module_content
stringlengths 18
1.05M
|
---|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [7:0] crc;
genvar g;
wire [7:0] out_p1;
wire [15:0] out_p2;
wire [7:0] out_p3;
wire [7:0] out_p4;
paramed #(.WIDTH(8), .MODE(0)) p1 (.in(crc), .out(out_p1));
paramed #(.WIDTH(16), .MODE(1)) p2 (.in({crc,crc}), .out(out_p2));
paramed #(.WIDTH(8), .MODE(2)) p3 (.in(crc), .out(out_p3));
gencase #(.MODE(3)) p4 (.in(crc), .out(out_p4));
wire [7:0] out_ef;
enflop #(.WIDTH(8)) enf (.a(crc), .q(out_ef), .oe_e1(1'b1), .clk(clk));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%b %x %x %x %x %x\n",$time, cyc, crc, out_p1, out_p2, out_p3, out_p4, out_ef);
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
if (cyc==0) begin
// Setup
crc <= 8'hed;
end
else if (cyc==1) begin
end
else if (cyc==3) begin
if (out_p1 !== 8'h2d) $stop;
if (out_p2 !== 16'h2d2d) $stop;
if (out_p3 !== 8'h78) $stop;
if (out_p4 !== 8'h44) $stop;
if (out_ef !== 8'hda) $stop;
end
else if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module gencase (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter MODE = 0;
input [7:0] in;
output [7:0] out;
generate // : genblk1
begin
case (MODE)
2: mbuf mc [7:0] (.q(out[7:0]), .a({in[5:0],in[7:6]}));
default: mbuf mc [7:0] (.q(out[7:0]), .a({in[3:0],in[3:0]}));
endcase
end
endgenerate
endmodule
|
module paramed (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter WIDTH = 1;
parameter MODE = 0;
input [WIDTH-1:0] in;
output [WIDTH-1:0] out;
generate
if (MODE==0) initial $write("Mode=0\n");
// No else
endgenerate
`ifndef NC // for(genvar) unsupported
`ifndef ATSIM // for(genvar) unsupported
generate
// Empty loop body, local genvar
for (genvar j=0; j<3; j=j+1) begin end
// Ditto to make sure j has new scope
for (genvar j=0; j<5; j=j+1) begin end
endgenerate
`endif
`endif
generate
endgenerate
genvar i;
generate
if (MODE==0) begin
// Flip bitorder, direct assign method
for (i=0; i<WIDTH; i=i+1) begin
assign out[i] = in[WIDTH-i-1];
end
end
else if (MODE==1) begin
// Flip using instantiation
for (i=0; i<WIDTH; i=i+1) begin
integer from = WIDTH-i-1;
if (i==0) begin // Test if's within a for
mbuf m0 (.q(out[i]), .a(in[from]));
end
else begin
mbuf ma (.q(out[i]), .a(in[from]));
end
end
end
else begin
for (i=0; i<WIDTH; i=i+1) begin
mbuf ma (.q(out[i]), .a(in[i^1]));
end
end
endgenerate
endmodule
|
module mbuf (
input a,
output q
);
assign q = a;
endmodule
|
module enflop (clk, oe_e1, a,q);
parameter WIDTH=1;
input clk;
input oe_e1;
input [WIDTH-1:0] a;
output [WIDTH-1:0] q;
reg [WIDTH-1:0] oe_r;
reg [WIDTH-1:0] q_r;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin : datapath_bits
enflop_one enflop_one
(.clk (clk),
.d (a[i]),
.q_r (q_r[i]));
always @(posedge clk) oe_r[i] <= oe_e1;
assign q[i] = oe_r[i] ? q_r[i] : 1'bx;
end
endgenerate
endmodule
|
module enflop_one (
input clk,
input d,
output reg q_r
);
always @(posedge clk) q_r <= d;
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [7:0] crc;
genvar g;
wire [7:0] out_p1;
wire [15:0] out_p2;
wire [7:0] out_p3;
wire [7:0] out_p4;
paramed #(.WIDTH(8), .MODE(0)) p1 (.in(crc), .out(out_p1));
paramed #(.WIDTH(16), .MODE(1)) p2 (.in({crc,crc}), .out(out_p2));
paramed #(.WIDTH(8), .MODE(2)) p3 (.in(crc), .out(out_p3));
gencase #(.MODE(3)) p4 (.in(crc), .out(out_p4));
wire [7:0] out_ef;
enflop #(.WIDTH(8)) enf (.a(crc), .q(out_ef), .oe_e1(1'b1), .clk(clk));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%b %x %x %x %x %x\n",$time, cyc, crc, out_p1, out_p2, out_p3, out_p4, out_ef);
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
if (cyc==0) begin
// Setup
crc <= 8'hed;
end
else if (cyc==1) begin
end
else if (cyc==3) begin
if (out_p1 !== 8'h2d) $stop;
if (out_p2 !== 16'h2d2d) $stop;
if (out_p3 !== 8'h78) $stop;
if (out_p4 !== 8'h44) $stop;
if (out_ef !== 8'hda) $stop;
end
else if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module gencase (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter MODE = 0;
input [7:0] in;
output [7:0] out;
generate // : genblk1
begin
case (MODE)
2: mbuf mc [7:0] (.q(out[7:0]), .a({in[5:0],in[7:6]}));
default: mbuf mc [7:0] (.q(out[7:0]), .a({in[3:0],in[3:0]}));
endcase
end
endgenerate
endmodule
|
module paramed (/*AUTOARG*/
// Outputs
out,
// Inputs
in
);
parameter WIDTH = 1;
parameter MODE = 0;
input [WIDTH-1:0] in;
output [WIDTH-1:0] out;
generate
if (MODE==0) initial $write("Mode=0\n");
// No else
endgenerate
`ifndef NC // for(genvar) unsupported
`ifndef ATSIM // for(genvar) unsupported
generate
// Empty loop body, local genvar
for (genvar j=0; j<3; j=j+1) begin end
// Ditto to make sure j has new scope
for (genvar j=0; j<5; j=j+1) begin end
endgenerate
`endif
`endif
generate
endgenerate
genvar i;
generate
if (MODE==0) begin
// Flip bitorder, direct assign method
for (i=0; i<WIDTH; i=i+1) begin
assign out[i] = in[WIDTH-i-1];
end
end
else if (MODE==1) begin
// Flip using instantiation
for (i=0; i<WIDTH; i=i+1) begin
integer from = WIDTH-i-1;
if (i==0) begin // Test if's within a for
mbuf m0 (.q(out[i]), .a(in[from]));
end
else begin
mbuf ma (.q(out[i]), .a(in[from]));
end
end
end
else begin
for (i=0; i<WIDTH; i=i+1) begin
mbuf ma (.q(out[i]), .a(in[i^1]));
end
end
endgenerate
endmodule
|
module mbuf (
input a,
output q
);
assign q = a;
endmodule
|
module enflop (clk, oe_e1, a,q);
parameter WIDTH=1;
input clk;
input oe_e1;
input [WIDTH-1:0] a;
output [WIDTH-1:0] q;
reg [WIDTH-1:0] oe_r;
reg [WIDTH-1:0] q_r;
genvar i;
generate
for (i = 0; i < WIDTH; i = i + 1) begin : datapath_bits
enflop_one enflop_one
(.clk (clk),
.d (a[i]),
.q_r (q_r[i]));
always @(posedge clk) oe_r[i] <= oe_e1;
assign q[i] = oe_r[i] ? q_r[i] : 1'bx;
end
endgenerate
endmodule
|
module enflop_one (
input clk,
input d,
output reg q_r
);
always @(posedge clk) q_r <= d;
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
logic use_AnB;
logic [1:0] active_command [8:0];
logic [1:0] command_A [8:0];
logic [1:0] command_B [8:0];
logic [1:0] active_command2 [8:0];
logic [1:0] command_A2 [7:0];
logic [1:0] command_B2 [8:0];
logic [1:0] active_command3 [1:0][2:0][3:0];
logic [1:0] command_A3 [1:0][2:0][3:0];
logic [1:0] command_B3 [1:0][2:0][3:0];
logic [1:0] active_command4 [8:0];
logic [1:0] command_A4 [7:0];
logic [1:0] active_command5 [8:0];
logic [1:0] command_A5 [7:0];
// Single dimension assign
assign active_command[3:0] = (use_AnB) ? command_A[7:0] : command_B[7:0];
// Assignment of entire arrays
assign active_command2 = (use_AnB) ? command_A2 : command_B2;
// Multi-dimension assign
assign active_command3[1:0][2:0][3:0] = (use_AnB) ? command_A3[1:0][2:0][3:0] : command_B3[1:0][1:0][3:0];
// Supported: Delayed assigment with RHS Var == LHS Var
logic [7:0] arrd [7:0];
always_ff @(posedge clk) arrd[7:4] <= arrd[3:0];
// Unsupported: Non-delayed assigment with RHS Var == LHS Var
logic [7:0] arr [7:0];
assign arr[7:4] = arr[3:0];
// Delayed assign
always @(posedge clk) begin
active_command4[7:0] <= command_A4[8:0];
end
// Combinational assign
always_comb begin
active_command5[8:0] = command_A5[7:0];
end
endmodule
|
module outputs)
wire [7:0] m_from_clk_lev1_r; // From a of t_order_a.v
wire [7:0] n_from_clk_lev2; // From a of t_order_a.v
wire [7:0] o_from_com_levs11; // From a of t_order_a.v
wire [7:0] o_from_comandclk_levs12;// From a of t_order_a.v
wire [7:0] o_subfrom_clk_lev2; // From b of t_order_b.v
// End of automatics
reg [7:0] cyc; initial cyc=0;
t_order_a a (
.one (8'h1),
/*AUTOINST*/
// Outputs
.m_from_clk_lev1_r (m_from_clk_lev1_r[7:0]),
.n_from_clk_lev2 (n_from_clk_lev2[7:0]),
.o_from_com_levs11 (o_from_com_levs11[7:0]),
.o_from_comandclk_levs12(o_from_comandclk_levs12[7:0]),
// Inputs
.clk (clk),
.a_to_clk_levm3 (a_to_clk_levm3[7:0]),
.b_to_clk_levm1 (b_to_clk_levm1[7:0]),
.c_com_levs10 (c_com_levs10[7:0]),
.d_to_clk_levm2 (d_to_clk_levm2[7:0]));
t_order_b b (
/*AUTOINST*/
// Outputs
.o_subfrom_clk_lev2 (o_subfrom_clk_lev2[7:0]),
// Inputs
.m_from_clk_lev1_r (m_from_clk_lev1_r[7:0]));
reg [7:0] o_from_com_levs12;
reg [7:0] o_from_com_levs13;
always @ (/*AS*/o_from_com_levs11) begin
o_from_com_levs12 = o_from_com_levs11 + 8'h1;
o_from_com_levs12 = o_from_com_levs12 + 8'h1; // Test we can add to self and optimize
o_from_com_levs13 = o_from_com_levs12;
end
reg sepassign_in;
// verilator lint_off UNOPTFLAT
wire [3:0] sepassign;
// verilator lint_on UNOPTFLAT
// verilator lint_off UNOPT
assign #0.1 sepassign[0] = 0,
sepassign[1] = sepassign[2],
sepassign[2] = sepassign[3],
sepassign[3] = sepassign_in;
wire [7:0] o_subfrom_clk_lev3 = o_subfrom_clk_lev2;
// verilator lint_on UNOPT
always @ (posedge clk) begin
cyc <= cyc+8'd1;
sepassign_in <= 0;
if (cyc == 8'd1) begin
a_to_clk_levm3 <= 0;
d_to_clk_levm2 <= 1;
b_to_clk_levm1 <= 1;
c_com_levs10 <= 2;
sepassign_in <= 1;
end
if (cyc == 8'd2) begin
if (sepassign !== 4'b1110) $stop;
end
if (cyc == 8'd3) begin
$display("%d %d %d %d",m_from_clk_lev1_r,
n_from_clk_lev2,
o_from_com_levs11,
o_from_comandclk_levs12);
if (m_from_clk_lev1_r !== 8'h2) $stop;
if (o_subfrom_clk_lev3 !== 8'h2) $stop;
if (n_from_clk_lev2 !== 8'h2) $stop;
if (o_from_com_levs11 !== 8'h3) $stop;
if (o_from_com_levs13 !== 8'h5) $stop;
if (o_from_comandclk_levs12 !== 8'h5) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module outputs)
wire [7:0] m_from_clk_lev1_r; // From a of t_order_a.v
wire [7:0] n_from_clk_lev2; // From a of t_order_a.v
wire [7:0] o_from_com_levs11; // From a of t_order_a.v
wire [7:0] o_from_comandclk_levs12;// From a of t_order_a.v
wire [7:0] o_subfrom_clk_lev2; // From b of t_order_b.v
// End of automatics
reg [7:0] cyc; initial cyc=0;
t_order_a a (
.one (8'h1),
/*AUTOINST*/
// Outputs
.m_from_clk_lev1_r (m_from_clk_lev1_r[7:0]),
.n_from_clk_lev2 (n_from_clk_lev2[7:0]),
.o_from_com_levs11 (o_from_com_levs11[7:0]),
.o_from_comandclk_levs12(o_from_comandclk_levs12[7:0]),
// Inputs
.clk (clk),
.a_to_clk_levm3 (a_to_clk_levm3[7:0]),
.b_to_clk_levm1 (b_to_clk_levm1[7:0]),
.c_com_levs10 (c_com_levs10[7:0]),
.d_to_clk_levm2 (d_to_clk_levm2[7:0]));
t_order_b b (
/*AUTOINST*/
// Outputs
.o_subfrom_clk_lev2 (o_subfrom_clk_lev2[7:0]),
// Inputs
.m_from_clk_lev1_r (m_from_clk_lev1_r[7:0]));
reg [7:0] o_from_com_levs12;
reg [7:0] o_from_com_levs13;
always @ (/*AS*/o_from_com_levs11) begin
o_from_com_levs12 = o_from_com_levs11 + 8'h1;
o_from_com_levs12 = o_from_com_levs12 + 8'h1; // Test we can add to self and optimize
o_from_com_levs13 = o_from_com_levs12;
end
reg sepassign_in;
// verilator lint_off UNOPTFLAT
wire [3:0] sepassign;
// verilator lint_on UNOPTFLAT
// verilator lint_off UNOPT
assign #0.1 sepassign[0] = 0,
sepassign[1] = sepassign[2],
sepassign[2] = sepassign[3],
sepassign[3] = sepassign_in;
wire [7:0] o_subfrom_clk_lev3 = o_subfrom_clk_lev2;
// verilator lint_on UNOPT
always @ (posedge clk) begin
cyc <= cyc+8'd1;
sepassign_in <= 0;
if (cyc == 8'd1) begin
a_to_clk_levm3 <= 0;
d_to_clk_levm2 <= 1;
b_to_clk_levm1 <= 1;
c_com_levs10 <= 2;
sepassign_in <= 1;
end
if (cyc == 8'd2) begin
if (sepassign !== 4'b1110) $stop;
end
if (cyc == 8'd3) begin
$display("%d %d %d %d",m_from_clk_lev1_r,
n_from_clk_lev2,
o_from_com_levs11,
o_from_comandclk_levs12);
if (m_from_clk_lev1_r !== 8'h2) $stop;
if (o_subfrom_clk_lev3 !== 8'h2) $stop;
if (n_from_clk_lev2 !== 8'h2) $stop;
if (o_from_com_levs11 !== 8'h3) $stop;
if (o_from_com_levs13 !== 8'h5) $stop;
if (o_from_comandclk_levs12 !== 8'h5) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module ddr3_model (
rst_n,
ck,
ck_n,
cke,
cs_n,
ras_n,
cas_n,
we_n,
dm_tdqs,
ba,
addr,
dq,
dqs,
dqs_n,
tdqs_n,
odt
);
`include "ddr3_model_parameters.vh"
parameter check_strict_mrbits = 1;
parameter check_strict_timing = 1;
parameter feature_pasr = 1;
parameter feature_truebl4 = 0;
// text macros
`define DQ_PER_DQS DQ_BITS/DQS_BITS
`define BANKS (1<<BA_BITS)
`define MAX_BITS (BA_BITS+ROW_BITS+COL_BITS-BL_BITS)
`define MAX_SIZE (1<<(BA_BITS+ROW_BITS+COL_BITS-BL_BITS))
`define MEM_SIZE (1<<MEM_BITS)
`define MAX_PIPE 4*CL_MAX
// Declare Ports
input rst_n;
input ck;
input ck_n;
input cke;
input cs_n;
input ras_n;
input cas_n;
input we_n;
inout [DM_BITS-1:0] dm_tdqs;
input [BA_BITS-1:0] ba;
input [ADDR_BITS-1:0] addr;
inout [DQ_BITS-1:0] dq;
inout [DQS_BITS-1:0] dqs;
inout [DQS_BITS-1:0] dqs_n;
output [DQS_BITS-1:0] tdqs_n;
input odt;
// clock jitter
real tck_avg;
time tck_sample [TDLLK-1:0];
time tch_sample [TDLLK-1:0];
time tcl_sample [TDLLK-1:0];
time tck_i;
time tch_i;
time tcl_i;
real tch_avg;
real tcl_avg;
time tm_ck_pos;
time tm_ck_neg;
real tjit_per_rtime;
integer tjit_cc_time;
real terr_nper_rtime;
//DDR3 clock jitter variables
real tjit_ch_rtime;
real duty_cycle;
// clock skew
real out_delay;
integer dqsck [DQS_BITS-1:0];
integer dqsck_min;
integer dqsck_max;
integer dqsq_min;
integer dqsq_max;
integer seed;
// Mode Registers
reg [ADDR_BITS-1:0] mode_reg [`BANKS-1:0];
reg burst_order;
reg [BL_BITS:0] burst_length;
reg blotf;
reg truebl4;
integer cas_latency;
reg dll_reset;
reg dll_locked;
integer write_recovery;
reg low_power;
reg dll_en;
reg [2:0] odt_rtt_nom;
reg [1:0] odt_rtt_wr;
reg odt_en;
reg dyn_odt_en;
reg [1:0] al;
integer additive_latency;
reg write_levelization;
reg duty_cycle_corrector;
reg tdqs_en;
reg out_en;
reg [2:0] pasr;
integer cas_write_latency;
reg asr; // auto self refresh
reg srt; // self refresh temperature range
reg [1:0] mpr_select;
reg mpr_en;
reg odts_readout;
integer read_latency;
integer write_latency;
// cmd encoding
parameter // {cs, ras, cas, we}
LOAD_MODE = 4'b0000,
REFRESH = 4'b0001,
PRECHARGE = 4'b0010,
ACTIVATE = 4'b0011,
WRITE = 4'b0100,
READ = 4'b0101,
ZQ = 4'b0110,
NOP = 4'b0111,
// DESEL = 4'b1xxx,
PWR_DOWN = 4'b1000,
SELF_REF = 4'b1001
;
reg [8*9-1:0] cmd_string [9:0];
initial begin
cmd_string[LOAD_MODE] = "Load Mode";
cmd_string[REFRESH ] = "Refresh ";
cmd_string[PRECHARGE] = "Precharge";
cmd_string[ACTIVATE ] = "Activate ";
cmd_string[WRITE ] = "Write ";
cmd_string[READ ] = "Read ";
cmd_string[ZQ ] = "ZQ ";
cmd_string[NOP ] = "No Op ";
cmd_string[PWR_DOWN ] = "Pwr Down ";
cmd_string[SELF_REF ] = "Self Ref ";
end
// command state
reg [`BANKS-1:0] active_bank;
reg [`BANKS-1:0] auto_precharge_bank;
reg [`BANKS-1:0] write_precharge_bank;
reg [`BANKS-1:0] read_precharge_bank;
reg [ROW_BITS-1:0] active_row [`BANKS-1:0];
reg in_power_down;
reg in_self_refresh;
reg [3:0] init_mode_reg;
reg init_dll_reset;
reg init_done;
integer init_step;
reg zq_set;
reg er_trfc_max;
reg odt_state;
reg odt_state_dly;
reg dyn_odt_state;
reg dyn_odt_state_dly;
reg prev_odt;
wire [7:0] calibration_pattern = 8'b10101010; // value returned during mpr pre-defined pattern readout
wire [7:0] temp_sensor = 8'h01; // value returned during mpr temp sensor readout
reg [1:0] mr_chk;
reg rd_bc;
integer banki;
// cmd timers/counters
integer ref_cntr;
integer odt_cntr;
integer ck_cntr;
integer ck_txpr;
integer ck_load_mode;
integer ck_refresh;
integer ck_precharge;
integer ck_activate;
integer ck_write;
integer ck_read;
integer ck_zqinit;
integer ck_zqoper;
integer ck_zqcs;
integer ck_power_down;
integer ck_slow_exit_pd;
integer ck_self_refresh;
integer ck_freq_change;
integer ck_odt;
integer ck_odth8;
integer ck_dll_reset;
integer ck_cke_cmd;
integer ck_bank_write [`BANKS-1:0];
integer ck_bank_read [`BANKS-1:0];
integer ck_group_activate [1:0];
integer ck_group_write [1:0];
integer ck_group_read [1:0];
time tm_txpr;
time tm_load_mode;
time tm_refresh;
time tm_precharge;
time tm_activate;
time tm_write_end;
time tm_power_down;
time tm_slow_exit_pd;
time tm_self_refresh;
time tm_freq_change;
time tm_cke_cmd;
time tm_ttsinit;
time tm_bank_precharge [`BANKS-1:0];
time tm_bank_activate [`BANKS-1:0];
time tm_bank_write_end [`BANKS-1:0];
time tm_bank_read_end [`BANKS-1:0];
time tm_group_activate [1:0];
time tm_group_write_end [1:0];
// pipelines
reg [`MAX_PIPE:0] al_pipeline;
reg [`MAX_PIPE:0] wr_pipeline;
reg [`MAX_PIPE:0] rd_pipeline;
reg [`MAX_PIPE:0] odt_pipeline;
reg [`MAX_PIPE:0] dyn_odt_pipeline;
reg [BL_BITS:0] bl_pipeline [`MAX_PIPE:0];
reg [BA_BITS-1:0] ba_pipeline [`MAX_PIPE:0];
reg [ROW_BITS-1:0] row_pipeline [`MAX_PIPE:0];
reg [COL_BITS-1:0] col_pipeline [`MAX_PIPE:0];
reg prev_cke;
// data state
reg [BL_MAX*DQ_BITS-1:0] memory_data;
reg [BL_MAX*DQ_BITS-1:0] bit_mask;
reg [BL_BITS-1:0] burst_position;
reg [BL_BITS:0] burst_cntr;
reg [DQ_BITS-1:0] dq_temp;
reg [31:0] check_write_postamble;
reg [31:0] check_write_preamble;
reg [31:0] check_write_dqs_high;
reg [31:0] check_write_dqs_low;
reg [15:0] check_dm_tdipw;
reg [63:0] check_dq_tdipw;
// data timers/counters
time tm_rst_n;
time tm_cke;
time tm_odt;
time tm_tdqss;
time tm_dm [15:0];
time tm_dqs [15:0];
time tm_dqs_pos [31:0];
time tm_dqss_pos [31:0];
time tm_dqs_neg [31:0];
time tm_dq [63:0];
time tm_cmd_addr [22:0];
reg [8*7-1:0] cmd_addr_string [22:0];
initial begin
cmd_addr_string[ 0] = "CS_N ";
cmd_addr_string[ 1] = "RAS_N ";
cmd_addr_string[ 2] = "CAS_N ";
cmd_addr_string[ 3] = "WE_N ";
cmd_addr_string[ 4] = "BA 0 ";
cmd_addr_string[ 5] = "BA 1 ";
cmd_addr_string[ 6] = "BA 2 ";
cmd_addr_string[ 7] = "ADDR 0";
cmd_addr_string[ 8] = "ADDR 1";
cmd_addr_string[ 9] = "ADDR 2";
cmd_addr_string[10] = "ADDR 3";
cmd_addr_string[11] = "ADDR 4";
cmd_addr_string[12] = "ADDR 5";
cmd_addr_string[13] = "ADDR 6";
cmd_addr_string[14] = "ADDR 7";
cmd_addr_string[15] = "ADDR 8";
cmd_addr_string[16] = "ADDR 9";
cmd_addr_string[17] = "ADDR 10";
cmd_addr_string[18] = "ADDR 11";
cmd_addr_string[19] = "ADDR 12";
cmd_addr_string[20] = "ADDR 13";
cmd_addr_string[21] = "ADDR 14";
cmd_addr_string[22] = "ADDR 15";
end
reg [8*5-1:0] dqs_string [1:0];
initial begin
dqs_string[0] = "DQS ";
dqs_string[1] = "DQS_N";
end
// Memory Storage
`ifdef MAX_MEM
parameter RFF_BITS = DQ_BITS*BL_MAX;
// %z format uses 8 bytes for every 32 bits or less.
parameter RFF_CHUNK = 8 * (RFF_BITS/32 + (RFF_BITS%32 ? 1 : 0));
reg [1024:1] tmp_model_dir;
integer memfd[`BANKS-1:0];
initial
begin : file_io_open
integer bank;
if (!$value$plusargs("model_data+%s", tmp_model_dir))
begin
tmp_model_dir = "/tmp";
$display(
"%m: at time %t WARNING: no +model_data option specified, using /tmp.",
$time
);
end
for (bank = 0; bank < `BANKS; bank = bank + 1)
memfd[bank] = open_bank_file(bank);
end
`else
reg [BL_MAX*DQ_BITS-1:0] memory [0:`MEM_SIZE-1];
reg [`MAX_BITS-1:0] address [0:`MEM_SIZE-1];
reg [MEM_BITS:0] memory_index;
reg [MEM_BITS:0] memory_used = 0;
`endif
// receive
reg rst_n_in;
reg ck_in;
reg ck_n_in;
reg cke_in;
reg cs_n_in;
reg ras_n_in;
reg cas_n_in;
reg we_n_in;
reg [15:0] dm_in;
reg [2:0] ba_in;
reg [15:0] addr_in;
reg [63:0] dq_in;
reg [31:0] dqs_in;
reg odt_in;
reg [15:0] dm_in_pos;
reg [15:0] dm_in_neg;
reg [63:0] dq_in_pos;
reg [63:0] dq_in_neg;
reg dq_in_valid;
reg dqs_in_valid;
integer wdqs_cntr;
integer wdq_cntr;
integer wdqs_pos_cntr [31:0];
reg b2b_write;
reg [BL_BITS:0] wr_burst_length;
reg [31:0] prev_dqs_in;
reg diff_ck;
always @(rst_n ) rst_n_in <= #BUS_DELAY rst_n;
always @(ck ) ck_in <= #BUS_DELAY ck;
always @(ck_n ) ck_n_in <= #BUS_DELAY ck_n;
always @(cke ) cke_in <= #BUS_DELAY cke;
always @(cs_n ) cs_n_in <= #BUS_DELAY cs_n;
always @(ras_n ) ras_n_in <= #BUS_DELAY ras_n;
always @(cas_n ) cas_n_in <= #BUS_DELAY cas_n;
always @(we_n ) we_n_in <= #BUS_DELAY we_n;
always @(dm_tdqs) dm_in <= #BUS_DELAY dm_tdqs;
always @(ba ) ba_in <= #BUS_DELAY ba;
always @(addr ) addr_in <= #BUS_DELAY addr;
always @(dq ) dq_in <= #BUS_DELAY dq;
always @(dqs or dqs_n) dqs_in <= #BUS_DELAY (dqs_n<<16) | dqs;
always @(odt ) odt_in <= #BUS_DELAY odt;
// create internal clock
always @(posedge ck_in) diff_ck <= ck_in;
always @(posedge ck_n_in) diff_ck <= ~ck_n_in;
wire [15:0] dqs_even = dqs_in[15:0];
wire [15:0] dqs_odd = dqs_in[31:16];
wire [3:0] cmd_n_in = !cs_n_in ? {ras_n_in, cas_n_in, we_n_in} : NOP; //deselect = nop
// transmit
reg dqs_out_en;
reg [DQS_BITS-1:0] dqs_out_en_dly;
reg dqs_out;
reg [DQS_BITS-1:0] dqs_out_dly;
reg dq_out_en;
reg [DQ_BITS-1:0] dq_out_en_dly;
reg [DQ_BITS-1:0] dq_out;
reg [DQ_BITS-1:0] dq_out_dly;
integer rdqsen_cntr;
integer rdqs_cntr;
integer rdqen_cntr;
integer rdq_cntr;
bufif1 buf_dqs [DQS_BITS-1:0] (dqs, dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}});
bufif1 buf_dqs_n [DQS_BITS-1:0] (dqs_n, ~dqs_out_dly, dqs_out_en_dly & {DQS_BITS{out_en}});
bufif1 buf_dq [DQ_BITS-1:0] (dq, dq_out_dly, dq_out_en_dly & {DQ_BITS {out_en}});
assign tdqs_n = {DQS_BITS{1'bz}};
initial begin
if (BL_MAX < 2)
$display("%m ERROR: BL_MAX parameter must be >= 2. \nBL_MAX = %d", BL_MAX);
if ((1<<BO_BITS) > BL_MAX)
$display("%m ERROR: 2^BO_BITS cannot be greater than BL_MAX parameter.");
$timeformat (-12, 1, " ps", 1);
seed = RANDOM_SEED;
ck_cntr = 0;
end
function integer get_rtt_wr;
input [1:0] rtt;
begin
get_rtt_wr = RZQ/{rtt[0], rtt[1], 1'b0};
end
endfunction
function integer get_rtt_nom;
input [2:0] rtt;
begin
case (rtt)
1: get_rtt_nom = RZQ/4;
2: get_rtt_nom = RZQ/2;
3: get_rtt_nom = RZQ/6;
4: get_rtt_nom = RZQ/12;
5: get_rtt_nom = RZQ/8;
default : get_rtt_nom = 0;
endcase
end
endfunction
// calculate the absolute value of a real number
function real abs_value;
input arg;
real arg;
begin
if (arg < 0.0)
abs_value = -1.0 * arg;
else
abs_value = arg;
end
endfunction
function integer ceil;
input number;
real number;
// LMR 4.1.7
// When either operand of a relational expression is a real operand then the other operand shall be converted
// to an equivalent real value, and the expression shall be interpreted as a comparison between two real values.
if (number > $rtoi(number))
ceil = $rtoi(number) + 1;
else
ceil = number;
endfunction
function integer floor;
input number;
real number;
// LMR 4.1.7
// When either operand of a relational expression is a real operand then the other operand shall be converted
// to an equivalent real value, and the expression shall be interpreted as a comparison between two real values.
if (number < $rtoi(number))
floor = $rtoi(number) - 1;
else
floor = number;
endfunction
`ifdef MAX_MEM
function integer open_bank_file( input integer bank );
integer fd;
reg [2048:1] filename;
begin
$sformat( filename, "%0s/%m.%0d", tmp_model_dir, bank );
fd = $fopen(filename, "w+");
if (fd == 0)
begin
$display("%m: at time %0t ERROR: failed to open %0s.", $time, filename);
$finish;
end
else
begin
if (DEBUG) $display("%m: at time %0t INFO: opening %0s.", $time, filename);
open_bank_file = fd;
end
end
endfunction
function [RFF_BITS:1] read_from_file(
input integer fd,
input integer index
);
integer code;
integer offset;
reg [1024:1] msg;
reg [RFF_BITS:1] read_value;
begin
offset = index * RFF_CHUNK;
code = $fseek( fd, offset, 0 );
// $fseek returns 0 on success, -1 on failure
if (code != 0)
begin
$display("%m: at time %t ERROR: fseek to %d failed", $time, offset);
$finish;
end
code = $fscanf(fd, "%z", read_value);
// $fscanf returns number of items read
if (code != 1)
begin
if ($ferror(fd,msg) != 0)
begin
$display("%m: at time %t ERROR: fscanf failed at %d", $time, index);
$display(msg);
$finish;
end
else
read_value = 'hx;
end
/* when reading from unwritten portions of the file, 0 will be returned.
