module_content
stringlengths 18
1.05M
|
---|
module gen_sync
( input clock,
input reset,
input enable,
input [7:0] rate,
output wire sync );
// parameter width = 8;
reg [7:0] counter;
assign sync = |(((rate+1)>>1)& counter);
always @(posedge clock)
if(reset || ~enable)
counter <= #1 0;
else if(counter == rate)
counter <= #1 0;
else
counter <= #1 counter + 8'd1;
endmodule
|
module gen_sync
( input clock,
input reset,
input enable,
input [7:0] rate,
output wire sync );
// parameter width = 8;
reg [7:0] counter;
assign sync = |(((rate+1)>>1)& counter);
always @(posedge clock)
if(reset || ~enable)
counter <= #1 0;
else if(counter == rate)
counter <= #1 0;
else
counter <= #1 counter + 8'd1;
endmodule
|
module gen_sync
( input clock,
input reset,
input enable,
input [7:0] rate,
output wire sync );
// parameter width = 8;
reg [7:0] counter;
assign sync = |(((rate+1)>>1)& counter);
always @(posedge clock)
if(reset || ~enable)
counter <= #1 0;
else if(counter == rate)
counter <= #1 0;
else
counter <= #1 counter + 8'd1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
endmodule
|
module dspclkpll (
inclk0,
c0,
c1);
input inclk0;
output c0;
output c1;
endmodule
|
module addsub16 (
add_sub,
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
input aclr;
input clken;
output [15:0] result;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
endmodule
|
module add32 (
dataa,
datab,
result)/* synthesis synthesis_clearbox = 1 */;
input [7:0] dataa;
input [7:0] datab;
output [7:0] result;
endmodule
|
module fifo_2k_a_gray2bin_8m4
(
bin,
gray) /* synthesis synthesis_clearbox=1 */;
output [10:0] bin;
input [10:0] gray;
wire xor0;
wire xor1;
wire xor2;
wire xor3;
wire xor4;
wire xor5;
wire xor6;
wire xor7;
wire xor8;
wire xor9;
assign
bin = {gray[10], xor9, xor8, xor7, xor6, xor5, xor4, xor3, xor2, xor1, xor0},
xor0 = (gray[0] ^ xor1),
xor1 = (gray[1] ^ xor2),
xor2 = (gray[2] ^ xor3),
xor3 = (gray[3] ^ xor4),
xor4 = (gray[4] ^ xor5),
xor5 = (gray[5] ^ xor6),
xor6 = (gray[6] ^ xor7),
xor7 = (gray[7] ^ xor8),
xor8 = (gray[8] ^ xor9),
xor9 = (gray[10] ^ gray[9]);
endmodule
|
module fifo_2k_a_graycounter_726
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab(wire_parity_regout),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "6682",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:0]},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_a_graycounter_2r6
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab((~ wire_parity_regout)),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "9982",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:1], (~ wire_countera_regout[0])},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_altsyncram_6pl
(
address_a,
address_b,
clock0,
clock1,
clocken1,
data_a,
q_b,
wren_a) /* synthesis synthesis_clearbox=1 */;
input [10:0] address_a;
input [10:0] address_b;
input clock0;
input clock1;
input clocken1;
input [15:0] data_a;
output [15:0] q_b;
input wren_a;
wire [0:0] wire_ram_block3a_0portbdataout;
wire [0:0] wire_ram_block3a_1portbdataout;
wire [0:0] wire_ram_block3a_2portbdataout;
wire [0:0] wire_ram_block3a_3portbdataout;
wire [0:0] wire_ram_block3a_4portbdataout;
wire [0:0] wire_ram_block3a_5portbdataout;
wire [0:0] wire_ram_block3a_6portbdataout;
wire [0:0] wire_ram_block3a_7portbdataout;
wire [0:0] wire_ram_block3a_8portbdataout;
wire [0:0] wire_ram_block3a_9portbdataout;
wire [0:0] wire_ram_block3a_10portbdataout;
wire [0:0] wire_ram_block3a_11portbdataout;
wire [0:0] wire_ram_block3a_12portbdataout;
wire [0:0] wire_ram_block3a_13portbdataout;
wire [0:0] wire_ram_block3a_14portbdataout;
wire [0:0] wire_ram_block3a_15portbdataout;
wire [10:0] address_a_wire;
wire [10:0] address_b_wire;
cyclone_ram_block ram_block3a_0
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[0]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_0portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_0.connectivity_checking = "OFF",
ram_block3a_0.logical_ram_name = "ALTSYNCRAM",
ram_block3a_0.mixed_port_feed_through_mode = "dont_care",
ram_block3a_0.operation_mode = "dual_port",
ram_block3a_0.port_a_address_width = 11,
ram_block3a_0.port_a_data_width = 1,
ram_block3a_0.port_a_first_address = 0,
ram_block3a_0.port_a_first_bit_number = 0,
ram_block3a_0.port_a_last_address = 2047,
ram_block3a_0.port_a_logical_ram_depth = 2048,
ram_block3a_0.port_a_logical_ram_width = 16,
ram_block3a_0.port_b_address_clear = "none",
ram_block3a_0.port_b_address_clock = "clock1",
ram_block3a_0.port_b_address_width = 11,
ram_block3a_0.port_b_data_out_clear = "none",
ram_block3a_0.port_b_data_out_clock = "none",
ram_block3a_0.port_b_data_width = 1,
ram_block3a_0.port_b_first_address = 0,
ram_block3a_0.port_b_first_bit_number = 0,
ram_block3a_0.port_b_last_address = 2047,
ram_block3a_0.port_b_logical_ram_depth = 2048,
ram_block3a_0.port_b_logical_ram_width = 16,
ram_block3a_0.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_0.ram_block_type = "auto",
ram_block3a_0.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_1
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[1]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_1portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_1.connectivity_checking = "OFF",
ram_block3a_1.logical_ram_name = "ALTSYNCRAM",
ram_block3a_1.mixed_port_feed_through_mode = "dont_care",
ram_block3a_1.operation_mode = "dual_port",
ram_block3a_1.port_a_address_width = 11,
ram_block3a_1.port_a_data_width = 1,
ram_block3a_1.port_a_first_address = 0,
ram_block3a_1.port_a_first_bit_number = 1,
ram_block3a_1.port_a_last_address = 2047,
ram_block3a_1.port_a_logical_ram_depth = 2048,
ram_block3a_1.port_a_logical_ram_width = 16,
ram_block3a_1.port_b_address_clear = "none",
ram_block3a_1.port_b_address_clock = "clock1",
ram_block3a_1.port_b_address_width = 11,
ram_block3a_1.port_b_data_out_clear = "none",
ram_block3a_1.port_b_data_out_clock = "none",
ram_block3a_1.port_b_data_width = 1,
ram_block3a_1.port_b_first_address = 0,
ram_block3a_1.port_b_first_bit_number = 1,
ram_block3a_1.port_b_last_address = 2047,
ram_block3a_1.port_b_logical_ram_depth = 2048,
ram_block3a_1.port_b_logical_ram_width = 16,
ram_block3a_1.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_1.ram_block_type = "auto",
ram_block3a_1.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_2
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[2]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_2portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_2.connectivity_checking = "OFF",
ram_block3a_2.logical_ram_name = "ALTSYNCRAM",
ram_block3a_2.mixed_port_feed_through_mode = "dont_care",
ram_block3a_2.operation_mode = "dual_port",
ram_block3a_2.port_a_address_width = 11,
ram_block3a_2.port_a_data_width = 1,
ram_block3a_2.port_a_first_address = 0,
ram_block3a_2.port_a_first_bit_number = 2,
ram_block3a_2.port_a_last_address = 2047,
ram_block3a_2.port_a_logical_ram_depth = 2048,
ram_block3a_2.port_a_logical_ram_width = 16,
ram_block3a_2.port_b_address_clear = "none",
ram_block3a_2.port_b_address_clock = "clock1",
ram_block3a_2.port_b_address_width = 11,
ram_block3a_2.port_b_data_out_clear = "none",
ram_block3a_2.port_b_data_out_clock = "none",
ram_block3a_2.port_b_data_width = 1,
ram_block3a_2.port_b_first_address = 0,
ram_block3a_2.port_b_first_bit_number = 2,
ram_block3a_2.port_b_last_address = 2047,
ram_block3a_2.port_b_logical_ram_depth = 2048,
ram_block3a_2.port_b_logical_ram_width = 16,
ram_block3a_2.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_2.ram_block_type = "auto",
ram_block3a_2.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_3
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[3]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_3portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_3.connectivity_checking = "OFF",
ram_block3a_3.logical_ram_name = "ALTSYNCRAM",
ram_block3a_3.mixed_port_feed_through_mode = "dont_care",
ram_block3a_3.operation_mode = "dual_port",
ram_block3a_3.port_a_address_width = 11,
ram_block3a_3.port_a_data_width = 1,
ram_block3a_3.port_a_first_address = 0,
ram_block3a_3.port_a_first_bit_number = 3,
ram_block3a_3.port_a_last_address = 2047,
ram_block3a_3.port_a_logical_ram_depth = 2048,
ram_block3a_3.port_a_logical_ram_width = 16,
ram_block3a_3.port_b_address_clear = "none",
ram_block3a_3.port_b_address_clock = "clock1",
ram_block3a_3.port_b_address_width = 11,
ram_block3a_3.port_b_data_out_clear = "none",
ram_block3a_3.port_b_data_out_clock = "none",
ram_block3a_3.port_b_data_width = 1,
ram_block3a_3.port_b_first_address = 0,
ram_block3a_3.port_b_first_bit_number = 3,
ram_block3a_3.port_b_last_address = 2047,
ram_block3a_3.port_b_logical_ram_depth = 2048,
ram_block3a_3.port_b_logical_ram_width = 16,
ram_block3a_3.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_3.ram_block_type = "auto",
ram_block3a_3.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_4
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[4]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_4portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_4.connectivity_checking = "OFF",
ram_block3a_4.logical_ram_name = "ALTSYNCRAM",
ram_block3a_4.mixed_port_feed_through_mode = "dont_care",
ram_block3a_4.operation_mode = "dual_port",
ram_block3a_4.port_a_address_width = 11,
ram_block3a_4.port_a_data_width = 1,
ram_block3a_4.port_a_first_address = 0,
ram_block3a_4.port_a_first_bit_number = 4,
ram_block3a_4.port_a_last_address = 2047,
ram_block3a_4.port_a_logical_ram_depth = 2048,
ram_block3a_4.port_a_logical_ram_width = 16,
ram_block3a_4.port_b_address_clear = "none",
ram_block3a_4.port_b_address_clock = "clock1",
ram_block3a_4.port_b_address_width = 11,
ram_block3a_4.port_b_data_out_clear = "none",
ram_block3a_4.port_b_data_out_clock = "none",
ram_block3a_4.port_b_data_width = 1,
ram_block3a_4.port_b_first_address = 0,
ram_block3a_4.port_b_first_bit_number = 4,
ram_block3a_4.port_b_last_address = 2047,
ram_block3a_4.port_b_logical_ram_depth = 2048,
ram_block3a_4.port_b_logical_ram_width = 16,
ram_block3a_4.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_4.ram_block_type = "auto",
ram_block3a_4.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_5
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[5]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_5portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_5.connectivity_checking = "OFF",
ram_block3a_5.logical_ram_name = "ALTSYNCRAM",
ram_block3a_5.mixed_port_feed_through_mode = "dont_care",
ram_block3a_5.operation_mode = "dual_port",
ram_block3a_5.port_a_address_width = 11,
ram_block3a_5.port_a_data_width = 1,
ram_block3a_5.port_a_first_address = 0,
ram_block3a_5.port_a_first_bit_number = 5,
ram_block3a_5.port_a_last_address = 2047,
ram_block3a_5.port_a_logical_ram_depth = 2048,
ram_block3a_5.port_a_logical_ram_width = 16,
ram_block3a_5.port_b_address_clear = "none",
ram_block3a_5.port_b_address_clock = "clock1",
ram_block3a_5.port_b_address_width = 11,
ram_block3a_5.port_b_data_out_clear = "none",
ram_block3a_5.port_b_data_out_clock = "none",
ram_block3a_5.port_b_data_width = 1,
ram_block3a_5.port_b_first_address = 0,
ram_block3a_5.port_b_first_bit_number = 5,
ram_block3a_5.port_b_last_address = 2047,
ram_block3a_5.port_b_logical_ram_depth = 2048,
ram_block3a_5.port_b_logical_ram_width = 16,
ram_block3a_5.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_5.ram_block_type = "auto",
ram_block3a_5.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_6
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[6]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_6portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_6.connectivity_checking = "OFF",
ram_block3a_6.logical_ram_name = "ALTSYNCRAM",
ram_block3a_6.mixed_port_feed_through_mode = "dont_care",
ram_block3a_6.operation_mode = "dual_port",
ram_block3a_6.port_a_address_width = 11,
ram_block3a_6.port_a_data_width = 1,
ram_block3a_6.port_a_first_address = 0,
ram_block3a_6.port_a_first_bit_number = 6,
ram_block3a_6.port_a_last_address = 2047,
ram_block3a_6.port_a_logical_ram_depth = 2048,
ram_block3a_6.port_a_logical_ram_width = 16,
ram_block3a_6.port_b_address_clear = "none",
ram_block3a_6.port_b_address_clock = "clock1",
ram_block3a_6.port_b_address_width = 11,
ram_block3a_6.port_b_data_out_clear = "none",
ram_block3a_6.port_b_data_out_clock = "none",
ram_block3a_6.port_b_data_width = 1,
ram_block3a_6.port_b_first_address = 0,
ram_block3a_6.port_b_first_bit_number = 6,
ram_block3a_6.port_b_last_address = 2047,
ram_block3a_6.port_b_logical_ram_depth = 2048,
ram_block3a_6.port_b_logical_ram_width = 16,
ram_block3a_6.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_6.ram_block_type = "auto",
ram_block3a_6.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_7
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[7]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_7portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_7.connectivity_checking = "OFF",
ram_block3a_7.logical_ram_name = "ALTSYNCRAM",
ram_block3a_7.mixed_port_feed_through_mode = "dont_care",
ram_block3a_7.operation_mode = "dual_port",
ram_block3a_7.port_a_address_width = 11,
ram_block3a_7.port_a_data_width = 1,
ram_block3a_7.port_a_first_address = 0,
ram_block3a_7.port_a_first_bit_number = 7,
ram_block3a_7.port_a_last_address = 2047,
ram_block3a_7.port_a_logical_ram_depth = 2048,
ram_block3a_7.port_a_logical_ram_width = 16,
ram_block3a_7.port_b_address_clear = "none",
ram_block3a_7.port_b_address_clock = "clock1",
ram_block3a_7.port_b_address_width = 11,
ram_block3a_7.port_b_data_out_clear = "none",
ram_block3a_7.port_b_data_out_clock = "none",
ram_block3a_7.port_b_data_width = 1,
ram_block3a_7.port_b_first_address = 0,
ram_block3a_7.port_b_first_bit_number = 7,
ram_block3a_7.port_b_last_address = 2047,
ram_block3a_7.port_b_logical_ram_depth = 2048,
ram_block3a_7.port_b_logical_ram_width = 16,
ram_block3a_7.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_7.ram_block_type = "auto",
ram_block3a_7.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_8
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[8]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_8portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_8.connectivity_checking = "OFF",
ram_block3a_8.logical_ram_name = "ALTSYNCRAM",
ram_block3a_8.mixed_port_feed_through_mode = "dont_care",
ram_block3a_8.operation_mode = "dual_port",
ram_block3a_8.port_a_address_width = 11,
ram_block3a_8.port_a_data_width = 1,
ram_block3a_8.port_a_first_address = 0,
ram_block3a_8.port_a_first_bit_number = 8,
ram_block3a_8.port_a_last_address = 2047,
ram_block3a_8.port_a_logical_ram_depth = 2048,
ram_block3a_8.port_a_logical_ram_width = 16,
ram_block3a_8.port_b_address_clear = "none",
ram_block3a_8.port_b_address_clock = "clock1",
ram_block3a_8.port_b_address_width = 11,
ram_block3a_8.port_b_data_out_clear = "none",
ram_block3a_8.port_b_data_out_clock = "none",
ram_block3a_8.port_b_data_width = 1,
ram_block3a_8.port_b_first_address = 0,
ram_block3a_8.port_b_first_bit_number = 8,
ram_block3a_8.port_b_last_address = 2047,
ram_block3a_8.port_b_logical_ram_depth = 2048,
ram_block3a_8.port_b_logical_ram_width = 16,
ram_block3a_8.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_8.ram_block_type = "auto",
ram_block3a_8.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_9
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[9]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_9portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_9.connectivity_checking = "OFF",
ram_block3a_9.logical_ram_name = "ALTSYNCRAM",
ram_block3a_9.mixed_port_feed_through_mode = "dont_care",
ram_block3a_9.operation_mode = "dual_port",
ram_block3a_9.port_a_address_width = 11,
ram_block3a_9.port_a_data_width = 1,
ram_block3a_9.port_a_first_address = 0,
ram_block3a_9.port_a_first_bit_number = 9,
ram_block3a_9.port_a_last_address = 2047,
ram_block3a_9.port_a_logical_ram_depth = 2048,
ram_block3a_9.port_a_logical_ram_width = 16,
ram_block3a_9.port_b_address_clear = "none",
ram_block3a_9.port_b_address_clock = "clock1",
ram_block3a_9.port_b_address_width = 11,
ram_block3a_9.port_b_data_out_clear = "none",
ram_block3a_9.port_b_data_out_clock = "none",
ram_block3a_9.port_b_data_width = 1,
ram_block3a_9.port_b_first_address = 0,
ram_block3a_9.port_b_first_bit_number = 9,
ram_block3a_9.port_b_last_address = 2047,
ram_block3a_9.port_b_logical_ram_depth = 2048,
ram_block3a_9.port_b_logical_ram_width = 16,
ram_block3a_9.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_9.ram_block_type = "auto",
ram_block3a_9.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_10
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[10]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_10portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_10.connectivity_checking = "OFF",
ram_block3a_10.logical_ram_name = "ALTSYNCRAM",
ram_block3a_10.mixed_port_feed_through_mode = "dont_care",
ram_block3a_10.operation_mode = "dual_port",
ram_block3a_10.port_a_address_width = 11,
ram_block3a_10.port_a_data_width = 1,
ram_block3a_10.port_a_first_address = 0,
ram_block3a_10.port_a_first_bit_number = 10,
ram_block3a_10.port_a_last_address = 2047,
ram_block3a_10.port_a_logical_ram_depth = 2048,
ram_block3a_10.port_a_logical_ram_width = 16,
ram_block3a_10.port_b_address_clear = "none",
ram_block3a_10.port_b_address_clock = "clock1",
ram_block3a_10.port_b_address_width = 11,
ram_block3a_10.port_b_data_out_clear = "none",
ram_block3a_10.port_b_data_out_clock = "none",
ram_block3a_10.port_b_data_width = 1,
ram_block3a_10.port_b_first_address = 0,
ram_block3a_10.port_b_first_bit_number = 10,
ram_block3a_10.port_b_last_address = 2047,
ram_block3a_10.port_b_logical_ram_depth = 2048,
ram_block3a_10.port_b_logical_ram_width = 16,
ram_block3a_10.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_10.ram_block_type = "auto",
ram_block3a_10.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_11
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[11]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_11portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_11.connectivity_checking = "OFF",
ram_block3a_11.logical_ram_name = "ALTSYNCRAM",
ram_block3a_11.mixed_port_feed_through_mode = "dont_care",
ram_block3a_11.operation_mode = "dual_port",
ram_block3a_11.port_a_address_width = 11,
ram_block3a_11.port_a_data_width = 1,
ram_block3a_11.port_a_first_address = 0,
ram_block3a_11.port_a_first_bit_number = 11,
ram_block3a_11.port_a_last_address = 2047,
ram_block3a_11.port_a_logical_ram_depth = 2048,
ram_block3a_11.port_a_logical_ram_width = 16,
ram_block3a_11.port_b_address_clear = "none",
ram_block3a_11.port_b_address_clock = "clock1",
ram_block3a_11.port_b_address_width = 11,
ram_block3a_11.port_b_data_out_clear = "none",
ram_block3a_11.port_b_data_out_clock = "none",
ram_block3a_11.port_b_data_width = 1,
ram_block3a_11.port_b_first_address = 0,
ram_block3a_11.port_b_first_bit_number = 11,
ram_block3a_11.port_b_last_address = 2047,
ram_block3a_11.port_b_logical_ram_depth = 2048,
ram_block3a_11.port_b_logical_ram_width = 16,
ram_block3a_11.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_11.ram_block_type = "auto",
ram_block3a_11.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_12
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[12]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_12portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_12.connectivity_checking = "OFF",
ram_block3a_12.logical_ram_name = "ALTSYNCRAM",
ram_block3a_12.mixed_port_feed_through_mode = "dont_care",
ram_block3a_12.operation_mode = "dual_port",
ram_block3a_12.port_a_address_width = 11,
ram_block3a_12.port_a_data_width = 1,
ram_block3a_12.port_a_first_address = 0,
ram_block3a_12.port_a_first_bit_number = 12,
ram_block3a_12.port_a_last_address = 2047,
ram_block3a_12.port_a_logical_ram_depth = 2048,
ram_block3a_12.port_a_logical_ram_width = 16,
ram_block3a_12.port_b_address_clear = "none",
ram_block3a_12.port_b_address_clock = "clock1",
ram_block3a_12.port_b_address_width = 11,
ram_block3a_12.port_b_data_out_clear = "none",
ram_block3a_12.port_b_data_out_clock = "none",
ram_block3a_12.port_b_data_width = 1,
ram_block3a_12.port_b_first_address = 0,
ram_block3a_12.port_b_first_bit_number = 12,
ram_block3a_12.port_b_last_address = 2047,
ram_block3a_12.port_b_logical_ram_depth = 2048,
ram_block3a_12.port_b_logical_ram_width = 16,
ram_block3a_12.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_12.ram_block_type = "auto",
ram_block3a_12.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_13
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[13]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_13portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_13.connectivity_checking = "OFF",
ram_block3a_13.logical_ram_name = "ALTSYNCRAM",
ram_block3a_13.mixed_port_feed_through_mode = "dont_care",
ram_block3a_13.operation_mode = "dual_port",
ram_block3a_13.port_a_address_width = 11,
ram_block3a_13.port_a_data_width = 1,
ram_block3a_13.port_a_first_address = 0,
ram_block3a_13.port_a_first_bit_number = 13,
ram_block3a_13.port_a_last_address = 2047,
ram_block3a_13.port_a_logical_ram_depth = 2048,
ram_block3a_13.port_a_logical_ram_width = 16,
ram_block3a_13.port_b_address_clear = "none",
ram_block3a_13.port_b_address_clock = "clock1",
ram_block3a_13.port_b_address_width = 11,
ram_block3a_13.port_b_data_out_clear = "none",
ram_block3a_13.port_b_data_out_clock = "none",
ram_block3a_13.port_b_data_width = 1,
ram_block3a_13.port_b_first_address = 0,
ram_block3a_13.port_b_first_bit_number = 13,
ram_block3a_13.port_b_last_address = 2047,
ram_block3a_13.port_b_logical_ram_depth = 2048,
ram_block3a_13.port_b_logical_ram_width = 16,
ram_block3a_13.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_13.ram_block_type = "auto",
ram_block3a_13.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_14
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[14]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_14portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_14.connectivity_checking = "OFF",
ram_block3a_14.logical_ram_name = "ALTSYNCRAM",
ram_block3a_14.mixed_port_feed_through_mode = "dont_care",
ram_block3a_14.operation_mode = "dual_port",
ram_block3a_14.port_a_address_width = 11,
ram_block3a_14.port_a_data_width = 1,
ram_block3a_14.port_a_first_address = 0,
ram_block3a_14.port_a_first_bit_number = 14,
ram_block3a_14.port_a_last_address = 2047,
ram_block3a_14.port_a_logical_ram_depth = 2048,
ram_block3a_14.port_a_logical_ram_width = 16,
ram_block3a_14.port_b_address_clear = "none",
ram_block3a_14.port_b_address_clock = "clock1",
ram_block3a_14.port_b_address_width = 11,
ram_block3a_14.port_b_data_out_clear = "none",
ram_block3a_14.port_b_data_out_clock = "none",
ram_block3a_14.port_b_data_width = 1,
ram_block3a_14.port_b_first_address = 0,
ram_block3a_14.port_b_first_bit_number = 14,
ram_block3a_14.port_b_last_address = 2047,
ram_block3a_14.port_b_logical_ram_depth = 2048,
ram_block3a_14.port_b_logical_ram_width = 16,
ram_block3a_14.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_14.ram_block_type = "auto",
ram_block3a_14.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_15
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[15]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_15portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_15.connectivity_checking = "OFF",
ram_block3a_15.logical_ram_name = "ALTSYNCRAM",
ram_block3a_15.mixed_port_feed_through_mode = "dont_care",
ram_block3a_15.operation_mode = "dual_port",
ram_block3a_15.port_a_address_width = 11,
ram_block3a_15.port_a_data_width = 1,
ram_block3a_15.port_a_first_address = 0,
ram_block3a_15.port_a_first_bit_number = 15,
ram_block3a_15.port_a_last_address = 2047,
ram_block3a_15.port_a_logical_ram_depth = 2048,
ram_block3a_15.port_a_logical_ram_width = 16,
ram_block3a_15.port_b_address_clear = "none",
ram_block3a_15.port_b_address_clock = "clock1",
ram_block3a_15.port_b_address_width = 11,
ram_block3a_15.port_b_data_out_clear = "none",
ram_block3a_15.port_b_data_out_clock = "none",
ram_block3a_15.port_b_data_width = 1,
ram_block3a_15.port_b_first_address = 0,
ram_block3a_15.port_b_first_bit_number = 15,
ram_block3a_15.port_b_last_address = 2047,
ram_block3a_15.port_b_logical_ram_depth = 2048,
ram_block3a_15.port_b_logical_ram_width = 16,
ram_block3a_15.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_15.ram_block_type = "auto",
ram_block3a_15.lpm_type = "cyclone_ram_block";
assign
address_a_wire = address_a,
address_b_wire = address_b,
q_b = {wire_ram_block3a_15portbdataout[0], wire_ram_block3a_14portbdataout[0], wire_ram_block3a_13portbdataout[0], wire_ram_block3a_12portbdataout[0], wire_ram_block3a_11portbdataout[0], wire_ram_block3a_10portbdataout[0], wire_ram_block3a_9portbdataout[0], wire_ram_block3a_8portbdataout[0], wire_ram_block3a_7portbdataout[0], wire_ram_block3a_6portbdataout[0], wire_ram_block3a_5portbdataout[0], wire_ram_block3a_4portbdataout[0], wire_ram_block3a_3portbdataout[0], wire_ram_block3a_2portbdataout[0], wire_ram_block3a_1portbdataout[0], wire_ram_block3a_0portbdataout[0]};
endmodule
|
module fifo_2k_dffpipe_ab3
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe4a_D;
reg [10:0] dffe4a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe4a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe4a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe4a[0:0] <= wire_dffe4a_D[0:0];
// synopsys translate_off
initial
dffe4a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe4a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe4a[1:1] <= wire_dffe4a_D[1:1];
// synopsys translate_off
initial
dffe4a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe4a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe4a[2:2] <= wire_dffe4a_D[2:2];
// synopsys translate_off
initial
dffe4a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe4a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe4a[3:3] <= wire_dffe4a_D[3:3];
// synopsys translate_off
initial
dffe4a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe4a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe4a[4:4] <= wire_dffe4a_D[4:4];
// synopsys translate_off
initial
dffe4a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe4a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe4a[5:5] <= wire_dffe4a_D[5:5];
// synopsys translate_off
initial
dffe4a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe4a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe4a[6:6] <= wire_dffe4a_D[6:6];
// synopsys translate_off
initial
dffe4a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe4a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe4a[7:7] <= wire_dffe4a_D[7:7];
// synopsys translate_off
initial
dffe4a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe4a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe4a[8:8] <= wire_dffe4a_D[8:8];
// synopsys translate_off
initial
dffe4a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe4a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe4a[9:9] <= wire_dffe4a_D[9:9];
// synopsys translate_off
initial
dffe4a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe4a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe4a[10:10] <= wire_dffe4a_D[10:10];
assign
wire_dffe4a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe4a,
sclr = 1'b0;
endmodule
|
module fifo_2k_dffpipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe6a_D;
reg [10:0] dffe6a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe6a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe6a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe6a[0:0] <= wire_dffe6a_D[0:0];
// synopsys translate_off
initial
dffe6a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe6a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe6a[1:1] <= wire_dffe6a_D[1:1];
// synopsys translate_off
initial
dffe6a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe6a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe6a[2:2] <= wire_dffe6a_D[2:2];
// synopsys translate_off
initial
dffe6a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe6a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe6a[3:3] <= wire_dffe6a_D[3:3];
// synopsys translate_off
initial
dffe6a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe6a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe6a[4:4] <= wire_dffe6a_D[4:4];
// synopsys translate_off
initial
dffe6a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe6a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe6a[5:5] <= wire_dffe6a_D[5:5];
// synopsys translate_off
initial
dffe6a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe6a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe6a[6:6] <= wire_dffe6a_D[6:6];
// synopsys translate_off
initial
dffe6a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe6a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe6a[7:7] <= wire_dffe6a_D[7:7];
// synopsys translate_off
initial
dffe6a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe6a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe6a[8:8] <= wire_dffe6a_D[8:8];
// synopsys translate_off
initial
dffe6a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe6a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe6a[9:9] <= wire_dffe6a_D[9:9];
// synopsys translate_off
initial
dffe6a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe6a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe6a[10:10] <= wire_dffe6a_D[10:10];
assign
wire_dffe6a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe6a,
sclr = 1'b0;
endmodule
|
module fifo_2k_alt_synch_pipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="X_ON_VIOLATION_OPTION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffpipe5_q;
fifo_2k_dffpipe_dm2 dffpipe5
(
.clock(clock),
.clrn(clrn),
.d(d),
.q(wire_dffpipe5_q));
assign
q = wire_dffpipe5_q;
endmodule
|
module fifo_2k_add_sub_a18
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [10:0] dataa;
input [10:0] datab;
output [10:0] result;
wire [10:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [10:0] wire_add_sub_cella_dataa;
wire [10:0] wire_add_sub_cella_datab;
cyclone_lcell add_sub_cella_0
(
.cin(1'b1),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_8
(
.cin(wire_add_sub_cella_7cout[0:0]),
.combout(wire_add_sub_cella_combout[8:8]),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_9
(
.cin(wire_add_sub_cella_8cout[0:0]),
.combout(wire_add_sub_cella_combout[9:9]),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_10
(
.cin(wire_add_sub_cella_9cout[0:0]),
.combout(wire_add_sub_cella_combout[10:10]),
.cout(),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "6969",
add_sub_cella_10.operation_mode = "normal",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "cyclone_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module fifo_2k_dcfifo_0cq
(
aclr,
data,
q,
rdclk,
rdempty,
rdreq,
rdusedw,
wrclk,
wrfull,
wrreq,
wrusedw) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF;{ -from \"rdptr_g|power_modified_counter_values\" -to \"ws_dgrp|dffpipe5|dffe6a\" }CUT=ON;{ -from \"delayed_wrptr_g\" -to \"rs_dgwp|dffpipe5|dffe6a\" }CUT=ON" */;
input aclr;
input [15:0] data;
output [15:0] q;
input rdclk;
output rdempty;
input rdreq;
output [10:0] rdusedw;
input wrclk;
output wrfull;
input wrreq;
output [10:0] wrusedw;
wire [10:0] wire_rdptr_g_gray2bin_bin;
wire [10:0] wire_rs_dgwp_gray2bin_bin;
wire [10:0] wire_wrptr_g_gray2bin_bin;
wire [10:0] wire_ws_dgrp_gray2bin_bin;
wire [10:0] wire_rdptr_g_q;
wire [10:0] wire_rdptr_g1p_q;
wire [10:0] wire_wrptr_g1p_q;
wire [15:0] wire_fifo_ram_q_b;
reg [10:0] delayed_wrptr_g;
reg [10:0] wrptr_g;
wire [10:0] wire_rs_brp_q;
wire [10:0] wire_rs_bwp_q;
wire [10:0] wire_rs_dgwp_q;
wire [10:0] wire_ws_brp_q;
wire [10:0] wire_ws_bwp_q;
wire [10:0] wire_ws_dgrp_q;
wire [10:0] wire_rdusedw_sub_result;
wire [10:0] wire_wrusedw_sub_result;
reg wire_rdempty_eq_comp_aeb_int;
wire wire_rdempty_eq_comp_aeb;
wire [10:0] wire_rdempty_eq_comp_dataa;
wire [10:0] wire_rdempty_eq_comp_datab;
reg wire_wrfull_eq_comp_aeb_int;
wire wire_wrfull_eq_comp_aeb;
wire [10:0] wire_wrfull_eq_comp_dataa;
wire [10:0] wire_wrfull_eq_comp_datab;
wire int_rdempty;
wire int_wrfull;
wire valid_rdreq;
wire valid_wrreq;
fifo_2k_a_gray2bin_8m4 rdptr_g_gray2bin
(
.bin(wire_rdptr_g_gray2bin_bin),
.gray(wire_rdptr_g_q));
fifo_2k_a_gray2bin_8m4 rs_dgwp_gray2bin
(
.bin(wire_rs_dgwp_gray2bin_bin),
.gray(wire_rs_dgwp_q));
fifo_2k_a_gray2bin_8m4 wrptr_g_gray2bin
(
.bin(wire_wrptr_g_gray2bin_bin),
.gray(wrptr_g));
fifo_2k_a_gray2bin_8m4 ws_dgrp_gray2bin
(
.bin(wire_ws_dgrp_gray2bin_bin),
.gray(wire_ws_dgrp_q));
fifo_2k_a_graycounter_726 rdptr_g
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g_q));
fifo_2k_a_graycounter_2r6 rdptr_g1p
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g1p_q));
fifo_2k_a_graycounter_2r6 wrptr_g1p
(
.aclr(aclr),
.clock(wrclk),
.cnt_en(valid_wrreq),
.q(wire_wrptr_g1p_q));
fifo_2k_altsyncram_6pl fifo_ram
(
.address_a(wrptr_g),
.address_b(((wire_rdptr_g_q & {11{int_rdempty}}) | (wire_rdptr_g1p_q & {11{(~ int_rdempty)}}))),
.clock0(wrclk),
.clock1(rdclk),
.clocken1((valid_rdreq | int_rdempty)),
.data_a(data),
.q_b(wire_fifo_ram_q_b),
.wren_a(valid_wrreq));
// synopsys translate_off
initial
delayed_wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) delayed_wrptr_g <= 11'b0;
else delayed_wrptr_g <= wrptr_g;
// synopsys translate_off
initial
wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) wrptr_g <= 11'b0;
else if (valid_wrreq == 1'b1) wrptr_g <= wire_wrptr_g1p_q;
fifo_2k_dffpipe_ab3 rs_brp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_gray2bin_bin),
.q(wire_rs_brp_q));
fifo_2k_dffpipe_ab3 rs_bwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rs_dgwp_gray2bin_bin),
.q(wire_rs_bwp_q));
fifo_2k_alt_synch_pipe_dm2 rs_dgwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(delayed_wrptr_g),
.q(wire_rs_dgwp_q));
fifo_2k_dffpipe_ab3 ws_brp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_ws_dgrp_gray2bin_bin),
.q(wire_ws_brp_q));
fifo_2k_dffpipe_ab3 ws_bwp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_wrptr_g_gray2bin_bin),
.q(wire_ws_bwp_q));
fifo_2k_alt_synch_pipe_dm2 ws_dgrp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_q),
.q(wire_ws_dgrp_q));
fifo_2k_add_sub_a18 rdusedw_sub
(
.dataa(wire_rs_bwp_q),
.datab(wire_rs_brp_q),
.result(wire_rdusedw_sub_result));
fifo_2k_add_sub_a18 wrusedw_sub
(
.dataa(wire_ws_bwp_q),
.datab(wire_ws_brp_q),
.result(wire_wrusedw_sub_result));
always @(wire_rdempty_eq_comp_dataa or wire_rdempty_eq_comp_datab)
if (wire_rdempty_eq_comp_dataa == wire_rdempty_eq_comp_datab)
begin
wire_rdempty_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_rdempty_eq_comp_aeb_int = 1'b0;
end
assign
wire_rdempty_eq_comp_aeb = wire_rdempty_eq_comp_aeb_int;
assign
wire_rdempty_eq_comp_dataa = wire_rs_dgwp_q,
wire_rdempty_eq_comp_datab = wire_rdptr_g_q;
always @(wire_wrfull_eq_comp_dataa or wire_wrfull_eq_comp_datab)
if (wire_wrfull_eq_comp_dataa == wire_wrfull_eq_comp_datab)
begin
wire_wrfull_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_wrfull_eq_comp_aeb_int = 1'b0;
end
assign
wire_wrfull_eq_comp_aeb = wire_wrfull_eq_comp_aeb_int;
assign
wire_wrfull_eq_comp_dataa = wire_ws_dgrp_q,
wire_wrfull_eq_comp_datab = wire_wrptr_g1p_q;
assign
int_rdempty = wire_rdempty_eq_comp_aeb,
int_wrfull = wire_wrfull_eq_comp_aeb,
q = wire_fifo_ram_q_b,
rdempty = int_rdempty,
rdusedw = wire_rdusedw_sub_result,
valid_rdreq = rdreq,
valid_wrreq = wrreq,
wrfull = int_wrfull,
wrusedw = wire_wrusedw_sub_result;
endmodule
|
module fifo_2k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output [10:0] wrusedw;
wire sub_wire0;
wire [10:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [10:0] sub_wire4;
wire rdempty = sub_wire0;
wire [10:0] wrusedw = sub_wire1[10:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [10:0] rdusedw = sub_wire4[10:0];
fifo_2k_dcfifo_0cq fifo_2k_dcfifo_0cq_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4));
endmodule
|
module fifo_2k_a_gray2bin_8m4
(
bin,
gray) /* synthesis synthesis_clearbox=1 */;
output [10:0] bin;
input [10:0] gray;
wire xor0;
wire xor1;
wire xor2;
wire xor3;
wire xor4;
wire xor5;
wire xor6;
wire xor7;
wire xor8;
wire xor9;
assign
bin = {gray[10], xor9, xor8, xor7, xor6, xor5, xor4, xor3, xor2, xor1, xor0},
xor0 = (gray[0] ^ xor1),
xor1 = (gray[1] ^ xor2),
xor2 = (gray[2] ^ xor3),
xor3 = (gray[3] ^ xor4),
xor4 = (gray[4] ^ xor5),
xor5 = (gray[5] ^ xor6),
xor6 = (gray[6] ^ xor7),
xor7 = (gray[7] ^ xor8),
xor8 = (gray[8] ^ xor9),
xor9 = (gray[10] ^ gray[9]);
endmodule
|
module fifo_2k_a_graycounter_726
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab(wire_parity_regout),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "6682",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:0]},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_a_graycounter_2r6
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab((~ wire_parity_regout)),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "9982",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:1], (~ wire_countera_regout[0])},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_altsyncram_6pl
(
address_a,
address_b,
clock0,
clock1,
clocken1,
data_a,
q_b,
wren_a) /* synthesis synthesis_clearbox=1 */;
input [10:0] address_a;
input [10:0] address_b;
input clock0;
input clock1;
input clocken1;
input [15:0] data_a;
output [15:0] q_b;
input wren_a;
wire [0:0] wire_ram_block3a_0portbdataout;
wire [0:0] wire_ram_block3a_1portbdataout;
wire [0:0] wire_ram_block3a_2portbdataout;
wire [0:0] wire_ram_block3a_3portbdataout;
wire [0:0] wire_ram_block3a_4portbdataout;
wire [0:0] wire_ram_block3a_5portbdataout;
wire [0:0] wire_ram_block3a_6portbdataout;
wire [0:0] wire_ram_block3a_7portbdataout;
wire [0:0] wire_ram_block3a_8portbdataout;
wire [0:0] wire_ram_block3a_9portbdataout;
wire [0:0] wire_ram_block3a_10portbdataout;
wire [0:0] wire_ram_block3a_11portbdataout;
wire [0:0] wire_ram_block3a_12portbdataout;
wire [0:0] wire_ram_block3a_13portbdataout;
wire [0:0] wire_ram_block3a_14portbdataout;
wire [0:0] wire_ram_block3a_15portbdataout;
wire [10:0] address_a_wire;
wire [10:0] address_b_wire;
cyclone_ram_block ram_block3a_0
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[0]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_0portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_0.connectivity_checking = "OFF",
ram_block3a_0.logical_ram_name = "ALTSYNCRAM",
ram_block3a_0.mixed_port_feed_through_mode = "dont_care",
ram_block3a_0.operation_mode = "dual_port",
ram_block3a_0.port_a_address_width = 11,
ram_block3a_0.port_a_data_width = 1,
ram_block3a_0.port_a_first_address = 0,
ram_block3a_0.port_a_first_bit_number = 0,
ram_block3a_0.port_a_last_address = 2047,
ram_block3a_0.port_a_logical_ram_depth = 2048,
ram_block3a_0.port_a_logical_ram_width = 16,
ram_block3a_0.port_b_address_clear = "none",
ram_block3a_0.port_b_address_clock = "clock1",
ram_block3a_0.port_b_address_width = 11,
ram_block3a_0.port_b_data_out_clear = "none",
ram_block3a_0.port_b_data_out_clock = "none",
ram_block3a_0.port_b_data_width = 1,
ram_block3a_0.port_b_first_address = 0,
ram_block3a_0.port_b_first_bit_number = 0,
ram_block3a_0.port_b_last_address = 2047,
ram_block3a_0.port_b_logical_ram_depth = 2048,
ram_block3a_0.port_b_logical_ram_width = 16,
ram_block3a_0.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_0.ram_block_type = "auto",
ram_block3a_0.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_1
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[1]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_1portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_1.connectivity_checking = "OFF",
ram_block3a_1.logical_ram_name = "ALTSYNCRAM",
ram_block3a_1.mixed_port_feed_through_mode = "dont_care",
ram_block3a_1.operation_mode = "dual_port",
ram_block3a_1.port_a_address_width = 11,
ram_block3a_1.port_a_data_width = 1,
ram_block3a_1.port_a_first_address = 0,
ram_block3a_1.port_a_first_bit_number = 1,
ram_block3a_1.port_a_last_address = 2047,
ram_block3a_1.port_a_logical_ram_depth = 2048,
ram_block3a_1.port_a_logical_ram_width = 16,
ram_block3a_1.port_b_address_clear = "none",
ram_block3a_1.port_b_address_clock = "clock1",
ram_block3a_1.port_b_address_width = 11,
ram_block3a_1.port_b_data_out_clear = "none",
ram_block3a_1.port_b_data_out_clock = "none",
ram_block3a_1.port_b_data_width = 1,
ram_block3a_1.port_b_first_address = 0,
ram_block3a_1.port_b_first_bit_number = 1,
ram_block3a_1.port_b_last_address = 2047,
ram_block3a_1.port_b_logical_ram_depth = 2048,
ram_block3a_1.port_b_logical_ram_width = 16,
ram_block3a_1.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_1.ram_block_type = "auto",
ram_block3a_1.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_2
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[2]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_2portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_2.connectivity_checking = "OFF",
ram_block3a_2.logical_ram_name = "ALTSYNCRAM",
ram_block3a_2.mixed_port_feed_through_mode = "dont_care",
ram_block3a_2.operation_mode = "dual_port",
ram_block3a_2.port_a_address_width = 11,
ram_block3a_2.port_a_data_width = 1,
ram_block3a_2.port_a_first_address = 0,
ram_block3a_2.port_a_first_bit_number = 2,
ram_block3a_2.port_a_last_address = 2047,
ram_block3a_2.port_a_logical_ram_depth = 2048,
ram_block3a_2.port_a_logical_ram_width = 16,
ram_block3a_2.port_b_address_clear = "none",
ram_block3a_2.port_b_address_clock = "clock1",
ram_block3a_2.port_b_address_width = 11,
ram_block3a_2.port_b_data_out_clear = "none",
ram_block3a_2.port_b_data_out_clock = "none",
ram_block3a_2.port_b_data_width = 1,
ram_block3a_2.port_b_first_address = 0,
ram_block3a_2.port_b_first_bit_number = 2,
ram_block3a_2.port_b_last_address = 2047,
ram_block3a_2.port_b_logical_ram_depth = 2048,
ram_block3a_2.port_b_logical_ram_width = 16,
ram_block3a_2.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_2.ram_block_type = "auto",
ram_block3a_2.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_3
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[3]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_3portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_3.connectivity_checking = "OFF",
ram_block3a_3.logical_ram_name = "ALTSYNCRAM",
ram_block3a_3.mixed_port_feed_through_mode = "dont_care",
ram_block3a_3.operation_mode = "dual_port",
ram_block3a_3.port_a_address_width = 11,
ram_block3a_3.port_a_data_width = 1,
ram_block3a_3.port_a_first_address = 0,
ram_block3a_3.port_a_first_bit_number = 3,
ram_block3a_3.port_a_last_address = 2047,
ram_block3a_3.port_a_logical_ram_depth = 2048,
ram_block3a_3.port_a_logical_ram_width = 16,
ram_block3a_3.port_b_address_clear = "none",
ram_block3a_3.port_b_address_clock = "clock1",
ram_block3a_3.port_b_address_width = 11,
ram_block3a_3.port_b_data_out_clear = "none",
ram_block3a_3.port_b_data_out_clock = "none",
ram_block3a_3.port_b_data_width = 1,
ram_block3a_3.port_b_first_address = 0,
ram_block3a_3.port_b_first_bit_number = 3,
ram_block3a_3.port_b_last_address = 2047,
ram_block3a_3.port_b_logical_ram_depth = 2048,
ram_block3a_3.port_b_logical_ram_width = 16,
ram_block3a_3.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_3.ram_block_type = "auto",
ram_block3a_3.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_4
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[4]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_4portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_4.connectivity_checking = "OFF",
ram_block3a_4.logical_ram_name = "ALTSYNCRAM",
ram_block3a_4.mixed_port_feed_through_mode = "dont_care",
ram_block3a_4.operation_mode = "dual_port",
ram_block3a_4.port_a_address_width = 11,
ram_block3a_4.port_a_data_width = 1,
ram_block3a_4.port_a_first_address = 0,
ram_block3a_4.port_a_first_bit_number = 4,
ram_block3a_4.port_a_last_address = 2047,
ram_block3a_4.port_a_logical_ram_depth = 2048,
ram_block3a_4.port_a_logical_ram_width = 16,
ram_block3a_4.port_b_address_clear = "none",
ram_block3a_4.port_b_address_clock = "clock1",
ram_block3a_4.port_b_address_width = 11,
ram_block3a_4.port_b_data_out_clear = "none",
ram_block3a_4.port_b_data_out_clock = "none",
ram_block3a_4.port_b_data_width = 1,
ram_block3a_4.port_b_first_address = 0,
ram_block3a_4.port_b_first_bit_number = 4,
ram_block3a_4.port_b_last_address = 2047,
ram_block3a_4.port_b_logical_ram_depth = 2048,
ram_block3a_4.port_b_logical_ram_width = 16,
ram_block3a_4.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_4.ram_block_type = "auto",
ram_block3a_4.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_5
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[5]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_5portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_5.connectivity_checking = "OFF",
ram_block3a_5.logical_ram_name = "ALTSYNCRAM",
ram_block3a_5.mixed_port_feed_through_mode = "dont_care",
ram_block3a_5.operation_mode = "dual_port",
ram_block3a_5.port_a_address_width = 11,
ram_block3a_5.port_a_data_width = 1,
ram_block3a_5.port_a_first_address = 0,
ram_block3a_5.port_a_first_bit_number = 5,
ram_block3a_5.port_a_last_address = 2047,
ram_block3a_5.port_a_logical_ram_depth = 2048,
ram_block3a_5.port_a_logical_ram_width = 16,
ram_block3a_5.port_b_address_clear = "none",
ram_block3a_5.port_b_address_clock = "clock1",
ram_block3a_5.port_b_address_width = 11,
ram_block3a_5.port_b_data_out_clear = "none",
ram_block3a_5.port_b_data_out_clock = "none",
ram_block3a_5.port_b_data_width = 1,
ram_block3a_5.port_b_first_address = 0,
ram_block3a_5.port_b_first_bit_number = 5,
ram_block3a_5.port_b_last_address = 2047,
ram_block3a_5.port_b_logical_ram_depth = 2048,
ram_block3a_5.port_b_logical_ram_width = 16,
ram_block3a_5.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_5.ram_block_type = "auto",
ram_block3a_5.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_6
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[6]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_6portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_6.connectivity_checking = "OFF",
ram_block3a_6.logical_ram_name = "ALTSYNCRAM",
ram_block3a_6.mixed_port_feed_through_mode = "dont_care",
ram_block3a_6.operation_mode = "dual_port",
ram_block3a_6.port_a_address_width = 11,
ram_block3a_6.port_a_data_width = 1,
ram_block3a_6.port_a_first_address = 0,
ram_block3a_6.port_a_first_bit_number = 6,
ram_block3a_6.port_a_last_address = 2047,
ram_block3a_6.port_a_logical_ram_depth = 2048,
ram_block3a_6.port_a_logical_ram_width = 16,
ram_block3a_6.port_b_address_clear = "none",
ram_block3a_6.port_b_address_clock = "clock1",
ram_block3a_6.port_b_address_width = 11,
ram_block3a_6.port_b_data_out_clear = "none",
ram_block3a_6.port_b_data_out_clock = "none",
ram_block3a_6.port_b_data_width = 1,
ram_block3a_6.port_b_first_address = 0,
ram_block3a_6.port_b_first_bit_number = 6,
ram_block3a_6.port_b_last_address = 2047,
ram_block3a_6.port_b_logical_ram_depth = 2048,
ram_block3a_6.port_b_logical_ram_width = 16,
ram_block3a_6.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_6.ram_block_type = "auto",
ram_block3a_6.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_7
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[7]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_7portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_7.connectivity_checking = "OFF",
ram_block3a_7.logical_ram_name = "ALTSYNCRAM",
ram_block3a_7.mixed_port_feed_through_mode = "dont_care",
ram_block3a_7.operation_mode = "dual_port",
ram_block3a_7.port_a_address_width = 11,
ram_block3a_7.port_a_data_width = 1,
ram_block3a_7.port_a_first_address = 0,
ram_block3a_7.port_a_first_bit_number = 7,
ram_block3a_7.port_a_last_address = 2047,
ram_block3a_7.port_a_logical_ram_depth = 2048,
ram_block3a_7.port_a_logical_ram_width = 16,
ram_block3a_7.port_b_address_clear = "none",
ram_block3a_7.port_b_address_clock = "clock1",
ram_block3a_7.port_b_address_width = 11,
ram_block3a_7.port_b_data_out_clear = "none",
ram_block3a_7.port_b_data_out_clock = "none",
ram_block3a_7.port_b_data_width = 1,
ram_block3a_7.port_b_first_address = 0,
ram_block3a_7.port_b_first_bit_number = 7,
ram_block3a_7.port_b_last_address = 2047,
ram_block3a_7.port_b_logical_ram_depth = 2048,
ram_block3a_7.port_b_logical_ram_width = 16,
ram_block3a_7.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_7.ram_block_type = "auto",
ram_block3a_7.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_8
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[8]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_8portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_8.connectivity_checking = "OFF",
ram_block3a_8.logical_ram_name = "ALTSYNCRAM",
ram_block3a_8.mixed_port_feed_through_mode = "dont_care",
ram_block3a_8.operation_mode = "dual_port",
ram_block3a_8.port_a_address_width = 11,
ram_block3a_8.port_a_data_width = 1,
ram_block3a_8.port_a_first_address = 0,
ram_block3a_8.port_a_first_bit_number = 8,
ram_block3a_8.port_a_last_address = 2047,
ram_block3a_8.port_a_logical_ram_depth = 2048,
ram_block3a_8.port_a_logical_ram_width = 16,
ram_block3a_8.port_b_address_clear = "none",
ram_block3a_8.port_b_address_clock = "clock1",
ram_block3a_8.port_b_address_width = 11,
ram_block3a_8.port_b_data_out_clear = "none",
ram_block3a_8.port_b_data_out_clock = "none",
ram_block3a_8.port_b_data_width = 1,
ram_block3a_8.port_b_first_address = 0,
ram_block3a_8.port_b_first_bit_number = 8,
ram_block3a_8.port_b_last_address = 2047,
ram_block3a_8.port_b_logical_ram_depth = 2048,
ram_block3a_8.port_b_logical_ram_width = 16,
ram_block3a_8.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_8.ram_block_type = "auto",
ram_block3a_8.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_9
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[9]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_9portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_9.connectivity_checking = "OFF",
ram_block3a_9.logical_ram_name = "ALTSYNCRAM",
ram_block3a_9.mixed_port_feed_through_mode = "dont_care",
ram_block3a_9.operation_mode = "dual_port",
ram_block3a_9.port_a_address_width = 11,
ram_block3a_9.port_a_data_width = 1,
ram_block3a_9.port_a_first_address = 0,
ram_block3a_9.port_a_first_bit_number = 9,
ram_block3a_9.port_a_last_address = 2047,
ram_block3a_9.port_a_logical_ram_depth = 2048,
ram_block3a_9.port_a_logical_ram_width = 16,
ram_block3a_9.port_b_address_clear = "none",
ram_block3a_9.port_b_address_clock = "clock1",
ram_block3a_9.port_b_address_width = 11,
ram_block3a_9.port_b_data_out_clear = "none",
ram_block3a_9.port_b_data_out_clock = "none",
ram_block3a_9.port_b_data_width = 1,
ram_block3a_9.port_b_first_address = 0,
ram_block3a_9.port_b_first_bit_number = 9,
ram_block3a_9.port_b_last_address = 2047,
ram_block3a_9.port_b_logical_ram_depth = 2048,
ram_block3a_9.port_b_logical_ram_width = 16,
ram_block3a_9.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_9.ram_block_type = "auto",
ram_block3a_9.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_10
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[10]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_10portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_10.connectivity_checking = "OFF",
ram_block3a_10.logical_ram_name = "ALTSYNCRAM",
ram_block3a_10.mixed_port_feed_through_mode = "dont_care",
ram_block3a_10.operation_mode = "dual_port",
ram_block3a_10.port_a_address_width = 11,
ram_block3a_10.port_a_data_width = 1,
ram_block3a_10.port_a_first_address = 0,
ram_block3a_10.port_a_first_bit_number = 10,
ram_block3a_10.port_a_last_address = 2047,
ram_block3a_10.port_a_logical_ram_depth = 2048,
ram_block3a_10.port_a_logical_ram_width = 16,
ram_block3a_10.port_b_address_clear = "none",
ram_block3a_10.port_b_address_clock = "clock1",
ram_block3a_10.port_b_address_width = 11,
ram_block3a_10.port_b_data_out_clear = "none",
ram_block3a_10.port_b_data_out_clock = "none",
ram_block3a_10.port_b_data_width = 1,
ram_block3a_10.port_b_first_address = 0,
ram_block3a_10.port_b_first_bit_number = 10,
ram_block3a_10.port_b_last_address = 2047,
ram_block3a_10.port_b_logical_ram_depth = 2048,
ram_block3a_10.port_b_logical_ram_width = 16,
ram_block3a_10.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_10.ram_block_type = "auto",
ram_block3a_10.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_11
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[11]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_11portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_11.connectivity_checking = "OFF",
ram_block3a_11.logical_ram_name = "ALTSYNCRAM",
ram_block3a_11.mixed_port_feed_through_mode = "dont_care",
ram_block3a_11.operation_mode = "dual_port",
ram_block3a_11.port_a_address_width = 11,
ram_block3a_11.port_a_data_width = 1,
ram_block3a_11.port_a_first_address = 0,
ram_block3a_11.port_a_first_bit_number = 11,
ram_block3a_11.port_a_last_address = 2047,
ram_block3a_11.port_a_logical_ram_depth = 2048,
ram_block3a_11.port_a_logical_ram_width = 16,
ram_block3a_11.port_b_address_clear = "none",
ram_block3a_11.port_b_address_clock = "clock1",
ram_block3a_11.port_b_address_width = 11,
ram_block3a_11.port_b_data_out_clear = "none",
ram_block3a_11.port_b_data_out_clock = "none",
ram_block3a_11.port_b_data_width = 1,
ram_block3a_11.port_b_first_address = 0,
ram_block3a_11.port_b_first_bit_number = 11,
ram_block3a_11.port_b_last_address = 2047,
ram_block3a_11.port_b_logical_ram_depth = 2048,
ram_block3a_11.port_b_logical_ram_width = 16,
ram_block3a_11.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_11.ram_block_type = "auto",
ram_block3a_11.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_12
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[12]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_12portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_12.connectivity_checking = "OFF",
ram_block3a_12.logical_ram_name = "ALTSYNCRAM",
ram_block3a_12.mixed_port_feed_through_mode = "dont_care",
ram_block3a_12.operation_mode = "dual_port",
ram_block3a_12.port_a_address_width = 11,
ram_block3a_12.port_a_data_width = 1,
ram_block3a_12.port_a_first_address = 0,
ram_block3a_12.port_a_first_bit_number = 12,
ram_block3a_12.port_a_last_address = 2047,
ram_block3a_12.port_a_logical_ram_depth = 2048,
ram_block3a_12.port_a_logical_ram_width = 16,
ram_block3a_12.port_b_address_clear = "none",
ram_block3a_12.port_b_address_clock = "clock1",
ram_block3a_12.port_b_address_width = 11,
ram_block3a_12.port_b_data_out_clear = "none",
ram_block3a_12.port_b_data_out_clock = "none",
ram_block3a_12.port_b_data_width = 1,
ram_block3a_12.port_b_first_address = 0,
ram_block3a_12.port_b_first_bit_number = 12,
ram_block3a_12.port_b_last_address = 2047,
ram_block3a_12.port_b_logical_ram_depth = 2048,
ram_block3a_12.port_b_logical_ram_width = 16,
ram_block3a_12.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_12.ram_block_type = "auto",
ram_block3a_12.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_13
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[13]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_13portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_13.connectivity_checking = "OFF",
ram_block3a_13.logical_ram_name = "ALTSYNCRAM",
ram_block3a_13.mixed_port_feed_through_mode = "dont_care",
ram_block3a_13.operation_mode = "dual_port",
ram_block3a_13.port_a_address_width = 11,
ram_block3a_13.port_a_data_width = 1,
ram_block3a_13.port_a_first_address = 0,
ram_block3a_13.port_a_first_bit_number = 13,
ram_block3a_13.port_a_last_address = 2047,
ram_block3a_13.port_a_logical_ram_depth = 2048,
ram_block3a_13.port_a_logical_ram_width = 16,
ram_block3a_13.port_b_address_clear = "none",
ram_block3a_13.port_b_address_clock = "clock1",
ram_block3a_13.port_b_address_width = 11,
ram_block3a_13.port_b_data_out_clear = "none",
ram_block3a_13.port_b_data_out_clock = "none",
ram_block3a_13.port_b_data_width = 1,
ram_block3a_13.port_b_first_address = 0,
ram_block3a_13.port_b_first_bit_number = 13,
ram_block3a_13.port_b_last_address = 2047,
ram_block3a_13.port_b_logical_ram_depth = 2048,
ram_block3a_13.port_b_logical_ram_width = 16,
ram_block3a_13.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_13.ram_block_type = "auto",
ram_block3a_13.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_14
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[14]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_14portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_14.connectivity_checking = "OFF",
ram_block3a_14.logical_ram_name = "ALTSYNCRAM",
ram_block3a_14.mixed_port_feed_through_mode = "dont_care",
ram_block3a_14.operation_mode = "dual_port",
ram_block3a_14.port_a_address_width = 11,
ram_block3a_14.port_a_data_width = 1,
ram_block3a_14.port_a_first_address = 0,
ram_block3a_14.port_a_first_bit_number = 14,
ram_block3a_14.port_a_last_address = 2047,
ram_block3a_14.port_a_logical_ram_depth = 2048,
ram_block3a_14.port_a_logical_ram_width = 16,
ram_block3a_14.port_b_address_clear = "none",
ram_block3a_14.port_b_address_clock = "clock1",
ram_block3a_14.port_b_address_width = 11,
ram_block3a_14.port_b_data_out_clear = "none",
ram_block3a_14.port_b_data_out_clock = "none",
ram_block3a_14.port_b_data_width = 1,
ram_block3a_14.port_b_first_address = 0,
ram_block3a_14.port_b_first_bit_number = 14,
ram_block3a_14.port_b_last_address = 2047,
ram_block3a_14.port_b_logical_ram_depth = 2048,
ram_block3a_14.port_b_logical_ram_width = 16,
ram_block3a_14.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_14.ram_block_type = "auto",
ram_block3a_14.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_15
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[15]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_15portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_15.connectivity_checking = "OFF",
ram_block3a_15.logical_ram_name = "ALTSYNCRAM",
ram_block3a_15.mixed_port_feed_through_mode = "dont_care",
ram_block3a_15.operation_mode = "dual_port",
ram_block3a_15.port_a_address_width = 11,
ram_block3a_15.port_a_data_width = 1,
ram_block3a_15.port_a_first_address = 0,
ram_block3a_15.port_a_first_bit_number = 15,
ram_block3a_15.port_a_last_address = 2047,
ram_block3a_15.port_a_logical_ram_depth = 2048,
ram_block3a_15.port_a_logical_ram_width = 16,
ram_block3a_15.port_b_address_clear = "none",
ram_block3a_15.port_b_address_clock = "clock1",
ram_block3a_15.port_b_address_width = 11,
ram_block3a_15.port_b_data_out_clear = "none",
ram_block3a_15.port_b_data_out_clock = "none",
ram_block3a_15.port_b_data_width = 1,
ram_block3a_15.port_b_first_address = 0,
ram_block3a_15.port_b_first_bit_number = 15,
ram_block3a_15.port_b_last_address = 2047,
ram_block3a_15.port_b_logical_ram_depth = 2048,
ram_block3a_15.port_b_logical_ram_width = 16,
ram_block3a_15.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_15.ram_block_type = "auto",
ram_block3a_15.lpm_type = "cyclone_ram_block";
assign
address_a_wire = address_a,
address_b_wire = address_b,
q_b = {wire_ram_block3a_15portbdataout[0], wire_ram_block3a_14portbdataout[0], wire_ram_block3a_13portbdataout[0], wire_ram_block3a_12portbdataout[0], wire_ram_block3a_11portbdataout[0], wire_ram_block3a_10portbdataout[0], wire_ram_block3a_9portbdataout[0], wire_ram_block3a_8portbdataout[0], wire_ram_block3a_7portbdataout[0], wire_ram_block3a_6portbdataout[0], wire_ram_block3a_5portbdataout[0], wire_ram_block3a_4portbdataout[0], wire_ram_block3a_3portbdataout[0], wire_ram_block3a_2portbdataout[0], wire_ram_block3a_1portbdataout[0], wire_ram_block3a_0portbdataout[0]};
endmodule
|
module fifo_2k_dffpipe_ab3
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe4a_D;
reg [10:0] dffe4a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe4a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe4a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe4a[0:0] <= wire_dffe4a_D[0:0];
// synopsys translate_off
initial
dffe4a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe4a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe4a[1:1] <= wire_dffe4a_D[1:1];
// synopsys translate_off
initial
dffe4a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe4a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe4a[2:2] <= wire_dffe4a_D[2:2];
// synopsys translate_off
initial
dffe4a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe4a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe4a[3:3] <= wire_dffe4a_D[3:3];
// synopsys translate_off
initial
dffe4a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe4a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe4a[4:4] <= wire_dffe4a_D[4:4];
// synopsys translate_off
initial
dffe4a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe4a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe4a[5:5] <= wire_dffe4a_D[5:5];
// synopsys translate_off
initial
dffe4a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe4a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe4a[6:6] <= wire_dffe4a_D[6:6];
// synopsys translate_off
initial
dffe4a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe4a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe4a[7:7] <= wire_dffe4a_D[7:7];
// synopsys translate_off
initial
dffe4a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe4a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe4a[8:8] <= wire_dffe4a_D[8:8];
// synopsys translate_off
initial
dffe4a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe4a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe4a[9:9] <= wire_dffe4a_D[9:9];
// synopsys translate_off
initial
dffe4a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe4a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe4a[10:10] <= wire_dffe4a_D[10:10];
assign
wire_dffe4a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe4a,
sclr = 1'b0;
endmodule
|
module fifo_2k_dffpipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe6a_D;
reg [10:0] dffe6a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe6a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe6a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe6a[0:0] <= wire_dffe6a_D[0:0];
// synopsys translate_off
initial
dffe6a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe6a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe6a[1:1] <= wire_dffe6a_D[1:1];
// synopsys translate_off
initial
dffe6a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe6a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe6a[2:2] <= wire_dffe6a_D[2:2];
// synopsys translate_off
initial
dffe6a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe6a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe6a[3:3] <= wire_dffe6a_D[3:3];
// synopsys translate_off
initial
dffe6a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe6a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe6a[4:4] <= wire_dffe6a_D[4:4];
// synopsys translate_off
initial
dffe6a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe6a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe6a[5:5] <= wire_dffe6a_D[5:5];
// synopsys translate_off
initial
dffe6a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe6a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe6a[6:6] <= wire_dffe6a_D[6:6];
// synopsys translate_off
initial
dffe6a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe6a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe6a[7:7] <= wire_dffe6a_D[7:7];
// synopsys translate_off
initial
dffe6a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe6a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe6a[8:8] <= wire_dffe6a_D[8:8];
// synopsys translate_off
initial
dffe6a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe6a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe6a[9:9] <= wire_dffe6a_D[9:9];
// synopsys translate_off
initial
dffe6a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe6a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe6a[10:10] <= wire_dffe6a_D[10:10];
assign
wire_dffe6a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe6a,
sclr = 1'b0;
endmodule
|
module fifo_2k_alt_synch_pipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="X_ON_VIOLATION_OPTION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffpipe5_q;
fifo_2k_dffpipe_dm2 dffpipe5
(
.clock(clock),
.clrn(clrn),
.d(d),
.q(wire_dffpipe5_q));
assign
q = wire_dffpipe5_q;
endmodule
|
module fifo_2k_add_sub_a18
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [10:0] dataa;
input [10:0] datab;
output [10:0] result;
wire [10:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [10:0] wire_add_sub_cella_dataa;
wire [10:0] wire_add_sub_cella_datab;
cyclone_lcell add_sub_cella_0
(
.cin(1'b1),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_8
(
.cin(wire_add_sub_cella_7cout[0:0]),
.combout(wire_add_sub_cella_combout[8:8]),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_9
(
.cin(wire_add_sub_cella_8cout[0:0]),
.combout(wire_add_sub_cella_combout[9:9]),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_10
(
.cin(wire_add_sub_cella_9cout[0:0]),
.combout(wire_add_sub_cella_combout[10:10]),
.cout(),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "6969",
add_sub_cella_10.operation_mode = "normal",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "cyclone_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module fifo_2k_dcfifo_0cq
(
aclr,
data,
q,
rdclk,
rdempty,
rdreq,
rdusedw,
wrclk,
wrfull,
wrreq,
wrusedw) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF;{ -from \"rdptr_g|power_modified_counter_values\" -to \"ws_dgrp|dffpipe5|dffe6a\" }CUT=ON;{ -from \"delayed_wrptr_g\" -to \"rs_dgwp|dffpipe5|dffe6a\" }CUT=ON" */;
input aclr;
input [15:0] data;
output [15:0] q;
input rdclk;
output rdempty;
input rdreq;
output [10:0] rdusedw;
input wrclk;
output wrfull;
input wrreq;
output [10:0] wrusedw;
wire [10:0] wire_rdptr_g_gray2bin_bin;
wire [10:0] wire_rs_dgwp_gray2bin_bin;
wire [10:0] wire_wrptr_g_gray2bin_bin;
wire [10:0] wire_ws_dgrp_gray2bin_bin;
wire [10:0] wire_rdptr_g_q;
wire [10:0] wire_rdptr_g1p_q;
wire [10:0] wire_wrptr_g1p_q;
wire [15:0] wire_fifo_ram_q_b;
reg [10:0] delayed_wrptr_g;
reg [10:0] wrptr_g;
wire [10:0] wire_rs_brp_q;
wire [10:0] wire_rs_bwp_q;
wire [10:0] wire_rs_dgwp_q;
wire [10:0] wire_ws_brp_q;
wire [10:0] wire_ws_bwp_q;
wire [10:0] wire_ws_dgrp_q;
wire [10:0] wire_rdusedw_sub_result;
wire [10:0] wire_wrusedw_sub_result;
reg wire_rdempty_eq_comp_aeb_int;
wire wire_rdempty_eq_comp_aeb;
wire [10:0] wire_rdempty_eq_comp_dataa;
wire [10:0] wire_rdempty_eq_comp_datab;
reg wire_wrfull_eq_comp_aeb_int;
wire wire_wrfull_eq_comp_aeb;
wire [10:0] wire_wrfull_eq_comp_dataa;
wire [10:0] wire_wrfull_eq_comp_datab;
wire int_rdempty;
wire int_wrfull;
wire valid_rdreq;
wire valid_wrreq;
fifo_2k_a_gray2bin_8m4 rdptr_g_gray2bin
(
.bin(wire_rdptr_g_gray2bin_bin),
.gray(wire_rdptr_g_q));
fifo_2k_a_gray2bin_8m4 rs_dgwp_gray2bin
(
.bin(wire_rs_dgwp_gray2bin_bin),
.gray(wire_rs_dgwp_q));
fifo_2k_a_gray2bin_8m4 wrptr_g_gray2bin
(
.bin(wire_wrptr_g_gray2bin_bin),
.gray(wrptr_g));
fifo_2k_a_gray2bin_8m4 ws_dgrp_gray2bin
(
.bin(wire_ws_dgrp_gray2bin_bin),
.gray(wire_ws_dgrp_q));
fifo_2k_a_graycounter_726 rdptr_g
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g_q));
fifo_2k_a_graycounter_2r6 rdptr_g1p
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g1p_q));
fifo_2k_a_graycounter_2r6 wrptr_g1p
(
.aclr(aclr),
.clock(wrclk),
.cnt_en(valid_wrreq),
.q(wire_wrptr_g1p_q));
fifo_2k_altsyncram_6pl fifo_ram
(
.address_a(wrptr_g),
.address_b(((wire_rdptr_g_q & {11{int_rdempty}}) | (wire_rdptr_g1p_q & {11{(~ int_rdempty)}}))),
.clock0(wrclk),
.clock1(rdclk),
.clocken1((valid_rdreq | int_rdempty)),
.data_a(data),
.q_b(wire_fifo_ram_q_b),
.wren_a(valid_wrreq));
// synopsys translate_off
initial
delayed_wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) delayed_wrptr_g <= 11'b0;
else delayed_wrptr_g <= wrptr_g;
// synopsys translate_off
initial
wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) wrptr_g <= 11'b0;
else if (valid_wrreq == 1'b1) wrptr_g <= wire_wrptr_g1p_q;
fifo_2k_dffpipe_ab3 rs_brp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_gray2bin_bin),
.q(wire_rs_brp_q));
fifo_2k_dffpipe_ab3 rs_bwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rs_dgwp_gray2bin_bin),
.q(wire_rs_bwp_q));
fifo_2k_alt_synch_pipe_dm2 rs_dgwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(delayed_wrptr_g),
.q(wire_rs_dgwp_q));
fifo_2k_dffpipe_ab3 ws_brp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_ws_dgrp_gray2bin_bin),
.q(wire_ws_brp_q));
fifo_2k_dffpipe_ab3 ws_bwp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_wrptr_g_gray2bin_bin),
.q(wire_ws_bwp_q));
fifo_2k_alt_synch_pipe_dm2 ws_dgrp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_q),
.q(wire_ws_dgrp_q));
fifo_2k_add_sub_a18 rdusedw_sub
(
.dataa(wire_rs_bwp_q),
.datab(wire_rs_brp_q),
.result(wire_rdusedw_sub_result));
fifo_2k_add_sub_a18 wrusedw_sub
(
.dataa(wire_ws_bwp_q),
.datab(wire_ws_brp_q),
.result(wire_wrusedw_sub_result));
always @(wire_rdempty_eq_comp_dataa or wire_rdempty_eq_comp_datab)
if (wire_rdempty_eq_comp_dataa == wire_rdempty_eq_comp_datab)
begin
wire_rdempty_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_rdempty_eq_comp_aeb_int = 1'b0;
end
assign
wire_rdempty_eq_comp_aeb = wire_rdempty_eq_comp_aeb_int;
assign
wire_rdempty_eq_comp_dataa = wire_rs_dgwp_q,
wire_rdempty_eq_comp_datab = wire_rdptr_g_q;
always @(wire_wrfull_eq_comp_dataa or wire_wrfull_eq_comp_datab)
if (wire_wrfull_eq_comp_dataa == wire_wrfull_eq_comp_datab)
begin
wire_wrfull_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_wrfull_eq_comp_aeb_int = 1'b0;
end
assign
wire_wrfull_eq_comp_aeb = wire_wrfull_eq_comp_aeb_int;
assign
wire_wrfull_eq_comp_dataa = wire_ws_dgrp_q,
wire_wrfull_eq_comp_datab = wire_wrptr_g1p_q;
assign
int_rdempty = wire_rdempty_eq_comp_aeb,
int_wrfull = wire_wrfull_eq_comp_aeb,
q = wire_fifo_ram_q_b,
rdempty = int_rdempty,
rdusedw = wire_rdusedw_sub_result,
valid_rdreq = rdreq,
valid_wrreq = wrreq,
wrfull = int_wrfull,
wrusedw = wire_wrusedw_sub_result;
endmodule
|
module fifo_2k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output [10:0] wrusedw;
wire sub_wire0;
wire [10:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [10:0] sub_wire4;
wire rdempty = sub_wire0;
wire [10:0] wrusedw = sub_wire1[10:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [10:0] rdusedw = sub_wire4[10:0];
fifo_2k_dcfifo_0cq fifo_2k_dcfifo_0cq_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4));
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module accum32 (
data,
clock,
clken,
aclr,
result)/* synthesis synthesis_clearbox = 1 */;
input [31:0] data;
input clock;
input clken;
input aclr;
output [31:0] result;
endmodule
|
module addsub16_add_sub_gp9
(
aclr,
add_sub,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input add_sub;
input clken;
input clock;
input [15:0] dataa;
input [15:0] datab;
output [15:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [15:0] wire_add_sub_cella_dataa;
wire [15:0] wire_add_sub_cella_datab;
wire [15:0] wire_add_sub_cella_regout;
wire wire_strx_lcell1_cout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(wire_strx_lcell1_cout),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "96e8",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "96e8",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "96e8",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "96e8",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "96e8",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "96e8",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "96e8",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "96e8",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "9696",
add_sub_cella_15.operation_mode = "normal",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = datab,
wire_add_sub_cella_datab = dataa;
stratix_lcell strx_lcell1
(
.cout(wire_strx_lcell1_cout),
.dataa(1'b0),
.datab((~ add_sub)),
.inverta((~ add_sub)));
defparam
strx_lcell1.cin_used = "false",
strx_lcell1.lut_mask = "00cc",
strx_lcell1.operation_mode = "arithmetic",
strx_lcell1.lpm_type = "stratix_lcell";
assign
result = wire_add_sub_cella_regout;
endmodule
|
module addsub16 (
add_sub,
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
input aclr;
input clken;
output [15:0] result;
wire [15:0] sub_wire0;
wire [15:0] result = sub_wire0[15:0];
addsub16_add_sub_gp9 addsub16_add_sub_gp9_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module addsub16_add_sub_gp9
(
aclr,
add_sub,
clken,
clock,
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input aclr;
input add_sub;
input clken;
input clock;
input [15:0] dataa;
input [15:0] datab;
output [15:0] result;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [0:0] wire_add_sub_cella_10cout;
wire [0:0] wire_add_sub_cella_11cout;
wire [0:0] wire_add_sub_cella_12cout;
wire [0:0] wire_add_sub_cella_13cout;
wire [0:0] wire_add_sub_cella_14cout;
wire [15:0] wire_add_sub_cella_dataa;
wire [15:0] wire_add_sub_cella_datab;
wire [15:0] wire_add_sub_cella_regout;
wire wire_strx_lcell1_cout;
stratix_lcell add_sub_cella_0
(
.aclr(aclr),
.cin(wire_strx_lcell1_cout),
.clk(clock),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[0:0]));
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "96e8",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_1
(
.aclr(aclr),
.cin(wire_add_sub_cella_0cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[1:1]));
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "96e8",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_2
(
.aclr(aclr),
.cin(wire_add_sub_cella_1cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[2:2]));
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "96e8",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_3
(
.aclr(aclr),
.cin(wire_add_sub_cella_2cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[3:3]));
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "96e8",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_4
(
.aclr(aclr),
.cin(wire_add_sub_cella_3cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[4:4]));
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "96e8",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_5
(
.aclr(aclr),
.cin(wire_add_sub_cella_4cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[5:5]));
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "96e8",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_6
(
.aclr(aclr),
.cin(wire_add_sub_cella_5cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[6:6]));
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "96e8",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_7
(
.aclr(aclr),
.cin(wire_add_sub_cella_6cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[7:7]));
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "96e8",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_8
(
.aclr(aclr),
.cin(wire_add_sub_cella_7cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[8:8]));
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "96e8",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_9
(
.aclr(aclr),
.cin(wire_add_sub_cella_8cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[9:9]));
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "96e8",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_10
(
.aclr(aclr),
.cin(wire_add_sub_cella_9cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_10cout[0:0]),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[10:10]));
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "96e8",
add_sub_cella_10.operation_mode = "arithmetic",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_11
(
.aclr(aclr),
.cin(wire_add_sub_cella_10cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_11cout[0:0]),
.dataa(wire_add_sub_cella_dataa[11:11]),
.datab(wire_add_sub_cella_datab[11:11]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[11:11]));
defparam
add_sub_cella_11.cin_used = "true",
add_sub_cella_11.lut_mask = "96e8",
add_sub_cella_11.operation_mode = "arithmetic",
add_sub_cella_11.sum_lutc_input = "cin",
add_sub_cella_11.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_12
(
.aclr(aclr),
.cin(wire_add_sub_cella_11cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_12cout[0:0]),
.dataa(wire_add_sub_cella_dataa[12:12]),
.datab(wire_add_sub_cella_datab[12:12]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[12:12]));
defparam
add_sub_cella_12.cin_used = "true",
add_sub_cella_12.lut_mask = "96e8",
add_sub_cella_12.operation_mode = "arithmetic",
add_sub_cella_12.sum_lutc_input = "cin",
add_sub_cella_12.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_13
(
.aclr(aclr),
.cin(wire_add_sub_cella_12cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_13cout[0:0]),
.dataa(wire_add_sub_cella_dataa[13:13]),
.datab(wire_add_sub_cella_datab[13:13]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[13:13]));
defparam
add_sub_cella_13.cin_used = "true",
add_sub_cella_13.lut_mask = "96e8",
add_sub_cella_13.operation_mode = "arithmetic",
add_sub_cella_13.sum_lutc_input = "cin",
add_sub_cella_13.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_14
(
.aclr(aclr),
.cin(wire_add_sub_cella_13cout[0:0]),
.clk(clock),
.cout(wire_add_sub_cella_14cout[0:0]),
.dataa(wire_add_sub_cella_dataa[14:14]),
.datab(wire_add_sub_cella_datab[14:14]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[14:14]));
defparam
add_sub_cella_14.cin_used = "true",
add_sub_cella_14.lut_mask = "96e8",
add_sub_cella_14.operation_mode = "arithmetic",
add_sub_cella_14.sum_lutc_input = "cin",
add_sub_cella_14.lpm_type = "stratix_lcell";
stratix_lcell add_sub_cella_15
(
.aclr(aclr),
.cin(wire_add_sub_cella_14cout[0:0]),
.clk(clock),
.dataa(wire_add_sub_cella_dataa[15:15]),
.datab(wire_add_sub_cella_datab[15:15]),
.ena(clken),
.inverta((~ add_sub)),
.regout(wire_add_sub_cella_regout[15:15]));
defparam
add_sub_cella_15.cin_used = "true",
add_sub_cella_15.lut_mask = "9696",
add_sub_cella_15.operation_mode = "normal",
add_sub_cella_15.sum_lutc_input = "cin",
add_sub_cella_15.lpm_type = "stratix_lcell";
assign
wire_add_sub_cella_dataa = datab,
wire_add_sub_cella_datab = dataa;
stratix_lcell strx_lcell1
(
.cout(wire_strx_lcell1_cout),
.dataa(1'b0),
.datab((~ add_sub)),
.inverta((~ add_sub)));
defparam
strx_lcell1.cin_used = "false",
strx_lcell1.lut_mask = "00cc",
strx_lcell1.operation_mode = "arithmetic",
strx_lcell1.lpm_type = "stratix_lcell";
assign
result = wire_add_sub_cella_regout;
endmodule
|
module addsub16 (
add_sub,
dataa,
datab,
clock,
aclr,
clken,
result)/* synthesis synthesis_clearbox = 1 */;
input add_sub;
input [15:0] dataa;
input [15:0] datab;
input clock;
input aclr;
input clken;
output [15:0] result;
wire [15:0] sub_wire0;
wire [15:0] result = sub_wire0[15:0];
addsub16_add_sub_gp9 addsub16_add_sub_gp9_component (
.dataa (dataa),
.add_sub (add_sub),
.datab (datab),
.clken (clken),
.aclr (aclr),
.clock (clock),
.result (sub_wire0));
endmodule
|
module fifo_2k_a_gray2bin_8m4
(
bin,
gray) /* synthesis synthesis_clearbox=1 */;
output [10:0] bin;
input [10:0] gray;
wire xor0;
wire xor1;
wire xor2;
wire xor3;
wire xor4;
wire xor5;
wire xor6;
wire xor7;
wire xor8;
wire xor9;
assign
bin = {gray[10], xor9, xor8, xor7, xor6, xor5, xor4, xor3, xor2, xor1, xor0},
xor0 = (gray[0] ^ xor1),
xor1 = (gray[1] ^ xor2),
xor2 = (gray[2] ^ xor3),
xor3 = (gray[3] ^ xor4),
xor4 = (gray[4] ^ xor5),
xor5 = (gray[5] ^ xor6),
xor6 = (gray[6] ^ xor7),
xor7 = (gray[7] ^ xor8),
xor8 = (gray[8] ^ xor9),
xor9 = (gray[10] ^ gray[9]);
endmodule
|
module fifo_2k_a_graycounter_726
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab(wire_parity_regout),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "6682",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:0]},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_a_graycounter_2r6
(
aclr,
clock,
cnt_en,
q) /* synthesis synthesis_clearbox=1 */;
input aclr;
input clock;
input cnt_en;
output [10:0] q;
wire [0:0] wire_countera_0cout;
wire [0:0] wire_countera_1cout;
wire [0:0] wire_countera_2cout;
wire [0:0] wire_countera_3cout;
wire [0:0] wire_countera_4cout;
wire [0:0] wire_countera_5cout;
wire [0:0] wire_countera_6cout;
wire [0:0] wire_countera_7cout;
wire [0:0] wire_countera_8cout;
wire [0:0] wire_countera_9cout;
wire [10:0] wire_countera_regout;
wire wire_parity_cout;
wire wire_parity_regout;
wire [10:0] power_modified_counter_values;
wire sclr;
wire updown;
cyclone_lcell countera_0
(
.aclr(aclr),
.cin(wire_parity_cout),
.clk(clock),
.combout(),
.cout(wire_countera_0cout[0:0]),
.dataa(cnt_en),
.datab(wire_countera_regout[0:0]),
.ena(1'b1),
.regout(wire_countera_regout[0:0]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_0.cin_used = "true",
countera_0.lut_mask = "c6a0",
countera_0.operation_mode = "arithmetic",
countera_0.sum_lutc_input = "cin",
countera_0.synch_mode = "on",
countera_0.lpm_type = "cyclone_lcell";
cyclone_lcell countera_1
(
.aclr(aclr),
.cin(wire_countera_0cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_1cout[0:0]),
.dataa(power_modified_counter_values[0]),
.datab(power_modified_counter_values[1]),
.ena(1'b1),
.regout(wire_countera_regout[1:1]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_1.cin_used = "true",
countera_1.lut_mask = "6c50",
countera_1.operation_mode = "arithmetic",
countera_1.sum_lutc_input = "cin",
countera_1.synch_mode = "on",
countera_1.lpm_type = "cyclone_lcell";
cyclone_lcell countera_2
(
.aclr(aclr),
.cin(wire_countera_1cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_2cout[0:0]),
.dataa(power_modified_counter_values[1]),
.datab(power_modified_counter_values[2]),
.ena(1'b1),
.regout(wire_countera_regout[2:2]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_2.cin_used = "true",
countera_2.lut_mask = "6c50",
countera_2.operation_mode = "arithmetic",
countera_2.sum_lutc_input = "cin",
countera_2.synch_mode = "on",
countera_2.lpm_type = "cyclone_lcell";
cyclone_lcell countera_3
(
.aclr(aclr),
.cin(wire_countera_2cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_3cout[0:0]),
.dataa(power_modified_counter_values[2]),
.datab(power_modified_counter_values[3]),
.ena(1'b1),
.regout(wire_countera_regout[3:3]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_3.cin_used = "true",
countera_3.lut_mask = "6c50",
countera_3.operation_mode = "arithmetic",
countera_3.sum_lutc_input = "cin",
countera_3.synch_mode = "on",
countera_3.lpm_type = "cyclone_lcell";
cyclone_lcell countera_4
(
.aclr(aclr),
.cin(wire_countera_3cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_4cout[0:0]),
.dataa(power_modified_counter_values[3]),
.datab(power_modified_counter_values[4]),
.ena(1'b1),
.regout(wire_countera_regout[4:4]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_4.cin_used = "true",
countera_4.lut_mask = "6c50",
countera_4.operation_mode = "arithmetic",
countera_4.sum_lutc_input = "cin",
countera_4.synch_mode = "on",
countera_4.lpm_type = "cyclone_lcell";
cyclone_lcell countera_5
(
.aclr(aclr),
.cin(wire_countera_4cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_5cout[0:0]),
.dataa(power_modified_counter_values[4]),
.datab(power_modified_counter_values[5]),
.ena(1'b1),
.regout(wire_countera_regout[5:5]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_5.cin_used = "true",
countera_5.lut_mask = "6c50",
countera_5.operation_mode = "arithmetic",
countera_5.sum_lutc_input = "cin",
countera_5.synch_mode = "on",
countera_5.lpm_type = "cyclone_lcell";
cyclone_lcell countera_6
(
.aclr(aclr),
.cin(wire_countera_5cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_6cout[0:0]),
.dataa(power_modified_counter_values[5]),
.datab(power_modified_counter_values[6]),
.ena(1'b1),
.regout(wire_countera_regout[6:6]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_6.cin_used = "true",
countera_6.lut_mask = "6c50",
countera_6.operation_mode = "arithmetic",
countera_6.sum_lutc_input = "cin",
countera_6.synch_mode = "on",
countera_6.lpm_type = "cyclone_lcell";
cyclone_lcell countera_7
(
.aclr(aclr),
.cin(wire_countera_6cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_7cout[0:0]),
.dataa(power_modified_counter_values[6]),
.datab(power_modified_counter_values[7]),
.ena(1'b1),
.regout(wire_countera_regout[7:7]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_7.cin_used = "true",
countera_7.lut_mask = "6c50",
countera_7.operation_mode = "arithmetic",
countera_7.sum_lutc_input = "cin",
countera_7.synch_mode = "on",
countera_7.lpm_type = "cyclone_lcell";
cyclone_lcell countera_8
(
.aclr(aclr),
.cin(wire_countera_7cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_8cout[0:0]),
.dataa(power_modified_counter_values[7]),
.datab(power_modified_counter_values[8]),
.ena(1'b1),
.regout(wire_countera_regout[8:8]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_8.cin_used = "true",
countera_8.lut_mask = "6c50",
countera_8.operation_mode = "arithmetic",
countera_8.sum_lutc_input = "cin",
countera_8.synch_mode = "on",
countera_8.lpm_type = "cyclone_lcell";
cyclone_lcell countera_9
(
.aclr(aclr),
.cin(wire_countera_8cout[0:0]),
.clk(clock),
.combout(),
.cout(wire_countera_9cout[0:0]),
.dataa(power_modified_counter_values[8]),
.datab(power_modified_counter_values[9]),
.ena(1'b1),
.regout(wire_countera_regout[9:9]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_9.cin_used = "true",
countera_9.lut_mask = "6c50",
countera_9.operation_mode = "arithmetic",
countera_9.sum_lutc_input = "cin",
countera_9.synch_mode = "on",
countera_9.lpm_type = "cyclone_lcell";
cyclone_lcell countera_10
(
.aclr(aclr),
.cin(wire_countera_9cout[0:0]),
.clk(clock),
.combout(),
.cout(),
.dataa(power_modified_counter_values[10]),
.ena(1'b1),
.regout(wire_countera_regout[10:10]),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datab(1'b1),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
countera_10.cin_used = "true",
countera_10.lut_mask = "5a5a",
countera_10.operation_mode = "normal",
countera_10.sum_lutc_input = "cin",
countera_10.synch_mode = "on",
countera_10.lpm_type = "cyclone_lcell";
cyclone_lcell parity
(
.aclr(aclr),
.cin(updown),
.clk(clock),
.combout(),
.cout(wire_parity_cout),
.dataa(cnt_en),
.datab((~ wire_parity_regout)),
.ena(1'b1),
.regout(wire_parity_regout),
.sclr(sclr)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aload(1'b0),
.datac(1'b1),
.datad(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
parity.cin_used = "true",
parity.lut_mask = "9982",
parity.operation_mode = "arithmetic",
parity.synch_mode = "on",
parity.lpm_type = "cyclone_lcell";
assign
power_modified_counter_values = {wire_countera_regout[10:1], (~ wire_countera_regout[0])},
q = power_modified_counter_values,
sclr = 1'b0,
updown = 1'b1;
endmodule
|
module fifo_2k_altsyncram_6pl
(
address_a,
address_b,
clock0,
clock1,
clocken1,
data_a,
q_b,
wren_a) /* synthesis synthesis_clearbox=1 */;
input [10:0] address_a;
input [10:0] address_b;
input clock0;
input clock1;
input clocken1;
input [15:0] data_a;
output [15:0] q_b;
input wren_a;
wire [0:0] wire_ram_block3a_0portbdataout;
wire [0:0] wire_ram_block3a_1portbdataout;
wire [0:0] wire_ram_block3a_2portbdataout;
wire [0:0] wire_ram_block3a_3portbdataout;
wire [0:0] wire_ram_block3a_4portbdataout;
wire [0:0] wire_ram_block3a_5portbdataout;
wire [0:0] wire_ram_block3a_6portbdataout;
wire [0:0] wire_ram_block3a_7portbdataout;
wire [0:0] wire_ram_block3a_8portbdataout;
wire [0:0] wire_ram_block3a_9portbdataout;
wire [0:0] wire_ram_block3a_10portbdataout;
wire [0:0] wire_ram_block3a_11portbdataout;
wire [0:0] wire_ram_block3a_12portbdataout;
wire [0:0] wire_ram_block3a_13portbdataout;
wire [0:0] wire_ram_block3a_14portbdataout;
wire [0:0] wire_ram_block3a_15portbdataout;
wire [10:0] address_a_wire;
wire [10:0] address_b_wire;
cyclone_ram_block ram_block3a_0
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[0]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_0portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_0.connectivity_checking = "OFF",
ram_block3a_0.logical_ram_name = "ALTSYNCRAM",
ram_block3a_0.mixed_port_feed_through_mode = "dont_care",
ram_block3a_0.operation_mode = "dual_port",
ram_block3a_0.port_a_address_width = 11,
ram_block3a_0.port_a_data_width = 1,
ram_block3a_0.port_a_first_address = 0,
ram_block3a_0.port_a_first_bit_number = 0,
ram_block3a_0.port_a_last_address = 2047,
ram_block3a_0.port_a_logical_ram_depth = 2048,
ram_block3a_0.port_a_logical_ram_width = 16,
ram_block3a_0.port_b_address_clear = "none",
ram_block3a_0.port_b_address_clock = "clock1",
ram_block3a_0.port_b_address_width = 11,
ram_block3a_0.port_b_data_out_clear = "none",
ram_block3a_0.port_b_data_out_clock = "none",
ram_block3a_0.port_b_data_width = 1,
