsigned int chan0 = CR_CHAN(cmd->chanlist[0]); unsigned int aref0 = CR_AREF(cmd->chanlist[0]); int i; if (cmd->chanlist_len == 2 && (chan0 == 1 || chan0 == 3)) { dev_dbg(dev->class_dev, "length 2 chanlist must be channels 0,1 or channels 2,3\n"); return -EINVAL; } if (cmd->chanlist_len == 3) { dev_dbg(dev->class_dev, "chanlist must have 1,2 or 4 channels\n"); return -EINVAL; } for (i = 1; i < cmd->chanlist_len; i++) { unsigned int chan = CR_CHAN(cmd->chanlist[i]); unsigned int aref = CR_AREF(cmd->chanlist[i]); if (chan != (chan0 + i)) { dev_dbg(dev->class_dev, "entries in chanlist must be consecutive channels, counting upwards\n"); return -EINVAL; } if (chan == 2) aref0 = aref; if (aref != aref0) { dev_dbg(dev->class_dev, "channels 0/1 and 2/3 must have the same analog reference\n"); return -EINVAL; } } return 0; } static int a2150_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { const struct a2150_board *board = dev->board_ptr; int err = 0; unsigned int arg; /* Step 1 : check if triggers are trivially valid */ err |= comedi_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_EXT); err |= comedi_check_trigger_src(&cmd->scan_begin_src, TRIG_TIMER); err |= comedi_check_trigger_src(&cmd->convert_src, TRIG_NOW); err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); if (err) return 1; /* Step 2a : make sure trigger sources are unique */ err |= comedi_check_trigger_is_unique(cmd->start_src); err |= comedi_check_trigger_is_unique(cmd->stop_src); /* Step 2b : and mutually compatible */ if (err) return 2; /* Step 3: check if arguments are trivially valid */ err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0); if (cmd->convert_src == TRIG_TIMER) { err |= comedi_check_trigger_arg_min(&cmd->convert_arg, board->ai_speed); } err |= comedi_check_trigger_arg_min(&cmd->chanlist_len, 1); err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg, cmd->chanlist_len); if (cmd->stop_src == TRIG_COUNT) err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1); else /* TRIG_NONE */ err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0); if (err) return 3; /* step 4: fix up any arguments */ if (cmd->scan_begin_src == TRIG_TIMER) { arg = cmd->scan_begin_arg; a2150_get_timing(dev, &arg, cmd->flags); err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg); } if (err) return 4; /* Step 5: check channel list if it exists */ if (cmd->chanlist && cmd->chanlist_len > 0) err |= a2150_ai_check_chanlist(dev, s, cmd); if (err) return 5; return 0; } static int a2150_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct a2150_private *devpriv = dev->private; struct comedi_isadma *dma = devpriv->dma; struct comedi_isadma_desc *desc = &dma->desc[0]; struct comedi_async *async = s->async; struct comedi_cmd *cmd = &async->cmd; unsigned int old_config_bits = devpriv->config_bits; unsigned int trigger_bits; if (cmd->flags & CMDF_PRIORITY) { dev_err(dev->class_dev, "dma incompatible with hard real-time interrupt (CMDF_PRIORITY), aborting\n"); return -1; } /* clear fifo and reset triggering circuitry */ outw(0, dev->iobase + FIFO_RESET_REG); /* setup chanlist */ if (a2150_set_chanlist(dev, CR_CHAN(cmd->chanlist[0]), cmd->chanlist_len) < 0) return -1; /* setup ac/dc coupling */ if (CR_AREF(cmd->chanlist[0]) == AREF_OTHER) devpriv->config_bits |= AC0_BIT; else devpriv->config_bits &= ~AC0_BIT; if (CR_AREF(cmd->chanlist[2]) == AREF_OTHER) devpriv->config_bits |= AC1_BIT; else devpriv->config_bits &= ~AC1_BIT; /* setup timing */ a2150_get_timing(dev, &cmd->scan_begin_arg, cmd->flags); /* send timing, channel, config bits */ outw(devpriv->config_bits, dev->iobase + CONFIG_REG); /* initialize number of samples remaining */ devpriv->count = cmd->stop_arg * cmd->chanlist_len; comedi_isadma_disable(desc->chan); /* set size of transfer to fill in 1/3 second */ #define ONE_THIRD_SECOND 333333333 desc->size = comedi_bytes_per_sample(s) * cmd->chanlist_len * ONE_THIRD_SECOND / cmd->scan_begin_arg; if (desc->size > desc->maxsize) desc->size = desc->maxsize; if (desc->size < comedi_bytes_per_sample(s)) desc->size = comedi_bytes_per_sample(s); desc->size -= desc->size % comedi_bytes_per_sample(s); comedi_isadma_program(desc); /* * Clear dma interrupt before enabling it, to try and get rid of * that one spurious interrupt that has been happening. */ outw(0x00, dev->iobase + DMA_TC_CLEAR_REG); /* enable dma on card */ devpriv->irq_dma_bits |= DMA_INTR_EN_BIT | DMA_EN_BIT; outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG); /* may need to wait 72 sampling periods if timing was changed */ comedi_8254_load(dev->pacer, 2, 72, I8254_MODE0 | I8254_BINARY); /* setup start triggering */ trigger_bits = 0; /* decide if we need to wait 72 periods for valid data */ if (cmd->start_src == TRIG_NOW && (old_config_bits & CLOCK_MASK) != (devpriv->config_bits & CLOCK_MASK)) { /* set trigger source to delay trigger */ trigger_bits |= DELAY_TRIGGER_BITS; } else { /* otherwise no delay */ trigger_bits |= POST_TRIGGER_BITS; } /* enable external hardware trigger */ if (cmd->start_src == TRIG_EXT) { trigger_bits |= HW_TRIG_EN; } else if (cmd->start_src == TRIG_OTHER) { /* * XXX add support for level/slope start trigger * using TRIG_OTHER */ dev_err(dev->class_dev, "you shouldn't see this?\n"); } /* send trigger config bits */ outw(trigger_bits, dev->iobase + TRIGGER_REG); /* start acquisition for soft trigger */ if (cmd->start_src == TRIG_NOW) outw(0, dev->iobase + FIFO_START_REG); return 0; } static int a2150_ai_eoc(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned long context) { unsigned int status; status = inw(dev->iobase + STATUS_REG); if (status & FNE_BIT) return 0; return -EBUSY; } static int a2150_ai_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct a2150_private *devpriv = dev->private; unsigned int n; int ret; /* clear fifo and reset triggering circuitry */ outw(0, dev->iobase + FIFO_RESET_REG); /* setup chanlist */ if (a2150_set_chanlist(dev, CR_CHAN(insn->chanspec), 1) < 0) return -1; /* set dc coupling */ devpriv->config_bits &= ~AC0_BIT; devpriv->config_bits &= ~AC1_BIT; /* send timing, channel, config bits */ outw(devpriv->config_bits, dev->iobase + CONFIG_REG); /* disable dma on card */ devpriv->irq_dma_bits &= ~DMA_INTR_EN_BIT & ~DMA_EN_BIT; outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG); /* setup start triggering */ outw(0, dev->iobase + TRIGGER_REG); /* start acquisition for soft trigger */ outw(0, dev->iobase + FIFO_START_REG); /* * there is a 35.6 sample delay for data to get through the * antialias filter */ for (n = 0; n < 36; n++) { ret = comedi_timeout(dev, s, insn, a2150_ai_eoc, 0); if (ret) return ret; inw(dev->iobase + FIFO_DATA_REG); } /* read data */ for (n = 0; n < insn->n; n++) { ret = comedi_timeout(dev, s, insn, a2150_ai_eoc, 0); if (ret) return ret; data[n] = inw(dev->iobase + FIFO_DATA_REG); data[n] ^= 0x8000; } /* clear fifo and reset triggering circuitry */ outw(0, dev->iobase + FIFO_RESET_REG); return n; } static void a2150_alloc_irq_and_dma(struct comedi_device *dev, struct comedi_devconfig *it) { struct a2150_private *devpriv = dev->private; unsigned int irq_num = it->options[1]; unsigned int dma_chan = it->options[2]; /* * Only IRQs 15, 14, 12-9, and 7-3 are valid. * Only DMA channels 7-5 and 3-0 are valid. */ if (irq_num > 15 || dma_chan > 7 || !((1 << irq_num) & 0xdef8) || !((1 << dma_chan) & 0xef)) return; if (request_irq(irq_num, a2150_interrupt, 0, dev->board_name, dev)) return; /* DMA uses 1 buffer */ devpriv->dma = comedi_isadma_alloc(dev, 1, dma_chan, dma_chan, A2150_DMA_BUFFER_SIZE, COMEDI_ISADMA_READ); if (!devpriv->dma) { free_irq(irq_num, dev); } else { dev->irq = irq_num; devpriv->irq_dma_bits = IRQ_LVL_BITS(irq_num) | DMA_CHAN_BITS(dma_chan); } } static void a2150_free_dma(struct comedi_device *dev) { struct a2150_private *devpriv = dev->private; if (devpriv) comedi_isadma_free(devpriv->dma); } static const struct a2150_board *a2150_probe(struct comedi_device *dev) { int id = ID_BITS(inw(dev->iobase + STATUS_REG)); if (id >= ARRAY_SIZE(a2150_boards)) return NULL; return &a2150_boards[id]; } static int a2150_attach(struct comedi_device *dev, struct comedi_devconfig *it) { const struct a2150_board *board; struct a2150_private *devpriv; struct comedi_subdevice *s; static const int timeout = 2000; int i; int ret; devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv)); if (!devpriv) return -ENOMEM; ret = comedi_request_region(dev, it->options[0], 0x1c); if (ret) return ret; board = a2150_probe(dev); if (!board) return -ENODEV; dev->board_ptr = board; dev->board_name = board->name; /* an IRQ and DMA are required to support async commands */ a2150_alloc_irq_and_dma(dev, it); dev->pacer = comedi_8254_io_alloc(dev->iobase + I8253_BASE_REG, 0, I8254_IO8, 0); if (IS_ERR(dev->pacer)) return PTR_ERR(dev->pacer); ret = comedi_alloc_subdevices(dev, 1); if (ret) return ret; /* analog input subdevice */ s = &dev->subdevices[0]; s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_OTHER; s->n_chan = 4; s->maxdata = 0xffff; s->range_table = &range_a2150; s->insn_read = a2150_ai_rinsn; if (dev->irq) { dev->read_subdev = s; s->subdev_flags |= SDF_CMD_READ; s->len_chanlist = s->n_chan; s->do_cmd = a2150_ai_cmd; s->do_cmdtest = a2150_ai_cmdtest; s->cancel = a2150_cancel; } /* set card's irq and dma levels */ outw(devpriv->irq_dma_bits, dev->iobase + IRQ_DMA_CNTRL_REG); /* reset and sync adc clock circuitry */ outw_p(DPD_BIT | APD_BIT, dev->iobase + CONFIG_REG); outw_p(DPD_BIT, dev->iobase + CONFIG_REG); /* initialize configuration register */ devpriv->config_bits = 0; outw(devpriv->config_bits, dev->iobase + CONFIG_REG); /* wait until offset calibration is done, then enable analog inputs */ for (i = 0; i < timeout; i++) { if ((DCAL_BIT & inw(dev->iobase + STATUS_REG)) == 0) break; usleep_range(1000, 3000); } if (i == timeout) { dev_err(dev->class_dev, "timed out waiting for offset calibration to complete\n"); return -ETIME; } devpriv->config_bits |= ENABLE0_BIT | ENABLE1_BIT; outw(devpriv->config_bits, dev->iobase + CONFIG_REG); return 0; }; static void a2150_detach(struct comedi_device *dev) { if (dev->iobase) outw(APD_BIT | DPD_BIT, dev->iobase + CONFIG_REG); a2150_free_dma(dev); comedi_legacy_detach(dev); }; static struct comedi_driver ni_at_a2150_driver = { .driver_name = "ni_at_a2150", .module = THIS_MODULE, .attach = a2150_attach, .detach = a2150_detach, }; module_comedi_driver(ni_at_a2150_driver); MODULE_AUTHOR("Comedi https://www.comedi.org"); MODULE_DESCRIPTION("Comedi low-level driver"); MODULE_LICENSE("GPL");
/* * Linux V4L2 radio driver for the Griffin radioSHARK USB radio receiver * * Note the radioSHARK offers the audio through a regular USB audio device, * this driver only handles the tuning. * * The info necessary to drive the shark was taken from the small userspace * shark.c program by Michael Rolig, which he kindly placed in the Public * Domain. * * Copyright (c) 2012 Hans de Goede <[email protected]> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/leds.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/workqueue.h> #include <media/v4l2-device.h> #include <media/drv-intf/tea575x.h> #if defined(CONFIG_LEDS_CLASS) || \ (defined(CONFIG_LEDS_CLASS_MODULE) && defined(CONFIG_RADIO_SHARK_MODULE)) #define SHARK_USE_LEDS 1 #endif /* * Version Information */ MODULE_AUTHOR("Hans de Goede <[email protected]>"); MODULE_DESCRIPTION("Griffin radioSHARK, USB radio receiver driver"); MODULE_LICENSE("GPL"); #define SHARK_IN_EP 0x83 #define SHARK_OUT_EP 0x05 #define TEA575X_BIT_MONO (1<<22) /* 0 = stereo, 1 = mono */ #define TEA575X_BIT_BAND_MASK (3<<20) #define TEA575X_BIT_BAND_FM (0<<20) #define TB_LEN 6 #define DRV_NAME "radioshark" #define v4l2_dev_to_shark(d) container_of(d, struct shark_device, v4l2_dev) /* Note BLUE_IS_PULSE comes after NO_LEDS as it is a status bit, not a LED */ enum { BLUE_LED, BLUE_PULSE_LED, RED_LED, NO_LEDS, BLUE_IS_PULSE }; struct shark_device { struct usb_device *usbdev; struct v4l2_device v4l2_dev; struct snd_tea575x tea; #ifdef SHARK_USE_LEDS struct work_struct led_work; struct led_classdev leds[NO_LEDS]; char led_names[NO_LEDS][32]; atomic_t brightness[NO_LEDS]; unsigned long brightness_new; #endif u8 *transfer_buffer; u32 last_val; }; static atomic_t shark_instance = ATOMIC_INIT(0); static void shark_write_val(struct snd_tea575x *tea, u32 val) { struct shark_device *shark = tea->private_data; int i, res, actual_len; /* Avoid unnecessary (slow) USB transfers */ if (shark->last_val == val) return; memset(shark->transfer_buffer, 0, TB_LEN); shark->transfer_buffer[0] = 0xc0; /* Write shift register command */ for (i = 0; i < 4; i++) shark->transfer_buffer[i] |= (val >> (24 - i * 8)) & 0xff; res = usb_interrupt_msg(shark->usbdev, usb_sndintpipe(shark->usbdev, SHARK_OUT_EP), shark->transfer_buffer, TB_LEN, &actual_len, 1000); if (res >= 0) shark->last_val = val; else v4l2_err(&shark->v4l2_dev, "set-freq error: %d\n", res); } static u32 shark_read_val(struct snd_tea575x *tea) { struct shark_device *shark = tea->private_data; int i, res, actual_len; u32 val = 0; memset(shark->transfer_buffer, 0, TB_LEN); shark->transfer_buffer[0] = 0x80; res = usb_interrupt_msg(shark->usbdev, usb_sndintpipe(shark->usbdev, SHARK_OUT_EP), shark->transfer_buffer, TB_LEN, &actual_len, 1000); if (res < 0) { v4l2_err(&shark->v4l2_dev, "request-status error: %d\n", res); return shark->last_val; } res = usb_interrupt_msg(shark->usbdev, usb_rcvintpipe(shark->usbdev, SHARK_IN_EP), shark->transfer_buffer, TB_LEN, &actual_len, 1000); if (res < 0) { v4l2_err(&shark->v4l2_dev, "get-status error: %d\n", res); return shark->last_val; } for (i = 0; i < 4; i++) val |= shark->transfer_buffer[i] << (24 - i * 8); shark->last_val = val; /* * The shark does not allow actually reading the stereo / mono pin :( * So assume that when we're tuned to an FM station and mono has not * been requested, that we're receiving stereo. */ if (((val & TEA575X_BIT_BAND_MASK) == TEA575X_BIT_BAND_FM) && !(val & TEA575X_BIT_MONO)) shark->tea.stereo = true; else shark->tea.stereo = false; return val; } static const struct snd_tea575x_ops shark_tea_ops = { .write_val = shark_write_val, .read_val = shark_read_val, }; #ifdef SHARK_USE_LEDS static void shark_led_work(struct work_struct *work) { struct shark_device *shark = container_of(work, struct shark_device, led_work); int i, res, brightness, actual_len; for (i = 0; i < 3; i++) { if (!test_and_clear_bit(i, &shark->brightness_new)) continue; brightness = atomic_read(&shark->brightness[i]); memset(shark->transfer_buffer, 0, TB_LEN); if (i != RED_LED) { shark->transfer_buffer[0] = 0xA0 + i; shark->transfer_buffer[1] = brightness; } else shark->transfer_buffer[0] = brightness ? 0xA9 : 0xA8; res = usb_interrupt_msg(shark->usbdev, usb_sndintpipe(shark->usbdev, 0x05), shark->transfer_buffer, TB_LEN, &actual_len, 1000); if (res < 0) v4l2_err(&shark->v4l2_dev, "set LED %s error: %d\n", shark->led_names[i], res); } } static void shark_led_set_blue(struct led_classdev *led_cdev, enum led_brightness value) { struct shark_device *shark = container_of(led_cdev, struct shark_device, leds[BLUE_LED]); atomic_set(&shark->brightness[BLUE_LED], value); set_bit(BLUE_LED, &shark->brightness_new); clear_bit(BLUE_IS_PULSE, &shark->brightness_new); schedule_work(&shark->led_work); } static void shark_led_set_blue_pulse(struct led_classdev *led_cdev, enum led_brightness value) { struct shark_device *shark = container_of(led_cdev, struct shark_device, leds[BLUE_PULSE_LED]); atomic_set(&shark->brightness[BLUE_PULSE_LED], 256 - value); set_bit(BLUE_PULSE_LED, &shark->brightness_new); set_bit(BLUE_IS_PULSE, &shark->brightness_new); schedule_work(&shark->led_work); } static void shark_led_set_red(struct led_classdev *led_cdev, enum led_brightness value) { struct shark_device *shark = container_of(led_cdev, struct shark_device, leds[RED_LED]); atomic_set(&shark->brightness[RED_LED], value); set_bit(RED_LED, &shark->brightness_new); schedule_work(&shark->led_work); } static const struct led_classdev shark_led_templates[NO_LEDS] = { [BLUE_LED] = { .name = "%s:blue:", .brightness = LED_OFF, .max_brightness = 127, .brightness_set = shark_led_set_blue, }, [BLUE_PULSE_LED] = { .name = "%s:blue-pulse:", .brightness = LED_OFF, .max_brightness = 255, .brightness_set = shark_led_set_blue_pulse, }, [RED_LED] = { .name = "%s:red:", .brightness = LED_OFF, .max_brightness = 1, .brightness_set = shark_led_set_red, }, }; static int shark_register_leds(struct shark_device *shark, struct device *dev) { int i, retval; atomic_set(&shark->brightness[BLUE_LED], 127); INIT_WORK(&shark->led_work, shark_led_work); for (i = 0; i < NO_LEDS; i++) { shark->leds[i] = shark_led_templates[i]; snprintf(shark->led_names[i], sizeof(shark->led_names[0]), shark->leds[i].name, shark->v4l2_dev.name); shark->leds[i].name = shark->led_names[i]; retval = led_classdev_register(dev, &shark->leds[i]); if (retval) { v4l2_err(&shark->v4l2_dev, "couldn't register led: %s\n", shark->led_names[i]); return retval; } } return 0; } static void shark_unregister_leds(struct shark_device *shark) { int i; for (i = 0; i < NO_LEDS; i++) led_classdev_unregister(&shark->leds[i]); cancel_work_sync(&shark->led_work); } static inline void shark_resume_leds(struct shark_device *shark) { if (test_bit(BLUE_IS_PULSE, &shark->brightness_new)) set_bit(BLUE_PULSE_LED, &shark->brightness_new); else set_bit(BLUE_LED, &shark->brightness_new); set_bit(RED_LED, &shark->brightness_new); schedule_work(&shark->led_work); } #else static int shark_register_leds(struct shark_device *shark, struct device *dev) { v4l2_warn(&shark->v4l2_dev, "CONFIG_LEDS_CLASS not enabled, LED support disabled\n"); return 0; } static inline void shark_unregister_leds(struct shark_device *shark) { } static inline void shark_resume_leds(struct shark_device *shark) { } #endif static void usb_shark_disconnect(struct usb_interface *intf) { struct v4l2_device *v4l2_dev = usb_get_intfdata(intf); struct shark_device *shark = v4l2_dev_to_shark(v4l2_dev); mutex_lock(&shark->tea.mutex); v4l2_device_disconnect(&shark->v4l2_dev); snd_tea575x_exit(&shark->tea); mutex_unlock(&shark->tea.mutex); shark_unregister_leds(shark); v4l2_device_put(&shark->v4l2_dev); } static void usb_shark_release(struct v4l2_device *v4l2_dev) { struct shark_device *shark = v4l2_dev_to_shark(v4l2_dev); v4l2_device_unregister(&shark->v4l2_dev); kfree(shark->transfer_buffer); kfree(shark); } static int usb_shark_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct shark_device *shark; int retval = -ENOMEM; static const u8 ep_addresses[] = { SHARK_IN_EP | USB_DIR_IN, SHARK_OUT_EP | USB_DIR_OUT, 0}; /* Are the expected endpoints present? */ if (!usb_check_int_endpoints(intf, ep_addresses)) { dev_err(&intf->dev, "Invalid radioSHARK device\n"); return -EINVAL; } shark = kzalloc(sizeof(struct shark_device), GFP_KERNEL); if (!shark) return retval; shark->transfer_buffer = kmalloc(TB_LEN, GFP_KERNEL); if (!shark->transfer_buffer) goto err_alloc_buffer; v4l2_device_set_name(&shark->v4l2_dev, DRV_NAME, &shark_instance); retval = shark_register_leds(shark, &intf->dev); if (retval) goto err_reg_leds; shark->v4l2_dev.release = usb_shark_release; retval = v4l2_device_register(&intf->dev, &shark->v4l2_dev); if (retval) { v4l2_err(&shark->v4l2_dev, "couldn't register v4l2_device\n"); goto err_reg_dev; } shark->usbdev = interface_to_usbdev(intf); shark->tea.v4l2_dev = &shark->v4l2_dev; shark->tea.private_data = shark; shark->tea.radio_nr = -1; shark->tea.ops = &shark_tea_ops; shark->tea.cannot_mute = true; shark->tea.has_am = true; strscpy(shark->tea.card, "Griffin radioSHARK", sizeof(shark->tea.card)); usb_make_path(shark->usbdev, shark->tea.bus_info, sizeof(shark->tea.bus_info)); retval = snd_tea575x_init(&shark->tea, THIS_MODULE); if (retval) { v4l2_err(&shark->v4l2_dev, "couldn't init tea5757\n"); goto err_init_tea; } return 0; err_init_tea: v4l2_device_unregister(&shark->v4l2_dev); err_reg_dev: shark_unregister_leds(shark); err_reg_leds: kfree(shark->transfer_buffer); err_alloc_buffer: kfree(shark); return retval; } #ifdef CONFIG_PM static int usb_shark_suspend(struct usb_interface *intf, pm_message_t message) { return 0; } static int usb_shark_resume(struct usb_interface *intf) { struct v4l2_device *v4l2_dev = usb_get_intfdata(intf); struct shark_device *shark = v4l2_dev_to_shark(v4l2_dev); mutex_lock(&shark->tea.mutex); snd_tea575x_set_freq(&shark->tea); mutex_unlock(&shark->tea.mutex); shark_resume_leds(shark); return 0; } #endif /* Specify the bcdDevice value, as the radioSHARK and radioSHARK2 share ids */ static const struct usb_device_id usb_shark_device_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION | USB_DEVICE_ID_MATCH_INT_CLASS, .idVendor = 0x077d, .idProduct = 0x627a, .bcdDevice_lo = 0x0001, .bcdDevice_hi = 0x0001, .bInterfaceClass = 3, }, { } }; MODULE_DEVICE_TABLE(usb, usb_shark_device_table); static struct usb_driver usb_shark_driver = { .name = DRV_NAME, .probe = usb_shark_probe, .disconnect = usb_shark_disconnect, .id_table = usb_shark_device_table, #ifdef CONFIG_PM .suspend = usb_shark_suspend, .resume = usb_shark_resume, .reset_resume = usb_shark_resume, #endif }; module_usb_driver(usb_shark_driver);
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_AHCI_REMAP_H #define _LINUX_AHCI_REMAP_H #include <linux/sizes.h> #define AHCI_VSCAP 0xa4 #define AHCI_REMAP_CAP 0x800 /* device class code */ #define AHCI_REMAP_N_DCC 0x880 /* remap-device base relative to ahci-bar */ #define AHCI_REMAP_N_OFFSET SZ_16K #define AHCI_REMAP_N_SIZE SZ_16K #define AHCI_MAX_REMAP 3 static inline unsigned int ahci_remap_dcc(int i) { return AHCI_REMAP_N_DCC + i * 0x80; } static inline unsigned int ahci_remap_base(int i) { return AHCI_REMAP_N_OFFSET + i * AHCI_REMAP_N_SIZE; } #endif /* _LINUX_AHCI_REMAP_H */
// SPDX-License-Identifier: GPL-2.0 /* * cros_ec_sensors_core - Common function for Chrome OS EC sensor driver. * * Copyright (C) 2016 Google, Inc */ #include <linux/delay.h> #include <linux/device.h> #include <linux/iio/buffer.h> #include <linux/iio/common/cros_ec_sensors_core.h> #include <linux/iio/iio.h> #include <linux/iio/kfifo_buf.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/platform_data/cros_ec_commands.h> #include <linux/platform_data/cros_ec_proto.h> #include <linux/platform_data/cros_ec_sensorhub.h> #include <linux/platform_device.h> /* * Hard coded to the first device to support sensor fifo. The EC has a 2048 * byte fifo and will trigger an interrupt when fifo is 2/3 full. */ #define CROS_EC_FIFO_SIZE (2048 * 2 / 3) static int cros_ec_get_host_cmd_version_mask(struct cros_ec_device *ec_dev, u16 cmd_offset, u16 cmd, u32 *mask) { int ret; struct { struct cros_ec_command msg; union { struct ec_params_get_cmd_versions params; struct ec_response_get_cmd_versions resp; }; } __packed buf = { .msg = { .command = EC_CMD_GET_CMD_VERSIONS + cmd_offset, .insize = sizeof(struct ec_response_get_cmd_versions), .outsize = sizeof(struct ec_params_get_cmd_versions) }, .params = {.cmd = cmd} }; ret = cros_ec_cmd_xfer_status(ec_dev, &buf.msg); if (ret >= 0) *mask = buf.resp.version_mask; return ret; } static void get_default_min_max_freq(enum motionsensor_type type, u32 *min_freq, u32 *max_freq, u32 *max_fifo_events) { /* * We don't know fifo size, set to size previously used by older * hardware. */ *max_fifo_events = CROS_EC_FIFO_SIZE; switch (type) { case MOTIONSENSE_TYPE_ACCEL: *min_freq = 12500; *max_freq = 100000; break; case MOTIONSENSE_TYPE_GYRO: *min_freq = 25000; *max_freq = 100000; break; case MOTIONSENSE_TYPE_MAG: *min_freq = 5000; *max_freq = 25000; break; case MOTIONSENSE_TYPE_PROX: case MOTIONSENSE_TYPE_LIGHT: *min_freq = 100; *max_freq = 50000; break; case MOTIONSENSE_TYPE_BARO: *min_freq = 250; *max_freq = 20000; break; case MOTIONSENSE_TYPE_ACTIVITY: default: *min_freq = 0; *max_freq = 0; break; } } static int cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state *st, int rate) { int ret; if (rate > U16_MAX) rate = U16_MAX; mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_EC_RATE; st->param.ec_rate.data = rate; ret = cros_ec_motion_send_host_cmd(st, 0); mutex_unlock(&st->cmd_lock); return ret; } static ssize_t cros_ec_sensor_set_report_latency(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int integer, fract, ret; int latency; ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); if (ret) return ret; /* EC rate is in ms. */ latency = integer * 1000 + fract / 1000; ret = cros_ec_sensor_set_ec_rate(st, latency); if (ret < 0) return ret; return len; } static ssize_t cros_ec_sensor_get_report_latency(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int latency, ret; mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_EC_RATE; st->param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE; ret = cros_ec_motion_send_host_cmd(st, 0); latency = st->resp->ec_rate.ret; mutex_unlock(&st->cmd_lock); if (ret < 0) return ret; return sprintf(buf, "%d.%06u\n", latency / 1000, (latency % 1000) * 1000); } static IIO_DEVICE_ATTR(hwfifo_timeout, 0644, cros_ec_sensor_get_report_latency, cros_ec_sensor_set_report_latency, 0); static ssize_t hwfifo_watermark_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", st->fifo_max_event_count); } static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0); static const struct iio_dev_attr *cros_ec_sensor_fifo_attributes[] = { &iio_dev_attr_hwfifo_timeout, &iio_dev_attr_hwfifo_watermark_max, NULL, }; int cros_ec_sensors_push_data(struct iio_dev *indio_dev, s16 *data, s64 timestamp) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); s16 *out; s64 delta; unsigned int i; /* * Ignore samples if the buffer is not set: it is needed if the ODR is * set but the buffer is not enabled yet. * * Note: iio_device_claim_buffer_mode() returns -EBUSY if the buffer * is not enabled. */ if (iio_device_claim_buffer_mode(indio_dev) < 0) return 0; out = (s16 *)st->samples; iio_for_each_active_channel(indio_dev, i) { *out = data[i]; out++; } if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME) delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns(); else delta = 0; iio_push_to_buffers_with_timestamp(indio_dev, st->samples, timestamp + delta); iio_device_release_buffer_mode(indio_dev); return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_push_data); static void cros_ec_sensors_core_clean(void *arg) { struct platform_device *pdev = (struct platform_device *)arg; struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(pdev->dev.parent); struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); u8 sensor_num = st->param.info.sensor_num; cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num); } /** * cros_ec_sensors_core_init() - basic initialization of the core structure * @pdev: platform device created for the sensor * @indio_dev: iio device structure of the device * @physical_device: true if the device refers to a physical device * @trigger_capture: function pointer to call buffer is triggered, * for backward compatibility. * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_core_init(struct platform_device *pdev, struct iio_dev *indio_dev, bool physical_device, cros_ec_sensors_capture_t trigger_capture) { struct device *dev = &pdev->dev; struct cros_ec_sensors_core_state *state = iio_priv(indio_dev); struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent); struct cros_ec_dev *ec = sensor_hub->ec; struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev); u32 ver_mask, temp; int frequencies[ARRAY_SIZE(state->frequencies) / 2] = { 0 }; int ret, i; platform_set_drvdata(pdev, indio_dev); state->ec = ec->ec_dev; state->msg = devm_kzalloc(&pdev->dev, sizeof(*state->msg) + max((u16)sizeof(struct ec_params_motion_sense), state->ec->max_response), GFP_KERNEL); if (!state->msg) return -ENOMEM; state->resp = (struct ec_response_motion_sense *)state->msg->data; mutex_init(&state->cmd_lock); ret = cros_ec_get_host_cmd_version_mask(state->ec, ec->cmd_offset, EC_CMD_MOTION_SENSE_CMD, &ver_mask); if (ret < 0) return ret; /* Set up the host command structure. */ state->msg->version = fls(ver_mask) - 1; state->msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset; state->msg->outsize = sizeof(struct ec_params_motion_sense); indio_dev->name = pdev->name; if (physical_device) { enum motionsensor_location loc; state->param.cmd = MOTIONSENSE_CMD_INFO; state->param.info.sensor_num = sensor_platform->sensor_num; ret = cros_ec_motion_send_host_cmd(state, 0); if (ret) { dev_warn(dev, "Can not access sensor info\n"); return ret; } state->type = state->resp->info.type; loc = state->resp->info.location; if (loc == MOTIONSENSE_LOC_BASE) indio_dev->label = "accel-base"; else if (loc == MOTIONSENSE_LOC_LID) indio_dev->label = "accel-display"; else if (loc == MOTIONSENSE_LOC_CAMERA) indio_dev->label = "accel-camera"; /* Set sign vector, only used for backward compatibility. */ memset(state->sign, 1, CROS_EC_SENSOR_MAX_AXIS); for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) state->calib[i].scale = MOTION_SENSE_DEFAULT_SCALE; /* 0 is a correct value used to stop the device */ if (state->msg->version < 3) { get_default_min_max_freq(state->resp->info.type, &frequencies[1], &frequencies[2], &state->fifo_max_event_count); } else { if (state->resp->info_3.max_frequency == 0) { get_default_min_max_freq(state->resp->info.type, &frequencies[1], &frequencies[2], &temp); } else { frequencies[1] = state->resp->info_3.min_frequency; frequencies[2] = state->resp->info_3.max_frequency; } state->fifo_max_event_count = state->resp->info_3.fifo_max_event_count; } for (i = 0; i < ARRAY_SIZE(frequencies); i++) { state->frequencies[2 * i] = frequencies[i] / 1000; state->frequencies[2 * i + 1] = (frequencies[i] % 1000) * 1000; } if (cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) { /* * Create a software buffer, feed by the EC FIFO. * We can not use trigger here, as events are generated * as soon as sample_frequency is set. */ ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev, NULL, cros_ec_sensor_fifo_attributes); if (ret) return ret; /* Timestamp coming from FIFO are in ns since boot. */ ret = iio_device_set_clock(indio_dev, CLOCK_BOOTTIME); if (ret) return ret; } else { /* * The only way to get samples in buffer is to set a * software trigger (systrig, hrtimer). */ ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, trigger_capture, NULL); if (ret) return ret; } } return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_init); /** * cros_ec_sensors_core_register() - Register callback to FIFO and IIO when * sensor is ready. * It must be called at the end of the sensor probe routine. * @dev: device created for the sensor * @indio_dev: iio device structure of the device * @push_data: function to call when cros_ec_sensorhub receives * a sample for that sensor. * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_core_register(struct device *dev, struct iio_dev *indio_dev, cros_ec_sensorhub_push_data_cb_t push_data) { struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev); struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent); struct platform_device *pdev = to_platform_device(dev); struct cros_ec_dev *ec = sensor_hub->ec; int ret; ret = devm_iio_device_register(dev, indio_dev); if (ret) return ret; if (!push_data || !cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) return 0; ret = cros_ec_sensorhub_register_push_data( sensor_hub, sensor_platform->sensor_num, indio_dev, push_data); if (ret) return ret; return devm_add_action_or_reset( dev, cros_ec_sensors_core_clean, pdev); } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_register); /** * cros_ec_motion_send_host_cmd() - send motion sense host command * @state: pointer to state information for device * @opt_length: optional length to reduce the response size, useful on the data * path. Otherwise, the maximal allowed response size is used * * When called, the sub-command is assumed to be set in param->cmd. * * Return: 0 on success, -errno on failure. */ int cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state *state, u16 opt_length) { int ret; if (opt_length) state->msg->insize = min(opt_length, state->ec->max_response); else state->msg->insize = state->ec->max_response; memcpy(state->msg->data, &state->param, sizeof(state->param)); ret = cros_ec_cmd_xfer_status(state->ec, state->msg); if (ret < 0) return ret; if (ret && state->resp != (struct ec_response_motion_sense *)state->msg->data) memcpy(state->resp, state->msg->data, ret); return 0; } EXPORT_SYMBOL_GPL(cros_ec_motion_send_host_cmd); static ssize_t cros_ec_sensors_calibrate(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret, i; bool calibrate; ret = kstrtobool(buf, &calibrate); if (ret < 0) return ret; if (!calibrate) return -EINVAL; mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_PERFORM_CALIB; ret = cros_ec_motion_send_host_cmd(st, 0); if (ret != 0) { dev_warn(&indio_dev->dev, "Unable to calibrate sensor\n"); } else { /* Save values */ for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++) st->calib[i].offset = st->resp->perform_calib.offset[i]; } mutex_unlock(&st->cmd_lock); return ret ? ret : len; } static ssize_t cros_ec_sensors_id(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); return snprintf(buf, PAGE_SIZE, "%d\n", st->param.info.sensor_num); } const struct iio_chan_spec_ext_info cros_ec_sensors_ext_info[] = { { .name = "calibrate", .shared = IIO_SHARED_BY_ALL, .write = cros_ec_sensors_calibrate }, { .name = "id", .shared = IIO_SHARED_BY_ALL, .read = cros_ec_sensors_id }, { }, }; EXPORT_SYMBOL_GPL(cros_ec_sensors_ext_info); /** * cros_ec_sensors_idx_to_reg - convert index into offset in shared memory * @st: pointer to state information for device * @idx: sensor index (should be element of enum sensor_index) * * Return: address to read at */ static unsigned int cros_ec_sensors_idx_to_reg( struct cros_ec_sensors_core_state *st, unsigned int idx) { /* * When using LPC interface, only space for 2 Accel and one Gyro. * First halfword of MOTIONSENSE_TYPE_ACCEL is used by angle. */ if (st->type == MOTIONSENSE_TYPE_ACCEL) return EC_MEMMAP_ACC_DATA + sizeof(u16) * (1 + idx + st->param.info.sensor_num * CROS_EC_SENSOR_MAX_AXIS); return EC_MEMMAP_GYRO_DATA + sizeof(u16) * idx; } static int cros_ec_sensors_cmd_read_u8(struct cros_ec_device *ec, unsigned int offset, u8 *dest) { return ec->cmd_readmem(ec, offset, 1, dest); } static int cros_ec_sensors_cmd_read_u16(struct cros_ec_device *ec, unsigned int offset, u16 *dest) { __le16 tmp; int ret = ec->cmd_readmem(ec, offset, 2, &tmp); if (ret >= 0) *dest = le16_to_cpu(tmp); return ret; } /** * cros_ec_sensors_read_until_not_busy() - read until is not busy * * @st: pointer to state information for device * * Read from EC status byte until it reads not busy. * Return: 8-bit status if ok, -errno on failure. */ static int cros_ec_sensors_read_until_not_busy( struct cros_ec_sensors_core_state *st) { struct cros_ec_device *ec = st->ec; u8 status; int ret, attempts = 0; ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status); if (ret < 0) return ret; while (status & EC_MEMMAP_ACC_STATUS_BUSY_BIT) { /* Give up after enough attempts, return error. */ if (attempts++ >= 50) return -EIO; /* Small delay every so often. */ if (attempts % 5 == 0) msleep(25); ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status); if (ret < 0) return ret; } return status; } /** * cros_ec_sensors_read_data_unsafe() - read acceleration data from EC shared memory * @indio_dev: pointer to IIO device * @scan_mask: bitmap of the sensor indices to scan * @data: location to store data * * This is the unsafe function for reading the EC data. It does not guarantee * that the EC will not modify the data as it is being read in. * * Return: 0 on success, -errno on failure. */ static int cros_ec_sensors_read_data_unsafe(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); struct cros_ec_device *ec = st->ec; unsigned int i; int ret; /* Read all sensors enabled in scan_mask. Each value is 2 bytes. */ for_each_set_bit(i, &scan_mask, iio_get_masklength(indio_dev)) { ret = cros_ec_sensors_cmd_read_u16(ec, cros_ec_sensors_idx_to_reg(st, i), data); if (ret < 0) return ret; *data *= st->sign[i]; data++; } return 0; } /** * cros_ec_sensors_read_lpc() - read acceleration data from EC shared memory. * @indio_dev: pointer to IIO device. * @scan_mask: bitmap of the sensor indices to scan. * @data: location to store data. * * Note: this is the safe function for reading the EC data. It guarantees * that the data sampled was not modified by the EC while being read. * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_read_lpc(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); struct cros_ec_device *ec = st->ec; u8 samp_id = 0xff, status = 0; int ret, attempts = 0; /* * Continually read all data from EC until the status byte after * all reads reflects that the EC is not busy and the sample id * matches the sample id from before all reads. This guarantees * that data read in was not modified by the EC while reading. */ while ((status & (EC_MEMMAP_ACC_STATUS_BUSY_BIT | EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK)) != samp_id) { /* If we have tried to read too many times, return error. */ if (attempts++ >= 5) return -EIO; /* Read status byte until EC is not busy. */ ret = cros_ec_sensors_read_until_not_busy(st); if (ret < 0) return ret; /* * Store the current sample id so that we can compare to the * sample id after reading the data. */ samp_id = ret & EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK; /* Read all EC data, format it, and store it into data. */ ret = cros_ec_sensors_read_data_unsafe(indio_dev, scan_mask, data); if (ret < 0) return ret; /* Read status byte. */ ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status); if (ret < 0) return ret; } return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_read_lpc); /** * cros_ec_sensors_read_cmd() - retrieve data using the EC command protocol * @indio_dev: pointer to IIO device * @scan_mask: bitmap of the sensor indices to scan * @data: location to store data * * Return: 0 on success, -errno on failure. */ int cros_ec_sensors_read_cmd(struct iio_dev *indio_dev, unsigned long scan_mask, s16 *data) { struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret; unsigned int i; /* Read all sensor data through a command. */ st->param.cmd = MOTIONSENSE_CMD_DATA; ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->data)); if (ret != 0) { dev_warn(&indio_dev->dev, "Unable to read sensor data\n"); return ret; } for_each_set_bit(i, &scan_mask, iio_get_masklength(indio_dev)) { *data = st->resp->data.data[i]; data++; } return 0; } EXPORT_SYMBOL_GPL(cros_ec_sensors_read_cmd); /** * cros_ec_sensors_capture() - the trigger handler function * @irq: the interrupt number. * @p: a pointer to the poll function. * * On a trigger event occurring, if the pollfunc is attached then this * handler is called as a threaded interrupt (and hence may sleep). It * is responsible for grabbing data from the device and pushing it into * the associated buffer. * * Return: IRQ_HANDLED */ irqreturn_t cros_ec_sensors_capture(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->cmd_lock); /* Clear capture data. */ memset(st->samples, 0, indio_dev->scan_bytes); /* Read data based on which channels are enabled in scan mask. */ ret = st->read_ec_sensors_data(indio_dev, *(indio_dev->active_scan_mask), (s16 *)st->samples); if (ret < 0) goto done; iio_push_to_buffers_with_timestamp(indio_dev, st->samples, iio_get_time_ns(indio_dev)); done: /* * Tell the core we are done with this trigger and ready for the * next one. */ iio_trigger_notify_done(indio_dev->trig); mutex_unlock(&st->cmd_lock); return IRQ_HANDLED; } EXPORT_SYMBOL_GPL(cros_ec_sensors_capture); /** * cros_ec_sensors_core_read() - function to request a value from the sensor * @st: pointer to state information for device * @chan: channel specification structure table * @val: will contain one element making up the returned value * @val2: will contain another element making up the returned value * @mask: specifies which values to be requested * * Return: the type of value returned by the device */ int cros_ec_sensors_core_read(struct cros_ec_sensors_core_state *st, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret, frequency; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR; st->param.sensor_odr.data = EC_MOTION_SENSE_NO_VALUE; ret = cros_ec_motion_send_host_cmd(st, 0); if (ret) break; frequency = st->resp->sensor_odr.ret; *val = frequency / 1000; *val2 = (frequency % 1000) * 1000; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; } return ret; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read); /** * cros_ec_sensors_core_read_avail() - get available values * @indio_dev: pointer to state information for device * @chan: channel specification structure table * @vals: list of available values * @type: type of data returned * @length: number of data returned in the array * @mask: specifies which values to be requested * * Return: an error code, IIO_AVAIL_RANGE or IIO_AVAIL_LIST */ int cros_ec_sensors_core_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct cros_ec_sensors_core_state *state = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *length = ARRAY_SIZE(state->frequencies); *vals = (const int *)&state->frequencies; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; } return -EINVAL; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read_avail); /** * cros_ec_sensors_core_write() - function to write a value to the sensor * @st: pointer to state information for device * @chan: channel specification structure table * @val: first part of value to write * @val2: second part of value to write * @mask: specifies which values to write * * Return: the type of value returned by the device */ int cros_ec_sensors_core_write(struct cros_ec_sensors_core_state *st, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret, frequency; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: frequency = val * 1000 + val2 / 1000; st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR; st->param.sensor_odr.data = frequency; /* Always roundup, so caller gets at least what it asks for. */ st->param.sensor_odr.roundup = 1; ret = cros_ec_motion_send_host_cmd(st, 0); break; default: ret = -EINVAL; break; } return ret; } EXPORT_SYMBOL_GPL(cros_ec_sensors_core_write); static int __maybe_unused cros_ec_sensors_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct cros_ec_sensors_core_state *st = iio_priv(indio_dev); int ret = 0; if (st->range_updated) { mutex_lock(&st->cmd_lock); st->param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE; st->param.sensor_range.data = st->curr_range; st->param.sensor_range.roundup = 1; ret = cros_ec_motion_send_host_cmd(st, 0); mutex_unlock(&st->cmd_lock); } return ret; } SIMPLE_DEV_PM_OPS(cros_ec_sensors_pm_ops, NULL, cros_ec_sensors_resume); EXPORT_SYMBOL_GPL(cros_ec_sensors_pm_ops); MODULE_DESCRIPTION("ChromeOS EC sensor hub core functions"); MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright 2020 NXP */ #ifndef _SJA1105_VL_H #define _SJA1105_VL_H #include "sja1105.h" #if IS_ENABLED(CONFIG_NET_DSA_SJA1105_VL) int sja1105_vl_redirect(struct sja1105_private *priv, int port, struct netlink_ext_ack *extack, unsigned long cookie, struct sja1105_key *key, unsigned long destports, bool append); int sja1105_vl_delete(struct sja1105_private *priv, int port, struct sja1105_rule *rule, struct netlink_ext_ack *extack); int sja1105_vl_gate(struct sja1105_private *priv, int port, struct netlink_ext_ack *extack, unsigned long cookie, struct sja1105_key *key, u32 index, s32 prio, u64 base_time, u64 cycle_time, u64 cycle_time_ext, u32 num_entries, struct action_gate_entry *entries); int sja1105_vl_stats(struct sja1105_private *priv, int port, struct sja1105_rule *rule, struct flow_stats *stats, struct netlink_ext_ack *extack); #else static inline int sja1105_vl_redirect(struct sja1105_private *priv, int port, struct netlink_ext_ack *extack, unsigned long cookie, struct sja1105_key *key, unsigned long destports, bool append) { NL_SET_ERR_MSG_MOD(extack, "Virtual Links not compiled in"); return -EOPNOTSUPP; } static inline int sja1105_vl_delete(struct sja1105_private *priv, int port, struct sja1105_rule *rule, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG_MOD(extack, "Virtual Links not compiled in"); return -EOPNOTSUPP; } static inline int sja1105_vl_gate(struct sja1105_private *priv, int port, struct netlink_ext_ack *extack, unsigned long cookie, struct sja1105_key *key, u32 index, s32 prio, u64 base_time, u64 cycle_time, u64 cycle_time_ext, u32 num_entries, struct action_gate_entry *entries) { NL_SET_ERR_MSG_MOD(extack, "Virtual Links not compiled in"); return -EOPNOTSUPP; } static inline int sja1105_vl_stats(struct sja1105_private *priv, int port, struct sja1105_rule *rule, struct flow_stats *stats, struct netlink_ext_ack *extack) { NL_SET_ERR_MSG_MOD(extack, "Virtual Links not compiled in"); return -EOPNOTSUPP; } #endif /* IS_ENABLED(CONFIG_NET_DSA_SJA1105_VL) */ #endif /* _SJA1105_VL_H */
/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) */ /* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * Copyright(c) 2019 Intel Corporation * * Author: Keyon Jie <[email protected]> */ #ifndef __SOF_INTEL_HDA_IPC_H #define __SOF_INTEL_HDA_IPC_H /* * Primary register, mapped to * - DIPCTDR (HIPCIDR) in sideband IPC (cAVS 1.8+) * - DIPCT in cAVS 1.5 IPC * * Secondary register, mapped to: * - DIPCTDD (HIPCIDD) in sideband IPC (cAVS 1.8+) * - DIPCTE in cAVS 1.5 IPC */ /* Common bits in primary register */ /* Reserved for doorbell */ #define HDA_IPC_RSVD_31 BIT(31) /* Target, 0 - normal message, 1 - compact message(cAVS compatible) */ #define HDA_IPC_MSG_COMPACT BIT(30) /* Direction, 0 - request, 1 - response */ #define HDA_IPC_RSP BIT(29) #define HDA_IPC_TYPE_SHIFT 24 #define HDA_IPC_TYPE_MASK GENMASK(28, 24) #define HDA_IPC_TYPE(x) ((x) << HDA_IPC_TYPE_SHIFT) #define HDA_IPC_PM_GATE HDA_IPC_TYPE(0x8U) /* Command specific payload bits in secondary register */ /* Disable DMA tracing (0 - keep tracing, 1 - to disable DMA trace) */ #define HDA_PM_NO_DMA_TRACE BIT(4) /* Prevent clock gating (0 - cg allowed, 1 - DSP clock always on) */ #define HDA_PM_PCG BIT(3) /* Prevent power gating (0 - deep power state transitions allowed) */ #define HDA_PM_PPG BIT(2) /* Indicates whether streaming is active */ #define HDA_PM_PG_STREAMING BIT(1) #define HDA_PM_PG_RSVD BIT(0) irqreturn_t cnl_ipc_irq_thread(int irq, void *context); int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg); void cnl_ipc_dump(struct snd_sof_dev *sdev); void cnl_ipc4_dump(struct snd_sof_dev *sdev); #endif
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB // Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. #include "rss.h" #define mlx5e_rss_warn(__dev, format, ...) \ dev_warn((__dev)->device, "%s:%d:(pid %d): " format, \ __func__, __LINE__, current->pid, \ ##__VA_ARGS__) static const struct mlx5e_rss_params_traffic_type rss_default_config[MLX5E_NUM_INDIR_TIRS] = { [MLX5_TT_IPV4_TCP] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV4, .l4_prot_type = MLX5_L4_PROT_TYPE_TCP, .rx_hash_fields = MLX5_HASH_IP_L4PORTS, }, [MLX5_TT_IPV6_TCP] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV6, .l4_prot_type = MLX5_L4_PROT_TYPE_TCP, .rx_hash_fields = MLX5_HASH_IP_L4PORTS, }, [MLX5_TT_IPV4_UDP] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV4, .l4_prot_type = MLX5_L4_PROT_TYPE_UDP, .rx_hash_fields = MLX5_HASH_IP_L4PORTS, }, [MLX5_TT_IPV6_UDP] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV6, .l4_prot_type = MLX5_L4_PROT_TYPE_UDP, .rx_hash_fields = MLX5_HASH_IP_L4PORTS, }, [MLX5_TT_IPV4_IPSEC_AH] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV4, .l4_prot_type = 0, .rx_hash_fields = MLX5_HASH_IP_IPSEC_SPI, }, [MLX5_TT_IPV6_IPSEC_AH] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV6, .l4_prot_type = 0, .rx_hash_fields = MLX5_HASH_IP_IPSEC_SPI, }, [MLX5_TT_IPV4_IPSEC_ESP] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV4, .l4_prot_type = 0, .rx_hash_fields = MLX5_HASH_IP_IPSEC_SPI, }, [MLX5_TT_IPV6_IPSEC_ESP] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV6, .l4_prot_type = 0, .rx_hash_fields = MLX5_HASH_IP_IPSEC_SPI, }, [MLX5_TT_IPV4] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV4, .l4_prot_type = 0, .rx_hash_fields = MLX5_HASH_IP, }, [MLX5_TT_IPV6] = { .l3_prot_type = MLX5_L3_PROT_TYPE_IPV6, .l4_prot_type = 0, .rx_hash_fields = MLX5_HASH_IP, }, }; struct mlx5e_rss_params_traffic_type mlx5e_rss_get_default_tt_config(enum mlx5_traffic_types tt) { return rss_default_config[tt]; } struct mlx5e_rss { struct mlx5e_rss_params_hash hash; struct mlx5e_rss_params_indir indir; u32 rx_hash_fields[MLX5E_NUM_INDIR_TIRS]; struct mlx5e_tir *tir[MLX5E_NUM_INDIR_TIRS]; struct mlx5e_tir *inner_tir[MLX5E_NUM_INDIR_TIRS]; struct mlx5e_rqt rqt; struct mlx5_core_dev *mdev; /* primary */ u32 drop_rqn; bool inner_ft_support; bool enabled; refcount_t refcnt; }; void mlx5e_rss_params_indir_modify_actual_size(struct mlx5e_rss *rss, u32 num_channels) { rss->indir.actual_table_size = mlx5e_rqt_size(rss->mdev, num_channels); } int mlx5e_rss_params_indir_init(struct mlx5e_rss_params_indir *indir, struct mlx5_core_dev *mdev, u32 actual_table_size, u32 max_table_size) { indir->table = kvmalloc_array(max_table_size, sizeof(*indir->table), GFP_KERNEL); if (!indir->table) return -ENOMEM; indir->max_table_size = max_table_size; indir->actual_table_size = actual_table_size; return 0; } void mlx5e_rss_params_indir_cleanup(struct mlx5e_rss_params_indir *indir) { kvfree(indir->table); } static int mlx5e_rss_copy(struct mlx5e_rss *to, const struct mlx5e_rss *from) { u32 *dst_indir_table; if (to->indir.actual_table_size != from->indir.actual_table_size || to->indir.max_table_size != from->indir.max_table_size) { mlx5e_rss_warn(to->mdev, "Failed to copy RSS due to size mismatch, src (actual %u, max %u) != dst (actual %u, max %u)\n", from->indir.actual_table_size, from->indir.max_table_size, to->indir.actual_table_size, to->indir.max_table_size); return -EINVAL; } dst_indir_table = to->indir.table; *to = *from; to->indir.table = dst_indir_table; memcpy(to->indir.table, from->indir.table, from->indir.actual_table_size * sizeof(*from->indir.table)); return 0; } static struct mlx5e_rss *mlx5e_rss_init_copy(const struct mlx5e_rss *from) { struct mlx5e_rss *rss; int err; rss = kvzalloc(sizeof(*rss), GFP_KERNEL); if (!rss) return ERR_PTR(-ENOMEM); err = mlx5e_rss_params_indir_init(&rss->indir, from->mdev, from->indir.actual_table_size, from->indir.max_table_size); if (err) goto err_free_rss; err = mlx5e_rss_copy(rss, from); if (err) goto err_free_indir; return rss; err_free_indir: mlx5e_rss_params_indir_cleanup(&rss->indir); err_free_rss: kvfree(rss); return ERR_PTR(err); } static void mlx5e_rss_params_init(struct mlx5e_rss *rss) { enum mlx5_traffic_types tt; rss->hash.hfunc = ETH_RSS_HASH_TOP; netdev_rss_key_fill(rss->hash.toeplitz_hash_key, sizeof(rss->hash.toeplitz_hash_key)); for (tt = 0; tt < MLX5E_NUM_INDIR_TIRS; tt++) rss->rx_hash_fields[tt] = mlx5e_rss_get_default_tt_config(tt).rx_hash_fields; } static struct mlx5e_tir **rss_get_tirp(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, bool inner) { return inner ? &rss->inner_tir[tt] : &rss->tir[tt]; } static struct mlx5e_tir *rss_get_tir(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, bool inner) { return *rss_get_tirp(rss, tt, inner); } static struct mlx5e_rss_params_traffic_type mlx5e_rss_get_tt_config(struct mlx5e_rss *rss, enum mlx5_traffic_types tt) { struct mlx5e_rss_params_traffic_type rss_tt; rss_tt = mlx5e_rss_get_default_tt_config(tt); rss_tt.rx_hash_fields = rss->rx_hash_fields[tt]; return rss_tt; } static int mlx5e_rss_create_tir(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, const struct mlx5e_packet_merge_param *init_pkt_merge_param, bool inner) { struct mlx5e_rss_params_traffic_type rss_tt; struct mlx5e_tir_builder *builder; struct mlx5e_tir **tir_p; struct mlx5e_tir *tir; u32 rqtn; int err; if (inner && !rss->inner_ft_support) { mlx5e_rss_warn(rss->mdev, "Cannot create inner indirect TIR[%d], RSS inner FT is not supported.\n", tt); return -EINVAL; } tir_p = rss_get_tirp(rss, tt, inner); if (*tir_p) return -EINVAL; tir = kvzalloc(sizeof(*tir), GFP_KERNEL); if (!tir) return -ENOMEM; builder = mlx5e_tir_builder_alloc(false); if (!builder) { err = -ENOMEM; goto free_tir; } rqtn = mlx5e_rqt_get_rqtn(&rss->rqt); mlx5e_tir_builder_build_rqt(builder, rss->mdev->mlx5e_res.hw_objs.td.tdn, rqtn, rss->inner_ft_support); mlx5e_tir_builder_build_packet_merge(builder, init_pkt_merge_param); rss_tt = mlx5e_rss_get_tt_config(rss, tt); mlx5e_tir_builder_build_rss(builder, &rss->hash, &rss_tt, inner); err = mlx5e_tir_init(tir, builder, rss->mdev, true); mlx5e_tir_builder_free(builder); if (err) { mlx5e_rss_warn(rss->mdev, "Failed to create %sindirect TIR: err = %d, tt = %d\n", inner ? "inner " : "", err, tt); goto free_tir; } *tir_p = tir; return 0; free_tir: kvfree(tir); return err; } static void mlx5e_rss_destroy_tir(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, bool inner) { struct mlx5e_tir **tir_p; struct mlx5e_tir *tir; tir_p = rss_get_tirp(rss, tt, inner); if (!*tir_p) return; tir = *tir_p; mlx5e_tir_destroy(tir); kvfree(tir); *tir_p = NULL; } static int mlx5e_rss_create_tirs(struct mlx5e_rss *rss, const struct mlx5e_packet_merge_param *init_pkt_merge_param, bool inner) { enum mlx5_traffic_types tt, max_tt; int err; for (tt = 0; tt < MLX5E_NUM_INDIR_TIRS; tt++) { err = mlx5e_rss_create_tir(rss, tt, init_pkt_merge_param, inner); if (err) goto err_destroy_tirs; } return 0; err_destroy_tirs: max_tt = tt; for (tt = 0; tt < max_tt; tt++) mlx5e_rss_destroy_tir(rss, tt, inner); return err; } static void mlx5e_rss_destroy_tirs(struct mlx5e_rss *rss, bool inner) { enum mlx5_traffic_types tt; for (tt = 0; tt < MLX5E_NUM_INDIR_TIRS; tt++) mlx5e_rss_destroy_tir(rss, tt, inner); } static int mlx5e_rss_update_tir(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, bool inner) { struct mlx5e_rss_params_traffic_type rss_tt; struct mlx5e_tir_builder *builder; struct mlx5e_tir *tir; int err; tir = rss_get_tir(rss, tt, inner); if (!tir) return 0; builder = mlx5e_tir_builder_alloc(true); if (!builder) return -ENOMEM; rss_tt = mlx5e_rss_get_tt_config(rss, tt); mlx5e_tir_builder_build_rss(builder, &rss->hash, &rss_tt, inner); err = mlx5e_tir_modify(tir, builder); mlx5e_tir_builder_free(builder); return err; } static int mlx5e_rss_update_tirs(struct mlx5e_rss *rss) { enum mlx5_traffic_types tt; int err, retval; retval = 0; for (tt = 0; tt < MLX5E_NUM_INDIR_TIRS; tt++) { err = mlx5e_rss_update_tir(rss, tt, false); if (err) { retval = retval ? : err; mlx5e_rss_warn(rss->mdev, "Failed to update RSS hash of indirect TIR for traffic type %d: err = %d\n", tt, err); } if (!rss->inner_ft_support) continue; err = mlx5e_rss_update_tir(rss, tt, true); if (err) { retval = retval ? : err; mlx5e_rss_warn(rss->mdev, "Failed to update RSS hash of inner indirect TIR for traffic type %d: err = %d\n", tt, err); } } return retval; } static int mlx5e_rss_init_no_tirs(struct mlx5e_rss *rss) { mlx5e_rss_params_init(rss); refcount_set(&rss->refcnt, 1); return mlx5e_rqt_init_direct(&rss->rqt, rss->mdev, true, rss->drop_rqn, rss->indir.max_table_size); } struct mlx5e_rss *mlx5e_rss_init(struct mlx5_core_dev *mdev, bool inner_ft_support, u32 drop_rqn, const struct mlx5e_packet_merge_param *init_pkt_merge_param, enum mlx5e_rss_init_type type, unsigned int nch, unsigned int max_nch) { struct mlx5e_rss *rss; int err; rss = kvzalloc(sizeof(*rss), GFP_KERNEL); if (!rss) return ERR_PTR(-ENOMEM); err = mlx5e_rss_params_indir_init(&rss->indir, mdev, mlx5e_rqt_size(mdev, nch), mlx5e_rqt_size(mdev, max_nch)); if (err) goto err_free_rss; rss->mdev = mdev; rss->inner_ft_support = inner_ft_support; rss->drop_rqn = drop_rqn; err = mlx5e_rss_init_no_tirs(rss); if (err) goto err_free_indir; if (type == MLX5E_RSS_INIT_NO_TIRS) goto out; err = mlx5e_rss_create_tirs(rss, init_pkt_merge_param, false); if (err) goto err_destroy_rqt; if (inner_ft_support) { err = mlx5e_rss_create_tirs(rss, init_pkt_merge_param, true); if (err) goto err_destroy_tirs; } out: return rss; err_destroy_tirs: mlx5e_rss_destroy_tirs(rss, false); err_destroy_rqt: mlx5e_rqt_destroy(&rss->rqt); err_free_indir: mlx5e_rss_params_indir_cleanup(&rss->indir); err_free_rss: kvfree(rss); return ERR_PTR(err); } int mlx5e_rss_cleanup(struct mlx5e_rss *rss) { if (!refcount_dec_if_one(&rss->refcnt)) return -EBUSY; mlx5e_rss_destroy_tirs(rss, false); if (rss->inner_ft_support) mlx5e_rss_destroy_tirs(rss, true); mlx5e_rqt_destroy(&rss->rqt); mlx5e_rss_params_indir_cleanup(&rss->indir); kvfree(rss); return 0; } void mlx5e_rss_refcnt_inc(struct mlx5e_rss *rss) { refcount_inc(&rss->refcnt); } void mlx5e_rss_refcnt_dec(struct mlx5e_rss *rss) { refcount_dec(&rss->refcnt); } unsigned int mlx5e_rss_refcnt_read(struct mlx5e_rss *rss) { return refcount_read(&rss->refcnt); } u32 mlx5e_rss_get_tirn(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, bool inner) { struct mlx5e_tir *tir; WARN_ON(inner && !rss->inner_ft_support); tir = rss_get_tir(rss, tt, inner); WARN_ON(!tir); return mlx5e_tir_get_tirn(tir); } /* Fill the "tirn" output parameter. * Create the requested TIR if it's its first usage. */ int mlx5e_rss_obtain_tirn(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, const struct mlx5e_packet_merge_param *init_pkt_merge_param, bool inner, u32 *tirn) { struct mlx5e_tir *tir; tir = rss_get_tir(rss, tt, inner); if (!tir) { /* TIR doesn't exist, create one */ int err; err = mlx5e_rss_create_tir(rss, tt, init_pkt_merge_param, inner); if (err) return err; tir = rss_get_tir(rss, tt, inner); } *tirn = mlx5e_tir_get_tirn(tir); return 0; } static int mlx5e_rss_apply(struct mlx5e_rss *rss, u32 *rqns, u32 *vhca_ids, unsigned int num_rqns) { int err; err = mlx5e_rqt_redirect_indir(&rss->rqt, rqns, vhca_ids, num_rqns, rss->hash.hfunc, &rss->indir); if (err) mlx5e_rss_warn(rss->mdev, "Failed to redirect RQT %#x to channels: err = %d\n", mlx5e_rqt_get_rqtn(&rss->rqt), err); return err; } void mlx5e_rss_enable(struct mlx5e_rss *rss, u32 *rqns, u32 *vhca_ids, unsigned int num_rqns) { rss->enabled = true; mlx5e_rss_apply(rss, rqns, vhca_ids, num_rqns); } void mlx5e_rss_disable(struct mlx5e_rss *rss) { int err; rss->enabled = false; err = mlx5e_rqt_redirect_direct(&rss->rqt, rss->drop_rqn, NULL); if (err) mlx5e_rss_warn(rss->mdev, "Failed to redirect RQT %#x to drop RQ %#x: err = %d\n", mlx5e_rqt_get_rqtn(&rss->rqt), rss->drop_rqn, err); } int mlx5e_rss_packet_merge_set_param(struct mlx5e_rss *rss, struct mlx5e_packet_merge_param *pkt_merge_param) { struct mlx5e_tir_builder *builder; enum mlx5_traffic_types tt; int err, final_err; builder = mlx5e_tir_builder_alloc(true); if (!builder) return -ENOMEM; mlx5e_tir_builder_build_packet_merge(builder, pkt_merge_param); final_err = 0; for (tt = 0; tt < MLX5E_NUM_INDIR_TIRS; tt++) { struct mlx5e_tir *tir; tir = rss_get_tir(rss, tt, false); if (!tir) goto inner_tir; err = mlx5e_tir_modify(tir, builder); if (err) { mlx5e_rss_warn(rss->mdev, "Failed to update packet merge state of indirect TIR %#x for traffic type %d: err = %d\n", mlx5e_tir_get_tirn(tir), tt, err); if (!final_err) final_err = err; } inner_tir: if (!rss->inner_ft_support) continue; tir = rss_get_tir(rss, tt, true); if (!tir) continue; err = mlx5e_tir_modify(tir, builder); if (err) { mlx5e_rss_warn(rss->mdev, "Failed to update packet merge state of inner indirect TIR %#x for traffic type %d: err = %d\n", mlx5e_tir_get_tirn(tir), tt, err); if (!final_err) final_err = err; } } mlx5e_tir_builder_free(builder); return final_err; } int mlx5e_rss_get_rxfh(struct mlx5e_rss *rss, u32 *indir, u8 *key, u8 *hfunc) { if (indir) memcpy(indir, rss->indir.table, rss->indir.actual_table_size * sizeof(*rss->indir.table)); if (key) memcpy(key, rss->hash.toeplitz_hash_key, sizeof(rss->hash.toeplitz_hash_key)); if (hfunc) *hfunc = rss->hash.hfunc; return 0; } int mlx5e_rss_set_rxfh(struct mlx5e_rss *rss, const u32 *indir, const u8 *key, const u8 *hfunc, u32 *rqns, u32 *vhca_ids, unsigned int num_rqns) { bool changed_indir = false; bool changed_hash = false; struct mlx5e_rss *old_rss; int err = 0; old_rss = mlx5e_rss_init_copy(rss); if (IS_ERR(old_rss)) return PTR_ERR(old_rss); if (hfunc && *hfunc != rss->hash.hfunc) { switch (*hfunc) { case ETH_RSS_HASH_XOR: case ETH_RSS_HASH_TOP: break; default: err = -EINVAL; goto out; } changed_hash = true; changed_indir = true; rss->hash.hfunc = *hfunc; } if (key) { if (rss->hash.hfunc == ETH_RSS_HASH_TOP) changed_hash = true; memcpy(rss->hash.toeplitz_hash_key, key, sizeof(rss->hash.toeplitz_hash_key)); } if (indir) { changed_indir = true; memcpy(rss->indir.table, indir, rss->indir.actual_table_size * sizeof(*rss->indir.table)); } if (changed_indir && rss->enabled) { err = mlx5e_rss_apply(rss, rqns, vhca_ids, num_rqns); if (err) { mlx5e_rss_copy(rss, old_rss); goto out; } } if (changed_hash) mlx5e_rss_update_tirs(rss); out: mlx5e_rss_params_indir_cleanup(&old_rss->indir); kvfree(old_rss); return err; } struct mlx5e_rss_params_hash mlx5e_rss_get_hash(struct mlx5e_rss *rss) { return rss->hash; } u8 mlx5e_rss_get_hash_fields(struct mlx5e_rss *rss, enum mlx5_traffic_types tt) { return rss->rx_hash_fields[tt]; } int mlx5e_rss_set_hash_fields(struct mlx5e_rss *rss, enum mlx5_traffic_types tt, u8 rx_hash_fields) { u8 old_rx_hash_fields; int err; old_rx_hash_fields = rss->rx_hash_fields[tt]; if (old_rx_hash_fields == rx_hash_fields) return 0; rss->rx_hash_fields[tt] = rx_hash_fields; err = mlx5e_rss_update_tir(rss, tt, false); if (err) { rss->rx_hash_fields[tt] = old_rx_hash_fields; mlx5e_rss_warn(rss->mdev, "Failed to update RSS hash fields of indirect TIR for traffic type %d: err = %d\n", tt, err); return err; } if (!(rss->inner_ft_support)) return 0; err = mlx5e_rss_update_tir(rss, tt, true); if (err) { /* Partial update happened. Try to revert - it may fail too, but * there is nothing more we can do. */ rss->rx_hash_fields[tt] = old_rx_hash_fields; mlx5e_rss_warn(rss->mdev, "Failed to update RSS hash fields of inner indirect TIR for traffic type %d: err = %d\n", tt, err); if (mlx5e_rss_update_tir(rss, tt, false)) mlx5e_rss_warn(rss->mdev, "Partial update of RSS hash fields happened: failed to revert indirect TIR for traffic type %d to the old values\n", tt); } return err; } void mlx5e_rss_set_indir_uniform(struct mlx5e_rss *rss, unsigned int nch) { mlx5e_rss_params_indir_init_uniform(&rss->indir, nch); }