* Use 0 in bit 1 as indicator that invalid data has been read.
* A true 0 is encoded as Z.
*/
if (read_value[1] === 1'bz)
// true 0 encoded as Z, data is valid
read_value[1] = 1'b0;
else if (read_value[1] === 1'b0)
// read from file section that has not been written
read_value = 'hx;
read_from_file = read_value;
end
endfunction
task write_to_file(
input integer fd,
input integer index,
input [RFF_BITS:1] data
);
integer code;
integer offset;
begin
offset = index * RFF_CHUNK;
code = $fseek( fd, offset, 0 );
if (code != 0)
begin
$display("%m: at time %t ERROR: fseek to %d failed", $time, offset);
$finish;
end
// encode a valid data
if (data[1] === 1'bz)
data[1] = 1'bx;
else if (data[1] === 1'b0)
data[1] = 1'bz;
$fwrite( fd, "%z", data );
end
endtask
`else
function get_index;
input [`MAX_BITS-1:0] addr;
begin : index
get_index = 0;
for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
if (address[memory_index] == addr) begin
get_index = 1;
disable index;
end
end
end
endfunction
`endif
task memory_write;
input [BA_BITS-1:0] bank;
input [ROW_BITS-1:0] row;
input [COL_BITS-1:0] col;
input [BL_MAX*DQ_BITS-1:0] data;
reg [`MAX_BITS-1:0] addr;
begin
`ifdef MAX_MEM
addr = {row, col}/BL_MAX;
write_to_file( memfd[bank], addr, data );
`else
// chop off the lowest address bits
addr = {bank, row, col}/BL_MAX;
if (get_index(addr)) begin
address[memory_index] = addr;
memory[memory_index] = data;
end else if (memory_used == `MEM_SIZE) begin
$display ("%m: at time %t ERROR: Memory overflow. Write to Address %h with Data %h will be lost.\nYou must increase the MEM_BITS parameter or define MAX_MEM.", $time, addr, data);
if (STOP_ON_ERROR) $stop(0);
end else begin
address[memory_used] = addr;
memory[memory_used] = data;
memory_used = memory_used + 1;
end
`endif
end
endtask
task memory_read;
input [BA_BITS-1:0] bank;
input [ROW_BITS-1:0] row;
input [COL_BITS-1:0] col;
output [BL_MAX*DQ_BITS-1:0] data;
reg [`MAX_BITS-1:0] addr;
begin
`ifdef MAX_MEM
addr = {row, col}/BL_MAX;
data = read_from_file( memfd[bank], addr );
`else
// chop off the lowest address bits
addr = {bank, row, col}/BL_MAX;
if (get_index(addr)) begin
data = memory[memory_index];
end else begin
data = {BL_MAX*DQ_BITS{1'bx}};
end
`endif
end
endtask
task set_latency;
begin
if (al == 0) begin
additive_latency = 0;
end else begin
additive_latency = cas_latency - al;
end
read_latency = cas_latency + additive_latency;
write_latency = cas_write_latency + additive_latency;
end
endtask
// this task will erase the contents of 0 or more banks
task erase_banks;
input [`BANKS-1:0] banks; //one select bit per bank
reg [BA_BITS-1:0] ba;
reg [`MAX_BITS-1:0] i;
integer bank;
begin
`ifdef MAX_MEM
for (bank = 0; bank < `BANKS; bank = bank + 1)
if (banks[bank] === 1'b1) begin
$fclose(memfd[bank]);
memfd[bank] = open_bank_file(bank);
end
`else
memory_index = 0;
i = 0;
// remove the selected banks
for (memory_index=0; memory_index<memory_used; memory_index=memory_index+1) begin
ba = (address[memory_index]>>(ROW_BITS+COL_BITS-BL_BITS));
if (!banks[ba]) begin //bank is selected to keep
address[i] = address[memory_index];
memory[i] = memory[memory_index];
i = i + 1;
end
end
// clean up the unused banks
for (memory_index=i; memory_index<memory_used; memory_index=memory_index+1) begin
address[memory_index] = 'bx;
memory[memory_index] = {8*DQ_BITS{1'bx}};
end
memory_used = i;
`endif
end
endtask
// Before this task runs, the model must be in a valid state for precharge power down and out of reset.
// After this task runs, NOP commands must be issued until TZQINIT has been met
task initialize;
input [ADDR_BITS-1:0] mode_reg0;
input [ADDR_BITS-1:0] mode_reg1;
input [ADDR_BITS-1:0] mode_reg2;
input [ADDR_BITS-1:0] mode_reg3;
begin
if (DEBUG) $display ("%m: at time %t INFO: Performing Initialization Sequence", $time);
cmd_task(1, NOP, 'bx, 'bx);
cmd_task(1, ZQ, 'bx, 'h400); //ZQCL
cmd_task(1, LOAD_MODE, 3, mode_reg3);
cmd_task(1, LOAD_MODE, 2, mode_reg2);
cmd_task(1, LOAD_MODE, 1, mode_reg1);
cmd_task(1, LOAD_MODE, 0, mode_reg0 | 'h100); // DLL Reset
cmd_task(0, NOP, 'bx, 'bx);
end
endtask
task reset_task;
integer i;
begin
// disable inputs
dq_in_valid = 0;
dqs_in_valid <= 0;
wdqs_cntr = 0;
wdq_cntr = 0;
for (i=0; i<31; i=i+1) begin
wdqs_pos_cntr[i] <= 0;
end
b2b_write <= 0;
// disable outputs
out_en = 0;
dq_out_en = 0;
rdq_cntr = 0;
dqs_out_en = 0;
rdqs_cntr = 0;
// disable ODT
odt_en = 0;
dyn_odt_en = 0;
odt_state = 0;
dyn_odt_state = 0;
// reset bank state
active_bank = 0;
auto_precharge_bank = 0;
read_precharge_bank = 0;
write_precharge_bank = 0;
// require initialization sequence
init_done = 0;
mpr_en = 0;
init_step = 0;
init_mode_reg = 0;
init_dll_reset = 0;
zq_set = 0;
// reset DLL
dll_en = 0;
dll_reset = 0;
dll_locked = 0;
// exit power down and self refresh
prev_cke = 1'bx;
in_power_down = 0;
in_self_refresh = 0;
// clear pipelines
al_pipeline = 0;
wr_pipeline = 0;
rd_pipeline = 0;
odt_pipeline = 0;
dyn_odt_pipeline = 0;
end
endtask
parameter SAME_BANK = 2'd0; // same bank, same group
parameter DIFF_BANK = 2'd1; // different bank, same group
parameter DIFF_GROUP = 2'd2; // different bank, different group
task chk_err;
input [1:0] relationship;
input [BA_BITS-1:0] bank;
input [3:0] fromcmd;
input [3:0] cmd;
reg err;
begin
// $display ("truebl4 = %d, relationship = %d, fromcmd = %h, cmd = %h", truebl4, relationship, fromcmd, cmd);
casex ({truebl4, relationship, fromcmd, cmd})
// load mode
{1'bx, DIFF_BANK , LOAD_MODE, LOAD_MODE} : begin if (ck_cntr - ck_load_mode < TMRD) $display ("%m: at time %t ERROR: tMRD violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , LOAD_MODE, READ } : begin if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , LOAD_MODE, REFRESH } ,
{1'bx, DIFF_BANK , LOAD_MODE, PRECHARGE} ,
{1'bx, DIFF_BANK , LOAD_MODE, ACTIVATE } ,
{1'bx, DIFF_BANK , LOAD_MODE, ZQ } ,
{1'bx, DIFF_BANK , LOAD_MODE, PWR_DOWN } ,
{1'bx, DIFF_BANK , LOAD_MODE, SELF_REF } : begin if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK)) $display ("%m: at time %t ERROR: tMOD violation during %s", $time, cmd_string[cmd]); end
// refresh
{1'bx, DIFF_BANK , REFRESH , LOAD_MODE} ,
{1'bx, DIFF_BANK , REFRESH , REFRESH } ,
{1'bx, DIFF_BANK , REFRESH , PRECHARGE} ,
{1'bx, DIFF_BANK , REFRESH , ACTIVATE } ,
{1'bx, DIFF_BANK , REFRESH , ZQ } ,
{1'bx, DIFF_BANK , REFRESH , SELF_REF } : begin if ($time - tm_refresh < TRFC_MIN) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , REFRESH , PWR_DOWN } : begin if (ck_cntr - ck_refresh < TREFPDEN) $display ("%m: at time %t ERROR: tREFPDEN violation during %s", $time, cmd_string[cmd]); end
// precharge
{1'bx, SAME_BANK , PRECHARGE, ACTIVATE } : begin if ($time - tm_bank_precharge[bank] < TRP) $display ("%m: at time %t ERROR: tRP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'bx, DIFF_BANK , PRECHARGE, LOAD_MODE} ,
{1'bx, DIFF_BANK , PRECHARGE, REFRESH } ,
{1'bx, DIFF_BANK , PRECHARGE, ZQ } ,
{1'bx, DIFF_BANK , PRECHARGE, SELF_REF } : begin if ($time - tm_precharge < TRP) $display ("%m: at time %t ERROR: tRP violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , PRECHARGE, PWR_DOWN } : ; //tPREPDEN = 1 tCK, can be concurrent with auto precharge
// activate
{1'bx, SAME_BANK , ACTIVATE , PRECHARGE} : begin if ($time - tm_bank_activate[bank] > TRAS_MAX) $display ("%m: at time %t ERROR: tRAS maximum violation during %s to bank %d", $time, cmd_string[cmd], bank);
if ($time - tm_bank_activate[bank] < TRAS_MIN) $display ("%m: at time %t ERROR: tRAS minimum violation during %s to bank %d", $time, cmd_string[cmd], bank);end
{1'bx, SAME_BANK , ACTIVATE , ACTIVATE } : begin if ($time - tm_bank_activate[bank] < TRC) $display ("%m: at time %t ERROR: tRC violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'bx, SAME_BANK , ACTIVATE , WRITE } ,
{1'bx, SAME_BANK , ACTIVATE , READ } : ; // tRCD is checked outside this task
{1'b0, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD) || (ck_cntr - ck_activate < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_BANK , ACTIVATE , ACTIVATE } : begin if (($time - tm_group_activate[bank[1]] < TRRD) || (ck_cntr - ck_group_activate[bank[1]] < TRRD_TCK)) $display ("%m: at time %t ERROR: tRRD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_GROUP, ACTIVATE , ACTIVATE } : begin if (($time - tm_activate < TRRD_DG) || (ck_cntr - ck_activate < TRRD_DG_TCK)) $display ("%m: at time %t ERROR: tRRD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'bx, DIFF_BANK , ACTIVATE , REFRESH } : begin if ($time - tm_activate < TRC) $display ("%m: at time %t ERROR: tRC violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , ACTIVATE , PWR_DOWN } : begin if (ck_cntr - ck_activate < TACTPDEN) $display ("%m: at time %t ERROR: tACTPDEN violation during %s", $time, cmd_string[cmd]); end
// write
{1'bx, SAME_BANK , WRITE , PRECHARGE} : begin if (($time - tm_bank_write_end[bank] < TWR) || (ck_cntr - ck_bank_write[bank] <= write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_BANK , WRITE , WRITE } : begin if (ck_cntr - ck_group_write[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_BANK , WRITE , READ } : begin if (ck_cntr - ck_group_write[bank[1]] < write_latency + burst_length/2 + TWTR_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_GROUP, WRITE , WRITE } : begin if (ck_cntr - ck_write < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_GROUP, WRITE , READ } : begin if (ck_cntr - ck_write < write_latency + burst_length/2 + TWTR_DG_TCK - additive_latency) $display ("%m: at time %t ERROR: tWTR_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'bx, DIFF_BANK , WRITE , PWR_DOWN } : begin if (($time - tm_write_end < TWR) || (ck_cntr - ck_write < write_latency + burst_length/2)) $display ("%m: at time %t ERROR: tWRPDEN violation during %s", $time, cmd_string[cmd]); end
// read
{1'bx, SAME_BANK , READ , PRECHARGE} : begin if (($time - tm_bank_read_end[bank] < TRTP) || (ck_cntr - ck_bank_read[bank] < additive_latency + TRTP_TCK)) $display ("%m: at time %t ERROR: tRTP violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b0, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task
{1'b1, DIFF_BANK , READ , WRITE } : ; // tRTW is checked outside this task
{1'b0, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_read < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_BANK , READ , READ } : begin if (ck_cntr - ck_group_read[bank[1]] < TCCD) $display ("%m: at time %t ERROR: tCCD violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'b1, DIFF_GROUP, READ , WRITE } : ; // tRTW is checked outside this task
{1'b1, DIFF_GROUP, READ , READ } : begin if (ck_cntr - ck_read < TCCD_DG) $display ("%m: at time %t ERROR: tCCD_DG violation during %s to bank %d", $time, cmd_string[cmd], bank); end
{1'bx, DIFF_BANK , READ , PWR_DOWN } : begin if (ck_cntr - ck_read < read_latency + 5) $display ("%m: at time %t ERROR: tRDPDEN violation during %s", $time, cmd_string[cmd]); end
// zq
{1'bx, DIFF_BANK , ZQ , LOAD_MODE} : ; // 1 tCK
{1'bx, DIFF_BANK , ZQ , REFRESH } ,
{1'bx, DIFF_BANK , ZQ , PRECHARGE} ,
{1'bx, DIFF_BANK , ZQ , ACTIVATE } ,
{1'bx, DIFF_BANK , ZQ , ZQ } ,
{1'bx, DIFF_BANK , ZQ , PWR_DOWN } ,
{1'bx, DIFF_BANK , ZQ , SELF_REF } : begin if (ck_cntr - ck_zqinit < TZQINIT) $display ("%m: at time %t ERROR: tZQinit violation during %s", $time, cmd_string[cmd]);
if (ck_cntr - ck_zqoper < TZQOPER) $display ("%m: at time %t ERROR: tZQoper violation during %s", $time, cmd_string[cmd]);
if (ck_cntr - ck_zqcs < TZQCS) $display ("%m: at time %t ERROR: tZQCS violation during %s", $time, cmd_string[cmd]); end
// power down
{1'bx, DIFF_BANK , PWR_DOWN , LOAD_MODE} ,
{1'bx, DIFF_BANK , PWR_DOWN , REFRESH } ,
{1'bx, DIFF_BANK , PWR_DOWN , PRECHARGE} ,
{1'bx, DIFF_BANK , PWR_DOWN , ACTIVATE } ,
{1'bx, DIFF_BANK , PWR_DOWN , WRITE } ,
{1'bx, DIFF_BANK , PWR_DOWN , ZQ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , PWR_DOWN , READ } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]);
else if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , PWR_DOWN , PWR_DOWN } ,
{1'bx, DIFF_BANK , PWR_DOWN , SELF_REF } : begin if (($time - tm_power_down < TXP) || (ck_cntr - ck_power_down < TXP_TCK)) $display ("%m: at time %t ERROR: tXP violation during %s", $time, cmd_string[cmd]);
if ((tm_power_down > tm_refresh) && ($time - tm_refresh < TRFC_MIN)) $display ("%m: at time %t ERROR: tRFC violation during %s", $time, cmd_string[cmd]);
if ((tm_refresh > tm_power_down) && (($time - tm_power_down < TXPDLL) || (ck_cntr - ck_power_down < TXPDLL_TCK))) $display ("%m: at time %t ERROR: tXPDLL violation during %s", $time, cmd_string[cmd]);
if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end
// self refresh
{1'bx, DIFF_BANK , SELF_REF , LOAD_MODE} ,
{1'bx, DIFF_BANK , SELF_REF , REFRESH } ,
{1'bx, DIFF_BANK , SELF_REF , PRECHARGE} ,
{1'bx, DIFF_BANK , SELF_REF , ACTIVATE } ,
{1'bx, DIFF_BANK , SELF_REF , WRITE } ,
{1'bx, DIFF_BANK , SELF_REF , ZQ } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , SELF_REF , READ } : begin if (ck_cntr - ck_self_refresh < TXSDLL) $display ("%m: at time %t ERROR: tXSDLL violation during %s", $time, cmd_string[cmd]); end
{1'bx, DIFF_BANK , SELF_REF , PWR_DOWN } ,
{1'bx, DIFF_BANK , SELF_REF , SELF_REF } : begin if (($time - tm_self_refresh < TXS) || (ck_cntr - ck_self_refresh < TXS_TCK)) $display ("%m: at time %t ERROR: tXS violation during %s", $time, cmd_string[cmd]);
if (($time - tm_cke_cmd < TCKE) || (ck_cntr - ck_cke_cmd < TCKE_TCK)) $display ("%m: at time %t ERROR: tCKE violation on CKE", $time); end
endcase
end
endtask
task cmd_task;
input cke;
input [2:0] cmd;
input [BA_BITS-1:0] bank;
input [ADDR_BITS-1:0] addr;
reg [`BANKS:0] i;
integer j;
reg [`BANKS:0] tfaw_cntr;
reg [COL_BITS-1:0] col;
reg group;
begin
// tRFC max check
if (!er_trfc_max && !in_self_refresh) begin
if ($time - tm_refresh > TRFC_MAX && check_strict_timing) begin
$display ("%m: at time %t ERROR: tRFC maximum violation during %s", $time, cmd_string[cmd]);
er_trfc_max = 1;
end
end
if (cke) begin
if ((cmd < NOP) && (cmd != PRECHARGE)) begin
if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK))
$display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]);
for (j=0; j<=SELF_REF; j=j+1) begin
chk_err(SAME_BANK , bank, j, cmd);
chk_err(DIFF_BANK , bank, j, cmd);
chk_err(DIFF_GROUP, bank, j, cmd);
end
end
case (cmd)
LOAD_MODE : begin
if (|odt_pipeline)
$display ("%m: at time %t ERROR: ODTL violation during %s", $time, cmd_string[cmd]);
if (odt_state)
$display ("%m: at time %t ERROR: ODT must be off prior to %s", $time, cmd_string[cmd]);
if (|active_bank) begin
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d", $time, cmd_string[cmd], bank);
if (bank>>2) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved bank bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
case (bank)
0 : begin
// Burst Length
if (addr[1:0] == 2'b00) begin
burst_length = 8;
blotf = 0;
truebl4 = 0;
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = %d", $time, cmd_string[cmd], bank, burst_length);
end else if (addr[1:0] == 2'b01) begin
burst_length = 8;
blotf = 1;
truebl4 = 0;
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Select via A12", $time, cmd_string[cmd], bank);
end else if (addr[1:0] == 2'b10) begin
burst_length = 4;
blotf = 0;
truebl4 = 0;
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = Fixed %d (chop)", $time, cmd_string[cmd], bank, burst_length);
end else if (feature_truebl4 && (addr[1:0] == 2'b11)) begin
burst_length = 4;
blotf = 0;
truebl4 = 1;
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Length = True %d", $time, cmd_string[cmd], bank, burst_length);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Burst Length = %d", $time, cmd_string[cmd], bank, addr[1:0]);
end
// Burst Order
burst_order = addr[3];
if (!burst_order) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Sequential", $time, cmd_string[cmd], bank);
end else if (burst_order) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Burst Order = Interleaved", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Burst Order = %d", $time, cmd_string[cmd], bank, burst_order);
end
// CAS Latency
cas_latency = {addr[2],addr[6:4]} + 4;
set_latency;
if ((cas_latency >= CL_MIN) && (cas_latency <= CL_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal CAS Latency = %d", $time, cmd_string[cmd], bank, cas_latency);
end
// Reserved
if (addr[7] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
// DLL Reset
dll_reset = addr[8];
if (!dll_reset) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Normal", $time, cmd_string[cmd], bank);
end else if (dll_reset) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Reset = Reset DLL", $time, cmd_string[cmd], bank);
dll_locked = 0;
init_dll_reset = 1;
ck_dll_reset <= ck_cntr;
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal DLL Reset = %d", $time, cmd_string[cmd], bank, dll_reset);
end
// Write Recovery
if (addr[11:9] == 0) begin
write_recovery = 16;
end else if (addr[11:9] < 4) begin
write_recovery = addr[11:9] + 4;
end else begin
write_recovery = 2*addr[11:9];
end
if ((write_recovery >= WR_MIN) && (write_recovery <= WR_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Write Recovery = %d", $time, cmd_string[cmd], bank, write_recovery);
end
// Power Down Mode
low_power = !addr[12];
if (!low_power) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL on", $time, cmd_string[cmd], bank);
end else if (low_power) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Power Down Mode = DLL off", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Power Down Mode = %d", $time, cmd_string[cmd], bank, low_power);
end
// Reserved
if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
end
1 : begin
// DLL Enable
dll_en = !addr[0];
if (!dll_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Disabled", $time, cmd_string[cmd], bank);
if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d DLL off mode is not modeled", $time, cmd_string[cmd], bank);
end else if (dll_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d DLL Enable = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal DLL Enable = %d", $time, cmd_string[cmd], bank, dll_en);
end
// Output Drive Strength
if ({addr[5], addr[1]} == 2'b00) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/6);
end else if ({addr[5], addr[1]} == 2'b01) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/7);
end else if ({addr[5], addr[1]} == 2'b11) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Output Drive Strength = %d Ohm", $time, cmd_string[cmd], bank, RZQ/5);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Output Drive Strength = %d", $time, cmd_string[cmd], bank, {addr[5], addr[1]});
end
// ODT Rtt (Rtt_NOM)
odt_rtt_nom = {addr[9], addr[6], addr[2]};
if (odt_rtt_nom == 3'b000) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = Disabled", $time, cmd_string[cmd], bank);
odt_en = 0;
end else if ((odt_rtt_nom < 4) || ((!addr[7] || (addr[7] && addr[12])) && (odt_rtt_nom < 6))) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_nom(odt_rtt_nom));
odt_en = 1;
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal ODT Rtt = %d", $time, cmd_string[cmd], bank, odt_rtt_nom);
odt_en = 0;
end
// Report the additive latency value
al = addr[4:3];
set_latency;
if (al == 0) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = %d", $time, cmd_string[cmd], bank, al);
end else if ((al >= AL_MIN) && (al <= AL_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Additive Latency = CL - %d", $time, cmd_string[cmd], bank, al);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Additive Latency = %d", $time, cmd_string[cmd], bank, al);
end
// Write Levelization
write_levelization = addr[7];
if (!write_levelization) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Disabled", $time, cmd_string[cmd], bank);
end else if (write_levelization) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Write Levelization = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Write Levelization = %d", $time, cmd_string[cmd], bank, write_levelization);
end
// Reserved
if (addr[8] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
// Reserved
if (addr[10] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
// TDQS Enable
tdqs_en = addr[11];
if (!tdqs_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Disabled", $time, cmd_string[cmd], bank);
end else if (tdqs_en) begin
if (8 == DQ_BITS) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d TDQS Enable = Enabled", $time, cmd_string[cmd], bank);
end
else begin
$display ("%m: at time %t WARNING: %s %d Illegal TDQS Enable. TDQS only exists on a x8 part", $time, cmd_string[cmd], bank);
tdqs_en = 0;
end
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal TDQS Enable = %d", $time, cmd_string[cmd], bank, tdqs_en);
end
// Output Enable
out_en = !addr[12];
if (!out_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Disabled", $time, cmd_string[cmd], bank);
end else if (out_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Qoff = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Qoff = %d", $time, cmd_string[cmd], bank, out_en);
end
// Reserved
if (ADDR_BITS>13 && addr[13] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
end
2 : begin
if (feature_pasr) begin
// Partial Array Self Refresh
pasr = addr[2:0];
case (pasr)
3'b000 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-7", $time, cmd_string[cmd], bank);
3'b001 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-3", $time, cmd_string[cmd], bank);
3'b010 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0-1", $time, cmd_string[cmd], bank);
3'b011 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 0", $time, cmd_string[cmd], bank);
3'b100 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 2-7", $time, cmd_string[cmd], bank);
3'b101 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 4-7", $time, cmd_string[cmd], bank);
3'b110 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 6-7", $time, cmd_string[cmd], bank);
3'b111 : if (DEBUG) $display ("%m: at time %t INFO: %s %d Partial Array Self Refresh = Bank 7", $time, cmd_string[cmd], bank);
default : $display ("%m: at time %t ERROR: %s %d Illegal Partial Array Self Refresh = %d", $time, cmd_string[cmd], bank, pasr);
endcase
end
else
if (addr[2:0] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
// CAS Write Latency
cas_write_latency = addr[5:3]+5;
set_latency;
if ((cas_write_latency >= CWL_MIN) && (cas_write_latency <= CWL_MAX)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal CAS Write Latency = %d", $time, cmd_string[cmd], bank, cas_write_latency);
end
// Auto Self Refresh Method
asr = addr[6];
if (!asr) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Disabled", $time, cmd_string[cmd], bank);
end else if (asr) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Auto Self Refresh = Enabled", $time, cmd_string[cmd], bank);
if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Auto Self Refresh is not modeled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Auto Self Refresh = %d", $time, cmd_string[cmd], bank, asr);
end
// Self Refresh Temperature
srt = addr[7];
if (!srt) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Normal", $time, cmd_string[cmd], bank);
end else if (srt) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Self Refresh Temperature = Extended", $time, cmd_string[cmd], bank);
if (check_strict_mrbits) $display ("%m: at time %t WARNING: %s %d Self Refresh Temperature is not modeled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Self Refresh Temperature = %d", $time, cmd_string[cmd], bank, srt);
end
if (asr && srt)
$display ("%m: at time %t ERROR: %s %d SRT must be set to 0 when ASR is enabled.", $time, cmd_string[cmd], bank);
// Reserved
if (addr[8] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
// Dynamic ODT (Rtt_WR)
odt_rtt_wr = addr[10:9];
if (odt_rtt_wr == 2'b00) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT = Disabled", $time, cmd_string[cmd], bank);
dyn_odt_en = 0;
end else if ((odt_rtt_wr > 0) && (odt_rtt_wr < 3)) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d Dynamic ODT Rtt = %d Ohm", $time, cmd_string[cmd], bank, get_rtt_wr(odt_rtt_wr));
dyn_odt_en = 1;
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal Dynamic ODT = %d", $time, cmd_string[cmd], bank, odt_rtt_wr);
dyn_odt_en = 0;
end
// Reserved
if (ADDR_BITS>13 && addr[13:11] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
end
3 : begin
mpr_select = addr[1:0];
// MultiPurpose Register Select
if (mpr_select == 2'b00) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Select = Pre-defined pattern", $time, cmd_string[cmd], bank);
end else begin
if (check_strict_mrbits) $display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Select = %d", $time, cmd_string[cmd], bank, mpr_select);
end
// MultiPurpose Register Enable
mpr_en = addr[2];
if (!mpr_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Disabled", $time, cmd_string[cmd], bank);
end else if (mpr_en) begin
if (DEBUG) $display ("%m: at time %t INFO: %s %d MultiPurpose Register Enable = Enabled", $time, cmd_string[cmd], bank);
end else begin
$display ("%m: at time %t ERROR: %s %d Illegal MultiPurpose Register Enable = %d", $time, cmd_string[cmd], bank, mpr_en);
end
// Reserved
if (ADDR_BITS>13 && addr[13:3] !== 0 && check_strict_mrbits) begin
$display ("%m: at time %t ERROR: %s %d Illegal value. Reserved address bits must be programmed to zero", $time, cmd_string[cmd], bank);
end
end
endcase
if (dyn_odt_en && write_levelization)
$display ("%m: at time %t ERROR: Dynamic ODT is not available during Write Leveling mode.", $time);
init_mode_reg[bank] = 1;
mode_reg[bank] = addr;
tm_load_mode <= $time;
ck_load_mode <= ck_cntr;
end
end
REFRESH : begin
if (mpr_en) begin
$display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (|active_bank) begin