ram_block3a_0.port_b_first_address = 0,
ram_block3a_0.port_b_first_bit_number = 0,
ram_block3a_0.port_b_last_address = 2047,
ram_block3a_0.port_b_logical_ram_depth = 2048,
ram_block3a_0.port_b_logical_ram_width = 16,
ram_block3a_0.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_0.ram_block_type = "auto",
ram_block3a_0.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_1
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[1]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_1portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_1.connectivity_checking = "OFF",
ram_block3a_1.logical_ram_name = "ALTSYNCRAM",
ram_block3a_1.mixed_port_feed_through_mode = "dont_care",
ram_block3a_1.operation_mode = "dual_port",
ram_block3a_1.port_a_address_width = 11,
ram_block3a_1.port_a_data_width = 1,
ram_block3a_1.port_a_first_address = 0,
ram_block3a_1.port_a_first_bit_number = 1,
ram_block3a_1.port_a_last_address = 2047,
ram_block3a_1.port_a_logical_ram_depth = 2048,
ram_block3a_1.port_a_logical_ram_width = 16,
ram_block3a_1.port_b_address_clear = "none",
ram_block3a_1.port_b_address_clock = "clock1",
ram_block3a_1.port_b_address_width = 11,
ram_block3a_1.port_b_data_out_clear = "none",
ram_block3a_1.port_b_data_out_clock = "none",
ram_block3a_1.port_b_data_width = 1,
ram_block3a_1.port_b_first_address = 0,
ram_block3a_1.port_b_first_bit_number = 1,
ram_block3a_1.port_b_last_address = 2047,
ram_block3a_1.port_b_logical_ram_depth = 2048,
ram_block3a_1.port_b_logical_ram_width = 16,
ram_block3a_1.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_1.ram_block_type = "auto",
ram_block3a_1.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_2
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[2]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_2portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_2.connectivity_checking = "OFF",
ram_block3a_2.logical_ram_name = "ALTSYNCRAM",
ram_block3a_2.mixed_port_feed_through_mode = "dont_care",
ram_block3a_2.operation_mode = "dual_port",
ram_block3a_2.port_a_address_width = 11,
ram_block3a_2.port_a_data_width = 1,
ram_block3a_2.port_a_first_address = 0,
ram_block3a_2.port_a_first_bit_number = 2,
ram_block3a_2.port_a_last_address = 2047,
ram_block3a_2.port_a_logical_ram_depth = 2048,
ram_block3a_2.port_a_logical_ram_width = 16,
ram_block3a_2.port_b_address_clear = "none",
ram_block3a_2.port_b_address_clock = "clock1",
ram_block3a_2.port_b_address_width = 11,
ram_block3a_2.port_b_data_out_clear = "none",
ram_block3a_2.port_b_data_out_clock = "none",
ram_block3a_2.port_b_data_width = 1,
ram_block3a_2.port_b_first_address = 0,
ram_block3a_2.port_b_first_bit_number = 2,
ram_block3a_2.port_b_last_address = 2047,
ram_block3a_2.port_b_logical_ram_depth = 2048,
ram_block3a_2.port_b_logical_ram_width = 16,
ram_block3a_2.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_2.ram_block_type = "auto",
ram_block3a_2.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_3
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[3]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_3portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_3.connectivity_checking = "OFF",
ram_block3a_3.logical_ram_name = "ALTSYNCRAM",
ram_block3a_3.mixed_port_feed_through_mode = "dont_care",
ram_block3a_3.operation_mode = "dual_port",
ram_block3a_3.port_a_address_width = 11,
ram_block3a_3.port_a_data_width = 1,
ram_block3a_3.port_a_first_address = 0,
ram_block3a_3.port_a_first_bit_number = 3,
ram_block3a_3.port_a_last_address = 2047,
ram_block3a_3.port_a_logical_ram_depth = 2048,
ram_block3a_3.port_a_logical_ram_width = 16,
ram_block3a_3.port_b_address_clear = "none",
ram_block3a_3.port_b_address_clock = "clock1",
ram_block3a_3.port_b_address_width = 11,
ram_block3a_3.port_b_data_out_clear = "none",
ram_block3a_3.port_b_data_out_clock = "none",
ram_block3a_3.port_b_data_width = 1,
ram_block3a_3.port_b_first_address = 0,
ram_block3a_3.port_b_first_bit_number = 3,
ram_block3a_3.port_b_last_address = 2047,
ram_block3a_3.port_b_logical_ram_depth = 2048,
ram_block3a_3.port_b_logical_ram_width = 16,
ram_block3a_3.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_3.ram_block_type = "auto",
ram_block3a_3.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_4
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[4]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_4portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_4.connectivity_checking = "OFF",
ram_block3a_4.logical_ram_name = "ALTSYNCRAM",
ram_block3a_4.mixed_port_feed_through_mode = "dont_care",
ram_block3a_4.operation_mode = "dual_port",
ram_block3a_4.port_a_address_width = 11,
ram_block3a_4.port_a_data_width = 1,
ram_block3a_4.port_a_first_address = 0,
ram_block3a_4.port_a_first_bit_number = 4,
ram_block3a_4.port_a_last_address = 2047,
ram_block3a_4.port_a_logical_ram_depth = 2048,
ram_block3a_4.port_a_logical_ram_width = 16,
ram_block3a_4.port_b_address_clear = "none",
ram_block3a_4.port_b_address_clock = "clock1",
ram_block3a_4.port_b_address_width = 11,
ram_block3a_4.port_b_data_out_clear = "none",
ram_block3a_4.port_b_data_out_clock = "none",
ram_block3a_4.port_b_data_width = 1,
ram_block3a_4.port_b_first_address = 0,
ram_block3a_4.port_b_first_bit_number = 4,
ram_block3a_4.port_b_last_address = 2047,
ram_block3a_4.port_b_logical_ram_depth = 2048,
ram_block3a_4.port_b_logical_ram_width = 16,
ram_block3a_4.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_4.ram_block_type = "auto",
ram_block3a_4.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_5
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[5]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_5portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_5.connectivity_checking = "OFF",
ram_block3a_5.logical_ram_name = "ALTSYNCRAM",
ram_block3a_5.mixed_port_feed_through_mode = "dont_care",
ram_block3a_5.operation_mode = "dual_port",
ram_block3a_5.port_a_address_width = 11,
ram_block3a_5.port_a_data_width = 1,
ram_block3a_5.port_a_first_address = 0,
ram_block3a_5.port_a_first_bit_number = 5,
ram_block3a_5.port_a_last_address = 2047,
ram_block3a_5.port_a_logical_ram_depth = 2048,
ram_block3a_5.port_a_logical_ram_width = 16,
ram_block3a_5.port_b_address_clear = "none",
ram_block3a_5.port_b_address_clock = "clock1",
ram_block3a_5.port_b_address_width = 11,
ram_block3a_5.port_b_data_out_clear = "none",
ram_block3a_5.port_b_data_out_clock = "none",
ram_block3a_5.port_b_data_width = 1,
ram_block3a_5.port_b_first_address = 0,
ram_block3a_5.port_b_first_bit_number = 5,
ram_block3a_5.port_b_last_address = 2047,
ram_block3a_5.port_b_logical_ram_depth = 2048,
ram_block3a_5.port_b_logical_ram_width = 16,
ram_block3a_5.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_5.ram_block_type = "auto",
ram_block3a_5.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_6
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[6]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_6portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_6.connectivity_checking = "OFF",
ram_block3a_6.logical_ram_name = "ALTSYNCRAM",
ram_block3a_6.mixed_port_feed_through_mode = "dont_care",
ram_block3a_6.operation_mode = "dual_port",
ram_block3a_6.port_a_address_width = 11,
ram_block3a_6.port_a_data_width = 1,
ram_block3a_6.port_a_first_address = 0,
ram_block3a_6.port_a_first_bit_number = 6,
ram_block3a_6.port_a_last_address = 2047,
ram_block3a_6.port_a_logical_ram_depth = 2048,
ram_block3a_6.port_a_logical_ram_width = 16,
ram_block3a_6.port_b_address_clear = "none",
ram_block3a_6.port_b_address_clock = "clock1",
ram_block3a_6.port_b_address_width = 11,
ram_block3a_6.port_b_data_out_clear = "none",
ram_block3a_6.port_b_data_out_clock = "none",
ram_block3a_6.port_b_data_width = 1,
ram_block3a_6.port_b_first_address = 0,
ram_block3a_6.port_b_first_bit_number = 6,
ram_block3a_6.port_b_last_address = 2047,
ram_block3a_6.port_b_logical_ram_depth = 2048,
ram_block3a_6.port_b_logical_ram_width = 16,
ram_block3a_6.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_6.ram_block_type = "auto",
ram_block3a_6.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_7
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[7]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_7portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_7.connectivity_checking = "OFF",
ram_block3a_7.logical_ram_name = "ALTSYNCRAM",
ram_block3a_7.mixed_port_feed_through_mode = "dont_care",
ram_block3a_7.operation_mode = "dual_port",
ram_block3a_7.port_a_address_width = 11,
ram_block3a_7.port_a_data_width = 1,
ram_block3a_7.port_a_first_address = 0,
ram_block3a_7.port_a_first_bit_number = 7,
ram_block3a_7.port_a_last_address = 2047,
ram_block3a_7.port_a_logical_ram_depth = 2048,
ram_block3a_7.port_a_logical_ram_width = 16,
ram_block3a_7.port_b_address_clear = "none",
ram_block3a_7.port_b_address_clock = "clock1",
ram_block3a_7.port_b_address_width = 11,
ram_block3a_7.port_b_data_out_clear = "none",
ram_block3a_7.port_b_data_out_clock = "none",
ram_block3a_7.port_b_data_width = 1,
ram_block3a_7.port_b_first_address = 0,
ram_block3a_7.port_b_first_bit_number = 7,
ram_block3a_7.port_b_last_address = 2047,
ram_block3a_7.port_b_logical_ram_depth = 2048,
ram_block3a_7.port_b_logical_ram_width = 16,
ram_block3a_7.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_7.ram_block_type = "auto",
ram_block3a_7.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_8
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[8]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_8portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_8.connectivity_checking = "OFF",
ram_block3a_8.logical_ram_name = "ALTSYNCRAM",
ram_block3a_8.mixed_port_feed_through_mode = "dont_care",
ram_block3a_8.operation_mode = "dual_port",
ram_block3a_8.port_a_address_width = 11,
ram_block3a_8.port_a_data_width = 1,
ram_block3a_8.port_a_first_address = 0,
ram_block3a_8.port_a_first_bit_number = 8,
ram_block3a_8.port_a_last_address = 2047,
ram_block3a_8.port_a_logical_ram_depth = 2048,
ram_block3a_8.port_a_logical_ram_width = 16,
ram_block3a_8.port_b_address_clear = "none",
ram_block3a_8.port_b_address_clock = "clock1",
ram_block3a_8.port_b_address_width = 11,
ram_block3a_8.port_b_data_out_clear = "none",
ram_block3a_8.port_b_data_out_clock = "none",
ram_block3a_8.port_b_data_width = 1,
ram_block3a_8.port_b_first_address = 0,
ram_block3a_8.port_b_first_bit_number = 8,
ram_block3a_8.port_b_last_address = 2047,
ram_block3a_8.port_b_logical_ram_depth = 2048,
ram_block3a_8.port_b_logical_ram_width = 16,
ram_block3a_8.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_8.ram_block_type = "auto",
ram_block3a_8.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_9
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[9]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_9portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_9.connectivity_checking = "OFF",
ram_block3a_9.logical_ram_name = "ALTSYNCRAM",
ram_block3a_9.mixed_port_feed_through_mode = "dont_care",
ram_block3a_9.operation_mode = "dual_port",
ram_block3a_9.port_a_address_width = 11,
ram_block3a_9.port_a_data_width = 1,
ram_block3a_9.port_a_first_address = 0,
ram_block3a_9.port_a_first_bit_number = 9,
ram_block3a_9.port_a_last_address = 2047,
ram_block3a_9.port_a_logical_ram_depth = 2048,
ram_block3a_9.port_a_logical_ram_width = 16,
ram_block3a_9.port_b_address_clear = "none",
ram_block3a_9.port_b_address_clock = "clock1",
ram_block3a_9.port_b_address_width = 11,
ram_block3a_9.port_b_data_out_clear = "none",
ram_block3a_9.port_b_data_out_clock = "none",
ram_block3a_9.port_b_data_width = 1,
ram_block3a_9.port_b_first_address = 0,
ram_block3a_9.port_b_first_bit_number = 9,
ram_block3a_9.port_b_last_address = 2047,
ram_block3a_9.port_b_logical_ram_depth = 2048,
ram_block3a_9.port_b_logical_ram_width = 16,
ram_block3a_9.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_9.ram_block_type = "auto",
ram_block3a_9.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_10
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[10]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_10portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_10.connectivity_checking = "OFF",
ram_block3a_10.logical_ram_name = "ALTSYNCRAM",
ram_block3a_10.mixed_port_feed_through_mode = "dont_care",
ram_block3a_10.operation_mode = "dual_port",
ram_block3a_10.port_a_address_width = 11,
ram_block3a_10.port_a_data_width = 1,
ram_block3a_10.port_a_first_address = 0,
ram_block3a_10.port_a_first_bit_number = 10,
ram_block3a_10.port_a_last_address = 2047,
ram_block3a_10.port_a_logical_ram_depth = 2048,
ram_block3a_10.port_a_logical_ram_width = 16,
ram_block3a_10.port_b_address_clear = "none",
ram_block3a_10.port_b_address_clock = "clock1",
ram_block3a_10.port_b_address_width = 11,
ram_block3a_10.port_b_data_out_clear = "none",
ram_block3a_10.port_b_data_out_clock = "none",
ram_block3a_10.port_b_data_width = 1,
ram_block3a_10.port_b_first_address = 0,
ram_block3a_10.port_b_first_bit_number = 10,
ram_block3a_10.port_b_last_address = 2047,
ram_block3a_10.port_b_logical_ram_depth = 2048,
ram_block3a_10.port_b_logical_ram_width = 16,
ram_block3a_10.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_10.ram_block_type = "auto",
ram_block3a_10.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_11
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[11]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_11portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_11.connectivity_checking = "OFF",
ram_block3a_11.logical_ram_name = "ALTSYNCRAM",
ram_block3a_11.mixed_port_feed_through_mode = "dont_care",
ram_block3a_11.operation_mode = "dual_port",
ram_block3a_11.port_a_address_width = 11,
ram_block3a_11.port_a_data_width = 1,
ram_block3a_11.port_a_first_address = 0,
ram_block3a_11.port_a_first_bit_number = 11,
ram_block3a_11.port_a_last_address = 2047,
ram_block3a_11.port_a_logical_ram_depth = 2048,
ram_block3a_11.port_a_logical_ram_width = 16,
ram_block3a_11.port_b_address_clear = "none",
ram_block3a_11.port_b_address_clock = "clock1",
ram_block3a_11.port_b_address_width = 11,
ram_block3a_11.port_b_data_out_clear = "none",
ram_block3a_11.port_b_data_out_clock = "none",
ram_block3a_11.port_b_data_width = 1,
ram_block3a_11.port_b_first_address = 0,
ram_block3a_11.port_b_first_bit_number = 11,
ram_block3a_11.port_b_last_address = 2047,
ram_block3a_11.port_b_logical_ram_depth = 2048,
ram_block3a_11.port_b_logical_ram_width = 16,
ram_block3a_11.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_11.ram_block_type = "auto",
ram_block3a_11.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_12
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[12]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_12portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_12.connectivity_checking = "OFF",
ram_block3a_12.logical_ram_name = "ALTSYNCRAM",
ram_block3a_12.mixed_port_feed_through_mode = "dont_care",
ram_block3a_12.operation_mode = "dual_port",
ram_block3a_12.port_a_address_width = 11,
ram_block3a_12.port_a_data_width = 1,
ram_block3a_12.port_a_first_address = 0,
ram_block3a_12.port_a_first_bit_number = 12,
ram_block3a_12.port_a_last_address = 2047,
ram_block3a_12.port_a_logical_ram_depth = 2048,
ram_block3a_12.port_a_logical_ram_width = 16,
ram_block3a_12.port_b_address_clear = "none",
ram_block3a_12.port_b_address_clock = "clock1",
ram_block3a_12.port_b_address_width = 11,
ram_block3a_12.port_b_data_out_clear = "none",
ram_block3a_12.port_b_data_out_clock = "none",
ram_block3a_12.port_b_data_width = 1,
ram_block3a_12.port_b_first_address = 0,
ram_block3a_12.port_b_first_bit_number = 12,
ram_block3a_12.port_b_last_address = 2047,
ram_block3a_12.port_b_logical_ram_depth = 2048,
ram_block3a_12.port_b_logical_ram_width = 16,
ram_block3a_12.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_12.ram_block_type = "auto",
ram_block3a_12.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_13
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[13]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_13portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_13.connectivity_checking = "OFF",
ram_block3a_13.logical_ram_name = "ALTSYNCRAM",
ram_block3a_13.mixed_port_feed_through_mode = "dont_care",
ram_block3a_13.operation_mode = "dual_port",
ram_block3a_13.port_a_address_width = 11,
ram_block3a_13.port_a_data_width = 1,
ram_block3a_13.port_a_first_address = 0,
ram_block3a_13.port_a_first_bit_number = 13,
ram_block3a_13.port_a_last_address = 2047,
ram_block3a_13.port_a_logical_ram_depth = 2048,
ram_block3a_13.port_a_logical_ram_width = 16,
ram_block3a_13.port_b_address_clear = "none",
ram_block3a_13.port_b_address_clock = "clock1",
ram_block3a_13.port_b_address_width = 11,
ram_block3a_13.port_b_data_out_clear = "none",
ram_block3a_13.port_b_data_out_clock = "none",
ram_block3a_13.port_b_data_width = 1,
ram_block3a_13.port_b_first_address = 0,
ram_block3a_13.port_b_first_bit_number = 13,
ram_block3a_13.port_b_last_address = 2047,
ram_block3a_13.port_b_logical_ram_depth = 2048,
ram_block3a_13.port_b_logical_ram_width = 16,
ram_block3a_13.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_13.ram_block_type = "auto",
ram_block3a_13.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_14
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[14]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_14portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_14.connectivity_checking = "OFF",
ram_block3a_14.logical_ram_name = "ALTSYNCRAM",
ram_block3a_14.mixed_port_feed_through_mode = "dont_care",
ram_block3a_14.operation_mode = "dual_port",
ram_block3a_14.port_a_address_width = 11,
ram_block3a_14.port_a_data_width = 1,
ram_block3a_14.port_a_first_address = 0,
ram_block3a_14.port_a_first_bit_number = 14,
ram_block3a_14.port_a_last_address = 2047,
ram_block3a_14.port_a_logical_ram_depth = 2048,
ram_block3a_14.port_a_logical_ram_width = 16,
ram_block3a_14.port_b_address_clear = "none",
ram_block3a_14.port_b_address_clock = "clock1",
ram_block3a_14.port_b_address_width = 11,
ram_block3a_14.port_b_data_out_clear = "none",
ram_block3a_14.port_b_data_out_clock = "none",
ram_block3a_14.port_b_data_width = 1,
ram_block3a_14.port_b_first_address = 0,
ram_block3a_14.port_b_first_bit_number = 14,
ram_block3a_14.port_b_last_address = 2047,
ram_block3a_14.port_b_logical_ram_depth = 2048,
ram_block3a_14.port_b_logical_ram_width = 16,
ram_block3a_14.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_14.ram_block_type = "auto",
ram_block3a_14.lpm_type = "cyclone_ram_block";
cyclone_ram_block ram_block3a_15
(
.clk0(clock0),
.clk1(clock1),
.ena0(wren_a),
.ena1(clocken1),
.portaaddr({address_a_wire[10:0]}),
.portadatain({data_a[15]}),
.portadataout(),
.portawe(1'b1),
.portbaddr({address_b_wire[10:0]}),
.portbdataout(wire_ram_block3a_15portbdataout[0:0]),
.portbrewe(1'b1)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.clr0(1'b0),
.clr1(1'b0),
.portabyteenamasks(1'b1),
.portbbyteenamasks(1'b1),
.portbdatain(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
ram_block3a_15.connectivity_checking = "OFF",
ram_block3a_15.logical_ram_name = "ALTSYNCRAM",
ram_block3a_15.mixed_port_feed_through_mode = "dont_care",
ram_block3a_15.operation_mode = "dual_port",
ram_block3a_15.port_a_address_width = 11,
ram_block3a_15.port_a_data_width = 1,
ram_block3a_15.port_a_first_address = 0,
ram_block3a_15.port_a_first_bit_number = 15,
ram_block3a_15.port_a_last_address = 2047,
ram_block3a_15.port_a_logical_ram_depth = 2048,
ram_block3a_15.port_a_logical_ram_width = 16,
ram_block3a_15.port_b_address_clear = "none",
ram_block3a_15.port_b_address_clock = "clock1",
ram_block3a_15.port_b_address_width = 11,
ram_block3a_15.port_b_data_out_clear = "none",
ram_block3a_15.port_b_data_out_clock = "none",
ram_block3a_15.port_b_data_width = 1,
ram_block3a_15.port_b_first_address = 0,
ram_block3a_15.port_b_first_bit_number = 15,
ram_block3a_15.port_b_last_address = 2047,
ram_block3a_15.port_b_logical_ram_depth = 2048,
ram_block3a_15.port_b_logical_ram_width = 16,
ram_block3a_15.port_b_read_enable_write_enable_clock = "clock1",
ram_block3a_15.ram_block_type = "auto",
ram_block3a_15.lpm_type = "cyclone_ram_block";
assign
address_a_wire = address_a,
address_b_wire = address_b,
q_b = {wire_ram_block3a_15portbdataout[0], wire_ram_block3a_14portbdataout[0], wire_ram_block3a_13portbdataout[0], wire_ram_block3a_12portbdataout[0], wire_ram_block3a_11portbdataout[0], wire_ram_block3a_10portbdataout[0], wire_ram_block3a_9portbdataout[0], wire_ram_block3a_8portbdataout[0], wire_ram_block3a_7portbdataout[0], wire_ram_block3a_6portbdataout[0], wire_ram_block3a_5portbdataout[0], wire_ram_block3a_4portbdataout[0], wire_ram_block3a_3portbdataout[0], wire_ram_block3a_2portbdataout[0], wire_ram_block3a_1portbdataout[0], wire_ram_block3a_0portbdataout[0]};
endmodule
|
module fifo_2k_dffpipe_ab3
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe4a_D;
reg [10:0] dffe4a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe4a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe4a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe4a[0:0] <= wire_dffe4a_D[0:0];
// synopsys translate_off
initial
dffe4a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe4a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe4a[1:1] <= wire_dffe4a_D[1:1];
// synopsys translate_off
initial
dffe4a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe4a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe4a[2:2] <= wire_dffe4a_D[2:2];
// synopsys translate_off
initial
dffe4a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe4a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe4a[3:3] <= wire_dffe4a_D[3:3];
// synopsys translate_off
initial
dffe4a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe4a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe4a[4:4] <= wire_dffe4a_D[4:4];
// synopsys translate_off
initial
dffe4a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe4a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe4a[5:5] <= wire_dffe4a_D[5:5];
// synopsys translate_off
initial
dffe4a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe4a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe4a[6:6] <= wire_dffe4a_D[6:6];
// synopsys translate_off
initial
dffe4a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe4a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe4a[7:7] <= wire_dffe4a_D[7:7];
// synopsys translate_off
initial
dffe4a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe4a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe4a[8:8] <= wire_dffe4a_D[8:8];
// synopsys translate_off
initial
dffe4a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe4a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe4a[9:9] <= wire_dffe4a_D[9:9];
// synopsys translate_off
initial
dffe4a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe4a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe4a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe4a[10:10] <= wire_dffe4a_D[10:10];
assign
wire_dffe4a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe4a,
sclr = 1'b0;
endmodule
|
module fifo_2k_dffpipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffe6a_D;
reg [10:0] dffe6a;
wire ena;
wire prn;
wire sclr;
// synopsys translate_off
initial
dffe6a[0:0] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[0:0] <= 1'b1;
else if (clrn == 1'b0) dffe6a[0:0] <= 1'b0;
else if (ena == 1'b1) dffe6a[0:0] <= wire_dffe6a_D[0:0];
// synopsys translate_off
initial
dffe6a[1:1] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[1:1] <= 1'b1;
else if (clrn == 1'b0) dffe6a[1:1] <= 1'b0;
else if (ena == 1'b1) dffe6a[1:1] <= wire_dffe6a_D[1:1];
// synopsys translate_off
initial
dffe6a[2:2] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[2:2] <= 1'b1;
else if (clrn == 1'b0) dffe6a[2:2] <= 1'b0;
else if (ena == 1'b1) dffe6a[2:2] <= wire_dffe6a_D[2:2];
// synopsys translate_off
initial
dffe6a[3:3] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[3:3] <= 1'b1;
else if (clrn == 1'b0) dffe6a[3:3] <= 1'b0;
else if (ena == 1'b1) dffe6a[3:3] <= wire_dffe6a_D[3:3];
// synopsys translate_off
initial
dffe6a[4:4] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[4:4] <= 1'b1;
else if (clrn == 1'b0) dffe6a[4:4] <= 1'b0;
else if (ena == 1'b1) dffe6a[4:4] <= wire_dffe6a_D[4:4];
// synopsys translate_off
initial
dffe6a[5:5] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[5:5] <= 1'b1;
else if (clrn == 1'b0) dffe6a[5:5] <= 1'b0;
else if (ena == 1'b1) dffe6a[5:5] <= wire_dffe6a_D[5:5];
// synopsys translate_off
initial
dffe6a[6:6] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[6:6] <= 1'b1;
else if (clrn == 1'b0) dffe6a[6:6] <= 1'b0;
else if (ena == 1'b1) dffe6a[6:6] <= wire_dffe6a_D[6:6];
// synopsys translate_off
initial
dffe6a[7:7] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[7:7] <= 1'b1;
else if (clrn == 1'b0) dffe6a[7:7] <= 1'b0;
else if (ena == 1'b1) dffe6a[7:7] <= wire_dffe6a_D[7:7];
// synopsys translate_off
initial
dffe6a[8:8] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[8:8] <= 1'b1;
else if (clrn == 1'b0) dffe6a[8:8] <= 1'b0;
else if (ena == 1'b1) dffe6a[8:8] <= wire_dffe6a_D[8:8];
// synopsys translate_off
initial
dffe6a[9:9] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[9:9] <= 1'b1;
else if (clrn == 1'b0) dffe6a[9:9] <= 1'b0;
else if (ena == 1'b1) dffe6a[9:9] <= wire_dffe6a_D[9:9];
// synopsys translate_off
initial
dffe6a[10:10] = 0;
// synopsys translate_on
always @ ( posedge clock or negedge prn or negedge clrn)
if (prn == 1'b0) dffe6a[10:10] <= 1'b1;
else if (clrn == 1'b0) dffe6a[10:10] <= 1'b0;
else if (ena == 1'b1) dffe6a[10:10] <= wire_dffe6a_D[10:10];
assign
wire_dffe6a_D = (d & {11{(~ sclr)}});
assign
ena = 1'b1,
prn = 1'b1,
q = dffe6a,
sclr = 1'b0;
endmodule
|
module fifo_2k_alt_synch_pipe_dm2
(
clock,
clrn,
d,
q) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="X_ON_VIOLATION_OPTION=OFF" */;
input clock;
input clrn;
input [10:0] d;
output [10:0] q;
wire [10:0] wire_dffpipe5_q;
fifo_2k_dffpipe_dm2 dffpipe5
(
.clock(clock),
.clrn(clrn),
.d(d),
.q(wire_dffpipe5_q));
assign
q = wire_dffpipe5_q;
endmodule
|
module fifo_2k_add_sub_a18
(
dataa,
datab,
result) /* synthesis synthesis_clearbox=1 */;
input [10:0] dataa;
input [10:0] datab;
output [10:0] result;
wire [10:0] wire_add_sub_cella_combout;
wire [0:0] wire_add_sub_cella_0cout;
wire [0:0] wire_add_sub_cella_1cout;
wire [0:0] wire_add_sub_cella_2cout;
wire [0:0] wire_add_sub_cella_3cout;
wire [0:0] wire_add_sub_cella_4cout;
wire [0:0] wire_add_sub_cella_5cout;
wire [0:0] wire_add_sub_cella_6cout;
wire [0:0] wire_add_sub_cella_7cout;
wire [0:0] wire_add_sub_cella_8cout;
wire [0:0] wire_add_sub_cella_9cout;
wire [10:0] wire_add_sub_cella_dataa;
wire [10:0] wire_add_sub_cella_datab;
cyclone_lcell add_sub_cella_0
(
.cin(1'b1),
.combout(wire_add_sub_cella_combout[0:0]),
.cout(wire_add_sub_cella_0cout[0:0]),
.dataa(wire_add_sub_cella_dataa[0:0]),
.datab(wire_add_sub_cella_datab[0:0]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_0.cin_used = "true",
add_sub_cella_0.lut_mask = "69b2",
add_sub_cella_0.operation_mode = "arithmetic",
add_sub_cella_0.sum_lutc_input = "cin",
add_sub_cella_0.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_1
(
.cin(wire_add_sub_cella_0cout[0:0]),
.combout(wire_add_sub_cella_combout[1:1]),
.cout(wire_add_sub_cella_1cout[0:0]),
.dataa(wire_add_sub_cella_dataa[1:1]),
.datab(wire_add_sub_cella_datab[1:1]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_1.cin_used = "true",
add_sub_cella_1.lut_mask = "69b2",
add_sub_cella_1.operation_mode = "arithmetic",
add_sub_cella_1.sum_lutc_input = "cin",
add_sub_cella_1.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_2
(
.cin(wire_add_sub_cella_1cout[0:0]),
.combout(wire_add_sub_cella_combout[2:2]),
.cout(wire_add_sub_cella_2cout[0:0]),
.dataa(wire_add_sub_cella_dataa[2:2]),
.datab(wire_add_sub_cella_datab[2:2]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_2.cin_used = "true",
add_sub_cella_2.lut_mask = "69b2",
add_sub_cella_2.operation_mode = "arithmetic",
add_sub_cella_2.sum_lutc_input = "cin",
add_sub_cella_2.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_3
(
.cin(wire_add_sub_cella_2cout[0:0]),
.combout(wire_add_sub_cella_combout[3:3]),
.cout(wire_add_sub_cella_3cout[0:0]),
.dataa(wire_add_sub_cella_dataa[3:3]),
.datab(wire_add_sub_cella_datab[3:3]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_3.cin_used = "true",
add_sub_cella_3.lut_mask = "69b2",
add_sub_cella_3.operation_mode = "arithmetic",
add_sub_cella_3.sum_lutc_input = "cin",
add_sub_cella_3.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_4
(
.cin(wire_add_sub_cella_3cout[0:0]),
.combout(wire_add_sub_cella_combout[4:4]),
.cout(wire_add_sub_cella_4cout[0:0]),
.dataa(wire_add_sub_cella_dataa[4:4]),
.datab(wire_add_sub_cella_datab[4:4]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_4.cin_used = "true",
add_sub_cella_4.lut_mask = "69b2",
add_sub_cella_4.operation_mode = "arithmetic",
add_sub_cella_4.sum_lutc_input = "cin",
add_sub_cella_4.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_5
(
.cin(wire_add_sub_cella_4cout[0:0]),
.combout(wire_add_sub_cella_combout[5:5]),
.cout(wire_add_sub_cella_5cout[0:0]),
.dataa(wire_add_sub_cella_dataa[5:5]),
.datab(wire_add_sub_cella_datab[5:5]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_5.cin_used = "true",
add_sub_cella_5.lut_mask = "69b2",
add_sub_cella_5.operation_mode = "arithmetic",
add_sub_cella_5.sum_lutc_input = "cin",
add_sub_cella_5.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_6
(
.cin(wire_add_sub_cella_5cout[0:0]),
.combout(wire_add_sub_cella_combout[6:6]),
.cout(wire_add_sub_cella_6cout[0:0]),
.dataa(wire_add_sub_cella_dataa[6:6]),
.datab(wire_add_sub_cella_datab[6:6]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_6.cin_used = "true",
add_sub_cella_6.lut_mask = "69b2",
add_sub_cella_6.operation_mode = "arithmetic",
add_sub_cella_6.sum_lutc_input = "cin",
add_sub_cella_6.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_7
(
.cin(wire_add_sub_cella_6cout[0:0]),
.combout(wire_add_sub_cella_combout[7:7]),
.cout(wire_add_sub_cella_7cout[0:0]),
.dataa(wire_add_sub_cella_dataa[7:7]),
.datab(wire_add_sub_cella_datab[7:7]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_7.cin_used = "true",
add_sub_cella_7.lut_mask = "69b2",
add_sub_cella_7.operation_mode = "arithmetic",
add_sub_cella_7.sum_lutc_input = "cin",
add_sub_cella_7.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_8
(
.cin(wire_add_sub_cella_7cout[0:0]),
.combout(wire_add_sub_cella_combout[8:8]),
.cout(wire_add_sub_cella_8cout[0:0]),
.dataa(wire_add_sub_cella_dataa[8:8]),
.datab(wire_add_sub_cella_datab[8:8]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_8.cin_used = "true",
add_sub_cella_8.lut_mask = "69b2",
add_sub_cella_8.operation_mode = "arithmetic",
add_sub_cella_8.sum_lutc_input = "cin",
add_sub_cella_8.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_9
(
.cin(wire_add_sub_cella_8cout[0:0]),
.combout(wire_add_sub_cella_combout[9:9]),
.cout(wire_add_sub_cella_9cout[0:0]),
.dataa(wire_add_sub_cella_dataa[9:9]),
.datab(wire_add_sub_cella_datab[9:9]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_9.cin_used = "true",
add_sub_cella_9.lut_mask = "69b2",
add_sub_cella_9.operation_mode = "arithmetic",
add_sub_cella_9.sum_lutc_input = "cin",
add_sub_cella_9.lpm_type = "cyclone_lcell";
cyclone_lcell add_sub_cella_10
(
.cin(wire_add_sub_cella_9cout[0:0]),
.combout(wire_add_sub_cella_combout[10:10]),
.cout(),
.dataa(wire_add_sub_cella_dataa[10:10]),
.datab(wire_add_sub_cella_datab[10:10]),
.regout()
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_off
`endif
,
.aclr(1'b0),
.aload(1'b0),
.clk(1'b1),
.datac(1'b1),
.datad(1'b1),
.ena(1'b1),
.inverta(1'b0),
.regcascin(1'b0),
.sclr(1'b0),
.sload(1'b0)
`ifdef FORMAL_VERIFICATION
`else
// synopsys translate_on
`endif
// synopsys translate_off
,
.cin0(),
.cin1(),
.cout0(),
.cout1(),
.devclrn(),
.devpor()
// synopsys translate_on
);
defparam
add_sub_cella_10.cin_used = "true",
add_sub_cella_10.lut_mask = "6969",
add_sub_cella_10.operation_mode = "normal",
add_sub_cella_10.sum_lutc_input = "cin",
add_sub_cella_10.lpm_type = "cyclone_lcell";
assign
wire_add_sub_cella_dataa = dataa,
wire_add_sub_cella_datab = datab;
assign
result = wire_add_sub_cella_combout;
endmodule
|
module fifo_2k_dcfifo_0cq
(
aclr,
data,
q,
rdclk,
rdempty,
rdreq,
rdusedw,
wrclk,
wrfull,
wrreq,
wrusedw) /* synthesis synthesis_clearbox=1 */
/* synthesis ALTERA_ATTRIBUTE="AUTO_SHIFT_REGISTER_RECOGNITION=OFF;{ -from \"rdptr_g|power_modified_counter_values\" -to \"ws_dgrp|dffpipe5|dffe6a\" }CUT=ON;{ -from \"delayed_wrptr_g\" -to \"rs_dgwp|dffpipe5|dffe6a\" }CUT=ON" */;
input aclr;
input [15:0] data;
output [15:0] q;
input rdclk;
output rdempty;
input rdreq;
output [10:0] rdusedw;
input wrclk;
output wrfull;
input wrreq;
output [10:0] wrusedw;
wire [10:0] wire_rdptr_g_gray2bin_bin;
wire [10:0] wire_rs_dgwp_gray2bin_bin;
wire [10:0] wire_wrptr_g_gray2bin_bin;
wire [10:0] wire_ws_dgrp_gray2bin_bin;
wire [10:0] wire_rdptr_g_q;
wire [10:0] wire_rdptr_g1p_q;
wire [10:0] wire_wrptr_g1p_q;
wire [15:0] wire_fifo_ram_q_b;
reg [10:0] delayed_wrptr_g;
reg [10:0] wrptr_g;
wire [10:0] wire_rs_brp_q;
wire [10:0] wire_rs_bwp_q;
wire [10:0] wire_rs_dgwp_q;
wire [10:0] wire_ws_brp_q;
wire [10:0] wire_ws_bwp_q;
wire [10:0] wire_ws_dgrp_q;
wire [10:0] wire_rdusedw_sub_result;
wire [10:0] wire_wrusedw_sub_result;
reg wire_rdempty_eq_comp_aeb_int;
wire wire_rdempty_eq_comp_aeb;
wire [10:0] wire_rdempty_eq_comp_dataa;
wire [10:0] wire_rdempty_eq_comp_datab;
reg wire_wrfull_eq_comp_aeb_int;
wire wire_wrfull_eq_comp_aeb;
wire [10:0] wire_wrfull_eq_comp_dataa;
wire [10:0] wire_wrfull_eq_comp_datab;
wire int_rdempty;
wire int_wrfull;
wire valid_rdreq;
wire valid_wrreq;
fifo_2k_a_gray2bin_8m4 rdptr_g_gray2bin
(
.bin(wire_rdptr_g_gray2bin_bin),
.gray(wire_rdptr_g_q));
fifo_2k_a_gray2bin_8m4 rs_dgwp_gray2bin
(
.bin(wire_rs_dgwp_gray2bin_bin),
.gray(wire_rs_dgwp_q));
fifo_2k_a_gray2bin_8m4 wrptr_g_gray2bin
(
.bin(wire_wrptr_g_gray2bin_bin),
.gray(wrptr_g));
fifo_2k_a_gray2bin_8m4 ws_dgrp_gray2bin
(
.bin(wire_ws_dgrp_gray2bin_bin),
.gray(wire_ws_dgrp_q));
fifo_2k_a_graycounter_726 rdptr_g
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g_q));
fifo_2k_a_graycounter_2r6 rdptr_g1p
(
.aclr(aclr),
.clock(rdclk),
.cnt_en(valid_rdreq),
.q(wire_rdptr_g1p_q));
fifo_2k_a_graycounter_2r6 wrptr_g1p
(
.aclr(aclr),
.clock(wrclk),
.cnt_en(valid_wrreq),
.q(wire_wrptr_g1p_q));
fifo_2k_altsyncram_6pl fifo_ram
(
.address_a(wrptr_g),
.address_b(((wire_rdptr_g_q & {11{int_rdempty}}) | (wire_rdptr_g1p_q & {11{(~ int_rdempty)}}))),
.clock0(wrclk),
.clock1(rdclk),
.clocken1((valid_rdreq | int_rdempty)),
.data_a(data),
.q_b(wire_fifo_ram_q_b),
.wren_a(valid_wrreq));
// synopsys translate_off
initial
delayed_wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) delayed_wrptr_g <= 11'b0;
else delayed_wrptr_g <= wrptr_g;
// synopsys translate_off
initial
wrptr_g = 0;
// synopsys translate_on
always @ ( posedge wrclk or posedge aclr)
if (aclr == 1'b1) wrptr_g <= 11'b0;
else if (valid_wrreq == 1'b1) wrptr_g <= wire_wrptr_g1p_q;
fifo_2k_dffpipe_ab3 rs_brp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_gray2bin_bin),
.q(wire_rs_brp_q));
fifo_2k_dffpipe_ab3 rs_bwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(wire_rs_dgwp_gray2bin_bin),
.q(wire_rs_bwp_q));
fifo_2k_alt_synch_pipe_dm2 rs_dgwp
(
.clock(rdclk),
.clrn((~ aclr)),
.d(delayed_wrptr_g),
.q(wire_rs_dgwp_q));
fifo_2k_dffpipe_ab3 ws_brp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_ws_dgrp_gray2bin_bin),
.q(wire_ws_brp_q));
fifo_2k_dffpipe_ab3 ws_bwp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_wrptr_g_gray2bin_bin),
.q(wire_ws_bwp_q));
fifo_2k_alt_synch_pipe_dm2 ws_dgrp
(
.clock(wrclk),
.clrn((~ aclr)),
.d(wire_rdptr_g_q),
.q(wire_ws_dgrp_q));
fifo_2k_add_sub_a18 rdusedw_sub
(
.dataa(wire_rs_bwp_q),
.datab(wire_rs_brp_q),
.result(wire_rdusedw_sub_result));
fifo_2k_add_sub_a18 wrusedw_sub
(
.dataa(wire_ws_bwp_q),
.datab(wire_ws_brp_q),
.result(wire_wrusedw_sub_result));
always @(wire_rdempty_eq_comp_dataa or wire_rdempty_eq_comp_datab)
if (wire_rdempty_eq_comp_dataa == wire_rdempty_eq_comp_datab)
begin
wire_rdempty_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_rdempty_eq_comp_aeb_int = 1'b0;
end
assign
wire_rdempty_eq_comp_aeb = wire_rdempty_eq_comp_aeb_int;
assign
wire_rdempty_eq_comp_dataa = wire_rs_dgwp_q,
wire_rdempty_eq_comp_datab = wire_rdptr_g_q;
always @(wire_wrfull_eq_comp_dataa or wire_wrfull_eq_comp_datab)
if (wire_wrfull_eq_comp_dataa == wire_wrfull_eq_comp_datab)
begin
wire_wrfull_eq_comp_aeb_int = 1'b1;
end
else
begin
wire_wrfull_eq_comp_aeb_int = 1'b0;
end
assign
wire_wrfull_eq_comp_aeb = wire_wrfull_eq_comp_aeb_int;
assign
wire_wrfull_eq_comp_dataa = wire_ws_dgrp_q,
wire_wrfull_eq_comp_datab = wire_wrptr_g1p_q;
assign
int_rdempty = wire_rdempty_eq_comp_aeb,
int_wrfull = wire_wrfull_eq_comp_aeb,
q = wire_fifo_ram_q_b,
rdempty = int_rdempty,
rdusedw = wire_rdusedw_sub_result,
valid_rdreq = rdreq,
valid_wrreq = wrreq,
wrfull = int_wrfull,
wrusedw = wire_wrusedw_sub_result;
endmodule
|
module fifo_2k (
data,
wrreq,
rdreq,
rdclk,
wrclk,
aclr,
q,
rdempty,
rdusedw,
wrfull,
wrusedw)/* synthesis synthesis_clearbox = 1 */;
input [15:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [15:0] q;
output rdempty;
output [10:0] rdusedw;
output wrfull;
output [10:0] wrusedw;
wire sub_wire0;
wire [10:0] sub_wire1;
wire sub_wire2;
wire [15:0] sub_wire3;
wire [10:0] sub_wire4;
wire rdempty = sub_wire0;
wire [10:0] wrusedw = sub_wire1[10:0];
wire wrfull = sub_wire2;
wire [15:0] q = sub_wire3[15:0];
wire [10:0] rdusedw = sub_wire4[10:0];
fifo_2k_dcfifo_0cq fifo_2k_dcfifo_0cq_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4));
endmodule
|
module altera_reset_controller
#(
parameter NUM_RESET_INPUTS = 6,
parameter USE_RESET_REQUEST_IN0 = 0,
parameter USE_RESET_REQUEST_IN1 = 0,
parameter USE_RESET_REQUEST_IN2 = 0,
parameter USE_RESET_REQUEST_IN3 = 0,
parameter USE_RESET_REQUEST_IN4 = 0,
parameter USE_RESET_REQUEST_IN5 = 0,
parameter USE_RESET_REQUEST_IN6 = 0,
parameter USE_RESET_REQUEST_IN7 = 0,
parameter USE_RESET_REQUEST_IN8 = 0,
parameter USE_RESET_REQUEST_IN9 = 0,
parameter USE_RESET_REQUEST_IN10 = 0,
parameter USE_RESET_REQUEST_IN11 = 0,
parameter USE_RESET_REQUEST_IN12 = 0,
parameter USE_RESET_REQUEST_IN13 = 0,
parameter USE_RESET_REQUEST_IN14 = 0,
parameter USE_RESET_REQUEST_IN15 = 0,
parameter OUTPUT_RESET_SYNC_EDGES = "deassert",
parameter SYNC_DEPTH = 2,
parameter RESET_REQUEST_PRESENT = 0,
parameter RESET_REQ_WAIT_TIME = 3,
parameter MIN_RST_ASSERTION_TIME = 11,
parameter RESET_REQ_EARLY_DSRT_TIME = 4,
parameter ADAPT_RESET_REQUEST = 0
)
(
// --------------------------------------
// We support up to 16 reset inputs, for now
// --------------------------------------
input reset_in0,
input reset_in1,
input reset_in2,
input reset_in3,
input reset_in4,
input reset_in5,
input reset_in6,
input reset_in7,
input reset_in8,
input reset_in9,
input reset_in10,
input reset_in11,
input reset_in12,
input reset_in13,
input reset_in14,
input reset_in15,
input reset_req_in0,
input reset_req_in1,
input reset_req_in2,
input reset_req_in3,
input reset_req_in4,
input reset_req_in5,
input reset_req_in6,
input reset_req_in7,
input reset_req_in8,
input reset_req_in9,
input reset_req_in10,
input reset_req_in11,
input reset_req_in12,
input reset_req_in13,
input reset_req_in14,
input reset_req_in15,
input clk,
output reg reset_out,
output reg reset_req
);
// Always use async reset synchronizer if reset_req is used
localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert");
// --------------------------------------
// Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1
// --------------------------------------
localparam MIN_METASTABLE = 3;
localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME;
localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME;
localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ?
MIN_RST_ASSERTION_TIME + 1 :
(
(MIN_RST_ASSERTION_TIME > LARGER)?
MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 :
MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2
);
localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1;
// --------------------------------------
wire merged_reset;
wire merged_reset_req_in;
wire reset_out_pre;
wire reset_req_pre;
// Registers and Interconnect
(*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain;
reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain;
reg r_sync_rst;
reg r_early_rst;
// --------------------------------------
// "Or" all the input resets together
// --------------------------------------
assign merged_reset = (
reset_in0 |
reset_in1 |
reset_in2 |
reset_in3 |
reset_in4 |
reset_in5 |
reset_in6 |
reset_in7 |
reset_in8 |
reset_in9 |
reset_in10 |
reset_in11 |
reset_in12 |
reset_in13 |
reset_in14 |
reset_in15
);
assign merged_reset_req_in = (
( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) |
( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) |
( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) |
( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) |
( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) |
( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) |
( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) |
( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) |
( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) |
( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) |
( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) |
( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) |
( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) |
( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) |
( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) |
( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0)
);
// --------------------------------------
// And if required, synchronize it to the required clock domain,
// with the correct synchronization type
// --------------------------------------
generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin
assign reset_out_pre = merged_reset;
assign reset_req_pre = merged_reset_req_in;
end else begin
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET)
)
alt_rst_sync_uq1
(
.clk (clk),
.reset_in (merged_reset),
.reset_out (reset_out_pre)
);
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(0)
)
alt_rst_req_sync_uq1
(
.clk (clk),
.reset_in (merged_reset_req_in),
.reset_out (reset_req_pre)
);
end
endgenerate
generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )|
( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin
always @* begin
reset_out = reset_out_pre;
reset_req = reset_req_pre;
end
end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin
wire reset_out_pre2;
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH+1),
.ASYNC_RESET(0)
)
alt_rst_sync_uq2
(
.clk (clk),
.reset_in (reset_out_pre),
.reset_out (reset_out_pre2)
);
always @* begin
reset_out = reset_out_pre2;
reset_req = reset_req_pre;
end
end
else begin
// 3-FF Metastability Synchronizer
initial
begin
altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}};
end
always @(posedge clk)
begin
altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <=
{altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre};
end
// Synchronous reset pipe
initial
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
always @(posedge clk)
begin
if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1)
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
else
begin
r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]};
end
end
// Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition
// matches the early input.
always @(posedge clk)
begin
case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst})
3'b000: r_sync_rst <= 1'b0; // Not reset
3'b001: r_sync_rst <= 1'b0;
3'b010: r_sync_rst <= 1'b0;
3'b011: r_sync_rst <= 1'b1;
3'b100: r_sync_rst <= 1'b1;
3'b101: r_sync_rst <= 1'b1;
3'b110: r_sync_rst <= 1'b1;
3'b111: r_sync_rst <= 1'b1; // In Reset
default: r_sync_rst <= 1'b1;
endcase
case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre})
2'b00: r_early_rst <= 1'b0; // Not reset
2'b01: r_early_rst <= 1'b1; // Coming out of reset
2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design.
2'b11: r_early_rst <= 1'b1; // Held in reset
default: r_early_rst <= 1'b1;
endcase
end
always @* begin
reset_out = r_sync_rst;
reset_req = r_early_rst;
end
end
endgenerate
endmodule
|
module altera_reset_controller
#(
parameter NUM_RESET_INPUTS = 6,
parameter USE_RESET_REQUEST_IN0 = 0,
parameter USE_RESET_REQUEST_IN1 = 0,
parameter USE_RESET_REQUEST_IN2 = 0,
parameter USE_RESET_REQUEST_IN3 = 0,
parameter USE_RESET_REQUEST_IN4 = 0,
parameter USE_RESET_REQUEST_IN5 = 0,
parameter USE_RESET_REQUEST_IN6 = 0,
parameter USE_RESET_REQUEST_IN7 = 0,
parameter USE_RESET_REQUEST_IN8 = 0,
parameter USE_RESET_REQUEST_IN9 = 0,
parameter USE_RESET_REQUEST_IN10 = 0,
parameter USE_RESET_REQUEST_IN11 = 0,
parameter USE_RESET_REQUEST_IN12 = 0,
parameter USE_RESET_REQUEST_IN13 = 0,
parameter USE_RESET_REQUEST_IN14 = 0,
parameter USE_RESET_REQUEST_IN15 = 0,
parameter OUTPUT_RESET_SYNC_EDGES = "deassert",
parameter SYNC_DEPTH = 2,
parameter RESET_REQUEST_PRESENT = 0,
parameter RESET_REQ_WAIT_TIME = 3,
parameter MIN_RST_ASSERTION_TIME = 11,
parameter RESET_REQ_EARLY_DSRT_TIME = 4,
parameter ADAPT_RESET_REQUEST = 0
)
(
// --------------------------------------
// We support up to 16 reset inputs, for now
// --------------------------------------
input reset_in0,
input reset_in1,
input reset_in2,
input reset_in3,
input reset_in4,
input reset_in5,
input reset_in6,
input reset_in7,
input reset_in8,
input reset_in9,
input reset_in10,
input reset_in11,
input reset_in12,
input reset_in13,
input reset_in14,
input reset_in15,
input reset_req_in0,
input reset_req_in1,
input reset_req_in2,
input reset_req_in3,
input reset_req_in4,
input reset_req_in5,
input reset_req_in6,
input reset_req_in7,
input reset_req_in8,
input reset_req_in9,
input reset_req_in10,
input reset_req_in11,
input reset_req_in12,
input reset_req_in13,
input reset_req_in14,
input reset_req_in15,
input clk,
output reg reset_out,
output reg reset_req
);
// Always use async reset synchronizer if reset_req is used
localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert");
// --------------------------------------
// Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1
// --------------------------------------
localparam MIN_METASTABLE = 3;
localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME;
localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME;
localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ?
MIN_RST_ASSERTION_TIME + 1 :
(
(MIN_RST_ASSERTION_TIME > LARGER)?
MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 :
MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2
);
localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1;
// --------------------------------------
wire merged_reset;
wire merged_reset_req_in;
wire reset_out_pre;
wire reset_req_pre;
// Registers and Interconnect
(*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain;
reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain;
reg r_sync_rst;
reg r_early_rst;
// --------------------------------------
// "Or" all the input resets together
// --------------------------------------
assign merged_reset = (
reset_in0 |
reset_in1 |
reset_in2 |
reset_in3 |
reset_in4 |
reset_in5 |
reset_in6 |
reset_in7 |
reset_in8 |
reset_in9 |
reset_in10 |
reset_in11 |
reset_in12 |
reset_in13 |
reset_in14 |
reset_in15
);
assign merged_reset_req_in = (
( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) |
( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) |
( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) |
( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) |
( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) |
( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) |
( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) |
( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) |
( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) |
( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) |
( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) |
( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) |
( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) |
( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) |
( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) |
( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0)
);
// --------------------------------------
// And if required, synchronize it to the required clock domain,
// with the correct synchronization type
// --------------------------------------
generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin
assign reset_out_pre = merged_reset;
assign reset_req_pre = merged_reset_req_in;
end else begin
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET)
)
alt_rst_sync_uq1
(
.clk (clk),
.reset_in (merged_reset),
.reset_out (reset_out_pre)
);
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(0)
)
alt_rst_req_sync_uq1
(
.clk (clk),
.reset_in (merged_reset_req_in),
.reset_out (reset_req_pre)
);
end
endgenerate
generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )|
( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin
always @* begin
reset_out = reset_out_pre;
reset_req = reset_req_pre;
end
end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin
wire reset_out_pre2;
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH+1),
.ASYNC_RESET(0)
)
alt_rst_sync_uq2
(
.clk (clk),
.reset_in (reset_out_pre),
.reset_out (reset_out_pre2)
);
always @* begin
reset_out = reset_out_pre2;
reset_req = reset_req_pre;
end
end
else begin
// 3-FF Metastability Synchronizer
initial
begin
altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}};
end
always @(posedge clk)
begin
altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <=
{altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre};
end
// Synchronous reset pipe
initial
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
always @(posedge clk)
begin
if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1)
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
else
begin
r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]};
end
end
// Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition
// matches the early input.
always @(posedge clk)
begin
case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst})
3'b000: r_sync_rst <= 1'b0; // Not reset
3'b001: r_sync_rst <= 1'b0;
3'b010: r_sync_rst <= 1'b0;
3'b011: r_sync_rst <= 1'b1;
3'b100: r_sync_rst <= 1'b1;
3'b101: r_sync_rst <= 1'b1;
3'b110: r_sync_rst <= 1'b1;
3'b111: r_sync_rst <= 1'b1; // In Reset
default: r_sync_rst <= 1'b1;
endcase
case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre})
2'b00: r_early_rst <= 1'b0; // Not reset
2'b01: r_early_rst <= 1'b1; // Coming out of reset
2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design.
2'b11: r_early_rst <= 1'b1; // Held in reset
default: r_early_rst <= 1'b1;
endcase
end
always @* begin
reset_out = r_sync_rst;
reset_req = r_early_rst;
end
end
endgenerate
endmodule
|
module altera_reset_controller
#(
parameter NUM_RESET_INPUTS = 6,
parameter USE_RESET_REQUEST_IN0 = 0,
parameter USE_RESET_REQUEST_IN1 = 0,
parameter USE_RESET_REQUEST_IN2 = 0,
parameter USE_RESET_REQUEST_IN3 = 0,
parameter USE_RESET_REQUEST_IN4 = 0,
parameter USE_RESET_REQUEST_IN5 = 0,
parameter USE_RESET_REQUEST_IN6 = 0,
parameter USE_RESET_REQUEST_IN7 = 0,
parameter USE_RESET_REQUEST_IN8 = 0,
parameter USE_RESET_REQUEST_IN9 = 0,
parameter USE_RESET_REQUEST_IN10 = 0,
parameter USE_RESET_REQUEST_IN11 = 0,
parameter USE_RESET_REQUEST_IN12 = 0,
parameter USE_RESET_REQUEST_IN13 = 0,
parameter USE_RESET_REQUEST_IN14 = 0,
parameter USE_RESET_REQUEST_IN15 = 0,
parameter OUTPUT_RESET_SYNC_EDGES = "deassert",
parameter SYNC_DEPTH = 2,
parameter RESET_REQUEST_PRESENT = 0,
parameter RESET_REQ_WAIT_TIME = 3,
parameter MIN_RST_ASSERTION_TIME = 11,
parameter RESET_REQ_EARLY_DSRT_TIME = 4,
parameter ADAPT_RESET_REQUEST = 0
)
(
// --------------------------------------
// We support up to 16 reset inputs, for now
// --------------------------------------
input reset_in0,
input reset_in1,
input reset_in2,
input reset_in3,
input reset_in4,
input reset_in5,
input reset_in6,
input reset_in7,
input reset_in8,
input reset_in9,
input reset_in10,
input reset_in11,
input reset_in12,
input reset_in13,
input reset_in14,
input reset_in15,
input reset_req_in0,
input reset_req_in1,
input reset_req_in2,
input reset_req_in3,
input reset_req_in4,
input reset_req_in5,
input reset_req_in6,
input reset_req_in7,
input reset_req_in8,
input reset_req_in9,
input reset_req_in10,
input reset_req_in11,
input reset_req_in12,
input reset_req_in13,
input reset_req_in14,
input reset_req_in15,
input clk,
output reg reset_out,
output reg reset_req
);
// Always use async reset synchronizer if reset_req is used
localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert");
// --------------------------------------
// Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1
// --------------------------------------
localparam MIN_METASTABLE = 3;
localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME;
localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME;
localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ?
MIN_RST_ASSERTION_TIME + 1 :
(
(MIN_RST_ASSERTION_TIME > LARGER)?
MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 :
MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2
);
localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1;
// --------------------------------------
wire merged_reset;
wire merged_reset_req_in;
wire reset_out_pre;
wire reset_req_pre;
// Registers and Interconnect
(*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain;
reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain;
reg r_sync_rst;
reg r_early_rst;
// --------------------------------------
// "Or" all the input resets together
// --------------------------------------
assign merged_reset = (
reset_in0 |
reset_in1 |
reset_in2 |
reset_in3 |
reset_in4 |
reset_in5 |
reset_in6 |
reset_in7 |
reset_in8 |
reset_in9 |
reset_in10 |
reset_in11 |
reset_in12 |
reset_in13 |
reset_in14 |
reset_in15
);
assign merged_reset_req_in = (
( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) |
( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) |
( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) |
( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) |
( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) |
( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) |
( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) |
( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) |
( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) |
( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) |
( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) |
( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) |
( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) |
( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) |
( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) |
( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0)
);
// --------------------------------------
// And if required, synchronize it to the required clock domain,
// with the correct synchronization type
// --------------------------------------
generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin
assign reset_out_pre = merged_reset;
assign reset_req_pre = merged_reset_req_in;
end else begin
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET)
)
alt_rst_sync_uq1
(
.clk (clk),
.reset_in (merged_reset),
.reset_out (reset_out_pre)
);
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(0)
)
alt_rst_req_sync_uq1
(
.clk (clk),
.reset_in (merged_reset_req_in),
.reset_out (reset_req_pre)
);
end
endgenerate
generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )|
( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin
always @* begin
reset_out = reset_out_pre;
reset_req = reset_req_pre;
end
end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin
wire reset_out_pre2;
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH+1),
.ASYNC_RESET(0)
)
alt_rst_sync_uq2
(
.clk (clk),
.reset_in (reset_out_pre),
.reset_out (reset_out_pre2)
);
always @* begin
reset_out = reset_out_pre2;
reset_req = reset_req_pre;
end
end
else begin
// 3-FF Metastability Synchronizer
initial
begin
altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}};
end
always @(posedge clk)
begin
altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <=
{altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre};
end
// Synchronous reset pipe
initial
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
always @(posedge clk)
begin
if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1)
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
else
begin
r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]};
end
end
// Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition
// matches the early input.
always @(posedge clk)
begin
case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst})
3'b000: r_sync_rst <= 1'b0; // Not reset
3'b001: r_sync_rst <= 1'b0;
3'b010: r_sync_rst <= 1'b0;
3'b011: r_sync_rst <= 1'b1;
3'b100: r_sync_rst <= 1'b1;
3'b101: r_sync_rst <= 1'b1;
3'b110: r_sync_rst <= 1'b1;
3'b111: r_sync_rst <= 1'b1; // In Reset
default: r_sync_rst <= 1'b1;
endcase
case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre})
2'b00: r_early_rst <= 1'b0; // Not reset
2'b01: r_early_rst <= 1'b1; // Coming out of reset
2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design.
2'b11: r_early_rst <= 1'b1; // Held in reset
default: r_early_rst <= 1'b1;
endcase
end
always @* begin
reset_out = r_sync_rst;
reset_req = r_early_rst;
end
end
endgenerate
endmodule
|
module altera_reset_controller
#(
parameter NUM_RESET_INPUTS = 6,
parameter USE_RESET_REQUEST_IN0 = 0,
parameter USE_RESET_REQUEST_IN1 = 0,
parameter USE_RESET_REQUEST_IN2 = 0,
parameter USE_RESET_REQUEST_IN3 = 0,
parameter USE_RESET_REQUEST_IN4 = 0,
parameter USE_RESET_REQUEST_IN5 = 0,
parameter USE_RESET_REQUEST_IN6 = 0,
parameter USE_RESET_REQUEST_IN7 = 0,
parameter USE_RESET_REQUEST_IN8 = 0,
parameter USE_RESET_REQUEST_IN9 = 0,
parameter USE_RESET_REQUEST_IN10 = 0,
parameter USE_RESET_REQUEST_IN11 = 0,
parameter USE_RESET_REQUEST_IN12 = 0,
parameter USE_RESET_REQUEST_IN13 = 0,
parameter USE_RESET_REQUEST_IN14 = 0,
parameter USE_RESET_REQUEST_IN15 = 0,
parameter OUTPUT_RESET_SYNC_EDGES = "deassert",
parameter SYNC_DEPTH = 2,
parameter RESET_REQUEST_PRESENT = 0,
parameter RESET_REQ_WAIT_TIME = 3,
parameter MIN_RST_ASSERTION_TIME = 11,
parameter RESET_REQ_EARLY_DSRT_TIME = 4,
parameter ADAPT_RESET_REQUEST = 0
)
(
// --------------------------------------
// We support up to 16 reset inputs, for now
// --------------------------------------
input reset_in0,
input reset_in1,
input reset_in2,
input reset_in3,
input reset_in4,
input reset_in5,
input reset_in6,
input reset_in7,
input reset_in8,
input reset_in9,
input reset_in10,
input reset_in11,
input reset_in12,
input reset_in13,
input reset_in14,
input reset_in15,
input reset_req_in0,
input reset_req_in1,
input reset_req_in2,
input reset_req_in3,
input reset_req_in4,
input reset_req_in5,
input reset_req_in6,
input reset_req_in7,
input reset_req_in8,
input reset_req_in9,
input reset_req_in10,
input reset_req_in11,
input reset_req_in12,
input reset_req_in13,
input reset_req_in14,
input reset_req_in15,
input clk,
output reg reset_out,
output reg reset_req
);
// Always use async reset synchronizer if reset_req is used
localparam ASYNC_RESET = (OUTPUT_RESET_SYNC_EDGES == "deassert");
// --------------------------------------
// Local parameter to control the reset_req and reset_out timing when RESET_REQUEST_PRESENT==1
// --------------------------------------
localparam MIN_METASTABLE = 3;
localparam RSTREQ_ASRT_SYNC_TAP = MIN_METASTABLE + RESET_REQ_WAIT_TIME;
localparam LARGER = RESET_REQ_WAIT_TIME > RESET_REQ_EARLY_DSRT_TIME ? RESET_REQ_WAIT_TIME : RESET_REQ_EARLY_DSRT_TIME;
localparam ASSERTION_CHAIN_LENGTH = (MIN_METASTABLE > LARGER) ?
MIN_RST_ASSERTION_TIME + 1 :
(
(MIN_RST_ASSERTION_TIME > LARGER)?
MIN_RST_ASSERTION_TIME + (LARGER - MIN_METASTABLE + 1) + 1 :
MIN_RST_ASSERTION_TIME + RESET_REQ_EARLY_DSRT_TIME + RESET_REQ_WAIT_TIME - MIN_METASTABLE + 2
);
localparam RESET_REQ_DRST_TAP = RESET_REQ_EARLY_DSRT_TIME + 1;
// --------------------------------------
wire merged_reset;
wire merged_reset_req_in;
wire reset_out_pre;
wire reset_req_pre;
// Registers and Interconnect
(*preserve*) reg [RSTREQ_ASRT_SYNC_TAP: 0] altera_reset_synchronizer_int_chain;
reg [ASSERTION_CHAIN_LENGTH-1: 0] r_sync_rst_chain;
reg r_sync_rst;
reg r_early_rst;
// --------------------------------------
// "Or" all the input resets together
// --------------------------------------
assign merged_reset = (
reset_in0 |
reset_in1 |
reset_in2 |
reset_in3 |
reset_in4 |
reset_in5 |
reset_in6 |
reset_in7 |
reset_in8 |
reset_in9 |
reset_in10 |
reset_in11 |
reset_in12 |
reset_in13 |
reset_in14 |
reset_in15
);
assign merged_reset_req_in = (
( (USE_RESET_REQUEST_IN0 == 1) ? reset_req_in0 : 1'b0) |
( (USE_RESET_REQUEST_IN1 == 1) ? reset_req_in1 : 1'b0) |
( (USE_RESET_REQUEST_IN2 == 1) ? reset_req_in2 : 1'b0) |
( (USE_RESET_REQUEST_IN3 == 1) ? reset_req_in3 : 1'b0) |
( (USE_RESET_REQUEST_IN4 == 1) ? reset_req_in4 : 1'b0) |
( (USE_RESET_REQUEST_IN5 == 1) ? reset_req_in5 : 1'b0) |
( (USE_RESET_REQUEST_IN6 == 1) ? reset_req_in6 : 1'b0) |
( (USE_RESET_REQUEST_IN7 == 1) ? reset_req_in7 : 1'b0) |
( (USE_RESET_REQUEST_IN8 == 1) ? reset_req_in8 : 1'b0) |
( (USE_RESET_REQUEST_IN9 == 1) ? reset_req_in9 : 1'b0) |
( (USE_RESET_REQUEST_IN10 == 1) ? reset_req_in10 : 1'b0) |
( (USE_RESET_REQUEST_IN11 == 1) ? reset_req_in11 : 1'b0) |
( (USE_RESET_REQUEST_IN12 == 1) ? reset_req_in12 : 1'b0) |
( (USE_RESET_REQUEST_IN13 == 1) ? reset_req_in13 : 1'b0) |
( (USE_RESET_REQUEST_IN14 == 1) ? reset_req_in14 : 1'b0) |
( (USE_RESET_REQUEST_IN15 == 1) ? reset_req_in15 : 1'b0)
);
// --------------------------------------
// And if required, synchronize it to the required clock domain,
// with the correct synchronization type
// --------------------------------------
generate if (OUTPUT_RESET_SYNC_EDGES == "none" && (RESET_REQUEST_PRESENT==0)) begin
assign reset_out_pre = merged_reset;
assign reset_req_pre = merged_reset_req_in;
end else begin
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(RESET_REQUEST_PRESENT? 1'b1 : ASYNC_RESET)
)
alt_rst_sync_uq1
(
.clk (clk),
.reset_in (merged_reset),
.reset_out (reset_out_pre)
);
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH),
.ASYNC_RESET(0)
)
alt_rst_req_sync_uq1
(
.clk (clk),
.reset_in (merged_reset_req_in),
.reset_out (reset_req_pre)
);
end
endgenerate
generate if ( ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==0) )|
( (ADAPT_RESET_REQUEST == 1) && (OUTPUT_RESET_SYNC_EDGES != "deassert") ) ) begin
always @* begin
reset_out = reset_out_pre;
reset_req = reset_req_pre;
end
end else if ( (RESET_REQUEST_PRESENT == 0) && (ADAPT_RESET_REQUEST==1) ) begin
wire reset_out_pre2;
altera_reset_synchronizer
#(
.DEPTH (SYNC_DEPTH+1),
.ASYNC_RESET(0)
)
alt_rst_sync_uq2
(
.clk (clk),
.reset_in (reset_out_pre),
.reset_out (reset_out_pre2)
);
always @* begin
reset_out = reset_out_pre2;
reset_req = reset_req_pre;
end
end
else begin
// 3-FF Metastability Synchronizer
initial
begin
altera_reset_synchronizer_int_chain <= {RSTREQ_ASRT_SYNC_TAP{1'b1}};
end
always @(posedge clk)
begin
altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP:0] <=
{altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP-1:0], reset_out_pre};
end
// Synchronous reset pipe
initial
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
always @(posedge clk)
begin
if (altera_reset_synchronizer_int_chain[MIN_METASTABLE-1] == 1'b1)
begin
r_sync_rst_chain <= {ASSERTION_CHAIN_LENGTH{1'b1}};
end
else
begin
r_sync_rst_chain <= {1'b0, r_sync_rst_chain[ASSERTION_CHAIN_LENGTH-1:1]};
end
end
// Standard synchronous reset output. From 0-1, the transition lags the early output. For 1->0, the transition
// matches the early input.
always @(posedge clk)
begin
case ({altera_reset_synchronizer_int_chain[RSTREQ_ASRT_SYNC_TAP], r_sync_rst_chain[1], r_sync_rst})
3'b000: r_sync_rst <= 1'b0; // Not reset
3'b001: r_sync_rst <= 1'b0;
3'b010: r_sync_rst <= 1'b0;
3'b011: r_sync_rst <= 1'b1;
3'b100: r_sync_rst <= 1'b1;
3'b101: r_sync_rst <= 1'b1;
3'b110: r_sync_rst <= 1'b1;
3'b111: r_sync_rst <= 1'b1; // In Reset
default: r_sync_rst <= 1'b1;
endcase
case ({r_sync_rst_chain[1], r_sync_rst_chain[RESET_REQ_DRST_TAP] | reset_req_pre})
2'b00: r_early_rst <= 1'b0; // Not reset
2'b01: r_early_rst <= 1'b1; // Coming out of reset
2'b10: r_early_rst <= 1'b0; // Spurious reset - should not be possible via synchronous design.
2'b11: r_early_rst <= 1'b1; // Held in reset
default: r_early_rst <= 1'b1;
endcase
end
always @* begin
reset_out = r_sync_rst;
reset_req = r_early_rst;
end
end
endgenerate
endmodule
|
module
.idelayctrl_refclk (),
.phy_dout (phy_dout),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phy_ctl_wd (phy_ctl_wd_temp),
.phy_ctl_wr (phy_ctl_wr_temp),
.if_empty_def (phy_if_empty_def),
.if_rst (phy_if_reset),
.phyGo ('b1),
.aux_in_1 (aux_in_1),
.aux_in_2 (aux_in_2),
// No support yet for different data offsets for different I/O banks
// (possible use in supporting wider range of skew among bytes)
.data_offset_1 (data_offset_1_temp),
.data_offset_2 (data_offset_2_temp),
.cke_in (),
.if_a_empty (),
.if_empty (if_empty),
.if_empty_or (),
.if_empty_and (),
.of_ctl_a_full (),
// .of_data_a_full (phy_data_full),
.of_ctl_full (phy_cmd_full),
.of_data_full (),
.pre_data_a_full (phy_pre_data_a_full),
.idelay_ld (idelay_ld),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.input_sink (),
.phy_din (phy_din),
.phy_ctl_a_full (),
.phy_ctl_full (phy_ctl_full_temp),
.mem_dq_out (mem_dq_out),
.mem_dq_ts (mem_dq_ts),
.mem_dq_in (mem_dq_in),
.mem_dqs_out (mem_dqs_out),
.mem_dqs_ts (mem_dqs_ts),
.mem_dqs_in (mem_dqs_in),
.aux_out (aux_out),
.phy_ctl_ready (),
.rst_out (),
.ddr_clk (ddr_clk),
//.rclk (),
.mcGo (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.calib_zero_lanes ('b0),
.po_fine_enable (po_fine_enable),
.po_coarse_enable (po_coarse_enable),
.po_fine_inc (po_fine_inc),
.po_coarse_inc (po_coarse_inc),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (),
.po_fine_overflow (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (pi_rst_dqs_find),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (dbg_pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (),
.pi_counter_read_val (pi_counter_read_val),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (),
.pi_dqs_found_any (pi_dqs_found),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
// Currently not being used. May be used in future if periodic
// reads become a requirement. This output could be used to signal
// a catastrophic failure in read capture and the need for
// re-calibration.
.pi_dqs_out_of_range (pi_dqs_out_of_range)
,.ref_dll_lock (ref_dll_lock)
,.pi_phase_locked_lanes (dbg_pi_phase_locked_phy4lanes)
,.fine_delay (fine_delay_mod)
,.fine_delay_sel (fine_delay_sel_r)
// ,.rst_phaser_ref (rst_phaser_ref)
);
endmodule
|
module
.idelayctrl_refclk (),
.phy_dout (phy_dout),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phy_ctl_wd (phy_ctl_wd_temp),
.phy_ctl_wr (phy_ctl_wr_temp),
.if_empty_def (phy_if_empty_def),
.if_rst (phy_if_reset),
.phyGo ('b1),
.aux_in_1 (aux_in_1),
.aux_in_2 (aux_in_2),
// No support yet for different data offsets for different I/O banks
// (possible use in supporting wider range of skew among bytes)
.data_offset_1 (data_offset_1_temp),
.data_offset_2 (data_offset_2_temp),
.cke_in (),
.if_a_empty (),
.if_empty (if_empty),
.if_empty_or (),
.if_empty_and (),
.of_ctl_a_full (),
// .of_data_a_full (phy_data_full),
.of_ctl_full (phy_cmd_full),
.of_data_full (),
.pre_data_a_full (phy_pre_data_a_full),
.idelay_ld (idelay_ld),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.input_sink (),
.phy_din (phy_din),
.phy_ctl_a_full (),
.phy_ctl_full (phy_ctl_full_temp),
.mem_dq_out (mem_dq_out),
.mem_dq_ts (mem_dq_ts),
.mem_dq_in (mem_dq_in),
.mem_dqs_out (mem_dqs_out),
.mem_dqs_ts (mem_dqs_ts),
.mem_dqs_in (mem_dqs_in),
.aux_out (aux_out),
.phy_ctl_ready (),
.rst_out (),
.ddr_clk (ddr_clk),
//.rclk (),
.mcGo (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.calib_zero_lanes ('b0),
.po_fine_enable (po_fine_enable),
.po_coarse_enable (po_coarse_enable),
.po_fine_inc (po_fine_inc),
.po_coarse_inc (po_coarse_inc),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (),
.po_fine_overflow (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (pi_rst_dqs_find),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (dbg_pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (),
.pi_counter_read_val (pi_counter_read_val),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (),
.pi_dqs_found_any (pi_dqs_found),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
// Currently not being used. May be used in future if periodic
// reads become a requirement. This output could be used to signal
// a catastrophic failure in read capture and the need for
// re-calibration.
.pi_dqs_out_of_range (pi_dqs_out_of_range)
,.ref_dll_lock (ref_dll_lock)
,.pi_phase_locked_lanes (dbg_pi_phase_locked_phy4lanes)
,.fine_delay (fine_delay_mod)
,.fine_delay_sel (fine_delay_sel_r)
// ,.rst_phaser_ref (rst_phaser_ref)
);
endmodule
|
module
.idelayctrl_refclk (),
.phy_dout (phy_dout),
.phy_cmd_wr_en (phy_cmd_wr_en),
.phy_data_wr_en (phy_data_wr_en),
.phy_rd_en (phy_rd_en),
.phy_ctl_wd (phy_ctl_wd_temp),
.phy_ctl_wr (phy_ctl_wr_temp),
.if_empty_def (phy_if_empty_def),
.if_rst (phy_if_reset),
.phyGo ('b1),
.aux_in_1 (aux_in_1),
.aux_in_2 (aux_in_2),
// No support yet for different data offsets for different I/O banks
// (possible use in supporting wider range of skew among bytes)
.data_offset_1 (data_offset_1_temp),
.data_offset_2 (data_offset_2_temp),
.cke_in (),
.if_a_empty (),
.if_empty (if_empty),
.if_empty_or (),
.if_empty_and (),
.of_ctl_a_full (),
// .of_data_a_full (phy_data_full),
.of_ctl_full (phy_cmd_full),
.of_data_full (),
.pre_data_a_full (phy_pre_data_a_full),
.idelay_ld (idelay_ld),
.idelay_ce (idelay_ce),
.idelay_inc (idelay_inc),
.input_sink (),
.phy_din (phy_din),
.phy_ctl_a_full (),
.phy_ctl_full (phy_ctl_full_temp),
.mem_dq_out (mem_dq_out),
.mem_dq_ts (mem_dq_ts),
.mem_dq_in (mem_dq_in),
.mem_dqs_out (mem_dqs_out),
.mem_dqs_ts (mem_dqs_ts),
.mem_dqs_in (mem_dqs_in),
.aux_out (aux_out),
.phy_ctl_ready (),
.rst_out (),
.ddr_clk (ddr_clk),
//.rclk (),
.mcGo (phy_mc_go),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
.calib_sel (calib_sel),
.calib_in_common (calib_in_common),
.calib_zero_inputs (calib_zero_inputs),
.calib_zero_ctrl (calib_zero_ctrl),
.calib_zero_lanes ('b0),
.po_fine_enable (po_fine_enable),
.po_coarse_enable (po_coarse_enable),
.po_fine_inc (po_fine_inc),
.po_coarse_inc (po_coarse_inc),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (),
.po_fine_overflow (),
.po_counter_read_val (po_counter_read_val),
.pi_rst_dqs_find (pi_rst_dqs_find),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (dbg_pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (),
.pi_counter_read_val (pi_counter_read_val),
.pi_phase_locked (pi_phase_locked),
.pi_phase_locked_all (pi_phase_locked_all),
.pi_dqs_found (),
.pi_dqs_found_any (pi_dqs_found),
.pi_dqs_found_all (pi_dqs_found_all),
.pi_dqs_found_lanes (dbg_pi_dqs_found_lanes_phy4lanes),
// Currently not being used. May be used in future if periodic
// reads become a requirement. This output could be used to signal
// a catastrophic failure in read capture and the need for
// re-calibration.
.pi_dqs_out_of_range (pi_dqs_out_of_range)
,.ref_dll_lock (ref_dll_lock)
,.pi_phase_locked_lanes (dbg_pi_phase_locked_phy4lanes)
,.fine_delay (fine_delay_mod)
,.fine_delay_sel (fine_delay_sel_r)
// ,.rst_phaser_ref (rst_phaser_ref)
);
endmodule
|
module mig_7series_v2_3_ecc_buf
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_merge_data,
// Inputs
clk, rst, rd_data_addr, rd_data_offset, wr_data_addr,
wr_data_offset, rd_data, wr_ecc_buf
);
input clk;
input rst;
// RMW architecture supports only 16 data buffer entries.
// Allow DATA_BUF_ADDR_WIDTH to be greater than 4, but
// assume the upper bits are used for tagging.
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
wire [4:0] buf_wr_addr;
input [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
reg [4:0] buf_rd_addr_r;
generate
if (DATA_BUF_ADDR_WIDTH >= 4) begin : ge_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{wr_data_addr[3:0], wr_data_offset};
assign buf_wr_addr = {rd_data_addr[3:0], rd_data_offset};
end
else begin : lt_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{{4-DATA_BUF_ADDR_WIDTH{1'b0}},
wr_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
wr_data_offset};
assign buf_wr_addr = {{4-DATA_BUF_ADDR_WIDTH{1'b0}},
rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
rd_data_offset};
end
endgenerate
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] payload;
integer h;
always @(/*AS*/rd_data)
for (h=0; h<2*nCK_PER_CLK; h=h+1)
payload[h*DATA_WIDTH+:DATA_WIDTH] =
rd_data[h*PAYLOAD_WIDTH+:DATA_WIDTH];
input wr_ecc_buf;
localparam BUF_WIDTH = 2*nCK_PER_CLK*DATA_WIDTH;
localparam FULL_RAM_CNT = (BUF_WIDTH/6);
localparam REMAINDER = BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] buf_out_data;
generate
begin : ram_buf
wire [RAM_WIDTH-1:0] buf_in_data;
if (REMAINDER == 0)
assign buf_in_data = payload;
else
assign buf_in_data = {{6-REMAINDER{1'b0}}, payload};
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(buf_out_data[((i*6)+4)+:2]),
.DOB(buf_out_data[((i*6)+2)+:2]),
.DOC(buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(buf_in_data[((i*6)+4)+:2]),
.DIB(buf_in_data[((i*6)+2)+:2]),
.DIC(buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(buf_rd_addr_r),
.ADDRB(buf_rd_addr_r),
.ADDRC(buf_rd_addr_r),
.ADDRD(buf_wr_addr),
.WE(wr_ecc_buf),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
endgenerate
output wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
assign rd_merge_data = buf_out_data[2*nCK_PER_CLK*DATA_WIDTH-1:0];
endmodule
|
module mig_7series_v2_3_ecc_buf
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter DATA_BUF_ADDR_WIDTH = 4,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DATA_WIDTH = 64,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_merge_data,
// Inputs
clk, rst, rd_data_addr, rd_data_offset, wr_data_addr,
wr_data_offset, rd_data, wr_ecc_buf
);
input clk;
input rst;
// RMW architecture supports only 16 data buffer entries.
// Allow DATA_BUF_ADDR_WIDTH to be greater than 4, but
// assume the upper bits are used for tagging.
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
wire [4:0] buf_wr_addr;
input [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
input [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
reg [4:0] buf_rd_addr_r;
generate
if (DATA_BUF_ADDR_WIDTH >= 4) begin : ge_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{wr_data_addr[3:0], wr_data_offset};
assign buf_wr_addr = {rd_data_addr[3:0], rd_data_offset};
end
else begin : lt_4_addr_bits
always @(posedge clk)
buf_rd_addr_r <= #TCQ{{4-DATA_BUF_ADDR_WIDTH{1'b0}},
wr_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
wr_data_offset};
assign buf_wr_addr = {{4-DATA_BUF_ADDR_WIDTH{1'b0}},
rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0],
rd_data_offset};
end
endgenerate
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
reg [2*nCK_PER_CLK*DATA_WIDTH-1:0] payload;
integer h;
always @(/*AS*/rd_data)
for (h=0; h<2*nCK_PER_CLK; h=h+1)
payload[h*DATA_WIDTH+:DATA_WIDTH] =
rd_data[h*PAYLOAD_WIDTH+:DATA_WIDTH];
input wr_ecc_buf;
localparam BUF_WIDTH = 2*nCK_PER_CLK*DATA_WIDTH;
localparam FULL_RAM_CNT = (BUF_WIDTH/6);
localparam REMAINDER = BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] buf_out_data;
generate
begin : ram_buf
wire [RAM_WIDTH-1:0] buf_in_data;
if (REMAINDER == 0)
assign buf_in_data = payload;
else
assign buf_in_data = {{6-REMAINDER{1'b0}}, payload};
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(buf_out_data[((i*6)+4)+:2]),
.DOB(buf_out_data[((i*6)+2)+:2]),
.DOC(buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(buf_in_data[((i*6)+4)+:2]),
.DIB(buf_in_data[((i*6)+2)+:2]),
.DIC(buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(buf_rd_addr_r),
.ADDRB(buf_rd_addr_r),
.ADDRC(buf_rd_addr_r),
.ADDRD(buf_wr_addr),
.WE(wr_ecc_buf),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
endgenerate
output wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
assign rd_merge_data = buf_out_data[2*nCK_PER_CLK*DATA_WIDTH-1:0];
endmodule
|
module mig_7series_v2_3_fi_xor #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
// External Memory Data Width
parameter integer DQ_WIDTH = 72,
parameter integer DQS_WIDTH = 9,
parameter integer nCK_PER_CLK = 4
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk ,
input wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] wrdata_in ,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] wrdata_out ,
input wire wrdata_en ,
input wire [DQS_WIDTH-1:0] fi_xor_we ,
input wire [DQ_WIDTH-1:0] fi_xor_wrdata
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam DQ_PER_DQS = DQ_WIDTH / DQS_WIDTH;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [DQ_WIDTH-1:0] fi_xor_data = {DQ_WIDTH{1'b0}};
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
///////////////////////////////////////////////////////////////////////////////
// Register in the fi_xor_wrdata on a byte width basis
generate
begin
genvar i;
for (i = 0; i < DQS_WIDTH; i = i + 1) begin : assign_fi_xor_data
always @(posedge clk) begin
if (wrdata_en) begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= {DQ_PER_DQS{1'b0}};
end
else if (fi_xor_we[i]) begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= fi_xor_wrdata[i*DQ_PER_DQS+:DQ_PER_DQS];
end
else begin
fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS] <= fi_xor_data[i*DQ_PER_DQS+:DQ_PER_DQS];
end
end
end
end
endgenerate
assign wrdata_out[0+:DQ_WIDTH] = wrdata_in[0+:DQ_WIDTH] ^ fi_xor_data[0+:DQ_WIDTH];
// Pass through upper bits
assign wrdata_out[DQ_WIDTH+:(2*nCK_PER_CLK-1)*DQ_WIDTH] = wrdata_in[DQ_WIDTH+:(2*nCK_PER_CLK-1)*DQ_WIDTH];
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_mc #
(
parameter TCQ = 100, // clk->out delay(sim only)
parameter ADDR_CMD_MODE = "1T", // registered or
// 1Tfered mem?
parameter BANK_WIDTH = 3, // bank address width
parameter BM_CNT_WIDTH = 2, // # BM counter width
// i.e., log2(nBANK_MACHS)
parameter BURST_MODE = "8", // Burst length
parameter CL = 5, // Read CAS latency
// (in clk cyc)
parameter CMD_PIPE_PLUS1 = "ON", // add register stage
// between MC and PHY
parameter COL_WIDTH = 12, // column address width
parameter CS_WIDTH = 4, // # of unique CS outputs
parameter CWL = 5, // Write CAS latency
// (in clk cyc)
parameter DATA_BUF_ADDR_WIDTH = 8, // User request tag (e.g.
// user src/dest buf addr)
parameter DATA_BUF_OFFSET_WIDTH = 1, // User buffer offset width
parameter DATA_WIDTH = 64, // Data bus width
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_TYPE = "DDR3", // Memory I/F type:
// "DDR3", "DDR2"
parameter ECC = "OFF", // ECC ON/OFF?
parameter ECC_WIDTH = 8, // # of ECC bits
parameter MAINT_PRESCALER_PERIOD= 200000, // maintenance period (ps)
parameter MC_ERR_ADDR_WIDTH = 31, // # of error address bits
parameter nBANK_MACHS = 4, // # of bank machines (BM)
parameter nCK_PER_CLK = 4, // DRAM clock : MC clock
// frequency ratio
parameter nCS_PER_RANK = 1, // # of unique CS outputs
// per rank
parameter nREFRESH_BANK = 1, // # of REF cmds to pull-in
parameter nSLOTS = 1, // # DIMM slots in system
parameter ORDERING = "NORM", // request ordering mode
parameter PAYLOAD_WIDTH = 64, // Width of data payload
// from PHY
parameter RANK_WIDTH = 2, // # of bits to count ranks
parameter RANKS = 4, // # of ranks of DRAM
parameter REG_CTRL = "ON", // "ON" for registered DIMM
parameter ROW_WIDTH = 16, // row address width
parameter RTT_NOM = "40", // Nominal ODT value
parameter RTT_WR = "120", // Write ODT value
parameter SLOT_0_CONFIG = 8'b0000_0101, // ranks allowed in slot 0
parameter SLOT_1_CONFIG = 8'b0000_1010, // ranks allowed in slot 1
parameter STARVE_LIMIT = 2, // max # of times a user
// request is allowed to
// lose arbitration when
// reordering is enabled
parameter tCK = 2500, // memory clk period(ps)
parameter tCKE = 10000, // CKE minimum pulse (ps)
parameter tFAW = 40000, // four activate window(ps)
parameter tRAS = 37500, // ACT->PRE cmd period (ps)
parameter tRCD = 12500, // ACT->R/W delay (ps)
parameter tREFI = 7800000, // average periodic
// refresh interval(ps)
parameter CKE_ODT_AUX = "FALSE", //Parameter to turn on/off the aux_out signal
parameter tRFC = 110000, // REF->ACT/REF delay (ps)
parameter tRP = 12500, // PRE cmd period (ps)
parameter tRRD = 10000, // ACT->ACT period (ps)
parameter tRTP = 7500, // Read->PRE cmd delay (ps)
parameter tWTR = 7500, // Internal write->read
// delay (ps)
// requiring DLL lock (CKs)
parameter tZQCS = 64, // ZQCS cmd period (CKs)
parameter tZQI = 128_000_000, // ZQCS interval (ps)
parameter tPRDI = 1_000_000, // pS
parameter USER_REFRESH = "OFF" // Whether user manages REF
)
(
// System inputs
input clk,
input rst,
// Physical memory slot presence
input [7:0] slot_0_present,
input [7:0] slot_1_present,
// Native Interface
input [2:0] cmd,
input [DATA_BUF_ADDR_WIDTH-1:0] data_buf_addr,
input hi_priority,
input size,
input [BANK_WIDTH-1:0] bank,
input [COL_WIDTH-1:0] col,
input [RANK_WIDTH-1:0] rank,
input [ROW_WIDTH-1:0] row,
input use_addr,
input [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] wr_data,
input [2*nCK_PER_CLK*DATA_WIDTH/8-1:0] wr_data_mask,
output accept,
output accept_ns,
output [BM_CNT_WIDTH-1:0] bank_mach_next,
output wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data,
output [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr,
output rd_data_en,
output rd_data_end,
output [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset,
output reg [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr /* synthesis syn_maxfan = 30 */,
output reg wr_data_en,
output reg [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset /* synthesis syn_maxfan = 30 */,
output mc_read_idle,
output mc_ref_zq_wip,
// ECC interface
input correct_en,
input [2*nCK_PER_CLK-1:0] raw_not_ecc,
input [DQS_WIDTH - 1:0] fi_xor_we,
input [DQ_WIDTH -1 :0 ] fi_xor_wrdata,
output [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr,
output [2*nCK_PER_CLK-1:0] ecc_single,
output [2*nCK_PER_CLK-1:0] ecc_multiple,
// User maintenance requests
input app_periodic_rd_req,
input app_ref_req,
input app_zq_req,
input app_sr_req,
output app_sr_active,
output app_ref_ack,
output app_zq_ack,
// MC <==> PHY Interface
output reg [nCK_PER_CLK-1:0] mc_ras_n,
output reg [nCK_PER_CLK-1:0] mc_cas_n,
output reg [nCK_PER_CLK-1:0] mc_we_n,
output reg [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address,
output reg [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank,
output reg [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n,
output reg [1:0] mc_odt,
output reg [nCK_PER_CLK-1:0] mc_cke,
output wire mc_reset_n,
output wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata,
output wire [2*nCK_PER_CLK*DQ_WIDTH/8-1:0]mc_wrdata_mask,
output reg mc_wrdata_en,
output wire mc_cmd_wren,
output wire mc_ctl_wren,
output reg [2:0] mc_cmd,
output reg [5:0] mc_data_offset,
output reg [5:0] mc_data_offset_1,
output reg [5:0] mc_data_offset_2,
output reg [1:0] mc_cas_slot,
output reg [3:0] mc_aux_out0,
output reg [3:0] mc_aux_out1,
output reg [1:0] mc_rank_cnt,
input phy_mc_ctl_full,
input phy_mc_cmd_full,
input phy_mc_data_full,
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rd_data,
input phy_rddata_valid,
input init_calib_complete,
input [6*RANKS-1:0] calib_rd_data_offset,
input [6*RANKS-1:0] calib_rd_data_offset_1,
input [6*RANKS-1:0] calib_rd_data_offset_2
);
assign mc_reset_n = 1'b1; // never reset memory
assign mc_cmd_wren = 1'b1; // always write CMD FIFO(issue DSEL when idle)
assign mc_ctl_wren = 1'b1; // always write CTL FIFO(issue nondata when idle)
// Ensure there is always at least one rank present during operation
`ifdef MC_SVA
ranks_present: assert property
(@(posedge clk) (rst || (|(slot_0_present | slot_1_present))));
`endif
// Reserved. Do not change.
localparam nPHY_WRLAT = 2;
// always delay write data control unless ECC mode is enabled
localparam DELAY_WR_DATA_CNTRL = ECC == "ON" ? 0 : 1;
// Ensure that write control is delayed for appropriate CWL
/*`ifdef MC_SVA
delay_wr_data_zero_CWL_le_6: assert property
(@(posedge clk) ((CWL > 6) || (DELAY_WR_DATA_CNTRL == 0)));
`endif*/
// Never retrieve WR_DATA_ADDR early
localparam EARLY_WR_DATA_ADDR = "OFF";
//***************************************************************************
// Convert timing parameters from time to clock cycles
//***************************************************************************
localparam nCKE = cdiv(tCKE, tCK);
localparam nRP = cdiv(tRP, tCK);
localparam nRCD = cdiv(tRCD, tCK);
localparam nRAS = cdiv(tRAS, tCK);
localparam nFAW = cdiv(tFAW, tCK);
localparam nRFC = cdiv(tRFC, tCK);
// Convert tWR. As per specification, write recover for autoprecharge
// cycles doesn't support values of 9 and 11. Round up 9 to 10 and 11 to 12
localparam nWR_CK = cdiv(15000, tCK) ;
localparam nWR = (nWR_CK == 9) ? 10 : (nWR_CK == 11) ? 12 : nWR_CK;
// tRRD, tWTR at tRTP have a 4 cycle floor in DDR3 and 2 cycle floor in DDR2
localparam nRRD_CK = cdiv(tRRD, tCK);
localparam nRRD = (DRAM_TYPE == "DDR3") ? (nRRD_CK < 4) ? 4 : nRRD_CK
: (nRRD_CK < 2) ? 2 : nRRD_CK;
localparam nWTR_CK = cdiv(tWTR, tCK);
localparam nWTR = (DRAM_TYPE == "DDR3") ? (nWTR_CK < 4) ? 4 : nWTR_CK
: (nWTR_CK < 2) ? 2 : nWTR_CK;
localparam nRTP_CK = cdiv(tRTP, tCK);
localparam nRTP = (DRAM_TYPE == "DDR3") ? (nRTP_CK < 4) ? 4 : nRTP_CK
: (nRTP_CK < 2) ? 2 : nRTP_CK;
// Add a cycle to CL/CWL for the register in RDIMM devices
localparam CWL_M = (REG_CTRL == "ON") ? CWL + 1 : CWL;
localparam CL_M = (REG_CTRL == "ON") ? CL + 1 : CL;
// Tuneable delay between read and write data on the DQ bus
localparam DQRD2DQWR_DLY = 4;
// CKE minimum pulse width for self-refresh (SRE->SRX minimum time)
localparam nCKESR = nCKE + 1;
// Delay from SRE to command requiring locked DLL. Currently fixed at 512 for
// all devices per JEDEC spec.
localparam tXSDLL = 512;
//***************************************************************************
// Set up maintenance counter dividers
//***************************************************************************
// CK clock divisor to generate maintenance prescaler period (round down)
localparam MAINT_PRESCALER_DIV = MAINT_PRESCALER_PERIOD / (tCK*nCK_PER_CLK);
// Maintenance prescaler divisor for refresh timer. Essentially, this is
// just (tREFI / MAINT_PRESCALER_PERIOD), but we must account for the worst
// case delay from the time we get a tick from the refresh counter to the
// time that we can actually issue the REF command. Thus, subtract tRCD, CL,
// data burst time and tRP for each implemented bank machine to ensure that
// all transactions can complete before tREFI expires
localparam REFRESH_TIMER_DIV =
USER_REFRESH == "ON" ? 0 :
(tREFI-((tRCD+((CL+4)*tCK)+tRP)*nBANK_MACHS)) / MAINT_PRESCALER_PERIOD;
// Periodic read (RESERVED - not currently required or supported in 7 series)
// tPRDI should only be set to 0
// localparam tPRDI = 0; // Do NOT change.
localparam PERIODIC_RD_TIMER_DIV = tPRDI / MAINT_PRESCALER_PERIOD;
// Convert maintenance prescaler from ps to ns
localparam MAINT_PRESCALER_PERIOD_NS = MAINT_PRESCALER_PERIOD / 1000;
// Maintenance prescaler divisor for ZQ calibration (ZQCS) timer
localparam ZQ_TIMER_DIV = tZQI / MAINT_PRESCALER_PERIOD_NS;
// Bus width required to broadcast a single bit rank signal among all the
// bank machines - 1 bit per rank, per bank
localparam RANK_BM_BV_WIDTH = nBANK_MACHS * RANKS;
//***************************************************************************
// Define 2T, CWL-even mode to enable multi-fabric-cycle 2T commands
//***************************************************************************
localparam EVEN_CWL_2T_MODE =
((ADDR_CMD_MODE == "2T") && (!(CWL % 2))) ? "ON" : "OFF";
//***************************************************************************
// Reserved feature control.