// SPDX-License-Identifier: GPL-2.0 /* * Hardware monitoring driver for Maxim MAX16508, MAX16600, MAX16601, * and MAX16602. * * Implementation notes: * * This chip series supports two rails, VCORE and VSA. Telemetry information * for the two rails is reported in two subsequent I2C addresses. The driver * instantiates a dummy I2C client at the second I2C address to report * information for the VSA rail in a single instance of the driver. * Telemetry for the VSA rail is reported to the PMBus core in PMBus page 2. * * The chip reports input current using two separate methods. The input current * reported with the standard READ_IIN command is derived from the output * current. The first method is reported to the PMBus core with PMBus page 0, * the second method is reported with PMBus page 1. * * The chip supports reading per-phase temperatures and per-phase input/output * currents for VCORE. Telemetry is reported in vendor specific registers. * The driver translates the vendor specific register values to PMBus standard * register values and reports per-phase information in PMBus page 0. * * Copyright 2019, 2020 Google LLC. */ #include <linux/bits.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include "pmbus.h" enum chips { max16508, max16600, max16601, max16602 }; #define REG_DEFAULT_NUM_POP 0xc4 #define REG_SETPT_DVID 0xd1 #define DAC_10MV_MODE BIT(4) #define REG_IOUT_AVG_PK 0xee #define REG_IIN_SENSOR 0xf1 #define REG_TOTAL_INPUT_POWER 0xf2 #define REG_PHASE_ID 0xf3 #define CORE_RAIL_INDICATOR BIT(7) #define REG_PHASE_REPORTING 0xf4 #define MAX16601_NUM_PHASES 8 struct max16601_data { enum chips id; struct pmbus_driver_info info; struct i2c_client *vsa; int iout_avg_pkg; }; #define to_max16601_data(x) container_of(x, struct max16601_data, info) static int max16601_read_byte(struct i2c_client *client, int page, int reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct max16601_data *data = to_max16601_data(info); if (page > 0) { if (page == 2) /* VSA */ return i2c_smbus_read_byte_data(data->vsa, reg); return -EOPNOTSUPP; } return -ENODATA; } static int max16601_read_word(struct i2c_client *client, int page, int phase, int reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct max16601_data *data = to_max16601_data(info); u8 buf[I2C_SMBUS_BLOCK_MAX + 1]; int ret; switch (page) { case 0: /* VCORE */ if (phase == 0xff) return -ENODATA; switch (reg) { case PMBUS_READ_IIN: case PMBUS_READ_IOUT: case PMBUS_READ_TEMPERATURE_1: ret = i2c_smbus_write_byte_data(client, REG_PHASE_ID, phase); if (ret) return ret; ret = i2c_smbus_read_block_data(client, REG_PHASE_REPORTING, buf); if (ret < 0) return ret; if (ret < 6) return -EIO; switch (reg) { case PMBUS_READ_TEMPERATURE_1: return buf[1] << 8 | buf[0]; case PMBUS_READ_IOUT: return buf[3] << 8 | buf[2]; case PMBUS_READ_IIN: return buf[5] << 8 | buf[4]; default: break; } } return -EOPNOTSUPP; case 1: /* VCORE, read IIN/PIN from sensor element */ switch (reg) { case PMBUS_READ_IIN: return i2c_smbus_read_word_data(client, REG_IIN_SENSOR); case PMBUS_READ_PIN: return i2c_smbus_read_word_data(client, REG_TOTAL_INPUT_POWER); default: break; } return -EOPNOTSUPP; case 2: /* VSA */ switch (reg) { case PMBUS_VIRT_READ_IOUT_MAX: ret = i2c_smbus_read_word_data(data->vsa, REG_IOUT_AVG_PK); if (ret < 0) return ret; if (sign_extend32(ret, 10) > sign_extend32(data->iout_avg_pkg, 10)) data->iout_avg_pkg = ret; return data->iout_avg_pkg; case PMBUS_VIRT_RESET_IOUT_HISTORY: return 0; case PMBUS_IOUT_OC_FAULT_LIMIT: case PMBUS_IOUT_OC_WARN_LIMIT: case PMBUS_OT_FAULT_LIMIT: case PMBUS_OT_WARN_LIMIT: case PMBUS_READ_IIN: case PMBUS_READ_IOUT: case PMBUS_READ_TEMPERATURE_1: case PMBUS_STATUS_WORD: return i2c_smbus_read_word_data(data->vsa, reg); default: return -EOPNOTSUPP; } default: return -EOPNOTSUPP; } } static int max16601_write_byte(struct i2c_client *client, int page, u8 reg) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct max16601_data *data = to_max16601_data(info); if (page == 2) { if (reg == PMBUS_CLEAR_FAULTS) return i2c_smbus_write_byte(data->vsa, reg); return -EOPNOTSUPP; } return -ENODATA; } static int max16601_write_word(struct i2c_client *client, int page, int reg, u16 value) { const struct pmbus_driver_info *info = pmbus_get_driver_info(client); struct max16601_data *data = to_max16601_data(info); switch (page) { case 0: /* VCORE */ return -ENODATA; case 1: /* VCORE IIN/PIN from sensor element */ default: return -EOPNOTSUPP; case 2: /* VSA */ switch (reg) { case PMBUS_VIRT_RESET_IOUT_HISTORY: data->iout_avg_pkg = 0xfc00; return 0; case PMBUS_IOUT_OC_FAULT_LIMIT: case PMBUS_IOUT_OC_WARN_LIMIT: case PMBUS_OT_FAULT_LIMIT: case PMBUS_OT_WARN_LIMIT: return i2c_smbus_write_word_data(data->vsa, reg, value); default: return -EOPNOTSUPP; } } } static int max16601_identify(struct i2c_client *client, struct pmbus_driver_info *info) { struct max16601_data *data = to_max16601_data(info); int reg; reg = i2c_smbus_read_byte_data(client, REG_SETPT_DVID); if (reg < 0) return reg; if (reg & DAC_10MV_MODE) info->vrm_version[0] = vr13; else info->vrm_version[0] = vr12; if (data->id != max16600 && data->id != max16601 && data->id != max16602) return 0; reg = i2c_smbus_read_byte_data(client, REG_DEFAULT_NUM_POP); if (reg < 0) return reg; /* * If REG_DEFAULT_NUM_POP returns 0, we don't know how many phases * are populated. Stick with the default in that case. */ reg &= 0x0f; if (reg && reg <= MAX16601_NUM_PHASES) info->phases[0] = reg; return 0; } static struct pmbus_driver_info max16601_info = { .pages = 3, .format[PSC_VOLTAGE_IN] = linear, .format[PSC_VOLTAGE_OUT] = vid, .format[PSC_CURRENT_IN] = linear, .format[PSC_CURRENT_OUT] = linear, .format[PSC_TEMPERATURE] = linear, .format[PSC_POWER] = linear, .func[0] = PMBUS_HAVE_VIN | PMBUS_HAVE_IIN | PMBUS_HAVE_PIN | PMBUS_HAVE_STATUS_INPUT | PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT | PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT | PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP | PMBUS_HAVE_POUT | PMBUS_PAGE_VIRTUAL | PMBUS_PHASE_VIRTUAL, .func[1] = PMBUS_HAVE_IIN | PMBUS_HAVE_PIN | PMBUS_PAGE_VIRTUAL, .func[2] = PMBUS_HAVE_IIN | PMBUS_HAVE_STATUS_INPUT | PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT | PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP | PMBUS_PAGE_VIRTUAL, .phases[0] = MAX16601_NUM_PHASES, .pfunc[0] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT | PMBUS_HAVE_TEMP, .pfunc[1] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT, .pfunc[2] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT | PMBUS_HAVE_TEMP, .pfunc[3] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT, .pfunc[4] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT | PMBUS_HAVE_TEMP, .pfunc[5] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT, .pfunc[6] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT | PMBUS_HAVE_TEMP, .pfunc[7] = PMBUS_HAVE_IIN | PMBUS_HAVE_IOUT, .identify = max16601_identify, .read_byte_data = max16601_read_byte, .read_word_data = max16601_read_word, .write_byte = max16601_write_byte, .write_word_data = max16601_write_word, }; static void max16601_remove(void *_data) { struct max16601_data *data = _data; i2c_unregister_device(data->vsa); } static const struct i2c_device_id max16601_id[] = { {"max16508", max16508}, {"max16600", max16600}, {"max16601", max16601}, {"max16602", max16602}, {} }; MODULE_DEVICE_TABLE(i2c, max16601_id); static int max16601_get_id(struct i2c_client *client) { struct device *dev = &client->dev; u8 buf[I2C_SMBUS_BLOCK_MAX + 1]; enum chips id; int ret; ret = i2c_smbus_read_block_data(client, PMBUS_IC_DEVICE_ID, buf); if (ret < 0 || ret < 11) return -ENODEV; /* * PMBUS_IC_DEVICE_ID is expected to return MAX1660[012]y.xx", * "MAX16500y.xx".cdxxcccccccccc, or "MAX16508y.xx". */ if (!strncmp(buf, "MAX16500", 8) || !strncmp(buf, "MAX16508", 8)) { id = max16508; } else if (!strncmp(buf, "MAX16600", 8)) { id = max16600; } else if (!strncmp(buf, "MAX16601", 8)) { id = max16601; } else if (!strncmp(buf, "MAX16602", 8)) { id = max16602; } else { buf[ret] = '\0'; dev_err(dev, "Unsupported chip '%s'\n", buf); return -ENODEV; } return id; } static int max16601_probe(struct i2c_client *client) { struct device *dev = &client->dev; const struct i2c_device_id *id; struct max16601_data *data; int ret, chip_id; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BYTE_DATA | I2C_FUNC_SMBUS_READ_BLOCK_DATA)) return -ENODEV; chip_id = max16601_get_id(client); if (chip_id < 0) return chip_id; id = i2c_match_id(max16601_id, client); if (chip_id != id->driver_data) dev_warn(&client->dev, "Device mismatch: Configured %s (%d), detected %d\n", id->name, (int) id->driver_data, chip_id); ret = i2c_smbus_read_byte_data(client, REG_PHASE_ID); if (ret < 0) return ret; if (!(ret & CORE_RAIL_INDICATOR)) { dev_err(dev, "Driver must be instantiated on CORE rail I2C address\n"); return -ENODEV; } data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->id = chip_id; data->iout_avg_pkg = 0xfc00; data->vsa = i2c_new_dummy_device(client->adapter, client->addr + 1); if (IS_ERR(data->vsa)) { dev_err(dev, "Failed to register VSA client\n"); return PTR_ERR(data->vsa); } ret = devm_add_action_or_reset(dev, max16601_remove, data); if (ret) return ret; data->info = max16601_info; return pmbus_do_probe(client, &data->info); } static struct i2c_driver max16601_driver = { .driver = { .name = "max16601", }, .probe = max16601_probe, .id_table = max16601_id, }; module_i2c_driver(max16601_driver); MODULE_AUTHOR("Guenter Roeck <[email protected]>"); MODULE_DESCRIPTION("PMBus driver for Maxim MAX16601"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS("PMBUS");
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 /* Copyright (c) 2019-2020 Marvell International Ltd. All rights reserved */ #include <linux/etherdevice.h> #include <linux/if_bridge.h> #include <linux/ethtool.h> #include <linux/list.h> #include "prestera.h" #include "prestera_hw.h" #include "prestera_acl.h" #include "prestera_counter.h" #include "prestera_router_hw.h" #define PRESTERA_SWITCH_INIT_TIMEOUT_MS (30 * 1000) #define PRESTERA_MIN_MTU 64 #define PRESTERA_MSG_CHUNK_SIZE 1024 enum prestera_cmd_type_t { PRESTERA_CMD_TYPE_SWITCH_INIT = 0x1, PRESTERA_CMD_TYPE_SWITCH_ATTR_SET = 0x2, PRESTERA_CMD_TYPE_PORT_ATTR_SET = 0x100, PRESTERA_CMD_TYPE_PORT_ATTR_GET = 0x101, PRESTERA_CMD_TYPE_PORT_INFO_GET = 0x110, PRESTERA_CMD_TYPE_VLAN_CREATE = 0x200, PRESTERA_CMD_TYPE_VLAN_DELETE = 0x201, PRESTERA_CMD_TYPE_VLAN_PORT_SET = 0x202, PRESTERA_CMD_TYPE_VLAN_PVID_SET = 0x203, PRESTERA_CMD_TYPE_FDB_ADD = 0x300, PRESTERA_CMD_TYPE_FDB_DELETE = 0x301, PRESTERA_CMD_TYPE_FDB_FLUSH_PORT = 0x310, PRESTERA_CMD_TYPE_FDB_FLUSH_VLAN = 0x311, PRESTERA_CMD_TYPE_FDB_FLUSH_PORT_VLAN = 0x312, PRESTERA_CMD_TYPE_BRIDGE_CREATE = 0x400, PRESTERA_CMD_TYPE_BRIDGE_DELETE = 0x401, PRESTERA_CMD_TYPE_BRIDGE_PORT_ADD = 0x402, PRESTERA_CMD_TYPE_BRIDGE_PORT_DELETE = 0x403, PRESTERA_CMD_TYPE_COUNTER_GET = 0x510, PRESTERA_CMD_TYPE_COUNTER_ABORT = 0x511, PRESTERA_CMD_TYPE_COUNTER_TRIGGER = 0x512, PRESTERA_CMD_TYPE_COUNTER_BLOCK_GET = 0x513, PRESTERA_CMD_TYPE_COUNTER_BLOCK_RELEASE = 0x514, PRESTERA_CMD_TYPE_COUNTER_CLEAR = 0x515, PRESTERA_CMD_TYPE_VTCAM_CREATE = 0x540, PRESTERA_CMD_TYPE_VTCAM_DESTROY = 0x541, PRESTERA_CMD_TYPE_VTCAM_RULE_ADD = 0x550, PRESTERA_CMD_TYPE_VTCAM_RULE_DELETE = 0x551, PRESTERA_CMD_TYPE_VTCAM_IFACE_BIND = 0x560, PRESTERA_CMD_TYPE_VTCAM_IFACE_UNBIND = 0x561, PRESTERA_CMD_TYPE_ROUTER_RIF_CREATE = 0x600, PRESTERA_CMD_TYPE_ROUTER_RIF_DELETE = 0x601, PRESTERA_CMD_TYPE_ROUTER_LPM_ADD = 0x610, PRESTERA_CMD_TYPE_ROUTER_LPM_DELETE = 0x611, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_SET = 0x622, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_BLK_GET = 0x645, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_ADD = 0x623, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_DELETE = 0x624, PRESTERA_CMD_TYPE_ROUTER_VR_CREATE = 0x630, PRESTERA_CMD_TYPE_ROUTER_VR_DELETE = 0x631, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_CREATE = 0x700, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_DESTROY = 0x701, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_PORTS_SET = 0x702, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_PORTS_RESET = 0x703, PRESTERA_CMD_TYPE_MDB_CREATE = 0x704, PRESTERA_CMD_TYPE_MDB_DESTROY = 0x705, PRESTERA_CMD_TYPE_RXTX_INIT = 0x800, PRESTERA_CMD_TYPE_LAG_MEMBER_ADD = 0x900, PRESTERA_CMD_TYPE_LAG_MEMBER_DELETE = 0x901, PRESTERA_CMD_TYPE_LAG_MEMBER_ENABLE = 0x902, PRESTERA_CMD_TYPE_LAG_MEMBER_DISABLE = 0x903, PRESTERA_CMD_TYPE_STP_PORT_SET = 0x1000, PRESTERA_CMD_TYPE_SPAN_GET = 0x1100, PRESTERA_CMD_TYPE_SPAN_INGRESS_BIND = 0x1101, PRESTERA_CMD_TYPE_SPAN_INGRESS_UNBIND = 0x1102, PRESTERA_CMD_TYPE_SPAN_RELEASE = 0x1103, PRESTERA_CMD_TYPE_SPAN_EGRESS_BIND = 0x1104, PRESTERA_CMD_TYPE_SPAN_EGRESS_UNBIND = 0x1105, PRESTERA_CMD_TYPE_POLICER_CREATE = 0x1500, PRESTERA_CMD_TYPE_POLICER_RELEASE = 0x1501, PRESTERA_CMD_TYPE_POLICER_SET = 0x1502, PRESTERA_CMD_TYPE_CPU_CODE_COUNTERS_GET = 0x2000, PRESTERA_CMD_TYPE_ACK = 0x10000, PRESTERA_CMD_TYPE_MAX }; enum { PRESTERA_CMD_PORT_ATTR_ADMIN_STATE = 1, PRESTERA_CMD_PORT_ATTR_MTU = 3, PRESTERA_CMD_PORT_ATTR_MAC = 4, PRESTERA_CMD_PORT_ATTR_SPEED = 5, PRESTERA_CMD_PORT_ATTR_ACCEPT_FRAME_TYPE = 6, PRESTERA_CMD_PORT_ATTR_LEARNING = 7, PRESTERA_CMD_PORT_ATTR_FLOOD = 8, PRESTERA_CMD_PORT_ATTR_CAPABILITY = 9, PRESTERA_CMD_PORT_ATTR_LOCKED = 10, PRESTERA_CMD_PORT_ATTR_PHY_MODE = 12, PRESTERA_CMD_PORT_ATTR_TYPE = 13, PRESTERA_CMD_PORT_ATTR_STATS = 17, PRESTERA_CMD_PORT_ATTR_MAC_AUTONEG_RESTART = 18, PRESTERA_CMD_PORT_ATTR_PHY_AUTONEG_RESTART = 19, PRESTERA_CMD_PORT_ATTR_MAC_MODE = 22, }; enum { PRESTERA_CMD_SWITCH_ATTR_MAC = 1, PRESTERA_CMD_SWITCH_ATTR_AGEING = 2, }; enum { PRESTERA_CMD_ACK_OK, PRESTERA_CMD_ACK_FAILED, PRESTERA_CMD_ACK_MAX }; enum { PRESTERA_PORT_TP_NA, PRESTERA_PORT_TP_MDI, PRESTERA_PORT_TP_MDIX, PRESTERA_PORT_TP_AUTO, }; enum { PRESTERA_PORT_FLOOD_TYPE_UC = 0, PRESTERA_PORT_FLOOD_TYPE_MC = 1, }; enum { PRESTERA_PORT_GOOD_OCTETS_RCV_CNT, PRESTERA_PORT_BAD_OCTETS_RCV_CNT, PRESTERA_PORT_MAC_TRANSMIT_ERR_CNT, PRESTERA_PORT_BRDC_PKTS_RCV_CNT, PRESTERA_PORT_MC_PKTS_RCV_CNT, PRESTERA_PORT_PKTS_64L_CNT, PRESTERA_PORT_PKTS_65TO127L_CNT, PRESTERA_PORT_PKTS_128TO255L_CNT, PRESTERA_PORT_PKTS_256TO511L_CNT, PRESTERA_PORT_PKTS_512TO1023L_CNT, PRESTERA_PORT_PKTS_1024TOMAXL_CNT, PRESTERA_PORT_EXCESSIVE_COLLISIONS_CNT, PRESTERA_PORT_MC_PKTS_SENT_CNT, PRESTERA_PORT_BRDC_PKTS_SENT_CNT, PRESTERA_PORT_FC_SENT_CNT, PRESTERA_PORT_GOOD_FC_RCV_CNT, PRESTERA_PORT_DROP_EVENTS_CNT, PRESTERA_PORT_UNDERSIZE_PKTS_CNT, PRESTERA_PORT_FRAGMENTS_PKTS_CNT, PRESTERA_PORT_OVERSIZE_PKTS_CNT, PRESTERA_PORT_JABBER_PKTS_CNT, PRESTERA_PORT_MAC_RCV_ERROR_CNT, PRESTERA_PORT_BAD_CRC_CNT, PRESTERA_PORT_COLLISIONS_CNT, PRESTERA_PORT_LATE_COLLISIONS_CNT, PRESTERA_PORT_GOOD_UC_PKTS_RCV_CNT, PRESTERA_PORT_GOOD_UC_PKTS_SENT_CNT, PRESTERA_PORT_MULTIPLE_PKTS_SENT_CNT, PRESTERA_PORT_DEFERRED_PKTS_SENT_CNT, PRESTERA_PORT_GOOD_OCTETS_SENT_CNT, PRESTERA_PORT_CNT_MAX }; enum { PRESTERA_FC_NONE, PRESTERA_FC_SYMMETRIC, PRESTERA_FC_ASYMMETRIC, PRESTERA_FC_SYMM_ASYMM, }; enum { PRESTERA_POLICER_MODE_SR_TCM }; enum { PRESTERA_HW_FDB_ENTRY_TYPE_REG_PORT = 0, PRESTERA_HW_FDB_ENTRY_TYPE_LAG = 1, PRESTERA_HW_FDB_ENTRY_TYPE_MAX = 2, }; struct prestera_fw_event_handler { struct list_head list; struct rcu_head rcu; enum prestera_event_type type; prestera_event_cb_t func; void *arg; }; enum { PRESTERA_HW_FLOOD_DOMAIN_PORT_TYPE_REG_PORT = 0, PRESTERA_HW_FLOOD_DOMAIN_PORT_TYPE_LAG = 1, PRESTERA_HW_FLOOD_DOMAIN_PORT_TYPE_MAX = 2, }; struct prestera_msg_cmd { __le32 type; }; struct prestera_msg_ret { struct prestera_msg_cmd cmd; __le32 status; }; struct prestera_msg_common_req { struct prestera_msg_cmd cmd; }; struct prestera_msg_common_resp { struct prestera_msg_ret ret; }; struct prestera_msg_switch_attr_req { struct prestera_msg_cmd cmd; __le32 attr; union { __le32 ageing_timeout_ms; struct { u8 mac[ETH_ALEN]; u8 __pad[2]; }; } param; }; struct prestera_msg_switch_init_resp { struct prestera_msg_ret ret; __le32 port_count; __le32 mtu_max; __le32 size_tbl_router_nexthop; u8 switch_id; u8 lag_max; u8 lag_member_max; }; struct prestera_msg_event_port_param { union { struct { __le32 mode; __le32 speed; u8 oper; u8 duplex; u8 fc; u8 fec; } mac; struct { __le64 lmode_bmap; u8 mdix; u8 fc; u8 __pad[2]; } __packed phy; /* make sure always 12 bytes size */ }; }; struct prestera_msg_port_cap_param { __le64 link_mode; u8 type; u8 fec; u8 fc; u8 transceiver; }; struct prestera_msg_port_flood_param { u8 type; u8 enable; u8 __pad[2]; }; union prestera_msg_port_param { __le32 mtu; __le32 speed; __le32 link_mode; u8 admin_state; u8 oper_state; u8 mac[ETH_ALEN]; u8 accept_frm_type; u8 learning; u8 flood; u8 type; u8 duplex; u8 fec; u8 fc; u8 br_locked; union { struct { u8 admin; u8 fc; u8 ap_enable; u8 __reserved[5]; union { struct { __le32 mode; __le32 speed; u8 inband; u8 duplex; u8 fec; u8 fec_supp; } reg_mode; struct { __le32 mode; __le32 speed; u8 fec; u8 fec_supp; u8 __pad[2]; } ap_modes[PRESTERA_AP_PORT_MAX]; }; } mac; struct { __le64 modes; __le32 mode; u8 admin; u8 adv_enable; u8 mdix; u8 __pad; } phy; } link; struct prestera_msg_port_cap_param cap; struct prestera_msg_port_flood_param flood_ext; struct prestera_msg_event_port_param link_evt; }; struct prestera_msg_port_attr_req { struct prestera_msg_cmd cmd; __le32 attr; __le32 port; __le32 dev; union prestera_msg_port_param param; }; struct prestera_msg_port_attr_resp { struct prestera_msg_ret ret; union prestera_msg_port_param param; }; struct prestera_msg_port_stats_resp { struct prestera_msg_ret ret; __le64 stats[PRESTERA_PORT_CNT_MAX]; }; struct prestera_msg_port_info_req { struct prestera_msg_cmd cmd; __le32 port; }; struct prestera_msg_port_info_resp { struct prestera_msg_ret ret; __le32 hw_id; __le32 dev_id; __le16 fp_id; u8 pad[2]; }; struct prestera_msg_vlan_req { struct prestera_msg_cmd cmd; __le32 port; __le32 dev; __le16 vid; u8 is_member; u8 is_tagged; }; struct prestera_msg_fdb_req { struct prestera_msg_cmd cmd; __le32 flush_mode; union { struct { __le32 port; __le32 dev; }; __le16 lag_id; } dest; __le16 vid; u8 dest_type; u8 dynamic; u8 mac[ETH_ALEN]; u8 __pad[2]; }; struct prestera_msg_bridge_req { struct prestera_msg_cmd cmd; __le32 port; __le32 dev; __le16 bridge; u8 pad[2]; }; struct prestera_msg_bridge_resp { struct prestera_msg_ret ret; __le16 bridge; u8 pad[2]; }; struct prestera_msg_vtcam_create_req { struct prestera_msg_cmd cmd; __le32 keymask[__PRESTERA_ACL_RULE_MATCH_TYPE_MAX]; u8 direction; u8 lookup; u8 pad[2]; }; struct prestera_msg_vtcam_destroy_req { struct prestera_msg_cmd cmd; __le32 vtcam_id; }; struct prestera_msg_vtcam_rule_del_req { struct prestera_msg_cmd cmd; __le32 vtcam_id; __le32 id; }; struct prestera_msg_vtcam_bind_req { struct prestera_msg_cmd cmd; union { struct { __le32 hw_id; __le32 dev_id; } port; __le32 index; }; __le32 vtcam_id; __le16 pcl_id; __le16 type; }; struct prestera_msg_vtcam_resp { struct prestera_msg_ret ret; __le32 vtcam_id; __le32 rule_id; }; struct prestera_msg_acl_action { __le32 id; __le32 __reserved; union { struct { __le32 index; } jump; struct { __le32 id; } police; struct { __le32 id; } count; __le32 reserved[6]; }; }; struct prestera_msg_vtcam_rule_add_req { struct prestera_msg_cmd cmd; __le32 key[__PRESTERA_ACL_RULE_MATCH_TYPE_MAX]; __le32 keymask[__PRESTERA_ACL_RULE_MATCH_TYPE_MAX]; __le32 vtcam_id; __le32 prio; __le32 n_act; struct prestera_msg_acl_action actions_msg[] __counted_by_le(n_act); }; struct prestera_msg_counter_req { struct prestera_msg_cmd cmd; __le32 client; __le32 block_id; __le32 num_counters; }; struct prestera_msg_counter_stats { __le64 packets; __le64 bytes; }; struct prestera_msg_counter_resp { struct prestera_msg_ret ret; __le32 block_id; __le32 offset; __le32 num_counters; __le32 done; struct prestera_msg_counter_stats stats[]; }; struct prestera_msg_span_req { struct prestera_msg_cmd cmd; __le32 port; __le32 dev; u8 id; u8 pad[3]; }; struct prestera_msg_span_resp { struct prestera_msg_ret ret; u8 id; u8 pad[3]; }; struct prestera_msg_stp_req { struct prestera_msg_cmd cmd; __le32 port; __le32 dev; __le16 vid; u8 state; u8 __pad; }; struct prestera_msg_rxtx_req { struct prestera_msg_cmd cmd; u8 use_sdma; u8 pad[3]; }; struct prestera_msg_rxtx_resp { struct prestera_msg_ret ret; __le32 map_addr; }; struct prestera_msg_iface { union { struct { __le32 dev; __le32 port; }; __le16 lag_id; }; __le16 vr_id; __le16 vid; u8 type; u8 __pad[3]; }; struct prestera_msg_ip_addr { union { __be32 ipv4; __be32 ipv6[4]; } u; u8 v; /* e.g. PRESTERA_IPV4 */ u8 __pad[3]; }; struct prestera_msg_nh { struct prestera_msg_iface oif; __le32 hw_id; u8 mac[ETH_ALEN]; u8 is_active; u8 pad; }; struct prestera_msg_rif_req { struct prestera_msg_cmd cmd; struct prestera_msg_iface iif; __le32 mtu; __le16 rif_id; __le16 __reserved; u8 mac[ETH_ALEN]; u8 __pad[2]; }; struct prestera_msg_rif_resp { struct prestera_msg_ret ret; __le16 rif_id; u8 __pad[2]; }; struct prestera_msg_lpm_req { struct prestera_msg_cmd cmd; struct prestera_msg_ip_addr dst; __le32 grp_id; __le32 dst_len; __le16 vr_id; u8 __pad[2]; }; struct prestera_msg_nh_req { struct prestera_msg_cmd cmd; struct prestera_msg_nh nh[PRESTERA_NHGR_SIZE_MAX]; __le32 size; __le32 grp_id; }; struct prestera_msg_nh_chunk_req { struct prestera_msg_cmd cmd; __le32 offset; }; struct prestera_msg_nh_chunk_resp { struct prestera_msg_ret ret; u8 hw_state[PRESTERA_MSG_CHUNK_SIZE]; }; struct prestera_msg_nh_grp_req { struct prestera_msg_cmd cmd; __le32 grp_id; __le32 size; }; struct prestera_msg_nh_grp_resp { struct prestera_msg_ret ret; __le32 grp_id; }; struct prestera_msg_vr_req { struct prestera_msg_cmd cmd; __le16 vr_id; u8 __pad[2]; }; struct prestera_msg_vr_resp { struct prestera_msg_ret ret; __le16 vr_id; u8 __pad[2]; }; struct prestera_msg_lag_req { struct prestera_msg_cmd cmd; __le32 port; __le32 dev; __le16 lag_id; u8 pad[2]; }; struct prestera_msg_cpu_code_counter_req { struct prestera_msg_cmd cmd; u8 counter_type; u8 code; u8 pad[2]; }; struct mvsw_msg_cpu_code_counter_ret { struct prestera_msg_ret ret; __le64 packet_count; }; struct prestera_msg_policer_req { struct prestera_msg_cmd cmd; __le32 id; union { struct { __le64 cir; __le32 cbs; } __packed sr_tcm; /* make sure always 12 bytes size */ __le32 reserved[6]; }; u8 mode; u8 type; u8 pad[2]; }; struct prestera_msg_policer_resp { struct prestera_msg_ret ret; __le32 id; }; struct prestera_msg_event { __le16 type; __le16 id; }; struct prestera_msg_event_port { struct prestera_msg_event id; __le32 port_id; struct prestera_msg_event_port_param param; }; union prestera_msg_event_fdb_param { u8 mac[ETH_ALEN]; }; struct prestera_msg_event_fdb { struct prestera_msg_event id; __le32 vid; union { __le32 port_id; __le16 lag_id; } dest; union prestera_msg_event_fdb_param param; u8 dest_type; }; struct prestera_msg_flood_domain_create_req { struct prestera_msg_cmd cmd; }; struct prestera_msg_flood_domain_create_resp { struct prestera_msg_ret ret; __le32 flood_domain_idx; }; struct prestera_msg_flood_domain_destroy_req { struct prestera_msg_cmd cmd; __le32 flood_domain_idx; }; struct prestera_msg_flood_domain_ports_reset_req { struct prestera_msg_cmd cmd; __le32 flood_domain_idx; }; struct prestera_msg_flood_domain_port { union { struct { __le32 port_num; __le32 dev_num; }; __le16 lag_id; }; __le16 vid; __le16 port_type; }; struct prestera_msg_flood_domain_ports_set_req { struct prestera_msg_cmd cmd; __le32 flood_domain_idx; __le32 ports_num; struct prestera_msg_flood_domain_port ports[] __counted_by_le(ports_num); }; struct prestera_msg_mdb_create_req { struct prestera_msg_cmd cmd; __le32 flood_domain_idx; __le16 vid; u8 mac[ETH_ALEN]; }; struct prestera_msg_mdb_destroy_req { struct prestera_msg_cmd cmd; __le32 flood_domain_idx; __le16 vid; u8 mac[ETH_ALEN]; }; static void prestera_hw_build_tests(void) { /* check requests */ BUILD_BUG_ON(sizeof(struct prestera_msg_common_req) != 4); BUILD_BUG_ON(sizeof(struct prestera_msg_switch_attr_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_port_attr_req) != 144); BUILD_BUG_ON(sizeof(struct prestera_msg_port_info_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_vlan_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_fdb_req) != 28); BUILD_BUG_ON(sizeof(struct prestera_msg_bridge_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_span_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_stp_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_rxtx_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_lag_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_cpu_code_counter_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_vtcam_create_req) != 84); BUILD_BUG_ON(sizeof(struct prestera_msg_vtcam_destroy_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_vtcam_rule_add_req) != 168); BUILD_BUG_ON(sizeof(struct prestera_msg_vtcam_rule_del_req) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_vtcam_bind_req) != 20); BUILD_BUG_ON(sizeof(struct prestera_msg_acl_action) != 32); BUILD_BUG_ON(sizeof(struct prestera_msg_counter_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_counter_stats) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_rif_req) != 36); BUILD_BUG_ON(sizeof(struct prestera_msg_vr_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_lpm_req) != 36); BUILD_BUG_ON(sizeof(struct prestera_msg_policer_req) != 36); BUILD_BUG_ON(sizeof(struct prestera_msg_flood_domain_create_req) != 4); BUILD_BUG_ON(sizeof(struct prestera_msg_flood_domain_destroy_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_flood_domain_ports_set_req) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_flood_domain_ports_reset_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_mdb_create_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_mdb_destroy_req) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_nh_req) != 124); BUILD_BUG_ON(sizeof(struct prestera_msg_nh_chunk_req) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_nh_grp_req) != 12); /* structure that are part of req/resp fw messages */ BUILD_BUG_ON(sizeof(struct prestera_msg_iface) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_ip_addr) != 20); BUILD_BUG_ON(sizeof(struct prestera_msg_flood_domain_port) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_nh) != 28); /* check responses */ BUILD_BUG_ON(sizeof(struct prestera_msg_common_resp) != 8); BUILD_BUG_ON(sizeof(struct prestera_msg_switch_init_resp) != 24); BUILD_BUG_ON(sizeof(struct prestera_msg_port_attr_resp) != 136); BUILD_BUG_ON(sizeof(struct prestera_msg_port_stats_resp) != 248); BUILD_BUG_ON(sizeof(struct prestera_msg_port_info_resp) != 20); BUILD_BUG_ON(sizeof(struct prestera_msg_bridge_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_span_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_rxtx_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_vtcam_resp) != 16); BUILD_BUG_ON(sizeof(struct prestera_msg_counter_resp) != 24); BUILD_BUG_ON(sizeof(struct prestera_msg_rif_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_vr_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_policer_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_flood_domain_create_resp) != 12); BUILD_BUG_ON(sizeof(struct prestera_msg_nh_chunk_resp) != 1032); BUILD_BUG_ON(sizeof(struct prestera_msg_nh_grp_resp) != 12); /* check events */ BUILD_BUG_ON(sizeof(struct prestera_msg_event_port) != 20); BUILD_BUG_ON(sizeof(struct prestera_msg_event_fdb) != 20); } static u8 prestera_hw_mdix_to_eth(u8 mode); static void prestera_hw_remote_fc_to_eth(u8 fc, bool *pause, bool *asym_pause); static int __prestera_cmd_ret(struct prestera_switch *sw, enum prestera_cmd_type_t type, struct prestera_msg_cmd *cmd, size_t clen, struct prestera_msg_ret *ret, size_t rlen, int waitms) { struct prestera_device *dev = sw->dev; int err; cmd->type = __cpu_to_le32(type); err = dev->send_req(dev, 0, cmd, clen, ret, rlen, waitms); if (err) return err; if (ret->cmd.type != __cpu_to_le32(PRESTERA_CMD_TYPE_ACK)) return -EBADE; if (ret->status != __cpu_to_le32(PRESTERA_CMD_ACK_OK)) return -EINVAL; return 0; } static int prestera_cmd_ret(struct prestera_switch *sw, enum prestera_cmd_type_t type, struct prestera_msg_cmd *cmd, size_t clen, struct prestera_msg_ret *ret, size_t rlen) { return __prestera_cmd_ret(sw, type, cmd, clen, ret, rlen, 0); } static int prestera_cmd_ret_wait(struct prestera_switch *sw, enum prestera_cmd_type_t type, struct prestera_msg_cmd *cmd, size_t clen, struct prestera_msg_ret *ret, size_t rlen, int waitms) { return __prestera_cmd_ret(sw, type, cmd, clen, ret, rlen, waitms); } static int prestera_cmd(struct prestera_switch *sw, enum prestera_cmd_type_t type, struct prestera_msg_cmd *cmd, size_t clen) { struct prestera_msg_common_resp resp; return prestera_cmd_ret(sw, type, cmd, clen, &resp.ret, sizeof(resp)); } static int prestera_fw_parse_port_evt(void *msg, struct prestera_event *evt) { struct prestera_msg_event_port *hw_evt; hw_evt = (struct prestera_msg_event_port *)msg; evt->port_evt.port_id = __le32_to_cpu(hw_evt->port_id); if (evt->id == PRESTERA_PORT_EVENT_MAC_STATE_CHANGED) { evt->port_evt.data.mac.oper = hw_evt->param.mac.oper; evt->port_evt.data.mac.mode = __le32_to_cpu(hw_evt->param.mac.mode); evt->port_evt.data.mac.speed = __le32_to_cpu(hw_evt->param.mac.speed); evt->port_evt.data.mac.duplex = hw_evt->param.mac.duplex; evt->port_evt.data.mac.fc = hw_evt->param.mac.fc; evt->port_evt.data.mac.fec = hw_evt->param.mac.fec; } else { return -EINVAL; } return 0; } static int prestera_fw_parse_fdb_evt(void *msg, struct prestera_event *evt) { struct prestera_msg_event_fdb *hw_evt = msg; switch (hw_evt->dest_type) { case PRESTERA_HW_FDB_ENTRY_TYPE_REG_PORT: evt->fdb_evt.type = PRESTERA_FDB_ENTRY_TYPE_REG_PORT; evt->fdb_evt.dest.port_id = __le32_to_cpu(hw_evt->dest.port_id); break; case PRESTERA_HW_FDB_ENTRY_TYPE_LAG: evt->fdb_evt.type = PRESTERA_FDB_ENTRY_TYPE_LAG; evt->fdb_evt.dest.lag_id = __le16_to_cpu(hw_evt->dest.lag_id); break; default: return -EINVAL; } evt->fdb_evt.vid = __le32_to_cpu(hw_evt->vid); ether_addr_copy(evt->fdb_evt.data.mac, hw_evt->param.mac); return 0; } static struct prestera_fw_evt_parser { int (*func)(void *msg, struct prestera_event *evt); } fw_event_parsers[PRESTERA_EVENT_TYPE_MAX] = { [PRESTERA_EVENT_TYPE_PORT] = { .func = prestera_fw_parse_port_evt }, [PRESTERA_EVENT_TYPE_FDB] = { .func = prestera_fw_parse_fdb_evt }, }; static struct prestera_fw_event_handler * __find_event_handler(const struct prestera_switch *sw, enum prestera_event_type type) { struct prestera_fw_event_handler *eh; list_for_each_entry_rcu(eh, &sw->event_handlers, list) { if (eh->type == type) return eh; } return NULL; } static int prestera_find_event_handler(const struct prestera_switch *sw, enum prestera_event_type type, struct prestera_fw_event_handler *eh) { struct prestera_fw_event_handler *tmp; int err = 0; rcu_read_lock(); tmp = __find_event_handler(sw, type); if (tmp) *eh = *tmp; else err = -ENOENT; rcu_read_unlock(); return err; } static int prestera_evt_recv(struct prestera_device *dev, void *buf, size_t size) { struct prestera_switch *sw = dev->priv; struct prestera_msg_event *msg = buf; struct prestera_fw_event_handler eh; struct prestera_event evt; u16 msg_type; int err; msg_type = __le16_to_cpu(msg->type); if (msg_type >= PRESTERA_EVENT_TYPE_MAX) return -EINVAL; if (!fw_event_parsers[msg_type].func) return -ENOENT; err = prestera_find_event_handler(sw, msg_type, &eh); if (err) return err; evt.id = __le16_to_cpu(msg->id); err = fw_event_parsers[msg_type].func(buf, &evt); if (err) return err; eh.func(sw, &evt, eh.arg); return 0; } static void prestera_pkt_recv(struct prestera_device *dev) { struct prestera_switch *sw = dev->priv; struct prestera_fw_event_handler eh; struct prestera_event ev; int err; ev.id = PRESTERA_RXTX_EVENT_RCV_PKT; err = prestera_find_event_handler(sw, PRESTERA_EVENT_TYPE_RXTX, &eh); if (err) return; eh.func(sw, &ev, eh.arg); } static u8 prestera_hw_mdix_to_eth(u8 mode) { switch (mode) { case PRESTERA_PORT_TP_MDI: return ETH_TP_MDI; case PRESTERA_PORT_TP_MDIX: return ETH_TP_MDI_X; case PRESTERA_PORT_TP_AUTO: return ETH_TP_MDI_AUTO; default: return ETH_TP_MDI_INVALID; } } static u8 prestera_hw_mdix_from_eth(u8 mode) { switch (mode) { case ETH_TP_MDI: return PRESTERA_PORT_TP_MDI; case ETH_TP_MDI_X: return PRESTERA_PORT_TP_MDIX; case ETH_TP_MDI_AUTO: return PRESTERA_PORT_TP_AUTO; default: return PRESTERA_PORT_TP_NA; } } int prestera_hw_port_info_get(const struct prestera_port *port, u32 *dev_id, u32 *hw_id, u16 *fp_id) { struct prestera_msg_port_info_req req = { .port = __cpu_to_le32(port->id), }; struct prestera_msg_port_info_resp resp; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_INFO_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *dev_id = __le32_to_cpu(resp.dev_id); *hw_id = __le32_to_cpu(resp.hw_id); *fp_id = __le16_to_cpu(resp.fp_id); return 0; } int prestera_hw_switch_mac_set(struct prestera_switch *sw, const char *mac) { struct prestera_msg_switch_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_SWITCH_ATTR_MAC), }; ether_addr_copy(req.param.mac, mac); return prestera_cmd(sw, PRESTERA_CMD_TYPE_SWITCH_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_switch_init(struct prestera_switch *sw) { struct prestera_msg_switch_init_resp resp; struct prestera_msg_common_req req; int err; INIT_LIST_HEAD(&sw->event_handlers); prestera_hw_build_tests(); err = prestera_cmd_ret_wait(sw, PRESTERA_CMD_TYPE_SWITCH_INIT, &req.cmd, sizeof(req), &resp.ret, sizeof(resp), PRESTERA_SWITCH_INIT_TIMEOUT_MS); if (err) return err; sw->dev->recv_msg = prestera_evt_recv; sw->dev->recv_pkt = prestera_pkt_recv; sw->port_count = __le32_to_cpu(resp.port_count); sw->mtu_min = PRESTERA_MIN_MTU; sw->mtu_max = __le32_to_cpu(resp.mtu_max); sw->id = resp.switch_id; sw->lag_member_max = resp.lag_member_max; sw->lag_max = resp.lag_max; sw->size_tbl_router_nexthop = __le32_to_cpu(resp.size_tbl_router_nexthop); return 0; } void prestera_hw_switch_fini(struct prestera_switch *sw) { WARN_ON(!list_empty(&sw->event_handlers)); } int prestera_hw_switch_ageing_set(struct prestera_switch *sw, u32 ageing_ms) { struct prestera_msg_switch_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_SWITCH_ATTR_AGEING), .param = { .ageing_timeout_ms = __cpu_to_le32(ageing_ms), }, }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_SWITCH_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_mac_mode_get(const struct prestera_port *port, u32 *mode, u32 *speed, u8 *duplex, u8 *fec) { struct prestera_msg_port_attr_resp resp; struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_MAC_MODE), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id) }; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; if (mode) *mode = __le32_to_cpu(resp.param.link_evt.mac.mode); if (speed) *speed = __le32_to_cpu(resp.param.link_evt.mac.speed); if (duplex) *duplex = resp.param.link_evt.mac.duplex; if (fec) *fec = resp.param.link_evt.mac.fec; return err; } int prestera_hw_port_mac_mode_set(const struct prestera_port *port, bool admin, u32 mode, u8 inband, u32 speed, u8 duplex, u8 fec) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_MAC_MODE), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .link = { .mac = { .admin = admin, .reg_mode.mode = __cpu_to_le32(mode), .reg_mode.inband = inband, .reg_mode.speed = __cpu_to_le32(speed), .reg_mode.duplex = duplex, .reg_mode.fec = fec } } } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_phy_mode_get(const struct prestera_port *port, u8 *mdix, u64 *lmode_bmap, bool *fc_pause, bool *fc_asym) { struct prestera_msg_port_attr_resp resp; struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_PHY_MODE), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id) }; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; if (mdix) *mdix = prestera_hw_mdix_to_eth(resp.param.link_evt.phy.mdix); if (lmode_bmap) *lmode_bmap = __le64_to_cpu(resp.param.link_evt.phy.lmode_bmap); if (fc_pause && fc_asym) prestera_hw_remote_fc_to_eth(resp.param.link_evt.phy.fc, fc_pause, fc_asym); return err; } int prestera_hw_port_phy_mode_set(const struct prestera_port *port, bool admin, bool adv, u32 mode, u64 modes, u8 mdix) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_PHY_MODE), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .link = { .phy = { .admin = admin, .adv_enable = adv ? 1 : 0, .mode = __cpu_to_le32(mode), .modes = __cpu_to_le64(modes), } } } }; req.param.link.phy.mdix = prestera_hw_mdix_from_eth(mdix); return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_mtu_set(const struct prestera_port *port, u32 mtu) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_MTU), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .mtu = __cpu_to_le32(mtu), } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_mac_set(const struct prestera_port *port, const char *mac) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_MAC), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; ether_addr_copy(req.param.mac, mac); return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_accept_frm_type(struct prestera_port *port, enum prestera_accept_frm_type type) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_ACCEPT_FRAME_TYPE), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .accept_frm_type = type, } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_cap_get(const struct prestera_port *port, struct prestera_port_caps *caps) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_CAPABILITY), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; struct prestera_msg_port_attr_resp resp; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; caps->supp_link_modes = __le64_to_cpu(resp.param.cap.link_mode); caps->transceiver = resp.param.cap.transceiver; caps->supp_fec = resp.param.cap.fec; caps->type = resp.param.cap.type; return err; } static void prestera_hw_remote_fc_to_eth(u8 fc, bool *pause, bool *asym_pause) { switch (fc) { case PRESTERA_FC_SYMMETRIC: *pause = true; *asym_pause = false; break; case PRESTERA_FC_ASYMMETRIC: *pause = false; *asym_pause = true; break; case PRESTERA_FC_SYMM_ASYMM: *pause = true; *asym_pause = true; break; default: *pause = false; *asym_pause = false; } } int prestera_hw_vtcam_create(struct prestera_switch *sw, u8 lookup, const u32 *keymask, u32 *vtcam_id, enum prestera_hw_vtcam_direction_t dir) { int err; struct prestera_msg_vtcam_resp resp; struct prestera_msg_vtcam_create_req req = { .lookup = lookup, .direction = dir, }; if (keymask) memcpy(req.keymask, keymask, sizeof(req.keymask)); else memset(req.keymask, 0, sizeof(req.keymask)); err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_VTCAM_CREATE, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *vtcam_id = __le32_to_cpu(resp.vtcam_id); return 0; } int prestera_hw_vtcam_destroy(struct prestera_switch *sw, u32 vtcam_id) { struct prestera_msg_vtcam_destroy_req req = { .vtcam_id = __cpu_to_le32(vtcam_id), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_VTCAM_DESTROY, &req.cmd, sizeof(req)); } static int prestera_acl_rule_add_put_action(struct prestera_msg_acl_action *action, struct prestera_acl_hw_action_info *info) { action->id = __cpu_to_le32(info->id); switch (info->id) { case PRESTERA_ACL_RULE_ACTION_ACCEPT: case PRESTERA_ACL_RULE_ACTION_DROP: case PRESTERA_ACL_RULE_ACTION_TRAP: /* just rule action id, no specific data */ break; case PRESTERA_ACL_RULE_ACTION_JUMP: action->jump.index = __cpu_to_le32(info->jump.index); break; case PRESTERA_ACL_RULE_ACTION_POLICE: action->police.id = __cpu_to_le32(info->police.id); break; case PRESTERA_ACL_RULE_ACTION_COUNT: action->count.id = __cpu_to_le32(info->count.id); break; default: return -EINVAL; } return 0; } int prestera_hw_vtcam_rule_add(struct prestera_switch *sw, u32 vtcam_id, u32 prio, void *key, void *keymask, struct prestera_acl_hw_action_info *act, u8 n_act, u32 *rule_id) { struct prestera_msg_vtcam_rule_add_req *req; struct prestera_msg_vtcam_resp resp; size_t size; int err; u8 i; size = struct_size(req, actions_msg, n_act); req = kzalloc(size, GFP_KERNEL); if (!req) return -ENOMEM; req->n_act = __cpu_to_le32(n_act); /* put acl matches into the message */ memcpy(req->key, key, sizeof(req->key)); memcpy(req->keymask, keymask, sizeof(req->keymask)); /* put acl actions into the message */ for (i = 0; i < n_act; i++) { err = prestera_acl_rule_add_put_action(&req->actions_msg[i], &act[i]); if (err) goto free_buff; } req->vtcam_id = __cpu_to_le32(vtcam_id); req->prio = __cpu_to_le32(prio); err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_VTCAM_RULE_ADD, &req->cmd, size, &resp.ret, sizeof(resp)); if (err) goto free_buff; *rule_id = __le32_to_cpu(resp.rule_id); free_buff: kfree(req); return err; } int prestera_hw_vtcam_rule_del(struct prestera_switch *sw, u32 vtcam_id, u32 rule_id) { struct prestera_msg_vtcam_rule_del_req req = { .vtcam_id = __cpu_to_le32(vtcam_id), .id = __cpu_to_le32(rule_id) }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_VTCAM_RULE_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_vtcam_iface_bind(struct prestera_switch *sw, struct prestera_acl_iface *iface, u32 vtcam_id, u16 pcl_id) { struct prestera_msg_vtcam_bind_req req = { .vtcam_id = __cpu_to_le32(vtcam_id), .type = __cpu_to_le16(iface->type), .pcl_id = __cpu_to_le16(pcl_id) }; if (iface->type == PRESTERA_ACL_IFACE_TYPE_PORT) { req.port.dev_id = __cpu_to_le32(iface->port->dev_id); req.port.hw_id = __cpu_to_le32(iface->port->hw_id); } else { req.index = __cpu_to_le32(iface->index); } return prestera_cmd(sw, PRESTERA_CMD_TYPE_VTCAM_IFACE_BIND, &req.cmd, sizeof(req)); } int prestera_hw_vtcam_iface_unbind(struct prestera_switch *sw, struct prestera_acl_iface *iface, u32 vtcam_id) { struct prestera_msg_vtcam_bind_req req = { .vtcam_id = __cpu_to_le32(vtcam_id), .type = __cpu_to_le16(iface->type) }; if (iface->type == PRESTERA_ACL_IFACE_TYPE_PORT) { req.port.dev_id = __cpu_to_le32(iface->port->dev_id); req.port.hw_id = __cpu_to_le32(iface->port->hw_id); } else { req.index = __cpu_to_le32(iface->index); } return prestera_cmd(sw, PRESTERA_CMD_TYPE_VTCAM_IFACE_UNBIND, &req.cmd, sizeof(req)); } int prestera_hw_span_get(const struct prestera_port *port, u8 *span_id) { struct prestera_msg_span_resp resp; struct prestera_msg_span_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_SPAN_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *span_id = resp.id; return 0; } int prestera_hw_span_bind(const struct prestera_port *port, u8 span_id, bool ingress) { struct prestera_msg_span_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .id = span_id, }; enum prestera_cmd_type_t cmd_type; if (ingress) cmd_type = PRESTERA_CMD_TYPE_SPAN_INGRESS_BIND; else cmd_type = PRESTERA_CMD_TYPE_SPAN_EGRESS_BIND; return prestera_cmd(port->sw, cmd_type, &req.cmd, sizeof(req)); } int prestera_hw_span_unbind(const struct prestera_port *port, bool ingress) { struct prestera_msg_span_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; enum prestera_cmd_type_t cmd_type; if (ingress) cmd_type = PRESTERA_CMD_TYPE_SPAN_INGRESS_UNBIND; else cmd_type = PRESTERA_CMD_TYPE_SPAN_EGRESS_UNBIND; return prestera_cmd(port->sw, cmd_type, &req.cmd, sizeof(req)); } int prestera_hw_span_release(struct prestera_switch *sw, u8 span_id) { struct prestera_msg_span_req req = { .id = span_id }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_SPAN_RELEASE, &req.cmd, sizeof(req)); } int prestera_hw_port_type_get(const struct prestera_port *port, u8 *type) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_TYPE), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; struct prestera_msg_port_attr_resp resp; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *type = resp.param.type; return 0; } int prestera_hw_port_speed_get(const struct prestera_port *port, u32 *speed) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_SPEED), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; struct prestera_msg_port_attr_resp resp; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *speed = __le32_to_cpu(resp.param.speed); return 0; } int prestera_hw_port_autoneg_restart(struct prestera_port *port) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_PHY_AUTONEG_RESTART), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_stats_get(const struct prestera_port *port, struct prestera_port_stats *st) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_STATS), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; struct prestera_msg_port_stats_resp resp; __le64 *hw = resp.stats; int err; err = prestera_cmd_ret(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; st->good_octets_received = __le64_to_cpu(hw[PRESTERA_PORT_GOOD_OCTETS_RCV_CNT]); st->bad_octets_received = __le64_to_cpu(hw[PRESTERA_PORT_BAD_OCTETS_RCV_CNT]); st->mac_trans_error = __le64_to_cpu(hw[PRESTERA_PORT_MAC_TRANSMIT_ERR_CNT]); st->broadcast_frames_received = __le64_to_cpu(hw[PRESTERA_PORT_BRDC_PKTS_RCV_CNT]); st->multicast_frames_received = __le64_to_cpu(hw[PRESTERA_PORT_MC_PKTS_RCV_CNT]); st->frames_64_octets = __le64_to_cpu(hw[PRESTERA_PORT_PKTS_64L_CNT]); st->frames_65_to_127_octets = __le64_to_cpu(hw[PRESTERA_PORT_PKTS_65TO127L_CNT]); st->frames_128_to_255_octets = __le64_to_cpu(hw[PRESTERA_PORT_PKTS_128TO255L_CNT]); st->frames_256_to_511_octets = __le64_to_cpu(hw[PRESTERA_PORT_PKTS_256TO511L_CNT]); st->frames_512_to_1023_octets = __le64_to_cpu(hw[PRESTERA_PORT_PKTS_512TO1023L_CNT]); st->frames_1024_to_max_octets = __le64_to_cpu(hw[PRESTERA_PORT_PKTS_1024TOMAXL_CNT]); st->excessive_collision = __le64_to_cpu(hw[PRESTERA_PORT_EXCESSIVE_COLLISIONS_CNT]); st->multicast_frames_sent = __le64_to_cpu(hw[PRESTERA_PORT_MC_PKTS_SENT_CNT]); st->broadcast_frames_sent = __le64_to_cpu(hw[PRESTERA_PORT_BRDC_PKTS_SENT_CNT]); st->fc_sent = __le64_to_cpu(hw[PRESTERA_PORT_FC_SENT_CNT]); st->fc_received = __le64_to_cpu(hw[PRESTERA_PORT_GOOD_FC_RCV_CNT]); st->buffer_overrun = __le64_to_cpu(hw[PRESTERA_PORT_DROP_EVENTS_CNT]); st->undersize = __le64_to_cpu(hw[PRESTERA_PORT_UNDERSIZE_PKTS_CNT]); st->fragments = __le64_to_cpu(hw[PRESTERA_PORT_FRAGMENTS_PKTS_CNT]); st->oversize = __le64_to_cpu(hw[PRESTERA_PORT_OVERSIZE_PKTS_CNT]); st->jabber = __le64_to_cpu(hw[PRESTERA_PORT_JABBER_PKTS_CNT]); st->rx_error_frame_received = __le64_to_cpu(hw[PRESTERA_PORT_MAC_RCV_ERROR_CNT]); st->bad_crc = __le64_to_cpu(hw[PRESTERA_PORT_BAD_CRC_CNT]); st->collisions = __le64_to_cpu(hw[PRESTERA_PORT_COLLISIONS_CNT]); st->late_collision = __le64_to_cpu(hw[PRESTERA_PORT_LATE_COLLISIONS_CNT]); st->unicast_frames_received = __le64_to_cpu(hw[PRESTERA_PORT_GOOD_UC_PKTS_RCV_CNT]); st->unicast_frames_sent = __le64_to_cpu(hw[PRESTERA_PORT_GOOD_UC_PKTS_SENT_CNT]); st->sent_multiple = __le64_to_cpu(hw[PRESTERA_PORT_MULTIPLE_PKTS_SENT_CNT]); st->sent_deferred = __le64_to_cpu(hw[PRESTERA_PORT_DEFERRED_PKTS_SENT_CNT]); st->good_octets_sent = __le64_to_cpu(hw[PRESTERA_PORT_GOOD_OCTETS_SENT_CNT]); return 0; } int prestera_hw_port_learning_set(struct prestera_port *port, bool enable) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_LEARNING), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .learning = enable, } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_uc_flood_set(const struct prestera_port *port, bool flood) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_FLOOD), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .flood_ext = { .type = PRESTERA_PORT_FLOOD_TYPE_UC, .enable = flood, } } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_mc_flood_set(const struct prestera_port *port, bool flood) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_FLOOD), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .flood_ext = { .type = PRESTERA_PORT_FLOOD_TYPE_MC, .enable = flood, } } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_port_br_locked_set(const struct prestera_port *port, bool br_locked) { struct prestera_msg_port_attr_req req = { .attr = __cpu_to_le32(PRESTERA_CMD_PORT_ATTR_LOCKED), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .param = { .br_locked = br_locked, } }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_PORT_ATTR_SET, &req.cmd, sizeof(req)); } int prestera_hw_vlan_create(struct prestera_switch *sw, u16 vid) { struct prestera_msg_vlan_req req = { .vid = __cpu_to_le16(vid), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_VLAN_CREATE, &req.cmd, sizeof(req)); } int prestera_hw_vlan_delete(struct prestera_switch *sw, u16 vid) { struct prestera_msg_vlan_req req = { .vid = __cpu_to_le16(vid), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_VLAN_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_vlan_port_set(struct prestera_port *port, u16 vid, bool is_member, bool untagged) { struct prestera_msg_vlan_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .vid = __cpu_to_le16(vid), .is_member = is_member, .is_tagged = !untagged, }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_VLAN_PORT_SET, &req.cmd, sizeof(req)); } int prestera_hw_vlan_port_vid_set(struct prestera_port *port, u16 vid) { struct prestera_msg_vlan_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .vid = __cpu_to_le16(vid), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_VLAN_PVID_SET, &req.cmd, sizeof(req)); } int prestera_hw_vlan_port_stp_set(struct prestera_port *port, u16 vid, u8 state) { struct prestera_msg_stp_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .vid = __cpu_to_le16(vid), .state = state, }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_STP_PORT_SET, &req.cmd, sizeof(req)); } int prestera_hw_fdb_add(struct prestera_port *port, const unsigned char *mac, u16 vid, bool dynamic) { struct prestera_msg_fdb_req req = { .dest = { .dev = __cpu_to_le32(port->dev_id), .port = __cpu_to_le32(port->hw_id), }, .vid = __cpu_to_le16(vid), .dynamic = dynamic, }; ether_addr_copy(req.mac, mac); return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_FDB_ADD, &req.cmd, sizeof(req)); } int prestera_hw_fdb_del(struct prestera_port *port, const unsigned char *mac, u16 vid) { struct prestera_msg_fdb_req req = { .dest = { .dev = __cpu_to_le32(port->dev_id), .port = __cpu_to_le32(port->hw_id), }, .vid = __cpu_to_le16(vid), }; ether_addr_copy(req.mac, mac); return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_FDB_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_lag_fdb_add(struct prestera_switch *sw, u16 lag_id, const unsigned char *mac, u16 vid, bool dynamic) { struct prestera_msg_fdb_req req = { .dest_type = PRESTERA_HW_FDB_ENTRY_TYPE_LAG, .dest = { .lag_id = __cpu_to_le16(lag_id), }, .vid = __cpu_to_le16(vid), .dynamic = dynamic, }; ether_addr_copy(req.mac, mac); return prestera_cmd(sw, PRESTERA_CMD_TYPE_FDB_ADD, &req.cmd, sizeof(req)); } int prestera_hw_lag_fdb_del(struct prestera_switch *sw, u16 lag_id, const unsigned char *mac, u16 vid) { struct prestera_msg_fdb_req req = { .dest_type = PRESTERA_HW_FDB_ENTRY_TYPE_LAG, .dest = { .lag_id = __cpu_to_le16(lag_id), }, .vid = __cpu_to_le16(vid), }; ether_addr_copy(req.mac, mac); return prestera_cmd(sw, PRESTERA_CMD_TYPE_FDB_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_fdb_flush_port(struct prestera_port *port, u32 mode) { struct prestera_msg_fdb_req req = { .dest = { .dev = __cpu_to_le32(port->dev_id), .port = __cpu_to_le32(port->hw_id), }, .flush_mode = __cpu_to_le32(mode), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_FDB_FLUSH_PORT, &req.cmd, sizeof(req)); } int prestera_hw_fdb_flush_vlan(struct prestera_switch *sw, u16 vid, u32 mode) { struct prestera_msg_fdb_req req = { .vid = __cpu_to_le16(vid), .flush_mode = __cpu_to_le32(mode), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_FDB_FLUSH_VLAN, &req.cmd, sizeof(req)); } int prestera_hw_fdb_flush_port_vlan(struct prestera_port *port, u16 vid, u32 mode) { struct prestera_msg_fdb_req req = { .dest = { .dev = __cpu_to_le32(port->dev_id), .port = __cpu_to_le32(port->hw_id), }, .vid = __cpu_to_le16(vid), .flush_mode = __cpu_to_le32(mode), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_FDB_FLUSH_PORT_VLAN, &req.cmd, sizeof(req)); } int prestera_hw_fdb_flush_lag(struct prestera_switch *sw, u16 lag_id, u32 mode) { struct prestera_msg_fdb_req req = { .dest_type = PRESTERA_HW_FDB_ENTRY_TYPE_LAG, .dest = { .lag_id = __cpu_to_le16(lag_id), }, .flush_mode = __cpu_to_le32(mode), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_FDB_FLUSH_PORT, &req.cmd, sizeof(req)); } int prestera_hw_fdb_flush_lag_vlan(struct prestera_switch *sw, u16 lag_id, u16 vid, u32 mode) { struct prestera_msg_fdb_req req = { .dest_type = PRESTERA_HW_FDB_ENTRY_TYPE_LAG, .dest = { .lag_id = __cpu_to_le16(lag_id), }, .vid = __cpu_to_le16(vid), .flush_mode = __cpu_to_le32(mode), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_FDB_FLUSH_PORT_VLAN, &req.cmd, sizeof(req)); } int prestera_hw_bridge_create(struct prestera_switch *sw, u16 *bridge_id) { struct prestera_msg_bridge_resp resp; struct prestera_msg_bridge_req req; int err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_BRIDGE_CREATE, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *bridge_id = __le16_to_cpu(resp.bridge); return 0; } int prestera_hw_bridge_delete(struct prestera_switch *sw, u16 bridge_id) { struct prestera_msg_bridge_req req = { .bridge = __cpu_to_le16(bridge_id), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_BRIDGE_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_bridge_port_add(struct prestera_port *port, u16 bridge_id) { struct prestera_msg_bridge_req req = { .bridge = __cpu_to_le16(bridge_id), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_BRIDGE_PORT_ADD, &req.cmd, sizeof(req)); } int prestera_hw_bridge_port_delete(struct prestera_port *port, u16 bridge_id) { struct prestera_msg_bridge_req req = { .bridge = __cpu_to_le16(bridge_id), .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_BRIDGE_PORT_DELETE, &req.cmd, sizeof(req)); } static int prestera_iface_to_msg(struct prestera_iface *iface, struct prestera_msg_iface *msg_if) { switch (iface->type) { case PRESTERA_IF_PORT_E: case PRESTERA_IF_VID_E: msg_if->port = __cpu_to_le32(iface->dev_port.port_num); msg_if->dev = __cpu_to_le32(iface->dev_port.hw_dev_num); break; case PRESTERA_IF_LAG_E: msg_if->lag_id = __cpu_to_le16(iface->lag_id); break; default: return -EOPNOTSUPP; } msg_if->vr_id = __cpu_to_le16(iface->vr_id); msg_if->vid = __cpu_to_le16(iface->vlan_id); msg_if->type = iface->type; return 0; } int prestera_hw_rif_create(struct prestera_switch *sw, struct prestera_iface *iif, u8 *mac, u16 *rif_id) { struct prestera_msg_rif_resp resp; struct prestera_msg_rif_req req; int err; memcpy(req.mac, mac, ETH_ALEN); err = prestera_iface_to_msg(iif, &req.iif); if (err) return err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_ROUTER_RIF_CREATE, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *rif_id = __le16_to_cpu(resp.rif_id); return err; } int prestera_hw_rif_delete(struct prestera_switch *sw, u16 rif_id, struct prestera_iface *iif) { struct prestera_msg_rif_req req = { .rif_id = __cpu_to_le16(rif_id), }; int err; err = prestera_iface_to_msg(iif, &req.iif); if (err) return err; return prestera_cmd(sw, PRESTERA_CMD_TYPE_ROUTER_RIF_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_vr_create(struct prestera_switch *sw, u16 *vr_id) { struct prestera_msg_vr_resp resp; struct prestera_msg_vr_req req; int err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_ROUTER_VR_CREATE, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *vr_id = __le16_to_cpu(resp.vr_id); return err; } int prestera_hw_vr_delete(struct prestera_switch *sw, u16 vr_id) { struct prestera_msg_vr_req req = { .vr_id = __cpu_to_le16(vr_id), }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_ROUTER_VR_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_lpm_add(struct prestera_switch *sw, u16 vr_id, __be32 dst, u32 dst_len, u32 grp_id) { struct prestera_msg_lpm_req req = { .dst_len = __cpu_to_le32(dst_len), .vr_id = __cpu_to_le16(vr_id), .grp_id = __cpu_to_le32(grp_id), .dst.u.ipv4 = dst }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_ROUTER_LPM_ADD, &req.cmd, sizeof(req)); } int prestera_hw_lpm_del(struct prestera_switch *sw, u16 vr_id, __be32 dst, u32 dst_len) { struct prestera_msg_lpm_req req = { .dst_len = __cpu_to_le32(dst_len), .vr_id = __cpu_to_le16(vr_id), .dst.u.ipv4 = dst }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_ROUTER_LPM_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_nh_entries_set(struct prestera_switch *sw, int count, struct prestera_neigh_info *nhs, u32 grp_id) { struct prestera_msg_nh_req req = { .size = __cpu_to_le32((u32)count), .grp_id = __cpu_to_le32(grp_id) }; int i, err; for (i = 0; i < count; i++) { req.nh[i].is_active = nhs[i].connected; memcpy(&req.nh[i].mac, nhs[i].ha, ETH_ALEN); err = prestera_iface_to_msg(&nhs[i].iface, &req.nh[i].oif); if (err) return err; } return prestera_cmd(sw, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_SET, &req.cmd, sizeof(req)); } int prestera_hw_nhgrp_blk_get(struct prestera_switch *sw, u8 *hw_state, u32 buf_size /* Buffer in bytes */) { static struct prestera_msg_nh_chunk_resp resp; struct prestera_msg_nh_chunk_req req; u32 buf_offset; int err; memset(&hw_state[0], 0, buf_size); buf_offset = 0; while (1) { if (buf_offset >= buf_size) break; memset(&req, 0, sizeof(req)); req.offset = __cpu_to_le32(buf_offset * 8); /* 8 bits in u8 */ err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_BLK_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; memcpy(&hw_state[buf_offset], &resp.hw_state[0], buf_offset + PRESTERA_MSG_CHUNK_SIZE > buf_size ? buf_size - buf_offset : PRESTERA_MSG_CHUNK_SIZE); buf_offset += PRESTERA_MSG_CHUNK_SIZE; } return 0; } int prestera_hw_nh_group_create(struct prestera_switch *sw, u16 nh_count, u32 *grp_id) { struct prestera_msg_nh_grp_req req = { .size = __cpu_to_le32((u32)nh_count) }; struct prestera_msg_nh_grp_resp resp; int err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_ADD, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *grp_id = __le32_to_cpu(resp.grp_id); return err; } int prestera_hw_nh_group_delete(struct prestera_switch *sw, u16 nh_count, u32 grp_id) { struct prestera_msg_nh_grp_req req = { .grp_id = __cpu_to_le32(grp_id), .size = __cpu_to_le32(nh_count) }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_ROUTER_NH_GRP_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_rxtx_init(struct prestera_switch *sw, struct prestera_rxtx_params *params) { struct prestera_msg_rxtx_resp resp; struct prestera_msg_rxtx_req req; int err; req.use_sdma = params->use_sdma; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_RXTX_INIT, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; params->map_addr = __le32_to_cpu(resp.map_addr); return 0; } int prestera_hw_lag_member_add(struct prestera_port *port, u16 lag_id) { struct prestera_msg_lag_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .lag_id = __cpu_to_le16(lag_id), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_LAG_MEMBER_ADD, &req.cmd, sizeof(req)); } int prestera_hw_lag_member_del(struct prestera_port *port, u16 lag_id) { struct prestera_msg_lag_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .lag_id = __cpu_to_le16(lag_id), }; return prestera_cmd(port->sw, PRESTERA_CMD_TYPE_LAG_MEMBER_DELETE, &req.cmd, sizeof(req)); } int prestera_hw_lag_member_enable(struct prestera_port *port, u16 lag_id, bool enable) { struct prestera_msg_lag_req req = { .port = __cpu_to_le32(port->hw_id), .dev = __cpu_to_le32(port->dev_id), .lag_id = __cpu_to_le16(lag_id), }; u32 cmd; cmd = enable ? PRESTERA_CMD_TYPE_LAG_MEMBER_ENABLE : PRESTERA_CMD_TYPE_LAG_MEMBER_DISABLE; return prestera_cmd(port->sw, cmd, &req.cmd, sizeof(req)); } int prestera_hw_cpu_code_counters_get(struct prestera_switch *sw, u8 code, enum prestera_hw_cpu_code_cnt_t counter_type, u64 *packet_count) { struct prestera_msg_cpu_code_counter_req req = { .counter_type = counter_type, .code = code, }; struct mvsw_msg_cpu_code_counter_ret resp; int err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_CPU_CODE_COUNTERS_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *packet_count = __le64_to_cpu(resp.packet_count); return 0; } int prestera_hw_event_handler_register(struct prestera_switch *sw, enum prestera_event_type type, prestera_event_cb_t fn, void *arg) { struct prestera_fw_event_handler *eh; eh = __find_event_handler(sw, type); if (eh) return -EEXIST; eh = kmalloc(sizeof(*eh), GFP_KERNEL); if (!eh) return -ENOMEM; eh->type = type; eh->func = fn; eh->arg = arg; INIT_LIST_HEAD(&eh->list); list_add_rcu(&eh->list, &sw->event_handlers); return 0; } void prestera_hw_event_handler_unregister(struct prestera_switch *sw, enum prestera_event_type type, prestera_event_cb_t fn) { struct prestera_fw_event_handler *eh; eh = __find_event_handler(sw, type); if (!eh) return; list_del_rcu(&eh->list); kfree_rcu(eh, rcu); } int prestera_hw_counter_trigger(struct prestera_switch *sw, u32 block_id) { struct prestera_msg_counter_req req = { .block_id = __cpu_to_le32(block_id) }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_COUNTER_TRIGGER, &req.cmd, sizeof(req)); } int prestera_hw_counter_abort(struct prestera_switch *sw) { struct prestera_msg_counter_req req; return prestera_cmd(sw, PRESTERA_CMD_TYPE_COUNTER_ABORT, &req.cmd, sizeof(req)); } int prestera_hw_counters_get(struct prestera_switch *sw, u32 idx, u32 *len, bool *done, struct prestera_counter_stats *stats) { struct prestera_msg_counter_resp *resp; struct prestera_msg_counter_req req = { .block_id = __cpu_to_le32(idx), .num_counters = __cpu_to_le32(*len), }; size_t size = struct_size(resp, stats, *len); int err, i; resp = kmalloc(size, GFP_KERNEL); if (!resp) return -ENOMEM; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_COUNTER_GET, &req.cmd, sizeof(req), &resp->ret, size); if (err) goto free_buff; for (i = 0; i < __le32_to_cpu(resp->num_counters); i++) { stats[i].packets += __le64_to_cpu(resp->stats[i].packets); stats[i].bytes += __le64_to_cpu(resp->stats[i].bytes); } *len = __le32_to_cpu(resp->num_counters); *done = __le32_to_cpu(resp->done); free_buff: kfree(resp); return err; } int prestera_hw_counter_block_get(struct prestera_switch *sw, u32 client, u32 *block_id, u32 *offset, u32 *num_counters) { struct prestera_msg_counter_resp resp; struct prestera_msg_counter_req req = { .client = __cpu_to_le32(client) }; int err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_COUNTER_BLOCK_GET, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *block_id = __le32_to_cpu(resp.block_id); *offset = __le32_to_cpu(resp.offset); *num_counters = __le32_to_cpu(resp.num_counters); return 0; } int prestera_hw_counter_block_release(struct prestera_switch *sw, u32 block_id) { struct prestera_msg_counter_req req = { .block_id = __cpu_to_le32(block_id) }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_COUNTER_BLOCK_RELEASE, &req.cmd, sizeof(req)); } int prestera_hw_counter_clear(struct prestera_switch *sw, u32 block_id, u32 counter_id) { struct prestera_msg_counter_req req = { .block_id = __cpu_to_le32(block_id), .num_counters = __cpu_to_le32(counter_id) }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_COUNTER_CLEAR, &req.cmd, sizeof(req)); } int prestera_hw_policer_create(struct prestera_switch *sw, u8 type, u32 *policer_id) { struct prestera_msg_policer_resp resp; struct prestera_msg_policer_req req = { .type = type }; int err; err = prestera_cmd_ret(sw, PRESTERA_CMD_TYPE_POLICER_CREATE, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; *policer_id = __le32_to_cpu(resp.id); return 0; } int prestera_hw_policer_release(struct prestera_switch *sw, u32 policer_id) { struct prestera_msg_policer_req req = { .id = __cpu_to_le32(policer_id) }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_POLICER_RELEASE, &req.cmd, sizeof(req)); } int prestera_hw_policer_sr_tcm_set(struct prestera_switch *sw, u32 policer_id, u64 cir, u32 cbs) { struct prestera_msg_policer_req req = { .mode = PRESTERA_POLICER_MODE_SR_TCM, .id = __cpu_to_le32(policer_id), .sr_tcm = { .cir = __cpu_to_le64(cir), .cbs = __cpu_to_le32(cbs) } }; return prestera_cmd(sw, PRESTERA_CMD_TYPE_POLICER_SET, &req.cmd, sizeof(req)); } int prestera_hw_flood_domain_create(struct prestera_flood_domain *domain) { struct prestera_msg_flood_domain_create_resp resp; struct prestera_msg_flood_domain_create_req req; int err; err = prestera_cmd_ret(domain->sw, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_CREATE, &req.cmd, sizeof(req), &resp.ret, sizeof(resp)); if (err) return err; domain->idx = __le32_to_cpu(resp.flood_domain_idx); return 0; } int prestera_hw_flood_domain_destroy(struct prestera_flood_domain *domain) { struct prestera_msg_flood_domain_destroy_req req = { .flood_domain_idx = __cpu_to_le32(domain->idx), }; return prestera_cmd(domain->sw, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_DESTROY, &req.cmd, sizeof(req)); } int prestera_hw_flood_domain_ports_set(struct prestera_flood_domain *domain) { struct prestera_flood_domain_port *flood_domain_port; struct prestera_msg_flood_domain_ports_set_req *req; struct prestera_switch *sw = domain->sw; struct prestera_port *port; u32 ports_num = 0; size_t buf_size; u16 lag_id; int err; int i = 0; list_for_each_entry(flood_domain_port, &domain->flood_domain_port_list, flood_domain_port_node) ports_num++; if (!ports_num) return -EINVAL; buf_size = struct_size(req, ports, ports_num); req = kmalloc(buf_size, GFP_KERNEL); if (!req) return -ENOMEM; req->flood_domain_idx = __cpu_to_le32(domain->idx); req->ports_num = __cpu_to_le32(ports_num); list_for_each_entry(flood_domain_port, &domain->flood_domain_port_list, flood_domain_port_node) { if (netif_is_lag_master(flood_domain_port->dev)) { if (prestera_lag_id(sw, flood_domain_port->dev, &lag_id)) { kfree(req); return -EINVAL; } req->ports[i].port_type = __cpu_to_le16(PRESTERA_HW_FLOOD_DOMAIN_PORT_TYPE_LAG); req->ports[i].lag_id = __cpu_to_le16(lag_id); } else { port = prestera_port_dev_lower_find(flood_domain_port->dev); req->ports[i].port_type = __cpu_to_le16(PRESTERA_HW_FDB_ENTRY_TYPE_REG_PORT); req->ports[i].dev_num = __cpu_to_le32(port->dev_id); req->ports[i].port_num = __cpu_to_le32(port->hw_id); } req->ports[i].vid = __cpu_to_le16(flood_domain_port->vid); i++; } err = prestera_cmd(sw, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_PORTS_SET, &req->cmd, buf_size); kfree(req); return err; } int prestera_hw_flood_domain_ports_reset(struct prestera_flood_domain *domain) { struct prestera_msg_flood_domain_ports_reset_req req = { .flood_domain_idx = __cpu_to_le32(domain->idx), }; return prestera_cmd(domain->sw, PRESTERA_CMD_TYPE_FLOOD_DOMAIN_PORTS_RESET, &req.cmd, sizeof(req)); } int prestera_hw_mdb_create(struct prestera_mdb_entry *mdb) { struct prestera_msg_mdb_create_req req = { .flood_domain_idx = __cpu_to_le32(mdb->flood_domain->idx), .vid = __cpu_to_le16(mdb->vid), }; memcpy(req.mac, mdb->addr, ETH_ALEN); return prestera_cmd(mdb->sw, PRESTERA_CMD_TYPE_MDB_CREATE, &req.cmd, sizeof(req)); } int prestera_hw_mdb_destroy(struct prestera_mdb_entry *mdb) { struct prestera_msg_mdb_destroy_req req = { .flood_domain_idx = __cpu_to_le32(mdb->flood_domain->idx), .vid = __cpu_to_le16(mdb->vid), }; memcpy(req.mac, mdb->addr, ETH_ALEN); return prestera_cmd(mdb->sw, PRESTERA_CMD_TYPE_MDB_DESTROY, &req.cmd, sizeof(req)); }