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s", $time, cmd_string[cmd]);
er_trfc_max = 0;
ref_cntr = ref_cntr + 1;
tm_refresh <= $time;
ck_refresh <= ck_cntr;
end
end
PRECHARGE : begin
if (addr[AP]) begin
if (DEBUG) $display ("%m: at time %t INFO: %s All", $time, cmd_string[cmd]);
end
// PRECHARGE command will be treated as a NOP if there is no open row in that bank (idle state),
// or if the previously open row is already in the process of precharging
if (|active_bank) begin
if (($time - tm_txpr < TXPR) || (ck_cntr - ck_txpr < TXPR_TCK))
$display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[cmd]);
if (mpr_en) begin
$display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
for (i=0; i<`BANKS; i=i+1) begin
if (active_bank[i]) begin
if (addr[AP] || (i == bank)) begin
for (j=0; j<=SELF_REF; j=j+1) begin
chk_err(SAME_BANK, i, j, cmd);
chk_err(DIFF_BANK, i, j, cmd);
end
if (auto_precharge_bank[i]) begin
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], i);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d", $time, cmd_string[cmd], i);
active_bank[i] = 1'b0;
tm_bank_precharge[i] <= $time;
tm_precharge <= $time;
ck_precharge <= ck_cntr;
end
end
end
end
end
end
end
ACTIVATE : begin
tfaw_cntr = 0;
for (i=0; i<`BANKS; i=i+1) begin
if ($time - tm_bank_activate[i] < TFAW) begin
tfaw_cntr = tfaw_cntr + 1;
end
end
if (tfaw_cntr > 3) begin
$display ("%m: at time %t ERROR: tFAW violation during %s to bank %d", $time, cmd_string[cmd], bank);
end
if (mpr_en) begin
$display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!init_done) begin
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (active_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Bank %d must be Precharged.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (addr >= 1<<ROW_BITS) begin
$display ("%m: at time %t WARNING: row = %h does not exist. Maximum row = %h", $time, addr, (1<<ROW_BITS)-1);
end
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d row %h", $time, cmd_string[cmd], bank, addr);
active_bank[bank] = 1'b1;
active_row[bank] = addr;
tm_group_activate[bank[1]] <= $time;
tm_activate <= $time;
tm_bank_activate[bank] <= $time;
ck_group_activate[bank[1]] <= ck_cntr;
ck_activate <= ck_cntr;
end
end
WRITE : begin
if ((!rd_bc && blotf) || (burst_length == 4)) begin // BL=4
if (truebl4) begin
if (ck_cntr - ck_group_read[bank[1]] < read_latency + TCCD/2 + 2 - write_latency)
$display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
if (ck_cntr - ck_read < read_latency + TCCD_DG/2 + 2 - write_latency)
$display ("%m: at time %t ERROR: tRTW_DG violation during %s to bank %d", $time, cmd_string[cmd], bank);
end else begin
if (ck_cntr - ck_read < read_latency + TCCD/2 + 2 - write_latency)
$display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
end
end else begin // BL=8
if (ck_cntr - ck_read < read_latency + TCCD + 2 - write_latency)
$display ("%m: at time %t ERROR: tRTW violation during %s to bank %d", $time, cmd_string[cmd], bank);
end
if (mpr_en) begin
$display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!init_done) begin
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!active_bank[bank]) begin
if (check_strict_timing) $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if (auto_precharge_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if (ck_cntr - ck_write < burst_length/2) begin
$display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (addr[AP]) begin
auto_precharge_bank[bank] = 1'b1;
write_precharge_bank[bank] = 1'b1;
end
col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
if (col >= 1<<COL_BITS) begin
$display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
end
if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
col = col & -4;
end else begin // BL=8
col = col & -8;
end
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
wr_pipeline[2*write_latency + 1] = 1;
ba_pipeline[2*write_latency + 1] = bank;
row_pipeline[2*write_latency + 1] = active_row[bank];
col_pipeline[2*write_latency + 1] = col;
if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
bl_pipeline[2*write_latency + 1] = 4;
if (mpr_en && col%4) begin
$display ("%m: at time %t WARNING: col[1:0] must be set to 2'b00 during a BL4 Multipurpose Register read", $time);
end
end else begin // BL=8
bl_pipeline[2*write_latency + 1] = 8;
if (odt_in) begin
ck_odth8 <= ck_cntr;
end
end
for (j=0; j<(burst_length + 4); j=j+1) begin
dyn_odt_pipeline[2*(write_latency - 2) + j] = 1'b1; // ODTLcnw = WL - 2, ODTLcwn = BL/2 + 2
end
ck_bank_write[bank] <= ck_cntr;
ck_group_write[bank[1]] <= ck_cntr;
ck_write <= ck_cntr;
end
end
READ : begin
if (!dll_locked)
$display ("%m: at time %t WARNING: tDLLK violation during %s.", $time, cmd_string[cmd]);
if (mpr_en && (addr[1:0] != 2'b00)) begin
$display ("%m: at time %t ERROR: %s Failure. addr[1:0] must be zero during Multipurpose Register Read.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!init_done) begin
$display ("%m: at time %t ERROR: %s Failure. Initialization sequence is not complete.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (!active_bank[bank] && !mpr_en) begin
if (check_strict_timing) $display ("%m: at time %t ERROR: %s Failure. Bank %d must be Activated.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if (auto_precharge_bank[bank]) begin
$display ("%m: at time %t ERROR: %s Failure. Auto Precharge is scheduled to bank %d.", $time, cmd_string[cmd], bank);
if (STOP_ON_ERROR) $stop(0);
end else if (ck_cntr - ck_read < burst_length/2) begin
$display ("%m: at time %t ERROR: %s Failure. Illegal burst interruption.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (addr[AP] && !mpr_en) begin
auto_precharge_bank[bank] = 1'b1;
read_precharge_bank[bank] = 1'b1;
end
col = {addr[BC-1:AP+1], addr[AP-1:0]}; // assume BC > AP
if (col >= 1<<COL_BITS) begin
$display ("%m: at time %t WARNING: col = %h does not exist. Maximum col = %h", $time, col, (1<<COL_BITS)-1);
end
if (DEBUG) $display ("%m: at time %t INFO: %s bank %d col %h, auto precharge %d", $time, cmd_string[cmd], bank, col, addr[AP]);
rd_pipeline[2*read_latency - 1] = 1;
ba_pipeline[2*read_latency - 1] = bank;
row_pipeline[2*read_latency - 1] = active_row[bank];
col_pipeline[2*read_latency - 1] = col;
if ((!addr[BC] && blotf) || (burst_length == 4)) begin // BL=4
bl_pipeline[2*read_latency - 1] = 4;
if (mpr_en && col%4) begin
$display ("%m: at time %t WARNING: col[1:0] must be set to 2'b00 during a BL4 Multipurpose Register read", $time);
end
end else begin // BL=8
bl_pipeline[2*read_latency - 1] = 8;
if (mpr_en && col%8) begin
$display ("%m: at time %t WARNING: col[2:0] must be set to 3'b000 during a BL8 Multipurpose Register read", $time);
end
end
rd_bc = addr[BC];
ck_bank_read[bank] <= ck_cntr;
ck_group_read[bank[1]] <= ck_cntr;
ck_read <= ck_cntr;
end
end
ZQ : begin
if (mpr_en) begin
$display ("%m: at time %t ERROR: %s Failure. Multipurpose Register must be disabled.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else if (|active_bank) begin
$display ("%m: at time %t ERROR: %s Failure. All banks must be Precharged.", $time, cmd_string[cmd]);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: %s long = %d", $time, cmd_string[cmd], addr[AP]);
if (addr[AP]) begin
zq_set = 1;
if (init_done) begin
ck_zqoper <= ck_cntr;
end else begin
ck_zqinit <= ck_cntr;
end
end else begin
ck_zqcs <= ck_cntr;
end
end
end
NOP: begin
if (in_power_down) begin
if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK))
$display ("%m: at time %t ERROR: tCKSRX violation during Power Down Exit", $time);
if ($time - tm_cke_cmd > TPD_MAX)
$display ("%m: at time %t ERROR: tPD maximum violation during Power Down Exit", $time);
if (DEBUG) $display ("%m: at time %t INFO: Power Down Exit", $time);
in_power_down = 0;
if ((active_bank == 0) && low_power) begin // precharge power down with dll off
if (ck_cntr - ck_odt < write_latency - 1)
$display ("%m: at time %t WARNING: tANPD violation during Power Down Exit. Synchronous or asynchronous change in termination resistance is possible.", $time);
tm_slow_exit_pd <= $time;
ck_slow_exit_pd <= ck_cntr;
end
tm_power_down <= $time;
ck_power_down <= ck_cntr;
end
if (in_self_refresh) begin
if (($time - tm_freq_change < TCKSRX) || (ck_cntr - ck_freq_change < TCKSRX_TCK))
$display ("%m: at time %t ERROR: tCKSRX violation during Self Refresh Exit", $time);
if (ck_cntr - ck_cke_cmd < TCKESR_TCK)
$display ("%m: at time %t ERROR: tCKESR violation during Self Refresh Exit", $time);
if ($time - tm_cke < TISXR)
$display ("%m: at time %t ERROR: tISXR violation during Self Refresh Exit", $time);
if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Exit", $time);
in_self_refresh = 0;
ck_dll_reset <= ck_cntr;
ck_self_refresh <= ck_cntr;
tm_self_refresh <= $time;
tm_refresh <= $time;
end
end
endcase
if ((prev_cke !== 1) && (cmd !== NOP)) begin
$display ("%m: at time %t ERROR: NOP or Deselect is required when CKE goes active.", $time);
end
if (!init_done) begin
case (init_step)
0 : begin
if ($time - tm_rst_n < 500000000 && check_strict_timing)
$display ("%m at time %t WARNING: 500 us is required after RST_N goes inactive before CKE goes active.", $time);
tm_txpr <= $time;
ck_txpr <= ck_cntr;
init_step = init_step + 1;
end
1 : if (dll_en) init_step = init_step + 1;
2 : begin
if (&init_mode_reg && init_dll_reset && zq_set) begin
if (DEBUG) $display ("%m: at time %t INFO: Initialization Sequence is complete", $time);
init_done = 1;
end
end
endcase
end
end else if (prev_cke) begin
if ((!init_done) && (init_step > 1)) begin
$display ("%m: at time %t ERROR: CKE must remain active until the initialization sequence is complete.", $time);
if (STOP_ON_ERROR) $stop(0);
end
case (cmd)
REFRESH : begin
if ($time - tm_txpr < TXPR)
$display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[SELF_REF]);
for (j=0; j<=SELF_REF; j=j+1) begin
chk_err(DIFF_BANK, bank, j, SELF_REF);
end
if (mpr_en) begin
$display ("%m: at time %t ERROR: Self Refresh Failure. Multipurpose Register must be disabled.", $time);
if (STOP_ON_ERROR) $stop(0);
end else if (|active_bank) begin
$display ("%m: at time %t ERROR: Self Refresh Failure. All banks must be Precharged.", $time);
if (STOP_ON_ERROR) $stop(0);
end else if (odt_state) begin
$display ("%m: at time %t ERROR: Self Refresh Failure. ODT must be off prior to entering Self Refresh", $time);
if (STOP_ON_ERROR) $stop(0);
end else if (!init_done) begin
$display ("%m: at time %t ERROR: Self Refresh Failure. Initialization sequence is not complete.", $time);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: Self Refresh Enter", $time);
if (feature_pasr)
// Partial Array Self Refresh
case (pasr)
3'b000 : ;//keep Bank 0-7
3'b001 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 4-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hF0); end
3'b010 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 2-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFC); end
3'b011 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 1-7 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'hFE); end
3'b100 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-1 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h03); end
3'b101 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-3 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h0F); end
3'b110 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-5 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h3F); end
3'b111 : begin if (DEBUG) $display("%m: at time %t INFO: Banks 0-6 will be lost due to Partial Array Self Refresh", $time); erase_banks(8'h7F); end
endcase
in_self_refresh = 1;
dll_locked = 0;
end
end
NOP : begin
// entering precharge power down with dll off and tANPD has not been satisfied
if (low_power && (active_bank == 0) && |odt_pipeline)
$display ("%m: at time %t WARNING: tANPD violation during %s. Synchronous or asynchronous change in termination resistance is possible.", $time, cmd_string[PWR_DOWN]);
if ($time - tm_txpr < TXPR)
$display ("%m: at time %t ERROR: tXPR violation during %s", $time, cmd_string[PWR_DOWN]);
for (j=0; j<=SELF_REF; j=j+1) begin
chk_err(DIFF_BANK, bank, j, PWR_DOWN);
end
if (mpr_en) begin
$display ("%m: at time %t ERROR: Power Down Failure. Multipurpose Register must be disabled.", $time);
if (STOP_ON_ERROR) $stop(0);
end else if (!init_done) begin
$display ("%m: at time %t ERROR: Power Down Failure. Initialization sequence is not complete.", $time);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) begin
if (|active_bank) begin
$display ("%m: at time %t INFO: Active Power Down Enter", $time);
end else begin
$display ("%m: at time %t INFO: Precharge Power Down Enter", $time);
end
end
in_power_down = 1;
end
end
default : begin
$display ("%m: at time %t ERROR: NOP, Deselect, or Refresh is required when CKE goes inactive.", $time);
end
endcase
end else if (in_self_refresh || in_power_down) begin
if ((ck_cntr - ck_cke_cmd <= TCPDED) && (cmd !== NOP))
$display ("%m: at time %t ERROR: tCPDED violation during Power Down or Self Refresh Entry. NOP or Deselect is required.", $time);
end
prev_cke = cke;
end
endtask
task data_task;
reg [BA_BITS-1:0] bank;
reg [ROW_BITS-1:0] row;
reg [COL_BITS-1:0] col;
integer i;
integer j;
begin
if (diff_ck) begin
for (i=0; i<32; i=i+1) begin
if (dq_in_valid && dll_locked && ($time - tm_dqs_neg[i] < $rtoi(TDSS*tck_avg)))
$display ("%m: at time %t ERROR: tDSS violation on %s bit %d", $time, dqs_string[i/16], i%16);
if (check_write_dqs_high[i])
$display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period.", $time, dqs_string[i/16], i%16);
end
check_write_dqs_high <= 0;
end else begin
for (i=0; i<32; i=i+1) begin
if (dll_locked && dq_in_valid) begin
tm_tdqss = abs_value(1.0*tm_ck_pos - tm_dqss_pos[i]);
if ((tm_tdqss < tck_avg/2.0) && (tm_tdqss > TDQSS*tck_avg))
$display ("%m: at time %t ERROR: tDQSS violation on %s bit %d", $time, dqs_string[i/16], i%16);
end
if (check_write_dqs_low[i])
$display ("%m: at time %t ERROR: %s bit %d latching edge required during the preceding clock period", $time, dqs_string[i/16], i%16);
end
check_write_preamble <= 0;
check_write_postamble <= 0;
check_write_dqs_low <= 0;
end
if (wr_pipeline[0] || rd_pipeline[0]) begin
bank = ba_pipeline[0];
row = row_pipeline[0];
col = col_pipeline[0];
burst_cntr = 0;
memory_read(bank, row, col, memory_data);
end
// burst counter
if (burst_cntr < burst_length) begin
burst_position = col ^ burst_cntr;
if (!burst_order) begin
burst_position[BO_BITS-1:0] = col + burst_cntr;
end
burst_cntr = burst_cntr + 1;
end
// write dqs counter
if (wr_pipeline[WDQS_PRE + 1]) begin
wdqs_cntr = WDQS_PRE + bl_pipeline[WDQS_PRE + 1] + WDQS_PST - 1;
end
// write dqs
if ((wr_pipeline[2]) && (wdq_cntr == 0)) begin //write preamble
check_write_preamble <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
end
if (wdqs_cntr > 1) begin // write data
if ((wdqs_cntr - WDQS_PST)%2) begin
check_write_dqs_high <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
end else begin
check_write_dqs_low <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
end
end
if (wdqs_cntr == WDQS_PST) begin // write postamble
check_write_postamble <= ({DQS_BITS{1'b1}}<<16) | {DQS_BITS{1'b1}};
end
if (wdqs_cntr > 0) begin
wdqs_cntr = wdqs_cntr - 1;
end
// write dq
if (dq_in_valid) begin // write data
bit_mask = 0;
if (diff_ck) begin
for (i=0; i<DM_BITS; i=i+1) begin
bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_neg[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
end
memory_data = (dq_in_neg<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
end else begin
for (i=0; i<DM_BITS; i=i+1) begin
bit_mask = bit_mask | ({`DQ_PER_DQS{~dm_in_pos[i]}}<<(burst_position*DQ_BITS + i*`DQ_PER_DQS));
end
memory_data = (dq_in_pos<<(burst_position*DQ_BITS) & bit_mask) | (memory_data & ~bit_mask);
end
dq_temp = memory_data>>(burst_position*DQ_BITS);
if (DEBUG) $display ("%m: at time %t INFO: WRITE @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
if (burst_cntr%BL_MIN == 0) begin
memory_write(bank, row, col, memory_data);
end
end
if (wr_pipeline[1]) begin
wdq_cntr = bl_pipeline[1];
end
if (wdq_cntr > 0) begin
wdq_cntr = wdq_cntr - 1;
dq_in_valid = 1'b1;
end else begin
dq_in_valid = 1'b0;
dqs_in_valid <= 1'b0;
for (i=0; i<31; i=i+1) begin
wdqs_pos_cntr[i] <= 0;
end
end
if (wr_pipeline[0]) begin
b2b_write <= 1'b0;
end
if (wr_pipeline[2]) begin
if (dqs_in_valid) begin
b2b_write <= 1'b1;
end
dqs_in_valid <= 1'b1;
wr_burst_length = bl_pipeline[2];
end
// read dqs enable counter
if (rd_pipeline[RDQSEN_PRE]) begin
rdqsen_cntr = RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1;
end
if (rdqsen_cntr > 0) begin
rdqsen_cntr = rdqsen_cntr - 1;
dqs_out_en = 1'b1;
end else begin
dqs_out_en = 1'b0;
end
// read dqs counter
if (rd_pipeline[RDQS_PRE]) begin
rdqs_cntr = RDQS_PRE + bl_pipeline[RDQS_PRE] + RDQS_PST - 1;
end
// read dqs
if (((rd_pipeline>>1 & {RDQS_PRE{1'b1}}) > 0) && (rdq_cntr == 0)) begin //read preamble
dqs_out = 1'b0;
end else if (rdqs_cntr > RDQS_PST) begin // read data
dqs_out = rdqs_cntr - RDQS_PST;
end else if (rdqs_cntr > 0) begin // read postamble
dqs_out = 1'b0;
end else begin
dqs_out = 1'b1;
end
if (rdqs_cntr > 0) begin
rdqs_cntr = rdqs_cntr - 1;
end
// read dq enable counter
if (rd_pipeline[RDQEN_PRE]) begin
rdqen_cntr = RDQEN_PRE + bl_pipeline[RDQEN_PRE] + RDQEN_PST;
end
if (rdqen_cntr > 0) begin
rdqen_cntr = rdqen_cntr - 1;
dq_out_en = 1'b1;
end else begin
dq_out_en = 1'b0;
end
// read dq
if (rd_pipeline[0]) begin
rdq_cntr = bl_pipeline[0];
end
if (rdq_cntr > 0) begin // read data
if (mpr_en) begin
`ifdef MPR_DQ0 // DQ0 output MPR data, other DQ low
if (mpr_select == 2'b00) begin // Calibration Pattern
dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, calibration_pattern[burst_position]}};
end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS)
dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, temp_sensor[burst_position]}};
end else begin // Reserved
dq_temp = {DQS_BITS{{`DQ_PER_DQS-1{1'b0}}, 1'bx}};
end
`else // all DQ output MPR data
if (mpr_select == 2'b00) begin // Calibration Pattern
dq_temp = {DQS_BITS{{`DQ_PER_DQS{calibration_pattern[burst_position]}}}};
end else if (odts_readout && (mpr_select == 2'b11)) begin // Temp Sensor (ODTS)
dq_temp = {DQS_BITS{{`DQ_PER_DQS{temp_sensor[burst_position]}}}};
end else begin // Reserved
dq_temp = {DQS_BITS{{`DQ_PER_DQS{1'bx}}}};
end
`endif
if (DEBUG) $display ("%m: at time %t READ @ DQS MultiPurpose Register %d, col = %d, data = %b", $time, mpr_select, burst_position, dq_temp[0]);
end else begin
dq_temp = memory_data>>(burst_position*DQ_BITS);
if (DEBUG) $display ("%m: at time %t INFO: READ @ DQS= bank = %h row = %h col = %h data = %h",$time, bank, row, (-1*BL_MAX & col) + burst_position, dq_temp);
end
dq_out = dq_temp;
rdq_cntr = rdq_cntr - 1;
end else begin
dq_out = {DQ_BITS{1'b1}};
end
// delay signals prior to output
if (RANDOM_OUT_DELAY && (dqs_out_en || (|dqs_out_en_dly) || dq_out_en || (|dq_out_en_dly))) begin
for (i=0; i<DQS_BITS; i=i+1) begin
// DQSCK requirements
// 1.) less than tDQSCK
// 2.) greater than -tDQSCK
// 3.) cannot change more than tQH + tDQSQ from previous DQS edge
dqsck_max = TDQSCK;
if (dqsck_max > dqsck[i] + TQH*tck_avg + TDQSQ) begin
dqsck_max = dqsck[i] + TQH*tck_avg + TDQSQ;
end
dqsck_min = -1*TDQSCK;
if (dqsck_min < dqsck[i] - TQH*tck_avg - TDQSQ) begin
dqsck_min = dqsck[i] - TQH*tck_avg - TDQSQ;
end
// DQSQ requirements
// 1.) less than tDQSQ
// 2.) greater than 0
// 3.) greater than tQH from the previous DQS edge
dqsq_min = 0;
if (dqsq_min < dqsck[i] - TQH*tck_avg) begin
dqsq_min = dqsck[i] - TQH*tck_avg;
end
if (dqsck_min == dqsck_max) begin
dqsck[i] = dqsck_min;
end else begin
dqsck[i] = $dist_uniform(seed, dqsck_min, dqsck_max);
end
dqsq_max = TDQSQ + dqsck[i];
dqs_out_en_dly[i] <= #(tck_avg/2) dqs_out_en;
dqs_out_dly[i] <= #(tck_avg/2 + dqsck[i]) dqs_out;
if (!write_levelization) begin
for (j=0; j<`DQ_PER_DQS; j=j+1) begin
dq_out_en_dly[i*`DQ_PER_DQS + j] <= #(tck_avg/2) dq_out_en;
if (dqsq_min == dqsq_max) begin
dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + dqsq_min) dq_out[i*`DQ_PER_DQS + j];
end else begin
dq_out_dly [i*`DQ_PER_DQS + j] <= #(tck_avg/2 + $dist_uniform(seed, dqsq_min, dqsq_max)) dq_out[i*`DQ_PER_DQS + j];
end
end
end
end
end else begin
out_delay = tck_avg/2;
dqs_out_en_dly <= #(out_delay) {DQS_BITS{dqs_out_en}};
dqs_out_dly <= #(out_delay) {DQS_BITS{dqs_out }};
if (write_levelization !== 1'b1) begin
dq_out_en_dly <= #(out_delay) {DQ_BITS {dq_out_en }};
dq_out_dly <= #(out_delay) {DQ_BITS {dq_out }};
end
end
end
endtask
always @ (posedge rst_n_in) begin : reset
integer i;
if (rst_n_in) begin
if ($time < 200000000 && check_strict_timing)
$display ("%m at time %t WARNING: 200 us is required before RST_N goes inactive.", $time);
if (cke_in !== 1'b0)
$display ("%m: at time %t ERROR: CKE must be inactive when RST_N goes inactive.", $time);
if ($time - tm_cke < 10000)
$display ("%m: at time %t ERROR: CKE must be maintained inactive for 10 ns before RST_N goes inactive.", $time);
// clear memory
`ifdef MAX_MEM
// verification group does not erase memory
// for (banki = 0; banki < `BANKS; banki = banki + 1) begin
// $fclose(memfd[banki]);
// memfd[banki] = open_bank_file(banki);
// end
`else
memory_used <= 0; //erase memory
`endif
end
end
always @(negedge rst_n_in or posedge diff_ck or negedge diff_ck) begin : main
integer i;
if (!rst_n_in) begin
reset_task;
end else begin
if (!in_self_refresh && (diff_ck !== 1'b0) && (diff_ck !== 1'b1))
$display ("%m: at time %t ERROR: CK and CK_N are not allowed to go to an unknown state.", $time);
data_task;
// Clock Frequency Change is legal:
// 1.) During Self Refresh
// 2.) During Precharge Power Down (DLL on or off)
if (in_self_refresh || (in_power_down && (active_bank == 0))) begin
if (diff_ck) begin
tjit_per_rtime = $time - tm_ck_pos - tck_avg;
end else begin
tjit_per_rtime = $time - tm_ck_neg - tck_avg;
end
if (dll_locked && (abs_value(tjit_per_rtime) > TJIT_PER)) begin
if ((tm_ck_pos - tm_cke_cmd < TCKSRE) || (ck_cntr - ck_cke_cmd < TCKSRE_TCK))
$display ("%m: at time %t ERROR: tCKSRE violation during Self Refresh or Precharge Power Down Entry", $time);
if (odt_state) begin
$display ("%m: at time %t ERROR: Clock Frequency Change Failure. ODT must be off prior to Clock Frequency Change.", $time);
if (STOP_ON_ERROR) $stop(0);
end else begin
if (DEBUG) $display ("%m: at time %t INFO: Clock Frequency Change detected. DLL Reset is Required.", $time);
tm_freq_change <= $time;
ck_freq_change <= ck_cntr;
dll_locked = 0;
end
end
end
if (diff_ck) begin
// check setup of command signals
if ($time > TIS) begin
if ($time - tm_cke < TIS)
$display ("%m: at time %t ERROR: tIS violation on CKE by %t", $time, tm_cke + TIS - $time);
if (cke_in) begin
for (i=0; i<22; i=i+1) begin
if ($time - tm_cmd_addr[i] < TIS)
$display ("%m: at time %t ERROR: tIS violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIS - $time);
end
end
end
// update current state
if (dll_locked) begin
if (mr_chk == 0) begin
mr_chk = 1;
end else if (init_mode_reg[0] && (mr_chk == 1)) begin
// check CL value against the clock frequency
if (cas_latency*tck_avg < CL_TIME && check_strict_timing)
$display ("%m: at time %t ERROR: CAS Latency = %d is illegal @tCK(avg) = %f", $time, cas_latency, tck_avg);
// check WR value against the clock frequency
if (ceil(write_recovery*tck_avg) < TWR)
$display ("%m: at time %t ERROR: Write Recovery = %d is illegal @tCK(avg) = %f", $time, write_recovery, tck_avg);
// check the CWL value against the clock frequency
if (check_strict_timing) begin
case (cas_write_latency)
5 : if (tck_avg < 2500.0) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
6 : if ((tck_avg < 1875.0) || (tck_avg >= 2500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
7 : if ((tck_avg < 1500.0) || (tck_avg >= 1875.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
8 : if ((tck_avg < 1250.0) || (tck_avg >= 1500.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
9 : if ((tck_avg < 15e3/14) || (tck_avg >= 1250.0)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
10: if ((tck_avg < 937.5) || (tck_avg >= 15e3/14)) $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
default : $display ("%m: at time %t ERROR: CWL = %d is illegal @tCK(avg) = %f", $time, cas_write_latency, tck_avg);
endcase
// check the CL value against the clock frequency
if (!valid_cl(cas_latency, cas_write_latency))
$display ("%m: at time %t ERROR: CAS Latency = %d is not valid when CAS Write Latency = %d", $time, cas_latency, cas_write_latency);
end
mr_chk = 2;
end
end else if (!in_self_refresh) begin
mr_chk = 0;
if (ck_cntr - ck_dll_reset == TDLLK) begin
dll_locked = 1;
end
end
if (|auto_precharge_bank) begin
for (i=0; i<`BANKS; i=i+1) begin
// Write with Auto Precharge Calculation
// 1. Meet minimum tRAS requirement
// 2. Write Latency PLUS BL/2 cycles PLUS WR after Write command
if (write_precharge_bank[i]) begin
if ($time - tm_bank_activate[i] >= TRAS_MIN) begin
if (ck_cntr - ck_bank_write[i] >= write_latency + burst_length/2 + write_recovery) begin
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
write_precharge_bank[i] = 0;
active_bank[i] = 0;
auto_precharge_bank[i] = 0;
tm_bank_precharge[i] = $time;
tm_precharge = $time;
ck_precharge = ck_cntr;
end
end
end
// Read with Auto Precharge Calculation
// 1. Meet minimum tRAS requirement
// 2. Additive Latency plus 4 cycles after Read command
// 3. tRTP after the last 8-bit prefetch
if (read_precharge_bank[i]) begin
if (($time - tm_bank_activate[i] >= TRAS_MIN) && (ck_cntr - ck_bank_read[i] >= additive_latency + TRTP_TCK)) begin
read_precharge_bank[i] = 0;
// In case the internal precharge is pushed out by tRTP, tRP starts at the point where
// the internal precharge happens (not at the next rising clock edge after this event).