//***************************************************************************
// Open page wait mode is reserved.
// nOP_WAIT is the number of states a bank machine will park itself
// on an otherwise inactive open page before closing the page. If
// nOP_WAIT == 0, open page wait mode is disabled. If nOP_WAIT == -1,
// the bank machine will remain parked until the pool of idle bank machines
// are less than LOW_IDLE_CNT. At which point parked bank machines
// are selected to exit until the number of idle bank machines exceeds the
// LOW_IDLE_CNT.
localparam nOP_WAIT = 0; // Open page mode
localparam LOW_IDLE_CNT = 0; // Low idle bank machine threshold
//***************************************************************************
// Internal wires
//***************************************************************************
wire [RANK_BM_BV_WIDTH-1:0] act_this_rank_r;
wire [ROW_WIDTH-1:0] col_a;
wire [BANK_WIDTH-1:0] col_ba;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
wire col_periodic_rd;
wire [RANK_WIDTH-1:0] col_ra;
wire col_rmw;
wire col_rd_wr;
wire [ROW_WIDTH-1:0] col_row;
wire col_size;
wire [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
wire dq_busy_data;
wire ecc_status_valid;
wire [RANKS-1:0] inhbt_act_faw_r;
wire [RANKS-1:0] inhbt_rd;
wire [RANKS-1:0] inhbt_wr;
wire insert_maint_r1;
wire [RANK_WIDTH-1:0] maint_rank_r;
wire maint_req_r;
wire maint_wip_r;
wire maint_zq_r;
wire maint_sre_r;
wire maint_srx_r;
wire periodic_rd_ack_r;
wire periodic_rd_r;
wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
wire [(RANKS*nBANK_MACHS)-1:0] rank_busy_r;
wire rd_rmw;
wire [RANK_BM_BV_WIDTH-1:0] rd_this_rank_r;
wire [nBANK_MACHS-1:0] sending_col;
wire [nBANK_MACHS-1:0] sending_row;
wire sent_col;
wire sent_col_r;
wire wr_ecc_buf;
wire [RANK_BM_BV_WIDTH-1:0] wr_this_rank_r;
// MC/PHY optional pipeline stage support
wire [nCK_PER_CLK-1:0] mc_ras_n_ns;
wire [nCK_PER_CLK-1:0] mc_cas_n_ns;
wire [nCK_PER_CLK-1:0] mc_we_n_ns;
wire [nCK_PER_CLK*ROW_WIDTH-1:0] mc_address_ns;
wire [nCK_PER_CLK*BANK_WIDTH-1:0] mc_bank_ns;
wire [CS_WIDTH*nCS_PER_RANK*nCK_PER_CLK-1:0] mc_cs_n_ns;
wire [1:0] mc_odt_ns;
wire [nCK_PER_CLK-1:0] mc_cke_ns;
wire [3:0] mc_aux_out0_ns;
wire [3:0] mc_aux_out1_ns;
wire [1:0] mc_rank_cnt_ns = col_ra;
wire [2:0] mc_cmd_ns;
wire [5:0] mc_data_offset_ns;
wire [5:0] mc_data_offset_1_ns;
wire [5:0] mc_data_offset_2_ns;
wire [1:0] mc_cas_slot_ns;
wire mc_wrdata_en_ns;
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr_ns;
wire wr_data_en_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset_ns;
integer i;
// MC Read idle support
wire col_read_fifo_empty;
wire mc_read_idle_ns;
reg mc_read_idle_r;
// MC Maintenance in progress with bus idle indication
wire maint_ref_zq_wip;
wire mc_ref_zq_wip_ns;
reg mc_ref_zq_wip_r;
//***************************************************************************
// Function cdiv
// Description:
// This function performs ceiling division (divide and round-up)
// Inputs:
// num: integer to be divided
// div: divisor
// Outputs:
// cdiv: result of ceiling division (num/div, rounded up)
//***************************************************************************
function integer cdiv (input integer num, input integer div);
begin
// perform division, then add 1 if and only if remainder is non-zero
cdiv = (num/div) + (((num%div)>0) ? 1 : 0);
end
endfunction // cdiv
//***************************************************************************
// Optional pipeline register stage on MC/PHY interface
//***************************************************************************
generate
if (CMD_PIPE_PLUS1 == "ON") begin : cmd_pipe_plus // register interface
always @(posedge clk) begin
mc_address <= #TCQ mc_address_ns;
mc_bank <= #TCQ mc_bank_ns;
mc_cas_n <= #TCQ mc_cas_n_ns;
mc_cs_n <= #TCQ mc_cs_n_ns;
mc_odt <= #TCQ mc_odt_ns;
mc_cke <= #TCQ mc_cke_ns;
mc_aux_out0 <= #TCQ mc_aux_out0_ns;
mc_aux_out1 <= #TCQ mc_aux_out1_ns;
mc_cmd <= #TCQ mc_cmd_ns;
mc_ras_n <= #TCQ mc_ras_n_ns;
mc_we_n <= #TCQ mc_we_n_ns;
mc_data_offset <= #TCQ mc_data_offset_ns;
mc_data_offset_1 <= #TCQ mc_data_offset_1_ns;
mc_data_offset_2 <= #TCQ mc_data_offset_2_ns;
mc_cas_slot <= #TCQ mc_cas_slot_ns;
mc_wrdata_en <= #TCQ mc_wrdata_en_ns;
mc_rank_cnt <= #TCQ mc_rank_cnt_ns;
wr_data_addr <= #TCQ wr_data_addr_ns;
wr_data_en <= #TCQ wr_data_en_ns;
wr_data_offset <= #TCQ wr_data_offset_ns;
end // always @ (posedge clk)
end // block: cmd_pipe_plus
else begin : cmd_pipe_plus0 // don't register interface
always @( mc_address_ns or mc_aux_out0_ns or mc_aux_out1_ns or
mc_bank_ns or mc_cas_n_ns or mc_cmd_ns or mc_cs_n_ns or
mc_odt_ns or mc_cke_ns or mc_data_offset_ns or
mc_data_offset_1_ns or mc_data_offset_2_ns or mc_rank_cnt_ns or
mc_ras_n_ns or mc_we_n_ns or mc_wrdata_en_ns or
wr_data_addr_ns or wr_data_en_ns or wr_data_offset_ns or
mc_cas_slot_ns)
begin
mc_address = #TCQ mc_address_ns;
mc_bank = #TCQ mc_bank_ns;
mc_cas_n = #TCQ mc_cas_n_ns;
mc_cs_n = #TCQ mc_cs_n_ns;
mc_odt = #TCQ mc_odt_ns;
mc_cke = #TCQ mc_cke_ns;
mc_aux_out0 = #TCQ mc_aux_out0_ns;
mc_aux_out1 = #TCQ mc_aux_out1_ns;
mc_cmd = #TCQ mc_cmd_ns;
mc_ras_n = #TCQ mc_ras_n_ns;
mc_we_n = #TCQ mc_we_n_ns;
mc_data_offset = #TCQ mc_data_offset_ns;
mc_data_offset_1 = #TCQ mc_data_offset_1_ns;
mc_data_offset_2 = #TCQ mc_data_offset_2_ns;
mc_cas_slot = #TCQ mc_cas_slot_ns;
mc_wrdata_en = #TCQ mc_wrdata_en_ns;
mc_rank_cnt = #TCQ mc_rank_cnt_ns;
wr_data_addr = #TCQ wr_data_addr_ns;
wr_data_en = #TCQ wr_data_en_ns;
wr_data_offset = #TCQ wr_data_offset_ns;
end // always @ (...
end // block: cmd_pipe_plus0
endgenerate
//***************************************************************************
// Indicate when there are no pending reads so that input features can be
// powered down
//***************************************************************************
assign mc_read_idle_ns = col_read_fifo_empty & init_calib_complete;
always @(posedge clk) mc_read_idle_r <= #TCQ mc_read_idle_ns;
assign mc_read_idle = mc_read_idle_r;
//***************************************************************************
// Indicate when there is a refresh in progress and the bus is idle so that
// tap adjustments can be made
//***************************************************************************
assign mc_ref_zq_wip_ns = maint_ref_zq_wip && col_read_fifo_empty;
always @(posedge clk) mc_ref_zq_wip_r <= mc_ref_zq_wip_ns;
assign mc_ref_zq_wip = mc_ref_zq_wip_r;
//***************************************************************************
// Manage rank-level timing and maintanence
//***************************************************************************
mig_7series_v2_3_rank_mach #
(
// Parameters
.BURST_MODE (BURST_MODE),
.CL (CL),
.CWL (CWL),
.CS_WIDTH (CS_WIDTH),
.DQRD2DQWR_DLY (DQRD2DQWR_DLY),
.DRAM_TYPE (DRAM_TYPE),
.MAINT_PRESCALER_DIV (MAINT_PRESCALER_DIV),
.nBANK_MACHS (nBANK_MACHS),
.nCKESR (nCKESR),
.nCK_PER_CLK (nCK_PER_CLK),
.nFAW (nFAW),
.nREFRESH_BANK (nREFRESH_BANK),
.nRRD (nRRD),
.nWTR (nWTR),
.PERIODIC_RD_TIMER_DIV (PERIODIC_RD_TIMER_DIV),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.REFRESH_TIMER_DIV (REFRESH_TIMER_DIV),
.ZQ_TIMER_DIV (ZQ_TIMER_DIV)
)
rank_mach0
(
// Outputs
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.maint_ref_zq_wip (maint_ref_zq_wip),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
// Inputs
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.app_periodic_rd_req (app_periodic_rd_req),
.app_ref_req (app_ref_req),
.app_ref_ack (app_ref_ack),
.app_zq_req (app_zq_req),
.app_zq_ack (app_zq_ack),
.app_sr_req (app_sr_req),
.app_sr_active (app_sr_active),
.col_rd_wr (col_rd_wr),
.clk (clk),
.init_calib_complete (init_calib_complete),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.rst (rst),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0])
);
//***************************************************************************
// Manage requests, reordering and bank timing
//***************************************************************************
mig_7series_v2_3_bank_mach #
(
// Parameters
.TCQ (TCQ),
.EVEN_CWL_2T_MODE (EVEN_CWL_2T_MODE),
.ADDR_CMD_MODE (ADDR_CMD_MODE),
.BANK_WIDTH (BANK_WIDTH),
.BM_CNT_WIDTH (BM_CNT_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.CL (CL_M),
.CWL (CWL_M),
.CKE_ODT_AUX (CKE_ODT_AUX),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.LOW_IDLE_CNT (LOW_IDLE_CNT),
.nBANK_MACHS (nBANK_MACHS),
.nCK_PER_CLK (nCK_PER_CLK),
.nCS_PER_RANK (nCS_PER_RANK),
.nOP_WAIT (nOP_WAIT),
.nRAS (nRAS),
.nRCD (nRCD),
.nRFC (nRFC),
.nRP (nRP),
.nRTP (nRTP),
.nSLOTS (nSLOTS),
.nWR (nWR),
.nXSDLL (tXSDLL),
.ORDERING (ORDERING),
.RANK_BM_BV_WIDTH (RANK_BM_BV_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.RANKS (RANKS),
.ROW_WIDTH (ROW_WIDTH),
.RTT_NOM (RTT_NOM),
.RTT_WR (RTT_WR),
.SLOT_0_CONFIG (SLOT_0_CONFIG),
.SLOT_1_CONFIG (SLOT_1_CONFIG),
.STARVE_LIMIT (STARVE_LIMIT),
.tZQCS (tZQCS)
)
bank_mach0
(
// Outputs
.accept (accept),
.accept_ns (accept_ns),
.act_this_rank_r (act_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.bank_mach_next (bank_mach_next[BM_CNT_WIDTH-1:0]),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.mc_bank (mc_bank_ns),
.mc_address (mc_address_ns),
.mc_ras_n (mc_ras_n_ns),
.mc_cas_n (mc_cas_n_ns),
.mc_we_n (mc_we_n_ns),
.mc_cs_n (mc_cs_n_ns),
.mc_odt (mc_odt_ns),
.mc_cke (mc_cke_ns),
.mc_aux_out0 (mc_aux_out0_ns),
.mc_aux_out1 (mc_aux_out1_ns),
.mc_cmd (mc_cmd_ns),
.mc_data_offset (mc_data_offset_ns),
.mc_data_offset_1 (mc_data_offset_1_ns),
.mc_data_offset_2 (mc_data_offset_2_ns),
.mc_cas_slot (mc_cas_slot_ns),
.insert_maint_r1 (insert_maint_r1),
.maint_wip_r (maint_wip_r),
.periodic_rd_ack_r (periodic_rd_ack_r),
.rank_busy_r (rank_busy_r[(RANKS*nBANK_MACHS)-1:0]),
.rd_this_rank_r (rd_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
.sending_row (sending_row[nBANK_MACHS-1:0]),
.sending_col (sending_col[nBANK_MACHS-1:0]),
.sent_col (sent_col),
.sent_col_r (sent_col_r),
.wr_this_rank_r (wr_this_rank_r[RANK_BM_BV_WIDTH-1:0]),
// Inputs
.bank (bank[BANK_WIDTH-1:0]),
.calib_rddata_offset (calib_rd_data_offset),
.calib_rddata_offset_1 (calib_rd_data_offset_1),
.calib_rddata_offset_2 (calib_rd_data_offset_2),
.clk (clk),
.cmd (cmd[2:0]),
.col (col[COL_WIDTH-1:0]),
.data_buf_addr (data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.init_calib_complete (init_calib_complete),
.phy_rddata_valid (phy_rddata_valid),
.dq_busy_data (dq_busy_data),
.hi_priority (hi_priority),
.inhbt_act_faw_r (inhbt_act_faw_r[RANKS-1:0]),
.inhbt_rd (inhbt_rd[RANKS-1:0]),
.inhbt_wr (inhbt_wr[RANKS-1:0]),
.maint_rank_r (maint_rank_r[RANK_WIDTH-1:0]),
.maint_req_r (maint_req_r),
.maint_zq_r (maint_zq_r),
.maint_sre_r (maint_sre_r),
.maint_srx_r (maint_srx_r),
.periodic_rd_r (periodic_rd_r),
.periodic_rd_rank_r (periodic_rd_rank_r[RANK_WIDTH-1:0]),
.phy_mc_cmd_full (phy_mc_cmd_full),
.phy_mc_ctl_full (phy_mc_ctl_full),
.phy_mc_data_full (phy_mc_data_full),
.rank (rank[RANK_WIDTH-1:0]),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_rmw (rd_rmw),
.row (row[ROW_WIDTH-1:0]),
.rst (rst),
.size (size),
.slot_0_present (slot_0_present[7:0]),
.slot_1_present (slot_1_present[7:0]),
.use_addr (use_addr)
);
//***************************************************************************
// Manage DQ bus
//***************************************************************************
mig_7series_v2_3_col_mach #
(
// Parameters
.TCQ (TCQ),
.BANK_WIDTH (BANK_WIDTH),
.BURST_MODE (BURST_MODE),
.COL_WIDTH (COL_WIDTH),
.CS_WIDTH (CS_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DELAY_WR_DATA_CNTRL (DELAY_WR_DATA_CNTRL),
.DQS_WIDTH (DQS_WIDTH),
.DRAM_TYPE (DRAM_TYPE),
.EARLY_WR_DATA_ADDR (EARLY_WR_DATA_ADDR),
.ECC (ECC),
.MC_ERR_ADDR_WIDTH (MC_ERR_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.nPHY_WRLAT (nPHY_WRLAT),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH)
)
col_mach0
(
// Outputs
.mc_wrdata_en (mc_wrdata_en_ns),
.dq_busy_data (dq_busy_data),
.ecc_err_addr (ecc_err_addr[MC_ERR_ADDR_WIDTH-1:0]),
.ecc_status_valid (ecc_status_valid),
.rd_data_addr (rd_data_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.rd_data_en (rd_data_en),
.rd_data_end (rd_data_end),
.rd_data_offset (rd_data_offset),
.rd_rmw (rd_rmw),
.wr_data_addr (wr_data_addr_ns),
.wr_data_en (wr_data_en_ns),
.wr_data_offset (wr_data_offset_ns),
.wr_ecc_buf (wr_ecc_buf),
.col_read_fifo_empty (col_read_fifo_empty),
// Inputs
.clk (clk),
.rst (rst),
.col_a (col_a[ROW_WIDTH-1:0]),
.col_ba (col_ba[BANK_WIDTH-1:0]),
.col_data_buf_addr (col_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.col_periodic_rd (col_periodic_rd),
.col_ra (col_ra[RANK_WIDTH-1:0]),
.col_rmw (col_rmw),
.col_rd_wr (col_rd_wr),
.col_row (col_row[ROW_WIDTH-1:0]),
.col_size (col_size),
.col_wr_data_buf_addr (col_wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:0]),
.phy_rddata_valid (phy_rddata_valid),
.sent_col (EVEN_CWL_2T_MODE == "ON" ? sent_col_r : sent_col)
);
//***************************************************************************
// Implement ECC
//***************************************************************************
// Total ECC word length = ECC code width + Data width
localparam CODE_WIDTH = DATA_WIDTH + ECC_WIDTH;
generate
if (ECC == "OFF") begin : ecc_off
assign rd_data = phy_rd_data;
assign mc_wrdata = wr_data;
assign mc_wrdata_mask = wr_data_mask;
assign ecc_single = 4'b0;
assign ecc_multiple = 4'b0;
end
else begin : ecc_on
wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] rd_merge_data;
wire [2*nCK_PER_CLK*DQ_WIDTH-1:0] mc_wrdata_i;
// Merge and encode
mig_7series_v2_3_ecc_merge_enc #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_merge_enc0
(
// Outputs
.mc_wrdata (mc_wrdata_i),
.mc_wrdata_mask (mc_wrdata_mask),
// Inputs
.clk (clk),
.rst (rst),
.h_rows (h_rows),
.rd_merge_data (rd_merge_data),
.raw_not_ecc (raw_not_ecc),
.wr_data (wr_data),
.wr_data_mask (wr_data_mask)
);
// Decode and fix
mig_7series_v2_3_ecc_dec_fix #
(
// Parameters
.TCQ (TCQ),
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.DQ_WIDTH (DQ_WIDTH),
.ECC_WIDTH (ECC_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_dec_fix0
(
// Outputs
.ecc_multiple (ecc_multiple),
.ecc_single (ecc_single),
.rd_data (rd_data),
// Inputs
.clk (clk),
.rst (rst),
.correct_en (correct_en),
.phy_rddata (phy_rd_data),
.ecc_status_valid (ecc_status_valid),
.h_rows (h_rows)
);
// ECC Buffer
mig_7series_v2_3_ecc_buf #
(
// Parameters
.TCQ (TCQ),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.DATA_BUF_OFFSET_WIDTH (DATA_BUF_OFFSET_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.PAYLOAD_WIDTH (PAYLOAD_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
ecc_buf0
(
// Outputs
.rd_merge_data (rd_merge_data),
// Inputs
.clk (clk),
.rst (rst),
.rd_data (rd_data),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.wr_data_addr (wr_data_addr),
.wr_data_offset (wr_data_offset),
.wr_ecc_buf (wr_ecc_buf)
);
// Generate ECC table
mig_7series_v2_3_ecc_gen #
(
// Parameters
.CODE_WIDTH (CODE_WIDTH),
.DATA_WIDTH (DATA_WIDTH),
.ECC_WIDTH (ECC_WIDTH)
)
ecc_gen0
(
// Outputs
.h_rows (h_rows)
);
if (ECC == "ON") begin : gen_fi_xor_inst
reg mc_wrdata_en_r;
wire mc_wrdata_en_i;
always @(posedge clk) begin
mc_wrdata_en_r <= mc_wrdata_en;
end
assign mc_wrdata_en_i = mc_wrdata_en_r;
mig_7series_v2_3_fi_xor #(
.DQ_WIDTH (DQ_WIDTH),
.DQS_WIDTH (DQS_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK)
)
fi_xor0
(
.clk (clk),
.wrdata_in (mc_wrdata_i),
.wrdata_out (mc_wrdata),
.wrdata_en (mc_wrdata_en_i),
.fi_xor_we (fi_xor_we),
.fi_xor_wrdata (fi_xor_wrdata)
);
end
else begin : gen_wrdata_passthru
assign mc_wrdata = mc_wrdata_i;
end
`ifdef DISPLAY_H_MATRIX
integer i;
always @(negedge rst) begin
$display ("**********************************************");
$display ("H Matrix:");
for (i=0; i<ECC_WIDTH; i=i+1)
$display ("%b", h_rows[i*CODE_WIDTH+:CODE_WIDTH]);
$display ("**********************************************");
end
`endif
end
endgenerate
endmodule
|
module mig_7series_v2_3_ui_wr_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter APP_MASK_WIDTH = 32,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ECC_TEST = "OFF",
parameter CWL = 5
)
(/*AUTOARG*/
// Outputs
app_wdf_rdy, wr_req_16, wr_data_buf_addr, wr_data, wr_data_mask,
raw_not_ecc,
// Inputs
rst, clk, app_wdf_data, app_wdf_mask, app_raw_not_ecc, app_wdf_wren,
app_wdf_end, wr_data_offset, wr_data_addr, wr_data_en, wr_accepted,
ram_init_done_r, ram_init_addr
);
input rst;
input clk;
input [APP_DATA_WIDTH-1:0] app_wdf_data;
input [APP_MASK_WIDTH-1:0] app_wdf_mask;
input [2*nCK_PER_CLK-1:0] app_raw_not_ecc;
input app_wdf_wren;
input app_wdf_end;
reg [APP_DATA_WIDTH-1:0] app_wdf_data_r1;
reg [APP_MASK_WIDTH-1:0] app_wdf_mask_r1;
reg [2*nCK_PER_CLK-1:0] app_raw_not_ecc_r1 = 4'b0;
reg app_wdf_wren_r1;
reg app_wdf_end_r1;
reg app_wdf_rdy_r;
//Adding few copies of the app_wdf_rdy_r signal in order to meet
//timing. This is signal has a very high fanout. So grouped into
//few functional groups and alloted one copy per group.
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy1;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy2;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy3;
(* equivalent_register_removal = "no" *)
reg app_wdf_rdy_r_copy4;
wire [APP_DATA_WIDTH-1:0] app_wdf_data_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_data_r1 : app_wdf_data;
wire [APP_MASK_WIDTH-1:0] app_wdf_mask_ns1 =
~app_wdf_rdy_r_copy2 ? app_wdf_mask_r1 : app_wdf_mask;
wire app_wdf_wren_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_wren_r1 : app_wdf_wren);
wire app_wdf_end_ns1 =
~rst && (~app_wdf_rdy_r_copy2 ? app_wdf_end_r1 : app_wdf_end);
generate
if (ECC_TEST != "OFF") begin : ecc_on
always @(app_raw_not_ecc) app_raw_not_ecc_r1 = app_raw_not_ecc;
end
endgenerate
// Be explicit about the latch enable on these registers.
always @(posedge clk) begin
app_wdf_data_r1 <= #TCQ app_wdf_data_ns1;
app_wdf_mask_r1 <= #TCQ app_wdf_mask_ns1;
app_wdf_wren_r1 <= #TCQ app_wdf_wren_ns1;
app_wdf_end_r1 <= #TCQ app_wdf_end_ns1;
end
// The signals wr_data_addr and wr_data_offset come at different
// times depending on ECC and the value of CWL. The data portion
// always needs to look a the raw wires, the control portion needs
// to look at a delayed version when ECC is on and CWL != 8. The
// currently supported write data delays do not require this
// functionality, but preserve for future use.
input wr_data_offset;
input [3:0] wr_data_addr;
reg wr_data_offset_r;
reg [3:0] wr_data_addr_r;
generate
if (ECC == "OFF" || CWL >= 0) begin : pass_wr_addr
always @(wr_data_offset) wr_data_offset_r = wr_data_offset;
always @(wr_data_addr) wr_data_addr_r = wr_data_addr;
end
else begin : delay_wr_addr
always @(posedge clk) wr_data_offset_r <= #TCQ wr_data_offset;
always @(posedge clk) wr_data_addr_r <= #TCQ wr_data_addr;
end
endgenerate
// rd_data_cnt is the pointer RAM index for data read from the write data
// buffer. Ie, its the data on its way out to the DRAM.
input wr_data_en;
wire new_rd_data = wr_data_en && ~wr_data_offset_r;
reg [3:0] rd_data_indx_r;
reg rd_data_upd_indx_r;
generate begin : read_data_indx
reg [3:0] rd_data_indx_ns;
always @(/*AS*/new_rd_data or rd_data_indx_r or rst) begin
rd_data_indx_ns = rd_data_indx_r;
if (rst) rd_data_indx_ns = 5'b0;
else if (new_rd_data) rd_data_indx_ns = rd_data_indx_r + 5'h1;
end
always @(posedge clk) rd_data_indx_r <= #TCQ rd_data_indx_ns;
always @(posedge clk) rd_data_upd_indx_r <= #TCQ new_rd_data;
end
endgenerate
// data_buf_addr_cnt generates the pointer for the pointer RAM on behalf
// of data buf address that comes with the wr_data_en.
// The data buf address is written into the memory
// controller along with the command and address.
input wr_accepted;
reg [3:0] data_buf_addr_cnt_r;
generate begin : data_buf_address_counter
reg [3:0] data_buf_addr_cnt_ns;
always @(/*AS*/data_buf_addr_cnt_r or rst or wr_accepted) begin
data_buf_addr_cnt_ns = data_buf_addr_cnt_r;
if (rst) data_buf_addr_cnt_ns = 4'b0;
else if (wr_accepted) data_buf_addr_cnt_ns =
data_buf_addr_cnt_r + 4'h1;
end
always @(posedge clk) data_buf_addr_cnt_r <= #TCQ data_buf_addr_cnt_ns;
end
endgenerate
// Control writing data into the write data buffer.
wire wdf_rdy_ns;
always @( posedge clk ) begin
app_wdf_rdy_r_copy1 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy2 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy3 <= #TCQ wdf_rdy_ns;
app_wdf_rdy_r_copy4 <= #TCQ wdf_rdy_ns;
end
wire wr_data_end = app_wdf_end_r1 && app_wdf_rdy_r_copy1 && app_wdf_wren_r1;
wire [3:0] wr_data_pntr;
wire [4:0] wb_wr_data_addr;
wire [4:0] wb_wr_data_addr_w;
reg [3:0] wr_data_indx_r;
generate begin : write_data_control
wire wr_data_addr_le = (wr_data_end && wdf_rdy_ns) ||
(rd_data_upd_indx_r && ~app_wdf_rdy_r_copy1);
// For pointer RAM. Initialize to one since this is one ahead of
// what's being registered in wb_wr_data_addr. Assumes pointer RAM
// has been initialized such that address equals contents.
reg [3:0] wr_data_indx_ns;
always @(/*AS*/rst or wr_data_addr_le or wr_data_indx_r) begin
wr_data_indx_ns = wr_data_indx_r;
if (rst) wr_data_indx_ns = 4'b1;
else if (wr_data_addr_le) wr_data_indx_ns = wr_data_indx_r + 4'h1;
end
always @(posedge clk) wr_data_indx_r <= #TCQ wr_data_indx_ns;
// Take pointer from pointer RAM and set into the write data address.
// Needs to be split into zeroth bit and everything else because synthesis
// tools don't always allow assigning bit vectors seperately. Bit zero of the
// address is computed via an entirely different algorithm.
reg [4:1] wb_wr_data_addr_ns;
reg [4:1] wb_wr_data_addr_r;
always @(/*AS*/rst or wb_wr_data_addr_r or wr_data_addr_le
or wr_data_pntr) begin
wb_wr_data_addr_ns = wb_wr_data_addr_r;
if (rst) wb_wr_data_addr_ns = 4'b0;
else if (wr_data_addr_le) wb_wr_data_addr_ns = wr_data_pntr;
end
always @(posedge clk) wb_wr_data_addr_r <= #TCQ wb_wr_data_addr_ns;
// If we see the first getting accepted, then
// second half is unconditionally accepted.
reg wb_wr_data_addr0_r;
wire wb_wr_data_addr0_ns = ~rst &&
((app_wdf_rdy_r_copy3 && app_wdf_wren_r1 && ~app_wdf_end_r1) ||
(wb_wr_data_addr0_r && ~app_wdf_wren_r1));
always @(posedge clk) wb_wr_data_addr0_r <= #TCQ wb_wr_data_addr0_ns;
assign wb_wr_data_addr = {wb_wr_data_addr_r, wb_wr_data_addr0_r};
assign wb_wr_data_addr_w = {wb_wr_data_addr_ns, wb_wr_data_addr0_ns};
end
endgenerate
// Keep track of how many entries in the queue hold data.
input ram_init_done_r;
output wire app_wdf_rdy;
generate begin : occupied_counter
//reg [4:0] occ_cnt_ns;
//reg [4:0] occ_cnt_r;
//always @(/*AS*/occ_cnt_r or rd_data_upd_indx_r or rst
// or wr_data_end) begin
// occ_cnt_ns = occ_cnt_r;
// if (rst) occ_cnt_ns = 5'b0;
// else case ({wr_data_end, rd_data_upd_indx_r})
// 2'b01 : occ_cnt_ns = occ_cnt_r - 5'b1;
// 2'b10 : occ_cnt_ns = occ_cnt_r + 5'b1;
// endcase // case ({wr_data_end, rd_data_upd_indx_r})
//end
//always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
//assign wdf_rdy_ns = !(rst || ~ram_init_done_r || occ_cnt_ns[4]);
//always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
//assign app_wdf_rdy = app_wdf_rdy_r;
reg [15:0] occ_cnt;
always @(posedge clk) begin
if ( rst )
occ_cnt <= #TCQ 16'h0000;
else case ({wr_data_end, rd_data_upd_indx_r})
2'b01 : occ_cnt <= #TCQ {1'b0,occ_cnt[15:1]};
2'b10 : occ_cnt <= #TCQ {occ_cnt[14:0],1'b1};
endcase // case ({wr_data_end, rd_data_upd_indx_r})
end
assign wdf_rdy_ns = !(rst || ~ram_init_done_r || (occ_cnt[14] && wr_data_end && ~rd_data_upd_indx_r) || (occ_cnt[15] && ~rd_data_upd_indx_r));
always @(posedge clk) app_wdf_rdy_r <= #TCQ wdf_rdy_ns;
assign app_wdf_rdy = app_wdf_rdy_r;
`ifdef MC_SVA
wr_data_buffer_full: cover property (@(posedge clk)
(~rst && ~app_wdf_rdy_r));
// wr_data_buffer_inc_dec_15: cover property (@(posedge clk)
// (~rst && wr_data_end && rd_data_upd_indx_r && (occ_cnt_r == 5'hf)));
// wr_data_underflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'b0) && (occ_cnt_ns == 5'h1f))));
// wr_data_overflow: assert property (@(posedge clk)
// (rst || !((occ_cnt_r == 5'h10) && (occ_cnt_ns == 5'h11))));
`endif
end // block: occupied_counter
endgenerate
// Keep track of how many write requests are in the memory controller. We
// must limit this to 16 because we only have that many data_buf_addrs to
// hand out. Since the memory controller queue and the write data buffer
// queue are distinct, the number of valid entries can be different.
// Throttle request acceptance once there are sixteen write requests in
// the memory controller. Note that there is still a requirement
// for a write reqeusts corresponding write data to be written into the
// write data queue with two states of the request.
output wire wr_req_16;
generate begin : wr_req_counter
reg [4:0] wr_req_cnt_ns;
reg [4:0] wr_req_cnt_r;
always @(/*AS*/rd_data_upd_indx_r or rst or wr_accepted
or wr_req_cnt_r) begin
wr_req_cnt_ns = wr_req_cnt_r;
if (rst) wr_req_cnt_ns = 5'b0;
else case ({wr_accepted, rd_data_upd_indx_r})
2'b01 : wr_req_cnt_ns = wr_req_cnt_r - 5'b1;
2'b10 : wr_req_cnt_ns = wr_req_cnt_r + 5'b1;
endcase // case ({wr_accepted, rd_data_upd_indx_r})
end
always @(posedge clk) wr_req_cnt_r <= #TCQ wr_req_cnt_ns;
assign wr_req_16 = (wr_req_cnt_ns == 5'h10);
`ifdef MC_SVA
wr_req_mc_full: cover property (@(posedge clk) (~rst && wr_req_16));
wr_req_mc_full_inc_dec_15: cover property (@(posedge clk)
(~rst && wr_accepted && rd_data_upd_indx_r && (wr_req_cnt_r == 5'hf)));
wr_req_underflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'b0) && (wr_req_cnt_ns == 5'h1f))));
wr_req_overflow: assert property (@(posedge clk)
(rst || !((wr_req_cnt_r == 5'h10) && (wr_req_cnt_ns == 5'h11))));
`endif
end // block: wr_req_counter
endgenerate
// Instantiate pointer RAM. Made up of RAM32M in single write, two read
// port mode, 2 bit wide mode.
input [3:0] ram_init_addr;
output wire [3:0] wr_data_buf_addr;
localparam PNTR_RAM_CNT = 2;
generate begin : pointer_ram
wire pointer_we = new_rd_data || ~ram_init_done_r;
wire [3:0] pointer_wr_data = ram_init_done_r
? wr_data_addr_r
: ram_init_addr;
wire [3:0] pointer_wr_addr = ram_init_done_r
? rd_data_indx_r
: ram_init_addr;
genvar i;
for (i=0; i<PNTR_RAM_CNT; i=i+1) begin : rams
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(),
.DOB(wr_data_buf_addr[i*2+:2]),
.DOC(wr_data_pntr[i*2+:2]),
.DOD(),
.DIA(2'b0),
.DIB(pointer_wr_data[i*2+:2]),
.DIC(pointer_wr_data[i*2+:2]),
.DID(2'b0),
.ADDRA(5'b0),
.ADDRB({1'b0, data_buf_addr_cnt_r}),
.ADDRC({1'b0, wr_data_indx_r}),
.ADDRD({1'b0, pointer_wr_addr}),
.WE(pointer_we),
.WCLK(clk)
);
end // block : rams
end // block: pointer_ram
endgenerate
// Instantiate write data buffer. Depending on width of DQ bus and
// DRAM CK to fabric ratio, number of RAM32Ms is variable. RAM32Ms are
// used in single write, single read, 6 bit wide mode.
localparam WR_BUF_WIDTH =
APP_DATA_WIDTH + APP_MASK_WIDTH + (ECC_TEST == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (WR_BUF_WIDTH/6);
localparam REMAINDER = WR_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
wire [RAM_WIDTH-1:0] wr_buf_out_data_w;
reg [RAM_WIDTH-1:0] wr_buf_out_data;
generate
begin : write_buffer
wire [RAM_WIDTH-1:0] wr_buf_in_data;
if (REMAINDER == 0)
if (ECC_TEST == "OFF")
assign wr_buf_in_data = {app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data =
{app_raw_not_ecc_r1, app_wdf_mask_ns1, app_wdf_data_ns1};
else
if (ECC_TEST == "OFF")
assign wr_buf_in_data =
{{6-REMAINDER{1'b0}}, app_wdf_mask_ns1, app_wdf_data_ns1};
else
assign wr_buf_in_data = {{6-REMAINDER{1'b0}}, app_raw_not_ecc_r1,//app_raw_not_ecc_r1 is not ff
app_wdf_mask_ns1, app_wdf_data_ns1};
wire [4:0] rd_addr_w;
assign rd_addr_w = {wr_data_addr, wr_data_offset};
always @(posedge clk) wr_buf_out_data <= #TCQ wr_buf_out_data_w;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : wr_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(wr_buf_out_data_w[((i*6)+4)+:2]),
.DOB(wr_buf_out_data_w[((i*6)+2)+:2]),
.DOC(wr_buf_out_data_w[((i*6)+0)+:2]),
.DOD(),
.DIA(wr_buf_in_data[((i*6)+4)+:2]),
.DIB(wr_buf_in_data[((i*6)+2)+:2]),
.DIC(wr_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_addr_w),
.ADDRB(rd_addr_w),
.ADDRC(rd_addr_w),
.ADDRD(wb_wr_data_addr_w),
.WE(wdf_rdy_ns),
.WCLK(clk)
);
end // block: wr_buffer_ram
end
endgenerate
output [APP_DATA_WIDTH-1:0] wr_data;
output [APP_MASK_WIDTH-1:0] wr_data_mask;
assign {wr_data_mask, wr_data} = wr_buf_out_data[WR_BUF_WIDTH-1:0];
output [2*nCK_PER_CLK-1:0] raw_not_ecc;
generate
if (ECC_TEST == "OFF") assign raw_not_ecc = {2*nCK_PER_CLK{1'b0}};
else assign raw_not_ecc = wr_buf_out_data[WR_BUF_WIDTH-1-:(2*nCK_PER_CLK)];
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_samp #
(parameter nCK_PER_CLK = 4,
parameter OCAL_SIMPLE_SCAN_SAMPS = 2,
parameter SCAN_PCT_SAMPS_SOLID = 95,
parameter TCQ = 100,
parameter SIM_CAL_OPTION = "NONE")
(/*AUTOARG*/
// Outputs
samp_done, oclk_calib_resume, rd_victim_sel, samp_result,
// Inputs
complex_oclkdelay_calib_start, clk, rst, reset_scan,
ocal_num_samples_inc, match, phy_rddata_en_1, taps_set
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam ONE = 1;
localparam CMPLX_DATA_CNT = nCK_PER_CLK == 2 ? 157 * 2 : 157;
localparam SIMP_DATA_CNT = nCK_PER_CLK == 2 ? 2 : 1;
localparam DATA_CNT_WIDTH = nCK_PER_CLK == 2 ? 9 : 8;
localparam CMPLX_SAMPS = SIM_CAL_OPTION == "NONE" ? 50 : 1;
// Plus one because were counting in natural numbers.
localparam SAMP_CNT_WIDTH = clogb2(OCAL_SIMPLE_SCAN_SAMPS > CMPLX_SAMPS
? OCAL_SIMPLE_SCAN_SAMPS : CMPLX_SAMPS) + 1;
// Remember SAMPLES is natural number counting. One corresponds to one sample.
localparam integer SIMP_SAMPS_SOLID_THRESH = OCAL_SIMPLE_SCAN_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
localparam integer CMPLX_SAMPS_SOLID_THRESH = CMPLX_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
input complex_oclkdelay_calib_start;
wire [SAMP_CNT_WIDTH-1:0] samples = complex_oclkdelay_calib_start
? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input rst;
input reset_scan;
// Given the need to count phy_data_en, this is not useful.
input ocal_num_samples_inc;
input [1:0] match;
input phy_rddata_en_1;
input taps_set;
reg samp_done_ns, samp_done_r;
always @(posedge clk) samp_done_r <= #TCQ samp_done_ns;
output samp_done;
assign samp_done = samp_done_r;
reg [1:0] agg_samp_ns, agg_samp_r;
always @(posedge clk) agg_samp_r <= #TCQ agg_samp_ns;
reg oclk_calib_resume_ns, oclk_calib_resume_r;
always @(posedge clk) oclk_calib_resume_r <= #TCQ oclk_calib_resume_ns;
output oclk_calib_resume;
assign oclk_calib_resume = oclk_calib_resume_r;
// Complex data counting.
// Inner most loop. 157 phy_data_en.
reg [DATA_CNT_WIDTH-1:0] data_cnt_ns, data_cnt_r;
always @(posedge clk) data_cnt_r <= #TCQ data_cnt_ns;
// Nominally, 50 samples of the above 157 phy_data_en.
reg [SAMP_CNT_WIDTH-1:0] samps_ns, samps_r;
always @(posedge clk) samps_r <= #TCQ samps_ns;
// Step through the 8 bits in the byte.
reg [2:0] rd_victim_sel_ns, rd_victim_sel_r;
always @(posedge clk) rd_victim_sel_r <= #TCQ rd_victim_sel_ns;
output [2:0] rd_victim_sel;
assign rd_victim_sel = rd_victim_sel_r;
reg [SAMP_CNT_WIDTH-1:0] zero_ns, zero_r, oneeighty_ns, oneeighty_r;
always @(posedge clk) zero_r <= #TCQ zero_ns;
always @(posedge clk) oneeighty_r <= #TCQ oneeighty_ns;
output [1:0] samp_result;
assign samp_result[0] = zero_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
assign samp_result[1] = oneeighty_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
reg [0:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
wire [DATA_CNT_WIDTH-1:0] data_cnt = complex_oclkdelay_calib_start
? CMPLX_DATA_CNT[DATA_CNT_WIDTH-1:0]
: SIMP_DATA_CNT[DATA_CNT_WIDTH-1:0];
wire [2:0] rd_victim_end = complex_oclkdelay_calib_start ? 3'h7 : 3'h0;
wire data_end = data_cnt_r == ONE[DATA_CNT_WIDTH-1:0];
wire samp_end = samps_r == ONE[SAMP_CNT_WIDTH-1:0];
// Primary state machine.
always @(*) begin
// Default next state assignments.
agg_samp_ns = agg_samp_r;
data_cnt_ns = data_cnt_r;
oclk_calib_resume_ns = 1'b0;
oneeighty_ns = oneeighty_r;
rd_victim_sel_ns = rd_victim_sel_r;
samp_done_ns = samp_done_r;
samps_ns = samps_r;
sm_ns = sm_r;
zero_ns = zero_r;
if (rst == 1'b1) begin
// RESET next states
sm_ns = /*AK("READY")*/1'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/1'd0:begin
agg_samp_ns = NULL;
data_cnt_ns = data_cnt;
oneeighty_ns = {SAMP_CNT_WIDTH{1'b0}};
rd_victim_sel_ns = 3'b0;
samps_ns = complex_oclkdelay_calib_start ? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
zero_ns = {SAMP_CNT_WIDTH{1'b0}};
if (taps_set) begin
samp_done_ns = 1'b0;
sm_ns = /*AK("AWAITING_DATA")*/1'd1;
oclk_calib_resume_ns = 1'b1;
end
end
/*AL("AWAITING_DATA")*/1'd1:begin
if (phy_rddata_en_1) begin
case (agg_samp_r)
NULL : if (~&match) agg_samp_ns = match;
ZERO, ONEEIGHTY : if (~(agg_samp_r == match || &match)) agg_samp_ns = FUZZ;
FUZZ : ;
endcase // case (agg_samp_r)
if (~data_end) data_cnt_ns = data_cnt_r - ONE[DATA_CNT_WIDTH-1:0];
else begin
data_cnt_ns = data_cnt;
if (rd_victim_end != rd_victim_sel_r) rd_victim_sel_ns = rd_victim_sel_r + 3'h1;
else begin
rd_victim_sel_ns = 3'h0;
if (agg_samp_ns == ZERO) zero_ns = zero_r + ONE[SAMP_CNT_WIDTH-1:0];
if (agg_samp_ns == ONEEIGHTY) oneeighty_ns = oneeighty_r + ONE[SAMP_CNT_WIDTH-1:0];
agg_samp_ns = NULL;
if (~samp_end) samps_ns = samps_r - ONE[SAMP_CNT_WIDTH-1:0];
else samp_done_ns = 1'b1;
end
end
if (samp_done_ns) sm_ns = /*AK("READY")*/1'd0;
else oclk_calib_resume_ns = ~complex_oclkdelay_calib_start && data_end;
end
end
endcase // case (sm_r)
end // always @ begin
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_samp #
(parameter nCK_PER_CLK = 4,
parameter OCAL_SIMPLE_SCAN_SAMPS = 2,
parameter SCAN_PCT_SAMPS_SOLID = 95,
parameter TCQ = 100,
parameter SIM_CAL_OPTION = "NONE")
(/*AUTOARG*/
// Outputs
samp_done, oclk_calib_resume, rd_victim_sel, samp_result,
// Inputs
complex_oclkdelay_calib_start, clk, rst, reset_scan,
ocal_num_samples_inc, match, phy_rddata_en_1, taps_set
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam ONE = 1;
localparam CMPLX_DATA_CNT = nCK_PER_CLK == 2 ? 157 * 2 : 157;
localparam SIMP_DATA_CNT = nCK_PER_CLK == 2 ? 2 : 1;
localparam DATA_CNT_WIDTH = nCK_PER_CLK == 2 ? 9 : 8;
localparam CMPLX_SAMPS = SIM_CAL_OPTION == "NONE" ? 50 : 1;
// Plus one because were counting in natural numbers.
localparam SAMP_CNT_WIDTH = clogb2(OCAL_SIMPLE_SCAN_SAMPS > CMPLX_SAMPS
? OCAL_SIMPLE_SCAN_SAMPS : CMPLX_SAMPS) + 1;
// Remember SAMPLES is natural number counting. One corresponds to one sample.
localparam integer SIMP_SAMPS_SOLID_THRESH = OCAL_SIMPLE_SCAN_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
localparam integer CMPLX_SAMPS_SOLID_THRESH = CMPLX_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
input complex_oclkdelay_calib_start;
wire [SAMP_CNT_WIDTH-1:0] samples = complex_oclkdelay_calib_start
? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input rst;
input reset_scan;
// Given the need to count phy_data_en, this is not useful.
input ocal_num_samples_inc;
input [1:0] match;
input phy_rddata_en_1;
input taps_set;
reg samp_done_ns, samp_done_r;
always @(posedge clk) samp_done_r <= #TCQ samp_done_ns;
output samp_done;
assign samp_done = samp_done_r;
reg [1:0] agg_samp_ns, agg_samp_r;
always @(posedge clk) agg_samp_r <= #TCQ agg_samp_ns;
reg oclk_calib_resume_ns, oclk_calib_resume_r;
always @(posedge clk) oclk_calib_resume_r <= #TCQ oclk_calib_resume_ns;
output oclk_calib_resume;
assign oclk_calib_resume = oclk_calib_resume_r;
// Complex data counting.
// Inner most loop. 157 phy_data_en.
reg [DATA_CNT_WIDTH-1:0] data_cnt_ns, data_cnt_r;
always @(posedge clk) data_cnt_r <= #TCQ data_cnt_ns;
// Nominally, 50 samples of the above 157 phy_data_en.
reg [SAMP_CNT_WIDTH-1:0] samps_ns, samps_r;
always @(posedge clk) samps_r <= #TCQ samps_ns;
// Step through the 8 bits in the byte.
reg [2:0] rd_victim_sel_ns, rd_victim_sel_r;
always @(posedge clk) rd_victim_sel_r <= #TCQ rd_victim_sel_ns;
output [2:0] rd_victim_sel;
assign rd_victim_sel = rd_victim_sel_r;
reg [SAMP_CNT_WIDTH-1:0] zero_ns, zero_r, oneeighty_ns, oneeighty_r;
always @(posedge clk) zero_r <= #TCQ zero_ns;
always @(posedge clk) oneeighty_r <= #TCQ oneeighty_ns;
output [1:0] samp_result;
assign samp_result[0] = zero_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
assign samp_result[1] = oneeighty_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
reg [0:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
wire [DATA_CNT_WIDTH-1:0] data_cnt = complex_oclkdelay_calib_start
? CMPLX_DATA_CNT[DATA_CNT_WIDTH-1:0]
: SIMP_DATA_CNT[DATA_CNT_WIDTH-1:0];
wire [2:0] rd_victim_end = complex_oclkdelay_calib_start ? 3'h7 : 3'h0;
wire data_end = data_cnt_r == ONE[DATA_CNT_WIDTH-1:0];
wire samp_end = samps_r == ONE[SAMP_CNT_WIDTH-1:0];
// Primary state machine.
always @(*) begin
// Default next state assignments.
agg_samp_ns = agg_samp_r;
data_cnt_ns = data_cnt_r;
oclk_calib_resume_ns = 1'b0;
oneeighty_ns = oneeighty_r;
rd_victim_sel_ns = rd_victim_sel_r;
samp_done_ns = samp_done_r;
samps_ns = samps_r;
sm_ns = sm_r;
zero_ns = zero_r;
if (rst == 1'b1) begin
// RESET next states
sm_ns = /*AK("READY")*/1'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/1'd0:begin
agg_samp_ns = NULL;
data_cnt_ns = data_cnt;
oneeighty_ns = {SAMP_CNT_WIDTH{1'b0}};
rd_victim_sel_ns = 3'b0;
samps_ns = complex_oclkdelay_calib_start ? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
zero_ns = {SAMP_CNT_WIDTH{1'b0}};
if (taps_set) begin
samp_done_ns = 1'b0;
sm_ns = /*AK("AWAITING_DATA")*/1'd1;
oclk_calib_resume_ns = 1'b1;
end
end
/*AL("AWAITING_DATA")*/1'd1:begin
if (phy_rddata_en_1) begin
case (agg_samp_r)
NULL : if (~&match) agg_samp_ns = match;
ZERO, ONEEIGHTY : if (~(agg_samp_r == match || &match)) agg_samp_ns = FUZZ;
FUZZ : ;
endcase // case (agg_samp_r)
if (~data_end) data_cnt_ns = data_cnt_r - ONE[DATA_CNT_WIDTH-1:0];
else begin
data_cnt_ns = data_cnt;
if (rd_victim_end != rd_victim_sel_r) rd_victim_sel_ns = rd_victim_sel_r + 3'h1;
else begin
rd_victim_sel_ns = 3'h0;
if (agg_samp_ns == ZERO) zero_ns = zero_r + ONE[SAMP_CNT_WIDTH-1:0];
if (agg_samp_ns == ONEEIGHTY) oneeighty_ns = oneeighty_r + ONE[SAMP_CNT_WIDTH-1:0];
agg_samp_ns = NULL;
if (~samp_end) samps_ns = samps_r - ONE[SAMP_CNT_WIDTH-1:0];
else samp_done_ns = 1'b1;
end
end
if (samp_done_ns) sm_ns = /*AK("READY")*/1'd0;
else oclk_calib_resume_ns = ~complex_oclkdelay_calib_start && data_end;
end
end
endcase // case (sm_r)
end // always @ begin
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_samp #
(parameter nCK_PER_CLK = 4,
parameter OCAL_SIMPLE_SCAN_SAMPS = 2,
parameter SCAN_PCT_SAMPS_SOLID = 95,
parameter TCQ = 100,
parameter SIM_CAL_OPTION = "NONE")
(/*AUTOARG*/
// Outputs
samp_done, oclk_calib_resume, rd_victim_sel, samp_result,
// Inputs
complex_oclkdelay_calib_start, clk, rst, reset_scan,
ocal_num_samples_inc, match, phy_rddata_en_1, taps_set
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam ONE = 1;
localparam CMPLX_DATA_CNT = nCK_PER_CLK == 2 ? 157 * 2 : 157;
localparam SIMP_DATA_CNT = nCK_PER_CLK == 2 ? 2 : 1;
localparam DATA_CNT_WIDTH = nCK_PER_CLK == 2 ? 9 : 8;
localparam CMPLX_SAMPS = SIM_CAL_OPTION == "NONE" ? 50 : 1;
// Plus one because were counting in natural numbers.
localparam SAMP_CNT_WIDTH = clogb2(OCAL_SIMPLE_SCAN_SAMPS > CMPLX_SAMPS
? OCAL_SIMPLE_SCAN_SAMPS : CMPLX_SAMPS) + 1;
// Remember SAMPLES is natural number counting. One corresponds to one sample.
localparam integer SIMP_SAMPS_SOLID_THRESH = OCAL_SIMPLE_SCAN_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
localparam integer CMPLX_SAMPS_SOLID_THRESH = CMPLX_SAMPS * SCAN_PCT_SAMPS_SOLID * 0.01;
input complex_oclkdelay_calib_start;
wire [SAMP_CNT_WIDTH-1:0] samples = complex_oclkdelay_calib_start
? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
localparam [1:0] NULL = 2'b11,
FUZZ = 2'b00,
ONEEIGHTY = 2'b10,
ZERO = 2'b01;
input clk;
input rst;
input reset_scan;
// Given the need to count phy_data_en, this is not useful.
input ocal_num_samples_inc;
input [1:0] match;
input phy_rddata_en_1;
input taps_set;
reg samp_done_ns, samp_done_r;
always @(posedge clk) samp_done_r <= #TCQ samp_done_ns;
output samp_done;
assign samp_done = samp_done_r;
reg [1:0] agg_samp_ns, agg_samp_r;
always @(posedge clk) agg_samp_r <= #TCQ agg_samp_ns;
reg oclk_calib_resume_ns, oclk_calib_resume_r;
always @(posedge clk) oclk_calib_resume_r <= #TCQ oclk_calib_resume_ns;
output oclk_calib_resume;
assign oclk_calib_resume = oclk_calib_resume_r;
// Complex data counting.
// Inner most loop. 157 phy_data_en.
reg [DATA_CNT_WIDTH-1:0] data_cnt_ns, data_cnt_r;
always @(posedge clk) data_cnt_r <= #TCQ data_cnt_ns;
// Nominally, 50 samples of the above 157 phy_data_en.
reg [SAMP_CNT_WIDTH-1:0] samps_ns, samps_r;
always @(posedge clk) samps_r <= #TCQ samps_ns;
// Step through the 8 bits in the byte.
reg [2:0] rd_victim_sel_ns, rd_victim_sel_r;
always @(posedge clk) rd_victim_sel_r <= #TCQ rd_victim_sel_ns;
output [2:0] rd_victim_sel;
assign rd_victim_sel = rd_victim_sel_r;
reg [SAMP_CNT_WIDTH-1:0] zero_ns, zero_r, oneeighty_ns, oneeighty_r;
always @(posedge clk) zero_r <= #TCQ zero_ns;
always @(posedge clk) oneeighty_r <= #TCQ oneeighty_ns;
output [1:0] samp_result;
assign samp_result[0] = zero_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
assign samp_result[1] = oneeighty_r >= (complex_oclkdelay_calib_start
? CMPLX_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]
: SIMP_SAMPS_SOLID_THRESH[SAMP_CNT_WIDTH-1:0]);
reg [0:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
wire [DATA_CNT_WIDTH-1:0] data_cnt = complex_oclkdelay_calib_start
? CMPLX_DATA_CNT[DATA_CNT_WIDTH-1:0]
: SIMP_DATA_CNT[DATA_CNT_WIDTH-1:0];
wire [2:0] rd_victim_end = complex_oclkdelay_calib_start ? 3'h7 : 3'h0;
wire data_end = data_cnt_r == ONE[DATA_CNT_WIDTH-1:0];
wire samp_end = samps_r == ONE[SAMP_CNT_WIDTH-1:0];
// Primary state machine.
always @(*) begin
// Default next state assignments.
agg_samp_ns = agg_samp_r;
data_cnt_ns = data_cnt_r;
oclk_calib_resume_ns = 1'b0;
oneeighty_ns = oneeighty_r;
rd_victim_sel_ns = rd_victim_sel_r;
samp_done_ns = samp_done_r;
samps_ns = samps_r;
sm_ns = sm_r;
zero_ns = zero_r;
if (rst == 1'b1) begin
// RESET next states
sm_ns = /*AK("READY")*/1'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/1'd0:begin
agg_samp_ns = NULL;
data_cnt_ns = data_cnt;
oneeighty_ns = {SAMP_CNT_WIDTH{1'b0}};
rd_victim_sel_ns = 3'b0;
samps_ns = complex_oclkdelay_calib_start ? CMPLX_SAMPS[SAMP_CNT_WIDTH-1:0]
: OCAL_SIMPLE_SCAN_SAMPS[SAMP_CNT_WIDTH-1:0];
zero_ns = {SAMP_CNT_WIDTH{1'b0}};
if (taps_set) begin
samp_done_ns = 1'b0;
sm_ns = /*AK("AWAITING_DATA")*/1'd1;
oclk_calib_resume_ns = 1'b1;
end
end
/*AL("AWAITING_DATA")*/1'd1:begin
if (phy_rddata_en_1) begin
case (agg_samp_r)
NULL : if (~&match) agg_samp_ns = match;
ZERO, ONEEIGHTY : if (~(agg_samp_r == match || &match)) agg_samp_ns = FUZZ;
FUZZ : ;
endcase // case (agg_samp_r)
if (~data_end) data_cnt_ns = data_cnt_r - ONE[DATA_CNT_WIDTH-1:0];
else begin
data_cnt_ns = data_cnt;
if (rd_victim_end != rd_victim_sel_r) rd_victim_sel_ns = rd_victim_sel_r + 3'h1;
else begin
rd_victim_sel_ns = 3'h0;
if (agg_samp_ns == ZERO) zero_ns = zero_r + ONE[SAMP_CNT_WIDTH-1:0];
if (agg_samp_ns == ONEEIGHTY) oneeighty_ns = oneeighty_r + ONE[SAMP_CNT_WIDTH-1:0];
agg_samp_ns = NULL;
if (~samp_end) samps_ns = samps_r - ONE[SAMP_CNT_WIDTH-1:0];
else samp_done_ns = 1'b1;
end
end
if (samp_done_ns) sm_ns = /*AK("READY")*/1'd0;
else oclk_calib_resume_ns = ~complex_oclkdelay_calib_start && data_end;
end
end
endcase // case (sm_r)
end // always @ begin
endmodule
|
module mig_7series_v2_3_col_mach #
(
parameter TCQ = 100,
parameter BANK_WIDTH = 3,
parameter BURST_MODE = "8",
parameter COL_WIDTH = 12,
parameter CS_WIDTH = 4,
parameter DATA_BUF_ADDR_WIDTH = 8,
parameter DATA_BUF_OFFSET_WIDTH = 1,
parameter DELAY_WR_DATA_CNTRL = 0,
parameter DQS_WIDTH = 8,
parameter DRAM_TYPE = "DDR3",
parameter EARLY_WR_DATA_ADDR = "OFF",
parameter ECC = "OFF",
parameter MC_ERR_ADDR_WIDTH = 31,
parameter nCK_PER_CLK = 2,
parameter nPHY_WRLAT = 0,
parameter RANK_WIDTH = 2,
parameter ROW_WIDTH = 16
)
(/*AUTOARG*/
// Outputs
dq_busy_data, wr_data_offset, mc_wrdata_en, wr_data_en,
wr_data_addr, rd_rmw, ecc_err_addr, ecc_status_valid, wr_ecc_buf, rd_data_end,
rd_data_addr, rd_data_offset, rd_data_en, col_read_fifo_empty,
// Inputs
clk, rst, sent_col, col_size, col_wr_data_buf_addr,
phy_rddata_valid, col_periodic_rd, col_data_buf_addr, col_rmw,
col_rd_wr, col_ra, col_ba, col_row, col_a
);
input clk;
input rst;
input sent_col;
input col_rd_wr;
output reg dq_busy_data = 1'b0;
// The following generates a column command disable based mostly on the type
// of DRAM and the fabric to DRAM CK ratio.
generate
if ((nCK_PER_CLK == 1) && ((BURST_MODE == "8") || (DRAM_TYPE == "DDR3")))
begin : three_bumps
reg [1:0] granted_col_d_r;
wire [1:0] granted_col_d_ns = {sent_col, granted_col_d_r[1]};
always @(posedge clk) granted_col_d_r <= #TCQ granted_col_d_ns;
always @(/*AS*/granted_col_d_r or sent_col)
dq_busy_data = sent_col || |granted_col_d_r;
end
if (((nCK_PER_CLK == 2) && ((BURST_MODE == "8") || (DRAM_TYPE == "DDR3")))
|| ((nCK_PER_CLK == 1) && ((BURST_MODE == "4") || (DRAM_TYPE == "DDR2"))))
begin : one_bump
always @(/*AS*/sent_col) dq_busy_data = sent_col;
end
endgenerate
// This generates a data offset based on fabric clock to DRAM CK ratio and
// the size bit. Note that this is different that the dq_busy_data signal
// generated above.
reg [1:0] offset_r = 2'b0;
reg [1:0] offset_ns = 2'b0;
input col_size;
wire data_end;
generate
if(nCK_PER_CLK == 4) begin : data_valid_4_1
// For 4:1 mode all data is transfered in a single beat so the default
// values of 0 for offset_r/offset_ns suffice - just tie off data_end
assign data_end = 1'b1;
end
else begin
if(DATA_BUF_OFFSET_WIDTH == 2) begin : data_valid_1_1
always @(col_size or offset_r or rst or sent_col) begin
if (rst) offset_ns = 2'b0;
else begin
offset_ns = offset_r;
if (sent_col) offset_ns = 2'b1;
else if (|offset_r && (offset_r != {col_size, 1'b1}))
offset_ns = offset_r + 2'b1;
else offset_ns = 2'b0;
end
end
always @(posedge clk) offset_r <= #TCQ offset_ns;
assign data_end = col_size ? (offset_r == 2'b11) : offset_r[0];
end
else begin : data_valid_2_1
always @(col_size or rst or sent_col)
offset_ns[0] = rst ? 1'b0 : sent_col && col_size;
always @(posedge clk) offset_r[0] <= #TCQ offset_ns[0];
assign data_end = col_size ? offset_r[0] : 1'b1;
end
end
endgenerate
reg [DATA_BUF_OFFSET_WIDTH-1:0] offset_r1 = {DATA_BUF_OFFSET_WIDTH{1'b0}};
reg [DATA_BUF_OFFSET_WIDTH-1:0] offset_r2 = {DATA_BUF_OFFSET_WIDTH{1'b0}};
reg col_rd_wr_r1;
reg col_rd_wr_r2;
generate
if ((nPHY_WRLAT >= 1) || (DELAY_WR_DATA_CNTRL == 1)) begin : offset_pipe_0
always @(posedge clk) offset_r1 <=
#TCQ offset_r[DATA_BUF_OFFSET_WIDTH-1:0];
always @(posedge clk) col_rd_wr_r1 <= #TCQ col_rd_wr;
end
if(nPHY_WRLAT == 2) begin : offset_pipe_1
always @(posedge clk) offset_r2 <=
#TCQ offset_r1[DATA_BUF_OFFSET_WIDTH-1:0];
always @(posedge clk) col_rd_wr_r2 <= #TCQ col_rd_wr_r1;
end
endgenerate
output wire [DATA_BUF_OFFSET_WIDTH-1:0] wr_data_offset;
assign wr_data_offset = (DELAY_WR_DATA_CNTRL == 1)
? offset_r1[DATA_BUF_OFFSET_WIDTH-1:0]
: (EARLY_WR_DATA_ADDR == "OFF")
? offset_r[DATA_BUF_OFFSET_WIDTH-1:0]
: offset_ns[DATA_BUF_OFFSET_WIDTH-1:0];
reg sent_col_r1;
reg sent_col_r2;
always @(posedge clk) sent_col_r1 <= #TCQ sent_col;
always @(posedge clk) sent_col_r2 <= #TCQ sent_col_r1;
wire wrdata_en = (nPHY_WRLAT == 0) ?
(sent_col || |offset_r) & ~col_rd_wr :
(nPHY_WRLAT == 1) ?
(sent_col_r1 || |offset_r1) & ~col_rd_wr_r1 :
//(nPHY_WRLAT >= 2) ?
(sent_col_r2 || |offset_r2) & ~col_rd_wr_r2;
output wire mc_wrdata_en;
assign mc_wrdata_en = wrdata_en;
output wire wr_data_en;
assign wr_data_en = (DELAY_WR_DATA_CNTRL == 1)
? ((sent_col_r1 || |offset_r1) && ~col_rd_wr_r1)
: ((sent_col || |offset_r) && ~col_rd_wr);
input [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr;
output wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_addr;
generate
if (DELAY_WR_DATA_CNTRL == 1) begin : delay_wr_data_cntrl_eq_1
reg [DATA_BUF_ADDR_WIDTH-1:0] col_wr_data_buf_addr_r;
always @(posedge clk) col_wr_data_buf_addr_r <=
#TCQ col_wr_data_buf_addr;
assign wr_data_addr = col_wr_data_buf_addr_r;
end
else begin : delay_wr_data_cntrl_ne_1
assign wr_data_addr = col_wr_data_buf_addr;
end
endgenerate
// CAS-RD to mc_rddata_en
wire read_data_valid = (sent_col || |offset_r) && col_rd_wr;
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
// Implement FIFO that records reads as they are sent to the DRAM.
// When phy_rddata_valid is returned some unknown time later, the
// FIFO output is used to control how the data is interpreted.
input phy_rddata_valid;
output wire rd_rmw;
output reg [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr;
output reg ecc_status_valid;
output reg wr_ecc_buf;
output reg rd_data_end;
output reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
output reg [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset;
output reg rd_data_en /* synthesis syn_maxfan = 10 */;
output col_read_fifo_empty;
input col_periodic_rd;
input [DATA_BUF_ADDR_WIDTH-1:0] col_data_buf_addr;
input col_rmw;
input [RANK_WIDTH-1:0] col_ra;
input [BANK_WIDTH-1:0] col_ba;
input [ROW_WIDTH-1:0] col_row;
input [ROW_WIDTH-1:0] col_a;
// Real column address (skip A10/AP and A12/BC#). The maximum width is 12;
// the width will be tailored for the target DRAM downstream.
wire [11:0] col_a_full;
// Minimum row width is 12; take remaining 11 bits after omitting A10/AP
assign col_a_full[10:0] = {col_a[11], col_a[9:0]};
// Get the 12th bit when row address width accommodates it; omit A12/BC#
generate
if (ROW_WIDTH >= 14) begin : COL_A_FULL_11_1
assign col_a_full[11] = col_a[13];
end else begin : COL_A_FULL_11_0
assign col_a_full[11] = 0;
end
endgenerate
// Extract only the width of the target DRAM
wire [COL_WIDTH-1:0] col_a_extracted = col_a_full[COL_WIDTH-1:0];
localparam MC_ERR_LINE_WIDTH = MC_ERR_ADDR_WIDTH-DATA_BUF_OFFSET_WIDTH;
localparam FIFO_WIDTH = 1 /*data_end*/ +
1 /*periodic_rd*/ +
DATA_BUF_ADDR_WIDTH +
DATA_BUF_OFFSET_WIDTH +
((ECC == "OFF") ? 0 : 1+MC_ERR_LINE_WIDTH);
localparam FULL_RAM_CNT = (FIFO_WIDTH/6);
localparam REMAINDER = FIFO_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
generate
begin : read_fifo
wire [MC_ERR_LINE_WIDTH:0] ecc_line;
if (CS_WIDTH == 1)
assign ecc_line = {col_rmw, col_ba, col_row, col_a_extracted};
else
assign ecc_line = {col_rmw,
col_ra,
col_ba,
col_row,
col_a_extracted};
wire [FIFO_WIDTH-1:0] real_fifo_data;
if (ECC == "OFF")
assign real_fifo_data = {data_end,
col_periodic_rd,
col_data_buf_addr,
offset_r[DATA_BUF_OFFSET_WIDTH-1:0]};
else
assign real_fifo_data = {data_end,
col_periodic_rd,
col_data_buf_addr,
offset_r[DATA_BUF_OFFSET_WIDTH-1:0],
ecc_line};
wire [RAM_WIDTH-1:0] fifo_in_data;
if (REMAINDER == 0)
assign fifo_in_data = real_fifo_data;
else
assign fifo_in_data = {{6-REMAINDER{1'b0}}, real_fifo_data};
wire [RAM_WIDTH-1:0] fifo_out_data_ns;
reg [4:0] head_r;
wire [4:0] head_ns = rst ? 5'b0 : read_data_valid
? (head_r + 5'b1)
: head_r;
always @(posedge clk) head_r <= #TCQ head_ns;
reg [4:0] tail_r;
wire [4:0] tail_ns = rst ? 5'b0 : phy_rddata_valid
? (tail_r + 5'b1)
: tail_r;
always @(posedge clk) tail_r <= #TCQ tail_ns;
assign col_read_fifo_empty = head_r == tail_r ? 1'b1 : 1'b0;
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : fifo_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(fifo_out_data_ns[((i*6)+4)+:2]),
.DOB(fifo_out_data_ns[((i*6)+2)+:2]),
.DOC(fifo_out_data_ns[((i*6)+0)+:2]),
.DOD(),
.DIA(fifo_in_data[((i*6)+4)+:2]),
.DIB(fifo_in_data[((i*6)+2)+:2]),
.DIC(fifo_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(tail_ns),
.ADDRB(tail_ns),
.ADDRC(tail_ns),
.ADDRD(head_r),
.WE(1'b1),
.WCLK(clk)
);
end // block: fifo_ram
reg [RAM_WIDTH-1:0] fifo_out_data_r;
always @(posedge clk) fifo_out_data_r <= #TCQ fifo_out_data_ns;
// When ECC is ON, most of the FIFO output is delayed
// by one state.
if (ECC == "OFF") begin
reg periodic_rd;
always @(/*AS*/phy_rddata_valid or fifo_out_data_r) begin
{rd_data_end,
periodic_rd,
rd_data_addr,
rd_data_offset} = fifo_out_data_r[FIFO_WIDTH-1:0];
ecc_err_addr = {MC_ERR_ADDR_WIDTH{1'b0}};
rd_data_en = phy_rddata_valid && ~periodic_rd;
ecc_status_valid = 1'b0;
wr_ecc_buf = 1'b0;
end
assign rd_rmw = 1'b0;
end
else begin
wire rd_data_end_ns;
wire periodic_rd;
wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr_ns;
wire [DATA_BUF_OFFSET_WIDTH-1:0] rd_data_offset_ns;
wire [MC_ERR_ADDR_WIDTH-1:0] ecc_err_addr_ns;
assign {rd_data_end_ns,
periodic_rd,
rd_data_addr_ns,
rd_data_offset_ns,
rd_rmw,
ecc_err_addr_ns[DATA_BUF_OFFSET_WIDTH+:MC_ERR_LINE_WIDTH]} =
{fifo_out_data_r[FIFO_WIDTH-1:0]};
assign ecc_err_addr_ns[0+:DATA_BUF_OFFSET_WIDTH] = rd_data_offset_ns;
always @(posedge clk) rd_data_end <= #TCQ rd_data_end_ns;
always @(posedge clk) rd_data_addr <= #TCQ rd_data_addr_ns;
always @(posedge clk) rd_data_offset <= #TCQ rd_data_offset_ns;
always @(posedge clk) ecc_err_addr <= #TCQ ecc_err_addr_ns;
wire rd_data_en_ns = phy_rddata_valid && ~(periodic_rd || rd_rmw);
always @(posedge clk) rd_data_en <= rd_data_en_ns;
wire ecc_status_valid_ns = phy_rddata_valid && ~periodic_rd;
always @(posedge clk) ecc_status_valid <= #TCQ ecc_status_valid_ns;
wire wr_ecc_buf_ns = phy_rddata_valid && ~periodic_rd && rd_rmw;
always @(posedge clk) wr_ecc_buf <= #TCQ wr_ecc_buf_ns;
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_poc_pd #
(parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter SIM_CAL_OPTION = "NONE",
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
pd_out,
// Inputs
iddr_rst, clk, kclk, mmcm_ps_clk
);
input iddr_rst;
input clk;
input kclk;
input mmcm_ps_clk;
wire q1;
IDDR #
(.DDR_CLK_EDGE ("OPPOSITE_EDGE"),
.INIT_Q1 (1'b0),
.INIT_Q2 (1'b0),
.SRTYPE ("SYNC"))
u_phase_detector
(.Q1 (q1),
.Q2 (),
.C (mmcm_ps_clk),
.CE (1'b1),
.D (kclk),
.R (iddr_rst),
.S (1'b0));
// Path from q1 to xxx_edge_samp must be constrained to be less than 1/4 cycle. FIXME
reg pos_edge_samp;
generate if (SIM_CAL_OPTION == "NONE" || POC_USE_METASTABLE_SAMP == "TRUE") begin : no_eXes
always @(posedge clk) pos_edge_samp <= #TCQ q1;
end else begin : eXes
reg q1_delayed;
reg rising_clk_seen;
always @(posedge mmcm_ps_clk) begin
rising_clk_seen <= 1'b0;
q1_delayed <= 1'bx;
end
always @(posedge clk) begin
rising_clk_seen = 1'b1;
if (rising_clk_seen) q1_delayed <= q1;
end
always @(posedge clk) begin
pos_edge_samp <= q1_delayed;
end
end endgenerate
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pos_edge_samp;
output pd_out;
assign pd_out = pd_out_r;
endmodule
|
module mig_7series_v2_3_ddr_of_pre_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input full_in, // FULL flag from OUT_FIFO
input wr_en_in, // write enable from controller
input [WIDTH-1:0] d_in, // write data from controller
output wr_en_out, // write enable to OUT_FIFO
output [WIDTH-1:0] d_out, // write data to OUT_FIFO
output afull // almost full signal to controller
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
((DEPTH == 3) || (DEPTH == 4)) ? 2 :
(((DEPTH == 5) || (DEPTH == 6) ||
(DEPTH == 7) || (DEPTH == 8)) ? 3 :
DEPTH == 9 ? 4 : 'bx);
// Set watermark. Always give the MC 5 cycles to engage flow control.
localparam ALMOST_FULL_VALUE = DEPTH - 5;
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1] ;
reg [8:0] my_empty /* synthesis syn_maxfan = 3 */;
reg [5:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] wr_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS:0] entry_cnt;
wire [PTR_BITS-1:0] nxt_rd_ptr;
wire [PTR_BITS-1:0] nxt_wr_ptr;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 50 *) wire wr_en;
assign d_out = my_empty[0] ? d_in : mem_out;
assign wr_en_out = !full_in && (!my_empty[1] || wr_en_in);
assign wr_en = wr_en_in & ((!my_empty[3] & !full_in)|(!my_full[2] & full_in));
always @ (posedge clk)
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
assign mem_out = mem[rd_ptr];
assign nxt_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
rd_ptr <= 'b0;
rd_ptr_timing <= 'b0;
end
else if ((!my_empty[4]) & (!full_in)) begin
rd_ptr <= nxt_rd_ptr;
rd_ptr_timing <= nxt_rd_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_empty <= 9'h1ff;
else begin
if (my_empty[2] & !my_full[3] & full_in & wr_en_in)
my_empty[3:0] <= 4'b0000;
else if (!my_empty[2] & !my_full[3] & !full_in & !wr_en_in) begin
my_empty[0] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[1] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[2] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[3] <= (nxt_rd_ptr == wr_ptr_timing);
end
if (my_empty[8] & !my_full[5] & full_in & wr_en_in)
my_empty[8:4] <= 5'b00000;
else if (!my_empty[8] & !my_full[5] & !full_in & !wr_en_in) begin
my_empty[4] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[5] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[6] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[7] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[8] <= (nxt_rd_ptr == wr_ptr_timing);
end
end
end
assign nxt_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
wr_ptr <= 'b0;
wr_ptr_timing <= 'b0;
end
else if ((wr_en_in) & ((!my_empty[5] & !full_in) | (!my_full[1] & full_in))) begin
wr_ptr <= nxt_wr_ptr;
wr_ptr_timing <= nxt_wr_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_full <= 6'b000000;
else if (!my_empty[6] & my_full[0] & !full_in & !wr_en_in)
my_full <= 6'b000000;
else if (!my_empty[6] & !my_full[0] & full_in & wr_en_in) begin
my_full[0] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[1] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[2] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[3] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[4] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[5] <= (nxt_wr_ptr == rd_ptr_timing);
end
end
always @ (posedge clk)
begin
if (rst)
entry_cnt <= 'b0;
else if (wr_en_in & full_in & !my_full[4])
entry_cnt <= entry_cnt + 1'b1;
else if (!wr_en_in & !full_in & !my_empty[7])
entry_cnt <= entry_cnt - 1'b1;
end
assign afull = (entry_cnt >= ALMOST_FULL_VALUE);
endmodule
|
module mig_7series_v2_3_ddr_of_pre_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input full_in, // FULL flag from OUT_FIFO
input wr_en_in, // write enable from controller
input [WIDTH-1:0] d_in, // write data from controller
output wr_en_out, // write enable to OUT_FIFO
output [WIDTH-1:0] d_out, // write data to OUT_FIFO
output afull // almost full signal to controller
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
((DEPTH == 3) || (DEPTH == 4)) ? 2 :
(((DEPTH == 5) || (DEPTH == 6) ||
(DEPTH == 7) || (DEPTH == 8)) ? 3 :
DEPTH == 9 ? 4 : 'bx);
// Set watermark. Always give the MC 5 cycles to engage flow control.
localparam ALMOST_FULL_VALUE = DEPTH - 5;
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1] ;
reg [8:0] my_empty /* synthesis syn_maxfan = 3 */;
reg [5:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] wr_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS:0] entry_cnt;
wire [PTR_BITS-1:0] nxt_rd_ptr;
wire [PTR_BITS-1:0] nxt_wr_ptr;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 50 *) wire wr_en;
assign d_out = my_empty[0] ? d_in : mem_out;
assign wr_en_out = !full_in && (!my_empty[1] || wr_en_in);
assign wr_en = wr_en_in & ((!my_empty[3] & !full_in)|(!my_full[2] & full_in));
always @ (posedge clk)
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
assign mem_out = mem[rd_ptr];
assign nxt_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
rd_ptr <= 'b0;
rd_ptr_timing <= 'b0;
end
else if ((!my_empty[4]) & (!full_in)) begin
rd_ptr <= nxt_rd_ptr;
rd_ptr_timing <= nxt_rd_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_empty <= 9'h1ff;
else begin
if (my_empty[2] & !my_full[3] & full_in & wr_en_in)
my_empty[3:0] <= 4'b0000;
else if (!my_empty[2] & !my_full[3] & !full_in & !wr_en_in) begin
my_empty[0] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[1] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[2] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[3] <= (nxt_rd_ptr == wr_ptr_timing);
end
if (my_empty[8] & !my_full[5] & full_in & wr_en_in)
my_empty[8:4] <= 5'b00000;
else if (!my_empty[8] & !my_full[5] & !full_in & !wr_en_in) begin
my_empty[4] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[5] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[6] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[7] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[8] <= (nxt_rd_ptr == wr_ptr_timing);
end
end
end
assign nxt_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
wr_ptr <= 'b0;
wr_ptr_timing <= 'b0;
end
else if ((wr_en_in) & ((!my_empty[5] & !full_in) | (!my_full[1] & full_in))) begin
wr_ptr <= nxt_wr_ptr;
wr_ptr_timing <= nxt_wr_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_full <= 6'b000000;
else if (!my_empty[6] & my_full[0] & !full_in & !wr_en_in)
my_full <= 6'b000000;
else if (!my_empty[6] & !my_full[0] & full_in & wr_en_in) begin
my_full[0] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[1] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[2] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[3] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[4] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[5] <= (nxt_wr_ptr == rd_ptr_timing);
end
end
always @ (posedge clk)
begin
if (rst)
entry_cnt <= 'b0;
else if (wr_en_in & full_in & !my_full[4])
entry_cnt <= entry_cnt + 1'b1;
else if (!wr_en_in & !full_in & !my_empty[7])
entry_cnt <= entry_cnt - 1'b1;
end
assign afull = (entry_cnt >= ALMOST_FULL_VALUE);
endmodule
|
module mig_7series_v2_3_ddr_of_pre_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input full_in, // FULL flag from OUT_FIFO
input wr_en_in, // write enable from controller
input [WIDTH-1:0] d_in, // write data from controller
output wr_en_out, // write enable to OUT_FIFO
output [WIDTH-1:0] d_out, // write data to OUT_FIFO
output afull // almost full signal to controller
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
((DEPTH == 3) || (DEPTH == 4)) ? 2 :
(((DEPTH == 5) || (DEPTH == 6) ||
(DEPTH == 7) || (DEPTH == 8)) ? 3 :
DEPTH == 9 ? 4 : 'bx);
// Set watermark. Always give the MC 5 cycles to engage flow control.
localparam ALMOST_FULL_VALUE = DEPTH - 5;
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1] ;
reg [8:0] my_empty /* synthesis syn_maxfan = 3 */;
reg [5:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
(* KEEP = "TRUE", max_fanout = 50 *) reg [PTR_BITS-1:0] wr_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS:0] entry_cnt;
wire [PTR_BITS-1:0] nxt_rd_ptr;
wire [PTR_BITS-1:0] nxt_wr_ptr;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 50 *) wire wr_en;
assign d_out = my_empty[0] ? d_in : mem_out;
assign wr_en_out = !full_in && (!my_empty[1] || wr_en_in);
assign wr_en = wr_en_in & ((!my_empty[3] & !full_in)|(!my_full[2] & full_in));
always @ (posedge clk)
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
assign mem_out = mem[rd_ptr];
assign nxt_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
rd_ptr <= 'b0;
rd_ptr_timing <= 'b0;
end
else if ((!my_empty[4]) & (!full_in)) begin
rd_ptr <= nxt_rd_ptr;
rd_ptr_timing <= nxt_rd_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_empty <= 9'h1ff;
else begin
if (my_empty[2] & !my_full[3] & full_in & wr_en_in)
my_empty[3:0] <= 4'b0000;
else if (!my_empty[2] & !my_full[3] & !full_in & !wr_en_in) begin
my_empty[0] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[1] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[2] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[3] <= (nxt_rd_ptr == wr_ptr_timing);
end
if (my_empty[8] & !my_full[5] & full_in & wr_en_in)
my_empty[8:4] <= 5'b00000;
else if (!my_empty[8] & !my_full[5] & !full_in & !wr_en_in) begin
my_empty[4] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[5] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[6] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[7] <= (nxt_rd_ptr == wr_ptr_timing);
my_empty[8] <= (nxt_rd_ptr == wr_ptr_timing);
end
end
end
assign nxt_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
always @ (posedge clk)
begin
if (rst) begin
wr_ptr <= 'b0;
wr_ptr_timing <= 'b0;
end
else if ((wr_en_in) & ((!my_empty[5] & !full_in) | (!my_full[1] & full_in))) begin
wr_ptr <= nxt_wr_ptr;
wr_ptr_timing <= nxt_wr_ptr;
end
end
always @ (posedge clk)
begin
if (rst)
my_full <= 6'b000000;
else if (!my_empty[6] & my_full[0] & !full_in & !wr_en_in)
my_full <= 6'b000000;
else if (!my_empty[6] & !my_full[0] & full_in & wr_en_in) begin
my_full[0] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[1] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[2] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[3] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[4] <= (nxt_wr_ptr == rd_ptr_timing);
my_full[5] <= (nxt_wr_ptr == rd_ptr_timing);
end
end
always @ (posedge clk)
begin
if (rst)
entry_cnt <= 'b0;
else if (wr_en_in & full_in & !my_full[4])
entry_cnt <= entry_cnt + 1'b1;
else if (!wr_en_in & !full_in & !my_empty[7])
entry_cnt <= entry_cnt - 1'b1;
end
assign afull = (entry_cnt >= ALMOST_FULL_VALUE);
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl_off_delay #
(
parameter TCQ = 100,
parameter tCK = 3636,
parameter nCK_PER_CLK = 2,
parameter CLK_PERIOD = 4,
parameter PO_INITIAL_DLY= 46,
parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter N_CTL_LANES = 3
)
(
input clk,
input rst,
input pi_fine_dly_dec_done,
input cmd_delay_start,
// Control lane being shifted using Phaser_Out fine delay taps
output reg [DQS_CNT_WIDTH:0] ctl_lane_cnt,
// Inc/dec Phaser_Out fine delay line
output reg po_s2_incdec_f,
output reg po_en_s2_f,
// Inc/dec Phaser_Out coarse delay line
output reg po_s2_incdec_c,
output reg po_en_s2_c,
// Completed adjusting delays for dq, dqs for tdqss
output po_ck_addr_cmd_delay_done,
// completed decrementing initialPO delays
output po_dec_done,
output phy_ctl_rdy_dly
);
localparam TAP_LIMIT = 63;
// PO fine delay tap resolution change by frequency. tCK > 2500, need
// twice the amount of taps
// localparam D_DLY_F = (tCK > 2500 ) ? D_DLY * 2 : D_DLY;
// coarse delay tap is added DQ/DQS to meet the TDQSS specification.
localparam TDQSS_DLY = (tCK > 2500 )? 2: 1;
reg delay_done;
reg delay_done_r1;
reg delay_done_r2;
reg delay_done_r3;
reg delay_done_r4;
reg [5:0] po_delay_cnt_r;
reg po_cnt_inc;
reg cmd_delay_start_r1;
reg cmd_delay_start_r2;
reg cmd_delay_start_r3;
reg cmd_delay_start_r4;
reg cmd_delay_start_r5;
reg cmd_delay_start_r6;
reg po_delay_done;
reg po_delay_done_r1;
reg po_delay_done_r2;
reg po_delay_done_r3;
reg po_delay_done_r4;
reg pi_fine_dly_dec_done_r;
reg po_en_stg2_c;
reg po_en_stg2_f;
reg po_stg2_incdec_c;
reg po_stg2_f_incdec;
reg [DQS_CNT_WIDTH:0] lane_cnt_dqs_c_r;
reg [DQS_CNT_WIDTH:0] lane_cnt_po_r;
reg [5:0] delay_cnt_r;
always @(posedge clk) begin
cmd_delay_start_r1 <= #TCQ cmd_delay_start;
cmd_delay_start_r2 <= #TCQ cmd_delay_start_r1;
cmd_delay_start_r3 <= #TCQ cmd_delay_start_r2;
cmd_delay_start_r4 <= #TCQ cmd_delay_start_r3;
cmd_delay_start_r5 <= #TCQ cmd_delay_start_r4;
cmd_delay_start_r6 <= #TCQ cmd_delay_start_r5;
pi_fine_dly_dec_done_r <= #TCQ pi_fine_dly_dec_done;
end
assign phy_ctl_rdy_dly = cmd_delay_start_r6;
// logic for decrementing initial fine delay taps for all PO
// Decrement done for add, ctrl and data phaser outs
assign po_dec_done = (PO_INITIAL_DLY == 0) ? 1 : po_delay_done_r4;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || po_delay_done) begin
po_stg2_f_incdec <= #TCQ 1'b0;
po_en_stg2_f <= #TCQ 1'b0;
end else if (po_delay_cnt_r > 6'd0) begin
po_en_stg2_f <= #TCQ ~po_en_stg2_f;
end
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 || (po_delay_cnt_r == 6'd0))
// set all the PO delays to 31. Decrement from 46 to 31.
// Requirement comes from dqs_found logic
po_delay_cnt_r <= #TCQ (PO_INITIAL_DLY - 31);
else if ( po_en_stg2_f && (po_delay_cnt_r > 6'd0))
po_delay_cnt_r <= #TCQ po_delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_po_r <= #TCQ 'd0;
else if ( po_en_stg2_f && (po_delay_cnt_r == 6'd1))
lane_cnt_po_r <= #TCQ lane_cnt_po_r + 1;
always @(posedge clk)
if (rst || ~cmd_delay_start_r6 )
po_delay_done <= #TCQ 1'b0;
else if ((po_delay_cnt_r == 6'd1) && (lane_cnt_po_r ==1'b0))
po_delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
po_delay_done_r1 <= #TCQ po_delay_done;
po_delay_done_r2 <= #TCQ po_delay_done_r1;
po_delay_done_r3 <= #TCQ po_delay_done_r2;
po_delay_done_r4 <= #TCQ po_delay_done_r3;
end
// logic to select between all PO delays and data path delay.
always @(posedge clk) begin
po_s2_incdec_f <= #TCQ po_stg2_f_incdec;
po_en_s2_f <= #TCQ po_en_stg2_f;
end
// Logic to add 1/4 taps amount of delay to data path for tdqss.
// After all the initial PO delays are decremented the 1/4 delay will
// be added. Coarse delay taps will be added here .
// Delay added only to data path
assign po_ck_addr_cmd_delay_done = (TDQSS_DLY == 0) ? pi_fine_dly_dec_done_r
: delay_done_r4;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || delay_done) begin
po_stg2_incdec_c <= #TCQ 1'b1;
po_en_stg2_c <= #TCQ 1'b0;
end else if (delay_cnt_r > 6'd0) begin
po_en_stg2_c <= #TCQ ~po_en_stg2_c;
end
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r || (delay_cnt_r == 6'd0))
delay_cnt_r <= #TCQ TDQSS_DLY;
else if ( po_en_stg2_c && (delay_cnt_r > 6'd0))
delay_cnt_r <= #TCQ delay_cnt_r - 1;
always @(posedge clk)
if (rst)
lane_cnt_dqs_c_r <= #TCQ 'd0;
else if ( po_en_stg2_c && (delay_cnt_r == 6'd1))
lane_cnt_dqs_c_r <= #TCQ lane_cnt_dqs_c_r + 1;
always @(posedge clk)
if (rst || ~pi_fine_dly_dec_done_r)
delay_done <= #TCQ 1'b0;
else if ((delay_cnt_r == 6'd1) && (lane_cnt_dqs_c_r == 1'b0))
delay_done <= #TCQ 1'b1;
always @(posedge clk) begin
delay_done_r1 <= #TCQ delay_done;
delay_done_r2 <= #TCQ delay_done_r1;
delay_done_r3 <= #TCQ delay_done_r2;
delay_done_r4 <= #TCQ delay_done_r3;
end
always @(posedge clk) begin
po_s2_incdec_c <= #TCQ po_stg2_incdec_c;
po_en_s2_c <= #TCQ po_en_stg2_c;
ctl_lane_cnt <= #TCQ lane_cnt_dqs_c_r;
end
endmodule
|
module mig_7series_v2_3_ecc_gen
#(
parameter CODE_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter DATA_WIDTH = 64
)
(
/*AUTOARG*/
// Outputs
h_rows
);
function integer factorial (input integer i);
integer index;
if (i == 1) factorial = 1;
else begin
factorial = 1;
for (index=2; index<=i; index=index+1)
factorial = factorial * index;
end
endfunction // factorial
function integer combos (input integer n, k);
combos = factorial(n)/(factorial(k)*factorial(n-k));
endfunction // combinations
// function next_combo
// Given a combination, return the next combo in lexicographical
// order. Scans from right to left. Assumes the first combination
// is k ones all of the way to the left.
//
// Upon entry, initialize seen0, trig1, and ones. "seen0" means
// that a zero has been observed while scanning from right to left.
// "trig1" means that a one have been observed _after_ seen0 is set.
// "ones" counts the number of ones observed while scanning the input.
//
// If trig1 is one, just copy the input bit to the output and increment
// to the next bit. Otherwise set the the output bit to zero, if the
// input is a one, increment ones. If the input bit is a one and seen0
// is true, dump out the accumulated ones. Set seen0 to the complement
// of the input bit. Note that seen0 is not used subsequent to trig1
// getting set.
function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
integer index;
integer dump_index;
reg seen0;
reg trig1;
// integer ones;
reg [ECC_WIDTH-1:0] ones;
begin
seen0 = 1'b0;
trig1 = 1'b0;
ones = 0;
for (index=0; index<ECC_WIDTH; index=index+1)
begin
// The "== 1'bx" is so this will converge at time zero.
// XST assumes false, which should be OK.
if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
else begin
next_combo[index] = 1'b0;
ones = ones + i[index];
if (i[index] && seen0) begin
trig1 = 1'b1;
for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
end
seen0 = ~i[index];
end // else: !if(trig1)
end
end // function
endfunction // next_combo
wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
localparam COMBOS_3 = combos(ECC_WIDTH, 3);
localparam COMBOS_5 = combos(ECC_WIDTH, 5);
genvar n;
genvar s;
generate
for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
if (n == 0)
assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
else if (n == COMBOS_3 && n < DATA_WIDTH)
assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
else if (n == DATA_WIDTH)
assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_ecc_gen
#(
parameter CODE_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter DATA_WIDTH = 64
)
(
/*AUTOARG*/
// Outputs
h_rows
);
function integer factorial (input integer i);
integer index;
if (i == 1) factorial = 1;
else begin
factorial = 1;
for (index=2; index<=i; index=index+1)
factorial = factorial * index;
end
endfunction // factorial
function integer combos (input integer n, k);
combos = factorial(n)/(factorial(k)*factorial(n-k));
endfunction // combinations
// function next_combo
// Given a combination, return the next combo in lexicographical
// order. Scans from right to left. Assumes the first combination
// is k ones all of the way to the left.
//
// Upon entry, initialize seen0, trig1, and ones. "seen0" means
// that a zero has been observed while scanning from right to left.
// "trig1" means that a one have been observed _after_ seen0 is set.
// "ones" counts the number of ones observed while scanning the input.
//
// If trig1 is one, just copy the input bit to the output and increment
// to the next bit. Otherwise set the the output bit to zero, if the
// input is a one, increment ones. If the input bit is a one and seen0
// is true, dump out the accumulated ones. Set seen0 to the complement
// of the input bit. Note that seen0 is not used subsequent to trig1
// getting set.
function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
integer index;
integer dump_index;
reg seen0;
reg trig1;
// integer ones;
reg [ECC_WIDTH-1:0] ones;
begin
seen0 = 1'b0;
trig1 = 1'b0;
ones = 0;
for (index=0; index<ECC_WIDTH; index=index+1)
begin
// The "== 1'bx" is so this will converge at time zero.
// XST assumes false, which should be OK.
if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
else begin
next_combo[index] = 1'b0;
ones = ones + i[index];
if (i[index] && seen0) begin
trig1 = 1'b1;
for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
end
seen0 = ~i[index];
end // else: !if(trig1)
end
end // function
endfunction // next_combo
wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
localparam COMBOS_3 = combos(ECC_WIDTH, 3);
localparam COMBOS_5 = combos(ECC_WIDTH, 5);
genvar n;
genvar s;
generate
for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
if (n == 0)
assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
else if (n == COMBOS_3 && n < DATA_WIDTH)
assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
else if (n == DATA_WIDTH)
assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_ecc_gen
#(
parameter CODE_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter DATA_WIDTH = 64
)
(
/*AUTOARG*/
// Outputs
h_rows
);
function integer factorial (input integer i);
integer index;
if (i == 1) factorial = 1;
else begin
factorial = 1;
for (index=2; index<=i; index=index+1)
factorial = factorial * index;
end
endfunction // factorial
function integer combos (input integer n, k);
combos = factorial(n)/(factorial(k)*factorial(n-k));
endfunction // combinations
// function next_combo
// Given a combination, return the next combo in lexicographical
// order. Scans from right to left. Assumes the first combination
// is k ones all of the way to the left.