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) BitBox Ltd 2010 */ #include <linux/module.h> #include <linux/irq.h> #include <linux/platform_data/asoc-imx-ssi.h> #include "irq-common.h" int mxc_set_irq_fiq(unsigned int irq, unsigned int type) { struct irq_chip_generic *gc; struct mxc_extra_irq *exirq; int ret; ret = -ENOSYS; gc = irq_get_chip_data(irq); if (gc && gc->private) { exirq = gc->private; if (exirq->set_irq_fiq) { struct irq_data *d = irq_get_irq_data(irq); ret = exirq->set_irq_fiq(irqd_to_hwirq(d), type); } } return ret; } EXPORT_SYMBOL(mxc_set_irq_fiq);
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2024 Meta Platforms, Inc. and affiliates. * Copyright (c) 2024 David Vernet <[email protected]> * Copyright (c) 2024 Tejun Heo <[email protected]> */ #include <stdio.h> #include <unistd.h> #include <signal.h> #include <libgen.h> #include <bpf/bpf.h> #include "scx_test.h" const char help_fmt[] = "The runner for sched_ext tests.\n" "\n" "The runner is statically linked against all testcases, and runs them all serially.\n" "It's required for the testcases to be serial, as only a single host-wide sched_ext\n" "scheduler may be loaded at any given time." "\n" "Usage: %s [-t TEST] [-h]\n" "\n" " -t TEST Only run tests whose name includes this string\n" " -s Include print output for skipped tests\n" " -q Don't print the test descriptions during run\n" " -h Display this help and exit\n"; static volatile int exit_req; static bool quiet, print_skipped; #define MAX_SCX_TESTS 2048 static struct scx_test __scx_tests[MAX_SCX_TESTS]; static unsigned __scx_num_tests = 0; static void sigint_handler(int simple) { exit_req = 1; } static void print_test_preamble(const struct scx_test *test, bool quiet) { printf("===== START =====\n"); printf("TEST: %s\n", test->name); if (!quiet) printf("DESCRIPTION: %s\n", test->description); printf("OUTPUT:\n"); } static const char *status_to_result(enum scx_test_status status) { switch (status) { case SCX_TEST_PASS: case SCX_TEST_SKIP: return "ok"; case SCX_TEST_FAIL: return "not ok"; default: return "<UNKNOWN>"; } } static void print_test_result(const struct scx_test *test, enum scx_test_status status, unsigned int testnum) { const char *result = status_to_result(status); const char *directive = status == SCX_TEST_SKIP ? "SKIP " : ""; printf("%s %u %s # %s\n", result, testnum, test->name, directive); printf("===== END =====\n"); } static bool should_skip_test(const struct scx_test *test, const char * filter) { return !strstr(test->name, filter); } static enum scx_test_status run_test(const struct scx_test *test) { enum scx_test_status status; void *context = NULL; if (test->setup) { status = test->setup(&context); if (status != SCX_TEST_PASS) return status; } status = test->run(context); if (test->cleanup) test->cleanup(context); return status; } static bool test_valid(const struct scx_test *test) { if (!test) { fprintf(stderr, "NULL test detected\n"); return false; } if (!test->name) { fprintf(stderr, "Test with no name found. Must specify test name.\n"); return false; } if (!test->description) { fprintf(stderr, "Test %s requires description.\n", test->name); return false; } if (!test->run) { fprintf(stderr, "Test %s has no run() callback\n", test->name); return false; } return true; } int main(int argc, char **argv) { const char *filter = NULL; unsigned testnum = 0, i; unsigned passed = 0, skipped = 0, failed = 0; int opt; signal(SIGINT, sigint_handler); signal(SIGTERM, sigint_handler); libbpf_set_strict_mode(LIBBPF_STRICT_ALL); while ((opt = getopt(argc, argv, "qst:h")) != -1) { switch (opt) { case 'q': quiet = true; break; case 's': print_skipped = true; break; case 't': filter = optarg; break; default: fprintf(stderr, help_fmt, basename(argv[0])); return opt != 'h'; } } for (i = 0; i < __scx_num_tests; i++) { enum scx_test_status status; struct scx_test *test = &__scx_tests[i]; if (filter && should_skip_test(test, filter)) { /* * Printing the skipped tests and their preambles can * add a lot of noise to the runner output. Printing * this is only really useful for CI, so let's skip it * by default. */ if (print_skipped) { print_test_preamble(test, quiet); print_test_result(test, SCX_TEST_SKIP, ++testnum); } continue; } print_test_preamble(test, quiet); status = run_test(test); print_test_result(test, status, ++testnum); switch (status) { case SCX_TEST_PASS: passed++; break; case SCX_TEST_SKIP: skipped++; break; case SCX_TEST_FAIL: failed++; break; } } printf("\n\n=============================\n\n"); printf("RESULTS:\n\n"); printf("PASSED: %u\n", passed); printf("SKIPPED: %u\n", skipped); printf("FAILED: %u\n", failed); return 0; } void scx_test_register(struct scx_test *test) { SCX_BUG_ON(!test_valid(test), "Invalid test found"); SCX_BUG_ON(__scx_num_tests >= MAX_SCX_TESTS, "Maximum tests exceeded"); __scx_tests[__scx_num_tests++] = *test; }
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for MPC52xx processor BestComm peripheral controller * * Copyright (C) 2006-2007 Sylvain Munaut <[email protected]> * Copyright (C) 2005 Varma Electronics Oy, * ( by Andrey Volkov <[email protected]> ) * Copyright (C) 2003-2004 MontaVista, Software, Inc. * ( by Dale Farnsworth <[email protected]> ) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/mpc52xx.h> #include <linux/fsl/bestcomm/sram.h> #include <linux/fsl/bestcomm/bestcomm_priv.h> #include "linux/fsl/bestcomm/bestcomm.h" #define DRIVER_NAME "bestcomm-core" /* MPC5200 device tree match tables */ static const struct of_device_id mpc52xx_sram_ids[] = { { .compatible = "fsl,mpc5200-sram", }, { .compatible = "mpc5200-sram", }, {} }; struct bcom_engine *bcom_eng = NULL; EXPORT_SYMBOL_GPL(bcom_eng); /* needed for inline functions */ /* ======================================================================== */ /* Public and private API */ /* ======================================================================== */ /* Private API */ struct bcom_task * bcom_task_alloc(int bd_count, int bd_size, int priv_size) { int i, tasknum = -1; struct bcom_task *tsk; /* Don't try to do anything if bestcomm init failed */ if (!bcom_eng) return NULL; /* Get and reserve a task num */ spin_lock(&bcom_eng->lock); for (i=0; i<BCOM_MAX_TASKS; i++) if (!bcom_eng->tdt[i].stop) { /* we use stop as a marker */ bcom_eng->tdt[i].stop = 0xfffffffful; /* dummy addr */ tasknum = i; break; } spin_unlock(&bcom_eng->lock); if (tasknum < 0) return NULL; /* Allocate our structure */ tsk = kzalloc(sizeof(struct bcom_task) + priv_size, GFP_KERNEL); if (!tsk) goto error; tsk->tasknum = tasknum; if (priv_size) tsk->priv = (void*)tsk + sizeof(struct bcom_task); /* Get IRQ of that task */ tsk->irq = irq_of_parse_and_map(bcom_eng->ofnode, tsk->tasknum); if (!tsk->irq) goto error; /* Init the BDs, if needed */ if (bd_count) { tsk->cookie = kmalloc_array(bd_count, sizeof(void *), GFP_KERNEL); if (!tsk->cookie) goto error; tsk->bd = bcom_sram_alloc(bd_count * bd_size, 4, &tsk->bd_pa); if (!tsk->bd) goto error; memset_io(tsk->bd, 0x00, bd_count * bd_size); tsk->num_bd = bd_count; tsk->bd_size = bd_size; } return tsk; error: if (tsk) { if (tsk->irq) irq_dispose_mapping(tsk->irq); bcom_sram_free(tsk->bd); kfree(tsk->cookie); kfree(tsk); } bcom_eng->tdt[tasknum].stop = 0; return NULL; } EXPORT_SYMBOL_GPL(bcom_task_alloc); void bcom_task_free(struct bcom_task *tsk) { /* Stop the task */ bcom_disable_task(tsk->tasknum); /* Clear TDT */ bcom_eng->tdt[tsk->tasknum].start = 0; bcom_eng->tdt[tsk->tasknum].stop = 0; /* Free everything */ irq_dispose_mapping(tsk->irq); bcom_sram_free(tsk->bd); kfree(tsk->cookie); kfree(tsk); } EXPORT_SYMBOL_GPL(bcom_task_free); int bcom_load_image(int task, u32 *task_image) { struct bcom_task_header *hdr = (struct bcom_task_header *)task_image; struct bcom_tdt *tdt; u32 *desc, *var, *inc; u32 *desc_src, *var_src, *inc_src; /* Safety checks */ if (hdr->magic != BCOM_TASK_MAGIC) { printk(KERN_ERR DRIVER_NAME ": Trying to load invalid microcode\n"); return -EINVAL; } if ((task < 0) || (task >= BCOM_MAX_TASKS)) { printk(KERN_ERR DRIVER_NAME ": Trying to load invalid task %d\n", task); return -EINVAL; } /* Initial load or reload */ tdt = &bcom_eng->tdt[task]; if (tdt->start) { desc = bcom_task_desc(task); if (hdr->desc_size != bcom_task_num_descs(task)) { printk(KERN_ERR DRIVER_NAME ": Trying to reload wrong task image " "(%d size %d/%d)!\n", task, hdr->desc_size, bcom_task_num_descs(task)); return -EINVAL; } } else { phys_addr_t start_pa; desc = bcom_sram_alloc(hdr->desc_size * sizeof(u32), 4, &start_pa); if (!desc) return -ENOMEM; tdt->start = start_pa; tdt->stop = start_pa + ((hdr->desc_size-1) * sizeof(u32)); } var = bcom_task_var(task); inc = bcom_task_inc(task); /* Clear & copy */ memset_io(var, 0x00, BCOM_VAR_SIZE); memset_io(inc, 0x00, BCOM_INC_SIZE); desc_src = (u32 *)(hdr + 1); var_src = desc_src + hdr->desc_size; inc_src = var_src + hdr->var_size; memcpy_toio(desc, desc_src, hdr->desc_size * sizeof(u32)); memcpy_toio(var + hdr->first_var, var_src, hdr->var_size * sizeof(u32)); memcpy_toio(inc, inc_src, hdr->inc_size * sizeof(u32)); return 0; } EXPORT_SYMBOL_GPL(bcom_load_image); void bcom_set_initiator(int task, int initiator) { int i; int num_descs; u32 *desc; int next_drd_has_initiator; bcom_set_tcr_initiator(task, initiator); /* Just setting tcr is apparently not enough due to some problem */ /* with it. So we just go thru all the microcode and replace in */ /* the DRD directly */ desc = bcom_task_desc(task); next_drd_has_initiator = 1; num_descs = bcom_task_num_descs(task); for (i=0; i<num_descs; i++, desc++) { if (!bcom_desc_is_drd(*desc)) continue; if (next_drd_has_initiator) if (bcom_desc_initiator(*desc) != BCOM_INITIATOR_ALWAYS) bcom_set_desc_initiator(desc, initiator); next_drd_has_initiator = !bcom_drd_is_extended(*desc); } } EXPORT_SYMBOL_GPL(bcom_set_initiator); /* Public API */ void bcom_enable(struct bcom_task *tsk) { bcom_enable_task(tsk->tasknum); } EXPORT_SYMBOL_GPL(bcom_enable); void bcom_disable(struct bcom_task *tsk) { bcom_disable_task(tsk->tasknum); } EXPORT_SYMBOL_GPL(bcom_disable); /* ======================================================================== */ /* Engine init/cleanup */ /* ======================================================================== */ /* Function Descriptor table */ /* this will need to be updated if Freescale changes their task code FDT */ static u32 fdt_ops[] = { 0xa0045670, /* FDT[48] - load_acc() */ 0x80045670, /* FDT[49] - unload_acc() */ 0x21800000, /* FDT[50] - and() */ 0x21e00000, /* FDT[51] - or() */ 0x21500000, /* FDT[52] - xor() */ 0x21400000, /* FDT[53] - andn() */ 0x21500000, /* FDT[54] - not() */ 0x20400000, /* FDT[55] - add() */ 0x20500000, /* FDT[56] - sub() */ 0x20800000, /* FDT[57] - lsh() */ 0x20a00000, /* FDT[58] - rsh() */ 0xc0170000, /* FDT[59] - crc8() */ 0xc0145670, /* FDT[60] - crc16() */ 0xc0345670, /* FDT[61] - crc32() */ 0xa0076540, /* FDT[62] - endian32() */ 0xa0000760, /* FDT[63] - endian16() */ }; static int bcom_engine_init(void) { int task; phys_addr_t tdt_pa, ctx_pa, var_pa, fdt_pa; unsigned int tdt_size, ctx_size, var_size, fdt_size; /* Allocate & clear SRAM zones for FDT, TDTs, contexts and vars/incs */ tdt_size = BCOM_MAX_TASKS * sizeof(struct bcom_tdt); ctx_size = BCOM_MAX_TASKS * BCOM_CTX_SIZE; var_size = BCOM_MAX_TASKS * (BCOM_VAR_SIZE + BCOM_INC_SIZE); fdt_size = BCOM_FDT_SIZE; bcom_eng->tdt = bcom_sram_alloc(tdt_size, sizeof(u32), &tdt_pa); bcom_eng->ctx = bcom_sram_alloc(ctx_size, BCOM_CTX_ALIGN, &ctx_pa); bcom_eng->var = bcom_sram_alloc(var_size, BCOM_VAR_ALIGN, &var_pa); bcom_eng->fdt = bcom_sram_alloc(fdt_size, BCOM_FDT_ALIGN, &fdt_pa); if (!bcom_eng->tdt || !bcom_eng->ctx || !bcom_eng->var || !bcom_eng->fdt) { printk(KERN_ERR "DMA: SRAM alloc failed in engine init !\n"); bcom_sram_free(bcom_eng->tdt); bcom_sram_free(bcom_eng->ctx); bcom_sram_free(bcom_eng->var); bcom_sram_free(bcom_eng->fdt); return -ENOMEM; } memset_io(bcom_eng->tdt, 0x00, tdt_size); memset_io(bcom_eng->ctx, 0x00, ctx_size); memset_io(bcom_eng->var, 0x00, var_size); memset_io(bcom_eng->fdt, 0x00, fdt_size); /* Copy the FDT for the EU#3 */ memcpy_toio(&bcom_eng->fdt[48], fdt_ops, sizeof(fdt_ops)); /* Initialize Task base structure */ for (task=0; task<BCOM_MAX_TASKS; task++) { out_be16(&bcom_eng->regs->tcr[task], 0); out_8(&bcom_eng->regs->ipr[task], 0); bcom_eng->tdt[task].context = ctx_pa; bcom_eng->tdt[task].var = var_pa; bcom_eng->tdt[task].fdt = fdt_pa; var_pa += BCOM_VAR_SIZE + BCOM_INC_SIZE; ctx_pa += BCOM_CTX_SIZE; } out_be32(&bcom_eng->regs->taskBar, tdt_pa); /* Init 'always' initiator */ out_8(&bcom_eng->regs->ipr[BCOM_INITIATOR_ALWAYS], BCOM_IPR_ALWAYS); /* Disable COMM Bus Prefetch on the original 5200; it's broken */ if ((mfspr(SPRN_SVR) & MPC5200_SVR_MASK) == MPC5200_SVR) bcom_disable_prefetch(); /* Init lock */ spin_lock_init(&bcom_eng->lock); return 0; } static void bcom_engine_cleanup(void) { int task; /* Stop all tasks */ for (task=0; task<BCOM_MAX_TASKS; task++) { out_be16(&bcom_eng->regs->tcr[task], 0); out_8(&bcom_eng->regs->ipr[task], 0); } out_be32(&bcom_eng->regs->taskBar, 0ul); /* Release the SRAM zones */ bcom_sram_free(bcom_eng->tdt); bcom_sram_free(bcom_eng->ctx); bcom_sram_free(bcom_eng->var); bcom_sram_free(bcom_eng->fdt); } /* ======================================================================== */ /* OF platform driver */ /* ======================================================================== */ static int mpc52xx_bcom_probe(struct platform_device *op) { struct device_node *ofn_sram; struct resource res_bcom; int rv; /* Inform user we're ok so far */ printk(KERN_INFO "DMA: MPC52xx BestComm driver\n"); /* Get the bestcomm node */ of_node_get(op->dev.of_node); /* Prepare SRAM */ ofn_sram = of_find_matching_node(NULL, mpc52xx_sram_ids); if (!ofn_sram) { printk(KERN_ERR DRIVER_NAME ": " "No SRAM found in device tree\n"); rv = -ENODEV; goto error_ofput; } rv = bcom_sram_init(ofn_sram, DRIVER_NAME); of_node_put(ofn_sram); if (rv) { printk(KERN_ERR DRIVER_NAME ": " "Error in SRAM init\n"); goto error_ofput; } /* Get a clean struct */ bcom_eng = kzalloc(sizeof(struct bcom_engine), GFP_KERNEL); if (!bcom_eng) { rv = -ENOMEM; goto error_sramclean; } /* Save the node */ bcom_eng->ofnode = op->dev.of_node; /* Get, reserve & map io */ if (of_address_to_resource(op->dev.of_node, 0, &res_bcom)) { printk(KERN_ERR DRIVER_NAME ": " "Can't get resource\n"); rv = -EINVAL; goto error_sramclean; } if (!request_mem_region(res_bcom.start, resource_size(&res_bcom), DRIVER_NAME)) { printk(KERN_ERR DRIVER_NAME ": " "Can't request registers region\n"); rv = -EBUSY; goto error_sramclean; } bcom_eng->regs_base = res_bcom.start; bcom_eng->regs = ioremap(res_bcom.start, sizeof(struct mpc52xx_sdma)); if (!bcom_eng->regs) { printk(KERN_ERR DRIVER_NAME ": " "Can't map registers\n"); rv = -ENOMEM; goto error_release; } /* Now, do the real init */ rv = bcom_engine_init(); if (rv) goto error_unmap; /* Done ! */ printk(KERN_INFO "DMA: MPC52xx BestComm engine @%08lx ok !\n", (long)bcom_eng->regs_base); return 0; /* Error path */ error_unmap: iounmap(bcom_eng->regs); error_release: release_mem_region(res_bcom.start, sizeof(struct mpc52xx_sdma)); error_sramclean: kfree(bcom_eng); bcom_sram_cleanup(); error_ofput: of_node_put(op->dev.of_node); printk(KERN_ERR "DMA: MPC52xx BestComm init failed !\n"); return rv; } static void mpc52xx_bcom_remove(struct platform_device *op) { /* Clean up the engine */ bcom_engine_cleanup(); /* Cleanup SRAM */ bcom_sram_cleanup(); /* Release regs */ iounmap(bcom_eng->regs); release_mem_region(bcom_eng->regs_base, sizeof(struct mpc52xx_sdma)); /* Release the node */ of_node_put(bcom_eng->ofnode); /* Release memory */ kfree(bcom_eng); bcom_eng = NULL; } static const struct of_device_id mpc52xx_bcom_of_match[] = { { .compatible = "fsl,mpc5200-bestcomm", }, { .compatible = "mpc5200-bestcomm", }, {}, }; MODULE_DEVICE_TABLE(of, mpc52xx_bcom_of_match); static struct platform_driver mpc52xx_bcom_of_platform_driver = { .probe = mpc52xx_bcom_probe, .remove = mpc52xx_bcom_remove, .driver = { .name = DRIVER_NAME, .of_match_table = mpc52xx_bcom_of_match, }, }; /* ======================================================================== */ /* Module */ /* ======================================================================== */ static int __init mpc52xx_bcom_init(void) { return platform_driver_register(&mpc52xx_bcom_of_platform_driver); } static void __exit mpc52xx_bcom_exit(void) { platform_driver_unregister(&mpc52xx_bcom_of_platform_driver); } /* If we're not a module, we must make sure everything is setup before */ /* anyone tries to use us ... that's why we use subsys_initcall instead */ /* of module_init. */ subsys_initcall(mpc52xx_bcom_init); module_exit(mpc52xx_bcom_exit); MODULE_DESCRIPTION("Freescale MPC52xx BestComm DMA"); MODULE_AUTHOR("Sylvain Munaut <[email protected]>"); MODULE_AUTHOR("Andrey Volkov <[email protected]>"); MODULE_AUTHOR("Dale Farnsworth <[email protected]>"); MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright (c) 2016 Andreas Färber */ /dts-v1/; #include "meson-gxbb-vega-s95.dtsi" / { compatible = "tronsmart,vega-s95-pro", "tronsmart,vega-s95", "amlogic,meson-gxbb"; model = "Tronsmart Vega S95 Pro"; memory@0 { device_type = "memory"; reg = <0x0 0x0 0x0 0x40000000>; }; };
// SPDX-License-Identifier: GPL-2.0-only /* * ADS1100 - Texas Instruments Analog-to-Digital Converter * * Copyright (c) 2023, Topic Embedded Products * * Datasheet: https://www.ti.com/lit/gpn/ads1100 * IIO driver for ADS1100 and ADS1000 ADC 16-bit I2C */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <linux/property.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <linux/iio/iio.h> #include <linux/iio/types.h> /* The ADS1100 has a single byte config register */ /* Conversion in progress bit */ #define ADS1100_CFG_ST_BSY BIT(7) /* Single conversion bit */ #define ADS1100_CFG_SC BIT(4) /* Data rate */ #define ADS1100_DR_MASK GENMASK(3, 2) /* Gain */ #define ADS1100_PGA_MASK GENMASK(1, 0) #define ADS1100_CONTINUOUS 0 #define ADS1100_SINGLESHOT ADS1100_CFG_SC #define ADS1100_SLEEP_DELAY_MS 2000 static const int ads1100_data_rate[] = { 128, 32, 16, 8 }; static const int ads1100_data_rate_bits[] = { 12, 14, 15, 16 }; struct ads1100_data { struct i2c_client *client; struct regulator *reg_vdd; struct mutex lock; int scale_avail[2 * 4]; /* 4 gain settings */ u8 config; bool supports_data_rate; /* Only the ADS1100 can select the rate */ }; static const struct iio_chan_spec ads1100_channel = { .type = IIO_VOLTAGE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .scan_type = { .sign = 's', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, .datasheet_name = "AIN", }; static int ads1100_set_config_bits(struct ads1100_data *data, u8 mask, u8 value) { int ret; u8 config = (data->config & ~mask) | (value & mask); if (data->config == config) return 0; /* Already done */ ret = i2c_master_send(data->client, &config, 1); if (ret < 0) return ret; data->config = config; return 0; }; static int ads1100_data_bits(struct ads1100_data *data) { return ads1100_data_rate_bits[FIELD_GET(ADS1100_DR_MASK, data->config)]; } static int ads1100_get_adc_result(struct ads1100_data *data, int chan, int *val) { int ret; __be16 buffer; s16 value; if (chan != 0) return -EINVAL; ret = pm_runtime_resume_and_get(&data->client->dev); if (ret < 0) return ret; ret = i2c_master_recv(data->client, (char *)&buffer, sizeof(buffer)); pm_runtime_mark_last_busy(&data->client->dev); pm_runtime_put_autosuspend(&data->client->dev); if (ret < 0) { dev_err(&data->client->dev, "I2C read fail: %d\n", ret); return ret; } /* Value is always 16-bit 2's complement */ value = be16_to_cpu(buffer); /* Shift result to compensate for bit resolution vs. sample rate */ value <<= 16 - ads1100_data_bits(data); *val = sign_extend32(value, 15); return 0; } static int ads1100_set_scale(struct ads1100_data *data, int val, int val2) { int microvolts; int gain; /* With Vdd between 2.7 and 5V, the scale is always below 1 */ if (val) return -EINVAL; if (!val2) return -EINVAL; microvolts = regulator_get_voltage(data->reg_vdd); /* * val2 is in 'micro' units, n = val2 / 1000000 * result must be millivolts, d = microvolts / 1000 * the full-scale value is d/n, corresponds to 2^15, * hence the gain = (d / n) >> 15, factoring out the 1000 and moving the * bitshift so everything fits in 32-bits yields this formula. */ gain = DIV_ROUND_CLOSEST(microvolts, BIT(15)) * MILLI / val2; if (gain < BIT(0) || gain > BIT(3)) return -EINVAL; ads1100_set_config_bits(data, ADS1100_PGA_MASK, ffs(gain) - 1); return 0; } static int ads1100_set_data_rate(struct ads1100_data *data, int chan, int rate) { unsigned int i; unsigned int size; size = data->supports_data_rate ? ARRAY_SIZE(ads1100_data_rate) : 1; for (i = 0; i < size; i++) { if (ads1100_data_rate[i] == rate) return ads1100_set_config_bits(data, ADS1100_DR_MASK, FIELD_PREP(ADS1100_DR_MASK, i)); } return -EINVAL; } static int ads1100_get_vdd_millivolts(struct ads1100_data *data) { return regulator_get_voltage(data->reg_vdd) / (MICRO / MILLI); } static void ads1100_calc_scale_avail(struct ads1100_data *data) { int millivolts = ads1100_get_vdd_millivolts(data); unsigned int i; for (i = 0; i < ARRAY_SIZE(data->scale_avail) / 2; i++) { data->scale_avail[i * 2 + 0] = millivolts; data->scale_avail[i * 2 + 1] = 15 + i; } } static int ads1100_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct ads1100_data *data = iio_priv(indio_dev); if (chan->type != IIO_VOLTAGE) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT; *vals = ads1100_data_rate; if (data->supports_data_rate) *length = ARRAY_SIZE(ads1100_data_rate); else *length = 1; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SCALE: *type = IIO_VAL_FRACTIONAL_LOG2; *vals = data->scale_avail; *length = ARRAY_SIZE(data->scale_avail); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int ads1100_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct ads1100_data *data = iio_priv(indio_dev); mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) break; ret = ads1100_get_adc_result(data, chan->address, val); if (ret >= 0) ret = IIO_VAL_INT; iio_device_release_direct_mode(indio_dev); break; case IIO_CHAN_INFO_SCALE: /* full-scale is the supply voltage in millivolts */ *val = ads1100_get_vdd_millivolts(data); *val2 = 15 + FIELD_GET(ADS1100_PGA_MASK, data->config); ret = IIO_VAL_FRACTIONAL_LOG2; break; case IIO_CHAN_INFO_SAMP_FREQ: *val = ads1100_data_rate[FIELD_GET(ADS1100_DR_MASK, data->config)]; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static int ads1100_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ads1100_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); switch (mask) { case IIO_CHAN_INFO_SCALE: ret = ads1100_set_scale(data, val, val2); break; case IIO_CHAN_INFO_SAMP_FREQ: ret = ads1100_set_data_rate(data, chan->address, val); break; default: ret = -EINVAL; break; } mutex_unlock(&data->lock); return ret; } static const struct iio_info ads1100_info = { .read_avail = ads1100_read_avail, .read_raw = ads1100_read_raw, .write_raw = ads1100_write_raw, }; static int ads1100_setup(struct ads1100_data *data) { int ret; u8 buffer[3]; /* Setup continuous sampling mode at 8sps */ buffer[0] = ADS1100_DR_MASK | ADS1100_CONTINUOUS; ret = i2c_master_send(data->client, buffer, 1); if (ret < 0) return ret; ret = i2c_master_recv(data->client, buffer, sizeof(buffer)); if (ret < 0) return ret; /* Config register returned in third byte, strip away the busy status */ data->config = buffer[2] & ~ADS1100_CFG_ST_BSY; /* Detect the sample rate capability by checking the DR bits */ data->supports_data_rate = FIELD_GET(ADS1100_DR_MASK, buffer[2]) != 0; return 0; } static void ads1100_reg_disable(void *reg) { regulator_disable(reg); } static void ads1100_disable_continuous(void *data) { ads1100_set_config_bits(data, ADS1100_CFG_SC, ADS1100_SINGLESHOT); } static int ads1100_probe(struct i2c_client *client) { struct iio_dev *indio_dev; struct ads1100_data *data; struct device *dev = &client->dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, data); data->client = client; mutex_init(&data->lock); indio_dev->name = "ads1100"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = &ads1100_channel; indio_dev->num_channels = 1; indio_dev->info = &ads1100_info; data->reg_vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(data->reg_vdd)) return dev_err_probe(dev, PTR_ERR(data->reg_vdd), "Failed to get vdd regulator\n"); ret = regulator_enable(data->reg_vdd); if (ret < 0) return dev_err_probe(dev, ret, "Failed to enable vdd regulator\n"); ret = devm_add_action_or_reset(dev, ads1100_reg_disable, data->reg_vdd); if (ret) return ret; ret = ads1100_setup(data); if (ret) return dev_err_probe(dev, ret, "Failed to communicate with device\n"); ret = devm_add_action_or_reset(dev, ads1100_disable_continuous, data); if (ret) return ret; ads1100_calc_scale_avail(data); pm_runtime_set_autosuspend_delay(dev, ADS1100_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_set_active(dev); ret = devm_pm_runtime_enable(dev); if (ret) return dev_err_probe(dev, ret, "Failed to enable pm_runtime\n"); ret = devm_iio_device_register(dev, indio_dev); if (ret) return dev_err_probe(dev, ret, "Failed to register IIO device\n"); return 0; } static int ads1100_runtime_suspend(struct device *dev) { struct ads1100_data *data = dev_get_drvdata(dev); ads1100_set_config_bits(data, ADS1100_CFG_SC, ADS1100_SINGLESHOT); regulator_disable(data->reg_vdd); return 0; } static int ads1100_runtime_resume(struct device *dev) { struct ads1100_data *data = dev_get_drvdata(dev); int ret; ret = regulator_enable(data->reg_vdd); if (ret) { dev_err(&data->client->dev, "Failed to enable Vdd\n"); return ret; } /* * We'll always change the mode bit in the config register, so there is * no need here to "force" a write to the config register. If the device * has been power-cycled, we'll re-write its config register now. */ return ads1100_set_config_bits(data, ADS1100_CFG_SC, ADS1100_CONTINUOUS); } static DEFINE_RUNTIME_DEV_PM_OPS(ads1100_pm_ops, ads1100_runtime_suspend, ads1100_runtime_resume, NULL); static const struct i2c_device_id ads1100_id[] = { { "ads1100" }, { "ads1000" }, { } }; MODULE_DEVICE_TABLE(i2c, ads1100_id); static const struct of_device_id ads1100_of_match[] = { {.compatible = "ti,ads1100" }, {.compatible = "ti,ads1000" }, { } }; MODULE_DEVICE_TABLE(of, ads1100_of_match); static struct i2c_driver ads1100_driver = { .driver = { .name = "ads1100", .of_match_table = ads1100_of_match, .pm = pm_ptr(&ads1100_pm_ops), }, .probe = ads1100_probe, .id_table = ads1100_id, }; module_i2c_driver(ads1100_driver); MODULE_AUTHOR("Mike Looijmans <[email protected]>"); MODULE_DESCRIPTION("Texas Instruments ADS1100 ADC driver"); MODULE_LICENSE("GPL");
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Intel Corporation * Copyright 2018 Google LLC. * * Author: Tomasz Figa <[email protected]> * Author: Yong Zhi <[email protected]> */ #include <linux/vmalloc.h> #include "ipu3.h" #include "ipu3-css-pool.h" #include "ipu3-mmu.h" #include "ipu3-dmamap.h" /* * Free a buffer allocated by imgu_dmamap_alloc_buffer() */ static void imgu_dmamap_free_buffer(struct page **pages, size_t size) { int count = size >> PAGE_SHIFT; while (count--) __free_page(pages[count]); kvfree(pages); } /* * Based on the implementation of __iommu_dma_alloc_pages() * defined in drivers/iommu/dma-iommu.c */ static struct page **imgu_dmamap_alloc_buffer(size_t size, gfp_t gfp) { struct page **pages; unsigned int i = 0, count = size >> PAGE_SHIFT; unsigned int order_mask = 1; const gfp_t high_order_gfp = __GFP_NOWARN | __GFP_NORETRY; /* Allocate mem for array of page ptrs */ pages = kvmalloc_array(count, sizeof(*pages), GFP_KERNEL); if (!pages) return NULL; gfp |= __GFP_HIGHMEM | __GFP_ZERO; while (count) { struct page *page = NULL; unsigned int order_size; for (order_mask &= (2U << __fls(count)) - 1; order_mask; order_mask &= ~order_size) { unsigned int order = __fls(order_mask); order_size = 1U << order; page = alloc_pages((order_mask - order_size) ? gfp | high_order_gfp : gfp, order); if (!page) continue; if (!order) break; if (!PageCompound(page)) { split_page(page, order); break; } __free_pages(page, order); } if (!page) { imgu_dmamap_free_buffer(pages, i << PAGE_SHIFT); return NULL; } count -= order_size; while (order_size--) pages[i++] = page++; } return pages; } /** * imgu_dmamap_alloc - allocate and map a buffer into KVA * @imgu: struct device pointer * @map: struct to store mapping variables * @len: size required * * Returns: * KVA on success * %NULL on failure */ void *imgu_dmamap_alloc(struct imgu_device *imgu, struct imgu_css_map *map, size_t len) { unsigned long shift = iova_shift(&imgu->iova_domain); struct device *dev = &imgu->pci_dev->dev; size_t size = PAGE_ALIGN(len); int count = size >> PAGE_SHIFT; struct page **pages; dma_addr_t iovaddr; struct iova *iova; int i, rval; dev_dbg(dev, "%s: allocating %zu\n", __func__, size); iova = alloc_iova(&imgu->iova_domain, size >> shift, imgu->mmu->aperture_end >> shift, 0); if (!iova) return NULL; pages = imgu_dmamap_alloc_buffer(size, GFP_KERNEL); if (!pages) goto out_free_iova; /* Call IOMMU driver to setup pgt */ iovaddr = iova_dma_addr(&imgu->iova_domain, iova); for (i = 0; i < count; ++i) { rval = imgu_mmu_map(imgu->mmu, iovaddr, page_to_phys(pages[i]), PAGE_SIZE); if (rval) goto out_unmap; iovaddr += PAGE_SIZE; } map->vaddr = vmap(pages, count, VM_USERMAP, PAGE_KERNEL); if (!map->vaddr) goto out_unmap; map->pages = pages; map->size = size; map->daddr = iova_dma_addr(&imgu->iova_domain, iova); dev_dbg(dev, "%s: allocated %zu @ IOVA %pad @ VA %p\n", __func__, size, &map->daddr, map->vaddr); return map->vaddr; out_unmap: imgu_dmamap_free_buffer(pages, size); imgu_mmu_unmap(imgu->mmu, iova_dma_addr(&imgu->iova_domain, iova), i * PAGE_SIZE); out_free_iova: __free_iova(&imgu->iova_domain, iova); return NULL; } void imgu_dmamap_unmap(struct imgu_device *imgu, struct imgu_css_map *map) { struct iova *iova; iova = find_iova(&imgu->iova_domain, iova_pfn(&imgu->iova_domain, map->daddr)); if (WARN_ON(!iova)) return; imgu_mmu_unmap(imgu->mmu, iova_dma_addr(&imgu->iova_domain, iova), iova_size(iova) << iova_shift(&imgu->iova_domain)); __free_iova(&imgu->iova_domain, iova); } /* * Counterpart of imgu_dmamap_alloc */ void imgu_dmamap_free(struct imgu_device *imgu, struct imgu_css_map *map) { dev_dbg(&imgu->pci_dev->dev, "%s: freeing %zu @ IOVA %pad @ VA %p\n", __func__, map->size, &map->daddr, map->vaddr); if (!map->vaddr) return; imgu_dmamap_unmap(imgu, map); vunmap(map->vaddr); imgu_dmamap_free_buffer(map->pages, map->size); map->vaddr = NULL; } int imgu_dmamap_map_sg(struct imgu_device *imgu, struct scatterlist *sglist, int nents, struct imgu_css_map *map) { unsigned long shift = iova_shift(&imgu->iova_domain); struct scatterlist *sg; struct iova *iova; size_t size = 0; int i; for_each_sg(sglist, sg, nents, i) { if (sg->offset) return -EINVAL; if (i != nents - 1 && !PAGE_ALIGNED(sg->length)) return -EINVAL; size += sg->length; } size = iova_align(&imgu->iova_domain, size); dev_dbg(&imgu->pci_dev->dev, "dmamap: mapping sg %d entries, %zu pages\n", nents, size >> shift); iova = alloc_iova(&imgu->iova_domain, size >> shift, imgu->mmu->aperture_end >> shift, 0); if (!iova) return -ENOMEM; dev_dbg(&imgu->pci_dev->dev, "dmamap: iova low pfn %lu, high pfn %lu\n", iova->pfn_lo, iova->pfn_hi); if (imgu_mmu_map_sg(imgu->mmu, iova_dma_addr(&imgu->iova_domain, iova), sglist, nents) < size) goto out_fail; memset(map, 0, sizeof(*map)); map->daddr = iova_dma_addr(&imgu->iova_domain, iova); map->size = size; return 0; out_fail: __free_iova(&imgu->iova_domain, iova); return -EFAULT; } int imgu_dmamap_init(struct imgu_device *imgu) { unsigned long order, base_pfn; int ret = iova_cache_get(); if (ret) return ret; order = __ffs(IPU3_PAGE_SIZE); base_pfn = max_t(unsigned long, 1, imgu->mmu->aperture_start >> order); init_iova_domain(&imgu->iova_domain, 1UL << order, base_pfn); return 0; } void imgu_dmamap_exit(struct imgu_device *imgu) { put_iova_domain(&imgu->iova_domain); iova_cache_put(); }
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * include/linux/eventpoll.h ( Efficient event polling implementation ) * Copyright (C) 2001,...,2006 Davide Libenzi * * Davide Libenzi <[email protected]> */ #ifndef _LINUX_EVENTPOLL_H #define _LINUX_EVENTPOLL_H #include <uapi/linux/eventpoll.h> #include <uapi/linux/kcmp.h> /* Forward declarations to avoid compiler errors */ struct file; #ifdef CONFIG_EPOLL #ifdef CONFIG_KCMP struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff); #endif /* Used to release the epoll bits inside the "struct file" */ void eventpoll_release_file(struct file *file); /* * This is called from inside fs/file_table.c:__fput() to unlink files * from the eventpoll interface. We need to have this facility to cleanup * correctly files that are closed without being removed from the eventpoll * interface. */ static inline void eventpoll_release(struct file *file) { /* * Fast check to avoid the get/release of the semaphore. Since * we're doing this outside the semaphore lock, it might return * false negatives, but we don't care. It'll help in 99.99% of cases * to avoid the semaphore lock. False positives simply cannot happen * because the file in on the way to be removed and nobody ( but * eventpoll ) has still a reference to this file. */ if (likely(!READ_ONCE(file->f_ep))) return; /* * The file is being closed while it is still linked to an epoll * descriptor. We need to handle this by correctly unlinking it * from its containers. */ eventpoll_release_file(file); } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock); /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ static inline int ep_op_has_event(int op) { return op != EPOLL_CTL_DEL; } #else static inline void eventpoll_release(struct file *file) {} #endif #if defined(CONFIG_ARM) && defined(CONFIG_OABI_COMPAT) /* ARM OABI has an incompatible struct layout and needs a special handler */ extern struct epoll_event __user * epoll_put_uevent(__poll_t revents, __u64 data, struct epoll_event __user *uevent); #else static inline struct epoll_event __user * epoll_put_uevent(__poll_t revents, __u64 data, struct epoll_event __user *uevent) { if (__put_user(revents, &uevent->events) || __put_user(data, &uevent->data)) return NULL; return uevent+1; } #endif #endif /* #ifndef _LINUX_EVENTPOLL_H */
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Quick & dirty crypto testing module. * * This will only exist until we have a better testing mechanism * (e.g. a char device). * * Copyright (c) 2002 James Morris <[email protected]> * Copyright (c) 2002 Jean-Francois Dive <[email protected]> * Copyright (c) 2007 Nokia Siemens Networks */ #ifndef _CRYPTO_TCRYPT_H #define _CRYPTO_TCRYPT_H struct cipher_speed_template { const char *key; unsigned int klen; }; struct aead_speed_template { const char *key; unsigned int klen; }; struct hash_speed { unsigned int blen; /* buffer length */ unsigned int plen; /* per-update length */ }; /* * DES test vectors. */ #define DES3_SPEED_VECTORS 1 static struct cipher_speed_template des3_speed_template[] = { { .key = "\x01\x23\x45\x67\x89\xab\xcd\xef" "\x55\x55\x55\x55\x55\x55\x55\x55" "\xfe\xdc\xba\x98\x76\x54\x32\x10", .klen = 24, } }; /* * Cipher speed tests */ static u8 speed_template_8[] = {8, 0}; static u8 speed_template_16[] = {16, 0}; static u8 speed_template_24[] = {24, 0}; static u8 speed_template_8_16[] = {8, 16, 0}; static u8 speed_template_8_32[] = {8, 32, 0}; static u8 speed_template_16_32[] = {16, 32, 0}; static u8 speed_template_16_24_32[] = {16, 24, 32, 0}; static u8 speed_template_20_28_36[] = {20, 28, 36, 0}; static u8 speed_template_32_40_48[] = {32, 40, 48, 0}; static u8 speed_template_32_48[] = {32, 48, 0}; static u8 speed_template_32_48_64[] = {32, 48, 64, 0}; static u8 speed_template_32_64[] = {32, 64, 0}; static u8 speed_template_32[] = {32, 0}; /* * AEAD speed tests */ static u8 aead_speed_template_19[] = {19, 0}; static u8 aead_speed_template_20_28_36[] = {20, 28, 36, 0}; static u8 aead_speed_template_36[] = {36, 0}; /* * Digest speed tests */ static struct hash_speed generic_hash_speed_template[] = { { .blen = 16, .plen = 16, }, { .blen = 64, .plen = 16, }, { .blen = 64, .plen = 64, }, { .blen = 256, .plen = 16, }, { .blen = 256, .plen = 64, }, { .blen = 256, .plen = 256, }, { .blen = 1024, .plen = 16, }, { .blen = 1024, .plen = 256, }, { .blen = 1024, .plen = 1024, }, { .blen = 2048, .plen = 16, }, { .blen = 2048, .plen = 256, }, { .blen = 2048, .plen = 1024, }, { .blen = 2048, .plen = 2048, }, { .blen = 4096, .plen = 16, }, { .blen = 4096, .plen = 256, }, { .blen = 4096, .plen = 1024, }, { .blen = 4096, .plen = 4096, }, { .blen = 8192, .plen = 16, }, { .blen = 8192, .plen = 256, }, { .blen = 8192, .plen = 1024, }, { .blen = 8192, .plen = 4096, }, { .blen = 8192, .plen = 8192, }, /* End marker */ { .blen = 0, .plen = 0, } }; static struct hash_speed poly1305_speed_template[] = { { .blen = 96, .plen = 16, }, { .blen = 96, .plen = 32, }, { .blen = 96, .plen = 96, }, { .blen = 288, .plen = 16, }, { .blen = 288, .plen = 32, }, { .blen = 288, .plen = 288, }, { .blen = 1056, .plen = 32, }, { .blen = 1056, .plen = 1056, }, { .blen = 2080, .plen = 32, }, { .blen = 2080, .plen = 2080, }, { .blen = 4128, .plen = 4128, }, { .blen = 8224, .plen = 8224, }, /* End marker */ { .blen = 0, .plen = 0, } }; #endif /* _CRYPTO_TCRYPT_H */
// SPDX-License-Identifier: GPL-2.0-only /* * w1_ds2413.c - w1 family 3a (DS2413) driver * based on w1_ds2408.c by Jean-Francois Dagenais <[email protected]> * * Copyright (c) 2013 Mariusz Bialonczyk <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/device.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/w1.h> #define W1_FAMILY_DS2413 0x3A #define W1_F3A_RETRIES 3 #define W1_F3A_FUNC_PIO_ACCESS_READ 0xF5 #define W1_F3A_FUNC_PIO_ACCESS_WRITE 0x5A #define W1_F3A_SUCCESS_CONFIRM_BYTE 0xAA #define W1_F3A_INVALID_PIO_STATE 0xFF static ssize_t state_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct w1_slave *sl = kobj_to_w1_slave(kobj); unsigned int retries = W1_F3A_RETRIES; ssize_t bytes_read = -EIO; u8 state; dev_dbg(&sl->dev, "Reading %s kobj: %p, off: %0#10x, count: %zu, buff addr: %p", bin_attr->attr.name, kobj, (unsigned int)off, count, buf); if (off != 0) return 0; if (!buf) return -EINVAL; mutex_lock(&sl->master->bus_mutex); dev_dbg(&sl->dev, "mutex locked"); next: if (w1_reset_select_slave(sl)) goto out; while (retries--) { w1_write_8(sl->master, W1_F3A_FUNC_PIO_ACCESS_READ); state = w1_read_8(sl->master); if ((state & 0x0F) == ((~state >> 4) & 0x0F)) { /* complement is correct */ *buf = state; bytes_read = 1; goto out; } else if (state == W1_F3A_INVALID_PIO_STATE) { /* slave didn't respond, try to select it again */ dev_warn(&sl->dev, "slave device did not respond to PIO_ACCESS_READ, " \ "reselecting, retries left: %d\n", retries); goto next; } if (w1_reset_resume_command(sl->master)) goto out; /* unrecoverable error */ dev_warn(&sl->dev, "PIO_ACCESS_READ error, retries left: %d\n", retries); } out: mutex_unlock(&sl->master->bus_mutex); dev_dbg(&sl->dev, "%s, mutex unlocked, retries: %d\n", (bytes_read > 0) ? "succeeded" : "error", retries); return bytes_read; } static BIN_ATTR_RO(state, 1); static ssize_t output_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct w1_slave *sl = kobj_to_w1_slave(kobj); u8 w1_buf[3]; unsigned int retries = W1_F3A_RETRIES; ssize_t bytes_written = -EIO; if (count != 1 || off != 0) return -EFAULT; dev_dbg(&sl->dev, "locking mutex for write_output"); mutex_lock(&sl->master->bus_mutex); dev_dbg(&sl->dev, "mutex locked"); if (w1_reset_select_slave(sl)) goto out; /* * according to the DS2413 datasheet the most significant 6 bits * should be set to "1"s, so do it now */ *buf = *buf | 0xFC; while (retries--) { w1_buf[0] = W1_F3A_FUNC_PIO_ACCESS_WRITE; w1_buf[1] = *buf; w1_buf[2] = ~(*buf); w1_write_block(sl->master, w1_buf, 3); if (w1_read_8(sl->master) == W1_F3A_SUCCESS_CONFIRM_BYTE) { bytes_written = 1; goto out; } if (w1_reset_resume_command(sl->master)) goto out; /* unrecoverable error */ dev_warn(&sl->dev, "PIO_ACCESS_WRITE error, retries left: %d\n", retries); } out: mutex_unlock(&sl->master->bus_mutex); dev_dbg(&sl->dev, "%s, mutex unlocked, retries: %d\n", (bytes_written > 0) ? "succeeded" : "error", retries); return bytes_written; } static BIN_ATTR(output, 0664, NULL, output_write, 1); static struct bin_attribute *w1_f3a_bin_attrs[] = { &bin_attr_state, &bin_attr_output, NULL, }; static const struct attribute_group w1_f3a_group = { .bin_attrs = w1_f3a_bin_attrs, }; static const struct attribute_group *w1_f3a_groups[] = { &w1_f3a_group, NULL, }; static const struct w1_family_ops w1_f3a_fops = { .groups = w1_f3a_groups, }; static struct w1_family w1_family_3a = { .fid = W1_FAMILY_DS2413, .fops = &w1_f3a_fops, }; module_w1_family(w1_family_3a); MODULE_AUTHOR("Mariusz Bialonczyk <[email protected]>"); MODULE_DESCRIPTION("w1 family 3a driver for DS2413 2 Pin IO"); MODULE_LICENSE("GPL"); MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_DS2413));
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_PGTABLE_BE_TYPES_H #define _ASM_POWERPC_PGTABLE_BE_TYPES_H #include <asm/cmpxchg.h> /* PTE level */ typedef struct { __be64 pte; } pte_t; #define __pte(x) ((pte_t) { cpu_to_be64(x) }) #define __pte_raw(x) ((pte_t) { (x) }) static inline unsigned long pte_val(pte_t x) { return be64_to_cpu(x.pte); } static inline __be64 pte_raw(pte_t x) { return x.pte; } /* PMD level */ #ifdef CONFIG_PPC64 typedef struct { __be64 pmd; } pmd_t; #define __pmd(x) ((pmd_t) { cpu_to_be64(x) }) #define __pmd_raw(x) ((pmd_t) { (x) }) static inline unsigned long pmd_val(pmd_t x) { return be64_to_cpu(x.pmd); } static inline __be64 pmd_raw(pmd_t x) { return x.pmd; } /* 64 bit always use 4 level table. */ typedef struct { __be64 pud; } pud_t; #define __pud(x) ((pud_t) { cpu_to_be64(x) }) #define __pud_raw(x) ((pud_t) { (x) }) static inline unsigned long pud_val(pud_t x) { return be64_to_cpu(x.pud); } static inline __be64 pud_raw(pud_t x) { return x.pud; } #endif /* CONFIG_PPC64 */ /* PGD level */ typedef struct { __be64 pgd; } pgd_t; #define __pgd(x) ((pgd_t) { cpu_to_be64(x) }) #define __pgd_raw(x) ((pgd_t) { (x) }) static inline unsigned long pgd_val(pgd_t x) { return be64_to_cpu(x.pgd); } static inline __be64 pgd_raw(pgd_t x) { return x.pgd; } /* Page protection bits */ typedef struct { unsigned long pgprot; } pgprot_t; #define pgprot_val(x) ((x).pgprot) #define __pgprot(x) ((pgprot_t) { (x) }) /* * With hash config 64k pages additionally define a bigger "real PTE" type that * gathers the "second half" part of the PTE for pseudo 64k pages */ #ifdef CONFIG_PPC_64K_PAGES typedef struct { pte_t pte; unsigned long hidx; } real_pte_t; #else typedef struct { pte_t pte; } real_pte_t; #endif static inline bool pte_xchg(pte_t *ptep, pte_t old, pte_t new) { unsigned long *p = (unsigned long *)ptep; __be64 prev; /* See comment in switch_mm_irqs_off() */ prev = (__force __be64)__cmpxchg_u64(p, (__force unsigned long)pte_raw(old), (__force unsigned long)pte_raw(new)); return pte_raw(old) == prev; } static inline bool pmd_xchg(pmd_t *pmdp, pmd_t old, pmd_t new) { unsigned long *p = (unsigned long *)pmdp; __be64 prev; prev = (__force __be64)__cmpxchg_u64(p, (__force unsigned long)pmd_raw(old), (__force unsigned long)pmd_raw(new)); return pmd_raw(old) == prev; } #endif /* _ASM_POWERPC_PGTABLE_BE_TYPES_H */
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Allegro A8293 SEC driver * * Copyright (C) 2011 Antti Palosaari <[email protected]> */ #ifndef A8293_H #define A8293_H #include <media/dvb_frontend.h> /* * I2C address * 0x08, 0x09, 0x0a, 0x0b */ /** * struct a8293_platform_data - Platform data for the a8293 driver * @dvb_frontend: DVB frontend. * @volt_slew_nanos_per_mv: Slew rate when increasing LNB voltage, * in nanoseconds per millivolt. */ struct a8293_platform_data { struct dvb_frontend *dvb_frontend; int volt_slew_nanos_per_mv; }; #endif /* A8293_H */
/* SPDX-License-Identifier: GPL-2.0-only */ /* Copyright 2014 Cisco Systems, Inc. All rights reserved. */ #ifndef __SNIC_RES_H #define __SNIC_RES_H #include "snic_io.h" #include "wq_enet_desc.h" #include "vnic_wq.h" #include "snic_fwint.h" #include "vnic_cq_fw.h" static inline void snic_icmnd_init(struct snic_host_req *req, u32 cmnd_id, u32 host_id, u64 ctx, u16 flags, u64 tgt_id, u8 *lun, u8 *scsi_cdb, u8 cdb_len, u32 data_len, u16 sg_cnt, ulong sgl_addr, dma_addr_t sns_addr_pa, u32 sense_len) { snic_io_hdr_enc(&req->hdr, SNIC_REQ_ICMND, 0, cmnd_id, host_id, sg_cnt, ctx); req->u.icmnd.flags = cpu_to_le16(flags); req->u.icmnd.tgt_id = cpu_to_le64(tgt_id); memcpy(&req->u.icmnd.lun_id, lun, LUN_ADDR_LEN); req->u.icmnd.cdb_len = cdb_len; memset(req->u.icmnd.cdb, 0, SNIC_CDB_LEN); memcpy(req->u.icmnd.cdb, scsi_cdb, cdb_len); req->u.icmnd.data_len = cpu_to_le32(data_len); req->u.icmnd.sg_addr = cpu_to_le64(sgl_addr); req->u.icmnd.sense_len = cpu_to_le32(sense_len); req->u.icmnd.sense_addr = cpu_to_le64(sns_addr_pa); } static inline void snic_itmf_init(struct snic_host_req *req, u32 cmnd_id, u32 host_id, ulong ctx, u16 flags, u32 req_id, u64 tgt_id, u8 *lun, u8 tm_type) { snic_io_hdr_enc(&req->hdr, SNIC_REQ_ITMF, 0, cmnd_id, host_id, 0, ctx); req->u.itmf.tm_type = tm_type; req->u.itmf.flags = cpu_to_le16(flags); /* req_id valid only in abort, clear task */ req->u.itmf.req_id = cpu_to_le32(req_id); req->u.itmf.tgt_id = cpu_to_le64(tgt_id); memcpy(&req->u.itmf.lun_id, lun, LUN_ADDR_LEN); } static inline void snic_queue_wq_eth_desc(struct vnic_wq *wq, void *os_buf, dma_addr_t dma_addr, unsigned int len, int vlan_tag_insert, unsigned int vlan_tag, int cq_entry) { struct wq_enet_desc *desc = svnic_wq_next_desc(wq); wq_enet_desc_enc(desc, (u64)dma_addr | VNIC_PADDR_TARGET, (u16)len, 0, /* mss_or_csum_offset */ 0, /* fc_eof */ 0, /* offload mode */ 1, /* eop */ (u8)cq_entry, 0, /* fcoe_encap */ (u8)vlan_tag_insert, (u16)vlan_tag, 0 /* loopback */); svnic_wq_post(wq, os_buf, dma_addr, len, 1, 1); } struct snic; int snic_get_vnic_config(struct snic *); int snic_alloc_vnic_res(struct snic *); void snic_free_vnic_res(struct snic *); void snic_get_res_counts(struct snic *); void snic_log_q_error(struct snic *); int snic_get_vnic_resources_size(struct snic *); #endif /* __SNIC_RES_H */
/* * Copyright 2023 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef __SMU_V14_0_0_PPSMC_H__ #define __SMU_V14_0_0_PPSMC_H__ /*! @mainpage PMFW-PPS (PPLib) Message Interface This documentation contains the subsections:\n\n @ref ResponseCodes\n @ref definitions\n @ref enums\n */ /** @def PPS_PMFW_IF_VER * PPS (PPLib) to PMFW IF version 1.0 */ #define PPS_PMFW_IF_VER "1.0" ///< Major.Minor /** @defgroup ResponseCodes PMFW Response Codes * @{ */ // SMU Response Codes: #define PPSMC_Result_OK 0x1 ///< Message Response OK #define PPSMC_Result_Failed 0xFF ///< Message Response Failed #define PPSMC_Result_UnknownCmd 0xFE ///< Message Response Unknown Command #define PPSMC_Result_CmdRejectedPrereq 0xFD ///< Message Response Command Failed Prerequisite #define PPSMC_Result_CmdRejectedBusy 0xFC ///< Message Response Command Rejected due to PMFW is busy. Sender should retry sending this message /** @}*/ /** @defgroup definitions Message definitions * @{ */ // Message Definitions: #define PPSMC_MSG_TestMessage 0x01 ///< To check if PMFW is alive and responding. Requirement specified by PMFW team #define PPSMC_MSG_GetPmfwVersion 0x02 ///< Get PMFW version #define PPSMC_MSG_GetDriverIfVersion 0x03 ///< Get PMFW_DRIVER_IF version #define PPSMC_MSG_PowerDownVcn1 0x04 ///< Power down VCN1 #define PPSMC_MSG_PowerUpVcn1 0x05 ///< Power up VCN1; VCN1 is power gated by default #define PPSMC_MSG_PowerDownVcn0 0x06 ///< Power down VCN0 #define PPSMC_MSG_PowerUpVcn0 0x07 ///< Power up VCN0; VCN0 is power gated by default #define PPSMC_MSG_SetHardMinVcn0 0x08 ///< For wireless display #define PPSMC_MSG_SetSoftMinGfxclk 0x09 ///< Set SoftMin for GFXCLK, argument is frequency in MHz #define PPSMC_MSG_SetHardMinVcn1 0x0A ///< For wireless display #define PPSMC_MSG_SetSoftMinVcn1 0x0B ///< Set soft min for VCN1 clocks (VCLK1 and DCLK1) #define PPSMC_MSG_PrepareMp1ForUnload 0x0C ///< Prepare PMFW for GFX driver unload #define PPSMC_MSG_SetDriverDramAddrHigh 0x0D ///< Set high 32 bits of DRAM address for Driver table transfer #define PPSMC_MSG_SetDriverDramAddrLow 0x0E ///< Set low 32 bits of DRAM address for Driver table transfer #define PPSMC_MSG_TransferTableSmu2Dram 0x0F ///< Transfer driver interface table from PMFW SRAM to DRAM #define PPSMC_MSG_TransferTableDram2Smu 0x10 ///< Transfer driver interface table from DRAM to PMFW SRAM #define PPSMC_MSG_GfxDeviceDriverReset 0x11 ///< Request GFX mode 2 reset #define PPSMC_MSG_GetEnabledSmuFeatures 0x12 ///< Get enabled features in PMFW #define PPSMC_MSG_SetHardMinSocclkByFreq 0x13 ///< Set hard min for SOC CLK #define PPSMC_MSG_SetSoftMinFclk 0x14 ///< Set hard min for FCLK #define PPSMC_MSG_SetSoftMinVcn0 0x15 ///< Set soft min for VCN0 clocks (VCLK0 and DCLK0) #define PPSMC_MSG_EnableGfxImu 0x16 ///< Enable GFX IMU #define PPSMC_MSG_spare_0x17 0x17 ///< Get GFX clock frequency #define PPSMC_MSG_spare_0x18 0x18 ///< Get FCLK frequency #define PPSMC_MSG_AllowGfxOff 0x19 ///< Inform PMFW of allowing GFXOFF entry #define PPSMC_MSG_DisallowGfxOff 0x1A ///< Inform PMFW of disallowing GFXOFF entry #define PPSMC_MSG_SetSoftMaxGfxClk 0x1B ///< Set soft max for GFX CLK #define PPSMC_MSG_SetHardMinGfxClk 0x1C ///< Set hard min for GFX CLK #define PPSMC_MSG_SetSoftMaxSocclkByFreq 0x1D ///< Set soft max for SOC CLK #define PPSMC_MSG_SetSoftMaxFclkByFreq 0x1E ///< Set soft max for FCLK #define PPSMC_MSG_SetSoftMaxVcn0 0x1F ///< Set soft max for VCN0 clocks (VCLK0 and DCLK0) #define PPSMC_MSG_spare_0x20 0x20 ///< Set power limit percentage #define PPSMC_MSG_PowerDownJpeg0 0x21 ///< Power down Jpeg of VCN0 #define PPSMC_MSG_PowerUpJpeg0 0x22 ///< Power up Jpeg of VCN0; VCN0 is power gated by default #define PPSMC_MSG_SetHardMinFclkByFreq 0x23 ///< Set hard min for FCLK #define PPSMC_MSG_SetSoftMinSocclkByFreq 0x24 ///< Set soft min for SOC CLK #define PPSMC_MSG_AllowZstates 0x25 ///< Inform PMFM of allowing Zstate entry, i.e. no Miracast activity #define PPSMC_MSG_PowerDownJpeg1 0x26 ///< Power down Jpeg of VCN1 #define PPSMC_MSG_PowerUpJpeg1 0x27 ///< Power up Jpeg of VCN1; VCN1 is power gated by default #define PPSMC_MSG_SetSoftMaxVcn1 0x28 ///< Set soft max for VCN1 clocks (VCLK1 and DCLK1) #define PPSMC_MSG_PowerDownIspByTile 0x29 ///< ISP is power gated by default #define PPSMC_MSG_PowerUpIspByTile 0x2A ///< This message is used to power up ISP tiles and enable the ISP DPM #define PPSMC_MSG_SetHardMinIspiclkByFreq 0x2B ///< Set HardMin by frequency for ISPICLK #define PPSMC_MSG_SetHardMinIspxclkByFreq 0x2C ///< Set HardMin by frequency for ISPXCLK #define PPSMC_MSG_PowerDownUmsch 0x2D ///< Power down VCN0.UMSCH (aka VSCH) scheduler #define PPSMC_MSG_PowerUpUmsch 0x2E ///< Power up VCN0.UMSCH (aka VSCH) scheduler #define PPSMC_Message_IspStutterOn_MmhubPgDis 0x2F ///< ISP StutterOn mmHub PgDis #define PPSMC_Message_IspStutterOff_MmhubPgEn 0x30 ///< ISP StufferOff mmHub PgEn #define PPSMC_MSG_PowerUpVpe 0x31 ///< Power up VPE #define PPSMC_MSG_PowerDownVpe 0x32 ///< Power down VPE #define PPSMC_MSG_GetVpeDpmTable 0x33 ///< Get VPE DPM table #define PPSMC_MSG_EnableLSdma 0x34 ///< Enable LSDMA #define PPSMC_MSG_DisableLSdma 0x35 ///< Disable LSDMA #define PPSMC_MSG_SetSoftMaxVpe 0x36 ///< #define PPSMC_MSG_SetSoftMinVpe 0x37 ///< #define PPSMC_MSG_MALLPowerController 0x38 ///< Set MALL control #define PPSMC_MSG_MALLPowerState 0x39 ///< Enter/Exit MALL PG #define PPSMC_Message_Count 0x3A ///< Total number of PPSMC messages /** @}*/ /** * @defgroup enums Enum Definitions * @{ */ /** @enum Mode_Reset_e * Mode reset type, argument for PPSMC_MSG_GfxDeviceDriverReset */ //argument for PPSMC_MSG_GfxDeviceDriverReset typedef enum { MODE1_RESET = 1, ///< Mode reset type 1 MODE2_RESET = 2 ///< Mode reset type 2 } Mode_Reset_e; /** @}*/ /** @enum ZStates_e * Zstate types, argument for PPSMC_MSG_AllowZstates */ //Argument for PPSMC_MSG_AllowZstates typedef enum { DISALLOW_ZSTATES = 0, ///< Disallow Zstates ALLOW_ZSTATES_Z8 = 8, ///< Allows Z8 only ALLOW_ZSTATES_Z9 = 9, ///< Allows Z9 and Z8 } ZStates_e; /** @}*/ #endif
// SPDX-License-Identifier: GPL-2.0-only /* * Synopsys HSDK SDP Generic PLL clock driver * * Copyright (C) 2017 Synopsys */ #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/slab.h> #define CGU_PLL_CTRL 0x000 /* ARC PLL control register */ #define CGU_PLL_STATUS 0x004 /* ARC PLL status register */ #define CGU_PLL_FMEAS 0x008 /* ARC PLL frequency measurement register */ #define CGU_PLL_MON 0x00C /* ARC PLL monitor register */ #define CGU_PLL_CTRL_ODIV_SHIFT 2 #define CGU_PLL_CTRL_IDIV_SHIFT 4 #define CGU_PLL_CTRL_FBDIV_SHIFT 9 #define CGU_PLL_CTRL_BAND_SHIFT 20 #define CGU_PLL_CTRL_ODIV_MASK GENMASK(3, CGU_PLL_CTRL_ODIV_SHIFT) #define CGU_PLL_CTRL_IDIV_MASK GENMASK(8, CGU_PLL_CTRL_IDIV_SHIFT) #define CGU_PLL_CTRL_FBDIV_MASK GENMASK(15, CGU_PLL_CTRL_FBDIV_SHIFT) #define CGU_PLL_CTRL_PD BIT(0) #define CGU_PLL_CTRL_BYPASS BIT(1) #define CGU_PLL_STATUS_LOCK BIT(0) #define CGU_PLL_STATUS_ERR BIT(1) #define HSDK_PLL_MAX_LOCK_TIME 100 /* 100 us */ #define CGU_PLL_SOURCE_MAX 1 #define CORE_IF_CLK_THRESHOLD_HZ 500000000 #define CREG_CORE_IF_CLK_DIV_1 0x0 #define CREG_CORE_IF_CLK_DIV_2 0x1 struct hsdk_pll_cfg { u32 rate; u32 idiv; u32 fbdiv; u32 odiv; u32 band; u32 bypass; }; static const struct hsdk_pll_cfg asdt_pll_cfg[] = { { 100000000, 0, 11, 3, 0, 0 }, { 133000000, 0, 15, 3, 0, 0 }, { 200000000, 1, 47, 3, 0, 0 }, { 233000000, 1, 27, 2, 0, 0 }, { 300000000, 1, 35, 2, 0, 0 }, { 333000000, 1, 39, 2, 0, 0 }, { 400000000, 1, 47, 2, 0, 0 }, { 500000000, 0, 14, 1, 0, 0 }, { 600000000, 0, 17, 1, 0, 0 }, { 700000000, 0, 20, 1, 0, 0 }, { 800000000, 0, 23, 1, 0, 0 }, { 900000000, 1, 26, 0, 0, 0 }, { 1000000000, 1, 29, 0, 0, 0 }, { 1100000000, 1, 32, 0, 0, 0 }, { 1200000000, 1, 35, 0, 0, 0 }, { 1300000000, 1, 38, 0, 0, 0 }, { 1400000000, 1, 41, 0, 0, 0 }, { 1500000000, 1, 44, 0, 0, 0 }, { 1600000000, 1, 47, 0, 0, 0 }, {} }; static const struct hsdk_pll_cfg hdmi_pll_cfg[] = { { 27000000, 0, 0, 0, 0, 1 }, { 148500000, 0, 21, 3, 0, 0 }, { 297000000, 0, 21, 2, 0, 0 }, { 540000000, 0, 19, 1, 0, 0 }, { 594000000, 0, 21, 1, 0, 0 }, {} }; struct hsdk_pll_clk { struct clk_hw hw; void __iomem *regs; void __iomem *spec_regs; const struct hsdk_pll_devdata *pll_devdata; struct device *dev; }; struct hsdk_pll_devdata { const struct hsdk_pll_cfg *pll_cfg; int (*update_rate)(struct hsdk_pll_clk *clk, unsigned long rate, const struct hsdk_pll_cfg *cfg); }; static int hsdk_pll_core_update_rate(struct hsdk_pll_clk *, unsigned long, const struct hsdk_pll_cfg *); static int hsdk_pll_comm_update_rate(struct hsdk_pll_clk *, unsigned long, const struct hsdk_pll_cfg *); static const struct hsdk_pll_devdata core_pll_devdata = { .pll_cfg = asdt_pll_cfg, .update_rate = hsdk_pll_core_update_rate, }; static const struct hsdk_pll_devdata sdt_pll_devdata = { .pll_cfg = asdt_pll_cfg, .update_rate = hsdk_pll_comm_update_rate, }; static const struct hsdk_pll_devdata hdmi_pll_devdata = { .pll_cfg = hdmi_pll_cfg, .update_rate = hsdk_pll_comm_update_rate, }; static inline void hsdk_pll_write(struct hsdk_pll_clk *clk, u32 reg, u32 val) { iowrite32(val, clk->regs + reg); } static inline u32 hsdk_pll_read(struct hsdk_pll_clk *clk, u32 reg) { return ioread32(clk->regs + reg); } static inline void hsdk_pll_set_cfg(struct hsdk_pll_clk *clk, const struct hsdk_pll_cfg *cfg) { u32 val = 0; if (cfg->bypass) { val = hsdk_pll_read(clk, CGU_PLL_CTRL); val |= CGU_PLL_CTRL_BYPASS; } else { /* Powerdown and Bypass bits should be cleared */ val |= cfg->idiv << CGU_PLL_CTRL_IDIV_SHIFT; val |= cfg->fbdiv << CGU_PLL_CTRL_FBDIV_SHIFT; val |= cfg->odiv << CGU_PLL_CTRL_ODIV_SHIFT; val |= cfg->band << CGU_PLL_CTRL_BAND_SHIFT; } dev_dbg(clk->dev, "write configuration: %#x\n", val); hsdk_pll_write(clk, CGU_PLL_CTRL, val); } static inline bool hsdk_pll_is_locked(struct hsdk_pll_clk *clk) { return !!(hsdk_pll_read(clk, CGU_PLL_STATUS) & CGU_PLL_STATUS_LOCK); } static inline bool hsdk_pll_is_err(struct hsdk_pll_clk *clk) { return !!(hsdk_pll_read(clk, CGU_PLL_STATUS) & CGU_PLL_STATUS_ERR); } static inline struct hsdk_pll_clk *to_hsdk_pll_clk(struct clk_hw *hw) { return container_of(hw, struct hsdk_pll_clk, hw); } static unsigned long hsdk_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u32 val; u64 rate; u32 idiv, fbdiv, odiv; struct hsdk_pll_clk *clk = to_hsdk_pll_clk(hw); val = hsdk_pll_read(clk, CGU_PLL_CTRL); dev_dbg(clk->dev, "current configuration: %#x\n", val); /* Check if PLL is bypassed */ if (val & CGU_PLL_CTRL_BYPASS) return parent_rate; /* Check if PLL is disabled */ if (val & CGU_PLL_CTRL_PD) return 0; /* input divider = reg.idiv + 1 */ idiv = 1 + ((val & CGU_PLL_CTRL_IDIV_MASK) >> CGU_PLL_CTRL_IDIV_SHIFT); /* fb divider = 2*(reg.fbdiv + 1) */ fbdiv = 2 * (1 + ((val & CGU_PLL_CTRL_FBDIV_MASK) >> CGU_PLL_CTRL_FBDIV_SHIFT)); /* output divider = 2^(reg.odiv) */ odiv = 1 << ((val & CGU_PLL_CTRL_ODIV_MASK) >> CGU_PLL_CTRL_ODIV_SHIFT); rate = (u64)parent_rate * fbdiv; do_div(rate, idiv * odiv); return rate; } static long hsdk_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { int i; unsigned long best_rate; struct hsdk_pll_clk *clk = to_hsdk_pll_clk(hw); const struct hsdk_pll_cfg *pll_cfg = clk->pll_devdata->pll_cfg; if (pll_cfg[0].rate == 0) return -EINVAL; best_rate = pll_cfg[0].rate; for (i = 1; pll_cfg[i].rate != 0; i++) { if (abs(rate - pll_cfg[i].rate) < abs(rate - best_rate)) best_rate = pll_cfg[i].rate; } dev_dbg(clk->dev, "chosen best rate: %lu\n", best_rate); return best_rate; } static int hsdk_pll_comm_update_rate(struct hsdk_pll_clk *clk, unsigned long rate, const struct hsdk_pll_cfg *cfg) { hsdk_pll_set_cfg(clk, cfg); /* * Wait until CGU relocks and check error status. * If after timeout CGU is unlocked yet return error. */ udelay(HSDK_PLL_MAX_LOCK_TIME); if (!hsdk_pll_is_locked(clk)) return -ETIMEDOUT; if (hsdk_pll_is_err(clk)) return -EINVAL; return 0; } static int hsdk_pll_core_update_rate(struct hsdk_pll_clk *clk, unsigned long rate, const struct hsdk_pll_cfg *cfg) { /* * When core clock exceeds 500MHz, the divider for the interface * clock must be programmed to div-by-2. */ if (rate > CORE_IF_CLK_THRESHOLD_HZ) iowrite32(CREG_CORE_IF_CLK_DIV_2, clk->spec_regs); hsdk_pll_set_cfg(clk, cfg); /* * Wait until CGU relocks and check error status. * If after timeout CGU is unlocked yet return error. */ udelay(HSDK_PLL_MAX_LOCK_TIME); if (!hsdk_pll_is_locked(clk)) return -ETIMEDOUT; if (hsdk_pll_is_err(clk)) return -EINVAL; /* * Program divider to div-by-1 if we succesfuly set core clock below * 500MHz threshold. */ if (rate <= CORE_IF_CLK_THRESHOLD_HZ) iowrite32(CREG_CORE_IF_CLK_DIV_1, clk->spec_regs); return 0; } static int hsdk_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { int i; struct hsdk_pll_clk *clk = to_hsdk_pll_clk(hw); const struct hsdk_pll_cfg *pll_cfg = clk->pll_devdata->pll_cfg; for (i = 0; pll_cfg[i].rate != 0; i++) { if (pll_cfg[i].rate == rate) { return clk->pll_devdata->update_rate(clk, rate, &pll_cfg[i]); } } dev_err(clk->dev, "invalid rate=%ld, parent_rate=%ld\n", rate, parent_rate); return -EINVAL; } static const struct clk_ops hsdk_pll_ops = { .recalc_rate = hsdk_pll_recalc_rate, .round_rate = hsdk_pll_round_rate, .set_rate = hsdk_pll_set_rate, }; static int hsdk_pll_clk_probe(struct platform_device *pdev) { int ret; const char *parent_name; unsigned int num_parents; struct hsdk_pll_clk *pll_clk; struct clk_init_data init = { }; struct device *dev = &pdev->dev; pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL); if (!pll_clk) return -ENOMEM; pll_clk->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(pll_clk->regs)) return PTR_ERR(pll_clk->regs); init.name = dev->of_node->name; init.ops = &hsdk_pll_ops; parent_name = of_clk_get_parent_name(dev->of_node, 0); init.parent_names = &parent_name; num_parents = of_clk_get_parent_count(dev->of_node); if (num_parents == 0 || num_parents > CGU_PLL_SOURCE_MAX) { dev_err(dev, "wrong clock parents number: %u\n", num_parents); return -EINVAL; } init.num_parents = num_parents; pll_clk->hw.init = &init; pll_clk->dev = dev; pll_clk->pll_devdata = of_device_get_match_data(dev); if (!pll_clk->pll_devdata) { dev_err(dev, "No OF match data provided\n"); return -EINVAL; } ret = devm_clk_hw_register(dev, &pll_clk->hw); if (ret) { dev_err(dev, "failed to register %s clock\n", init.name); return ret; } return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, &pll_clk->hw); } static void __init of_hsdk_pll_clk_setup(struct device_node *node) { int ret; const char *parent_name; unsigned int num_parents; struct hsdk_pll_clk *pll_clk; struct clk_init_data init = { }; pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL); if (!pll_clk) return; pll_clk->regs = of_iomap(node, 0); if (!pll_clk->regs) { pr_err("failed to map pll registers\n"); goto err_free_pll_clk; } pll_clk->spec_regs = of_iomap(node, 1); if (!pll_clk->spec_regs) { pr_err("failed to map pll registers\n"); goto err_unmap_comm_regs; } init.name = node->name; init.ops = &hsdk_pll_ops; parent_name = of_clk_get_parent_name(node, 0); init.parent_names = &parent_name; num_parents = of_clk_get_parent_count(node); if (num_parents > CGU_PLL_SOURCE_MAX) { pr_err("too much clock parents: %u\n", num_parents); goto err_unmap_spec_regs; } init.num_parents = num_parents; pll_clk->hw.init = &init; pll_clk->pll_devdata = &core_pll_devdata; ret = clk_hw_register(NULL, &pll_clk->hw); if (ret) { pr_err("failed to register %pOFn clock\n", node); goto err_unmap_spec_regs; } ret = of_clk_add_hw_provider(node, of_clk_hw_simple_get, &pll_clk->hw); if (ret) { pr_err("failed to add hw provider for %pOFn clock\n", node); goto err_unmap_spec_regs; } return; err_unmap_spec_regs: iounmap(pll_clk->spec_regs); err_unmap_comm_regs: iounmap(pll_clk->regs); err_free_pll_clk: kfree(pll_clk); } /* Core PLL needed early for ARC cpus timers */ CLK_OF_DECLARE(hsdk_pll_clock, "snps,hsdk-core-pll-clock", of_hsdk_pll_clk_setup); static const struct of_device_id hsdk_pll_clk_id[] = { { .compatible = "snps,hsdk-gp-pll-clock", .data = &sdt_pll_devdata}, { .compatible = "snps,hsdk-hdmi-pll-clock", .data = &hdmi_pll_devdata}, { } }; static struct platform_driver hsdk_pll_clk_driver = { .driver = { .name = "hsdk-gp-pll-clock", .of_match_table = hsdk_pll_clk_id, }, .probe = hsdk_pll_clk_probe, }; builtin_platform_driver(hsdk_pll_clk_driver);