if ($time - tm_bank_read_end[i] < TRTP) begin
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", tm_bank_read_end[i] + TRTP, i);
active_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
auto_precharge_bank[i] <= #(tm_bank_read_end[i] + TRTP - $time) 0;
tm_bank_precharge[i] <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
tm_precharge <= #(tm_bank_read_end[i] + TRTP - $time) tm_bank_read_end[i] + TRTP;
ck_precharge = ck_cntr;
end else begin
if (DEBUG) $display ("%m: at time %t INFO: Auto Precharge bank %d", $time, i);
active_bank[i] = 0;
auto_precharge_bank[i] = 0;
tm_bank_precharge[i] = $time;
tm_precharge = $time;
ck_precharge = ck_cntr;
end
end
end
end
end
// respond to incoming command
if (cke_in ^ prev_cke) begin
tm_cke_cmd <= $time;
ck_cke_cmd <= ck_cntr;
end
cmd_task(cke_in, cmd_n_in, ba_in, addr_in);
if ((cmd_n_in == WRITE) || (cmd_n_in == READ)) begin
al_pipeline[2*additive_latency] = 1'b1;
end
if (al_pipeline[0]) begin
// check tRCD after additive latency
if ((rd_pipeline[2*cas_latency - 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_latency - 1]] < TRCD))
$display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[READ]);
if ((wr_pipeline[2*cas_write_latency + 1]) && ($time - tm_bank_activate[ba_pipeline[2*cas_write_latency + 1]] < TRCD))
$display ("%m: at time %t ERROR: tRCD violation during %s", $time, cmd_string[WRITE]);
// check tWTR after additive latency
if (rd_pipeline[2*cas_latency - 1]) begin //{
if (truebl4) begin //{
i = ba_pipeline[2*cas_latency - 1];
if ($time - tm_group_write_end[i[1]] < TWTR)
$display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
if ($time - tm_write_end < TWTR_DG)
$display ("%m: at time %t ERROR: tWTR_DG violation during %s", $time, cmd_string[READ]);
end else begin
if ($time - tm_write_end < TWTR)
$display ("%m: at time %t ERROR: tWTR violation during %s", $time, cmd_string[READ]);
end
end
end
if (rd_pipeline) begin
if (rd_pipeline[2*cas_latency - 1]) begin
tm_bank_read_end[ba_pipeline[2*cas_latency - 1]] <= $time;
end
end
for (i=0; i<`BANKS; i=i+1) begin
if ((ck_cntr - ck_bank_write[i] > write_latency) && (ck_cntr - ck_bank_write[i] <= write_latency + burst_length/2)) begin
tm_bank_write_end[i] <= $time;
tm_group_write_end[i[1]] <= $time;
tm_write_end <= $time;
end
end
// clk pin is disabled during self refresh
if (!in_self_refresh && tm_ck_pos ) begin
tjit_cc_time = $time - tm_ck_pos - tck_i;
tck_i = $time - tm_ck_pos;
tck_avg = tck_avg - tck_sample[ck_cntr%TDLLK]/$itor(TDLLK);
tck_avg = tck_avg + tck_i/$itor(TDLLK);
tck_sample[ck_cntr%TDLLK] = tck_i;
tjit_per_rtime = tck_i - tck_avg;
if (dll_locked && check_strict_timing) begin
// check accumulated error
terr_nper_rtime = 0;
for (i=0; i<12; i=i+1) begin
terr_nper_rtime = terr_nper_rtime + tck_sample[i] - tck_avg;
terr_nper_rtime = abs_value(terr_nper_rtime);
case (i)
0 :;
1 : if (terr_nper_rtime - TERR_2PER >= 1.0) $display ("%m: at time %t ERROR: tERR(2per) violation by %f ps.", $time, terr_nper_rtime - TERR_2PER);
2 : if (terr_nper_rtime - TERR_3PER >= 1.0) $display ("%m: at time %t ERROR: tERR(3per) violation by %f ps.", $time, terr_nper_rtime - TERR_3PER);
3 : if (terr_nper_rtime - TERR_4PER >= 1.0) $display ("%m: at time %t ERROR: tERR(4per) violation by %f ps.", $time, terr_nper_rtime - TERR_4PER);
4 : if (terr_nper_rtime - TERR_5PER >= 1.0) $display ("%m: at time %t ERROR: tERR(5per) violation by %f ps.", $time, terr_nper_rtime - TERR_5PER);
5 : if (terr_nper_rtime - TERR_6PER >= 1.0) $display ("%m: at time %t ERROR: tERR(6per) violation by %f ps.", $time, terr_nper_rtime - TERR_6PER);
6 : if (terr_nper_rtime - TERR_7PER >= 1.0) $display ("%m: at time %t ERROR: tERR(7per) violation by %f ps.", $time, terr_nper_rtime - TERR_7PER);
7 : if (terr_nper_rtime - TERR_8PER >= 1.0) $display ("%m: at time %t ERROR: tERR(8per) violation by %f ps.", $time, terr_nper_rtime - TERR_8PER);
8 : if (terr_nper_rtime - TERR_9PER >= 1.0) $display ("%m: at time %t ERROR: tERR(9per) violation by %f ps.", $time, terr_nper_rtime - TERR_9PER);
9 : if (terr_nper_rtime - TERR_10PER >= 1.0) $display ("%m: at time %t ERROR: tERR(10per) violation by %f ps.", $time, terr_nper_rtime - TERR_10PER);
10 : if (terr_nper_rtime - TERR_11PER >= 1.0) $display ("%m: at time %t ERROR: tERR(11per) violation by %f ps.", $time, terr_nper_rtime - TERR_11PER);
11 : if (terr_nper_rtime - TERR_12PER >= 1.0) $display ("%m: at time %t ERROR: tERR(12per) violation by %f ps.", $time, terr_nper_rtime - TERR_12PER);
endcase
end
// check tCK min/max/jitter
if (abs_value(tjit_per_rtime) - TJIT_PER >= 1.0)
$display ("%m: at time %t ERROR: tJIT(per) violation by %f ps.", $time, abs_value(tjit_per_rtime) - TJIT_PER);
if (abs_value(tjit_cc_time) - TJIT_CC >= 1.0)
$display ("%m: at time %t ERROR: tJIT(cc) violation by %f ps.", $time, abs_value(tjit_cc_time) - TJIT_CC);
if (TCK_MIN - tck_avg >= 1.0)
$display ("%m: at time %t ERROR: tCK(avg) minimum violation by %f ps.", $time, TCK_MIN - tck_avg);
if (tck_avg - TCK_MAX >= 1.0)
$display ("%m: at time %t ERROR: tCK(avg) maximum violation by %f ps.", $time, tck_avg - TCK_MAX);
// check tCL
if (tm_ck_neg - $time < TCL_ABS_MIN*tck_avg)
$display ("%m: at time %t ERROR: tCL(abs) minimum violation on CLK by %t", $time, TCL_ABS_MIN*tck_avg - tm_ck_neg + $time);
if (tcl_avg < TCL_AVG_MIN*tck_avg)
$display ("%m: at time %t ERROR: tCL(avg) minimum violation on CLK by %t", $time, TCL_AVG_MIN*tck_avg - tcl_avg);
if (tcl_avg > TCL_AVG_MAX*tck_avg)
$display ("%m: at time %t ERROR: tCL(avg) maximum violation on CLK by %t", $time, tcl_avg - TCL_AVG_MAX*tck_avg);
end
// calculate the tch avg jitter
tch_avg = tch_avg - tch_sample[ck_cntr%TDLLK]/$itor(TDLLK);
tch_avg = tch_avg + tch_i/$itor(TDLLK);
tch_sample[ck_cntr%TDLLK] = tch_i;
tjit_ch_rtime = tch_i - tch_avg;
duty_cycle = tch_avg/tck_avg;
// update timers/counters
tcl_i <= $time - tm_ck_neg;
end
prev_odt <= odt_in;
// update timers/counters
ck_cntr <= ck_cntr + 1;
tm_ck_pos = $time;
end else begin
// clk pin is disabled during self refresh
if (!in_self_refresh) begin
if (dll_locked && check_strict_timing) begin
if ($time - tm_ck_pos < TCH_ABS_MIN*tck_avg)
$display ("%m: at time %t ERROR: tCH(abs) minimum violation on CLK by %t", $time, TCH_ABS_MIN*tck_avg - $time + tm_ck_pos);
if (tch_avg < TCH_AVG_MIN*tck_avg)
$display ("%m: at time %t ERROR: tCH(avg) minimum violation on CLK by %t", $time, TCH_AVG_MIN*tck_avg - tch_avg);
if (tch_avg > TCH_AVG_MAX*tck_avg)
$display ("%m: at time %t ERROR: tCH(avg) maximum violation on CLK by %t", $time, tch_avg - TCH_AVG_MAX*tck_avg);
end
// calculate the tcl avg jitter
tcl_avg = tcl_avg - tcl_sample[ck_cntr%TDLLK]/$itor(TDLLK);
tcl_avg = tcl_avg + tcl_i/$itor(TDLLK);
tcl_sample[ck_cntr%TDLLK] = tcl_i;
// update timers/counters
tch_i <= $time - tm_ck_pos;
end
tm_ck_neg = $time;
end
// on die termination
if (odt_en || dyn_odt_en) begin
// odt pin is disabled during self refresh
if (!in_self_refresh && diff_ck) begin
if ($time - tm_odt < TIS)
$display ("%m: at time %t ERROR: tIS violation on ODT by %t", $time, tm_odt + TIS - $time);
if (prev_odt ^ odt_in) begin
if (!dll_locked)
$display ("%m: at time %t WARNING: tDLLK violation during ODT transition.", $time);
if (($time - tm_load_mode < TMOD) || (ck_cntr - ck_load_mode < TMOD_TCK))
$display ("%m: at time %t ERROR: tMOD violation during ODT transition", $time);
if (ck_cntr - ck_zqinit < TZQINIT)
$display ("%m: at time %t ERROR: TZQinit violation during ODT transition", $time);
if (ck_cntr - ck_zqoper < TZQOPER)
$display ("%m: at time %t ERROR: TZQoper violation during ODT transition", $time);
if (ck_cntr - ck_zqcs < TZQCS)
$display ("%m: at time %t ERROR: tZQcs violation during ODT transition", $time);
// if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK))
// $display ("%m: at time %t ERROR: tXPDLL violation during ODT transition", $time);
if (ck_cntr - ck_self_refresh < TXSDLL)
$display ("%m: at time %t ERROR: tXSDLL violation during ODT transition", $time);
if (in_self_refresh)
$display ("%m: at time %t ERROR: Illegal ODT transition during Self Refresh.", $time);
if (!odt_in && (ck_cntr - ck_odt < ODTH4))
$display ("%m: at time %t ERROR: ODTH4 violation during ODT transition", $time);
if (!odt_in && (ck_cntr - ck_odth8 < ODTH8))
$display ("%m: at time %t ERROR: ODTH8 violation during ODT transition", $time);
if (($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK))
$display ("%m: at time %t WARNING: tXPDLL during ODT transition. Synchronous or asynchronous change in termination resistance is possible.", $time);
// async ODT mode applies:
// 1.) during precharge power down with DLL off
// 2.) if tANPD has not been satisfied
// 3.) until tXPDLL has been satisfied
if ((in_power_down && low_power && (active_bank == 0)) || ($time - tm_slow_exit_pd < TXPDLL) || (ck_cntr - ck_slow_exit_pd < TXPDLL_TCK)) begin
odt_state = odt_in;
if (DEBUG && odt_en) $display ("%m: at time %t INFO: Async On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom));
if (odt_state) begin
odt_state_dly <= #(TAONPD) odt_state;
end else begin
odt_state_dly <= #(TAOFPD) odt_state;
end
// sync ODT mode applies:
// 1.) during normal operation
// 2.) during active power down
// 3.) during precharge power down with DLL on
end else begin
odt_pipeline[2*(write_latency - 2)] = 1'b1; // ODTLon, ODTLoff
end
ck_odt <= ck_cntr;
end
end
if (odt_pipeline[0]) begin
odt_state = ~odt_state;
if (DEBUG && odt_en) $display ("%m: at time %t INFO: Sync On Die Termination Rtt_NOM = %d Ohm", $time, {32{odt_state}} & get_rtt_nom(odt_rtt_nom));
if (odt_state) begin
odt_state_dly <= #(TAON) odt_state;
end else begin
odt_state_dly <= #(TAOF*tck_avg) odt_state;
end
end
if (rd_pipeline[RDQSEN_PRE]) begin
odt_cntr = 1 + RDQSEN_PRE + bl_pipeline[RDQSEN_PRE] + RDQSEN_PST - 1;
end
if (odt_cntr > 0) begin
if (odt_state) begin
$display ("%m: at time %t ERROR: On Die Termination must be OFF during Read data transfer.", $time);
end
odt_cntr = odt_cntr - 1;
end
if (dyn_odt_en && odt_state) begin
if (DEBUG && (dyn_odt_state ^ dyn_odt_pipeline[0]))
$display ("%m: at time %t INFO: Sync On Die Termination Rtt_WR = %d Ohm", $time, {32{dyn_odt_pipeline[0]}} & get_rtt_wr(odt_rtt_wr));
dyn_odt_state = dyn_odt_pipeline[0];
end
dyn_odt_state_dly <= #(TADC*tck_avg) dyn_odt_state;
end
if (cke_in && write_levelization) begin
for (i=0; i<DQS_BITS; i=i+1) begin
if ($time - tm_dqs_pos[i] < TWLH)
$display ("%m: at time %t WARNING: tWLH violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i);
end
end
// shift pipelines
if (|wr_pipeline || |rd_pipeline || |al_pipeline) begin
al_pipeline = al_pipeline>>1;
wr_pipeline = wr_pipeline>>1;
rd_pipeline = rd_pipeline>>1;
for (i=0; i<`MAX_PIPE; i=i+1) begin
bl_pipeline[i] = bl_pipeline[i+1];
ba_pipeline[i] = ba_pipeline[i+1];
row_pipeline[i] = row_pipeline[i+1];
col_pipeline[i] = col_pipeline[i+1];
end
end
if (|odt_pipeline || |dyn_odt_pipeline) begin
odt_pipeline = odt_pipeline>>1;
dyn_odt_pipeline = dyn_odt_pipeline>>1;
end
end
end
// receiver(s)
task dqs_even_receiver;
input [3:0] i;
reg [63:0] bit_mask;
begin
bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
if (dqs_even[i]) begin
if (tdqs_en) begin // tdqs disables dm
dm_in_pos[i] = 1'b0;
end else begin
dm_in_pos[i] = dm_in[i];
end
dq_in_pos = (dq_in & bit_mask) | (dq_in_pos & ~bit_mask);
end
end
endtask
always @(posedge dqs_even[ 0]) dqs_even_receiver( 0);
always @(posedge dqs_even[ 1]) dqs_even_receiver( 1);
always @(posedge dqs_even[ 2]) dqs_even_receiver( 2);
always @(posedge dqs_even[ 3]) dqs_even_receiver( 3);
always @(posedge dqs_even[ 4]) dqs_even_receiver( 4);
always @(posedge dqs_even[ 5]) dqs_even_receiver( 5);
always @(posedge dqs_even[ 6]) dqs_even_receiver( 6);
always @(posedge dqs_even[ 7]) dqs_even_receiver( 7);
always @(posedge dqs_even[ 8]) dqs_even_receiver( 8);
always @(posedge dqs_even[ 9]) dqs_even_receiver( 9);
always @(posedge dqs_even[10]) dqs_even_receiver(10);
always @(posedge dqs_even[11]) dqs_even_receiver(11);
always @(posedge dqs_even[12]) dqs_even_receiver(12);
always @(posedge dqs_even[13]) dqs_even_receiver(13);
always @(posedge dqs_even[14]) dqs_even_receiver(14);
always @(posedge dqs_even[15]) dqs_even_receiver(15);
task dqs_odd_receiver;
input [3:0] i;
reg [63:0] bit_mask;
begin
bit_mask = {`DQ_PER_DQS{1'b1}}<<(i*`DQ_PER_DQS);
if (dqs_odd[i]) begin
if (tdqs_en) begin // tdqs disables dm
dm_in_neg[i] = 1'b0;
end else begin
dm_in_neg[i] = dm_in[i];
end
dq_in_neg = (dq_in & bit_mask) | (dq_in_neg & ~bit_mask);
end
end
endtask
always @(posedge dqs_odd[ 0]) dqs_odd_receiver( 0);
always @(posedge dqs_odd[ 1]) dqs_odd_receiver( 1);
always @(posedge dqs_odd[ 2]) dqs_odd_receiver( 2);
always @(posedge dqs_odd[ 3]) dqs_odd_receiver( 3);
always @(posedge dqs_odd[ 4]) dqs_odd_receiver( 4);
always @(posedge dqs_odd[ 5]) dqs_odd_receiver( 5);
always @(posedge dqs_odd[ 6]) dqs_odd_receiver( 6);
always @(posedge dqs_odd[ 7]) dqs_odd_receiver( 7);
always @(posedge dqs_odd[ 8]) dqs_odd_receiver( 8);
always @(posedge dqs_odd[ 9]) dqs_odd_receiver( 9);
always @(posedge dqs_odd[10]) dqs_odd_receiver(10);
always @(posedge dqs_odd[11]) dqs_odd_receiver(11);
always @(posedge dqs_odd[12]) dqs_odd_receiver(12);
always @(posedge dqs_odd[13]) dqs_odd_receiver(13);
always @(posedge dqs_odd[14]) dqs_odd_receiver(14);
always @(posedge dqs_odd[15]) dqs_odd_receiver(15);
// Processes to check hold and pulse width of control signals
always @(posedge rst_n_in) begin
if ($time > 100000) begin
if (tm_rst_n + 100000 > $time)
$display ("%m: at time %t ERROR: RST_N pulse width violation by %t", $time, tm_rst_n + 100000 - $time);
end
tm_rst_n = $time;
end
always @(cke_in) begin
if (rst_n_in) begin
if ($time > TIH) begin
if ($time - tm_ck_pos < TIH)
$display ("%m: at time %t ERROR: tIH violation on CKE by %t", $time, tm_ck_pos + TIH - $time);
end
if ($time - tm_cke < TIPW)
$display ("%m: at time %t ERROR: tIPW violation on CKE by %t", $time, tm_cke + TIPW - $time);
end
tm_cke = $time;
end
always @(odt_in) begin
if (rst_n_in && odt_en && !in_self_refresh) begin
if ($time - tm_ck_pos < TIH)
$display ("%m: at time %t ERROR: tIH violation on ODT by %t", $time, tm_ck_pos + TIH - $time);
if ($time - tm_odt < TIPW)
$display ("%m: at time %t ERROR: tIPW violation on ODT by %t", $time, tm_odt + TIPW - $time);
end
tm_odt = $time;
end
task cmd_addr_timing_check;
input i;
reg [4:0] i;
begin
if (rst_n_in && prev_cke) begin
if ((i == 0) && ($time - tm_ck_pos < TIH)) // always check tIH for CS#
$display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
if ((i > 0) && (cs_n_in == 0) &&($time - tm_ck_pos < TIH)) // Only check tIH for cmd_addr if CS# is low
$display ("%m: at time %t ERROR: tIH violation on %s by %t", $time, cmd_addr_string[i], tm_ck_pos + TIH - $time);
if ($time - tm_cmd_addr[i] < TIPW)
$display ("%m: at time %t ERROR: tIPW violation on %s by %t", $time, cmd_addr_string[i], tm_cmd_addr[i] + TIPW - $time);
end
tm_cmd_addr[i] = $time;
end
endtask
always @(cs_n_in ) cmd_addr_timing_check( 0);
always @(ras_n_in ) cmd_addr_timing_check( 1);
always @(cas_n_in ) cmd_addr_timing_check( 2);
always @(we_n_in ) cmd_addr_timing_check( 3);
always @(ba_in [ 0]) cmd_addr_timing_check( 4);
always @(ba_in [ 1]) cmd_addr_timing_check( 5);
always @(ba_in [ 2]) cmd_addr_timing_check( 6);
always @(addr_in[ 0]) cmd_addr_timing_check( 7);
always @(addr_in[ 1]) cmd_addr_timing_check( 8);
always @(addr_in[ 2]) cmd_addr_timing_check( 9);
always @(addr_in[ 3]) cmd_addr_timing_check(10);
always @(addr_in[ 4]) cmd_addr_timing_check(11);
always @(addr_in[ 5]) cmd_addr_timing_check(12);
always @(addr_in[ 6]) cmd_addr_timing_check(13);
always @(addr_in[ 7]) cmd_addr_timing_check(14);
always @(addr_in[ 8]) cmd_addr_timing_check(15);
always @(addr_in[ 9]) cmd_addr_timing_check(16);
always @(addr_in[10]) cmd_addr_timing_check(17);
always @(addr_in[11]) cmd_addr_timing_check(18);
always @(addr_in[12]) cmd_addr_timing_check(19);
always @(addr_in[13]) cmd_addr_timing_check(20);
always @(addr_in[14]) cmd_addr_timing_check(21);
always @(addr_in[15]) cmd_addr_timing_check(22);
// Processes to check setup and hold of data signals
task dm_timing_check;
input i;
reg [3:0] i;
begin
if (dqs_in_valid) begin
if ($time - tm_dqs[i] < TDH)
$display ("%m: at time %t ERROR: tDH violation on DM bit %d by %t", $time, i, tm_dqs[i] + TDH - $time);
if (check_dm_tdipw[i]) begin
if ($time - tm_dm[i] < TDIPW)
$display ("%m: at time %t ERROR: tDIPW violation on DM bit %d by %t", $time, i, tm_dm[i] + TDIPW - $time);
end
end
check_dm_tdipw[i] <= 1'b0;
tm_dm[i] = $time;
end
endtask
always @(dm_in[ 0]) dm_timing_check( 0);
always @(dm_in[ 1]) dm_timing_check( 1);
always @(dm_in[ 2]) dm_timing_check( 2);
always @(dm_in[ 3]) dm_timing_check( 3);
always @(dm_in[ 4]) dm_timing_check( 4);
always @(dm_in[ 5]) dm_timing_check( 5);
always @(dm_in[ 6]) dm_timing_check( 6);
always @(dm_in[ 7]) dm_timing_check( 7);
always @(dm_in[ 8]) dm_timing_check( 8);
always @(dm_in[ 9]) dm_timing_check( 9);
always @(dm_in[10]) dm_timing_check(10);
always @(dm_in[11]) dm_timing_check(11);
always @(dm_in[12]) dm_timing_check(12);
always @(dm_in[13]) dm_timing_check(13);
always @(dm_in[14]) dm_timing_check(14);
always @(dm_in[15]) dm_timing_check(15);
task dq_timing_check;
input i;
reg [5:0] i;
begin
if (dqs_in_valid) begin
if ($time - tm_dqs[i/`DQ_PER_DQS] < TDH)
$display ("%m: at time %t ERROR: tDH violation on DQ bit %d by %t", $time, i, tm_dqs[i/`DQ_PER_DQS] + TDH - $time);
if (check_dq_tdipw[i]) begin
if ($time - tm_dq[i] < TDIPW)
$display ("%m: at time %t ERROR: tDIPW violation on DQ bit %d by %t", $time, i, tm_dq[i] + TDIPW - $time);
end
end
check_dq_tdipw[i] <= 1'b0;
tm_dq[i] = $time;
end
endtask
always @(dq_in[ 0]) dq_timing_check( 0);
always @(dq_in[ 1]) dq_timing_check( 1);
always @(dq_in[ 2]) dq_timing_check( 2);
always @(dq_in[ 3]) dq_timing_check( 3);
always @(dq_in[ 4]) dq_timing_check( 4);
always @(dq_in[ 5]) dq_timing_check( 5);
always @(dq_in[ 6]) dq_timing_check( 6);
always @(dq_in[ 7]) dq_timing_check( 7);
always @(dq_in[ 8]) dq_timing_check( 8);
always @(dq_in[ 9]) dq_timing_check( 9);
always @(dq_in[10]) dq_timing_check(10);
always @(dq_in[11]) dq_timing_check(11);
always @(dq_in[12]) dq_timing_check(12);
always @(dq_in[13]) dq_timing_check(13);
always @(dq_in[14]) dq_timing_check(14);
always @(dq_in[15]) dq_timing_check(15);
always @(dq_in[16]) dq_timing_check(16);
always @(dq_in[17]) dq_timing_check(17);
always @(dq_in[18]) dq_timing_check(18);
always @(dq_in[19]) dq_timing_check(19);
always @(dq_in[20]) dq_timing_check(20);
always @(dq_in[21]) dq_timing_check(21);
always @(dq_in[22]) dq_timing_check(22);
always @(dq_in[23]) dq_timing_check(23);
always @(dq_in[24]) dq_timing_check(24);
always @(dq_in[25]) dq_timing_check(25);
always @(dq_in[26]) dq_timing_check(26);
always @(dq_in[27]) dq_timing_check(27);
always @(dq_in[28]) dq_timing_check(28);
always @(dq_in[29]) dq_timing_check(29);
always @(dq_in[30]) dq_timing_check(30);
always @(dq_in[31]) dq_timing_check(31);
always @(dq_in[32]) dq_timing_check(32);
always @(dq_in[33]) dq_timing_check(33);
always @(dq_in[34]) dq_timing_check(34);
always @(dq_in[35]) dq_timing_check(35);
always @(dq_in[36]) dq_timing_check(36);
always @(dq_in[37]) dq_timing_check(37);
always @(dq_in[38]) dq_timing_check(38);
always @(dq_in[39]) dq_timing_check(39);
always @(dq_in[40]) dq_timing_check(40);
always @(dq_in[41]) dq_timing_check(41);
always @(dq_in[42]) dq_timing_check(42);
always @(dq_in[43]) dq_timing_check(43);
always @(dq_in[44]) dq_timing_check(44);
always @(dq_in[45]) dq_timing_check(45);
always @(dq_in[46]) dq_timing_check(46);
always @(dq_in[47]) dq_timing_check(47);
always @(dq_in[48]) dq_timing_check(48);
always @(dq_in[49]) dq_timing_check(49);
always @(dq_in[50]) dq_timing_check(50);
always @(dq_in[51]) dq_timing_check(51);
always @(dq_in[52]) dq_timing_check(52);
always @(dq_in[53]) dq_timing_check(53);
always @(dq_in[54]) dq_timing_check(54);
always @(dq_in[55]) dq_timing_check(55);
always @(dq_in[56]) dq_timing_check(56);
always @(dq_in[57]) dq_timing_check(57);
always @(dq_in[58]) dq_timing_check(58);
always @(dq_in[59]) dq_timing_check(59);
always @(dq_in[60]) dq_timing_check(60);
always @(dq_in[61]) dq_timing_check(61);
always @(dq_in[62]) dq_timing_check(62);
always @(dq_in[63]) dq_timing_check(63);
task dqs_pos_timing_check;
input i;
reg [4:0] i;
reg [3:0] j;
begin
if (write_levelization && i<16) begin
if (ck_cntr - ck_load_mode < TWLMRD)
$display ("%m: at time %t ERROR: tWLMRD violation on DQS bit %d positive edge.", $time, i);
if (($time - tm_ck_pos < TWLS) || ($time - tm_ck_neg < TWLS))
$display ("%m: at time %t WARNING: tWLS violation on DQS bit %d positive edge. Indeterminate CK capture is possible.", $time, i);
if (DEBUG)
$display ("%m: at time %t Write Leveling @ DQS ck = %b", $time, diff_ck);
dq_out_en_dly[i*`DQ_PER_DQS] <= #(TWLO) 1'b1;
dq_out_dly[i*`DQ_PER_DQS] <= #(TWLO) diff_ck;
for (j=1; j<`DQ_PER_DQS; j=j+1) begin
dq_out_en_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b1;
dq_out_dly[i*`DQ_PER_DQS+j] <= #(TWLO + TWLOE) 1'b0;
end
end
if (dqs_in_valid && ((wdqs_pos_cntr[i] < wr_burst_length/2) || b2b_write)) begin
if (dqs_in[i] ^ prev_dqs_in[i]) begin
if (dll_locked) begin
if (check_write_preamble[i]) begin
if ($time - tm_dqs_pos[i] < $rtoi(TWPRE*tck_avg))
$display ("%m: at time %t ERROR: tWPRE violation on &s bit %d", $time, dqs_string[i/16], i%16);
end else if (check_write_postamble[i]) begin
if ($time - tm_dqs_neg[i] < $rtoi(TWPST*tck_avg))
$display ("%m: at time %t ERROR: tWPST violation on %s bit %d", $time, dqs_string[i/16], i%16);
end else begin
if ($time - tm_dqs_neg[i] < $rtoi(TDQSL*tck_avg))
$display ("%m: at time %t ERROR: tDQSL violation on %s bit %d", $time, dqs_string[i/16], i%16);
end
end
if ($time - tm_dm[i%16] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%16] + TDS - $time);
if (!dq_out_en) begin
for (j=0; j<`DQ_PER_DQS; j=j+1) begin
if ($time - tm_dq[(i%16)*`DQ_PER_DQS+j] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%16)*`DQ_PER_DQS+j] + TDS - $time);
check_dq_tdipw[(i%16)*`DQ_PER_DQS+j] <= 1'b1;
end
end
if ((wdqs_pos_cntr[i] < wr_burst_length/2) && !b2b_write) begin
wdqs_pos_cntr[i] <= wdqs_pos_cntr[i] + 1;
end else begin
wdqs_pos_cntr[i] <= 1;
end
check_dm_tdipw[i%16] <= 1'b1;
check_write_preamble[i] <= 1'b0;
check_write_postamble[i] <= 1'b0;
check_write_dqs_low[i] <= 1'b0;
tm_dqs[i%16] <= $time;
end else begin
$display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/16], i%16);
end
end
tm_dqss_pos[i] <= $time;
tm_dqs_pos[i] = $time;
prev_dqs_in[i] <= dqs_in[i];
end
endtask
always @(posedge dqs_in[ 0]) dqs_pos_timing_check( 0);
always @(posedge dqs_in[ 1]) dqs_pos_timing_check( 1);
always @(posedge dqs_in[ 2]) dqs_pos_timing_check( 2);
always @(posedge dqs_in[ 3]) dqs_pos_timing_check( 3);
always @(posedge dqs_in[ 4]) dqs_pos_timing_check( 4);
always @(posedge dqs_in[ 5]) dqs_pos_timing_check( 5);
always @(posedge dqs_in[ 6]) dqs_pos_timing_check( 6);
always @(posedge dqs_in[ 7]) dqs_pos_timing_check( 7);
always @(posedge dqs_in[ 8]) dqs_pos_timing_check( 8);
always @(posedge dqs_in[ 9]) dqs_pos_timing_check( 9);
always @(posedge dqs_in[10]) dqs_pos_timing_check(10);
always @(posedge dqs_in[11]) dqs_pos_timing_check(11);
always @(posedge dqs_in[12]) dqs_pos_timing_check(12);
always @(posedge dqs_in[13]) dqs_pos_timing_check(13);
always @(posedge dqs_in[14]) dqs_pos_timing_check(14);
always @(posedge dqs_in[15]) dqs_pos_timing_check(15);
always @(negedge dqs_in[16]) dqs_pos_timing_check(16);
always @(negedge dqs_in[17]) dqs_pos_timing_check(17);
always @(negedge dqs_in[18]) dqs_pos_timing_check(18);
always @(negedge dqs_in[19]) dqs_pos_timing_check(19);
always @(negedge dqs_in[20]) dqs_pos_timing_check(20);
always @(negedge dqs_in[21]) dqs_pos_timing_check(21);
always @(negedge dqs_in[22]) dqs_pos_timing_check(22);
always @(negedge dqs_in[23]) dqs_pos_timing_check(23);
always @(negedge dqs_in[24]) dqs_pos_timing_check(24);
always @(negedge dqs_in[25]) dqs_pos_timing_check(25);
always @(negedge dqs_in[26]) dqs_pos_timing_check(26);
always @(negedge dqs_in[27]) dqs_pos_timing_check(27);
always @(negedge dqs_in[28]) dqs_pos_timing_check(28);
always @(negedge dqs_in[29]) dqs_pos_timing_check(29);
always @(negedge dqs_in[30]) dqs_pos_timing_check(30);
always @(negedge dqs_in[31]) dqs_pos_timing_check(31);
task dqs_neg_timing_check;
input i;
reg [4:0] i;
reg [3:0] j;
begin
if (write_levelization && i<16) begin
if (ck_cntr - ck_load_mode < TWLDQSEN)
$display ("%m: at time %t ERROR: tWLDQSEN violation on DQS bit %d.", $time, i);
if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
$display ("%m: at time %t ERROR: tDQSH violation on DQS bit %d by %t", $time, i, tm_dqs_pos[i] + TDQSH*tck_avg - $time);
end
if (dqs_in_valid && (wdqs_pos_cntr[i] > 0) && check_write_dqs_high[i]) begin
if (dqs_in[i] ^ prev_dqs_in[i]) begin
if (dll_locked) begin
if ($time - tm_dqs_pos[i] < $rtoi(TDQSH*tck_avg))
$display ("%m: at time %t ERROR: tDQSH violation on %s bit %d", $time, dqs_string[i/16], i%16);
if ($time - tm_ck_pos < $rtoi(TDSH*tck_avg))
$display ("%m: at time %t ERROR: tDSH violation on %s bit %d", $time, dqs_string[i/16], i%16);
end
if ($time - tm_dm[i%16] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DM bit %d by %t", $time, i, tm_dm[i%16] + TDS - $time);
if (!dq_out_en) begin
for (j=0; j<`DQ_PER_DQS; j=j+1) begin
if ($time - tm_dq[(i%16)*`DQ_PER_DQS+j] < TDS)
$display ("%m: at time %t ERROR: tDS violation on DQ bit %d by %t", $time, i*`DQ_PER_DQS+j, tm_dq[(i%16)*`DQ_PER_DQS+j] + TDS - $time);
check_dq_tdipw[(i%16)*`DQ_PER_DQS+j] <= 1'b1;
end
end
check_dm_tdipw[i%16] <= 1'b1;
tm_dqs[i%16] <= $time;
end else begin
$display ("%m: at time %t ERROR: Invalid latching edge on %s bit %d", $time, dqs_string[i/16], i%16);
end
end
check_write_dqs_high[i] <= 1'b0;
tm_dqs_neg[i] = $time;
prev_dqs_in[i] <= dqs_in[i];
end
endtask
always @(negedge dqs_in[ 0]) dqs_neg_timing_check( 0);
always @(negedge dqs_in[ 1]) dqs_neg_timing_check( 1);
always @(negedge dqs_in[ 2]) dqs_neg_timing_check( 2);
always @(negedge dqs_in[ 3]) dqs_neg_timing_check( 3);
always @(negedge dqs_in[ 4]) dqs_neg_timing_check( 4);
always @(negedge dqs_in[ 5]) dqs_neg_timing_check( 5);
always @(negedge dqs_in[ 6]) dqs_neg_timing_check( 6);
always @(negedge dqs_in[ 7]) dqs_neg_timing_check( 7);
always @(negedge dqs_in[ 8]) dqs_neg_timing_check( 8);
always @(negedge dqs_in[ 9]) dqs_neg_timing_check( 9);
always @(negedge dqs_in[10]) dqs_neg_timing_check(10);
always @(negedge dqs_in[11]) dqs_neg_timing_check(11);
always @(negedge dqs_in[12]) dqs_neg_timing_check(12);
always @(negedge dqs_in[13]) dqs_neg_timing_check(13);
always @(negedge dqs_in[14]) dqs_neg_timing_check(14);
always @(negedge dqs_in[15]) dqs_neg_timing_check(15);
always @(posedge dqs_in[16]) dqs_neg_timing_check(16);
always @(posedge dqs_in[17]) dqs_neg_timing_check(17);
always @(posedge dqs_in[18]) dqs_neg_timing_check(18);
always @(posedge dqs_in[19]) dqs_neg_timing_check(19);
always @(posedge dqs_in[20]) dqs_neg_timing_check(20);
always @(posedge dqs_in[21]) dqs_neg_timing_check(21);
always @(posedge dqs_in[22]) dqs_neg_timing_check(22);
always @(posedge dqs_in[23]) dqs_neg_timing_check(23);
always @(posedge dqs_in[24]) dqs_neg_timing_check(24);
always @(posedge dqs_in[25]) dqs_neg_timing_check(25);
always @(posedge dqs_in[26]) dqs_neg_timing_check(26);
always @(posedge dqs_in[27]) dqs_neg_timing_check(27);
always @(posedge dqs_in[28]) dqs_neg_timing_check(28);
always @(posedge dqs_in[29]) dqs_neg_timing_check(29);
always @(posedge dqs_in[30]) dqs_neg_timing_check(30);
always @(posedge dqs_in[31]) dqs_neg_timing_check(31);
endmodule
|
module t (clk);
input clk;
reg [31:0] r32;
wire [3:0] w4;
wire [4:0] w5;
assign w4 = NUMONES_8 ( r32[7:0] );
assign w5 = NUMONES_16( r32[15:0] );
function [3:0] NUMONES_8;
input [7:0] i8;
reg [7:0] i8;
begin
NUMONES_8 = 4'b1;
end
endfunction // NUMONES_8
function [4:0] NUMONES_16;
input [15:0] i16;
reg [15:0] i16;
begin
NUMONES_16 = ( NUMONES_8( i16[7:0] ) + NUMONES_8( i16[15:8] ));
end
endfunction
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
r32 <= 32'h12345678;
end
if (cyc==2) begin
if (w4 !== 1) $stop;
if (w5 !== 2) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// Take CRC data and apply to testblock inputs
wire [9:0] in = crc[9:0];
/*AUTOWIRE*/
Test test (/*AUTOINST*/
// Inputs
.clk (clk),
.in (in[9:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {64'h0};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h0
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Inputs
clk, in
);
input clk;
input [9:0] in;
reg a [9:0];
integer ai;
always @* begin
for (ai=0;ai<10;ai=ai+1) begin
a[ai]=in[ai];
end
end
reg [1:0] b [9:0];
integer j;
generate
genvar i;
for (i=0; i<2; i=i+1) begin
always @(posedge clk) begin
for (j=0; j<10; j=j+1) begin
if (a[j])
b[i][j] <= 1'b0;
else
b[i][j] <= 1'b1;
end
end
end
endgenerate
endmodule
|
module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.in (in[2:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h704ca23e2a83e1c5
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module to apply values to the inputs and
// merge the output values into the result vector.