//
// Upon entry, initialize seen0, trig1, and ones. "seen0" means
// that a zero has been observed while scanning from right to left.
// "trig1" means that a one have been observed _after_ seen0 is set.
// "ones" counts the number of ones observed while scanning the input.
//
// If trig1 is one, just copy the input bit to the output and increment
// to the next bit. Otherwise set the the output bit to zero, if the
// input is a one, increment ones. If the input bit is a one and seen0
// is true, dump out the accumulated ones. Set seen0 to the complement
// of the input bit. Note that seen0 is not used subsequent to trig1
// getting set.
function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
integer index;
integer dump_index;
reg seen0;
reg trig1;
// integer ones;
reg [ECC_WIDTH-1:0] ones;
begin
seen0 = 1'b0;
trig1 = 1'b0;
ones = 0;
for (index=0; index<ECC_WIDTH; index=index+1)
begin
// The "== 1'bx" is so this will converge at time zero.
// XST assumes false, which should be OK.
if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
else begin
next_combo[index] = 1'b0;
ones = ones + i[index];
if (i[index] && seen0) begin
trig1 = 1'b1;
for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
end
seen0 = ~i[index];
end // else: !if(trig1)
end
end // function
endfunction // next_combo
wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
localparam COMBOS_3 = combos(ECC_WIDTH, 3);
localparam COMBOS_5 = combos(ECC_WIDTH, 5);
genvar n;
genvar s;
generate
for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
if (n == 0)
assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
else if (n == COMBOS_3 && n < DATA_WIDTH)
assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
else if (n == DATA_WIDTH)
assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_ecc_gen
#(
parameter CODE_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter DATA_WIDTH = 64
)
(
/*AUTOARG*/
// Outputs
h_rows
);
function integer factorial (input integer i);
integer index;
if (i == 1) factorial = 1;
else begin
factorial = 1;
for (index=2; index<=i; index=index+1)
factorial = factorial * index;
end
endfunction // factorial
function integer combos (input integer n, k);
combos = factorial(n)/(factorial(k)*factorial(n-k));
endfunction // combinations
// function next_combo
// Given a combination, return the next combo in lexicographical
// order. Scans from right to left. Assumes the first combination
// is k ones all of the way to the left.
//
// Upon entry, initialize seen0, trig1, and ones. "seen0" means
// that a zero has been observed while scanning from right to left.
// "trig1" means that a one have been observed _after_ seen0 is set.
// "ones" counts the number of ones observed while scanning the input.
//
// If trig1 is one, just copy the input bit to the output and increment
// to the next bit. Otherwise set the the output bit to zero, if the
// input is a one, increment ones. If the input bit is a one and seen0
// is true, dump out the accumulated ones. Set seen0 to the complement
// of the input bit. Note that seen0 is not used subsequent to trig1
// getting set.
function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
integer index;
integer dump_index;
reg seen0;
reg trig1;
// integer ones;
reg [ECC_WIDTH-1:0] ones;
begin
seen0 = 1'b0;
trig1 = 1'b0;
ones = 0;
for (index=0; index<ECC_WIDTH; index=index+1)
begin
// The "== 1'bx" is so this will converge at time zero.
// XST assumes false, which should be OK.
if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
else begin
next_combo[index] = 1'b0;
ones = ones + i[index];
if (i[index] && seen0) begin
trig1 = 1'b1;
for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
end
seen0 = ~i[index];
end // else: !if(trig1)
end
end // function
endfunction // next_combo
wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
localparam COMBOS_3 = combos(ECC_WIDTH, 3);
localparam COMBOS_5 = combos(ECC_WIDTH, 5);
genvar n;
genvar s;
generate
for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
if (n == 0)
assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
else if (n == COMBOS_3 && n < DATA_WIDTH)
assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
else if (n == DATA_WIDTH)
assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
end
end
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_mc_phy
#(
// five fields, one per possible I/O bank, 4 bits in each field, 1 per lane data=1/ctl=0
parameter BYTE_LANES_B0 = 4'b1111,
parameter BYTE_LANES_B1 = 4'b0000,
parameter BYTE_LANES_B2 = 4'b0000,
parameter BYTE_LANES_B3 = 4'b0000,
parameter BYTE_LANES_B4 = 4'b0000,
parameter DATA_CTL_B0 = 4'hc,
parameter DATA_CTL_B1 = 4'hf,
parameter DATA_CTL_B2 = 4'hf,
parameter DATA_CTL_B3 = 4'hf,
parameter DATA_CTL_B4 = 4'hf,
parameter RCLK_SELECT_BANK = 0,
parameter RCLK_SELECT_LANE = "B",
parameter RCLK_SELECT_EDGE = 4'b1111,
parameter GENERATE_DDR_CK_MAP = "0B",
parameter BYTELANES_DDR_CK = 72'h00_0000_0000_0000_0002,
parameter USE_PRE_POST_FIFO = "TRUE",
parameter SYNTHESIS = "FALSE",
parameter PO_CTL_COARSE_BYPASS = "FALSE",
parameter PI_SEL_CLK_OFFSET = 6,
parameter PHYCTL_CMD_FIFO = "FALSE",
parameter PHY_CLK_RATIO = 4, // phy to controller divide ratio
// common to all i/o banks
parameter PHY_FOUR_WINDOW_CLOCKS = 63,
parameter PHY_EVENTS_DELAY = 18,
parameter PHY_COUNT_EN = "TRUE",
parameter PHY_SYNC_MODE = "TRUE",
parameter PHY_DISABLE_SEQ_MATCH = "FALSE",
parameter MASTER_PHY_CTL = 0,
// common to instance 0
parameter PHY_0_BITLANES = 48'hdffd_fffe_dfff,
parameter PHY_0_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_0_LANE_REMAP = 16'h3210,
parameter PHY_0_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_0_IODELAY_GRP = "IODELAY_MIG",
parameter FPGA_SPEED_GRADE = 1,
parameter BANK_TYPE = "HP_IO", // # = "HP_IO", "HPL_IO", "HR_IO", "HRL_IO"
parameter NUM_DDR_CK = 1,
parameter PHY_0_DATA_CTL = DATA_CTL_B0,
parameter PHY_0_CMD_OFFSET = 0,
parameter PHY_0_RD_CMD_OFFSET_0 = 0,
parameter PHY_0_RD_CMD_OFFSET_1 = 0,
parameter PHY_0_RD_CMD_OFFSET_2 = 0,
parameter PHY_0_RD_CMD_OFFSET_3 = 0,
parameter PHY_0_RD_DURATION_0 = 0,
parameter PHY_0_RD_DURATION_1 = 0,
parameter PHY_0_RD_DURATION_2 = 0,
parameter PHY_0_RD_DURATION_3 = 0,
parameter PHY_0_WR_CMD_OFFSET_0 = 0,
parameter PHY_0_WR_CMD_OFFSET_1 = 0,
parameter PHY_0_WR_CMD_OFFSET_2 = 0,
parameter PHY_0_WR_CMD_OFFSET_3 = 0,
parameter PHY_0_WR_DURATION_0 = 0,
parameter PHY_0_WR_DURATION_1 = 0,
parameter PHY_0_WR_DURATION_2 = 0,
parameter PHY_0_WR_DURATION_3 = 0,
parameter PHY_0_AO_WRLVL_EN = 0,
parameter PHY_0_AO_TOGGLE = 4'b0101, // odd bits are toggle (CKE)
parameter PHY_0_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_0_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_0_A_PI_FREQ_REF_DIV = "NONE",
parameter PHY_0_A_PI_CLKOUT_DIV = 2,
parameter PHY_0_A_PO_CLKOUT_DIV = 2,
parameter PHY_0_A_BURST_MODE = "TRUE",
parameter PHY_0_A_PI_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OUTPUT_CLK_SRC = "DELAYED_REF",
parameter PHY_0_A_PO_OCLK_DELAY = 25,
parameter PHY_0_B_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_C_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_D_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_0_A_PO_OCLKDELAY_INV = "FALSE",
parameter PHY_0_A_OF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_IF_ARRAY_MODE = "ARRAY_MODE_8_X_4",
parameter PHY_0_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_0_A_OSERDES_DATA_RATE = "UNDECLARED",
parameter PHY_0_A_OSERDES_DATA_WIDTH = "UNDECLARED",
parameter PHY_0_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_0_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_0_A_IDELAYE2_IDELAY_TYPE = "VARIABLE",
parameter PHY_0_A_IDELAYE2_IDELAY_VALUE = 00,
parameter PHY_0_B_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_B_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_C_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_C_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_D_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_0_D_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
// common to instance 1
parameter PHY_1_BITLANES = PHY_0_BITLANES,
parameter PHY_1_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_1_LANE_REMAP = 16'h3210,
parameter PHY_1_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_1_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_1_DATA_CTL = DATA_CTL_B1,
parameter PHY_1_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_1_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_1_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_1_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_1_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_1_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_1_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_1_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_1_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_1_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_1_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_1_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_1_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_1_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_1_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_1_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_1_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_1_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_1_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_1_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_1_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_1_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_1_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV,
parameter PHY_1_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_1_A_BURST_MODE = PHY_0_A_BURST_MODE,
parameter PHY_1_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_1_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC ,
parameter PHY_1_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_1_B_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_C_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_D_PO_OCLK_DELAY = PHY_1_A_PO_OCLK_DELAY,
parameter PHY_1_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_1_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_B_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_B_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_C_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_C_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_D_IDELAYE2_IDELAY_TYPE = PHY_1_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_1_D_IDELAYE2_IDELAY_VALUE = PHY_1_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_1_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_1_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_1_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_1_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_1_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
// common to instance 2
parameter PHY_2_BITLANES = PHY_0_BITLANES,
parameter PHY_2_BITLANES_OUTONLY = 48'h0000_0000_0000,
parameter PHY_2_LANE_REMAP = 16'h3210,
parameter PHY_2_GENERATE_IDELAYCTRL = "FALSE",
parameter PHY_2_IODELAY_GRP = PHY_0_IODELAY_GRP,
parameter PHY_2_DATA_CTL = DATA_CTL_B2,
parameter PHY_2_CMD_OFFSET = PHY_0_CMD_OFFSET,
parameter PHY_2_RD_CMD_OFFSET_0 = PHY_0_RD_CMD_OFFSET_0,
parameter PHY_2_RD_CMD_OFFSET_1 = PHY_0_RD_CMD_OFFSET_1,
parameter PHY_2_RD_CMD_OFFSET_2 = PHY_0_RD_CMD_OFFSET_2,
parameter PHY_2_RD_CMD_OFFSET_3 = PHY_0_RD_CMD_OFFSET_3,
parameter PHY_2_RD_DURATION_0 = PHY_0_RD_DURATION_0,
parameter PHY_2_RD_DURATION_1 = PHY_0_RD_DURATION_1,
parameter PHY_2_RD_DURATION_2 = PHY_0_RD_DURATION_2,
parameter PHY_2_RD_DURATION_3 = PHY_0_RD_DURATION_3,
parameter PHY_2_WR_CMD_OFFSET_0 = PHY_0_WR_CMD_OFFSET_0,
parameter PHY_2_WR_CMD_OFFSET_1 = PHY_0_WR_CMD_OFFSET_1,
parameter PHY_2_WR_CMD_OFFSET_2 = PHY_0_WR_CMD_OFFSET_2,
parameter PHY_2_WR_CMD_OFFSET_3 = PHY_0_WR_CMD_OFFSET_3,
parameter PHY_2_WR_DURATION_0 = PHY_0_WR_DURATION_0,
parameter PHY_2_WR_DURATION_1 = PHY_0_WR_DURATION_1,
parameter PHY_2_WR_DURATION_2 = PHY_0_WR_DURATION_2,
parameter PHY_2_WR_DURATION_3 = PHY_0_WR_DURATION_3,
parameter PHY_2_AO_WRLVL_EN = PHY_0_AO_WRLVL_EN,
parameter PHY_2_AO_TOGGLE = PHY_0_AO_TOGGLE, // odd bits are toggle (CKE)
parameter PHY_2_OF_ALMOST_FULL_VALUE = 1,
parameter PHY_2_IF_ALMOST_EMPTY_VALUE = 1,
// per lane parameters
parameter PHY_2_A_PI_FREQ_REF_DIV = PHY_0_A_PI_FREQ_REF_DIV,
parameter PHY_2_A_PI_CLKOUT_DIV = PHY_0_A_PI_CLKOUT_DIV ,
parameter PHY_2_A_PO_CLKOUT_DIV = PHY_0_A_PO_CLKOUT_DIV,
parameter PHY_2_A_BURST_MODE = PHY_0_A_BURST_MODE ,
parameter PHY_2_A_PI_OUTPUT_CLK_SRC = PHY_0_A_PI_OUTPUT_CLK_SRC,
parameter PHY_2_A_PO_OUTPUT_CLK_SRC = PHY_0_A_PO_OUTPUT_CLK_SRC,
parameter PHY_2_A_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_B_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_OF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_IF_ARRAY_MODE = PHY_0_A_IF_ARRAY_MODE,
parameter PHY_2_B_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_C_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_D_IF_ARRAY_MODE = PHY_0_A_OF_ARRAY_MODE,
parameter PHY_2_A_PO_OCLK_DELAY = PHY_0_A_PO_OCLK_DELAY,
parameter PHY_2_B_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_C_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_D_PO_OCLK_DELAY = PHY_2_A_PO_OCLK_DELAY,
parameter PHY_2_A_PO_OCLKDELAY_INV = PHY_0_A_PO_OCLKDELAY_INV,
parameter PHY_2_A_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_A_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_B_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_B_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_C_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_C_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_D_OSERDES_DATA_RATE = PHY_0_A_OSERDES_DATA_RATE,
parameter PHY_2_D_OSERDES_DATA_WIDTH = PHY_0_A_OSERDES_DATA_WIDTH,
parameter PHY_2_A_IDELAYE2_IDELAY_TYPE = PHY_0_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_A_IDELAYE2_IDELAY_VALUE = PHY_0_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_B_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_B_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_C_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_C_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_2_D_IDELAYE2_IDELAY_TYPE = PHY_2_A_IDELAYE2_IDELAY_TYPE,
parameter PHY_2_D_IDELAYE2_IDELAY_VALUE = PHY_2_A_IDELAYE2_IDELAY_VALUE,
parameter PHY_0_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) || (BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : "TRUE",
parameter PHY_1_IS_LAST_BANK = ((BYTE_LANES_B1 != 0) && ((BYTE_LANES_B2 != 0) || (BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0))) ? "FALSE" : ((PHY_0_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter PHY_2_IS_LAST_BANK = (BYTE_LANES_B2 != 0) && ((BYTE_LANES_B3 != 0) || (BYTE_LANES_B4 != 0)) ? "FALSE" : ((PHY_0_IS_LAST_BANK || PHY_1_IS_LAST_BANK) ? "FALSE" : "TRUE"),
parameter TCK = 2500,
// local computational use, do not pass down
parameter N_LANES = (0+BYTE_LANES_B0[0]) + (0+BYTE_LANES_B0[1]) + (0+BYTE_LANES_B0[2]) + (0+BYTE_LANES_B0[3])
+ (0+BYTE_LANES_B1[0]) + (0+BYTE_LANES_B1[1]) + (0+BYTE_LANES_B1[2]) + (0+BYTE_LANES_B1[3]) + (0+BYTE_LANES_B2[0]) + (0+BYTE_LANES_B2[1]) + (0+BYTE_LANES_B2[2]) + (0+BYTE_LANES_B2[3])
, // must not delete comma for syntax
parameter HIGHEST_BANK = (BYTE_LANES_B4 != 0 ? 5 : (BYTE_LANES_B3 != 0 ? 4 : (BYTE_LANES_B2 != 0 ? 3 : (BYTE_LANES_B1 != 0 ? 2 : 1)))),
parameter HIGHEST_LANE_B0 = ((PHY_0_IS_LAST_BANK == "FALSE") ? 4 : BYTE_LANES_B0[3] ? 4 : BYTE_LANES_B0[2] ? 3 : BYTE_LANES_B0[1] ? 2 : BYTE_LANES_B0[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B1 = (HIGHEST_BANK > 2) ? 4 : ( BYTE_LANES_B1[3] ? 4 : BYTE_LANES_B1[2] ? 3 : BYTE_LANES_B1[1] ? 2 : BYTE_LANES_B1[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B2 = (HIGHEST_BANK > 3) ? 4 : ( BYTE_LANES_B2[3] ? 4 : BYTE_LANES_B2[2] ? 3 : BYTE_LANES_B2[1] ? 2 : BYTE_LANES_B2[0] ? 1 : 0) ,
parameter HIGHEST_LANE_B3 = 0,
parameter HIGHEST_LANE_B4 = 0,
parameter HIGHEST_LANE = (HIGHEST_LANE_B4 != 0) ? (HIGHEST_LANE_B4+16) : ((HIGHEST_LANE_B3 != 0) ? (HIGHEST_LANE_B3 + 12) : ((HIGHEST_LANE_B2 != 0) ? (HIGHEST_LANE_B2 + 8) : ((HIGHEST_LANE_B1 != 0) ? (HIGHEST_LANE_B1 + 4) : HIGHEST_LANE_B0))),
parameter LP_DDR_CK_WIDTH = 2,
parameter GENERATE_SIGNAL_SPLIT = "FALSE"
,parameter CKE_ODT_AUX = "FALSE"
)
(
input rst,
input ddr_rst_in_n ,
input phy_clk,
input freq_refclk,
input mem_refclk,
input mem_refclk_div4,
input pll_lock,
input sync_pulse,
input auxout_clk,
input idelayctrl_refclk,
input [HIGHEST_LANE*80-1:0] phy_dout,
input phy_cmd_wr_en,
input phy_data_wr_en,
input phy_rd_en,
input [31:0] phy_ctl_wd,
input [3:0] aux_in_1,
input [3:0] aux_in_2,
input [5:0] data_offset_1,
input [5:0] data_offset_2,
input phy_ctl_wr,
input if_rst,
input if_empty_def,
input cke_in,
input idelay_ce,
input idelay_ld,
input idelay_inc,
input phyGo,
input input_sink,
output if_a_empty,
output if_empty /* synthesis syn_maxfan = 3 */,
output if_empty_or,
output if_empty_and,
output of_ctl_a_full,
output of_data_a_full,
output of_ctl_full,
output of_data_full,
output pre_data_a_full,
output [HIGHEST_LANE*80-1:0] phy_din,
output phy_ctl_a_full,
output wire [3:0] phy_ctl_full,
output [HIGHEST_LANE*12-1:0] mem_dq_out,
output [HIGHEST_LANE*12-1:0] mem_dq_ts,
input [HIGHEST_LANE*10-1:0] mem_dq_in,
output [HIGHEST_LANE-1:0] mem_dqs_out,
output [HIGHEST_LANE-1:0] mem_dqs_ts,
input [HIGHEST_LANE-1:0] mem_dqs_in,
(* IOB = "FORCE" *) output reg [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out, // to memory, odt , 4 per phy controller
output phy_ctl_ready, // to fabric
output reg rst_out, // to memory
output [(NUM_DDR_CK * LP_DDR_CK_WIDTH)-1:0] ddr_clk,
// output rclk,
output mcGo,
output ref_dll_lock,
// calibration signals
input phy_write_calib,
input phy_read_calib,
input [5:0] calib_sel,
input [HIGHEST_BANK-1:0]calib_zero_inputs, // bit calib_sel[2], one per bank
input [HIGHEST_BANK-1:0]calib_zero_ctrl, // one bit per bank, zero's only control lane calibration inputs
input [HIGHEST_LANE-1:0] calib_zero_lanes, // one bit per lane
input calib_in_common,
input [2:0] po_fine_enable,
input [2:0] po_coarse_enable,
input [2:0] po_fine_inc,
input [2:0] po_coarse_inc,
input po_counter_load_en,
input [2:0] po_sel_fine_oclk_delay,
input [8:0] po_counter_load_val,
input po_counter_read_en,
output reg po_coarse_overflow,
output reg po_fine_overflow,
output reg [8:0] po_counter_read_val,
input [HIGHEST_BANK-1:0] pi_rst_dqs_find,
input pi_fine_enable,
input pi_fine_inc,
input pi_counter_load_en,
input pi_counter_read_en,
input [5:0] pi_counter_load_val,
output reg pi_fine_overflow,
output reg [5:0] pi_counter_read_val,
output reg pi_phase_locked,
output pi_phase_locked_all,
output reg pi_dqs_found,
output pi_dqs_found_all,
output pi_dqs_found_any,
output [HIGHEST_LANE-1:0] pi_phase_locked_lanes,
output [HIGHEST_LANE-1:0] pi_dqs_found_lanes,
output reg pi_dqs_out_of_range,
input [29:0] fine_delay,
input fine_delay_sel
);
wire [7:0] calib_zero_inputs_int ;
wire [HIGHEST_BANK*4-1:0] calib_zero_lanes_int ;
//Added the temporary variable for concadination operation
wire [2:0] calib_sel_byte0 ;
wire [2:0] calib_sel_byte1 ;
wire [2:0] calib_sel_byte2 ;
wire [4:0] po_coarse_overflow_w;
wire [4:0] po_fine_overflow_w;
wire [8:0] po_counter_read_val_w[4:0];
wire [4:0] pi_fine_overflow_w;
wire [5:0] pi_counter_read_val_w[4:0];
wire [4:0] pi_dqs_found_w;
wire [4:0] pi_dqs_found_all_w;
wire [4:0] pi_dqs_found_any_w;
wire [4:0] pi_dqs_out_of_range_w;
wire [4:0] pi_phase_locked_w;
wire [4:0] pi_phase_locked_all_w;
wire [4:0] rclk_w;
wire [HIGHEST_BANK-1:0] phy_ctl_ready_w;
wire [(LP_DDR_CK_WIDTH*24)-1:0] ddr_clk_w [HIGHEST_BANK-1:0];
wire [(((HIGHEST_LANE+3)/4)*4)-1:0] aux_out_;
wire [3:0] if_q0;
wire [3:0] if_q1;
wire [3:0] if_q2;
wire [3:0] if_q3;
wire [3:0] if_q4;
wire [7:0] if_q5;
wire [7:0] if_q6;
wire [3:0] if_q7;
wire [3:0] if_q8;
wire [3:0] if_q9;
wire [31:0] _phy_ctl_wd;
wire [3:0] aux_in_[4:1];
wire [3:0] rst_out_w;
wire freq_refclk_split;
wire mem_refclk_split;
wire mem_refclk_div4_split;
wire sync_pulse_split;
wire phy_clk_split0;
wire phy_ctl_clk_split0;
wire [31:0] phy_ctl_wd_split0;
wire phy_ctl_wr_split0;
wire phy_ctl_clk_split1;
wire phy_clk_split1;
wire [31:0] phy_ctl_wd_split1;
wire phy_ctl_wr_split1;
wire [5:0] phy_data_offset_1_split1;
wire phy_ctl_clk_split2;
wire phy_clk_split2;
wire [31:0] phy_ctl_wd_split2;
wire phy_ctl_wr_split2;
wire [5:0] phy_data_offset_2_split2;
wire [HIGHEST_LANE*80-1:0] phy_dout_split0;
wire phy_cmd_wr_en_split0;
wire phy_data_wr_en_split0;
wire phy_rd_en_split0;
wire [HIGHEST_LANE*80-1:0] phy_dout_split1;
wire phy_cmd_wr_en_split1;
wire phy_data_wr_en_split1;
wire phy_rd_en_split1;
wire [HIGHEST_LANE*80-1:0] phy_dout_split2;
wire phy_cmd_wr_en_split2;
wire phy_data_wr_en_split2;
wire phy_rd_en_split2;
wire phy_ctl_mstr_empty;
wire [HIGHEST_BANK-1:0] phy_ctl_empty;
wire _phy_ctl_a_full_f;
wire _phy_ctl_a_empty_f;
wire _phy_ctl_full_f;
wire _phy_ctl_empty_f;
wire [HIGHEST_BANK-1:0] _phy_ctl_a_full_p;
wire [HIGHEST_BANK-1:0] _phy_ctl_full_p;
wire [HIGHEST_BANK-1:0] of_ctl_a_full_v;
wire [HIGHEST_BANK-1:0] of_ctl_full_v;
wire [HIGHEST_BANK-1:0] of_data_a_full_v;
wire [HIGHEST_BANK-1:0] of_data_full_v;
wire [HIGHEST_BANK-1:0] pre_data_a_full_v;
wire [HIGHEST_BANK-1:0] if_empty_v;
wire [HIGHEST_BANK-1:0] byte_rd_en_v;
wire [HIGHEST_BANK*2-1:0] byte_rd_en_oth_banks;
wire [HIGHEST_BANK-1:0] if_empty_or_v;
wire [HIGHEST_BANK-1:0] if_empty_and_v;
wire [HIGHEST_BANK-1:0] if_a_empty_v;
localparam IF_ARRAY_MODE = "ARRAY_MODE_4_X_4";
localparam IF_SYNCHRONOUS_MODE = "FALSE";
localparam IF_SLOW_WR_CLK = "FALSE";
localparam IF_SLOW_RD_CLK = "FALSE";
localparam PHY_MULTI_REGION = (HIGHEST_BANK > 1) ? "TRUE" : "FALSE";
localparam RCLK_NEG_EDGE = 3'b000;
localparam RCLK_POS_EDGE = 3'b111;
localparam LP_PHY_0_BYTELANES_DDR_CK = BYTELANES_DDR_CK & 24'hFF_FFFF;
localparam LP_PHY_1_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 24) & 24'hFF_FFFF;
localparam LP_PHY_2_BYTELANES_DDR_CK = (BYTELANES_DDR_CK >> 48) & 24'hFF_FFFF;
// hi, lo positions for data offset field, MIG doesn't allow defines
localparam PC_DATA_OFFSET_RANGE_HI = 22;
localparam PC_DATA_OFFSET_RANGE_LO = 17;
/* Phaser_In Output source coding table
"PHASE_REF" : 4'b0000;
"DELAYED_MEM_REF" : 4'b0101;
"DELAYED_PHASE_REF" : 4'b0011;
"DELAYED_REF" : 4'b0001;
"FREQ_REF" : 4'b1000;
"MEM_REF" : 4'b0010;
*/
localparam RCLK_PI_OUTPUT_CLK_SRC = "DELAYED_MEM_REF";
localparam DDR_TCK = TCK;
localparam real FREQ_REF_PERIOD = DDR_TCK / (PHY_0_A_PI_FREQ_REF_DIV == "DIV2" ? 2 : 1);
localparam real L_FREQ_REF_PERIOD_NS = FREQ_REF_PERIOD /1000.0;
localparam PO_S3_TAPS = 64 ; // Number of taps per clock cycle in OCLK_DELAYED delay line
localparam PI_S2_TAPS = 128 ; // Number of taps per clock cycle in stage 2 delay line
localparam PO_S2_TAPS = 128 ; // Number of taps per clock cycle in sta
/*
Intrinsic delay of Phaser In Stage 1
@3300ps - 1.939ns - 58.8%
@2500ps - 1.657ns - 66.3%
@1875ps - 1.263ns - 67.4%
@1500ps - 1.021ns - 68.1%
@1250ps - 0.868ns - 69.4%
@1072ps - 0.752ns - 70.1%
@938ps - 0.667ns - 71.1%
*/
// If we use the Delayed Mem_Ref_Clk in the RCLK Phaser_In, then the Stage 1 intrinsic delay is 0.0
// Fraction of a full DDR_TCK period
localparam real PI_STG1_INTRINSIC_DELAY = (RCLK_PI_OUTPUT_CLK_SRC == "DELAYED_MEM_REF") ? 0.0 :
((DDR_TCK < 1005) ? 0.667 :
(DDR_TCK < 1160) ? 0.752 :
(DDR_TCK < 1375) ? 0.868 :
(DDR_TCK < 1685) ? 1.021 :
(DDR_TCK < 2185) ? 1.263 :
(DDR_TCK < 2900) ? 1.657 :
(DDR_TCK < 3100) ? 1.771 : 1.939)*1000;
/*
Intrinsic delay of Phaser In Stage 2
@3300ps - 0.912ns - 27.6% - single tap - 13ps
@3000ps - 0.848ns - 28.3% - single tap - 11ps
@2500ps - 1.264ns - 50.6% - single tap - 19ps
@1875ps - 1.000ns - 53.3% - single tap - 15ps
@1500ps - 0.848ns - 56.5% - single tap - 11ps
@1250ps - 0.736ns - 58.9% - single tap - 9ps
@1072ps - 0.664ns - 61.9% - single tap - 8ps
@938ps - 0.608ns - 64.8% - single tap - 7ps
*/
// Intrinsic delay = (.4218 + .0002freq(MHz))period(ps)
localparam real PI_STG2_INTRINSIC_DELAY = (0.4218*FREQ_REF_PERIOD + 200) + 16.75; // 12ps fudge factor
/*
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 1
@3300ps - 1.294ns - 39.2%
@2500ps - 1.294ns - 51.8%
@1875ps - 1.030ns - 54.9%
@1500ps - 0.878ns - 58.5%
@1250ps - 0.766ns - 61.3%
@1072ps - 0.694ns - 64.7%
@938ps - 0.638ns - 68.0%
Intrinsic delay of Phaser Out Stage 2 - coarse bypass = 0
@3300ps - 2.084ns - 63.2% - single tap - 20ps
@2500ps - 2.084ns - 81.9% - single tap - 19ps
@1875ps - 1.676ns - 89.4% - single tap - 15ps
@1500ps - 1.444ns - 96.3% - single tap - 11ps
@1250ps - 1.276ns - 102.1% - single tap - 9ps
@1072ps - 1.164ns - 108.6% - single tap - 8ps
@938ps - 1.076ns - 114.7% - single tap - 7ps
*/
// Fraction of a full DDR_TCK period
localparam real PO_STG1_INTRINSIC_DELAY = 0;
localparam real PO_STG2_FINE_INTRINSIC_DELAY = 0.4218*FREQ_REF_PERIOD + 200 + 42; // 42ps fudge factor
localparam real PO_STG2_COARSE_INTRINSIC_DELAY = 0.2256*FREQ_REF_PERIOD + 200 + 29; // 29ps fudge factor
localparam real PO_STG2_INTRINSIC_DELAY = PO_STG2_FINE_INTRINSIC_DELAY +
(PO_CTL_COARSE_BYPASS == "TRUE" ? 30 : PO_STG2_COARSE_INTRINSIC_DELAY);
// When the PO_STG2_INTRINSIC_DELAY is approximately equal to tCK, then the Phaser Out's circular buffer can
// go metastable. The circular buffer must be prevented from getting into a metastable state. To accomplish this,
// a default programmed value must be programmed into the stage 2 delay. This delay is only needed at reset, adjustments
// to the stage 2 delay can be made after reset is removed.
localparam real PO_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PO_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PO_CIRC_BUF_META_ZONE = 200.0;
localparam PO_CIRC_BUF_EARLY = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? 1'b1 : 1'b0;
localparam real PO_CIRC_BUF_OFFSET = (PO_STG2_INTRINSIC_DELAY < DDR_TCK) ? DDR_TCK - PO_STG2_INTRINSIC_DELAY : PO_STG2_INTRINSIC_DELAY - DDR_TCK;
// If the stage 2 intrinsic delay is less than the clock period, then see if it is less than the threshold
// If it is not more than the threshold than we must push the delay after the clock period plus a guardband.
//A change in PO_CIRC_BUF_DELAY value will affect the localparam TAP_DEC value(=PO_CIRC_BUF_DELAY - 31) in ddr_phy_ck_addr_cmd_delay.v. Update TAP_DEC value when PO_CIRC_BUF_DELAY is updated.
localparam integer PO_CIRC_BUF_DELAY = 60;
//localparam integer PO_CIRC_BUF_DELAY = PO_CIRC_BUF_EARLY ? (PO_CIRC_BUF_OFFSET > PO_CIRC_BUF_META_ZONE) ? 0 :
// (PO_CIRC_BUF_META_ZONE + PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE :
// (PO_CIRC_BUF_META_ZONE - PO_CIRC_BUF_OFFSET) / PO_S2_TAPS_SIZE;
localparam real PI_S2_TAPS_SIZE = 1.0*FREQ_REF_PERIOD / PI_S2_TAPS ; // average delay of taps in stage 2 fine delay line
localparam real PI_MAX_STG2_DELAY = (PI_S2_TAPS/2 - 1) * PI_S2_TAPS_SIZE;
localparam real PI_INTRINSIC_DELAY = PI_STG1_INTRINSIC_DELAY + PI_STG2_INTRINSIC_DELAY;
localparam real PO_INTRINSIC_DELAY = PO_STG1_INTRINSIC_DELAY + PO_STG2_INTRINSIC_DELAY;
localparam real PO_DELAY = PO_INTRINSIC_DELAY + (PO_CIRC_BUF_DELAY*PO_S2_TAPS_SIZE);
localparam RCLK_BUFIO_DELAY = 1200; // estimate of clock insertion delay of rclk through BUFIO to ioi
// The PI_OFFSET is the difference between the Phaser Out delay path and the intrinsic delay path
// of the Phaser_In that drives the rclk. The objective is to align either the rising edges of the
// oserdes_oclk and the rclk or to align the rising to falling edges depending on which adjustment
// is within the range of the stage 2 delay line in the Phaser_In.
localparam integer RCLK_DELAY_INT= (PI_INTRINSIC_DELAY + RCLK_BUFIO_DELAY);
localparam integer PO_DELAY_INT = PO_DELAY;
localparam PI_OFFSET = (PO_DELAY_INT % DDR_TCK) - (RCLK_DELAY_INT % DDR_TCK);
// if pi_offset >= 0 align to oclk posedge by delaying pi path to where oclk is
// if pi_offset < 0 align to oclk negedge by delaying pi path the additional distance to next oclk edge.
// note that in this case PI_OFFSET is negative so invert before subtracting.
localparam real PI_STG2_DELAY_CAND = PI_OFFSET >= 0
? PI_OFFSET
: ((-PI_OFFSET) < DDR_TCK/2) ?
(DDR_TCK/2 - (- PI_OFFSET)) :
(DDR_TCK - (- PI_OFFSET)) ;
localparam real PI_STG2_DELAY =
(PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY ?
PI_MAX_STG2_DELAY : PI_STG2_DELAY_CAND);
localparam integer DEFAULT_RCLK_DELAY = PI_STG2_DELAY / PI_S2_TAPS_SIZE;
localparam LP_RCLK_SELECT_EDGE = (RCLK_SELECT_EDGE != 4'b1111 ) ? RCLK_SELECT_EDGE : (PI_OFFSET >= 0 ? RCLK_POS_EDGE : (PI_OFFSET <= TCK/2 ? RCLK_NEG_EDGE : RCLK_POS_EDGE));
localparam integer L_PHY_0_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_1_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam integer L_PHY_2_PO_FINE_DELAY = PO_CIRC_BUF_DELAY ;
localparam L_PHY_0_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 0 && ! DATA_CTL_B0[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_1_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 1 && ! DATA_CTL_B1[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_A_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[0]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_B_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[1]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_C_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[2]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_2_D_PI_FINE_DELAY = (RCLK_SELECT_BANK == 2 && ! DATA_CTL_B2[3]) ? DEFAULT_RCLK_DELAY : 33 ;
localparam L_PHY_0_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_0_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 0) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC : PHY_0_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_1_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 1) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC : PHY_1_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_A_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "A") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_B_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "B") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_C_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "C") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
localparam L_PHY_2_D_PI_OUTPUT_CLK_SRC = (RCLK_SELECT_BANK == 2) ? (RCLK_SELECT_LANE == "D") ? RCLK_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC : PHY_2_A_PI_OUTPUT_CLK_SRC;
wire _phy_clk;
wire [2:0] mcGo_w;
wire [HIGHEST_BANK-1:0] ref_dll_lock_w;
reg [15:0] mcGo_r;
assign ref_dll_lock = & ref_dll_lock_w;
initial begin
if ( SYNTHESIS == "FALSE" ) begin
$display("%m : BYTE_LANES_B0 = %x BYTE_LANES_B1 = %x DATA_CTL_B0 = %x DATA_CTL_B1 = %x", BYTE_LANES_B0, BYTE_LANES_B1, DATA_CTL_B0, DATA_CTL_B1);
$display("%m : HIGHEST_LANE = %d HIGHEST_LANE_B0 = %d HIGHEST_LANE_B1 = %d", HIGHEST_LANE, HIGHEST_LANE_B0, HIGHEST_LANE_B1);
$display("%m : HIGHEST_BANK = %d", HIGHEST_BANK);
$display("%m : FREQ_REF_PERIOD = %0.2f ", FREQ_REF_PERIOD);
$display("%m : DDR_TCK = %0d ", DDR_TCK);
$display("%m : PO_S2_TAPS_SIZE = %0.2f ", PO_S2_TAPS_SIZE);
$display("%m : PO_CIRC_BUF_EARLY = %0d ", PO_CIRC_BUF_EARLY);
$display("%m : PO_CIRC_BUF_OFFSET = %0.2f ", PO_CIRC_BUF_OFFSET);
$display("%m : PO_CIRC_BUF_META_ZONE = %0.2f ", PO_CIRC_BUF_META_ZONE);
$display("%m : PO_STG2_FINE_INTR_DLY = %0.2f ", PO_STG2_FINE_INTRINSIC_DELAY);
$display("%m : PO_STG2_COARSE_INTR_DLY = %0.2f ", PO_STG2_COARSE_INTRINSIC_DELAY);
$display("%m : PO_STG2_INTRINSIC_DELAY = %0.2f ", PO_STG2_INTRINSIC_DELAY);
$display("%m : PO_CIRC_BUF_DELAY = %0d ", PO_CIRC_BUF_DELAY);
$display("%m : PO_INTRINSIC_DELAY = %0.2f ", PO_INTRINSIC_DELAY);
$display("%m : PO_DELAY = %0.2f ", PO_DELAY);
$display("%m : PO_OCLK_DELAY = %0d ", PHY_0_A_PO_OCLK_DELAY);
$display("%m : L_PHY_0_PO_FINE_DELAY = %0d ", L_PHY_0_PO_FINE_DELAY);
$display("%m : PI_STG1_INTRINSIC_DELAY = %0.2f ", PI_STG1_INTRINSIC_DELAY);
$display("%m : PI_STG2_INTRINSIC_DELAY = %0.2f ", PI_STG2_INTRINSIC_DELAY);
$display("%m : PI_INTRINSIC_DELAY = %0.2f ", PI_INTRINSIC_DELAY);
$display("%m : PI_MAX_STG2_DELAY = %0.2f ", PI_MAX_STG2_DELAY);
$display("%m : PI_OFFSET = %0.2f ", PI_OFFSET);
if ( PI_OFFSET < 0) $display("%m : a negative PI_OFFSET means that rclk path is longer than oclk path so rclk will be delayed to next oclk edge and the negedge of rclk may be used.");
$display("%m : PI_STG2_DELAY = %0.2f ", PI_STG2_DELAY);
$display("%m :PI_STG2_DELAY_CAND = %0.2f ",PI_STG2_DELAY_CAND);
$display("%m : DEFAULT_RCLK_DELAY = %0d ", DEFAULT_RCLK_DELAY);
$display("%m : RCLK_SELECT_EDGE = %0b ", LP_RCLK_SELECT_EDGE);
end // SYNTHESIS
if ( PI_STG2_DELAY_CAND > PI_MAX_STG2_DELAY) $display("WARNING: %m: The required delay though the phaser_in to internally match the aux_out clock to ddr clock exceeds the maximum allowable delay. The clock edge will occur at the output registers of aux_out %0.2f ps before the ddr clock edge. If aux_out is used for memory inputs, this may violate setup or hold time.", PI_STG2_DELAY_CAND - PI_MAX_STG2_DELAY);
end
assign sync_pulse_split = sync_pulse;
assign mem_refclk_split = mem_refclk;
assign freq_refclk_split = freq_refclk;
assign mem_refclk_div4_split = mem_refclk_div4;
assign phy_ctl_clk_split0 = _phy_clk;
assign phy_ctl_wd_split0 = phy_ctl_wd;
assign phy_ctl_wr_split0 = phy_ctl_wr;
assign phy_clk_split0 = phy_clk;
assign phy_cmd_wr_en_split0 = phy_cmd_wr_en;
assign phy_data_wr_en_split0 = phy_data_wr_en;
assign phy_rd_en_split0 = phy_rd_en;
assign phy_dout_split0 = phy_dout;
assign phy_ctl_clk_split1 = phy_clk;
assign phy_ctl_wd_split1 = phy_ctl_wd;
assign phy_data_offset_1_split1 = data_offset_1;
assign phy_ctl_wr_split1 = phy_ctl_wr;
assign phy_clk_split1 = phy_clk;
assign phy_cmd_wr_en_split1 = phy_cmd_wr_en;
assign phy_data_wr_en_split1 = phy_data_wr_en;
assign phy_rd_en_split1 = phy_rd_en;
assign phy_dout_split1 = phy_dout;
assign phy_ctl_clk_split2 = phy_clk;
assign phy_ctl_wd_split2 = phy_ctl_wd;
assign phy_data_offset_2_split2 = data_offset_2;
assign phy_ctl_wr_split2 = phy_ctl_wr;
assign phy_clk_split2 = phy_clk;
assign phy_cmd_wr_en_split2 = phy_cmd_wr_en;
assign phy_data_wr_en_split2 = phy_data_wr_en;
assign phy_rd_en_split2 = phy_rd_en;
assign phy_dout_split2 = phy_dout;
// these wires are needed to coerce correct synthesis
// the synthesizer did not always see the widths of the
// parameters as 4 bits.
wire [3:0] blb0 = BYTE_LANES_B0;
wire [3:0] blb1 = BYTE_LANES_B1;
wire [3:0] blb2 = BYTE_LANES_B2;
wire [3:0] dcb0 = DATA_CTL_B0;
wire [3:0] dcb1 = DATA_CTL_B1;
wire [3:0] dcb2 = DATA_CTL_B2;
assign pi_dqs_found_all = & (pi_dqs_found_lanes | ~ {blb2, blb1, blb0} | ~ {dcb2, dcb1, dcb0});
assign pi_dqs_found_any = | (pi_dqs_found_lanes & {blb2, blb1, blb0} & {dcb2, dcb1, dcb0});
assign pi_phase_locked_all = & pi_phase_locked_all_w[HIGHEST_BANK-1:0];
assign calib_zero_inputs_int = {3'bxxx, calib_zero_inputs};
//Added to remove concadination in the instantiation
assign calib_sel_byte0 = {calib_zero_inputs_int[0], calib_sel[1:0]} ;
assign calib_sel_byte1 = {calib_zero_inputs_int[1], calib_sel[1:0]} ;
assign calib_sel_byte2 = {calib_zero_inputs_int[2], calib_sel[1:0]} ;
assign calib_zero_lanes_int = calib_zero_lanes;
assign phy_ctl_ready = &phy_ctl_ready_w[HIGHEST_BANK-1:0];
assign phy_ctl_mstr_empty = phy_ctl_empty[MASTER_PHY_CTL];
assign of_ctl_a_full = |of_ctl_a_full_v;
assign of_ctl_full = |of_ctl_full_v;
assign of_data_a_full = |of_data_a_full_v;
assign of_data_full = |of_data_full_v;
assign pre_data_a_full= |pre_data_a_full_v;
// if if_empty_def == 1, empty is asserted only if all are empty;
// this allows the user to detect a skewed fifo depth and self-clear
// if desired. It avoids a reset to clear the flags.
assign if_empty = !if_empty_def ? |if_empty_v : &if_empty_v;
assign if_empty_or = |if_empty_or_v;
assign if_empty_and = &if_empty_and_v;
assign if_a_empty = |if_a_empty_v;
generate
genvar i;
for (i = 0; i != NUM_DDR_CK; i = i + 1) begin : ddr_clk_gen
case ((GENERATE_DDR_CK_MAP >> (16*i)) & 16'hffff)
16'h3041: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3042: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3043: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3044: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[0] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3141: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3142: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3143: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3144: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[1] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
16'h3241: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i)) & 2'b11;
16'h3242: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+12)) & 2'b11;
16'h3243: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+24)) & 2'b11;
16'h3244: assign ddr_clk[(i+1)*LP_DDR_CK_WIDTH-1:(i*LP_DDR_CK_WIDTH)] = (ddr_clk_w[2] >> (LP_DDR_CK_WIDTH*i+36)) & 2'b11;
default : initial $display("ERROR: mc_phy ddr_clk_gen : invalid specification for parameter GENERATE_DDR_CK_MAP , clock index = %d, spec= %x (hex) ", i, (( GENERATE_DDR_CK_MAP >> (16 * i )) & 16'hffff ));
endcase
end
endgenerate
//assign rclk = rclk_w[RCLK_SELECT_BANK];
reg rst_auxout;
reg rst_auxout_r;
reg rst_auxout_rr;
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout_r <= #(1) 1'b1;
rst_auxout_rr <= #(1) 1'b1;
end
else begin
rst_auxout_r <= #(1) rst;
rst_auxout_rr <= #(1) rst_auxout_r;
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
else begin
always @(negedge auxout_clk or posedge rst) begin
if ( rst) begin
rst_auxout <= #(1) 1'b1;
end
else begin
rst_auxout <= #(1) rst_auxout_rr;
end
end
end
localparam L_RESET_SELECT_BANK =
(BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK) ? 0 : RCLK_SELECT_BANK;
always @(*) begin
rst_out = rst_out_w[L_RESET_SELECT_BANK] & ddr_rst_in_n;
end
always @(posedge phy_clk) begin
if ( rst)
mcGo_r <= #(1) 0;
else
mcGo_r <= #(1) (mcGo_r << 1) | &mcGo_w;
end
assign mcGo = mcGo_r[15];
generate
// this is an optional 1 clock delay to add latency to the phy_control programming path
if (PHYCTL_CMD_FIFO == "TRUE") begin : cmd_fifo_soft
reg [31:0] phy_wd_reg = 0;
reg [3:0] aux_in1_reg = 0;
reg [3:0] aux_in2_reg = 0;
reg sfifo_ready = 0;
assign _phy_ctl_wd = phy_wd_reg;
assign aux_in_[1] = aux_in1_reg;
assign aux_in_[2] = aux_in2_reg;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[1] = |_phy_ctl_full_p;
assign phy_ctl_full[2] = |_phy_ctl_full_p;
assign phy_ctl_full[3] = |_phy_ctl_full_p;
assign _phy_clk = phy_clk;
always @(posedge phy_clk) begin
phy_wd_reg <= #1 phy_ctl_wd;
aux_in1_reg <= #1 aux_in_1;
aux_in2_reg <= #1 aux_in_2;
sfifo_ready <= #1 phy_ctl_wr;
end
end
else if (PHYCTL_CMD_FIFO == "FALSE") begin
assign _phy_ctl_wd = phy_ctl_wd;
assign aux_in_[1] = aux_in_1;
assign aux_in_[2] = aux_in_2;
assign phy_ctl_a_full = |_phy_ctl_a_full_p;
assign phy_ctl_full[0] = |_phy_ctl_full_p;
assign phy_ctl_full[3:1] = 3'b000;
assign _phy_clk = phy_clk;
end
endgenerate
// instance of four-lane phy
generate
if (HIGHEST_BANK == 3) begin : banks_3
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],byte_rd_en_v[2]};
assign byte_rd_en_oth_banks[5:4] = {byte_rd_en_v[0],byte_rd_en_v[1]};
end
else if (HIGHEST_BANK == 2) begin : banks_2
assign byte_rd_en_oth_banks[1:0] = {byte_rd_en_v[1],1'b1};
assign byte_rd_en_oth_banks[3:2] = {byte_rd_en_v[0],1'b1};
end
else begin : banks_1
assign byte_rd_en_oth_banks[1:0] = {1'b1,1'b1};
end
if ( BYTE_LANES_B0 != 0) begin : ddr_phy_4lanes_0
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B0), /* four bits, one per lanes */
.DATA_CTL_N (PHY_0_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_0_PO_FINE_DELAY),
.BITLANES (PHY_0_BITLANES),
.BITLANES_OUTONLY (PHY_0_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_0_BYTELANES_DDR_CK),
.LAST_BANK (PHY_0_IS_LAST_BANK),
.LANE_REMAP (PHY_0_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_0_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_0_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_0_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_0_IODELAY_GRP),
.FPGA_SPEED_GRADE (FPGA_SPEED_GRADE),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_0_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_0_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_0_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_0_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_0_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_0_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_0_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_0_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_0_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_0_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_0_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_0_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_0_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_0_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_0_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_0_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_0_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_0_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_0_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_0_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_0_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_0_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_0_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_0_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_0_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_0_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_0_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_0_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_0_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_0_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_0_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_0_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_0_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_0_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_0_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_0_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_0_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_0_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_0_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_0_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_0_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_0_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_0_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_0_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_0_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_0_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_0_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_0_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_0_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_0_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_0_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split0),
.phy_ctl_clk (phy_ctl_clk_split0),
.phy_ctl_wd (phy_ctl_wd_split0),
.data_offset (phy_ctl_wd_split0[PC_DATA_OFFSET_RANGE_HI : PC_DATA_OFFSET_RANGE_LO]),
.phy_ctl_wr (phy_ctl_wr_split0),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split0[HIGHEST_LANE_B0*80-1:0]),
.phy_cmd_wr_en (phy_cmd_wr_en_split0),
.phy_data_wr_en (phy_data_wr_en_split0),
.phy_rd_en (phy_rd_en_split0),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[0]),
.rclk (),
.rst_out (rst_out_w[0]),
.mcGo (mcGo_w[0]),
.ref_dll_lock (ref_dll_lock_w[0]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[1:0]),
.if_a_empty (if_a_empty_v[0]),
.if_empty (if_empty_v[0]),
.byte_rd_en (byte_rd_en_v[0]),
.if_empty_or (if_empty_or_v[0]),
.if_empty_and (if_empty_and_v[0]),
.of_ctl_a_full (of_ctl_a_full_v[0]),
.of_data_a_full (of_data_a_full_v[0]),
.of_ctl_full (of_ctl_full_v[0]),
.of_data_full (of_data_full_v[0]),
.pre_data_a_full (pre_data_a_full_v[0]),
.phy_din (phy_din[HIGHEST_LANE_B0*80-1:0]),
.phy_ctl_a_full (_phy_ctl_a_full_p[0]),
.phy_ctl_full (_phy_ctl_full_p[0]),
.phy_ctl_empty (phy_ctl_empty[0]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B0*12-1:0]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B0*10-1:0]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B0-1:0]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B0-1:0]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B0-1:0]),
.aux_out (aux_out_[3:0]),
.phy_ctl_ready (phy_ctl_ready_w[0]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte0),
.calib_zero_ctrl (calib_zero_ctrl[0]),
.calib_zero_lanes (calib_zero_lanes_int[3:0]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[0]),
.po_fine_enable (po_fine_enable[0]),
.po_fine_inc (po_fine_inc[0]),
.po_coarse_inc (po_coarse_inc[0]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[0]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[0]),
.po_fine_overflow (po_fine_overflow_w[0]),
.po_counter_read_val (po_counter_read_val_w[0]),
.pi_rst_dqs_find (pi_rst_dqs_find[0]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[0]),
.pi_counter_read_val (pi_counter_read_val_w[0]),
.pi_dqs_found (pi_dqs_found_w[0]),
.pi_dqs_found_all (pi_dqs_found_all_w[0]),
.pi_dqs_found_any (pi_dqs_found_any_w[0]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[0]),
.pi_phase_locked (pi_phase_locked_w[0]),
.pi_phase_locked_all (pi_phase_locked_all_w[0]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[0] <= #100 0;
aux_out[2] <= #100 0;
end
else begin
aux_out[0] <= #100 aux_out_[0];
aux_out[2] <= #100 aux_out_[2];
end
end
if ( LP_RCLK_SELECT_EDGE[0]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[1] <= #100 0;
aux_out[3] <= #100 0;
end
else begin
aux_out[1] <= #100 aux_out_[1];
aux_out[3] <= #100 aux_out_[3];
end
end
end
end
else begin
if ( HIGHEST_BANK > 0) begin
assign phy_din[HIGHEST_LANE_B0*80-1:0] = 0;
assign _phy_ctl_a_full_p[0] = 0;
assign of_ctl_a_full_v[0] = 0;
assign of_ctl_full_v[0] = 0;
assign of_data_a_full_v[0] = 0;
assign of_data_full_v[0] = 0;
assign pre_data_a_full_v[0] = 0;
assign if_empty_v[0] = 0;
assign byte_rd_en_v[0] = 1;
always @(*)
aux_out[3:0] = 0;
end
assign pi_dqs_found_w[0] = 1;
assign pi_dqs_found_all_w[0] = 1;
assign pi_dqs_found_any_w[0] = 0;
assign pi_phase_locked_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B0-1:0] = 4'b1111;
assign pi_dqs_out_of_range_w[0] = 0;
assign pi_phase_locked_w[0] = 1;
assign po_fine_overflow_w[0] = 0;
assign po_coarse_overflow_w[0] = 0;
assign po_fine_overflow_w[0] = 0;
assign pi_fine_overflow_w[0] = 0;
assign po_counter_read_val_w[0] = 0;
assign pi_counter_read_val_w[0] = 0;
assign mcGo_w[0] = 1;
if ( RCLK_SELECT_BANK == 0)
always @(*)
aux_out[3:0] = 0;
end
if ( BYTE_LANES_B1 != 0) begin : ddr_phy_4lanes_1
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B1), /* four bits, one per lanes */
.DATA_CTL_N (PHY_1_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_1_PO_FINE_DELAY),
.BITLANES (PHY_1_BITLANES),
.BITLANES_OUTONLY (PHY_1_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_1_BYTELANES_DDR_CK),
.LAST_BANK (PHY_1_IS_LAST_BANK ),
.LANE_REMAP (PHY_1_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_1_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_1_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_1_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_1_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_1_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_1_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_1_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_1_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_1_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_1_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_1_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_1_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_1_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_1_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_1_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_1_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_1_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_1_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_1_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_1_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_1_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_1_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_1_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_1_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_1_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_1_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_1_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_1_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_1_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_1_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_1_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_1_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_1_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_1_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_1_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_1_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_1_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_1_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_1_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_1_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_1_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_1_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_1_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_1_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_1_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_1_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_1_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_1_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_1_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_1_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_1_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_1_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_1_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_1_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_1_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split1),
.phy_ctl_clk (phy_ctl_clk_split1),
.phy_ctl_wd (phy_ctl_wd_split1),
.data_offset (phy_data_offset_1_split1),
.phy_ctl_wr (phy_ctl_wr_split1),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split1[HIGHEST_LANE_B1*80+320-1:320]),
.phy_cmd_wr_en (phy_cmd_wr_en_split1),
.phy_data_wr_en (phy_data_wr_en_split1),
.phy_rd_en (phy_rd_en_split1),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[1]),
.rclk (),
.rst_out (rst_out_w[1]),
.mcGo (mcGo_w[1]),
.ref_dll_lock (ref_dll_lock_w[1]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[3:2]),
.if_a_empty (if_a_empty_v[1]),
.if_empty (if_empty_v[1]),
.byte_rd_en (byte_rd_en_v[1]),
.if_empty_or (if_empty_or_v[1]),
.if_empty_and (if_empty_and_v[1]),
.of_ctl_a_full (of_ctl_a_full_v[1]),
.of_data_a_full (of_data_a_full_v[1]),
.of_ctl_full (of_ctl_full_v[1]),
.of_data_full (of_data_full_v[1]),
.pre_data_a_full (pre_data_a_full_v[1]),
.phy_din (phy_din[HIGHEST_LANE_B1*80+320-1:320]),
.phy_ctl_a_full (_phy_ctl_a_full_p[1]),
.phy_ctl_full (_phy_ctl_full_p[1]),
.phy_ctl_empty (phy_ctl_empty[1]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B1*12+48-1:48]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B1*10+40-1:40]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B1+4-1:4]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B1+4-1:4]),
.aux_out (aux_out_[7:4]),
.phy_ctl_ready (phy_ctl_ready_w[1]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte1),
.calib_zero_ctrl (calib_zero_ctrl[1]),
.calib_zero_lanes (calib_zero_lanes_int[7:4]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[1]),
.po_fine_enable (po_fine_enable[1]),
.po_fine_inc (po_fine_inc[1]),
.po_coarse_inc (po_coarse_inc[1]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[1]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[1]),
.po_fine_overflow (po_fine_overflow_w[1]),
.po_counter_read_val (po_counter_read_val_w[1]),
.pi_rst_dqs_find (pi_rst_dqs_find[1]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[1]),
.pi_counter_read_val (pi_counter_read_val_w[1]),
.pi_dqs_found (pi_dqs_found_w[1]),
.pi_dqs_found_all (pi_dqs_found_all_w[1]),
.pi_dqs_found_any (pi_dqs_found_any_w[1]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[1]),
.pi_phase_locked (pi_phase_locked_w[1]),
.pi_phase_locked_all (pi_phase_locked_all_w[1]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[4] <= #100 0;
aux_out[6] <= #100 0;
end
else begin
aux_out[4] <= #100 aux_out_[4];
aux_out[6] <= #100 aux_out_[6];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[5] <= #100 0;
aux_out[7] <= #100 0;
end
else begin
aux_out[5] <= #100 aux_out_[5];
aux_out[7] <= #100 aux_out_[7];
end
end
end
end
else begin
if ( HIGHEST_BANK > 1) begin
assign phy_din[HIGHEST_LANE_B1*80+320-1:320] = 0;
assign _phy_ctl_a_full_p[1] = 0;
assign of_ctl_a_full_v[1] = 0;
assign of_ctl_full_v[1] = 0;
assign of_data_a_full_v[1] = 0;
assign of_data_full_v[1] = 0;
assign pre_data_a_full_v[1] = 0;
assign if_empty_v[1] = 0;
assign byte_rd_en_v[1] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B1+4-1:4] = 4'b1111;
always @(*)
aux_out[7:4] = 0;
end
assign pi_dqs_found_w[1] = 1;
assign pi_dqs_found_all_w[1] = 1;
assign pi_dqs_found_any_w[1] = 0;
assign pi_dqs_out_of_range_w[1] = 0;
assign pi_phase_locked_w[1] = 1;
assign po_coarse_overflow_w[1] = 0;
assign po_fine_overflow_w[1] = 0;
assign pi_fine_overflow_w[1] = 0;
assign po_counter_read_val_w[1] = 0;
assign pi_counter_read_val_w[1] = 0;
assign mcGo_w[1] = 1;
end
if ( BYTE_LANES_B2 != 0) begin : ddr_phy_4lanes_2
mig_7series_v2_3_ddr_phy_4lanes #
(
.BYTE_LANES (BYTE_LANES_B2), /* four bits, one per lanes */
.DATA_CTL_N (PHY_2_DATA_CTL), /* four bits, one per lane */
.PO_CTL_COARSE_BYPASS (PO_CTL_COARSE_BYPASS),
.PO_FINE_DELAY (L_PHY_2_PO_FINE_DELAY),
.BITLANES (PHY_2_BITLANES),
.BITLANES_OUTONLY (PHY_2_BITLANES_OUTONLY),
.BYTELANES_DDR_CK (LP_PHY_2_BYTELANES_DDR_CK),
.LAST_BANK (PHY_2_IS_LAST_BANK ),
.LANE_REMAP (PHY_2_LANE_REMAP),
.OF_ALMOST_FULL_VALUE (PHY_2_OF_ALMOST_FULL_VALUE),
.IF_ALMOST_EMPTY_VALUE (PHY_2_IF_ALMOST_EMPTY_VALUE),
.GENERATE_IDELAYCTRL (PHY_2_GENERATE_IDELAYCTRL),
.IODELAY_GRP (PHY_2_IODELAY_GRP),
.BANK_TYPE (BANK_TYPE),
.NUM_DDR_CK (NUM_DDR_CK),
.TCK (TCK),
.RCLK_SELECT_LANE (RCLK_SELECT_LANE),
.USE_PRE_POST_FIFO (USE_PRE_POST_FIFO),
.SYNTHESIS (SYNTHESIS),
.PC_CLK_RATIO (PHY_CLK_RATIO),
.PC_EVENTS_DELAY (PHY_EVENTS_DELAY),
.PC_FOUR_WINDOW_CLOCKS (PHY_FOUR_WINDOW_CLOCKS),
.PC_BURST_MODE (PHY_2_A_BURST_MODE),
.PC_SYNC_MODE (PHY_SYNC_MODE),
.PC_MULTI_REGION (PHY_MULTI_REGION),
.PC_PHY_COUNT_EN (PHY_COUNT_EN),
.PC_DISABLE_SEQ_MATCH (PHY_DISABLE_SEQ_MATCH),
.PC_CMD_OFFSET (PHY_2_CMD_OFFSET),
.PC_RD_CMD_OFFSET_0 (PHY_2_RD_CMD_OFFSET_0),
.PC_RD_CMD_OFFSET_1 (PHY_2_RD_CMD_OFFSET_1),
.PC_RD_CMD_OFFSET_2 (PHY_2_RD_CMD_OFFSET_2),
.PC_RD_CMD_OFFSET_3 (PHY_2_RD_CMD_OFFSET_3),
.PC_RD_DURATION_0 (PHY_2_RD_DURATION_0),
.PC_RD_DURATION_1 (PHY_2_RD_DURATION_1),
.PC_RD_DURATION_2 (PHY_2_RD_DURATION_2),
.PC_RD_DURATION_3 (PHY_2_RD_DURATION_3),
.PC_WR_CMD_OFFSET_0 (PHY_2_WR_CMD_OFFSET_0),
.PC_WR_CMD_OFFSET_1 (PHY_2_WR_CMD_OFFSET_1),
.PC_WR_CMD_OFFSET_2 (PHY_2_WR_CMD_OFFSET_2),
.PC_WR_CMD_OFFSET_3 (PHY_2_WR_CMD_OFFSET_3),
.PC_WR_DURATION_0 (PHY_2_WR_DURATION_0),
.PC_WR_DURATION_1 (PHY_2_WR_DURATION_1),
.PC_WR_DURATION_2 (PHY_2_WR_DURATION_2),
.PC_WR_DURATION_3 (PHY_2_WR_DURATION_3),
.PC_AO_WRLVL_EN (PHY_2_AO_WRLVL_EN),
.PC_AO_TOGGLE (PHY_2_AO_TOGGLE),
.PI_SEL_CLK_OFFSET (PI_SEL_CLK_OFFSET),
.A_PI_FINE_DELAY (L_PHY_2_A_PI_FINE_DELAY),
.B_PI_FINE_DELAY (L_PHY_2_B_PI_FINE_DELAY),
.C_PI_FINE_DELAY (L_PHY_2_C_PI_FINE_DELAY),
.D_PI_FINE_DELAY (L_PHY_2_D_PI_FINE_DELAY),
.A_PI_FREQ_REF_DIV (PHY_2_A_PI_FREQ_REF_DIV),
.A_PI_BURST_MODE (PHY_2_A_BURST_MODE),
.A_PI_OUTPUT_CLK_SRC (L_PHY_2_A_PI_OUTPUT_CLK_SRC),
.B_PI_OUTPUT_CLK_SRC (L_PHY_2_B_PI_OUTPUT_CLK_SRC),
.C_PI_OUTPUT_CLK_SRC (L_PHY_2_C_PI_OUTPUT_CLK_SRC),
.D_PI_OUTPUT_CLK_SRC (L_PHY_2_D_PI_OUTPUT_CLK_SRC),
.A_PO_OUTPUT_CLK_SRC (PHY_2_A_PO_OUTPUT_CLK_SRC),
.A_PO_OCLK_DELAY (PHY_2_A_PO_OCLK_DELAY),
.A_PO_OCLKDELAY_INV (PHY_2_A_PO_OCLKDELAY_INV),
.A_OF_ARRAY_MODE (PHY_2_A_OF_ARRAY_MODE),
.B_OF_ARRAY_MODE (PHY_2_B_OF_ARRAY_MODE),
.C_OF_ARRAY_MODE (PHY_2_C_OF_ARRAY_MODE),
.D_OF_ARRAY_MODE (PHY_2_D_OF_ARRAY_MODE),
.A_IF_ARRAY_MODE (PHY_2_A_IF_ARRAY_MODE),
.B_IF_ARRAY_MODE (PHY_2_B_IF_ARRAY_MODE),
.C_IF_ARRAY_MODE (PHY_2_C_IF_ARRAY_MODE),
.D_IF_ARRAY_MODE (PHY_2_D_IF_ARRAY_MODE),
.A_OS_DATA_RATE (PHY_2_A_OSERDES_DATA_RATE),
.A_OS_DATA_WIDTH (PHY_2_A_OSERDES_DATA_WIDTH),
.B_OS_DATA_RATE (PHY_2_B_OSERDES_DATA_RATE),
.B_OS_DATA_WIDTH (PHY_2_B_OSERDES_DATA_WIDTH),
.C_OS_DATA_RATE (PHY_2_C_OSERDES_DATA_RATE),
.C_OS_DATA_WIDTH (PHY_2_C_OSERDES_DATA_WIDTH),
.D_OS_DATA_RATE (PHY_2_D_OSERDES_DATA_RATE),
.D_OS_DATA_WIDTH (PHY_2_D_OSERDES_DATA_WIDTH),
.A_IDELAYE2_IDELAY_TYPE (PHY_2_A_IDELAYE2_IDELAY_TYPE),
.A_IDELAYE2_IDELAY_VALUE (PHY_2_A_IDELAYE2_IDELAY_VALUE)
,.CKE_ODT_AUX (CKE_ODT_AUX)
)
u_ddr_phy_4lanes
(
.rst (rst),
.phy_clk (phy_clk_split2),
.phy_ctl_clk (phy_ctl_clk_split2),
.phy_ctl_wd (phy_ctl_wd_split2),
.data_offset (phy_data_offset_2_split2),
.phy_ctl_wr (phy_ctl_wr_split2),
.mem_refclk (mem_refclk_split),
.freq_refclk (freq_refclk_split),
.mem_refclk_div4 (mem_refclk_div4_split),
.sync_pulse (sync_pulse_split),
.phy_dout (phy_dout_split2[HIGHEST_LANE_B2*80+640-1:640]),
.phy_cmd_wr_en (phy_cmd_wr_en_split2),
.phy_data_wr_en (phy_data_wr_en_split2),
.phy_rd_en (phy_rd_en_split2),
.pll_lock (pll_lock),
.ddr_clk (ddr_clk_w[2]),
.rclk (),
.rst_out (rst_out_w[2]),
.mcGo (mcGo_w[2]),
.ref_dll_lock (ref_dll_lock_w[2]),
.idelayctrl_refclk (idelayctrl_refclk),
.idelay_inc (idelay_inc),
.idelay_ce (idelay_ce),
.idelay_ld (idelay_ld),
.phy_ctl_mstr_empty (phy_ctl_mstr_empty),
.if_rst (if_rst),
.if_empty_def (if_empty_def),
.byte_rd_en_oth_banks (byte_rd_en_oth_banks[5:4]),
.if_a_empty (if_a_empty_v[2]),
.if_empty (if_empty_v[2]),
.byte_rd_en (byte_rd_en_v[2]),
.if_empty_or (if_empty_or_v[2]),
.if_empty_and (if_empty_and_v[2]),
.of_ctl_a_full (of_ctl_a_full_v[2]),
.of_data_a_full (of_data_a_full_v[2]),
.of_ctl_full (of_ctl_full_v[2]),
.of_data_full (of_data_full_v[2]),
.pre_data_a_full (pre_data_a_full_v[2]),
.phy_din (phy_din[HIGHEST_LANE_B2*80+640-1:640]),
.phy_ctl_a_full (_phy_ctl_a_full_p[2]),
.phy_ctl_full (_phy_ctl_full_p[2]),
.phy_ctl_empty (phy_ctl_empty[2]),
.mem_dq_out (mem_dq_out[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_ts (mem_dq_ts[HIGHEST_LANE_B2*12+96-1:96]),
.mem_dq_in (mem_dq_in[HIGHEST_LANE_B2*10+80-1:80]),
.mem_dqs_out (mem_dqs_out[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_ts (mem_dqs_ts[HIGHEST_LANE_B2-1+8:8]),
.mem_dqs_in (mem_dqs_in[HIGHEST_LANE_B2-1+8:8]),
.aux_out (aux_out_[11:8]),
.phy_ctl_ready (phy_ctl_ready_w[2]),
.phy_write_calib (phy_write_calib),
.phy_read_calib (phy_read_calib),
// .scan_test_bus_A (scan_test_bus_A),
// .scan_test_bus_B (),
// .scan_test_bus_C (),
// .scan_test_bus_D (),
.phyGo (phyGo),
.input_sink (input_sink),
.calib_sel (calib_sel_byte2),
.calib_zero_ctrl (calib_zero_ctrl[2]),
.calib_zero_lanes (calib_zero_lanes_int[11:8]),
.calib_in_common (calib_in_common),
.po_coarse_enable (po_coarse_enable[2]),
.po_fine_enable (po_fine_enable[2]),
.po_fine_inc (po_fine_inc[2]),
.po_coarse_inc (po_coarse_inc[2]),
.po_counter_load_en (po_counter_load_en),
.po_sel_fine_oclk_delay (po_sel_fine_oclk_delay[2]),
.po_counter_load_val (po_counter_load_val),
.po_counter_read_en (po_counter_read_en),
.po_coarse_overflow (po_coarse_overflow_w[2]),
.po_fine_overflow (po_fine_overflow_w[2]),
.po_counter_read_val (po_counter_read_val_w[2]),
.pi_rst_dqs_find (pi_rst_dqs_find[2]),
.pi_fine_enable (pi_fine_enable),
.pi_fine_inc (pi_fine_inc),
.pi_counter_load_en (pi_counter_load_en),
.pi_counter_read_en (pi_counter_read_en),
.pi_counter_load_val (pi_counter_load_val),
.pi_fine_overflow (pi_fine_overflow_w[2]),
.pi_counter_read_val (pi_counter_read_val_w[2]),
.pi_dqs_found (pi_dqs_found_w[2]),
.pi_dqs_found_all (pi_dqs_found_all_w[2]),
.pi_dqs_found_any (pi_dqs_found_any_w[2]),
.pi_phase_locked_lanes (pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_found_lanes (pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8]),
.pi_dqs_out_of_range (pi_dqs_out_of_range_w[2]),
.pi_phase_locked (pi_phase_locked_w[2]),
.pi_phase_locked_all (pi_phase_locked_all_w[2]),
.fine_delay (fine_delay),
.fine_delay_sel (fine_delay_sel)
);
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[8] <= #100 0;
aux_out[10] <= #100 0;
end
else begin
aux_out[8] <= #100 aux_out_[8];
aux_out[10] <= #100 aux_out_[10];
end
end
if ( LP_RCLK_SELECT_EDGE[1]) begin
always @(posedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
else begin
always @(negedge auxout_clk or posedge rst_auxout) begin
if (rst_auxout) begin
aux_out[9] <= #100 0;
aux_out[11] <= #100 0;
end
else begin
aux_out[9] <= #100 aux_out_[9];
aux_out[11] <= #100 aux_out_[11];
end
end
end
end
else begin
if ( HIGHEST_BANK > 2) begin
assign phy_din[HIGHEST_LANE_B2*80+640-1:640] = 0;
assign _phy_ctl_a_full_p[2] = 0;
assign of_ctl_a_full_v[2] = 0;
assign of_ctl_full_v[2] = 0;
assign of_data_a_full_v[2] = 0;
assign of_data_full_v[2] = 0;
assign pre_data_a_full_v[2] = 0;
assign if_empty_v[2] = 0;
assign byte_rd_en_v[2] = 1;
assign pi_phase_locked_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
assign pi_dqs_found_lanes[HIGHEST_LANE_B2+8-1:8] = 4'b1111;
always @(*)
aux_out[11:8] = 0;
end
assign pi_dqs_found_w[2] = 1;
assign pi_dqs_found_all_w[2] = 1;
assign pi_dqs_found_any_w[2] = 0;
assign pi_dqs_out_of_range_w[2] = 0;
assign pi_phase_locked_w[2] = 1;
assign po_coarse_overflow_w[2] = 0;
assign po_fine_overflow_w[2] = 0;
assign po_counter_read_val_w[2] = 0;
assign pi_counter_read_val_w[2] = 0;
assign mcGo_w[2] = 1;
end
endgenerate
generate
// for single bank , emit an extra phaser_in to generate rclk
// so that auxout can be placed in another region
// if desired
if ( BYTE_LANES_B1 == 0 && BYTE_LANES_B2 == 0 && RCLK_SELECT_BANK>0)
begin : phaser_in_rclk
localparam L_EXTRA_PI_FINE_DELAY = DEFAULT_RCLK_DELAY;
PHASER_IN_PHY #(
.BURST_MODE ( PHY_0_A_BURST_MODE),
.CLKOUT_DIV ( PHY_0_A_PI_CLKOUT_DIV),
.FREQ_REF_DIV ( PHY_0_A_PI_FREQ_REF_DIV),
.REFCLK_PERIOD ( L_FREQ_REF_PERIOD_NS),
.FINE_DELAY ( L_EXTRA_PI_FINE_DELAY),
.OUTPUT_CLK_SRC ( RCLK_PI_OUTPUT_CLK_SRC)
) phaser_in_rclk (
.DQSFOUND (),
.DQSOUTOFRANGE (),
.FINEOVERFLOW (),
.PHASELOCKED (),
.ISERDESRST (),
.ICLKDIV (),
.ICLK (),
.COUNTERREADVAL (),
.RCLK (),
.WRENABLE (),
.BURSTPENDINGPHY (),
.ENCALIBPHY (),
.FINEENABLE (0),
.FREQREFCLK (freq_refclk),
.MEMREFCLK (mem_refclk),
.RANKSELPHY (0),
.PHASEREFCLK (),
.RSTDQSFIND (0),
.RST (rst),
.FINEINC (),
.COUNTERLOADEN (),
.COUNTERREADEN (),
.COUNTERLOADVAL (),
.SYNCIN (sync_pulse),
.SYSCLK (phy_clk)
);
end
endgenerate
always @(*) begin
case (calib_sel[5:3])
3'b000: begin
po_coarse_overflow = po_coarse_overflow_w[0];
po_fine_overflow = po_fine_overflow_w[0];
po_counter_read_val = po_counter_read_val_w[0];
pi_fine_overflow = pi_fine_overflow_w[0];
pi_counter_read_val = pi_counter_read_val_w[0];
pi_phase_locked = pi_phase_locked_w[0];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[0];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[0];
end
3'b001: begin
po_coarse_overflow = po_coarse_overflow_w[1];
po_fine_overflow = po_fine_overflow_w[1];
po_counter_read_val = po_counter_read_val_w[1];
pi_fine_overflow = pi_fine_overflow_w[1];
pi_counter_read_val = pi_counter_read_val_w[1];
pi_phase_locked = pi_phase_locked_w[1];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[1];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[1];
end
3'b010: begin
po_coarse_overflow = po_coarse_overflow_w[2];
po_fine_overflow = po_fine_overflow_w[2];
po_counter_read_val = po_counter_read_val_w[2];
pi_fine_overflow = pi_fine_overflow_w[2];
pi_counter_read_val = pi_counter_read_val_w[2];
pi_phase_locked = pi_phase_locked_w[2];
if ( calib_in_common)
pi_dqs_found = pi_dqs_found_any;
else
pi_dqs_found = pi_dqs_found_w[2];
pi_dqs_out_of_range = pi_dqs_out_of_range_w[2];
end
default: begin
po_coarse_overflow = 0;
po_fine_overflow = 0;
po_counter_read_val = 0;
pi_fine_overflow = 0;
pi_counter_read_val = 0;
pi_phase_locked = 0;
pi_dqs_found = 0;
pi_dqs_out_of_range = 0;
end
endcase
end
endmodule
|
module mig_7series_v2_3_ddr_if_post_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input [3:0] empty_in,
input rd_en_in,
input [WIDTH-1:0] d_in, // write data from controller
output empty_out,
output byte_rd_en,
output [WIDTH-1:0] d_out // write data to OUT_FIFO
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
(((DEPTH == 3) || (DEPTH == 4)) ? 2 : 'bx);
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1];
(* max_fanout = 40 *) reg [4:0] my_empty /* synthesis syn_maxfan = 3 */;
(* max_fanout = 40 *) reg [1:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
// Register duplication to reduce the fan out
(* KEEP = "TRUE" *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 40 *) wire wr_en /* synthesis syn_maxfan = 10 */;
task updt_ptrs;
input rd;
input wr;
reg [1:0] next_rd_ptr;
reg [1:0] next_wr_ptr;
begin
next_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
next_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
casez ({rd, wr, my_empty[1], my_full[1]})
4'b00zz: ; // No access, do nothing
4'b0100: begin
// Write when neither empty, nor full; check for full
wr_ptr <= #TCQ next_wr_ptr;
my_full[0] <= #TCQ (next_wr_ptr == rd_ptr);
my_full[1] <= #TCQ (next_wr_ptr == rd_ptr);
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0110: begin
// Write when empty; no need to check for full
wr_ptr <= #TCQ next_wr_ptr;
my_empty <= #TCQ 5'b00000;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b1000: begin
// Read when neither empty, nor full; check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_empty[0] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[1] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[2] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[3] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[4] <= #TCQ (next_rd_ptr == wr_ptr);
end
4'b1001: begin
// Read when full; no need to check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_full[0] <= #TCQ 1'b0;
my_full[1] <= #TCQ 1'b0;
end
4'b1100, 4'b1101, 4'b1110: begin
// Read and write when empty, full, or neither empty/full; no need
// to check for empty or full conditions
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
wr_ptr <= #TCQ next_wr_ptr;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0101, 4'b1010: ;
// Read when empty, Write when full; Keep all pointers the same
// and don't change any of the flags (i.e. ignore the read/write).
// This might happen because a faulty DQS_FOUND calibration could
// result in excessive skew between when the various IN_FIFO's
// first become not empty. In this case, the data going to each
// post-FIFO/IN_FIFO should be read out and discarded
// synthesis translate_off
default: begin
// Covers any other cases, in particular for simulation if
// any signals are X's
$display("ERR %m @%t: Bad access: rd:%b,wr:%b,empty:%b,full:%b",
$time, rd, wr, my_empty[1], my_full[1]);
rd_ptr <= #TCQ 2'bxx;
rd_ptr_timing <= #TCQ 2'bxx;
wr_ptr <= #TCQ 2'bxx;
end
// synthesis translate_on
endcase
end
endtask
assign d_out = my_empty[4] ? d_in : mem_out;//mem[rd_ptr];
// The combined IN_FIFO + post FIFO is only "empty" when both are empty
assign empty_out = empty_in[0] & my_empty[0];
assign byte_rd_en = !empty_in[3] || !my_empty[3];
always @(posedge clk)
if (rst) begin
my_empty <= #TCQ 5'b11111;
my_full <= #TCQ 2'b00;
rd_ptr <= #TCQ 'b0;
rd_ptr_timing <= #TCQ 'b0;
wr_ptr <= #TCQ 'b0;
end else begin
// Special mode: If IN_FIFO has data, and controller is reading at
// the same time, then operate post-FIFO in "passthrough" mode (i.e.
// don't update any of the read/write pointers, and route IN_FIFO
// data to post-FIFO data)
if (my_empty[1] && !my_full[1] && rd_en_in && !empty_in[1]) ;
else
// Otherwise, we're writing to FIFO when IN_FIFO is not empty,
// and reading from the FIFO based on the rd_en_in signal (read
// enable from controller). The functino updt_ptrs should catch
// an illegal conditions.
updt_ptrs(rd_en_in, !empty_in[1]);
end
assign wr_en = (!empty_in[2] & ((!rd_en_in & !my_full[0]) |
(rd_en_in & !my_empty[2])));
always @ (posedge clk)
begin
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
end
assign mem_out = mem[rd_ptr_timing];
endmodule
|
module mig_7series_v2_3_ddr_if_post_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input [3:0] empty_in,
input rd_en_in,
input [WIDTH-1:0] d_in, // write data from controller
output empty_out,
output byte_rd_en,
output [WIDTH-1:0] d_out // write data to OUT_FIFO
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
(((DEPTH == 3) || (DEPTH == 4)) ? 2 : 'bx);
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1];
(* max_fanout = 40 *) reg [4:0] my_empty /* synthesis syn_maxfan = 3 */;
(* max_fanout = 40 *) reg [1:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
// Register duplication to reduce the fan out
(* KEEP = "TRUE" *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 40 *) wire wr_en /* synthesis syn_maxfan = 10 */;
task updt_ptrs;
input rd;
input wr;
reg [1:0] next_rd_ptr;
reg [1:0] next_wr_ptr;
begin
next_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
next_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
casez ({rd, wr, my_empty[1], my_full[1]})
4'b00zz: ; // No access, do nothing
4'b0100: begin
// Write when neither empty, nor full; check for full
wr_ptr <= #TCQ next_wr_ptr;
my_full[0] <= #TCQ (next_wr_ptr == rd_ptr);
my_full[1] <= #TCQ (next_wr_ptr == rd_ptr);
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0110: begin
// Write when empty; no need to check for full
wr_ptr <= #TCQ next_wr_ptr;
my_empty <= #TCQ 5'b00000;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b1000: begin
// Read when neither empty, nor full; check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_empty[0] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[1] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[2] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[3] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[4] <= #TCQ (next_rd_ptr == wr_ptr);
end
4'b1001: begin
// Read when full; no need to check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_full[0] <= #TCQ 1'b0;
my_full[1] <= #TCQ 1'b0;
end
4'b1100, 4'b1101, 4'b1110: begin
// Read and write when empty, full, or neither empty/full; no need
// to check for empty or full conditions
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
wr_ptr <= #TCQ next_wr_ptr;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0101, 4'b1010: ;
// Read when empty, Write when full; Keep all pointers the same
// and don't change any of the flags (i.e. ignore the read/write).
// This might happen because a faulty DQS_FOUND calibration could
// result in excessive skew between when the various IN_FIFO's
// first become not empty. In this case, the data going to each
// post-FIFO/IN_FIFO should be read out and discarded
// synthesis translate_off
default: begin
// Covers any other cases, in particular for simulation if
// any signals are X's
$display("ERR %m @%t: Bad access: rd:%b,wr:%b,empty:%b,full:%b",
$time, rd, wr, my_empty[1], my_full[1]);
rd_ptr <= #TCQ 2'bxx;
rd_ptr_timing <= #TCQ 2'bxx;
wr_ptr <= #TCQ 2'bxx;
end
// synthesis translate_on
endcase
end
endtask
assign d_out = my_empty[4] ? d_in : mem_out;//mem[rd_ptr];
// The combined IN_FIFO + post FIFO is only "empty" when both are empty
assign empty_out = empty_in[0] & my_empty[0];
assign byte_rd_en = !empty_in[3] || !my_empty[3];
always @(posedge clk)
if (rst) begin
my_empty <= #TCQ 5'b11111;
my_full <= #TCQ 2'b00;
rd_ptr <= #TCQ 'b0;
rd_ptr_timing <= #TCQ 'b0;
wr_ptr <= #TCQ 'b0;
end else begin
// Special mode: If IN_FIFO has data, and controller is reading at
// the same time, then operate post-FIFO in "passthrough" mode (i.e.
// don't update any of the read/write pointers, and route IN_FIFO
// data to post-FIFO data)
if (my_empty[1] && !my_full[1] && rd_en_in && !empty_in[1]) ;
else
// Otherwise, we're writing to FIFO when IN_FIFO is not empty,
// and reading from the FIFO based on the rd_en_in signal (read
// enable from controller). The functino updt_ptrs should catch
// an illegal conditions.
updt_ptrs(rd_en_in, !empty_in[1]);
end
assign wr_en = (!empty_in[2] & ((!rd_en_in & !my_full[0]) |
(rd_en_in & !my_empty[2])));
always @ (posedge clk)
begin
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
end
assign mem_out = mem[rd_ptr_timing];
endmodule
|
module mig_7series_v2_3_ddr_if_post_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input [3:0] empty_in,
input rd_en_in,
input [WIDTH-1:0] d_in, // write data from controller
output empty_out,
output byte_rd_en,
output [WIDTH-1:0] d_out // write data to OUT_FIFO
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
(((DEPTH == 3) || (DEPTH == 4)) ? 2 : 'bx);
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1];
(* max_fanout = 40 *) reg [4:0] my_empty /* synthesis syn_maxfan = 3 */;
(* max_fanout = 40 *) reg [1:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
// Register duplication to reduce the fan out
(* KEEP = "TRUE" *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 40 *) wire wr_en /* synthesis syn_maxfan = 10 */;
task updt_ptrs;
input rd;
input wr;
reg [1:0] next_rd_ptr;
reg [1:0] next_wr_ptr;
begin
next_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
next_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
casez ({rd, wr, my_empty[1], my_full[1]})
4'b00zz: ; // No access, do nothing
4'b0100: begin
// Write when neither empty, nor full; check for full
wr_ptr <= #TCQ next_wr_ptr;
my_full[0] <= #TCQ (next_wr_ptr == rd_ptr);
my_full[1] <= #TCQ (next_wr_ptr == rd_ptr);
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0110: begin
// Write when empty; no need to check for full
wr_ptr <= #TCQ next_wr_ptr;
my_empty <= #TCQ 5'b00000;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b1000: begin
// Read when neither empty, nor full; check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_empty[0] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[1] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[2] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[3] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[4] <= #TCQ (next_rd_ptr == wr_ptr);
end
4'b1001: begin
// Read when full; no need to check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_full[0] <= #TCQ 1'b0;
my_full[1] <= #TCQ 1'b0;
end
4'b1100, 4'b1101, 4'b1110: begin
// Read and write when empty, full, or neither empty/full; no need
// to check for empty or full conditions
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
wr_ptr <= #TCQ next_wr_ptr;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0101, 4'b1010: ;
// Read when empty, Write when full; Keep all pointers the same
// and don't change any of the flags (i.e. ignore the read/write).
// This might happen because a faulty DQS_FOUND calibration could
// result in excessive skew between when the various IN_FIFO's
// first become not empty. In this case, the data going to each
// post-FIFO/IN_FIFO should be read out and discarded
// synthesis translate_off
default: begin
// Covers any other cases, in particular for simulation if
// any signals are X's
$display("ERR %m @%t: Bad access: rd:%b,wr:%b,empty:%b,full:%b",
$time, rd, wr, my_empty[1], my_full[1]);
rd_ptr <= #TCQ 2'bxx;
rd_ptr_timing <= #TCQ 2'bxx;
wr_ptr <= #TCQ 2'bxx;
end
// synthesis translate_on
endcase
end
endtask
assign d_out = my_empty[4] ? d_in : mem_out;//mem[rd_ptr];
// The combined IN_FIFO + post FIFO is only "empty" when both are empty
assign empty_out = empty_in[0] & my_empty[0];
assign byte_rd_en = !empty_in[3] || !my_empty[3];
always @(posedge clk)
if (rst) begin
my_empty <= #TCQ 5'b11111;
my_full <= #TCQ 2'b00;
rd_ptr <= #TCQ 'b0;
rd_ptr_timing <= #TCQ 'b0;
wr_ptr <= #TCQ 'b0;
end else begin
// Special mode: If IN_FIFO has data, and controller is reading at
// the same time, then operate post-FIFO in "passthrough" mode (i.e.
// don't update any of the read/write pointers, and route IN_FIFO
// data to post-FIFO data)
if (my_empty[1] && !my_full[1] && rd_en_in && !empty_in[1]) ;
else
// Otherwise, we're writing to FIFO when IN_FIFO is not empty,
// and reading from the FIFO based on the rd_en_in signal (read
// enable from controller). The functino updt_ptrs should catch
// an illegal conditions.
updt_ptrs(rd_en_in, !empty_in[1]);
end
assign wr_en = (!empty_in[2] & ((!rd_en_in & !my_full[0]) |
(rd_en_in & !my_empty[2])));
always @ (posedge clk)
begin
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
end
assign mem_out = mem[rd_ptr_timing];
endmodule
|
module mig_7series_v2_3_ddr_if_post_fifo #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter DEPTH = 4, // # of entries
parameter WIDTH = 32 // data bus width
)
(
input clk, // clock
input rst, // synchronous reset
input [3:0] empty_in,
input rd_en_in,
input [WIDTH-1:0] d_in, // write data from controller
output empty_out,
output byte_rd_en,
output [WIDTH-1:0] d_out // write data to OUT_FIFO
);
// # of bits used to represent read/write pointers
localparam PTR_BITS
= (DEPTH == 2) ? 1 :
(((DEPTH == 3) || (DEPTH == 4)) ? 2 : 'bx);
integer i;
reg [WIDTH-1:0] mem[0:DEPTH-1];
(* max_fanout = 40 *) reg [4:0] my_empty /* synthesis syn_maxfan = 3 */;
(* max_fanout = 40 *) reg [1:0] my_full /* synthesis syn_maxfan = 3 */;
reg [PTR_BITS-1:0] rd_ptr /* synthesis syn_maxfan = 10 */;
// Register duplication to reduce the fan out
(* KEEP = "TRUE" *) reg [PTR_BITS-1:0] rd_ptr_timing /* synthesis syn_maxfan = 10 */;
reg [PTR_BITS-1:0] wr_ptr /* synthesis syn_maxfan = 10 */;
wire [WIDTH-1:0] mem_out;
(* max_fanout = 40 *) wire wr_en /* synthesis syn_maxfan = 10 */;
task updt_ptrs;
input rd;
input wr;
reg [1:0] next_rd_ptr;
reg [1:0] next_wr_ptr;
begin
next_rd_ptr = (rd_ptr + 1'b1)%DEPTH;
next_wr_ptr = (wr_ptr + 1'b1)%DEPTH;
casez ({rd, wr, my_empty[1], my_full[1]})
4'b00zz: ; // No access, do nothing
4'b0100: begin
// Write when neither empty, nor full; check for full
wr_ptr <= #TCQ next_wr_ptr;
my_full[0] <= #TCQ (next_wr_ptr == rd_ptr);
my_full[1] <= #TCQ (next_wr_ptr == rd_ptr);
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0110: begin
// Write when empty; no need to check for full
wr_ptr <= #TCQ next_wr_ptr;
my_empty <= #TCQ 5'b00000;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b1000: begin
// Read when neither empty, nor full; check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_empty[0] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[1] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[2] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[3] <= #TCQ (next_rd_ptr == wr_ptr);
my_empty[4] <= #TCQ (next_rd_ptr == wr_ptr);
end
4'b1001: begin
// Read when full; no need to check for empty
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
my_full[0] <= #TCQ 1'b0;
my_full[1] <= #TCQ 1'b0;
end
4'b1100, 4'b1101, 4'b1110: begin
// Read and write when empty, full, or neither empty/full; no need
// to check for empty or full conditions
rd_ptr <= #TCQ next_rd_ptr;
rd_ptr_timing <= #TCQ next_rd_ptr;
wr_ptr <= #TCQ next_wr_ptr;
//mem[wr_ptr] <= #TCQ d_in;
end
4'b0101, 4'b1010: ;
// Read when empty, Write when full; Keep all pointers the same
// and don't change any of the flags (i.e. ignore the read/write).
// This might happen because a faulty DQS_FOUND calibration could
// result in excessive skew between when the various IN_FIFO's
// first become not empty. In this case, the data going to each
// post-FIFO/IN_FIFO should be read out and discarded
// synthesis translate_off
default: begin
// Covers any other cases, in particular for simulation if
// any signals are X's
$display("ERR %m @%t: Bad access: rd:%b,wr:%b,empty:%b,full:%b",
$time, rd, wr, my_empty[1], my_full[1]);
rd_ptr <= #TCQ 2'bxx;
rd_ptr_timing <= #TCQ 2'bxx;
wr_ptr <= #TCQ 2'bxx;
end
// synthesis translate_on
endcase
end
endtask
assign d_out = my_empty[4] ? d_in : mem_out;//mem[rd_ptr];
// The combined IN_FIFO + post FIFO is only "empty" when both are empty
assign empty_out = empty_in[0] & my_empty[0];
assign byte_rd_en = !empty_in[3] || !my_empty[3];
always @(posedge clk)
if (rst) begin
my_empty <= #TCQ 5'b11111;
my_full <= #TCQ 2'b00;
rd_ptr <= #TCQ 'b0;
rd_ptr_timing <= #TCQ 'b0;
wr_ptr <= #TCQ 'b0;
end else begin
// Special mode: If IN_FIFO has data, and controller is reading at
// the same time, then operate post-FIFO in "passthrough" mode (i.e.