// SPDX-License-Identifier: GPL-2.0 /* * MPC5200 PSC serial console support. * * Author: Grant Likely <[email protected]> * * Copyright (c) 2007 Secret Lab Technologies Ltd. * Copyright (c) 2007 Freescale Semiconductor, Inc. * * It is assumed that the firmware (or the platform file) has already set * up the port. */ #include "types.h" #include "io.h" #include "ops.h" /* Programmable Serial Controller (PSC) status register bits */ #define MPC52xx_PSC_SR 0x04 #define MPC52xx_PSC_SR_RXRDY 0x0100 #define MPC52xx_PSC_SR_RXFULL 0x0200 #define MPC52xx_PSC_SR_TXRDY 0x0400 #define MPC52xx_PSC_SR_TXEMP 0x0800 #define MPC52xx_PSC_BUFFER 0x0C static void *psc; static int psc_open(void) { /* Assume the firmware has already configured the PSC into * uart mode */ return 0; } static void psc_putc(unsigned char c) { while (!(in_be16(psc + MPC52xx_PSC_SR) & MPC52xx_PSC_SR_TXRDY)) ; out_8(psc + MPC52xx_PSC_BUFFER, c); } static unsigned char psc_tstc(void) { return (in_be16(psc + MPC52xx_PSC_SR) & MPC52xx_PSC_SR_RXRDY) != 0; } static unsigned char psc_getc(void) { while (!(in_be16(psc + MPC52xx_PSC_SR) & MPC52xx_PSC_SR_RXRDY)) ; return in_8(psc + MPC52xx_PSC_BUFFER); } int mpc5200_psc_console_init(void *devp, struct serial_console_data *scdp) { /* Get the base address of the psc registers */ if (dt_get_virtual_reg(devp, &psc, 1) < 1) return -1; scdp->open = psc_open; scdp->putc = psc_putc; scdp->getc = psc_getc; scdp->tstc = psc_tstc; return 0; }
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __ASM_SH73A0_H__ #define __ASM_SH73A0_H__ extern const struct smp_operations sh73a0_smp_ops; #endif /* __ASM_SH73A0_H__ */
/* SPDX-License-Identifier: GPL-2.0 */ /* * Glibc independent futex library for testing kernel functionality. * Shamelessly stolen from Darren Hart <[email protected]> * http://git.kernel.org/cgit/linux/kernel/git/dvhart/futextest.git/ */ #ifndef _FUTEX_H #define _FUTEX_H #include <unistd.h> #include <sys/syscall.h> #include <sys/types.h> #include <linux/futex.h> struct bench_futex_parameters { bool silent; bool fshared; bool mlockall; bool multi; /* lock-pi */ bool pi; /* requeue-pi */ bool broadcast; /* requeue */ unsigned int runtime; /* seconds*/ unsigned int nthreads; unsigned int nfutexes; unsigned int nwakes; unsigned int nrequeue; }; /** * futex_syscall() - SYS_futex syscall wrapper * @uaddr: address of first futex * @op: futex op code * @val: typically expected value of uaddr, but varies by op * @timeout: typically an absolute struct timespec (except where noted * otherwise). Overloaded by some ops * @uaddr2: address of second futex for some ops * @val3: varies by op * @opflags: flags to be bitwise OR'd with op, such as FUTEX_PRIVATE_FLAG * * futex_syscall() is used by all the following futex op wrappers. It can also be * used for misuse and abuse testing. Generally, the specific op wrappers * should be used instead. * * These argument descriptions are the defaults for all * like-named arguments in the following wrappers except where noted below. */ static inline int futex_syscall(volatile u_int32_t *uaddr, int op, u_int32_t val, struct timespec *timeout, volatile u_int32_t *uaddr2, int val3, int opflags) { return syscall(SYS_futex, uaddr, op | opflags, val, timeout, uaddr2, val3); } static inline int futex_syscall_nr_requeue(volatile u_int32_t *uaddr, int op, u_int32_t val, int nr_requeue, volatile u_int32_t *uaddr2, int val3, int opflags) { return syscall(SYS_futex, uaddr, op | opflags, val, nr_requeue, uaddr2, val3); } /** * futex_wait() - block on uaddr with optional timeout * @timeout: relative timeout */ static inline int futex_wait(u_int32_t *uaddr, u_int32_t val, struct timespec *timeout, int opflags) { return futex_syscall(uaddr, FUTEX_WAIT, val, timeout, NULL, 0, opflags); } /** * futex_wake() - wake one or more tasks blocked on uaddr * @nr_wake: wake up to this many tasks */ static inline int futex_wake(u_int32_t *uaddr, int nr_wake, int opflags) { return futex_syscall(uaddr, FUTEX_WAKE, nr_wake, NULL, NULL, 0, opflags); } /** * futex_lock_pi() - block on uaddr as a PI mutex */ static inline int futex_lock_pi(u_int32_t *uaddr, struct timespec *timeout, int opflags) { return futex_syscall(uaddr, FUTEX_LOCK_PI, 0, timeout, NULL, 0, opflags); } /** * futex_unlock_pi() - release uaddr as a PI mutex, waking the top waiter */ static inline int futex_unlock_pi(u_int32_t *uaddr, int opflags) { return futex_syscall(uaddr, FUTEX_UNLOCK_PI, 0, NULL, NULL, 0, opflags); } /** * futex_cmp_requeue() - requeue tasks from uaddr to uaddr2 * @nr_wake: wake up to this many tasks * @nr_requeue: requeue up to this many tasks */ static inline int futex_cmp_requeue(u_int32_t *uaddr, u_int32_t val, u_int32_t *uaddr2, int nr_wake, int nr_requeue, int opflags) { return futex_syscall_nr_requeue(uaddr, FUTEX_CMP_REQUEUE, nr_wake, nr_requeue, uaddr2, val, opflags); } /** * futex_wait_requeue_pi() - block on uaddr and prepare to requeue to uaddr2 * @uaddr: non-PI futex source * @uaddr2: PI futex target * * This is the first half of the requeue_pi mechanism. It shall always be * paired with futex_cmp_requeue_pi(). */ static inline int futex_wait_requeue_pi(u_int32_t *uaddr, u_int32_t val, u_int32_t *uaddr2, struct timespec *timeout, int opflags) { return futex_syscall(uaddr, FUTEX_WAIT_REQUEUE_PI, val, timeout, uaddr2, 0, opflags); } /** * futex_cmp_requeue_pi() - requeue tasks from uaddr to uaddr2 * @uaddr: non-PI futex source * @uaddr2: PI futex target * @nr_requeue: requeue up to this many tasks * * This is the second half of the requeue_pi mechanism. It shall always be * paired with futex_wait_requeue_pi(). The first waker is always awoken. */ static inline int futex_cmp_requeue_pi(u_int32_t *uaddr, u_int32_t val, u_int32_t *uaddr2, int nr_requeue, int opflags) { return futex_syscall_nr_requeue(uaddr, FUTEX_CMP_REQUEUE_PI, 1, nr_requeue, uaddr2, val, opflags); } #endif /* _FUTEX_H */
/* SPDX-License-Identifier: GPL-2.0 */ /* * cxd2880_dvbt2.h * Sony CXD2880 DVB-T2/T tuner + demodulator driver * DVB-T2 related definitions * * Copyright (C) 2016, 2017, 2018 Sony Semiconductor Solutions Corporation */ #ifndef CXD2880_DVBT2_H #define CXD2880_DVBT2_H #include "cxd2880_common.h" enum cxd2880_dvbt2_profile { CXD2880_DVBT2_PROFILE_BASE, CXD2880_DVBT2_PROFILE_LITE, CXD2880_DVBT2_PROFILE_ANY }; enum cxd2880_dvbt2_version { CXD2880_DVBT2_V111, CXD2880_DVBT2_V121, CXD2880_DVBT2_V131 }; enum cxd2880_dvbt2_s1 { CXD2880_DVBT2_S1_BASE_SISO = 0x00, CXD2880_DVBT2_S1_BASE_MISO = 0x01, CXD2880_DVBT2_S1_NON_DVBT2 = 0x02, CXD2880_DVBT2_S1_LITE_SISO = 0x03, CXD2880_DVBT2_S1_LITE_MISO = 0x04, CXD2880_DVBT2_S1_RSVD3 = 0x05, CXD2880_DVBT2_S1_RSVD4 = 0x06, CXD2880_DVBT2_S1_RSVD5 = 0x07, CXD2880_DVBT2_S1_UNKNOWN = 0xff }; enum cxd2880_dvbt2_base_s2 { CXD2880_DVBT2_BASE_S2_M2K_G_ANY = 0x00, CXD2880_DVBT2_BASE_S2_M8K_G_DVBT = 0x01, CXD2880_DVBT2_BASE_S2_M4K_G_ANY = 0x02, CXD2880_DVBT2_BASE_S2_M1K_G_ANY = 0x03, CXD2880_DVBT2_BASE_S2_M16K_G_ANY = 0x04, CXD2880_DVBT2_BASE_S2_M32K_G_DVBT = 0x05, CXD2880_DVBT2_BASE_S2_M8K_G_DVBT2 = 0x06, CXD2880_DVBT2_BASE_S2_M32K_G_DVBT2 = 0x07, CXD2880_DVBT2_BASE_S2_UNKNOWN = 0xff }; enum cxd2880_dvbt2_lite_s2 { CXD2880_DVBT2_LITE_S2_M2K_G_ANY = 0x00, CXD2880_DVBT2_LITE_S2_M8K_G_DVBT = 0x01, CXD2880_DVBT2_LITE_S2_M4K_G_ANY = 0x02, CXD2880_DVBT2_LITE_S2_M16K_G_DVBT2 = 0x03, CXD2880_DVBT2_LITE_S2_M16K_G_DVBT = 0x04, CXD2880_DVBT2_LITE_S2_RSVD1 = 0x05, CXD2880_DVBT2_LITE_S2_M8K_G_DVBT2 = 0x06, CXD2880_DVBT2_LITE_S2_RSVD2 = 0x07, CXD2880_DVBT2_LITE_S2_UNKNOWN = 0xff }; enum cxd2880_dvbt2_guard { CXD2880_DVBT2_G1_32 = 0x00, CXD2880_DVBT2_G1_16 = 0x01, CXD2880_DVBT2_G1_8 = 0x02, CXD2880_DVBT2_G1_4 = 0x03, CXD2880_DVBT2_G1_128 = 0x04, CXD2880_DVBT2_G19_128 = 0x05, CXD2880_DVBT2_G19_256 = 0x06, CXD2880_DVBT2_G_RSVD1 = 0x07, CXD2880_DVBT2_G_UNKNOWN = 0xff }; enum cxd2880_dvbt2_mode { CXD2880_DVBT2_M2K = 0x00, CXD2880_DVBT2_M8K = 0x01, CXD2880_DVBT2_M4K = 0x02, CXD2880_DVBT2_M1K = 0x03, CXD2880_DVBT2_M16K = 0x04, CXD2880_DVBT2_M32K = 0x05, CXD2880_DVBT2_M_RSVD1 = 0x06, CXD2880_DVBT2_M_RSVD2 = 0x07 }; enum cxd2880_dvbt2_bw { CXD2880_DVBT2_BW_8 = 0x00, CXD2880_DVBT2_BW_7 = 0x01, CXD2880_DVBT2_BW_6 = 0x02, CXD2880_DVBT2_BW_5 = 0x03, CXD2880_DVBT2_BW_10 = 0x04, CXD2880_DVBT2_BW_1_7 = 0x05, CXD2880_DVBT2_BW_RSVD1 = 0x06, CXD2880_DVBT2_BW_RSVD2 = 0x07, CXD2880_DVBT2_BW_RSVD3 = 0x08, CXD2880_DVBT2_BW_RSVD4 = 0x09, CXD2880_DVBT2_BW_RSVD5 = 0x0a, CXD2880_DVBT2_BW_RSVD6 = 0x0b, CXD2880_DVBT2_BW_RSVD7 = 0x0c, CXD2880_DVBT2_BW_RSVD8 = 0x0d, CXD2880_DVBT2_BW_RSVD9 = 0x0e, CXD2880_DVBT2_BW_RSVD10 = 0x0f, CXD2880_DVBT2_BW_UNKNOWN = 0xff }; enum cxd2880_dvbt2_l1pre_type { CXD2880_DVBT2_L1PRE_TYPE_TS = 0x00, CXD2880_DVBT2_L1PRE_TYPE_GS = 0x01, CXD2880_DVBT2_L1PRE_TYPE_TS_GS = 0x02, CXD2880_DVBT2_L1PRE_TYPE_RESERVED = 0x03, CXD2880_DVBT2_L1PRE_TYPE_UNKNOWN = 0xff }; enum cxd2880_dvbt2_papr { CXD2880_DVBT2_PAPR_0 = 0x00, CXD2880_DVBT2_PAPR_1 = 0x01, CXD2880_DVBT2_PAPR_2 = 0x02, CXD2880_DVBT2_PAPR_3 = 0x03, CXD2880_DVBT2_PAPR_RSVD1 = 0x04, CXD2880_DVBT2_PAPR_RSVD2 = 0x05, CXD2880_DVBT2_PAPR_RSVD3 = 0x06, CXD2880_DVBT2_PAPR_RSVD4 = 0x07, CXD2880_DVBT2_PAPR_RSVD5 = 0x08, CXD2880_DVBT2_PAPR_RSVD6 = 0x09, CXD2880_DVBT2_PAPR_RSVD7 = 0x0a, CXD2880_DVBT2_PAPR_RSVD8 = 0x0b, CXD2880_DVBT2_PAPR_RSVD9 = 0x0c, CXD2880_DVBT2_PAPR_RSVD10 = 0x0d, CXD2880_DVBT2_PAPR_RSVD11 = 0x0e, CXD2880_DVBT2_PAPR_RSVD12 = 0x0f, CXD2880_DVBT2_PAPR_UNKNOWN = 0xff }; enum cxd2880_dvbt2_l1post_constell { CXD2880_DVBT2_L1POST_BPSK = 0x00, CXD2880_DVBT2_L1POST_QPSK = 0x01, CXD2880_DVBT2_L1POST_QAM16 = 0x02, CXD2880_DVBT2_L1POST_QAM64 = 0x03, CXD2880_DVBT2_L1POST_C_RSVD1 = 0x04, CXD2880_DVBT2_L1POST_C_RSVD2 = 0x05, CXD2880_DVBT2_L1POST_C_RSVD3 = 0x06, CXD2880_DVBT2_L1POST_C_RSVD4 = 0x07, CXD2880_DVBT2_L1POST_C_RSVD5 = 0x08, CXD2880_DVBT2_L1POST_C_RSVD6 = 0x09, CXD2880_DVBT2_L1POST_C_RSVD7 = 0x0a, CXD2880_DVBT2_L1POST_C_RSVD8 = 0x0b, CXD2880_DVBT2_L1POST_C_RSVD9 = 0x0c, CXD2880_DVBT2_L1POST_C_RSVD10 = 0x0d, CXD2880_DVBT2_L1POST_C_RSVD11 = 0x0e, CXD2880_DVBT2_L1POST_C_RSVD12 = 0x0f, CXD2880_DVBT2_L1POST_CONSTELL_UNKNOWN = 0xff }; enum cxd2880_dvbt2_l1post_cr { CXD2880_DVBT2_L1POST_R1_2 = 0x00, CXD2880_DVBT2_L1POST_R_RSVD1 = 0x01, CXD2880_DVBT2_L1POST_R_RSVD2 = 0x02, CXD2880_DVBT2_L1POST_R_RSVD3 = 0x03, CXD2880_DVBT2_L1POST_R_UNKNOWN = 0xff }; enum cxd2880_dvbt2_l1post_fec_type { CXD2880_DVBT2_L1POST_FEC_LDPC16K = 0x00, CXD2880_DVBT2_L1POST_FEC_RSVD1 = 0x01, CXD2880_DVBT2_L1POST_FEC_RSVD2 = 0x02, CXD2880_DVBT2_L1POST_FEC_RSVD3 = 0x03, CXD2880_DVBT2_L1POST_FEC_UNKNOWN = 0xff }; enum cxd2880_dvbt2_pp { CXD2880_DVBT2_PP1 = 0x00, CXD2880_DVBT2_PP2 = 0x01, CXD2880_DVBT2_PP3 = 0x02, CXD2880_DVBT2_PP4 = 0x03, CXD2880_DVBT2_PP5 = 0x04, CXD2880_DVBT2_PP6 = 0x05, CXD2880_DVBT2_PP7 = 0x06, CXD2880_DVBT2_PP8 = 0x07, CXD2880_DVBT2_PP_RSVD1 = 0x08, CXD2880_DVBT2_PP_RSVD2 = 0x09, CXD2880_DVBT2_PP_RSVD3 = 0x0a, CXD2880_DVBT2_PP_RSVD4 = 0x0b, CXD2880_DVBT2_PP_RSVD5 = 0x0c, CXD2880_DVBT2_PP_RSVD6 = 0x0d, CXD2880_DVBT2_PP_RSVD7 = 0x0e, CXD2880_DVBT2_PP_RSVD8 = 0x0f, CXD2880_DVBT2_PP_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_code_rate { CXD2880_DVBT2_R1_2 = 0x00, CXD2880_DVBT2_R3_5 = 0x01, CXD2880_DVBT2_R2_3 = 0x02, CXD2880_DVBT2_R3_4 = 0x03, CXD2880_DVBT2_R4_5 = 0x04, CXD2880_DVBT2_R5_6 = 0x05, CXD2880_DVBT2_R1_3 = 0x06, CXD2880_DVBT2_R2_5 = 0x07, CXD2880_DVBT2_PLP_CR_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_constell { CXD2880_DVBT2_QPSK = 0x00, CXD2880_DVBT2_QAM16 = 0x01, CXD2880_DVBT2_QAM64 = 0x02, CXD2880_DVBT2_QAM256 = 0x03, CXD2880_DVBT2_CON_RSVD1 = 0x04, CXD2880_DVBT2_CON_RSVD2 = 0x05, CXD2880_DVBT2_CON_RSVD3 = 0x06, CXD2880_DVBT2_CON_RSVD4 = 0x07, CXD2880_DVBT2_CONSTELL_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_type { CXD2880_DVBT2_PLP_TYPE_COMMON = 0x00, CXD2880_DVBT2_PLP_TYPE_DATA1 = 0x01, CXD2880_DVBT2_PLP_TYPE_DATA2 = 0x02, CXD2880_DVBT2_PLP_TYPE_RSVD1 = 0x03, CXD2880_DVBT2_PLP_TYPE_RSVD2 = 0x04, CXD2880_DVBT2_PLP_TYPE_RSVD3 = 0x05, CXD2880_DVBT2_PLP_TYPE_RSVD4 = 0x06, CXD2880_DVBT2_PLP_TYPE_RSVD5 = 0x07, CXD2880_DVBT2_PLP_TYPE_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_payload { CXD2880_DVBT2_PLP_PAYLOAD_GFPS = 0x00, CXD2880_DVBT2_PLP_PAYLOAD_GCS = 0x01, CXD2880_DVBT2_PLP_PAYLOAD_GSE = 0x02, CXD2880_DVBT2_PLP_PAYLOAD_TS = 0x03, CXD2880_DVBT2_PLP_PAYLOAD_RSVD1 = 0x04, CXD2880_DVBT2_PLP_PAYLOAD_RSVD2 = 0x05, CXD2880_DVBT2_PLP_PAYLOAD_RSVD3 = 0x06, CXD2880_DVBT2_PLP_PAYLOAD_RSVD4 = 0x07, CXD2880_DVBT2_PLP_PAYLOAD_RSVD5 = 0x08, CXD2880_DVBT2_PLP_PAYLOAD_RSVD6 = 0x09, CXD2880_DVBT2_PLP_PAYLOAD_RSVD7 = 0x0a, CXD2880_DVBT2_PLP_PAYLOAD_RSVD8 = 0x0b, CXD2880_DVBT2_PLP_PAYLOAD_RSVD9 = 0x0c, CXD2880_DVBT2_PLP_PAYLOAD_RSVD10 = 0x0d, CXD2880_DVBT2_PLP_PAYLOAD_RSVD11 = 0x0e, CXD2880_DVBT2_PLP_PAYLOAD_RSVD12 = 0x0f, CXD2880_DVBT2_PLP_PAYLOAD_RSVD13 = 0x10, CXD2880_DVBT2_PLP_PAYLOAD_RSVD14 = 0x11, CXD2880_DVBT2_PLP_PAYLOAD_RSVD15 = 0x12, CXD2880_DVBT2_PLP_PAYLOAD_RSVD16 = 0x13, CXD2880_DVBT2_PLP_PAYLOAD_RSVD17 = 0x14, CXD2880_DVBT2_PLP_PAYLOAD_RSVD18 = 0x15, CXD2880_DVBT2_PLP_PAYLOAD_RSVD19 = 0x16, CXD2880_DVBT2_PLP_PAYLOAD_RSVD20 = 0x17, CXD2880_DVBT2_PLP_PAYLOAD_RSVD21 = 0x18, CXD2880_DVBT2_PLP_PAYLOAD_RSVD22 = 0x19, CXD2880_DVBT2_PLP_PAYLOAD_RSVD23 = 0x1a, CXD2880_DVBT2_PLP_PAYLOAD_RSVD24 = 0x1b, CXD2880_DVBT2_PLP_PAYLOAD_RSVD25 = 0x1c, CXD2880_DVBT2_PLP_PAYLOAD_RSVD26 = 0x1d, CXD2880_DVBT2_PLP_PAYLOAD_RSVD27 = 0x1e, CXD2880_DVBT2_PLP_PAYLOAD_RSVD28 = 0x1f, CXD2880_DVBT2_PLP_PAYLOAD_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_fec { CXD2880_DVBT2_FEC_LDPC_16K = 0x00, CXD2880_DVBT2_FEC_LDPC_64K = 0x01, CXD2880_DVBT2_FEC_RSVD1 = 0x02, CXD2880_DVBT2_FEC_RSVD2 = 0x03, CXD2880_DVBT2_FEC_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_mode { CXD2880_DVBT2_PLP_MODE_NOTSPECIFIED = 0x00, CXD2880_DVBT2_PLP_MODE_NM = 0x01, CXD2880_DVBT2_PLP_MODE_HEM = 0x02, CXD2880_DVBT2_PLP_MODE_RESERVED = 0x03, CXD2880_DVBT2_PLP_MODE_UNKNOWN = 0xff }; enum cxd2880_dvbt2_plp_btype { CXD2880_DVBT2_PLP_COMMON, CXD2880_DVBT2_PLP_DATA }; enum cxd2880_dvbt2_stream { CXD2880_DVBT2_STREAM_GENERIC_PACKETIZED = 0x00, CXD2880_DVBT2_STREAM_GENERIC_CONTINUOUS = 0x01, CXD2880_DVBT2_STREAM_GENERIC_ENCAPSULATED = 0x02, CXD2880_DVBT2_STREAM_TRANSPORT = 0x03, CXD2880_DVBT2_STREAM_UNKNOWN = 0xff }; struct cxd2880_dvbt2_l1pre { enum cxd2880_dvbt2_l1pre_type type; u8 bw_ext; enum cxd2880_dvbt2_s1 s1; u8 s2; u8 mixed; enum cxd2880_dvbt2_mode fft_mode; u8 l1_rep; enum cxd2880_dvbt2_guard gi; enum cxd2880_dvbt2_papr papr; enum cxd2880_dvbt2_l1post_constell mod; enum cxd2880_dvbt2_l1post_cr cr; enum cxd2880_dvbt2_l1post_fec_type fec; u32 l1_post_size; u32 l1_post_info_size; enum cxd2880_dvbt2_pp pp; u8 tx_id_availability; u16 cell_id; u16 network_id; u16 sys_id; u8 num_frames; u16 num_symbols; u8 regen; u8 post_ext; u8 num_rf_freqs; u8 rf_idx; enum cxd2880_dvbt2_version t2_version; u8 l1_post_scrambled; u8 t2_base_lite; u32 crc32; }; struct cxd2880_dvbt2_plp { u8 id; enum cxd2880_dvbt2_plp_type type; enum cxd2880_dvbt2_plp_payload payload; u8 ff; u8 first_rf_idx; u8 first_frm_idx; u8 group_id; enum cxd2880_dvbt2_plp_constell constell; enum cxd2880_dvbt2_plp_code_rate plp_cr; u8 rot; enum cxd2880_dvbt2_plp_fec fec; u16 num_blocks_max; u8 frm_int; u8 til_len; u8 til_type; u8 in_band_a_flag; u8 in_band_b_flag; u16 rsvd; enum cxd2880_dvbt2_plp_mode plp_mode; u8 static_flag; u8 static_padding_flag; }; struct cxd2880_dvbt2_l1post { u16 sub_slices_per_frame; u8 num_plps; u8 num_aux; u8 aux_cfg_rfu; u8 rf_idx; u32 freq; u8 fef_type; u32 fef_length; u8 fef_intvl; }; struct cxd2880_dvbt2_ofdm { u8 mixed; u8 is_miso; enum cxd2880_dvbt2_mode mode; enum cxd2880_dvbt2_guard gi; enum cxd2880_dvbt2_pp pp; u8 bw_ext; enum cxd2880_dvbt2_papr papr; u16 num_symbols; }; struct cxd2880_dvbt2_bbheader { enum cxd2880_dvbt2_stream stream_input; u8 is_single_input_stream; u8 is_constant_coding_modulation; u8 issy_indicator; u8 null_packet_deletion; u8 ext; u8 input_stream_identifier; u16 user_packet_length; u16 data_field_length; u8 sync_byte; u32 issy; enum cxd2880_dvbt2_plp_mode plp_mode; }; #endif
/* * Copyright (C) 2017 Jernej Skrabec <[email protected]> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #ifndef _SUN8I_UI_SCALER_H_ #define _SUN8I_UI_SCALER_H_ #include "sun8i_mixer.h" #define DE2_UI_SCALER_UNIT_SIZE 0x10000 #define DE3_UI_SCALER_UNIT_SIZE 0x08000 /* this two macros assumes 16 fractional bits which is standard in DRM */ #define SUN8I_UI_SCALER_SCALE_MIN 1 #define SUN8I_UI_SCALER_SCALE_MAX ((1UL << 20) - 1) #define SUN8I_UI_SCALER_SCALE_FRAC 20 #define SUN8I_UI_SCALER_PHASE_FRAC 20 #define SUN8I_UI_SCALER_COEFF_COUNT 16 #define SUN8I_UI_SCALER_SIZE(w, h) (((h) - 1) << 16 | ((w) - 1)) #define SUN8I_SCALER_GSU_CTRL(base) ((base) + 0x0) #define SUN8I_SCALER_GSU_OUTSIZE(base) ((base) + 0x40) #define SUN8I_SCALER_GSU_INSIZE(base) ((base) + 0x80) #define SUN8I_SCALER_GSU_HSTEP(base) ((base) + 0x88) #define SUN8I_SCALER_GSU_VSTEP(base) ((base) + 0x8c) #define SUN8I_SCALER_GSU_HPHASE(base) ((base) + 0x90) #define SUN8I_SCALER_GSU_VPHASE(base) ((base) + 0x98) #define SUN8I_SCALER_GSU_HCOEFF(base, index) ((base) + 0x200 + 0x4 * (index)) #define SUN8I_SCALER_GSU_CTRL_EN BIT(0) #define SUN8I_SCALER_GSU_CTRL_COEFF_RDY BIT(4) void sun8i_ui_scaler_enable(struct sun8i_mixer *mixer, int layer, bool enable); void sun8i_ui_scaler_setup(struct sun8i_mixer *mixer, int layer, u32 src_w, u32 src_h, u32 dst_w, u32 dst_h, u32 hscale, u32 vscale, u32 hphase, u32 vphase); #endif
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include "messages.h" #include "ctree.h" #include "disk-io.h" #include "print-tree.h" #include "accessors.h" #include "tree-checker.h" #include "volumes.h" #include "raid-stripe-tree.h" struct root_name_map { u64 id; const char *name; }; static const struct root_name_map root_map[] = { { BTRFS_ROOT_TREE_OBJECTID, "ROOT_TREE" }, { BTRFS_EXTENT_TREE_OBJECTID, "EXTENT_TREE" }, { BTRFS_CHUNK_TREE_OBJECTID, "CHUNK_TREE" }, { BTRFS_DEV_TREE_OBJECTID, "DEV_TREE" }, { BTRFS_FS_TREE_OBJECTID, "FS_TREE" }, { BTRFS_CSUM_TREE_OBJECTID, "CSUM_TREE" }, { BTRFS_TREE_LOG_OBJECTID, "TREE_LOG" }, { BTRFS_QUOTA_TREE_OBJECTID, "QUOTA_TREE" }, { BTRFS_UUID_TREE_OBJECTID, "UUID_TREE" }, { BTRFS_FREE_SPACE_TREE_OBJECTID, "FREE_SPACE_TREE" }, { BTRFS_BLOCK_GROUP_TREE_OBJECTID, "BLOCK_GROUP_TREE" }, { BTRFS_DATA_RELOC_TREE_OBJECTID, "DATA_RELOC_TREE" }, { BTRFS_RAID_STRIPE_TREE_OBJECTID, "RAID_STRIPE_TREE" }, }; const char *btrfs_root_name(const struct btrfs_key *key, char *buf) { int i; if (key->objectid == BTRFS_TREE_RELOC_OBJECTID) { snprintf(buf, BTRFS_ROOT_NAME_BUF_LEN, "TREE_RELOC offset=%llu", key->offset); return buf; } for (i = 0; i < ARRAY_SIZE(root_map); i++) { if (root_map[i].id == key->objectid) return root_map[i].name; } snprintf(buf, BTRFS_ROOT_NAME_BUF_LEN, "%llu", key->objectid); return buf; } static void print_chunk(const struct extent_buffer *eb, struct btrfs_chunk *chunk) { int num_stripes = btrfs_chunk_num_stripes(eb, chunk); int i; pr_info("\t\tchunk length %llu owner %llu type %llu num_stripes %d\n", btrfs_chunk_length(eb, chunk), btrfs_chunk_owner(eb, chunk), btrfs_chunk_type(eb, chunk), num_stripes); for (i = 0 ; i < num_stripes ; i++) { pr_info("\t\t\tstripe %d devid %llu offset %llu\n", i, btrfs_stripe_devid_nr(eb, chunk, i), btrfs_stripe_offset_nr(eb, chunk, i)); } } static void print_dev_item(const struct extent_buffer *eb, struct btrfs_dev_item *dev_item) { pr_info("\t\tdev item devid %llu total_bytes %llu bytes used %llu\n", btrfs_device_id(eb, dev_item), btrfs_device_total_bytes(eb, dev_item), btrfs_device_bytes_used(eb, dev_item)); } static void print_extent_data_ref(const struct extent_buffer *eb, struct btrfs_extent_data_ref *ref) { pr_cont("extent data backref root %llu objectid %llu offset %llu count %u\n", btrfs_extent_data_ref_root(eb, ref), btrfs_extent_data_ref_objectid(eb, ref), btrfs_extent_data_ref_offset(eb, ref), btrfs_extent_data_ref_count(eb, ref)); } static void print_extent_owner_ref(const struct extent_buffer *eb, const struct btrfs_extent_owner_ref *ref) { ASSERT(btrfs_fs_incompat(eb->fs_info, SIMPLE_QUOTA)); pr_cont("extent data owner root %llu\n", btrfs_extent_owner_ref_root_id(eb, ref)); } static void print_extent_item(const struct extent_buffer *eb, int slot, int type) { struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_extent_owner_ref *oref; struct btrfs_disk_key key; unsigned long end; unsigned long ptr; u32 item_size = btrfs_item_size(eb, slot); u64 flags; u64 offset; int ref_index = 0; if (unlikely(item_size < sizeof(*ei))) { btrfs_err(eb->fs_info, "unexpected extent item size, has %u expect >= %zu", item_size, sizeof(*ei)); return; } ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item); flags = btrfs_extent_flags(eb, ei); pr_info("\t\textent refs %llu gen %llu flags %llu\n", btrfs_extent_refs(eb, ei), btrfs_extent_generation(eb, ei), flags); if ((type == BTRFS_EXTENT_ITEM_KEY) && flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { struct btrfs_tree_block_info *info; info = (struct btrfs_tree_block_info *)(ei + 1); btrfs_tree_block_key(eb, info, &key); pr_info("\t\ttree block key (%llu %u %llu) level %d\n", btrfs_disk_key_objectid(&key), key.type, btrfs_disk_key_offset(&key), btrfs_tree_block_level(eb, info)); iref = (struct btrfs_extent_inline_ref *)(info + 1); } else { iref = (struct btrfs_extent_inline_ref *)(ei + 1); } ptr = (unsigned long)iref; end = (unsigned long)ei + item_size; while (ptr < end) { iref = (struct btrfs_extent_inline_ref *)ptr; type = btrfs_extent_inline_ref_type(eb, iref); offset = btrfs_extent_inline_ref_offset(eb, iref); pr_info("\t\tref#%d: ", ref_index++); switch (type) { case BTRFS_TREE_BLOCK_REF_KEY: pr_cont("tree block backref root %llu\n", offset); break; case BTRFS_SHARED_BLOCK_REF_KEY: pr_cont("shared block backref parent %llu\n", offset); /* * offset is supposed to be a tree block which * must be aligned to nodesize. */ if (!IS_ALIGNED(offset, eb->fs_info->sectorsize)) pr_info( "\t\t\t(parent %llu not aligned to sectorsize %u)\n", offset, eb->fs_info->sectorsize); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = (struct btrfs_extent_data_ref *)(&iref->offset); print_extent_data_ref(eb, dref); break; case BTRFS_SHARED_DATA_REF_KEY: sref = (struct btrfs_shared_data_ref *)(iref + 1); pr_cont("shared data backref parent %llu count %u\n", offset, btrfs_shared_data_ref_count(eb, sref)); /* * Offset is supposed to be a tree block which must be * aligned to sectorsize. */ if (!IS_ALIGNED(offset, eb->fs_info->sectorsize)) pr_info( "\t\t\t(parent %llu not aligned to sectorsize %u)\n", offset, eb->fs_info->sectorsize); break; case BTRFS_EXTENT_OWNER_REF_KEY: oref = (struct btrfs_extent_owner_ref *)(&iref->offset); print_extent_owner_ref(eb, oref); break; default: pr_cont("(extent %llu has INVALID ref type %d)\n", eb->start, type); return; } ptr += btrfs_extent_inline_ref_size(type); } WARN_ON(ptr > end); } static void print_uuid_item(const struct extent_buffer *l, unsigned long offset, u32 item_size) { if (!IS_ALIGNED(item_size, sizeof(u64))) { pr_warn("BTRFS: uuid item with illegal size %lu!\n", (unsigned long)item_size); return; } while (item_size) { __le64 subvol_id; read_extent_buffer(l, &subvol_id, offset, sizeof(subvol_id)); pr_info("\t\tsubvol_id %llu\n", le64_to_cpu(subvol_id)); item_size -= sizeof(u64); offset += sizeof(u64); } } static void print_raid_stripe_key(const struct extent_buffer *eb, u32 item_size, struct btrfs_stripe_extent *stripe) { const int num_stripes = btrfs_num_raid_stripes(item_size); for (int i = 0; i < num_stripes; i++) pr_info("\t\t\tstride %d devid %llu physical %llu\n", i, btrfs_raid_stride_devid(eb, &stripe->strides[i]), btrfs_raid_stride_physical(eb, &stripe->strides[i])); } /* * Helper to output refs and locking status of extent buffer. Useful to debug * race condition related problems. */ static void print_eb_refs_lock(const struct extent_buffer *eb) { #ifdef CONFIG_BTRFS_DEBUG btrfs_info(eb->fs_info, "refs %u lock_owner %u current %u", atomic_read(&eb->refs), eb->lock_owner, current->pid); #endif } void btrfs_print_leaf(const struct extent_buffer *l) { struct btrfs_fs_info *fs_info; int i; u32 type, nr; struct btrfs_root_item *ri; struct btrfs_dir_item *di; struct btrfs_inode_item *ii; struct btrfs_block_group_item *bi; struct btrfs_file_extent_item *fi; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_dev_extent *dev_extent; struct btrfs_key key; struct btrfs_key found_key; if (!l) return; fs_info = l->fs_info; nr = btrfs_header_nritems(l); btrfs_info(fs_info, "leaf %llu gen %llu total ptrs %d free space %d owner %llu", btrfs_header_bytenr(l), btrfs_header_generation(l), nr, btrfs_leaf_free_space(l), btrfs_header_owner(l)); print_eb_refs_lock(l); for (i = 0 ; i < nr ; i++) { btrfs_item_key_to_cpu(l, &key, i); type = key.type; pr_info("\titem %d key (%llu %u %llu) itemoff %d itemsize %d\n", i, key.objectid, type, key.offset, btrfs_item_offset(l, i), btrfs_item_size(l, i)); switch (type) { case BTRFS_INODE_ITEM_KEY: ii = btrfs_item_ptr(l, i, struct btrfs_inode_item); pr_info("\t\tinode generation %llu size %llu mode %o\n", btrfs_inode_generation(l, ii), btrfs_inode_size(l, ii), btrfs_inode_mode(l, ii)); break; case BTRFS_DIR_ITEM_KEY: di = btrfs_item_ptr(l, i, struct btrfs_dir_item); btrfs_dir_item_key_to_cpu(l, di, &found_key); pr_info("\t\tdir oid %llu flags %u\n", found_key.objectid, btrfs_dir_flags(l, di)); break; case BTRFS_ROOT_ITEM_KEY: ri = btrfs_item_ptr(l, i, struct btrfs_root_item); pr_info("\t\troot data bytenr %llu refs %u\n", btrfs_disk_root_bytenr(l, ri), btrfs_disk_root_refs(l, ri)); break; case BTRFS_EXTENT_ITEM_KEY: case BTRFS_METADATA_ITEM_KEY: print_extent_item(l, i, type); break; case BTRFS_TREE_BLOCK_REF_KEY: pr_info("\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: pr_info("\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = btrfs_item_ptr(l, i, struct btrfs_extent_data_ref); print_extent_data_ref(l, dref); break; case BTRFS_SHARED_DATA_REF_KEY: sref = btrfs_item_ptr(l, i, struct btrfs_shared_data_ref); pr_info("\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(l, sref)); break; case BTRFS_EXTENT_DATA_KEY: fi = btrfs_item_ptr(l, i, struct btrfs_file_extent_item); pr_info("\t\tgeneration %llu type %hhu\n", btrfs_file_extent_generation(l, fi), btrfs_file_extent_type(l, fi)); if (btrfs_file_extent_type(l, fi) == BTRFS_FILE_EXTENT_INLINE) { pr_info("\t\tinline extent data size %llu\n", btrfs_file_extent_ram_bytes(l, fi)); break; } pr_info("\t\textent data disk bytenr %llu nr %llu\n", btrfs_file_extent_disk_bytenr(l, fi), btrfs_file_extent_disk_num_bytes(l, fi)); pr_info("\t\textent data offset %llu nr %llu ram %llu\n", btrfs_file_extent_offset(l, fi), btrfs_file_extent_num_bytes(l, fi), btrfs_file_extent_ram_bytes(l, fi)); break; case BTRFS_BLOCK_GROUP_ITEM_KEY: bi = btrfs_item_ptr(l, i, struct btrfs_block_group_item); pr_info( "\t\tblock group used %llu chunk_objectid %llu flags %llu\n", btrfs_block_group_used(l, bi), btrfs_block_group_chunk_objectid(l, bi), btrfs_block_group_flags(l, bi)); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk(l, btrfs_item_ptr(l, i, struct btrfs_chunk)); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(l, btrfs_item_ptr(l, i, struct btrfs_dev_item)); break; case BTRFS_DEV_EXTENT_KEY: dev_extent = btrfs_item_ptr(l, i, struct btrfs_dev_extent); pr_info("\t\tdev extent chunk_tree %llu\n\t\tchunk objectid %llu chunk offset %llu length %llu\n", btrfs_dev_extent_chunk_tree(l, dev_extent), btrfs_dev_extent_chunk_objectid(l, dev_extent), btrfs_dev_extent_chunk_offset(l, dev_extent), btrfs_dev_extent_length(l, dev_extent)); break; case BTRFS_PERSISTENT_ITEM_KEY: pr_info("\t\tpersistent item objectid %llu offset %llu\n", key.objectid, key.offset); switch (key.objectid) { case BTRFS_DEV_STATS_OBJECTID: pr_info("\t\tdevice stats\n"); break; default: pr_info("\t\tunknown persistent item\n"); } break; case BTRFS_TEMPORARY_ITEM_KEY: pr_info("\t\ttemporary item objectid %llu offset %llu\n", key.objectid, key.offset); switch (key.objectid) { case BTRFS_BALANCE_OBJECTID: pr_info("\t\tbalance status\n"); break; default: pr_info("\t\tunknown temporary item\n"); } break; case BTRFS_DEV_REPLACE_KEY: pr_info("\t\tdev replace\n"); break; case BTRFS_UUID_KEY_SUBVOL: case BTRFS_UUID_KEY_RECEIVED_SUBVOL: print_uuid_item(l, btrfs_item_ptr_offset(l, i), btrfs_item_size(l, i)); break; case BTRFS_RAID_STRIPE_KEY: print_raid_stripe_key(l, btrfs_item_size(l, i), btrfs_item_ptr(l, i, struct btrfs_stripe_extent)); break; } } } void btrfs_print_tree(const struct extent_buffer *c, bool follow) { struct btrfs_fs_info *fs_info; int i; u32 nr; struct btrfs_key key; int level; if (!c) return; fs_info = c->fs_info; nr = btrfs_header_nritems(c); level = btrfs_header_level(c); if (level == 0) { btrfs_print_leaf(c); return; } btrfs_info(fs_info, "node %llu level %d gen %llu total ptrs %d free spc %u owner %llu", btrfs_header_bytenr(c), level, btrfs_header_generation(c), nr, (u32)BTRFS_NODEPTRS_PER_BLOCK(fs_info) - nr, btrfs_header_owner(c)); print_eb_refs_lock(c); for (i = 0; i < nr; i++) { btrfs_node_key_to_cpu(c, &key, i); pr_info("\tkey %d (%llu %u %llu) block %llu gen %llu\n", i, key.objectid, key.type, key.offset, btrfs_node_blockptr(c, i), btrfs_node_ptr_generation(c, i)); } if (!follow) return; for (i = 0; i < nr; i++) { struct btrfs_tree_parent_check check = { .level = level - 1, .transid = btrfs_node_ptr_generation(c, i), .owner_root = btrfs_header_owner(c), .has_first_key = true }; struct extent_buffer *next; btrfs_node_key_to_cpu(c, &check.first_key, i); next = read_tree_block(fs_info, btrfs_node_blockptr(c, i), &check); if (IS_ERR(next)) continue; if (!extent_buffer_uptodate(next)) { free_extent_buffer(next); continue; } if (btrfs_is_leaf(next) && level != 1) BUG(); if (btrfs_header_level(next) != level - 1) BUG(); btrfs_print_tree(next, follow); free_extent_buffer(next); } }
// SPDX-License-Identifier: GPL-2.0-or-later /* * Error log support on PowerNV. * * Copyright 2013,2014 IBM Corp. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/fs.h> #include <linux/vmalloc.h> #include <linux/fcntl.h> #include <linux/kobject.h> #include <linux/uaccess.h> #include <asm/opal.h> struct elog_obj { struct kobject kobj; struct bin_attribute raw_attr; uint64_t id; uint64_t type; size_t size; char *buffer; }; #define to_elog_obj(x) container_of(x, struct elog_obj, kobj) struct elog_attribute { struct attribute attr; ssize_t (*show)(struct elog_obj *elog, struct elog_attribute *attr, char *buf); ssize_t (*store)(struct elog_obj *elog, struct elog_attribute *attr, const char *buf, size_t count); }; #define to_elog_attr(x) container_of(x, struct elog_attribute, attr) static ssize_t elog_id_show(struct elog_obj *elog_obj, struct elog_attribute *attr, char *buf) { return sprintf(buf, "0x%llx\n", elog_obj->id); } static const char *elog_type_to_string(uint64_t type) { switch (type) { case 0: return "PEL"; default: return "unknown"; } } static ssize_t elog_type_show(struct elog_obj *elog_obj, struct elog_attribute *attr, char *buf) { return sprintf(buf, "0x%llx %s\n", elog_obj->type, elog_type_to_string(elog_obj->type)); } static ssize_t elog_ack_show(struct elog_obj *elog_obj, struct elog_attribute *attr, char *buf) { return sprintf(buf, "ack - acknowledge log message\n"); } static ssize_t elog_ack_store(struct elog_obj *elog_obj, struct elog_attribute *attr, const char *buf, size_t count) { /* * Try to self remove this attribute. If we are successful, * delete the kobject itself. */ if (sysfs_remove_file_self(&elog_obj->kobj, &attr->attr)) { opal_send_ack_elog(elog_obj->id); kobject_put(&elog_obj->kobj); } return count; } static struct elog_attribute id_attribute = __ATTR(id, 0444, elog_id_show, NULL); static struct elog_attribute type_attribute = __ATTR(type, 0444, elog_type_show, NULL); static struct elog_attribute ack_attribute = __ATTR(acknowledge, 0660, elog_ack_show, elog_ack_store); static struct kset *elog_kset; static ssize_t elog_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct elog_attribute *attribute; struct elog_obj *elog; attribute = to_elog_attr(attr); elog = to_elog_obj(kobj); if (!attribute->show) return -EIO; return attribute->show(elog, attribute, buf); } static ssize_t elog_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct elog_attribute *attribute; struct elog_obj *elog; attribute = to_elog_attr(attr); elog = to_elog_obj(kobj); if (!attribute->store) return -EIO; return attribute->store(elog, attribute, buf, len); } static const struct sysfs_ops elog_sysfs_ops = { .show = elog_attr_show, .store = elog_attr_store, }; static void elog_release(struct kobject *kobj) { struct elog_obj *elog; elog = to_elog_obj(kobj); kfree(elog->buffer); kfree(elog); } static struct attribute *elog_default_attrs[] = { &id_attribute.attr, &type_attribute.attr, &ack_attribute.attr, NULL, }; ATTRIBUTE_GROUPS(elog_default); static const struct kobj_type elog_ktype = { .sysfs_ops = &elog_sysfs_ops, .release = &elog_release, .default_groups = elog_default_groups, }; /* Maximum size of a single log on FSP is 16KB */ #define OPAL_MAX_ERRLOG_SIZE 16384 static ssize_t raw_attr_read(struct file *filep, struct kobject *kobj, struct bin_attribute *bin_attr, char *buffer, loff_t pos, size_t count) { int opal_rc; struct elog_obj *elog = to_elog_obj(kobj); /* We may have had an error reading before, so let's retry */ if (!elog->buffer) { elog->buffer = kzalloc(elog->size, GFP_KERNEL); if (!elog->buffer) return -EIO; opal_rc = opal_read_elog(__pa(elog->buffer), elog->size, elog->id); if (opal_rc != OPAL_SUCCESS) { pr_err_ratelimited("ELOG: log read failed for log-id=%llx\n", elog->id); kfree(elog->buffer); elog->buffer = NULL; return -EIO; } } memcpy(buffer, elog->buffer + pos, count); return count; } static void create_elog_obj(uint64_t id, size_t size, uint64_t type) { struct elog_obj *elog; int rc; elog = kzalloc(sizeof(*elog), GFP_KERNEL); if (!elog) return; elog->kobj.kset = elog_kset; kobject_init(&elog->kobj, &elog_ktype); sysfs_bin_attr_init(&elog->raw_attr); elog->raw_attr.attr.name = "raw"; elog->raw_attr.attr.mode = 0400; elog->raw_attr.size = size; elog->raw_attr.read = raw_attr_read; elog->id = id; elog->size = size; elog->type = type; elog->buffer = kzalloc(elog->size, GFP_KERNEL); if (elog->buffer) { rc = opal_read_elog(__pa(elog->buffer), elog->size, elog->id); if (rc != OPAL_SUCCESS) { pr_err("ELOG: log read failed for log-id=%llx\n", elog->id); kfree(elog->buffer); elog->buffer = NULL; } } rc = kobject_add(&elog->kobj, NULL, "0x%llx", id); if (rc) { kobject_put(&elog->kobj); return; } /* * As soon as the sysfs file for this elog is created/activated there is * a chance the opal_errd daemon (or any userspace) might read and * acknowledge the elog before kobject_uevent() is called. If that * happens then there is a potential race between * elog_ack_store->kobject_put() and kobject_uevent() which leads to a * use-after-free of a kernfs object resulting in a kernel crash. * * To avoid that, we need to take a reference on behalf of the bin file, * so that our reference remains valid while we call kobject_uevent(). * We then drop our reference before exiting the function, leaving the * bin file to drop the last reference (if it hasn't already). */ /* Take a reference for the bin file */ kobject_get(&elog->kobj); rc = sysfs_create_bin_file(&elog->kobj, &elog->raw_attr); if (rc == 0) { kobject_uevent(&elog->kobj, KOBJ_ADD); } else { /* Drop the reference taken for the bin file */ kobject_put(&elog->kobj); } /* Drop our reference */ kobject_put(&elog->kobj); return; } static irqreturn_t elog_event(int irq, void *data) { __be64 size; __be64 id; __be64 type; uint64_t elog_size; uint64_t log_id; uint64_t elog_type; int rc; char name[2+16+1]; struct kobject *kobj; rc = opal_get_elog_size(&id, &size, &type); if (rc != OPAL_SUCCESS) { pr_err("ELOG: OPAL log info read failed\n"); return IRQ_HANDLED; } elog_size = be64_to_cpu(size); log_id = be64_to_cpu(id); elog_type = be64_to_cpu(type); WARN_ON(elog_size > OPAL_MAX_ERRLOG_SIZE); if (elog_size >= OPAL_MAX_ERRLOG_SIZE) elog_size = OPAL_MAX_ERRLOG_SIZE; sprintf(name, "0x%llx", log_id); /* we may get notified twice, let's handle * that gracefully and not create two conflicting * entries. */ kobj = kset_find_obj(elog_kset, name); if (kobj) { /* Drop reference added by kset_find_obj() */ kobject_put(kobj); return IRQ_HANDLED; } create_elog_obj(log_id, elog_size, elog_type); return IRQ_HANDLED; } int __init opal_elog_init(void) { int rc = 0, irq; /* ELOG not supported by firmware */ if (!opal_check_token(OPAL_ELOG_READ)) return -1; elog_kset = kset_create_and_add("elog", NULL, opal_kobj); if (!elog_kset) { pr_warn("%s: failed to create elog kset\n", __func__); return -1; } irq = opal_event_request(ilog2(OPAL_EVENT_ERROR_LOG_AVAIL)); if (!irq) { pr_err("%s: Can't register OPAL event irq (%d)\n", __func__, irq); return irq; } rc = request_threaded_irq(irq, NULL, elog_event, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "opal-elog", NULL); if (rc) { pr_err("%s: Can't request OPAL event irq (%d)\n", __func__, rc); return rc; } /* We are now ready to pull error logs from opal. */ if (opal_check_token(OPAL_ELOG_RESEND)) opal_resend_pending_logs(); return 0; }
/* * Copyright (c) 2006 Tensilica, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2.1 of the GNU Lesser General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU Lesser General Public * License along with this program; if not, write the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, * USA. */ #ifndef _XTENSA_REGS_H #define _XTENSA_REGS_H /* Special registers. */ #define SREG_MR 32 #define SREG_IBREAKENABLE 96 #define SREG_IBREAKA 128 #define SREG_DBREAKA 144 #define SREG_DBREAKC 160 #define SREG_EPC 176 #define SREG_EPS 192 #define SREG_EXCSAVE 208 #define SREG_CCOMPARE 240 #define SREG_MISC 244 /* EXCCAUSE register fields */ #define EXCCAUSE_EXCCAUSE_SHIFT 0 #define EXCCAUSE_EXCCAUSE_MASK 0x3F #define EXCCAUSE_ILLEGAL_INSTRUCTION 0 #define EXCCAUSE_SYSTEM_CALL 1 #define EXCCAUSE_INSTRUCTION_FETCH_ERROR 2 #define EXCCAUSE_LOAD_STORE_ERROR 3 #define EXCCAUSE_LEVEL1_INTERRUPT 4 #define EXCCAUSE_ALLOCA 5 #define EXCCAUSE_INTEGER_DIVIDE_BY_ZERO 6 #define EXCCAUSE_SPECULATION 7 #define EXCCAUSE_PRIVILEGED 8 #define EXCCAUSE_UNALIGNED 9 #define EXCCAUSE_INSTR_DATA_ERROR 12 #define EXCCAUSE_LOAD_STORE_DATA_ERROR 13 #define EXCCAUSE_INSTR_ADDR_ERROR 14 #define EXCCAUSE_LOAD_STORE_ADDR_ERROR 15 #define EXCCAUSE_ITLB_MISS 16 #define EXCCAUSE_ITLB_MULTIHIT 17 #define EXCCAUSE_ITLB_PRIVILEGE 18 #define EXCCAUSE_ITLB_SIZE_RESTRICTION 19 #define EXCCAUSE_FETCH_CACHE_ATTRIBUTE 20 #define EXCCAUSE_DTLB_MISS 24 #define EXCCAUSE_DTLB_MULTIHIT 25 #define EXCCAUSE_DTLB_PRIVILEGE 26 #define EXCCAUSE_DTLB_SIZE_RESTRICTION 27 #define EXCCAUSE_LOAD_CACHE_ATTRIBUTE 28 #define EXCCAUSE_STORE_CACHE_ATTRIBUTE 29 #define EXCCAUSE_COPROCESSOR0_DISABLED 32 #define EXCCAUSE_COPROCESSOR1_DISABLED 33 #define EXCCAUSE_COPROCESSOR2_DISABLED 34 #define EXCCAUSE_COPROCESSOR3_DISABLED 35 #define EXCCAUSE_COPROCESSOR4_DISABLED 36 #define EXCCAUSE_COPROCESSOR5_DISABLED 37 #define EXCCAUSE_COPROCESSOR6_DISABLED 38 #define EXCCAUSE_COPROCESSOR7_DISABLED 39 #define EXCCAUSE_N 64 /* PS register fields. */ #define PS_WOE_BIT 18 #define PS_WOE_MASK 0x00040000 #define PS_CALLINC_SHIFT 16 #define PS_CALLINC_MASK 0x00030000 #define PS_OWB_SHIFT 8 #define PS_OWB_WIDTH 4 #define PS_OWB_MASK 0x00000F00 #define PS_RING_SHIFT 6 #define PS_RING_MASK 0x000000C0 #define PS_UM_BIT 5 #define PS_EXCM_BIT 4 #define PS_INTLEVEL_SHIFT 0 #define PS_INTLEVEL_WIDTH 4 #define PS_INTLEVEL_MASK 0x0000000F /* DBREAKCn register fields. */ #define DBREAKC_MASK_BIT 0 #define DBREAKC_MASK_MASK 0x0000003F #define DBREAKC_LOAD_BIT 30 #define DBREAKC_LOAD_MASK 0x40000000 #define DBREAKC_STOR_BIT 31 #define DBREAKC_STOR_MASK 0x80000000 /* DEBUGCAUSE register fields. */ #define DEBUGCAUSE_DBNUM_MASK 0xf00 #define DEBUGCAUSE_DBNUM_SHIFT 8 /* First bit of DBNUM field */ #define DEBUGCAUSE_DEBUGINT_BIT 5 /* External debug interrupt */ #define DEBUGCAUSE_BREAKN_BIT 4 /* BREAK.N instruction */ #define DEBUGCAUSE_BREAK_BIT 3 /* BREAK instruction */ #define DEBUGCAUSE_DBREAK_BIT 2 /* DBREAK match */ #define DEBUGCAUSE_IBREAK_BIT 1 /* IBREAK match */ #define DEBUGCAUSE_ICOUNT_BIT 0 /* ICOUNT would incr. to zero */ #endif /* _XTENSA_SPECREG_H */
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2019-2021, Intel Corporation. */ #include "ice.h" #include "ice_eswitch.h" #include "devlink/devlink.h" #include "devlink/devlink_port.h" #include "ice_sriov.h" #include "ice_tc_lib.h" #include "ice_dcb_lib.h" /** * ice_repr_inc_tx_stats - increment Tx statistic by one packet * @repr: repr to increment stats on * @len: length of the packet * @xmit_status: value returned by xmit function */ void ice_repr_inc_tx_stats(struct ice_repr *repr, unsigned int len, int xmit_status) { struct ice_repr_pcpu_stats *stats; if (unlikely(xmit_status != NET_XMIT_SUCCESS && xmit_status != NET_XMIT_CN)) { this_cpu_inc(repr->stats->tx_drops); return; } stats = this_cpu_ptr(repr->stats); u64_stats_update_begin(&stats->syncp); stats->tx_packets++; stats->tx_bytes += len; u64_stats_update_end(&stats->syncp); } /** * ice_repr_inc_rx_stats - increment Rx statistic by one packet * @netdev: repr netdev to increment stats on * @len: length of the packet */ void ice_repr_inc_rx_stats(struct net_device *netdev, unsigned int len) { struct ice_repr *repr = ice_netdev_to_repr(netdev); struct ice_repr_pcpu_stats *stats; stats = this_cpu_ptr(repr->stats); u64_stats_update_begin(&stats->syncp); stats->rx_packets++; stats->rx_bytes += len; u64_stats_update_end(&stats->syncp); } /** * ice_repr_get_stats64 - get VF stats for VFPR use * @netdev: pointer to port representor netdev * @stats: pointer to struct where stats can be stored */ static void ice_repr_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_repr *repr = np->repr; struct ice_eth_stats *eth_stats; struct ice_vsi *vsi; if (repr->ops.ready(repr)) return; vsi = repr->src_vsi; ice_update_vsi_stats(vsi); eth_stats = &vsi->eth_stats; stats->tx_packets = eth_stats->tx_unicast + eth_stats->tx_broadcast + eth_stats->tx_multicast; stats->rx_packets = eth_stats->rx_unicast + eth_stats->rx_broadcast + eth_stats->rx_multicast; stats->tx_bytes = eth_stats->tx_bytes; stats->rx_bytes = eth_stats->rx_bytes; stats->multicast = eth_stats->rx_multicast; stats->tx_errors = eth_stats->tx_errors; stats->tx_dropped = eth_stats->tx_discards; stats->rx_dropped = eth_stats->rx_discards; } /** * ice_netdev_to_repr - Get port representor for given netdevice * @netdev: pointer to port representor netdev */ struct ice_repr *ice_netdev_to_repr(const struct net_device *netdev) { struct ice_netdev_priv *np = netdev_priv(netdev); return np->repr; } /** * ice_repr_vf_open - Enable port representor's network interface * @netdev: network interface device structure * * The open entry point is called when a port representor's network * interface is made active by the system (IFF_UP). Corresponding * VF is notified about link status change. * * Returns 0 on success */ static int ice_repr_vf_open(struct net_device *netdev) { struct ice_repr *repr = ice_netdev_to_repr(netdev); struct ice_vf *vf; vf = repr->vf; vf->link_forced = true; vf->link_up = true; ice_vc_notify_vf_link_state(vf); netif_carrier_on(netdev); netif_tx_start_all_queues(netdev); return 0; } static int ice_repr_sf_open(struct net_device *netdev) { netif_carrier_on(netdev); netif_tx_start_all_queues(netdev); return 0; } /** * ice_repr_vf_stop - Disable port representor's network interface * @netdev: network interface device structure * * The stop entry point is called when a port representor's network * interface is de-activated by the system. Corresponding * VF is notified about link status change. * * Returns 0 on success */ static int ice_repr_vf_stop(struct net_device *netdev) { struct ice_repr *repr = ice_netdev_to_repr(netdev); struct ice_vf *vf; vf = repr->vf; vf->link_forced = true; vf->link_up = false; ice_vc_notify_vf_link_state(vf); netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); return 0; } static int ice_repr_sf_stop(struct net_device *netdev) { netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); return 0; } /** * ice_repr_sp_stats64 - get slow path stats for port representor * @dev: network interface device structure * @stats: netlink stats structure */ static int ice_repr_sp_stats64(const struct net_device *dev, struct rtnl_link_stats64 *stats) { struct ice_repr *repr = ice_netdev_to_repr(dev); int i; for_each_possible_cpu(i) { u64 tbytes, tpkts, tdrops, rbytes, rpkts; struct ice_repr_pcpu_stats *repr_stats; unsigned int start; repr_stats = per_cpu_ptr(repr->stats, i); do { start = u64_stats_fetch_begin(&repr_stats->syncp); tbytes = repr_stats->tx_bytes; tpkts = repr_stats->tx_packets; tdrops = repr_stats->tx_drops; rbytes = repr_stats->rx_bytes; rpkts = repr_stats->rx_packets; } while (u64_stats_fetch_retry(&repr_stats->syncp, start)); stats->tx_bytes += tbytes; stats->tx_packets += tpkts; stats->tx_dropped += tdrops; stats->rx_bytes += rbytes; stats->rx_packets += rpkts; } return 0; } static bool ice_repr_ndo_has_offload_stats(const struct net_device *dev, int attr_id) { return attr_id == IFLA_OFFLOAD_XSTATS_CPU_HIT; } static int ice_repr_ndo_get_offload_stats(int attr_id, const struct net_device *dev, void *sp) { if (attr_id == IFLA_OFFLOAD_XSTATS_CPU_HIT) return ice_repr_sp_stats64(dev, (struct rtnl_link_stats64 *)sp); return -EINVAL; } static int ice_repr_setup_tc_cls_flower(struct ice_repr *repr, struct flow_cls_offload *flower) { switch (flower->command) { case FLOW_CLS_REPLACE: return ice_add_cls_flower(repr->netdev, repr->src_vsi, flower); case FLOW_CLS_DESTROY: return ice_del_cls_flower(repr->src_vsi, flower); default: return -EINVAL; } } static int ice_repr_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct flow_cls_offload *flower = (struct flow_cls_offload *)type_data; struct ice_netdev_priv *np = (struct ice_netdev_priv *)cb_priv; switch (type) { case TC_SETUP_CLSFLOWER: return ice_repr_setup_tc_cls_flower(np->repr, flower); default: return -EOPNOTSUPP; } } static LIST_HEAD(ice_repr_block_cb_list); static int ice_repr_setup_tc(struct net_device *netdev, enum tc_setup_type type, void *type_data) { struct ice_netdev_priv *np = netdev_priv(netdev); switch (type) { case TC_SETUP_BLOCK: return flow_block_cb_setup_simple((struct flow_block_offload *) type_data, &ice_repr_block_cb_list, ice_repr_setup_tc_block_cb, np, np, true); default: return -EOPNOTSUPP; } } static const struct net_device_ops ice_repr_vf_netdev_ops = { .ndo_get_stats64 = ice_repr_get_stats64, .ndo_open = ice_repr_vf_open, .ndo_stop = ice_repr_vf_stop, .ndo_start_xmit = ice_eswitch_port_start_xmit, .ndo_setup_tc = ice_repr_setup_tc, .ndo_has_offload_stats = ice_repr_ndo_has_offload_stats, .ndo_get_offload_stats = ice_repr_ndo_get_offload_stats, }; static const struct net_device_ops ice_repr_sf_netdev_ops = { .ndo_get_stats64 = ice_repr_get_stats64, .ndo_open = ice_repr_sf_open, .ndo_stop = ice_repr_sf_stop, .ndo_start_xmit = ice_eswitch_port_start_xmit, .ndo_setup_tc = ice_repr_setup_tc, .ndo_has_offload_stats = ice_repr_ndo_has_offload_stats, .ndo_get_offload_stats = ice_repr_ndo_get_offload_stats, }; /** * ice_is_port_repr_netdev - Check if a given netdevice is a port representor netdev * @netdev: pointer to netdev */ bool ice_is_port_repr_netdev(const struct net_device *netdev) { return netdev && (netdev->netdev_ops == &ice_repr_vf_netdev_ops || netdev->netdev_ops == &ice_repr_sf_netdev_ops); } /** * ice_repr_reg_netdev - register port representor netdev * @netdev: pointer to port representor netdev * @ops: new ops for netdev */ static int ice_repr_reg_netdev(struct net_device *netdev, const struct net_device_ops *ops) { eth_hw_addr_random(netdev); netdev->netdev_ops = ops; ice_set_ethtool_repr_ops(netdev); netdev->hw_features |= NETIF_F_HW_TC; netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); return register_netdev(netdev); } static int ice_repr_ready_vf(struct ice_repr *repr) { return !ice_check_vf_ready_for_cfg(repr->vf); } static int ice_repr_ready_sf(struct ice_repr *repr) { return !repr->sf->active; } /** * ice_repr_destroy - remove representor from VF * @repr: pointer to representor structure */ void ice_repr_destroy(struct ice_repr *repr) { free_percpu(repr->stats); free_netdev(repr->netdev); kfree(repr); } static void ice_repr_rem_vf(struct ice_repr *repr) { ice_eswitch_decfg_vsi(repr->src_vsi, repr->parent_mac); unregister_netdev(repr->netdev); ice_devlink_destroy_vf_port(repr->vf); ice_virtchnl_set_dflt_ops(repr->vf); } static void ice_repr_rem_sf(struct ice_repr *repr) { unregister_netdev(repr->netdev); ice_devlink_destroy_sf_port(repr->sf); } static void ice_repr_set_tx_topology(struct ice_pf *pf, struct devlink *devlink) { /* only export if ADQ and DCB disabled and eswitch enabled*/ if (ice_is_adq_active(pf) || ice_is_dcb_active(pf) || !ice_is_switchdev_running(pf)) return; ice_devlink_rate_init_tx_topology(devlink, ice_get_main_vsi(pf)); } /** * ice_repr_create - add representor for generic VSI * @src_vsi: pointer to VSI structure of device to represent */ static struct ice_repr *ice_repr_create(struct ice_vsi *src_vsi) { struct ice_netdev_priv *np; struct ice_repr *repr; int err; repr = kzalloc(sizeof(*repr), GFP_KERNEL); if (!repr) return ERR_PTR(-ENOMEM); repr->netdev = alloc_etherdev(sizeof(struct ice_netdev_priv)); if (!repr->netdev) { err = -ENOMEM; goto err_alloc; } repr->stats = netdev_alloc_pcpu_stats(struct ice_repr_pcpu_stats); if (!repr->stats) { err = -ENOMEM; goto err_stats; } repr->src_vsi = src_vsi; repr->id = src_vsi->vsi_num; np = netdev_priv(repr->netdev); np->repr = repr; repr->netdev->min_mtu = ETH_MIN_MTU; repr->netdev->max_mtu = ICE_MAX_MTU; SET_NETDEV_DEV(repr->netdev, ice_pf_to_dev(src_vsi->back)); return repr; err_stats: free_netdev(repr->netdev); err_alloc: kfree(repr); return ERR_PTR(err); } static int ice_repr_add_vf(struct ice_repr *repr) { struct ice_vf *vf = repr->vf; struct devlink *devlink; int err; err = ice_devlink_create_vf_port(vf); if (err) return err; SET_NETDEV_DEVLINK_PORT(repr->netdev, &vf->devlink_port); err = ice_repr_reg_netdev(repr->netdev, &ice_repr_vf_netdev_ops); if (err) goto err_netdev; err = ice_eswitch_cfg_vsi(repr->src_vsi, repr->parent_mac); if (err) goto err_cfg_vsi; ice_virtchnl_set_repr_ops(vf); devlink = priv_to_devlink(vf->pf); ice_repr_set_tx_topology(vf->pf, devlink); return 0; err_cfg_vsi: unregister_netdev(repr->netdev); err_netdev: ice_devlink_destroy_vf_port(vf); return err; } /** * ice_repr_create_vf - add representor for VF VSI * @vf: VF to create port representor on * * Set correct representor type for VF and functions pointer. * * Return: created port representor on success, error otherwise */ struct ice_repr *ice_repr_create_vf(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); struct ice_repr *repr; if (!vsi) return ERR_PTR(-EINVAL); repr = ice_repr_create(vsi); if (IS_ERR(repr)) return repr; repr->type = ICE_REPR_TYPE_VF; repr->vf = vf; repr->ops.add = ice_repr_add_vf; repr->ops.rem = ice_repr_rem_vf; repr->ops.ready = ice_repr_ready_vf; ether_addr_copy(repr->parent_mac, vf->hw_lan_addr); return repr; } static int ice_repr_add_sf(struct ice_repr *repr) { struct ice_dynamic_port *sf = repr->sf; int err; err = ice_devlink_create_sf_port(sf); if (err) return err; SET_NETDEV_DEVLINK_PORT(repr->netdev, &sf->devlink_port); err = ice_repr_reg_netdev(repr->netdev, &ice_repr_sf_netdev_ops); if (err) goto err_netdev; ice_repr_set_tx_topology(sf->vsi->back, priv_to_devlink(sf->vsi->back)); return 0; err_netdev: ice_devlink_destroy_sf_port(sf); return err; } /** * ice_repr_create_sf - add representor for SF VSI * @sf: SF to create port representor on * * Set correct representor type for SF and functions pointer. * * Return: created port representor on success, error otherwise */ struct ice_repr *ice_repr_create_sf(struct ice_dynamic_port *sf) { struct ice_repr *repr = ice_repr_create(sf->vsi); if (IS_ERR(repr)) return repr; repr->type = ICE_REPR_TYPE_SF; repr->sf = sf; repr->ops.add = ice_repr_add_sf; repr->ops.rem = ice_repr_rem_sf; repr->ops.ready = ice_repr_ready_sf; ether_addr_copy(repr->parent_mac, sf->hw_addr); return repr; } struct ice_repr *ice_repr_get(struct ice_pf *pf, u32 id) { return xa_load(&pf->eswitch.reprs, id); } /** * ice_repr_start_tx_queues - start Tx queues of port representor * @repr: pointer to repr structure */ void ice_repr_start_tx_queues(struct ice_repr *repr) { netif_carrier_on(repr->netdev); netif_tx_start_all_queues(repr->netdev); } /** * ice_repr_stop_tx_queues - stop Tx queues of port representor * @repr: pointer to repr structure */ void ice_repr_stop_tx_queues(struct ice_repr *repr) { netif_carrier_off(repr->netdev); netif_tx_stop_all_queues(repr->netdev); }
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2021 Facebook */ /* Copyright (c) 2021 Google */ #include <assert.h> #include <limits.h> #include <unistd.h> #include <sys/file.h> #include <sys/time.h> #include <sys/resource.h> #include <linux/err.h> #include <linux/zalloc.h> #include <linux/perf_event.h> #include <api/fs/fs.h> #include <perf/bpf_perf.h> #include "affinity.h" #include "bpf_counter.h" #include "cgroup.h" #include "counts.h" #include "debug.h" #include "evsel.h" #include "evlist.h" #include "target.h" #include "cpumap.h" #include "thread_map.h" #include "bpf_skel/bperf_cgroup.skel.h" static struct perf_event_attr cgrp_switch_attr = { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CGROUP_SWITCHES, .size = sizeof(cgrp_switch_attr), .sample_period = 1, .disabled = 1, }; static struct evsel *cgrp_switch; static struct bperf_cgroup_bpf *skel; #define FD(evt, cpu) (*(int *)xyarray__entry(evt->core.fd, cpu, 0)) static int bperf_load_program(struct evlist *evlist) { struct bpf_link *link; struct evsel *evsel; struct cgroup *cgrp, *leader_cgrp; int i, j; struct perf_cpu cpu; int total_cpus = cpu__max_cpu().cpu; int map_size, map_fd; int prog_fd, err; skel = bperf_cgroup_bpf__open(); if (!skel) { pr_err("Failed to open cgroup skeleton\n"); return -1; } skel->rodata->num_cpus = total_cpus; skel->rodata->num_events = evlist->core.nr_entries / nr_cgroups; if (cgroup_is_v2("perf_event") > 0) skel->rodata->use_cgroup_v2 = 1; BUG_ON(evlist->core.nr_entries % nr_cgroups != 0); /* we need one copy of events per cpu for reading */ map_size = total_cpus * evlist->core.nr_entries / nr_cgroups; bpf_map__set_max_entries(skel->maps.events, map_size); bpf_map__set_max_entries(skel->maps.cgrp_idx, nr_cgroups); /* previous result is saved in a per-cpu array */ map_size = evlist->core.nr_entries / nr_cgroups; bpf_map__set_max_entries(skel->maps.prev_readings, map_size); /* cgroup result needs all events (per-cpu) */ map_size = evlist->core.nr_entries; bpf_map__set_max_entries(skel->maps.cgrp_readings, map_size); set_max_rlimit(); err = bperf_cgroup_bpf__load(skel); if (err) { pr_err("Failed to load cgroup skeleton\n"); goto out; } err = -1; cgrp_switch = evsel__new(&cgrp_switch_attr); if (evsel__open_per_cpu(cgrp_switch, evlist->core.all_cpus, -1) < 0) { pr_err("Failed to open cgroup switches event\n"); goto out; } perf_cpu_map__for_each_cpu(cpu, i, evlist->core.all_cpus) { link = bpf_program__attach_perf_event(skel->progs.on_cgrp_switch, FD(cgrp_switch, i)); if (IS_ERR(link)) { pr_err("Failed to attach cgroup program\n"); err = PTR_ERR(link); goto out; } } /* * Update cgrp_idx map from cgroup-id to event index. */ cgrp = NULL; i = 0; evlist__for_each_entry(evlist, evsel) { if (cgrp == NULL || evsel->cgrp == leader_cgrp) { leader_cgrp = evsel->cgrp; evsel->cgrp = NULL; /* open single copy of the events w/o cgroup */ err = evsel__open_per_cpu(evsel, evsel->core.cpus, -1); if (err == 0) evsel->supported = true; map_fd = bpf_map__fd(skel->maps.events); perf_cpu_map__for_each_cpu(cpu, j, evsel->core.cpus) { int fd = FD(evsel, j); __u32 idx = evsel->core.idx * total_cpus + cpu.cpu; bpf_map_update_elem(map_fd, &idx, &fd, BPF_ANY); } evsel->cgrp = leader_cgrp; } if (evsel->cgrp == cgrp) continue; cgrp = evsel->cgrp; if (read_cgroup_id(cgrp) < 0) { pr_debug("Failed to get cgroup id for %s\n", cgrp->name); cgrp->id = 0; } map_fd = bpf_map__fd(skel->maps.cgrp_idx); err = bpf_map_update_elem(map_fd, &cgrp->id, &i, BPF_ANY); if (err < 0) { pr_err("Failed to update cgroup index map\n"); goto out; } i++; } /* * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check * whether the kernel support it */ prog_fd = bpf_program__fd(skel->progs.trigger_read); err = bperf_trigger_reading(prog_fd, 0); if (err) { pr_warning("The kernel does not support test_run for raw_tp BPF programs.\n" "Therefore, --for-each-cgroup might show inaccurate readings\n"); err = 0; } out: return err; } static int bperf_cgrp__load(struct evsel *evsel, struct target *target __maybe_unused) { static bool bperf_loaded = false; evsel->bperf_leader_prog_fd = -1; evsel->bperf_leader_link_fd = -1; if (!bperf_loaded && bperf_load_program(evsel->evlist)) return -1; bperf_loaded = true; /* just to bypass bpf_counter_skip() */ evsel->follower_skel = (struct bperf_follower_bpf *)skel; return 0; } static int bperf_cgrp__install_pe(struct evsel *evsel __maybe_unused, int cpu __maybe_unused, int fd __maybe_unused) { /* nothing to do */ return 0; } /* * trigger the leader prog on each cpu, so the cgrp_reading map could get * the latest results. */ static int bperf_cgrp__sync_counters(struct evlist *evlist) { struct perf_cpu cpu; int idx; int prog_fd = bpf_program__fd(skel->progs.trigger_read); perf_cpu_map__for_each_cpu(cpu, idx, evlist->core.all_cpus) bperf_trigger_reading(prog_fd, cpu.cpu); return 0; } static int bperf_cgrp__enable(struct evsel *evsel) { if (evsel->core.idx) return 0; bperf_cgrp__sync_counters(evsel->evlist); skel->bss->enabled = 1; return 0; } static int bperf_cgrp__disable(struct evsel *evsel) { if (evsel->core.idx) return 0; bperf_cgrp__sync_counters(evsel->evlist); skel->bss->enabled = 0; return 0; } static int bperf_cgrp__read(struct evsel *evsel) { struct evlist *evlist = evsel->evlist; int total_cpus = cpu__max_cpu().cpu; struct perf_counts_values *counts; struct bpf_perf_event_value *values; int reading_map_fd, err = 0; if (evsel->core.idx) return 0; bperf_cgrp__sync_counters(evsel->evlist); values = calloc(total_cpus, sizeof(*values)); if (values == NULL) return -ENOMEM; reading_map_fd = bpf_map__fd(skel->maps.cgrp_readings); evlist__for_each_entry(evlist, evsel) { __u32 idx = evsel->core.idx; int i; struct perf_cpu cpu; err = bpf_map_lookup_elem(reading_map_fd, &idx, values); if (err) { pr_err("bpf map lookup failed: idx=%u, event=%s, cgrp=%s\n", idx, evsel__name(evsel), evsel->cgrp->name); goto out; } perf_cpu_map__for_each_cpu(cpu, i, evsel->core.cpus) { counts = perf_counts(evsel->counts, i, 0); counts->val = values[cpu.cpu].counter; counts->ena = values[cpu.cpu].enabled; counts->run = values[cpu.cpu].running; } } out: free(values); return err; } static int bperf_cgrp__destroy(struct evsel *evsel) { if (evsel->core.idx) return 0; bperf_cgroup_bpf__destroy(skel); evsel__delete(cgrp_switch); // it'll destroy on_switch progs too return 0; } struct bpf_counter_ops bperf_cgrp_ops = { .load = bperf_cgrp__load, .enable = bperf_cgrp__enable, .disable = bperf_cgrp__disable, .read = bperf_cgrp__read, .install_pe = bperf_cgrp__install_pe, .destroy = bperf_cgrp__destroy, };