input clk;
input [2:0] in;
output reg [31:0] out;
localparam ST_0 = 0;
localparam ST_1 = 1;
localparam ST_2 = 2;
always @(posedge clk) begin
case (1'b1) // synopsys parallel_case
in[ST_0]: out <= 32'h1234;
in[ST_1]: out <= 32'h4356;
in[ST_2]: out <= 32'h9874;
default: out <= 32'h1;
endcase
end
endmodule
|
module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.in (in[2:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h704ca23e2a83e1c5
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module to apply values to the inputs and
// merge the output values into the result vector.
input clk;
input [2:0] in;
output reg [31:0] out;
localparam ST_0 = 0;
localparam ST_1 = 1;
localparam ST_2 = 2;
always @(posedge clk) begin
case (1'b1) // synopsys parallel_case
in[ST_0]: out <= 32'h1234;
in[ST_1]: out <= 32'h4356;
in[ST_2]: out <= 32'h9874;
default: out <= 32'h1;
endcase
end
endmodule
|
module outputs)
threeansi_t outa; // From testa of TestAnsi.v
three_t outna; // From test of TestNonAnsi.v
// End of automatics
TestNonAnsi test (// Outputs
.out (outna),
/*AUTOINST*/
// Inputs
.clk (clk),
.in (in));
TestAnsi testa (// Outputs
.out (outa),
/*AUTOINST*/
// Inputs
.clk (clk),
.in (in));
// Aggregate outputs into a single result vector
wire [63:0] result = {57'h0, outna, 1'b0, outa};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h018decfea0a8828a
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module TestNonAnsi (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
typedef reg [2:0] three_t;
input clk;
input three_t in;
output three_t out;
always @(posedge clk) begin
out <= ~in;
end
endmodule
|
module TestAnsi (
input clk,
input threeansi_t in,
output threeansi_t out
);
always @(posedge clk) begin
out <= ~in;
end
endmodule
|
module outputs)
threeansi_t outa; // From testa of TestAnsi.v
three_t outna; // From test of TestNonAnsi.v
// End of automatics
TestNonAnsi test (// Outputs
.out (outna),
/*AUTOINST*/
// Inputs
.clk (clk),
.in (in));
TestAnsi testa (// Outputs
.out (outa),
/*AUTOINST*/
// Inputs
.clk (clk),
.in (in));
// Aggregate outputs into a single result vector
wire [63:0] result = {57'h0, outna, 1'b0, outa};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h018decfea0a8828a
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module TestNonAnsi (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
typedef reg [2:0] three_t;
input clk;
input three_t in;
output three_t out;
always @(posedge clk) begin
out <= ~in;
end
endmodule
|
module TestAnsi (
input clk,
input threeansi_t in,
output threeansi_t out
);
always @(posedge clk) begin
out <= ~in;
end
endmodule
|
module outputs)
threeansi_t outa; // From testa of TestAnsi.v
three_t outna; // From test of TestNonAnsi.v
// End of automatics
TestNonAnsi test (// Outputs
.out (outna),
/*AUTOINST*/
// Inputs
.clk (clk),
.in (in));
TestAnsi testa (// Outputs
.out (outa),
/*AUTOINST*/
// Inputs
.clk (clk),
.in (in));
// Aggregate outputs into a single result vector
wire [63:0] result = {57'h0, outna, 1'b0, outa};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h018decfea0a8828a
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module TestNonAnsi (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
typedef reg [2:0] three_t;
input clk;
input three_t in;
output three_t out;
always @(posedge clk) begin
out <= ~in;
end
endmodule
|
module TestAnsi (
input clk,
input threeansi_t in,
output threeansi_t out
);
always @(posedge clk) begin
out <= ~in;
end
endmodule
|
module outputs)
// End of automatics
reg clkgate_e2r;
reg clkgate_e1r_l;
always @(posedge clk or negedge reset_l) begin
if (!reset_l) begin
clkgate_e1r_l <= ~1'b1;
end
else begin
clkgate_e1r_l <= ~clkgate_e2r;
end
end
reg clkgate_e1f;
always @(negedge clk) begin
// Yes, it's really a =
clkgate_e1f = ~clkgate_e1r_l | ~reset_l;
end
wire clkgated = clk & clkgate_e1f;
reg [31:0] countgated;
always @(posedge clkgated or negedge reset_l) begin
if (!reset_l) begin
countgated <= 32'h1000;
end
else begin
countgated <= countgated + 32'd1;
end
end
reg [31:0] count;
always @(posedge clk or negedge reset_l) begin
if (!reset_l) begin
count <= 32'h1000;
end
else begin
count <= count + 32'd1;
end
end
reg [7:0] cyc; initial cyc=0;
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] rs %x cyc %d cg1f %x cnt %x cg %x\n",$time,reset_l,cyc,clkgate_e1f,count,countgated);
`endif
cyc <= cyc + 8'd1;
case (cyc)
8'd00: begin
reset_l <= ~1'b0;
clkgate_e2r <= 1'b1;
end
8'd01: begin
reset_l <= ~1'b0;
end
8'd02: begin
end
8'd03: begin
reset_l <= ~1'b1; // Need a posedge
end
8'd04: begin
end
8'd05: begin
reset_l <= ~1'b0;
end
8'd09: begin
clkgate_e2r <= 1'b0;
end
8'd11: begin
clkgate_e2r <= 1'b1;
end
8'd20: begin
$write("*-* All Finished *-*\n");
$finish;
end
default: ;
endcase
case (cyc)
8'd00: ;
8'd01: ;
8'd02: ;
8'd03: ;
8'd04: if (count!=32'h00001000 || countgated!=32'h 00001000) $stop;
8'd05: if (count!=32'h00001000 || countgated!=32'h 00001000) $stop;
8'd06: if (count!=32'h00001000 || countgated!=32'h 00001000) $stop;
8'd07: if (count!=32'h00001001 || countgated!=32'h 00001001) $stop;
8'd08: if (count!=32'h00001002 || countgated!=32'h 00001002) $stop;
8'd09: if (count!=32'h00001003 || countgated!=32'h 00001003) $stop;
8'd10: if (count!=32'h00001004 || countgated!=32'h 00001004) $stop;
8'd11: if (count!=32'h00001005 || countgated!=32'h 00001005) $stop;
8'd12: if (count!=32'h00001006 || countgated!=32'h 00001005) $stop;
8'd13: if (count!=32'h00001007 || countgated!=32'h 00001005) $stop;
8'd14: if (count!=32'h00001008 || countgated!=32'h 00001006) $stop;
8'd15: if (count!=32'h00001009 || countgated!=32'h 00001007) $stop;
8'd16: if (count!=32'h0000100a || countgated!=32'h 00001008) $stop;
8'd17: if (count!=32'h0000100b || countgated!=32'h 00001009) $stop;
8'd18: if (count!=32'h0000100c || countgated!=32'h 0000100a) $stop;
8'd19: if (count!=32'h0000100d || countgated!=32'h 0000100b) $stop;
8'd20: if (count!=32'h0000100e || countgated!=32'h 0000100c) $stop;
default: $stop;
endcase
end
endmodule
|
module outputs)
wire [2:0] pos1; // From test of Test.v
wire [2:0] pos2; // From test of Test.v
// End of automatics
Test test (
// Outputs
.pos1 (pos1[2:0]),
.pos2 (pos2[2:0]),
/*AUTOINST*/
// Inputs
.clk (clk),
.rst_n (rst_n));
// Aggregate outputs into a single result vector
wire [63:0] result = {61'h0, pos1};
// What checksum will we end up with
`define EXPECTED_SUM 64'h039ea4d039c2e70b
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
rst_n <= ~1'b0;
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
rst_n <= ~1'b1;
end
else if (cyc<10) begin
sum <= 64'h0;
rst_n <= ~1'b1;
end
else if (cyc<90) begin
if (pos1 !== pos2) $stop;
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test
#(parameter SAMPLE_WIDTH = 5 )
(
`ifdef verilator // Some simulators don't support clog2
output reg [$clog2(SAMPLE_WIDTH)-1:0] pos1,
`else
output reg [log2(SAMPLE_WIDTH-1)-1:0] pos1,
`endif
output reg [log2(SAMPLE_WIDTH-1)-1:0] pos2,
// System
input clk,
input rst_n
);
function integer log2(input integer arg);
begin
for(log2=0; arg>0; log2=log2+1)
arg = (arg >> 1);
end
endfunction
always @ (posedge clk or negedge rst_n)
if (!rst_n) begin
pos1 <= 0;
pos2 <= 0;
end
else begin
pos1 <= pos1 + 1;
pos2 <= pos2 + 1;
end
endmodule
|
module's undeclared outputs)
reg [9:0] outq;
// End of automatics
// =============================
always @(/*AS*/index) begin
case (index)
// default below: no change
8'h00: begin outq = 10'h001; end
8'he0: begin outq = 10'h05b; end
8'he1: begin outq = 10'h126; end
8'he2: begin outq = 10'h369; end
8'he3: begin outq = 10'h291; end
8'he4: begin outq = 10'h2ca; end
8'he5: begin outq = 10'h25b; end
8'he6: begin outq = 10'h106; end
8'he7: begin outq = 10'h172; end
8'he8: begin outq = 10'h2f7; end
8'he9: begin outq = 10'h2d3; end
8'hea: begin outq = 10'h182; end
8'heb: begin outq = 10'h327; end
8'hec: begin outq = 10'h1d0; end
8'hed: begin outq = 10'h204; end
8'hee: begin outq = 10'h11f; end
8'hef: begin outq = 10'h365; end
8'hf0: begin outq = 10'h2c2; end
8'hf1: begin outq = 10'h2b5; end
8'hf2: begin outq = 10'h1f8; end
8'hf3: begin outq = 10'h2a7; end
8'hf4: begin outq = 10'h1be; end
8'hf5: begin outq = 10'h25e; end
8'hf6: begin outq = 10'h032; end
8'hf7: begin outq = 10'h2ef; end
8'hf8: begin outq = 10'h02f; end
8'hf9: begin outq = 10'h201; end
8'hfa: begin outq = 10'h054; end
8'hfb: begin outq = 10'h013; end
8'hfc: begin outq = 10'h249; end
8'hfd: begin outq = 10'h09a; end
8'hfe: begin outq = 10'h012; end
8'hff: begin outq = 10'h114; end
default: ; // No change
endcase
end
endmodule
|
module's undeclared outputs)
reg [9:0] outq;
// End of automatics
// =============================
always @(/*AS*/index) begin
case (index)
// default below: no change
8'h00: begin outq = 10'h001; end
8'he0: begin outq = 10'h05b; end
8'he1: begin outq = 10'h126; end
8'he2: begin outq = 10'h369; end
8'he3: begin outq = 10'h291; end
8'he4: begin outq = 10'h2ca; end
8'he5: begin outq = 10'h25b; end
8'he6: begin outq = 10'h106; end
8'he7: begin outq = 10'h172; end
8'he8: begin outq = 10'h2f7; end
8'he9: begin outq = 10'h2d3; end
8'hea: begin outq = 10'h182; end
8'heb: begin outq = 10'h327; end
8'hec: begin outq = 10'h1d0; end
8'hed: begin outq = 10'h204; end
8'hee: begin outq = 10'h11f; end
8'hef: begin outq = 10'h365; end
8'hf0: begin outq = 10'h2c2; end
8'hf1: begin outq = 10'h2b5; end
8'hf2: begin outq = 10'h1f8; end
8'hf3: begin outq = 10'h2a7; end
8'hf4: begin outq = 10'h1be; end
8'hf5: begin outq = 10'h25e; end
8'hf6: begin outq = 10'h032; end
8'hf7: begin outq = 10'h2ef; end
8'hf8: begin outq = 10'h02f; end
8'hf9: begin outq = 10'h201; end
8'hfa: begin outq = 10'h054; end
8'hfb: begin outq = 10'h013; end
8'hfc: begin outq = 10'h249; end
8'hfd: begin outq = 10'h09a; end
8'hfe: begin outq = 10'h012; end
8'hff: begin outq = 10'h114; end
default: ; // No change
endcase
end
endmodule
|
module main_pll
(// Clock in ports
input CLK_IN1,
// Clock out ports
output CLK_OUT1
);
// Input buffering
//------------------------------------
IBUFG clkin1_buf
(.O (clkin1),
.I (CLK_IN1));
// Clocking primitive
//------------------------------------
// Instantiation of the DCM primitive
// * Unused inputs are tied off
// * Unused outputs are labeled unused
wire psdone_unused;
wire locked_int;
wire [7:0] status_int;
wire clkfb;
wire clk0;
wire clkfx;
DCM_SP
#(.CLKDV_DIVIDE (2.000),
.CLKFX_DIVIDE (10),
.CLKFX_MULTIPLY (15),
.CLKIN_DIVIDE_BY_2 ("FALSE"),
.CLKIN_PERIOD (10.0),
.CLKOUT_PHASE_SHIFT ("NONE"),
.CLK_FEEDBACK ("NONE"),
.DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"),
.PHASE_SHIFT (0),
.STARTUP_WAIT ("FALSE"))
dcm_sp_inst
// Input clock
(.CLKIN (clkin1),
.CLKFB (clkfb),
// Output clocks
.CLK0 (clk0),
.CLK90 (),
.CLK180 (),
.CLK270 (),
.CLK2X (),
.CLK2X180 (),
.CLKFX (clkfx),
.CLKFX180 (),
.CLKDV (),
// Ports for dynamic phase shift
.PSCLK (1'b0),
.PSEN (1'b0),
.PSINCDEC (1'b0),
.PSDONE (),
// Other control and status signals
.LOCKED (locked_int),
.STATUS (status_int),
.RST (1'b0),
// Unused pin- tie low
.DSSEN (1'b0));
// Output buffering
//-----------------------------------
// no phase alignment active, connect to ground
assign clkfb = 1'b0;
BUFG clkout1_buf
(.O (CLK_OUT1),
.I (clkfx));
endmodule
|
module main_pll
(// Clock in ports
input CLK_IN1,
// Clock out ports
output CLK_OUT1
);
// Input buffering
//------------------------------------
IBUFG clkin1_buf
(.O (clkin1),
.I (CLK_IN1));
// Clocking primitive
//------------------------------------
// Instantiation of the DCM primitive
// * Unused inputs are tied off
// * Unused outputs are labeled unused
wire psdone_unused;
wire locked_int;
wire [7:0] status_int;
wire clkfb;
wire clk0;
wire clkfx;
DCM_SP
#(.CLKDV_DIVIDE (2.000),
.CLKFX_DIVIDE (10),
.CLKFX_MULTIPLY (15),
.CLKIN_DIVIDE_BY_2 ("FALSE"),
.CLKIN_PERIOD (10.0),
.CLKOUT_PHASE_SHIFT ("NONE"),
.CLK_FEEDBACK ("NONE"),
.DESKEW_ADJUST ("SYSTEM_SYNCHRONOUS"),
.PHASE_SHIFT (0),
.STARTUP_WAIT ("FALSE"))
dcm_sp_inst
// Input clock
(.CLKIN (clkin1),
.CLKFB (clkfb),
// Output clocks
.CLK0 (clk0),
.CLK90 (),
.CLK180 (),
.CLK270 (),
.CLK2X (),
.CLK2X180 (),
.CLKFX (clkfx),
.CLKFX180 (),
.CLKDV (),
// Ports for dynamic phase shift
.PSCLK (1'b0),
.PSEN (1'b0),
.PSINCDEC (1'b0),
.PSDONE (),
// Other control and status signals
.LOCKED (locked_int),
.STATUS (status_int),
.RST (1'b0),
// Unused pin- tie low
.DSSEN (1'b0));
// Output buffering
//-----------------------------------
// no phase alignment active, connect to ground
assign clkfb = 1'b0;
BUFG clkout1_buf
(.O (CLK_OUT1),
.I (clkfx));
endmodule
|
module outputs)
wire [9:0] outa0; // From s0 of t_case_huge_sub.v
wire [9:0] outa1; // From s1 of t_case_huge_sub.v
wire [9:0] outa2; // From s2 of t_case_huge_sub.v
wire [9:0] outa3; // From s3 of t_case_huge_sub.v
wire [9:0] outa4; // From s4 of t_case_huge_sub.v
wire [9:0] outa5; // From s5 of t_case_huge_sub.v
wire [9:0] outa6; // From s6 of t_case_huge_sub.v
wire [9:0] outa7; // From s7 of t_case_huge_sub.v
wire [1:0] outb0; // From s0 of t_case_huge_sub.v
wire [1:0] outb1; // From s1 of t_case_huge_sub.v
wire [1:0] outb2; // From s2 of t_case_huge_sub.v
wire [1:0] outb3; // From s3 of t_case_huge_sub.v
wire [1:0] outb4; // From s4 of t_case_huge_sub.v
wire [1:0] outb5; // From s5 of t_case_huge_sub.v
wire [1:0] outb6; // From s6 of t_case_huge_sub.v
wire [1:0] outb7; // From s7 of t_case_huge_sub.v
wire outc0; // From s0 of t_case_huge_sub.v
wire outc1; // From s1 of t_case_huge_sub.v
wire outc2; // From s2 of t_case_huge_sub.v
wire outc3; // From s3 of t_case_huge_sub.v
wire outc4; // From s4 of t_case_huge_sub.v
wire outc5; // From s5 of t_case_huge_sub.v
wire outc6; // From s6 of t_case_huge_sub.v
wire outc7; // From s7 of t_case_huge_sub.v
wire [9:0] outq; // From q of t_case_huge_sub4.v
wire [3:0] outr; // From sub3 of t_case_huge_sub3.v
wire [9:0] outsmall; // From sub2 of t_case_huge_sub2.v
// End of automatics
t_case_huge_sub2 sub2 (
// Outputs
.outa (outsmall[9:0]),
/*AUTOINST*/
// Inputs
.index (index[9:0]));
t_case_huge_sub3 sub3 (/*AUTOINST*/
// Outputs
.outr (outr[3:0]),
// Inputs
.clk (clk),
.index (index[9:0]));
/* t_case_huge_sub AUTO_TEMPLATE (
.outa (outa@[]),
.outb (outb@[]),
.outc (outc@[]),
.index (index@[]));
*/
t_case_huge_sub s0 (/*AUTOINST*/
// Outputs
.outa (outa0[9:0]), // Templated
.outb (outb0[1:0]), // Templated
.outc (outc0), // Templated
// Inputs
.index (index0[7:0])); // Templated
t_case_huge_sub s1 (/*AUTOINST*/
// Outputs
.outa (outa1[9:0]), // Templated
.outb (outb1[1:0]), // Templated
.outc (outc1), // Templated
// Inputs
.index (index1[7:0])); // Templated
t_case_huge_sub s2 (/*AUTOINST*/
// Outputs
.outa (outa2[9:0]), // Templated
.outb (outb2[1:0]), // Templated
.outc (outc2), // Templated
// Inputs
.index (index2[7:0])); // Templated
t_case_huge_sub s3 (/*AUTOINST*/
// Outputs
.outa (outa3[9:0]), // Templated
.outb (outb3[1:0]), // Templated
.outc (outc3), // Templated
// Inputs
.index (index3[7:0])); // Templated
t_case_huge_sub s4 (/*AUTOINST*/
// Outputs
.outa (outa4[9:0]), // Templated
.outb (outb4[1:0]), // Templated
.outc (outc4), // Templated
// Inputs
.index (index4[7:0])); // Templated
t_case_huge_sub s5 (/*AUTOINST*/
// Outputs
.outa (outa5[9:0]), // Templated
.outb (outb5[1:0]), // Templated
.outc (outc5), // Templated
// Inputs
.index (index5[7:0])); // Templated
t_case_huge_sub s6 (/*AUTOINST*/
// Outputs
.outa (outa6[9:0]), // Templated
.outb (outb6[1:0]), // Templated
.outc (outc6), // Templated
// Inputs
.index (index6[7:0])); // Templated
t_case_huge_sub s7 (/*AUTOINST*/
// Outputs
.outa (outa7[9:0]), // Templated
.outb (outb7[1:0]), // Templated
.outc (outc7), // Templated
// Inputs
.index (index7[7:0])); // Templated
t_case_huge_sub4 q (/*AUTOINST*/
// Outputs
.outq (outq[9:0]),
// Inputs
.index (index[7:0]));
integer cyc; initial cyc=1;
initial index = 10'h0;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%x: %x\n",cyc,outr);
//$write("%x: %x %x %x %x\n", cyc, outa1,outb1,outc1,index1);
if (cyc==1) begin
index <= 10'h236;
end
if (cyc==2) begin
index <= 10'h022;
if (outsmall != 10'h282) $stop;
if (outr != 4'b0) $stop;
if ({outa0,outb0,outc0}!={10'h282,2'd3,1'b0}) $stop;
if ({outa1,outb1,outc1}!={10'h21c,2'd3,1'b1}) $stop;
if ({outa2,outb2,outc2}!={10'h148,2'd0,1'b1}) $stop;
if ({outa3,outb3,outc3}!={10'h3c0,2'd2,1'b0}) $stop;
if ({outa4,outb4,outc4}!={10'h176,2'd1,1'b1}) $stop;
if ({outa5,outb5,outc5}!={10'h3fc,2'd2,1'b1}) $stop;
if ({outa6,outb6,outc6}!={10'h295,2'd3,1'b1}) $stop;
if ({outa7,outb7,outc7}!={10'h113,2'd2,1'b1}) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==3) begin
index <= 10'h165;
if (outsmall != 10'h191) $stop;
if (outr != 4'h5) $stop;
if ({outa1,outb1,outc1}!={10'h379,2'd1,1'b0}) $stop;
if ({outa2,outb2,outc2}!={10'h073,2'd0,1'b0}) $stop;
if ({outa3,outb3,outc3}!={10'h2fd,2'd3,1'b1}) $stop;
if ({outa4,outb4,outc4}!={10'h2e0,2'd3,1'b1}) $stop;
if ({outa5,outb5,outc5}!={10'h337,2'd1,1'b1}) $stop;
if ({outa6,outb6,outc6}!={10'h2c7,2'd3,1'b1}) $stop;
if ({outa7,outb7,outc7}!={10'h19e,2'd3,1'b0}) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==4) begin
index <= 10'h201;
if (outsmall != 10'h268) $stop;
if (outr != 4'h2) $stop;
if ({outa1,outb1,outc1}!={10'h111,2'd1,1'b0}) $stop;
if ({outa2,outb2,outc2}!={10'h1f9,2'd0,1'b0}) $stop;
if ({outa3,outb3,outc3}!={10'h232,2'd0,1'b1}) $stop;
if ({outa4,outb4,outc4}!={10'h255,2'd3,1'b0}) $stop;
if ({outa5,outb5,outc5}!={10'h34c,2'd1,1'b1}) $stop;
if ({outa6,outb6,outc6}!={10'h049,2'd1,1'b1}) $stop;
if ({outa7,outb7,outc7}!={10'h197,2'd3,1'b0}) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==5) begin
index <= 10'h3ff;
if (outr != 4'hd) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==6) begin
index <= 10'h0;
if (outr != 4'hd) $stop;
if (outq != 10'h114) $stop;
end
if (cyc==7) begin
if (outr != 4'h4) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module outputs)
wire [9:0] outa0; // From s0 of t_case_huge_sub.v
wire [9:0] outa1; // From s1 of t_case_huge_sub.v
wire [9:0] outa2; // From s2 of t_case_huge_sub.v
wire [9:0] outa3; // From s3 of t_case_huge_sub.v
wire [9:0] outa4; // From s4 of t_case_huge_sub.v
wire [9:0] outa5; // From s5 of t_case_huge_sub.v
wire [9:0] outa6; // From s6 of t_case_huge_sub.v
wire [9:0] outa7; // From s7 of t_case_huge_sub.v
wire [1:0] outb0; // From s0 of t_case_huge_sub.v
wire [1:0] outb1; // From s1 of t_case_huge_sub.v
wire [1:0] outb2; // From s2 of t_case_huge_sub.v
wire [1:0] outb3; // From s3 of t_case_huge_sub.v
wire [1:0] outb4; // From s4 of t_case_huge_sub.v
wire [1:0] outb5; // From s5 of t_case_huge_sub.v
wire [1:0] outb6; // From s6 of t_case_huge_sub.v
wire [1:0] outb7; // From s7 of t_case_huge_sub.v
wire outc0; // From s0 of t_case_huge_sub.v
wire outc1; // From s1 of t_case_huge_sub.v
wire outc2; // From s2 of t_case_huge_sub.v
wire outc3; // From s3 of t_case_huge_sub.v
wire outc4; // From s4 of t_case_huge_sub.v
wire outc5; // From s5 of t_case_huge_sub.v
wire outc6; // From s6 of t_case_huge_sub.v
wire outc7; // From s7 of t_case_huge_sub.v
wire [9:0] outq; // From q of t_case_huge_sub4.v
wire [3:0] outr; // From sub3 of t_case_huge_sub3.v
wire [9:0] outsmall; // From sub2 of t_case_huge_sub2.v
// End of automatics
t_case_huge_sub2 sub2 (
// Outputs
.outa (outsmall[9:0]),
/*AUTOINST*/
// Inputs
.index (index[9:0]));
t_case_huge_sub3 sub3 (/*AUTOINST*/
// Outputs
.outr (outr[3:0]),
// Inputs
.clk (clk),
.index (index[9:0]));
/* t_case_huge_sub AUTO_TEMPLATE (
.outa (outa@[]),
.outb (outb@[]),
.outc (outc@[]),
.index (index@[]));
*/
t_case_huge_sub s0 (/*AUTOINST*/
// Outputs
.outa (outa0[9:0]), // Templated
.outb (outb0[1:0]), // Templated
.outc (outc0), // Templated
// Inputs
.index (index0[7:0])); // Templated
t_case_huge_sub s1 (/*AUTOINST*/
// Outputs
.outa (outa1[9:0]), // Templated
.outb (outb1[1:0]), // Templated
.outc (outc1), // Templated
// Inputs
.index (index1[7:0])); // Templated
t_case_huge_sub s2 (/*AUTOINST*/
// Outputs
.outa (outa2[9:0]), // Templated
.outb (outb2[1:0]), // Templated
.outc (outc2), // Templated
// Inputs
.index (index2[7:0])); // Templated
t_case_huge_sub s3 (/*AUTOINST*/
// Outputs
.outa (outa3[9:0]), // Templated
.outb (outb3[1:0]), // Templated
.outc (outc3), // Templated
// Inputs
.index (index3[7:0])); // Templated
t_case_huge_sub s4 (/*AUTOINST*/
// Outputs
.outa (outa4[9:0]), // Templated
.outb (outb4[1:0]), // Templated
.outc (outc4), // Templated
// Inputs
.index (index4[7:0])); // Templated
t_case_huge_sub s5 (/*AUTOINST*/
// Outputs
.outa (outa5[9:0]), // Templated
.outb (outb5[1:0]), // Templated
.outc (outc5), // Templated
// Inputs
.index (index5[7:0])); // Templated
t_case_huge_sub s6 (/*AUTOINST*/
// Outputs
.outa (outa6[9:0]), // Templated
.outb (outb6[1:0]), // Templated
.outc (outc6), // Templated
// Inputs
.index (index6[7:0])); // Templated
t_case_huge_sub s7 (/*AUTOINST*/
// Outputs
.outa (outa7[9:0]), // Templated
.outb (outb7[1:0]), // Templated
.outc (outc7), // Templated
// Inputs