// don't update any of the read/write pointers, and route IN_FIFO
// data to post-FIFO data)
if (my_empty[1] && !my_full[1] && rd_en_in && !empty_in[1]) ;
else
// Otherwise, we're writing to FIFO when IN_FIFO is not empty,
// and reading from the FIFO based on the rd_en_in signal (read
// enable from controller). The functino updt_ptrs should catch
// an illegal conditions.
updt_ptrs(rd_en_in, !empty_in[1]);
end
assign wr_en = (!empty_in[2] & ((!rd_en_in & !my_full[0]) |
(rd_en_in & !my_empty[2])));
always @ (posedge clk)
begin
if (wr_en)
mem[wr_ptr] <= #TCQ d_in;
end
assign mem_out = mem[rd_ptr_timing];
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_mux #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
ktap_at_left_edge, ktap_at_right_edge, mmcm_edge_detect_rdy,
po_stg3_incdec, po_en_stg3, po_en_stg23, po_stg23_sel,
po_stg23_incdec, po_rdy, wl_po_fine_cnt_sel, oclk_prech_req,
// Inputs
clk, rst, ocd_ktap_right, ocd_ktap_left, lim2poc_ktap_right,
lim2poc_rdy, ocd_edge_detect_rdy, lim2stg2_inc, lim2stg2_dec,
lim2stg3_inc, lim2stg3_dec, ocd2stg2_inc, ocd2stg2_dec,
ocd_cntlr2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, wl_po_fine_cnt,
oclkdelay_calib_cnt, lim2init_prech_req, ocd_prech_req
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
localparam PO_WAIT = 15;
localparam POW_WIDTH = clogb2(PO_WAIT);
localparam ONE = 1;
localparam TWO = 2;
input clk;
input rst;
input ocd_ktap_right, ocd_ktap_left;
input lim2poc_ktap_right;
output ktap_at_left_edge, ktap_at_right_edge;
assign ktap_at_left_edge = ocd_ktap_left;
assign ktap_at_right_edge = lim2poc_ktap_right || ocd_ktap_right;
input lim2poc_rdy;
input ocd_edge_detect_rdy;
output mmcm_edge_detect_rdy;
assign mmcm_edge_detect_rdy = lim2poc_rdy || ocd_edge_detect_rdy;
// po_stg3_incdec and po_en_stg3 are deprecated and should be removed.
output po_stg3_incdec;
output po_en_stg3;
assign po_stg3_incdec = 1'b0;
assign po_en_stg3 = 1'b0;
reg [1:0] po_setup_ns, po_setup_r;
always @(posedge clk) po_setup_r <= #TCQ po_setup_ns;
input lim2stg2_inc;
input lim2stg2_dec;
input lim2stg3_inc;
input lim2stg3_dec;
input ocd2stg2_inc;
input ocd2stg2_dec;
input ocd_cntlr2stg2_dec;
input ocd2stg3_inc;
input ocd2stg3_dec;
wire setup_po =
lim2stg2_inc || lim2stg2_dec || lim2stg3_inc || lim2stg3_dec ||
ocd2stg2_inc || ocd2stg2_dec || ocd2stg3_inc || ocd2stg3_dec || ocd_cntlr2stg2_dec;
always @(*) begin
po_setup_ns = po_setup_r;
if (rst) po_setup_ns = 2'b00;
else if (setup_po) po_setup_ns = 2'b11;
else if (|po_setup_r) po_setup_ns = po_setup_r - 2'b01;
end
reg po_en_stg23_r;
wire po_en_stg23_ns = ~rst && po_setup_r == 2'b01;
always @(posedge clk) po_en_stg23_r <= #TCQ po_en_stg23_ns;
output po_en_stg23;
assign po_en_stg23 = po_en_stg23_r;
wire sel_stg3 = lim2stg3_inc || lim2stg3_dec || ocd2stg3_inc || ocd2stg3_dec;
reg [POW_WIDTH-1:0] po_wait_r, po_wait_ns;
reg po_stg23_sel_r;
// Reset to zero at the end. Makes adjust stg2 at end of centering
// get the correct value of po_counter_read_val.
wire po_stg23_sel_ns = ~rst && (setup_po
? sel_stg3
? 1'b1
: 1'b0
: po_stg23_sel_r && !(po_wait_r == ONE[POW_WIDTH-1:0]));
always @(posedge clk) po_stg23_sel_r <= #TCQ po_stg23_sel_ns;
output po_stg23_sel;
assign po_stg23_sel = po_stg23_sel_r;
wire po_inc = lim2stg2_inc || lim2stg3_inc || ocd2stg2_inc || ocd2stg3_inc;
reg po_stg23_incdec_r;
wire po_stg23_incdec_ns = ~rst && (setup_po ? po_inc ? 1'b1 : 1'b0 : po_stg23_incdec_r);
always @(posedge clk) po_stg23_incdec_r <= #TCQ po_stg23_incdec_ns;
output po_stg23_incdec;
assign po_stg23_incdec = po_stg23_incdec_r;
always @(posedge clk) po_wait_r <= #TCQ po_wait_ns;
always @(*) begin
po_wait_ns = po_wait_r;
if (rst) po_wait_ns = {POW_WIDTH{1'b0}};
else if (po_en_stg23_r) po_wait_ns = PO_WAIT[POW_WIDTH-1:0] - ONE[POW_WIDTH-1:0];
else if (po_wait_r != {POW_WIDTH{1'b0}}) po_wait_ns = po_wait_r - ONE[POW_WIDTH-1:0];
end
wire po_rdy_ns = ~(setup_po || |po_setup_r || |po_wait_ns);
reg po_rdy_r;
always @(posedge clk) po_rdy_r <= #TCQ po_rdy_ns;
output po_rdy;
assign po_rdy = po_rdy_r;
input [6*DQS_WIDTH-1:0] wl_po_fine_cnt;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [6*DQS_WIDTH-1:0] wl_po_fine_shifted = wl_po_fine_cnt >> oclkdelay_calib_cnt*6;
output [5:0] wl_po_fine_cnt_sel;
assign wl_po_fine_cnt_sel = wl_po_fine_shifted[5:0];
input lim2init_prech_req;
input ocd_prech_req;
output oclk_prech_req;
assign oclk_prech_req = ocd_prech_req || lim2init_prech_req;
endmodule
|
module mig_7series_v2_3_ui_rd_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter DATA_BUF_ADDR_WIDTH = 5,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ORDERING = "NORM"
)
(/*AUTOARG*/
// Outputs
ram_init_done_r, ram_init_addr, app_rd_data_valid, app_rd_data_end,
app_rd_data, app_ecc_multiple_err, rd_buf_full, rd_data_buf_addr_r,
// Inputs
rst, clk, rd_data_en, rd_data_addr, rd_data_offset, rd_data_end,
rd_data, ecc_multiple, rd_accepted
);
input rst;
input clk;
output wire ram_init_done_r;
output wire [3:0] ram_init_addr;
// rd_buf_indx points to the status and data storage rams for
// reading data out to the app.
reg [5:0] rd_buf_indx_r;
reg ram_init_done_r_lcl /* synthesis syn_maxfan = 10 */;
assign ram_init_done_r = ram_init_done_r_lcl;
wire app_rd_data_valid_ns;
wire single_data;
reg [5:0] rd_buf_indx_ns;
generate begin : rd_buf_indx
wire upd_rd_buf_indx = ~ram_init_done_r_lcl || app_rd_data_valid_ns;
// Loop through all status write addresses once after rst. Initializes
// the status and pointer RAMs.
wire ram_init_done_ns =
~rst && (ram_init_done_r_lcl || (rd_buf_indx_r[4:0] == 5'h1f));
always @(posedge clk) ram_init_done_r_lcl <= #TCQ ram_init_done_ns;
always @(/*AS*/rd_buf_indx_r or rst or single_data
or upd_rd_buf_indx) begin
rd_buf_indx_ns = rd_buf_indx_r;
if (rst) rd_buf_indx_ns = 6'b0;
else if (upd_rd_buf_indx) rd_buf_indx_ns =
// need to use every slot of RAMB32 if all address bits are used
rd_buf_indx_r + 6'h1 + (DATA_BUF_ADDR_WIDTH == 5 ? 0 : single_data);
end
always @(posedge clk) rd_buf_indx_r <= #TCQ rd_buf_indx_ns;
end
endgenerate
assign ram_init_addr = rd_buf_indx_r[3:0];
input rd_data_en;
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input rd_data_offset;
input rd_data_end;
input [APP_DATA_WIDTH-1:0] rd_data;
output reg app_rd_data_valid /* synthesis syn_maxfan = 10 */;
output reg app_rd_data_end;
output reg [APP_DATA_WIDTH-1:0] app_rd_data;
input [3:0] ecc_multiple;
reg [2*nCK_PER_CLK-1:0] app_ecc_multiple_err_r = 'b0;
output wire [2*nCK_PER_CLK-1:0] app_ecc_multiple_err;
assign app_ecc_multiple_err = app_ecc_multiple_err_r;
input rd_accepted;
output wire rd_buf_full;
output wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r;
// Compute dimensions of read data buffer. Depending on width of
// DQ bus and DRAM CK
// to fabric ratio, number of RAM32Ms is variable. RAM32Ms are used in
// single write, single read, 6 bit wide mode.
localparam RD_BUF_WIDTH = APP_DATA_WIDTH + (ECC == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (RD_BUF_WIDTH/6);
localparam REMAINDER = RD_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
generate
if (ORDERING == "STRICT") begin : strict_mode
assign app_rd_data_valid_ns = 1'b0;
assign single_data = 1'b0;
assign rd_buf_full = 1'b0;
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r_lcl;
wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_ns =
rst
? 0
: rd_data_buf_addr_r_lcl + rd_accepted;
always @(posedge clk) rd_data_buf_addr_r_lcl <=
#TCQ rd_data_buf_addr_ns;
assign rd_data_buf_addr_r = rd_data_buf_addr_ns;
// app_* signals required to be registered.
if (ECC == "OFF") begin : ecc_off
always @(/*AS*/rd_data) app_rd_data = rd_data;
always @(/*AS*/rd_data_en) app_rd_data_valid = rd_data_en;
always @(/*AS*/rd_data_end) app_rd_data_end = rd_data_end;
end
else begin : ecc_on
always @(posedge clk) app_rd_data <= #TCQ rd_data;
always @(posedge clk) app_rd_data_valid <= #TCQ rd_data_en;
always @(posedge clk) app_rd_data_end <= #TCQ rd_data_end;
always @(posedge clk) app_ecc_multiple_err_r <= #TCQ ecc_multiple;
end
end
else begin : not_strict_mode
wire rd_buf_we = ~ram_init_done_r_lcl || rd_data_en /* synthesis syn_maxfan = 10 */;
// In configurations where read data is returned in a single fabric cycle
// the offset is always zero and we can use the bit to get a deeper
// FIFO. The RAMB32 has 5 address bits, so when the DATA_BUF_ADDR_WIDTH
// is set to use them all, discard the offset. Otherwise, include the
// offset.
wire [4:0] rd_buf_wr_addr = DATA_BUF_ADDR_WIDTH == 5 ?
rd_data_addr :
{rd_data_addr, rd_data_offset};
wire [1:0] rd_status;
// Instantiate status RAM. One bit for status and one for "end".
begin : status_ram
// Turns out read to write back status is a timing path. Update
// the status in the ram on the state following the read. Bypass
// the write data into the status read path.
wire [4:0] status_ram_wr_addr_ns = ram_init_done_r_lcl
? rd_buf_wr_addr
: rd_buf_indx_r[4:0];
reg [4:0] status_ram_wr_addr_r;
always @(posedge clk) status_ram_wr_addr_r <=
#TCQ status_ram_wr_addr_ns;
wire [1:0] wr_status;
// Not guaranteed to write second status bit. If it is written, always
// copy in the first status bit.
reg wr_status_r1;
always @(posedge clk) wr_status_r1 <= #TCQ wr_status[0];
wire [1:0] status_ram_wr_data_ns =
ram_init_done_r_lcl
? {rd_data_end, ~(rd_data_offset
? wr_status_r1
: wr_status[0])}
: 2'b0;
reg [1:0] status_ram_wr_data_r;
always @(posedge clk) status_ram_wr_data_r <=
#TCQ status_ram_wr_data_ns;
reg rd_buf_we_r1;
always @(posedge clk) rd_buf_we_r1 <= #TCQ rd_buf_we;
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(rd_status),
.DOB(),
.DOC(wr_status),
.DOD(),
.DIA(status_ram_wr_data_r),
.DIB(2'b0),
.DIC(status_ram_wr_data_r),
.DID(status_ram_wr_data_r),
.ADDRA(rd_buf_indx_r[4:0]),
.ADDRB(5'b0),
.ADDRC(status_ram_wr_addr_ns),
.ADDRD(status_ram_wr_addr_r),
.WE(rd_buf_we_r1),
.WCLK(clk)
);
end // block: status_ram
wire [RAM_WIDTH-1:0] rd_buf_out_data;
begin : rd_buf
wire [RAM_WIDTH-1:0] rd_buf_in_data;
if (REMAINDER == 0)
if (ECC == "OFF")
assign rd_buf_in_data = rd_data;
else
assign rd_buf_in_data = {ecc_multiple, rd_data};
else
if (ECC == "OFF")
assign rd_buf_in_data = {{6-REMAINDER{1'b0}}, rd_data};
else
assign rd_buf_in_data =
{{6-REMAINDER{1'b0}}, ecc_multiple, rd_data};
// Dedicated copy for driving distributed RAM.
(* keep = "true" *) reg [4:0] rd_buf_indx_copy_r /* synthesis syn_keep = 1 */;
always @(posedge clk) rd_buf_indx_copy_r <= #TCQ rd_buf_indx_ns[4:0];
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(rd_buf_out_data[((i*6)+4)+:2]),
.DOB(rd_buf_out_data[((i*6)+2)+:2]),
.DOC(rd_buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(rd_buf_in_data[((i*6)+4)+:2]),
.DIB(rd_buf_in_data[((i*6)+2)+:2]),
.DIC(rd_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_buf_indx_copy_r[4:0]),
.ADDRB(rd_buf_indx_copy_r[4:0]),
.ADDRC(rd_buf_indx_copy_r[4:0]),
.ADDRD(rd_buf_wr_addr),
.WE(rd_buf_we),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
wire rd_data_rdy = (rd_status[0] == rd_buf_indx_r[5]);
wire bypass = rd_data_en && (rd_buf_wr_addr[4:0] == rd_buf_indx_r[4:0]) /* synthesis syn_maxfan = 10 */;
assign app_rd_data_valid_ns =
ram_init_done_r_lcl && (bypass || rd_data_rdy);
wire app_rd_data_end_ns = bypass ? rd_data_end : rd_status[1];
always @(posedge clk) app_rd_data_valid <= #TCQ app_rd_data_valid_ns;
always @(posedge clk) app_rd_data_end <= #TCQ app_rd_data_end_ns;
assign single_data =
app_rd_data_valid_ns && app_rd_data_end_ns && ~rd_buf_indx_r[0];
wire [APP_DATA_WIDTH-1:0] app_rd_data_ns =
bypass
? rd_data
: rd_buf_out_data[APP_DATA_WIDTH-1:0];
always @(posedge clk) app_rd_data <= #TCQ app_rd_data_ns;
if (ECC != "OFF") begin : assign_app_ecc_multiple
wire [3:0] app_ecc_multiple_err_ns =
bypass
? ecc_multiple
: rd_buf_out_data[APP_DATA_WIDTH+:4];
always @(posedge clk) app_ecc_multiple_err_r <=
#TCQ app_ecc_multiple_err_ns;
end
//Added to fix timing. The signal app_rd_data_valid has
//a very high fanout. So making a dedicated copy for usage
//with the occ_cnt counter.
(* equivalent_register_removal = "no" *)
reg app_rd_data_valid_copy;
always @(posedge clk) app_rd_data_valid_copy <= #TCQ app_rd_data_valid_ns;
// Keep track of how many entries in the queue hold data.
wire free_rd_buf = app_rd_data_valid_copy && app_rd_data_end; //changed to use registered version
//of the signals in ordered to fix timing
reg [DATA_BUF_ADDR_WIDTH:0] occ_cnt_r;
wire [DATA_BUF_ADDR_WIDTH:0] occ_minus_one = occ_cnt_r - 1;
wire [DATA_BUF_ADDR_WIDTH:0] occ_plus_one = occ_cnt_r + 1;
begin : occupied_counter
reg [DATA_BUF_ADDR_WIDTH:0] occ_cnt_ns;
always @(/*AS*/free_rd_buf or occ_cnt_r or rd_accepted or rst or occ_minus_one or occ_plus_one) begin
occ_cnt_ns = occ_cnt_r;
if (rst) occ_cnt_ns = 0;
else case ({rd_accepted, free_rd_buf})
2'b01 : occ_cnt_ns = occ_minus_one;
2'b10 : occ_cnt_ns = occ_plus_one;
endcase // case ({wr_data_end, new_rd_data})
end
always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
assign rd_buf_full = occ_cnt_ns[DATA_BUF_ADDR_WIDTH];
`ifdef MC_SVA
rd_data_buffer_full: cover property (@(posedge clk) (~rst && rd_buf_full));
rd_data_buffer_inc_dec_15: cover property (@(posedge clk)
(~rst && rd_accepted && free_rd_buf && (occ_cnt_r == 'hf)));
rd_data_underflow: assert property (@(posedge clk)
(rst || !((occ_cnt_r == 'b0) && (occ_cnt_ns == 'h1f))));
rd_data_overflow: assert property (@(posedge clk)
(rst || !((occ_cnt_r == 'h10) && (occ_cnt_ns == 'h11))));
`endif
end // block: occupied_counter
// Generate the data_buf_address written into the memory controller
// for reads. Increment with each accepted read, and rollover at 0xf.
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r_lcl;
assign rd_data_buf_addr_r = rd_data_buf_addr_r_lcl;
begin : data_buf_addr
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_ns;
always @(/*AS*/rd_accepted or rd_data_buf_addr_r_lcl or rst) begin
rd_data_buf_addr_ns = rd_data_buf_addr_r_lcl;
if (rst) rd_data_buf_addr_ns = 0;
else if (rd_accepted) rd_data_buf_addr_ns =
rd_data_buf_addr_r_lcl + 1;
end
always @(posedge clk) rd_data_buf_addr_r_lcl <=
#TCQ rd_data_buf_addr_ns;
end // block: data_buf_addr
end // block: not_strict_mode
endgenerate
endmodule
|
module mig_7series_v2_3_ui_rd_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter DATA_BUF_ADDR_WIDTH = 5,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ORDERING = "NORM"
)
(/*AUTOARG*/
// Outputs
ram_init_done_r, ram_init_addr, app_rd_data_valid, app_rd_data_end,
app_rd_data, app_ecc_multiple_err, rd_buf_full, rd_data_buf_addr_r,
// Inputs
rst, clk, rd_data_en, rd_data_addr, rd_data_offset, rd_data_end,
rd_data, ecc_multiple, rd_accepted
);
input rst;
input clk;
output wire ram_init_done_r;
output wire [3:0] ram_init_addr;
// rd_buf_indx points to the status and data storage rams for
// reading data out to the app.
reg [5:0] rd_buf_indx_r;
reg ram_init_done_r_lcl /* synthesis syn_maxfan = 10 */;
assign ram_init_done_r = ram_init_done_r_lcl;
wire app_rd_data_valid_ns;
wire single_data;
reg [5:0] rd_buf_indx_ns;
generate begin : rd_buf_indx
wire upd_rd_buf_indx = ~ram_init_done_r_lcl || app_rd_data_valid_ns;
// Loop through all status write addresses once after rst. Initializes
// the status and pointer RAMs.
wire ram_init_done_ns =
~rst && (ram_init_done_r_lcl || (rd_buf_indx_r[4:0] == 5'h1f));
always @(posedge clk) ram_init_done_r_lcl <= #TCQ ram_init_done_ns;
always @(/*AS*/rd_buf_indx_r or rst or single_data
or upd_rd_buf_indx) begin
rd_buf_indx_ns = rd_buf_indx_r;
if (rst) rd_buf_indx_ns = 6'b0;
else if (upd_rd_buf_indx) rd_buf_indx_ns =
// need to use every slot of RAMB32 if all address bits are used
rd_buf_indx_r + 6'h1 + (DATA_BUF_ADDR_WIDTH == 5 ? 0 : single_data);
end
always @(posedge clk) rd_buf_indx_r <= #TCQ rd_buf_indx_ns;
end
endgenerate
assign ram_init_addr = rd_buf_indx_r[3:0];
input rd_data_en;
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input rd_data_offset;
input rd_data_end;
input [APP_DATA_WIDTH-1:0] rd_data;
output reg app_rd_data_valid /* synthesis syn_maxfan = 10 */;
output reg app_rd_data_end;
output reg [APP_DATA_WIDTH-1:0] app_rd_data;
input [3:0] ecc_multiple;
reg [2*nCK_PER_CLK-1:0] app_ecc_multiple_err_r = 'b0;
output wire [2*nCK_PER_CLK-1:0] app_ecc_multiple_err;
assign app_ecc_multiple_err = app_ecc_multiple_err_r;
input rd_accepted;
output wire rd_buf_full;
output wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r;
// Compute dimensions of read data buffer. Depending on width of
// DQ bus and DRAM CK
// to fabric ratio, number of RAM32Ms is variable. RAM32Ms are used in
// single write, single read, 6 bit wide mode.
localparam RD_BUF_WIDTH = APP_DATA_WIDTH + (ECC == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (RD_BUF_WIDTH/6);
localparam REMAINDER = RD_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
generate
if (ORDERING == "STRICT") begin : strict_mode
assign app_rd_data_valid_ns = 1'b0;
assign single_data = 1'b0;
assign rd_buf_full = 1'b0;
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r_lcl;
wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_ns =
rst
? 0
: rd_data_buf_addr_r_lcl + rd_accepted;
always @(posedge clk) rd_data_buf_addr_r_lcl <=
#TCQ rd_data_buf_addr_ns;
assign rd_data_buf_addr_r = rd_data_buf_addr_ns;
// app_* signals required to be registered.
if (ECC == "OFF") begin : ecc_off
always @(/*AS*/rd_data) app_rd_data = rd_data;
always @(/*AS*/rd_data_en) app_rd_data_valid = rd_data_en;
always @(/*AS*/rd_data_end) app_rd_data_end = rd_data_end;
end
else begin : ecc_on
always @(posedge clk) app_rd_data <= #TCQ rd_data;
always @(posedge clk) app_rd_data_valid <= #TCQ rd_data_en;
always @(posedge clk) app_rd_data_end <= #TCQ rd_data_end;
always @(posedge clk) app_ecc_multiple_err_r <= #TCQ ecc_multiple;
end
end
else begin : not_strict_mode
wire rd_buf_we = ~ram_init_done_r_lcl || rd_data_en /* synthesis syn_maxfan = 10 */;
// In configurations where read data is returned in a single fabric cycle
// the offset is always zero and we can use the bit to get a deeper
// FIFO. The RAMB32 has 5 address bits, so when the DATA_BUF_ADDR_WIDTH
// is set to use them all, discard the offset. Otherwise, include the
// offset.
wire [4:0] rd_buf_wr_addr = DATA_BUF_ADDR_WIDTH == 5 ?
rd_data_addr :
{rd_data_addr, rd_data_offset};
wire [1:0] rd_status;
// Instantiate status RAM. One bit for status and one for "end".
begin : status_ram
// Turns out read to write back status is a timing path. Update
// the status in the ram on the state following the read. Bypass
// the write data into the status read path.
wire [4:0] status_ram_wr_addr_ns = ram_init_done_r_lcl
? rd_buf_wr_addr
: rd_buf_indx_r[4:0];
reg [4:0] status_ram_wr_addr_r;
always @(posedge clk) status_ram_wr_addr_r <=
#TCQ status_ram_wr_addr_ns;
wire [1:0] wr_status;
// Not guaranteed to write second status bit. If it is written, always
// copy in the first status bit.
reg wr_status_r1;
always @(posedge clk) wr_status_r1 <= #TCQ wr_status[0];
wire [1:0] status_ram_wr_data_ns =
ram_init_done_r_lcl
? {rd_data_end, ~(rd_data_offset
? wr_status_r1
: wr_status[0])}
: 2'b0;
reg [1:0] status_ram_wr_data_r;
always @(posedge clk) status_ram_wr_data_r <=
#TCQ status_ram_wr_data_ns;
reg rd_buf_we_r1;
always @(posedge clk) rd_buf_we_r1 <= #TCQ rd_buf_we;
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(rd_status),
.DOB(),
.DOC(wr_status),
.DOD(),
.DIA(status_ram_wr_data_r),
.DIB(2'b0),
.DIC(status_ram_wr_data_r),
.DID(status_ram_wr_data_r),
.ADDRA(rd_buf_indx_r[4:0]),
.ADDRB(5'b0),
.ADDRC(status_ram_wr_addr_ns),
.ADDRD(status_ram_wr_addr_r),
.WE(rd_buf_we_r1),
.WCLK(clk)
);
end // block: status_ram
wire [RAM_WIDTH-1:0] rd_buf_out_data;
begin : rd_buf
wire [RAM_WIDTH-1:0] rd_buf_in_data;
if (REMAINDER == 0)
if (ECC == "OFF")
assign rd_buf_in_data = rd_data;
else
assign rd_buf_in_data = {ecc_multiple, rd_data};
else
if (ECC == "OFF")
assign rd_buf_in_data = {{6-REMAINDER{1'b0}}, rd_data};
else
assign rd_buf_in_data =
{{6-REMAINDER{1'b0}}, ecc_multiple, rd_data};
// Dedicated copy for driving distributed RAM.
(* keep = "true" *) reg [4:0] rd_buf_indx_copy_r /* synthesis syn_keep = 1 */;
always @(posedge clk) rd_buf_indx_copy_r <= #TCQ rd_buf_indx_ns[4:0];
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(rd_buf_out_data[((i*6)+4)+:2]),
.DOB(rd_buf_out_data[((i*6)+2)+:2]),
.DOC(rd_buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(rd_buf_in_data[((i*6)+4)+:2]),
.DIB(rd_buf_in_data[((i*6)+2)+:2]),
.DIC(rd_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_buf_indx_copy_r[4:0]),
.ADDRB(rd_buf_indx_copy_r[4:0]),
.ADDRC(rd_buf_indx_copy_r[4:0]),
.ADDRD(rd_buf_wr_addr),
.WE(rd_buf_we),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
wire rd_data_rdy = (rd_status[0] == rd_buf_indx_r[5]);
wire bypass = rd_data_en && (rd_buf_wr_addr[4:0] == rd_buf_indx_r[4:0]) /* synthesis syn_maxfan = 10 */;
assign app_rd_data_valid_ns =
ram_init_done_r_lcl && (bypass || rd_data_rdy);
wire app_rd_data_end_ns = bypass ? rd_data_end : rd_status[1];
always @(posedge clk) app_rd_data_valid <= #TCQ app_rd_data_valid_ns;
always @(posedge clk) app_rd_data_end <= #TCQ app_rd_data_end_ns;
assign single_data =
app_rd_data_valid_ns && app_rd_data_end_ns && ~rd_buf_indx_r[0];
wire [APP_DATA_WIDTH-1:0] app_rd_data_ns =
bypass
? rd_data
: rd_buf_out_data[APP_DATA_WIDTH-1:0];
always @(posedge clk) app_rd_data <= #TCQ app_rd_data_ns;
if (ECC != "OFF") begin : assign_app_ecc_multiple
wire [3:0] app_ecc_multiple_err_ns =
bypass
? ecc_multiple
: rd_buf_out_data[APP_DATA_WIDTH+:4];
always @(posedge clk) app_ecc_multiple_err_r <=
#TCQ app_ecc_multiple_err_ns;
end
//Added to fix timing. The signal app_rd_data_valid has
//a very high fanout. So making a dedicated copy for usage
//with the occ_cnt counter.
(* equivalent_register_removal = "no" *)
reg app_rd_data_valid_copy;
always @(posedge clk) app_rd_data_valid_copy <= #TCQ app_rd_data_valid_ns;
// Keep track of how many entries in the queue hold data.
wire free_rd_buf = app_rd_data_valid_copy && app_rd_data_end; //changed to use registered version
//of the signals in ordered to fix timing
reg [DATA_BUF_ADDR_WIDTH:0] occ_cnt_r;
wire [DATA_BUF_ADDR_WIDTH:0] occ_minus_one = occ_cnt_r - 1;
wire [DATA_BUF_ADDR_WIDTH:0] occ_plus_one = occ_cnt_r + 1;
begin : occupied_counter
reg [DATA_BUF_ADDR_WIDTH:0] occ_cnt_ns;
always @(/*AS*/free_rd_buf or occ_cnt_r or rd_accepted or rst or occ_minus_one or occ_plus_one) begin
occ_cnt_ns = occ_cnt_r;
if (rst) occ_cnt_ns = 0;
else case ({rd_accepted, free_rd_buf})
2'b01 : occ_cnt_ns = occ_minus_one;
2'b10 : occ_cnt_ns = occ_plus_one;
endcase // case ({wr_data_end, new_rd_data})
end
always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
assign rd_buf_full = occ_cnt_ns[DATA_BUF_ADDR_WIDTH];
`ifdef MC_SVA
rd_data_buffer_full: cover property (@(posedge clk) (~rst && rd_buf_full));
rd_data_buffer_inc_dec_15: cover property (@(posedge clk)
(~rst && rd_accepted && free_rd_buf && (occ_cnt_r == 'hf)));
rd_data_underflow: assert property (@(posedge clk)
(rst || !((occ_cnt_r == 'b0) && (occ_cnt_ns == 'h1f))));
rd_data_overflow: assert property (@(posedge clk)
(rst || !((occ_cnt_r == 'h10) && (occ_cnt_ns == 'h11))));
`endif
end // block: occupied_counter
// Generate the data_buf_address written into the memory controller
// for reads. Increment with each accepted read, and rollover at 0xf.
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r_lcl;
assign rd_data_buf_addr_r = rd_data_buf_addr_r_lcl;
begin : data_buf_addr
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_ns;
always @(/*AS*/rd_accepted or rd_data_buf_addr_r_lcl or rst) begin
rd_data_buf_addr_ns = rd_data_buf_addr_r_lcl;
if (rst) rd_data_buf_addr_ns = 0;
else if (rd_accepted) rd_data_buf_addr_ns =
rd_data_buf_addr_r_lcl + 1;
end
always @(posedge clk) rd_data_buf_addr_r_lcl <=
#TCQ rd_data_buf_addr_ns;
end // block: data_buf_addr
end // block: not_strict_mode
endgenerate
endmodule
|
module mig_7series_v2_3_ui_rd_data #
(
parameter TCQ = 100,
parameter APP_DATA_WIDTH = 256,
parameter DATA_BUF_ADDR_WIDTH = 5,
parameter ECC = "OFF",
parameter nCK_PER_CLK = 2 ,
parameter ORDERING = "NORM"
)
(/*AUTOARG*/
// Outputs
ram_init_done_r, ram_init_addr, app_rd_data_valid, app_rd_data_end,
app_rd_data, app_ecc_multiple_err, rd_buf_full, rd_data_buf_addr_r,
// Inputs
rst, clk, rd_data_en, rd_data_addr, rd_data_offset, rd_data_end,
rd_data, ecc_multiple, rd_accepted
);
input rst;
input clk;
output wire ram_init_done_r;
output wire [3:0] ram_init_addr;
// rd_buf_indx points to the status and data storage rams for
// reading data out to the app.
reg [5:0] rd_buf_indx_r;
reg ram_init_done_r_lcl /* synthesis syn_maxfan = 10 */;
assign ram_init_done_r = ram_init_done_r_lcl;
wire app_rd_data_valid_ns;
wire single_data;
reg [5:0] rd_buf_indx_ns;
generate begin : rd_buf_indx
wire upd_rd_buf_indx = ~ram_init_done_r_lcl || app_rd_data_valid_ns;
// Loop through all status write addresses once after rst. Initializes
// the status and pointer RAMs.
wire ram_init_done_ns =
~rst && (ram_init_done_r_lcl || (rd_buf_indx_r[4:0] == 5'h1f));
always @(posedge clk) ram_init_done_r_lcl <= #TCQ ram_init_done_ns;
always @(/*AS*/rd_buf_indx_r or rst or single_data
or upd_rd_buf_indx) begin
rd_buf_indx_ns = rd_buf_indx_r;
if (rst) rd_buf_indx_ns = 6'b0;
else if (upd_rd_buf_indx) rd_buf_indx_ns =
// need to use every slot of RAMB32 if all address bits are used
rd_buf_indx_r + 6'h1 + (DATA_BUF_ADDR_WIDTH == 5 ? 0 : single_data);
end
always @(posedge clk) rd_buf_indx_r <= #TCQ rd_buf_indx_ns;
end
endgenerate
assign ram_init_addr = rd_buf_indx_r[3:0];
input rd_data_en;
input [DATA_BUF_ADDR_WIDTH-1:0] rd_data_addr;
input rd_data_offset;
input rd_data_end;
input [APP_DATA_WIDTH-1:0] rd_data;
output reg app_rd_data_valid /* synthesis syn_maxfan = 10 */;
output reg app_rd_data_end;
output reg [APP_DATA_WIDTH-1:0] app_rd_data;
input [3:0] ecc_multiple;
reg [2*nCK_PER_CLK-1:0] app_ecc_multiple_err_r = 'b0;
output wire [2*nCK_PER_CLK-1:0] app_ecc_multiple_err;
assign app_ecc_multiple_err = app_ecc_multiple_err_r;
input rd_accepted;
output wire rd_buf_full;
output wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r;
// Compute dimensions of read data buffer. Depending on width of
// DQ bus and DRAM CK
// to fabric ratio, number of RAM32Ms is variable. RAM32Ms are used in
// single write, single read, 6 bit wide mode.
localparam RD_BUF_WIDTH = APP_DATA_WIDTH + (ECC == "OFF" ? 0 : 2*nCK_PER_CLK);
localparam FULL_RAM_CNT = (RD_BUF_WIDTH/6);
localparam REMAINDER = RD_BUF_WIDTH % 6;
localparam RAM_CNT = FULL_RAM_CNT + ((REMAINDER == 0 ) ? 0 : 1);
localparam RAM_WIDTH = (RAM_CNT*6);
generate
if (ORDERING == "STRICT") begin : strict_mode
assign app_rd_data_valid_ns = 1'b0;
assign single_data = 1'b0;
assign rd_buf_full = 1'b0;
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r_lcl;
wire [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_ns =
rst
? 0
: rd_data_buf_addr_r_lcl + rd_accepted;
always @(posedge clk) rd_data_buf_addr_r_lcl <=
#TCQ rd_data_buf_addr_ns;
assign rd_data_buf_addr_r = rd_data_buf_addr_ns;
// app_* signals required to be registered.
if (ECC == "OFF") begin : ecc_off
always @(/*AS*/rd_data) app_rd_data = rd_data;
always @(/*AS*/rd_data_en) app_rd_data_valid = rd_data_en;
always @(/*AS*/rd_data_end) app_rd_data_end = rd_data_end;
end
else begin : ecc_on
always @(posedge clk) app_rd_data <= #TCQ rd_data;
always @(posedge clk) app_rd_data_valid <= #TCQ rd_data_en;
always @(posedge clk) app_rd_data_end <= #TCQ rd_data_end;
always @(posedge clk) app_ecc_multiple_err_r <= #TCQ ecc_multiple;
end
end
else begin : not_strict_mode
wire rd_buf_we = ~ram_init_done_r_lcl || rd_data_en /* synthesis syn_maxfan = 10 */;
// In configurations where read data is returned in a single fabric cycle
// the offset is always zero and we can use the bit to get a deeper
// FIFO. The RAMB32 has 5 address bits, so when the DATA_BUF_ADDR_WIDTH
// is set to use them all, discard the offset. Otherwise, include the
// offset.
wire [4:0] rd_buf_wr_addr = DATA_BUF_ADDR_WIDTH == 5 ?
rd_data_addr :
{rd_data_addr, rd_data_offset};
wire [1:0] rd_status;
// Instantiate status RAM. One bit for status and one for "end".
begin : status_ram
// Turns out read to write back status is a timing path. Update
// the status in the ram on the state following the read. Bypass
// the write data into the status read path.
wire [4:0] status_ram_wr_addr_ns = ram_init_done_r_lcl
? rd_buf_wr_addr
: rd_buf_indx_r[4:0];
reg [4:0] status_ram_wr_addr_r;
always @(posedge clk) status_ram_wr_addr_r <=
#TCQ status_ram_wr_addr_ns;
wire [1:0] wr_status;
// Not guaranteed to write second status bit. If it is written, always
// copy in the first status bit.
reg wr_status_r1;
always @(posedge clk) wr_status_r1 <= #TCQ wr_status[0];
wire [1:0] status_ram_wr_data_ns =
ram_init_done_r_lcl
? {rd_data_end, ~(rd_data_offset
? wr_status_r1
: wr_status[0])}
: 2'b0;
reg [1:0] status_ram_wr_data_r;
always @(posedge clk) status_ram_wr_data_r <=
#TCQ status_ram_wr_data_ns;
reg rd_buf_we_r1;
always @(posedge clk) rd_buf_we_r1 <= #TCQ rd_buf_we;
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(rd_status),
.DOB(),
.DOC(wr_status),
.DOD(),
.DIA(status_ram_wr_data_r),
.DIB(2'b0),
.DIC(status_ram_wr_data_r),
.DID(status_ram_wr_data_r),
.ADDRA(rd_buf_indx_r[4:0]),
.ADDRB(5'b0),
.ADDRC(status_ram_wr_addr_ns),
.ADDRD(status_ram_wr_addr_r),
.WE(rd_buf_we_r1),
.WCLK(clk)
);
end // block: status_ram
wire [RAM_WIDTH-1:0] rd_buf_out_data;
begin : rd_buf
wire [RAM_WIDTH-1:0] rd_buf_in_data;
if (REMAINDER == 0)
if (ECC == "OFF")
assign rd_buf_in_data = rd_data;
else
assign rd_buf_in_data = {ecc_multiple, rd_data};
else
if (ECC == "OFF")
assign rd_buf_in_data = {{6-REMAINDER{1'b0}}, rd_data};
else
assign rd_buf_in_data =
{{6-REMAINDER{1'b0}}, ecc_multiple, rd_data};
// Dedicated copy for driving distributed RAM.
(* keep = "true" *) reg [4:0] rd_buf_indx_copy_r /* synthesis syn_keep = 1 */;
always @(posedge clk) rd_buf_indx_copy_r <= #TCQ rd_buf_indx_ns[4:0];
genvar i;
for (i=0; i<RAM_CNT; i=i+1) begin : rd_buffer_ram
RAM32M
#(.INIT_A(64'h0000000000000000),
.INIT_B(64'h0000000000000000),
.INIT_C(64'h0000000000000000),
.INIT_D(64'h0000000000000000)
) RAM32M0 (
.DOA(rd_buf_out_data[((i*6)+4)+:2]),
.DOB(rd_buf_out_data[((i*6)+2)+:2]),
.DOC(rd_buf_out_data[((i*6)+0)+:2]),
.DOD(),
.DIA(rd_buf_in_data[((i*6)+4)+:2]),
.DIB(rd_buf_in_data[((i*6)+2)+:2]),
.DIC(rd_buf_in_data[((i*6)+0)+:2]),
.DID(2'b0),
.ADDRA(rd_buf_indx_copy_r[4:0]),
.ADDRB(rd_buf_indx_copy_r[4:0]),
.ADDRC(rd_buf_indx_copy_r[4:0]),
.ADDRD(rd_buf_wr_addr),
.WE(rd_buf_we),
.WCLK(clk)
);
end // block: rd_buffer_ram
end
wire rd_data_rdy = (rd_status[0] == rd_buf_indx_r[5]);
wire bypass = rd_data_en && (rd_buf_wr_addr[4:0] == rd_buf_indx_r[4:0]) /* synthesis syn_maxfan = 10 */;
assign app_rd_data_valid_ns =
ram_init_done_r_lcl && (bypass || rd_data_rdy);
wire app_rd_data_end_ns = bypass ? rd_data_end : rd_status[1];
always @(posedge clk) app_rd_data_valid <= #TCQ app_rd_data_valid_ns;
always @(posedge clk) app_rd_data_end <= #TCQ app_rd_data_end_ns;
assign single_data =
app_rd_data_valid_ns && app_rd_data_end_ns && ~rd_buf_indx_r[0];
wire [APP_DATA_WIDTH-1:0] app_rd_data_ns =
bypass
? rd_data
: rd_buf_out_data[APP_DATA_WIDTH-1:0];
always @(posedge clk) app_rd_data <= #TCQ app_rd_data_ns;
if (ECC != "OFF") begin : assign_app_ecc_multiple
wire [3:0] app_ecc_multiple_err_ns =
bypass
? ecc_multiple
: rd_buf_out_data[APP_DATA_WIDTH+:4];
always @(posedge clk) app_ecc_multiple_err_r <=
#TCQ app_ecc_multiple_err_ns;
end
//Added to fix timing. The signal app_rd_data_valid has
//a very high fanout. So making a dedicated copy for usage
//with the occ_cnt counter.
(* equivalent_register_removal = "no" *)
reg app_rd_data_valid_copy;
always @(posedge clk) app_rd_data_valid_copy <= #TCQ app_rd_data_valid_ns;
// Keep track of how many entries in the queue hold data.
wire free_rd_buf = app_rd_data_valid_copy && app_rd_data_end; //changed to use registered version
//of the signals in ordered to fix timing
reg [DATA_BUF_ADDR_WIDTH:0] occ_cnt_r;
wire [DATA_BUF_ADDR_WIDTH:0] occ_minus_one = occ_cnt_r - 1;
wire [DATA_BUF_ADDR_WIDTH:0] occ_plus_one = occ_cnt_r + 1;
begin : occupied_counter
reg [DATA_BUF_ADDR_WIDTH:0] occ_cnt_ns;
always @(/*AS*/free_rd_buf or occ_cnt_r or rd_accepted or rst or occ_minus_one or occ_plus_one) begin
occ_cnt_ns = occ_cnt_r;
if (rst) occ_cnt_ns = 0;
else case ({rd_accepted, free_rd_buf})
2'b01 : occ_cnt_ns = occ_minus_one;
2'b10 : occ_cnt_ns = occ_plus_one;
endcase // case ({wr_data_end, new_rd_data})
end
always @(posedge clk) occ_cnt_r <= #TCQ occ_cnt_ns;
assign rd_buf_full = occ_cnt_ns[DATA_BUF_ADDR_WIDTH];
`ifdef MC_SVA
rd_data_buffer_full: cover property (@(posedge clk) (~rst && rd_buf_full));
rd_data_buffer_inc_dec_15: cover property (@(posedge clk)
(~rst && rd_accepted && free_rd_buf && (occ_cnt_r == 'hf)));
rd_data_underflow: assert property (@(posedge clk)
(rst || !((occ_cnt_r == 'b0) && (occ_cnt_ns == 'h1f))));
rd_data_overflow: assert property (@(posedge clk)
(rst || !((occ_cnt_r == 'h10) && (occ_cnt_ns == 'h11))));
`endif
end // block: occupied_counter
// Generate the data_buf_address written into the memory controller
// for reads. Increment with each accepted read, and rollover at 0xf.
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_r_lcl;
assign rd_data_buf_addr_r = rd_data_buf_addr_r_lcl;
begin : data_buf_addr
reg [DATA_BUF_ADDR_WIDTH-1:0] rd_data_buf_addr_ns;
always @(/*AS*/rd_accepted or rd_data_buf_addr_r_lcl or rst) begin
rd_data_buf_addr_ns = rd_data_buf_addr_r_lcl;
if (rst) rd_data_buf_addr_ns = 0;
else if (rd_accepted) rd_data_buf_addr_ns =
rd_data_buf_addr_r_lcl + 1;
end
always @(posedge clk) rd_data_buf_addr_r_lcl <=
#TCQ rd_data_buf_addr_ns;
end // block: data_buf_addr
end // block: not_strict_mode
endgenerate
endmodule
|
module mig_7series_v2_3_rank_common #
(
parameter TCQ = 100,
parameter DRAM_TYPE = "DDR3",
parameter MAINT_PRESCALER_DIV = 40,
parameter nBANK_MACHS = 4,
parameter nCKESR = 4,
parameter nCK_PER_CLK = 2,
parameter PERIODIC_RD_TIMER_DIV = 20,
parameter RANK_WIDTH = 2,
parameter RANKS = 4,
parameter REFRESH_TIMER_DIV = 39,
parameter ZQ_TIMER_DIV = 640000
)
(/*AUTOARG*/
// Outputs
maint_prescaler_tick_r, refresh_tick, maint_zq_r, maint_sre_r, maint_srx_r,
maint_req_r, maint_rank_r, clear_periodic_rd_request, periodic_rd_r,
periodic_rd_rank_r, app_ref_ack, app_zq_ack, app_sr_active, maint_ref_zq_wip,
// Inputs
clk, rst, init_calib_complete, app_ref_req, app_zq_req, app_sr_req,
insert_maint_r1, refresh_request, maint_wip_r, slot_0_present, slot_1_present,
periodic_rd_request, periodic_rd_ack_r
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input clk;
input rst;
// Maintenance and periodic read prescaler. Nominally 200 nS.
localparam ONE = 1;
localparam MAINT_PRESCALER_WIDTH = clogb2(MAINT_PRESCALER_DIV + 1);
input init_calib_complete;
reg maint_prescaler_tick_r_lcl;
generate
begin : maint_prescaler
reg [MAINT_PRESCALER_WIDTH-1:0] maint_prescaler_r;
reg [MAINT_PRESCALER_WIDTH-1:0] maint_prescaler_ns;
wire maint_prescaler_tick_ns =
(maint_prescaler_r == ONE[MAINT_PRESCALER_WIDTH-1:0]);
always @(/*AS*/init_calib_complete or maint_prescaler_r
or maint_prescaler_tick_ns) begin
maint_prescaler_ns = maint_prescaler_r;
if (~init_calib_complete || maint_prescaler_tick_ns)
maint_prescaler_ns = MAINT_PRESCALER_DIV[MAINT_PRESCALER_WIDTH-1:0];
else if (|maint_prescaler_r)
maint_prescaler_ns = maint_prescaler_r - ONE[MAINT_PRESCALER_WIDTH-1:0];
end
always @(posedge clk) maint_prescaler_r <= #TCQ maint_prescaler_ns;
always @(posedge clk) maint_prescaler_tick_r_lcl <=
#TCQ maint_prescaler_tick_ns;
end
endgenerate
output wire maint_prescaler_tick_r;
assign maint_prescaler_tick_r = maint_prescaler_tick_r_lcl;
// Refresh timebase. Nominically 7800 nS.
localparam REFRESH_TIMER_WIDTH = clogb2(REFRESH_TIMER_DIV + /*idle*/ 1);
wire refresh_tick_lcl;
generate
begin : refresh_timer
reg [REFRESH_TIMER_WIDTH-1:0] refresh_timer_r;
reg [REFRESH_TIMER_WIDTH-1:0] refresh_timer_ns;
always @(/*AS*/init_calib_complete or maint_prescaler_tick_r_lcl
or refresh_tick_lcl or refresh_timer_r) begin
refresh_timer_ns = refresh_timer_r;
if (~init_calib_complete || refresh_tick_lcl)
refresh_timer_ns = REFRESH_TIMER_DIV[REFRESH_TIMER_WIDTH-1:0];
else if (|refresh_timer_r && maint_prescaler_tick_r_lcl)
refresh_timer_ns =
refresh_timer_r - ONE[REFRESH_TIMER_WIDTH-1:0];
end
always @(posedge clk) refresh_timer_r <= #TCQ refresh_timer_ns;
assign refresh_tick_lcl = (refresh_timer_r ==
ONE[REFRESH_TIMER_WIDTH-1:0]) && maint_prescaler_tick_r_lcl;
end
endgenerate
output wire refresh_tick;
assign refresh_tick = refresh_tick_lcl;
// ZQ timebase. Nominally 128 mS
localparam ZQ_TIMER_WIDTH = clogb2(ZQ_TIMER_DIV + 1);
input app_zq_req;
input insert_maint_r1;
reg maint_zq_r_lcl;
reg zq_request = 1'b0;
generate
if (DRAM_TYPE == "DDR3") begin : zq_cntrl
reg zq_tick = 1'b0;
if (ZQ_TIMER_DIV !=0) begin : zq_timer
reg [ZQ_TIMER_WIDTH-1:0] zq_timer_r;
reg [ZQ_TIMER_WIDTH-1:0] zq_timer_ns;
always @(/*AS*/init_calib_complete or maint_prescaler_tick_r_lcl
or zq_tick or zq_timer_r) begin
zq_timer_ns = zq_timer_r;
if (~init_calib_complete || zq_tick)
zq_timer_ns = ZQ_TIMER_DIV[ZQ_TIMER_WIDTH-1:0];
else if (|zq_timer_r && maint_prescaler_tick_r_lcl)
zq_timer_ns = zq_timer_r - ONE[ZQ_TIMER_WIDTH-1:0];
end
always @(posedge clk) zq_timer_r <= #TCQ zq_timer_ns;
always @(/*AS*/maint_prescaler_tick_r_lcl or zq_timer_r)
zq_tick = (zq_timer_r ==
ONE[ZQ_TIMER_WIDTH-1:0] && maint_prescaler_tick_r_lcl);
end // zq_timer
// ZQ request. Set request with timer tick, and when exiting PHY init. Never
// request if ZQ_TIMER_DIV == 0.
begin : zq_request_logic
wire zq_clears_zq_request = insert_maint_r1 && maint_zq_r_lcl;
reg zq_request_r;
wire zq_request_ns = ~rst && (DRAM_TYPE == "DDR3") &&
((~init_calib_complete && (ZQ_TIMER_DIV != 0)) ||
(zq_request_r && ~zq_clears_zq_request) ||
zq_tick ||
(app_zq_req && init_calib_complete));
always @(posedge clk) zq_request_r <= #TCQ zq_request_ns;
always @(/*AS*/init_calib_complete or zq_request_r)
zq_request = init_calib_complete && zq_request_r;
end // zq_request_logic
end
endgenerate
// Self-refresh control
localparam nCKESR_CLKS = (nCKESR / nCK_PER_CLK) + (nCKESR % nCK_PER_CLK ? 1 : 0);
localparam CKESR_TIMER_WIDTH = clogb2(nCKESR_CLKS + 1);
input app_sr_req;
reg maint_sre_r_lcl;
reg maint_srx_r_lcl;
reg sre_request = 1'b0;
wire inhbt_srx;
generate begin : sr_cntrl
// SRE request. Set request with user request.
begin : sre_request_logic
reg sre_request_r;
wire sre_clears_sre_request = insert_maint_r1 && maint_sre_r_lcl;
wire sre_request_ns = ~rst && ((sre_request_r && ~sre_clears_sre_request)
|| (app_sr_req && init_calib_complete && ~maint_sre_r_lcl));
always @(posedge clk) sre_request_r <= #TCQ sre_request_ns;
always @(init_calib_complete or sre_request_r)
sre_request = init_calib_complete && sre_request_r;
end // sre_request_logic
// CKESR timer: Self-Refresh must be maintained for a minimum of tCKESR
begin : ckesr_timer
reg [CKESR_TIMER_WIDTH-1:0] ckesr_timer_r = {CKESR_TIMER_WIDTH{1'b0}};
reg [CKESR_TIMER_WIDTH-1:0] ckesr_timer_ns = {CKESR_TIMER_WIDTH{1'b0}};
always @(insert_maint_r1 or ckesr_timer_r or maint_sre_r_lcl) begin
ckesr_timer_ns = ckesr_timer_r;
if (insert_maint_r1 && maint_sre_r_lcl)
ckesr_timer_ns = nCKESR_CLKS[CKESR_TIMER_WIDTH-1:0];
else if(|ckesr_timer_r)
ckesr_timer_ns = ckesr_timer_r - ONE[CKESR_TIMER_WIDTH-1:0];
end
always @(posedge clk) ckesr_timer_r <= #TCQ ckesr_timer_ns;
assign inhbt_srx = |ckesr_timer_r;
end // ckesr_timer
end
endgenerate
// DRAM maintenance operations of refresh and ZQ calibration, and self-refresh
// DRAM maintenance operations and self-refresh have their own channel in the
// queue. There is also a single, very simple bank machine
// dedicated to these operations. Its assumed that the
// maintenance operations can be completed quickly enough
// to avoid any queuing.
//
// ZQ, refresh and self-refresh requests share a channel into controller.
// Self-refresh is appended to the uppermost bit of the request bus and ZQ is
// appended just below that.
input[RANKS-1:0] refresh_request;
input maint_wip_r;
reg maint_req_r_lcl;
reg [RANK_WIDTH-1:0] maint_rank_r_lcl;
input [7:0] slot_0_present;
input [7:0] slot_1_present;
generate
begin : maintenance_request
// Maintenance request pipeline.
reg upd_last_master_r;
reg new_maint_rank_r;
wire maint_busy = upd_last_master_r || new_maint_rank_r ||
maint_req_r_lcl || maint_wip_r;
wire [RANKS+1:0] maint_request = {sre_request, zq_request, refresh_request[RANKS-1:0]};
wire upd_last_master_ns = |maint_request && ~maint_busy;
always @(posedge clk) upd_last_master_r <= #TCQ upd_last_master_ns;
always @(posedge clk) new_maint_rank_r <= #TCQ upd_last_master_r;
always @(posedge clk) maint_req_r_lcl <= #TCQ new_maint_rank_r;
// Arbitrate maintenance requests.
wire [RANKS+1:0] maint_grant_ns;
wire [RANKS+1:0] maint_grant_r;
mig_7series_v2_3_round_robin_arb #
(.WIDTH (RANKS+2))
maint_arb0
(.grant_ns (maint_grant_ns),
.grant_r (maint_grant_r),
.upd_last_master (upd_last_master_r),
.current_master (maint_grant_r),
.req (maint_request),
.disable_grant (1'b0),
/*AUTOINST*/
// Inputs
.clk (clk),
.rst (rst));
// Look at arbitration results. Decide if ZQ, refresh or self-refresh.
// If refresh select the maintenance rank from the winning rank controller.
// If ZQ or self-refresh, generate a sequence of rank numbers corresponding to
// slots populated maint_rank_r is not used for comparisons in the queue for ZQ
// or self-refresh requests. The bank machine will enable CS for the number of
// states equal to the the number of occupied slots. This will produce a
// command to every occupied slot, but not in any particular order.
wire [7:0] present = slot_0_present | slot_1_present;
integer i;
reg [RANK_WIDTH-1:0] maint_rank_ns;
wire maint_zq_ns = ~rst && (upd_last_master_r
? maint_grant_r[RANKS]
: maint_zq_r_lcl);
wire maint_srx_ns = ~rst && (maint_sre_r_lcl
? ~app_sr_req & ~inhbt_srx
: maint_srx_r_lcl && upd_last_master_r
? maint_grant_r[RANKS+1]
: maint_srx_r_lcl);
wire maint_sre_ns = ~rst && (upd_last_master_r
? maint_grant_r[RANKS+1]
: maint_sre_r_lcl && ~maint_srx_ns);
always @(/*AS*/maint_grant_r or maint_rank_r_lcl or maint_zq_ns
or maint_sre_ns or maint_srx_ns or present or rst
or upd_last_master_r) begin
if (rst) maint_rank_ns = {RANK_WIDTH{1'b0}};
else begin
maint_rank_ns = maint_rank_r_lcl;
if (maint_zq_ns || maint_sre_ns || maint_srx_ns) begin
maint_rank_ns = maint_rank_r_lcl + ONE[RANK_WIDTH-1:0];
for (i=0; i<8; i=i+1)
if (~present[maint_rank_ns])
maint_rank_ns = maint_rank_ns + ONE[RANK_WIDTH-1:0];
end
else
if (upd_last_master_r)
for (i=0; i<RANKS; i=i+1)
if (maint_grant_r[i]) maint_rank_ns = i[RANK_WIDTH-1:0];
end
end
always @(posedge clk) maint_rank_r_lcl <= #TCQ maint_rank_ns;
always @(posedge clk) maint_zq_r_lcl <= #TCQ maint_zq_ns;
always @(posedge clk) maint_sre_r_lcl <= #TCQ maint_sre_ns;
always @(posedge clk) maint_srx_r_lcl <= #TCQ maint_srx_ns;
end // block: maintenance_request
endgenerate
output wire maint_zq_r;
assign maint_zq_r = maint_zq_r_lcl;
output wire maint_sre_r;
assign maint_sre_r = maint_sre_r_lcl;
output wire maint_srx_r;
assign maint_srx_r = maint_srx_r_lcl;
output wire maint_req_r;
assign maint_req_r = maint_req_r_lcl;
output wire [RANK_WIDTH-1:0] maint_rank_r;
assign maint_rank_r = maint_rank_r_lcl;
// Indicate whether self-refresh is active or not.
output app_sr_active;
reg app_sr_active_r;
wire app_sr_active_ns =
insert_maint_r1 ? maint_sre_r && ~maint_srx_r : app_sr_active_r;
always @(posedge clk) app_sr_active_r <= #TCQ app_sr_active_ns;
assign app_sr_active = app_sr_active_r;
// Acknowledge user REF and ZQ Requests
input app_ref_req;
output app_ref_ack;
wire app_ref_ack_ns;
wire app_ref_ns;
reg app_ref_ack_r = 1'b0;
reg app_ref_r = 1'b0;
assign app_ref_ns = init_calib_complete && (app_ref_req || app_ref_r && |refresh_request);
assign app_ref_ack_ns = app_ref_r && ~|refresh_request;
always @(posedge clk) app_ref_r <= #TCQ app_ref_ns;
always @(posedge clk) app_ref_ack_r <= #TCQ app_ref_ack_ns;
assign app_ref_ack = app_ref_ack_r;
output app_zq_ack;
wire app_zq_ack_ns;
wire app_zq_ns;
reg app_zq_ack_r = 1'b0;
reg app_zq_r = 1'b0;
assign app_zq_ns = init_calib_complete && (app_zq_req || app_zq_r && zq_request);
assign app_zq_ack_ns = app_zq_r && ~zq_request;
always @(posedge clk) app_zq_r <= #TCQ app_zq_ns;
always @(posedge clk) app_zq_ack_r <= #TCQ app_zq_ack_ns;
assign app_zq_ack = app_zq_ack_r;
// Periodic reads to maintain PHY alignment.
// Demand insertion of periodic read as soon as
// possible. Since the is a single rank, bank compare mechanism
// must be used, periodic reads must be forced in at the
// expense of not accepting a normal request.
input [RANKS-1:0] periodic_rd_request;
reg periodic_rd_r_lcl;
reg [RANK_WIDTH-1:0] periodic_rd_rank_r_lcl;
input periodic_rd_ack_r;
output wire [RANKS-1:0] clear_periodic_rd_request;
output wire periodic_rd_r;
output wire [RANK_WIDTH-1:0] periodic_rd_rank_r;
generate
// This is not needed in 7-Series and should remain disabled
if ( PERIODIC_RD_TIMER_DIV != 0 ) begin : periodic_read_request
// Maintenance request pipeline.
reg periodic_rd_r_cnt;
wire int_periodic_rd_ack_r = (periodic_rd_ack_r && periodic_rd_r_cnt);
reg upd_last_master_r;
wire periodic_rd_busy = upd_last_master_r || periodic_rd_r_lcl;
wire upd_last_master_ns =
init_calib_complete && (|periodic_rd_request && ~periodic_rd_busy);
always @(posedge clk) upd_last_master_r <= #TCQ upd_last_master_ns;
wire periodic_rd_ns = init_calib_complete &&
(upd_last_master_r || (periodic_rd_r_lcl && ~int_periodic_rd_ack_r));
always @(posedge clk) periodic_rd_r_lcl <= #TCQ periodic_rd_ns;
always @(posedge clk) begin
if (rst) periodic_rd_r_cnt <= #TCQ 1'b0;
else if (periodic_rd_r_lcl && periodic_rd_ack_r)
periodic_rd_r_cnt <= ~periodic_rd_r_cnt;
end
// Arbitrate periodic read requests.
wire [RANKS-1:0] periodic_rd_grant_ns;
reg [RANKS-1:0] periodic_rd_grant_r;
mig_7series_v2_3_round_robin_arb #
(.WIDTH (RANKS))
periodic_rd_arb0
(.grant_ns (periodic_rd_grant_ns[RANKS-1:0]),
.grant_r (),
.upd_last_master (upd_last_master_r),
.current_master (periodic_rd_grant_r[RANKS-1:0]),
.req (periodic_rd_request[RANKS-1:0]),
.disable_grant (1'b0),
/*AUTOINST*/
// Inputs
.clk (clk),
.rst (rst));
always @(posedge clk) periodic_rd_grant_r = upd_last_master_ns
? periodic_rd_grant_ns
: periodic_rd_grant_r;
// Encode and set periodic read rank into periodic_rd_rank_r.
integer i;
reg [RANK_WIDTH-1:0] periodic_rd_rank_ns;
always @(/*AS*/periodic_rd_grant_r or periodic_rd_rank_r_lcl
or upd_last_master_r) begin
periodic_rd_rank_ns = periodic_rd_rank_r_lcl;
if (upd_last_master_r)
for (i=0; i<RANKS; i=i+1)
if (periodic_rd_grant_r[i])
periodic_rd_rank_ns = i[RANK_WIDTH-1:0];
end
always @(posedge clk) periodic_rd_rank_r_lcl <=
#TCQ periodic_rd_rank_ns;
// Once the request is dropped in the queue, it might be a while before it
// emerges. Can't clear the request based on seeing the read issued.
// Need to clear the request as soon as its made it into the queue.
assign clear_periodic_rd_request =
periodic_rd_grant_r & {RANKS{periodic_rd_ack_r}};
assign periodic_rd_r = periodic_rd_r_lcl;
assign periodic_rd_rank_r = periodic_rd_rank_r_lcl;
end else begin
// Disable periodic reads
assign clear_periodic_rd_request = {RANKS{1'b0}};
assign periodic_rd_r = 1'b0;
assign periodic_rd_rank_r = {RANK_WIDTH{1'b0}};
end // block: periodic_read_request
endgenerate
// Indicate that a refresh is in progress. The PHY will use this to schedule
// tap adjustments during idle bus time
reg maint_ref_zq_wip_r = 1'b0;
output maint_ref_zq_wip;
always @(posedge clk)
if(rst)
maint_ref_zq_wip_r <= #TCQ 1'b0;
else if((zq_request || |refresh_request) && insert_maint_r1)
maint_ref_zq_wip_r <= #TCQ 1'b1;
else if(~maint_wip_r)
maint_ref_zq_wip_r <= #TCQ 1'b0;
assign maint_ref_zq_wip = maint_ref_zq_wip_r;
endmodule
|
module Comparators
//Module Parameter
//W_Exp = 9 ; Single Precision Format
//W_Exp = 11; Double Precision Format
# (parameter W_Exp = 9)
/* # (parameter W_Exp = 12)*/
(
input wire [W_Exp-1:0] exp, //exponent of the fifth phase
output wire overflow, //overflow flag
output wire underflow //underflow flag
);
wire [W_Exp-1:0] U_limit; //Max Normal value of the standar ieee 754
wire [W_Exp-1:0] L_limit; //Min Normal value of the standar ieee 754
//Compares the exponent with the Max Normal Value, if the exponent is
//larger than U_limit then exist overflow
Greater_Comparator #(.W(W_Exp)) GTComparator (
.Data_A(exp),
.Data_B(U_limit),
.gthan(overflow)
);
//Compares the exponent with the Min Normal Value, if the exponent is
//smaller than L_limit then exist underflow
Comparator_Less #(.W(W_Exp)) LTComparator (
.Data_A(exp),
.Data_B(L_limit),
.less(underflow)
);
//This generate sentence creates the limit values based on the
//precision format
generate
if(W_Exp == 9) begin
assign U_limit = 9'hfe;
assign L_limit = 9'h01;
end
else begin
assign U_limit = 12'b111111111110;
assign L_limit = 12'b000000000001;
end
endgenerate
endmodule
|
module Comparators
//Module Parameter
//W_Exp = 9 ; Single Precision Format
//W_Exp = 11; Double Precision Format
# (parameter W_Exp = 9)
/* # (parameter W_Exp = 12)*/
(
input wire [W_Exp-1:0] exp, //exponent of the fifth phase
output wire overflow, //overflow flag
output wire underflow //underflow flag
);
wire [W_Exp-1:0] U_limit; //Max Normal value of the standar ieee 754
wire [W_Exp-1:0] L_limit; //Min Normal value of the standar ieee 754
//Compares the exponent with the Max Normal Value, if the exponent is
//larger than U_limit then exist overflow
Greater_Comparator #(.W(W_Exp)) GTComparator (
.Data_A(exp),
.Data_B(U_limit),
.gthan(overflow)
);
//Compares the exponent with the Min Normal Value, if the exponent is
//smaller than L_limit then exist underflow
Comparator_Less #(.W(W_Exp)) LTComparator (
.Data_A(exp),
.Data_B(L_limit),
.less(underflow)
);
//This generate sentence creates the limit values based on the
//precision format
generate
if(W_Exp == 9) begin
assign U_limit = 9'hfe;
assign L_limit = 9'h01;
end
else begin
assign U_limit = 12'b111111111110;
assign L_limit = 12'b000000000001;
end
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_phy_prbs_rdlvl #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter RANKS = 1, // # of DRAM ranks
parameter SIM_CAL_OPTION = "NONE", // Skip various calibration steps
parameter PRBS_WIDTH = 8, // PRBS generator output width
parameter FIXED_VICTIM = "TRUE", // No victim rotation when "TRUE"
parameter FINE_PER_BIT = "ON",
parameter CENTER_COMP_MODE = "ON",
parameter PI_VAL_ADJ = "ON"
)
(
input clk,
input rst,
// Calibration status, control signals
input prbs_rdlvl_start,
(* max_fanout = 100 *) output reg prbs_rdlvl_done,
output reg prbs_last_byte_done,
output reg prbs_rdlvl_prech_req,
input complex_sample_cnt_inc,
input prech_done,
input phy_if_empty,
// Captured data in fabric clock domain
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data,
//Expected data from PRBS generator
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] compare_data,
// Decrement initial Phaser_IN Fine tap delay
input [5:0] pi_counter_read_val,
// Stage 1 calibration outputs
output reg pi_en_stg2_f,
output reg pi_stg2_f_incdec,
output [255:0] dbg_prbs_rdlvl,
output [DQS_CNT_WIDTH:0] pi_stg2_prbs_rdlvl_cnt,
output reg [2:0] rd_victim_sel,
output reg complex_victim_inc,
output reg reset_rd_addr,
output reg read_pause,
output reg [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r,
output reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps,
output reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps,
output reg [DRAM_WIDTH-1:0] fine_delay_incdec_pb, //fine_delay decreament per bit
output reg fine_delay_sel //fine delay selection - actual update of fine delay
);
localparam [5:0] PRBS_IDLE = 6'h00;
localparam [5:0] PRBS_NEW_DQS_WAIT = 6'h01;
localparam [5:0] PRBS_PAT_COMPARE = 6'h02;
localparam [5:0] PRBS_DEC_DQS = 6'h03;
localparam [5:0] PRBS_DEC_DQS_WAIT = 6'h04;
localparam [5:0] PRBS_INC_DQS = 6'h05;
localparam [5:0] PRBS_INC_DQS_WAIT = 6'h06;
localparam [5:0] PRBS_CALC_TAPS = 6'h07;
localparam [5:0] PRBS_NEXT_DQS = 6'h08;
localparam [5:0] PRBS_NEW_DQS_PREWAIT = 6'h09;
localparam [5:0] PRBS_DONE = 6'h0A;
localparam [5:0] PRBS_CALC_TAPS_PRE = 6'h0B;
localparam [5:0] PRBS_CALC_TAPS_WAIT = 6'h0C;
localparam [5:0] FINE_PI_DEC = 6'h0D; //go back to all fail or back to center
localparam [5:0] FINE_PI_DEC_WAIT = 6'h0E; //wait for PI tap dec settle
localparam [5:0] FINE_PI_INC = 6'h0F; //increse up to 1 fail
localparam [5:0] FINE_PI_INC_WAIT = 6'h10; //wait for PI tap int settle
localparam [5:0] FINE_PAT_COMPARE_PER_BIT = 6'h11; //compare per bit error and check left/right/gain/loss
localparam [5:0] FINE_CALC_TAPS = 6'h12; //setup fine_delay_incdec_pb for better window size
localparam [5:0] FINE_CALC_TAPS_WAIT = 6'h13; //wait for ROM value for dec cnt
localparam [11:0] NUM_SAMPLES_CNT = (SIM_CAL_OPTION == "NONE") ? 'd50 : 12'h001;
localparam [11:0] NUM_SAMPLES_CNT1 = (SIM_CAL_OPTION == "NONE") ? 'd20 : 12'h001;
localparam [11:0] NUM_SAMPLES_CNT2 = (SIM_CAL_OPTION == "NONE") ? 'd10 : 12'h001;
wire [DQS_CNT_WIDTH+2:0]prbs_dqs_cnt_timing;
reg [DQS_CNT_WIDTH+2:0] prbs_dqs_cnt_timing_r;
reg [DQS_CNT_WIDTH:0] prbs_dqs_cnt_r;
reg prbs_prech_req_r;
reg [5:0] prbs_state_r;
reg [5:0] prbs_state_r1;
reg wait_state_cnt_en_r;
reg [3:0] wait_state_cnt_r;
reg cnt_wait_state;
reg err_chk_invalid;
// reg found_edge_r;
reg prbs_found_1st_edge_r;
reg prbs_found_2nd_edge_r;
reg [5:0] prbs_1st_edge_taps_r;
// reg found_stable_eye_r;
reg [5:0] prbs_dqs_tap_cnt_r;
reg [5:0] prbs_dec_tap_calc_plus_3;
reg [5:0] prbs_dec_tap_calc_minus_3;
reg prbs_dqs_tap_limit_r;
reg [5:0] prbs_inc_tap_cnt;
reg [5:0] prbs_dec_tap_cnt;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r4;
reg mux_rd_valid_r;
reg rd_valid_r1;
reg rd_valid_r2;
reg rd_valid_r3;
reg new_cnt_dqs_r;
reg prbs_tap_en_r;
reg prbs_tap_inc_r;
reg pi_en_stg2_f_timing;
reg pi_stg2_f_incdec_timing;
wire [DQ_WIDTH-1:0] rd_data_rise0;
wire [DQ_WIDTH-1:0] rd_data_fall0;
wire [DQ_WIDTH-1:0] rd_data_rise1;
wire [DQ_WIDTH-1:0] rd_data_fall1;
wire [DQ_WIDTH-1:0] rd_data_rise2;
wire [DQ_WIDTH-1:0] rd_data_fall2;
wire [DQ_WIDTH-1:0] rd_data_rise3;
wire [DQ_WIDTH-1:0] rd_data_fall3;
wire [DQ_WIDTH-1:0] compare_data_r0;
wire [DQ_WIDTH-1:0] compare_data_f0;
wire [DQ_WIDTH-1:0] compare_data_r1;
wire [DQ_WIDTH-1:0] compare_data_f1;
wire [DQ_WIDTH-1:0] compare_data_r2;
wire [DQ_WIDTH-1:0] compare_data_f2;
wire [DQ_WIDTH-1:0] compare_data_r3;
wire [DQ_WIDTH-1:0] compare_data_f3;
reg [DRAM_WIDTH-1:0] compare_data_rise0_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall0_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise1_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall1_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise2_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall2_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise3_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall3_r1;
reg [DQS_CNT_WIDTH:0] rd_mux_sel_r;
reg [5:0] prbs_2nd_edge_taps_r;
// reg [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r;
reg [5:0] rdlvl_cpt_tap_cnt;
reg prbs_rdlvl_start_r;
reg compare_err;
reg compare_err_r0;
reg compare_err_f0;
reg compare_err_r1;
reg compare_err_f1;
reg compare_err_r2;
reg compare_err_f2;
reg compare_err_r3;
reg compare_err_f3;
reg samples_cnt1_en_r;
reg samples_cnt2_en_r;
reg [11:0] samples_cnt_r;
reg num_samples_done_r;
reg num_samples_done_ind; //indicate num_samples_done_r is set in FINE_PAT_COMPARE_PER_BIT to prevent victim_sel_rd out of sync
reg [DQS_WIDTH-1:0] prbs_tap_mod;
//reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps;
//reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps;
//**************************************************************************
// signals for per-bit algorithm of fine_delay calculations
//**************************************************************************
reg [6*DRAM_WIDTH-1:0] left_edge_pb; //left edge value per bit
reg [6*DRAM_WIDTH-1:0] right_edge_pb; //right edge value per bit
reg [5*DRAM_WIDTH-1:0] match_flag_pb; //5 consecutive match flag per bit
reg [4:0] match_flag_and; //5 consecute match flag of all bits (1: all bit fail)
reg [DRAM_WIDTH-1:0] left_edge_found_pb; //left_edge found per bit - use for loss calculation
reg [DRAM_WIDTH-1:0] left_edge_updated; //left edge was updated for this PI tap - used for largest left edge /ref bit update
reg [DRAM_WIDTH-1:0] right_edge_found_pb; //right_edge found per bit - use for gail calulation and smallest right edge update
reg right_edge_found; //smallest right_edge found
reg [DRAM_WIDTH*6-1:0] left_loss_pb; //left_edge loss per bit
reg [DRAM_WIDTH*6-1:0] right_gain_pb; //right_edge gain per bit
reg [DRAM_WIDTH-1:0] ref_bit; //bit number which has largest left edge (with smaller right edge)
reg [DRAM_WIDTH-1:0] bit_cnt; //bit number used to calculate ref bit
reg [DRAM_WIDTH-1:0] ref_bit_per_bit; //bit flags which have largest left edge
reg [5:0] ref_right_edge; //ref_bit right edge - keep the smallest edge of ref bits
reg [5:0] largest_left_edge; //biggest left edge of per bit - will be left edge of byte
reg [5:0] smallest_right_edge; //smallest right edge of per bit - will be right edge of byte
reg [5:0] fine_pi_dec_cnt; //Phase In tap decrement count (to go back to '0' or center)
reg [6:0] center_calc; //used for calculate the dec tap for centering
reg [5:0] right_edge_ref; //ref_bit right edge
reg [5:0] left_edge_ref; //ref_bit left edge
reg [DRAM_WIDTH-1:0] compare_err_pb; //compare error per bit
reg [DRAM_WIDTH-1:0] compare_err_pb_latch_r; //sticky compare error per bit used for left/right edge
reg compare_err_pb_and; //indicate all bit fail
reg fine_inc_stage; //fine_inc_stage (1: increment all except ref_bit, 0: only inc for gain bit)
reg [1:0] stage_cnt; //stage cnt (0,1: fine delay inc stage, 2: fine delay dec stage)
wire fine_calib; //turn on/off fine delay calibration
reg [5:0] mem_out_dec;
reg [5:0] dec_cnt;
reg fine_dly_error; //indicate it has wrong left/right edge
wire center_comp;
wire pi_adj;
//**************************************************************************
// DQS count to hard PHY during write calibration using Phaser_OUT Stage2
// coarse delay
//**************************************************************************
assign pi_stg2_prbs_rdlvl_cnt = prbs_dqs_cnt_r;
//fine delay turn on
assign fine_calib = (FINE_PER_BIT=="ON")? 1:0;
assign center_comp = (CENTER_COMP_MODE == "ON")? 1: 0;
assign pi_adj = (PI_VAL_ADJ == "ON")?1:0;
assign dbg_prbs_rdlvl[0+:6] = left_edge_pb[0+:6];
assign dbg_prbs_rdlvl[7:6] = left_loss_pb[0+:2];
assign dbg_prbs_rdlvl[8+:6] = left_edge_pb[6+:6];
assign dbg_prbs_rdlvl[15:14] = left_loss_pb[6+:2];
assign dbg_prbs_rdlvl[16+:6] = left_edge_pb[12+:6] ;
assign dbg_prbs_rdlvl[23:22] = left_loss_pb[12+:2];
assign dbg_prbs_rdlvl[24+:6] = left_edge_pb[18+:6] ;
assign dbg_prbs_rdlvl[31:30] = left_loss_pb[18+:2];
assign dbg_prbs_rdlvl[32+:6] = left_edge_pb[24+:6];
assign dbg_prbs_rdlvl[39:38] = left_loss_pb[24+:2];
assign dbg_prbs_rdlvl[40+:6] = left_edge_pb[30+:6];
assign dbg_prbs_rdlvl[47:46] = left_loss_pb[30+:2];
assign dbg_prbs_rdlvl[48+:6] = left_edge_pb[36+:6];
assign dbg_prbs_rdlvl[55:54] = left_loss_pb[36+:2];
assign dbg_prbs_rdlvl[56+:6] = left_edge_pb[42+:6];
assign dbg_prbs_rdlvl[63:62] = left_loss_pb[42+:2];
assign dbg_prbs_rdlvl[64+:6] = right_edge_pb[0+:6];
assign dbg_prbs_rdlvl[71:70] = right_gain_pb[0+:2];
assign dbg_prbs_rdlvl[72+:6] = right_edge_pb[6+:6] ;
assign dbg_prbs_rdlvl[79:78] = right_gain_pb[6+:2];
assign dbg_prbs_rdlvl[80+:6] = right_edge_pb[12+:6];
assign dbg_prbs_rdlvl[87:86] = right_gain_pb[12+:2];
assign dbg_prbs_rdlvl[88+:6] = right_edge_pb[18+:6];
assign dbg_prbs_rdlvl[95:94] = right_gain_pb[18+:2];
assign dbg_prbs_rdlvl[96+:6] = right_edge_pb[24+:6];
assign dbg_prbs_rdlvl[103:102] = right_gain_pb[24+:2];
assign dbg_prbs_rdlvl[104+:6] = right_edge_pb[30+:6];
assign dbg_prbs_rdlvl[111:110] = right_gain_pb[30+:2];
assign dbg_prbs_rdlvl[112+:6] = right_edge_pb[36+:6];
assign dbg_prbs_rdlvl[119:118] = right_gain_pb[36+:2];
assign dbg_prbs_rdlvl[120+:6] = right_edge_pb[42+:6];
assign dbg_prbs_rdlvl[127:126] = right_gain_pb[42+:2];
assign dbg_prbs_rdlvl[128+:6] = pi_counter_read_val;
assign dbg_prbs_rdlvl[134+:6] = prbs_dqs_tap_cnt_r;
assign dbg_prbs_rdlvl[140] = prbs_found_1st_edge_r;
assign dbg_prbs_rdlvl[141] = prbs_found_2nd_edge_r;
assign dbg_prbs_rdlvl[142] = compare_err;
assign dbg_prbs_rdlvl[143] = phy_if_empty;
assign dbg_prbs_rdlvl[144] = prbs_rdlvl_start;
assign dbg_prbs_rdlvl[145] = prbs_rdlvl_done;
assign dbg_prbs_rdlvl[146+:5] = prbs_dqs_cnt_r;
assign dbg_prbs_rdlvl[151+:6] = left_edge_pb[prbs_dqs_cnt_r*6+:6] ;
assign dbg_prbs_rdlvl[157+:6] = right_edge_pb[prbs_dqs_cnt_r*6+:6];
assign dbg_prbs_rdlvl[163+:6] = {2'h0,complex_victim_inc, rd_victim_sel[2:0]};
assign dbg_prbs_rdlvl[169+:6] =right_gain_pb[prbs_dqs_cnt_r*6+:6] ;
assign dbg_prbs_rdlvl[177:175] = ref_bit[2:0];
assign dbg_prbs_rdlvl[178+:6] = prbs_state_r1[5:0];
assign dbg_prbs_rdlvl[184] = rd_valid_r2;
assign dbg_prbs_rdlvl[185] = compare_err_r0;
assign dbg_prbs_rdlvl[186] = compare_err_f0;
assign dbg_prbs_rdlvl[187] = compare_err_r1;
assign dbg_prbs_rdlvl[188] = compare_err_f1;
assign dbg_prbs_rdlvl[189] = compare_err_r2;
assign dbg_prbs_rdlvl[190] = compare_err_f2;
assign dbg_prbs_rdlvl[191] = compare_err_r3;
assign dbg_prbs_rdlvl[192] = compare_err_f3;
assign dbg_prbs_rdlvl[193+:8] = left_edge_found_pb;
assign dbg_prbs_rdlvl[201+:8] = right_edge_found_pb;
assign dbg_prbs_rdlvl[209+:6] =largest_left_edge ;
assign dbg_prbs_rdlvl[215+:6] =smallest_right_edge ;
assign dbg_prbs_rdlvl[221+:8] = fine_delay_incdec_pb;
assign dbg_prbs_rdlvl[229] = fine_delay_sel;
assign dbg_prbs_rdlvl[230+:8] = compare_err_pb_latch_r;
assign dbg_prbs_rdlvl[238+:6] = fine_pi_dec_cnt;
assign dbg_prbs_rdlvl[244+:5] = match_flag_and ;
assign dbg_prbs_rdlvl[249+:2] =stage_cnt ;
assign dbg_prbs_rdlvl[251] = fine_inc_stage ;
assign dbg_prbs_rdlvl[252] = compare_err_pb_and ;
assign dbg_prbs_rdlvl[253] = right_edge_found ;
assign dbg_prbs_rdlvl[254] = fine_dly_error ;
assign dbg_prbs_rdlvl[255]= 'b0;//reserved
//**************************************************************************
// Record first and second edges found during calibration
//**************************************************************************
generate
always @(posedge clk)
if (rst) begin
dbg_prbs_first_edge_taps <= #TCQ 'b0;
dbg_prbs_second_edge_taps <= #TCQ 'b0;
end else if (prbs_state_r == PRBS_CALC_TAPS) begin
// Record tap counts of first and second edge edges during
// calibration for each DQS group. If neither edge has
// been found, then those taps will remain 0
if (prbs_found_1st_edge_r)
dbg_prbs_first_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_1st_edge_taps_r;
if (prbs_found_2nd_edge_r)
dbg_prbs_second_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_2nd_edge_taps_r;
end else if (prbs_state_r == FINE_CALC_TAPS) begin
if(stage_cnt == 'd2) begin
dbg_prbs_first_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ largest_left_edge;
dbg_prbs_second_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ smallest_right_edge;
end
end
endgenerate
//padded calculation
always @ (smallest_right_edge or largest_left_edge)
center_calc <= {1'b0, smallest_right_edge} + {1'b0,largest_left_edge};
//***************************************************************************
//***************************************************************************
// Data mux to route appropriate bit to calibration logic - i.e. calibration
// is done sequentially, one bit (or DQS group) at a time
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: rd_data_div4_logic_clk
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign rd_data_rise2 = rd_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign rd_data_fall2 = rd_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign rd_data_rise3 = rd_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign rd_data_fall3 = rd_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
assign compare_data_r0 = compare_data[DQ_WIDTH-1:0];
assign compare_data_f0 = compare_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign compare_data_r1 = compare_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign compare_data_f1 = compare_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r2 = compare_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign compare_data_f2 = compare_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign compare_data_r3 = compare_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign compare_data_f3 = compare_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
end else begin: rd_data_div2_logic_clk
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r0 = compare_data[DQ_WIDTH-1:0];
assign compare_data_f0 = compare_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign compare_data_r1 = compare_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign compare_data_f1 = compare_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r2 = 'h0;
assign compare_data_f2 = 'h0;
assign compare_data_r3 = 'h0;
assign compare_data_f3 = 'h0;
end
endgenerate
always @(posedge clk) begin
rd_mux_sel_r <= #TCQ prbs_dqs_cnt_r;
end
// Register outputs for improved timing.
// NOTE: Will need to change when per-bit DQ deskew is supported.
// Currenly all bits in DQS group are checked in aggregate
generate
genvar mux_i;
for (mux_i = 0; mux_i < DRAM_WIDTH; mux_i = mux_i + 1) begin: gen_mux_rd
always @(posedge clk) begin
mux_rd_rise0_r1[mux_i] <= #TCQ rd_data_rise0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall0_r1[mux_i] <= #TCQ rd_data_fall0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise1_r1[mux_i] <= #TCQ rd_data_rise1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall1_r1[mux_i] <= #TCQ rd_data_fall1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise2_r1[mux_i] <= #TCQ rd_data_rise2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall2_r1[mux_i] <= #TCQ rd_data_fall2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise3_r1[mux_i] <= #TCQ rd_data_rise3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall3_r1[mux_i] <= #TCQ rd_data_fall3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
//Compare data
compare_data_rise0_r1[mux_i] <= #TCQ compare_data_r0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall0_r1[mux_i] <= #TCQ compare_data_f0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise1_r1[mux_i] <= #TCQ compare_data_r1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall1_r1[mux_i] <= #TCQ compare_data_f1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise2_r1[mux_i] <= #TCQ compare_data_r2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall2_r1[mux_i] <= #TCQ compare_data_f2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise3_r1[mux_i] <= #TCQ compare_data_r3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall3_r1[mux_i] <= #TCQ compare_data_f3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
end
end
endgenerate
generate
genvar muxr2_i;
if (nCK_PER_CLK == 4) begin: gen_mux_div4
for (muxr2_i = 0; muxr2_i < DRAM_WIDTH; muxr2_i = muxr2_i + 1) begin: gen_rd_4
always @(posedge clk) begin
if (mux_rd_valid_r) begin
mux_rd_rise0_r2[muxr2_i] <= #TCQ mux_rd_rise0_r1[muxr2_i];
mux_rd_fall0_r2[muxr2_i] <= #TCQ mux_rd_fall0_r1[muxr2_i];
mux_rd_rise1_r2[muxr2_i] <= #TCQ mux_rd_rise1_r1[muxr2_i];
mux_rd_fall1_r2[muxr2_i] <= #TCQ mux_rd_fall1_r1[muxr2_i];
mux_rd_rise2_r2[muxr2_i] <= #TCQ mux_rd_rise2_r1[muxr2_i];
mux_rd_fall2_r2[muxr2_i] <= #TCQ mux_rd_fall2_r1[muxr2_i];
mux_rd_rise3_r2[muxr2_i] <= #TCQ mux_rd_rise3_r1[muxr2_i];
mux_rd_fall3_r2[muxr2_i] <= #TCQ mux_rd_fall3_r1[muxr2_i];
end
//pipeline stage
mux_rd_rise0_r3[muxr2_i] <= #TCQ mux_rd_rise0_r2[muxr2_i];
mux_rd_fall0_r3[muxr2_i] <= #TCQ mux_rd_fall0_r2[muxr2_i];
mux_rd_rise1_r3[muxr2_i] <= #TCQ mux_rd_rise1_r2[muxr2_i];
mux_rd_fall1_r3[muxr2_i] <= #TCQ mux_rd_fall1_r2[muxr2_i];
mux_rd_rise2_r3[muxr2_i] <= #TCQ mux_rd_rise2_r2[muxr2_i];
mux_rd_fall2_r3[muxr2_i] <= #TCQ mux_rd_fall2_r2[muxr2_i];
mux_rd_rise3_r3[muxr2_i] <= #TCQ mux_rd_rise3_r2[muxr2_i];
mux_rd_fall3_r3[muxr2_i] <= #TCQ mux_rd_fall3_r2[muxr2_i];
//pipeline stage
mux_rd_rise0_r4[muxr2_i] <= #TCQ mux_rd_rise0_r3[muxr2_i];
mux_rd_fall0_r4[muxr2_i] <= #TCQ mux_rd_fall0_r3[muxr2_i];
mux_rd_rise1_r4[muxr2_i] <= #TCQ mux_rd_rise1_r3[muxr2_i];
mux_rd_fall1_r4[muxr2_i] <= #TCQ mux_rd_fall1_r3[muxr2_i];
mux_rd_rise2_r4[muxr2_i] <= #TCQ mux_rd_rise2_r3[muxr2_i];
mux_rd_fall2_r4[muxr2_i] <= #TCQ mux_rd_fall2_r3[muxr2_i];
mux_rd_rise3_r4[muxr2_i] <= #TCQ mux_rd_rise3_r3[muxr2_i];
mux_rd_fall3_r4[muxr2_i] <= #TCQ mux_rd_fall3_r3[muxr2_i];
end
end
end else if (nCK_PER_CLK == 2) begin: gen_mux_div2
for (muxr2_i = 0; muxr2_i < DRAM_WIDTH; muxr2_i = muxr2_i + 1) begin: gen_rd_2
always @(posedge clk) begin
if (mux_rd_valid_r) begin
mux_rd_rise0_r2[muxr2_i] <= #TCQ mux_rd_rise0_r1[muxr2_i];
mux_rd_fall0_r2[muxr2_i] <= #TCQ mux_rd_fall0_r1[muxr2_i];
mux_rd_rise1_r2[muxr2_i] <= #TCQ mux_rd_rise1_r1[muxr2_i];
mux_rd_fall1_r2[muxr2_i] <= #TCQ mux_rd_fall1_r1[muxr2_i];
mux_rd_rise2_r2[muxr2_i] <= 'h0;
mux_rd_fall2_r2[muxr2_i] <= 'h0;
mux_rd_rise3_r2[muxr2_i] <= 'h0;
mux_rd_fall3_r2[muxr2_i] <= 'h0;
end
mux_rd_rise0_r3[muxr2_i] <= #TCQ mux_rd_rise0_r2[muxr2_i];
mux_rd_fall0_r3[muxr2_i] <= #TCQ mux_rd_fall0_r2[muxr2_i];
mux_rd_rise1_r3[muxr2_i] <= #TCQ mux_rd_rise1_r2[muxr2_i];
mux_rd_fall1_r3[muxr2_i] <= #TCQ mux_rd_fall1_r2[muxr2_i];
mux_rd_rise2_r3[muxr2_i] <= 'h0;
mux_rd_fall2_r3[muxr2_i] <= 'h0;
mux_rd_rise3_r3[muxr2_i] <= 'h0;
mux_rd_fall3_r3[muxr2_i] <= 'h0;
//pipeline stage
mux_rd_rise0_r4[muxr2_i] <= #TCQ mux_rd_rise0_r3[muxr2_i];
mux_rd_fall0_r4[muxr2_i] <= #TCQ mux_rd_fall0_r3[muxr2_i];
mux_rd_rise1_r4[muxr2_i] <= #TCQ mux_rd_rise1_r3[muxr2_i];
mux_rd_fall1_r4[muxr2_i] <= #TCQ mux_rd_fall1_r3[muxr2_i];
mux_rd_rise2_r4[muxr2_i] <= 'h0;
mux_rd_fall2_r4[muxr2_i] <= 'h0;
mux_rd_rise3_r4[muxr2_i] <= 'h0;
mux_rd_fall3_r4[muxr2_i] <= 'h0;
end
end
end
endgenerate
// Registered signal indicates when mux_rd_rise/fall_r is valid
always @(posedge clk) begin
mux_rd_valid_r <= #TCQ ~phy_if_empty && prbs_rdlvl_start;
rd_valid_r1 <= #TCQ mux_rd_valid_r;
rd_valid_r2 <= #TCQ rd_valid_r1;
rd_valid_r3 <= #TCQ rd_valid_r2;
end
// Counter counts # of samples compared
// Reset sample counter when not "sampling"
// Otherwise, count # of samples compared
// Same counter is shared for three samples checked
always @(posedge clk)
if (rst)
samples_cnt_r <= #TCQ 'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT) begin
samples_cnt_r <= #TCQ 'b0;
end else if (complex_sample_cnt_inc) begin
samples_cnt_r <= #TCQ samples_cnt_r + 1;
/*if (!rd_valid_r1 ||
(prbs_state_r == PRBS_DEC_DQS_WAIT) ||
(prbs_state_r == PRBS_INC_DQS_WAIT) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(samples_cnt_r == NUM_SAMPLES_CNT) ||
(samples_cnt_r == NUM_SAMPLES_CNT1))
samples_cnt_r <= #TCQ 'b0;
else if (rd_valid_r1 &&
(((samples_cnt_r < NUM_SAMPLES_CNT) && ~samples_cnt1_en_r) ||
((samples_cnt_r < NUM_SAMPLES_CNT1) && ~samples_cnt2_en_r) ||
((samples_cnt_r < NUM_SAMPLES_CNT2) && samples_cnt2_en_r)))
samples_cnt_r <= #TCQ samples_cnt_r + 1;*/
end
// Count #2 enable generation
// Assert when correct number of samples compared
always @(posedge clk)
if (rst)
samples_cnt1_en_r <= #TCQ 1'b0;
else begin
if ((prbs_state_r == PRBS_IDLE) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
samples_cnt1_en_r <= #TCQ 1'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT) && rd_valid_r1)
samples_cnt1_en_r <= #TCQ 1'b1;
end
// Counter #3 enable generation
// Assert when correct number of samples compared
always @(posedge clk)
if (rst)
samples_cnt2_en_r <= #TCQ 1'b0;
else begin
if ((prbs_state_r == PRBS_IDLE) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
samples_cnt2_en_r <= #TCQ 1'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT1) && rd_valid_r1 && samples_cnt1_en_r)
samples_cnt2_en_r <= #TCQ 1'b1;
end
// Victim selection logic
always @(posedge clk)
if (rst)
rd_victim_sel <= #TCQ 'd0;
else if (num_samples_done_r)
rd_victim_sel <= #TCQ 'd0;
else if (samples_cnt_r == NUM_SAMPLES_CNT) begin
if (rd_victim_sel < 'd7)
rd_victim_sel <= #TCQ rd_victim_sel + 1;
end
// Output row count increment pulse to phy_init
always @(posedge clk)
if (rst)
complex_victim_inc <= #TCQ 1'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT)
complex_victim_inc <= #TCQ 1'b1;
else
complex_victim_inc <= #TCQ 1'b0;
generate
if (FIXED_VICTIM == "TRUE") begin: victim_fixed
always @(posedge clk)
if (rst)
num_samples_done_r <= #TCQ 1'b0;
else if ((prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS)||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == FINE_PI_DEC))
num_samples_done_r <= #TCQ 'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT)
num_samples_done_r <= #TCQ 1'b1;
end else begin: victim_not_fixed
always @(posedge clk)
if (rst)
num_samples_done_r <= #TCQ 1'b0;
else if ((prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS)||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == FINE_PI_DEC))
num_samples_done_r <= #TCQ 'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT) && (rd_victim_sel == 'd7))
num_samples_done_r <= #TCQ 1'b1;
end
endgenerate
//***************************************************************************
// Compare Read Data for the byte being Leveled with Expected data from PRBS
// generator. Resulting compare_err signal used to determine read data valid
// edge.