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright 2023 Red Hat */ #ifndef DATA_VIO_H #define DATA_VIO_H #include <linux/atomic.h> #include <linux/bio.h> #include <linux/list.h> #include "permassert.h" #include "indexer.h" #include "block-map.h" #include "completion.h" #include "constants.h" #include "dedupe.h" #include "encodings.h" #include "logical-zone.h" #include "physical-zone.h" #include "types.h" #include "vdo.h" #include "vio.h" #include "wait-queue.h" /* Codes for describing the last asynchronous operation performed on a vio. */ enum async_operation_number { MIN_VIO_ASYNC_OPERATION_NUMBER, VIO_ASYNC_OP_LAUNCH = MIN_VIO_ASYNC_OPERATION_NUMBER, VIO_ASYNC_OP_ACKNOWLEDGE_WRITE, VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK, VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK, VIO_ASYNC_OP_LOCK_DUPLICATE_PBN, VIO_ASYNC_OP_CHECK_FOR_DUPLICATION, VIO_ASYNC_OP_CLEANUP, VIO_ASYNC_OP_COMPRESS_DATA_VIO, VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT, VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ, VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE, VIO_ASYNC_OP_HASH_DATA_VIO, VIO_ASYNC_OP_JOURNAL_REMAPPING, VIO_ASYNC_OP_ATTEMPT_PACKING, VIO_ASYNC_OP_PUT_MAPPED_BLOCK, VIO_ASYNC_OP_READ_DATA_VIO, VIO_ASYNC_OP_UPDATE_DEDUPE_INDEX, VIO_ASYNC_OP_UPDATE_REFERENCE_COUNTS, VIO_ASYNC_OP_VERIFY_DUPLICATION, VIO_ASYNC_OP_WRITE_DATA_VIO, MAX_VIO_ASYNC_OPERATION_NUMBER, } __packed; struct lbn_lock { logical_block_number_t lbn; bool locked; struct vdo_wait_queue waiters; struct logical_zone *zone; }; /* A position in the arboreal block map at a specific level. */ struct block_map_tree_slot { page_number_t page_index; struct block_map_slot block_map_slot; }; /* Fields for using the arboreal block map. */ struct tree_lock { /* The current height at which this data_vio is operating */ height_t height; /* The block map tree for this LBN */ root_count_t root_index; /* Whether we hold a page lock */ bool locked; /* The key for the lock map */ u64 key; /* The queue of waiters for the page this vio is allocating or loading */ struct vdo_wait_queue waiters; /* The block map tree slots for this LBN */ struct block_map_tree_slot tree_slots[VDO_BLOCK_MAP_TREE_HEIGHT + 1]; }; struct zoned_pbn { physical_block_number_t pbn; enum block_mapping_state state; struct physical_zone *zone; }; /* * Where a data_vio is on the compression path; advance_compression_stage() depends on the order of * this enum. */ enum data_vio_compression_stage { /* A data_vio which has not yet entered the compression path */ DATA_VIO_PRE_COMPRESSOR, /* A data_vio which is in the compressor */ DATA_VIO_COMPRESSING, /* A data_vio which is blocked in the packer */ DATA_VIO_PACKING, /* A data_vio which is no longer on the compression path (and never will be) */ DATA_VIO_POST_PACKER, }; struct data_vio_compression_status { enum data_vio_compression_stage stage; bool may_not_compress; }; struct compression_state { /* * The current compression status of this data_vio. This field contains a value which * consists of a data_vio_compression_stage and a flag indicating whether a request has * been made to cancel (or prevent) compression for this data_vio. * * This field should be accessed through the get_data_vio_compression_status() and * set_data_vio_compression_status() methods. It should not be accessed directly. */ atomic_t status; /* The compressed size of this block */ u16 size; /* The packer input or output bin slot which holds the enclosing data_vio */ slot_number_t slot; /* The packer bin to which the enclosing data_vio has been assigned */ struct packer_bin *bin; /* A link in the chain of data_vios which have been packed together */ struct data_vio *next_in_batch; /* A vio which is blocked in the packer while holding a lock this vio needs. */ struct data_vio *lock_holder; /* * The compressed block used to hold the compressed form of this block and that of any * other blocks for which this data_vio is the compressed write agent. */ struct compressed_block *block; }; /* Fields supporting allocation of data blocks. */ struct allocation { /* The physical zone in which to allocate a physical block */ struct physical_zone *zone; /* The block allocated to this vio */ physical_block_number_t pbn; /* * If non-NULL, the pooled PBN lock held on the allocated block. Must be a write lock until * the block has been written, after which it will become a read lock. */ struct pbn_lock *lock; /* The type of write lock to obtain on the allocated block */ enum pbn_lock_type write_lock_type; /* The zone which was the start of the current allocation cycle */ zone_count_t first_allocation_zone; /* Whether this vio should wait for a clean slab */ bool wait_for_clean_slab; }; struct reference_updater { enum journal_operation operation; bool increment; struct zoned_pbn zpbn; struct pbn_lock *lock; struct vdo_waiter waiter; }; /* A vio for processing user data requests. */ struct data_vio { /* The vdo_wait_queue entry structure */ struct vdo_waiter waiter; /* The logical block of this request */ struct lbn_lock logical; /* The state for traversing the block map tree */ struct tree_lock tree_lock; /* The current partition address of this block */ struct zoned_pbn mapped; /* The hash of this vio (if not zero) */ struct uds_record_name record_name; /* Used for logging and debugging */ enum async_operation_number last_async_operation; /* The operations to record in the recovery and slab journals */ struct reference_updater increment_updater; struct reference_updater decrement_updater; u16 read : 1; u16 write : 1; u16 fua : 1; u16 is_zero : 1; u16 is_discard : 1; u16 is_partial : 1; u16 is_duplicate : 1; u16 first_reference_operation_complete : 1; u16 downgrade_allocation_lock : 1; struct allocation allocation; /* * Whether this vio has received an allocation. This field is examined from threads not in * the allocation zone. */ bool allocation_succeeded; /* The new partition address of this block after the vio write completes */ struct zoned_pbn new_mapped; /* The hash zone responsible for the name (NULL if is_zero_block) */ struct hash_zone *hash_zone; /* The lock this vio holds or shares with other vios with the same data */ struct hash_lock *hash_lock; /* All data_vios sharing a hash lock are kept in a list linking these list entries */ struct list_head hash_lock_entry; /* The block number in the partition of the UDS deduplication advice */ struct zoned_pbn duplicate; /* * The sequence number of the recovery journal block containing the increment entry for * this vio. */ sequence_number_t recovery_sequence_number; /* The point in the recovery journal where this write last made an entry */ struct journal_point recovery_journal_point; /* The list of vios in user initiated write requests */ struct list_head write_entry; /* The generation number of the VDO that this vio belongs to */ sequence_number_t flush_generation; /* The completion to use for fetching block map pages for this vio */ struct vdo_page_completion page_completion; /* The user bio that initiated this VIO */ struct bio *user_bio; /* partial block support */ block_size_t offset; /* * The number of bytes to be discarded. For discards, this field will always be positive, * whereas for non-discards it will always be 0. Hence it can be used to determine whether * a data_vio is processing a discard, even after the user_bio has been acknowledged. */ u32 remaining_discard; struct dedupe_context *dedupe_context; /* Fields beyond this point will not be reset when a pooled data_vio is reused. */ struct vio vio; /* The completion for making reference count decrements */ struct vdo_completion decrement_completion; /* All of the fields necessary for the compression path */ struct compression_state compression; /* A block used as output during compression or uncompression */ char *scratch_block; struct list_head pool_entry; }; static inline struct data_vio *vio_as_data_vio(struct vio *vio) { VDO_ASSERT_LOG_ONLY((vio->type == VIO_TYPE_DATA), "vio is a data_vio"); return container_of(vio, struct data_vio, vio); } static inline struct data_vio *as_data_vio(struct vdo_completion *completion) { return vio_as_data_vio(as_vio(completion)); } static inline struct data_vio *vdo_waiter_as_data_vio(struct vdo_waiter *waiter) { if (waiter == NULL) return NULL; return container_of(waiter, struct data_vio, waiter); } static inline struct data_vio *data_vio_from_reference_updater(struct reference_updater *updater) { if (updater->increment) return container_of(updater, struct data_vio, increment_updater); return container_of(updater, struct data_vio, decrement_updater); } static inline bool data_vio_has_flush_generation_lock(struct data_vio *data_vio) { return !list_empty(&data_vio->write_entry); } static inline struct vdo *vdo_from_data_vio(struct data_vio *data_vio) { return data_vio->vio.completion.vdo; } static inline bool data_vio_has_allocation(struct data_vio *data_vio) { return (data_vio->allocation.pbn != VDO_ZERO_BLOCK); } struct data_vio_compression_status __must_check advance_data_vio_compression_stage(struct data_vio *data_vio); struct data_vio_compression_status __must_check get_data_vio_compression_status(struct data_vio *data_vio); bool cancel_data_vio_compression(struct data_vio *data_vio); struct data_vio_pool; int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size, data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr); void free_data_vio_pool(struct data_vio_pool *pool); void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio); void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion); void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion); void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios); data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool); data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool); data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool); void complete_data_vio(struct vdo_completion *completion); void handle_data_vio_error(struct vdo_completion *completion); static inline void continue_data_vio(struct data_vio *data_vio) { vdo_launch_completion(&data_vio->vio.completion); } /** * continue_data_vio_with_error() - Set an error code and then continue processing a data_vio. * * This will not mask older errors. This function can be called with a success code, but it is more * efficient to call continue_data_vio() if the caller knows the result was a success. */ static inline void continue_data_vio_with_error(struct data_vio *data_vio, int result) { vdo_continue_completion(&data_vio->vio.completion, result); } const char * __must_check get_data_vio_operation_name(struct data_vio *data_vio); static inline void assert_data_vio_in_hash_zone(struct data_vio *data_vio) { thread_id_t expected = data_vio->hash_zone->thread_id; thread_id_t thread_id = vdo_get_callback_thread_id(); /* * It's odd to use the LBN, but converting the record name to hex is a bit clunky for an * inline, and the LBN better than nothing as an identifier. */ VDO_ASSERT_LOG_ONLY((expected == thread_id), "data_vio for logical block %llu on thread %u, should be on hash zone thread %u", (unsigned long long) data_vio->logical.lbn, thread_id, expected); } static inline void set_data_vio_hash_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, data_vio->hash_zone->thread_id); } /** * launch_data_vio_hash_zone_callback() - Set a callback as a hash zone operation and invoke it * immediately. */ static inline void launch_data_vio_hash_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_hash_zone_callback(data_vio, callback); vdo_launch_completion(&data_vio->vio.completion); } static inline void assert_data_vio_in_logical_zone(struct data_vio *data_vio) { thread_id_t expected = data_vio->logical.zone->thread_id; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((expected == thread_id), "data_vio for logical block %llu on thread %u, should be on thread %u", (unsigned long long) data_vio->logical.lbn, thread_id, expected); } static inline void set_data_vio_logical_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, data_vio->logical.zone->thread_id); } /** * launch_data_vio_logical_callback() - Set a callback as a logical block operation and invoke it * immediately. */ static inline void launch_data_vio_logical_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_logical_callback(data_vio, callback); vdo_launch_completion(&data_vio->vio.completion); } static inline void assert_data_vio_in_allocated_zone(struct data_vio *data_vio) { thread_id_t expected = data_vio->allocation.zone->thread_id; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((expected == thread_id), "struct data_vio for allocated physical block %llu on thread %u, should be on thread %u", (unsigned long long) data_vio->allocation.pbn, thread_id, expected); } static inline void set_data_vio_allocated_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, data_vio->allocation.zone->thread_id); } /** * launch_data_vio_allocated_zone_callback() - Set a callback as a physical block operation in a * data_vio's allocated zone and queue the data_vio and * invoke it immediately. */ static inline void launch_data_vio_allocated_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_allocated_zone_callback(data_vio, callback); vdo_launch_completion(&data_vio->vio.completion); } static inline void assert_data_vio_in_duplicate_zone(struct data_vio *data_vio) { thread_id_t expected = data_vio->duplicate.zone->thread_id; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((expected == thread_id), "data_vio for duplicate physical block %llu on thread %u, should be on thread %u", (unsigned long long) data_vio->duplicate.pbn, thread_id, expected); } static inline void set_data_vio_duplicate_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, data_vio->duplicate.zone->thread_id); } /** * launch_data_vio_duplicate_zone_callback() - Set a callback as a physical block operation in a * data_vio's duplicate zone and queue the data_vio and * invoke it immediately. */ static inline void launch_data_vio_duplicate_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_duplicate_zone_callback(data_vio, callback); vdo_launch_completion(&data_vio->vio.completion); } static inline void assert_data_vio_in_mapped_zone(struct data_vio *data_vio) { thread_id_t expected = data_vio->mapped.zone->thread_id; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((expected == thread_id), "data_vio for mapped physical block %llu on thread %u, should be on thread %u", (unsigned long long) data_vio->mapped.pbn, thread_id, expected); } static inline void set_data_vio_mapped_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, data_vio->mapped.zone->thread_id); } static inline void assert_data_vio_in_new_mapped_zone(struct data_vio *data_vio) { thread_id_t expected = data_vio->new_mapped.zone->thread_id; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((expected == thread_id), "data_vio for new_mapped physical block %llu on thread %u, should be on thread %u", (unsigned long long) data_vio->new_mapped.pbn, thread_id, expected); } static inline void set_data_vio_new_mapped_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, data_vio->new_mapped.zone->thread_id); } static inline void assert_data_vio_in_journal_zone(struct data_vio *data_vio) { thread_id_t journal_thread = vdo_from_data_vio(data_vio)->thread_config.journal_thread; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((journal_thread == thread_id), "data_vio for logical block %llu on thread %u, should be on journal thread %u", (unsigned long long) data_vio->logical.lbn, thread_id, journal_thread); } static inline void set_data_vio_journal_callback(struct data_vio *data_vio, vdo_action_fn callback) { thread_id_t journal_thread = vdo_from_data_vio(data_vio)->thread_config.journal_thread; vdo_set_completion_callback(&data_vio->vio.completion, callback, journal_thread); } /** * launch_data_vio_journal_callback() - Set a callback as a journal operation and invoke it * immediately. */ static inline void launch_data_vio_journal_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_journal_callback(data_vio, callback); vdo_launch_completion(&data_vio->vio.completion); } static inline void assert_data_vio_in_packer_zone(struct data_vio *data_vio) { thread_id_t packer_thread = vdo_from_data_vio(data_vio)->thread_config.packer_thread; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((packer_thread == thread_id), "data_vio for logical block %llu on thread %u, should be on packer thread %u", (unsigned long long) data_vio->logical.lbn, thread_id, packer_thread); } static inline void set_data_vio_packer_callback(struct data_vio *data_vio, vdo_action_fn callback) { thread_id_t packer_thread = vdo_from_data_vio(data_vio)->thread_config.packer_thread; vdo_set_completion_callback(&data_vio->vio.completion, callback, packer_thread); } /** * launch_data_vio_packer_callback() - Set a callback as a packer operation and invoke it * immediately. */ static inline void launch_data_vio_packer_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_packer_callback(data_vio, callback); vdo_launch_completion(&data_vio->vio.completion); } static inline void assert_data_vio_on_cpu_thread(struct data_vio *data_vio) { thread_id_t cpu_thread = vdo_from_data_vio(data_vio)->thread_config.cpu_thread; thread_id_t thread_id = vdo_get_callback_thread_id(); VDO_ASSERT_LOG_ONLY((cpu_thread == thread_id), "data_vio for logical block %llu on thread %u, should be on cpu thread %u", (unsigned long long) data_vio->logical.lbn, thread_id, cpu_thread); } static inline void set_data_vio_cpu_callback(struct data_vio *data_vio, vdo_action_fn callback) { thread_id_t cpu_thread = vdo_from_data_vio(data_vio)->thread_config.cpu_thread; vdo_set_completion_callback(&data_vio->vio.completion, callback, cpu_thread); } /** * launch_data_vio_cpu_callback() - Set a callback to run on the CPU queues and invoke it * immediately. */ static inline void launch_data_vio_cpu_callback(struct data_vio *data_vio, vdo_action_fn callback, enum vdo_completion_priority priority) { set_data_vio_cpu_callback(data_vio, callback); vdo_launch_completion_with_priority(&data_vio->vio.completion, priority); } static inline void set_data_vio_bio_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { vdo_set_completion_callback(&data_vio->vio.completion, callback, get_vio_bio_zone_thread_id(&data_vio->vio)); } /** * launch_data_vio_bio_zone_callback() - Set a callback as a bio zone operation and invoke it * immediately. */ static inline void launch_data_vio_bio_zone_callback(struct data_vio *data_vio, vdo_action_fn callback) { set_data_vio_bio_zone_callback(data_vio, callback); vdo_launch_completion_with_priority(&data_vio->vio.completion, BIO_Q_DATA_PRIORITY); } /** * launch_data_vio_on_bio_ack_queue() - If the vdo uses a bio_ack queue, set a callback to run on * it and invoke it immediately, otherwise, just run the * callback on the current thread. */ static inline void launch_data_vio_on_bio_ack_queue(struct data_vio *data_vio, vdo_action_fn callback) { struct vdo_completion *completion = &data_vio->vio.completion; struct vdo *vdo = completion->vdo; if (!vdo_uses_bio_ack_queue(vdo)) { callback(completion); return; } vdo_set_completion_callback(completion, callback, vdo->thread_config.bio_ack_thread); vdo_launch_completion_with_priority(completion, BIO_ACK_Q_ACK_PRIORITY); } void data_vio_allocate_data_block(struct data_vio *data_vio, enum pbn_lock_type write_lock_type, vdo_action_fn callback, vdo_action_fn error_handler); void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset); int __must_check uncompress_data_vio(struct data_vio *data_vio, enum block_mapping_state mapping_state, char *buffer); void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock); void write_data_vio(struct data_vio *data_vio); void launch_compress_data_vio(struct data_vio *data_vio); void continue_data_vio_with_block_map_slot(struct vdo_completion *completion); #endif /* DATA_VIO_H */
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2016-2017, National Instruments Corp. * * Author: Moritz Fischer <[email protected]> */ #include <linux/etherdevice.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/platform_device.h> #include <linux/skbuff.h> #include <linux/phy.h> #include <linux/mii.h> #include <linux/nvmem-consumer.h> #include <linux/ethtool.h> #include <linux/iopoll.h> #define TX_BD_NUM 64 #define RX_BD_NUM 128 /* Axi DMA Register definitions */ #define XAXIDMA_TX_CR_OFFSET 0x00 /* Channel control */ #define XAXIDMA_TX_SR_OFFSET 0x04 /* Status */ #define XAXIDMA_TX_CDESC_OFFSET 0x08 /* Current descriptor pointer */ #define XAXIDMA_TX_TDESC_OFFSET 0x10 /* Tail descriptor pointer */ #define XAXIDMA_RX_CR_OFFSET 0x30 /* Channel control */ #define XAXIDMA_RX_SR_OFFSET 0x34 /* Status */ #define XAXIDMA_RX_CDESC_OFFSET 0x38 /* Current descriptor pointer */ #define XAXIDMA_RX_TDESC_OFFSET 0x40 /* Tail descriptor pointer */ #define XAXIDMA_CR_RUNSTOP_MASK 0x1 /* Start/stop DMA channel */ #define XAXIDMA_CR_RESET_MASK 0x4 /* Reset DMA engine */ #define XAXIDMA_BD_CTRL_LENGTH_MASK 0x007FFFFF /* Requested len */ #define XAXIDMA_BD_CTRL_TXSOF_MASK 0x08000000 /* First tx packet */ #define XAXIDMA_BD_CTRL_TXEOF_MASK 0x04000000 /* Last tx packet */ #define XAXIDMA_BD_CTRL_ALL_MASK 0x0C000000 /* All control bits */ #define XAXIDMA_DELAY_MASK 0xFF000000 /* Delay timeout counter */ #define XAXIDMA_COALESCE_MASK 0x00FF0000 /* Coalesce counter */ #define XAXIDMA_DELAY_SHIFT 24 #define XAXIDMA_COALESCE_SHIFT 16 #define XAXIDMA_IRQ_IOC_MASK 0x00001000 /* Completion intr */ #define XAXIDMA_IRQ_DELAY_MASK 0x00002000 /* Delay interrupt */ #define XAXIDMA_IRQ_ERROR_MASK 0x00004000 /* Error interrupt */ #define XAXIDMA_IRQ_ALL_MASK 0x00007000 /* All interrupts */ /* Default TX/RX Threshold and waitbound values for SGDMA mode */ #define XAXIDMA_DFT_TX_THRESHOLD 24 #define XAXIDMA_DFT_TX_WAITBOUND 254 #define XAXIDMA_DFT_RX_THRESHOLD 24 #define XAXIDMA_DFT_RX_WAITBOUND 254 #define XAXIDMA_BD_STS_ACTUAL_LEN_MASK 0x007FFFFF /* Actual len */ #define XAXIDMA_BD_STS_COMPLETE_MASK 0x80000000 /* Completed */ #define XAXIDMA_BD_STS_DEC_ERR_MASK 0x40000000 /* Decode error */ #define XAXIDMA_BD_STS_SLV_ERR_MASK 0x20000000 /* Slave error */ #define XAXIDMA_BD_STS_INT_ERR_MASK 0x10000000 /* Internal err */ #define XAXIDMA_BD_STS_ALL_ERR_MASK 0x70000000 /* All errors */ #define XAXIDMA_BD_STS_RXSOF_MASK 0x08000000 /* First rx pkt */ #define XAXIDMA_BD_STS_RXEOF_MASK 0x04000000 /* Last rx pkt */ #define XAXIDMA_BD_STS_ALL_MASK 0xFC000000 /* All status bits */ #define NIXGE_REG_CTRL_OFFSET 0x4000 #define NIXGE_REG_INFO 0x00 #define NIXGE_REG_MAC_CTL 0x04 #define NIXGE_REG_PHY_CTL 0x08 #define NIXGE_REG_LED_CTL 0x0c #define NIXGE_REG_MDIO_DATA 0x10 #define NIXGE_REG_MDIO_ADDR 0x14 #define NIXGE_REG_MDIO_OP 0x18 #define NIXGE_REG_MDIO_CTRL 0x1c #define NIXGE_ID_LED_CTL_EN BIT(0) #define NIXGE_ID_LED_CTL_VAL BIT(1) #define NIXGE_MDIO_CLAUSE45 BIT(12) #define NIXGE_MDIO_CLAUSE22 0 #define NIXGE_MDIO_OP(n) (((n) & 0x3) << 10) #define NIXGE_MDIO_OP_ADDRESS 0 #define NIXGE_MDIO_C45_WRITE BIT(0) #define NIXGE_MDIO_C45_READ (BIT(1) | BIT(0)) #define NIXGE_MDIO_C22_WRITE BIT(0) #define NIXGE_MDIO_C22_READ BIT(1) #define NIXGE_MDIO_ADDR(n) (((n) & 0x1f) << 5) #define NIXGE_MDIO_MMD(n) (((n) & 0x1f) << 0) #define NIXGE_REG_MAC_LSB 0x1000 #define NIXGE_REG_MAC_MSB 0x1004 /* Packet size info */ #define NIXGE_HDR_SIZE 14 /* Size of Ethernet header */ #define NIXGE_TRL_SIZE 4 /* Size of Ethernet trailer (FCS) */ #define NIXGE_MTU 1500 /* Max MTU of an Ethernet frame */ #define NIXGE_JUMBO_MTU 9000 /* Max MTU of a jumbo Eth. frame */ #define NIXGE_MAX_FRAME_SIZE (NIXGE_MTU + NIXGE_HDR_SIZE + NIXGE_TRL_SIZE) #define NIXGE_MAX_JUMBO_FRAME_SIZE \ (NIXGE_JUMBO_MTU + NIXGE_HDR_SIZE + NIXGE_TRL_SIZE) enum nixge_version { NIXGE_V2, NIXGE_V3, NIXGE_VERSION_COUNT }; struct nixge_hw_dma_bd { u32 next_lo; u32 next_hi; u32 phys_lo; u32 phys_hi; u32 reserved3; u32 reserved4; u32 cntrl; u32 status; u32 app0; u32 app1; u32 app2; u32 app3; u32 app4; u32 sw_id_offset_lo; u32 sw_id_offset_hi; u32 reserved6; }; #ifdef CONFIG_PHYS_ADDR_T_64BIT #define nixge_hw_dma_bd_set_addr(bd, field, addr) \ do { \ (bd)->field##_lo = lower_32_bits((addr)); \ (bd)->field##_hi = upper_32_bits((addr)); \ } while (0) #else #define nixge_hw_dma_bd_set_addr(bd, field, addr) \ ((bd)->field##_lo = lower_32_bits((addr))) #endif #define nixge_hw_dma_bd_set_phys(bd, addr) \ nixge_hw_dma_bd_set_addr((bd), phys, (addr)) #define nixge_hw_dma_bd_set_next(bd, addr) \ nixge_hw_dma_bd_set_addr((bd), next, (addr)) #define nixge_hw_dma_bd_set_offset(bd, addr) \ nixge_hw_dma_bd_set_addr((bd), sw_id_offset, (addr)) #ifdef CONFIG_PHYS_ADDR_T_64BIT #define nixge_hw_dma_bd_get_addr(bd, field) \ (dma_addr_t)((((u64)(bd)->field##_hi) << 32) | ((bd)->field##_lo)) #else #define nixge_hw_dma_bd_get_addr(bd, field) \ (dma_addr_t)((bd)->field##_lo) #endif struct nixge_tx_skb { struct sk_buff *skb; dma_addr_t mapping; size_t size; bool mapped_as_page; }; struct nixge_priv { struct net_device *ndev; struct napi_struct napi; struct device *dev; /* Connection to PHY device */ struct device_node *phy_node; phy_interface_t phy_mode; int link; unsigned int speed; unsigned int duplex; /* MDIO bus data */ struct mii_bus *mii_bus; /* MII bus reference */ /* IO registers, dma functions and IRQs */ void __iomem *ctrl_regs; void __iomem *dma_regs; struct tasklet_struct dma_err_tasklet; int tx_irq; int rx_irq; /* Buffer descriptors */ struct nixge_hw_dma_bd *tx_bd_v; struct nixge_tx_skb *tx_skb; dma_addr_t tx_bd_p; struct nixge_hw_dma_bd *rx_bd_v; dma_addr_t rx_bd_p; u32 tx_bd_ci; u32 tx_bd_tail; u32 rx_bd_ci; u32 coalesce_count_rx; u32 coalesce_count_tx; }; static void nixge_dma_write_reg(struct nixge_priv *priv, off_t offset, u32 val) { writel(val, priv->dma_regs + offset); } static void nixge_dma_write_desc_reg(struct nixge_priv *priv, off_t offset, dma_addr_t addr) { writel(lower_32_bits(addr), priv->dma_regs + offset); #ifdef CONFIG_PHYS_ADDR_T_64BIT writel(upper_32_bits(addr), priv->dma_regs + offset + 4); #endif } static u32 nixge_dma_read_reg(const struct nixge_priv *priv, off_t offset) { return readl(priv->dma_regs + offset); } static void nixge_ctrl_write_reg(struct nixge_priv *priv, off_t offset, u32 val) { writel(val, priv->ctrl_regs + offset); } static u32 nixge_ctrl_read_reg(struct nixge_priv *priv, off_t offset) { return readl(priv->ctrl_regs + offset); } #define nixge_ctrl_poll_timeout(priv, addr, val, cond, sleep_us, timeout_us) \ readl_poll_timeout((priv)->ctrl_regs + (addr), (val), (cond), \ (sleep_us), (timeout_us)) #define nixge_dma_poll_timeout(priv, addr, val, cond, sleep_us, timeout_us) \ readl_poll_timeout((priv)->dma_regs + (addr), (val), (cond), \ (sleep_us), (timeout_us)) static void nixge_hw_dma_bd_release(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); dma_addr_t phys_addr; struct sk_buff *skb; int i; if (priv->rx_bd_v) { for (i = 0; i < RX_BD_NUM; i++) { phys_addr = nixge_hw_dma_bd_get_addr(&priv->rx_bd_v[i], phys); dma_unmap_single(ndev->dev.parent, phys_addr, NIXGE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); skb = (struct sk_buff *)(uintptr_t) nixge_hw_dma_bd_get_addr(&priv->rx_bd_v[i], sw_id_offset); dev_kfree_skb(skb); } dma_free_coherent(ndev->dev.parent, sizeof(*priv->rx_bd_v) * RX_BD_NUM, priv->rx_bd_v, priv->rx_bd_p); } if (priv->tx_skb) devm_kfree(ndev->dev.parent, priv->tx_skb); if (priv->tx_bd_v) dma_free_coherent(ndev->dev.parent, sizeof(*priv->tx_bd_v) * TX_BD_NUM, priv->tx_bd_v, priv->tx_bd_p); } static int nixge_hw_dma_bd_init(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); struct sk_buff *skb; dma_addr_t phys; u32 cr; int i; /* Reset the indexes which are used for accessing the BDs */ priv->tx_bd_ci = 0; priv->tx_bd_tail = 0; priv->rx_bd_ci = 0; /* Allocate the Tx and Rx buffer descriptors. */ priv->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, sizeof(*priv->tx_bd_v) * TX_BD_NUM, &priv->tx_bd_p, GFP_KERNEL); if (!priv->tx_bd_v) goto out; priv->tx_skb = devm_kcalloc(ndev->dev.parent, TX_BD_NUM, sizeof(*priv->tx_skb), GFP_KERNEL); if (!priv->tx_skb) goto out; priv->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, sizeof(*priv->rx_bd_v) * RX_BD_NUM, &priv->rx_bd_p, GFP_KERNEL); if (!priv->rx_bd_v) goto out; for (i = 0; i < TX_BD_NUM; i++) { nixge_hw_dma_bd_set_next(&priv->tx_bd_v[i], priv->tx_bd_p + sizeof(*priv->tx_bd_v) * ((i + 1) % TX_BD_NUM)); } for (i = 0; i < RX_BD_NUM; i++) { nixge_hw_dma_bd_set_next(&priv->rx_bd_v[i], priv->rx_bd_p + sizeof(*priv->rx_bd_v) * ((i + 1) % RX_BD_NUM)); skb = __netdev_alloc_skb_ip_align(ndev, NIXGE_MAX_JUMBO_FRAME_SIZE, GFP_KERNEL); if (!skb) goto out; nixge_hw_dma_bd_set_offset(&priv->rx_bd_v[i], (uintptr_t)skb); phys = dma_map_single(ndev->dev.parent, skb->data, NIXGE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); nixge_hw_dma_bd_set_phys(&priv->rx_bd_v[i], phys); priv->rx_bd_v[i].cntrl = NIXGE_MAX_JUMBO_FRAME_SIZE; } /* Start updating the Rx channel control register */ cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); /* Update the interrupt coalesce count */ cr = ((cr & ~XAXIDMA_COALESCE_MASK) | ((priv->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT)); /* Update the delay timer count */ cr = ((cr & ~XAXIDMA_DELAY_MASK) | (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); /* Enable coalesce, delay timer and error interrupts */ cr |= XAXIDMA_IRQ_ALL_MASK; /* Write to the Rx channel control register */ nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr); /* Start updating the Tx channel control register */ cr = nixge_dma_read_reg(priv, XAXIDMA_TX_CR_OFFSET); /* Update the interrupt coalesce count */ cr = (((cr & ~XAXIDMA_COALESCE_MASK)) | ((priv->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT)); /* Update the delay timer count */ cr = (((cr & ~XAXIDMA_DELAY_MASK)) | (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); /* Enable coalesce, delay timer and error interrupts */ cr |= XAXIDMA_IRQ_ALL_MASK; /* Write to the Tx channel control register */ nixge_dma_write_reg(priv, XAXIDMA_TX_CR_OFFSET, cr); /* Populate the tail pointer and bring the Rx Axi DMA engine out of * halted state. This will make the Rx side ready for reception. */ nixge_dma_write_desc_reg(priv, XAXIDMA_RX_CDESC_OFFSET, priv->rx_bd_p); cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr | XAXIDMA_CR_RUNSTOP_MASK); nixge_dma_write_desc_reg(priv, XAXIDMA_RX_TDESC_OFFSET, priv->rx_bd_p + (sizeof(*priv->rx_bd_v) * (RX_BD_NUM - 1))); /* Write to the RS (Run-stop) bit in the Tx channel control register. * Tx channel is now ready to run. But only after we write to the * tail pointer register that the Tx channel will start transmitting. */ nixge_dma_write_desc_reg(priv, XAXIDMA_TX_CDESC_OFFSET, priv->tx_bd_p); cr = nixge_dma_read_reg(priv, XAXIDMA_TX_CR_OFFSET); nixge_dma_write_reg(priv, XAXIDMA_TX_CR_OFFSET, cr | XAXIDMA_CR_RUNSTOP_MASK); return 0; out: nixge_hw_dma_bd_release(ndev); return -ENOMEM; } static void __nixge_device_reset(struct nixge_priv *priv, off_t offset) { u32 status; int err; /* Reset Axi DMA. This would reset NIXGE Ethernet core as well. * The reset process of Axi DMA takes a while to complete as all * pending commands/transfers will be flushed or completed during * this reset process. */ nixge_dma_write_reg(priv, offset, XAXIDMA_CR_RESET_MASK); err = nixge_dma_poll_timeout(priv, offset, status, !(status & XAXIDMA_CR_RESET_MASK), 10, 1000); if (err) netdev_err(priv->ndev, "%s: DMA reset timeout!\n", __func__); } static void nixge_device_reset(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); __nixge_device_reset(priv, XAXIDMA_TX_CR_OFFSET); __nixge_device_reset(priv, XAXIDMA_RX_CR_OFFSET); if (nixge_hw_dma_bd_init(ndev)) netdev_err(ndev, "%s: descriptor allocation failed\n", __func__); netif_trans_update(ndev); } static void nixge_handle_link_change(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; if (phydev->link != priv->link || phydev->speed != priv->speed || phydev->duplex != priv->duplex) { priv->link = phydev->link; priv->speed = phydev->speed; priv->duplex = phydev->duplex; phy_print_status(phydev); } } static void nixge_tx_skb_unmap(struct nixge_priv *priv, struct nixge_tx_skb *tx_skb) { if (tx_skb->mapping) { if (tx_skb->mapped_as_page) dma_unmap_page(priv->ndev->dev.parent, tx_skb->mapping, tx_skb->size, DMA_TO_DEVICE); else dma_unmap_single(priv->ndev->dev.parent, tx_skb->mapping, tx_skb->size, DMA_TO_DEVICE); tx_skb->mapping = 0; } if (tx_skb->skb) { dev_kfree_skb_any(tx_skb->skb); tx_skb->skb = NULL; } } static void nixge_start_xmit_done(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); struct nixge_hw_dma_bd *cur_p; struct nixge_tx_skb *tx_skb; unsigned int status = 0; u32 packets = 0; u32 size = 0; cur_p = &priv->tx_bd_v[priv->tx_bd_ci]; tx_skb = &priv->tx_skb[priv->tx_bd_ci]; status = cur_p->status; while (status & XAXIDMA_BD_STS_COMPLETE_MASK) { nixge_tx_skb_unmap(priv, tx_skb); cur_p->status = 0; size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; packets++; ++priv->tx_bd_ci; priv->tx_bd_ci %= TX_BD_NUM; cur_p = &priv->tx_bd_v[priv->tx_bd_ci]; tx_skb = &priv->tx_skb[priv->tx_bd_ci]; status = cur_p->status; } ndev->stats.tx_packets += packets; ndev->stats.tx_bytes += size; if (packets) netif_wake_queue(ndev); } static int nixge_check_tx_bd_space(struct nixge_priv *priv, int num_frag) { struct nixge_hw_dma_bd *cur_p; cur_p = &priv->tx_bd_v[(priv->tx_bd_tail + num_frag) % TX_BD_NUM]; if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK) return NETDEV_TX_BUSY; return 0; } static netdev_tx_t nixge_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); struct nixge_hw_dma_bd *cur_p; struct nixge_tx_skb *tx_skb; dma_addr_t tail_p, cur_phys; skb_frag_t *frag; u32 num_frag; u32 ii; num_frag = skb_shinfo(skb)->nr_frags; cur_p = &priv->tx_bd_v[priv->tx_bd_tail]; tx_skb = &priv->tx_skb[priv->tx_bd_tail]; if (nixge_check_tx_bd_space(priv, num_frag)) { if (!netif_queue_stopped(ndev)) netif_stop_queue(ndev); return NETDEV_TX_OK; } cur_phys = dma_map_single(ndev->dev.parent, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(ndev->dev.parent, cur_phys)) goto drop; nixge_hw_dma_bd_set_phys(cur_p, cur_phys); cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK; tx_skb->skb = NULL; tx_skb->mapping = cur_phys; tx_skb->size = skb_headlen(skb); tx_skb->mapped_as_page = false; for (ii = 0; ii < num_frag; ii++) { ++priv->tx_bd_tail; priv->tx_bd_tail %= TX_BD_NUM; cur_p = &priv->tx_bd_v[priv->tx_bd_tail]; tx_skb = &priv->tx_skb[priv->tx_bd_tail]; frag = &skb_shinfo(skb)->frags[ii]; cur_phys = skb_frag_dma_map(ndev->dev.parent, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (dma_mapping_error(ndev->dev.parent, cur_phys)) goto frag_err; nixge_hw_dma_bd_set_phys(cur_p, cur_phys); cur_p->cntrl = skb_frag_size(frag); tx_skb->skb = NULL; tx_skb->mapping = cur_phys; tx_skb->size = skb_frag_size(frag); tx_skb->mapped_as_page = true; } /* last buffer of the frame */ tx_skb->skb = skb; cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK; tail_p = priv->tx_bd_p + sizeof(*priv->tx_bd_v) * priv->tx_bd_tail; /* Start the transfer */ nixge_dma_write_desc_reg(priv, XAXIDMA_TX_TDESC_OFFSET, tail_p); ++priv->tx_bd_tail; priv->tx_bd_tail %= TX_BD_NUM; return NETDEV_TX_OK; frag_err: for (; ii > 0; ii--) { if (priv->tx_bd_tail) priv->tx_bd_tail--; else priv->tx_bd_tail = TX_BD_NUM - 1; tx_skb = &priv->tx_skb[priv->tx_bd_tail]; nixge_tx_skb_unmap(priv, tx_skb); cur_p = &priv->tx_bd_v[priv->tx_bd_tail]; cur_p->status = 0; } dma_unmap_single(priv->ndev->dev.parent, tx_skb->mapping, tx_skb->size, DMA_TO_DEVICE); drop: ndev->stats.tx_dropped++; return NETDEV_TX_OK; } static int nixge_recv(struct net_device *ndev, int budget) { struct nixge_priv *priv = netdev_priv(ndev); struct sk_buff *skb, *new_skb; struct nixge_hw_dma_bd *cur_p; dma_addr_t tail_p = 0, cur_phys = 0; u32 packets = 0; u32 length = 0; u32 size = 0; cur_p = &priv->rx_bd_v[priv->rx_bd_ci]; while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK && budget > packets)) { tail_p = priv->rx_bd_p + sizeof(*priv->rx_bd_v) * priv->rx_bd_ci; skb = (struct sk_buff *)(uintptr_t) nixge_hw_dma_bd_get_addr(cur_p, sw_id_offset); length = cur_p->status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK; if (length > NIXGE_MAX_JUMBO_FRAME_SIZE) length = NIXGE_MAX_JUMBO_FRAME_SIZE; dma_unmap_single(ndev->dev.parent, nixge_hw_dma_bd_get_addr(cur_p, phys), NIXGE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); skb_put(skb, length); skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); /* For now mark them as CHECKSUM_NONE since * we don't have offload capabilities */ skb->ip_summed = CHECKSUM_NONE; napi_gro_receive(&priv->napi, skb); size += length; packets++; new_skb = netdev_alloc_skb_ip_align(ndev, NIXGE_MAX_JUMBO_FRAME_SIZE); if (!new_skb) return packets; cur_phys = dma_map_single(ndev->dev.parent, new_skb->data, NIXGE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(ndev->dev.parent, cur_phys)) { /* FIXME: bail out and clean up */ netdev_err(ndev, "Failed to map ...\n"); } nixge_hw_dma_bd_set_phys(cur_p, cur_phys); cur_p->cntrl = NIXGE_MAX_JUMBO_FRAME_SIZE; cur_p->status = 0; nixge_hw_dma_bd_set_offset(cur_p, (uintptr_t)new_skb); ++priv->rx_bd_ci; priv->rx_bd_ci %= RX_BD_NUM; cur_p = &priv->rx_bd_v[priv->rx_bd_ci]; } ndev->stats.rx_packets += packets; ndev->stats.rx_bytes += size; if (tail_p) nixge_dma_write_desc_reg(priv, XAXIDMA_RX_TDESC_OFFSET, tail_p); return packets; } static int nixge_poll(struct napi_struct *napi, int budget) { struct nixge_priv *priv = container_of(napi, struct nixge_priv, napi); int work_done; u32 status, cr; work_done = 0; work_done = nixge_recv(priv->ndev, budget); if (work_done < budget) { napi_complete_done(napi, work_done); status = nixge_dma_read_reg(priv, XAXIDMA_RX_SR_OFFSET); if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { /* If there's more, reschedule, but clear */ nixge_dma_write_reg(priv, XAXIDMA_RX_SR_OFFSET, status); napi_schedule(napi); } else { /* if not, turn on RX IRQs again ... */ cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); cr |= (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr); } } return work_done; } static irqreturn_t nixge_tx_irq(int irq, void *_ndev) { struct nixge_priv *priv = netdev_priv(_ndev); struct net_device *ndev = _ndev; unsigned int status; dma_addr_t phys; u32 cr; status = nixge_dma_read_reg(priv, XAXIDMA_TX_SR_OFFSET); if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { nixge_dma_write_reg(priv, XAXIDMA_TX_SR_OFFSET, status); nixge_start_xmit_done(priv->ndev); goto out; } if (!(status & XAXIDMA_IRQ_ALL_MASK)) { netdev_err(ndev, "No interrupts asserted in Tx path\n"); return IRQ_NONE; } if (status & XAXIDMA_IRQ_ERROR_MASK) { phys = nixge_hw_dma_bd_get_addr(&priv->tx_bd_v[priv->tx_bd_ci], phys); netdev_err(ndev, "DMA Tx error 0x%x\n", status); netdev_err(ndev, "Current BD is at: 0x%llx\n", (u64)phys); cr = nixge_dma_read_reg(priv, XAXIDMA_TX_CR_OFFSET); /* Disable coalesce, delay timer and error interrupts */ cr &= (~XAXIDMA_IRQ_ALL_MASK); /* Write to the Tx channel control register */ nixge_dma_write_reg(priv, XAXIDMA_TX_CR_OFFSET, cr); cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); /* Disable coalesce, delay timer and error interrupts */ cr &= (~XAXIDMA_IRQ_ALL_MASK); /* Write to the Rx channel control register */ nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr); tasklet_schedule(&priv->dma_err_tasklet); nixge_dma_write_reg(priv, XAXIDMA_TX_SR_OFFSET, status); } out: return IRQ_HANDLED; } static irqreturn_t nixge_rx_irq(int irq, void *_ndev) { struct nixge_priv *priv = netdev_priv(_ndev); struct net_device *ndev = _ndev; unsigned int status; dma_addr_t phys; u32 cr; status = nixge_dma_read_reg(priv, XAXIDMA_RX_SR_OFFSET); if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) { /* Turn of IRQs because NAPI */ nixge_dma_write_reg(priv, XAXIDMA_RX_SR_OFFSET, status); cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); cr &= ~(XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK); nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr); napi_schedule(&priv->napi); goto out; } if (!(status & XAXIDMA_IRQ_ALL_MASK)) { netdev_err(ndev, "No interrupts asserted in Rx path\n"); return IRQ_NONE; } if (status & XAXIDMA_IRQ_ERROR_MASK) { phys = nixge_hw_dma_bd_get_addr(&priv->rx_bd_v[priv->rx_bd_ci], phys); netdev_err(ndev, "DMA Rx error 0x%x\n", status); netdev_err(ndev, "Current BD is at: 0x%llx\n", (u64)phys); cr = nixge_dma_read_reg(priv, XAXIDMA_TX_CR_OFFSET); /* Disable coalesce, delay timer and error interrupts */ cr &= (~XAXIDMA_IRQ_ALL_MASK); /* Finally write to the Tx channel control register */ nixge_dma_write_reg(priv, XAXIDMA_TX_CR_OFFSET, cr); cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); /* Disable coalesce, delay timer and error interrupts */ cr &= (~XAXIDMA_IRQ_ALL_MASK); /* write to the Rx channel control register */ nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr); tasklet_schedule(&priv->dma_err_tasklet); nixge_dma_write_reg(priv, XAXIDMA_RX_SR_OFFSET, status); } out: return IRQ_HANDLED; } static void nixge_dma_err_handler(struct tasklet_struct *t) { struct nixge_priv *lp = from_tasklet(lp, t, dma_err_tasklet); struct nixge_hw_dma_bd *cur_p; struct nixge_tx_skb *tx_skb; u32 cr, i; __nixge_device_reset(lp, XAXIDMA_TX_CR_OFFSET); __nixge_device_reset(lp, XAXIDMA_RX_CR_OFFSET); for (i = 0; i < TX_BD_NUM; i++) { cur_p = &lp->tx_bd_v[i]; tx_skb = &lp->tx_skb[i]; nixge_tx_skb_unmap(lp, tx_skb); nixge_hw_dma_bd_set_phys(cur_p, 0); cur_p->cntrl = 0; cur_p->status = 0; nixge_hw_dma_bd_set_offset(cur_p, 0); } for (i = 0; i < RX_BD_NUM; i++) { cur_p = &lp->rx_bd_v[i]; cur_p->status = 0; } lp->tx_bd_ci = 0; lp->tx_bd_tail = 0; lp->rx_bd_ci = 0; /* Start updating the Rx channel control register */ cr = nixge_dma_read_reg(lp, XAXIDMA_RX_CR_OFFSET); /* Update the interrupt coalesce count */ cr = ((cr & ~XAXIDMA_COALESCE_MASK) | (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT)); /* Update the delay timer count */ cr = ((cr & ~XAXIDMA_DELAY_MASK) | (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); /* Enable coalesce, delay timer and error interrupts */ cr |= XAXIDMA_IRQ_ALL_MASK; /* Finally write to the Rx channel control register */ nixge_dma_write_reg(lp, XAXIDMA_RX_CR_OFFSET, cr); /* Start updating the Tx channel control register */ cr = nixge_dma_read_reg(lp, XAXIDMA_TX_CR_OFFSET); /* Update the interrupt coalesce count */ cr = (((cr & ~XAXIDMA_COALESCE_MASK)) | (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT)); /* Update the delay timer count */ cr = (((cr & ~XAXIDMA_DELAY_MASK)) | (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT)); /* Enable coalesce, delay timer and error interrupts */ cr |= XAXIDMA_IRQ_ALL_MASK; /* Finally write to the Tx channel control register */ nixge_dma_write_reg(lp, XAXIDMA_TX_CR_OFFSET, cr); /* Populate the tail pointer and bring the Rx Axi DMA engine out of * halted state. This will make the Rx side ready for reception. */ nixge_dma_write_desc_reg(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p); cr = nixge_dma_read_reg(lp, XAXIDMA_RX_CR_OFFSET); nixge_dma_write_reg(lp, XAXIDMA_RX_CR_OFFSET, cr | XAXIDMA_CR_RUNSTOP_MASK); nixge_dma_write_desc_reg(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); /* Write to the RS (Run-stop) bit in the Tx channel control register. * Tx channel is now ready to run. But only after we write to the * tail pointer register that the Tx channel will start transmitting */ nixge_dma_write_desc_reg(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p); cr = nixge_dma_read_reg(lp, XAXIDMA_TX_CR_OFFSET); nixge_dma_write_reg(lp, XAXIDMA_TX_CR_OFFSET, cr | XAXIDMA_CR_RUNSTOP_MASK); } static int nixge_open(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); struct phy_device *phy; int ret; nixge_device_reset(ndev); phy = of_phy_connect(ndev, priv->phy_node, &nixge_handle_link_change, 0, priv->phy_mode); if (!phy) return -ENODEV; phy_start(phy); /* Enable tasklets for Axi DMA error handling */ tasklet_setup(&priv->dma_err_tasklet, nixge_dma_err_handler); napi_enable(&priv->napi); /* Enable interrupts for Axi DMA Tx */ ret = request_irq(priv->tx_irq, nixge_tx_irq, 0, ndev->name, ndev); if (ret) goto err_tx_irq; /* Enable interrupts for Axi DMA Rx */ ret = request_irq(priv->rx_irq, nixge_rx_irq, 0, ndev->name, ndev); if (ret) goto err_rx_irq; netif_start_queue(ndev); return 0; err_rx_irq: free_irq(priv->tx_irq, ndev); err_tx_irq: napi_disable(&priv->napi); phy_stop(phy); phy_disconnect(phy); tasklet_kill(&priv->dma_err_tasklet); netdev_err(ndev, "request_irq() failed\n"); return ret; } static int nixge_stop(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); u32 cr; netif_stop_queue(ndev); napi_disable(&priv->napi); if (ndev->phydev) { phy_stop(ndev->phydev); phy_disconnect(ndev->phydev); } cr = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); nixge_dma_write_reg(priv, XAXIDMA_RX_CR_OFFSET, cr & (~XAXIDMA_CR_RUNSTOP_MASK)); cr = nixge_dma_read_reg(priv, XAXIDMA_TX_CR_OFFSET); nixge_dma_write_reg(priv, XAXIDMA_TX_CR_OFFSET, cr & (~XAXIDMA_CR_RUNSTOP_MASK)); tasklet_kill(&priv->dma_err_tasklet); free_irq(priv->tx_irq, ndev); free_irq(priv->rx_irq, ndev); nixge_hw_dma_bd_release(ndev); return 0; } static int nixge_change_mtu(struct net_device *ndev, int new_mtu) { if (netif_running(ndev)) return -EBUSY; if ((new_mtu + NIXGE_HDR_SIZE + NIXGE_TRL_SIZE) > NIXGE_MAX_JUMBO_FRAME_SIZE) return -EINVAL; WRITE_ONCE(ndev->mtu, new_mtu); return 0; } static s32 __nixge_hw_set_mac_address(struct net_device *ndev) { struct nixge_priv *priv = netdev_priv(ndev); nixge_ctrl_write_reg(priv, NIXGE_REG_MAC_LSB, (ndev->dev_addr[2]) << 24 | (ndev->dev_addr[3] << 16) | (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5] << 0)); nixge_ctrl_write_reg(priv, NIXGE_REG_MAC_MSB, (ndev->dev_addr[1] | (ndev->dev_addr[0] << 8))); return 0; } static int nixge_net_set_mac_address(struct net_device *ndev, void *p) { int err; err = eth_mac_addr(ndev, p); if (!err) __nixge_hw_set_mac_address(ndev); return err; } static const struct net_device_ops nixge_netdev_ops = { .ndo_open = nixge_open, .ndo_stop = nixge_stop, .ndo_start_xmit = nixge_start_xmit, .ndo_change_mtu = nixge_change_mtu, .ndo_set_mac_address = nixge_net_set_mac_address, .ndo_validate_addr = eth_validate_addr, }; static void nixge_ethtools_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *ed) { strscpy(ed->driver, "nixge", sizeof(ed->driver)); strscpy(ed->bus_info, "platform", sizeof(ed->bus_info)); } static int nixge_ethtools_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ecoalesce, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct nixge_priv *priv = netdev_priv(ndev); u32 regval = 0; regval = nixge_dma_read_reg(priv, XAXIDMA_RX_CR_OFFSET); ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK) >> XAXIDMA_COALESCE_SHIFT; regval = nixge_dma_read_reg(priv, XAXIDMA_TX_CR_OFFSET); ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK) >> XAXIDMA_COALESCE_SHIFT; return 0; } static int nixge_ethtools_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ecoalesce, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct nixge_priv *priv = netdev_priv(ndev); if (netif_running(ndev)) { netdev_err(ndev, "Please stop netif before applying configuration\n"); return -EBUSY; } if (ecoalesce->rx_max_coalesced_frames) priv->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames; if (ecoalesce->tx_max_coalesced_frames) priv->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames; return 0; } static int nixge_ethtools_set_phys_id(struct net_device *ndev, enum ethtool_phys_id_state state) { struct nixge_priv *priv = netdev_priv(ndev); u32 ctrl; ctrl = nixge_ctrl_read_reg(priv, NIXGE_REG_LED_CTL); switch (state) { case ETHTOOL_ID_ACTIVE: ctrl |= NIXGE_ID_LED_CTL_EN; /* Enable identification LED override*/ nixge_ctrl_write_reg(priv, NIXGE_REG_LED_CTL, ctrl); return 2; case ETHTOOL_ID_ON: ctrl |= NIXGE_ID_LED_CTL_VAL; nixge_ctrl_write_reg(priv, NIXGE_REG_LED_CTL, ctrl); break; case ETHTOOL_ID_OFF: ctrl &= ~NIXGE_ID_LED_CTL_VAL; nixge_ctrl_write_reg(priv, NIXGE_REG_LED_CTL, ctrl); break; case ETHTOOL_ID_INACTIVE: /* Restore LED settings */ ctrl &= ~NIXGE_ID_LED_CTL_EN; nixge_ctrl_write_reg(priv, NIXGE_REG_LED_CTL, ctrl); break; } return 0; } static const struct ethtool_ops nixge_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES, .get_drvinfo = nixge_ethtools_get_drvinfo, .get_coalesce = nixge_ethtools_get_coalesce, .set_coalesce = nixge_ethtools_set_coalesce, .set_phys_id = nixge_ethtools_set_phys_id, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_link = ethtool_op_get_link, }; static int nixge_mdio_read_c22(struct mii_bus *bus, int phy_id, int reg) { struct nixge_priv *priv = bus->priv; u32 status, tmp; int err; u16 device; device = reg & 0x1f; tmp = NIXGE_MDIO_CLAUSE22 | NIXGE_MDIO_OP(NIXGE_MDIO_C22_READ) | NIXGE_MDIO_ADDR(phy_id) | NIXGE_MDIO_MMD(device); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_OP, tmp); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_CTRL, 1); err = nixge_ctrl_poll_timeout(priv, NIXGE_REG_MDIO_CTRL, status, !status, 10, 1000); if (err) { dev_err(priv->dev, "timeout setting read command"); return err; } status = nixge_ctrl_read_reg(priv, NIXGE_REG_MDIO_DATA); return status; } static int nixge_mdio_read_c45(struct mii_bus *bus, int phy_id, int device, int reg) { struct nixge_priv *priv = bus->priv; u32 status, tmp; int err; nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_ADDR, reg & 0xffff); tmp = NIXGE_MDIO_CLAUSE45 | NIXGE_MDIO_OP(NIXGE_MDIO_OP_ADDRESS) | NIXGE_MDIO_ADDR(phy_id) | NIXGE_MDIO_MMD(device); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_OP, tmp); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_CTRL, 1); err = nixge_ctrl_poll_timeout(priv, NIXGE_REG_MDIO_CTRL, status, !status, 10, 1000); if (err) { dev_err(priv->dev, "timeout setting address"); return err; } tmp = NIXGE_MDIO_CLAUSE45 | NIXGE_MDIO_OP(NIXGE_MDIO_C45_READ) | NIXGE_MDIO_ADDR(phy_id) | NIXGE_MDIO_MMD(device); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_OP, tmp); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_CTRL, 1); err = nixge_ctrl_poll_timeout(priv, NIXGE_REG_MDIO_CTRL, status, !status, 10, 1000); if (err) { dev_err(priv->dev, "timeout setting read command"); return err; } status = nixge_ctrl_read_reg(priv, NIXGE_REG_MDIO_DATA); return status; } static int nixge_mdio_write_c22(struct mii_bus *bus, int phy_id, int reg, u16 val) { struct nixge_priv *priv = bus->priv; u32 status, tmp; u16 device; int err; device = reg & 0x1f; tmp = NIXGE_MDIO_CLAUSE22 | NIXGE_MDIO_OP(NIXGE_MDIO_C22_WRITE) | NIXGE_MDIO_ADDR(phy_id) | NIXGE_MDIO_MMD(device); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_DATA, val); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_OP, tmp); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_CTRL, 1); err = nixge_ctrl_poll_timeout(priv, NIXGE_REG_MDIO_CTRL, status, !status, 10, 1000); if (err) dev_err(priv->dev, "timeout setting write command"); return err; } static int nixge_mdio_write_c45(struct mii_bus *bus, int phy_id, int device, int reg, u16 val) { struct nixge_priv *priv = bus->priv; u32 status, tmp; int err; nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_ADDR, reg & 0xffff); tmp = NIXGE_MDIO_CLAUSE45 | NIXGE_MDIO_OP(NIXGE_MDIO_OP_ADDRESS) | NIXGE_MDIO_ADDR(phy_id) | NIXGE_MDIO_MMD(device); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_OP, tmp); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_CTRL, 1); err = nixge_ctrl_poll_timeout(priv, NIXGE_REG_MDIO_CTRL, status, !status, 10, 1000); if (err) { dev_err(priv->dev, "timeout setting address"); return err; } tmp = NIXGE_MDIO_CLAUSE45 | NIXGE_MDIO_OP(NIXGE_MDIO_C45_WRITE) | NIXGE_MDIO_ADDR(phy_id) | NIXGE_MDIO_MMD(device); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_DATA, val); nixge_ctrl_write_reg(priv, NIXGE_REG_MDIO_OP, tmp); err = nixge_ctrl_poll_timeout(priv, NIXGE_REG_MDIO_CTRL, status, !status, 10, 1000); if (err) dev_err(priv->dev, "timeout setting write command"); return err; } static int nixge_mdio_setup(struct nixge_priv *priv, struct device_node *np) { struct mii_bus *bus; bus = devm_mdiobus_alloc(priv->dev); if (!bus) return -ENOMEM; snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev)); bus->priv = priv; bus->name = "nixge_mii_bus"; bus->read = nixge_mdio_read_c22; bus->write = nixge_mdio_write_c22; bus->read_c45 = nixge_mdio_read_c45; bus->write_c45 = nixge_mdio_write_c45; bus->parent = priv->dev; priv->mii_bus = bus; return of_mdiobus_register(bus, np); } static void *nixge_get_nvmem_address(struct device *dev) { struct nvmem_cell *cell; size_t cell_size; char *mac; cell = nvmem_cell_get(dev, "address"); if (IS_ERR(cell)) return cell; mac = nvmem_cell_read(cell, &cell_size); nvmem_cell_put(cell); return mac; } /* Match table for of_platform binding */ static const struct of_device_id nixge_dt_ids[] = { { .compatible = "ni,xge-enet-2.00", .data = (void *)NIXGE_V2 }, { .compatible = "ni,xge-enet-3.00", .data = (void *)NIXGE_V3 }, {}, }; MODULE_DEVICE_TABLE(of, nixge_dt_ids); static int nixge_of_get_resources(struct platform_device *pdev) { const struct of_device_id *of_id; enum nixge_version version; struct net_device *ndev; struct nixge_priv *priv; ndev = platform_get_drvdata(pdev); priv = netdev_priv(ndev); of_id = of_match_node(nixge_dt_ids, pdev->dev.of_node); if (!of_id) return -ENODEV; version = (enum nixge_version)of_id->data; if (version <= NIXGE_V2) priv->dma_regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); else priv->dma_regs = devm_platform_ioremap_resource_byname(pdev, "dma"); if (IS_ERR(priv->dma_regs)) { netdev_err(ndev, "failed to map dma regs\n"); return PTR_ERR(priv->dma_regs); } if (version <= NIXGE_V2) priv->ctrl_regs = priv->dma_regs + NIXGE_REG_CTRL_OFFSET; else priv->ctrl_regs = devm_platform_ioremap_resource_byname(pdev, "ctrl"); if (IS_ERR(priv->ctrl_regs)) { netdev_err(ndev, "failed to map ctrl regs\n"); return PTR_ERR(priv->ctrl_regs); } return 0; } static int nixge_probe(struct platform_device *pdev) { struct device_node *mn, *phy_node; struct nixge_priv *priv; struct net_device *ndev; const u8 *mac_addr; int err; ndev = alloc_etherdev(sizeof(*priv)); if (!ndev) return -ENOMEM; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->features = NETIF_F_SG; ndev->netdev_ops = &nixge_netdev_ops; ndev->ethtool_ops = &nixge_ethtool_ops; /* MTU range: 64 - 9000 */ ndev->min_mtu = 64; ndev->max_mtu = NIXGE_JUMBO_MTU; mac_addr = nixge_get_nvmem_address(&pdev->dev); if (!IS_ERR(mac_addr) && is_valid_ether_addr(mac_addr)) { eth_hw_addr_set(ndev, mac_addr); kfree(mac_addr); } else { eth_hw_addr_random(ndev); } priv = netdev_priv(ndev); priv->ndev = ndev; priv->dev = &pdev->dev; netif_napi_add(ndev, &priv->napi, nixge_poll); err = nixge_of_get_resources(pdev); if (err) goto free_netdev; __nixge_hw_set_mac_address(ndev); priv->tx_irq = platform_get_irq_byname(pdev, "tx"); if (priv->tx_irq < 0) { netdev_err(ndev, "could not find 'tx' irq"); err = priv->tx_irq; goto free_netdev; } priv->rx_irq = platform_get_irq_byname(pdev, "rx"); if (priv->rx_irq < 0) { netdev_err(ndev, "could not find 'rx' irq"); err = priv->rx_irq; goto free_netdev; } priv->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD; priv->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD; mn = of_get_child_by_name(pdev->dev.of_node, "mdio"); if (mn) { err = nixge_mdio_setup(priv, mn); of_node_put(mn); if (err) { netdev_err(ndev, "error registering mdio bus"); goto free_netdev; } } err = of_get_phy_mode(pdev->dev.of_node, &priv->phy_mode); if (err) { netdev_err(ndev, "not find \"phy-mode\" property\n"); goto unregister_mdio; } phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); if (!phy_node && of_phy_is_fixed_link(pdev->dev.of_node)) { err = of_phy_register_fixed_link(pdev->dev.of_node); if (err < 0) { netdev_err(ndev, "broken fixed-link specification\n"); goto unregister_mdio; } phy_node = of_node_get(pdev->dev.of_node); } priv->phy_node = phy_node; err = register_netdev(priv->ndev); if (err) { netdev_err(ndev, "register_netdev() error (%i)\n", err); goto free_phy; } return 0; free_phy: if (of_phy_is_fixed_link(pdev->dev.of_node)) of_phy_deregister_fixed_link(pdev->dev.of_node); of_node_put(phy_node); unregister_mdio: if (priv->mii_bus) mdiobus_unregister(priv->mii_bus); free_netdev: free_netdev(ndev); return err; } static void nixge_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct nixge_priv *priv = netdev_priv(ndev); unregister_netdev(ndev); if (of_phy_is_fixed_link(pdev->dev.of_node)) of_phy_deregister_fixed_link(pdev->dev.of_node); of_node_put(priv->phy_node); if (priv->mii_bus) mdiobus_unregister(priv->mii_bus); free_netdev(ndev); } static struct platform_driver nixge_driver = { .probe = nixge_probe, .remove = nixge_remove, .driver = { .name = "nixge", .of_match_table = nixge_dt_ids, }, }; module_platform_driver(nixge_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("National Instruments XGE Management MAC"); MODULE_AUTHOR("Moritz Fischer <[email protected]>");
/* SPDX-License-Identifier: GPL-2.0-only */ /* * drivers/media/platform/samsung/s5p-mfc/s5p_mfc_opr_v6.h * * Header file for Samsung MFC (Multi Function Codec - FIMV) driver * Contains declarations of hw related functions. * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #ifndef S5P_MFC_OPR_V6_H_ #define S5P_MFC_OPR_V6_H_ #include "s5p_mfc_common.h" #include "s5p_mfc_opr.h" #define MFC_CTRL_MODE_CUSTOM MFC_CTRL_MODE_SFR #define MB_WIDTH(x_size) DIV_ROUND_UP(x_size, 16) #define MB_HEIGHT(y_size) DIV_ROUND_UP(y_size, 16) #define S5P_MFC_DEC_MV_SIZE(x, y, offset) (MB_WIDTH(x) * \ (((MB_HEIGHT(y) + 1) / 2) * 2) * 64 + (offset)) #define S5P_MFC_LCU_WIDTH(x_size) DIV_ROUND_UP(x_size, 32) #define S5P_MFC_LCU_HEIGHT(y_size) DIV_ROUND_UP(y_size, 32) #define s5p_mfc_dec_hevc_mv_size(x, y) \ (DIV_ROUND_UP(x, 64) * DIV_ROUND_UP(y, 64) * 256 + 512) /* Definition */ #define ENC_MULTI_SLICE_MB_MAX ((1 << 30) - 1) #define ENC_MULTI_SLICE_BIT_MIN 2800 #define ENC_INTRA_REFRESH_MB_MAX ((1 << 18) - 1) #define ENC_VBV_BUF_SIZE_MAX ((1 << 30) - 1) #define ENC_H264_LOOP_FILTER_AB_MIN -12 #define ENC_H264_LOOP_FILTER_AB_MAX 12 #define ENC_H264_RC_FRAME_RATE_MAX ((1 << 16) - 1) #define ENC_H263_RC_FRAME_RATE_MAX ((1 << 16) - 1) #define ENC_H264_PROFILE_MAX 3 #define ENC_H264_LEVEL_MAX 42 #define ENC_MPEG4_VOP_TIME_RES_MAX ((1 << 16) - 1) #define FRAME_DELTA_H264_H263 1 #define LOOSE_CBR_MAX 5 #define TIGHT_CBR_MAX 10 #define ENC_HEVC_RC_FRAME_RATE_MAX ((1 << 16) - 1) #define ENC_HEVC_QP_INDEX_MIN -12 #define ENC_HEVC_QP_INDEX_MAX 12 #define ENC_HEVC_LOOP_FILTER_MIN -12 #define ENC_HEVC_LOOP_FILTER_MAX 12 #define ENC_HEVC_LEVEL_MAX 62 #define FRAME_DELTA_DEFAULT 1 const struct s5p_mfc_hw_ops *s5p_mfc_init_hw_ops_v6(void); const struct s5p_mfc_regs *s5p_mfc_init_regs_v6_plus(struct s5p_mfc_dev *dev); #endif /* S5P_MFC_OPR_V6_H_ */
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2019 Facebook #define STACK_MAX_LEN 600 /* Full unroll of 600 iterations will have total * program size close to 298k insns and this may * cause BPF_JMP insn out of 16-bit integer range. * So limit the unroll size to 150 so the * total program size is around 80k insns but * the loop will still execute 600 times. */ #define UNROLL_COUNT 150 #include "pyperf.h"