.index (index7[7:0])); // Templated
t_case_huge_sub4 q (/*AUTOINST*/
// Outputs
.outq (outq[9:0]),
// Inputs
.index (index[7:0]));
integer cyc; initial cyc=1;
initial index = 10'h0;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
//$write("%x: %x\n",cyc,outr);
//$write("%x: %x %x %x %x\n", cyc, outa1,outb1,outc1,index1);
if (cyc==1) begin
index <= 10'h236;
end
if (cyc==2) begin
index <= 10'h022;
if (outsmall != 10'h282) $stop;
if (outr != 4'b0) $stop;
if ({outa0,outb0,outc0}!={10'h282,2'd3,1'b0}) $stop;
if ({outa1,outb1,outc1}!={10'h21c,2'd3,1'b1}) $stop;
if ({outa2,outb2,outc2}!={10'h148,2'd0,1'b1}) $stop;
if ({outa3,outb3,outc3}!={10'h3c0,2'd2,1'b0}) $stop;
if ({outa4,outb4,outc4}!={10'h176,2'd1,1'b1}) $stop;
if ({outa5,outb5,outc5}!={10'h3fc,2'd2,1'b1}) $stop;
if ({outa6,outb6,outc6}!={10'h295,2'd3,1'b1}) $stop;
if ({outa7,outb7,outc7}!={10'h113,2'd2,1'b1}) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==3) begin
index <= 10'h165;
if (outsmall != 10'h191) $stop;
if (outr != 4'h5) $stop;
if ({outa1,outb1,outc1}!={10'h379,2'd1,1'b0}) $stop;
if ({outa2,outb2,outc2}!={10'h073,2'd0,1'b0}) $stop;
if ({outa3,outb3,outc3}!={10'h2fd,2'd3,1'b1}) $stop;
if ({outa4,outb4,outc4}!={10'h2e0,2'd3,1'b1}) $stop;
if ({outa5,outb5,outc5}!={10'h337,2'd1,1'b1}) $stop;
if ({outa6,outb6,outc6}!={10'h2c7,2'd3,1'b1}) $stop;
if ({outa7,outb7,outc7}!={10'h19e,2'd3,1'b0}) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==4) begin
index <= 10'h201;
if (outsmall != 10'h268) $stop;
if (outr != 4'h2) $stop;
if ({outa1,outb1,outc1}!={10'h111,2'd1,1'b0}) $stop;
if ({outa2,outb2,outc2}!={10'h1f9,2'd0,1'b0}) $stop;
if ({outa3,outb3,outc3}!={10'h232,2'd0,1'b1}) $stop;
if ({outa4,outb4,outc4}!={10'h255,2'd3,1'b0}) $stop;
if ({outa5,outb5,outc5}!={10'h34c,2'd1,1'b1}) $stop;
if ({outa6,outb6,outc6}!={10'h049,2'd1,1'b1}) $stop;
if ({outa7,outb7,outc7}!={10'h197,2'd3,1'b0}) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==5) begin
index <= 10'h3ff;
if (outr != 4'hd) $stop;
if (outq != 10'h001) $stop;
end
if (cyc==6) begin
index <= 10'h0;
if (outr != 4'hd) $stop;
if (outq != 10'h114) $stop;
end
if (cyc==7) begin
if (outr != 4'h4) $stop;
end
if (cyc==9) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg posedge_wr_clocks;
reg prev_wr_clocks;
reg [31:0] m_din;
reg [31:0] m_dout;
always @(negedge clk) begin
prev_wr_clocks = 0;
end
reg comb_pos_1;
reg comb_prev_1;
always @ (/*AS*/clk or posedge_wr_clocks or prev_wr_clocks) begin
comb_pos_1 = (clk &~ prev_wr_clocks);
comb_prev_1 = comb_pos_1 | posedge_wr_clocks;
comb_pos_1 = 1'b1;
end
always @ (posedge clk) begin
posedge_wr_clocks = (clk &~ prev_wr_clocks); //surefire lint_off_line SEQASS
prev_wr_clocks = prev_wr_clocks | posedge_wr_clocks; //surefire lint_off_line SEQASS
if (posedge_wr_clocks) begin
//$write("[%0t] Wrclk\n", $time);
m_dout <= m_din;
end
end
always @ (posedge clk) begin
if (cyc!=0) begin
cyc<=cyc+1;
if (cyc==1) begin
$write(" %x\n",comb_pos_1);
m_din <= 32'hfeed;
end
if (cyc==2) begin
$write(" %x\n",comb_pos_1);
m_din <= 32'he11e;
end
if (cyc==3) begin
m_din <= 32'he22e;
$write(" %x\n",comb_pos_1);
if (m_dout!=32'hfeed) $stop;
end
if (cyc==4) begin
if (m_dout!=32'he11e) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg posedge_wr_clocks;
reg prev_wr_clocks;
reg [31:0] m_din;
reg [31:0] m_dout;
always @(negedge clk) begin
prev_wr_clocks = 0;
end
reg comb_pos_1;
reg comb_prev_1;
always @ (/*AS*/clk or posedge_wr_clocks or prev_wr_clocks) begin
comb_pos_1 = (clk &~ prev_wr_clocks);
comb_prev_1 = comb_pos_1 | posedge_wr_clocks;
comb_pos_1 = 1'b1;
end
always @ (posedge clk) begin
posedge_wr_clocks = (clk &~ prev_wr_clocks); //surefire lint_off_line SEQASS
prev_wr_clocks = prev_wr_clocks | posedge_wr_clocks; //surefire lint_off_line SEQASS
if (posedge_wr_clocks) begin
//$write("[%0t] Wrclk\n", $time);
m_dout <= m_din;
end
end
always @ (posedge clk) begin
if (cyc!=0) begin
cyc<=cyc+1;
if (cyc==1) begin
$write(" %x\n",comb_pos_1);
m_din <= 32'hfeed;
end
if (cyc==2) begin
$write(" %x\n",comb_pos_1);
m_din <= 32'he11e;
end
if (cyc==3) begin
m_din <= 32'he22e;
$write(" %x\n",comb_pos_1);
if (m_dout!=32'hfeed) $stop;
end
if (cyc==4) begin
if (m_dout!=32'he11e) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=1;
reg posedge_wr_clocks;
reg prev_wr_clocks;
reg [31:0] m_din;
reg [31:0] m_dout;
always @(negedge clk) begin
prev_wr_clocks = 0;
end
reg comb_pos_1;
reg comb_prev_1;
always @ (/*AS*/clk or posedge_wr_clocks or prev_wr_clocks) begin
comb_pos_1 = (clk &~ prev_wr_clocks);
comb_prev_1 = comb_pos_1 | posedge_wr_clocks;
comb_pos_1 = 1'b1;
end
always @ (posedge clk) begin
posedge_wr_clocks = (clk &~ prev_wr_clocks); //surefire lint_off_line SEQASS
prev_wr_clocks = prev_wr_clocks | posedge_wr_clocks; //surefire lint_off_line SEQASS
if (posedge_wr_clocks) begin
//$write("[%0t] Wrclk\n", $time);
m_dout <= m_din;
end
end
always @ (posedge clk) begin
if (cyc!=0) begin
cyc<=cyc+1;
if (cyc==1) begin
$write(" %x\n",comb_pos_1);
m_din <= 32'hfeed;
end
if (cyc==2) begin
$write(" %x\n",comb_pos_1);
m_din <= 32'he11e;
end
if (cyc==3) begin
m_din <= 32'he22e;
$write(" %x\n",comb_pos_1);
if (m_dout!=32'hfeed) $stop;
end
if (cyc==4) begin
if (m_dout!=32'he11e) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// verilator lint_off WIDTH
//============================================================
reg bad;
initial begin
bad=0;
c96(96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0_0000_0000_0000_0000, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0002, 96'h4_4444_4444_4444_4444, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_2000_0000_0000_0000, 96'h0_0000_0000_0000_0044, 96'h0_0888_8888_8888_8888);
c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0001, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8889, 96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888);
c96(96'h1_0000_0000_8eba_434a, 96'h0_0000_0000_0000_0001, 96'h1_0000_0000_8eba_434a, 96'h0);
c96(96'h0003, 96'h0002, 96'h0001, 96'h0001);
c96(96'h0003, 96'h0003, 96'h0001, 96'h0000);
c96(96'h0003, 96'h0004, 96'h0000, 96'h0003);
c96(96'h0000, 96'hffff, 96'h0000, 96'h0000);
c96(96'hffff, 96'h0001, 96'hffff, 96'h0000);
c96(96'hffff, 96'hffff, 96'h0001, 96'h0000);
c96(96'hffff, 96'h0003, 96'h5555, 96'h0000);
c96(96'hffff_ffff, 96'h0001, 96'hffff_ffff, 96'h0000);
c96(96'hffff_ffff, 96'hffff, 96'h0001_0001, 96'h0000);
c96(96'hfffe_ffff, 96'hffff, 96'h0000_ffff, 96'hfffe);
c96(96'h1234_5678, 96'h9abc, 96'h0000_1e1e, 96'h2c70);
c96(96'h0000_0000, 96'h0001_0000, 96'h0000, 96'h0000_0000);
c96(96'h0007_0000, 96'h0003_0000, 96'h0002, 96'h0001_0000);
c96(96'h0007_0005, 96'h0003_0000, 96'h0002, 96'h0001_0005);
c96(96'h0006_0000, 96'h0002_0000, 96'h0003, 96'h0000_0000);
c96(96'h8000_0001, 96'h4000_7000, 96'h0001, 96'h3fff_9001);
c96(96'hbcde_789a, 96'hbcde_789a, 96'h0001, 96'h0000_0000);
c96(96'hbcde_789b, 96'hbcde_789a, 96'h0001, 96'h0000_0001);
c96(96'hbcde_7899, 96'hbcde_789a, 96'h0000, 96'hbcde_7899);
c96(96'hffff_ffff, 96'hffff_ffff, 96'h0001, 96'h0000_0000);
c96(96'hffff_ffff, 96'h0001_0000, 96'hffff, 96'h0000_ffff);
c96(96'h0123_4567_89ab, 96'h0001_0000, 96'h0123_4567, 96'h0000_89ab);
c96(96'h8000_fffe_0000, 96'h8000_ffff, 96'h0000_ffff, 96'h7fff_ffff);
c96(96'h8000_0000_0003, 96'h2000_0000_0001, 96'h0003, 96'h2000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000, 96'hffff_ffff, 96'h0000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'hffff_0000_0000, 96'h0001_0001, 96'h0000_0000_0000);
c96(96'hfffe_ffff_0000_0000, 96'hffff_0000_0000, 96'h0000_ffff, 96'hfffe_0000_0000);
c96(96'h1234_5678_0000_0000, 96'h9abc_0000_0000, 96'h0000_1e1e, 96'h2c70_0000_0000);
c96(96'h0000_0000_0000_0000, 96'h0001_0000_0000_0000, 96'h0000, 96'h0000_0000_0000_0000);
c96(96'h0007_0000_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0000_0000_0000);
c96(96'h0007_0005_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0005_0000_0000);
c96(96'h0006_0000_0000_0000, 96'h0002_0000_0000_0000, 96'h0003, 96'h0000_0000_0000_0000);
c96(96'h8000_0001_0000_0000, 96'h4000_7000_0000_0000, 96'h0001, 96'h3fff_9001_0000_0000);
c96(96'hbcde_789a_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0000_0000_0000);
c96(96'hbcde_789b_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0001_0000_0000);
c96(96'hbcde_7899_0000_0000, 96'hbcde_789a_0000_0000, 96'h0000, 96'hbcde_7899_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'hffff_ffff_0000_0000, 96'h0001, 96'h0000_0000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000_0000, 96'hffff, 96'h0000_ffff_0000_0000);
c96(96'h7fff_8000_0000_0000, 96'h8000_0000_0001, 96'h0000_fffe, 96'h7fff_ffff_0002);
c96(96'h8000_0000_fffe_0000, 96'h8000_0000_ffff, 96'h0000_ffff, 96'h7fff_ffff_ffff);
c96(96'h0008_8888_8888_8888_8888, 96'h0002_0000_0000_0000, 96'h0004_4444, 96'h0000_8888_8888_8888);
if (bad) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
task c96;
input [95:0] u;
input [95:0] v;
input [95:0] expq;
input [95:0] expr;
c96u( u, v, expq, expr);
c96s( u, v, expq, expr);
c96s(-u, v,-expq,-expr);
c96s( u,-v,-expq, expr);
c96s(-u,-v, expq,-expr);
endtask
task c96u;
input [95:0] u;
input [95:0] v;
input [95:0] expq;
input [95:0] expr;
reg [95:0] gotq;
reg [95:0] gotr;
gotq = u/v;
gotr = u%v;
if (gotq != expq && v!=0) begin
bad = 1;
end
if (gotr != expr && v!=0) begin
bad = 1;
end
if (bad
`ifdef TEST_VERBOSE
|| 1
`endif
) begin
$write(" %x /u %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr);
// Test for v=0 to prevent Xs causing grief
if (gotq != expq && v!=0) $write(" BADQ");
if (gotr != expr && v!=0) $write(" BADR");
$write("\n");
end
endtask
task c96s;
input signed [95:0] u;
input signed [95:0] v;
input signed [95:0] expq;
input signed [95:0] expr;
reg signed [95:0] gotq;
reg signed [95:0] gotr;
gotq = u/v;
gotr = u%v;
if (gotq != expq && v!=0) begin
bad = 1;
end
if (gotr != expr && v!=0) begin
bad = 1;
end
if (bad
`ifdef TEST_VERBOSE
|| 1
`endif
) begin
$write(" %x /s %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr);
// Test for v=0 to prevent Xs causing grief
if (gotq != expq && v!=0) $write(" BADQ");
if (gotr != expr && v!=0) $write(" BADR");
$write("\n");
end
endtask
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// verilator lint_off WIDTH
//============================================================
reg bad;
initial begin
bad=0;
c96(96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0_0000_0000_0000_0000, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0002, 96'h4_4444_4444_4444_4444, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_2000_0000_0000_0000, 96'h0_0000_0000_0000_0044, 96'h0_0888_8888_8888_8888);
c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0001, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8889, 96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888);
c96(96'h1_0000_0000_8eba_434a, 96'h0_0000_0000_0000_0001, 96'h1_0000_0000_8eba_434a, 96'h0);
c96(96'h0003, 96'h0002, 96'h0001, 96'h0001);
c96(96'h0003, 96'h0003, 96'h0001, 96'h0000);
c96(96'h0003, 96'h0004, 96'h0000, 96'h0003);
c96(96'h0000, 96'hffff, 96'h0000, 96'h0000);
c96(96'hffff, 96'h0001, 96'hffff, 96'h0000);
c96(96'hffff, 96'hffff, 96'h0001, 96'h0000);
c96(96'hffff, 96'h0003, 96'h5555, 96'h0000);
c96(96'hffff_ffff, 96'h0001, 96'hffff_ffff, 96'h0000);
c96(96'hffff_ffff, 96'hffff, 96'h0001_0001, 96'h0000);
c96(96'hfffe_ffff, 96'hffff, 96'h0000_ffff, 96'hfffe);
c96(96'h1234_5678, 96'h9abc, 96'h0000_1e1e, 96'h2c70);
c96(96'h0000_0000, 96'h0001_0000, 96'h0000, 96'h0000_0000);
c96(96'h0007_0000, 96'h0003_0000, 96'h0002, 96'h0001_0000);
c96(96'h0007_0005, 96'h0003_0000, 96'h0002, 96'h0001_0005);
c96(96'h0006_0000, 96'h0002_0000, 96'h0003, 96'h0000_0000);
c96(96'h8000_0001, 96'h4000_7000, 96'h0001, 96'h3fff_9001);
c96(96'hbcde_789a, 96'hbcde_789a, 96'h0001, 96'h0000_0000);
c96(96'hbcde_789b, 96'hbcde_789a, 96'h0001, 96'h0000_0001);
c96(96'hbcde_7899, 96'hbcde_789a, 96'h0000, 96'hbcde_7899);
c96(96'hffff_ffff, 96'hffff_ffff, 96'h0001, 96'h0000_0000);
c96(96'hffff_ffff, 96'h0001_0000, 96'hffff, 96'h0000_ffff);
c96(96'h0123_4567_89ab, 96'h0001_0000, 96'h0123_4567, 96'h0000_89ab);
c96(96'h8000_fffe_0000, 96'h8000_ffff, 96'h0000_ffff, 96'h7fff_ffff);
c96(96'h8000_0000_0003, 96'h2000_0000_0001, 96'h0003, 96'h2000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000, 96'hffff_ffff, 96'h0000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'hffff_0000_0000, 96'h0001_0001, 96'h0000_0000_0000);
c96(96'hfffe_ffff_0000_0000, 96'hffff_0000_0000, 96'h0000_ffff, 96'hfffe_0000_0000);
c96(96'h1234_5678_0000_0000, 96'h9abc_0000_0000, 96'h0000_1e1e, 96'h2c70_0000_0000);
c96(96'h0000_0000_0000_0000, 96'h0001_0000_0000_0000, 96'h0000, 96'h0000_0000_0000_0000);
c96(96'h0007_0000_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0000_0000_0000);
c96(96'h0007_0005_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0005_0000_0000);
c96(96'h0006_0000_0000_0000, 96'h0002_0000_0000_0000, 96'h0003, 96'h0000_0000_0000_0000);
c96(96'h8000_0001_0000_0000, 96'h4000_7000_0000_0000, 96'h0001, 96'h3fff_9001_0000_0000);
c96(96'hbcde_789a_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0000_0000_0000);
c96(96'hbcde_789b_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0001_0000_0000);
c96(96'hbcde_7899_0000_0000, 96'hbcde_789a_0000_0000, 96'h0000, 96'hbcde_7899_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'hffff_ffff_0000_0000, 96'h0001, 96'h0000_0000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000_0000, 96'hffff, 96'h0000_ffff_0000_0000);
c96(96'h7fff_8000_0000_0000, 96'h8000_0000_0001, 96'h0000_fffe, 96'h7fff_ffff_0002);
c96(96'h8000_0000_fffe_0000, 96'h8000_0000_ffff, 96'h0000_ffff, 96'h7fff_ffff_ffff);
c96(96'h0008_8888_8888_8888_8888, 96'h0002_0000_0000_0000, 96'h0004_4444, 96'h0000_8888_8888_8888);
if (bad) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
task c96;
input [95:0] u;
input [95:0] v;
input [95:0] expq;
input [95:0] expr;
c96u( u, v, expq, expr);
c96s( u, v, expq, expr);
c96s(-u, v,-expq,-expr);
c96s( u,-v,-expq, expr);
c96s(-u,-v, expq,-expr);
endtask
task c96u;
input [95:0] u;
input [95:0] v;
input [95:0] expq;
input [95:0] expr;
reg [95:0] gotq;
reg [95:0] gotr;
gotq = u/v;
gotr = u%v;
if (gotq != expq && v!=0) begin
bad = 1;
end
if (gotr != expr && v!=0) begin
bad = 1;
end
if (bad
`ifdef TEST_VERBOSE
|| 1
`endif
) begin
$write(" %x /u %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr);
// Test for v=0 to prevent Xs causing grief
if (gotq != expq && v!=0) $write(" BADQ");
if (gotr != expr && v!=0) $write(" BADR");
$write("\n");
end
endtask
task c96s;
input signed [95:0] u;
input signed [95:0] v;
input signed [95:0] expq;
input signed [95:0] expr;
reg signed [95:0] gotq;
reg signed [95:0] gotr;
gotq = u/v;
gotr = u%v;
if (gotq != expq && v!=0) begin
bad = 1;
end
if (gotr != expr && v!=0) begin
bad = 1;
end
if (bad
`ifdef TEST_VERBOSE
|| 1
`endif
) begin
$write(" %x /s %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr);
// Test for v=0 to prevent Xs causing grief
if (gotq != expq && v!=0) $write(" BADQ");
if (gotr != expr && v!=0) $write(" BADR");
$write("\n");
end
endtask
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// verilator lint_off WIDTH
//============================================================
reg bad;
initial begin
bad=0;
c96(96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0000, 96'h0_0000_0000_0000_0000, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0002, 96'h4_4444_4444_4444_4444, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h0_2000_0000_0000_0000, 96'h0_0000_0000_0000_0044, 96'h0_0888_8888_8888_8888);
c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8888, 96'h0_0000_0000_0000_0001, 96'h0);
c96(96'h8_8888_8888_8888_8888, 96'h8_8888_8888_8888_8889, 96'h0_0000_0000_0000_0000, 96'h8_8888_8888_8888_8888);
c96(96'h1_0000_0000_8eba_434a, 96'h0_0000_0000_0000_0001, 96'h1_0000_0000_8eba_434a, 96'h0);
c96(96'h0003, 96'h0002, 96'h0001, 96'h0001);
c96(96'h0003, 96'h0003, 96'h0001, 96'h0000);
c96(96'h0003, 96'h0004, 96'h0000, 96'h0003);
c96(96'h0000, 96'hffff, 96'h0000, 96'h0000);
c96(96'hffff, 96'h0001, 96'hffff, 96'h0000);
c96(96'hffff, 96'hffff, 96'h0001, 96'h0000);
c96(96'hffff, 96'h0003, 96'h5555, 96'h0000);
c96(96'hffff_ffff, 96'h0001, 96'hffff_ffff, 96'h0000);
c96(96'hffff_ffff, 96'hffff, 96'h0001_0001, 96'h0000);
c96(96'hfffe_ffff, 96'hffff, 96'h0000_ffff, 96'hfffe);
c96(96'h1234_5678, 96'h9abc, 96'h0000_1e1e, 96'h2c70);
c96(96'h0000_0000, 96'h0001_0000, 96'h0000, 96'h0000_0000);
c96(96'h0007_0000, 96'h0003_0000, 96'h0002, 96'h0001_0000);
c96(96'h0007_0005, 96'h0003_0000, 96'h0002, 96'h0001_0005);
c96(96'h0006_0000, 96'h0002_0000, 96'h0003, 96'h0000_0000);
c96(96'h8000_0001, 96'h4000_7000, 96'h0001, 96'h3fff_9001);
c96(96'hbcde_789a, 96'hbcde_789a, 96'h0001, 96'h0000_0000);
c96(96'hbcde_789b, 96'hbcde_789a, 96'h0001, 96'h0000_0001);
c96(96'hbcde_7899, 96'hbcde_789a, 96'h0000, 96'hbcde_7899);
c96(96'hffff_ffff, 96'hffff_ffff, 96'h0001, 96'h0000_0000);
c96(96'hffff_ffff, 96'h0001_0000, 96'hffff, 96'h0000_ffff);
c96(96'h0123_4567_89ab, 96'h0001_0000, 96'h0123_4567, 96'h0000_89ab);
c96(96'h8000_fffe_0000, 96'h8000_ffff, 96'h0000_ffff, 96'h7fff_ffff);
c96(96'h8000_0000_0003, 96'h2000_0000_0001, 96'h0003, 96'h2000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000, 96'hffff_ffff, 96'h0000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'hffff_0000_0000, 96'h0001_0001, 96'h0000_0000_0000);
c96(96'hfffe_ffff_0000_0000, 96'hffff_0000_0000, 96'h0000_ffff, 96'hfffe_0000_0000);
c96(96'h1234_5678_0000_0000, 96'h9abc_0000_0000, 96'h0000_1e1e, 96'h2c70_0000_0000);
c96(96'h0000_0000_0000_0000, 96'h0001_0000_0000_0000, 96'h0000, 96'h0000_0000_0000_0000);
c96(96'h0007_0000_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0000_0000_0000);
c96(96'h0007_0005_0000_0000, 96'h0003_0000_0000_0000, 96'h0002, 96'h0001_0005_0000_0000);
c96(96'h0006_0000_0000_0000, 96'h0002_0000_0000_0000, 96'h0003, 96'h0000_0000_0000_0000);
c96(96'h8000_0001_0000_0000, 96'h4000_7000_0000_0000, 96'h0001, 96'h3fff_9001_0000_0000);
c96(96'hbcde_789a_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0000_0000_0000);
c96(96'hbcde_789b_0000_0000, 96'hbcde_789a_0000_0000, 96'h0001, 96'h0000_0001_0000_0000);
c96(96'hbcde_7899_0000_0000, 96'hbcde_789a_0000_0000, 96'h0000, 96'hbcde_7899_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'hffff_ffff_0000_0000, 96'h0001, 96'h0000_0000_0000_0000);
c96(96'hffff_ffff_0000_0000, 96'h0001_0000_0000_0000, 96'hffff, 96'h0000_ffff_0000_0000);
c96(96'h7fff_8000_0000_0000, 96'h8000_0000_0001, 96'h0000_fffe, 96'h7fff_ffff_0002);
c96(96'h8000_0000_fffe_0000, 96'h8000_0000_ffff, 96'h0000_ffff, 96'h7fff_ffff_ffff);
c96(96'h0008_8888_8888_8888_8888, 96'h0002_0000_0000_0000, 96'h0004_4444, 96'h0000_8888_8888_8888);
if (bad) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
task c96;
input [95:0] u;
input [95:0] v;
input [95:0] expq;
input [95:0] expr;
c96u( u, v, expq, expr);
c96s( u, v, expq, expr);
c96s(-u, v,-expq,-expr);
c96s( u,-v,-expq, expr);
c96s(-u,-v, expq,-expr);
endtask
task c96u;
input [95:0] u;
input [95:0] v;
input [95:0] expq;
input [95:0] expr;
reg [95:0] gotq;
reg [95:0] gotr;
gotq = u/v;
gotr = u%v;
if (gotq != expq && v!=0) begin
bad = 1;
end
if (gotr != expr && v!=0) begin
bad = 1;
end
if (bad
`ifdef TEST_VERBOSE
|| 1
`endif
) begin
$write(" %x /u %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr);
// Test for v=0 to prevent Xs causing grief
if (gotq != expq && v!=0) $write(" BADQ");
if (gotr != expr && v!=0) $write(" BADR");
$write("\n");
end
endtask
task c96s;
input signed [95:0] u;
input signed [95:0] v;
input signed [95:0] expq;
input signed [95:0] expr;
reg signed [95:0] gotq;
reg signed [95:0] gotr;
gotq = u/v;
gotr = u%v;
if (gotq != expq && v!=0) begin
bad = 1;
end
if (gotr != expr && v!=0) begin
bad = 1;
end
if (bad
`ifdef TEST_VERBOSE
|| 1
`endif
) begin
$write(" %x /s %x = got %x exp %x %% got %x exp %x", u,v,gotq,expq,gotr,expr);
// Test for v=0 to prevent Xs causing grief
if (gotq != expq && v!=0) $write(" BADQ");
if (gotr != expr && v!=0) $write(" BADR");
$write("\n");
end
endtask
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [7:0] crc;
reg [2:0] sum;
wire [2:0] in = crc[2:0];
wire [2:0] out;
MxN_pipeline pipe (in, out, clk);
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%b sum=%x\n",$time, cyc, crc, sum);
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
if (cyc==0) begin
// Setup
crc <= 8'hed;
sum <= 3'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[1:0],sum[2]} ^ out;
end
else if (cyc==99) begin
if (crc !== 8'b01110000) $stop;
if (sum !== 3'h3) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module dffn (q,d,clk);
parameter BITS = 1;
input [BITS-1:0] d;
output reg [BITS-1:0] q;
input clk;
always @ (posedge clk) begin
q <= d;
end
endmodule
|
module MxN_pipeline (in, out, clk);
parameter M=3, N=4;
input [M-1:0] in;
output [M-1:0] out;
input clk;
// Unsupported: Per-bit array instantiations with output connections to non-wires.