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: cmp_err_4to1
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r) begin
compare_err <= #TCQ 1'b0;
compare_err_r0 <= #TCQ 1'b0;
compare_err_f0 <= #TCQ 1'b0;
compare_err_r1 <= #TCQ 1'b0;
compare_err_f1 <= #TCQ 1'b0;
compare_err_r2 <= #TCQ 1'b0;
compare_err_f2 <= #TCQ 1'b0;
compare_err_r3 <= #TCQ 1'b0;
compare_err_f3 <= #TCQ 1'b0;
end else if (rd_valid_r2) begin
compare_err_r0 <= #TCQ (mux_rd_rise0_r3 != compare_data_rise0_r1);
compare_err_f0 <= #TCQ (mux_rd_fall0_r3 != compare_data_fall0_r1);
compare_err_r1 <= #TCQ (mux_rd_rise1_r3 != compare_data_rise1_r1);
compare_err_f1 <= #TCQ (mux_rd_fall1_r3 != compare_data_fall1_r1);
compare_err_r2 <= #TCQ (mux_rd_rise2_r3 != compare_data_rise2_r1);
compare_err_f2 <= #TCQ (mux_rd_fall2_r3 != compare_data_fall2_r1);
compare_err_r3 <= #TCQ (mux_rd_rise3_r3 != compare_data_rise3_r1);
compare_err_f3 <= #TCQ (mux_rd_fall3_r3 != compare_data_fall3_r1);
compare_err <= #TCQ (compare_err_r0 | compare_err_f0 |
compare_err_r1 | compare_err_f1 |
compare_err_r2 | compare_err_f2 |
compare_err_r3 | compare_err_f3);
end
end
end else begin: cmp_err_2to1
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r) begin
compare_err <= #TCQ 1'b0;
compare_err_r0 <= #TCQ 1'b0;
compare_err_f0 <= #TCQ 1'b0;
compare_err_r1 <= #TCQ 1'b0;
compare_err_f1 <= #TCQ 1'b0;
end else if (rd_valid_r2) begin
compare_err_r0 <= #TCQ (mux_rd_rise0_r3 != compare_data_rise0_r1);
compare_err_f0 <= #TCQ (mux_rd_fall0_r3 != compare_data_fall0_r1);
compare_err_r1 <= #TCQ (mux_rd_rise1_r3 != compare_data_rise1_r1);
compare_err_f1 <= #TCQ (mux_rd_fall1_r3 != compare_data_fall1_r1);
compare_err <= #TCQ (compare_err_r0 | compare_err_f0 |
compare_err_r1 | compare_err_f1);
end
end
end
endgenerate
//***************************************************************************
// Decrement initial Phaser_IN fine delay value before proceeding with
// read calibration
//***************************************************************************
//***************************************************************************
// Demultiplexor to control Phaser_IN delay values
//***************************************************************************
// Read DQS
always @(posedge clk) begin
if (rst) begin
pi_en_stg2_f_timing <= #TCQ 'b0;
pi_stg2_f_incdec_timing <= #TCQ 'b0;
end else if (prbs_tap_en_r) begin
// Change only specified DQS
pi_en_stg2_f_timing <= #TCQ 1'b1;
pi_stg2_f_incdec_timing <= #TCQ prbs_tap_inc_r;
end else begin
pi_en_stg2_f_timing <= #TCQ 'b0;
pi_stg2_f_incdec_timing <= #TCQ 'b0;
end
end
// registered for timing
always @(posedge clk) begin
pi_en_stg2_f <= #TCQ pi_en_stg2_f_timing;
pi_stg2_f_incdec <= #TCQ pi_stg2_f_incdec_timing;
end
//***************************************************************************
// generate request to PHY_INIT logic to issue precharged. Required when
// calibration can take a long time (during which there are only constant
// reads present on this bus). In this case need to issue perioidic
// precharges to avoid tRAS violation. This signal must meet the following
// requirements: (1) only transition from 0->1 when prech is first needed,
// (2) stay at 1 and only transition 1->0 when RDLVL_PRECH_DONE asserted
//***************************************************************************
always @(posedge clk)
if (rst)
prbs_rdlvl_prech_req <= #TCQ 1'b0;
else
prbs_rdlvl_prech_req <= #TCQ prbs_prech_req_r;
//*****************************************************************
// keep track of edge tap counts found, and current capture clock
// tap count
//*****************************************************************
always @(posedge clk)
if (rst) begin
prbs_dqs_tap_cnt_r <= #TCQ 'b0;
rdlvl_cpt_tap_cnt <= #TCQ 'b0;
end else if (new_cnt_dqs_r) begin
prbs_dqs_tap_cnt_r <= #TCQ pi_counter_read_val;
rdlvl_cpt_tap_cnt <= #TCQ pi_counter_read_val;
end else if (prbs_tap_en_r) begin
if (prbs_tap_inc_r)
prbs_dqs_tap_cnt_r <= #TCQ prbs_dqs_tap_cnt_r + 1;
else if (prbs_dqs_tap_cnt_r != 'd0)
prbs_dqs_tap_cnt_r <= #TCQ prbs_dqs_tap_cnt_r - 1;
end
always @(posedge clk)
if (rst) begin
prbs_dec_tap_calc_plus_3 <= #TCQ 'b0;
prbs_dec_tap_calc_minus_3 <= #TCQ 'b0;
end else if (new_cnt_dqs_r) begin
prbs_dec_tap_calc_plus_3 <= #TCQ 'b000011;
prbs_dec_tap_calc_minus_3 <= #TCQ 'b111100;
end else begin
prbs_dec_tap_calc_plus_3 <= #TCQ (prbs_dqs_tap_cnt_r - rdlvl_cpt_tap_cnt + 3);
prbs_dec_tap_calc_minus_3 <= #TCQ (prbs_dqs_tap_cnt_r - rdlvl_cpt_tap_cnt - 3);
end
always @(posedge clk)
if (rst || new_cnt_dqs_r)
prbs_dqs_tap_limit_r <= #TCQ 1'b0;
else if (prbs_dqs_tap_cnt_r == 6'd63)
prbs_dqs_tap_limit_r <= #TCQ 1'b1;
else
prbs_dqs_tap_limit_r <= #TCQ 1'b0;
// Temp wire for timing.
// The following in the always block below causes timing issues
// due to DSP block inference
// 6*prbs_dqs_cnt_r.
// replacing this with two left shifts + one left shift to avoid
// DSP multiplier.
assign prbs_dqs_cnt_timing = {2'd0, prbs_dqs_cnt_r};
always @(posedge clk)
prbs_dqs_cnt_timing_r <= #TCQ prbs_dqs_cnt_timing;
// Storing DQS tap values at the end of each DQS read leveling
always @(posedge clk) begin
if (rst) begin
prbs_final_dqs_tap_cnt_r <= #TCQ 'b0;
end else if ((prbs_state_r == PRBS_NEXT_DQS) && (prbs_state_r1 != PRBS_NEXT_DQS)) begin
prbs_final_dqs_tap_cnt_r[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_dqs_tap_cnt_r;
end
end
//*****************************************************************
always @(posedge clk) begin
prbs_state_r1 <= #TCQ prbs_state_r;
prbs_rdlvl_start_r <= #TCQ prbs_rdlvl_start;
end
// Wait counter for wait states
always @(posedge clk)
if ((prbs_state_r == PRBS_NEW_DQS_WAIT) ||
(prbs_state_r == PRBS_INC_DQS_WAIT) ||
(prbs_state_r == PRBS_DEC_DQS_WAIT) ||
(prbs_state_r == FINE_PI_DEC_WAIT) ||
(prbs_state_r == FINE_PI_INC_WAIT) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
wait_state_cnt_en_r <= #TCQ 1'b1;
else
wait_state_cnt_en_r <= #TCQ 1'b0;
always @(posedge clk)
if (!wait_state_cnt_en_r) begin
wait_state_cnt_r <= #TCQ 'b0;
cnt_wait_state <= #TCQ 1'b0;
end else begin
if (wait_state_cnt_r < 'd15) begin
wait_state_cnt_r <= #TCQ wait_state_cnt_r + 1;
cnt_wait_state <= #TCQ 1'b0;
end else begin
// Need to reset to 0 to handle the case when there are two
// different WAIT states back-to-back
wait_state_cnt_r <= #TCQ 'b0;
cnt_wait_state <= #TCQ 1'b1;
end
end
always @ (posedge clk)
err_chk_invalid <= #TCQ (wait_state_cnt_r < 'd14);
//*****************************************************************
// compare error checking per-bit
//****************************************************************
generate
genvar pb_i;
if (nCK_PER_CLK == 4) begin: cmp_err_pb_4to1
for(pb_i=0 ; pb_i<DRAM_WIDTH; pb_i=pb_i+1) begin
always @ (posedge clk) begin
//prevent error check during PI inc/dec and wait
if (rst || new_cnt_dqs_r || (prbs_state_r == FINE_PI_INC) || (prbs_state_r == FINE_PI_DEC) ||
(err_chk_invalid && ((prbs_state_r == FINE_PI_DEC_WAIT)||(prbs_state_r == FINE_PI_INC_WAIT))))
compare_err_pb[pb_i] <= #TCQ 1'b0;
else if (rd_valid_r2)
compare_err_pb[pb_i] <= #TCQ (mux_rd_rise0_r3[pb_i] != compare_data_rise0_r1[pb_i]) |
(mux_rd_fall0_r3[pb_i] != compare_data_fall0_r1[pb_i]) |
(mux_rd_rise1_r3[pb_i] != compare_data_rise1_r1[pb_i]) |
(mux_rd_fall1_r3[pb_i] != compare_data_fall1_r1[pb_i]) |
(mux_rd_rise2_r3[pb_i] != compare_data_rise2_r1[pb_i]) |
(mux_rd_fall2_r3[pb_i] != compare_data_fall2_r1[pb_i]) |
(mux_rd_rise3_r3[pb_i] != compare_data_rise3_r1[pb_i]) |
(mux_rd_fall3_r3[pb_i] != compare_data_fall3_r1[pb_i]) ;
end //always
end //for
end else begin: cmp_err_pb_2to1
for(pb_i=0 ; pb_i<DRAM_WIDTH; pb_i=pb_i+1) begin
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r || (prbs_state_r == FINE_PI_INC) || (prbs_state_r == FINE_PI_DEC) ||
(err_chk_invalid && ((prbs_state_r == FINE_PI_DEC_WAIT)||(prbs_state_r == FINE_PI_INC_WAIT))))
compare_err_pb[pb_i] <= #TCQ 1'b0;
else if (rd_valid_r2)
compare_err_pb[pb_i] <= #TCQ (mux_rd_rise0_r3[pb_i] != compare_data_rise0_r1[pb_i]) |
(mux_rd_fall0_r3[pb_i] != compare_data_fall0_r1[pb_i]) |
(mux_rd_rise1_r3[pb_i] != compare_data_rise1_r1[pb_i]) |
(mux_rd_fall1_r3[pb_i] != compare_data_fall1_r1[pb_i]) ;
end //always
end //for
end //if
endgenerate
//checking all bit has error
always @ (posedge clk) begin
if(rst || new_cnt_dqs_r) begin
compare_err_pb_and <= #TCQ 1'b0;
end else begin
compare_err_pb_and <= #TCQ &compare_err_pb;
end
end
//generate stick error bit - left/right edge
generate
genvar pb_r;
for(pb_r=0; pb_r<DRAM_WIDTH; pb_r=pb_r+1) begin
always @ (posedge clk) begin
if((prbs_state_r == FINE_PI_INC) | (prbs_state_r == FINE_PI_DEC) |
(~cnt_wait_state && ((prbs_state_r == FINE_PI_INC_WAIT)|(prbs_state_r == FINE_PI_DEC_WAIT))))
compare_err_pb_latch_r[pb_r] <= #TCQ 1'b0;
else
compare_err_pb_latch_r[pb_r] <= #TCQ compare_err_pb[pb_r]? 1'b1:compare_err_pb_latch_r[pb_r];
end
end
endgenerate
//in stage 0, if left edge found, update ref_bit (one hot)
always @ (posedge clk) begin
if (rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
ref_bit_per_bit <= #TCQ 'd0;
end else if ((prbs_state_r == FINE_PI_INC) && (stage_cnt=='b0)) begin
if(|left_edge_updated) ref_bit_per_bit <= #TCQ left_edge_updated;
end
end
//ref bit with samllest right edge
//if bit 1 and 3 are set to ref_bit_per_bit but bit 1 has smaller right edge, bit is selected as ref_bit
always @ (posedge clk) begin
if(rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
bit_cnt <= #TCQ 'd0;
ref_right_edge <= #TCQ 6'h3f;
ref_bit <= #TCQ 'd0;
end else if ((prbs_state_r == FINE_CALC_TAPS_WAIT) && (stage_cnt == 'b0) && (bit_cnt < DRAM_WIDTH)) begin
bit_cnt <= #TCQ bit_cnt +'b1;
if ((ref_bit_per_bit[bit_cnt]==1'b1) && (right_edge_pb[bit_cnt*6+:6]<= ref_right_edge)) begin
ref_bit <= #TCQ bit_cnt;
ref_right_edge <= #TCQ right_edge_pb[bit_cnt*6+:6];
end
end
end
//pipe lining for reference bit left/right edge
always @ (posedge clk) begin
left_edge_ref <= #TCQ left_edge_pb[ref_bit*6+:6];
right_edge_ref <= #TCQ right_edge_pb[ref_bit*6+:6];
end
//left_edge/right_edge/left_loss/right_gain update
generate
genvar eg;
for(eg=0; eg<DRAM_WIDTH; eg = eg+1) begin
always @ (posedge clk) begin
if(rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
match_flag_pb[eg*5+:5] <= #TCQ 5'h1f;
left_edge_pb[eg*6+:6] <= #TCQ 'b0;
right_edge_pb[eg*6+:6] <= #TCQ 6'h3f;
left_edge_found_pb[eg] <= #TCQ 1'b0;
right_edge_found_pb[eg] <= #TCQ 1'b0;
left_loss_pb[eg*6+:6] <= #TCQ 'b0;
right_gain_pb[eg*6+:6] <= #TCQ 'b0;
left_edge_updated[eg] <= #TCQ 'b0;
end else begin
if((prbs_state_r == FINE_PAT_COMPARE_PER_BIT) && (num_samples_done_r || compare_err_pb_and)) begin
//left edge is updated when match flag becomes 100000 (1 fail , 5 success)
if(match_flag_pb[eg*5+:5]==5'b10000 && compare_err_pb_latch_r[eg]==0) begin
left_edge_pb[eg*6+:6] <= #TCQ prbs_dqs_tap_cnt_r-4;
left_edge_found_pb[eg] <= #TCQ 1'b1; //used for update largest_left_edge
left_edge_updated[eg] <= #TCQ 1'b1;
//check the loss of bit - update only for left edge found
if(~left_edge_found_pb[eg])
left_loss_pb[eg*6+:6] <= #TCQ (left_edge_ref > prbs_dqs_tap_cnt_r - 4)? 'd0
: prbs_dqs_tap_cnt_r-4-left_edge_ref;
//right edge is updated when match flag becomes 000001 (5 success, 1 fail)
end else if (match_flag_pb[eg*5+:5]==5'b00000 && compare_err_pb_latch_r[eg]) begin
right_edge_pb[eg*6+:6] <= #TCQ prbs_dqs_tap_cnt_r-1;
right_edge_found_pb[eg] <= #TCQ 1'b1;
//check the gain of bit - update only for right edge found
if(~right_edge_found_pb[eg])
right_gain_pb[eg*6+:6] <= #TCQ (right_edge_ref > prbs_dqs_tap_cnt_r-1)?
((right_edge_pb[eg*6 +:6] > prbs_dqs_tap_cnt_r-1)? 0: prbs_dqs_tap_cnt_r-1- right_edge_pb[eg*6+:6]):
((right_edge_pb[eg*6+:6] > right_edge_ref)? 0 : right_edge_ref - right_edge_pb[eg*6+:6]);
//no right edge found
end else if (prbs_dqs_tap_cnt_r == 6'h3f && ~right_edge_found_pb[eg]) begin
right_edge_pb[eg*6+:6] <= #TCQ 6'h3f;
right_edge_found_pb[eg] <= #TCQ 1'b1;
//right edge at 63. gain = max(0, ref_bit_right_tap - prev_right_edge)
right_gain_pb[eg*6+:6] <= #TCQ (right_edge_ref > right_edge_pb[eg*6+:6])?
(right_edge_ref - right_edge_pb[eg*6+:6]) : 0;
end
//update match flag - shift and update
match_flag_pb[eg*5+:5] <= #TCQ {match_flag_pb[(eg*5)+:4],compare_err_pb_latch_r[eg]};
end else if (prbs_state_r == FINE_PI_DEC) begin
left_edge_found_pb[eg] <= #TCQ 1'b0;
right_edge_found_pb[eg] <= #TCQ 1'b0;
left_loss_pb[eg*6+:6] <= #TCQ 'b0;
right_gain_pb[eg*6+:6] <= #TCQ 'b0;
match_flag_pb[eg*5+:5] <= #TCQ 5'h1f; //new fix
end else if (prbs_state_r == FINE_PI_INC) begin
left_edge_updated[eg] <= #TCQ 'b0; //used only for update largest ref_bit and largest_left_edge
end
end
end //always
end //for
endgenerate
//update fine_delay according to loss/gain value per bit
generate
genvar f_pb;
for(f_pb=0; f_pb<DRAM_WIDTH; f_pb=f_pb+1) begin
always @ (posedge clk) begin
if(rst | prbs_state_r == PRBS_NEW_DQS_WAIT ) begin
fine_delay_incdec_pb[f_pb] <= #TCQ 1'b0;
end else if((prbs_state_r == FINE_CALC_TAPS_WAIT) && (bit_cnt == DRAM_WIDTH)) begin
if(stage_cnt == 'd0) fine_delay_incdec_pb[f_pb] <= #TCQ (f_pb==ref_bit)? 1'b0:1'b1; //only for initial stage
else if(stage_cnt == 'd1) fine_delay_incdec_pb[f_pb] <= #TCQ (right_gain_pb[f_pb*6+:6]>left_loss_pb[f_pb*6+:6])?1'b1:1'b0;
end
end
end
endgenerate
//fine inc stage (stage cnt 0,1,2), fine dec stage (stage cnt 3)
always @ (posedge clk) begin
if (rst)
fine_inc_stage <= #TCQ 'b1;
else
fine_inc_stage <= #TCQ (stage_cnt!='d3);
end
//*****************************************************************
always @(posedge clk)
if (rst) begin
prbs_dqs_cnt_r <= #TCQ 'b0;
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
prbs_state_r <= #TCQ PRBS_IDLE;
prbs_found_1st_edge_r <= #TCQ 1'b0;
prbs_found_2nd_edge_r <= #TCQ 1'b0;
prbs_1st_edge_taps_r <= #TCQ 6'bxxxxxx;
prbs_inc_tap_cnt <= #TCQ 'b0;
prbs_dec_tap_cnt <= #TCQ 'b0;
new_cnt_dqs_r <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "FAST_CAL")
prbs_rdlvl_done <= #TCQ 1'b1;
else
prbs_rdlvl_done <= #TCQ 1'b0;
prbs_2nd_edge_taps_r <= #TCQ 6'bxxxxxx;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_tap_mod <= #TCQ 'd0;
reset_rd_addr <= #TCQ 'b0;
read_pause <= #TCQ 'b0;
fine_pi_dec_cnt <= #TCQ 'b0;
match_flag_and <= #TCQ 5'h1f;
stage_cnt <= #TCQ 2'b00;
right_edge_found <= #TCQ 1'b0;
largest_left_edge <= #TCQ 6'b000000;
smallest_right_edge <= #TCQ 6'b111111;
num_samples_done_ind <= #TCQ 'b0;
fine_delay_sel <= #TCQ 'b0;
fine_dly_error <= #TCQ 'b0;
end else begin
case (prbs_state_r)
PRBS_IDLE: begin
prbs_last_byte_done <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
if (prbs_rdlvl_start && ~prbs_rdlvl_start_r) begin
if (SIM_CAL_OPTION == "SKIP_CAL" || SIM_CAL_OPTION == "FAST_CAL") begin
prbs_state_r <= #TCQ PRBS_DONE;
reset_rd_addr <= #TCQ 1'b1;
end else begin
new_cnt_dqs_r <= #TCQ 1'b1;
prbs_state_r <= #TCQ PRBS_NEW_DQS_WAIT;
fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
end
end
end
// Wait for the new DQS group to change
// also gives time for the read data IN_FIFO to
// output the updated data for the new DQS group
PRBS_NEW_DQS_WAIT: begin
reset_rd_addr <= #TCQ 'b0;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
//fine_inc_stage <= #TCQ 1'b1;
stage_cnt <= #TCQ 2'b0;
match_flag_and <= #TCQ 5'h1f;
if (cnt_wait_state) begin
new_cnt_dqs_r <= #TCQ 1'b0;
prbs_state_r <= #TCQ fine_calib? FINE_PI_DEC:PRBS_PAT_COMPARE;
end
end
// Check for presence of data eye edge. During this state, we
// sample the read data multiple times, and look for changes
// in the read data, specifically:
// 1. A change in the read data compared with the value of
// read data from the previous delay tap. This indicates
// that the most recent tap delay increment has moved us
// into either a new window, or moved/kept us in the
// transition/jitter region between windows. Note that this
// condition only needs to be checked for once, and for
// logistical purposes, we check this soon after entering
// this state (see comment in PRBS_PAT_COMPARE below for
// why this is done)
// 2. A change in the read data while we are in this state
// (i.e. in the absence of a tap delay increment). This
// indicates that we're close enough to a window edge that
// jitter will cause the read data to change even in the
// absence of a tap delay change
PRBS_PAT_COMPARE: begin
// Continue to sample read data and look for edges until the
// appropriate time interval (shorter for simulation-only,
// much, much longer for actual h/w) has elapsed
if (num_samples_done_r || compare_err) begin
if (prbs_dqs_tap_limit_r)
// Only one edge detected and ran out of taps since only one
// bit time worth of taps available for window detection. This
// can happen if at tap 0 DQS is in previous window which results
// in only left edge being detected. Or at tap 0 DQS is in the
// current window resulting in only right edge being detected.
// Depending on the frequency this case can also happen if at
// tap 0 DQS is in the left noise region resulting in only left
// edge being detected.
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE;
else if (compare_err || (prbs_dqs_tap_cnt_r == 'd0)) begin
// Sticky bit - asserted after we encounter an edge, although
// the current edge may not be considered the "first edge" this
// just means we found at least one edge
prbs_found_1st_edge_r <= #TCQ 1'b1;
// Both edges of data valid window found:
// If we've found a second edge after a region of stability
// then we must have just passed the second ("right" edge of
// the window. Record this second_edge_taps = current tap-1,
// because we're one past the actual second edge tap, where
// the edge taps represent the extremes of the data valid
// window (i.e. smallest & largest taps where data still valid
if (prbs_found_1st_edge_r) begin
prbs_found_2nd_edge_r <= #TCQ 1'b1;
prbs_2nd_edge_taps_r <= #TCQ prbs_dqs_tap_cnt_r - 1;
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE;
end else begin
// Otherwise, an edge was found (just not the "second" edge)
// Assuming DQS is in the correct window at tap 0 of Phaser IN
// fine tap. The first edge found is the right edge of the valid
// window and is the beginning of the jitter region hence done!
if (compare_err)
prbs_1st_edge_taps_r <= #TCQ prbs_dqs_tap_cnt_r + 1;
else
prbs_1st_edge_taps_r <= #TCQ 'd0;
prbs_inc_tap_cnt <= #TCQ rdlvl_cpt_tap_cnt - prbs_dqs_tap_cnt_r;
prbs_state_r <= #TCQ PRBS_INC_DQS;
end
end else begin
// Otherwise, if we haven't found an edge....
// If we still have taps left to use, then keep incrementing
if (prbs_found_1st_edge_r)
prbs_state_r <= #TCQ PRBS_INC_DQS;
else
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end
end
end
// Increment Phaser_IN delay for DQS
PRBS_INC_DQS: begin
prbs_state_r <= #TCQ PRBS_INC_DQS_WAIT;
if (prbs_inc_tap_cnt > 'd0)
prbs_inc_tap_cnt <= #TCQ prbs_inc_tap_cnt - 1;
if (~prbs_dqs_tap_limit_r) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b1;
end
end
// Wait for Phaser_In to settle, before checking again for an edge
PRBS_INC_DQS_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
if (prbs_inc_tap_cnt > 'd0)
prbs_state_r <= #TCQ PRBS_INC_DQS;
else
prbs_state_r <= #TCQ PRBS_PAT_COMPARE;
end
end
// Calculate final value of Phaser_IN taps. At this point, one or both
// edges of data eye have been found, and/or all taps have been
// exhausted looking for the edges
// NOTE: The amount to be decrement by is calculated, not the
// absolute setting for DQS.
// CENTER compensation with shift by 1
PRBS_CALC_TAPS: begin
if (center_comp) begin
prbs_dec_tap_cnt <= #TCQ (dec_cnt[5] & dec_cnt[0])? 'd32: dec_cnt + pi_adj;
fine_dly_error <= #TCQ (dec_cnt[5] & dec_cnt[0])? 1'b1: fine_dly_error; //sticky bit
read_pause <= #TCQ 'b1;
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end else begin //No center compensation
if (prbs_found_2nd_edge_r && prbs_found_1st_edge_r)
// Both edges detected
prbs_dec_tap_cnt
<= #TCQ ((prbs_2nd_edge_taps_r -
prbs_1st_edge_taps_r)>>1) + 1 + pi_adj;
else if (~prbs_found_2nd_edge_r && prbs_found_1st_edge_r)
// Only left edge detected
prbs_dec_tap_cnt
<= #TCQ ((prbs_dqs_tap_cnt_r - prbs_1st_edge_taps_r)>>1) + pi_adj;
else
// No edges detected
prbs_dec_tap_cnt
<= #TCQ (prbs_dqs_tap_cnt_r>>1) + pi_adj;
// Now use the value we just calculated to decrement CPT taps
// to the desired calibration point
read_pause <= #TCQ 'b1;
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end
end
// decrement capture clock for final adjustment - center
// capture clock in middle of data eye. This adjustment will occur
// only when both the edges are found usign CPT taps. Must do this
// incrementally to avoid clock glitching (since CPT drives clock
// divider within each ISERDES)
PRBS_DEC_DQS: begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b0;
// once adjustment is complete, we're done with calibration for
// this DQS, repeat for next DQS
if (prbs_dec_tap_cnt > 'd0)
prbs_dec_tap_cnt <= #TCQ prbs_dec_tap_cnt - 1;
if (prbs_dec_tap_cnt == 6'b000001)
prbs_state_r <= #TCQ PRBS_NEXT_DQS;
else
prbs_state_r <= #TCQ PRBS_DEC_DQS_WAIT;
end
PRBS_DEC_DQS_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
if (prbs_dec_tap_cnt > 'd0)
prbs_state_r <= #TCQ PRBS_DEC_DQS;
else
prbs_state_r <= #TCQ PRBS_PAT_COMPARE;
end
end
// Determine whether we're done, or have more DQS's to calibrate
// Also request precharge after every byte, as appropriate
PRBS_NEXT_DQS: begin
read_pause <= #TCQ 'b0;
reset_rd_addr <= #TCQ 'b1;
prbs_prech_req_r <= #TCQ 1'b1;
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
// Prepare for another iteration with next DQS group
prbs_found_1st_edge_r <= #TCQ 1'b0;
prbs_found_2nd_edge_r <= #TCQ 1'b0;
prbs_1st_edge_taps_r <= #TCQ 'd0;
prbs_2nd_edge_taps_r <= #TCQ 'd0;
largest_left_edge <= #TCQ 6'b000000;
smallest_right_edge <= #TCQ 6'b111111;
if (prbs_dqs_cnt_r >= DQS_WIDTH-1) begin
prbs_last_byte_done <= #TCQ 1'b1;
end
// Wait until precharge that occurs in between calibration of
// DQS groups is finished
if (prech_done) begin
prbs_prech_req_r <= #TCQ 1'b0;
if (prbs_dqs_cnt_r >= DQS_WIDTH-1) begin
// All DQS groups done
prbs_state_r <= #TCQ PRBS_DONE;
end else begin
// Process next DQS group
new_cnt_dqs_r <= #TCQ 1'b1;
//fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
prbs_dqs_cnt_r <= #TCQ prbs_dqs_cnt_r + 1;
prbs_state_r <= #TCQ PRBS_NEW_DQS_PREWAIT;
end
end
end
PRBS_NEW_DQS_PREWAIT: begin
if (cnt_wait_state) begin
prbs_state_r <= #TCQ PRBS_NEW_DQS_WAIT;
fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
end
end
PRBS_CALC_TAPS_PRE:
begin
if(num_samples_done_r) begin
prbs_state_r <= #TCQ fine_calib? PRBS_NEXT_DQS:PRBS_CALC_TAPS_WAIT;
if(center_comp && ~fine_calib) begin
if(prbs_found_1st_edge_r) largest_left_edge <= #TCQ prbs_1st_edge_taps_r;
else largest_left_edge <= #TCQ 6'd0;
if(prbs_found_2nd_edge_r) smallest_right_edge <= #TCQ prbs_2nd_edge_taps_r;
else smallest_right_edge <= #TCQ 6'd63;
end
end
end
//wait for center compensation
PRBS_CALC_TAPS_WAIT:
begin
prbs_state_r <= #TCQ PRBS_CALC_TAPS;
end
//if it is fine_inc stage (first/second stage): dec to 0
//if it is fine_dec stage (third stage): dec to center
FINE_PI_DEC: begin
fine_delay_sel <= #TCQ 'b0;
if(fine_pi_dec_cnt > 0) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b0;
fine_pi_dec_cnt <= #TCQ fine_pi_dec_cnt - 'd1;
end
prbs_state_r <= #TCQ FINE_PI_DEC_WAIT;
end
//wait for phaser_in tap decrement.
//if first/second stage is done, goes to FINE_PI_INC
//if last stage is done, goes to NEXT_DQS
FINE_PI_DEC_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if(cnt_wait_state) begin
if(fine_pi_dec_cnt >0)
prbs_state_r <= #TCQ FINE_PI_DEC;
else
if(fine_inc_stage)
// prbs_state_r <= #TCQ FINE_PI_INC; //for temp change
prbs_state_r <= #TCQ FINE_PAT_COMPARE_PER_BIT; //start from pi tap "0"
else
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE; //finish the process and go to the next DQS
end
end
FINE_PI_INC: begin
if(|left_edge_updated) largest_left_edge <= #TCQ prbs_dqs_tap_cnt_r-4;
if(|right_edge_found_pb && ~right_edge_found) begin
smallest_right_edge <= #TCQ prbs_dqs_tap_cnt_r -1 ;
right_edge_found <= #TCQ 'b1;
end
//left_edge_found_pb <= #TCQ {DRAM_WIDTH{1'b0}};
prbs_state_r <= #TCQ FINE_PI_INC_WAIT;
if(~prbs_dqs_tap_limit_r) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b1;
end
end
//wait for phase_in tap increment
//need to do pattern compare for every bit
FINE_PI_INC_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
prbs_state_r <= #TCQ FINE_PAT_COMPARE_PER_BIT;
end
end
//compare per bit data and update flags,left/right edge
FINE_PAT_COMPARE_PER_BIT: begin
if(num_samples_done_r || compare_err_pb_and) begin
//update and_flag - shift and add
match_flag_and <= #TCQ {match_flag_and[3:0],compare_err_pb_and};
//if it is consecutive 5 passing taps followed by fail or tap limit (finish the search)
//don't go to fine_FINE_CALC_TAPS to prevent to skip whole stage
//Or if all right edge are found
if((match_flag_and == 5'b00000 && compare_err_pb_and && (prbs_dqs_tap_cnt_r > 5)) || prbs_dqs_tap_limit_r || (&right_edge_found_pb)) begin
prbs_state_r <= #TCQ FINE_CALC_TAPS;
//if all right edge are alined (all right edge found at the same time), update smallest right edge in here
//doesnt need to set right_edge_found to 1 since it is not used after this stage
if(!right_edge_found) smallest_right_edge <= #TCQ prbs_dqs_tap_cnt_r-1;
end else begin
prbs_state_r <= #TCQ FINE_PI_INC; //keep increase until all fail
end
num_samples_done_ind <= num_samples_done_r;
end
end
//for fine_inc stage, inc all fine delay
//for fine_dec stage, apply dec fine delay for specific bits (by calculating the loss/gain)
// put phaser_in taps to the center
FINE_CALC_TAPS: begin
if(num_samples_done_ind || num_samples_done_r) begin
num_samples_done_ind <= #TCQ 'b0; //indicate num_samples_done_r is set
right_edge_found <= #TCQ 1'b0; //reset right edge found
match_flag_and <= #TCQ 5'h1f; //reset match flag for all bits
prbs_state_r <= #TCQ FINE_CALC_TAPS_WAIT;
end
end
FINE_CALC_TAPS_WAIT: begin //wait for ROM read out
if(stage_cnt == 'd2) begin //last stage : back to center
if(center_comp) begin
fine_pi_dec_cnt <= #TCQ (dec_cnt[5]&dec_cnt[0])? 'd32: prbs_dqs_tap_cnt_r - smallest_right_edge + dec_cnt - 1 + pi_adj ; //going to the center value & shift by 1
fine_dly_error <= #TCQ (dec_cnt[5]&dec_cnt[0]) ? 1'b1: fine_dly_error;
end else begin
fine_pi_dec_cnt <= #TCQ prbs_dqs_tap_cnt_r - center_calc[6:1] - center_calc[0] + pi_adj; //going to the center value & shift left by 1
fine_dly_error <= #TCQ 1'b0;
end
end else begin
fine_pi_dec_cnt <= #TCQ prbs_dqs_tap_cnt_r;
end
if (bit_cnt == DRAM_WIDTH) begin
fine_delay_sel <= #TCQ 'b1;
stage_cnt <= #TCQ stage_cnt + 1;
prbs_state_r <= #TCQ FINE_PI_DEC;
end
end
// Done with this stage of calibration
PRBS_DONE: begin
prbs_prech_req_r <= #TCQ 1'b0;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_rdlvl_done <= #TCQ 1'b1;
reset_rd_addr <= #TCQ 1'b0;
end
endcase
end
//ROM generation for dec counter
always @ (largest_left_edge or smallest_right_edge) begin
case ({largest_left_edge, smallest_right_edge})
12'd0 : mem_out_dec = 6'b111111;
12'd1 : mem_out_dec = 6'b111111;
12'd2 : mem_out_dec = 6'b111111;
12'd3 : mem_out_dec = 6'b111111;
12'd4 : mem_out_dec = 6'b111111;
12'd5 : mem_out_dec = 6'b111111;
12'd6 : mem_out_dec = 6'b000100;
12'd7 : mem_out_dec = 6'b000101;
12'd8 : mem_out_dec = 6'b000101;
12'd9 : mem_out_dec = 6'b000110;
12'd10 : mem_out_dec = 6'b000110;
12'd11 : mem_out_dec = 6'b000111;
12'd12 : mem_out_dec = 6'b001000;
12'd13 : mem_out_dec = 6'b001000;
12'd14 : mem_out_dec = 6'b001001;
12'd15 : mem_out_dec = 6'b001010;
12'd16 : mem_out_dec = 6'b001010;
12'd17 : mem_out_dec = 6'b001011;
12'd18 : mem_out_dec = 6'b001011;
12'd19 : mem_out_dec = 6'b001100;
12'd20 : mem_out_dec = 6'b001100;
12'd21 : mem_out_dec = 6'b001100;
12'd22 : mem_out_dec = 6'b001100;
12'd23 : mem_out_dec = 6'b001101;
12'd24 : mem_out_dec = 6'b001100;
12'd25 : mem_out_dec = 6'b001100;
12'd26 : mem_out_dec = 6'b001101;
12'd27 : mem_out_dec = 6'b001110;
12'd28 : mem_out_dec = 6'b001110;
12'd29 : mem_out_dec = 6'b001111;
12'd30 : mem_out_dec = 6'b010000;
12'd31 : mem_out_dec = 6'b010001;
12'd32 : mem_out_dec = 6'b010001;
12'd33 : mem_out_dec = 6'b010010;
12'd34 : mem_out_dec = 6'b010010;
12'd35 : mem_out_dec = 6'b010010;
12'd36 : mem_out_dec = 6'b010011;
12'd37 : mem_out_dec = 6'b010100;
12'd38 : mem_out_dec = 6'b010100;
12'd39 : mem_out_dec = 6'b010101;
12'd40 : mem_out_dec = 6'b010101;
12'd41 : mem_out_dec = 6'b010110;
12'd42 : mem_out_dec = 6'b010110;
12'd43 : mem_out_dec = 6'b010111;
12'd44 : mem_out_dec = 6'b011000;
12'd45 : mem_out_dec = 6'b011001;
12'd46 : mem_out_dec = 6'b011001;
12'd47 : mem_out_dec = 6'b011010;
12'd48 : mem_out_dec = 6'b011010;
12'd49 : mem_out_dec = 6'b011011;
12'd50 : mem_out_dec = 6'b011011;
12'd51 : mem_out_dec = 6'b011100;
12'd52 : mem_out_dec = 6'b011100;
12'd53 : mem_out_dec = 6'b011100;
12'd54 : mem_out_dec = 6'b011100;
12'd55 : mem_out_dec = 6'b011100;
12'd56 : mem_out_dec = 6'b011100;
12'd57 : mem_out_dec = 6'b011100;
12'd58 : mem_out_dec = 6'b011100;
12'd59 : mem_out_dec = 6'b011101;
12'd60 : mem_out_dec = 6'b011110;
12'd61 : mem_out_dec = 6'b011111;
12'd62 : mem_out_dec = 6'b100000;
12'd63 : mem_out_dec = 6'b100000;
12'd64 : mem_out_dec = 6'b111111;
12'd65 : mem_out_dec = 6'b111111;
12'd66 : mem_out_dec = 6'b111111;
12'd67 : mem_out_dec = 6'b111111;
12'd68 : mem_out_dec = 6'b111111;
12'd69 : mem_out_dec = 6'b111111;
12'd70 : mem_out_dec = 6'b111111;
12'd71 : mem_out_dec = 6'b000100;
12'd72 : mem_out_dec = 6'b000100;
12'd73 : mem_out_dec = 6'b000101;
12'd74 : mem_out_dec = 6'b000110;
12'd75 : mem_out_dec = 6'b000111;
12'd76 : mem_out_dec = 6'b000111;
12'd77 : mem_out_dec = 6'b001000;
12'd78 : mem_out_dec = 6'b001001;
12'd79 : mem_out_dec = 6'b001001;
12'd80 : mem_out_dec = 6'b001010;
12'd81 : mem_out_dec = 6'b001010;
12'd82 : mem_out_dec = 6'b001011;
12'd83 : mem_out_dec = 6'b001011;
12'd84 : mem_out_dec = 6'b001011;
12'd85 : mem_out_dec = 6'b001011;
12'd86 : mem_out_dec = 6'b001011;
12'd87 : mem_out_dec = 6'b001100;
12'd88 : mem_out_dec = 6'b001011;
12'd89 : mem_out_dec = 6'b001100;
12'd90 : mem_out_dec = 6'b001100;
12'd91 : mem_out_dec = 6'b001101;
12'd92 : mem_out_dec = 6'b001110;
12'd93 : mem_out_dec = 6'b001111;
12'd94 : mem_out_dec = 6'b001111;
12'd95 : mem_out_dec = 6'b010000;
12'd96 : mem_out_dec = 6'b010001;
12'd97 : mem_out_dec = 6'b010001;
12'd98 : mem_out_dec = 6'b010010;
12'd99 : mem_out_dec = 6'b010010;
12'd100 : mem_out_dec = 6'b010011;
12'd101 : mem_out_dec = 6'b010011;
12'd102 : mem_out_dec = 6'b010100;
12'd103 : mem_out_dec = 6'b010100;
12'd104 : mem_out_dec = 6'b010100;
12'd105 : mem_out_dec = 6'b010101;
12'd106 : mem_out_dec = 6'b010110;
12'd107 : mem_out_dec = 6'b010111;
12'd108 : mem_out_dec = 6'b010111;
12'd109 : mem_out_dec = 6'b011000;
12'd110 : mem_out_dec = 6'b011001;
12'd111 : mem_out_dec = 6'b011001;
12'd112 : mem_out_dec = 6'b011010;
12'd113 : mem_out_dec = 6'b011010;
12'd114 : mem_out_dec = 6'b011011;
12'd115 : mem_out_dec = 6'b011011;
12'd116 : mem_out_dec = 6'b011011;
12'd117 : mem_out_dec = 6'b011011;
12'd118 : mem_out_dec = 6'b011011;
12'd119 : mem_out_dec = 6'b011011;
12'd120 : mem_out_dec = 6'b011011;
12'd121 : mem_out_dec = 6'b011011;
12'd122 : mem_out_dec = 6'b011100;
12'd123 : mem_out_dec = 6'b011101;
12'd124 : mem_out_dec = 6'b011110;
12'd125 : mem_out_dec = 6'b011110;
12'd126 : mem_out_dec = 6'b011111;
12'd127 : mem_out_dec = 6'b100000;
12'd128 : mem_out_dec = 6'b111111;
12'd129 : mem_out_dec = 6'b111111;
12'd130 : mem_out_dec = 6'b111111;
12'd131 : mem_out_dec = 6'b111111;
12'd132 : mem_out_dec = 6'b111111;
12'd133 : mem_out_dec = 6'b111111;
12'd134 : mem_out_dec = 6'b111111;
12'd135 : mem_out_dec = 6'b111111;
12'd136 : mem_out_dec = 6'b000100;
12'd137 : mem_out_dec = 6'b000101;
12'd138 : mem_out_dec = 6'b000101;
12'd139 : mem_out_dec = 6'b000110;
12'd140 : mem_out_dec = 6'b000110;
12'd141 : mem_out_dec = 6'b000111;
12'd142 : mem_out_dec = 6'b001000;
12'd143 : mem_out_dec = 6'b001001;
12'd144 : mem_out_dec = 6'b001001;
12'd145 : mem_out_dec = 6'b001010;
12'd146 : mem_out_dec = 6'b001010;
12'd147 : mem_out_dec = 6'b001010;
12'd148 : mem_out_dec = 6'b001010;
12'd149 : mem_out_dec = 6'b001010;
12'd150 : mem_out_dec = 6'b001010;
12'd151 : mem_out_dec = 6'b001011;
12'd152 : mem_out_dec = 6'b001010;
12'd153 : mem_out_dec = 6'b001011;
12'd154 : mem_out_dec = 6'b001100;
12'd155 : mem_out_dec = 6'b001101;
12'd156 : mem_out_dec = 6'b001101;
12'd157 : mem_out_dec = 6'b001110;
12'd158 : mem_out_dec = 6'b001111;
12'd159 : mem_out_dec = 6'b010000;
12'd160 : mem_out_dec = 6'b010000;
12'd161 : mem_out_dec = 6'b010001;
12'd162 : mem_out_dec = 6'b010001;
12'd163 : mem_out_dec = 6'b010010;
12'd164 : mem_out_dec = 6'b010010;
12'd165 : mem_out_dec = 6'b010011;
12'd166 : mem_out_dec = 6'b010011;
12'd167 : mem_out_dec = 6'b010100;
12'd168 : mem_out_dec = 6'b010100;
12'd169 : mem_out_dec = 6'b010101;
12'd170 : mem_out_dec = 6'b010101;
12'd171 : mem_out_dec = 6'b010110;
12'd172 : mem_out_dec = 6'b010111;
12'd173 : mem_out_dec = 6'b010111;
12'd174 : mem_out_dec = 6'b011000;
12'd175 : mem_out_dec = 6'b011001;
12'd176 : mem_out_dec = 6'b011001;
12'd177 : mem_out_dec = 6'b011010;
12'd178 : mem_out_dec = 6'b011010;
12'd179 : mem_out_dec = 6'b011010;
12'd180 : mem_out_dec = 6'b011010;
12'd181 : mem_out_dec = 6'b011010;
12'd182 : mem_out_dec = 6'b011010;
12'd183 : mem_out_dec = 6'b011010;
12'd184 : mem_out_dec = 6'b011010;
12'd185 : mem_out_dec = 6'b011011;
12'd186 : mem_out_dec = 6'b011100;
12'd187 : mem_out_dec = 6'b011100;
12'd188 : mem_out_dec = 6'b011101;
12'd189 : mem_out_dec = 6'b011110;
12'd190 : mem_out_dec = 6'b011111;
12'd191 : mem_out_dec = 6'b100000;
12'd192 : mem_out_dec = 6'b111111;
12'd193 : mem_out_dec = 6'b111111;
12'd194 : mem_out_dec = 6'b111111;
12'd195 : mem_out_dec = 6'b111111;
12'd196 : mem_out_dec = 6'b111111;
12'd197 : mem_out_dec = 6'b111111;
12'd198 : mem_out_dec = 6'b111111;
12'd199 : mem_out_dec = 6'b111111;
12'd200 : mem_out_dec = 6'b111111;
12'd201 : mem_out_dec = 6'b000100;
12'd202 : mem_out_dec = 6'b000100;
12'd203 : mem_out_dec = 6'b000101;
12'd204 : mem_out_dec = 6'b000110;
12'd205 : mem_out_dec = 6'b000111;
12'd206 : mem_out_dec = 6'b001000;
12'd207 : mem_out_dec = 6'b001000;
12'd208 : mem_out_dec = 6'b001001;
12'd209 : mem_out_dec = 6'b001001;
12'd210 : mem_out_dec = 6'b001001;
12'd211 : mem_out_dec = 6'b001001;
12'd212 : mem_out_dec = 6'b001001;
12'd213 : mem_out_dec = 6'b001001;
12'd214 : mem_out_dec = 6'b001001;
12'd215 : mem_out_dec = 6'b001010;
12'd216 : mem_out_dec = 6'b001010;
12'd217 : mem_out_dec = 6'b001011;
12'd218 : mem_out_dec = 6'b001011;
12'd219 : mem_out_dec = 6'b001100;
12'd220 : mem_out_dec = 6'b001101;
12'd221 : mem_out_dec = 6'b001110;
12'd222 : mem_out_dec = 6'b001111;
12'd223 : mem_out_dec = 6'b001111;
12'd224 : mem_out_dec = 6'b010000;
12'd225 : mem_out_dec = 6'b010000;
12'd226 : mem_out_dec = 6'b010001;
12'd227 : mem_out_dec = 6'b010001;
12'd228 : mem_out_dec = 6'b010010;
12'd229 : mem_out_dec = 6'b010010;
12'd230 : mem_out_dec = 6'b010011;
12'd231 : mem_out_dec = 6'b010011;
12'd232 : mem_out_dec = 6'b010011;
12'd233 : mem_out_dec = 6'b010100;
12'd234 : mem_out_dec = 6'b010100;
12'd235 : mem_out_dec = 6'b010101;
12'd236 : mem_out_dec = 6'b010110;
12'd237 : mem_out_dec = 6'b010111;
12'd238 : mem_out_dec = 6'b011000;
12'd239 : mem_out_dec = 6'b011000;
12'd240 : mem_out_dec = 6'b011001;
12'd241 : mem_out_dec = 6'b011001;
12'd242 : mem_out_dec = 6'b011001;
12'd243 : mem_out_dec = 6'b011001;
12'd244 : mem_out_dec = 6'b011001;
12'd245 : mem_out_dec = 6'b011001;
12'd246 : mem_out_dec = 6'b011001;
12'd247 : mem_out_dec = 6'b011001;
12'd248 : mem_out_dec = 6'b011010;
12'd249 : mem_out_dec = 6'b011010;
12'd250 : mem_out_dec = 6'b011011;
12'd251 : mem_out_dec = 6'b011100;
12'd252 : mem_out_dec = 6'b011101;
12'd253 : mem_out_dec = 6'b011110;
12'd254 : mem_out_dec = 6'b011110;
12'd255 : mem_out_dec = 6'b011111;
12'd256 : mem_out_dec = 6'b111111;
12'd257 : mem_out_dec = 6'b111111;
12'd258 : mem_out_dec = 6'b111111;
12'd259 : mem_out_dec = 6'b111111;
12'd260 : mem_out_dec = 6'b111111;
12'd261 : mem_out_dec = 6'b111111;
12'd262 : mem_out_dec = 6'b111111;
12'd263 : mem_out_dec = 6'b111111;
12'd264 : mem_out_dec = 6'b111111;
12'd265 : mem_out_dec = 6'b111111;
12'd266 : mem_out_dec = 6'b000100;
12'd267 : mem_out_dec = 6'b000101;
12'd268 : mem_out_dec = 6'b000110;
12'd269 : mem_out_dec = 6'b000110;
12'd270 : mem_out_dec = 6'b000111;
12'd271 : mem_out_dec = 6'b001000;
12'd272 : mem_out_dec = 6'b001000;
12'd273 : mem_out_dec = 6'b001000;
12'd274 : mem_out_dec = 6'b001000;
12'd275 : mem_out_dec = 6'b001000;
12'd276 : mem_out_dec = 6'b001000;
12'd277 : mem_out_dec = 6'b001000;
12'd278 : mem_out_dec = 6'b001000;
12'd279 : mem_out_dec = 6'b001001;
12'd280 : mem_out_dec = 6'b001001;
12'd281 : mem_out_dec = 6'b001010;
12'd282 : mem_out_dec = 6'b001011;
12'd283 : mem_out_dec = 6'b001100;
12'd284 : mem_out_dec = 6'b001101;
12'd285 : mem_out_dec = 6'b001101;
12'd286 : mem_out_dec = 6'b001110;
12'd287 : mem_out_dec = 6'b001111;
12'd288 : mem_out_dec = 6'b001111;
12'd289 : mem_out_dec = 6'b010000;
12'd290 : mem_out_dec = 6'b010000;
12'd291 : mem_out_dec = 6'b010001;
12'd292 : mem_out_dec = 6'b010001;
12'd293 : mem_out_dec = 6'b010010;
12'd294 : mem_out_dec = 6'b010010;
12'd295 : mem_out_dec = 6'b010011;
12'd296 : mem_out_dec = 6'b010010;
12'd297 : mem_out_dec = 6'b010011;
12'd298 : mem_out_dec = 6'b010100;
12'd299 : mem_out_dec = 6'b010101;
12'd300 : mem_out_dec = 6'b010110;
12'd301 : mem_out_dec = 6'b010110;
12'd302 : mem_out_dec = 6'b010111;
12'd303 : mem_out_dec = 6'b011000;
12'd304 : mem_out_dec = 6'b011000;
12'd305 : mem_out_dec = 6'b011000;
12'd306 : mem_out_dec = 6'b011000;
12'd307 : mem_out_dec = 6'b011000;
12'd308 : mem_out_dec = 6'b011000;
12'd309 : mem_out_dec = 6'b011000;
12'd310 : mem_out_dec = 6'b011000;
12'd311 : mem_out_dec = 6'b011001;
12'd312 : mem_out_dec = 6'b011001;
12'd313 : mem_out_dec = 6'b011010;
12'd314 : mem_out_dec = 6'b011011;
12'd315 : mem_out_dec = 6'b011100;
12'd316 : mem_out_dec = 6'b011100;
12'd317 : mem_out_dec = 6'b011101;
12'd318 : mem_out_dec = 6'b011110;
12'd319 : mem_out_dec = 6'b011111;
12'd320 : mem_out_dec = 6'b111111;
12'd321 : mem_out_dec = 6'b111111;
12'd322 : mem_out_dec = 6'b111111;
12'd323 : mem_out_dec = 6'b111111;
12'd324 : mem_out_dec = 6'b111111;
12'd325 : mem_out_dec = 6'b111111;
12'd326 : mem_out_dec = 6'b111111;
12'd327 : mem_out_dec = 6'b111111;
12'd328 : mem_out_dec = 6'b111111;
12'd329 : mem_out_dec = 6'b111111;
12'd330 : mem_out_dec = 6'b111111;
12'd331 : mem_out_dec = 6'b000100;
12'd332 : mem_out_dec = 6'b000101;
12'd333 : mem_out_dec = 6'b000110;
12'd334 : mem_out_dec = 6'b000111;
12'd335 : mem_out_dec = 6'b001000;
12'd336 : mem_out_dec = 6'b000111;
12'd337 : mem_out_dec = 6'b000111;
12'd338 : mem_out_dec = 6'b000111;
12'd339 : mem_out_dec = 6'b000111;
12'd340 : mem_out_dec = 6'b000111;
12'd341 : mem_out_dec = 6'b000111;
12'd342 : mem_out_dec = 6'b001000;
12'd343 : mem_out_dec = 6'b001001;
12'd344 : mem_out_dec = 6'b001001;
12'd345 : mem_out_dec = 6'b001010;
12'd346 : mem_out_dec = 6'b001011;
12'd347 : mem_out_dec = 6'b001011;
12'd348 : mem_out_dec = 6'b001100;
12'd349 : mem_out_dec = 6'b001101;
12'd350 : mem_out_dec = 6'b001110;
12'd351 : mem_out_dec = 6'b001110;
12'd352 : mem_out_dec = 6'b001111;
12'd353 : mem_out_dec = 6'b001111;
12'd354 : mem_out_dec = 6'b010000;
12'd355 : mem_out_dec = 6'b010000;
12'd356 : mem_out_dec = 6'b010001;
12'd357 : mem_out_dec = 6'b010001;
12'd358 : mem_out_dec = 6'b010001;
12'd359 : mem_out_dec = 6'b010010;
12'd360 : mem_out_dec = 6'b010010;
12'd361 : mem_out_dec = 6'b010011;
12'd362 : mem_out_dec = 6'b010100;
12'd363 : mem_out_dec = 6'b010100;
12'd364 : mem_out_dec = 6'b010101;
12'd365 : mem_out_dec = 6'b010110;
12'd366 : mem_out_dec = 6'b010111;
12'd367 : mem_out_dec = 6'b011000;
12'd368 : mem_out_dec = 6'b010111;
12'd369 : mem_out_dec = 6'b010111;
12'd370 : mem_out_dec = 6'b010111;
12'd371 : mem_out_dec = 6'b010111;
12'd372 : mem_out_dec = 6'b010111;
12'd373 : mem_out_dec = 6'b010111;
12'd374 : mem_out_dec = 6'b011000;
12'd375 : mem_out_dec = 6'b011001;
12'd376 : mem_out_dec = 6'b011001;
12'd377 : mem_out_dec = 6'b011010;
12'd378 : mem_out_dec = 6'b011010;
12'd379 : mem_out_dec = 6'b011011;
12'd380 : mem_out_dec = 6'b011100;
12'd381 : mem_out_dec = 6'b011101;
12'd382 : mem_out_dec = 6'b011101;
12'd383 : mem_out_dec = 6'b011110;
12'd384 : mem_out_dec = 6'b111111;
12'd385 : mem_out_dec = 6'b111111;
12'd386 : mem_out_dec = 6'b111111;
12'd387 : mem_out_dec = 6'b111111;
12'd388 : mem_out_dec = 6'b111111;
12'd389 : mem_out_dec = 6'b111111;
12'd390 : mem_out_dec = 6'b111111;
12'd391 : mem_out_dec = 6'b111111;
12'd392 : mem_out_dec = 6'b111111;
12'd393 : mem_out_dec = 6'b111111;
12'd394 : mem_out_dec = 6'b111111;
12'd395 : mem_out_dec = 6'b111111;
12'd396 : mem_out_dec = 6'b000101;
12'd397 : mem_out_dec = 6'b000110;
12'd398 : mem_out_dec = 6'b000110;
12'd399 : mem_out_dec = 6'b000111;
12'd400 : mem_out_dec = 6'b000110;
12'd401 : mem_out_dec = 6'b000110;
12'd402 : mem_out_dec = 6'b000110;
12'd403 : mem_out_dec = 6'b000110;
12'd404 : mem_out_dec = 6'b000110;
12'd405 : mem_out_dec = 6'b000111;
12'd406 : mem_out_dec = 6'b001000;
12'd407 : mem_out_dec = 6'b001000;
12'd408 : mem_out_dec = 6'b001001;
12'd409 : mem_out_dec = 6'b001001;
12'd410 : mem_out_dec = 6'b001010;
12'd411 : mem_out_dec = 6'b001011;
12'd412 : mem_out_dec = 6'b001100;
12'd413 : mem_out_dec = 6'b001100;
12'd414 : mem_out_dec = 6'b001101;
12'd415 : mem_out_dec = 6'b001110;
12'd416 : mem_out_dec = 6'b001110;
12'd417 : mem_out_dec = 6'b001111;
12'd418 : mem_out_dec = 6'b001111;
12'd419 : mem_out_dec = 6'b010000;
12'd420 : mem_out_dec = 6'b010000;
12'd421 : mem_out_dec = 6'b010000;
12'd422 : mem_out_dec = 6'b010001;
12'd423 : mem_out_dec = 6'b010001;
12'd424 : mem_out_dec = 6'b010010;
12'd425 : mem_out_dec = 6'b010011;
12'd426 : mem_out_dec = 6'b010011;
12'd427 : mem_out_dec = 6'b010100;
12'd428 : mem_out_dec = 6'b010101;
12'd429 : mem_out_dec = 6'b010110;
12'd430 : mem_out_dec = 6'b010111;
12'd431 : mem_out_dec = 6'b010111;
12'd432 : mem_out_dec = 6'b010110;
12'd433 : mem_out_dec = 6'b010110;
12'd434 : mem_out_dec = 6'b010110;
12'd435 : mem_out_dec = 6'b010110;
12'd436 : mem_out_dec = 6'b010110;
12'd437 : mem_out_dec = 6'b010111;
12'd438 : mem_out_dec = 6'b010111;
12'd439 : mem_out_dec = 6'b011000;
12'd440 : mem_out_dec = 6'b011001;
12'd441 : mem_out_dec = 6'b011001;
12'd442 : mem_out_dec = 6'b011010;
12'd443 : mem_out_dec = 6'b011011;
12'd444 : mem_out_dec = 6'b011011;
12'd445 : mem_out_dec = 6'b011100;
12'd446 : mem_out_dec = 6'b011101;
12'd447 : mem_out_dec = 6'b011110;
12'd448 : mem_out_dec = 6'b111111;
12'd449 : mem_out_dec = 6'b111111;
12'd450 : mem_out_dec = 6'b111111;
12'd451 : mem_out_dec = 6'b111111;
12'd452 : mem_out_dec = 6'b111111;
12'd453 : mem_out_dec = 6'b111111;
12'd454 : mem_out_dec = 6'b111111;
12'd455 : mem_out_dec = 6'b111111;
12'd456 : mem_out_dec = 6'b111111;
12'd457 : mem_out_dec = 6'b111111;
12'd458 : mem_out_dec = 6'b111111;
12'd459 : mem_out_dec = 6'b111111;
12'd460 : mem_out_dec = 6'b111111;
12'd461 : mem_out_dec = 6'b000101;
12'd462 : mem_out_dec = 6'b000110;
12'd463 : mem_out_dec = 6'b000110;
12'd464 : mem_out_dec = 6'b000110;
12'd465 : mem_out_dec = 6'b000110;
12'd466 : mem_out_dec = 6'b000110;
12'd467 : mem_out_dec = 6'b000110;
12'd468 : mem_out_dec = 6'b000110;
12'd469 : mem_out_dec = 6'b000111;
12'd470 : mem_out_dec = 6'b000111;
12'd471 : mem_out_dec = 6'b001000;
12'd472 : mem_out_dec = 6'b001000;
12'd473 : mem_out_dec = 6'b001001;
12'd474 : mem_out_dec = 6'b001010;
12'd475 : mem_out_dec = 6'b001011;
12'd476 : mem_out_dec = 6'b001011;
12'd477 : mem_out_dec = 6'b001100;
12'd478 : mem_out_dec = 6'b001101;
12'd479 : mem_out_dec = 6'b001110;
12'd480 : mem_out_dec = 6'b001110;
12'd481 : mem_out_dec = 6'b001110;
12'd482 : mem_out_dec = 6'b001111;
12'd483 : mem_out_dec = 6'b001111;
12'd484 : mem_out_dec = 6'b010000;
12'd485 : mem_out_dec = 6'b010000;
12'd486 : mem_out_dec = 6'b010000;
12'd487 : mem_out_dec = 6'b010001;
12'd488 : mem_out_dec = 6'b010001;
12'd489 : mem_out_dec = 6'b010010;
12'd490 : mem_out_dec = 6'b010011;
12'd491 : mem_out_dec = 6'b010100;
12'd492 : mem_out_dec = 6'b010101;
12'd493 : mem_out_dec = 6'b010101;
12'd494 : mem_out_dec = 6'b010110;
12'd495 : mem_out_dec = 6'b010110;
12'd496 : mem_out_dec = 6'b010110;
12'd497 : mem_out_dec = 6'b010110;
12'd498 : mem_out_dec = 6'b010101;
12'd499 : mem_out_dec = 6'b010101;
12'd500 : mem_out_dec = 6'b010110;
12'd501 : mem_out_dec = 6'b010111;
12'd502 : mem_out_dec = 6'b010111;
12'd503 : mem_out_dec = 6'b011000;
12'd504 : mem_out_dec = 6'b011000;
12'd505 : mem_out_dec = 6'b011001;
12'd506 : mem_out_dec = 6'b011010;
12'd507 : mem_out_dec = 6'b011010;
12'd508 : mem_out_dec = 6'b011011;
12'd509 : mem_out_dec = 6'b011100;
12'd510 : mem_out_dec = 6'b011101;
12'd511 : mem_out_dec = 6'b011101;
12'd512 : mem_out_dec = 6'b111111;
12'd513 : mem_out_dec = 6'b111111;
12'd514 : mem_out_dec = 6'b111111;
12'd515 : mem_out_dec = 6'b111111;
12'd516 : mem_out_dec = 6'b111111;
12'd517 : mem_out_dec = 6'b111111;
12'd518 : mem_out_dec = 6'b111111;
12'd519 : mem_out_dec = 6'b111111;
12'd520 : mem_out_dec = 6'b111111;
12'd521 : mem_out_dec = 6'b111111;
12'd522 : mem_out_dec = 6'b111111;
12'd523 : mem_out_dec = 6'b111111;
12'd524 : mem_out_dec = 6'b111111;
12'd525 : mem_out_dec = 6'b111111;
12'd526 : mem_out_dec = 6'b000100;
12'd527 : mem_out_dec = 6'b000101;
12'd528 : mem_out_dec = 6'b000100;
12'd529 : mem_out_dec = 6'b000100;
12'd530 : mem_out_dec = 6'b000100;
12'd531 : mem_out_dec = 6'b000101;
12'd532 : mem_out_dec = 6'b000101;
12'd533 : mem_out_dec = 6'b000110;
12'd534 : mem_out_dec = 6'b000111;
12'd535 : mem_out_dec = 6'b000111;
12'd536 : mem_out_dec = 6'b000111;
12'd537 : mem_out_dec = 6'b001000;
12'd538 : mem_out_dec = 6'b001001;
12'd539 : mem_out_dec = 6'b001010;
12'd540 : mem_out_dec = 6'b001011;
12'd541 : mem_out_dec = 6'b001011;
12'd542 : mem_out_dec = 6'b001100;
12'd543 : mem_out_dec = 6'b001101;
12'd544 : mem_out_dec = 6'b001101;
12'd545 : mem_out_dec = 6'b001101;
12'd546 : mem_out_dec = 6'b001110;
12'd547 : mem_out_dec = 6'b001110;
12'd548 : mem_out_dec = 6'b001110;
12'd549 : mem_out_dec = 6'b001111;
12'd550 : mem_out_dec = 6'b010000;
12'd551 : mem_out_dec = 6'b010000;
12'd552 : mem_out_dec = 6'b010001;
12'd553 : mem_out_dec = 6'b010001;
12'd554 : mem_out_dec = 6'b010010;
12'd555 : mem_out_dec = 6'b010010;
12'd556 : mem_out_dec = 6'b010011;
12'd557 : mem_out_dec = 6'b010100;
12'd558 : mem_out_dec = 6'b010100;
12'd559 : mem_out_dec = 6'b010100;
12'd560 : mem_out_dec = 6'b010100;
12'd561 : mem_out_dec = 6'b010100;
12'd562 : mem_out_dec = 6'b010100;
12'd563 : mem_out_dec = 6'b010101;
12'd564 : mem_out_dec = 6'b010101;
12'd565 : mem_out_dec = 6'b010110;
12'd566 : mem_out_dec = 6'b010111;
12'd567 : mem_out_dec = 6'b010111;
12'd568 : mem_out_dec = 6'b010111;
12'd569 : mem_out_dec = 6'b011000;
12'd570 : mem_out_dec = 6'b011001;
12'd571 : mem_out_dec = 6'b011010;
12'd572 : mem_out_dec = 6'b011010;
12'd573 : mem_out_dec = 6'b011011;
12'd574 : mem_out_dec = 6'b011100;
12'd575 : mem_out_dec = 6'b011101;
12'd576 : mem_out_dec = 6'b111111;
12'd577 : mem_out_dec = 6'b111111;
12'd578 : mem_out_dec = 6'b111111;
12'd579 : mem_out_dec = 6'b111111;
12'd580 : mem_out_dec = 6'b111111;
12'd581 : mem_out_dec = 6'b111111;
12'd582 : mem_out_dec = 6'b111111;
12'd583 : mem_out_dec = 6'b111111;
12'd584 : mem_out_dec = 6'b111111;
12'd585 : mem_out_dec = 6'b111111;
12'd586 : mem_out_dec = 6'b111111;
12'd587 : mem_out_dec = 6'b111111;
12'd588 : mem_out_dec = 6'b111111;
12'd589 : mem_out_dec = 6'b111111;
12'd590 : mem_out_dec = 6'b111111;
12'd591 : mem_out_dec = 6'b000100;
12'd592 : mem_out_dec = 6'b000011;
12'd593 : mem_out_dec = 6'b000011;
12'd594 : mem_out_dec = 6'b000100;
12'd595 : mem_out_dec = 6'b000101;
12'd596 : mem_out_dec = 6'b000101;
12'd597 : mem_out_dec = 6'b000110;
12'd598 : mem_out_dec = 6'b000110;
12'd599 : mem_out_dec = 6'b000111;
12'd600 : mem_out_dec = 6'b000111;
12'd601 : mem_out_dec = 6'b001000;
12'd602 : mem_out_dec = 6'b001001;
12'd603 : mem_out_dec = 6'b001010;
12'd604 : mem_out_dec = 6'b001010;
12'd605 : mem_out_dec = 6'b001011;
12'd606 : mem_out_dec = 6'b001100;
12'd607 : mem_out_dec = 6'b001101;
12'd608 : mem_out_dec = 6'b001101;
12'd609 : mem_out_dec = 6'b001101;
12'd610 : mem_out_dec = 6'b001110;
12'd611 : mem_out_dec = 6'b001110;
12'd612 : mem_out_dec = 6'b001110;
12'd613 : mem_out_dec = 6'b001111;
12'd614 : mem_out_dec = 6'b010000;
12'd615 : mem_out_dec = 6'b010000;
12'd616 : mem_out_dec = 6'b010000;
12'd617 : mem_out_dec = 6'b010001;
12'd618 : mem_out_dec = 6'b010001;
12'd619 : mem_out_dec = 6'b010010;
12'd620 : mem_out_dec = 6'b010010;
12'd621 : mem_out_dec = 6'b010011;
12'd622 : mem_out_dec = 6'b010011;
12'd623 : mem_out_dec = 6'b010100;
12'd624 : mem_out_dec = 6'b010011;
12'd625 : mem_out_dec = 6'b010011;
12'd626 : mem_out_dec = 6'b010100;
12'd627 : mem_out_dec = 6'b010100;
12'd628 : mem_out_dec = 6'b010101;
12'd629 : mem_out_dec = 6'b010110;
12'd630 : mem_out_dec = 6'b010110;
12'd631 : mem_out_dec = 6'b010111;
12'd632 : mem_out_dec = 6'b010111;
12'd633 : mem_out_dec = 6'b011000;
12'd634 : mem_out_dec = 6'b011001;
12'd635 : mem_out_dec = 6'b011001;
12'd636 : mem_out_dec = 6'b011010;
12'd637 : mem_out_dec = 6'b011011;
12'd638 : mem_out_dec = 6'b011100;
12'd639 : mem_out_dec = 6'b011100;
12'd640 : mem_out_dec = 6'b111111;
12'd641 : mem_out_dec = 6'b111111;
12'd642 : mem_out_dec = 6'b111111;
12'd643 : mem_out_dec = 6'b111111;
12'd644 : mem_out_dec = 6'b111111;
12'd645 : mem_out_dec = 6'b111111;
12'd646 : mem_out_dec = 6'b111111;
12'd647 : mem_out_dec = 6'b111111;
12'd648 : mem_out_dec = 6'b111111;
12'd649 : mem_out_dec = 6'b111111;
12'd650 : mem_out_dec = 6'b111111;
12'd651 : mem_out_dec = 6'b111111;
12'd652 : mem_out_dec = 6'b111111;
12'd653 : mem_out_dec = 6'b111111;
12'd654 : mem_out_dec = 6'b111111;
12'd655 : mem_out_dec = 6'b111111;
12'd656 : mem_out_dec = 6'b000011;
12'd657 : mem_out_dec = 6'b000011;
12'd658 : mem_out_dec = 6'b000100;
12'd659 : mem_out_dec = 6'b000100;
12'd660 : mem_out_dec = 6'b000101;
12'd661 : mem_out_dec = 6'b000110;
12'd662 : mem_out_dec = 6'b000110;
12'd663 : mem_out_dec = 6'b000111;
12'd664 : mem_out_dec = 6'b000111;
12'd665 : mem_out_dec = 6'b001000;
12'd666 : mem_out_dec = 6'b001001;
12'd667 : mem_out_dec = 6'b001001;
12'd668 : mem_out_dec = 6'b001010;
12'd669 : mem_out_dec = 6'b001011;
12'd670 : mem_out_dec = 6'b001100;
12'd671 : mem_out_dec = 6'b001100;
12'd672 : mem_out_dec = 6'b001100;
12'd673 : mem_out_dec = 6'b001101;
12'd674 : mem_out_dec = 6'b001101;
12'd675 : mem_out_dec = 6'b001101;
12'd676 : mem_out_dec = 6'b001110;
12'd677 : mem_out_dec = 6'b001111;
12'd678 : mem_out_dec = 6'b001111;
12'd679 : mem_out_dec = 6'b010000;
12'd680 : mem_out_dec = 6'b010000;
12'd681 : mem_out_dec = 6'b010000;
12'd682 : mem_out_dec = 6'b010001;
12'd683 : mem_out_dec = 6'b010001;
12'd684 : mem_out_dec = 6'b010010;
12'd685 : mem_out_dec = 6'b010010;
12'd686 : mem_out_dec = 6'b010011;
12'd687 : mem_out_dec = 6'b010011;
12'd688 : mem_out_dec = 6'b010011;
12'd689 : mem_out_dec = 6'b010011;
12'd690 : mem_out_dec = 6'b010100;
12'd691 : mem_out_dec = 6'b010100;
12'd692 : mem_out_dec = 6'b010101;
12'd693 : mem_out_dec = 6'b010101;
12'd694 : mem_out_dec = 6'b010110;
12'd695 : mem_out_dec = 6'b010111;
12'd696 : mem_out_dec = 6'b010111;
12'd697 : mem_out_dec = 6'b011000;
12'd698 : mem_out_dec = 6'b011000;
12'd699 : mem_out_dec = 6'b011001;
12'd700 : mem_out_dec = 6'b011010;
12'd701 : mem_out_dec = 6'b011011;
12'd702 : mem_out_dec = 6'b011011;
12'd703 : mem_out_dec = 6'b011100;
12'd704 : mem_out_dec = 6'b111111;
12'd705 : mem_out_dec = 6'b111111;
12'd706 : mem_out_dec = 6'b111111;
12'd707 : mem_out_dec = 6'b111111;
12'd708 : mem_out_dec = 6'b111111;
12'd709 : mem_out_dec = 6'b111111;
12'd710 : mem_out_dec = 6'b111111;
12'd711 : mem_out_dec = 6'b111111;
12'd712 : mem_out_dec = 6'b111111;
12'd713 : mem_out_dec = 6'b111111;
12'd714 : mem_out_dec = 6'b111111;
12'd715 : mem_out_dec = 6'b111111;
12'd716 : mem_out_dec = 6'b111111;
12'd717 : mem_out_dec = 6'b111111;
12'd718 : mem_out_dec = 6'b111111;
12'd719 : mem_out_dec = 6'b111111;
12'd720 : mem_out_dec = 6'b111111;
12'd721 : mem_out_dec = 6'b000011;
12'd722 : mem_out_dec = 6'b000100;
12'd723 : mem_out_dec = 6'b000100;
12'd724 : mem_out_dec = 6'b000101;
12'd725 : mem_out_dec = 6'b000101;
12'd726 : mem_out_dec = 6'b000110;
12'd727 : mem_out_dec = 6'b000111;
12'd728 : mem_out_dec = 6'b000111;
12'd729 : mem_out_dec = 6'b000111;
12'd730 : mem_out_dec = 6'b001000;
12'd731 : mem_out_dec = 6'b001001;
12'd732 : mem_out_dec = 6'b001010;
12'd733 : mem_out_dec = 6'b001011;
12'd734 : mem_out_dec = 6'b001011;
12'd735 : mem_out_dec = 6'b001100;
12'd736 : mem_out_dec = 6'b001100;
12'd737 : mem_out_dec = 6'b001101;
12'd738 : mem_out_dec = 6'b001101;
12'd739 : mem_out_dec = 6'b001101;
12'd740 : mem_out_dec = 6'b001110;
12'd741 : mem_out_dec = 6'b001110;
12'd742 : mem_out_dec = 6'b001111;
12'd743 : mem_out_dec = 6'b010000;
12'd744 : mem_out_dec = 6'b001111;
12'd745 : mem_out_dec = 6'b010000;
12'd746 : mem_out_dec = 6'b010000;
12'd747 : mem_out_dec = 6'b010001;
12'd748 : mem_out_dec = 6'b010001;
12'd749 : mem_out_dec = 6'b010010;
12'd750 : mem_out_dec = 6'b010010;
12'd751 : mem_out_dec = 6'b010011;
12'd752 : mem_out_dec = 6'b010010;
12'd753 : mem_out_dec = 6'b010011;
12'd754 : mem_out_dec = 6'b010011;
12'd755 : mem_out_dec = 6'b010100;
12'd756 : mem_out_dec = 6'b010101;
12'd757 : mem_out_dec = 6'b010101;
12'd758 : mem_out_dec = 6'b010110;
12'd759 : mem_out_dec = 6'b010110;
12'd760 : mem_out_dec = 6'b010111;
12'd761 : mem_out_dec = 6'b010111;
12'd762 : mem_out_dec = 6'b011000;
12'd763 : mem_out_dec = 6'b011001;
12'd764 : mem_out_dec = 6'b011010;
12'd765 : mem_out_dec = 6'b011010;
12'd766 : mem_out_dec = 6'b011011;
12'd767 : mem_out_dec = 6'b011100;
12'd768 : mem_out_dec = 6'b111111;
12'd769 : mem_out_dec = 6'b111111;
12'd770 : mem_out_dec = 6'b111111;
12'd771 : mem_out_dec = 6'b111111;
12'd772 : mem_out_dec = 6'b111111;
12'd773 : mem_out_dec = 6'b111111;
12'd774 : mem_out_dec = 6'b111111;
12'd775 : mem_out_dec = 6'b111111;
12'd776 : mem_out_dec = 6'b111111;
12'd777 : mem_out_dec = 6'b111111;
12'd778 : mem_out_dec = 6'b111111;
12'd779 : mem_out_dec = 6'b111111;
12'd780 : mem_out_dec = 6'b111111;
12'd781 : mem_out_dec = 6'b111111;
12'd782 : mem_out_dec = 6'b111111;
12'd783 : mem_out_dec = 6'b111111;
12'd784 : mem_out_dec = 6'b111111;
12'd785 : mem_out_dec = 6'b111111;
12'd786 : mem_out_dec = 6'b000011;
12'd787 : mem_out_dec = 6'b000100;
12'd788 : mem_out_dec = 6'b000101;
12'd789 : mem_out_dec = 6'b000101;
12'd790 : mem_out_dec = 6'b000110;
12'd791 : mem_out_dec = 6'b000110;
12'd792 : mem_out_dec = 6'b000110;
12'd793 : mem_out_dec = 6'b000111;
12'd794 : mem_out_dec = 6'b001000;
12'd795 : mem_out_dec = 6'b001001;
12'd796 : mem_out_dec = 6'b001010;
12'd797 : mem_out_dec = 6'b001010;
12'd798 : mem_out_dec = 6'b001011;
12'd799 : mem_out_dec = 6'b001100;
12'd800 : mem_out_dec = 6'b001100;
12'd801 : mem_out_dec = 6'b001100;
12'd802 : mem_out_dec = 6'b001101;
12'd803 : mem_out_dec = 6'b001101;
12'd804 : mem_out_dec = 6'b001110;
12'd805 : mem_out_dec = 6'b001110;
12'd806 : mem_out_dec = 6'b001111;
12'd807 : mem_out_dec = 6'b010000;
12'd808 : mem_out_dec = 6'b001111;
12'd809 : mem_out_dec = 6'b001111;
12'd810 : mem_out_dec = 6'b010000;
12'd811 : mem_out_dec = 6'b010000;
12'd812 : mem_out_dec = 6'b010001;
12'd813 : mem_out_dec = 6'b010001;
12'd814 : mem_out_dec = 6'b010010;
12'd815 : mem_out_dec = 6'b010010;
12'd816 : mem_out_dec = 6'b010010;
12'd817 : mem_out_dec = 6'b010011;
12'd818 : mem_out_dec = 6'b010011;
12'd819 : mem_out_dec = 6'b010100;
12'd820 : mem_out_dec = 6'b010100;
12'd821 : mem_out_dec = 6'b010101;
12'd822 : mem_out_dec = 6'b010110;
12'd823 : mem_out_dec = 6'b010110;
12'd824 : mem_out_dec = 6'b010110;
12'd825 : mem_out_dec = 6'b010111;
12'd826 : mem_out_dec = 6'b011000;
12'd827 : mem_out_dec = 6'b011001;
12'd828 : mem_out_dec = 6'b011001;
12'd829 : mem_out_dec = 6'b011010;
12'd830 : mem_out_dec = 6'b011011;
12'd831 : mem_out_dec = 6'b011100;
12'd832 : mem_out_dec = 6'b111111;
12'd833 : mem_out_dec = 6'b111111;
12'd834 : mem_out_dec = 6'b111111;
12'd835 : mem_out_dec = 6'b111111;
12'd836 : mem_out_dec = 6'b111111;
12'd837 : mem_out_dec = 6'b111111;
12'd838 : mem_out_dec = 6'b111111;
12'd839 : mem_out_dec = 6'b111111;
12'd840 : mem_out_dec = 6'b111111;
12'd841 : mem_out_dec = 6'b111111;
12'd842 : mem_out_dec = 6'b111111;
12'd843 : mem_out_dec = 6'b111111;
12'd844 : mem_out_dec = 6'b111111;
12'd845 : mem_out_dec = 6'b111111;
12'd846 : mem_out_dec = 6'b111111;
12'd847 : mem_out_dec = 6'b111111;
12'd848 : mem_out_dec = 6'b111111;
12'd849 : mem_out_dec = 6'b111111;
12'd850 : mem_out_dec = 6'b111111;
12'd851 : mem_out_dec = 6'b000100;
12'd852 : mem_out_dec = 6'b000100;
12'd853 : mem_out_dec = 6'b000101;
12'd854 : mem_out_dec = 6'b000101;
12'd855 : mem_out_dec = 6'b000110;
12'd856 : mem_out_dec = 6'b000110;
12'd857 : mem_out_dec = 6'b000111;
12'd858 : mem_out_dec = 6'b001000;
12'd859 : mem_out_dec = 6'b001001;
12'd860 : mem_out_dec = 6'b001001;
12'd861 : mem_out_dec = 6'b001010;
12'd862 : mem_out_dec = 6'b001011;
12'd863 : mem_out_dec = 6'b001100;
12'd864 : mem_out_dec = 6'b001100;
12'd865 : mem_out_dec = 6'b001100;
12'd866 : mem_out_dec = 6'b001100;
12'd867 : mem_out_dec = 6'b001101;
12'd868 : mem_out_dec = 6'b001101;
12'd869 : mem_out_dec = 6'b001110;
12'd870 : mem_out_dec = 6'b001111;
12'd871 : mem_out_dec = 6'b001111;
12'd872 : mem_out_dec = 6'b001110;
12'd873 : mem_out_dec = 6'b001111;
12'd874 : mem_out_dec = 6'b001111;
12'd875 : mem_out_dec = 6'b010000;
12'd876 : mem_out_dec = 6'b010000;
12'd877 : mem_out_dec = 6'b010001;
12'd878 : mem_out_dec = 6'b010001;
12'd879 : mem_out_dec = 6'b010010;
12'd880 : mem_out_dec = 6'b010010;
12'd881 : mem_out_dec = 6'b010010;
12'd882 : mem_out_dec = 6'b010011;
12'd883 : mem_out_dec = 6'b010100;
12'd884 : mem_out_dec = 6'b010100;
12'd885 : mem_out_dec = 6'b010101;
12'd886 : mem_out_dec = 6'b010101;
12'd887 : mem_out_dec = 6'b010110;
12'd888 : mem_out_dec = 6'b010110;
12'd889 : mem_out_dec = 6'b010111;
12'd890 : mem_out_dec = 6'b011000;
12'd891 : mem_out_dec = 6'b011000;
12'd892 : mem_out_dec = 6'b011001;
12'd893 : mem_out_dec = 6'b011010;
12'd894 : mem_out_dec = 6'b011011;
12'd895 : mem_out_dec = 6'b011011;
12'd896 : mem_out_dec = 6'b111111;
12'd897 : mem_out_dec = 6'b111111;
12'd898 : mem_out_dec = 6'b111111;
12'd899 : mem_out_dec = 6'b111111;
12'd900 : mem_out_dec = 6'b111111;
12'd901 : mem_out_dec = 6'b111111;
12'd902 : mem_out_dec = 6'b111111;
12'd903 : mem_out_dec = 6'b111111;
12'd904 : mem_out_dec = 6'b111111;
12'd905 : mem_out_dec = 6'b111111;
12'd906 : mem_out_dec = 6'b111111;
12'd907 : mem_out_dec = 6'b111111;
12'd908 : mem_out_dec = 6'b111111;
12'd909 : mem_out_dec = 6'b111111;
12'd910 : mem_out_dec = 6'b111111;
12'd911 : mem_out_dec = 6'b111111;
12'd912 : mem_out_dec = 6'b111111;
12'd913 : mem_out_dec = 6'b111111;
12'd914 : mem_out_dec = 6'b111111;
12'd915 : mem_out_dec = 6'b111111;
12'd916 : mem_out_dec = 6'b000100;
12'd917 : mem_out_dec = 6'b000101;
12'd918 : mem_out_dec = 6'b000101;
12'd919 : mem_out_dec = 6'b000110;
12'd920 : mem_out_dec = 6'b000110;
12'd921 : mem_out_dec = 6'b000111;
12'd922 : mem_out_dec = 6'b001000;
12'd923 : mem_out_dec = 6'b001000;
12'd924 : mem_out_dec = 6'b001001;
12'd925 : mem_out_dec = 6'b001010;
12'd926 : mem_out_dec = 6'b001011;
12'd927 : mem_out_dec = 6'b001011;
12'd928 : mem_out_dec = 6'b001011;
12'd929 : mem_out_dec = 6'b001100;
12'd930 : mem_out_dec = 6'b001100;
12'd931 : mem_out_dec = 6'b001101;
12'd932 : mem_out_dec = 6'b001101;
12'd933 : mem_out_dec = 6'b001110;
12'd934 : mem_out_dec = 6'b001110;
12'd935 : mem_out_dec = 6'b001111;
12'd936 : mem_out_dec = 6'b001110;
12'd937 : mem_out_dec = 6'b001110;
12'd938 : mem_out_dec = 6'b001111;
12'd939 : mem_out_dec = 6'b001111;
12'd940 : mem_out_dec = 6'b010000;
12'd941 : mem_out_dec = 6'b010000;
12'd942 : mem_out_dec = 6'b010001;
12'd943 : mem_out_dec = 6'b010001;
12'd944 : mem_out_dec = 6'b010010;
12'd945 : mem_out_dec = 6'b010010;
12'd946 : mem_out_dec = 6'b010011;
12'd947 : mem_out_dec = 6'b010011;
12'd948 : mem_out_dec = 6'b010100;
12'd949 : mem_out_dec = 6'b010100;
12'd950 : mem_out_dec = 6'b010101;
12'd951 : mem_out_dec = 6'b010110;
12'd952 : mem_out_dec = 6'b010110;
12'd953 : mem_out_dec = 6'b010111;
12'd954 : mem_out_dec = 6'b010111;
12'd955 : mem_out_dec = 6'b011000;
12'd956 : mem_out_dec = 6'b011001;
12'd957 : mem_out_dec = 6'b011010;
12'd958 : mem_out_dec = 6'b011010;
12'd959 : mem_out_dec = 6'b011011;
12'd960 : mem_out_dec = 6'b111111;
12'd961 : mem_out_dec = 6'b111111;
12'd962 : mem_out_dec = 6'b111111;
12'd963 : mem_out_dec = 6'b111111;
12'd964 : mem_out_dec = 6'b111111;
12'd965 : mem_out_dec = 6'b111111;
12'd966 : mem_out_dec = 6'b111111;
12'd967 : mem_out_dec = 6'b111111;
12'd968 : mem_out_dec = 6'b111111;
12'd969 : mem_out_dec = 6'b111111;
12'd970 : mem_out_dec = 6'b111111;
12'd971 : mem_out_dec = 6'b111111;
12'd972 : mem_out_dec = 6'b111111;
12'd973 : mem_out_dec = 6'b111111;
12'd974 : mem_out_dec = 6'b111111;
12'd975 : mem_out_dec = 6'b111111;
12'd976 : mem_out_dec = 6'b111111;
12'd977 : mem_out_dec = 6'b111111;
12'd978 : mem_out_dec = 6'b111111;
12'd979 : mem_out_dec = 6'b111111;
12'd980 : mem_out_dec = 6'b111111;
12'd981 : mem_out_dec = 6'b000100;
12'd982 : mem_out_dec = 6'b000101;
12'd983 : mem_out_dec = 6'b000110;
12'd984 : mem_out_dec = 6'b000110;
12'd985 : mem_out_dec = 6'b000111;
12'd986 : mem_out_dec = 6'b000111;
12'd987 : mem_out_dec = 6'b001000;
12'd988 : mem_out_dec = 6'b001001;
12'd989 : mem_out_dec = 6'b001010;
12'd990 : mem_out_dec = 6'b001010;
12'd991 : mem_out_dec = 6'b001011;
12'd992 : mem_out_dec = 6'b001011;
12'd993 : mem_out_dec = 6'b001011;
12'd994 : mem_out_dec = 6'b001100;
12'd995 : mem_out_dec = 6'b001100;
12'd996 : mem_out_dec = 6'b001101;
12'd997 : mem_out_dec = 6'b001110;
12'd998 : mem_out_dec = 6'b001110;
12'd999 : mem_out_dec = 6'b001110;
12'd1000 : mem_out_dec = 6'b001101;
12'd1001 : mem_out_dec = 6'b001110;
12'd1002 : mem_out_dec = 6'b001110;
12'd1003 : mem_out_dec = 6'b001111;
12'd1004 : mem_out_dec = 6'b001111;
12'd1005 : mem_out_dec = 6'b010000;
12'd1006 : mem_out_dec = 6'b010000;
12'd1007 : mem_out_dec = 6'b010001;
12'd1008 : mem_out_dec = 6'b010001;
12'd1009 : mem_out_dec = 6'b010010;
12'd1010 : mem_out_dec = 6'b010011;
12'd1011 : mem_out_dec = 6'b010011;
12'd1012 : mem_out_dec = 6'b010100;
12'd1013 : mem_out_dec = 6'b010100;
12'd1014 : mem_out_dec = 6'b010101;
12'd1015 : mem_out_dec = 6'b010110;
12'd1016 : mem_out_dec = 6'b010110;
12'd1017 : mem_out_dec = 6'b010110;
12'd1018 : mem_out_dec = 6'b010111;
12'd1019 : mem_out_dec = 6'b011000;
12'd1020 : mem_out_dec = 6'b011001;
12'd1021 : mem_out_dec = 6'b011001;
12'd1022 : mem_out_dec = 6'b011010;
12'd1023 : mem_out_dec = 6'b011011;
12'd1024 : mem_out_dec = 6'b111111;
12'd1025 : mem_out_dec = 6'b111111;
12'd1026 : mem_out_dec = 6'b111111;
12'd1027 : mem_out_dec = 6'b111111;
12'd1028 : mem_out_dec = 6'b111111;
12'd1029 : mem_out_dec = 6'b111111;
12'd1030 : mem_out_dec = 6'b111111;
12'd1031 : mem_out_dec = 6'b111111;
12'd1032 : mem_out_dec = 6'b111111;
12'd1033 : mem_out_dec = 6'b111111;
12'd1034 : mem_out_dec = 6'b111111;
12'd1035 : mem_out_dec = 6'b111111;
12'd1036 : mem_out_dec = 6'b111111;
12'd1037 : mem_out_dec = 6'b111111;
12'd1038 : mem_out_dec = 6'b111111;
12'd1039 : mem_out_dec = 6'b111111;
12'd1040 : mem_out_dec = 6'b111111;
12'd1041 : mem_out_dec = 6'b111111;
12'd1042 : mem_out_dec = 6'b111111;
12'd1043 : mem_out_dec = 6'b111111;
12'd1044 : mem_out_dec = 6'b111111;
12'd1045 : mem_out_dec = 6'b111111;
12'd1046 : mem_out_dec = 6'b000100;
12'd1047 : mem_out_dec = 6'b000101;
12'd1048 : mem_out_dec = 6'b000101;
12'd1049 : mem_out_dec = 6'b000110;
12'd1050 : mem_out_dec = 6'b000110;
12'd1051 : mem_out_dec = 6'b000111;
12'd1052 : mem_out_dec = 6'b001000;
12'd1053 : mem_out_dec = 6'b001001;
12'd1054 : mem_out_dec = 6'b001001;
12'd1055 : mem_out_dec = 6'b001010;
12'd1056 : mem_out_dec = 6'b001010;
12'd1057 : mem_out_dec = 6'b001011;
12'd1058 : mem_out_dec = 6'b001011;
12'd1059 : mem_out_dec = 6'b001100;
12'd1060 : mem_out_dec = 6'b001100;
12'd1061 : mem_out_dec = 6'b001100;
12'd1062 : mem_out_dec = 6'b001100;
12'd1063 : mem_out_dec = 6'b001100;
12'd1064 : mem_out_dec = 6'b001100;
12'd1065 : mem_out_dec = 6'b001100;
12'd1066 : mem_out_dec = 6'b001101;
12'd1067 : mem_out_dec = 6'b001101;
12'd1068 : mem_out_dec = 6'b001110;
12'd1069 : mem_out_dec = 6'b001111;
12'd1070 : mem_out_dec = 6'b010000;
12'd1071 : mem_out_dec = 6'b010000;