// SPDX-License-Identifier: GPL-2.0-only /* * Freescale MMA7660FC 3-Axis Accelerometer * * Copyright (c) 2016, Intel Corporation. * * IIO driver for Freescale MMA7660FC; 7-bit I2C address: 0x4c. */ #include <linux/i2c.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #define MMA7660_DRIVER_NAME "mma7660" #define MMA7660_REG_XOUT 0x00 #define MMA7660_REG_YOUT 0x01 #define MMA7660_REG_ZOUT 0x02 #define MMA7660_REG_OUT_BIT_ALERT BIT(6) #define MMA7660_REG_MODE 0x07 #define MMA7660_REG_MODE_BIT_MODE BIT(0) #define MMA7660_REG_MODE_BIT_TON BIT(2) #define MMA7660_I2C_READ_RETRIES 5 /* * The accelerometer has one measurement range: * * -1.5g - +1.5g (6-bit, signed) * * scale = (1.5 + 1.5) * 9.81 / (2^6 - 1) = 0.467142857 */ #define MMA7660_SCALE_AVAIL "0.467142857" static const int mma7660_nscale = 467142857; enum mma7660_mode { MMA7660_MODE_STANDBY, MMA7660_MODE_ACTIVE }; struct mma7660_data { struct i2c_client *client; struct mutex lock; enum mma7660_mode mode; struct iio_mount_matrix orientation; }; static const struct iio_mount_matrix * mma7660_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct mma7660_data *data = iio_priv(indio_dev); return &data->orientation; } static const struct iio_chan_spec_ext_info mma7660_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, mma7660_get_mount_matrix), { } }; static IIO_CONST_ATTR(in_accel_scale_available, MMA7660_SCALE_AVAIL); static struct attribute *mma7660_attributes[] = { &iio_const_attr_in_accel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group mma7660_attribute_group = { .attrs = mma7660_attributes }; #define MMA7660_CHANNEL(reg, axis) { \ .type = IIO_ACCEL, \ .address = reg, \ .modified = 1, \ .channel2 = IIO_MOD_##axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .ext_info = mma7660_ext_info, \ } static const struct iio_chan_spec mma7660_channels[] = { MMA7660_CHANNEL(MMA7660_REG_XOUT, X), MMA7660_CHANNEL(MMA7660_REG_YOUT, Y), MMA7660_CHANNEL(MMA7660_REG_ZOUT, Z), }; static int mma7660_set_mode(struct mma7660_data *data, enum mma7660_mode mode) { int ret; struct i2c_client *client = data->client; if (mode == data->mode) return 0; ret = i2c_smbus_read_byte_data(client, MMA7660_REG_MODE); if (ret < 0) { dev_err(&client->dev, "failed to read sensor mode\n"); return ret; } if (mode == MMA7660_MODE_ACTIVE) { ret &= ~MMA7660_REG_MODE_BIT_TON; ret |= MMA7660_REG_MODE_BIT_MODE; } else { ret &= ~MMA7660_REG_MODE_BIT_TON; ret &= ~MMA7660_REG_MODE_BIT_MODE; } ret = i2c_smbus_write_byte_data(client, MMA7660_REG_MODE, ret); if (ret < 0) { dev_err(&client->dev, "failed to change sensor mode\n"); return ret; } data->mode = mode; return ret; } static int mma7660_read_accel(struct mma7660_data *data, u8 address) { int ret, retries = MMA7660_I2C_READ_RETRIES; struct i2c_client *client = data->client; /* * Read data. If the Alert bit is set, the register was read at * the same time as the device was attempting to update the content. * The solution is to read the register again. Do this only * MMA7660_I2C_READ_RETRIES times to avoid spending too much time * in the kernel. */ do { ret = i2c_smbus_read_byte_data(client, address); if (ret < 0) { dev_err(&client->dev, "register read failed\n"); return ret; } } while (retries-- > 0 && ret & MMA7660_REG_OUT_BIT_ALERT); if (ret & MMA7660_REG_OUT_BIT_ALERT) { dev_err(&client->dev, "all register read retries failed\n"); return -ETIMEDOUT; } return ret; } static int mma7660_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct mma7660_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&data->lock); ret = mma7660_read_accel(data, chan->address); mutex_unlock(&data->lock); if (ret < 0) return ret; *val = sign_extend32(ret, 5); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = mma7660_nscale; return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } return -EINVAL; } static const struct iio_info mma7660_info = { .read_raw = mma7660_read_raw, .attrs = &mma7660_attribute_group, }; static int mma7660_probe(struct i2c_client *client) { int ret; struct iio_dev *indio_dev; struct mma7660_data *data; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) { dev_err(&client->dev, "iio allocation failed!\n"); return -ENOMEM; } data = iio_priv(indio_dev); data->client = client; i2c_set_clientdata(client, indio_dev); mutex_init(&data->lock); data->mode = MMA7660_MODE_STANDBY; ret = iio_read_mount_matrix(&client->dev, &data->orientation); if (ret) return ret; indio_dev->info = &mma7660_info; indio_dev->name = MMA7660_DRIVER_NAME; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = mma7660_channels; indio_dev->num_channels = ARRAY_SIZE(mma7660_channels); ret = mma7660_set_mode(data, MMA7660_MODE_ACTIVE); if (ret < 0) return ret; ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "device_register failed\n"); mma7660_set_mode(data, MMA7660_MODE_STANDBY); } return ret; } static void mma7660_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); int ret; iio_device_unregister(indio_dev); ret = mma7660_set_mode(iio_priv(indio_dev), MMA7660_MODE_STANDBY); if (ret) dev_warn(&client->dev, "Failed to put device in stand-by mode (%pe), ignoring\n", ERR_PTR(ret)); } static int mma7660_suspend(struct device *dev) { struct mma7660_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return mma7660_set_mode(data, MMA7660_MODE_STANDBY); } static int mma7660_resume(struct device *dev) { struct mma7660_data *data; data = iio_priv(i2c_get_clientdata(to_i2c_client(dev))); return mma7660_set_mode(data, MMA7660_MODE_ACTIVE); } static DEFINE_SIMPLE_DEV_PM_OPS(mma7660_pm_ops, mma7660_suspend, mma7660_resume); static const struct i2c_device_id mma7660_i2c_id[] = { { "mma7660" }, {} }; MODULE_DEVICE_TABLE(i2c, mma7660_i2c_id); static const struct of_device_id mma7660_of_match[] = { { .compatible = "fsl,mma7660" }, { } }; MODULE_DEVICE_TABLE(of, mma7660_of_match); static const struct acpi_device_id mma7660_acpi_id[] = { {"MMA7660", 0}, {} }; MODULE_DEVICE_TABLE(acpi, mma7660_acpi_id); static struct i2c_driver mma7660_driver = { .driver = { .name = "mma7660", .pm = pm_sleep_ptr(&mma7660_pm_ops), .of_match_table = mma7660_of_match, .acpi_match_table = mma7660_acpi_id, }, .probe = mma7660_probe, .remove = mma7660_remove, .id_table = mma7660_i2c_id, }; module_i2c_driver(mma7660_driver); MODULE_AUTHOR("Constantin Musca <[email protected]>"); MODULE_DESCRIPTION("Freescale MMA7660FC 3-Axis Accelerometer driver"); MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Driver for Silicon Labs SI2165 DVB-C/-T Demodulator * * Copyright (C) 2013-2017 Matthias Schwarzott <[email protected]> * * References: * https://www.silabs.com/Support%20Documents/TechnicalDocs/Si2165-short.pdf */ #ifndef _DVB_SI2165_H #define _DVB_SI2165_H #include <linux/dvb/frontend.h> enum { SI2165_MODE_OFF = 0x00, SI2165_MODE_PLL_EXT = 0x20, SI2165_MODE_PLL_XTAL = 0x21 }; /* I2C addresses * possible values: 0x64,0x65,0x66,0x67 */ struct si2165_platform_data { /* * frontend * returned by driver */ struct dvb_frontend **fe; /* external clock or XTAL */ u8 chip_mode; /* frequency of external clock or xtal in Hz * possible values: 4000000, 16000000, 20000000, 240000000, 27000000 */ u32 ref_freq_hz; /* invert the spectrum */ bool inversion; }; #endif /* _DVB_SI2165_H */
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2009 * EMC Symmetrix ioctl Copyright EMC Corporation, 2008 * Author.........: Nigel Hislop <[email protected]> */ #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/hdreg.h> /* HDIO_GETGEO */ #include <linux/bio.h> #include <linux/module.h> #include <linux/compat.h> #include <linux/init.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/io.h> #include <asm/css_chars.h> #include <asm/debug.h> #include <asm/idals.h> #include <asm/ebcdic.h> #include <asm/cio.h> #include <asm/ccwdev.h> #include <asm/itcw.h> #include <asm/schid.h> #include <asm/chpid.h> #include "dasd_int.h" #include "dasd_eckd.h" /* * raw track access always map to 64k in memory * so it maps to 16 blocks of 4k per track */ #define DASD_RAW_BLOCK_PER_TRACK 16 #define DASD_RAW_BLOCKSIZE 4096 /* 64k are 128 x 512 byte sectors */ #define DASD_RAW_SECTORS_PER_TRACK 128 MODULE_DESCRIPTION("S/390 DASD ECKD Disks device driver"); MODULE_LICENSE("GPL"); static struct dasd_discipline dasd_eckd_discipline; /* The ccw bus type uses this table to find devices that it sends to * dasd_eckd_probe */ static struct ccw_device_id dasd_eckd_ids[] = { { CCW_DEVICE_DEVTYPE (0x3990, 0, 0x3390, 0), .driver_info = 0x1}, { CCW_DEVICE_DEVTYPE (0x2105, 0, 0x3390, 0), .driver_info = 0x2}, { CCW_DEVICE_DEVTYPE (0x3880, 0, 0x3380, 0), .driver_info = 0x3}, { CCW_DEVICE_DEVTYPE (0x3990, 0, 0x3380, 0), .driver_info = 0x4}, { CCW_DEVICE_DEVTYPE (0x2105, 0, 0x3380, 0), .driver_info = 0x5}, { CCW_DEVICE_DEVTYPE (0x9343, 0, 0x9345, 0), .driver_info = 0x6}, { CCW_DEVICE_DEVTYPE (0x2107, 0, 0x3390, 0), .driver_info = 0x7}, { CCW_DEVICE_DEVTYPE (0x2107, 0, 0x3380, 0), .driver_info = 0x8}, { CCW_DEVICE_DEVTYPE (0x1750, 0, 0x3390, 0), .driver_info = 0x9}, { CCW_DEVICE_DEVTYPE (0x1750, 0, 0x3380, 0), .driver_info = 0xa}, { /* end of list */ }, }; MODULE_DEVICE_TABLE(ccw, dasd_eckd_ids); static struct ccw_driver dasd_eckd_driver; /* see below */ static void *rawpadpage; #define INIT_CQR_OK 0 #define INIT_CQR_UNFORMATTED 1 #define INIT_CQR_ERROR 2 /* emergency request for reserve/release */ static struct { struct dasd_ccw_req cqr; struct ccw1 ccw; char data[32]; } *dasd_reserve_req; static DEFINE_MUTEX(dasd_reserve_mutex); static struct { struct dasd_ccw_req cqr; struct ccw1 ccw[2]; char data[40]; } *dasd_vol_info_req; static DEFINE_MUTEX(dasd_vol_info_mutex); struct ext_pool_exhaust_work_data { struct work_struct worker; struct dasd_device *device; struct dasd_device *base; }; /* definitions for the path verification worker */ struct pe_handler_work_data { struct work_struct worker; struct dasd_device *device; struct dasd_ccw_req cqr; struct ccw1 ccw; __u8 rcd_buffer[DASD_ECKD_RCD_DATA_SIZE]; int isglobal; __u8 tbvpm; __u8 fcsecpm; }; static struct pe_handler_work_data *pe_handler_worker; static DEFINE_MUTEX(dasd_pe_handler_mutex); struct check_attention_work_data { struct work_struct worker; struct dasd_device *device; __u8 lpum; }; static int dasd_eckd_ext_pool_id(struct dasd_device *); static int prepare_itcw(struct itcw *, unsigned int, unsigned int, int, struct dasd_device *, struct dasd_device *, unsigned int, int, unsigned int, unsigned int, unsigned int, unsigned int); static int dasd_eckd_query_pprc_status(struct dasd_device *, struct dasd_pprc_data_sc4 *); /* initial attempt at a probe function. this can be simplified once * the other detection code is gone */ static int dasd_eckd_probe (struct ccw_device *cdev) { int ret; /* set ECKD specific ccw-device options */ ret = ccw_device_set_options(cdev, CCWDEV_ALLOW_FORCE | CCWDEV_DO_PATHGROUP | CCWDEV_DO_MULTIPATH); if (ret) { DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s", "dasd_eckd_probe: could not set " "ccw-device options"); return ret; } ret = dasd_generic_probe(cdev); return ret; } static int dasd_eckd_set_online(struct ccw_device *cdev) { return dasd_generic_set_online(cdev, &dasd_eckd_discipline); } static const int sizes_trk0[] = { 28, 148, 84 }; #define LABEL_SIZE 140 /* head and record addresses of count_area read in analysis ccw */ static const int count_area_head[] = { 0, 0, 0, 0, 1 }; static const int count_area_rec[] = { 1, 2, 3, 4, 1 }; static inline unsigned int ceil_quot(unsigned int d1, unsigned int d2) { return (d1 + (d2 - 1)) / d2; } static unsigned int recs_per_track(struct dasd_eckd_characteristics * rdc, unsigned int kl, unsigned int dl) { int dn, kn; switch (rdc->dev_type) { case 0x3380: if (kl) return 1499 / (15 + 7 + ceil_quot(kl + 12, 32) + ceil_quot(dl + 12, 32)); else return 1499 / (15 + ceil_quot(dl + 12, 32)); case 0x3390: dn = ceil_quot(dl + 6, 232) + 1; if (kl) { kn = ceil_quot(kl + 6, 232) + 1; return 1729 / (10 + 9 + ceil_quot(kl + 6 * kn, 34) + 9 + ceil_quot(dl + 6 * dn, 34)); } else return 1729 / (10 + 9 + ceil_quot(dl + 6 * dn, 34)); case 0x9345: dn = ceil_quot(dl + 6, 232) + 1; if (kl) { kn = ceil_quot(kl + 6, 232) + 1; return 1420 / (18 + 7 + ceil_quot(kl + 6 * kn, 34) + ceil_quot(dl + 6 * dn, 34)); } else return 1420 / (18 + 7 + ceil_quot(dl + 6 * dn, 34)); } return 0; } static void set_ch_t(struct ch_t *geo, __u32 cyl, __u8 head) { geo->cyl = (__u16) cyl; geo->head = cyl >> 16; geo->head <<= 4; geo->head |= head; } /* * calculate failing track from sense data depending if * it is an EAV device or not */ static int dasd_eckd_track_from_irb(struct irb *irb, struct dasd_device *device, sector_t *track) { struct dasd_eckd_private *private = device->private; u8 *sense = NULL; u32 cyl; u8 head; sense = dasd_get_sense(irb); if (!sense) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "ESE error no sense data\n"); return -EINVAL; } if (!(sense[27] & DASD_SENSE_BIT_2)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "ESE error no valid track data\n"); return -EINVAL; } if (sense[27] & DASD_SENSE_BIT_3) { /* enhanced addressing */ cyl = sense[30] << 20; cyl |= (sense[31] & 0xF0) << 12; cyl |= sense[28] << 8; cyl |= sense[29]; } else { cyl = sense[29] << 8; cyl |= sense[30]; } head = sense[31] & 0x0F; *track = cyl * private->rdc_data.trk_per_cyl + head; return 0; } static int set_timestamp(struct ccw1 *ccw, struct DE_eckd_data *data, struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = get_phys_clock(&data->ep_sys_time); /* * Ignore return code if XRC is not supported or * sync clock is switched off */ if ((rc && !private->rdc_data.facilities.XRC_supported) || rc == -EOPNOTSUPP || rc == -EACCES) return 0; /* switch on System Time Stamp - needed for XRC Support */ data->ga_extended |= 0x08; /* switch on 'Time Stamp Valid' */ data->ga_extended |= 0x02; /* switch on 'Extended Parameter' */ if (ccw) { ccw->count = sizeof(struct DE_eckd_data); ccw->flags |= CCW_FLAG_SLI; } return rc; } static int define_extent(struct ccw1 *ccw, struct DE_eckd_data *data, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *device, int blksize) { struct dasd_eckd_private *private = device->private; u16 heads, beghead, endhead; u32 begcyl, endcyl; int rc = 0; if (ccw) { ccw->cmd_code = DASD_ECKD_CCW_DEFINE_EXTENT; ccw->flags = 0; ccw->count = 16; ccw->cda = virt_to_dma32(data); } memset(data, 0, sizeof(struct DE_eckd_data)); switch (cmd) { case DASD_ECKD_CCW_READ_HOME_ADDRESS: case DASD_ECKD_CCW_READ_RECORD_ZERO: case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->mask.perm = 0x1; data->attributes.operation = private->attrib.operation; break; case DASD_ECKD_CCW_READ_COUNT: data->mask.perm = 0x1; data->attributes.operation = DASD_BYPASS_CACHE; break; case DASD_ECKD_CCW_READ_TRACK: case DASD_ECKD_CCW_READ_TRACK_DATA: data->mask.perm = 0x1; data->attributes.operation = private->attrib.operation; data->blk_size = 0; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->mask.perm = 0x02; data->attributes.operation = private->attrib.operation; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->attributes.operation = DASD_BYPASS_CACHE; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_ERASE: case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->mask.perm = 0x3; data->mask.auth = 0x1; data->attributes.operation = DASD_BYPASS_CACHE; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_WRITE_FULL_TRACK: data->mask.perm = 0x03; data->attributes.operation = private->attrib.operation; data->blk_size = 0; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: data->mask.perm = 0x02; data->attributes.operation = private->attrib.operation; data->blk_size = blksize; rc = set_timestamp(ccw, data, device); break; default: dev_err(&device->cdev->dev, "0x%x is not a known command\n", cmd); break; } data->attributes.mode = 0x3; /* ECKD */ if ((private->rdc_data.cu_type == 0x2105 || private->rdc_data.cu_type == 0x2107 || private->rdc_data.cu_type == 0x1750) && !(private->uses_cdl && trk < 2)) data->ga_extended |= 0x40; /* Regular Data Format Mode */ heads = private->rdc_data.trk_per_cyl; begcyl = trk / heads; beghead = trk % heads; endcyl = totrk / heads; endhead = totrk % heads; /* check for sequential prestage - enhance cylinder range */ if (data->attributes.operation == DASD_SEQ_PRESTAGE || data->attributes.operation == DASD_SEQ_ACCESS) { if (endcyl + private->attrib.nr_cyl < private->real_cyl) endcyl += private->attrib.nr_cyl; else endcyl = (private->real_cyl - 1); } set_ch_t(&data->beg_ext, begcyl, beghead); set_ch_t(&data->end_ext, endcyl, endhead); return rc; } static void locate_record_ext(struct ccw1 *ccw, struct LRE_eckd_data *data, unsigned int trk, unsigned int rec_on_trk, int count, int cmd, struct dasd_device *device, unsigned int reclen, unsigned int tlf) { struct dasd_eckd_private *private = device->private; int sector; int dn, d; if (ccw) { ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD_EXT; ccw->flags = 0; if (cmd == DASD_ECKD_CCW_WRITE_FULL_TRACK) ccw->count = 22; else ccw->count = 20; ccw->cda = virt_to_dma32(data); } memset(data, 0, sizeof(*data)); sector = 0; if (rec_on_trk) { switch (private->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(reclen + 6, 232); d = 9 + ceil_quot(reclen + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(reclen + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } data->sector = sector; /* note: meaning of count depends on the operation * for record based I/O it's the number of records, but for * track based I/O it's the number of tracks */ data->count = count; switch (cmd) { case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->operation.orientation = 0x1; data->operation.operation = 0x03; data->count++; break; case DASD_ECKD_CCW_READ_RECORD_ZERO: data->operation.orientation = 0x3; data->operation.operation = 0x16; data->count++; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x01; break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_WRITE_FULL_TRACK: data->operation.orientation = 0x0; data->operation.operation = 0x3F; data->extended_operation = 0x11; data->length = 0; data->extended_parameter_length = 0x02; if (data->count > 8) { data->extended_parameter[0] = 0xFF; data->extended_parameter[1] = 0xFF; data->extended_parameter[1] <<= (16 - count); } else { data->extended_parameter[0] = 0xFF; data->extended_parameter[0] <<= (8 - count); data->extended_parameter[1] = 0x00; } data->sector = 0xFF; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: data->auxiliary.length_valid = 0x1; data->length = reclen; /* not tlf, as one might think */ data->operation.operation = 0x3F; data->extended_operation = 0x23; break; case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_READ_COUNT: data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_TRACK: data->operation.orientation = 0x1; data->operation.operation = 0x0C; data->extended_parameter_length = 0; data->sector = 0xFF; break; case DASD_ECKD_CCW_READ_TRACK_DATA: data->auxiliary.length_valid = 0x1; data->length = tlf; data->operation.operation = 0x0C; break; case DASD_ECKD_CCW_ERASE: data->length = reclen; data->auxiliary.length_valid = 0x1; data->operation.operation = 0x0b; break; default: DBF_DEV_EVENT(DBF_ERR, device, "fill LRE unknown opcode 0x%x", cmd); BUG(); } set_ch_t(&data->seek_addr, trk / private->rdc_data.trk_per_cyl, trk % private->rdc_data.trk_per_cyl); data->search_arg.cyl = data->seek_addr.cyl; data->search_arg.head = data->seek_addr.head; data->search_arg.record = rec_on_trk; } static int prefix_LRE(struct ccw1 *ccw, struct PFX_eckd_data *pfxdata, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev, unsigned int format, unsigned int rec_on_trk, int count, unsigned int blksize, unsigned int tlf) { struct dasd_eckd_private *basepriv, *startpriv; struct LRE_eckd_data *lredata; struct DE_eckd_data *dedata; int rc = 0; basepriv = basedev->private; startpriv = startdev->private; dedata = &pfxdata->define_extent; lredata = &pfxdata->locate_record; ccw->cmd_code = DASD_ECKD_CCW_PFX; ccw->flags = 0; if (cmd == DASD_ECKD_CCW_WRITE_FULL_TRACK) { ccw->count = sizeof(*pfxdata) + 2; ccw->cda = virt_to_dma32(pfxdata); memset(pfxdata, 0, sizeof(*pfxdata) + 2); } else { ccw->count = sizeof(*pfxdata); ccw->cda = virt_to_dma32(pfxdata); memset(pfxdata, 0, sizeof(*pfxdata)); } /* prefix data */ if (format > 1) { DBF_DEV_EVENT(DBF_ERR, basedev, "PFX LRE unknown format 0x%x", format); BUG(); return -EINVAL; } pfxdata->format = format; pfxdata->base_address = basepriv->conf.ned->unit_addr; pfxdata->base_lss = basepriv->conf.ned->ID; pfxdata->validity.define_extent = 1; /* private uid is kept up to date, conf_data may be outdated */ if (startpriv->uid.type == UA_BASE_PAV_ALIAS) pfxdata->validity.verify_base = 1; if (startpriv->uid.type == UA_HYPER_PAV_ALIAS) { pfxdata->validity.verify_base = 1; pfxdata->validity.hyper_pav = 1; } rc = define_extent(NULL, dedata, trk, totrk, cmd, basedev, blksize); /* * For some commands the System Time Stamp is set in the define extent * data when XRC is supported. The validity of the time stamp must be * reflected in the prefix data as well. */ if (dedata->ga_extended & 0x08 && dedata->ga_extended & 0x02) pfxdata->validity.time_stamp = 1; /* 'Time Stamp Valid' */ if (format == 1) { locate_record_ext(NULL, lredata, trk, rec_on_trk, count, cmd, basedev, blksize, tlf); } return rc; } static int prefix(struct ccw1 *ccw, struct PFX_eckd_data *pfxdata, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev) { return prefix_LRE(ccw, pfxdata, trk, totrk, cmd, basedev, startdev, 0, 0, 0, 0, 0); } static void locate_record(struct ccw1 *ccw, struct LO_eckd_data *data, unsigned int trk, unsigned int rec_on_trk, int no_rec, int cmd, struct dasd_device * device, int reclen) { struct dasd_eckd_private *private = device->private; int sector; int dn, d; DBF_DEV_EVENT(DBF_INFO, device, "Locate: trk %d, rec %d, no_rec %d, cmd %d, reclen %d", trk, rec_on_trk, no_rec, cmd, reclen); ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD; ccw->flags = 0; ccw->count = 16; ccw->cda = virt_to_dma32(data); memset(data, 0, sizeof(struct LO_eckd_data)); sector = 0; if (rec_on_trk) { switch (private->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(reclen + 6, 232); d = 9 + ceil_quot(reclen + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(reclen + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } data->sector = sector; data->count = no_rec; switch (cmd) { case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->operation.orientation = 0x1; data->operation.operation = 0x03; data->count++; break; case DASD_ECKD_CCW_READ_RECORD_ZERO: data->operation.orientation = 0x3; data->operation.operation = 0x16; data->count++; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x01; break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_READ_COUNT: data->operation.operation = 0x06; break; case DASD_ECKD_CCW_ERASE: data->length = reclen; data->auxiliary.last_bytes_used = 0x1; data->operation.operation = 0x0b; break; default: DBF_DEV_EVENT(DBF_ERR, device, "unknown locate record " "opcode 0x%x", cmd); } set_ch_t(&data->seek_addr, trk / private->rdc_data.trk_per_cyl, trk % private->rdc_data.trk_per_cyl); data->search_arg.cyl = data->seek_addr.cyl; data->search_arg.head = data->seek_addr.head; data->search_arg.record = rec_on_trk; } /* * Returns 1 if the block is one of the special blocks that needs * to get read/written with the KD variant of the command. * That is DASD_ECKD_READ_KD_MT instead of DASD_ECKD_READ_MT and * DASD_ECKD_WRITE_KD_MT instead of DASD_ECKD_WRITE_MT. * Luckily the KD variants differ only by one bit (0x08) from the * normal variant. So don't wonder about code like: * if (dasd_eckd_cdl_special(blk_per_trk, recid)) * ccw->cmd_code |= 0x8; */ static inline int dasd_eckd_cdl_special(int blk_per_trk, int recid) { if (recid < 3) return 1; if (recid < blk_per_trk) return 0; if (recid < 2 * blk_per_trk) return 1; return 0; } /* * Returns the record size for the special blocks of the cdl format. * Only returns something useful if dasd_eckd_cdl_special is true * for the recid. */ static inline int dasd_eckd_cdl_reclen(int recid) { if (recid < 3) return sizes_trk0[recid]; return LABEL_SIZE; } /* create unique id from private structure. */ static void create_uid(struct dasd_conf *conf, struct dasd_uid *uid) { int count; memset(uid, 0, sizeof(struct dasd_uid)); memcpy(uid->vendor, conf->ned->HDA_manufacturer, sizeof(uid->vendor) - 1); EBCASC(uid->vendor, sizeof(uid->vendor) - 1); memcpy(uid->serial, &conf->ned->serial, sizeof(uid->serial) - 1); EBCASC(uid->serial, sizeof(uid->serial) - 1); uid->ssid = conf->gneq->subsystemID; uid->real_unit_addr = conf->ned->unit_addr; if (conf->sneq) { uid->type = conf->sneq->sua_flags; if (uid->type == UA_BASE_PAV_ALIAS) uid->base_unit_addr = conf->sneq->base_unit_addr; } else { uid->type = UA_BASE_DEVICE; } if (conf->vdsneq) { for (count = 0; count < 16; count++) { sprintf(uid->vduit+2*count, "%02x", conf->vdsneq->uit[count]); } } } /* * Generate device unique id that specifies the physical device. */ static int dasd_eckd_generate_uid(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (!private) return -ENODEV; if (!private->conf.ned || !private->conf.gneq) return -ENODEV; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); create_uid(&private->conf, &private->uid); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return 0; } static int dasd_eckd_get_uid(struct dasd_device *device, struct dasd_uid *uid) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (private) { spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); *uid = private->uid; spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return 0; } return -EINVAL; } /* * compare device UID with data of a given dasd_eckd_private structure * return 0 for match */ static int dasd_eckd_compare_path_uid(struct dasd_device *device, struct dasd_conf *path_conf) { struct dasd_uid device_uid; struct dasd_uid path_uid; create_uid(path_conf, &path_uid); dasd_eckd_get_uid(device, &device_uid); return memcmp(&device_uid, &path_uid, sizeof(struct dasd_uid)); } static void dasd_eckd_fill_rcd_cqr(struct dasd_device *device, struct dasd_ccw_req *cqr, __u8 *rcd_buffer, __u8 lpm) { struct ccw1 *ccw; /* * buffer has to start with EBCDIC "V1.0" to show * support for virtual device SNEQ */ rcd_buffer[0] = 0xE5; rcd_buffer[1] = 0xF1; rcd_buffer[2] = 0x4B; rcd_buffer[3] = 0xF0; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RCD; ccw->flags = 0; ccw->cda = virt_to_dma32(rcd_buffer); ccw->count = DASD_ECKD_RCD_DATA_SIZE; cqr->magic = DASD_ECKD_MAGIC; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 10*HZ; cqr->lpm = lpm; cqr->retries = 256; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); } /* * Wakeup helper for read_conf * if the cqr is not done and needs some error recovery * the buffer has to be re-initialized with the EBCDIC "V1.0" * to show support for virtual device SNEQ */ static void read_conf_cb(struct dasd_ccw_req *cqr, void *data) { struct ccw1 *ccw; __u8 *rcd_buffer; if (cqr->status != DASD_CQR_DONE) { ccw = cqr->cpaddr; rcd_buffer = dma32_to_virt(ccw->cda); memset(rcd_buffer, 0, sizeof(*rcd_buffer)); rcd_buffer[0] = 0xE5; rcd_buffer[1] = 0xF1; rcd_buffer[2] = 0x4B; rcd_buffer[3] = 0xF0; } dasd_wakeup_cb(cqr, data); } static int dasd_eckd_read_conf_immediately(struct dasd_device *device, struct dasd_ccw_req *cqr, __u8 *rcd_buffer, __u8 lpm) { struct ciw *ciw; int rc; /* * sanity check: scan for RCD command in extended SenseID data * some devices do not support RCD */ ciw = ccw_device_get_ciw(device->cdev, CIW_TYPE_RCD); if (!ciw || ciw->cmd != DASD_ECKD_CCW_RCD) return -EOPNOTSUPP; dasd_eckd_fill_rcd_cqr(device, cqr, rcd_buffer, lpm); clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); cqr->retries = 5; cqr->callback = read_conf_cb; rc = dasd_sleep_on_immediatly(cqr); return rc; } static int dasd_eckd_read_conf_lpm(struct dasd_device *device, void **rcd_buffer, int *rcd_buffer_size, __u8 lpm) { struct ciw *ciw; char *rcd_buf = NULL; int ret; struct dasd_ccw_req *cqr; /* * sanity check: scan for RCD command in extended SenseID data * some devices do not support RCD */ ciw = ccw_device_get_ciw(device->cdev, CIW_TYPE_RCD); if (!ciw || ciw->cmd != DASD_ECKD_CCW_RCD) { ret = -EOPNOTSUPP; goto out_error; } rcd_buf = kzalloc(DASD_ECKD_RCD_DATA_SIZE, GFP_KERNEL | GFP_DMA); if (!rcd_buf) { ret = -ENOMEM; goto out_error; } cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* RCD */, 0, /* use rcd_buf as data ara */ device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate RCD request"); ret = -ENOMEM; goto out_error; } dasd_eckd_fill_rcd_cqr(device, cqr, rcd_buf, lpm); cqr->callback = read_conf_cb; ret = dasd_sleep_on(cqr); /* * on success we update the user input parms */ dasd_sfree_request(cqr, cqr->memdev); if (ret) goto out_error; *rcd_buffer_size = DASD_ECKD_RCD_DATA_SIZE; *rcd_buffer = rcd_buf; return 0; out_error: kfree(rcd_buf); *rcd_buffer = NULL; *rcd_buffer_size = 0; return ret; } static int dasd_eckd_identify_conf_parts(struct dasd_conf *conf) { struct dasd_sneq *sneq; int i, count; conf->ned = NULL; conf->sneq = NULL; conf->vdsneq = NULL; conf->gneq = NULL; count = conf->len / sizeof(struct dasd_sneq); sneq = (struct dasd_sneq *)conf->data; for (i = 0; i < count; ++i) { if (sneq->flags.identifier == 1 && sneq->format == 1) conf->sneq = sneq; else if (sneq->flags.identifier == 1 && sneq->format == 4) conf->vdsneq = (struct vd_sneq *)sneq; else if (sneq->flags.identifier == 2) conf->gneq = (struct dasd_gneq *)sneq; else if (sneq->flags.identifier == 3 && sneq->res1 == 1) conf->ned = (struct dasd_ned *)sneq; sneq++; } if (!conf->ned || !conf->gneq) { conf->ned = NULL; conf->sneq = NULL; conf->vdsneq = NULL; conf->gneq = NULL; return -EINVAL; } return 0; }; static unsigned char dasd_eckd_path_access(void *conf_data, int conf_len) { struct dasd_gneq *gneq; int i, count, found; count = conf_len / sizeof(*gneq); gneq = (struct dasd_gneq *)conf_data; found = 0; for (i = 0; i < count; ++i) { if (gneq->flags.identifier == 2) { found = 1; break; } gneq++; } if (found) return ((char *)gneq)[18] & 0x07; else return 0; } static void dasd_eckd_store_conf_data(struct dasd_device *device, struct dasd_conf_data *conf_data, int chp) { struct dasd_eckd_private *private = device->private; struct channel_path_desc_fmt0 *chp_desc; struct subchannel_id sch_id; void *cdp; /* * path handling and read_conf allocate data * free it before replacing the pointer * also replace the old private->conf_data pointer * with the new one if this points to the same data */ cdp = device->path[chp].conf_data; if (private->conf.data == cdp) { private->conf.data = (void *)conf_data; dasd_eckd_identify_conf_parts(&private->conf); } ccw_device_get_schid(device->cdev, &sch_id); device->path[chp].conf_data = conf_data; device->path[chp].cssid = sch_id.cssid; device->path[chp].ssid = sch_id.ssid; chp_desc = ccw_device_get_chp_desc(device->cdev, chp); if (chp_desc) device->path[chp].chpid = chp_desc->chpid; kfree(chp_desc); kfree(cdp); } static void dasd_eckd_clear_conf_data(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int i; private->conf.data = NULL; private->conf.len = 0; for (i = 0; i < 8; i++) { kfree(device->path[i].conf_data); device->path[i].conf_data = NULL; device->path[i].cssid = 0; device->path[i].ssid = 0; device->path[i].chpid = 0; dasd_path_notoper(device, i); } } static void dasd_eckd_read_fc_security(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; u8 esm_valid; u8 esm[8]; int chp; int rc; rc = chsc_scud(private->uid.ssid, (u64 *)esm, &esm_valid); if (rc) { for (chp = 0; chp < 8; chp++) device->path[chp].fc_security = 0; return; } for (chp = 0; chp < 8; chp++) { if (esm_valid & (0x80 >> chp)) device->path[chp].fc_security = esm[chp]; else device->path[chp].fc_security = 0; } } static void dasd_eckd_get_uid_string(struct dasd_conf *conf, char *print_uid) { struct dasd_uid uid; create_uid(conf, &uid); snprintf(print_uid, DASD_UID_STRLEN, "%s.%s.%04x.%02x%s%s", uid.vendor, uid.serial, uid.ssid, uid.real_unit_addr, uid.vduit[0] ? "." : "", uid.vduit); } static int dasd_eckd_check_cabling(struct dasd_device *device, void *conf_data, __u8 lpm) { char print_path_uid[DASD_UID_STRLEN], print_device_uid[DASD_UID_STRLEN]; struct dasd_eckd_private *private = device->private; struct dasd_conf path_conf; path_conf.data = conf_data; path_conf.len = DASD_ECKD_RCD_DATA_SIZE; if (dasd_eckd_identify_conf_parts(&path_conf)) return 1; if (dasd_eckd_compare_path_uid(device, &path_conf)) { dasd_eckd_get_uid_string(&path_conf, print_path_uid); dasd_eckd_get_uid_string(&private->conf, print_device_uid); dev_err(&device->cdev->dev, "Not all channel paths lead to the same device, path %02X leads to device %s instead of %s\n", lpm, print_path_uid, print_device_uid); return 1; } return 0; } static int dasd_eckd_read_conf(struct dasd_device *device) { void *conf_data; int conf_len, conf_data_saved; int rc, path_err, pos; __u8 lpm, opm; struct dasd_eckd_private *private; private = device->private; opm = ccw_device_get_path_mask(device->cdev); conf_data_saved = 0; path_err = 0; /* get configuration data per operational path */ for (lpm = 0x80; lpm; lpm>>= 1) { if (!(lpm & opm)) continue; rc = dasd_eckd_read_conf_lpm(device, &conf_data, &conf_len, lpm); if (rc && rc != -EOPNOTSUPP) { /* -EOPNOTSUPP is ok */ DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read configuration data returned " "error %d", rc); return rc; } if (conf_data == NULL) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "No configuration data " "retrieved"); /* no further analysis possible */ dasd_path_add_opm(device, opm); continue; /* no error */ } /* save first valid configuration data */ if (!conf_data_saved) { /* initially clear previously stored conf_data */ dasd_eckd_clear_conf_data(device); private->conf.data = conf_data; private->conf.len = conf_len; if (dasd_eckd_identify_conf_parts(&private->conf)) { private->conf.data = NULL; private->conf.len = 0; kfree(conf_data); continue; } /* * build device UID that other path data * can be compared to it */ dasd_eckd_generate_uid(device); conf_data_saved++; } else if (dasd_eckd_check_cabling(device, conf_data, lpm)) { dasd_path_add_cablepm(device, lpm); path_err = -EINVAL; kfree(conf_data); continue; } pos = pathmask_to_pos(lpm); dasd_eckd_store_conf_data(device, conf_data, pos); switch (dasd_eckd_path_access(conf_data, conf_len)) { case 0x02: dasd_path_add_nppm(device, lpm); break; case 0x03: dasd_path_add_ppm(device, lpm); break; } if (!dasd_path_get_opm(device)) { dasd_path_set_opm(device, lpm); dasd_generic_path_operational(device); } else { dasd_path_add_opm(device, lpm); } } return path_err; } static u32 get_fcx_max_data(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int fcx_in_css, fcx_in_gneq, fcx_in_features; unsigned int mdc; int tpm; if (dasd_nofcx) return 0; /* is transport mode supported? */ fcx_in_css = css_general_characteristics.fcx; fcx_in_gneq = private->conf.gneq->reserved2[7] & 0x04; fcx_in_features = private->features.feature[40] & 0x80; tpm = fcx_in_css && fcx_in_gneq && fcx_in_features; if (!tpm) return 0; mdc = ccw_device_get_mdc(device->cdev, 0); if (mdc == 0) { dev_warn(&device->cdev->dev, "Detecting the maximum supported data size for zHPF requests failed\n"); return 0; } else { return (u32)mdc * FCX_MAX_DATA_FACTOR; } } static int verify_fcx_max_data(struct dasd_device *device, __u8 lpm) { struct dasd_eckd_private *private = device->private; unsigned int mdc; u32 fcx_max_data; if (private->fcx_max_data) { mdc = ccw_device_get_mdc(device->cdev, lpm); if (mdc == 0) { dev_warn(&device->cdev->dev, "Detecting the maximum data size for zHPF " "requests failed (rc=%d) for a new path %x\n", mdc, lpm); return mdc; } fcx_max_data = (u32)mdc * FCX_MAX_DATA_FACTOR; if (fcx_max_data < private->fcx_max_data) { dev_warn(&device->cdev->dev, "The maximum data size for zHPF requests %u " "on a new path %x is below the active maximum " "%u\n", fcx_max_data, lpm, private->fcx_max_data); return -EACCES; } } return 0; } static int rebuild_device_uid(struct dasd_device *device, struct pe_handler_work_data *data) { struct dasd_eckd_private *private = device->private; __u8 lpm, opm = dasd_path_get_opm(device); int rc = -ENODEV; for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & opm)) continue; memset(&data->rcd_buffer, 0, sizeof(data->rcd_buffer)); memset(&data->cqr, 0, sizeof(data->cqr)); data->cqr.cpaddr = &data->ccw; rc = dasd_eckd_read_conf_immediately(device, &data->cqr, data->rcd_buffer, lpm); if (rc) { if (rc == -EOPNOTSUPP) /* -EOPNOTSUPP is ok */ continue; DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read configuration data " "returned error %d", rc); break; } memcpy(private->conf.data, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); if (dasd_eckd_identify_conf_parts(&private->conf)) { rc = -ENODEV; } else /* first valid path is enough */ break; } if (!rc) rc = dasd_eckd_generate_uid(device); return rc; } static void dasd_eckd_path_available_action(struct dasd_device *device, struct pe_handler_work_data *data) { __u8 path_rcd_buf[DASD_ECKD_RCD_DATA_SIZE]; __u8 lpm, opm, npm, ppm, epm, hpfpm, cablepm; struct dasd_conf_data *conf_data; char print_uid[DASD_UID_STRLEN]; struct dasd_conf path_conf; unsigned long flags; int rc, pos; opm = 0; npm = 0; ppm = 0; epm = 0; hpfpm = 0; cablepm = 0; for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & data->tbvpm)) continue; memset(&data->rcd_buffer, 0, sizeof(data->rcd_buffer)); memset(&data->cqr, 0, sizeof(data->cqr)); data->cqr.cpaddr = &data->ccw; rc = dasd_eckd_read_conf_immediately(device, &data->cqr, data->rcd_buffer, lpm); if (!rc) { switch (dasd_eckd_path_access(data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE) ) { case 0x02: npm |= lpm; break; case 0x03: ppm |= lpm; break; } opm |= lpm; } else if (rc == -EOPNOTSUPP) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "path verification: No configuration " "data retrieved"); opm |= lpm; } else if (rc == -EAGAIN) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "path verification: device is stopped," " try again later"); epm |= lpm; } else { dev_warn(&device->cdev->dev, "Reading device feature codes failed " "(rc=%d) for new path %x\n", rc, lpm); continue; } if (verify_fcx_max_data(device, lpm)) { opm &= ~lpm; npm &= ~lpm; ppm &= ~lpm; hpfpm |= lpm; continue; } /* * save conf_data for comparison after * rebuild_device_uid may have changed * the original data */ memcpy(&path_rcd_buf, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); path_conf.data = (void *)&path_rcd_buf; path_conf.len = DASD_ECKD_RCD_DATA_SIZE; if (dasd_eckd_identify_conf_parts(&path_conf)) { path_conf.data = NULL; path_conf.len = 0; continue; } /* * compare path UID with device UID only if at least * one valid path is left * in other case the device UID may have changed and * the first working path UID will be used as device UID */ if (dasd_path_get_opm(device) && dasd_eckd_compare_path_uid(device, &path_conf)) { /* * the comparison was not successful * rebuild the device UID with at least one * known path in case a z/VM hyperswap command * has changed the device * * after this compare again * * if either the rebuild or the recompare fails * the path can not be used */ if (rebuild_device_uid(device, data) || dasd_eckd_compare_path_uid( device, &path_conf)) { dasd_eckd_get_uid_string(&path_conf, print_uid); dev_err(&device->cdev->dev, "The newly added channel path %02X " "will not be used because it leads " "to a different device %s\n", lpm, print_uid); opm &= ~lpm; npm &= ~lpm; ppm &= ~lpm; cablepm |= lpm; continue; } } conf_data = kzalloc(DASD_ECKD_RCD_DATA_SIZE, GFP_KERNEL); if (conf_data) { memcpy(conf_data, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); } else { /* * path is operational but path config data could not * be stored due to low mem condition * add it to the error path mask and schedule a path * verification later that this could be added again */ epm |= lpm; } pos = pathmask_to_pos(lpm); dasd_eckd_store_conf_data(device, conf_data, pos); /* * There is a small chance that a path is lost again between * above path verification and the following modification of * the device opm mask. We could avoid that race here by using * yet another path mask, but we rather deal with this unlikely * situation in dasd_start_IO. */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); if (!dasd_path_get_opm(device) && opm) { dasd_path_set_opm(device, opm); dasd_generic_path_operational(device); } else { dasd_path_add_opm(device, opm); } dasd_path_add_nppm(device, npm); dasd_path_add_ppm(device, ppm); if (epm) { dasd_path_add_tbvpm(device, epm); dasd_device_set_timer(device, 50); } dasd_path_add_cablepm(device, cablepm); dasd_path_add_nohpfpm(device, hpfpm); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); dasd_path_create_kobj(device, pos); } } static void do_pe_handler_work(struct work_struct *work) { struct pe_handler_work_data *data; struct dasd_device *device; data = container_of(work, struct pe_handler_work_data, worker); device = data->device; /* delay path verification until device was resumed */ if (test_bit(DASD_FLAG_SUSPENDED, &device->flags)) { schedule_work(work); return; } /* check if path verification already running and delay if so */ if (test_and_set_bit(DASD_FLAG_PATH_VERIFY, &device->flags)) { schedule_work(work); return; } if (data->tbvpm) dasd_eckd_path_available_action(device, data); if (data->fcsecpm) dasd_eckd_read_fc_security(device); clear_bit(DASD_FLAG_PATH_VERIFY, &device->flags); dasd_put_device(device); if (data->isglobal) mutex_unlock(&dasd_pe_handler_mutex); else kfree(data); } static int dasd_eckd_pe_handler(struct dasd_device *device, __u8 tbvpm, __u8 fcsecpm) { struct pe_handler_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC | GFP_DMA); if (!data) { if (mutex_trylock(&dasd_pe_handler_mutex)) { data = pe_handler_worker; data->isglobal = 1; } else { return -ENOMEM; } } INIT_WORK(&data->worker, do_pe_handler_work); dasd_get_device(device); data->device = device; data->tbvpm = tbvpm; data->fcsecpm = fcsecpm; schedule_work(&data->worker); return 0; } static void dasd_eckd_reset_path(struct dasd_device *device, __u8 pm) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (!private->fcx_max_data) private->fcx_max_data = get_fcx_max_data(device); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); dasd_path_set_tbvpm(device, pm ? : dasd_path_get_notoperpm(device)); dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } static int dasd_eckd_read_features(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_features *features; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; memset(&private->features, 0, sizeof(struct dasd_rssd_features)); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_features)), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not " "allocate initialization request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x41; /* Read Feature Codes */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = virt_to_dma32(prssdp); /* Read Subsystem Data - feature codes */ features = (struct dasd_rssd_features *) (prssdp + 1); memset(features, 0, sizeof(struct dasd_rssd_features)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_features); ccw->cda = virt_to_dma32(features); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; features = (struct dasd_rssd_features *) (prssdp + 1); memcpy(&private->features, features, sizeof(struct dasd_rssd_features)); } else dev_warn(&device->cdev->dev, "Reading device feature codes" " failed with rc=%d\n", rc); dasd_sfree_request(cqr, cqr->memdev); return rc; } /* Read Volume Information - Volume Storage Query */ static int dasd_eckd_read_vol_info(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_vsq *vsq; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int useglobal; int rc; /* This command cannot be executed on an alias device */ if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2 /* PSF + RSSD */, sizeof(*prssdp) + sizeof(*vsq), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate initialization request"); mutex_lock(&dasd_vol_info_mutex); useglobal = 1; cqr = &dasd_vol_info_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(dasd_vol_info_req, 0, sizeof(*dasd_vol_info_req)); cqr->cpaddr = &dasd_vol_info_req->ccw; cqr->data = &dasd_vol_info_req->data; cqr->magic = DASD_ECKD_MAGIC; } /* Prepare for Read Subsystem Data */ prssdp = cqr->data; prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_VSQ; /* Volume Storage Query */ prssdp->lss = private->conf.ned->ID; prssdp->volume = private->conf.ned->unit_addr; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(*prssdp); ccw->flags |= CCW_FLAG_CC; ccw->cda = virt_to_dma32(prssdp); /* Read Subsystem Data - Volume Storage Query */ vsq = (struct dasd_rssd_vsq *)(prssdp + 1); memset(vsq, 0, sizeof(*vsq)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*vsq); ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(vsq); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = device->default_expires * HZ; /* The command might not be supported. Suppress the error output */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { memcpy(&private->vsq, vsq, sizeof(*vsq)); } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading the volume storage information failed with rc=%d", rc); } if (useglobal) mutex_unlock(&dasd_vol_info_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_is_ese(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.vol_info.ese; } static int dasd_eckd_ext_pool_id(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.extent_pool_id; } /* * This value represents the total amount of available space. As more space is * allocated by ESE volumes, this value will decrease. * The data for this value is therefore updated on any call. */ static int dasd_eckd_space_configured(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = dasd_eckd_read_vol_info(device); return rc ? : private->vsq.space_configured; } /* * The value of space allocated by an ESE volume may have changed and is * therefore updated on any call. */ static int dasd_eckd_space_allocated(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = dasd_eckd_read_vol_info(device); return rc ? : private->vsq.space_allocated; } static int dasd_eckd_logical_capacity(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.logical_capacity; } static void dasd_eckd_ext_pool_exhaust_work(struct work_struct *work) { struct ext_pool_exhaust_work_data *data; struct dasd_device *device; struct dasd_device *base; data = container_of(work, struct ext_pool_exhaust_work_data, worker); device = data->device; base = data->base; if (!base) base = device; if (dasd_eckd_space_configured(base) != 0) { dasd_generic_space_avail(device); } else { dev_warn(&device->cdev->dev, "No space left in the extent pool\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "out of space"); } dasd_put_device(device); kfree(data); } static int dasd_eckd_ext_pool_exhaust(struct dasd_device *device, struct dasd_ccw_req *cqr) { struct ext_pool_exhaust_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC); if (!data) return -ENOMEM; INIT_WORK(&data->worker, dasd_eckd_ext_pool_exhaust_work); dasd_get_device(device); data->device = device; if (cqr->block) data->base = cqr->block->base; else if (cqr->basedev) data->base = cqr->basedev; else data->base = NULL; schedule_work(&data->worker); return 0; } static void dasd_eckd_cpy_ext_pool_data(struct dasd_device *device, struct dasd_rssd_lcq *lcq) { struct dasd_eckd_private *private = device->private; int pool_id = dasd_eckd_ext_pool_id(device); struct dasd_ext_pool_sum eps; int i; for (i = 0; i < lcq->pool_count; i++) { eps = lcq->ext_pool_sum[i]; if (eps.pool_id == pool_id) { memcpy(&private->eps, &eps, sizeof(struct dasd_ext_pool_sum)); } } } /* Read Extent Pool Information - Logical Configuration Query */ static int dasd_eckd_read_ext_pool_info(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_lcq *lcq; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; /* This command cannot be executed on an alias device */ if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2 /* PSF + RSSD */, sizeof(*prssdp) + sizeof(*lcq), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate initialization request"); return PTR_ERR(cqr); } /* Prepare for Read Subsystem Data */ prssdp = cqr->data; memset(prssdp, 0, sizeof(*prssdp)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_LCQ; /* Logical Configuration Query */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(*prssdp); ccw->flags |= CCW_FLAG_CC; ccw->cda = virt_to_dma32(prssdp); lcq = (struct dasd_rssd_lcq *)(prssdp + 1); memset(lcq, 0, sizeof(*lcq)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*lcq); ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(lcq); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = device->default_expires * HZ; /* The command might not be supported. Suppress the error output */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { dasd_eckd_cpy_ext_pool_data(device, lcq); } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading the logical configuration failed with rc=%d", rc); } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Depending on the device type, the extent size is specified either as * cylinders per extent (CKD) or size per extent (FBA) * A 1GB size corresponds to 1113cyl, and 16MB to 21cyl. */ static int dasd_eckd_ext_size(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_ext_pool_sum eps = private->eps; if (!eps.flags.extent_size_valid) return 0; if (eps.extent_size.size_1G) return 1113; if (eps.extent_size.size_16M) return 21; return 0; } static int dasd_eckd_ext_pool_warn_thrshld(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.warn_thrshld; } static int dasd_eckd_ext_pool_cap_at_warnlevel(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.flags.capacity_at_warnlevel; } /* * Extent Pool out of space */ static int dasd_eckd_ext_pool_oos(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.flags.pool_oos; } /* * Build CP for Perform Subsystem Function - SSC. */ static struct dasd_ccw_req *dasd_eckd_build_psf_ssc(struct dasd_device *device, int enable_pav) { struct dasd_ccw_req *cqr; struct dasd_psf_ssc_data *psf_ssc_data; struct ccw1 *ccw; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ , sizeof(struct dasd_psf_ssc_data), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate PSF-SSC request"); return cqr; } psf_ssc_data = (struct dasd_psf_ssc_data *)cqr->data; psf_ssc_data->order = PSF_ORDER_SSC; psf_ssc_data->suborder = 0xc0; if (enable_pav) { psf_ssc_data->suborder |= 0x08; psf_ssc_data->reserved[0] = 0x88; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->cda = virt_to_dma32(psf_ssc_data); ccw->count = 66; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10*HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } /* * Perform Subsystem Function. * It is necessary to trigger CIO for channel revalidation since this * call might change behaviour of DASD devices. */ static int dasd_eckd_psf_ssc(struct dasd_device *device, int enable_pav, unsigned long flags) { struct dasd_ccw_req *cqr; int rc; cqr = dasd_eckd_build_psf_ssc(device, enable_pav); if (IS_ERR(cqr)) return PTR_ERR(cqr); /* * set flags e.g. turn on failfast, to prevent blocking * the calling function should handle failed requests */ cqr->flags |= flags; rc = dasd_sleep_on(cqr); if (!rc) /* trigger CIO to reprobe devices */ css_schedule_reprobe(); else if (cqr->intrc == -EAGAIN) rc = -EAGAIN; dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Valide storage server of current device. */ static int dasd_eckd_validate_server(struct dasd_device *device, unsigned long flags) { struct dasd_eckd_private *private = device->private; int enable_pav, rc; if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; if (dasd_nopav || MACHINE_IS_VM) enable_pav = 0; else enable_pav = 1; rc = dasd_eckd_psf_ssc(device, enable_pav, flags); /* may be requested feature is not available on server, * therefore just report error and go ahead */ DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "PSF-SSC for SSID %04x " "returned rc=%d", private->uid.ssid, rc); return rc; } /* * worker to do a validate server in case of a lost pathgroup */ static void dasd_eckd_do_validate_server(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, kick_validate); unsigned long flags = 0; set_bit(DASD_CQR_FLAGS_FAILFAST, &flags); if (dasd_eckd_validate_server(device, flags) == -EAGAIN) { /* schedule worker again if failed */ schedule_work(&device->kick_validate); return; } dasd_put_device(device); } static void dasd_eckd_kick_validate_server(struct dasd_device *device) { dasd_get_device(device); /* exit if device not online or in offline processing */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags) || device->state < DASD_STATE_ONLINE) { dasd_put_device(device); return; } /* queue call to do_validate_server to the kernel event daemon. */ if (!schedule_work(&device->kick_validate)) dasd_put_device(device); } /* * return if the device is the copy relation primary if a copy relation is active */ static int dasd_device_is_primary(struct dasd_device *device) { if (!device->copy) return 1; if (device->copy->active->device == device) return 1; return 0; } static int dasd_eckd_alloc_block(struct dasd_device *device) { struct dasd_block *block; struct dasd_uid temp_uid; if (!dasd_device_is_primary(device)) return 0; dasd_eckd_get_uid(device, &temp_uid); if (temp_uid.type == UA_BASE_DEVICE) { block = dasd_alloc_block(); if (IS_ERR(block)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "could not allocate dasd block structure"); return PTR_ERR(block); } device->block = block; block->base = device; } return 0; } static bool dasd_eckd_pprc_enabled(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->rdc_data.facilities.PPRC_enabled; } /* * Check device characteristics. * If the device is accessible using ECKD discipline, the device is enabled. */ static int dasd_eckd_check_characteristics(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc, i; int readonly; unsigned long value; /* setup work queue for validate server*/ INIT_WORK(&device->kick_validate, dasd_eckd_do_validate_server); /* setup work queue for summary unit check */ INIT_WORK(&device->suc_work, dasd_alias_handle_summary_unit_check); if (!ccw_device_is_pathgroup(device->cdev)) { dev_warn(&device->cdev->dev, "A channel path group could not be established\n"); return -EIO; } if (!ccw_device_is_multipath(device->cdev)) { dev_info(&device->cdev->dev, "The DASD is not operating in multipath mode\n"); } if (!private) { private = kzalloc(sizeof(*private), GFP_KERNEL | GFP_DMA); if (!private) { dev_warn(&device->cdev->dev, "Allocating memory for private DASD data " "failed\n"); return -ENOMEM; } device->private = private; } else { memset(private, 0, sizeof(*private)); } /* Invalidate status of initial analysis. */ private->init_cqr_status = -1; /* Set default cache operations. */ private->attrib.operation = DASD_NORMAL_CACHE; private->attrib.nr_cyl = 0; /* Read Configuration Data */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err1; /* set some default values */ device->default_expires = DASD_EXPIRES; device->default_retries = DASD_RETRIES; device->path_thrhld = DASD_ECKD_PATH_THRHLD; device->path_interval = DASD_ECKD_PATH_INTERVAL; device->aq_timeouts = DASD_RETRIES_MAX; if (private->conf.gneq) { value = 1; for (i = 0; i < private->conf.gneq->timeout.value; i++) value = 10 * value; value = value * private->conf.gneq->timeout.number; /* do not accept useless values */ if (value != 0 && value <= DASD_EXPIRES_MAX) device->default_expires = value; } /* Read Device Characteristics */ rc = dasd_generic_read_dev_chars(device, DASD_ECKD_MAGIC, &private->rdc_data, 64); if (rc) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read device characteristic failed, rc=%d", rc); goto out_err1; } /* setup PPRC for device from devmap */ rc = dasd_devmap_set_device_copy_relation(device->cdev, dasd_eckd_pprc_enabled(device)); if (rc) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "copy relation setup failed, rc=%d", rc); goto out_err1; } /* check if block device is needed and allocate in case */ rc = dasd_eckd_alloc_block(device); if (rc) goto out_err1; /* register lcu with alias handling, enable PAV */ rc = dasd_alias_make_device_known_to_lcu(device); if (rc) goto out_err2; dasd_eckd_validate_server(device, 0); /* device may report different configuration data after LCU setup */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err3; dasd_eckd_read_fc_security(device); dasd_path_create_kobjects(device); /* Read Feature Codes */ dasd_eckd_read_features(device); /* Read Volume Information */ dasd_eckd_read_vol_info(device); /* Read Extent Pool Information */ dasd_eckd_read_ext_pool_info(device); if ((device->features & DASD_FEATURE_USERAW) && !(private->rdc_data.facilities.RT_in_LR)) { dev_err(&device->cdev->dev, "The storage server does not " "support raw-track access\n"); rc = -EINVAL; goto out_err3; } /* find the valid cylinder size */ if (private->rdc_data.no_cyl == LV_COMPAT_CYL && private->rdc_data.long_no_cyl) private->real_cyl = private->rdc_data.long_no_cyl; else private->real_cyl = private->rdc_data.no_cyl; private->fcx_max_data = get_fcx_max_data(device); readonly = dasd_device_is_ro(device); if (readonly) set_bit(DASD_FLAG_DEVICE_RO, &device->flags); dev_info(&device->cdev->dev, "New DASD %04X/%02X (CU %04X/%02X) " "with %d cylinders, %d heads, %d sectors%s\n", private->rdc_data.dev_type, private->rdc_data.dev_model, private->rdc_data.cu_type, private->rdc_data.cu_model.model, private->real_cyl, private->rdc_data.trk_per_cyl, private->rdc_data.sec_per_trk, readonly ? ", read-only device" : ""); return 0; out_err3: dasd_alias_disconnect_device_from_lcu(device); out_err2: dasd_free_block(device->block); device->block = NULL; out_err1: dasd_eckd_clear_conf_data(device); dasd_path_remove_kobjects(device); kfree(device->private); device->private = NULL; return rc; } static void dasd_eckd_uncheck_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; if (!private) return; dasd_alias_disconnect_device_from_lcu(device); private->conf.ned = NULL; private->conf.sneq = NULL; private->conf.vdsneq = NULL; private->conf.gneq = NULL; dasd_eckd_clear_conf_data(device); dasd_path_remove_kobjects(device); } static struct dasd_ccw_req * dasd_eckd_analysis_ccw(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct eckd_count *count_data; struct LO_eckd_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int cplength, datasize; int i; cplength = 8; datasize = sizeof(struct DE_eckd_data) + 2*sizeof(struct LO_eckd_data); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, device, NULL); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* Define extent for the first 2 tracks. */ define_extent(ccw++, cqr->data, 0, 1, DASD_ECKD_CCW_READ_COUNT, device, 0); LO_data = cqr->data + sizeof(struct DE_eckd_data); /* Locate record for the first 4 records on track 0. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, 0, 0, 4, DASD_ECKD_CCW_READ_COUNT, device, 0); count_data = private->count_area; for (i = 0; i < 4; i++) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = 0; ccw->count = 8; ccw->cda = virt_to_dma32(count_data); ccw++; count_data++; } /* Locate record for the first record on track 1. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, 1, 0, 1, DASD_ECKD_CCW_READ_COUNT, device, 0); /* Read count ccw. */ ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = 0; ccw->count = 8; ccw->cda = virt_to_dma32(count_data); cqr->block = NULL; cqr->startdev = device; cqr->memdev = device; cqr->retries = 255; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IT, &cqr->flags); return cqr; } /* differentiate between 'no record found' and any other error */ static int dasd_eckd_analysis_evaluation(struct dasd_ccw_req *init_cqr) { char *sense; if (init_cqr->status == DASD_CQR_DONE) return INIT_CQR_OK; else if (init_cqr->status == DASD_CQR_NEED_ERP || init_cqr->status == DASD_CQR_FAILED) { sense = dasd_get_sense(&init_cqr->irb); if (sense && (sense[1] & SNS1_NO_REC_FOUND)) return INIT_CQR_UNFORMATTED; else return INIT_CQR_ERROR; } else return INIT_CQR_ERROR; } /* * This is the callback function for the init_analysis cqr. It saves * the status of the initial analysis ccw before it frees it and kicks * the device to continue the startup sequence. This will call * dasd_eckd_do_analysis again (if the devices has not been marked * for deletion in the meantime). */ static void dasd_eckd_analysis_callback(struct dasd_ccw_req *init_cqr, void *data) { struct dasd_device *device = init_cqr->startdev; struct dasd_eckd_private *private = device->private; private->init_cqr_status = dasd_eckd_analysis_evaluation(init_cqr); dasd_sfree_request(init_cqr, device); dasd_kick_device(device); } static int dasd_eckd_start_analysis(struct dasd_block *block) { struct dasd_ccw_req *init_cqr; init_cqr = dasd_eckd_analysis_ccw(block->base); if (IS_ERR(init_cqr)) return PTR_ERR(init_cqr); init_cqr->callback = dasd_eckd_analysis_callback; init_cqr->callback_data = NULL; init_cqr->expires = 5*HZ; /* first try without ERP, so we can later handle unformatted * devices as special case */ clear_bit(DASD_CQR_FLAGS_USE_ERP, &init_cqr->flags); init_cqr->retries = 0; dasd_add_request_head(init_cqr); return -EAGAIN; } static int dasd_eckd_end_analysis(struct dasd_block *block) { struct dasd_device *device = block->base; struct dasd_eckd_private *private = device->private; struct eckd_count *count_area; unsigned int sb, blk_per_trk; int status, i; struct dasd_ccw_req *init_cqr; status = private->init_cqr_status; private->init_cqr_status = -1; if (status == INIT_CQR_ERROR) { /* try again, this time with full ERP */ init_cqr = dasd_eckd_analysis_ccw(device); dasd_sleep_on(init_cqr); status = dasd_eckd_analysis_evaluation(init_cqr); dasd_sfree_request(init_cqr, device); } if (device->features & DASD_FEATURE_USERAW) { block->bp_block = DASD_RAW_BLOCKSIZE; blk_per_trk = DASD_RAW_BLOCK_PER_TRACK; block->s2b_shift = 3; goto raw; } if (status == INIT_CQR_UNFORMATTED) { dev_warn(&device->cdev->dev, "The DASD is not formatted\n"); return -EMEDIUMTYPE; } else if (status == INIT_CQR_ERROR) { dev_err(&device->cdev->dev, "Detecting the DASD disk layout failed because " "of an I/O error\n"); return -EIO; } private->uses_cdl = 1; /* Check Track 0 for Compatible Disk Layout */ count_area = NULL; for (i = 0; i < 3; i++) { if (private->count_area[i].kl != 4 || private->count_area[i].dl != dasd_eckd_cdl_reclen(i) - 4 || private->count_area[i].cyl != 0 || private->count_area[i].head != count_area_head[i] || private->count_area[i].record != count_area_rec[i]) { private->uses_cdl = 0; break; } } if (i == 3) count_area = &private->count_area[3]; if (private->uses_cdl == 0) { for (i = 0; i < 5; i++) { if ((private->count_area[i].kl != 0) || (private->count_area[i].dl != private->count_area[0].dl) || private->count_area[i].cyl != 0 || private->count_area[i].head != count_area_head[i] || private->count_area[i].record != count_area_rec[i]) break; } if (i == 5) count_area = &private->count_area[0]; } else { if (private->count_area[3].record == 1) dev_warn(&device->cdev->dev, "Track 0 has no records following the VTOC\n"); } if (count_area != NULL && count_area->kl == 0) { /* we found nothing violating our disk layout */ if (dasd_check_blocksize(count_area->dl) == 0) block->bp_block = count_area->dl; } if (block->bp_block == 0) { dev_warn(&device->cdev->dev, "The disk layout of the DASD is not supported\n"); return -EMEDIUMTYPE; } block->s2b_shift = 0; /* bits to shift 512 to get a block */ for (sb = 512; sb < block->bp_block; sb = sb << 1) block->s2b_shift++; blk_per_trk = recs_per_track(&private->rdc_data, 0, block->bp_block); raw: block->blocks = ((unsigned long) private->real_cyl * private->rdc_data.trk_per_cyl * blk_per_trk); dev_info(&device->cdev->dev, "DASD with %u KB/block, %lu KB total size, %u KB/track, " "%s\n", (block->bp_block >> 10), (((unsigned long) private->real_cyl * private->rdc_data.trk_per_cyl * blk_per_trk * (block->bp_block >> 9)) >> 1), ((blk_per_trk * block->bp_block) >> 10), private->uses_cdl ? "compatible disk layout" : "linux disk layout"); return 0; } static int dasd_eckd_do_analysis(struct dasd_block *block) { struct dasd_eckd_private *private = block->base->private; if (private->init_cqr_status < 0) return dasd_eckd_start_analysis(block); else return dasd_eckd_end_analysis(block); } static int dasd_eckd_basic_to_ready(struct dasd_device *device) { return dasd_alias_add_device(device); }; static int dasd_eckd_online_to_ready(struct dasd_device *device) { if (cancel_work_sync(&device->reload_device)) dasd_put_device(device); if (cancel_work_sync(&device->kick_validate)) dasd_put_device(device); return 0; }; static int dasd_eckd_basic_to_known(struct dasd_device *device) { return dasd_alias_remove_device(device); }; static int dasd_eckd_fill_geometry(struct dasd_block *block, struct hd_geometry *geo) { struct dasd_eckd_private *private = block->base->private; if (dasd_check_blocksize(block->bp_block) == 0) { geo->sectors = recs_per_track(&private->rdc_data, 0, block->bp_block); } geo->cylinders = private->rdc_data.no_cyl; geo->heads = private->rdc_data.trk_per_cyl; return 0; } /* * Build the TCW request for the format check */ static struct dasd_ccw_req * dasd_eckd_build_check_tcw(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, struct eckd_count *fmt_buffer, int rpt) { struct dasd_eckd_private *start_priv; struct dasd_device *startdev = NULL; struct tidaw *last_tidaw = NULL; struct dasd_ccw_req *cqr; struct itcw *itcw; int itcw_size; int count; int rc; int i; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; count = rpt * (fdata->stop_unit - fdata->start_unit + 1); /* * we're adding 'count' amount of tidaw to the itcw. * calculate the corresponding itcw_size */ itcw_size = itcw_calc_size(0, count, 0); cqr = dasd_fmalloc_request(DASD_ECKD_MAGIC, 0, itcw_size, startdev); if (IS_ERR(cqr)) return cqr; start_priv->count++; itcw = itcw_init(cqr->data, itcw_size, ITCW_OP_READ, 0, count, 0); if (IS_ERR(itcw)) { rc = -EINVAL; goto out_err; } cqr->cpaddr = itcw_get_tcw(itcw); rc = prepare_itcw(itcw, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT_MT, base, startdev, 0, count, sizeof(struct eckd_count), count * sizeof(struct eckd_count), 0, rpt); if (rc) goto out_err; for (i = 0; i < count; i++) { last_tidaw = itcw_add_tidaw(itcw, 0, fmt_buffer++, sizeof(struct eckd_count)); if (IS_ERR(last_tidaw)) { rc = -EINVAL; goto out_err; } } last_tidaw->flags |= TIDAW_FLAGS_LAST; itcw_finalize(itcw); cqr->cpmode = 1; cqr->startdev = startdev; cqr->memdev = startdev; cqr->basedev = base; cqr->retries = startdev->default_retries; cqr->expires = startdev->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); return cqr; out_err: dasd_sfree_request(cqr, startdev); return ERR_PTR(rc); } /* * Build the CCW request for the format check */ static struct dasd_ccw_req * dasd_eckd_build_check(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, struct eckd_count *fmt_buffer, int rpt) { struct dasd_eckd_private *start_priv; struct dasd_eckd_private *base_priv; struct dasd_device *startdev = NULL; struct dasd_ccw_req *cqr; struct ccw1 *ccw; void *data; int cplength, datasize; int use_prefix; int count; int i; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; base_priv = base->private; count = rpt * (fdata->stop_unit - fdata->start_unit + 1); use_prefix = base_priv->features.feature[8] & 0x01; if (use_prefix) { cplength = 1; datasize = sizeof(struct PFX_eckd_data); } else { cplength = 2; datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data); } cplength += count; cqr = dasd_fmalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev); if (IS_ERR(cqr)) return cqr; start_priv->count++; data = cqr->data; ccw = cqr->cpaddr; if (use_prefix) { prefix_LRE(ccw++, data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT, base, startdev, 1, 0, count, 0, 0); } else { define_extent(ccw++, data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT, startdev, 0); data += sizeof(struct DE_eckd_data); ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, data, fdata->start_unit, 0, count, DASD_ECKD_CCW_READ_COUNT, base, 0); } for (i = 0; i < count; i++) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = virt_to_dma32(fmt_buffer); ccw++; fmt_buffer++; } cqr->startdev = startdev; cqr->memdev = startdev; cqr->basedev = base; cqr->retries = DASD_RETRIES; cqr->expires = startdev->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } static struct dasd_ccw_req * dasd_eckd_build_format(struct dasd_device *base, struct dasd_device *startdev, struct format_data_t *fdata, int enable_pav) { struct dasd_eckd_private *base_priv; struct dasd_eckd_private *start_priv; struct dasd_ccw_req *fcp; struct eckd_count *ect; struct ch_t address; struct ccw1 *ccw; void *data; int rpt; int cplength, datasize; int i, j; int intensity = 0; int r0_perm; int nr_tracks; int use_prefix; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; base_priv = base->private; rpt = recs_per_track(&base_priv->rdc_data, 0, fdata->blksize); nr_tracks = fdata->stop_unit - fdata->start_unit + 1; /* * fdata->intensity is a bit string that tells us what to do: * Bit 0: write record zero * Bit 1: write home address, currently not supported * Bit 2: invalidate tracks * Bit 3: use OS/390 compatible disk layout (cdl) * Bit 4: do not allow storage subsystem to modify record zero * Only some bit combinations do make sense. */ if (fdata->intensity & 0x10) { r0_perm = 0; intensity = fdata->intensity & ~0x10; } else { r0_perm = 1; intensity = fdata->intensity; } use_prefix = base_priv->features.feature[8] & 0x01; switch (intensity) { case 0x00: /* Normal format */ case 0x08: /* Normal format, use cdl. */ cplength = 2 + (rpt*nr_tracks); if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + rpt * nr_tracks * sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + rpt * nr_tracks * sizeof(struct eckd_count); break; case 0x01: /* Write record zero and format track. */ case 0x09: /* Write record zero and format track, use cdl. */ cplength = 2 + rpt * nr_tracks; if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count) + rpt * nr_tracks * sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count) + rpt * nr_tracks * sizeof(struct eckd_count); break; case 0x04: /* Invalidate track. */ case 0x0c: /* Invalidate track, use cdl. */ cplength = 3; if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count); break; default: dev_warn(&startdev->cdev->dev, "An I/O control call used incorrect flags 0x%x\n", fdata->intensity); return ERR_PTR(-EINVAL); } fcp = dasd_fmalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev); if (IS_ERR(fcp)) return fcp; start_priv->count++; data = fcp->data; ccw = fcp->cpaddr; switch (intensity & ~0x08) { case 0x00: /* Normal format. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, base, startdev); /* grant subsystem permission to format R0 */ if (r0_perm) ((struct PFX_eckd_data *)data) ->define_extent.ga_extended |= 0x04; data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, startdev, 0); /* grant subsystem permission to format R0 */ if (r0_perm) ((struct DE_eckd_data *) data) ->ga_extended |= 0x04; data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, rpt*nr_tracks, DASD_ECKD_CCW_WRITE_CKD, base, fdata->blksize); data += sizeof(struct LO_eckd_data); break; case 0x01: /* Write record zero + format track. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_RECORD_ZERO, base, startdev); data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_RECORD_ZERO, startdev, 0); data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, rpt * nr_tracks + 1, DASD_ECKD_CCW_WRITE_RECORD_ZERO, base, base->block->bp_block); data += sizeof(struct LO_eckd_data); break; case 0x04: /* Invalidate track. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, base, startdev); data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, startdev, 0); data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, 1, DASD_ECKD_CCW_WRITE_CKD, base, 8); data += sizeof(struct LO_eckd_data); break; } for (j = 0; j < nr_tracks; j++) { /* calculate cylinder and head for the current track */ set_ch_t(&address, (fdata->start_unit + j) / base_priv->rdc_data.trk_per_cyl, (fdata->start_unit + j) % base_priv->rdc_data.trk_per_cyl); if (intensity & 0x01) { /* write record zero */ ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = 0; ect->kl = 0; ect->dl = 8; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_WRITE_RECORD_ZERO; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = virt_to_dma32(ect); ccw++; } if ((intensity & ~0x08) & 0x04) { /* erase track */ ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = 1; ect->kl = 0; ect->dl = 0; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = virt_to_dma32(ect); } else { /* write remaining records */ for (i = 0; i < rpt; i++) { ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = i + 1; ect->kl = 0; ect->dl = fdata->blksize; /* * Check for special tracks 0-1 * when formatting CDL */ if ((intensity & 0x08) && address.cyl == 0 && address.head == 0) { if (i < 3) { ect->kl = 4; ect->dl = sizes_trk0[i] - 4; } } if ((intensity & 0x08) && address.cyl == 0 && address.head == 1) { ect->kl = 44; ect->dl = LABEL_SIZE - 44; } ccw[-1].flags |= CCW_FLAG_CC; if (i != 0 || j == 0) ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD; else ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD_MT; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = virt_to_dma32(ect); ccw++; } } } fcp->startdev = startdev; fcp->memdev = startdev; fcp->basedev = base; fcp->retries = 256; fcp->expires = startdev->default_expires * HZ; fcp->buildclk = get_tod_clock(); fcp->status = DASD_CQR_FILLED; return fcp; } /* * Wrapper function to build a CCW request depending on input data */ static struct dasd_ccw_req * dasd_eckd_format_build_ccw_req(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, int tpm, struct eckd_count *fmt_buffer, int rpt) { struct dasd_ccw_req *ccw_req; if (!fmt_buffer) { ccw_req = dasd_eckd_build_format(base, NULL, fdata, enable_pav); } else { if (tpm) ccw_req = dasd_eckd_build_check_tcw(base, fdata, enable_pav, fmt_buffer, rpt); else ccw_req = dasd_eckd_build_check(base, fdata, enable_pav, fmt_buffer, rpt); } return ccw_req; } /* * Sanity checks on format_data */ static int dasd_eckd_format_sanity_checks(struct dasd_device *base, struct format_data_t *fdata) { struct dasd_eckd_private *private = base->private; if (fdata->start_unit >= (private->real_cyl * private->rdc_data.trk_per_cyl)) { dev_warn(&base->cdev->dev, "Start track number %u used in formatting is too big\n", fdata->start_unit); return -EINVAL; } if (fdata->stop_unit >= (private->real_cyl * private->rdc_data.trk_per_cyl)) { dev_warn(&base->cdev->dev, "Stop track number %u used in formatting is too big\n", fdata->stop_unit); return -EINVAL; } if (fdata->start_unit > fdata->stop_unit) { dev_warn(&base->cdev->dev, "Start track %u used in formatting exceeds end track\n", fdata->start_unit); return -EINVAL; } if (dasd_check_blocksize(fdata->blksize) != 0) { dev_warn(&base->cdev->dev, "The DASD cannot be formatted with block size %u\n", fdata->blksize); return -EINVAL; } return 0; } /* * This function will process format_data originally coming from an IOCTL */ static int dasd_eckd_format_process_data(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, int tpm, struct eckd_count *fmt_buffer, int rpt, struct irb *irb) { struct dasd_eckd_private *private = base->private; struct dasd_ccw_req *cqr, *n; struct list_head format_queue; struct dasd_device *device; char *sense = NULL; int old_start, old_stop, format_step; int step, retry; int rc; rc = dasd_eckd_format_sanity_checks(base, fdata); if (rc) return rc; INIT_LIST_HEAD(&format_queue); old_start = fdata->start_unit; old_stop = fdata->stop_unit; if (!tpm && fmt_buffer != NULL) { /* Command Mode / Format Check */ format_step = 1; } else if (tpm && fmt_buffer != NULL) { /* Transport Mode / Format Check */ format_step = DASD_CQR_MAX_CCW / rpt; } else { /* Normal Formatting */ format_step = DASD_CQR_MAX_CCW / recs_per_track(&private->rdc_data, 0, fdata->blksize); } do { retry = 0; while (fdata->start_unit <= old_stop) { step = fdata->stop_unit - fdata->start_unit + 1; if (step > format_step) { fdata->stop_unit = fdata->start_unit + format_step - 1; } cqr = dasd_eckd_format_build_ccw_req(base, fdata, enable_pav, tpm, fmt_buffer, rpt); if (IS_ERR(cqr)) { rc = PTR_ERR(cqr); if (rc == -ENOMEM) { if (list_empty(&format_queue)) goto out; /* * not enough memory available, start * requests retry after first requests * were finished */ retry = 1; break; } goto out_err; } list_add_tail(&cqr->blocklist, &format_queue); if (fmt_buffer) { step = fdata->stop_unit - fdata->start_unit + 1; fmt_buffer += rpt * step; } fdata->start_unit = fdata->stop_unit + 1; fdata->stop_unit = old_stop; } rc = dasd_sleep_on_queue(&format_queue); out_err: list_for_each_entry_safe(cqr, n, &format_queue, blocklist) { device = cqr->startdev; private = device->private; if (cqr->status == DASD_CQR_FAILED) { /* * Only get sense data if called by format * check */ if (fmt_buffer && irb) { sense = dasd_get_sense(&cqr->irb); memcpy(irb, &cqr->irb, sizeof(*irb)); } rc = -EIO; } list_del_init(&cqr->blocklist); dasd_ffree_request(cqr, device); private->count--; } if (rc && rc != -EIO) goto out; if (rc == -EIO) { /* * In case fewer than the expected records are on the * track, we will most likely get a 'No Record Found' * error (in command mode) or a 'File Protected' error * (in transport mode). Those particular cases shouldn't * pass the -EIO to the IOCTL, therefore reset the rc * and continue. */ if (sense && (sense[1] & SNS1_NO_REC_FOUND || sense[1] & SNS1_FILE_PROTECTED)) retry = 1; else goto out; } } while (retry); out: fdata->start_unit = old_start; fdata->stop_unit = old_stop; return rc; } static int dasd_eckd_format_device(struct dasd_device *base, struct format_data_t *fdata, int enable_pav) { return dasd_eckd_format_process_data(base, fdata, enable_pav, 0, NULL, 0, NULL); } static bool test_and_set_format_track(struct dasd_format_entry *to_format, struct dasd_ccw_req *cqr) { struct dasd_block *block = cqr->block; struct dasd_format_entry *format; unsigned long flags; bool rc = false; spin_lock_irqsave(&block->format_lock, flags); if (cqr->trkcount != atomic_read(&block->trkcount)) { /* * The number of formatted tracks has changed after request * start and we can not tell if the current track was involved. * To avoid data corruption treat it as if the current track is * involved */ rc = true; goto out; } list_for_each_entry(format, &block->format_list, list) { if (format->track == to_format->track) { rc = true; goto out; } } list_add_tail(&to_format->list, &block->format_list); out: spin_unlock_irqrestore(&block->format_lock, flags); return rc; } static void clear_format_track(struct dasd_format_entry *format, struct dasd_block *block) { unsigned long flags; spin_lock_irqsave(&block->format_lock, flags); atomic_inc(&block->trkcount); list_del_init(&format->list); spin_unlock_irqrestore(&block->format_lock, flags); } /* * Callback function to free ESE format requests. */ static void dasd_eckd_ese_format_cb(struct dasd_ccw_req *cqr, void *data) { struct dasd_device *device = cqr->startdev; struct dasd_eckd_private *private = device->private; struct dasd_format_entry *format = data; clear_format_track(format, cqr->basedev->block); private->count--; dasd_ffree_request(cqr, device); } static struct dasd_ccw_req * dasd_eckd_ese_format(struct dasd_device *startdev, struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_eckd_private *private; struct dasd_format_entry *format; struct format_data_t fdata; unsigned int recs_per_trk; struct dasd_ccw_req *fcqr; struct dasd_device *base; struct dasd_block *block; unsigned int blksize; struct request *req; sector_t first_trk; sector_t last_trk; sector_t curr_trk; int rc; req = dasd_get_callback_data(cqr); block = cqr->block; base = block->base; private = base->private; blksize = block->bp_block; recs_per_trk = recs_per_track(&private->rdc_data, 0, blksize); format = &startdev->format_entry; first_trk = blk_rq_pos(req) >> block->s2b_shift; sector_div(first_trk, recs_per_trk); last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; sector_div(last_trk, recs_per_trk); rc = dasd_eckd_track_from_irb(irb, base, &curr_trk); if (rc) return ERR_PTR(rc); if (curr_trk < first_trk || curr_trk > last_trk) { DBF_DEV_EVENT(DBF_WARNING, startdev, "ESE error track %llu not within range %llu - %llu\n", curr_trk, first_trk, last_trk); return ERR_PTR(-EINVAL); } format->track = curr_trk; /* test if track is already in formatting by another thread */ if (test_and_set_format_track(format, cqr)) { /* this is no real error so do not count down retries */ cqr->retries++; return ERR_PTR(-EEXIST); } fdata.start_unit = curr_trk; fdata.stop_unit = curr_trk; fdata.blksize = blksize; fdata.intensity = private->uses_cdl ? DASD_FMT_INT_COMPAT : 0; rc = dasd_eckd_format_sanity_checks(base, &fdata); if (rc) return ERR_PTR(-EINVAL); /* * We're building the request with PAV disabled as we're reusing * the former startdev. */ fcqr = dasd_eckd_build_format(base, startdev, &fdata, 0); if (IS_ERR(fcqr)) return fcqr; fcqr->callback = dasd_eckd_ese_format_cb; fcqr->callback_data = (void *) format; return fcqr; } /* * When data is read from an unformatted area of an ESE volume, this function * returns zeroed data and thereby mimics a read of zero data. * * The first unformatted track is the one that got the NRF error, the address is * encoded in the sense data. * * All tracks before have returned valid data and should not be touched. * All tracks after the unformatted track might be formatted or not. This is * currently not known, remember the processed data and return the remainder of * the request to the blocklayer in __dasd_cleanup_cqr(). */ static int dasd_eckd_ese_read(struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_eckd_private *private; sector_t first_trk, last_trk; sector_t first_blk, last_blk; unsigned int blksize, off; unsigned int recs_per_trk; struct dasd_device *base; struct req_iterator iter; struct dasd_block *block; unsigned int skip_block; unsigned int blk_count; struct request *req; struct bio_vec bv; sector_t curr_trk; sector_t end_blk; char *dst; int rc; req = (struct request *) cqr->callback_data; base = cqr->block->base; blksize = base->block->bp_block; block = cqr->block; private = base->private; skip_block = 0; blk_count = 0; recs_per_trk = recs_per_track(&private->rdc_data, 0, blksize); first_trk = first_blk = blk_rq_pos(req) >> block->s2b_shift; sector_div(first_trk, recs_per_trk); last_trk = last_blk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; sector_div(last_trk, recs_per_trk); rc = dasd_eckd_track_from_irb(irb, base, &curr_trk); if (rc) return rc; /* sanity check if the current track from sense data is valid */ if (curr_trk < first_trk || curr_trk > last_trk) { DBF_DEV_EVENT(DBF_WARNING, base, "ESE error track %llu not within range %llu - %llu\n", curr_trk, first_trk, last_trk); return -EINVAL; } /* * if not the first track got the NRF error we have to skip over valid * blocks */ if (curr_trk != first_trk) skip_block = curr_trk * recs_per_trk - first_blk; /* we have no information beyond the current track */ end_blk = (curr_trk + 1) * recs_per_trk; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { if (first_blk + blk_count >= end_blk) { cqr->proc_bytes = blk_count * blksize; return 0; } if (dst && !skip_block) memset(dst, 0, blksize); else skip_block--; dst += blksize; blk_count++; } } return 0; } /* * Helper function to count consecutive records of a single track. */ static int dasd_eckd_count_records(struct eckd_count *fmt_buffer, int start, int max) { int head; int i; head = fmt_buffer[start].head; /* * There are 3 conditions where we stop counting: * - if data reoccurs (same head and record may reoccur), which may * happen due to the way DASD_ECKD_CCW_READ_COUNT works * - when the head changes, because we're iterating over several tracks * then (DASD_ECKD_CCW_READ_COUNT_MT) * - when we've reached the end of sensible data in the buffer (the * record will be 0 then) */ for (i = start; i < max; i++) { if (i > start) { if ((fmt_buffer[i].head == head && fmt_buffer[i].record == 1) || fmt_buffer[i].head != head || fmt_buffer[i].record == 0) break; } } return i - start; } /* * Evaluate a given range of tracks. Data like number of records, blocksize, * record ids, and key length are compared with expected data. * * If a mismatch occurs, the corresponding error bit is set, as well as * additional information, depending on the error. */ static void dasd_eckd_format_evaluate_tracks(struct eckd_count *fmt_buffer, struct format_check_t *cdata, int rpt_max, int rpt_exp, int trk_per_cyl, int tpm) { struct ch_t geo; int max_entries; int count = 0; int trkcount; int blksize; int pos = 0; int i, j; int kl; trkcount = cdata->expect.stop_unit - cdata->expect.start_unit + 1; max_entries = trkcount * rpt_max; for (i = cdata->expect.start_unit; i <= cdata->expect.stop_unit; i++) { /* Calculate the correct next starting position in the buffer */ if (tpm) { while (fmt_buffer[pos].record == 0 && fmt_buffer[pos].dl == 0) { if (pos++ > max_entries) break; } } else { if (i != cdata->expect.start_unit) pos += rpt_max - count; } /* Calculate the expected geo values for the current track */ set_ch_t(&geo, i / trk_per_cyl, i % trk_per_cyl); /* Count and check number of records */ count = dasd_eckd_count_records(fmt_buffer, pos, pos + rpt_max); if (count < rpt_exp) { cdata->result = DASD_FMT_ERR_TOO_FEW_RECORDS; break; } if (count > rpt_exp) { cdata->result = DASD_FMT_ERR_TOO_MANY_RECORDS; break; } for (j = 0; j < count; j++, pos++) { blksize = cdata->expect.blksize; kl = 0; /* * Set special values when checking CDL formatted * devices. */ if ((cdata->expect.intensity & 0x08) && geo.cyl == 0 && geo.head == 0) { if (j < 3) { blksize = sizes_trk0[j] - 4; kl = 4; } } if ((cdata->expect.intensity & 0x08) && geo.cyl == 0 && geo.head == 1) { blksize = LABEL_SIZE - 44; kl = 44; } /* Check blocksize */ if (fmt_buffer[pos].dl != blksize) { cdata->result = DASD_FMT_ERR_BLKSIZE; goto out; } /* Check if key length is 0 */ if (fmt_buffer[pos].kl != kl) { cdata->result = DASD_FMT_ERR_KEY_LENGTH; goto out; } /* Check if record_id is correct */ if (fmt_buffer[pos].cyl != geo.cyl || fmt_buffer[pos].head != geo.head || fmt_buffer[pos].record != (j + 1)) { cdata->result = DASD_FMT_ERR_RECORD_ID; goto out; } } } out: /* * In case of no errors, we need to decrease by one * to get the correct positions. */ if (!cdata->result) { i--; pos--; } cdata->unit = i; cdata->num_records = count; cdata->rec = fmt_buffer[pos].record; cdata->blksize = fmt_buffer[pos].dl; cdata->key_length = fmt_buffer[pos].kl; } /* * Check the format of a range of tracks of a DASD. */ static int dasd_eckd_check_device_format(struct dasd_device *base, struct format_check_t *cdata, int enable_pav) { struct dasd_eckd_private *private = base->private; struct eckd_count *fmt_buffer; struct irb irb; int rpt_max, rpt_exp; int fmt_buffer_size; int trk_per_cyl; int trkcount; int tpm = 0; int rc; trk_per_cyl = private->rdc_data.trk_per_cyl; /* Get maximum and expected amount of records per track */ rpt_max = recs_per_track(&private->rdc_data, 0, 512) + 1; rpt_exp = recs_per_track(&private->rdc_data, 0, cdata->expect.blksize); trkcount = cdata->expect.stop_unit - cdata->expect.start_unit + 1; fmt_buffer_size = trkcount * rpt_max * sizeof(struct eckd_count); fmt_buffer = kzalloc(fmt_buffer_size, GFP_KERNEL | GFP_DMA); if (!fmt_buffer) return -ENOMEM; /* * A certain FICON feature subset is needed to operate in transport * mode. Additionally, the support for transport mode is implicitly * checked by comparing the buffer size with fcx_max_data. As long as * the buffer size is smaller we can operate in transport mode and * process multiple tracks. If not, only one track at once is being * processed using command mode. */ if ((private->features.feature[40] & 0x04) && fmt_buffer_size <= private->fcx_max_data) tpm = 1; rc = dasd_eckd_format_process_data(base, &cdata->expect, enable_pav, tpm, fmt_buffer, rpt_max, &irb); if (rc && rc != -EIO) goto out; if (rc == -EIO) { /* * If our first attempt with transport mode enabled comes back * with an incorrect length error, we're going to retry the * check with command mode. */ if (tpm && scsw_cstat(&irb.scsw) == 0x40) { tpm = 0; rc = dasd_eckd_format_process_data(base, &cdata->expect, enable_pav, tpm, fmt_buffer, rpt_max, &irb); if (rc) goto out; } else { goto out; } } dasd_eckd_format_evaluate_tracks(fmt_buffer, cdata, rpt_max, rpt_exp, trk_per_cyl, tpm); out: kfree(fmt_buffer); return rc; } static void dasd_eckd_handle_terminated_request(struct dasd_ccw_req *cqr) { if (cqr->retries < 0) { cqr->status = DASD_CQR_FAILED; return; } cqr->status = DASD_CQR_FILLED; if (cqr->block && (cqr->startdev != cqr->block->base)) { dasd_eckd_reset_ccw_to_base_io(cqr); cqr->startdev = cqr->block->base; cqr->lpm = dasd_path_get_opm(cqr->block->base); } }; static dasd_erp_fn_t dasd_eckd_erp_action(struct dasd_ccw_req * cqr) { struct dasd_device *device = (struct dasd_device *) cqr->startdev; struct ccw_device *cdev = device->cdev; switch (cdev->id.cu_type) { case 0x3990: case 0x2105: case 0x2107: case 0x1750: return dasd_3990_erp_action; case 0x9343: case 0x3880: default: return dasd_default_erp_action; } } static dasd_erp_fn_t dasd_eckd_erp_postaction(struct dasd_ccw_req * cqr) { return dasd_default_erp_postaction; } static void dasd_eckd_check_for_device_change(struct dasd_device *device, struct dasd_ccw_req *cqr, struct irb *irb) { char mask; char *sense = NULL; struct dasd_eckd_private *private = device->private; /* first of all check for state change pending interrupt */ mask = DEV_STAT_ATTENTION | DEV_STAT_DEV_END | DEV_STAT_UNIT_EXCEP; if ((scsw_dstat(&irb->scsw) & mask) == mask) { /* * for alias only, not in offline processing * and only if not suspended */ if (!device->block && private->lcu && device->state == DASD_STATE_ONLINE && !test_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SUSPENDED, &device->flags)) { /* schedule worker to reload device */ dasd_reload_device(device); } dasd_generic_handle_state_change(device); return; } sense = dasd_get_sense(irb); if (!sense) return; /* summary unit check */ if ((sense[27] & DASD_SENSE_BIT_0) && (sense[7] == 0x0D) && (scsw_dstat(&irb->scsw) & DEV_STAT_UNIT_CHECK)) { if (test_and_set_bit(DASD_FLAG_SUC, &device->flags)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "eckd suc: device already notified"); return; } sense = dasd_get_sense(irb); if (!sense) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "eckd suc: no reason code available"); clear_bit(DASD_FLAG_SUC, &device->flags); return; } private->suc_reason = sense[8]; DBF_DEV_EVENT(DBF_NOTICE, device, "%s %x", "eckd handle summary unit check: reason", private->suc_reason); dasd_get_device(device); if (!schedule_work(&device->suc_work)) dasd_put_device(device); return; } /* service information message SIM */ if (!cqr && !(sense[27] & DASD_SENSE_BIT_0) && ((sense[6] & DASD_SIM_SENSE) == DASD_SIM_SENSE)) { dasd_3990_erp_handle_sim(device, sense); return; } /* loss of device reservation is handled via base devices only * as alias devices may be used with several bases */ if (device->block && (sense[27] & DASD_SENSE_BIT_0) && (sense[7] == 0x3F) && (scsw_dstat(&irb->scsw) & DEV_STAT_UNIT_CHECK) && test_bit(DASD_FLAG_IS_RESERVED, &device->flags)) { if (device->features & DASD_FEATURE_FAILONSLCK) set_bit(DASD_FLAG_LOCK_STOLEN, &device->flags); clear_bit(DASD_FLAG_IS_RESERVED, &device->flags); dev_err(&device->cdev->dev, "The device reservation was lost\n"); } } static int dasd_eckd_ras_sanity_checks(struct dasd_device *device, unsigned int first_trk, unsigned int last_trk) { struct dasd_eckd_private *private = device->private; unsigned int trks_per_vol; int rc = 0; trks_per_vol = private->real_cyl * private->rdc_data.trk_per_cyl; if (first_trk >= trks_per_vol) { dev_warn(&device->cdev->dev, "Start track number %u used in the space release command is too big\n", first_trk); rc = -EINVAL; } else if (last_trk >= trks_per_vol) { dev_warn(&device->cdev->dev, "Stop track number %u used in the space release command is too big\n", last_trk); rc = -EINVAL; } else if (first_trk > last_trk) { dev_warn(&device->cdev->dev, "Start track %u used in the space release command exceeds the end track\n", first_trk); rc = -EINVAL; } return rc; } /* * Helper function to count the amount of involved extents within a given range * with extent alignment in mind. */ static int count_exts(unsigned int from, unsigned int to, int trks_per_ext) { int cur_pos = 0; int count = 0; int tmp; if (from == to) return 1; /* Count first partial extent */ if (from % trks_per_ext != 0) { tmp = from + trks_per_ext - (from % trks_per_ext) - 1; if (tmp > to) tmp = to; cur_pos = tmp - from + 1; count++; } /* Count full extents */ if (to - (from + cur_pos) + 1 >= trks_per_ext) { tmp = to - ((to - trks_per_ext + 1) % trks_per_ext); count += (tmp - (from + cur_pos) + 1) / trks_per_ext; cur_pos = tmp; } /* Count last partial extent */ if (cur_pos < to) count++; return count; } static int dasd_in_copy_relation(struct dasd_device *device) { struct dasd_pprc_data_sc4 *temp; int rc; if (!dasd_eckd_pprc_enabled(device)) return 0; temp = kzalloc(sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; rc = dasd_eckd_query_pprc_status(device, temp); if (!rc) rc = temp->dev_info[0].state; kfree(temp); return rc; } /* * Release allocated space for a given range or an entire volume. */ static struct dasd_ccw_req * dasd_eckd_dso_ras(struct dasd_device *device, struct dasd_block *block, struct request *req, unsigned int first_trk, unsigned int last_trk, int by_extent) { struct dasd_eckd_private *private = device->private; struct dasd_dso_ras_ext_range *ras_range; struct dasd_rssd_features *features; struct dasd_dso_ras_data *ras_data; u16 heads, beg_head, end_head; int cur_to_trk, cur_from_trk; struct dasd_ccw_req *cqr; u32 beg_cyl, end_cyl; int copy_relation; struct ccw1 *ccw; int trks_per_ext; size_t ras_size; size_t size; int nr_exts; void *rq; int i; if (dasd_eckd_ras_sanity_checks(device, first_trk, last_trk)) return ERR_PTR(-EINVAL); copy_relation = dasd_in_copy_relation(device); if (copy_relation < 0) return ERR_PTR(copy_relation); rq = req ? blk_mq_rq_to_pdu(req) : NULL; features = &private->features; trks_per_ext = dasd_eckd_ext_size(device) * private->rdc_data.trk_per_cyl; nr_exts = 0; if (by_extent) nr_exts = count_exts(first_trk, last_trk, trks_per_ext); ras_size = sizeof(*ras_data); size = ras_size + (nr_exts * sizeof(*ras_range)); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, size, device, rq); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate RAS request"); return cqr; } ras_data = cqr->data; memset(ras_data, 0, size); ras_data->order = DSO_ORDER_RAS; ras_data->flags.vol_type = 0; /* CKD volume */ /* Release specified extents or entire volume */ ras_data->op_flags.by_extent = by_extent; /* * This bit guarantees initialisation of tracks within an extent that is * not fully specified, but is only supported with a certain feature * subset and for devices not in a copy relation. */ if (features->feature[56] & 0x01 && !copy_relation) ras_data->op_flags.guarantee_init = 1; ras_data->lss = private->conf.ned->ID; ras_data->dev_addr = private->conf.ned->unit_addr; ras_data->nr_exts = nr_exts; if (by_extent) { heads = private->rdc_data.trk_per_cyl; cur_from_trk = first_trk; cur_to_trk = first_trk + trks_per_ext - (first_trk % trks_per_ext) - 1; if (cur_to_trk > last_trk) cur_to_trk = last_trk; ras_range = (struct dasd_dso_ras_ext_range *)(cqr->data + ras_size); for (i = 0; i < nr_exts; i++) { beg_cyl = cur_from_trk / heads; beg_head = cur_from_trk % heads; end_cyl = cur_to_trk / heads; end_head = cur_to_trk % heads; set_ch_t(&ras_range->beg_ext, beg_cyl, beg_head); set_ch_t(&ras_range->end_ext, end_cyl, end_head); cur_from_trk = cur_to_trk + 1; cur_to_trk = cur_from_trk + trks_per_ext - 1; if (cur_to_trk > last_trk) cur_to_trk = last_trk; ras_range++; } } ccw = cqr->cpaddr; ccw->cda = virt_to_dma32(cqr->data); ccw->cmd_code = DASD_ECKD_CCW_DSO; ccw->count = size; cqr->startdev = device; cqr->memdev = device; cqr->block = block; cqr->retries = 256; cqr->expires = device->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static int dasd_eckd_release_space_full(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; cqr = dasd_eckd_dso_ras(device, NULL, NULL, 0, 0, 0); if (IS_ERR(cqr)) return PTR_ERR(cqr); rc = dasd_sleep_on_interruptible(cqr); dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_release_space_trks(struct dasd_device *device, unsigned int from, unsigned int to) { struct dasd_eckd_private *private = device->private; struct dasd_block *block = device->block; struct dasd_ccw_req *cqr, *n; struct list_head ras_queue; unsigned int device_exts; int trks_per_ext; int stop, step; int cur_pos; int rc = 0; int retry; INIT_LIST_HEAD(&ras_queue); device_exts = private->real_cyl / dasd_eckd_ext_size(device); trks_per_ext = dasd_eckd_ext_size(device) * private->rdc_data.trk_per_cyl; /* Make sure device limits are not exceeded */ step = trks_per_ext * min(device_exts, DASD_ECKD_RAS_EXTS_MAX); cur_pos = from; do { retry = 0; while (cur_pos < to) { stop = cur_pos + step - ((cur_pos + step) % trks_per_ext) - 1; if (stop > to) stop = to; cqr = dasd_eckd_dso_ras(device, NULL, NULL, cur_pos, stop, 1); if (IS_ERR(cqr)) { rc = PTR_ERR(cqr); if (rc == -ENOMEM) { if (list_empty(&ras_queue)) goto out; retry = 1; break; } goto err_out; } spin_lock_irq(&block->queue_lock); list_add_tail(&cqr->blocklist, &ras_queue); spin_unlock_irq(&block->queue_lock); cur_pos = stop + 1; } rc = dasd_sleep_on_queue_interruptible(&ras_queue); err_out: list_for_each_entry_safe(cqr, n, &ras_queue, blocklist) { device = cqr->startdev; private = device->private; spin_lock_irq(&block->queue_lock); list_del_init(&cqr->blocklist); spin_unlock_irq(&block->queue_lock); dasd_sfree_request(cqr, device); private->count--; } } while (retry); out: return rc; } static int dasd_eckd_release_space(struct dasd_device *device, struct format_data_t *rdata) { if (rdata->intensity & DASD_FMT_INT_ESE_FULL) return dasd_eckd_release_space_full(device); else if (rdata->intensity == 0) return dasd_eckd_release_space_trks(device, rdata->start_unit, rdata->stop_unit); else return -EINVAL; } static struct dasd_ccw_req *dasd_eckd_build_cp_cmd_single( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { struct dasd_eckd_private *private; dma64_t *idaws; struct LO_eckd_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int off; int count, cidaw, cplength, datasize; sector_t recid; unsigned char cmd, rcmd; int use_prefix; struct dasd_device *basedev; basedev = block->base; private = basedev->private; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_MT; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_MT; else return ERR_PTR(-EINVAL); /* Check struct bio and count the number of blocks for the request. */ count = 0; cidaw = 0; rq_for_each_segment(bv, req, iter) { if (bv.bv_len & (blksize - 1)) /* Eckd can only do full blocks. */ return ERR_PTR(-EINVAL); count += bv.bv_len >> (block->s2b_shift + 9); if (idal_is_needed (page_address(bv.bv_page), bv.bv_len)) cidaw += bv.bv_len >> (block->s2b_shift + 9); } /* Paranoia. */ if (count != last_rec - first_rec + 1) return ERR_PTR(-EINVAL); /* use the prefix command if available */ use_prefix = private->features.feature[8] & 0x01; if (use_prefix) { /* 1x prefix + number of blocks */ cplength = 2 + count; /* 1x prefix + cidaws*sizeof(long) */ datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + cidaw * sizeof(unsigned long); } else { /* 1x define extent + 1x locate record + number of blocks */ cplength = 2 + count; /* 1x define extent + 1x locate record + cidaws*sizeof(long) */ datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + cidaw * sizeof(unsigned long); } /* Find out the number of additional locate record ccws for cdl. */ if (private->uses_cdl && first_rec < 2*blk_per_trk) { if (last_rec >= 2*blk_per_trk) count = 2*blk_per_trk - first_rec; cplength += count; datasize += count*sizeof(struct LO_eckd_data); } /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* First ccw is define extent or prefix. */ if (use_prefix) { if (prefix(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, startdev) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } idaws = (dma64_t *)(cqr->data + sizeof(struct PFX_eckd_data)); } else { if (define_extent(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, 0) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } idaws = (dma64_t *)(cqr->data + sizeof(struct DE_eckd_data)); } /* Build locate_record+read/write/ccws. */ LO_data = (struct LO_eckd_data *) (idaws + cidaw); recid = first_rec; if (private->uses_cdl == 0 || recid > 2*blk_per_trk) { /* Only standard blocks so there is just one locate record. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, first_trk, first_offs + 1, last_rec - recid + 1, cmd, basedev, blksize); } rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); if (dasd_page_cache) { char *copy = kmem_cache_alloc(dasd_page_cache, GFP_DMA | __GFP_NOWARN); if (copy && rq_data_dir(req) == WRITE) memcpy(copy + bv.bv_offset, dst, bv.bv_len); if (copy) dst = copy + bv.bv_offset; } for (off = 0; off < bv.bv_len; off += blksize) { sector_t trkid = recid; unsigned int recoffs = sector_div(trkid, blk_per_trk); rcmd = cmd; count = blksize; /* Locate record for cdl special block ? */ if (private->uses_cdl && recid < 2*blk_per_trk) { if (dasd_eckd_cdl_special(blk_per_trk, recid)){ rcmd |= 0x8; count = dasd_eckd_cdl_reclen(recid); if (count < blksize && rq_data_dir(req) == READ) memset(dst + count, 0xe5, blksize - count); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, trkid, recoffs + 1, 1, rcmd, basedev, count); } /* Locate record for standard blocks ? */ if (private->uses_cdl && recid == 2*blk_per_trk) { ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, trkid, recoffs + 1, last_rec - recid + 1, cmd, basedev, count); } /* Read/write ccw. */ ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = rcmd; ccw->count = count; if (idal_is_needed(dst, blksize)) { ccw->cda = virt_to_dma32(idaws); ccw->flags = CCW_FLAG_IDA; idaws = idal_create_words(idaws, dst, blksize); } else { ccw->cda = virt_to_dma32(dst); ccw->flags = 0; } ccw++; dst += blksize; recid++; } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) { set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); } return cqr; } static struct dasd_ccw_req *dasd_eckd_build_cp_cmd_track( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { dma64_t *idaws; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *idaw_dst; unsigned int cidaw, cplength, datasize; unsigned int tlf; sector_t recid; unsigned char cmd; struct dasd_device *basedev; unsigned int trkcount, count, count_to_trk_end; unsigned int idaw_len, seg_len, part_len, len_to_track_end; unsigned char new_track, end_idaw; sector_t trkid; unsigned int recoffs; basedev = block->base; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_TRACK_DATA; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_TRACK_DATA; else return ERR_PTR(-EINVAL); /* Track based I/O needs IDAWs for each page, and not just for * 64 bit addresses. We need additional idals for pages * that get filled from two tracks, so we use the number * of records as upper limit. */ cidaw = last_rec - first_rec + 1; trkcount = last_trk - first_trk + 1; /* 1x prefix + one read/write ccw per track */ cplength = 1 + trkcount; datasize = sizeof(struct PFX_eckd_data) + cidaw * sizeof(unsigned long); /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* transfer length factor: how many bytes to read from the last track */ if (first_trk == last_trk) tlf = last_offs - first_offs + 1; else tlf = last_offs + 1; tlf *= blksize; if (prefix_LRE(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, startdev, 1 /* format */, first_offs + 1, trkcount, blksize, tlf) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } /* * The translation of request into ccw programs must meet the * following conditions: * - all idaws but the first and the last must address full pages * (or 2K blocks on 31-bit) * - the scope of a ccw and it's idal ends with the track boundaries */ idaws = (dma64_t *)(cqr->data + sizeof(struct PFX_eckd_data)); recid = first_rec; new_track = 1; end_idaw = 0; len_to_track_end = 0; idaw_dst = NULL; idaw_len = 0; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; while (seg_len) { if (new_track) { trkid = recid; recoffs = sector_div(trkid, blk_per_trk); count_to_trk_end = blk_per_trk - recoffs; count = min((last_rec - recid + 1), (sector_t)count_to_trk_end); len_to_track_end = count * blksize; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; ccw->count = len_to_track_end; ccw->cda = virt_to_dma32(idaws); ccw->flags = CCW_FLAG_IDA; ccw++; recid += count; new_track = 0; /* first idaw for a ccw may start anywhere */ if (!idaw_dst) idaw_dst = dst; } /* If we start a new idaw, we must make sure that it * starts on an IDA_BLOCK_SIZE boundary. * If we continue an idaw, we must make sure that the * current segment begins where the so far accumulated * idaw ends */ if (!idaw_dst) { if ((unsigned long)(dst) & (IDA_BLOCK_SIZE - 1)) { dasd_sfree_request(cqr, startdev); return ERR_PTR(-ERANGE); } else idaw_dst = dst; } if ((idaw_dst + idaw_len) != dst) { dasd_sfree_request(cqr, startdev); return ERR_PTR(-ERANGE); } part_len = min(seg_len, len_to_track_end); seg_len -= part_len; dst += part_len; idaw_len += part_len; len_to_track_end -= part_len; /* collected memory area ends on an IDA_BLOCK border, * -> create an idaw * idal_create_words will handle cases where idaw_len * is larger then IDA_BLOCK_SIZE */ if (!((unsigned long)(idaw_dst + idaw_len) & (IDA_BLOCK_SIZE - 1))) end_idaw = 1; /* We also need to end the idaw at track end */ if (!len_to_track_end) { new_track = 1; end_idaw = 1; } if (end_idaw) { idaws = idal_create_words(idaws, idaw_dst, idaw_len); idaw_dst = NULL; idaw_len = 0; end_idaw = 0; } } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } static int prepare_itcw(struct itcw *itcw, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev, unsigned int rec_on_trk, int count, unsigned int blksize, unsigned int total_data_size, unsigned int tlf, unsigned int blk_per_trk) { struct PFX_eckd_data pfxdata; struct dasd_eckd_private *basepriv, *startpriv; struct DE_eckd_data *dedata; struct LRE_eckd_data *lredata; struct dcw *dcw; u32 begcyl, endcyl; u16 heads, beghead, endhead; u8 pfx_cmd; int rc = 0; int sector = 0; int dn, d; /* setup prefix data */ basepriv = basedev->private; startpriv = startdev->private; dedata = &pfxdata.define_extent; lredata = &pfxdata.locate_record; memset(&pfxdata, 0, sizeof(pfxdata)); pfxdata.format = 1; /* PFX with LRE */ pfxdata.base_address = basepriv->conf.ned->unit_addr; pfxdata.base_lss = basepriv->conf.ned->ID; pfxdata.validity.define_extent = 1; /* private uid is kept up to date, conf_data may be outdated */ if (startpriv->uid.type == UA_BASE_PAV_ALIAS) pfxdata.validity.verify_base = 1; if (startpriv->uid.type == UA_HYPER_PAV_ALIAS) { pfxdata.validity.verify_base = 1; pfxdata.validity.hyper_pav = 1; } switch (cmd) { case DASD_ECKD_CCW_READ_TRACK_DATA: dedata->mask.perm = 0x1; dedata->attributes.operation = basepriv->attrib.operation; dedata->blk_size = blksize; dedata->ga_extended |= 0x42; lredata->operation.orientation = 0x0; lredata->operation.operation = 0x0C; lredata->auxiliary.check_bytes = 0x01; pfx_cmd = DASD_ECKD_CCW_PFX_READ; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: dedata->mask.perm = 0x02; dedata->attributes.operation = basepriv->attrib.operation; dedata->blk_size = blksize; rc = set_timestamp(NULL, dedata, basedev); dedata->ga_extended |= 0x42; lredata->operation.orientation = 0x0; lredata->operation.operation = 0x3F; lredata->extended_operation = 0x23; lredata->auxiliary.check_bytes = 0x2; /* * If XRC is supported the System Time Stamp is set. The * validity of the time stamp must be reflected in the prefix * data as well. */ if (dedata->ga_extended & 0x08 && dedata->ga_extended & 0x02) pfxdata.validity.time_stamp = 1; /* 'Time Stamp Valid' */ pfx_cmd = DASD_ECKD_CCW_PFX; break; case DASD_ECKD_CCW_READ_COUNT_MT: dedata->mask.perm = 0x1; dedata->attributes.operation = DASD_BYPASS_CACHE; dedata->ga_extended |= 0x42; dedata->blk_size = blksize; lredata->operation.orientation = 0x2; lredata->operation.operation = 0x16; lredata->auxiliary.check_bytes = 0x01; pfx_cmd = DASD_ECKD_CCW_PFX_READ; break; default: DBF_DEV_EVENT(DBF_ERR, basedev, "prepare itcw, unknown opcode 0x%x", cmd); BUG(); break; } if (rc) return rc; dedata->attributes.mode = 0x3; /* ECKD */ heads = basepriv->rdc_data.trk_per_cyl; begcyl = trk / heads; beghead = trk % heads; endcyl = totrk / heads; endhead = totrk % heads; /* check for sequential prestage - enhance cylinder range */ if (dedata->attributes.operation == DASD_SEQ_PRESTAGE || dedata->attributes.operation == DASD_SEQ_ACCESS) { if (endcyl + basepriv->attrib.nr_cyl < basepriv->real_cyl) endcyl += basepriv->attrib.nr_cyl; else endcyl = (basepriv->real_cyl - 1); } set_ch_t(&dedata->beg_ext, begcyl, beghead); set_ch_t(&dedata->end_ext, endcyl, endhead); dedata->ep_format = 0x20; /* records per track is valid */ dedata->ep_rec_per_track = blk_per_trk; if (rec_on_trk) { switch (basepriv->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(blksize + 6, 232); d = 9 + ceil_quot(blksize + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(blksize + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } if (cmd == DASD_ECKD_CCW_READ_COUNT_MT) { lredata->auxiliary.length_valid = 0; lredata->auxiliary.length_scope = 0; lredata->sector = 0xff; } else { lredata->auxiliary.length_valid = 1; lredata->auxiliary.length_scope = 1; lredata->sector = sector; } lredata->auxiliary.imbedded_ccw_valid = 1; lredata->length = tlf; lredata->imbedded_ccw = cmd; lredata->count = count; set_ch_t(&lredata->seek_addr, begcyl, beghead); lredata->search_arg.cyl = lredata->seek_addr.cyl; lredata->search_arg.head = lredata->seek_addr.head; lredata->search_arg.record = rec_on_trk; dcw = itcw_add_dcw(itcw, pfx_cmd, 0, &pfxdata, sizeof(pfxdata), total_data_size); return PTR_ERR_OR_ZERO(dcw); } static struct dasd_ccw_req *dasd_eckd_build_cp_tpm_track( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { struct dasd_ccw_req *cqr; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int trkcount, ctidaw; unsigned char cmd; struct dasd_device *basedev; unsigned int tlf; struct itcw *itcw; struct tidaw *last_tidaw = NULL; int itcw_op; size_t itcw_size; u8 tidaw_flags; unsigned int seg_len, part_len, len_to_track_end; unsigned char new_track; sector_t recid, trkid; unsigned int offs; unsigned int count, count_to_trk_end; int ret; basedev = block->base; if (rq_data_dir(req) == READ) { cmd = DASD_ECKD_CCW_READ_TRACK_DATA; itcw_op = ITCW_OP_READ; } else if (rq_data_dir(req) == WRITE) { cmd = DASD_ECKD_CCW_WRITE_TRACK_DATA; itcw_op = ITCW_OP_WRITE; } else return ERR_PTR(-EINVAL); /* trackbased I/O needs address all memory via TIDAWs, * not just for 64 bit addresses. This allows us to map * each segment directly to one tidaw. * In the case of write requests, additional tidaws may * be needed when a segment crosses a track boundary. */ trkcount = last_trk - first_trk + 1; ctidaw = 0; rq_for_each_segment(bv, req, iter) { ++ctidaw; } if (rq_data_dir(req) == WRITE) ctidaw += (last_trk - first_trk); /* Allocate the ccw request. */ itcw_size = itcw_calc_size(0, ctidaw, 0); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 0, itcw_size, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; /* transfer length factor: how many bytes to read from the last track */ if (first_trk == last_trk) tlf = last_offs - first_offs + 1; else tlf = last_offs + 1; tlf *= blksize; itcw = itcw_init(cqr->data, itcw_size, itcw_op, 0, ctidaw, 0); if (IS_ERR(itcw)) { ret = -EINVAL; goto out_error; } cqr->cpaddr = itcw_get_tcw(itcw); if (prepare_itcw(itcw, first_trk, last_trk, cmd, basedev, startdev, first_offs + 1, trkcount, blksize, (last_rec - first_rec + 1) * blksize, tlf, blk_per_trk) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ ret = -EAGAIN; goto out_error; } len_to_track_end = 0; /* * A tidaw can address 4k of memory, but must not cross page boundaries * We can let the block layer handle this by setting seg_boundary_mask * to page boundaries and max_segment_size to page size when setting up * the request queue. * For write requests, a TIDAW must not cross track boundaries, because * we have to set the CBC flag on the last tidaw for each track. */ if (rq_data_dir(req) == WRITE) { new_track = 1; recid = first_rec; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; while (seg_len) { if (new_track) { trkid = recid; offs = sector_div(trkid, blk_per_trk); count_to_trk_end = blk_per_trk - offs; count = min((last_rec - recid + 1), (sector_t)count_to_trk_end); len_to_track_end = count * blksize; recid += count; new_track = 0; } part_len = min(seg_len, len_to_track_end); seg_len -= part_len; len_to_track_end -= part_len; /* We need to end the tidaw at track end */ if (!len_to_track_end) { new_track = 1; tidaw_flags = TIDAW_FLAGS_INSERT_CBC; } else tidaw_flags = 0; last_tidaw = itcw_add_tidaw(itcw, tidaw_flags, dst, part_len); if (IS_ERR(last_tidaw)) { ret = -EINVAL; goto out_error; } dst += part_len; } } } else { rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); last_tidaw = itcw_add_tidaw(itcw, 0x00, dst, bv.bv_len); if (IS_ERR(last_tidaw)) { ret = -EINVAL; goto out_error; } } } last_tidaw->flags |= TIDAW_FLAGS_LAST; last_tidaw->flags &= ~TIDAW_FLAGS_INSERT_CBC; itcw_finalize(itcw); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->cpmode = 1; cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) { set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IT, &cqr->flags); } return cqr; out_error: dasd_sfree_request(cqr, startdev); return ERR_PTR(ret); } static struct dasd_ccw_req *dasd_eckd_build_cp(struct dasd_device *startdev, struct dasd_block *block, struct request *req) { int cmdrtd, cmdwtd; int use_prefix; int fcx_multitrack; struct dasd_eckd_private *private; struct dasd_device *basedev; sector_t first_rec, last_rec; sector_t first_trk, last_trk; unsigned int first_offs, last_offs; unsigned int blk_per_trk, blksize; int cdlspecial; unsigned int data_size; struct dasd_ccw_req *cqr; basedev = block->base; private = basedev->private; /* Calculate number of blocks/records per track. */ blksize = block->bp_block; blk_per_trk = recs_per_track(&private->rdc_data, 0, blksize); if (blk_per_trk == 0) return ERR_PTR(-EINVAL); /* Calculate record id of first and last block. */ first_rec = first_trk = blk_rq_pos(req) >> block->s2b_shift; first_offs = sector_div(first_trk, blk_per_trk); last_rec = last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; last_offs = sector_div(last_trk, blk_per_trk); cdlspecial = (private->uses_cdl && first_rec < 2*blk_per_trk); fcx_multitrack = private->features.feature[40] & 0x20; data_size = blk_rq_bytes(req); if (data_size % blksize) return ERR_PTR(-EINVAL); /* tpm write request add CBC data on each track boundary */ if (rq_data_dir(req) == WRITE) data_size += (last_trk - first_trk) * 4; /* is read track data and write track data in command mode supported? */ cmdrtd = private->features.feature[9] & 0x20; cmdwtd = private->features.feature[12] & 0x40; use_prefix = private->features.feature[8] & 0x01; cqr = NULL; if (cdlspecial || dasd_page_cache) { /* do nothing, just fall through to the cmd mode single case */ } else if ((data_size <= private->fcx_max_data) && (fcx_multitrack || (first_trk == last_trk))) { cqr = dasd_eckd_build_cp_tpm_track(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); if (IS_ERR(cqr) && (PTR_ERR(cqr) != -EAGAIN) && (PTR_ERR(cqr) != -ENOMEM)) cqr = NULL; } else if (use_prefix && (((rq_data_dir(req) == READ) && cmdrtd) || ((rq_data_dir(req) == WRITE) && cmdwtd))) { cqr = dasd_eckd_build_cp_cmd_track(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); if (IS_ERR(cqr) && (PTR_ERR(cqr) != -EAGAIN) && (PTR_ERR(cqr) != -ENOMEM)) cqr = NULL; } if (!cqr) cqr = dasd_eckd_build_cp_cmd_single(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); return cqr; } static struct dasd_ccw_req *dasd_eckd_build_cp_raw(struct dasd_device *startdev, struct dasd_block *block, struct request *req) { sector_t start_padding_sectors, end_sector_offset, end_padding_sectors; unsigned int seg_len, len_to_track_end; unsigned int cidaw, cplength, datasize; sector_t first_trk, last_trk, sectors; struct dasd_eckd_private *base_priv; struct dasd_device *basedev; struct req_iterator iter; struct dasd_ccw_req *cqr; unsigned int trkcount; unsigned int size; unsigned char cmd; struct bio_vec bv; struct ccw1 *ccw; dma64_t *idaws; int use_prefix; void *data; char *dst; /* * raw track access needs to be mutiple of 64k and on 64k boundary * For read requests we can fix an incorrect alignment by padding * the request with dummy pages. */ start_padding_sectors = blk_rq_pos(req) % DASD_RAW_SECTORS_PER_TRACK; end_sector_offset = (blk_rq_pos(req) + blk_rq_sectors(req)) % DASD_RAW_SECTORS_PER_TRACK; end_padding_sectors = (DASD_RAW_SECTORS_PER_TRACK - end_sector_offset) % DASD_RAW_SECTORS_PER_TRACK; basedev = block->base; if ((start_padding_sectors || end_padding_sectors) && (rq_data_dir(req) == WRITE)) { DBF_DEV_EVENT(DBF_ERR, basedev, "raw write not track aligned (%llu,%llu) req %p", start_padding_sectors, end_padding_sectors, req); return ERR_PTR(-EINVAL); } first_trk = blk_rq_pos(req) / DASD_RAW_SECTORS_PER_TRACK; last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) / DASD_RAW_SECTORS_PER_TRACK; trkcount = last_trk - first_trk + 1; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_TRACK; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_FULL_TRACK; else return ERR_PTR(-EINVAL); /* * Raw track based I/O needs IDAWs for each page, * and not just for 64 bit addresses. */ cidaw = trkcount * DASD_RAW_BLOCK_PER_TRACK; /* * struct PFX_eckd_data and struct LRE_eckd_data can have up to 2 bytes * of extended parameter. This is needed for write full track. */ base_priv = basedev->private; use_prefix = base_priv->features.feature[8] & 0x01; if (use_prefix) { cplength = 1 + trkcount; size = sizeof(struct PFX_eckd_data) + 2; } else { cplength = 2 + trkcount; size = sizeof(struct DE_eckd_data) + sizeof(struct LRE_eckd_data) + 2; } size = ALIGN(size, 8); datasize = size + cidaw * sizeof(unsigned long); /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; data = cqr->data; if (use_prefix) { prefix_LRE(ccw++, data, first_trk, last_trk, cmd, basedev, startdev, 1, 0, trkcount, 0, 0); } else { define_extent(ccw++, data, first_trk, last_trk, cmd, basedev, 0); ccw[-1].flags |= CCW_FLAG_CC; data += sizeof(struct DE_eckd_data); locate_record_ext(ccw++, data, first_trk, 0, trkcount, cmd, basedev, 0, 0); } idaws = (dma64_t *)(cqr->data + size); len_to_track_end = 0; if (start_padding_sectors) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; /* maximum 3390 track size */ ccw->count = 57326; /* 64k map to one track */ len_to_track_end = 65536 - start_padding_sectors * 512; ccw->cda = virt_to_dma32(idaws); ccw->flags |= CCW_FLAG_IDA; ccw->flags |= CCW_FLAG_SLI; ccw++; for (sectors = 0; sectors < start_padding_sectors; sectors += 8) idaws = idal_create_words(idaws, rawpadpage, PAGE_SIZE); } rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; if (cmd == DASD_ECKD_CCW_READ_TRACK) memset(dst, 0, seg_len); if (!len_to_track_end) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; /* maximum 3390 track size */ ccw->count = 57326; /* 64k map to one track */ len_to_track_end = 65536; ccw->cda = virt_to_dma32(idaws); ccw->flags |= CCW_FLAG_IDA; ccw->flags |= CCW_FLAG_SLI; ccw++; } len_to_track_end -= seg_len; idaws = idal_create_words(idaws, dst, seg_len); } for (sectors = 0; sectors < end_padding_sectors; sectors += 8) idaws = idal_create_words(idaws, rawpadpage, PAGE_SIZE); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static int dasd_eckd_free_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_eckd_private *private; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *cda; unsigned int blksize, blk_per_trk, off; sector_t recid; int status; if (!dasd_page_cache) goto out; private = cqr->block->base->private; blksize = cqr->block->bp_block; blk_per_trk = recs_per_track(&private->rdc_data, 0, blksize); recid = blk_rq_pos(req) >> cqr->block->s2b_shift; ccw = cqr->cpaddr; /* Skip over define extent & locate record. */ ccw++; if (private->uses_cdl == 0 || recid > 2*blk_per_trk) ccw++; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { /* Skip locate record. */ if (private->uses_cdl && recid <= 2*blk_per_trk) ccw++; if (dst) { if (ccw->flags & CCW_FLAG_IDA) cda = dma64_to_virt(*((dma64_t *)dma32_to_virt(ccw->cda))); else cda = dma32_to_virt(ccw->cda); if (dst != cda) { if (rq_data_dir(req) == READ) memcpy(dst, cda, bv.bv_len); kmem_cache_free(dasd_page_cache, (void *)((addr_t)cda & PAGE_MASK)); } dst = NULL; } ccw++; recid++; } } out: status = cqr->status == DASD_CQR_DONE; dasd_sfree_request(cqr, cqr->memdev); return status; } /* * Modify ccw/tcw in cqr so it can be started on a base device. * * Note that this is not enough to restart the cqr! * Either reset cqr->startdev as well (summary unit check handling) * or restart via separate cqr (as in ERP handling). */ void dasd_eckd_reset_ccw_to_base_io(struct dasd_ccw_req *cqr) { struct ccw1 *ccw; struct PFX_eckd_data *pfxdata; struct tcw *tcw; struct tccb *tccb; struct dcw *dcw; if (cqr->cpmode == 1) { tcw = cqr->cpaddr; tccb = tcw_get_tccb(tcw); dcw = (struct dcw *)&tccb->tca[0]; pfxdata = (struct PFX_eckd_data *)&dcw->cd[0]; pfxdata->validity.verify_base = 0; pfxdata->validity.hyper_pav = 0; } else { ccw = cqr->cpaddr; pfxdata = cqr->data; if (ccw->cmd_code == DASD_ECKD_CCW_PFX) { pfxdata->validity.verify_base = 0; pfxdata->validity.hyper_pav = 0; } } } #define DASD_ECKD_CHANQ_MAX_SIZE 4 static struct dasd_ccw_req *dasd_eckd_build_alias_cp(struct dasd_device *base, struct dasd_block *block, struct request *req) { struct dasd_eckd_private *private; struct dasd_device *startdev; unsigned long flags; struct dasd_ccw_req *cqr; startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; private = startdev->private; if (private->count >= DASD_ECKD_CHANQ_MAX_SIZE) return ERR_PTR(-EBUSY); spin_lock_irqsave(get_ccwdev_lock(startdev->cdev), flags); private->count++; if ((base->features & DASD_FEATURE_USERAW)) cqr = dasd_eckd_build_cp_raw(startdev, block, req); else cqr = dasd_eckd_build_cp(startdev, block, req); if (IS_ERR(cqr)) private->count--; spin_unlock_irqrestore(get_ccwdev_lock(startdev->cdev), flags); return cqr; } static int dasd_eckd_free_alias_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_eckd_private *private; unsigned long flags; spin_lock_irqsave(get_ccwdev_lock(cqr->memdev->cdev), flags); private = cqr->memdev->private; private->count--; spin_unlock_irqrestore(get_ccwdev_lock(cqr->memdev->cdev), flags); return dasd_eckd_free_cp(cqr, req); } static int dasd_eckd_fill_info(struct dasd_device * device, struct dasd_information2_t * info) { struct dasd_eckd_private *private = device->private; info->label_block = 2; info->FBA_layout = private->uses_cdl ? 