//wire [M*(N-1):1] t;
//dffn #(M) p[N:1] ({out,t},{t,in},clk);
wire [M*(N-1):1] w;
wire [M*N:1] q;
dffn #(M) p[N:1] (q,{w,in},clk);
assign {out,w} = q;
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [7:0] crc;
reg [2:0] sum;
wire [2:0] in = crc[2:0];
wire [2:0] out;
MxN_pipeline pipe (in, out, clk);
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%b sum=%x\n",$time, cyc, crc, sum);
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
if (cyc==0) begin
// Setup
crc <= 8'hed;
sum <= 3'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[1:0],sum[2]} ^ out;
end
else if (cyc==99) begin
if (crc !== 8'b01110000) $stop;
if (sum !== 3'h3) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module dffn (q,d,clk);
parameter BITS = 1;
input [BITS-1:0] d;
output reg [BITS-1:0] q;
input clk;
always @ (posedge clk) begin
q <= d;
end
endmodule
|
module MxN_pipeline (in, out, clk);
parameter M=3, N=4;
input [M-1:0] in;
output [M-1:0] out;
input clk;
// Unsupported: Per-bit array instantiations with output connections to non-wires.
//wire [M*(N-1):1] t;
//dffn #(M) p[N:1] ({out,t},{t,in},clk);
wire [M*(N-1):1] w;
wire [M*N:1] q;
dffn #(M) p[N:1] (q,{w,in},clk);
assign {out,w} = q;
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [7:0] crc;
reg [2:0] sum;
wire [2:0] in = crc[2:0];
wire [2:0] out;
MxN_pipeline pipe (in, out, clk);
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%b sum=%x\n",$time, cyc, crc, sum);
cyc <= cyc + 1;
crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}};
if (cyc==0) begin
// Setup
crc <= 8'hed;
sum <= 3'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[1:0],sum[2]} ^ out;
end
else if (cyc==99) begin
if (crc !== 8'b01110000) $stop;
if (sum !== 3'h3) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module dffn (q,d,clk);
parameter BITS = 1;
input [BITS-1:0] d;
output reg [BITS-1:0] q;
input clk;
always @ (posedge clk) begin
q <= d;
end
endmodule
|
module MxN_pipeline (in, out, clk);
parameter M=3, N=4;
input [M-1:0] in;
output [M-1:0] out;
input clk;
// Unsupported: Per-bit array instantiations with output connections to non-wires.
//wire [M*(N-1):1] t;
//dffn #(M) p[N:1] ({out,t},{t,in},clk);
wire [M*(N-1):1] w;
wire [M*N:1] q;
dffn #(M) p[N:1] (q,{w,in},clk);
assign {out,w} = q;
endmodule
|
module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.reset (reset),
.enable (enable),
.in (in[31:0]));
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
reset <= (cyc < 5);
enable <= cyc[4] || (cyc < 2);
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h01e1553da1dcf3af
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, reset, enable, in
);
input clk;
input reset;
input enable;
input [31:0] in;
output [31:0] out;
// No gating
reg [31:0] d10;
always @(posedge clk) begin
d10 <= in;
end
reg displayit;
`ifdef VERILATOR // Harder test
initial displayit = $c1("0"); // Something that won't optimize away
`else
initial displayit = '0;
`endif
// Obvious gating + PLI
reg [31:0] d20;
always @(posedge clk) begin
if (enable) begin
d20 <= d10; // Obvious gating
if (displayit) begin
$display("hello!"); // Must glob with other PLI statements
end
end
end
// Reset means second-level gating
reg [31:0] d30, d31a, d31b, d32;
always @(posedge clk) begin
d32 <= d31b;
if (reset) begin
d30 <= 32'h0;
d31a <= 32'h0;
d31b <= 32'h0;
d32 <= 32'h0; // Overlaps above, just to make things interesting
end
else begin
// Mix two outputs
d30 <= d20;
if (enable) begin
d31a <= d30;
d31b <= d31a;
end
end
end
// Multiple ORs for gater
reg [31:0] d40a,d40b;
always @(posedge clk) begin
if (reset) begin
d40a <= 32'h0;
d40b <= 32'h0;
end
if (enable) begin
d40a <= d32;
d40b <= d40a;
end
end
// Non-optimizable
reg [31:0] d91, d92;
reg [31:0] inverted;
always @(posedge clk) begin
inverted = ~d40b;
if (reset) begin
d91 <= 32'h0;
end
else begin
if (enable) begin
d91 <= inverted;
end
else begin
d92 <= inverted ^ 32'h12341234; // Inverted gating condition
end
end
end
wire [31:0] out = d91 ^ d92;
endmodule
|
module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.reset (reset),
.enable (enable),
.in (in[31:0]));
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
reset <= (cyc < 5);
enable <= cyc[4] || (cyc < 2);
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h01e1553da1dcf3af
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, reset, enable, in
);
input clk;
input reset;
input enable;
input [31:0] in;
output [31:0] out;
// No gating
reg [31:0] d10;
always @(posedge clk) begin
d10 <= in;
end
reg displayit;
`ifdef VERILATOR // Harder test
initial displayit = $c1("0"); // Something that won't optimize away
`else
initial displayit = '0;
`endif
// Obvious gating + PLI
reg [31:0] d20;
always @(posedge clk) begin
if (enable) begin
d20 <= d10; // Obvious gating
if (displayit) begin
$display("hello!"); // Must glob with other PLI statements
end
end
end
// Reset means second-level gating
reg [31:0] d30, d31a, d31b, d32;
always @(posedge clk) begin
d32 <= d31b;
if (reset) begin
d30 <= 32'h0;
d31a <= 32'h0;
d31b <= 32'h0;
d32 <= 32'h0; // Overlaps above, just to make things interesting
end
else begin
// Mix two outputs
d30 <= d20;
if (enable) begin
d31a <= d30;
d31b <= d31a;
end
end
end
// Multiple ORs for gater
reg [31:0] d40a,d40b;
always @(posedge clk) begin
if (reset) begin
d40a <= 32'h0;
d40b <= 32'h0;
end
if (enable) begin
d40a <= d32;
d40b <= d40a;
end
end
// Non-optimizable
reg [31:0] d91, d92;
reg [31:0] inverted;
always @(posedge clk) begin
inverted = ~d40b;
if (reset) begin
d91 <= 32'h0;
end
else begin
if (enable) begin
d91 <= inverted;
end
else begin
d92 <= inverted ^ 32'h12341234; // Inverted gating condition
end
end
end
wire [31:0] out = d91 ^ d92;
endmodule
|
module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.reset (reset),
.enable (enable),
.in (in[31:0]));
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
reset <= (cyc < 5);
enable <= cyc[4] || (cyc < 2);
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h01e1553da1dcf3af
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, reset, enable, in
);
input clk;
input reset;
input enable;
input [31:0] in;
output [31:0] out;
// No gating
reg [31:0] d10;
always @(posedge clk) begin
d10 <= in;
end
reg displayit;
`ifdef VERILATOR // Harder test
initial displayit = $c1("0"); // Something that won't optimize away
`else
initial displayit = '0;
`endif
// Obvious gating + PLI
reg [31:0] d20;
always @(posedge clk) begin
if (enable) begin
d20 <= d10; // Obvious gating
if (displayit) begin
$display("hello!"); // Must glob with other PLI statements
end
end
end
// Reset means second-level gating
reg [31:0] d30, d31a, d31b, d32;
always @(posedge clk) begin
d32 <= d31b;
if (reset) begin
d30 <= 32'h0;
d31a <= 32'h0;
d31b <= 32'h0;
d32 <= 32'h0; // Overlaps above, just to make things interesting
end
else begin
// Mix two outputs
d30 <= d20;
if (enable) begin
d31a <= d30;
d31b <= d31a;
end
end
end
// Multiple ORs for gater
reg [31:0] d40a,d40b;
always @(posedge clk) begin
if (reset) begin
d40a <= 32'h0;
d40b <= 32'h0;
end
if (enable) begin
d40a <= d32;
d40b <= d40a;
end
end
// Non-optimizable
reg [31:0] d91, d92;
reg [31:0] inverted;
always @(posedge clk) begin
inverted = ~d40b;
if (reset) begin
d91 <= 32'h0;
end
else begin
if (enable) begin
d91 <= inverted;
end
else begin
d92 <= inverted ^ 32'h12341234; // Inverted gating condition
end
end
end
wire [31:0] out = d91 ^ d92;
endmodule
|
module outputs)
wire [3:0] out; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.out (out[3:0]),
// Inputs
.clk (clk),
.in (in[31:0]));
// Aggregate outputs into a single result vector
wire [63:0] result = {60'h0, out};
// What checksum will we end up with
`define EXPECTED_SUM 64'h1a0d07009b6a30d2
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, in
);
input clk;
input [31:0] in;
output [3:0] out;
assign out[0] = in[3:0] ==? 4'b1001;
assign out[1] = in[3:0] !=? 4'b1001;
assign out[2] = in[3:0] ==? 4'bx01x;
assign out[3] = in[3:0] !=? 4'bx01x;
endmodule
|
module t (clk);
input clk;
reg [63:0] inwide;
reg [39:0] addr;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write ("%x %x\n", cyc, addr);
`endif
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
addr <= 40'h12_3456_7890;
end
if (cyc==2) begin
if (addr !== 40'h1234567890) $stop;
addr[31:0] <= 32'habcd_efaa;
end
if (cyc==3) begin
if (addr !== 40'h12abcdefaa) $stop;
addr[39:32] <= 8'h44;
inwide <= 64'hffeeddcc_11334466;
end
if (cyc==4) begin
if (addr !== 40'h44abcdefaa) $stop;
addr[31:0] <= inwide[31:0];
end
if (cyc==5) begin
if (addr !== 40'h4411334466) $stop;
$display ("Flip [%x]\n", inwide[3:0]);
addr[{2'b0,inwide[3:0]}] <= ! addr[{2'b0,inwide[3:0]}];
end
if (cyc==6) begin
if (addr !== 40'h4411334426) $stop;
end
if (cyc==10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (clk);
input clk;
reg [63:0] inwide;
reg [39:0] addr;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write ("%x %x\n", cyc, addr);
`endif
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
addr <= 40'h12_3456_7890;
end
if (cyc==2) begin
if (addr !== 40'h1234567890) $stop;
addr[31:0] <= 32'habcd_efaa;
end
if (cyc==3) begin
if (addr !== 40'h12abcdefaa) $stop;
addr[39:32] <= 8'h44;
inwide <= 64'hffeeddcc_11334466;
end
if (cyc==4) begin
if (addr !== 40'h44abcdefaa) $stop;
addr[31:0] <= inwide[31:0];
end
if (cyc==5) begin
if (addr !== 40'h4411334466) $stop;
$display ("Flip [%x]\n", inwide[3:0]);
addr[{2'b0,inwide[3:0]}] <= ! addr[{2'b0,inwide[3:0]}];
end
if (cyc==6) begin
if (addr !== 40'h4411334426) $stop;
end
if (cyc==10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (clk);
input clk;
reg [63:0] inwide;
reg [39:0] addr;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write ("%x %x\n", cyc, addr);
`endif
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
addr <= 40'h12_3456_7890;
end
if (cyc==2) begin
if (addr !== 40'h1234567890) $stop;
addr[31:0] <= 32'habcd_efaa;
end
if (cyc==3) begin
if (addr !== 40'h12abcdefaa) $stop;
addr[39:32] <= 8'h44;
inwide <= 64'hffeeddcc_11334466;
end
if (cyc==4) begin
if (addr !== 40'h44abcdefaa) $stop;
addr[31:0] <= inwide[31:0];
end
if (cyc==5) begin
if (addr !== 40'h4411334466) $stop;
$display ("Flip [%x]\n", inwide[3:0]);
addr[{2'b0,inwide[3:0]}] <= ! addr[{2'b0,inwide[3:0]}];
end
if (cyc==6) begin
if (addr !== 40'h4411334426) $stop;
end
if (cyc==10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (clk);
input clk;
reg [63:0] inwide;
reg [39:0] addr;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write ("%x %x\n", cyc, addr);
`endif
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
addr <= 40'h12_3456_7890;
end
if (cyc==2) begin
if (addr !== 40'h1234567890) $stop;
addr[31:0] <= 32'habcd_efaa;
end
if (cyc==3) begin
if (addr !== 40'h12abcdefaa) $stop;
addr[39:32] <= 8'h44;
inwide <= 64'hffeeddcc_11334466;
end
if (cyc==4) begin
if (addr !== 40'h44abcdefaa) $stop;
addr[31:0] <= inwide[31:0];
end
if (cyc==5) begin
if (addr !== 40'h4411334466) $stop;
$display ("Flip [%x]\n", inwide[3:0]);
addr[{2'b0,inwide[3:0]}] <= ! addr[{2'b0,inwide[3:0]}];
end
if (cyc==6) begin
if (addr !== 40'h4411334426) $stop;
end
if (cyc==10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (clk);
input clk;
reg [63:0] inwide;
reg [39:0] addr;
integer cyc; initial cyc=1;
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write ("%x %x\n", cyc, addr);
`endif
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
addr <= 40'h12_3456_7890;
end
if (cyc==2) begin
if (addr !== 40'h1234567890) $stop;
addr[31:0] <= 32'habcd_efaa;
end
if (cyc==3) begin
if (addr !== 40'h12abcdefaa) $stop;
addr[39:32] <= 8'h44;
inwide <= 64'hffeeddcc_11334466;
end
if (cyc==4) begin
if (addr !== 40'h44abcdefaa) $stop;
addr[31:0] <= inwide[31:0];
end
if (cyc==5) begin
if (addr !== 40'h4411334466) $stop;
$display ("Flip [%x]\n", inwide[3:0]);
addr[{2'b0,inwide[3:0]}] <= ! addr[{2'b0,inwide[3:0]}];
end
if (cyc==6) begin
if (addr !== 40'h4411334426) $stop;
end
if (cyc==10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// verilator lint_off BLKANDNBLK
// verilator lint_off COMBDLY
// verilator lint_off UNOPT
// verilator lint_off UNOPTFLAT
// verilator lint_off MULTIDRIVEN
reg [31:0] runnerm1, runner; initial runner = 0;
reg [31:0] runcount; initial runcount = 0;
reg [31:0] clkrun; initial clkrun = 0;
reg [31:0] clkcount; initial clkcount = 0;
always @ (/*AS*/runner) begin
runnerm1 = runner - 32'd1;
end
reg run0;
always @ (/*AS*/runnerm1) begin
if ((runner & 32'hf)!=0) begin
runcount = runcount + 1;
runner = runnerm1;
$write (" seq runcount=%0d runner =%0x\n",runcount, runnerm1);
end
run0 = (runner[8:4]!=0 && runner[3:0]==0);
end
always @ (posedge run0) begin
// Do something that forces another combo run
clkcount <= clkcount + 1;
runner[8:4] <= runner[8:4] - 1;
runner[3:0] <= 3;
$write ("[%0t] posedge runner=%0x\n", $time, runner);
end
reg [7:0] cyc; initial cyc=0;
always @ (posedge clk) begin
$write("[%0t] %x counts %0x %0x\n",$time,cyc,runcount,clkcount);
cyc <= cyc + 8'd1;
case (cyc)
8'd00: begin
runner <= 0;
end
8'd01: begin
runner <= 32'h35;
end
default: ;
endcase
case (cyc)
8'd02: begin
if (runcount!=32'he) $stop;
if (clkcount!=32'h3) $stop;
end
8'd03: begin
$write("*-* All Finished *-*\n");
$finish;
end
default: ;
endcase
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
// verilator lint_off BLKANDNBLK
// verilator lint_off COMBDLY
// verilator lint_off UNOPT
// verilator lint_off UNOPTFLAT
// verilator lint_off MULTIDRIVEN
reg [31:0] runnerm1, runner; initial runner = 0;
reg [31:0] runcount; initial runcount = 0;
reg [31:0] clkrun; initial clkrun = 0;
reg [31:0] clkcount; initial clkcount = 0;
always @ (/*AS*/runner) begin
runnerm1 = runner - 32'd1;
end
reg run0;
always @ (/*AS*/runnerm1) begin
if ((runner & 32'hf)!=0) begin
runcount = runcount + 1;
runner = runnerm1;
$write (" seq runcount=%0d runner =%0x\n",runcount, runnerm1);
end
run0 = (runner[8:4]!=0 && runner[3:0]==0);
end
always @ (posedge run0) begin
// Do something that forces another combo run
clkcount <= clkcount + 1;
runner[8:4] <= runner[8:4] - 1;
runner[3:0] <= 3;
$write ("[%0t] posedge runner=%0x\n", $time, runner);
end
reg [7:0] cyc; initial cyc=0;
always @ (posedge clk) begin
$write("[%0t] %x counts %0x %0x\n",$time,cyc,runcount,clkcount);
cyc <= cyc + 8'd1;
case (cyc)
8'd00: begin
runner <= 0;
end
8'd01: begin
runner <= 32'h35;
end
default: ;
endcase
case (cyc)
8'd02: begin
if (runcount!=32'he) $stop;
if (clkcount!=32'h3) $stop;
end
8'd03: begin
$write("*-* All Finished *-*\n");
$finish;
end
default: ;
endcase
end
endmodule
|
module t_math_imm2 (/*AUTOARG*/
// Outputs
LogicImm, LowLogicImm, HighLogicImm,
// Inputs
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot
);
input [4:0] LowMaskSel_Top, HighMaskSel_Top;
input [4:0] LowMaskSel_Bot, HighMaskSel_Bot;
output [63:0] LogicImm;
output [63:0] LowLogicImm, HighLogicImm;
/* verilator lint_off UNSIGNED */
/* verilator lint_off CMPCONST */
genvar i;
generate
for (i=0;i<64;i=i+1) begin : MaskVal
if (i >= 32) begin
assign LowLogicImm[i] = (LowMaskSel_Top <= i[4:0]);
assign HighLogicImm[i] = (HighMaskSel_Top >= i[4:0]);
end
else begin
assign LowLogicImm[i] = (LowMaskSel_Bot <= i[4:0]);
assign HighLogicImm[i] = (HighMaskSel_Bot >= i[4:0]);
end
end
endgenerate
assign LogicImm = LowLogicImm & HighLogicImm;
endmodule
|
module t_math_imm2 (/*AUTOARG*/
// Outputs
LogicImm, LowLogicImm, HighLogicImm,
// Inputs
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot
);
input [4:0] LowMaskSel_Top, HighMaskSel_Top;
input [4:0] LowMaskSel_Bot, HighMaskSel_Bot;
output [63:0] LogicImm;
output [63:0] LowLogicImm, HighLogicImm;
/* verilator lint_off UNSIGNED */
/* verilator lint_off CMPCONST */
genvar i;
generate
for (i=0;i<64;i=i+1) begin : MaskVal
if (i >= 32) begin
assign LowLogicImm[i] = (LowMaskSel_Top <= i[4:0]);
assign HighLogicImm[i] = (HighMaskSel_Top >= i[4:0]);
end
else begin
assign LowLogicImm[i] = (LowMaskSel_Bot <= i[4:0]);
assign HighLogicImm[i] = (HighMaskSel_Bot >= i[4:0]);
end
end
endgenerate
assign LogicImm = LowLogicImm & HighLogicImm;
endmodule
|
module t_math_imm2 (/*AUTOARG*/
// Outputs
LogicImm, LowLogicImm, HighLogicImm,
// Inputs
LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot
);
input [4:0] LowMaskSel_Top, HighMaskSel_Top;
input [4:0] LowMaskSel_Bot, HighMaskSel_Bot;
output [63:0] LogicImm;
output [63:0] LowLogicImm, HighLogicImm;
/* verilator lint_off UNSIGNED */
/* verilator lint_off CMPCONST */
genvar i;
generate
for (i=0;i<64;i=i+1) begin : MaskVal
if (i >= 32) begin
assign LowLogicImm[i] = (LowMaskSel_Top <= i[4:0]);
assign HighLogicImm[i] = (HighMaskSel_Top >= i[4:0]);
end
else begin
assign LowLogicImm[i] = (LowMaskSel_Bot <= i[4:0]);
assign HighLogicImm[i] = (HighMaskSel_Bot >= i[4:0]);
end
end
endgenerate
assign LogicImm = LowLogicImm & HighLogicImm;
endmodule
|
module acl_valid_fifo_counter
#(
parameter integer DEPTH = 32, // >0
parameter integer STRICT_DEPTH = 0, // 0|1
parameter integer ALLOW_FULL_WRITE = 0 // 0|1
)
(
input logic clock,
input logic resetn,
input logic valid_in,
output logic valid_out,
input logic stall_in,
output logic stall_out,
output logic empty,
output logic full
);
// No data, so just build a counter to count the number of valids stored in this "FIFO".
//
// The counter is constructed to count up to a MINIMUM value of DEPTH entries.
// * Logical range of the counter C0 is [0, DEPTH].
// * empty = (C0 <= 0)
// * full = (C0 >= DEPTH)
//
// To have efficient detection of the empty condition (C0 == 0), the range is offset
// by -1 so that a negative number indicates empty.
// * Logical range of the counter C1 is [-1, DEPTH-1].
// * empty = (C1 < 0)
// * full = (C1 >= DEPTH-1)
// The size of counter C1 is $clog2((DEPTH-1) + 1) + 1 => $clog2(DEPTH) + 1.
//
// To have efficient detection of the full condition (C1 >= DEPTH-1), change the
// full condition to C1 == 2^$clog2(DEPTH-1), which is DEPTH-1 rounded up
// to the next power of 2. This is only done if STRICT_DEPTH == 0, otherwise
// the full condition is comparison vs. DEPTH-1.
// * Logical range of the counter C2 is [-1, 2^$clog2(DEPTH-1)]
// * empty = (C2 < 0)
// * full = (C2 == 2^$clog2(DEPTH - 1))
// The size of counter C2 is $clog2(DEPTH-1) + 2.
// * empty = MSB
// * full = ~[MSB] & [MSB-1]
localparam COUNTER_WIDTH = (STRICT_DEPTH == 0) ?
((DEPTH > 1 ? $clog2(DEPTH-1) : 0) + 2) :
($clog2(DEPTH) + 1);
logic [COUNTER_WIDTH - 1:0] valid_counter /* synthesis maxfan=1 dont_merge */;
logic incr, decr;
assign empty = valid_counter[$bits(valid_counter) - 1];
assign full = (STRICT_DEPTH == 0) ?
(~valid_counter[$bits(valid_counter) - 1] & valid_counter[$bits(valid_counter) - 2]) :
(valid_counter == DEPTH - 1);
assign incr = valid_in & ~stall_out;
assign decr = valid_out & ~stall_in;
assign valid_out = ~empty;
assign stall_out = ALLOW_FULL_WRITE ? (full & stall_in) : full;
always @( posedge clock or negedge resetn )
if( !resetn )
valid_counter <= {$bits(valid_counter){1'b1}}; // -1
else
valid_counter <= valid_counter + incr - decr;
endmodule
|
module acl_valid_fifo_counter
#(
parameter integer DEPTH = 32, // >0
parameter integer STRICT_DEPTH = 0, // 0|1
parameter integer ALLOW_FULL_WRITE = 0 // 0|1
)
(
input logic clock,
input logic resetn,
input logic valid_in,
output logic valid_out,
input logic stall_in,
output logic stall_out,
output logic empty,
output logic full
);
// No data, so just build a counter to count the number of valids stored in this "FIFO".
//
// The counter is constructed to count up to a MINIMUM value of DEPTH entries.
// * Logical range of the counter C0 is [0, DEPTH].
// * empty = (C0 <= 0)
// * full = (C0 >= DEPTH)
//
// To have efficient detection of the empty condition (C0 == 0), the range is offset
// by -1 so that a negative number indicates empty.
// * Logical range of the counter C1 is [-1, DEPTH-1].
// * empty = (C1 < 0)
// * full = (C1 >= DEPTH-1)
// The size of counter C1 is $clog2((DEPTH-1) + 1) + 1 => $clog2(DEPTH) + 1.
//
// To have efficient detection of the full condition (C1 >= DEPTH-1), change the
// full condition to C1 == 2^$clog2(DEPTH-1), which is DEPTH-1 rounded up
// to the next power of 2. This is only done if STRICT_DEPTH == 0, otherwise
// the full condition is comparison vs. DEPTH-1.
// * Logical range of the counter C2 is [-1, 2^$clog2(DEPTH-1)]
// * empty = (C2 < 0)
// * full = (C2 == 2^$clog2(DEPTH - 1))
// The size of counter C2 is $clog2(DEPTH-1) + 2.
// * empty = MSB
// * full = ~[MSB] & [MSB-1]
localparam COUNTER_WIDTH = (STRICT_DEPTH == 0) ?
((DEPTH > 1 ? $clog2(DEPTH-1) : 0) + 2) :
($clog2(DEPTH) + 1);
logic [COUNTER_WIDTH - 1:0] valid_counter /* synthesis maxfan=1 dont_merge */;
logic incr, decr;
assign empty = valid_counter[$bits(valid_counter) - 1];
assign full = (STRICT_DEPTH == 0) ?