12'd1072 : mem_out_dec = 6'b010001;
12'd1073 : mem_out_dec = 6'b010001;
12'd1074 : mem_out_dec = 6'b010010;
12'd1075 : mem_out_dec = 6'b010010;
12'd1076 : mem_out_dec = 6'b010011;
12'd1077 : mem_out_dec = 6'b010011;
12'd1078 : mem_out_dec = 6'b010100;
12'd1079 : mem_out_dec = 6'b010101;
12'd1080 : mem_out_dec = 6'b010101;
12'd1081 : mem_out_dec = 6'b010110;
12'd1082 : mem_out_dec = 6'b010110;
12'd1083 : mem_out_dec = 6'b010111;
12'd1084 : mem_out_dec = 6'b011000;
12'd1085 : mem_out_dec = 6'b011000;
12'd1086 : mem_out_dec = 6'b011001;
12'd1087 : mem_out_dec = 6'b011010;
12'd1088 : mem_out_dec = 6'b111111;
12'd1089 : mem_out_dec = 6'b111111;
12'd1090 : mem_out_dec = 6'b111111;
12'd1091 : mem_out_dec = 6'b111111;
12'd1092 : mem_out_dec = 6'b111111;
12'd1093 : mem_out_dec = 6'b111111;
12'd1094 : mem_out_dec = 6'b111111;
12'd1095 : mem_out_dec = 6'b111111;
12'd1096 : mem_out_dec = 6'b111111;
12'd1097 : mem_out_dec = 6'b111111;
12'd1098 : mem_out_dec = 6'b111111;
12'd1099 : mem_out_dec = 6'b111111;
12'd1100 : mem_out_dec = 6'b111111;
12'd1101 : mem_out_dec = 6'b111111;
12'd1102 : mem_out_dec = 6'b111111;
12'd1103 : mem_out_dec = 6'b111111;
12'd1104 : mem_out_dec = 6'b111111;
12'd1105 : mem_out_dec = 6'b111111;
12'd1106 : mem_out_dec = 6'b111111;
12'd1107 : mem_out_dec = 6'b111111;
12'd1108 : mem_out_dec = 6'b111111;
12'd1109 : mem_out_dec = 6'b111111;
12'd1110 : mem_out_dec = 6'b111111;
12'd1111 : mem_out_dec = 6'b000100;
12'd1112 : mem_out_dec = 6'b000100;
12'd1113 : mem_out_dec = 6'b000101;
12'd1114 : mem_out_dec = 6'b000110;
12'd1115 : mem_out_dec = 6'b000111;
12'd1116 : mem_out_dec = 6'b000111;
12'd1117 : mem_out_dec = 6'b001000;
12'd1118 : mem_out_dec = 6'b001001;
12'd1119 : mem_out_dec = 6'b001001;
12'd1120 : mem_out_dec = 6'b001010;
12'd1121 : mem_out_dec = 6'b001010;
12'd1122 : mem_out_dec = 6'b001011;
12'd1123 : mem_out_dec = 6'b001011;
12'd1124 : mem_out_dec = 6'b001011;
12'd1125 : mem_out_dec = 6'b001011;
12'd1126 : mem_out_dec = 6'b001011;
12'd1127 : mem_out_dec = 6'b001011;
12'd1128 : mem_out_dec = 6'b001011;
12'd1129 : mem_out_dec = 6'b001011;
12'd1130 : mem_out_dec = 6'b001100;
12'd1131 : mem_out_dec = 6'b001101;
12'd1132 : mem_out_dec = 6'b001110;
12'd1133 : mem_out_dec = 6'b001110;
12'd1134 : mem_out_dec = 6'b001111;
12'd1135 : mem_out_dec = 6'b010000;
12'd1136 : mem_out_dec = 6'b010000;
12'd1137 : mem_out_dec = 6'b010001;
12'd1138 : mem_out_dec = 6'b010001;
12'd1139 : mem_out_dec = 6'b010010;
12'd1140 : mem_out_dec = 6'b010010;
12'd1141 : mem_out_dec = 6'b010011;
12'd1142 : mem_out_dec = 6'b010100;
12'd1143 : mem_out_dec = 6'b010100;
12'd1144 : mem_out_dec = 6'b010100;
12'd1145 : mem_out_dec = 6'b010101;
12'd1146 : mem_out_dec = 6'b010110;
12'd1147 : mem_out_dec = 6'b010110;
12'd1148 : mem_out_dec = 6'b010111;
12'd1149 : mem_out_dec = 6'b011000;
12'd1150 : mem_out_dec = 6'b011000;
12'd1151 : mem_out_dec = 6'b011001;
12'd1152 : mem_out_dec = 6'b111111;
12'd1153 : mem_out_dec = 6'b111111;
12'd1154 : mem_out_dec = 6'b111111;
12'd1155 : mem_out_dec = 6'b111111;
12'd1156 : mem_out_dec = 6'b111111;
12'd1157 : mem_out_dec = 6'b111111;
12'd1158 : mem_out_dec = 6'b111111;
12'd1159 : mem_out_dec = 6'b111111;
12'd1160 : mem_out_dec = 6'b111111;
12'd1161 : mem_out_dec = 6'b111111;
12'd1162 : mem_out_dec = 6'b111111;
12'd1163 : mem_out_dec = 6'b111111;
12'd1164 : mem_out_dec = 6'b111111;
12'd1165 : mem_out_dec = 6'b111111;
12'd1166 : mem_out_dec = 6'b111111;
12'd1167 : mem_out_dec = 6'b111111;
12'd1168 : mem_out_dec = 6'b111111;
12'd1169 : mem_out_dec = 6'b111111;
12'd1170 : mem_out_dec = 6'b111111;
12'd1171 : mem_out_dec = 6'b111111;
12'd1172 : mem_out_dec = 6'b111111;
12'd1173 : mem_out_dec = 6'b111111;
12'd1174 : mem_out_dec = 6'b111111;
12'd1175 : mem_out_dec = 6'b111111;
12'd1176 : mem_out_dec = 6'b000100;
12'd1177 : mem_out_dec = 6'b000101;
12'd1178 : mem_out_dec = 6'b000101;
12'd1179 : mem_out_dec = 6'b000110;
12'd1180 : mem_out_dec = 6'b000111;
12'd1181 : mem_out_dec = 6'b000111;
12'd1182 : mem_out_dec = 6'b001000;
12'd1183 : mem_out_dec = 6'b001001;
12'd1184 : mem_out_dec = 6'b001001;
12'd1185 : mem_out_dec = 6'b001010;
12'd1186 : mem_out_dec = 6'b001010;
12'd1187 : mem_out_dec = 6'b001010;
12'd1188 : mem_out_dec = 6'b001010;
12'd1189 : mem_out_dec = 6'b001010;
12'd1190 : mem_out_dec = 6'b001010;
12'd1191 : mem_out_dec = 6'b001010;
12'd1192 : mem_out_dec = 6'b001010;
12'd1193 : mem_out_dec = 6'b001011;
12'd1194 : mem_out_dec = 6'b001100;
12'd1195 : mem_out_dec = 6'b001100;
12'd1196 : mem_out_dec = 6'b001101;
12'd1197 : mem_out_dec = 6'b001110;
12'd1198 : mem_out_dec = 6'b001111;
12'd1199 : mem_out_dec = 6'b010000;
12'd1200 : mem_out_dec = 6'b010000;
12'd1201 : mem_out_dec = 6'b010000;
12'd1202 : mem_out_dec = 6'b010001;
12'd1203 : mem_out_dec = 6'b010001;
12'd1204 : mem_out_dec = 6'b010010;
12'd1205 : mem_out_dec = 6'b010011;
12'd1206 : mem_out_dec = 6'b010011;
12'd1207 : mem_out_dec = 6'b010100;
12'd1208 : mem_out_dec = 6'b010100;
12'd1209 : mem_out_dec = 6'b010100;
12'd1210 : mem_out_dec = 6'b010101;
12'd1211 : mem_out_dec = 6'b010110;
12'd1212 : mem_out_dec = 6'b010110;
12'd1213 : mem_out_dec = 6'b010111;
12'd1214 : mem_out_dec = 6'b011000;
12'd1215 : mem_out_dec = 6'b011001;
12'd1216 : mem_out_dec = 6'b111111;
12'd1217 : mem_out_dec = 6'b111111;
12'd1218 : mem_out_dec = 6'b111111;
12'd1219 : mem_out_dec = 6'b111111;
12'd1220 : mem_out_dec = 6'b111111;
12'd1221 : mem_out_dec = 6'b111111;
12'd1222 : mem_out_dec = 6'b111111;
12'd1223 : mem_out_dec = 6'b111111;
12'd1224 : mem_out_dec = 6'b111111;
12'd1225 : mem_out_dec = 6'b111111;
12'd1226 : mem_out_dec = 6'b111111;
12'd1227 : mem_out_dec = 6'b111111;
12'd1228 : mem_out_dec = 6'b111111;
12'd1229 : mem_out_dec = 6'b111111;
12'd1230 : mem_out_dec = 6'b111111;
12'd1231 : mem_out_dec = 6'b111111;
12'd1232 : mem_out_dec = 6'b111111;
12'd1233 : mem_out_dec = 6'b111111;
12'd1234 : mem_out_dec = 6'b111111;
12'd1235 : mem_out_dec = 6'b111111;
12'd1236 : mem_out_dec = 6'b111111;
12'd1237 : mem_out_dec = 6'b111111;
12'd1238 : mem_out_dec = 6'b111111;
12'd1239 : mem_out_dec = 6'b111111;
12'd1240 : mem_out_dec = 6'b111111;
12'd1241 : mem_out_dec = 6'b000100;
12'd1242 : mem_out_dec = 6'b000100;
12'd1243 : mem_out_dec = 6'b000101;
12'd1244 : mem_out_dec = 6'b000110;
12'd1245 : mem_out_dec = 6'b000111;
12'd1246 : mem_out_dec = 6'b001000;
12'd1247 : mem_out_dec = 6'b001000;
12'd1248 : mem_out_dec = 6'b001001;
12'd1249 : mem_out_dec = 6'b001001;
12'd1250 : mem_out_dec = 6'b001001;
12'd1251 : mem_out_dec = 6'b001001;
12'd1252 : mem_out_dec = 6'b001001;
12'd1253 : mem_out_dec = 6'b001001;
12'd1254 : mem_out_dec = 6'b001001;
12'd1255 : mem_out_dec = 6'b001001;
12'd1256 : mem_out_dec = 6'b001010;
12'd1257 : mem_out_dec = 6'b001010;
12'd1258 : mem_out_dec = 6'b001011;
12'd1259 : mem_out_dec = 6'b001100;
12'd1260 : mem_out_dec = 6'b001101;
12'd1261 : mem_out_dec = 6'b001110;
12'd1262 : mem_out_dec = 6'b001110;
12'd1263 : mem_out_dec = 6'b001111;
12'd1264 : mem_out_dec = 6'b001111;
12'd1265 : mem_out_dec = 6'b010000;
12'd1266 : mem_out_dec = 6'b010000;
12'd1267 : mem_out_dec = 6'b010001;
12'd1268 : mem_out_dec = 6'b010001;
12'd1269 : mem_out_dec = 6'b010010;
12'd1270 : mem_out_dec = 6'b010011;
12'd1271 : mem_out_dec = 6'b010011;
12'd1272 : mem_out_dec = 6'b010011;
12'd1273 : mem_out_dec = 6'b010100;
12'd1274 : mem_out_dec = 6'b010100;
12'd1275 : mem_out_dec = 6'b010101;
12'd1276 : mem_out_dec = 6'b010110;
12'd1277 : mem_out_dec = 6'b010111;
12'd1278 : mem_out_dec = 6'b011000;
12'd1279 : mem_out_dec = 6'b011000;
12'd1280 : mem_out_dec = 6'b111111;
12'd1281 : mem_out_dec = 6'b111111;
12'd1282 : mem_out_dec = 6'b111111;
12'd1283 : mem_out_dec = 6'b111111;
12'd1284 : mem_out_dec = 6'b111111;
12'd1285 : mem_out_dec = 6'b111111;
12'd1286 : mem_out_dec = 6'b111111;
12'd1287 : mem_out_dec = 6'b111111;
12'd1288 : mem_out_dec = 6'b111111;
12'd1289 : mem_out_dec = 6'b111111;
12'd1290 : mem_out_dec = 6'b111111;
12'd1291 : mem_out_dec = 6'b111111;
12'd1292 : mem_out_dec = 6'b111111;
12'd1293 : mem_out_dec = 6'b111111;
12'd1294 : mem_out_dec = 6'b111111;
12'd1295 : mem_out_dec = 6'b111111;
12'd1296 : mem_out_dec = 6'b111111;
12'd1297 : mem_out_dec = 6'b111111;
12'd1298 : mem_out_dec = 6'b111111;
12'd1299 : mem_out_dec = 6'b111111;
12'd1300 : mem_out_dec = 6'b111111;
12'd1301 : mem_out_dec = 6'b111111;
12'd1302 : mem_out_dec = 6'b111111;
12'd1303 : mem_out_dec = 6'b111111;
12'd1304 : mem_out_dec = 6'b111111;
12'd1305 : mem_out_dec = 6'b111111;
12'd1306 : mem_out_dec = 6'b000100;
12'd1307 : mem_out_dec = 6'b000101;
12'd1308 : mem_out_dec = 6'b000110;
12'd1309 : mem_out_dec = 6'b000110;
12'd1310 : mem_out_dec = 6'b000111;
12'd1311 : mem_out_dec = 6'b001000;
12'd1312 : mem_out_dec = 6'b001000;
12'd1313 : mem_out_dec = 6'b001000;
12'd1314 : mem_out_dec = 6'b001000;
12'd1315 : mem_out_dec = 6'b001000;
12'd1316 : mem_out_dec = 6'b001000;
12'd1317 : mem_out_dec = 6'b001000;
12'd1318 : mem_out_dec = 6'b001000;
12'd1319 : mem_out_dec = 6'b001001;
12'd1320 : mem_out_dec = 6'b001001;
12'd1321 : mem_out_dec = 6'b001010;
12'd1322 : mem_out_dec = 6'b001011;
12'd1323 : mem_out_dec = 6'b001100;
12'd1324 : mem_out_dec = 6'b001100;
12'd1325 : mem_out_dec = 6'b001101;
12'd1326 : mem_out_dec = 6'b001110;
12'd1327 : mem_out_dec = 6'b001111;
12'd1328 : mem_out_dec = 6'b001111;
12'd1329 : mem_out_dec = 6'b001111;
12'd1330 : mem_out_dec = 6'b010000;
12'd1331 : mem_out_dec = 6'b010000;
12'd1332 : mem_out_dec = 6'b010001;
12'd1333 : mem_out_dec = 6'b010001;
12'd1334 : mem_out_dec = 6'b010010;
12'd1335 : mem_out_dec = 6'b010011;
12'd1336 : mem_out_dec = 6'b010010;
12'd1337 : mem_out_dec = 6'b010011;
12'd1338 : mem_out_dec = 6'b010100;
12'd1339 : mem_out_dec = 6'b010101;
12'd1340 : mem_out_dec = 6'b010110;
12'd1341 : mem_out_dec = 6'b010110;
12'd1342 : mem_out_dec = 6'b010111;
12'd1343 : mem_out_dec = 6'b011000;
12'd1344 : mem_out_dec = 6'b111111;
12'd1345 : mem_out_dec = 6'b111111;
12'd1346 : mem_out_dec = 6'b111111;
12'd1347 : mem_out_dec = 6'b111111;
12'd1348 : mem_out_dec = 6'b111111;
12'd1349 : mem_out_dec = 6'b111111;
12'd1350 : mem_out_dec = 6'b111111;
12'd1351 : mem_out_dec = 6'b111111;
12'd1352 : mem_out_dec = 6'b111111;
12'd1353 : mem_out_dec = 6'b111111;
12'd1354 : mem_out_dec = 6'b111111;
12'd1355 : mem_out_dec = 6'b111111;
12'd1356 : mem_out_dec = 6'b111111;
12'd1357 : mem_out_dec = 6'b111111;
12'd1358 : mem_out_dec = 6'b111111;
12'd1359 : mem_out_dec = 6'b111111;
12'd1360 : mem_out_dec = 6'b111111;
12'd1361 : mem_out_dec = 6'b111111;
12'd1362 : mem_out_dec = 6'b111111;
12'd1363 : mem_out_dec = 6'b111111;
12'd1364 : mem_out_dec = 6'b111111;
12'd1365 : mem_out_dec = 6'b111111;
12'd1366 : mem_out_dec = 6'b111111;
12'd1367 : mem_out_dec = 6'b111111;
12'd1368 : mem_out_dec = 6'b111111;
12'd1369 : mem_out_dec = 6'b111111;
12'd1370 : mem_out_dec = 6'b111111;
12'd1371 : mem_out_dec = 6'b000101;
12'd1372 : mem_out_dec = 6'b000101;
12'd1373 : mem_out_dec = 6'b000110;
12'd1374 : mem_out_dec = 6'b000111;
12'd1375 : mem_out_dec = 6'b001000;
12'd1376 : mem_out_dec = 6'b000111;
12'd1377 : mem_out_dec = 6'b000111;
12'd1378 : mem_out_dec = 6'b000111;
12'd1379 : mem_out_dec = 6'b000111;
12'd1380 : mem_out_dec = 6'b000111;
12'd1381 : mem_out_dec = 6'b000111;
12'd1382 : mem_out_dec = 6'b001000;
12'd1383 : mem_out_dec = 6'b001001;
12'd1384 : mem_out_dec = 6'b001001;
12'd1385 : mem_out_dec = 6'b001010;
12'd1386 : mem_out_dec = 6'b001010;
12'd1387 : mem_out_dec = 6'b001011;
12'd1388 : mem_out_dec = 6'b001100;
12'd1389 : mem_out_dec = 6'b001101;
12'd1390 : mem_out_dec = 6'b001110;
12'd1391 : mem_out_dec = 6'b001110;
12'd1392 : mem_out_dec = 6'b001111;
12'd1393 : mem_out_dec = 6'b001111;
12'd1394 : mem_out_dec = 6'b010000;
12'd1395 : mem_out_dec = 6'b010000;
12'd1396 : mem_out_dec = 6'b010001;
12'd1397 : mem_out_dec = 6'b010001;
12'd1398 : mem_out_dec = 6'b010010;
12'd1399 : mem_out_dec = 6'b010010;
12'd1400 : mem_out_dec = 6'b010010;
12'd1401 : mem_out_dec = 6'b010011;
12'd1402 : mem_out_dec = 6'b010100;
12'd1403 : mem_out_dec = 6'b010100;
12'd1404 : mem_out_dec = 6'b010101;
12'd1405 : mem_out_dec = 6'b010110;
12'd1406 : mem_out_dec = 6'b010111;
12'd1407 : mem_out_dec = 6'b010111;
12'd1408 : mem_out_dec = 6'b111111;
12'd1409 : mem_out_dec = 6'b111111;
12'd1410 : mem_out_dec = 6'b111111;
12'd1411 : mem_out_dec = 6'b111111;
12'd1412 : mem_out_dec = 6'b111111;
12'd1413 : mem_out_dec = 6'b111111;
12'd1414 : mem_out_dec = 6'b111111;
12'd1415 : mem_out_dec = 6'b111111;
12'd1416 : mem_out_dec = 6'b111111;
12'd1417 : mem_out_dec = 6'b111111;
12'd1418 : mem_out_dec = 6'b111111;
12'd1419 : mem_out_dec = 6'b111111;
12'd1420 : mem_out_dec = 6'b111111;
12'd1421 : mem_out_dec = 6'b111111;
12'd1422 : mem_out_dec = 6'b111111;
12'd1423 : mem_out_dec = 6'b111111;
12'd1424 : mem_out_dec = 6'b111111;
12'd1425 : mem_out_dec = 6'b111111;
12'd1426 : mem_out_dec = 6'b111111;
12'd1427 : mem_out_dec = 6'b111111;
12'd1428 : mem_out_dec = 6'b111111;
12'd1429 : mem_out_dec = 6'b111111;
12'd1430 : mem_out_dec = 6'b111111;
12'd1431 : mem_out_dec = 6'b111111;
12'd1432 : mem_out_dec = 6'b111111;
12'd1433 : mem_out_dec = 6'b111111;
12'd1434 : mem_out_dec = 6'b111111;
12'd1435 : mem_out_dec = 6'b111111;
12'd1436 : mem_out_dec = 6'b000101;
12'd1437 : mem_out_dec = 6'b000110;
12'd1438 : mem_out_dec = 6'b000111;
12'd1439 : mem_out_dec = 6'b000111;
12'd1440 : mem_out_dec = 6'b000110;
12'd1441 : mem_out_dec = 6'b000110;
12'd1442 : mem_out_dec = 6'b000110;
12'd1443 : mem_out_dec = 6'b000110;
12'd1444 : mem_out_dec = 6'b000110;
12'd1445 : mem_out_dec = 6'b000111;
12'd1446 : mem_out_dec = 6'b000111;
12'd1447 : mem_out_dec = 6'b001000;
12'd1448 : mem_out_dec = 6'b001001;
12'd1449 : mem_out_dec = 6'b001001;
12'd1450 : mem_out_dec = 6'b001010;
12'd1451 : mem_out_dec = 6'b001011;
12'd1452 : mem_out_dec = 6'b001100;
12'd1453 : mem_out_dec = 6'b001100;
12'd1454 : mem_out_dec = 6'b001101;
12'd1455 : mem_out_dec = 6'b001110;
12'd1456 : mem_out_dec = 6'b001110;
12'd1457 : mem_out_dec = 6'b001111;
12'd1458 : mem_out_dec = 6'b001111;
12'd1459 : mem_out_dec = 6'b010000;
12'd1460 : mem_out_dec = 6'b010000;
12'd1461 : mem_out_dec = 6'b010001;
12'd1462 : mem_out_dec = 6'b010001;
12'd1463 : mem_out_dec = 6'b010010;
12'd1464 : mem_out_dec = 6'b010010;
12'd1465 : mem_out_dec = 6'b010011;
12'd1466 : mem_out_dec = 6'b010011;
12'd1467 : mem_out_dec = 6'b010100;
12'd1468 : mem_out_dec = 6'b010101;
12'd1469 : mem_out_dec = 6'b010110;
12'd1470 : mem_out_dec = 6'b010110;
12'd1471 : mem_out_dec = 6'b010111;
12'd1472 : mem_out_dec = 6'b111111;
12'd1473 : mem_out_dec = 6'b111111;
12'd1474 : mem_out_dec = 6'b111111;
12'd1475 : mem_out_dec = 6'b111111;
12'd1476 : mem_out_dec = 6'b111111;
12'd1477 : mem_out_dec = 6'b111111;
12'd1478 : mem_out_dec = 6'b111111;
12'd1479 : mem_out_dec = 6'b111111;
12'd1480 : mem_out_dec = 6'b111111;
12'd1481 : mem_out_dec = 6'b111111;
12'd1482 : mem_out_dec = 6'b111111;
12'd1483 : mem_out_dec = 6'b111111;
12'd1484 : mem_out_dec = 6'b111111;
12'd1485 : mem_out_dec = 6'b111111;
12'd1486 : mem_out_dec = 6'b111111;
12'd1487 : mem_out_dec = 6'b111111;
12'd1488 : mem_out_dec = 6'b111111;
12'd1489 : mem_out_dec = 6'b111111;
12'd1490 : mem_out_dec = 6'b111111;
12'd1491 : mem_out_dec = 6'b111111;
12'd1492 : mem_out_dec = 6'b111111;
12'd1493 : mem_out_dec = 6'b111111;
12'd1494 : mem_out_dec = 6'b111111;
12'd1495 : mem_out_dec = 6'b111111;
12'd1496 : mem_out_dec = 6'b111111;
12'd1497 : mem_out_dec = 6'b111111;
12'd1498 : mem_out_dec = 6'b111111;
12'd1499 : mem_out_dec = 6'b111111;
12'd1500 : mem_out_dec = 6'b111111;
12'd1501 : mem_out_dec = 6'b000101;
12'd1502 : mem_out_dec = 6'b000110;
12'd1503 : mem_out_dec = 6'b000110;
12'd1504 : mem_out_dec = 6'b000110;
12'd1505 : mem_out_dec = 6'b000110;
12'd1506 : mem_out_dec = 6'b000101;
12'd1507 : mem_out_dec = 6'b000101;
12'd1508 : mem_out_dec = 6'b000110;
12'd1509 : mem_out_dec = 6'b000111;
12'd1510 : mem_out_dec = 6'b000111;
12'd1511 : mem_out_dec = 6'b001000;
12'd1512 : mem_out_dec = 6'b001000;
12'd1513 : mem_out_dec = 6'b001001;
12'd1514 : mem_out_dec = 6'b001010;
12'd1515 : mem_out_dec = 6'b001011;
12'd1516 : mem_out_dec = 6'b001011;
12'd1517 : mem_out_dec = 6'b001100;
12'd1518 : mem_out_dec = 6'b001101;
12'd1519 : mem_out_dec = 6'b001110;
12'd1520 : mem_out_dec = 6'b001110;
12'd1521 : mem_out_dec = 6'b001110;
12'd1522 : mem_out_dec = 6'b001111;
12'd1523 : mem_out_dec = 6'b001111;
12'd1524 : mem_out_dec = 6'b010000;
12'd1525 : mem_out_dec = 6'b010000;
12'd1526 : mem_out_dec = 6'b010001;
12'd1527 : mem_out_dec = 6'b010001;
12'd1528 : mem_out_dec = 6'b010001;
12'd1529 : mem_out_dec = 6'b010010;
12'd1530 : mem_out_dec = 6'b010011;
12'd1531 : mem_out_dec = 6'b010100;
12'd1532 : mem_out_dec = 6'b010101;
12'd1533 : mem_out_dec = 6'b010101;
12'd1534 : mem_out_dec = 6'b010110;
12'd1535 : mem_out_dec = 6'b010110;
12'd1536 : mem_out_dec = 6'b111111;
12'd1537 : mem_out_dec = 6'b111111;
12'd1538 : mem_out_dec = 6'b111111;
12'd1539 : mem_out_dec = 6'b111111;
12'd1540 : mem_out_dec = 6'b111111;
12'd1541 : mem_out_dec = 6'b111111;
12'd1542 : mem_out_dec = 6'b111111;
12'd1543 : mem_out_dec = 6'b111111;
12'd1544 : mem_out_dec = 6'b111111;
12'd1545 : mem_out_dec = 6'b111111;
12'd1546 : mem_out_dec = 6'b111111;
12'd1547 : mem_out_dec = 6'b111111;
12'd1548 : mem_out_dec = 6'b111111;
12'd1549 : mem_out_dec = 6'b111111;
12'd1550 : mem_out_dec = 6'b111111;
12'd1551 : mem_out_dec = 6'b111111;
12'd1552 : mem_out_dec = 6'b111111;
12'd1553 : mem_out_dec = 6'b111111;
12'd1554 : mem_out_dec = 6'b111111;
12'd1555 : mem_out_dec = 6'b111111;
12'd1556 : mem_out_dec = 6'b111111;
12'd1557 : mem_out_dec = 6'b111111;
12'd1558 : mem_out_dec = 6'b111111;
12'd1559 : mem_out_dec = 6'b111111;
12'd1560 : mem_out_dec = 6'b111111;
12'd1561 : mem_out_dec = 6'b111111;
12'd1562 : mem_out_dec = 6'b111111;
12'd1563 : mem_out_dec = 6'b111111;
12'd1564 : mem_out_dec = 6'b111111;
12'd1565 : mem_out_dec = 6'b111111;
12'd1566 : mem_out_dec = 6'b000100;
12'd1567 : mem_out_dec = 6'b000100;
12'd1568 : mem_out_dec = 6'b000100;
12'd1569 : mem_out_dec = 6'b000100;
12'd1570 : mem_out_dec = 6'b000100;
12'd1571 : mem_out_dec = 6'b000101;
12'd1572 : mem_out_dec = 6'b000101;
12'd1573 : mem_out_dec = 6'b000110;
12'd1574 : mem_out_dec = 6'b000111;
12'd1575 : mem_out_dec = 6'b000111;
12'd1576 : mem_out_dec = 6'b000111;
12'd1577 : mem_out_dec = 6'b001000;
12'd1578 : mem_out_dec = 6'b001001;
12'd1579 : mem_out_dec = 6'b001010;
12'd1580 : mem_out_dec = 6'b001010;
12'd1581 : mem_out_dec = 6'b001011;
12'd1582 : mem_out_dec = 6'b001100;
12'd1583 : mem_out_dec = 6'b001101;
12'd1584 : mem_out_dec = 6'b001101;
12'd1585 : mem_out_dec = 6'b001101;
12'd1586 : mem_out_dec = 6'b001110;
12'd1587 : mem_out_dec = 6'b001110;
12'd1588 : mem_out_dec = 6'b001111;
12'd1589 : mem_out_dec = 6'b001111;
12'd1590 : mem_out_dec = 6'b010000;
12'd1591 : mem_out_dec = 6'b010001;
12'd1592 : mem_out_dec = 6'b010001;
12'd1593 : mem_out_dec = 6'b010001;
12'd1594 : mem_out_dec = 6'b010010;
12'd1595 : mem_out_dec = 6'b010010;
12'd1596 : mem_out_dec = 6'b010011;
12'd1597 : mem_out_dec = 6'b010011;
12'd1598 : mem_out_dec = 6'b010100;
12'd1599 : mem_out_dec = 6'b010100;
12'd1600 : mem_out_dec = 6'b111111;
12'd1601 : mem_out_dec = 6'b111111;
12'd1602 : mem_out_dec = 6'b111111;
12'd1603 : mem_out_dec = 6'b111111;
12'd1604 : mem_out_dec = 6'b111111;
12'd1605 : mem_out_dec = 6'b111111;
12'd1606 : mem_out_dec = 6'b111111;
12'd1607 : mem_out_dec = 6'b111111;
12'd1608 : mem_out_dec = 6'b111111;
12'd1609 : mem_out_dec = 6'b111111;
12'd1610 : mem_out_dec = 6'b111111;
12'd1611 : mem_out_dec = 6'b111111;
12'd1612 : mem_out_dec = 6'b111111;
12'd1613 : mem_out_dec = 6'b111111;
12'd1614 : mem_out_dec = 6'b111111;
12'd1615 : mem_out_dec = 6'b111111;
12'd1616 : mem_out_dec = 6'b111111;
12'd1617 : mem_out_dec = 6'b111111;
12'd1618 : mem_out_dec = 6'b111111;
12'd1619 : mem_out_dec = 6'b111111;
12'd1620 : mem_out_dec = 6'b111111;
12'd1621 : mem_out_dec = 6'b111111;
12'd1622 : mem_out_dec = 6'b111111;
12'd1623 : mem_out_dec = 6'b111111;
12'd1624 : mem_out_dec = 6'b111111;
12'd1625 : mem_out_dec = 6'b111111;
12'd1626 : mem_out_dec = 6'b111111;
12'd1627 : mem_out_dec = 6'b111111;
12'd1628 : mem_out_dec = 6'b111111;
12'd1629 : mem_out_dec = 6'b111111;
12'd1630 : mem_out_dec = 6'b111111;
12'd1631 : mem_out_dec = 6'b000100;
12'd1632 : mem_out_dec = 6'b000011;
12'd1633 : mem_out_dec = 6'b000011;
12'd1634 : mem_out_dec = 6'b000100;
12'd1635 : mem_out_dec = 6'b000100;
12'd1636 : mem_out_dec = 6'b000101;
12'd1637 : mem_out_dec = 6'b000110;
12'd1638 : mem_out_dec = 6'b000110;
12'd1639 : mem_out_dec = 6'b000111;
12'd1640 : mem_out_dec = 6'b000111;
12'd1641 : mem_out_dec = 6'b001000;
12'd1642 : mem_out_dec = 6'b001001;
12'd1643 : mem_out_dec = 6'b001001;
12'd1644 : mem_out_dec = 6'b001010;
12'd1645 : mem_out_dec = 6'b001011;
12'd1646 : mem_out_dec = 6'b001100;
12'd1647 : mem_out_dec = 6'b001101;
12'd1648 : mem_out_dec = 6'b001101;
12'd1649 : mem_out_dec = 6'b001101;
12'd1650 : mem_out_dec = 6'b001110;
12'd1651 : mem_out_dec = 6'b001110;
12'd1652 : mem_out_dec = 6'b001110;
12'd1653 : mem_out_dec = 6'b001111;
12'd1654 : mem_out_dec = 6'b010000;
12'd1655 : mem_out_dec = 6'b010000;
12'd1656 : mem_out_dec = 6'b010001;
12'd1657 : mem_out_dec = 6'b010001;
12'd1658 : mem_out_dec = 6'b010001;
12'd1659 : mem_out_dec = 6'b010010;
12'd1660 : mem_out_dec = 6'b010010;
12'd1661 : mem_out_dec = 6'b010011;
12'd1662 : mem_out_dec = 6'b010011;
12'd1663 : mem_out_dec = 6'b010100;
12'd1664 : mem_out_dec = 6'b111111;
12'd1665 : mem_out_dec = 6'b111111;
12'd1666 : mem_out_dec = 6'b111111;
12'd1667 : mem_out_dec = 6'b111111;
12'd1668 : mem_out_dec = 6'b111111;
12'd1669 : mem_out_dec = 6'b111111;
12'd1670 : mem_out_dec = 6'b111111;
12'd1671 : mem_out_dec = 6'b111111;
12'd1672 : mem_out_dec = 6'b111111;
12'd1673 : mem_out_dec = 6'b111111;
12'd1674 : mem_out_dec = 6'b111111;
12'd1675 : mem_out_dec = 6'b111111;
12'd1676 : mem_out_dec = 6'b111111;
12'd1677 : mem_out_dec = 6'b111111;
12'd1678 : mem_out_dec = 6'b111111;
12'd1679 : mem_out_dec = 6'b111111;
12'd1680 : mem_out_dec = 6'b111111;
12'd1681 : mem_out_dec = 6'b111111;
12'd1682 : mem_out_dec = 6'b111111;
12'd1683 : mem_out_dec = 6'b111111;
12'd1684 : mem_out_dec = 6'b111111;
12'd1685 : mem_out_dec = 6'b111111;
12'd1686 : mem_out_dec = 6'b111111;
12'd1687 : mem_out_dec = 6'b111111;
12'd1688 : mem_out_dec = 6'b111111;
12'd1689 : mem_out_dec = 6'b111111;
12'd1690 : mem_out_dec = 6'b111111;
12'd1691 : mem_out_dec = 6'b111111;
12'd1692 : mem_out_dec = 6'b111111;
12'd1693 : mem_out_dec = 6'b111111;
12'd1694 : mem_out_dec = 6'b111111;
12'd1695 : mem_out_dec = 6'b111111;
12'd1696 : mem_out_dec = 6'b000011;
12'd1697 : mem_out_dec = 6'b000011;
12'd1698 : mem_out_dec = 6'b000100;
12'd1699 : mem_out_dec = 6'b000100;
12'd1700 : mem_out_dec = 6'b000101;
12'd1701 : mem_out_dec = 6'b000101;
12'd1702 : mem_out_dec = 6'b000110;
12'd1703 : mem_out_dec = 6'b000111;
12'd1704 : mem_out_dec = 6'b000111;
12'd1705 : mem_out_dec = 6'b001000;
12'd1706 : mem_out_dec = 6'b001000;
12'd1707 : mem_out_dec = 6'b001001;
12'd1708 : mem_out_dec = 6'b001010;
12'd1709 : mem_out_dec = 6'b001011;
12'd1710 : mem_out_dec = 6'b001100;
12'd1711 : mem_out_dec = 6'b001100;
12'd1712 : mem_out_dec = 6'b001100;
12'd1713 : mem_out_dec = 6'b001101;
12'd1714 : mem_out_dec = 6'b001101;
12'd1715 : mem_out_dec = 6'b001110;
12'd1716 : mem_out_dec = 6'b001110;
12'd1717 : mem_out_dec = 6'b001111;
12'd1718 : mem_out_dec = 6'b001111;
12'd1719 : mem_out_dec = 6'b010000;
12'd1720 : mem_out_dec = 6'b010000;
12'd1721 : mem_out_dec = 6'b010000;
12'd1722 : mem_out_dec = 6'b010001;
12'd1723 : mem_out_dec = 6'b010001;
12'd1724 : mem_out_dec = 6'b010010;
12'd1725 : mem_out_dec = 6'b010010;
12'd1726 : mem_out_dec = 6'b010011;
12'd1727 : mem_out_dec = 6'b010011;
12'd1728 : mem_out_dec = 6'b111111;
12'd1729 : mem_out_dec = 6'b111111;
12'd1730 : mem_out_dec = 6'b111111;
12'd1731 : mem_out_dec = 6'b111111;
12'd1732 : mem_out_dec = 6'b111111;
12'd1733 : mem_out_dec = 6'b111111;
12'd1734 : mem_out_dec = 6'b111111;
12'd1735 : mem_out_dec = 6'b111111;
12'd1736 : mem_out_dec = 6'b111111;
12'd1737 : mem_out_dec = 6'b111111;
12'd1738 : mem_out_dec = 6'b111111;
12'd1739 : mem_out_dec = 6'b111111;
12'd1740 : mem_out_dec = 6'b111111;
12'd1741 : mem_out_dec = 6'b111111;
12'd1742 : mem_out_dec = 6'b111111;
12'd1743 : mem_out_dec = 6'b111111;
12'd1744 : mem_out_dec = 6'b111111;
12'd1745 : mem_out_dec = 6'b111111;
12'd1746 : mem_out_dec = 6'b111111;
12'd1747 : mem_out_dec = 6'b111111;
12'd1748 : mem_out_dec = 6'b111111;
12'd1749 : mem_out_dec = 6'b111111;
12'd1750 : mem_out_dec = 6'b111111;
12'd1751 : mem_out_dec = 6'b111111;
12'd1752 : mem_out_dec = 6'b111111;
12'd1753 : mem_out_dec = 6'b111111;
12'd1754 : mem_out_dec = 6'b111111;
12'd1755 : mem_out_dec = 6'b111111;
12'd1756 : mem_out_dec = 6'b111111;
12'd1757 : mem_out_dec = 6'b111111;
12'd1758 : mem_out_dec = 6'b111111;
12'd1759 : mem_out_dec = 6'b111111;
12'd1760 : mem_out_dec = 6'b111111;
12'd1761 : mem_out_dec = 6'b000011;
12'd1762 : mem_out_dec = 6'b000011;
12'd1763 : mem_out_dec = 6'b000100;
12'd1764 : mem_out_dec = 6'b000101;
12'd1765 : mem_out_dec = 6'b000101;
12'd1766 : mem_out_dec = 6'b000110;
12'd1767 : mem_out_dec = 6'b000111;
12'd1768 : mem_out_dec = 6'b000111;
12'd1769 : mem_out_dec = 6'b000111;
12'd1770 : mem_out_dec = 6'b001000;
12'd1771 : mem_out_dec = 6'b001001;
12'd1772 : mem_out_dec = 6'b001010;
12'd1773 : mem_out_dec = 6'b001011;
12'd1774 : mem_out_dec = 6'b001011;
12'd1775 : mem_out_dec = 6'b001100;
12'd1776 : mem_out_dec = 6'b001100;
12'd1777 : mem_out_dec = 6'b001101;
12'd1778 : mem_out_dec = 6'b001101;
12'd1779 : mem_out_dec = 6'b001101;
12'd1780 : mem_out_dec = 6'b001110;
12'd1781 : mem_out_dec = 6'b001111;
12'd1782 : mem_out_dec = 6'b001111;
12'd1783 : mem_out_dec = 6'b010000;
12'd1784 : mem_out_dec = 6'b010000;
12'd1785 : mem_out_dec = 6'b010000;
12'd1786 : mem_out_dec = 6'b010000;
12'd1787 : mem_out_dec = 6'b010001;
12'd1788 : mem_out_dec = 6'b010001;
12'd1789 : mem_out_dec = 6'b010010;
12'd1790 : mem_out_dec = 6'b010010;
12'd1791 : mem_out_dec = 6'b010011;
12'd1792 : mem_out_dec = 6'b111111;
12'd1793 : mem_out_dec = 6'b111111;
12'd1794 : mem_out_dec = 6'b111111;
12'd1795 : mem_out_dec = 6'b111111;
12'd1796 : mem_out_dec = 6'b111111;
12'd1797 : mem_out_dec = 6'b111111;
12'd1798 : mem_out_dec = 6'b111111;
12'd1799 : mem_out_dec = 6'b111111;
12'd1800 : mem_out_dec = 6'b111111;
12'd1801 : mem_out_dec = 6'b111111;
12'd1802 : mem_out_dec = 6'b111111;
12'd1803 : mem_out_dec = 6'b111111;
12'd1804 : mem_out_dec = 6'b111111;
12'd1805 : mem_out_dec = 6'b111111;
12'd1806 : mem_out_dec = 6'b111111;
12'd1807 : mem_out_dec = 6'b111111;
12'd1808 : mem_out_dec = 6'b111111;
12'd1809 : mem_out_dec = 6'b111111;
12'd1810 : mem_out_dec = 6'b111111;
12'd1811 : mem_out_dec = 6'b111111;
12'd1812 : mem_out_dec = 6'b111111;
12'd1813 : mem_out_dec = 6'b111111;
12'd1814 : mem_out_dec = 6'b111111;
12'd1815 : mem_out_dec = 6'b111111;
12'd1816 : mem_out_dec = 6'b111111;
12'd1817 : mem_out_dec = 6'b111111;
12'd1818 : mem_out_dec = 6'b111111;
12'd1819 : mem_out_dec = 6'b111111;
12'd1820 : mem_out_dec = 6'b111111;
12'd1821 : mem_out_dec = 6'b111111;
12'd1822 : mem_out_dec = 6'b111111;
12'd1823 : mem_out_dec = 6'b111111;
12'd1824 : mem_out_dec = 6'b111111;
12'd1825 : mem_out_dec = 6'b111111;
12'd1826 : mem_out_dec = 6'b000011;
12'd1827 : mem_out_dec = 6'b000100;
12'd1828 : mem_out_dec = 6'b000100;
12'd1829 : mem_out_dec = 6'b000101;
12'd1830 : mem_out_dec = 6'b000110;
12'd1831 : mem_out_dec = 6'b000110;
12'd1832 : mem_out_dec = 6'b000110;
12'd1833 : mem_out_dec = 6'b000111;
12'd1834 : mem_out_dec = 6'b001000;
12'd1835 : mem_out_dec = 6'b001001;
12'd1836 : mem_out_dec = 6'b001010;
12'd1837 : mem_out_dec = 6'b001010;
12'd1838 : mem_out_dec = 6'b001011;
12'd1839 : mem_out_dec = 6'b001100;
12'd1840 : mem_out_dec = 6'b001100;
12'd1841 : mem_out_dec = 6'b001100;
12'd1842 : mem_out_dec = 6'b001101;
12'd1843 : mem_out_dec = 6'b001101;
12'd1844 : mem_out_dec = 6'b001110;
12'd1845 : mem_out_dec = 6'b001110;
12'd1846 : mem_out_dec = 6'b001111;
12'd1847 : mem_out_dec = 6'b010000;
12'd1848 : mem_out_dec = 6'b001111;
12'd1849 : mem_out_dec = 6'b001111;
12'd1850 : mem_out_dec = 6'b010000;
12'd1851 : mem_out_dec = 6'b010000;
12'd1852 : mem_out_dec = 6'b010001;
12'd1853 : mem_out_dec = 6'b010001;
12'd1854 : mem_out_dec = 6'b010010;
12'd1855 : mem_out_dec = 6'b010010;
12'd1856 : mem_out_dec = 6'b111111;
12'd1857 : mem_out_dec = 6'b111111;
12'd1858 : mem_out_dec = 6'b111111;
12'd1859 : mem_out_dec = 6'b111111;
12'd1860 : mem_out_dec = 6'b111111;
12'd1861 : mem_out_dec = 6'b111111;
12'd1862 : mem_out_dec = 6'b111111;
12'd1863 : mem_out_dec = 6'b111111;
12'd1864 : mem_out_dec = 6'b111111;
12'd1865 : mem_out_dec = 6'b111111;
12'd1866 : mem_out_dec = 6'b111111;
12'd1867 : mem_out_dec = 6'b111111;
12'd1868 : mem_out_dec = 6'b111111;
12'd1869 : mem_out_dec = 6'b111111;
12'd1870 : mem_out_dec = 6'b111111;
12'd1871 : mem_out_dec = 6'b111111;
12'd1872 : mem_out_dec = 6'b111111;
12'd1873 : mem_out_dec = 6'b111111;
12'd1874 : mem_out_dec = 6'b111111;
12'd1875 : mem_out_dec = 6'b111111;
12'd1876 : mem_out_dec = 6'b111111;
12'd1877 : mem_out_dec = 6'b111111;
12'd1878 : mem_out_dec = 6'b111111;
12'd1879 : mem_out_dec = 6'b111111;
12'd1880 : mem_out_dec = 6'b111111;
12'd1881 : mem_out_dec = 6'b111111;
12'd1882 : mem_out_dec = 6'b111111;
12'd1883 : mem_out_dec = 6'b111111;
12'd1884 : mem_out_dec = 6'b111111;
12'd1885 : mem_out_dec = 6'b111111;
12'd1886 : mem_out_dec = 6'b111111;
12'd1887 : mem_out_dec = 6'b111111;
12'd1888 : mem_out_dec = 6'b111111;
12'd1889 : mem_out_dec = 6'b111111;
12'd1890 : mem_out_dec = 6'b111111;
12'd1891 : mem_out_dec = 6'b000100;
12'd1892 : mem_out_dec = 6'b000100;
12'd1893 : mem_out_dec = 6'b000101;
12'd1894 : mem_out_dec = 6'b000101;
12'd1895 : mem_out_dec = 6'b000110;
12'd1896 : mem_out_dec = 6'b000110;
12'd1897 : mem_out_dec = 6'b000111;
12'd1898 : mem_out_dec = 6'b001000;
12'd1899 : mem_out_dec = 6'b001001;
12'd1900 : mem_out_dec = 6'b001001;
12'd1901 : mem_out_dec = 6'b001010;
12'd1902 : mem_out_dec = 6'b001011;
12'd1903 : mem_out_dec = 6'b001100;
12'd1904 : mem_out_dec = 6'b001100;
12'd1905 : mem_out_dec = 6'b001100;
12'd1906 : mem_out_dec = 6'b001100;
12'd1907 : mem_out_dec = 6'b001101;
12'd1908 : mem_out_dec = 6'b001110;
12'd1909 : mem_out_dec = 6'b001110;
12'd1910 : mem_out_dec = 6'b001111;
12'd1911 : mem_out_dec = 6'b001111;
12'd1912 : mem_out_dec = 6'b001111;
12'd1913 : mem_out_dec = 6'b001111;
12'd1914 : mem_out_dec = 6'b001111;
12'd1915 : mem_out_dec = 6'b010000;
12'd1916 : mem_out_dec = 6'b010000;
12'd1917 : mem_out_dec = 6'b010001;
12'd1918 : mem_out_dec = 6'b010001;
12'd1919 : mem_out_dec = 6'b010010;
12'd1920 : mem_out_dec = 6'b111111;
12'd1921 : mem_out_dec = 6'b111111;
12'd1922 : mem_out_dec = 6'b111111;
12'd1923 : mem_out_dec = 6'b111111;
12'd1924 : mem_out_dec = 6'b111111;
12'd1925 : mem_out_dec = 6'b111111;
12'd1926 : mem_out_dec = 6'b111111;
12'd1927 : mem_out_dec = 6'b111111;
12'd1928 : mem_out_dec = 6'b111111;
12'd1929 : mem_out_dec = 6'b111111;
12'd1930 : mem_out_dec = 6'b111111;
12'd1931 : mem_out_dec = 6'b111111;
12'd1932 : mem_out_dec = 6'b111111;
12'd1933 : mem_out_dec = 6'b111111;
12'd1934 : mem_out_dec = 6'b111111;
12'd1935 : mem_out_dec = 6'b111111;
12'd1936 : mem_out_dec = 6'b111111;
12'd1937 : mem_out_dec = 6'b111111;
12'd1938 : mem_out_dec = 6'b111111;
12'd1939 : mem_out_dec = 6'b111111;
12'd1940 : mem_out_dec = 6'b111111;
12'd1941 : mem_out_dec = 6'b111111;
12'd1942 : mem_out_dec = 6'b111111;
12'd1943 : mem_out_dec = 6'b111111;
12'd1944 : mem_out_dec = 6'b111111;
12'd1945 : mem_out_dec = 6'b111111;
12'd1946 : mem_out_dec = 6'b111111;
12'd1947 : mem_out_dec = 6'b111111;
12'd1948 : mem_out_dec = 6'b111111;
12'd1949 : mem_out_dec = 6'b111111;
12'd1950 : mem_out_dec = 6'b111111;
12'd1951 : mem_out_dec = 6'b111111;
12'd1952 : mem_out_dec = 6'b111111;
12'd1953 : mem_out_dec = 6'b111111;
12'd1954 : mem_out_dec = 6'b111111;
12'd1955 : mem_out_dec = 6'b111111;
12'd1956 : mem_out_dec = 6'b000100;
12'd1957 : mem_out_dec = 6'b000101;
12'd1958 : mem_out_dec = 6'b000101;
12'd1959 : mem_out_dec = 6'b000110;
12'd1960 : mem_out_dec = 6'b000110;
12'd1961 : mem_out_dec = 6'b000111;
12'd1962 : mem_out_dec = 6'b001000;
12'd1963 : mem_out_dec = 6'b001000;
12'd1964 : mem_out_dec = 6'b001001;
12'd1965 : mem_out_dec = 6'b001010;
12'd1966 : mem_out_dec = 6'b001011;
12'd1967 : mem_out_dec = 6'b001011;
12'd1968 : mem_out_dec = 6'b001011;
12'd1969 : mem_out_dec = 6'b001100;
12'd1970 : mem_out_dec = 6'b001100;
12'd1971 : mem_out_dec = 6'b001101;
12'd1972 : mem_out_dec = 6'b001101;
12'd1973 : mem_out_dec = 6'b001110;
12'd1974 : mem_out_dec = 6'b001111;
12'd1975 : mem_out_dec = 6'b001111;
12'd1976 : mem_out_dec = 6'b001110;
12'd1977 : mem_out_dec = 6'b001110;
12'd1978 : mem_out_dec = 6'b001111;
12'd1979 : mem_out_dec = 6'b001111;
12'd1980 : mem_out_dec = 6'b010000;
12'd1981 : mem_out_dec = 6'b010000;
12'd1982 : mem_out_dec = 6'b010001;
12'd1983 : mem_out_dec = 6'b010001;
12'd1984 : mem_out_dec = 6'b111111;
12'd1985 : mem_out_dec = 6'b111111;
12'd1986 : mem_out_dec = 6'b111111;
12'd1987 : mem_out_dec = 6'b111111;
12'd1988 : mem_out_dec = 6'b111111;
12'd1989 : mem_out_dec = 6'b111111;
12'd1990 : mem_out_dec = 6'b111111;
12'd1991 : mem_out_dec = 6'b111111;
12'd1992 : mem_out_dec = 6'b111111;
12'd1993 : mem_out_dec = 6'b111111;
12'd1994 : mem_out_dec = 6'b111111;
12'd1995 : mem_out_dec = 6'b111111;
12'd1996 : mem_out_dec = 6'b111111;
12'd1997 : mem_out_dec = 6'b111111;
12'd1998 : mem_out_dec = 6'b111111;
12'd1999 : mem_out_dec = 6'b111111;
12'd2000 : mem_out_dec = 6'b111111;
12'd2001 : mem_out_dec = 6'b111111;
12'd2002 : mem_out_dec = 6'b111111;
12'd2003 : mem_out_dec = 6'b111111;
12'd2004 : mem_out_dec = 6'b111111;
12'd2005 : mem_out_dec = 6'b111111;
12'd2006 : mem_out_dec = 6'b111111;
12'd2007 : mem_out_dec = 6'b111111;
12'd2008 : mem_out_dec = 6'b111111;
12'd2009 : mem_out_dec = 6'b111111;
12'd2010 : mem_out_dec = 6'b111111;
12'd2011 : mem_out_dec = 6'b111111;
12'd2012 : mem_out_dec = 6'b111111;
12'd2013 : mem_out_dec = 6'b111111;
12'd2014 : mem_out_dec = 6'b111111;
12'd2015 : mem_out_dec = 6'b111111;
12'd2016 : mem_out_dec = 6'b111111;
12'd2017 : mem_out_dec = 6'b111111;
12'd2018 : mem_out_dec = 6'b111111;
12'd2019 : mem_out_dec = 6'b111111;
12'd2020 : mem_out_dec = 6'b111111;
12'd2021 : mem_out_dec = 6'b000100;
12'd2022 : mem_out_dec = 6'b000101;
12'd2023 : mem_out_dec = 6'b000110;
12'd2024 : mem_out_dec = 6'b000110;
12'd2025 : mem_out_dec = 6'b000111;
12'd2026 : mem_out_dec = 6'b000111;
12'd2027 : mem_out_dec = 6'b001000;
12'd2028 : mem_out_dec = 6'b001001;
12'd2029 : mem_out_dec = 6'b001010;
12'd2030 : mem_out_dec = 6'b001010;
12'd2031 : mem_out_dec = 6'b001011;
12'd2032 : mem_out_dec = 6'b001011;
12'd2033 : mem_out_dec = 6'b001011;
12'd2034 : mem_out_dec = 6'b001100;
12'd2035 : mem_out_dec = 6'b001101;
12'd2036 : mem_out_dec = 6'b001101;
12'd2037 : mem_out_dec = 6'b001110;
12'd2038 : mem_out_dec = 6'b001110;
12'd2039 : mem_out_dec = 6'b001110;
12'd2040 : mem_out_dec = 6'b001101;
12'd2041 : mem_out_dec = 6'b001110;
12'd2042 : mem_out_dec = 6'b001110;
12'd2043 : mem_out_dec = 6'b001111;
12'd2044 : mem_out_dec = 6'b001111;
12'd2045 : mem_out_dec = 6'b010000;
12'd2046 : mem_out_dec = 6'b010000;
12'd2047 : mem_out_dec = 6'b010001;
12'd2048 : mem_out_dec = 6'b111111;
12'd2049 : mem_out_dec = 6'b111111;
12'd2050 : mem_out_dec = 6'b111111;
12'd2051 : mem_out_dec = 6'b111111;
12'd2052 : mem_out_dec = 6'b111111;
12'd2053 : mem_out_dec = 6'b111111;
12'd2054 : mem_out_dec = 6'b111111;
12'd2055 : mem_out_dec = 6'b111111;
12'd2056 : mem_out_dec = 6'b111111;
12'd2057 : mem_out_dec = 6'b111111;
12'd2058 : mem_out_dec = 6'b111111;
12'd2059 : mem_out_dec = 6'b111111;
12'd2060 : mem_out_dec = 6'b111111;
12'd2061 : mem_out_dec = 6'b111111;
12'd2062 : mem_out_dec = 6'b111111;
12'd2063 : mem_out_dec = 6'b111111;
12'd2064 : mem_out_dec = 6'b111111;
12'd2065 : mem_out_dec = 6'b111111;
12'd2066 : mem_out_dec = 6'b111111;
12'd2067 : mem_out_dec = 6'b111111;
12'd2068 : mem_out_dec = 6'b111111;
12'd2069 : mem_out_dec = 6'b111111;
12'd2070 : mem_out_dec = 6'b111111;
12'd2071 : mem_out_dec = 6'b111111;
12'd2072 : mem_out_dec = 6'b111111;
12'd2073 : mem_out_dec = 6'b111111;
12'd2074 : mem_out_dec = 6'b111111;
12'd2075 : mem_out_dec = 6'b111111;
12'd2076 : mem_out_dec = 6'b111111;
12'd2077 : mem_out_dec = 6'b111111;
12'd2078 : mem_out_dec = 6'b111111;
12'd2079 : mem_out_dec = 6'b111111;
12'd2080 : mem_out_dec = 6'b111111;
12'd2081 : mem_out_dec = 6'b111111;
12'd2082 : mem_out_dec = 6'b111111;
12'd2083 : mem_out_dec = 6'b111111;
12'd2084 : mem_out_dec = 6'b111111;
12'd2085 : mem_out_dec = 6'b111111;
12'd2086 : mem_out_dec = 6'b000100;
12'd2087 : mem_out_dec = 6'b000101;
12'd2088 : mem_out_dec = 6'b000101;
12'd2089 : mem_out_dec = 6'b000110;
12'd2090 : mem_out_dec = 6'b000110;
12'd2091 : mem_out_dec = 6'b000111;
12'd2092 : mem_out_dec = 6'b001000;
12'd2093 : mem_out_dec = 6'b001001;
12'd2094 : mem_out_dec = 6'b001001;
12'd2095 : mem_out_dec = 6'b001010;
12'd2096 : mem_out_dec = 6'b001010;
12'd2097 : mem_out_dec = 6'b001011;
12'd2098 : mem_out_dec = 6'b001011;
12'd2099 : mem_out_dec = 6'b001100;
12'd2100 : mem_out_dec = 6'b001100;
12'd2101 : mem_out_dec = 6'b001100;
12'd2102 : mem_out_dec = 6'b001100;
12'd2103 : mem_out_dec = 6'b001101;
12'd2104 : mem_out_dec = 6'b001100;
12'd2105 : mem_out_dec = 6'b001100;
12'd2106 : mem_out_dec = 6'b001101;
12'd2107 : mem_out_dec = 6'b001101;
12'd2108 : mem_out_dec = 6'b001110;
12'd2109 : mem_out_dec = 6'b001111;
12'd2110 : mem_out_dec = 6'b010000;
12'd2111 : mem_out_dec = 6'b010000;
12'd2112 : mem_out_dec = 6'b111111;
12'd2113 : mem_out_dec = 6'b111111;
12'd2114 : mem_out_dec = 6'b111111;
12'd2115 : mem_out_dec = 6'b111111;
12'd2116 : mem_out_dec = 6'b111111;
12'd2117 : mem_out_dec = 6'b111111;
12'd2118 : mem_out_dec = 6'b111111;
12'd2119 : mem_out_dec = 6'b111111;
12'd2120 : mem_out_dec = 6'b111111;
12'd2121 : mem_out_dec = 6'b111111;
12'd2122 : mem_out_dec = 6'b111111;
12'd2123 : mem_out_dec = 6'b111111;
12'd2124 : mem_out_dec = 6'b111111;
12'd2125 : mem_out_dec = 6'b111111;
12'd2126 : mem_out_dec = 6'b111111;
12'd2127 : mem_out_dec = 6'b111111;
12'd2128 : mem_out_dec = 6'b111111;
12'd2129 : mem_out_dec = 6'b111111;
12'd2130 : mem_out_dec = 6'b111111;
12'd2131 : mem_out_dec = 6'b111111;
12'd2132 : mem_out_dec = 6'b111111;
12'd2133 : mem_out_dec = 6'b111111;
12'd2134 : mem_out_dec = 6'b111111;
12'd2135 : mem_out_dec = 6'b111111;
12'd2136 : mem_out_dec = 6'b111111;
12'd2137 : mem_out_dec = 6'b111111;
12'd2138 : mem_out_dec = 6'b111111;
12'd2139 : mem_out_dec = 6'b111111;
12'd2140 : mem_out_dec = 6'b111111;
12'd2141 : mem_out_dec = 6'b111111;
12'd2142 : mem_out_dec = 6'b111111;
12'd2143 : mem_out_dec = 6'b111111;
12'd2144 : mem_out_dec = 6'b111111;
12'd2145 : mem_out_dec = 6'b111111;
12'd2146 : mem_out_dec = 6'b111111;
12'd2147 : mem_out_dec = 6'b111111;
12'd2148 : mem_out_dec = 6'b111111;
12'd2149 : mem_out_dec = 6'b111111;
12'd2150 : mem_out_dec = 6'b111111;
12'd2151 : mem_out_dec = 6'b000100;
12'd2152 : mem_out_dec = 6'b000100;
12'd2153 : mem_out_dec = 6'b000101;
12'd2154 : mem_out_dec = 6'b000110;
12'd2155 : mem_out_dec = 6'b000111;
12'd2156 : mem_out_dec = 6'b000111;
12'd2157 : mem_out_dec = 6'b001000;
12'd2158 : mem_out_dec = 6'b001001;
12'd2159 : mem_out_dec = 6'b001001;
12'd2160 : mem_out_dec = 6'b001010;
12'd2161 : mem_out_dec = 6'b001010;
12'd2162 : mem_out_dec = 6'b001011;
12'd2163 : mem_out_dec = 6'b001011;
12'd2164 : mem_out_dec = 6'b001011;
12'd2165 : mem_out_dec = 6'b001011;
12'd2166 : mem_out_dec = 6'b001011;
12'd2167 : mem_out_dec = 6'b001100;
12'd2168 : mem_out_dec = 6'b001011;
12'd2169 : mem_out_dec = 6'b001011;
12'd2170 : mem_out_dec = 6'b001100;
12'd2171 : mem_out_dec = 6'b001101;
12'd2172 : mem_out_dec = 6'b001110;
12'd2173 : mem_out_dec = 6'b001110;
12'd2174 : mem_out_dec = 6'b001111;
12'd2175 : mem_out_dec = 6'b010000;
12'd2176 : mem_out_dec = 6'b111111;
12'd2177 : mem_out_dec = 6'b111111;
12'd2178 : mem_out_dec = 6'b111111;
12'd2179 : mem_out_dec = 6'b111111;
12'd2180 : mem_out_dec = 6'b111111;
12'd2181 : mem_out_dec = 6'b111111;
12'd2182 : mem_out_dec = 6'b111111;
12'd2183 : mem_out_dec = 6'b111111;
12'd2184 : mem_out_dec = 6'b111111;
12'd2185 : mem_out_dec = 6'b111111;
12'd2186 : mem_out_dec = 6'b111111;
12'd2187 : mem_out_dec = 6'b111111;
12'd2188 : mem_out_dec = 6'b111111;
12'd2189 : mem_out_dec = 6'b111111;
12'd2190 : mem_out_dec = 6'b111111;
12'd2191 : mem_out_dec = 6'b111111;
12'd2192 : mem_out_dec = 6'b111111;
12'd2193 : mem_out_dec = 6'b111111;
12'd2194 : mem_out_dec = 6'b111111;
12'd2195 : mem_out_dec = 6'b111111;
12'd2196 : mem_out_dec = 6'b111111;
12'd2197 : mem_out_dec = 6'b111111;
12'd2198 : mem_out_dec = 6'b111111;
12'd2199 : mem_out_dec = 6'b111111;
12'd2200 : mem_out_dec = 6'b111111;
12'd2201 : mem_out_dec = 6'b111111;
12'd2202 : mem_out_dec = 6'b111111;
12'd2203 : mem_out_dec = 6'b111111;
12'd2204 : mem_out_dec = 6'b111111;
12'd2205 : mem_out_dec = 6'b111111;
12'd2206 : mem_out_dec = 6'b111111;
12'd2207 : mem_out_dec = 6'b111111;
12'd2208 : mem_out_dec = 6'b111111;
12'd2209 : mem_out_dec = 6'b111111;
12'd2210 : mem_out_dec = 6'b111111;
12'd2211 : mem_out_dec = 6'b111111;
12'd2212 : mem_out_dec = 6'b111111;
12'd2213 : mem_out_dec = 6'b111111;
12'd2214 : mem_out_dec = 6'b111111;
12'd2215 : mem_out_dec = 6'b111111;
12'd2216 : mem_out_dec = 6'b000100;
12'd2217 : mem_out_dec = 6'b000101;
12'd2218 : mem_out_dec = 6'b000101;
12'd2219 : mem_out_dec = 6'b000110;
12'd2220 : mem_out_dec = 6'b000111;
12'd2221 : mem_out_dec = 6'b000111;
12'd2222 : mem_out_dec = 6'b001000;
12'd2223 : mem_out_dec = 6'b001001;
12'd2224 : mem_out_dec = 6'b001001;
12'd2225 : mem_out_dec = 6'b001010;
12'd2226 : mem_out_dec = 6'b001010;
12'd2227 : mem_out_dec = 6'b001010;
12'd2228 : mem_out_dec = 6'b001010;
12'd2229 : mem_out_dec = 6'b001010;
12'd2230 : mem_out_dec = 6'b001010;
12'd2231 : mem_out_dec = 6'b001010;
12'd2232 : mem_out_dec = 6'b001010;
12'd2233 : mem_out_dec = 6'b001011;
12'd2234 : mem_out_dec = 6'b001100;
12'd2235 : mem_out_dec = 6'b001100;
12'd2236 : mem_out_dec = 6'b001101;
12'd2237 : mem_out_dec = 6'b001110;
12'd2238 : mem_out_dec = 6'b001111;
12'd2239 : mem_out_dec = 6'b010000;
12'd2240 : mem_out_dec = 6'b111111;
12'd2241 : mem_out_dec = 6'b111111;
12'd2242 : mem_out_dec = 6'b111111;
12'd2243 : mem_out_dec = 6'b111111;
12'd2244 : mem_out_dec = 6'b111111;
12'd2245 : mem_out_dec = 6'b111111;
12'd2246 : mem_out_dec = 6'b111111;
12'd2247 : mem_out_dec = 6'b111111;
12'd2248 : mem_out_dec = 6'b111111;
12'd2249 : mem_out_dec = 6'b111111;
12'd2250 : mem_out_dec = 6'b111111;
12'd2251 : mem_out_dec = 6'b111111;
12'd2252 : mem_out_dec = 6'b111111;
12'd2253 : mem_out_dec = 6'b111111;
12'd2254 : mem_out_dec = 6'b111111;
12'd2255 : mem_out_dec = 6'b111111;
12'd2256 : mem_out_dec = 6'b111111;
12'd2257 : mem_out_dec = 6'b111111;
12'd2258 : mem_out_dec = 6'b111111;
12'd2259 : mem_out_dec = 6'b111111;
12'd2260 : mem_out_dec = 6'b111111;
12'd2261 : mem_out_dec = 6'b111111;
12'd2262 : mem_out_dec = 6'b111111;
12'd2263 : mem_out_dec = 6'b111111;
12'd2264 : mem_out_dec = 6'b111111;
12'd2265 : mem_out_dec = 6'b111111;
12'd2266 : mem_out_dec = 6'b111111;
12'd2267 : mem_out_dec = 6'b111111;
12'd2268 : mem_out_dec = 6'b111111;
12'd2269 : mem_out_dec = 6'b111111;
12'd2270 : mem_out_dec = 6'b111111;
12'd2271 : mem_out_dec = 6'b111111;
12'd2272 : mem_out_dec = 6'b111111;
12'd2273 : mem_out_dec = 6'b111111;
12'd2274 : mem_out_dec = 6'b111111;
12'd2275 : mem_out_dec = 6'b111111;
12'd2276 : mem_out_dec = 6'b111111;
12'd2277 : mem_out_dec = 6'b111111;
12'd2278 : mem_out_dec = 6'b111111;
12'd2279 : mem_out_dec = 6'b111111;
12'd2280 : mem_out_dec = 6'b111111;
12'd2281 : mem_out_dec = 6'b000100;
12'd2282 : mem_out_dec = 6'b000101;
12'd2283 : mem_out_dec = 6'b000101;
12'd2284 : mem_out_dec = 6'b000110;
12'd2285 : mem_out_dec = 6'b000111;
12'd2286 : mem_out_dec = 6'b001000;
12'd2287 : mem_out_dec = 6'b001001;
12'd2288 : mem_out_dec = 6'b001001;
12'd2289 : mem_out_dec = 6'b001001;
12'd2290 : mem_out_dec = 6'b001001;
12'd2291 : mem_out_dec = 6'b001001;
12'd2292 : mem_out_dec = 6'b001001;
12'd2293 : mem_out_dec = 6'b001001;
12'd2294 : mem_out_dec = 6'b001001;
12'd2295 : mem_out_dec = 6'b001001;
12'd2296 : mem_out_dec = 6'b001010;
12'd2297 : mem_out_dec = 6'b001010;
12'd2298 : mem_out_dec = 6'b001011;
12'd2299 : mem_out_dec = 6'b001100;
12'd2300 : mem_out_dec = 6'b001101;
12'd2301 : mem_out_dec = 6'b001110;
12'd2302 : mem_out_dec = 6'b001110;
12'd2303 : mem_out_dec = 6'b001111;
12'd2304 : mem_out_dec = 6'b111111;
12'd2305 : mem_out_dec = 6'b111111;
12'd2306 : mem_out_dec = 6'b111111;
12'd2307 : mem_out_dec = 6'b111111;
12'd2308 : mem_out_dec = 6'b111111;
12'd2309 : mem_out_dec = 6'b111111;
12'd2310 : mem_out_dec = 6'b111111;
12'd2311 : mem_out_dec = 6'b111111;
12'd2312 : mem_out_dec = 6'b111111;
12'd2313 : mem_out_dec = 6'b111111;
12'd2314 : mem_out_dec = 6'b111111;
12'd2315 : mem_out_dec = 6'b111111;
12'd2316 : mem_out_dec = 6'b111111;
12'd2317 : mem_out_dec = 6'b111111;
12'd2318 : mem_out_dec = 6'b111111;
12'd2319 : mem_out_dec = 6'b111111;
12'd2320 : mem_out_dec = 6'b111111;
12'd2321 : mem_out_dec = 6'b111111;
12'd2322 : mem_out_dec = 6'b111111;
12'd2323 : mem_out_dec = 6'b111111;
12'd2324 : mem_out_dec = 6'b111111;
12'd2325 : mem_out_dec = 6'b111111;
12'd2326 : mem_out_dec = 6'b111111;
12'd2327 : mem_out_dec = 6'b111111;
12'd2328 : mem_out_dec = 6'b111111;
12'd2329 : mem_out_dec = 6'b111111;
12'd2330 : mem_out_dec = 6'b111111;
12'd2331 : mem_out_dec = 6'b111111;
12'd2332 : mem_out_dec = 6'b111111;
12'd2333 : mem_out_dec = 6'b111111;
12'd2334 : mem_out_dec = 6'b111111;
12'd2335 : mem_out_dec = 6'b111111;
12'd2336 : mem_out_dec = 6'b111111;
12'd2337 : mem_out_dec = 6'b111111;
12'd2338 : mem_out_dec = 6'b111111;
12'd2339 : mem_out_dec = 6'b111111;
12'd2340 : mem_out_dec = 6'b111111;
12'd2341 : mem_out_dec = 6'b111111;
12'd2342 : mem_out_dec = 6'b111111;
12'd2343 : mem_out_dec = 6'b111111;
12'd2344 : mem_out_dec = 6'b111111;
12'd2345 : mem_out_dec = 6'b111111;
12'd2346 : mem_out_dec = 6'b000100;
12'd2347 : mem_out_dec = 6'b000101;
12'd2348 : mem_out_dec = 6'b000110;
12'd2349 : mem_out_dec = 6'b000111;
12'd2350 : mem_out_dec = 6'b000111;
12'd2351 : mem_out_dec = 6'b001000;
12'd2352 : mem_out_dec = 6'b001000;
12'd2353 : mem_out_dec = 6'b001000;
12'd2354 : mem_out_dec = 6'b001000;
12'd2355 : mem_out_dec = 6'b001000;
12'd2356 : mem_out_dec = 6'b001000;
12'd2357 : mem_out_dec = 6'b001000;
12'd2358 : mem_out_dec = 6'b001000;
12'd2359 : mem_out_dec = 6'b001001;
12'd2360 : mem_out_dec = 6'b001001;
12'd2361 : mem_out_dec = 6'b001010;
12'd2362 : mem_out_dec = 6'b001011;
12'd2363 : mem_out_dec = 6'b001100;
12'd2364 : mem_out_dec = 6'b001100;
12'd2365 : mem_out_dec = 6'b001101;
12'd2366 : mem_out_dec = 6'b001110;
12'd2367 : mem_out_dec = 6'b001111;
12'd2368 : mem_out_dec = 6'b111111;
12'd2369 : mem_out_dec = 6'b111111;
12'd2370 : mem_out_dec = 6'b111111;
12'd2371 : mem_out_dec = 6'b111111;
12'd2372 : mem_out_dec = 6'b111111;
12'd2373 : mem_out_dec = 6'b111111;
12'd2374 : mem_out_dec = 6'b111111;
12'd2375 : mem_out_dec = 6'b111111;
12'd2376 : mem_out_dec = 6'b111111;
12'd2377 : mem_out_dec = 6'b111111;
12'd2378 : mem_out_dec = 6'b111111;
12'd2379 : mem_out_dec = 6'b111111;
12'd2380 : mem_out_dec = 6'b111111;
12'd2381 : mem_out_dec = 6'b111111;
12'd2382 : mem_out_dec = 6'b111111;
12'd2383 : mem_out_dec = 6'b111111;
12'd2384 : mem_out_dec = 6'b111111;
12'd2385 : mem_out_dec = 6'b111111;
12'd2386 : mem_out_dec = 6'b111111;
12'd2387 : mem_out_dec = 6'b111111;
12'd2388 : mem_out_dec = 6'b111111;
12'd2389 : mem_out_dec = 6'b111111;
12'd2390 : mem_out_dec = 6'b111111;
12'd2391 : mem_out_dec = 6'b111111;
12'd2392 : mem_out_dec = 6'b111111;
12'd2393 : mem_out_dec = 6'b111111;
12'd2394 : mem_out_dec = 6'b111111;
12'd2395 : mem_out_dec = 6'b111111;
12'd2396 : mem_out_dec = 6'b111111;
12'd2397 : mem_out_dec = 6'b111111;
12'd2398 : mem_out_dec = 6'b111111;
12'd2399 : mem_out_dec = 6'b111111;
12'd2400 : mem_out_dec = 6'b111111;
12'd2401 : mem_out_dec = 6'b111111;
12'd2402 : mem_out_dec = 6'b111111;
12'd2403 : mem_out_dec = 6'b111111;
12'd2404 : mem_out_dec = 6'b111111;
12'd2405 : mem_out_dec = 6'b111111;
12'd2406 : mem_out_dec = 6'b111111;
12'd2407 : mem_out_dec = 6'b111111;
12'd2408 : mem_out_dec = 6'b111111;
12'd2409 : mem_out_dec = 6'b111111;
12'd2410 : mem_out_dec = 6'b111111;
12'd2411 : mem_out_dec = 6'b000101;
12'd2412 : mem_out_dec = 6'b000101;
12'd2413 : mem_out_dec = 6'b000110;
12'd2414 : mem_out_dec = 6'b000111;
12'd2415 : mem_out_dec = 6'b001000;
12'd2416 : mem_out_dec = 6'b000111;
12'd2417 : mem_out_dec = 6'b000111;
12'd2418 : mem_out_dec = 6'b000111;
12'd2419 : mem_out_dec = 6'b000111;
12'd2420 : mem_out_dec = 6'b000111;
12'd2421 : mem_out_dec = 6'b000111;
12'd2422 : mem_out_dec = 6'b001000;
12'd2423 : mem_out_dec = 6'b001001;
12'd2424 : mem_out_dec = 6'b001001;
12'd2425 : mem_out_dec = 6'b001010;
12'd2426 : mem_out_dec = 6'b001010;
12'd2427 : mem_out_dec = 6'b001011;
12'd2428 : mem_out_dec = 6'b001100;
12'd2429 : mem_out_dec = 6'b001101;
12'd2430 : mem_out_dec = 6'b001101;
12'd2431 : mem_out_dec = 6'b001110;
12'd2432 : mem_out_dec = 6'b111111;
12'd2433 : mem_out_dec = 6'b111111;
12'd2434 : mem_out_dec = 6'b111111;
12'd2435 : mem_out_dec = 6'b111111;
12'd2436 : mem_out_dec = 6'b111111;
12'd2437 : mem_out_dec = 6'b111111;
12'd2438 : mem_out_dec = 6'b111111;
12'd2439 : mem_out_dec = 6'b111111;
12'd2440 : mem_out_dec = 6'b111111;
12'd2441 : mem_out_dec = 6'b111111;
12'd2442 : mem_out_dec = 6'b111111;
12'd2443 : mem_out_dec = 6'b111111;
12'd2444 : mem_out_dec = 6'b111111;
12'd2445 : mem_out_dec = 6'b111111;
12'd2446 : mem_out_dec = 6'b111111;
12'd2447 : mem_out_dec = 6'b111111;
12'd2448 : mem_out_dec = 6'b111111;
12'd2449 : mem_out_dec = 6'b111111;
12'd2450 : mem_out_dec = 6'b111111;
12'd2451 : mem_out_dec = 6'b111111;
12'd2452 : mem_out_dec = 6'b111111;
12'd2453 : mem_out_dec = 6'b111111;
12'd2454 : mem_out_dec = 6'b111111;
12'd2455 : mem_out_dec = 6'b111111;
12'd2456 : mem_out_dec = 6'b111111;
12'd2457 : mem_out_dec = 6'b111111;
12'd2458 : mem_out_dec = 6'b111111;
12'd2459 : mem_out_dec = 6'b111111;
12'd2460 : mem_out_dec = 6'b111111;
12'd2461 : mem_out_dec = 6'b111111;
12'd2462 : mem_out_dec = 6'b111111;
12'd2463 : mem_out_dec = 6'b111111;
12'd2464 : mem_out_dec = 6'b111111;
12'd2465 : mem_out_dec = 6'b111111;
12'd2466 : mem_out_dec = 6'b111111;
12'd2467 : mem_out_dec = 6'b111111;
12'd2468 : mem_out_dec = 6'b111111;
12'd2469 : mem_out_dec = 6'b111111;
12'd2470 : mem_out_dec = 6'b111111;
12'd2471 : mem_out_dec = 6'b111111;
12'd2472 : mem_out_dec = 6'b111111;
12'd2473 : mem_out_dec = 6'b111111;
12'd2474 : mem_out_dec = 6'b111111;
12'd2475 : mem_out_dec = 6'b111111;
12'd2476 : mem_out_dec = 6'b000101;
12'd2477 : mem_out_dec = 6'b000110;
12'd2478 : mem_out_dec = 6'b000111;
12'd2479 : mem_out_dec = 6'b000111;
12'd2480 : mem_out_dec = 6'b000110;
12'd2481 : mem_out_dec = 6'b000110;
12'd2482 : mem_out_dec = 6'b000110;
12'd2483 : mem_out_dec = 6'b000110;
12'd2484 : mem_out_dec = 6'b000110;
12'd2485 : mem_out_dec = 6'b000111;
12'd2486 : mem_out_dec = 6'b000111;
12'd2487 : mem_out_dec = 6'b001000;
12'd2488 : mem_out_dec = 6'b001001;
12'd2489 : mem_out_dec = 6'b001001;
12'd2490 : mem_out_dec = 6'b001010;
12'd2491 : mem_out_dec = 6'b001011;
12'd2492 : mem_out_dec = 6'b001011;
12'd2493 : mem_out_dec = 6'b001100;
12'd2494 : mem_out_dec = 6'b001101;
12'd2495 : mem_out_dec = 6'b001110;
12'd2496 : mem_out_dec = 6'b111111;
12'd2497 : mem_out_dec = 6'b111111;
12'd2498 : mem_out_dec = 6'b111111;
12'd2499 : mem_out_dec = 6'b111111;
12'd2500 : mem_out_dec = 6'b111111;
12'd2501 : mem_out_dec = 6'b111111;
12'd2502 : mem_out_dec = 6'b111111;
12'd2503 : mem_out_dec = 6'b111111;
12'd2504 : mem_out_dec = 6'b111111;
12'd2505 : mem_out_dec = 6'b111111;
12'd2506 : mem_out_dec = 6'b111111;
12'd2507 : mem_out_dec = 6'b111111;
12'd2508 : mem_out_dec = 6'b111111;
12'd2509 : mem_out_dec = 6'b111111;
12'd2510 : mem_out_dec = 6'b111111;
12'd2511 : mem_out_dec = 6'b111111;
12'd2512 : mem_out_dec = 6'b111111;
12'd2513 : mem_out_dec = 6'b111111;
12'd2514 : mem_out_dec = 6'b111111;
12'd2515 : mem_out_dec = 6'b111111;
12'd2516 : mem_out_dec = 6'b111111;
12'd2517 : mem_out_dec = 6'b111111;
12'd2518 : mem_out_dec = 6'b111111;
12'd2519 : mem_out_dec = 6'b111111;
12'd2520 : mem_out_dec = 6'b111111;
12'd2521 : mem_out_dec = 6'b111111;
12'd2522 : mem_out_dec = 6'b111111;
12'd2523 : mem_out_dec = 6'b111111;
12'd2524 : mem_out_dec = 6'b111111;
12'd2525 : mem_out_dec = 6'b111111;
12'd2526 : mem_out_dec = 6'b111111;
12'd2527 : mem_out_dec = 6'b111111;
12'd2528 : mem_out_dec = 6'b111111;
12'd2529 : mem_out_dec = 6'b111111;
12'd2530 : mem_out_dec = 6'b111111;
12'd2531 : mem_out_dec = 6'b111111;
12'd2532 : mem_out_dec = 6'b111111;
12'd2533 : mem_out_dec = 6'b111111;
12'd2534 : mem_out_dec = 6'b111111;
12'd2535 : mem_out_dec = 6'b111111;
12'd2536 : mem_out_dec = 6'b111111;
12'd2537 : mem_out_dec = 6'b111111;
12'd2538 : mem_out_dec = 6'b111111;
12'd2539 : mem_out_dec = 6'b111111;
12'd2540 : mem_out_dec = 6'b111111;
12'd2541 : mem_out_dec = 6'b000101;
12'd2542 : mem_out_dec = 6'b000110;
12'd2543 : mem_out_dec = 6'b000110;
12'd2544 : mem_out_dec = 6'b000110;
12'd2545 : mem_out_dec = 6'b000110;
12'd2546 : mem_out_dec = 6'b000101;
12'd2547 : mem_out_dec = 6'b000101;
12'd2548 : mem_out_dec = 6'b000110;
12'd2549 : mem_out_dec = 6'b000111;
12'd2550 : mem_out_dec = 6'b000111;
12'd2551 : mem_out_dec = 6'b001000;
12'd2552 : mem_out_dec = 6'b001000;
12'd2553 : mem_out_dec = 6'b001001;
12'd2554 : mem_out_dec = 6'b001010;
12'd2555 : mem_out_dec = 6'b001010;
12'd2556 : mem_out_dec = 6'b001011;
12'd2557 : mem_out_dec = 6'b001100;
12'd2558 : mem_out_dec = 6'b001101;
12'd2559 : mem_out_dec = 6'b001101;
12'd2560 : mem_out_dec = 6'b111111;
12'd2561 : mem_out_dec = 6'b111111;
12'd2562 : mem_out_dec = 6'b111111;
12'd2563 : mem_out_dec = 6'b111111;
12'd2564 : mem_out_dec = 6'b111111;
12'd2565 : mem_out_dec = 6'b111111;
12'd2566 : mem_out_dec = 6'b111111;
12'd2567 : mem_out_dec = 6'b111111;
12'd2568 : mem_out_dec = 6'b111111;
12'd2569 : mem_out_dec = 6'b111111;
12'd2570 : mem_out_dec = 6'b111111;
12'd2571 : mem_out_dec = 6'b111111;
12'd2572 : mem_out_dec = 6'b111111;
12'd2573 : mem_out_dec = 6'b111111;
12'd2574 : mem_out_dec = 6'b111111;
12'd2575 : mem_out_dec = 6'b111111;
12'd2576 : mem_out_dec = 6'b111111;
12'd2577 : mem_out_dec = 6'b111111;
12'd2578 : mem_out_dec = 6'b111111;
12'd2579 : mem_out_dec = 6'b111111;
12'd2580 : mem_out_dec = 6'b111111;
12'd2581 : mem_out_dec = 6'b111111;
12'd2582 : mem_out_dec = 6'b111111;
12'd2583 : mem_out_dec = 6'b111111;
12'd2584 : mem_out_dec = 6'b111111;
12'd2585 : mem_out_dec = 6'b111111;
12'd2586 : mem_out_dec = 6'b111111;
12'd2587 : mem_out_dec = 6'b111111;
12'd2588 : mem_out_dec = 6'b111111;
12'd2589 : mem_out_dec = 6'b111111;
12'd2590 : mem_out_dec = 6'b111111;
12'd2591 : mem_out_dec = 6'b111111;
12'd2592 : mem_out_dec = 6'b111111;
12'd2593 : mem_out_dec = 6'b111111;
12'd2594 : mem_out_dec = 6'b111111;
12'd2595 : mem_out_dec = 6'b111111;
12'd2596 : mem_out_dec = 6'b111111;
12'd2597 : mem_out_dec = 6'b111111;
12'd2598 : mem_out_dec = 6'b111111;
12'd2599 : mem_out_dec = 6'b111111;
12'd2600 : mem_out_dec = 6'b111111;
12'd2601 : mem_out_dec = 6'b111111;
12'd2602 : mem_out_dec = 6'b111111;
12'd2603 : mem_out_dec = 6'b111111;
12'd2604 : mem_out_dec = 6'b111111;
12'd2605 : mem_out_dec = 6'b111111;
12'd2606 : mem_out_dec = 6'b000100;
12'd2607 : mem_out_dec = 6'b000101;
12'd2608 : mem_out_dec = 6'b000100;
12'd2609 : mem_out_dec = 6'b000100;
12'd2610 : mem_out_dec = 6'b000100;
12'd2611 : mem_out_dec = 6'b000101;
12'd2612 : mem_out_dec = 6'b000101;
12'd2613 : mem_out_dec = 6'b000110;
12'd2614 : mem_out_dec = 6'b000111;
12'd2615 : mem_out_dec = 6'b000111;
12'd2616 : mem_out_dec = 6'b000111;
12'd2617 : mem_out_dec = 6'b001000;
12'd2618 : mem_out_dec = 6'b001001;
12'd2619 : mem_out_dec = 6'b001010;
12'd2620 : mem_out_dec = 6'b001010;
12'd2621 : mem_out_dec = 6'b001011;
12'd2622 : mem_out_dec = 6'b001100;
12'd2623 : mem_out_dec = 6'b001101;
12'd2624 : mem_out_dec = 6'b111111;
12'd2625 : mem_out_dec = 6'b111111;
12'd2626 : mem_out_dec = 6'b111111;
12'd2627 : mem_out_dec = 6'b111111;
12'd2628 : mem_out_dec = 6'b111111;
12'd2629 : mem_out_dec = 6'b111111;
12'd2630 : mem_out_dec = 6'b111111;
12'd2631 : mem_out_dec = 6'b111111;
12'd2632 : mem_out_dec = 6'b111111;
12'd2633 : mem_out_dec = 6'b111111;
12'd2634 : mem_out_dec = 6'b111111;
12'd2635 : mem_out_dec = 6'b111111;
12'd2636 : mem_out_dec = 6'b111111;
12'd2637 : mem_out_dec = 6'b111111;
12'd2638 : mem_out_dec = 6'b111111;
12'd2639 : mem_out_dec = 6'b111111;
12'd2640 : mem_out_dec = 6'b111111;
12'd2641 : mem_out_dec = 6'b111111;
12'd2642 : mem_out_dec = 6'b111111;
12'd2643 : mem_out_dec = 6'b111111;
12'd2644 : mem_out_dec = 6'b111111;
12'd2645 : mem_out_dec = 6'b111111;
12'd2646 : mem_out_dec = 6'b111111;
12'd2647 : mem_out_dec = 6'b111111;
12'd2648 : mem_out_dec = 6'b111111;
12'd2649 : mem_out_dec = 6'b111111;
12'd2650 : mem_out_dec = 6'b111111;
12'd2651 : mem_out_dec = 6'b111111;
12'd2652 : mem_out_dec = 6'b111111;
12'd2653 : mem_out_dec = 6'b111111;
12'd2654 : mem_out_dec = 6'b111111;
12'd2655 : mem_out_dec = 6'b111111;
12'd2656 : mem_out_dec = 6'b111111;
12'd2657 : mem_out_dec = 6'b111111;
12'd2658 : mem_out_dec = 6'b111111;
12'd2659 : mem_out_dec = 6'b111111;
12'd2660 : mem_out_dec = 6'b111111;
12'd2661 : mem_out_dec = 6'b111111;
12'd2662 : mem_out_dec = 6'b111111;
12'd2663 : mem_out_dec = 6'b111111;
12'd2664 : mem_out_dec = 6'b111111;
12'd2665 : mem_out_dec = 6'b111111;
12'd2666 : mem_out_dec = 6'b111111;
12'd2667 : mem_out_dec = 6'b111111;
12'd2668 : mem_out_dec = 6'b111111;
12'd2669 : mem_out_dec = 6'b111111;
12'd2670 : mem_out_dec = 6'b111111;
12'd2671 : mem_out_dec = 6'b000100;
12'd2672 : mem_out_dec = 6'b000011;
12'd2673 : mem_out_dec = 6'b000011;
12'd2674 : mem_out_dec = 6'b000100;
12'd2675 : mem_out_dec = 6'b000100;
12'd2676 : mem_out_dec = 6'b000101;
12'd2677 : mem_out_dec = 6'b000110;
12'd2678 : mem_out_dec = 6'b000110;
12'd2679 : mem_out_dec = 6'b000111;
12'd2680 : mem_out_dec = 6'b000111;
12'd2681 : mem_out_dec = 6'b001000;
12'd2682 : mem_out_dec = 6'b001001;
12'd2683 : mem_out_dec = 6'b001001;
12'd2684 : mem_out_dec = 6'b001010;
12'd2685 : mem_out_dec = 6'b001011;
12'd2686 : mem_out_dec = 6'b001100;
12'd2687 : mem_out_dec = 6'b001100;
12'd2688 : mem_out_dec = 6'b111111;
12'd2689 : mem_out_dec = 6'b111111;
12'd2690 : mem_out_dec = 6'b111111;
12'd2691 : mem_out_dec = 6'b111111;
12'd2692 : mem_out_dec = 6'b111111;
12'd2693 : mem_out_dec = 6'b111111;
12'd2694 : mem_out_dec = 6'b111111;
12'd2695 : mem_out_dec = 6'b111111;
12'd2696 : mem_out_dec = 6'b111111;
12'd2697 : mem_out_dec = 6'b111111;
12'd2698 : mem_out_dec = 6'b111111;
12'd2699 : mem_out_dec = 6'b111111;
12'd2700 : mem_out_dec = 6'b111111;
12'd2701 : mem_out_dec = 6'b111111;
12'd2702 : mem_out_dec = 6'b111111;
12'd2703 : mem_out_dec = 6'b111111;
12'd2704 : mem_out_dec = 6'b111111;
12'd2705 : mem_out_dec = 6'b111111;
12'd2706 : mem_out_dec = 6'b111111;
12'd2707 : mem_out_dec = 6'b111111;
12'd2708 : mem_out_dec = 6'b111111;
12'd2709 : mem_out_dec = 6'b111111;
12'd2710 : mem_out_dec = 6'b111111;
12'd2711 : mem_out_dec = 6'b111111;
12'd2712 : mem_out_dec = 6'b111111;
12'd2713 : mem_out_dec = 6'b111111;
12'd2714 : mem_out_dec = 6'b111111;
12'd2715 : mem_out_dec = 6'b111111;
12'd2716 : mem_out_dec = 6'b111111;
12'd2717 : mem_out_dec = 6'b111111;
12'd2718 : mem_out_dec = 6'b111111;
12'd2719 : mem_out_dec = 6'b111111;
12'd2720 : mem_out_dec = 6'b111111;
12'd2721 : mem_out_dec = 6'b111111;
12'd2722 : mem_out_dec = 6'b111111;
12'd2723 : mem_out_dec = 6'b111111;
12'd2724 : mem_out_dec = 6'b111111;
12'd2725 : mem_out_dec = 6'b111111;
12'd2726 : mem_out_dec = 6'b111111;
12'd2727 : mem_out_dec = 6'b111111;
12'd2728 : mem_out_dec = 6'b111111;
12'd2729 : mem_out_dec = 6'b111111;
12'd2730 : mem_out_dec = 6'b111111;
12'd2731 : mem_out_dec = 6'b111111;
12'd2732 : mem_out_dec = 6'b111111;
12'd2733 : mem_out_dec = 6'b111111;
12'd2734 : mem_out_dec = 6'b111111;
12'd2735 : mem_out_dec = 6'b111111;
12'd2736 : mem_out_dec = 6'b000011;
12'd2737 : mem_out_dec = 6'b000011;
12'd2738 : mem_out_dec = 6'b000100;
12'd2739 : mem_out_dec = 6'b000100;
12'd2740 : mem_out_dec = 6'b000101;
12'd2741 : mem_out_dec = 6'b000101;
12'd2742 : mem_out_dec = 6'b000110;
12'd2743 : mem_out_dec = 6'b000111;
12'd2744 : mem_out_dec = 6'b000111;
12'd2745 : mem_out_dec = 6'b001000;
12'd2746 : mem_out_dec = 6'b001000;
12'd2747 : mem_out_dec = 6'b001001;
12'd2748 : mem_out_dec = 6'b001010;
12'd2749 : mem_out_dec = 6'b001011;
12'd2750 : mem_out_dec = 6'b001011;
12'd2751 : mem_out_dec = 6'b001100;
12'd2752 : mem_out_dec = 6'b111111;
12'd2753 : mem_out_dec = 6'b111111;
12'd2754 : mem_out_dec = 6'b111111;
12'd2755 : mem_out_dec = 6'b111111;
12'd2756 : mem_out_dec = 6'b111111;
12'd2757 : mem_out_dec = 6'b111111;
12'd2758 : mem_out_dec = 6'b111111;
12'd2759 : mem_out_dec = 6'b111111;
12'd2760 : mem_out_dec = 6'b111111;
12'd2761 : mem_out_dec = 6'b111111;
12'd2762 : mem_out_dec = 6'b111111;
12'd2763 : mem_out_dec = 6'b111111;
12'd2764 : mem_out_dec = 6'b111111;
12'd2765 : mem_out_dec = 6'b111111;
12'd2766 : mem_out_dec = 6'b111111;
12'd2767 : mem_out_dec = 6'b111111;
12'd2768 : mem_out_dec = 6'b111111;
12'd2769 : mem_out_dec = 6'b111111;
12'd2770 : mem_out_dec = 6'b111111;
12'd2771 : mem_out_dec = 6'b111111;
12'd2772 : mem_out_dec = 6'b111111;
12'd2773 : mem_out_dec = 6'b111111;
12'd2774 : mem_out_dec = 6'b111111;
12'd2775 : mem_out_dec = 6'b111111;
12'd2776 : mem_out_dec = 6'b111111;
12'd2777 : mem_out_dec = 6'b111111;
12'd2778 : mem_out_dec = 6'b111111;
12'd2779 : mem_out_dec = 6'b111111;
12'd2780 : mem_out_dec = 6'b111111;
12'd2781 : mem_out_dec = 6'b111111;
12'd2782 : mem_out_dec = 6'b111111;
12'd2783 : mem_out_dec = 6'b111111;
12'd2784 : mem_out_dec = 6'b111111;
12'd2785 : mem_out_dec = 6'b111111;
12'd2786 : mem_out_dec = 6'b111111;
12'd2787 : mem_out_dec = 6'b111111;
12'd2788 : mem_out_dec = 6'b111111;
12'd2789 : mem_out_dec = 6'b111111;
12'd2790 : mem_out_dec = 6'b111111;
12'd2791 : mem_out_dec = 6'b111111;
12'd2792 : mem_out_dec = 6'b111111;
12'd2793 : mem_out_dec = 6'b111111;
12'd2794 : mem_out_dec = 6'b111111;
12'd2795 : mem_out_dec = 6'b111111;
12'd2796 : mem_out_dec = 6'b111111;
12'd2797 : mem_out_dec = 6'b111111;
12'd2798 : mem_out_dec = 6'b111111;
12'd2799 : mem_out_dec = 6'b111111;
12'd2800 : mem_out_dec = 6'b111111;
12'd2801 : mem_out_dec = 6'b000011;
12'd2802 : mem_out_dec = 6'b000011;
12'd2803 : mem_out_dec = 6'b000100;
12'd2804 : mem_out_dec = 6'b000101;
12'd2805 : mem_out_dec = 6'b000101;
12'd2806 : mem_out_dec = 6'b000110;
12'd2807 : mem_out_dec = 6'b000111;
12'd2808 : mem_out_dec = 6'b000111;
12'd2809 : mem_out_dec = 6'b000111;
12'd2810 : mem_out_dec = 6'b001000;
12'd2811 : mem_out_dec = 6'b001001;
12'd2812 : mem_out_dec = 6'b001010;
12'd2813 : mem_out_dec = 6'b001010;
12'd2814 : mem_out_dec = 6'b001011;
12'd2815 : mem_out_dec = 6'b001100;
12'd2816 : mem_out_dec = 6'b111111;
12'd2817 : mem_out_dec = 6'b111111;
12'd2818 : mem_out_dec = 6'b111111;
12'd2819 : mem_out_dec = 6'b111111;
12'd2820 : mem_out_dec = 6'b111111;
12'd2821 : mem_out_dec = 6'b111111;
12'd2822 : mem_out_dec = 6'b111111;
12'd2823 : mem_out_dec = 6'b111111;
12'd2824 : mem_out_dec = 6'b111111;
12'd2825 : mem_out_dec = 6'b111111;
12'd2826 : mem_out_dec = 6'b111111;
12'd2827 : mem_out_dec = 6'b111111;
12'd2828 : mem_out_dec = 6'b111111;
12'd2829 : mem_out_dec = 6'b111111;
12'd2830 : mem_out_dec = 6'b111111;
12'd2831 : mem_out_dec = 6'b111111;
12'd2832 : mem_out_dec = 6'b111111;
12'd2833 : mem_out_dec = 6'b111111;
12'd2834 : mem_out_dec = 6'b111111;
12'd2835 : mem_out_dec = 6'b111111;
12'd2836 : mem_out_dec = 6'b111111;
12'd2837 : mem_out_dec = 6'b111111;
12'd2838 : mem_out_dec = 6'b111111;
12'd2839 : mem_out_dec = 6'b111111;
12'd2840 : mem_out_dec = 6'b111111;
12'd2841 : mem_out_dec = 6'b111111;
12'd2842 : mem_out_dec = 6'b111111;
12'd2843 : mem_out_dec = 6'b111111;
12'd2844 : mem_out_dec = 6'b111111;
12'd2845 : mem_out_dec = 6'b111111;
12'd2846 : mem_out_dec = 6'b111111;
12'd2847 : mem_out_dec = 6'b111111;
12'd2848 : mem_out_dec = 6'b111111;
12'd2849 : mem_out_dec = 6'b111111;
12'd2850 : mem_out_dec = 6'b111111;
12'd2851 : mem_out_dec = 6'b111111;
12'd2852 : mem_out_dec = 6'b111111;
12'd2853 : mem_out_dec = 6'b111111;
12'd2854 : mem_out_dec = 6'b111111;
12'd2855 : mem_out_dec = 6'b111111;
12'd2856 : mem_out_dec = 6'b111111;
12'd2857 : mem_out_dec = 6'b111111;
12'd2858 : mem_out_dec = 6'b111111;
12'd2859 : mem_out_dec = 6'b111111;
12'd2860 : mem_out_dec = 6'b111111;