0 : 1; info->format = private->uses_cdl ? DASD_FORMAT_CDL : DASD_FORMAT_LDL; info->characteristics_size = sizeof(private->rdc_data); memcpy(info->characteristics, &private->rdc_data, sizeof(private->rdc_data)); info->confdata_size = min_t(unsigned long, private->conf.len, sizeof(info->configuration_data)); memcpy(info->configuration_data, private->conf.data, info->confdata_size); return 0; } /* * SECTION: ioctl functions for eckd devices. */ /* * Release device ioctl. * Buils a channel programm to releases a prior reserved * (see dasd_eckd_reserve) device. */ static int dasd_eckd_release(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RELEASE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = virt_to_dma32(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) clear_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Reserve device ioctl. * Options are set to 'synchronous wait for interrupt' and * 'timeout the request'. This leads to a terminate IO if * the interrupt is outstanding for a certain time. */ static int dasd_eckd_reserve(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RESERVE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = virt_to_dma32(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) set_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Steal lock ioctl - unconditional reserve device. * Buils a channel programm to break a device's reservation. * (unconditional reserve) */ static int dasd_eckd_steal_lock(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SLCK; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = virt_to_dma32(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) set_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * SNID - Sense Path Group ID * This ioctl may be used in situations where I/O is stalled due to * a reserve, so if the normal dasd_smalloc_request fails, we use the * preallocated dasd_reserve_req. */ static int dasd_eckd_snid(struct dasd_device *device, void __user *argp) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; struct dasd_snid_ioctl_data usrparm; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&usrparm, argp, sizeof(usrparm))) return -EFAULT; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, sizeof(struct dasd_snid_data), device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SNID; ccw->flags |= CCW_FLAG_SLI; ccw->count = 12; ccw->cda = virt_to_dma32(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); cqr->retries = 5; cqr->expires = 10 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->lpm = usrparm.path_mask; rc = dasd_sleep_on_immediatly(cqr); /* verify that I/O processing didn't modify the path mask */ if (!rc && usrparm.path_mask && (cqr->lpm != usrparm.path_mask)) rc = -EIO; if (!rc) { usrparm.data = *((struct dasd_snid_data *)cqr->data); if (copy_to_user(argp, &usrparm, sizeof(usrparm))) rc = -EFAULT; } if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Read performance statistics */ static int dasd_eckd_performance(struct dasd_device *device, void __user *argp) { struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_perf_stats_t *stats; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_perf_stats_t)), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate initialization request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->retries = 0; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x01; /* Performance Statistics */ prssdp->varies[1] = 0x01; /* Perf Statistics for the Subsystem */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = virt_to_dma32(prssdp); /* Read Subsystem Data - Performance Statistics */ stats = (struct dasd_rssd_perf_stats_t *) (prssdp + 1); memset(stats, 0, sizeof(struct dasd_rssd_perf_stats_t)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_perf_stats_t); ccw->cda = virt_to_dma32(stats); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; stats = (struct dasd_rssd_perf_stats_t *) (prssdp + 1); if (copy_to_user(argp, stats, sizeof(struct dasd_rssd_perf_stats_t))) rc = -EFAULT; } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Get attributes (cache operations) * Returnes the cache attributes used in Define Extend (DE). */ static int dasd_eckd_get_attrib(struct dasd_device *device, void __user *argp) { struct dasd_eckd_private *private = device->private; struct attrib_data_t attrib = private->attrib; int rc; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; rc = 0; if (copy_to_user(argp, (long *) &attrib, sizeof(struct attrib_data_t))) rc = -EFAULT; return rc; } /* * Set attributes (cache operations) * Stores the attributes for cache operation to be used in Define Extend (DE). */ static int dasd_eckd_set_attrib(struct dasd_device *device, void __user *argp) { struct dasd_eckd_private *private = device->private; struct attrib_data_t attrib; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; if (copy_from_user(&attrib, argp, sizeof(struct attrib_data_t))) return -EFAULT; private->attrib = attrib; dev_info(&device->cdev->dev, "The DASD cache mode was set to %x (%i cylinder prestage)\n", private->attrib.operation, private->attrib.nr_cyl); return 0; } /* * Issue syscall I/O to EMC Symmetrix array. * CCWs are PSF and RSSD */ static int dasd_symm_io(struct dasd_device *device, void __user *argp) { struct dasd_symmio_parms usrparm; char *psf_data, *rssd_result; struct dasd_ccw_req *cqr; struct ccw1 *ccw; char psf0, psf1; int rc; if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RAWIO)) return -EACCES; psf0 = psf1 = 0; /* Copy parms from caller */ rc = -EFAULT; if (copy_from_user(&usrparm, argp, sizeof(usrparm))) goto out; if (is_compat_task()) { /* Make sure pointers are sane even on 31 bit. */ rc = -EINVAL; if ((usrparm.psf_data >> 32) != 0) goto out; if ((usrparm.rssd_result >> 32) != 0) goto out; usrparm.psf_data &= 0x7fffffffULL; usrparm.rssd_result &= 0x7fffffffULL; } /* at least 2 bytes are accessed and should be allocated */ if (usrparm.psf_data_len < 2) { DBF_DEV_EVENT(DBF_WARNING, device, "Symmetrix ioctl invalid data length %d", usrparm.psf_data_len); rc = -EINVAL; goto out; } /* alloc I/O data area */ psf_data = kzalloc(usrparm.psf_data_len, GFP_KERNEL | GFP_DMA); rssd_result = kzalloc(usrparm.rssd_result_len, GFP_KERNEL | GFP_DMA); if (!psf_data || !rssd_result) { rc = -ENOMEM; goto out_free; } /* get syscall header from user space */ rc = -EFAULT; if (copy_from_user(psf_data, (void __user *)(unsigned long) usrparm.psf_data, usrparm.psf_data_len)) goto out_free; psf0 = psf_data[0]; psf1 = psf_data[1]; /* setup CCWs for PSF + RSSD */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2, 0, device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate initialization request"); rc = PTR_ERR(cqr); goto out_free; } cqr->startdev = device; cqr->memdev = device; cqr->retries = 3; cqr->expires = 10 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Build the ccws */ ccw = cqr->cpaddr; /* PSF ccw */ ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = usrparm.psf_data_len; ccw->flags |= CCW_FLAG_CC; ccw->cda = virt_to_dma32(psf_data); ccw++; /* RSSD ccw */ ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = usrparm.rssd_result_len; ccw->flags = CCW_FLAG_SLI ; ccw->cda = virt_to_dma32(rssd_result); rc = dasd_sleep_on(cqr); if (rc) goto out_sfree; rc = -EFAULT; if (copy_to_user((void __user *)(unsigned long) usrparm.rssd_result, rssd_result, usrparm.rssd_result_len)) goto out_sfree; rc = 0; out_sfree: dasd_sfree_request(cqr, cqr->memdev); out_free: kfree(rssd_result); kfree(psf_data); out: DBF_DEV_EVENT(DBF_WARNING, device, "Symmetrix ioctl (0x%02x 0x%02x): rc=%d", (int) psf0, (int) psf1, rc); return rc; } static int dasd_eckd_ioctl(struct dasd_block *block, unsigned int cmd, void __user *argp) { struct dasd_device *device = block->base; switch (cmd) { case BIODASDGATTR: return dasd_eckd_get_attrib(device, argp); case BIODASDSATTR: return dasd_eckd_set_attrib(device, argp); case BIODASDPSRD: return dasd_eckd_performance(device, argp); case BIODASDRLSE: return dasd_eckd_release(device); case BIODASDRSRV: return dasd_eckd_reserve(device); case BIODASDSLCK: return dasd_eckd_steal_lock(device); case BIODASDSNID: return dasd_eckd_snid(device, argp); case BIODASDSYMMIO: return dasd_symm_io(device, argp); default: return -ENOTTY; } } /* * Dump the range of CCWs into 'page' buffer * and return number of printed chars. */ static void dasd_eckd_dump_ccw_range(struct dasd_device *device, struct ccw1 *from, struct ccw1 *to, char *page) { int len, count; char *datap; len = 0; while (from <= to) { len += sprintf(page + len, "CCW %px: %08X %08X DAT:", from, ((int *) from)[0], ((int *) from)[1]); /* get pointer to data (consider IDALs) */ if (from->flags & CCW_FLAG_IDA) datap = dma64_to_virt(*((dma64_t *)dma32_to_virt(from->cda))); else datap = dma32_to_virt(from->cda); /* dump data (max 128 bytes) */ for (count = 0; count < from->count && count < 128; count++) { if (count % 32 == 0) len += sprintf(page + len, "\n"); if (count % 8 == 0) len += sprintf(page + len, " "); if (count % 4 == 0) len += sprintf(page + len, " "); len += sprintf(page + len, "%02x", datap[count]); } len += sprintf(page + len, "\n"); from++; } if (len > 0) dev_err(&device->cdev->dev, "%s", page); } static void dasd_eckd_dump_sense_dbf(struct dasd_device *device, struct irb *irb, char *reason) { u64 *sense; u64 *stat; sense = (u64 *) dasd_get_sense(irb); stat = (u64 *) &irb->scsw; if (sense) { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %016llx %08x : " "%016llx %016llx %016llx %016llx", reason, *stat, *((u32 *) (stat + 1)), sense[0], sense[1], sense[2], sense[3]); } else { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %016llx %08x : %s", reason, *stat, *((u32 *) (stat + 1)), "NO VALID SENSE"); } } /* * Print sense data and related channel program. * Parts are printed because printk buffer is only 1024 bytes. */ static void dasd_eckd_dump_sense_ccw(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { struct ccw1 *first, *last, *fail, *from, *to; struct device *dev; int len, sl, sct; char *page; dev = &device->cdev->dev; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "No memory to dump sense data\n"); return; } /* dump the sense data */ len = sprintf(page, "I/O status report:\n"); len += sprintf(page + len, "in req: %px CC:%02X FC:%02X AC:%02X SC:%02X DS:%02X CS:%02X RC:%d\n", req, scsw_cc(&irb->scsw), scsw_fctl(&irb->scsw), scsw_actl(&irb->scsw), scsw_stctl(&irb->scsw), scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw), req ? req->intrc : 0); len += sprintf(page + len, "Failing CCW: %px\n", dma32_to_virt(irb->scsw.cmd.cpa)); if (irb->esw.esw0.erw.cons) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, "Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", irb->ecw[8 * sl + sct]); } len += sprintf(page + len, "\n"); } if (irb->ecw[27] & DASD_SENSE_BIT_0) { /* 24 Byte Sense Data */ sprintf(page + len, "24 Byte: %x MSG %x, %s MSGb to SYSOP\n", irb->ecw[7] >> 4, irb->ecw[7] & 0x0f, irb->ecw[1] & 0x10 ? "" : "no"); } else { /* 32 Byte Sense Data */ sprintf(page + len, "32 Byte: Format: %x Exception class %x\n", irb->ecw[6] & 0x0f, irb->ecw[22] >> 4); } } else { sprintf(page + len, "SORRY - NO VALID SENSE AVAILABLE\n"); } dev_err(dev, "%s", page); if (req) { /* req == NULL for unsolicited interrupts */ /* dump the Channel Program (max 140 Bytes per line) */ /* Count CCW and print first CCWs (maximum 7) */ first = req->cpaddr; for (last = first; last->flags & (CCW_FLAG_CC | CCW_FLAG_DC); last++); to = min(first + 6, last); dev_err(dev, "Related CP in req: %px\n", req); dasd_eckd_dump_ccw_range(device, first, to, page); /* print failing CCW area (maximum 4) */ /* scsw->cda is either valid or zero */ from = ++to; fail = dma32_to_virt(irb->scsw.cmd.cpa); /* failing CCW */ if (from < fail - 2) { from = fail - 2; /* there is a gap - print header */ dev_err(dev, "......\n"); } to = min(fail + 1, last); dasd_eckd_dump_ccw_range(device, from, to, page + len); /* print last CCWs (maximum 2) */ len = 0; from = max(from, ++to); if (from < last - 1) { from = last - 1; /* there is a gap - print header */ dev_err(dev, "......\n"); } dasd_eckd_dump_ccw_range(device, from, last, page + len); } free_page((unsigned long) page); } /* * Print sense data from a tcw. */ static void dasd_eckd_dump_sense_tcw(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { char *page; int len, sl, sct, residual; struct tsb *tsb; u8 *sense, *rcq; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, " %s", "No memory to dump sense data"); return; } /* dump the sense data */ len = sprintf(page, "I/O status report:\n"); len += sprintf(page + len, "in req: %px CC:%02X FC:%02X AC:%02X SC:%02X DS:%02X " "CS:%02X fcxs:%02X schxs:%02X RC:%d\n", req, scsw_cc(&irb->scsw), scsw_fctl(&irb->scsw), scsw_actl(&irb->scsw), scsw_stctl(&irb->scsw), scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw), irb->scsw.tm.fcxs, (irb->scsw.tm.ifob << 7) | irb->scsw.tm.sesq, req ? req->intrc : 0); len += sprintf(page + len, "Failing TCW: %px\n", dma32_to_virt(irb->scsw.tm.tcw)); tsb = NULL; sense = NULL; if (irb->scsw.tm.tcw && (irb->scsw.tm.fcxs & 0x01)) tsb = tcw_get_tsb(dma32_to_virt(irb->scsw.tm.tcw)); if (tsb) { len += sprintf(page + len, "tsb->length %d\n", tsb->length); len += sprintf(page + len, "tsb->flags %x\n", tsb->flags); len += sprintf(page + len, "tsb->dcw_offset %d\n", tsb->dcw_offset); len += sprintf(page + len, "tsb->count %d\n", tsb->count); residual = tsb->count - 28; len += sprintf(page + len, "residual %d\n", residual); switch (tsb->flags & 0x07) { case 1: /* tsa_iostat */ len += sprintf(page + len, "tsb->tsa.iostat.dev_time %d\n", tsb->tsa.iostat.dev_time); len += sprintf(page + len, "tsb->tsa.iostat.def_time %d\n", tsb->tsa.iostat.def_time); len += sprintf(page + len, "tsb->tsa.iostat.queue_time %d\n", tsb->tsa.iostat.queue_time); len += sprintf(page + len, "tsb->tsa.iostat.dev_busy_time %d\n", tsb->tsa.iostat.dev_busy_time); len += sprintf(page + len, "tsb->tsa.iostat.dev_act_time %d\n", tsb->tsa.iostat.dev_act_time); sense = tsb->tsa.iostat.sense; break; case 2: /* ts_ddpc */ len += sprintf(page + len, "tsb->tsa.ddpc.rc %d\n", tsb->tsa.ddpc.rc); for (sl = 0; sl < 2; sl++) { len += sprintf(page + len, "tsb->tsa.ddpc.rcq %2d-%2d: ", (8 * sl), ((8 * sl) + 7)); rcq = tsb->tsa.ddpc.rcq; for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, "%02x", rcq[8 * sl + sct]); } len += sprintf(page + len, "\n"); } sense = tsb->tsa.ddpc.sense; break; case 3: /* tsa_intrg */ len += sprintf(page + len, "tsb->tsa.intrg.: not supported yet\n"); break; } if (sense) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, "Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", sense[8 * sl + sct]); } len += sprintf(page + len, "\n"); } if (sense[27] & DASD_SENSE_BIT_0) { /* 24 Byte Sense Data */ sprintf(page + len, "24 Byte: %x MSG %x, %s MSGb to SYSOP\n", sense[7] >> 4, sense[7] & 0x0f, sense[1] & 0x10 ? "" : "no"); } else { /* 32 Byte Sense Data */ sprintf(page + len, "32 Byte: Format: %x Exception class %x\n", sense[6] & 0x0f, sense[22] >> 4); } } else { sprintf(page + len, "SORRY - NO VALID SENSE AVAILABLE\n"); } } else { sprintf(page + len, "SORRY - NO TSB DATA AVAILABLE\n"); } dev_err(&device->cdev->dev, "%s", page); free_page((unsigned long) page); } static void dasd_eckd_dump_sense(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { u8 *sense = dasd_get_sense(irb); /* * In some cases certain errors might be expected and * log messages shouldn't be written then. * Check if the according suppress bit is set. */ if (sense && (sense[1] & SNS1_INV_TRACK_FORMAT) && !(sense[2] & SNS2_ENV_DATA_PRESENT) && test_bit(DASD_CQR_SUPPRESS_IT, &req->flags)) return; if (sense && sense[0] & SNS0_CMD_REJECT && test_bit(DASD_CQR_SUPPRESS_CR, &req->flags)) return; if (sense && sense[1] & SNS1_NO_REC_FOUND && test_bit(DASD_CQR_SUPPRESS_NRF, &req->flags)) return; if (scsw_cstat(&irb->scsw) == 0x40 && test_bit(DASD_CQR_SUPPRESS_IL, &req->flags)) return; if (scsw_is_tm(&irb->scsw)) dasd_eckd_dump_sense_tcw(device, req, irb); else dasd_eckd_dump_sense_ccw(device, req, irb); } static int dasd_eckd_reload_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; char print_uid[DASD_UID_STRLEN]; int rc, old_base; struct dasd_uid uid; unsigned long flags; /* * remove device from alias handling to prevent new requests * from being scheduled on the wrong alias device */ dasd_alias_remove_device(device); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); old_base = private->uid.base_unit_addr; spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); /* Read Configuration Data */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err; dasd_eckd_read_fc_security(device); rc = dasd_eckd_generate_uid(device); if (rc) goto out_err; /* * update unit address configuration and * add device to alias management */ dasd_alias_update_add_device(device); dasd_eckd_get_uid(device, &uid); if (old_base != uid.base_unit_addr) { dasd_eckd_get_uid_string(&private->conf, print_uid); dev_info(&device->cdev->dev, "An Alias device was reassigned to a new base device " "with UID: %s\n", print_uid); } return 0; out_err: return -1; } static int dasd_eckd_read_message_buffer(struct dasd_device *device, struct dasd_rssd_messages *messages, __u8 lpum) { struct dasd_rssd_messages *message_buf; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_messages)), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate read message buffer request"); return PTR_ERR(cqr); } cqr->lpm = lpum; retry: cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 10 * HZ; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); /* dasd_sleep_on_immediatly does not do complex error * recovery so clear erp flag and set retry counter to * do basic erp */ clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->retries = 256; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x03; /* Message Buffer */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(prssdp); /* Read Subsystem Data - message buffer */ message_buf = (struct dasd_rssd_messages *) (prssdp + 1); memset(message_buf, 0, sizeof(struct dasd_rssd_messages)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_messages); ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(message_buf); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; message_buf = (struct dasd_rssd_messages *) (prssdp + 1); memcpy(messages, message_buf, sizeof(struct dasd_rssd_messages)); } else if (cqr->lpm) { /* * on z/VM we might not be able to do I/O on the requested path * but instead we get the required information on any path * so retry with open path mask */ cqr->lpm = 0; goto retry; } else DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading messages failed with rc=%d\n" , rc); dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_query_host_access(struct dasd_device *device, struct dasd_psf_query_host_access *data) { struct dasd_eckd_private *private = device->private; struct dasd_psf_query_host_access *host_access; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; /* not available for HYPER PAV alias devices */ if (!device->block && private->lcu->pav == HYPER_PAV) return -EOPNOTSUPP; /* may not be supported by the storage server */ if (!(private->features.feature[14] & 0x80)) return -EOPNOTSUPP; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, sizeof(struct dasd_psf_prssd_data) + 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate read message buffer request"); return PTR_ERR(cqr); } host_access = kzalloc(sizeof(*host_access), GFP_KERNEL | GFP_DMA); if (!host_access) { dasd_sfree_request(cqr, device); DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate host_access buffer"); return -ENOMEM; } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_QHA; /* query host access */ /* LSS and Volume that will be queried */ prssdp->lss = private->conf.ned->ID; prssdp->volume = private->conf.ned->unit_addr; /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(prssdp); /* Read Subsystem Data - query host access */ ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_psf_query_host_access); ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(host_access); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* the command might not be supported, suppress error message */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { *data = *host_access; } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading host access data failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); kfree(host_access); return rc; } /* * return number of grouped devices */ static int dasd_eckd_host_access_count(struct dasd_device *device) { struct dasd_psf_query_host_access *access; struct dasd_ckd_path_group_entry *entry; struct dasd_ckd_host_information *info; int count = 0; int rc, i; access = kzalloc(sizeof(*access), GFP_NOIO); if (!access) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate access buffer"); return -ENOMEM; } rc = dasd_eckd_query_host_access(device, access); if (rc) { kfree(access); return rc; } info = (struct dasd_ckd_host_information *) access->host_access_information; for (i = 0; i < info->entry_count; i++) { entry = (struct dasd_ckd_path_group_entry *) (info->entry + i * info->entry_size); if (entry->status_flags & DASD_ECKD_PG_GROUPED) count++; } kfree(access); return count; } /* * write host access information to a sequential file */ static int dasd_hosts_print(struct dasd_device *device, struct seq_file *m) { struct dasd_psf_query_host_access *access; struct dasd_ckd_path_group_entry *entry; struct dasd_ckd_host_information *info; char sysplex[9] = ""; int rc, i; access = kzalloc(sizeof(*access), GFP_NOIO); if (!access) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate access buffer"); return -ENOMEM; } rc = dasd_eckd_query_host_access(device, access); if (rc) { kfree(access); return rc; } info = (struct dasd_ckd_host_information *) access->host_access_information; for (i = 0; i < info->entry_count; i++) { entry = (struct dasd_ckd_path_group_entry *) (info->entry + i * info->entry_size); /* PGID */ seq_printf(m, "pgid %*phN\n", 11, entry->pgid); /* FLAGS */ seq_printf(m, "status_flags %02x\n", entry->status_flags); /* SYSPLEX NAME */ memcpy(&sysplex, &entry->sysplex_name, sizeof(sysplex) - 1); EBCASC(sysplex, sizeof(sysplex)); seq_printf(m, "sysplex_name %8s\n", sysplex); /* SUPPORTED CYLINDER */ seq_printf(m, "supported_cylinder %d\n", entry->cylinder); /* TIMESTAMP */ seq_printf(m, "timestamp %lu\n", (unsigned long) entry->timestamp); } kfree(access); return 0; } static struct dasd_device *copy_relation_find_device(struct dasd_copy_relation *copy, char *busid) { int i; for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && strncmp(copy->entry[i].busid, busid, DASD_BUS_ID_SIZE) == 0) return copy->entry[i].device; } return NULL; } /* * set the new active/primary device */ static void copy_pair_set_active(struct dasd_copy_relation *copy, char *new_busid, char *old_busid) { int i; for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && strncmp(copy->entry[i].busid, new_busid, DASD_BUS_ID_SIZE) == 0) { copy->active = &copy->entry[i]; copy->entry[i].primary = true; } else if (copy->entry[i].configured && strncmp(copy->entry[i].busid, old_busid, DASD_BUS_ID_SIZE) == 0) { copy->entry[i].primary = false; } } } /* * The function will swap the role of a given copy pair. * During the swap operation the relation of the blockdevice is disconnected * from the old primary and connected to the new. * * IO is paused on the block queue before swap and may be resumed afterwards. */ static int dasd_eckd_copy_pair_swap(struct dasd_device *device, char *prim_busid, char *sec_busid) { struct dasd_device *primary, *secondary; struct dasd_copy_relation *copy; struct dasd_block *block; struct gendisk *gdp; copy = device->copy; if (!copy) return DASD_COPYPAIRSWAP_INVALID; primary = copy->active->device; if (!primary) return DASD_COPYPAIRSWAP_INVALID; /* double check if swap has correct primary */ if (strncmp(dev_name(&primary->cdev->dev), prim_busid, DASD_BUS_ID_SIZE) != 0) return DASD_COPYPAIRSWAP_PRIMARY; secondary = copy_relation_find_device(copy, sec_busid); if (!secondary) return DASD_COPYPAIRSWAP_SECONDARY; /* * usually the device should be quiesced for swap * for paranoia stop device and requeue requests again */ dasd_device_set_stop_bits(primary, DASD_STOPPED_PPRC); dasd_device_set_stop_bits(secondary, DASD_STOPPED_PPRC); dasd_generic_requeue_all_requests(primary); /* swap DASD internal device <> block assignment */ block = primary->block; primary->block = NULL; secondary->block = block; block->base = secondary; /* set new primary device in COPY relation */ copy_pair_set_active(copy, sec_busid, prim_busid); /* swap blocklayer device link */ gdp = block->gdp; dasd_add_link_to_gendisk(gdp, secondary); /* re-enable device */ dasd_device_remove_stop_bits(primary, DASD_STOPPED_PPRC); dasd_device_remove_stop_bits(secondary, DASD_STOPPED_PPRC); dasd_schedule_device_bh(secondary); return DASD_COPYPAIRSWAP_SUCCESS; } /* * Perform Subsystem Function - Peer-to-Peer Remote Copy Extended Query */ static int dasd_eckd_query_pprc_status(struct dasd_device *device, struct dasd_pprc_data_sc4 *data) { struct dasd_pprc_data_sc4 *pprc_data; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, sizeof(*prssdp) + sizeof(*pprc_data) + 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate query PPRC status request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *)cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_PPRCEQ; prssdp->varies[0] = PPRCEQ_SCOPE_4; pprc_data = (struct dasd_pprc_data_sc4 *)(prssdp + 1); ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(prssdp); /* Read Subsystem Data - query host access */ ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*pprc_data); ccw->flags |= CCW_FLAG_SLI; ccw->cda = virt_to_dma32(pprc_data); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { *data = *pprc_data; } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "PPRC Extended Query failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * ECKD NOP - no operation */ static int dasd_eckd_nop(struct dasd_device *device) { struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate NOP request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 1; cqr->expires = 10 * HZ; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_NOP; ccw->flags |= CCW_FLAG_SLI; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_interruptible(cqr); if (rc != 0) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "NOP failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_device_ping(struct dasd_device *device) { return dasd_eckd_nop(device); } /* * Perform Subsystem Function - CUIR response */ static int dasd_eckd_psf_cuir_response(struct dasd_device *device, int response, __u32 message_id, __u8 lpum) { struct dasd_psf_cuir_response *psf_cuir; int pos = pathmask_to_pos(lpum); struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ , sizeof(struct dasd_psf_cuir_response), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate PSF-CUIR request"); return PTR_ERR(cqr); } psf_cuir = (struct dasd_psf_cuir_response *)cqr->data; psf_cuir->order = PSF_ORDER_CUIR_RESPONSE; psf_cuir->cc = response; psf_cuir->chpid = device->path[pos].chpid; psf_cuir->message_id = message_id; psf_cuir->cssid = device->path[pos].cssid; psf_cuir->ssid = device->path[pos].ssid; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->cda = virt_to_dma32(psf_cuir); ccw->flags = CCW_FLAG_SLI; ccw->count = sizeof(struct dasd_psf_cuir_response); cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10*HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); rc = dasd_sleep_on(cqr); dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * return configuration data that is referenced by record selector * if a record selector is specified or per default return the * conf_data pointer for the path specified by lpum */ static struct dasd_conf_data *dasd_eckd_get_ref_conf(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_conf_data *conf_data; int path, pos; if (cuir->record_selector == 0) goto out; for (path = 0x80, pos = 0; path; path >>= 1, pos++) { conf_data = device->path[pos].conf_data; if (conf_data->gneq.record_selector == cuir->record_selector) return conf_data; } out: return device->path[pathmask_to_pos(lpum)].conf_data; } /* * This function determines the scope of a reconfiguration request by * analysing the path and device selection data provided in the CUIR request. * Returns a path mask containing CUIR affected paths for the give device. * * If the CUIR request does not contain the required information return the * path mask of the path the attention message for the CUIR request was reveived * on. */ static int dasd_eckd_cuir_scope(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_conf_data *ref_conf_data; unsigned long bitmask = 0, mask = 0; struct dasd_conf_data *conf_data; unsigned int pos, path; char *ref_gneq, *gneq; char *ref_ned, *ned; int tbcpm = 0; /* if CUIR request does not specify the scope use the path the attention message was presented on */ if (!cuir->ned_map || !(cuir->neq_map[0] | cuir->neq_map[1] | cuir->neq_map[2])) return lpum; /* get reference conf data */ ref_conf_data = dasd_eckd_get_ref_conf(device, lpum, cuir); /* reference ned is determined by ned_map field */ pos = 8 - ffs(cuir->ned_map); ref_ned = (char *)&ref_conf_data->neds[pos]; ref_gneq = (char *)&ref_conf_data->gneq; /* transfer 24 bit neq_map to mask */ mask = cuir->neq_map[2]; mask |= cuir->neq_map[1] << 8; mask |= cuir->neq_map[0] << 16; for (path = 0; path < 8; path++) { /* initialise data per path */ bitmask = mask; conf_data = device->path[path].conf_data; pos = 8 - ffs(cuir->ned_map); ned = (char *) &conf_data->neds[pos]; /* compare reference ned and per path ned */ if (memcmp(ref_ned, ned, sizeof(*ned)) != 0) continue; gneq = (char *)&conf_data->gneq; /* compare reference gneq and per_path gneq under 24 bit mask where mask bit 0 equals byte 7 of the gneq and mask bit 24 equals byte 31 */ while (bitmask) { pos = ffs(bitmask) - 1; if (memcmp(&ref_gneq[31 - pos], &gneq[31 - pos], 1) != 0) break; clear_bit(pos, &bitmask); } if (bitmask) continue; /* device and path match the reference values add path to CUIR scope */ tbcpm |= 0x80 >> path; } return tbcpm; } static void dasd_eckd_cuir_notify_user(struct dasd_device *device, unsigned long paths, int action) { int pos; while (paths) { /* get position of bit in mask */ pos = 8 - ffs(paths); /* get channel path descriptor from this position */ if (action == CUIR_QUIESCE) pr_warn("Service on the storage server caused path %x.%02x to go offline", device->path[pos].cssid, device->path[pos].chpid); else if (action == CUIR_RESUME) pr_info("Path %x.%02x is back online after service on the storage server", device->path[pos].cssid, device->path[pos].chpid); clear_bit(7 - pos, &paths); } } static int dasd_eckd_cuir_remove_path(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { unsigned long tbcpm; tbcpm = dasd_eckd_cuir_scope(device, lpum, cuir); /* nothing to do if path is not in use */ if (!(dasd_path_get_opm(device) & tbcpm)) return 0; if (!(dasd_path_get_opm(device) & ~tbcpm)) { /* no path would be left if the CUIR action is taken return error */ return -EINVAL; } /* remove device from operational path mask */ dasd_path_remove_opm(device, tbcpm); dasd_path_add_cuirpm(device, tbcpm); return tbcpm; } /* * walk through all devices and build a path mask to quiesce them * return an error if the last path to a device would be removed * * if only part of the devices are quiesced and an error * occurs no onlining necessary, the storage server will * notify the already set offline devices again */ static int dasd_eckd_cuir_quiesce(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long paths = 0; unsigned long flags; int tbcpm; /* active devices */ list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore(get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } /* inactive devices */ list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore(get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore( get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore( get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } } /* notify user about all paths affected by CUIR action */ dasd_eckd_cuir_notify_user(device, paths, CUIR_QUIESCE); return 0; out_err: return tbcpm; } static int dasd_eckd_cuir_resume(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long paths = 0; int tbcpm; /* * the path may have been added through a generic path event before * only trigger path verification if the path is not already in use */ list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } } /* notify user about all paths affected by CUIR action */ dasd_eckd_cuir_notify_user(device, paths, CUIR_RESUME); return 0; } static void dasd_eckd_handle_cuir(struct dasd_device *device, void *messages, __u8 lpum) { struct dasd_cuir_message *cuir = messages; int response; DBF_DEV_EVENT(DBF_WARNING, device, "CUIR request: %016llx %016llx %016llx %08x", ((u64 *)cuir)[0], ((u64 *)cuir)[1], ((u64 *)cuir)[2], ((u32 *)cuir)[3]); if (cuir->code == CUIR_QUIESCE) { /* quiesce */ if (dasd_eckd_cuir_quiesce(device, lpum, cuir)) response = PSF_CUIR_LAST_PATH; else response = PSF_CUIR_COMPLETED; } else if (cuir->code == CUIR_RESUME) { /* resume */ dasd_eckd_cuir_resume(device, lpum, cuir); response = PSF_CUIR_COMPLETED; } else response = PSF_CUIR_NOT_SUPPORTED; dasd_eckd_psf_cuir_response(device, response, cuir->message_id, lpum); DBF_DEV_EVENT(DBF_WARNING, device, "CUIR response: %d on message ID %08x", response, cuir->message_id); /* to make sure there is no attention left schedule work again */ device->discipline->check_attention(device, lpum); } static void dasd_eckd_oos_resume(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long flags; spin_lock_irqsave(&private->lcu->lock, flags); list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } } spin_unlock_irqrestore(&private->lcu->lock, flags); } static void dasd_eckd_handle_oos(struct dasd_device *device, void *messages, __u8 lpum) { struct dasd_oos_message *oos = messages; switch (oos->code) { case REPO_WARN: case POOL_WARN: dev_warn(&device->cdev->dev, "Extent pool usage has reached a critical value\n"); dasd_eckd_oos_resume(device); break; case REPO_EXHAUST: case POOL_EXHAUST: dev_warn(&device->cdev->dev, "Extent pool is exhausted\n"); break; case REPO_RELIEVE: case POOL_RELIEVE: dev_info(&device->cdev->dev, "Extent pool physical space constraint has been relieved\n"); break; } /* In any case, update related data */ dasd_eckd_read_ext_pool_info(device); /* to make sure there is no attention left schedule work again */ device->discipline->check_attention(device, lpum); } static void dasd_eckd_check_attention_work(struct work_struct *work) { struct check_attention_work_data *data; struct dasd_rssd_messages *messages; struct dasd_device *device; int rc; data = container_of(work, struct check_attention_work_data, worker); device = data->device; messages = kzalloc(sizeof(*messages), GFP_KERNEL); if (!messages) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate attention message buffer"); goto out; } rc = dasd_eckd_read_message_buffer(device, messages, data->lpum); if (rc) goto out; if (messages->length == ATTENTION_LENGTH_CUIR && messages->format == ATTENTION_FORMAT_CUIR) dasd_eckd_handle_cuir(device, messages, data->lpum); if (messages->length == ATTENTION_LENGTH_OOS && messages->format == ATTENTION_FORMAT_OOS) dasd_eckd_handle_oos(device, messages, data->lpum); out: dasd_put_device(device); kfree(messages); kfree(data); } static int dasd_eckd_check_attention(struct dasd_device *device, __u8 lpum) { struct check_attention_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC); if (!data) return -ENOMEM; INIT_WORK(&data->worker, dasd_eckd_check_attention_work); dasd_get_device(device); data->device = device; data->lpum = lpum; schedule_work(&data->worker); return 0; } static int dasd_eckd_disable_hpf_path(struct dasd_device *device, __u8 lpum) { if (~lpum & dasd_path_get_opm(device)) { dasd_path_add_nohpfpm(device, lpum); dasd_path_remove_opm(device, lpum); dev_err(&device->cdev->dev, "Channel path %02X lost HPF functionality and is disabled\n", lpum); return 1; } return 0; } static void dasd_eckd_disable_hpf_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; dev_err(&device->cdev->dev, "High Performance FICON disabled\n"); private->fcx_max_data = 0; } static int dasd_eckd_hpf_enabled(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->fcx_max_data ? 1 : 0; } static void dasd_eckd_handle_hpf_error(struct dasd_device *device, struct irb *irb) { struct dasd_eckd_private *private = device->private; if (!private->fcx_max_data) { /* sanity check for no HPF, the error makes no sense */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Trying to disable HPF for a non HPF device"); return; } if (irb->scsw.tm.sesq == SCSW_SESQ_DEV_NOFCX) { dasd_eckd_disable_hpf_device(device); } else if (irb->scsw.tm.sesq == SCSW_SESQ_PATH_NOFCX) { if (dasd_eckd_disable_hpf_path(device, irb->esw.esw1.lpum)) return; dasd_eckd_disable_hpf_device(device); dasd_path_set_tbvpm(device, dasd_path_get_hpfpm(device)); } /* * prevent that any new I/O ist started on the device and schedule a * requeue of existing requests */ dasd_device_set_stop_bits(device, DASD_STOPPED_NOT_ACC); dasd_schedule_requeue(device); } static unsigned int dasd_eckd_max_sectors(struct dasd_block *block) { if (block->base->features & DASD_FEATURE_USERAW) { /* * the max_blocks value for raw_track access is 256 * it is higher than the native ECKD value because we * only need one ccw per track * so the max_hw_sectors are * 2048 x 512B = 1024kB = 16 tracks */ return DASD_ECKD_MAX_BLOCKS_RAW << block->s2b_shift; } return DASD_ECKD_MAX_BLOCKS << block->s2b_shift; } static struct ccw_driver dasd_eckd_driver = { .driver = { .name = "dasd-eckd", .owner = THIS_MODULE, .dev_groups = dasd_dev_groups, }, .ids = dasd_eckd_ids, .probe = dasd_eckd_probe, .remove = dasd_generic_remove, .set_offline = dasd_generic_set_offline, .set_online = dasd_eckd_set_online, .notify = dasd_generic_notify, .path_event = dasd_generic_path_event, .shutdown = dasd_generic_shutdown, .uc_handler = dasd_generic_uc_handler, .int_class = IRQIO_DAS, }; static struct dasd_discipline dasd_eckd_discipline = { .owner = THIS_MODULE, .name = "ECKD", .ebcname = "ECKD", .check_device = dasd_eckd_check_characteristics, .uncheck_device = dasd_eckd_uncheck_device, .do_analysis = dasd_eckd_do_analysis, .pe_handler = dasd_eckd_pe_handler, .basic_to_ready = dasd_eckd_basic_to_ready, .online_to_ready = dasd_eckd_online_to_ready, .basic_to_known = dasd_eckd_basic_to_known, .max_sectors = dasd_eckd_max_sectors, .fill_geometry = dasd_eckd_fill_geometry, .start_IO = dasd_start_IO, .term_IO = dasd_term_IO, .handle_terminated_request = dasd_eckd_handle_terminated_request, .format_device = dasd_eckd_format_device, .check_device_format = dasd_eckd_check_device_format, .erp_action = dasd_eckd_erp_action, .erp_postaction = dasd_eckd_erp_postaction, .check_for_device_change = dasd_eckd_check_for_device_change, .build_cp = dasd_eckd_build_alias_cp, .free_cp = dasd_eckd_free_alias_cp, .dump_sense = dasd_eckd_dump_sense, .dump_sense_dbf = dasd_eckd_dump_sense_dbf, .fill_info = dasd_eckd_fill_info, .ioctl = dasd_eckd_ioctl, .reload = dasd_eckd_reload_device, .get_uid = dasd_eckd_get_uid, .kick_validate = dasd_eckd_kick_validate_server, .check_attention = dasd_eckd_check_attention, .host_access_count = dasd_eckd_host_access_count, .hosts_print = dasd_hosts_print, .handle_hpf_error = dasd_eckd_handle_hpf_error, .disable_hpf = dasd_eckd_disable_hpf_device, .hpf_enabled = dasd_eckd_hpf_enabled, .reset_path = dasd_eckd_reset_path, .is_ese = dasd_eckd_is_ese, .space_allocated = dasd_eckd_space_allocated, .space_configured = dasd_eckd_space_configured, .logical_capacity = dasd_eckd_logical_capacity, .release_space = dasd_eckd_release_space, .ext_pool_id = dasd_eckd_ext_pool_id, .ext_size = dasd_eckd_ext_size, .ext_pool_cap_at_warnlevel = dasd_eckd_ext_pool_cap_at_warnlevel, .ext_pool_warn_thrshld = dasd_eckd_ext_pool_warn_thrshld, .ext_pool_oos = dasd_eckd_ext_pool_oos, .ext_pool_exhaust = dasd_eckd_ext_pool_exhaust, .ese_format = dasd_eckd_ese_format, .ese_read = dasd_eckd_ese_read, .pprc_status = dasd_eckd_query_pprc_status, .pprc_enabled = dasd_eckd_pprc_enabled, .copy_pair_swap = dasd_eckd_copy_pair_swap, .device_ping = dasd_eckd_device_ping, }; static int __init dasd_eckd_init(void) { int ret; ASCEBC(dasd_eckd_discipline.ebcname, 4); dasd_reserve_req = kmalloc(sizeof(*dasd_reserve_req), GFP_KERNEL | GFP_DMA); if (!dasd_reserve_req) return -ENOMEM; dasd_vol_info_req = kmalloc(sizeof(*dasd_vol_info_req), GFP_KERNEL | GFP_DMA); if (!dasd_vol_info_req) { kfree(dasd_reserve_req); return -ENOMEM; } pe_handler_worker = kmalloc(sizeof(*pe_handler_worker), GFP_KERNEL | GFP_DMA); if (!pe_handler_worker) { kfree(dasd_reserve_req); kfree(dasd_vol_info_req); return -ENOMEM; } rawpadpage = (void *)__get_free_page(GFP_KERNEL); if (!rawpadpage) { kfree(pe_handler_worker); kfree(dasd_reserve_req); kfree(dasd_vol_info_req); return -ENOMEM; } ret = ccw_driver_register(&dasd_eckd_driver); if (!ret) wait_for_device_probe(); else { kfree(pe_handler_worker); kfree(dasd_reserve_req); kfree(dasd_vol_info_req); free_page((unsigned long)rawpadpage); } return ret; } static void __exit dasd_eckd_cleanup(void) { ccw_driver_unregister(&dasd_eckd_driver); kfree(pe_handler_worker); kfree(dasd_reserve_req); free_page((unsigned long)rawpadpage); } module_init(dasd_eckd_init); module_exit(dasd_eckd_cleanup);
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright(c) 2021 Intel Corporation */ #if !defined(CONFIG_IWLWIFI_DEVICE_TRACING) #define trace_iwlmei_sap_data(...) #else #if !defined(__IWLWIFI_DEVICE_TRACE_IWLWIFI_SAP_DATA) || defined(TRACE_HEADER_MULTI_READ) #ifndef __IWLWIFI_DEVICE_TRACE_IWLWIFI_SAP_DATA enum iwl_sap_data_trace_type { IWL_SAP_RX_DATA_TO_AIR, IWL_SAP_TX_DATA_FROM_AIR, IWL_SAP_RX_DATA_DROPPED_FROM_AIR, IWL_SAP_TX_DHCP, }; static inline size_t iwlmei_sap_data_offset(enum iwl_sap_data_trace_type trace_type) { switch (trace_type) { case IWL_SAP_RX_DATA_TO_AIR: return 0; case IWL_SAP_TX_DATA_FROM_AIR: case IWL_SAP_RX_DATA_DROPPED_FROM_AIR: return sizeof(struct iwl_sap_hdr); case IWL_SAP_TX_DHCP: return sizeof(struct iwl_sap_cb_data); default: WARN_ON_ONCE(1); } return 0; } #endif #define __IWLWIFI_DEVICE_TRACE_IWLWIFI_SAP_DATA #include <linux/tracepoint.h> #include <linux/skbuff.h> #include "sap.h" #undef TRACE_SYSTEM #define TRACE_SYSTEM iwlmei_sap_data TRACE_EVENT(iwlmei_sap_data, TP_PROTO(const struct sk_buff *skb, enum iwl_sap_data_trace_type trace_type), TP_ARGS(skb, trace_type), TP_STRUCT__entry( __dynamic_array(u8, data, skb->len - iwlmei_sap_data_offset(trace_type)) __field(u32, trace_type) ), TP_fast_assign( size_t offset = iwlmei_sap_data_offset(trace_type); __entry->trace_type = trace_type; skb_copy_bits(skb, offset, __get_dynamic_array(data), skb->len - offset); ), TP_printk("sap_data:trace_type %d len %d", __entry->trace_type, __get_dynamic_array_len(data)) ); /* * If you add something here, add a stub in case * !defined(CONFIG_IWLWIFI_DEVICE_TRACING) */ #endif /* __IWLWIFI_DEVICE_TRACE_IWLWIFI_SAP_DATA */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace-data #include <trace/define_trace.h> #endif /* CONFIG_IWLWIFI_DEVICE_TRACING */
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Ke Yu * Zhiyuan Lv <[email protected]> * * Contributors: * Terrence Xu <[email protected]> * Changbin Du <[email protected]> * Bing Niu <[email protected]> * Zhi Wang <[email protected]> * */ #include <drm/display/drm_dp.h> #include "display/intel_dp_aux_regs.h" #include "display/intel_gmbus_regs.h" #include "gvt.h" #include "i915_drv.h" #include "i915_reg.h" #define GMBUS1_TOTAL_BYTES_SHIFT 16 #define GMBUS1_TOTAL_BYTES_MASK 0x1ff #define gmbus1_total_byte_count(v) (((v) >> \ GMBUS1_TOTAL_BYTES_SHIFT) & GMBUS1_TOTAL_BYTES_MASK) #define gmbus1_target_addr(v) (((v) & 0xff) >> 1) #define gmbus1_target_index(v) (((v) >> 8) & 0xff) #define gmbus1_bus_cycle(v) (((v) >> 25) & 0x7) /* GMBUS0 bits definitions */ #define _GMBUS_PIN_SEL_MASK (0x7) static unsigned char edid_get_byte(struct intel_vgpu *vgpu) { struct intel_vgpu_i2c_edid *edid = &vgpu->display.i2c_edid; unsigned char chr = 0; if (edid->state == I2C_NOT_SPECIFIED || !edid->target_selected) { gvt_vgpu_err("Driver tries to read EDID without proper sequence!\n"); return 0; } if (edid->current_edid_read >= EDID_SIZE) { gvt_vgpu_err("edid_get_byte() exceeds the size of EDID!\n"); return 0; } if (!edid->edid_available) { gvt_vgpu_err("Reading EDID but EDID is not available!\n"); return 0; } if (intel_vgpu_has_monitor_on_port(vgpu, edid->port)) { struct intel_vgpu_edid_data *edid_data = intel_vgpu_port(vgpu, edid->port)->edid; chr = edid_data->edid_block[edid->current_edid_read]; edid->current_edid_read++; } else { gvt_vgpu_err("No EDID available during the reading?\n"); } return chr; } static inline int cnp_get_port_from_gmbus0(u32 gmbus0) { int port_select = gmbus0 & _GMBUS_PIN_SEL_MASK; int port = -EINVAL; if (port_select == GMBUS_PIN_1_BXT) port = PORT_B; else if (port_select == GMBUS_PIN_2_BXT) port = PORT_C; else if (port_select == GMBUS_PIN_3_BXT) port = PORT_D; else if (port_select == GMBUS_PIN_4_CNP) port = PORT_E; return port; } static inline int bxt_get_port_from_gmbus0(u32 gmbus0) { int port_select = gmbus0 & _GMBUS_PIN_SEL_MASK; int port = -EINVAL; if (port_select == GMBUS_PIN_1_BXT) port = PORT_B; else if (port_select == GMBUS_PIN_2_BXT) port = PORT_C; else if (port_select == GMBUS_PIN_3_BXT) port = PORT_D; return port; } static inline int get_port_from_gmbus0(u32 gmbus0) { int port_select = gmbus0 & _GMBUS_PIN_SEL_MASK; int port = -EINVAL; if (port_select == GMBUS_PIN_VGADDC) port = PORT_E; else if (port_select == GMBUS_PIN_DPC) port = PORT_C; else if (port_select == GMBUS_PIN_DPB) port = PORT_B; else if (port_select == GMBUS_PIN_DPD) port = PORT_D; return port; } static void reset_gmbus_controller(struct intel_vgpu *vgpu) { vgpu_vreg_t(vgpu, PCH_GMBUS2) = GMBUS_HW_RDY; if (!vgpu->display.i2c_edid.edid_available) vgpu_vreg_t(vgpu, PCH_GMBUS2) |= GMBUS_SATOER; vgpu->display.i2c_edid.gmbus.phase = GMBUS_IDLE_PHASE; } /* GMBUS0 */ static int gmbus0_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; int port, pin_select; memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes); pin_select = vgpu_vreg(vgpu, offset) & _GMBUS_PIN_SEL_MASK; intel_vgpu_init_i2c_edid(vgpu); if (pin_select == 0) return 0; if (IS_BROXTON(i915)) port = bxt_get_port_from_gmbus0(pin_select); else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) port = cnp_get_port_from_gmbus0(pin_select); else port = get_port_from_gmbus0(pin_select); if (drm_WARN_ON(&i915->drm, port < 0)) return 0; vgpu->display.i2c_edid.state = I2C_GMBUS; vgpu->display.i2c_edid.gmbus.phase = GMBUS_IDLE_PHASE; vgpu_vreg_t(vgpu, PCH_GMBUS2) &= ~GMBUS_ACTIVE; vgpu_vreg_t(vgpu, PCH_GMBUS2) |= GMBUS_HW_RDY | GMBUS_HW_WAIT_PHASE; if (intel_vgpu_has_monitor_on_port(vgpu, port) && !intel_vgpu_port_is_dp(vgpu, port)) { vgpu->display.i2c_edid.port = port; vgpu->display.i2c_edid.edid_available = true; vgpu_vreg_t(vgpu, PCH_GMBUS2) &= ~GMBUS_SATOER; } else vgpu_vreg_t(vgpu, PCH_GMBUS2) |= GMBUS_SATOER; return 0; } static int gmbus1_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct intel_vgpu_i2c_edid *i2c_edid = &vgpu->display.i2c_edid; u32 target_addr; u32 wvalue = *(u32 *)p_data; if (vgpu_vreg(vgpu, offset) & GMBUS_SW_CLR_INT) { if (!(wvalue & GMBUS_SW_CLR_INT)) { vgpu_vreg(vgpu, offset) &= ~GMBUS_SW_CLR_INT; reset_gmbus_controller(vgpu); } /* * TODO: "This bit is cleared to zero when an event * causes the HW_RDY bit transition to occur " */ } else { /* * per bspec setting this bit can cause: * 1) INT status bit cleared * 2) HW_RDY bit asserted */ if (wvalue & GMBUS_SW_CLR_INT) { vgpu_vreg_t(vgpu, PCH_GMBUS2) &= ~GMBUS_INT; vgpu_vreg_t(vgpu, PCH_GMBUS2) |= GMBUS_HW_RDY; } /* For virtualization, we suppose that HW is always ready, * so GMBUS_SW_RDY should always be cleared */ if (wvalue & GMBUS_SW_RDY) wvalue &= ~GMBUS_SW_RDY; i2c_edid->gmbus.total_byte_count = gmbus1_total_byte_count(wvalue); target_addr = gmbus1_target_addr(wvalue); /* vgpu gmbus only support EDID */ if (target_addr == EDID_ADDR) { i2c_edid->target_selected = true; } else if (target_addr != 0) { gvt_dbg_dpy( "vgpu%d: unsupported gmbus target addr(0x%x)\n" " gmbus operations will be ignored.\n", vgpu->id, target_addr); } if (wvalue & GMBUS_CYCLE_INDEX) i2c_edid->current_edid_read = gmbus1_target_index(wvalue); i2c_edid->gmbus.cycle_type = gmbus1_bus_cycle(wvalue); switch (gmbus1_bus_cycle(wvalue)) { case GMBUS_NOCYCLE: break; case GMBUS_STOP: /* From spec: * This can only cause a STOP to be generated * if a GMBUS cycle is generated, the GMBUS is * currently in a data/wait/idle phase, or it is in a * WAIT phase */ if (gmbus1_bus_cycle(vgpu_vreg(vgpu, offset)) != GMBUS_NOCYCLE) { intel_vgpu_init_i2c_edid(vgpu); /* After the 'stop' cycle, hw state would become * 'stop phase' and then 'idle phase' after a * few milliseconds. In emulation, we just set * it as 'idle phase' ('stop phase' is not * visible in gmbus interface) */ i2c_edid->gmbus.phase = GMBUS_IDLE_PHASE; vgpu_vreg_t(vgpu, PCH_GMBUS2) &= ~GMBUS_ACTIVE; } break; case NIDX_NS_W: case IDX_NS_W: case NIDX_STOP: case IDX_STOP: /* From hw spec the GMBUS phase * transition like this: * START (-->INDEX) -->DATA */ i2c_edid->gmbus.phase = GMBUS_DATA_PHASE; vgpu_vreg_t(vgpu, PCH_GMBUS2) |= GMBUS_ACTIVE; break; default: gvt_vgpu_err("Unknown/reserved GMBUS cycle detected!\n"); break; } /* * From hw spec the WAIT state will be * cleared: * (1) in a new GMBUS cycle * (2) by generating a stop */ vgpu_vreg(vgpu, offset) = wvalue; } return 0; } static int gmbus3_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; drm_WARN_ON(&i915->drm, 1); return 0; } static int gmbus3_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { int i; unsigned char byte_data; struct intel_vgpu_i2c_edid *i2c_edid = &vgpu->display.i2c_edid; int byte_left = i2c_edid->gmbus.total_byte_count - i2c_edid->current_edid_read; int byte_count = byte_left; u32 reg_data = 0; /* Data can only be recevied if previous settings correct */ if (vgpu_vreg_t(vgpu, PCH_GMBUS1) & GMBUS_SLAVE_READ) { if (byte_left <= 0) { memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); return 0; } if (byte_count > 4) byte_count = 4; for (i = 0; i < byte_count; i++) { byte_data = edid_get_byte(vgpu); reg_data |= (byte_data << (i << 3)); } memcpy(&vgpu_vreg(vgpu, offset), &reg_data, byte_count); memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); if (byte_left <= 4) { switch (i2c_edid->gmbus.cycle_type) { case NIDX_STOP: case IDX_STOP: i2c_edid->gmbus.phase = GMBUS_IDLE_PHASE; break; case NIDX_NS_W: case IDX_NS_W: default: i2c_edid->gmbus.phase = GMBUS_WAIT_PHASE; break; } intel_vgpu_init_i2c_edid(vgpu); } /* * Read GMBUS3 during send operation, * return the latest written value */ } else { memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); gvt_vgpu_err("warning: gmbus3 read with nothing returned\n"); } return 0; } static int gmbus2_mmio_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 value = vgpu_vreg(vgpu, offset); if (!(vgpu_vreg(vgpu, offset) & GMBUS_INUSE)) vgpu_vreg(vgpu, offset) |= GMBUS_INUSE; memcpy(p_data, (void *)&value, bytes); return 0; } static int gmbus2_mmio_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 wvalue = *(u32 *)p_data; if (wvalue & GMBUS_INUSE) vgpu_vreg(vgpu, offset) &= ~GMBUS_INUSE; /* All other bits are read-only */ return 0; } /** * intel_gvt_i2c_handle_gmbus_read - emulate gmbus register mmio read * @vgpu: a vGPU * @offset: reg offset * @p_data: data return buffer * @bytes: access data length * * This function is used to emulate gmbus register mmio read * * Returns: * Zero on success, negative error code if failed. * */ int intel_gvt_i2c_handle_gmbus_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; if (drm_WARN_ON(&i915->drm, bytes > 8 && (offset & (bytes - 1)))) return -EINVAL; if (offset == i915_mmio_reg_offset(PCH_GMBUS2)) return gmbus2_mmio_read(vgpu, offset, p_data, bytes); else if (offset == i915_mmio_reg_offset(PCH_GMBUS3)) return gmbus3_mmio_read(vgpu, offset, p_data, bytes); memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes); return 0; } /** * intel_gvt_i2c_handle_gmbus_write - emulate gmbus register mmio write * @vgpu: a vGPU * @offset: reg offset * @p_data: data return buffer * @bytes: access data length * * This function is used to emulate gmbus register mmio write * * Returns: * Zero on success, negative error code if failed. * */ int intel_gvt_i2c_handle_gmbus_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; if (drm_WARN_ON(&i915->drm, bytes > 8 && (offset & (bytes - 1)))) return -EINVAL; if (offset == i915_mmio_reg_offset(PCH_GMBUS0)) return gmbus0_mmio_write(vgpu, offset, p_data, bytes); else if (offset == i915_mmio_reg_offset(PCH_GMBUS1)) return gmbus1_mmio_write(vgpu, offset, p_data, bytes); else if (offset == i915_mmio_reg_offset(PCH_GMBUS2)) return gmbus2_mmio_write(vgpu, offset, p_data, bytes); else if (offset == i915_mmio_reg_offset(PCH_GMBUS3)) return gmbus3_mmio_write(vgpu, offset, p_data, bytes); memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes); return 0; } enum { AUX_CH_CTL = 0, AUX_CH_DATA1, AUX_CH_DATA2, AUX_CH_DATA3, AUX_CH_DATA4, AUX_CH_DATA5 }; static inline int get_aux_ch_reg(unsigned int offset) { int reg; switch (offset & 0xff) { case 0x10: reg = AUX_CH_CTL; break; case 0x14: reg = AUX_CH_DATA1; break; case 0x18: reg = AUX_CH_DATA2; break; case 0x1c: reg = AUX_CH_DATA3; break; case 0x20: reg = AUX_CH_DATA4; break; case 0x24: reg = AUX_CH_DATA5; break; default: reg = -1; break; } return reg; } /** * intel_gvt_i2c_handle_aux_ch_write - emulate AUX channel register write * @vgpu: a vGPU * @port_idx: port index * @offset: reg offset * @p_data: write ptr * * This function is used to emulate AUX channel register write * */ void intel_gvt_i2c_handle_aux_ch_write(struct intel_vgpu *vgpu, int port_idx, unsigned int offset, void *p_data) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_vgpu_i2c_edid *i2c_edid = &vgpu->display.i2c_edid; int msg_length, ret_msg_size; int msg, addr, ctrl, op; u32 value = *(u32 *)p_data; int aux_data_for_write = 0; int reg = get_aux_ch_reg(offset); if (reg != AUX_CH_CTL) { vgpu_vreg(vgpu, offset) = value; return; } msg_length = REG_FIELD_GET(DP_AUX_CH_CTL_MESSAGE_SIZE_MASK, value); // check the msg in DATA register. msg = vgpu_vreg(vgpu, offset + 4); addr = (msg >> 8) & 0xffff; ctrl = (msg >> 24) & 0xff; op = ctrl >> 4; if (!(value & DP_AUX_CH_CTL_SEND_BUSY)) { /* The ctl write to clear some states */ return; } /* Always set the wanted value for vms. */ ret_msg_size = (((op & 0x1) == DP_AUX_I2C_READ) ? 2 : 1); vgpu_vreg(vgpu, offset) = DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_MESSAGE_SIZE(ret_msg_size); if (msg_length == 3) { if (!(op & DP_AUX_I2C_MOT)) { /* stop */ intel_vgpu_init_i2c_edid(vgpu); } else { /* start or restart */ i2c_edid->aux_ch.i2c_over_aux_ch = true; i2c_edid->aux_ch.aux_ch_mot = true; if (addr == 0) { /* reset the address */ intel_vgpu_init_i2c_edid(vgpu); } else if (addr == EDID_ADDR) { i2c_edid->state = I2C_AUX_CH; i2c_edid->port = port_idx; i2c_edid->target_selected = true; if (intel_vgpu_has_monitor_on_port(vgpu, port_idx) && intel_vgpu_port_is_dp(vgpu, port_idx)) i2c_edid->edid_available = true; } } } else if ((op & 0x1) == DP_AUX_I2C_WRITE) { /* TODO * We only support EDID reading from I2C_over_AUX. And * we do not expect the index mode to be used. Right now * the WRITE operation is ignored. It is good enough to * support the gfx driver to do EDID access. */ } else { if (drm_WARN_ON(&i915->drm, (op & 0x1) != DP_AUX_I2C_READ)) return; if (drm_WARN_ON(&i915->drm, msg_length != 4)) return; if (i2c_edid->edid_available && i2c_edid->target_selected) { unsigned char val = edid_get_byte(vgpu); aux_data_for_write = (val << 16); } else aux_data_for_write = (0xff << 16); } /* write the return value in AUX_CH_DATA reg which includes: * ACK of I2C_WRITE * returned byte if it is READ */ aux_data_for_write |= DP_AUX_I2C_REPLY_ACK << 24; vgpu_vreg(vgpu, offset + 4) = aux_data_for_write; } /** * intel_vgpu_init_i2c_edid - initialize vGPU i2c edid emulation * @vgpu: a vGPU * * This function is used to initialize vGPU i2c edid emulation stuffs * */ void intel_vgpu_init_i2c_edid(struct intel_vgpu *vgpu) { struct intel_vgpu_i2c_edid *edid = &vgpu->display.i2c_edid; edid->state = I2C_NOT_SPECIFIED; edid->port = -1; edid->target_selected = false; edid->edid_available = false; edid->current_edid_read = 0; memset(&edid->gmbus, 0, sizeof(struct intel_vgpu_i2c_gmbus)); edid->aux_ch.i2c_over_aux_ch = false; edid->aux_ch.aux_ch_mot = false; }
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (C) 2018 Intel Corporation */ #ifndef __IPU3_UTIL_H #define __IPU3_UTIL_H struct device; struct imgu_device; #define IPU3_CSS_POOL_SIZE 4 /** * struct imgu_css_map - store DMA mapping info for buffer * * @size: size of the buffer in bytes. * @vaddr: kernel virtual address. * @daddr: iova dma address to access IPU3. * @pages: pages mapped to this buffer */ struct imgu_css_map { size_t size; void *vaddr; dma_addr_t daddr; struct page **pages; }; /** * struct imgu_css_pool - circular buffer pool definition * * @entry: array with IPU3_CSS_POOL_SIZE elements. * @entry.param: a &struct imgu_css_map for storing the mem mapping. * @entry.valid: used to mark if the entry has valid data. * @last: write pointer, initialized to IPU3_CSS_POOL_SIZE. */ struct imgu_css_pool { struct { struct imgu_css_map param; bool valid; } entry[IPU3_CSS_POOL_SIZE]; u32 last; }; int imgu_css_dma_buffer_resize(struct imgu_device *imgu, struct imgu_css_map *map, size_t size); void imgu_css_pool_cleanup(struct imgu_device *imgu, struct imgu_css_pool *pool); int imgu_css_pool_init(struct imgu_device *imgu, struct imgu_css_pool *pool, size_t size); void imgu_css_pool_get(struct imgu_css_pool *pool); void imgu_css_pool_put(struct imgu_css_pool *pool); const struct imgu_css_map *imgu_css_pool_last(struct imgu_css_pool *pool, u32 last); #endif
// SPDX-License-Identifier: GPL-2.0 /* smp.c: Sparc SMP support. * * Copyright (C) 1996 David S. Miller ([email protected]) * Copyright (C) 1998 Jakub Jelinek ([email protected]) * Copyright (C) 2004 Keith M Wesolowski ([email protected]) */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/threads.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/fs.h> #include <linux/seq_file.h> #include <linux/cache.h> #include <linux/delay.h> #include <linux/profile.h> #include <linux/cpu.h> #include <asm/ptrace.h> #include <linux/atomic.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/oplib.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/cpudata.h> #include <asm/timer.h> #include <asm/leon.h> #include "kernel.h" #include "irq.h" volatile unsigned long cpu_callin_map[NR_CPUS] = {0,}; cpumask_t smp_commenced_mask = CPU_MASK_NONE; const struct sparc32_ipi_ops *sparc32_ipi_ops; /* The only guaranteed locking primitive available on all Sparc * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically * places the current byte at the effective address into dest_reg and * places 0xff there afterwards. Pretty lame locking primitive * compared to the Alpha and the Intel no? Most Sparcs have 'swap' * instruction which is much better... */ void smp_store_cpu_info(int id) { int cpu_node; int mid; cpu_data(id).udelay_val = loops_per_jiffy; cpu_find_by_mid(id, &cpu_node); cpu_data(id).clock_tick = prom_getintdefault(cpu_node, "clock-frequency", 0); cpu_data(id).prom_node = cpu_node; mid = cpu_get_hwmid(cpu_node); if (mid < 0) { printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08x", id, cpu_node); mid = 0; } cpu_data(id).mid = mid; } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; int cpu, num = 0; for_each_online_cpu(cpu) { num++; bogosum += cpu_data(cpu).udelay_val; } printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n", num, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); switch(sparc_cpu_model) { case sun4m: smp4m_smp_done(); break; case sun4d: smp4d_smp_done(); break; case sparc_leon: leon_smp_done(); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } struct linux_prom_registers smp_penguin_ctable = { 0 }; void arch_smp_send_reschedule(int cpu) { /* * CPU model dependent way of implementing IPI generation targeting * a single CPU. The trap handler needs only to do trap entry/return * to call schedule. */ sparc32_ipi_ops->resched(cpu); } void smp_send_stop(void) { } void arch_send_call_function_single_ipi(int cpu) { /* trigger one IPI single call on one CPU */ sparc32_ipi_ops->single(cpu); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { int cpu; /* trigger IPI mask call on each CPU */ for_each_cpu(cpu, mask) sparc32_ipi_ops->mask_one(cpu); } void smp_resched_interrupt(void) { irq_enter(); scheduler_ipi(); local_cpu_data().irq_resched_count++; irq_exit(); /* re-schedule routine called by interrupt return code. */ } void smp_call_function_single_interrupt(void) { irq_enter(); generic_smp_call_function_single_interrupt(); local_cpu_data().irq_call_count++; irq_exit(); } void smp_call_function_interrupt(void) { irq_enter(); generic_smp_call_function_interrupt(); local_cpu_data().irq_call_count++; irq_exit(); } void __init smp_prepare_cpus(unsigned int max_cpus) { int i, cpuid, extra; printk("Entering SMP Mode...\n"); extra = 0; for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) { if (cpuid >= NR_CPUS) extra++; } /* i = number of cpus */ if (extra && max_cpus > i - extra) printk("Warning: NR_CPUS is too low to start all cpus\n"); smp_store_cpu_info(boot_cpu_id); switch(sparc_cpu_model) { case sun4m: smp4m_boot_cpus(); break; case sun4d: smp4d_boot_cpus(); break; case sparc_leon: leon_boot_cpus(); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } } /* Set this up early so that things like the scheduler can init * properly. We use the same cpu mask for both the present and * possible cpu map. */ void __init smp_setup_cpu_possible_map(void) { int instance, mid; instance = 0; while (!cpu_find_by_instance(instance, NULL, &mid)) { if (mid < NR_CPUS) { set_cpu_possible(mid, true); set_cpu_present(mid, true); } instance++; } } void __init smp_prepare_boot_cpu(void) { int cpuid = hard_smp_processor_id(); if (cpuid >= NR_CPUS) { prom_printf("Serious problem, boot cpu id >= NR_CPUS\n"); prom_halt(); } if (cpuid != 0) printk("boot cpu id != 0, this could work but is untested\n"); current_thread_info()->cpu = cpuid; set_cpu_online(cpuid, true); set_cpu_possible(cpuid, true); } int __cpu_up(unsigned int cpu, struct task_struct *tidle) { int ret=0; switch(sparc_cpu_model) { case sun4m: ret = smp4m_boot_one_cpu(cpu, tidle); break; case sun4d: ret = smp4d_boot_one_cpu(cpu, tidle); break; case sparc_leon: ret = leon_boot_one_cpu(cpu, tidle); break; case sun4e: printk("SUN4E\n"); BUG(); break; case sun4u: printk("SUN4U\n"); BUG(); break; default: printk("UNKNOWN!\n"); BUG(); break; } if (!ret) { cpumask_set_cpu(cpu, &smp_commenced_mask); while (!cpu_online(cpu)) mb(); } return ret; } static void arch_cpu_pre_starting(void *arg) { local_ops->cache_all(); local_ops->tlb_all(); switch(sparc_cpu_model) { case sun4m: sun4m_cpu_pre_starting(arg); break; case sun4d: sun4d_cpu_pre_starting(arg); break; case sparc_leon: leon_cpu_pre_starting(arg); break; default: BUG(); } } static void arch_cpu_pre_online(void *arg) { unsigned int cpuid = hard_smp_processor_id(); register_percpu_ce(cpuid); calibrate_delay(); smp_store_cpu_info(cpuid); local_ops->cache_all(); local_ops->tlb_all(); switch(sparc_cpu_model) { case sun4m: sun4m_cpu_pre_online(arg); break; case sun4d: sun4d_cpu_pre_online(arg); break; case sparc_leon: leon_cpu_pre_online(arg); break; default: BUG(); } } static void sparc_start_secondary(void *arg) { unsigned int cpu; /* * SMP booting is extremely fragile in some architectures. So run * the cpu initialization code first before anything else. */ arch_cpu_pre_starting(arg); cpu = smp_processor_id(); notify_cpu_starting(cpu); arch_cpu_pre_online(arg); /* Set the CPU in the cpu_online_mask */ set_cpu_online(cpu, true); /* Enable local interrupts now */ local_irq_enable(); wmb(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); /* We should never reach here! */ BUG(); } void smp_callin(void) { sparc_start_secondary(NULL); } void smp_bogo(struct seq_file *m) { int i; for_each_online_cpu(i) { seq_printf(m, "Cpu%dBogo\t: %lu.%02lu\n", i, cpu_data(i).udelay_val/(500000/HZ), (cpu_data(i).udelay_val/(5000/HZ))%100); } } void smp_info(struct seq_file *m) { int i; seq_printf(m, "State:\n"); for_each_online_cpu(i) seq_printf(m, "CPU%d\t\t: online\n", i); }
// SPDX-License-Identifier: GPL-2.0 /* * Support for Intel Camera Imaging ISP subsystem. * Copyright (c) 2015, Intel Corporation. */ #include "system_global.h" #include "ia_css_types.h" #include "ia_css_macc1_5_table.host.h" /* Multi-Axes Color Correction table for ISP2. * 64values = 2x2matrix for 16area, [s1.12] * ineffective: 16 of "identity 2x2 matix" {4096,0,0,4096} */ const struct ia_css_macc1_5_table default_macc1_5_table = { { 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096, 4096, 0, 0, 4096 } };