(~valid_counter[$bits(valid_counter) - 1] & valid_counter[$bits(valid_counter) - 2]) :
(valid_counter == DEPTH - 1);
assign incr = valid_in & ~stall_out;
assign decr = valid_out & ~stall_in;
assign valid_out = ~empty;
assign stall_out = ALLOW_FULL_WRITE ? (full & stall_in) : full;
always @( posedge clock or negedge resetn )
if( !resetn )
valid_counter <= {$bits(valid_counter){1'b1}}; // -1
else
valid_counter <= valid_counter + incr - decr;
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
wire b;
reg reset;
integer cyc=0;
Testit testit (/*AUTOINST*/
// Outputs
.b (b),
// Inputs
.clk (clk),
.reset (reset));
always @ (posedge clk) begin
cyc <= cyc + 1;
if (cyc==0) begin
reset <= 1'b0;
end
else if (cyc<10) begin
reset <= 1'b1;
end
else if (cyc<90) begin
reset <= 1'b0;
end
else if (cyc==99) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Testit (clk, reset, b);
input clk;
input reset;
output b;
wire [0:0] c;
wire my_sig;
wire [0:0] d;
genvar i;
generate
for(i = 0; i >= 0; i = i-1) begin: fnxtclk1
fnxtclk fnxtclk1
(.u(c[i]),
.reset(reset),
.clk(clk),
.w(d[i]) );
end
endgenerate
assign b = d[0];
assign c[0] = my_sig;
assign my_sig = 1'b1;
endmodule
|
module fnxtclk (u, reset, clk, w );
input u;
input reset;
input clk;
output reg w;
always @ (posedge clk or posedge reset) begin
if (reset == 1'b1) begin
w <= 1'b0;
end
else begin
w <= u;
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// verilator lint_off LITENDIAN
wire [10:41] sel2 = crc[31:0];
wire [10:100] sel3 = {crc[26:0],crc};
wire out20 = sel2[{1'b0,crc[3:0]} + 11];
wire [3:0] out21 = sel2[13 : 16];
wire [3:0] out22 = sel2[{1'b0,crc[3:0]} + 20 +: 4];
wire [3:0] out23 = sel2[{1'b0,crc[3:0]} + 20 -: 4];
wire out30 = sel3[{2'b0,crc[3:0]} + 11];
wire [3:0] out31 = sel3[13 : 16];
wire [3:0] out32 = sel3[crc[5:0] + 20 +: 4];
wire [3:0] out33 = sel3[crc[5:0] + 20 -: 4];
// Aggregate outputs into a single result vector
wire [63:0] result = {38'h0, out20, out21, out22, out23, out30, out31, out32, out33};
reg [19:50] sel1;
initial begin
// Path clearing
// 122333445
// 826048260
sel1 = 32'h12345678;
if (sel1 != 32'h12345678) $stop;
if (sel1[47 : 50] != 4'h8) $stop;
if (sel1[31 : 34] != 4'h4) $stop;
if (sel1[27 +: 4] != 4'h3) $stop; //==[27:30], in memory as [23:20]
if (sel1[26 -: 4] != 4'h2) $stop; //==[23:26], in memory as [27:24]
end
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] sels=%x,%x,%x,%x %x,%x,%x,%x\n",$time, out20,out21,out22,out23, out30,out31,out32,out33);
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h28bf65439eb12c00
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc=0;
reg [63:0] crc;
reg [63:0] sum;
// verilator lint_off LITENDIAN
wire [10:41] sel2 = crc[31:0];
wire [10:100] sel3 = {crc[26:0],crc};
wire out20 = sel2[{1'b0,crc[3:0]} + 11];
wire [3:0] out21 = sel2[13 : 16];
wire [3:0] out22 = sel2[{1'b0,crc[3:0]} + 20 +: 4];
wire [3:0] out23 = sel2[{1'b0,crc[3:0]} + 20 -: 4];
wire out30 = sel3[{2'b0,crc[3:0]} + 11];
wire [3:0] out31 = sel3[13 : 16];
wire [3:0] out32 = sel3[crc[5:0] + 20 +: 4];
wire [3:0] out33 = sel3[crc[5:0] + 20 -: 4];
// Aggregate outputs into a single result vector
wire [63:0] result = {38'h0, out20, out21, out22, out23, out30, out31, out32, out33};
reg [19:50] sel1;
initial begin
// Path clearing
// 122333445
// 826048260
sel1 = 32'h12345678;
if (sel1 != 32'h12345678) $stop;
if (sel1[47 : 50] != 4'h8) $stop;
if (sel1[31 : 34] != 4'h4) $stop;
if (sel1[27 +: 4] != 4'h3) $stop; //==[27:30], in memory as [23:20]
if (sel1[26 -: 4] != 4'h2) $stop; //==[23:26], in memory as [27:24]
end
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] sels=%x,%x,%x,%x %x,%x,%x,%x\n",$time, out20,out21,out22,out23, out30,out31,out32,out33);
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h28bf65439eb12c00
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module t (clk);
input clk;
// verilator lint_off WIDTH
`define INT_RANGE 31:0
`define INT_RANGE_MAX 31
`define VECTOR_RANGE 63:0
reg [`INT_RANGE] stashb, stasha, stashn, stashm;
function [`VECTOR_RANGE] copy_range;
input [`VECTOR_RANGE] y;
input [`INT_RANGE] b;
input [`INT_RANGE] a;
input [`VECTOR_RANGE] x;
input [`INT_RANGE] n;
input [`INT_RANGE] m;
begin
copy_range = y;
stashb = b;
stasha = a;
stashn = n;
stashm = m;
end
endfunction
parameter DATA_SIZE = 16;
parameter NUM_OF_REGS = 32;
reg [NUM_OF_REGS*DATA_SIZE-1 : 0] memread_rf;
reg [DATA_SIZE-1:0] memread_rf_reg;
always @(memread_rf) begin : memread_convert
memread_rf_reg = copy_range('d0, DATA_SIZE-'d1, DATA_SIZE-'d1, memread_rf,
DATA_SIZE-'d1, DATA_SIZE-'d1);
end
integer cyc; initial cyc=1;
always @ (posedge clk) begin
if (cyc!=0) begin
cyc <= cyc + 1;
if (cyc==1) begin
memread_rf = 512'haa;
end
if (cyc==3) begin
if (stashb != 'd15) $stop;
if (stasha != 'd15) $stop;
if (stashn != 'd15) $stop;
if (stashm != 'd15) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
end
endmodule
|
module outputs)
wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.AOA_B (AOA_B[`AOA_BITS-1:0]),
// Inputs
.DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]),
.reset (reset),
.clk (clk));
// Aggregate outputs into a single result vector
wire [63:0] result = {56'h0, AOA_B};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3a74e9d34771ad93
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
AOA_B,
// Inputs
DDIFF_B, reset, clk
);
input [`DDIFF_BITS-1:0] DDIFF_B;
input reset;
input clk;
output reg [`AOA_BITS-1:0] AOA_B;
reg [`AOA_BITS-1:0] AOA_NEXT_B;
reg [`AOA_BITS-1:0] tmp;
always @(posedge clk) begin
if (reset) begin
AOA_B <= 8'h80;
end
else begin
AOA_B <= AOA_NEXT_B;
end
end
always @* begin
// verilator lint_off WIDTH
tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER);
t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER));
// verilator lint_on WIDTH
end
task t_aoa_update;
output [`AOA_BITS-1:0] aoa_reg_next;
input [`AOA_BITS-1:0] aoa_reg;
input [`AOA_BITS-1:0] aoa_delta_update;
begin
if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection
aoa_reg_next=`MAX_AOA;
else
aoa_reg_next=aoa_reg+aoa_delta_update;
end
endtask
endmodule
|
module outputs)
wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.AOA_B (AOA_B[`AOA_BITS-1:0]),
// Inputs
.DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]),
.reset (reset),
.clk (clk));
// Aggregate outputs into a single result vector
wire [63:0] result = {56'h0, AOA_B};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3a74e9d34771ad93
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
AOA_B,
// Inputs
DDIFF_B, reset, clk
);
input [`DDIFF_BITS-1:0] DDIFF_B;
input reset;
input clk;
output reg [`AOA_BITS-1:0] AOA_B;
reg [`AOA_BITS-1:0] AOA_NEXT_B;
reg [`AOA_BITS-1:0] tmp;
always @(posedge clk) begin
if (reset) begin
AOA_B <= 8'h80;
end
else begin
AOA_B <= AOA_NEXT_B;
end
end
always @* begin
// verilator lint_off WIDTH
tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER);
t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER));
// verilator lint_on WIDTH
end
task t_aoa_update;
output [`AOA_BITS-1:0] aoa_reg_next;
input [`AOA_BITS-1:0] aoa_reg;
input [`AOA_BITS-1:0] aoa_delta_update;
begin
if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection
aoa_reg_next=`MAX_AOA;
else
aoa_reg_next=aoa_reg+aoa_delta_update;
end
endtask
endmodule
|
module outputs)
wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.AOA_B (AOA_B[`AOA_BITS-1:0]),
// Inputs
.DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]),
.reset (reset),
.clk (clk));
// Aggregate outputs into a single result vector
wire [63:0] result = {56'h0, AOA_B};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3a74e9d34771ad93
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
AOA_B,
// Inputs
DDIFF_B, reset, clk
);
input [`DDIFF_BITS-1:0] DDIFF_B;
input reset;
input clk;
output reg [`AOA_BITS-1:0] AOA_B;
reg [`AOA_BITS-1:0] AOA_NEXT_B;
reg [`AOA_BITS-1:0] tmp;
always @(posedge clk) begin
if (reset) begin
AOA_B <= 8'h80;
end
else begin
AOA_B <= AOA_NEXT_B;
end
end
always @* begin
// verilator lint_off WIDTH
tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER);
t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER));
// verilator lint_on WIDTH
end
task t_aoa_update;
output [`AOA_BITS-1:0] aoa_reg_next;
input [`AOA_BITS-1:0] aoa_reg;
input [`AOA_BITS-1:0] aoa_delta_update;
begin
if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection
aoa_reg_next=`MAX_AOA;
else
aoa_reg_next=aoa_reg+aoa_delta_update;
end
endtask
endmodule
|
module outputs)
wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.AOA_B (AOA_B[`AOA_BITS-1:0]),
// Inputs
.DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]),
.reset (reset),
.clk (clk));
// Aggregate outputs into a single result vector
wire [63:0] result = {56'h0, AOA_B};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3a74e9d34771ad93
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
AOA_B,
// Inputs
DDIFF_B, reset, clk
);
input [`DDIFF_BITS-1:0] DDIFF_B;
input reset;
input clk;
output reg [`AOA_BITS-1:0] AOA_B;
reg [`AOA_BITS-1:0] AOA_NEXT_B;
reg [`AOA_BITS-1:0] tmp;
always @(posedge clk) begin
if (reset) begin
AOA_B <= 8'h80;
end
else begin
AOA_B <= AOA_NEXT_B;
end
end
always @* begin
// verilator lint_off WIDTH
tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER);
t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER));
// verilator lint_on WIDTH
end
task t_aoa_update;
output [`AOA_BITS-1:0] aoa_reg_next;
input [`AOA_BITS-1:0] aoa_reg;
input [`AOA_BITS-1:0] aoa_delta_update;
begin
if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection
aoa_reg_next=`MAX_AOA;
else
aoa_reg_next=aoa_reg+aoa_delta_update;
end
endtask
endmodule
|
module outputs)
wire [`AOA_BITS-1:0] AOA_B; // From test of Test.v
// End of automatics
Test test (/*AUTOINST*/
// Outputs
.AOA_B (AOA_B[`AOA_BITS-1:0]),
// Inputs
.DDIFF_B (DDIFF_B[`DDIFF_BITS-1:0]),
.reset (reset),
.clk (clk));
// Aggregate outputs into a single result vector
wire [63:0] result = {56'h0, AOA_B};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n",$time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= result ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 64'h0;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
// What checksum will we end up with (above print should match)
`define EXPECTED_SUM 64'h3a74e9d34771ad93
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module Test (/*AUTOARG*/
// Outputs
AOA_B,
// Inputs
DDIFF_B, reset, clk
);
input [`DDIFF_BITS-1:0] DDIFF_B;
input reset;
input clk;
output reg [`AOA_BITS-1:0] AOA_B;
reg [`AOA_BITS-1:0] AOA_NEXT_B;
reg [`AOA_BITS-1:0] tmp;
always @(posedge clk) begin
if (reset) begin
AOA_B <= 8'h80;
end
else begin
AOA_B <= AOA_NEXT_B;
end
end
always @* begin
// verilator lint_off WIDTH
tmp = ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER);
t_aoa_update(AOA_NEXT_B, AOA_B, ((`HALF_DDIFF-DDIFF_B)/`BURP_DIVIDER));
// verilator lint_on WIDTH
end
task t_aoa_update;
output [`AOA_BITS-1:0] aoa_reg_next;
input [`AOA_BITS-1:0] aoa_reg;
input [`AOA_BITS-1:0] aoa_delta_update;
begin
if ((`MAX_AOA-aoa_reg)<aoa_delta_update) //Overflow protection
aoa_reg_next=`MAX_AOA;
else
aoa_reg_next=aoa_reg+aoa_delta_update;
end
endtask
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [63:0] crc;
reg [31:0] sum;
wire [15:0] out0;
wire [15:0] out1;
wire [15:0] inData = crc[15:0];
wire wr0a = crc[16];
wire wr0b = crc[17];
wire wr1a = crc[18];
wire wr1b = crc[19];
fifo fifo (
// Outputs
.out0 (out0[15:0]),
.out1 (out1[15:0]),
// Inputs
.clk (clk),
.wr0a (wr0a),
.wr0b (wr0b),
.wr1a (wr1a),
.wr1b (wr1b),
.inData (inData[15:0]));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%x q=%x\n",$time, cyc, crc, sum);
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 32'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[30:0],sum[31]} ^ {out1, out0};
end
else if (cyc==99) begin
if (sum !== 32'he8bbd130) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module fifo (/*AUTOARG*/
// Outputs
out0, out1,
// Inputs
clk, wr0a, wr0b, wr1a, wr1b, inData
);
input clk;
input wr0a;
input wr0b;
input wr1a;
input wr1b;
input [15:0] inData;
output [15:0] out0;
output [15:0] out1;
reg [15:0] mem [1:0];
reg [15:0] memtemp2 [1:0];
reg [15:0] memtemp3 [1:0];
assign out0 = {mem[0] ^ memtemp2[0]};
assign out1 = {mem[1] ^ memtemp3[1]};
always @(posedge clk) begin
// These mem assignments must be done in order after processing
if (wr0a) begin
memtemp2[0] <= inData;
mem[0] <= inData;
end
if (wr0b) begin
memtemp3[0] <= inData;
mem[0] <= ~inData;
end
if (wr1a) begin
memtemp3[1] <= inData;
mem[1] <= inData;
end
if (wr1b) begin
memtemp2[1] <= inData;
mem[1] <= ~inData;
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc=0;
reg [63:0] crc;
reg [31:0] sum;
wire [15:0] out0;
wire [15:0] out1;
wire [15:0] inData = crc[15:0];
wire wr0a = crc[16];
wire wr0b = crc[17];
wire wr1a = crc[18];
wire wr1b = crc[19];
fifo fifo (
// Outputs
.out0 (out0[15:0]),
.out1 (out1[15:0]),
// Inputs
.clk (clk),
.wr0a (wr0a),
.wr0b (wr0b),
.wr1a (wr1a),
.wr1b (wr1b),
.inData (inData[15:0]));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d crc=%x q=%x\n",$time, cyc, crc, sum);
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
sum <= 32'h0;
end
else if (cyc>10 && cyc<90) begin
sum <= {sum[30:0],sum[31]} ^ {out1, out0};
end
else if (cyc==99) begin
if (sum !== 32'he8bbd130) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
|
module fifo (/*AUTOARG*/
// Outputs
out0, out1,
// Inputs
clk, wr0a, wr0b, wr1a, wr1b, inData
);
input clk;
input wr0a;
input wr0b;
input wr1a;
input wr1b;
input [15:0] inData;
output [15:0] out0;
output [15:0] out1;
reg [15:0] mem [1:0];
reg [15:0] memtemp2 [1:0];
reg [15:0] memtemp3 [1:0];
assign out0 = {mem[0] ^ memtemp2[0]};
assign out1 = {mem[1] ^ memtemp3[1]};
always @(posedge clk) begin
// These mem assignments must be done in order after processing
if (wr0a) begin
memtemp2[0] <= inData;
mem[0] <= inData;
end
if (wr0b) begin
memtemp3[0] <= inData;
mem[0] <= ~inData;
end
if (wr1a) begin
memtemp3[1] <= inData;
mem[1] <= inData;
end
if (wr1b) begin
memtemp2[1] <= inData;
mem[1] <= ~inData;
end
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg _ranit;
reg rnd;
reg [2:0] a;
reg [2:0] b;
reg [31:0] wide;
// surefire lint_off STMINI
initial _ranit = 0;
wire sigone1 = 1'b1;
wire sigone2 = 1'b1;
reg ok;
parameter [1:0] twounkn = 2'b?; // This gets extended to 2'b??
// Large case statements should be well optimizable.
reg [2:0] anot;
always @ (/*AS*/a) begin
casez (a)
default: anot = 3'b001;
3'd0: anot = 3'b111;
3'd1: anot = 3'b110;
3'd2: anot = 3'b101;
3'd3: anot = 3'b101;
3'd4: anot = 3'b011;
3'd5: anot = 3'b010;
3'd6: anot = 3'b001; // Same so folds with 7
endcase
end
always @ (posedge clk) begin
if (!_ranit) begin
_ranit <= 1;
rnd <= 1;
$write("[%0t] t_case: Running\n", $time);
//
a = 3'b101;
b = 3'b111;
// verilator lint_off CASEX
casex (a)
default: $stop;
3'bx1x: $stop;
3'b100: $stop;
3'bx01: ;
endcase
casez (a)
default: $stop;
3'b?1?: $stop;
3'b100: $stop;
3'b?01: ;
endcase
casez (a)
default: $stop;
{1'b0, twounkn}: $stop;
{1'b1, twounkn}: ;
endcase
casez (b)
default: $stop;
{1'b0, twounkn}: $stop;
{1'b1, twounkn}: ;
// {1'b0, 2'b??}: $stop;
// {1'b1, 2'b??}: ;
endcase
case(a[0])
default: ;
endcase
casex(a)
default: ;
3'b?0?: ;
endcase
// verilator lint_off CASEX
//This is illegal, the default occurs before the statements.
//case(a[0])
// default: $stop;
// 1'b1: ;
//endcase
//
wide = 32'h12345678;
casez (wide)
default: $stop;
32'h12345677,
32'h12345678,
32'h12345679: ;
endcase
//
ok = 0;
casez ({sigone1,sigone2})
//2'b10, 2'b01, 2'bXX: ; // verilator bails at this since in 2 state it can be true...
2'b10, 2'b01: ;
2'b00: ;
default: ok=1'b1;
endcase
if (ok !== 1'b1) $stop;
//
if (rnd) begin
$write("");
end
//
$write("*-* All Finished *-*\n");
$finish;
end
end
// Check parameters in case statements
parameter ALU_DO_REGISTER = 3'h1; // input selected by reg addr.
parameter DSP_REGISTER_V = 6'h03;
reg [2:0] alu_ctl_2s; // Delayed version of alu_ctl
reg [5:0] reg_addr_2s; // Delayed version of reg_addr
reg [7:0] ir_slave_2s; // Instruction Register delayed 2 phases
reg [15:10] f_tmp_2s; // Delayed copy of F
reg p00_2s;
initial begin
alu_ctl_2s = 3'h1;
reg_addr_2s = 6'h3;
ir_slave_2s= 0;
f_tmp_2s= 0;
casex ({alu_ctl_2s,reg_addr_2s,
ir_slave_2s[7],ir_slave_2s[5:4],ir_slave_2s[1:0],
f_tmp_2s[11:10]})
default: p00_2s = 1'b0;
{ALU_DO_REGISTER,DSP_REGISTER_V,1'bx,2'bx,2'bx,2'bx}: p00_2s = 1'b1;
endcase
if (1'b0) $display ("%x %x %x %x", alu_ctl_2s, ir_slave_2s, f_tmp_2s, p00_2s); //Prevent unused
//
case ({1'b1, 1'b1})
default: $stop;
{1'b1, p00_2s}: ;
endcase
end
// Check wide overlapping cases
// surefire lint_off CSEOVR
parameter ANY_STATE = 7'h??;
reg [19:0] foo;
initial begin
foo = {1'b0,1'b0,1'b0,1'b0,1'b0,7'h04,8'b0};
casez (foo)
default: $stop;
{1'b1,1'b?,1'b?,1'b?,1'b?,ANY_STATE,8'b?}: $stop;
{1'b?,1'b1,1'b?,1'b?,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b1,1'b?,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b?,1'b1,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h04,8'b?}: ;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'hdf}: $stop;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'h00}: $stop;
endcase
end
initial begin
foo = 20'b1010;
casex (foo[3:0])
default: $stop;
4'b0xxx,
4'b100x,
4'b11xx: $stop;
4'b1010: ;
endcase
end
initial begin
foo = 20'b1010;
ok = 1'b0;
// Test of RANGE(CONCAT reductions...
casex ({foo[3:2],foo[1:0],foo[3]})
5'bxx10x: begin ok=1'b0; foo=20'd1; ok=1'b1; end // Check multiple expressions
5'bxx00x: $stop;
5'bxx01x: $stop;
5'bxx11x: $stop;
endcase
if (!ok) $stop;
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg _ranit;
reg rnd;
reg [2:0] a;
reg [2:0] b;
reg [31:0] wide;
// surefire lint_off STMINI
initial _ranit = 0;
wire sigone1 = 1'b1;
wire sigone2 = 1'b1;
reg ok;
parameter [1:0] twounkn = 2'b?; // This gets extended to 2'b??
// Large case statements should be well optimizable.
reg [2:0] anot;
always @ (/*AS*/a) begin
casez (a)
default: anot = 3'b001;
3'd0: anot = 3'b111;
3'd1: anot = 3'b110;
3'd2: anot = 3'b101;
3'd3: anot = 3'b101;
3'd4: anot = 3'b011;
3'd5: anot = 3'b010;
3'd6: anot = 3'b001; // Same so folds with 7
endcase
end
always @ (posedge clk) begin
if (!_ranit) begin
_ranit <= 1;
rnd <= 1;
$write("[%0t] t_case: Running\n", $time);
//
a = 3'b101;
b = 3'b111;
// verilator lint_off CASEX
casex (a)
default: $stop;
3'bx1x: $stop;
3'b100: $stop;
3'bx01: ;
endcase
casez (a)
default: $stop;
3'b?1?: $stop;
3'b100: $stop;
3'b?01: ;
endcase
casez (a)
default: $stop;
{1'b0, twounkn}: $stop;
{1'b1, twounkn}: ;
endcase
casez (b)
default: $stop;
{1'b0, twounkn}: $stop;
{1'b1, twounkn}: ;
// {1'b0, 2'b??}: $stop;
// {1'b1, 2'b??}: ;
endcase
case(a[0])
default: ;
endcase
casex(a)
default: ;
3'b?0?: ;
endcase
// verilator lint_off CASEX
//This is illegal, the default occurs before the statements.
//case(a[0])
// default: $stop;
// 1'b1: ;
//endcase
//
wide = 32'h12345678;
casez (wide)
default: $stop;
32'h12345677,
32'h12345678,
32'h12345679: ;
endcase
//
ok = 0;
casez ({sigone1,sigone2})
//2'b10, 2'b01, 2'bXX: ; // verilator bails at this since in 2 state it can be true...
2'b10, 2'b01: ;
2'b00: ;
default: ok=1'b1;
endcase
if (ok !== 1'b1) $stop;
//
if (rnd) begin
$write("");
end
//
$write("*-* All Finished *-*\n");
$finish;
end
end
// Check parameters in case statements
parameter ALU_DO_REGISTER = 3'h1; // input selected by reg addr.
parameter DSP_REGISTER_V = 6'h03;
reg [2:0] alu_ctl_2s; // Delayed version of alu_ctl
reg [5:0] reg_addr_2s; // Delayed version of reg_addr
reg [7:0] ir_slave_2s; // Instruction Register delayed 2 phases
reg [15:10] f_tmp_2s; // Delayed copy of F
reg p00_2s;
initial begin
alu_ctl_2s = 3'h1;
reg_addr_2s = 6'h3;
ir_slave_2s= 0;
f_tmp_2s= 0;
casex ({alu_ctl_2s,reg_addr_2s,
ir_slave_2s[7],ir_slave_2s[5:4],ir_slave_2s[1:0],
f_tmp_2s[11:10]})
default: p00_2s = 1'b0;
{ALU_DO_REGISTER,DSP_REGISTER_V,1'bx,2'bx,2'bx,2'bx}: p00_2s = 1'b1;
endcase
if (1'b0) $display ("%x %x %x %x", alu_ctl_2s, ir_slave_2s, f_tmp_2s, p00_2s); //Prevent unused
//
case ({1'b1, 1'b1})
default: $stop;
{1'b1, p00_2s}: ;
endcase
end
// Check wide overlapping cases
// surefire lint_off CSEOVR
parameter ANY_STATE = 7'h??;
reg [19:0] foo;
initial begin
foo = {1'b0,1'b0,1'b0,1'b0,1'b0,7'h04,8'b0};
casez (foo)
default: $stop;
{1'b1,1'b?,1'b?,1'b?,1'b?,ANY_STATE,8'b?}: $stop;
{1'b?,1'b1,1'b?,1'b?,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b1,1'b?,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b?,1'b1,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h04,8'b?}: ;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'hdf}: $stop;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'h00}: $stop;
endcase
end
initial begin
foo = 20'b1010;
casex (foo[3:0])
default: $stop;
4'b0xxx,
4'b100x,
4'b11xx: $stop;
4'b1010: ;
endcase
end
initial begin
foo = 20'b1010;
ok = 1'b0;
// Test of RANGE(CONCAT reductions...
casex ({foo[3:2],foo[1:0],foo[3]})
5'bxx10x: begin ok=1'b0; foo=20'd1; ok=1'b1; end // Check multiple expressions
5'bxx00x: $stop;
5'bxx01x: $stop;
5'bxx11x: $stop;
endcase
if (!ok) $stop;
end
endmodule
|
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
reg _ranit;
reg rnd;
reg [2:0] a;
reg [2:0] b;
reg [31:0] wide;
// surefire lint_off STMINI
initial _ranit = 0;
wire sigone1 = 1'b1;
wire sigone2 = 1'b1;
reg ok;
parameter [1:0] twounkn = 2'b?; // This gets extended to 2'b??
// Large case statements should be well optimizable.
reg [2:0] anot;
always @ (/*AS*/a) begin
casez (a)
default: anot = 3'b001;
3'd0: anot = 3'b111;
3'd1: anot = 3'b110;
3'd2: anot = 3'b101;
3'd3: anot = 3'b101;
3'd4: anot = 3'b011;
3'd5: anot = 3'b010;
3'd6: anot = 3'b001; // Same so folds with 7
endcase
end
always @ (posedge clk) begin
if (!_ranit) begin
_ranit <= 1;
rnd <= 1;
$write("[%0t] t_case: Running\n", $time);
//
a = 3'b101;
b = 3'b111;
// verilator lint_off CASEX
casex (a)
default: $stop;
3'bx1x: $stop;
3'b100: $stop;
3'bx01: ;
endcase
casez (a)
default: $stop;
3'b?1?: $stop;
3'b100: $stop;
3'b?01: ;
endcase
casez (a)
default: $stop;
{1'b0, twounkn}: $stop;
{1'b1, twounkn}: ;
endcase
casez (b)
default: $stop;
{1'b0, twounkn}: $stop;
{1'b1, twounkn}: ;
// {1'b0, 2'b??}: $stop;
// {1'b1, 2'b??}: ;
endcase
case(a[0])
default: ;
endcase
casex(a)
default: ;
3'b?0?: ;
endcase
// verilator lint_off CASEX
//This is illegal, the default occurs before the statements.
//case(a[0])
// default: $stop;
// 1'b1: ;
//endcase
//
wide = 32'h12345678;
casez (wide)
default: $stop;
32'h12345677,
32'h12345678,
32'h12345679: ;
endcase
//
ok = 0;
casez ({sigone1,sigone2})
//2'b10, 2'b01, 2'bXX: ; // verilator bails at this since in 2 state it can be true...
2'b10, 2'b01: ;
2'b00: ;
default: ok=1'b1;
endcase
if (ok !== 1'b1) $stop;
//
if (rnd) begin
$write("");
end
//
$write("*-* All Finished *-*\n");
$finish;
end
end
// Check parameters in case statements
parameter ALU_DO_REGISTER = 3'h1; // input selected by reg addr.
parameter DSP_REGISTER_V = 6'h03;
reg [2:0] alu_ctl_2s; // Delayed version of alu_ctl
reg [5:0] reg_addr_2s; // Delayed version of reg_addr
reg [7:0] ir_slave_2s; // Instruction Register delayed 2 phases
reg [15:10] f_tmp_2s; // Delayed copy of F
reg p00_2s;
initial begin
alu_ctl_2s = 3'h1;
reg_addr_2s = 6'h3;
ir_slave_2s= 0;
f_tmp_2s= 0;
casex ({alu_ctl_2s,reg_addr_2s,
ir_slave_2s[7],ir_slave_2s[5:4],ir_slave_2s[1:0],
f_tmp_2s[11:10]})
default: p00_2s = 1'b0;
{ALU_DO_REGISTER,DSP_REGISTER_V,1'bx,2'bx,2'bx,2'bx}: p00_2s = 1'b1;
endcase
if (1'b0) $display ("%x %x %x %x", alu_ctl_2s, ir_slave_2s, f_tmp_2s, p00_2s); //Prevent unused
//
case ({1'b1, 1'b1})
default: $stop;
{1'b1, p00_2s}: ;
endcase
end
// Check wide overlapping cases
// surefire lint_off CSEOVR
parameter ANY_STATE = 7'h??;
reg [19:0] foo;
initial begin
foo = {1'b0,1'b0,1'b0,1'b0,1'b0,7'h04,8'b0};
casez (foo)
default: $stop;
{1'b1,1'b?,1'b?,1'b?,1'b?,ANY_STATE,8'b?}: $stop;
{1'b?,1'b1,1'b?,1'b?,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b1,1'b?,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b?,1'b1,1'b?,7'h00,8'b?}: $stop;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h04,8'b?}: ;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'hdf}: $stop;
{1'b?,1'b?,1'b?,1'b?,1'b?,7'h06,8'h00}: $stop;
endcase
end
initial begin
foo = 20'b1010;
casex (foo[3:0])
default: $stop;
4'b0xxx,
4'b100x,
4'b11xx: $stop;
4'b1010: ;
endcase
end
initial begin
foo = 20'b1010;
ok = 1'b0;
// Test of RANGE(CONCAT reductions...
casex ({foo[3:2],foo[1:0],foo[3]})
5'bxx10x: begin ok=1'b0; foo=20'd1; ok=1'b1; end // Check multiple expressions
5'bxx00x: $stop;
5'bxx01x: $stop;
5'bxx11x: $stop;
endcase
if (!ok) $stop;
end
endmodule
|
module outputs)
wire [63:0] r1_d_d2r; // From file of file.v
wire [63:0] r2_d_d2r; // From file of file.v
// End of automatics
file file (/*AUTOINST*/
// Outputs
.r1_d_d2r (r1_d_d2r[63:0]),
.r2_d_d2r (r2_d_d2r[63:0]),
// Inputs
.clk (clk),
.r1_en (r1_en),
.r1_ad (r1_ad[1:0]),
.r2_en (r2_en),
.r2_ad (r2_ad[1:0]),
.w1_en (w1_en),
.w1_a (w1_a[1:0]),
.w1_d (w1_d[63:0]),
.w2_en (w2_en),
.w2_a (w2_a[1:0]),
.w2_d (w2_d[63:0]));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d EN=%b%b%b%b R0=%x R1=%x\n",$time, cyc, r1_en,r2_en,w1_en,w2_en, r1_d_d2r, r2_d_d2r);
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63]^crc[2]^crc[0]};
sum <= {r1_d_d2r ^ r2_d_d2r} ^ {sum[62:0],sum[63]^sum[2]^sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
// We've manually verified all X's are out of the design by this point
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("*-* All Finished *-*\n");
$write("[%0t] cyc==%0d crc=%x %x\n",$time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== 64'h5e9ea8c33a97f81e) $stop;
$finish;
end
end
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.