12'd2861 : mem_out_dec = 6'b111111;
12'd2862 : mem_out_dec = 6'b111111;
12'd2863 : mem_out_dec = 6'b111111;
12'd2864 : mem_out_dec = 6'b111111;
12'd2865 : mem_out_dec = 6'b111111;
12'd2866 : mem_out_dec = 6'b000011;
12'd2867 : mem_out_dec = 6'b000100;
12'd2868 : mem_out_dec = 6'b000100;
12'd2869 : mem_out_dec = 6'b000101;
12'd2870 : mem_out_dec = 6'b000110;
12'd2871 : mem_out_dec = 6'b000110;
12'd2872 : mem_out_dec = 6'b000110;
12'd2873 : mem_out_dec = 6'b000111;
12'd2874 : mem_out_dec = 6'b001000;
12'd2875 : mem_out_dec = 6'b001001;
12'd2876 : mem_out_dec = 6'b001001;
12'd2877 : mem_out_dec = 6'b001010;
12'd2878 : mem_out_dec = 6'b001011;
12'd2879 : mem_out_dec = 6'b001100;
12'd2880 : mem_out_dec = 6'b111111;
12'd2881 : mem_out_dec = 6'b111111;
12'd2882 : mem_out_dec = 6'b111111;
12'd2883 : mem_out_dec = 6'b111111;
12'd2884 : mem_out_dec = 6'b111111;
12'd2885 : mem_out_dec = 6'b111111;
12'd2886 : mem_out_dec = 6'b111111;
12'd2887 : mem_out_dec = 6'b111111;
12'd2888 : mem_out_dec = 6'b111111;
12'd2889 : mem_out_dec = 6'b111111;
12'd2890 : mem_out_dec = 6'b111111;
12'd2891 : mem_out_dec = 6'b111111;
12'd2892 : mem_out_dec = 6'b111111;
12'd2893 : mem_out_dec = 6'b111111;
12'd2894 : mem_out_dec = 6'b111111;
12'd2895 : mem_out_dec = 6'b111111;
12'd2896 : mem_out_dec = 6'b111111;
12'd2897 : mem_out_dec = 6'b111111;
12'd2898 : mem_out_dec = 6'b111111;
12'd2899 : mem_out_dec = 6'b111111;
12'd2900 : mem_out_dec = 6'b111111;
12'd2901 : mem_out_dec = 6'b111111;
12'd2902 : mem_out_dec = 6'b111111;
12'd2903 : mem_out_dec = 6'b111111;
12'd2904 : mem_out_dec = 6'b111111;
12'd2905 : mem_out_dec = 6'b111111;
12'd2906 : mem_out_dec = 6'b111111;
12'd2907 : mem_out_dec = 6'b111111;
12'd2908 : mem_out_dec = 6'b111111;
12'd2909 : mem_out_dec = 6'b111111;
12'd2910 : mem_out_dec = 6'b111111;
12'd2911 : mem_out_dec = 6'b111111;
12'd2912 : mem_out_dec = 6'b111111;
12'd2913 : mem_out_dec = 6'b111111;
12'd2914 : mem_out_dec = 6'b111111;
12'd2915 : mem_out_dec = 6'b111111;
12'd2916 : mem_out_dec = 6'b111111;
12'd2917 : mem_out_dec = 6'b111111;
12'd2918 : mem_out_dec = 6'b111111;
12'd2919 : mem_out_dec = 6'b111111;
12'd2920 : mem_out_dec = 6'b111111;
12'd2921 : mem_out_dec = 6'b111111;
12'd2922 : mem_out_dec = 6'b111111;
12'd2923 : mem_out_dec = 6'b111111;
12'd2924 : mem_out_dec = 6'b111111;
12'd2925 : mem_out_dec = 6'b111111;
12'd2926 : mem_out_dec = 6'b111111;
12'd2927 : mem_out_dec = 6'b111111;
12'd2928 : mem_out_dec = 6'b111111;
12'd2929 : mem_out_dec = 6'b111111;
12'd2930 : mem_out_dec = 6'b111111;
12'd2931 : mem_out_dec = 6'b000100;
12'd2932 : mem_out_dec = 6'b000100;
12'd2933 : mem_out_dec = 6'b000101;
12'd2934 : mem_out_dec = 6'b000101;
12'd2935 : mem_out_dec = 6'b000110;
12'd2936 : mem_out_dec = 6'b000110;
12'd2937 : mem_out_dec = 6'b000111;
12'd2938 : mem_out_dec = 6'b001000;
12'd2939 : mem_out_dec = 6'b001000;
12'd2940 : mem_out_dec = 6'b001001;
12'd2941 : mem_out_dec = 6'b001010;
12'd2942 : mem_out_dec = 6'b001011;
12'd2943 : mem_out_dec = 6'b001011;
12'd2944 : mem_out_dec = 6'b111111;
12'd2945 : mem_out_dec = 6'b111111;
12'd2946 : mem_out_dec = 6'b111111;
12'd2947 : mem_out_dec = 6'b111111;
12'd2948 : mem_out_dec = 6'b111111;
12'd2949 : mem_out_dec = 6'b111111;
12'd2950 : mem_out_dec = 6'b111111;
12'd2951 : mem_out_dec = 6'b111111;
12'd2952 : mem_out_dec = 6'b111111;
12'd2953 : mem_out_dec = 6'b111111;
12'd2954 : mem_out_dec = 6'b111111;
12'd2955 : mem_out_dec = 6'b111111;
12'd2956 : mem_out_dec = 6'b111111;
12'd2957 : mem_out_dec = 6'b111111;
12'd2958 : mem_out_dec = 6'b111111;
12'd2959 : mem_out_dec = 6'b111111;
12'd2960 : mem_out_dec = 6'b111111;
12'd2961 : mem_out_dec = 6'b111111;
12'd2962 : mem_out_dec = 6'b111111;
12'd2963 : mem_out_dec = 6'b111111;
12'd2964 : mem_out_dec = 6'b111111;
12'd2965 : mem_out_dec = 6'b111111;
12'd2966 : mem_out_dec = 6'b111111;
12'd2967 : mem_out_dec = 6'b111111;
12'd2968 : mem_out_dec = 6'b111111;
12'd2969 : mem_out_dec = 6'b111111;
12'd2970 : mem_out_dec = 6'b111111;
12'd2971 : mem_out_dec = 6'b111111;
12'd2972 : mem_out_dec = 6'b111111;
12'd2973 : mem_out_dec = 6'b111111;
12'd2974 : mem_out_dec = 6'b111111;
12'd2975 : mem_out_dec = 6'b111111;
12'd2976 : mem_out_dec = 6'b111111;
12'd2977 : mem_out_dec = 6'b111111;
12'd2978 : mem_out_dec = 6'b111111;
12'd2979 : mem_out_dec = 6'b111111;
12'd2980 : mem_out_dec = 6'b111111;
12'd2981 : mem_out_dec = 6'b111111;
12'd2982 : mem_out_dec = 6'b111111;
12'd2983 : mem_out_dec = 6'b111111;
12'd2984 : mem_out_dec = 6'b111111;
12'd2985 : mem_out_dec = 6'b111111;
12'd2986 : mem_out_dec = 6'b111111;
12'd2987 : mem_out_dec = 6'b111111;
12'd2988 : mem_out_dec = 6'b111111;
12'd2989 : mem_out_dec = 6'b111111;
12'd2990 : mem_out_dec = 6'b111111;
12'd2991 : mem_out_dec = 6'b111111;
12'd2992 : mem_out_dec = 6'b111111;
12'd2993 : mem_out_dec = 6'b111111;
12'd2994 : mem_out_dec = 6'b111111;
12'd2995 : mem_out_dec = 6'b111111;
12'd2996 : mem_out_dec = 6'b000100;
12'd2997 : mem_out_dec = 6'b000101;
12'd2998 : mem_out_dec = 6'b000101;
12'd2999 : mem_out_dec = 6'b000110;
12'd3000 : mem_out_dec = 6'b000110;
12'd3001 : mem_out_dec = 6'b000111;
12'd3002 : mem_out_dec = 6'b000111;
12'd3003 : mem_out_dec = 6'b001000;
12'd3004 : mem_out_dec = 6'b001001;
12'd3005 : mem_out_dec = 6'b001010;
12'd3006 : mem_out_dec = 6'b001010;
12'd3007 : mem_out_dec = 6'b001011;
12'd3008 : mem_out_dec = 6'b111111;
12'd3009 : mem_out_dec = 6'b111111;
12'd3010 : mem_out_dec = 6'b111111;
12'd3011 : mem_out_dec = 6'b111111;
12'd3012 : mem_out_dec = 6'b111111;
12'd3013 : mem_out_dec = 6'b111111;
12'd3014 : mem_out_dec = 6'b111111;
12'd3015 : mem_out_dec = 6'b111111;
12'd3016 : mem_out_dec = 6'b111111;
12'd3017 : mem_out_dec = 6'b111111;
12'd3018 : mem_out_dec = 6'b111111;
12'd3019 : mem_out_dec = 6'b111111;
12'd3020 : mem_out_dec = 6'b111111;
12'd3021 : mem_out_dec = 6'b111111;
12'd3022 : mem_out_dec = 6'b111111;
12'd3023 : mem_out_dec = 6'b111111;
12'd3024 : mem_out_dec = 6'b111111;
12'd3025 : mem_out_dec = 6'b111111;
12'd3026 : mem_out_dec = 6'b111111;
12'd3027 : mem_out_dec = 6'b111111;
12'd3028 : mem_out_dec = 6'b111111;
12'd3029 : mem_out_dec = 6'b111111;
12'd3030 : mem_out_dec = 6'b111111;
12'd3031 : mem_out_dec = 6'b111111;
12'd3032 : mem_out_dec = 6'b111111;
12'd3033 : mem_out_dec = 6'b111111;
12'd3034 : mem_out_dec = 6'b111111;
12'd3035 : mem_out_dec = 6'b111111;
12'd3036 : mem_out_dec = 6'b111111;
12'd3037 : mem_out_dec = 6'b111111;
12'd3038 : mem_out_dec = 6'b111111;
12'd3039 : mem_out_dec = 6'b111111;
12'd3040 : mem_out_dec = 6'b111111;
12'd3041 : mem_out_dec = 6'b111111;
12'd3042 : mem_out_dec = 6'b111111;
12'd3043 : mem_out_dec = 6'b111111;
12'd3044 : mem_out_dec = 6'b111111;
12'd3045 : mem_out_dec = 6'b111111;
12'd3046 : mem_out_dec = 6'b111111;
12'd3047 : mem_out_dec = 6'b111111;
12'd3048 : mem_out_dec = 6'b111111;
12'd3049 : mem_out_dec = 6'b111111;
12'd3050 : mem_out_dec = 6'b111111;
12'd3051 : mem_out_dec = 6'b111111;
12'd3052 : mem_out_dec = 6'b111111;
12'd3053 : mem_out_dec = 6'b111111;
12'd3054 : mem_out_dec = 6'b111111;
12'd3055 : mem_out_dec = 6'b111111;
12'd3056 : mem_out_dec = 6'b111111;
12'd3057 : mem_out_dec = 6'b111111;
12'd3058 : mem_out_dec = 6'b111111;
12'd3059 : mem_out_dec = 6'b111111;
12'd3060 : mem_out_dec = 6'b111111;
12'd3061 : mem_out_dec = 6'b000100;
12'd3062 : mem_out_dec = 6'b000101;
12'd3063 : mem_out_dec = 6'b000110;
12'd3064 : mem_out_dec = 6'b000110;
12'd3065 : mem_out_dec = 6'b000111;
12'd3066 : mem_out_dec = 6'b000111;
12'd3067 : mem_out_dec = 6'b001000;
12'd3068 : mem_out_dec = 6'b001001;
12'd3069 : mem_out_dec = 6'b001001;
12'd3070 : mem_out_dec = 6'b001010;
12'd3071 : mem_out_dec = 6'b001011;
12'd3072 : mem_out_dec = 6'b111111;
12'd3073 : mem_out_dec = 6'b111111;
12'd3074 : mem_out_dec = 6'b111111;
12'd3075 : mem_out_dec = 6'b111111;
12'd3076 : mem_out_dec = 6'b111111;
12'd3077 : mem_out_dec = 6'b111111;
12'd3078 : mem_out_dec = 6'b111111;
12'd3079 : mem_out_dec = 6'b111111;
12'd3080 : mem_out_dec = 6'b111111;
12'd3081 : mem_out_dec = 6'b111111;
12'd3082 : mem_out_dec = 6'b111111;
12'd3083 : mem_out_dec = 6'b111111;
12'd3084 : mem_out_dec = 6'b111111;
12'd3085 : mem_out_dec = 6'b111111;
12'd3086 : mem_out_dec = 6'b111111;
12'd3087 : mem_out_dec = 6'b111111;
12'd3088 : mem_out_dec = 6'b111111;
12'd3089 : mem_out_dec = 6'b111111;
12'd3090 : mem_out_dec = 6'b111111;
12'd3091 : mem_out_dec = 6'b111111;
12'd3092 : mem_out_dec = 6'b111111;
12'd3093 : mem_out_dec = 6'b111111;
12'd3094 : mem_out_dec = 6'b111111;
12'd3095 : mem_out_dec = 6'b111111;
12'd3096 : mem_out_dec = 6'b111111;
12'd3097 : mem_out_dec = 6'b111111;
12'd3098 : mem_out_dec = 6'b111111;
12'd3099 : mem_out_dec = 6'b111111;
12'd3100 : mem_out_dec = 6'b111111;
12'd3101 : mem_out_dec = 6'b111111;
12'd3102 : mem_out_dec = 6'b111111;
12'd3103 : mem_out_dec = 6'b111111;
12'd3104 : mem_out_dec = 6'b111111;
12'd3105 : mem_out_dec = 6'b111111;
12'd3106 : mem_out_dec = 6'b111111;
12'd3107 : mem_out_dec = 6'b111111;
12'd3108 : mem_out_dec = 6'b111111;
12'd3109 : mem_out_dec = 6'b111111;
12'd3110 : mem_out_dec = 6'b111111;
12'd3111 : mem_out_dec = 6'b111111;
12'd3112 : mem_out_dec = 6'b111111;
12'd3113 : mem_out_dec = 6'b111111;
12'd3114 : mem_out_dec = 6'b111111;
12'd3115 : mem_out_dec = 6'b111111;
12'd3116 : mem_out_dec = 6'b111111;
12'd3117 : mem_out_dec = 6'b111111;
12'd3118 : mem_out_dec = 6'b111111;
12'd3119 : mem_out_dec = 6'b111111;
12'd3120 : mem_out_dec = 6'b111111;
12'd3121 : mem_out_dec = 6'b111111;
12'd3122 : mem_out_dec = 6'b111111;
12'd3123 : mem_out_dec = 6'b111111;
12'd3124 : mem_out_dec = 6'b111111;
12'd3125 : mem_out_dec = 6'b111111;
12'd3126 : mem_out_dec = 6'b000100;
12'd3127 : mem_out_dec = 6'b000101;
12'd3128 : mem_out_dec = 6'b000101;
12'd3129 : mem_out_dec = 6'b000110;
12'd3130 : mem_out_dec = 6'b000110;
12'd3131 : mem_out_dec = 6'b000111;
12'd3132 : mem_out_dec = 6'b001000;
12'd3133 : mem_out_dec = 6'b001000;
12'd3134 : mem_out_dec = 6'b001001;
12'd3135 : mem_out_dec = 6'b001010;
12'd3136 : mem_out_dec = 6'b111111;
12'd3137 : mem_out_dec = 6'b111111;
12'd3138 : mem_out_dec = 6'b111111;
12'd3139 : mem_out_dec = 6'b111111;
12'd3140 : mem_out_dec = 6'b111111;
12'd3141 : mem_out_dec = 6'b111111;
12'd3142 : mem_out_dec = 6'b111111;
12'd3143 : mem_out_dec = 6'b111111;
12'd3144 : mem_out_dec = 6'b111111;
12'd3145 : mem_out_dec = 6'b111111;
12'd3146 : mem_out_dec = 6'b111111;
12'd3147 : mem_out_dec = 6'b111111;
12'd3148 : mem_out_dec = 6'b111111;
12'd3149 : mem_out_dec = 6'b111111;
12'd3150 : mem_out_dec = 6'b111111;
12'd3151 : mem_out_dec = 6'b111111;
12'd3152 : mem_out_dec = 6'b111111;
12'd3153 : mem_out_dec = 6'b111111;
12'd3154 : mem_out_dec = 6'b111111;
12'd3155 : mem_out_dec = 6'b111111;
12'd3156 : mem_out_dec = 6'b111111;
12'd3157 : mem_out_dec = 6'b111111;
12'd3158 : mem_out_dec = 6'b111111;
12'd3159 : mem_out_dec = 6'b111111;
12'd3160 : mem_out_dec = 6'b111111;
12'd3161 : mem_out_dec = 6'b111111;
12'd3162 : mem_out_dec = 6'b111111;
12'd3163 : mem_out_dec = 6'b111111;
12'd3164 : mem_out_dec = 6'b111111;
12'd3165 : mem_out_dec = 6'b111111;
12'd3166 : mem_out_dec = 6'b111111;
12'd3167 : mem_out_dec = 6'b111111;
12'd3168 : mem_out_dec = 6'b111111;
12'd3169 : mem_out_dec = 6'b111111;
12'd3170 : mem_out_dec = 6'b111111;
12'd3171 : mem_out_dec = 6'b111111;
12'd3172 : mem_out_dec = 6'b111111;
12'd3173 : mem_out_dec = 6'b111111;
12'd3174 : mem_out_dec = 6'b111111;
12'd3175 : mem_out_dec = 6'b111111;
12'd3176 : mem_out_dec = 6'b111111;
12'd3177 : mem_out_dec = 6'b111111;
12'd3178 : mem_out_dec = 6'b111111;
12'd3179 : mem_out_dec = 6'b111111;
12'd3180 : mem_out_dec = 6'b111111;
12'd3181 : mem_out_dec = 6'b111111;
12'd3182 : mem_out_dec = 6'b111111;
12'd3183 : mem_out_dec = 6'b111111;
12'd3184 : mem_out_dec = 6'b111111;
12'd3185 : mem_out_dec = 6'b111111;
12'd3186 : mem_out_dec = 6'b111111;
12'd3187 : mem_out_dec = 6'b111111;
12'd3188 : mem_out_dec = 6'b111111;
12'd3189 : mem_out_dec = 6'b111111;
12'd3190 : mem_out_dec = 6'b111111;
12'd3191 : mem_out_dec = 6'b000100;
12'd3192 : mem_out_dec = 6'b000100;
12'd3193 : mem_out_dec = 6'b000101;
12'd3194 : mem_out_dec = 6'b000110;
12'd3195 : mem_out_dec = 6'b000110;
12'd3196 : mem_out_dec = 6'b000111;
12'd3197 : mem_out_dec = 6'b001000;
12'd3198 : mem_out_dec = 6'b001000;
12'd3199 : mem_out_dec = 6'b001001;
12'd3200 : mem_out_dec = 6'b111111;
12'd3201 : mem_out_dec = 6'b111111;
12'd3202 : mem_out_dec = 6'b111111;
12'd3203 : mem_out_dec = 6'b111111;
12'd3204 : mem_out_dec = 6'b111111;
12'd3205 : mem_out_dec = 6'b111111;
12'd3206 : mem_out_dec = 6'b111111;
12'd3207 : mem_out_dec = 6'b111111;
12'd3208 : mem_out_dec = 6'b111111;
12'd3209 : mem_out_dec = 6'b111111;
12'd3210 : mem_out_dec = 6'b111111;
12'd3211 : mem_out_dec = 6'b111111;
12'd3212 : mem_out_dec = 6'b111111;
12'd3213 : mem_out_dec = 6'b111111;
12'd3214 : mem_out_dec = 6'b111111;
12'd3215 : mem_out_dec = 6'b111111;
12'd3216 : mem_out_dec = 6'b111111;
12'd3217 : mem_out_dec = 6'b111111;
12'd3218 : mem_out_dec = 6'b111111;
12'd3219 : mem_out_dec = 6'b111111;
12'd3220 : mem_out_dec = 6'b111111;
12'd3221 : mem_out_dec = 6'b111111;
12'd3222 : mem_out_dec = 6'b111111;
12'd3223 : mem_out_dec = 6'b111111;
12'd3224 : mem_out_dec = 6'b111111;
12'd3225 : mem_out_dec = 6'b111111;
12'd3226 : mem_out_dec = 6'b111111;
12'd3227 : mem_out_dec = 6'b111111;
12'd3228 : mem_out_dec = 6'b111111;
12'd3229 : mem_out_dec = 6'b111111;
12'd3230 : mem_out_dec = 6'b111111;
12'd3231 : mem_out_dec = 6'b111111;
12'd3232 : mem_out_dec = 6'b111111;
12'd3233 : mem_out_dec = 6'b111111;
12'd3234 : mem_out_dec = 6'b111111;
12'd3235 : mem_out_dec = 6'b111111;
12'd3236 : mem_out_dec = 6'b111111;
12'd3237 : mem_out_dec = 6'b111111;
12'd3238 : mem_out_dec = 6'b111111;
12'd3239 : mem_out_dec = 6'b111111;
12'd3240 : mem_out_dec = 6'b111111;
12'd3241 : mem_out_dec = 6'b111111;
12'd3242 : mem_out_dec = 6'b111111;
12'd3243 : mem_out_dec = 6'b111111;
12'd3244 : mem_out_dec = 6'b111111;
12'd3245 : mem_out_dec = 6'b111111;
12'd3246 : mem_out_dec = 6'b111111;
12'd3247 : mem_out_dec = 6'b111111;
12'd3248 : mem_out_dec = 6'b111111;
12'd3249 : mem_out_dec = 6'b111111;
12'd3250 : mem_out_dec = 6'b111111;
12'd3251 : mem_out_dec = 6'b111111;
12'd3252 : mem_out_dec = 6'b111111;
12'd3253 : mem_out_dec = 6'b111111;
12'd3254 : mem_out_dec = 6'b111111;
12'd3255 : mem_out_dec = 6'b111111;
12'd3256 : mem_out_dec = 6'b000100;
12'd3257 : mem_out_dec = 6'b000100;
12'd3258 : mem_out_dec = 6'b000101;
12'd3259 : mem_out_dec = 6'b000110;
12'd3260 : mem_out_dec = 6'b000110;
12'd3261 : mem_out_dec = 6'b000111;
12'd3262 : mem_out_dec = 6'b001000;
12'd3263 : mem_out_dec = 6'b001001;
12'd3264 : mem_out_dec = 6'b111111;
12'd3265 : mem_out_dec = 6'b111111;
12'd3266 : mem_out_dec = 6'b111111;
12'd3267 : mem_out_dec = 6'b111111;
12'd3268 : mem_out_dec = 6'b111111;
12'd3269 : mem_out_dec = 6'b111111;
12'd3270 : mem_out_dec = 6'b111111;
12'd3271 : mem_out_dec = 6'b111111;
12'd3272 : mem_out_dec = 6'b111111;
12'd3273 : mem_out_dec = 6'b111111;
12'd3274 : mem_out_dec = 6'b111111;
12'd3275 : mem_out_dec = 6'b111111;
12'd3276 : mem_out_dec = 6'b111111;
12'd3277 : mem_out_dec = 6'b111111;
12'd3278 : mem_out_dec = 6'b111111;
12'd3279 : mem_out_dec = 6'b111111;
12'd3280 : mem_out_dec = 6'b111111;
12'd3281 : mem_out_dec = 6'b111111;
12'd3282 : mem_out_dec = 6'b111111;
12'd3283 : mem_out_dec = 6'b111111;
12'd3284 : mem_out_dec = 6'b111111;
12'd3285 : mem_out_dec = 6'b111111;
12'd3286 : mem_out_dec = 6'b111111;
12'd3287 : mem_out_dec = 6'b111111;
12'd3288 : mem_out_dec = 6'b111111;
12'd3289 : mem_out_dec = 6'b111111;
12'd3290 : mem_out_dec = 6'b111111;
12'd3291 : mem_out_dec = 6'b111111;
12'd3292 : mem_out_dec = 6'b111111;
12'd3293 : mem_out_dec = 6'b111111;
12'd3294 : mem_out_dec = 6'b111111;
12'd3295 : mem_out_dec = 6'b111111;
12'd3296 : mem_out_dec = 6'b111111;
12'd3297 : mem_out_dec = 6'b111111;
12'd3298 : mem_out_dec = 6'b111111;
12'd3299 : mem_out_dec = 6'b111111;
12'd3300 : mem_out_dec = 6'b111111;
12'd3301 : mem_out_dec = 6'b111111;
12'd3302 : mem_out_dec = 6'b111111;
12'd3303 : mem_out_dec = 6'b111111;
12'd3304 : mem_out_dec = 6'b111111;
12'd3305 : mem_out_dec = 6'b111111;
12'd3306 : mem_out_dec = 6'b111111;
12'd3307 : mem_out_dec = 6'b111111;
12'd3308 : mem_out_dec = 6'b111111;
12'd3309 : mem_out_dec = 6'b111111;
12'd3310 : mem_out_dec = 6'b111111;
12'd3311 : mem_out_dec = 6'b111111;
12'd3312 : mem_out_dec = 6'b111111;
12'd3313 : mem_out_dec = 6'b111111;
12'd3314 : mem_out_dec = 6'b111111;
12'd3315 : mem_out_dec = 6'b111111;
12'd3316 : mem_out_dec = 6'b111111;
12'd3317 : mem_out_dec = 6'b111111;
12'd3318 : mem_out_dec = 6'b111111;
12'd3319 : mem_out_dec = 6'b111111;
12'd3320 : mem_out_dec = 6'b111111;
12'd3321 : mem_out_dec = 6'b000100;
12'd3322 : mem_out_dec = 6'b000100;
12'd3323 : mem_out_dec = 6'b000101;
12'd3324 : mem_out_dec = 6'b000110;
12'd3325 : mem_out_dec = 6'b000111;
12'd3326 : mem_out_dec = 6'b001000;
12'd3327 : mem_out_dec = 6'b001000;
12'd3328 : mem_out_dec = 6'b111111;
12'd3329 : mem_out_dec = 6'b111111;
12'd3330 : mem_out_dec = 6'b111111;
12'd3331 : mem_out_dec = 6'b111111;
12'd3332 : mem_out_dec = 6'b111111;
12'd3333 : mem_out_dec = 6'b111111;
12'd3334 : mem_out_dec = 6'b111111;
12'd3335 : mem_out_dec = 6'b111111;
12'd3336 : mem_out_dec = 6'b111111;
12'd3337 : mem_out_dec = 6'b111111;
12'd3338 : mem_out_dec = 6'b111111;
12'd3339 : mem_out_dec = 6'b111111;
12'd3340 : mem_out_dec = 6'b111111;
12'd3341 : mem_out_dec = 6'b111111;
12'd3342 : mem_out_dec = 6'b111111;
12'd3343 : mem_out_dec = 6'b111111;
12'd3344 : mem_out_dec = 6'b111111;
12'd3345 : mem_out_dec = 6'b111111;
12'd3346 : mem_out_dec = 6'b111111;
12'd3347 : mem_out_dec = 6'b111111;
12'd3348 : mem_out_dec = 6'b111111;
12'd3349 : mem_out_dec = 6'b111111;
12'd3350 : mem_out_dec = 6'b111111;
12'd3351 : mem_out_dec = 6'b111111;
12'd3352 : mem_out_dec = 6'b111111;
12'd3353 : mem_out_dec = 6'b111111;
12'd3354 : mem_out_dec = 6'b111111;
12'd3355 : mem_out_dec = 6'b111111;
12'd3356 : mem_out_dec = 6'b111111;
12'd3357 : mem_out_dec = 6'b111111;
12'd3358 : mem_out_dec = 6'b111111;
12'd3359 : mem_out_dec = 6'b111111;
12'd3360 : mem_out_dec = 6'b111111;
12'd3361 : mem_out_dec = 6'b111111;
12'd3362 : mem_out_dec = 6'b111111;
12'd3363 : mem_out_dec = 6'b111111;
12'd3364 : mem_out_dec = 6'b111111;
12'd3365 : mem_out_dec = 6'b111111;
12'd3366 : mem_out_dec = 6'b111111;
12'd3367 : mem_out_dec = 6'b111111;
12'd3368 : mem_out_dec = 6'b111111;
12'd3369 : mem_out_dec = 6'b111111;
12'd3370 : mem_out_dec = 6'b111111;
12'd3371 : mem_out_dec = 6'b111111;
12'd3372 : mem_out_dec = 6'b111111;
12'd3373 : mem_out_dec = 6'b111111;
12'd3374 : mem_out_dec = 6'b111111;
12'd3375 : mem_out_dec = 6'b111111;
12'd3376 : mem_out_dec = 6'b111111;
12'd3377 : mem_out_dec = 6'b111111;
12'd3378 : mem_out_dec = 6'b111111;
12'd3379 : mem_out_dec = 6'b111111;
12'd3380 : mem_out_dec = 6'b111111;
12'd3381 : mem_out_dec = 6'b111111;
12'd3382 : mem_out_dec = 6'b111111;
12'd3383 : mem_out_dec = 6'b111111;
12'd3384 : mem_out_dec = 6'b111111;
12'd3385 : mem_out_dec = 6'b111111;
12'd3386 : mem_out_dec = 6'b000100;
12'd3387 : mem_out_dec = 6'b000101;
12'd3388 : mem_out_dec = 6'b000110;
12'd3389 : mem_out_dec = 6'b000110;
12'd3390 : mem_out_dec = 6'b000111;
12'd3391 : mem_out_dec = 6'b001000;
12'd3392 : mem_out_dec = 6'b111111;
12'd3393 : mem_out_dec = 6'b111111;
12'd3394 : mem_out_dec = 6'b111111;
12'd3395 : mem_out_dec = 6'b111111;
12'd3396 : mem_out_dec = 6'b111111;
12'd3397 : mem_out_dec = 6'b111111;
12'd3398 : mem_out_dec = 6'b111111;
12'd3399 : mem_out_dec = 6'b111111;
12'd3400 : mem_out_dec = 6'b111111;
12'd3401 : mem_out_dec = 6'b111111;
12'd3402 : mem_out_dec = 6'b111111;
12'd3403 : mem_out_dec = 6'b111111;
12'd3404 : mem_out_dec = 6'b111111;
12'd3405 : mem_out_dec = 6'b111111;
12'd3406 : mem_out_dec = 6'b111111;
12'd3407 : mem_out_dec = 6'b111111;
12'd3408 : mem_out_dec = 6'b111111;
12'd3409 : mem_out_dec = 6'b111111;
12'd3410 : mem_out_dec = 6'b111111;
12'd3411 : mem_out_dec = 6'b111111;
12'd3412 : mem_out_dec = 6'b111111;
12'd3413 : mem_out_dec = 6'b111111;
12'd3414 : mem_out_dec = 6'b111111;
12'd3415 : mem_out_dec = 6'b111111;
12'd3416 : mem_out_dec = 6'b111111;
12'd3417 : mem_out_dec = 6'b111111;
12'd3418 : mem_out_dec = 6'b111111;
12'd3419 : mem_out_dec = 6'b111111;
12'd3420 : mem_out_dec = 6'b111111;
12'd3421 : mem_out_dec = 6'b111111;
12'd3422 : mem_out_dec = 6'b111111;
12'd3423 : mem_out_dec = 6'b111111;
12'd3424 : mem_out_dec = 6'b111111;
12'd3425 : mem_out_dec = 6'b111111;
12'd3426 : mem_out_dec = 6'b111111;
12'd3427 : mem_out_dec = 6'b111111;
12'd3428 : mem_out_dec = 6'b111111;
12'd3429 : mem_out_dec = 6'b111111;
12'd3430 : mem_out_dec = 6'b111111;
12'd3431 : mem_out_dec = 6'b111111;
12'd3432 : mem_out_dec = 6'b111111;
12'd3433 : mem_out_dec = 6'b111111;
12'd3434 : mem_out_dec = 6'b111111;
12'd3435 : mem_out_dec = 6'b111111;
12'd3436 : mem_out_dec = 6'b111111;
12'd3437 : mem_out_dec = 6'b111111;
12'd3438 : mem_out_dec = 6'b111111;
12'd3439 : mem_out_dec = 6'b111111;
12'd3440 : mem_out_dec = 6'b111111;
12'd3441 : mem_out_dec = 6'b111111;
12'd3442 : mem_out_dec = 6'b111111;
12'd3443 : mem_out_dec = 6'b111111;
12'd3444 : mem_out_dec = 6'b111111;
12'd3445 : mem_out_dec = 6'b111111;
12'd3446 : mem_out_dec = 6'b111111;
12'd3447 : mem_out_dec = 6'b111111;
12'd3448 : mem_out_dec = 6'b111111;
12'd3449 : mem_out_dec = 6'b111111;
12'd3450 : mem_out_dec = 6'b111111;
12'd3451 : mem_out_dec = 6'b000100;
12'd3452 : mem_out_dec = 6'b000101;
12'd3453 : mem_out_dec = 6'b000110;
12'd3454 : mem_out_dec = 6'b000111;
12'd3455 : mem_out_dec = 6'b001000;
12'd3456 : mem_out_dec = 6'b111111;
12'd3457 : mem_out_dec = 6'b111111;
12'd3458 : mem_out_dec = 6'b111111;
12'd3459 : mem_out_dec = 6'b111111;
12'd3460 : mem_out_dec = 6'b111111;
12'd3461 : mem_out_dec = 6'b111111;
12'd3462 : mem_out_dec = 6'b111111;
12'd3463 : mem_out_dec = 6'b111111;
12'd3464 : mem_out_dec = 6'b111111;
12'd3465 : mem_out_dec = 6'b111111;
12'd3466 : mem_out_dec = 6'b111111;
12'd3467 : mem_out_dec = 6'b111111;
12'd3468 : mem_out_dec = 6'b111111;
12'd3469 : mem_out_dec = 6'b111111;
12'd3470 : mem_out_dec = 6'b111111;
12'd3471 : mem_out_dec = 6'b111111;
12'd3472 : mem_out_dec = 6'b111111;
12'd3473 : mem_out_dec = 6'b111111;
12'd3474 : mem_out_dec = 6'b111111;
12'd3475 : mem_out_dec = 6'b111111;
12'd3476 : mem_out_dec = 6'b111111;
12'd3477 : mem_out_dec = 6'b111111;
12'd3478 : mem_out_dec = 6'b111111;
12'd3479 : mem_out_dec = 6'b111111;
12'd3480 : mem_out_dec = 6'b111111;
12'd3481 : mem_out_dec = 6'b111111;
12'd3482 : mem_out_dec = 6'b111111;
12'd3483 : mem_out_dec = 6'b111111;
12'd3484 : mem_out_dec = 6'b111111;
12'd3485 : mem_out_dec = 6'b111111;
12'd3486 : mem_out_dec = 6'b111111;
12'd3487 : mem_out_dec = 6'b111111;
12'd3488 : mem_out_dec = 6'b111111;
12'd3489 : mem_out_dec = 6'b111111;
12'd3490 : mem_out_dec = 6'b111111;
12'd3491 : mem_out_dec = 6'b111111;
12'd3492 : mem_out_dec = 6'b111111;
12'd3493 : mem_out_dec = 6'b111111;
12'd3494 : mem_out_dec = 6'b111111;
12'd3495 : mem_out_dec = 6'b111111;
12'd3496 : mem_out_dec = 6'b111111;
12'd3497 : mem_out_dec = 6'b111111;
12'd3498 : mem_out_dec = 6'b111111;
12'd3499 : mem_out_dec = 6'b111111;
12'd3500 : mem_out_dec = 6'b111111;
12'd3501 : mem_out_dec = 6'b111111;
12'd3502 : mem_out_dec = 6'b111111;
12'd3503 : mem_out_dec = 6'b111111;
12'd3504 : mem_out_dec = 6'b111111;
12'd3505 : mem_out_dec = 6'b111111;
12'd3506 : mem_out_dec = 6'b111111;
12'd3507 : mem_out_dec = 6'b111111;
12'd3508 : mem_out_dec = 6'b111111;
12'd3509 : mem_out_dec = 6'b111111;
12'd3510 : mem_out_dec = 6'b111111;
12'd3511 : mem_out_dec = 6'b111111;
12'd3512 : mem_out_dec = 6'b111111;
12'd3513 : mem_out_dec = 6'b111111;
12'd3514 : mem_out_dec = 6'b111111;
12'd3515 : mem_out_dec = 6'b111111;
12'd3516 : mem_out_dec = 6'b000101;
12'd3517 : mem_out_dec = 6'b000110;
12'd3518 : mem_out_dec = 6'b000110;
12'd3519 : mem_out_dec = 6'b000111;
12'd3520 : mem_out_dec = 6'b111111;
12'd3521 : mem_out_dec = 6'b111111;
12'd3522 : mem_out_dec = 6'b111111;
12'd3523 : mem_out_dec = 6'b111111;
12'd3524 : mem_out_dec = 6'b111111;
12'd3525 : mem_out_dec = 6'b111111;
12'd3526 : mem_out_dec = 6'b111111;
12'd3527 : mem_out_dec = 6'b111111;
12'd3528 : mem_out_dec = 6'b111111;
12'd3529 : mem_out_dec = 6'b111111;
12'd3530 : mem_out_dec = 6'b111111;
12'd3531 : mem_out_dec = 6'b111111;
12'd3532 : mem_out_dec = 6'b111111;
12'd3533 : mem_out_dec = 6'b111111;
12'd3534 : mem_out_dec = 6'b111111;
12'd3535 : mem_out_dec = 6'b111111;
12'd3536 : mem_out_dec = 6'b111111;
12'd3537 : mem_out_dec = 6'b111111;
12'd3538 : mem_out_dec = 6'b111111;
12'd3539 : mem_out_dec = 6'b111111;
12'd3540 : mem_out_dec = 6'b111111;
12'd3541 : mem_out_dec = 6'b111111;
12'd3542 : mem_out_dec = 6'b111111;
12'd3543 : mem_out_dec = 6'b111111;
12'd3544 : mem_out_dec = 6'b111111;
12'd3545 : mem_out_dec = 6'b111111;
12'd3546 : mem_out_dec = 6'b111111;
12'd3547 : mem_out_dec = 6'b111111;
12'd3548 : mem_out_dec = 6'b111111;
12'd3549 : mem_out_dec = 6'b111111;
12'd3550 : mem_out_dec = 6'b111111;
12'd3551 : mem_out_dec = 6'b111111;
12'd3552 : mem_out_dec = 6'b111111;
12'd3553 : mem_out_dec = 6'b111111;
12'd3554 : mem_out_dec = 6'b111111;
12'd3555 : mem_out_dec = 6'b111111;
12'd3556 : mem_out_dec = 6'b111111;
12'd3557 : mem_out_dec = 6'b111111;
12'd3558 : mem_out_dec = 6'b111111;
12'd3559 : mem_out_dec = 6'b111111;
12'd3560 : mem_out_dec = 6'b111111;
12'd3561 : mem_out_dec = 6'b111111;
12'd3562 : mem_out_dec = 6'b111111;
12'd3563 : mem_out_dec = 6'b111111;
12'd3564 : mem_out_dec = 6'b111111;
12'd3565 : mem_out_dec = 6'b111111;
12'd3566 : mem_out_dec = 6'b111111;
12'd3567 : mem_out_dec = 6'b111111;
12'd3568 : mem_out_dec = 6'b111111;
12'd3569 : mem_out_dec = 6'b111111;
12'd3570 : mem_out_dec = 6'b111111;
12'd3571 : mem_out_dec = 6'b111111;
12'd3572 : mem_out_dec = 6'b111111;
12'd3573 : mem_out_dec = 6'b111111;
12'd3574 : mem_out_dec = 6'b111111;
12'd3575 : mem_out_dec = 6'b111111;
12'd3576 : mem_out_dec = 6'b111111;
12'd3577 : mem_out_dec = 6'b111111;
12'd3578 : mem_out_dec = 6'b111111;
12'd3579 : mem_out_dec = 6'b111111;
12'd3580 : mem_out_dec = 6'b111111;
12'd3581 : mem_out_dec = 6'b000101;
12'd3582 : mem_out_dec = 6'b000110;
12'd3583 : mem_out_dec = 6'b000110;
12'd3584 : mem_out_dec = 6'b111111;
12'd3585 : mem_out_dec = 6'b111111;
12'd3586 : mem_out_dec = 6'b111111;
12'd3587 : mem_out_dec = 6'b111111;
12'd3588 : mem_out_dec = 6'b111111;
12'd3589 : mem_out_dec = 6'b111111;
12'd3590 : mem_out_dec = 6'b111111;
12'd3591 : mem_out_dec = 6'b111111;
12'd3592 : mem_out_dec = 6'b111111;
12'd3593 : mem_out_dec = 6'b111111;
12'd3594 : mem_out_dec = 6'b111111;
12'd3595 : mem_out_dec = 6'b111111;
12'd3596 : mem_out_dec = 6'b111111;
12'd3597 : mem_out_dec = 6'b111111;
12'd3598 : mem_out_dec = 6'b111111;
12'd3599 : mem_out_dec = 6'b111111;
12'd3600 : mem_out_dec = 6'b111111;
12'd3601 : mem_out_dec = 6'b111111;
12'd3602 : mem_out_dec = 6'b111111;
12'd3603 : mem_out_dec = 6'b111111;
12'd3604 : mem_out_dec = 6'b111111;
12'd3605 : mem_out_dec = 6'b111111;
12'd3606 : mem_out_dec = 6'b111111;
12'd3607 : mem_out_dec = 6'b111111;
12'd3608 : mem_out_dec = 6'b111111;
12'd3609 : mem_out_dec = 6'b111111;
12'd3610 : mem_out_dec = 6'b111111;
12'd3611 : mem_out_dec = 6'b111111;
12'd3612 : mem_out_dec = 6'b111111;
12'd3613 : mem_out_dec = 6'b111111;
12'd3614 : mem_out_dec = 6'b111111;
12'd3615 : mem_out_dec = 6'b111111;
12'd3616 : mem_out_dec = 6'b111111;
12'd3617 : mem_out_dec = 6'b111111;
12'd3618 : mem_out_dec = 6'b111111;
12'd3619 : mem_out_dec = 6'b111111;
12'd3620 : mem_out_dec = 6'b111111;
12'd3621 : mem_out_dec = 6'b111111;
12'd3622 : mem_out_dec = 6'b111111;
12'd3623 : mem_out_dec = 6'b111111;
12'd3624 : mem_out_dec = 6'b111111;
12'd3625 : mem_out_dec = 6'b111111;
12'd3626 : mem_out_dec = 6'b111111;
12'd3627 : mem_out_dec = 6'b111111;
12'd3628 : mem_out_dec = 6'b111111;
12'd3629 : mem_out_dec = 6'b111111;
12'd3630 : mem_out_dec = 6'b111111;
12'd3631 : mem_out_dec = 6'b111111;
12'd3632 : mem_out_dec = 6'b111111;
12'd3633 : mem_out_dec = 6'b111111;
12'd3634 : mem_out_dec = 6'b111111;
12'd3635 : mem_out_dec = 6'b111111;
12'd3636 : mem_out_dec = 6'b111111;
12'd3637 : mem_out_dec = 6'b111111;
12'd3638 : mem_out_dec = 6'b111111;
12'd3639 : mem_out_dec = 6'b111111;
12'd3640 : mem_out_dec = 6'b111111;
12'd3641 : mem_out_dec = 6'b111111;
12'd3642 : mem_out_dec = 6'b111111;
12'd3643 : mem_out_dec = 6'b111111;
12'd3644 : mem_out_dec = 6'b111111;
12'd3645 : mem_out_dec = 6'b111111;
12'd3646 : mem_out_dec = 6'b000100;
12'd3647 : mem_out_dec = 6'b000101;
12'd3648 : mem_out_dec = 6'b111111;
12'd3649 : mem_out_dec = 6'b111111;
12'd3650 : mem_out_dec = 6'b111111;
12'd3651 : mem_out_dec = 6'b111111;
12'd3652 : mem_out_dec = 6'b111111;
12'd3653 : mem_out_dec = 6'b111111;
12'd3654 : mem_out_dec = 6'b111111;
12'd3655 : mem_out_dec = 6'b111111;
12'd3656 : mem_out_dec = 6'b111111;
12'd3657 : mem_out_dec = 6'b111111;
12'd3658 : mem_out_dec = 6'b111111;
12'd3659 : mem_out_dec = 6'b111111;
12'd3660 : mem_out_dec = 6'b111111;
12'd3661 : mem_out_dec = 6'b111111;
12'd3662 : mem_out_dec = 6'b111111;
12'd3663 : mem_out_dec = 6'b111111;
12'd3664 : mem_out_dec = 6'b111111;
12'd3665 : mem_out_dec = 6'b111111;
12'd3666 : mem_out_dec = 6'b111111;
12'd3667 : mem_out_dec = 6'b111111;
12'd3668 : mem_out_dec = 6'b111111;
12'd3669 : mem_out_dec = 6'b111111;
12'd3670 : mem_out_dec = 6'b111111;
12'd3671 : mem_out_dec = 6'b111111;
12'd3672 : mem_out_dec = 6'b111111;
12'd3673 : mem_out_dec = 6'b111111;
12'd3674 : mem_out_dec = 6'b111111;
12'd3675 : mem_out_dec = 6'b111111;
12'd3676 : mem_out_dec = 6'b111111;
12'd3677 : mem_out_dec = 6'b111111;
12'd3678 : mem_out_dec = 6'b111111;
12'd3679 : mem_out_dec = 6'b111111;
12'd3680 : mem_out_dec = 6'b111111;
12'd3681 : mem_out_dec = 6'b111111;
12'd3682 : mem_out_dec = 6'b111111;
12'd3683 : mem_out_dec = 6'b111111;
12'd3684 : mem_out_dec = 6'b111111;
12'd3685 : mem_out_dec = 6'b111111;
12'd3686 : mem_out_dec = 6'b111111;
12'd3687 : mem_out_dec = 6'b111111;
12'd3688 : mem_out_dec = 6'b111111;
12'd3689 : mem_out_dec = 6'b111111;
12'd3690 : mem_out_dec = 6'b111111;
12'd3691 : mem_out_dec = 6'b111111;
12'd3692 : mem_out_dec = 6'b111111;
12'd3693 : mem_out_dec = 6'b111111;
12'd3694 : mem_out_dec = 6'b111111;
12'd3695 : mem_out_dec = 6'b111111;
12'd3696 : mem_out_dec = 6'b111111;
12'd3697 : mem_out_dec = 6'b111111;
12'd3698 : mem_out_dec = 6'b111111;
12'd3699 : mem_out_dec = 6'b111111;
12'd3700 : mem_out_dec = 6'b111111;
12'd3701 : mem_out_dec = 6'b111111;
12'd3702 : mem_out_dec = 6'b111111;
12'd3703 : mem_out_dec = 6'b111111;
12'd3704 : mem_out_dec = 6'b111111;
12'd3705 : mem_out_dec = 6'b111111;
12'd3706 : mem_out_dec = 6'b111111;
12'd3707 : mem_out_dec = 6'b111111;
12'd3708 : mem_out_dec = 6'b111111;
12'd3709 : mem_out_dec = 6'b111111;
12'd3710 : mem_out_dec = 6'b111111;
12'd3711 : mem_out_dec = 6'b000100;
12'd3712 : mem_out_dec = 6'b111111;
12'd3713 : mem_out_dec = 6'b111111;
12'd3714 : mem_out_dec = 6'b111111;
12'd3715 : mem_out_dec = 6'b111111;
12'd3716 : mem_out_dec = 6'b111111;
12'd3717 : mem_out_dec = 6'b111111;
12'd3718 : mem_out_dec = 6'b111111;
12'd3719 : mem_out_dec = 6'b111111;
12'd3720 : mem_out_dec = 6'b111111;
12'd3721 : mem_out_dec = 6'b111111;
12'd3722 : mem_out_dec = 6'b111111;
12'd3723 : mem_out_dec = 6'b111111;
12'd3724 : mem_out_dec = 6'b111111;
12'd3725 : mem_out_dec = 6'b111111;
12'd3726 : mem_out_dec = 6'b111111;
12'd3727 : mem_out_dec = 6'b111111;
12'd3728 : mem_out_dec = 6'b111111;
12'd3729 : mem_out_dec = 6'b111111;
12'd3730 : mem_out_dec = 6'b111111;
12'd3731 : mem_out_dec = 6'b111111;
12'd3732 : mem_out_dec = 6'b111111;
12'd3733 : mem_out_dec = 6'b111111;
12'd3734 : mem_out_dec = 6'b111111;
12'd3735 : mem_out_dec = 6'b111111;
12'd3736 : mem_out_dec = 6'b111111;
12'd3737 : mem_out_dec = 6'b111111;
12'd3738 : mem_out_dec = 6'b111111;
12'd3739 : mem_out_dec = 6'b111111;
12'd3740 : mem_out_dec = 6'b111111;
12'd3741 : mem_out_dec = 6'b111111;
12'd3742 : mem_out_dec = 6'b111111;
12'd3743 : mem_out_dec = 6'b111111;
12'd3744 : mem_out_dec = 6'b111111;
12'd3745 : mem_out_dec = 6'b111111;
12'd3746 : mem_out_dec = 6'b111111;
12'd3747 : mem_out_dec = 6'b111111;
12'd3748 : mem_out_dec = 6'b111111;
12'd3749 : mem_out_dec = 6'b111111;
12'd3750 : mem_out_dec = 6'b111111;
12'd3751 : mem_out_dec = 6'b111111;
12'd3752 : mem_out_dec = 6'b111111;
12'd3753 : mem_out_dec = 6'b111111;
12'd3754 : mem_out_dec = 6'b111111;
12'd3755 : mem_out_dec = 6'b111111;
12'd3756 : mem_out_dec = 6'b111111;
12'd3757 : mem_out_dec = 6'b111111;
12'd3758 : mem_out_dec = 6'b111111;
12'd3759 : mem_out_dec = 6'b111111;
12'd3760 : mem_out_dec = 6'b111111;
12'd3761 : mem_out_dec = 6'b111111;
12'd3762 : mem_out_dec = 6'b111111;
12'd3763 : mem_out_dec = 6'b111111;
12'd3764 : mem_out_dec = 6'b111111;
12'd3765 : mem_out_dec = 6'b111111;
12'd3766 : mem_out_dec = 6'b111111;
12'd3767 : mem_out_dec = 6'b111111;
12'd3768 : mem_out_dec = 6'b111111;
12'd3769 : mem_out_dec = 6'b111111;
12'd3770 : mem_out_dec = 6'b111111;
12'd3771 : mem_out_dec = 6'b111111;
12'd3772 : mem_out_dec = 6'b111111;
12'd3773 : mem_out_dec = 6'b111111;
12'd3774 : mem_out_dec = 6'b111111;
12'd3775 : mem_out_dec = 6'b111111;
12'd3776 : mem_out_dec = 6'b111111;
12'd3777 : mem_out_dec = 6'b111111;
12'd3778 : mem_out_dec = 6'b111111;
12'd3779 : mem_out_dec = 6'b111111;
12'd3780 : mem_out_dec = 6'b111111;
12'd3781 : mem_out_dec = 6'b111111;
12'd3782 : mem_out_dec = 6'b111111;
12'd3783 : mem_out_dec = 6'b111111;
12'd3784 : mem_out_dec = 6'b111111;
12'd3785 : mem_out_dec = 6'b111111;
12'd3786 : mem_out_dec = 6'b111111;
12'd3787 : mem_out_dec = 6'b111111;
12'd3788 : mem_out_dec = 6'b111111;
12'd3789 : mem_out_dec = 6'b111111;
12'd3790 : mem_out_dec = 6'b111111;
12'd3791 : mem_out_dec = 6'b111111;
12'd3792 : mem_out_dec = 6'b111111;
12'd3793 : mem_out_dec = 6'b111111;
12'd3794 : mem_out_dec = 6'b111111;
12'd3795 : mem_out_dec = 6'b111111;
12'd3796 : mem_out_dec = 6'b111111;
12'd3797 : mem_out_dec = 6'b111111;
12'd3798 : mem_out_dec = 6'b111111;
12'd3799 : mem_out_dec = 6'b111111;
12'd3800 : mem_out_dec = 6'b111111;
12'd3801 : mem_out_dec = 6'b111111;
12'd3802 : mem_out_dec = 6'b111111;
12'd3803 : mem_out_dec = 6'b111111;
12'd3804 : mem_out_dec = 6'b111111;
12'd3805 : mem_out_dec = 6'b111111;
12'd3806 : mem_out_dec = 6'b111111;
12'd3807 : mem_out_dec = 6'b111111;
12'd3808 : mem_out_dec = 6'b111111;
12'd3809 : mem_out_dec = 6'b111111;
12'd3810 : mem_out_dec = 6'b111111;
12'd3811 : mem_out_dec = 6'b111111;
12'd3812 : mem_out_dec = 6'b111111;
12'd3813 : mem_out_dec = 6'b111111;
12'd3814 : mem_out_dec = 6'b111111;
12'd3815 : mem_out_dec = 6'b111111;
12'd3816 : mem_out_dec = 6'b111111;
12'd3817 : mem_out_dec = 6'b111111;
12'd3818 : mem_out_dec = 6'b111111;
12'd3819 : mem_out_dec = 6'b111111;
12'd3820 : mem_out_dec = 6'b111111;
12'd3821 : mem_out_dec = 6'b111111;
12'd3822 : mem_out_dec = 6'b111111;
12'd3823 : mem_out_dec = 6'b111111;
12'd3824 : mem_out_dec = 6'b111111;
12'd3825 : mem_out_dec = 6'b111111;
12'd3826 : mem_out_dec = 6'b111111;
12'd3827 : mem_out_dec = 6'b111111;
12'd3828 : mem_out_dec = 6'b111111;
12'd3829 : mem_out_dec = 6'b111111;
12'd3830 : mem_out_dec = 6'b111111;
12'd3831 : mem_out_dec = 6'b111111;
12'd3832 : mem_out_dec = 6'b111111;
12'd3833 : mem_out_dec = 6'b111111;
12'd3834 : mem_out_dec = 6'b111111;
12'd3835 : mem_out_dec = 6'b111111;
12'd3836 : mem_out_dec = 6'b111111;
12'd3837 : mem_out_dec = 6'b111111;
12'd3838 : mem_out_dec = 6'b111111;
12'd3839 : mem_out_dec = 6'b111111;
12'd3840 : mem_out_dec = 6'b111111;
12'd3841 : mem_out_dec = 6'b111111;
12'd3842 : mem_out_dec = 6'b111111;
12'd3843 : mem_out_dec = 6'b111111;
12'd3844 : mem_out_dec = 6'b111111;
12'd3845 : mem_out_dec = 6'b111111;
12'd3846 : mem_out_dec = 6'b111111;
12'd3847 : mem_out_dec = 6'b111111;
12'd3848 : mem_out_dec = 6'b111111;
12'd3849 : mem_out_dec = 6'b111111;
12'd3850 : mem_out_dec = 6'b111111;
12'd3851 : mem_out_dec = 6'b111111;
12'd3852 : mem_out_dec = 6'b111111;
12'd3853 : mem_out_dec = 6'b111111;
12'd3854 : mem_out_dec = 6'b111111;
12'd3855 : mem_out_dec = 6'b111111;
12'd3856 : mem_out_dec = 6'b111111;
12'd3857 : mem_out_dec = 6'b111111;
12'd3858 : mem_out_dec = 6'b111111;
12'd3859 : mem_out_dec = 6'b111111;
12'd3860 : mem_out_dec = 6'b111111;
12'd3861 : mem_out_dec = 6'b111111;
12'd3862 : mem_out_dec = 6'b111111;
12'd3863 : mem_out_dec = 6'b111111;
12'd3864 : mem_out_dec = 6'b111111;
12'd3865 : mem_out_dec = 6'b111111;
12'd3866 : mem_out_dec = 6'b111111;
12'd3867 : mem_out_dec = 6'b111111;
12'd3868 : mem_out_dec = 6'b111111;
12'd3869 : mem_out_dec = 6'b111111;
12'd3870 : mem_out_dec = 6'b111111;
12'd3871 : mem_out_dec = 6'b111111;
12'd3872 : mem_out_dec = 6'b111111;
12'd3873 : mem_out_dec = 6'b111111;
12'd3874 : mem_out_dec = 6'b111111;
12'd3875 : mem_out_dec = 6'b111111;
12'd3876 : mem_out_dec = 6'b111111;
12'd3877 : mem_out_dec = 6'b111111;
12'd3878 : mem_out_dec = 6'b111111;
12'd3879 : mem_out_dec = 6'b111111;
12'd3880 : mem_out_dec = 6'b111111;
12'd3881 : mem_out_dec = 6'b111111;
12'd3882 : mem_out_dec = 6'b111111;
12'd3883 : mem_out_dec = 6'b111111;
12'd3884 : mem_out_dec = 6'b111111;
12'd3885 : mem_out_dec = 6'b111111;
12'd3886 : mem_out_dec = 6'b111111;
12'd3887 : mem_out_dec = 6'b111111;
12'd3888 : mem_out_dec = 6'b111111;
12'd3889 : mem_out_dec = 6'b111111;
12'd3890 : mem_out_dec = 6'b111111;
12'd3891 : mem_out_dec = 6'b111111;
12'd3892 : mem_out_dec = 6'b111111;
12'd3893 : mem_out_dec = 6'b111111;
12'd3894 : mem_out_dec = 6'b111111;
12'd3895 : mem_out_dec = 6'b111111;
12'd3896 : mem_out_dec = 6'b111111;
12'd3897 : mem_out_dec = 6'b111111;
12'd3898 : mem_out_dec = 6'b111111;
12'd3899 : mem_out_dec = 6'b111111;
12'd3900 : mem_out_dec = 6'b111111;
12'd3901 : mem_out_dec = 6'b111111;
12'd3902 : mem_out_dec = 6'b111111;
12'd3903 : mem_out_dec = 6'b111111;
12'd3904 : mem_out_dec = 6'b111111;
12'd3905 : mem_out_dec = 6'b111111;
12'd3906 : mem_out_dec = 6'b111111;
12'd3907 : mem_out_dec = 6'b111111;
12'd3908 : mem_out_dec = 6'b111111;
12'd3909 : mem_out_dec = 6'b111111;
12'd3910 : mem_out_dec = 6'b111111;
12'd3911 : mem_out_dec = 6'b111111;
12'd3912 : mem_out_dec = 6'b111111;
12'd3913 : mem_out_dec = 6'b111111;
12'd3914 : mem_out_dec = 6'b111111;
12'd3915 : mem_out_dec = 6'b111111;
12'd3916 : mem_out_dec = 6'b111111;
12'd3917 : mem_out_dec = 6'b111111;
12'd3918 : mem_out_dec = 6'b111111;
12'd3919 : mem_out_dec = 6'b111111;
12'd3920 : mem_out_dec = 6'b111111;
12'd3921 : mem_out_dec = 6'b111111;
12'd3922 : mem_out_dec = 6'b111111;
12'd3923 : mem_out_dec = 6'b111111;
12'd3924 : mem_out_dec = 6'b111111;
12'd3925 : mem_out_dec = 6'b111111;
12'd3926 : mem_out_dec = 6'b111111;
12'd3927 : mem_out_dec = 6'b111111;
12'd3928 : mem_out_dec = 6'b111111;
12'd3929 : mem_out_dec = 6'b111111;
12'd3930 : mem_out_dec = 6'b111111;
12'd3931 : mem_out_dec = 6'b111111;
12'd3932 : mem_out_dec = 6'b111111;
12'd3933 : mem_out_dec = 6'b111111;
12'd3934 : mem_out_dec = 6'b111111;
12'd3935 : mem_out_dec = 6'b111111;
12'd3936 : mem_out_dec = 6'b111111;
12'd3937 : mem_out_dec = 6'b111111;
12'd3938 : mem_out_dec = 6'b111111;
12'd3939 : mem_out_dec = 6'b111111;
12'd3940 : mem_out_dec = 6'b111111;
12'd3941 : mem_out_dec = 6'b111111;
12'd3942 : mem_out_dec = 6'b111111;
12'd3943 : mem_out_dec = 6'b111111;
12'd3944 : mem_out_dec = 6'b111111;
12'd3945 : mem_out_dec = 6'b111111;
12'd3946 : mem_out_dec = 6'b111111;
12'd3947 : mem_out_dec = 6'b111111;
12'd3948 : mem_out_dec = 6'b111111;
12'd3949 : mem_out_dec = 6'b111111;
12'd3950 : mem_out_dec = 6'b111111;
12'd3951 : mem_out_dec = 6'b111111;
12'd3952 : mem_out_dec = 6'b111111;
12'd3953 : mem_out_dec = 6'b111111;
12'd3954 : mem_out_dec = 6'b111111;
12'd3955 : mem_out_dec = 6'b111111;
12'd3956 : mem_out_dec = 6'b111111;
12'd3957 : mem_out_dec = 6'b111111;
12'd3958 : mem_out_dec = 6'b111111;
12'd3959 : mem_out_dec = 6'b111111;
12'd3960 : mem_out_dec = 6'b111111;
12'd3961 : mem_out_dec = 6'b111111;
12'd3962 : mem_out_dec = 6'b111111;
12'd3963 : mem_out_dec = 6'b111111;
12'd3964 : mem_out_dec = 6'b111111;
12'd3965 : mem_out_dec = 6'b111111;
12'd3966 : mem_out_dec = 6'b111111;
12'd3967 : mem_out_dec = 6'b111111;
12'd3968 : mem_out_dec = 6'b111111;
12'd3969 : mem_out_dec = 6'b111111;
12'd3970 : mem_out_dec = 6'b111111;
12'd3971 : mem_out_dec = 6'b111111;
12'd3972 : mem_out_dec = 6'b111111;
12'd3973 : mem_out_dec = 6'b111111;
12'd3974 : mem_out_dec = 6'b111111;
12'd3975 : mem_out_dec = 6'b111111;
12'd3976 : mem_out_dec = 6'b111111;
12'd3977 : mem_out_dec = 6'b111111;
12'd3978 : mem_out_dec = 6'b111111;
12'd3979 : mem_out_dec = 6'b111111;
12'd3980 : mem_out_dec = 6'b111111;
12'd3981 : mem_out_dec = 6'b111111;
12'd3982 : mem_out_dec = 6'b111111;
12'd3983 : mem_out_dec = 6'b111111;
12'd3984 : mem_out_dec = 6'b111111;
12'd3985 : mem_out_dec = 6'b111111;
12'd3986 : mem_out_dec = 6'b111111;
12'd3987 : mem_out_dec = 6'b111111;
12'd3988 : mem_out_dec = 6'b111111;
12'd3989 : mem_out_dec = 6'b111111;
12'd3990 : mem_out_dec = 6'b111111;
12'd3991 : mem_out_dec = 6'b111111;
12'd3992 : mem_out_dec = 6'b111111;
12'd3993 : mem_out_dec = 6'b111111;
12'd3994 : mem_out_dec = 6'b111111;
12'd3995 : mem_out_dec = 6'b111111;
12'd3996 : mem_out_dec = 6'b111111;
12'd3997 : mem_out_dec = 6'b111111;
12'd3998 : mem_out_dec = 6'b111111;
12'd3999 : mem_out_dec = 6'b111111;
12'd4000 : mem_out_dec = 6'b111111;
12'd4001 : mem_out_dec = 6'b111111;
12'd4002 : mem_out_dec = 6'b111111;
12'd4003 : mem_out_dec = 6'b111111;
12'd4004 : mem_out_dec = 6'b111111;
12'd4005 : mem_out_dec = 6'b111111;
12'd4006 : mem_out_dec = 6'b111111;
12'd4007 : mem_out_dec = 6'b111111;
12'd4008 : mem_out_dec = 6'b111111;
12'd4009 : mem_out_dec = 6'b111111;
12'd4010 : mem_out_dec = 6'b111111;
12'd4011 : mem_out_dec = 6'b111111;
12'd4012 : mem_out_dec = 6'b111111;
12'd4013 : mem_out_dec = 6'b111111;
12'd4014 : mem_out_dec = 6'b111111;
12'd4015 : mem_out_dec = 6'b111111;
12'd4016 : mem_out_dec = 6'b111111;
12'd4017 : mem_out_dec = 6'b111111;
12'd4018 : mem_out_dec = 6'b111111;
12'd4019 : mem_out_dec = 6'b111111;
12'd4020 : mem_out_dec = 6'b111111;
12'd4021 : mem_out_dec = 6'b111111;
12'd4022 : mem_out_dec = 6'b111111;
12'd4023 : mem_out_dec = 6'b111111;
12'd4024 : mem_out_dec = 6'b111111;
12'd4025 : mem_out_dec = 6'b111111;
12'd4026 : mem_out_dec = 6'b111111;
12'd4027 : mem_out_dec = 6'b111111;
12'd4028 : mem_out_dec = 6'b111111;
12'd4029 : mem_out_dec = 6'b111111;
12'd4030 : mem_out_dec = 6'b111111;
12'd4031 : mem_out_dec = 6'b111111;
12'd4032 : mem_out_dec = 6'b111111;
12'd4033 : mem_out_dec = 6'b111111;
12'd4034 : mem_out_dec = 6'b111111;
12'd4035 : mem_out_dec = 6'b111111;
12'd4036 : mem_out_dec = 6'b111111;
12'd4037 : mem_out_dec = 6'b111111;
12'd4038 : mem_out_dec = 6'b111111;
12'd4039 : mem_out_dec = 6'b111111;
12'd4040 : mem_out_dec = 6'b111111;
12'd4041 : mem_out_dec = 6'b111111;
12'd4042 : mem_out_dec = 6'b111111;
12'd4043 : mem_out_dec = 6'b111111;
12'd4044 : mem_out_dec = 6'b111111;
12'd4045 : mem_out_dec = 6'b111111;
12'd4046 : mem_out_dec = 6'b111111;
12'd4047 : mem_out_dec = 6'b111111;
12'd4048 : mem_out_dec = 6'b111111;
12'd4049 : mem_out_dec = 6'b111111;
12'd4050 : mem_out_dec = 6'b111111;
12'd4051 : mem_out_dec = 6'b111111;
12'd4052 : mem_out_dec = 6'b111111;
12'd4053 : mem_out_dec = 6'b111111;
12'd4054 : mem_out_dec = 6'b111111;
12'd4055 : mem_out_dec = 6'b111111;
12'd4056 : mem_out_dec = 6'b111111;
12'd4057 : mem_out_dec = 6'b111111;
12'd4058 : mem_out_dec = 6'b111111;
12'd4059 : mem_out_dec = 6'b111111;
12'd4060 : mem_out_dec = 6'b111111;
12'd4061 : mem_out_dec = 6'b111111;
12'd4062 : mem_out_dec = 6'b111111;
12'd4063 : mem_out_dec = 6'b111111;
12'd4064 : mem_out_dec = 6'b111111;
12'd4065 : mem_out_dec = 6'b111111;
12'd4066 : mem_out_dec = 6'b111111;
12'd4067 : mem_out_dec = 6'b111111;
12'd4068 : mem_out_dec = 6'b111111;
12'd4069 : mem_out_dec = 6'b111111;
12'd4070 : mem_out_dec = 6'b111111;
12'd4071 : mem_out_dec = 6'b111111;
12'd4072 : mem_out_dec = 6'b111111;
12'd4073 : mem_out_dec = 6'b111111;
12'd4074 : mem_out_dec = 6'b111111;
12'd4075 : mem_out_dec = 6'b111111;
12'd4076 : mem_out_dec = 6'b111111;
12'd4077 : mem_out_dec = 6'b111111;
12'd4078 : mem_out_dec = 6'b111111;
12'd4079 : mem_out_dec = 6'b111111;
12'd4080 : mem_out_dec = 6'b111111;
12'd4081 : mem_out_dec = 6'b111111;
12'd4082 : mem_out_dec = 6'b111111;
12'd4083 : mem_out_dec = 6'b111111;
12'd4084 : mem_out_dec = 6'b111111;
12'd4085 : mem_out_dec = 6'b111111;
12'd4086 : mem_out_dec = 6'b111111;
12'd4087 : mem_out_dec = 6'b111111;
12'd4088 : mem_out_dec = 6'b111111;
12'd4089 : mem_out_dec = 6'b111111;
12'd4090 : mem_out_dec = 6'b111111;
12'd4091 : mem_out_dec = 6'b111111;
12'd4092 : mem_out_dec = 6'b111111;
12'd4093 : mem_out_dec = 6'b111111;
12'd4094 : mem_out_dec = 6'b111111;
12'd4095 : mem_out_dec = 6'b111111;
endcase
end
always @ (posedge clk) begin
dec_cnt <= #TCQ mem_out_dec;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_prbs_rdlvl #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter RANKS = 1, // # of DRAM ranks
parameter SIM_CAL_OPTION = "NONE", // Skip various calibration steps
parameter PRBS_WIDTH = 8, // PRBS generator output width
parameter FIXED_VICTIM = "TRUE", // No victim rotation when "TRUE"
parameter FINE_PER_BIT = "ON",
parameter CENTER_COMP_MODE = "ON",
parameter PI_VAL_ADJ = "ON"
)
(
input clk,
input rst,
// Calibration status, control signals
input prbs_rdlvl_start,
(* max_fanout = 100 *) output reg prbs_rdlvl_done,
output reg prbs_last_byte_done,
output reg prbs_rdlvl_prech_req,
input complex_sample_cnt_inc,
input prech_done,
input phy_if_empty,
// Captured data in fabric clock domain
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data,
//Expected data from PRBS generator
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] compare_data,
// Decrement initial Phaser_IN Fine tap delay
input [5:0] pi_counter_read_val,
// Stage 1 calibration outputs
output reg pi_en_stg2_f,
output reg pi_stg2_f_incdec,
output [255:0] dbg_prbs_rdlvl,
output [DQS_CNT_WIDTH:0] pi_stg2_prbs_rdlvl_cnt,
output reg [2:0] rd_victim_sel,
output reg complex_victim_inc,
output reg reset_rd_addr,
output reg read_pause,
output reg [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r,
output reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps,
output reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps,
output reg [DRAM_WIDTH-1:0] fine_delay_incdec_pb, //fine_delay decreament per bit
output reg fine_delay_sel //fine delay selection - actual update of fine delay
);
localparam [5:0] PRBS_IDLE = 6'h00;
localparam [5:0] PRBS_NEW_DQS_WAIT = 6'h01;
localparam [5:0] PRBS_PAT_COMPARE = 6'h02;
localparam [5:0] PRBS_DEC_DQS = 6'h03;
localparam [5:0] PRBS_DEC_DQS_WAIT = 6'h04;
localparam [5:0] PRBS_INC_DQS = 6'h05;
localparam [5:0] PRBS_INC_DQS_WAIT = 6'h06;
localparam [5:0] PRBS_CALC_TAPS = 6'h07;
localparam [5:0] PRBS_NEXT_DQS = 6'h08;
localparam [5:0] PRBS_NEW_DQS_PREWAIT = 6'h09;
localparam [5:0] PRBS_DONE = 6'h0A;
localparam [5:0] PRBS_CALC_TAPS_PRE = 6'h0B;
localparam [5:0] PRBS_CALC_TAPS_WAIT = 6'h0C;
localparam [5:0] FINE_PI_DEC = 6'h0D; //go back to all fail or back to center
localparam [5:0] FINE_PI_DEC_WAIT = 6'h0E; //wait for PI tap dec settle
localparam [5:0] FINE_PI_INC = 6'h0F; //increse up to 1 fail
localparam [5:0] FINE_PI_INC_WAIT = 6'h10; //wait for PI tap int settle
localparam [5:0] FINE_PAT_COMPARE_PER_BIT = 6'h11; //compare per bit error and check left/right/gain/loss
localparam [5:0] FINE_CALC_TAPS = 6'h12; //setup fine_delay_incdec_pb for better window size
localparam [5:0] FINE_CALC_TAPS_WAIT = 6'h13; //wait for ROM value for dec cnt
localparam [11:0] NUM_SAMPLES_CNT = (SIM_CAL_OPTION == "NONE") ? 'd50 : 12'h001;
localparam [11:0] NUM_SAMPLES_CNT1 = (SIM_CAL_OPTION == "NONE") ? 'd20 : 12'h001;
localparam [11:0] NUM_SAMPLES_CNT2 = (SIM_CAL_OPTION == "NONE") ? 'd10 : 12'h001;
wire [DQS_CNT_WIDTH+2:0]prbs_dqs_cnt_timing;
reg [DQS_CNT_WIDTH+2:0] prbs_dqs_cnt_timing_r;
reg [DQS_CNT_WIDTH:0] prbs_dqs_cnt_r;
reg prbs_prech_req_r;
reg [5:0] prbs_state_r;
reg [5:0] prbs_state_r1;
reg wait_state_cnt_en_r;
reg [3:0] wait_state_cnt_r;
reg cnt_wait_state;
reg err_chk_invalid;
// reg found_edge_r;
reg prbs_found_1st_edge_r;
reg prbs_found_2nd_edge_r;
reg [5:0] prbs_1st_edge_taps_r;
// reg found_stable_eye_r;
reg [5:0] prbs_dqs_tap_cnt_r;
reg [5:0] prbs_dec_tap_calc_plus_3;
reg [5:0] prbs_dec_tap_calc_minus_3;
reg prbs_dqs_tap_limit_r;
reg [5:0] prbs_inc_tap_cnt;
reg [5:0] prbs_dec_tap_cnt;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r4;
reg mux_rd_valid_r;
reg rd_valid_r1;
reg rd_valid_r2;
reg rd_valid_r3;
reg new_cnt_dqs_r;
reg prbs_tap_en_r;
reg prbs_tap_inc_r;
reg pi_en_stg2_f_timing;
reg pi_stg2_f_incdec_timing;
wire [DQ_WIDTH-1:0] rd_data_rise0;
wire [DQ_WIDTH-1:0] rd_data_fall0;
wire [DQ_WIDTH-1:0] rd_data_rise1;
wire [DQ_WIDTH-1:0] rd_data_fall1;
wire [DQ_WIDTH-1:0] rd_data_rise2;
wire [DQ_WIDTH-1:0] rd_data_fall2;
wire [DQ_WIDTH-1:0] rd_data_rise3;
wire [DQ_WIDTH-1:0] rd_data_fall3;
wire [DQ_WIDTH-1:0] compare_data_r0;
wire [DQ_WIDTH-1:0] compare_data_f0;
wire [DQ_WIDTH-1:0] compare_data_r1;
wire [DQ_WIDTH-1:0] compare_data_f1;
wire [DQ_WIDTH-1:0] compare_data_r2;
wire [DQ_WIDTH-1:0] compare_data_f2;
wire [DQ_WIDTH-1:0] compare_data_r3;
wire [DQ_WIDTH-1:0] compare_data_f3;
reg [DRAM_WIDTH-1:0] compare_data_rise0_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall0_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise1_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall1_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise2_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall2_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise3_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall3_r1;
reg [DQS_CNT_WIDTH:0] rd_mux_sel_r;
reg [5:0] prbs_2nd_edge_taps_r;
// reg [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r;
reg [5:0] rdlvl_cpt_tap_cnt;
reg prbs_rdlvl_start_r;
reg compare_err;
reg compare_err_r0;
reg compare_err_f0;
reg compare_err_r1;
reg compare_err_f1;
reg compare_err_r2;
reg compare_err_f2;
reg compare_err_r3;
reg compare_err_f3;
reg samples_cnt1_en_r;
reg samples_cnt2_en_r;
reg [11:0] samples_cnt_r;
reg num_samples_done_r;
reg num_samples_done_ind; //indicate num_samples_done_r is set in FINE_PAT_COMPARE_PER_BIT to prevent victim_sel_rd out of sync
reg [DQS_WIDTH-1:0] prbs_tap_mod;
//reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps;
//reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps;
//**************************************************************************
// signals for per-bit algorithm of fine_delay calculations
//**************************************************************************
reg [6*DRAM_WIDTH-1:0] left_edge_pb; //left edge value per bit
reg [6*DRAM_WIDTH-1:0] right_edge_pb; //right edge value per bit
reg [5*DRAM_WIDTH-1:0] match_flag_pb; //5 consecutive match flag per bit
reg [4:0] match_flag_and; //5 consecute match flag of all bits (1: all bit fail)
reg [DRAM_WIDTH-1:0] left_edge_found_pb; //left_edge found per bit - use for loss calculation
reg [DRAM_WIDTH-1:0] left_edge_updated; //left edge was updated for this PI tap - used for largest left edge /ref bit update
reg [DRAM_WIDTH-1:0] right_edge_found_pb; //right_edge found per bit - use for gail calulation and smallest right edge update
reg right_edge_found; //smallest right_edge found
reg [DRAM_WIDTH*6-1:0] left_loss_pb; //left_edge loss per bit
reg [DRAM_WIDTH*6-1:0] right_gain_pb; //right_edge gain per bit
reg [DRAM_WIDTH-1:0] ref_bit; //bit number which has largest left edge (with smaller right edge)
reg [DRAM_WIDTH-1:0] bit_cnt; //bit number used to calculate ref bit
reg [DRAM_WIDTH-1:0] ref_bit_per_bit; //bit flags which have largest left edge
reg [5:0] ref_right_edge; //ref_bit right edge - keep the smallest edge of ref bits
reg [5:0] largest_left_edge; //biggest left edge of per bit - will be left edge of byte
reg [5:0] smallest_right_edge; //smallest right edge of per bit - will be right edge of byte
reg [5:0] fine_pi_dec_cnt; //Phase In tap decrement count (to go back to '0' or center)
reg [6:0] center_calc; //used for calculate the dec tap for centering
reg [5:0] right_edge_ref; //ref_bit right edge
reg [5:0] left_edge_ref; //ref_bit left edge
reg [DRAM_WIDTH-1:0] compare_err_pb; //compare error per bit
reg [DRAM_WIDTH-1:0] compare_err_pb_latch_r; //sticky compare error per bit used for left/right edge
reg compare_err_pb_and; //indicate all bit fail
reg fine_inc_stage; //fine_inc_stage (1: increment all except ref_bit, 0: only inc for gain bit)
reg [1:0] stage_cnt; //stage cnt (0,1: fine delay inc stage, 2: fine delay dec stage)
wire fine_calib; //turn on/off fine delay calibration
reg [5:0] mem_out_dec;
reg [5:0] dec_cnt;
reg fine_dly_error; //indicate it has wrong left/right edge
wire center_comp;
wire pi_adj;
//**************************************************************************
// DQS count to hard PHY during write calibration using Phaser_OUT Stage2
// coarse delay
//**************************************************************************
assign pi_stg2_prbs_rdlvl_cnt = prbs_dqs_cnt_r;
//fine delay turn on
assign fine_calib = (FINE_PER_BIT=="ON")? 1:0;
assign center_comp = (CENTER_COMP_MODE == "ON")? 1: 0;
assign pi_adj = (PI_VAL_ADJ == "ON")?1:0;
assign dbg_prbs_rdlvl[0+:6] = left_edge_pb[0+:6];
assign dbg_prbs_rdlvl[7:6] = left_loss_pb[0+:2];
assign dbg_prbs_rdlvl[8+:6] = left_edge_pb[6+:6];
assign dbg_prbs_rdlvl[15:14] = left_loss_pb[6+:2];
assign dbg_prbs_rdlvl[16+:6] = left_edge_pb[12+:6] ;
assign dbg_prbs_rdlvl[23:22] = left_loss_pb[12+:2];
assign dbg_prbs_rdlvl[24+:6] = left_edge_pb[18+:6] ;
assign dbg_prbs_rdlvl[31:30] = left_loss_pb[18+:2];
assign dbg_prbs_rdlvl[32+:6] = left_edge_pb[24+:6];
assign dbg_prbs_rdlvl[39:38] = left_loss_pb[24+:2];
assign dbg_prbs_rdlvl[40+:6] = left_edge_pb[30+:6];
assign dbg_prbs_rdlvl[47:46] = left_loss_pb[30+:2];
assign dbg_prbs_rdlvl[48+:6] = left_edge_pb[36+:6];
assign dbg_prbs_rdlvl[55:54] = left_loss_pb[36+:2];
assign dbg_prbs_rdlvl[56+:6] = left_edge_pb[42+:6];
assign dbg_prbs_rdlvl[63:62] = left_loss_pb[42+:2];
assign dbg_prbs_rdlvl[64+:6] = right_edge_pb[0+:6];
assign dbg_prbs_rdlvl[71:70] = right_gain_pb[0+:2];
assign dbg_prbs_rdlvl[72+:6] = right_edge_pb[6+:6] ;
assign dbg_prbs_rdlvl[79:78] = right_gain_pb[6+:2];
assign dbg_prbs_rdlvl[80+:6] = right_edge_pb[12+:6];
assign dbg_prbs_rdlvl[87:86] = right_gain_pb[12+:2];
assign dbg_prbs_rdlvl[88+:6] = right_edge_pb[18+:6];
assign dbg_prbs_rdlvl[95:94] = right_gain_pb[18+:2];
assign dbg_prbs_rdlvl[96+:6] = right_edge_pb[24+:6];
assign dbg_prbs_rdlvl[103:102] = right_gain_pb[24+:2];
assign dbg_prbs_rdlvl[104+:6] = right_edge_pb[30+:6];
assign dbg_prbs_rdlvl[111:110] = right_gain_pb[30+:2];
assign dbg_prbs_rdlvl[112+:6] = right_edge_pb[36+:6];
assign dbg_prbs_rdlvl[119:118] = right_gain_pb[36+:2];
assign dbg_prbs_rdlvl[120+:6] = right_edge_pb[42+:6];
assign dbg_prbs_rdlvl[127:126] = right_gain_pb[42+:2];
assign dbg_prbs_rdlvl[128+:6] = pi_counter_read_val;
assign dbg_prbs_rdlvl[134+:6] = prbs_dqs_tap_cnt_r;
assign dbg_prbs_rdlvl[140] = prbs_found_1st_edge_r;
assign dbg_prbs_rdlvl[141] = prbs_found_2nd_edge_r;
assign dbg_prbs_rdlvl[142] = compare_err;
assign dbg_prbs_rdlvl[143] = phy_if_empty;
assign dbg_prbs_rdlvl[144] = prbs_rdlvl_start;
assign dbg_prbs_rdlvl[145] = prbs_rdlvl_done;
assign dbg_prbs_rdlvl[146+:5] = prbs_dqs_cnt_r;
assign dbg_prbs_rdlvl[151+:6] = left_edge_pb[prbs_dqs_cnt_r*6+:6] ;
assign dbg_prbs_rdlvl[157+:6] = right_edge_pb[prbs_dqs_cnt_r*6+:6];
assign dbg_prbs_rdlvl[163+:6] = {2'h0,complex_victim_inc, rd_victim_sel[2:0]};
assign dbg_prbs_rdlvl[169+:6] =right_gain_pb[prbs_dqs_cnt_r*6+:6] ;
assign dbg_prbs_rdlvl[177:175] = ref_bit[2:0];
assign dbg_prbs_rdlvl[178+:6] = prbs_state_r1[5:0];
assign dbg_prbs_rdlvl[184] = rd_valid_r2;
assign dbg_prbs_rdlvl[185] = compare_err_r0;
assign dbg_prbs_rdlvl[186] = compare_err_f0;
assign dbg_prbs_rdlvl[187] = compare_err_r1;
assign dbg_prbs_rdlvl[188] = compare_err_f1;
assign dbg_prbs_rdlvl[189] = compare_err_r2;
assign dbg_prbs_rdlvl[190] = compare_err_f2;
assign dbg_prbs_rdlvl[191] = compare_err_r3;
assign dbg_prbs_rdlvl[192] = compare_err_f3;
assign dbg_prbs_rdlvl[193+:8] = left_edge_found_pb;
assign dbg_prbs_rdlvl[201+:8] = right_edge_found_pb;
assign dbg_prbs_rdlvl[209+:6] =largest_left_edge ;
assign dbg_prbs_rdlvl[215+:6] =smallest_right_edge ;
assign dbg_prbs_rdlvl[221+:8] = fine_delay_incdec_pb;
assign dbg_prbs_rdlvl[229] = fine_delay_sel;
assign dbg_prbs_rdlvl[230+:8] = compare_err_pb_latch_r;
assign dbg_prbs_rdlvl[238+:6] = fine_pi_dec_cnt;
assign dbg_prbs_rdlvl[244+:5] = match_flag_and ;
assign dbg_prbs_rdlvl[249+:2] =stage_cnt ;
assign dbg_prbs_rdlvl[251] = fine_inc_stage ;
assign dbg_prbs_rdlvl[252] = compare_err_pb_and ;
assign dbg_prbs_rdlvl[253] = right_edge_found ;
assign dbg_prbs_rdlvl[254] = fine_dly_error ;
assign dbg_prbs_rdlvl[255]= 'b0;//reserved
//**************************************************************************
// Record first and second edges found during calibration
//**************************************************************************
generate
always @(posedge clk)
if (rst) begin
dbg_prbs_first_edge_taps <= #TCQ 'b0;
dbg_prbs_second_edge_taps <= #TCQ 'b0;
end else if (prbs_state_r == PRBS_CALC_TAPS) begin
// Record tap counts of first and second edge edges during
// calibration for each DQS group. If neither edge has
// been found, then those taps will remain 0
if (prbs_found_1st_edge_r)
dbg_prbs_first_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_1st_edge_taps_r;
if (prbs_found_2nd_edge_r)
dbg_prbs_second_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_2nd_edge_taps_r;
end else if (prbs_state_r == FINE_CALC_TAPS) begin
if(stage_cnt == 'd2) begin
dbg_prbs_first_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ largest_left_edge;
dbg_prbs_second_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ smallest_right_edge;
end
end
endgenerate
//padded calculation
always @ (smallest_right_edge or largest_left_edge)
center_calc <= {1'b0, smallest_right_edge} + {1'b0,largest_left_edge};
//***************************************************************************
//***************************************************************************
// Data mux to route appropriate bit to calibration logic - i.e. calibration
// is done sequentially, one bit (or DQS group) at a time
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: rd_data_div4_logic_clk
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign rd_data_rise2 = rd_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign rd_data_fall2 = rd_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign rd_data_rise3 = rd_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign rd_data_fall3 = rd_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
assign compare_data_r0 = compare_data[DQ_WIDTH-1:0];
assign compare_data_f0 = compare_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign compare_data_r1 = compare_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign compare_data_f1 = compare_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r2 = compare_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign compare_data_f2 = compare_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign compare_data_r3 = compare_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign compare_data_f3 = compare_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
end else begin: rd_data_div2_logic_clk
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r0 = compare_data[DQ_WIDTH-1:0];
assign compare_data_f0 = compare_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign compare_data_r1 = compare_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign compare_data_f1 = compare_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r2 = 'h0;
assign compare_data_f2 = 'h0;
assign compare_data_r3 = 'h0;
assign compare_data_f3 = 'h0;
end
endgenerate
always @(posedge clk) begin
rd_mux_sel_r <= #TCQ prbs_dqs_cnt_r;
end
// Register outputs for improved timing.
// NOTE: Will need to change when per-bit DQ deskew is supported.
// Currenly all bits in DQS group are checked in aggregate
generate
genvar mux_i;
for (mux_i = 0; mux_i < DRAM_WIDTH; mux_i = mux_i + 1) begin: gen_mux_rd
always @(posedge clk) begin
mux_rd_rise0_r1[mux_i] <= #TCQ rd_data_rise0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall0_r1[mux_i] <= #TCQ rd_data_fall0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise1_r1[mux_i] <= #TCQ rd_data_rise1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall1_r1[mux_i] <= #TCQ rd_data_fall1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise2_r1[mux_i] <= #TCQ rd_data_rise2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall2_r1[mux_i] <= #TCQ rd_data_fall2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise3_r1[mux_i] <= #TCQ rd_data_rise3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall3_r1[mux_i] <= #TCQ rd_data_fall3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
//Compare data
compare_data_rise0_r1[mux_i] <= #TCQ compare_data_r0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall0_r1[mux_i] <= #TCQ compare_data_f0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise1_r1[mux_i] <= #TCQ compare_data_r1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall1_r1[mux_i] <= #TCQ compare_data_f1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise2_r1[mux_i] <= #TCQ compare_data_r2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall2_r1[mux_i] <= #TCQ compare_data_f2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise3_r1[mux_i] <= #TCQ compare_data_r3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall3_r1[mux_i] <= #TCQ compare_data_f3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
end
end
endgenerate
generate
genvar muxr2_i;
if (nCK_PER_CLK == 4) begin: gen_mux_div4
for (muxr2_i = 0; muxr2_i < DRAM_WIDTH; muxr2_i = muxr2_i + 1) begin: gen_rd_4
always @(posedge clk) begin
if (mux_rd_valid_r) begin
mux_rd_rise0_r2[muxr2_i] <= #TCQ mux_rd_rise0_r1[muxr2_i];
mux_rd_fall0_r2[muxr2_i] <= #TCQ mux_rd_fall0_r1[muxr2_i];
mux_rd_rise1_r2[muxr2_i] <= #TCQ mux_rd_rise1_r1[muxr2_i];
mux_rd_fall1_r2[muxr2_i] <= #TCQ mux_rd_fall1_r1[muxr2_i];
mux_rd_rise2_r2[muxr2_i] <= #TCQ mux_rd_rise2_r1[muxr2_i];
mux_rd_fall2_r2[muxr2_i] <= #TCQ mux_rd_fall2_r1[muxr2_i];
mux_rd_rise3_r2[muxr2_i] <= #TCQ mux_rd_rise3_r1[muxr2_i];
mux_rd_fall3_r2[muxr2_i] <= #TCQ mux_rd_fall3_r1[muxr2_i];
end
//pipeline stage
mux_rd_rise0_r3[muxr2_i] <= #TCQ mux_rd_rise0_r2[muxr2_i];
mux_rd_fall0_r3[muxr2_i] <= #TCQ mux_rd_fall0_r2[muxr2_i];
mux_rd_rise1_r3[muxr2_i] <= #TCQ mux_rd_rise1_r2[muxr2_i];
mux_rd_fall1_r3[muxr2_i] <= #TCQ mux_rd_fall1_r2[muxr2_i];
mux_rd_rise2_r3[muxr2_i] <= #TCQ mux_rd_rise2_r2[muxr2_i];
mux_rd_fall2_r3[muxr2_i] <= #TCQ mux_rd_fall2_r2[muxr2_i];
mux_rd_rise3_r3[muxr2_i] <= #TCQ mux_rd_rise3_r2[muxr2_i];
mux_rd_fall3_r3[muxr2_i] <= #TCQ mux_rd_fall3_r2[muxr2_i];
//pipeline stage
mux_rd_rise0_r4[muxr2_i] <= #TCQ mux_rd_rise0_r3[muxr2_i];
mux_rd_fall0_r4[muxr2_i] <= #TCQ mux_rd_fall0_r3[muxr2_i];
mux_rd_rise1_r4[muxr2_i] <= #TCQ mux_rd_rise1_r3[muxr2_i];
mux_rd_fall1_r4[muxr2_i] <= #TCQ mux_rd_fall1_r3[muxr2_i];
mux_rd_rise2_r4[muxr2_i] <= #TCQ mux_rd_rise2_r3[muxr2_i];
mux_rd_fall2_r4[muxr2_i] <= #TCQ mux_rd_fall2_r3[muxr2_i];
mux_rd_rise3_r4[muxr2_i] <= #TCQ mux_rd_rise3_r3[muxr2_i];
mux_rd_fall3_r4[muxr2_i] <= #TCQ mux_rd_fall3_r3[muxr2_i];
end
end
end else if (nCK_PER_CLK == 2) begin: gen_mux_div2
for (muxr2_i = 0; muxr2_i < DRAM_WIDTH; muxr2_i = muxr2_i + 1) begin: gen_rd_2
always @(posedge clk) begin
if (mux_rd_valid_r) begin
mux_rd_rise0_r2[muxr2_i] <= #TCQ mux_rd_rise0_r1[muxr2_i];
mux_rd_fall0_r2[muxr2_i] <= #TCQ mux_rd_fall0_r1[muxr2_i];
mux_rd_rise1_r2[muxr2_i] <= #TCQ mux_rd_rise1_r1[muxr2_i];
mux_rd_fall1_r2[muxr2_i] <= #TCQ mux_rd_fall1_r1[muxr2_i];
mux_rd_rise2_r2[muxr2_i] <= 'h0;
mux_rd_fall2_r2[muxr2_i] <= 'h0;
mux_rd_rise3_r2[muxr2_i] <= 'h0;
mux_rd_fall3_r2[muxr2_i] <= 'h0;
end
mux_rd_rise0_r3[muxr2_i] <= #TCQ mux_rd_rise0_r2[muxr2_i];
mux_rd_fall0_r3[muxr2_i] <= #TCQ mux_rd_fall0_r2[muxr2_i];
mux_rd_rise1_r3[muxr2_i] <= #TCQ mux_rd_rise1_r2[muxr2_i];
mux_rd_fall1_r3[muxr2_i] <= #TCQ mux_rd_fall1_r2[muxr2_i];
mux_rd_rise2_r3[muxr2_i] <= 'h0;
mux_rd_fall2_r3[muxr2_i] <= 'h0;
mux_rd_rise3_r3[muxr2_i] <= 'h0;
mux_rd_fall3_r3[muxr2_i] <= 'h0;
//pipeline stage
mux_rd_rise0_r4[muxr2_i] <= #TCQ mux_rd_rise0_r3[muxr2_i];
mux_rd_fall0_r4[muxr2_i] <= #TCQ mux_rd_fall0_r3[muxr2_i];
mux_rd_rise1_r4[muxr2_i] <= #TCQ mux_rd_rise1_r3[muxr2_i];
mux_rd_fall1_r4[muxr2_i] <= #TCQ mux_rd_fall1_r3[muxr2_i];
mux_rd_rise2_r4[muxr2_i] <= 'h0;
mux_rd_fall2_r4[muxr2_i] <= 'h0;
mux_rd_rise3_r4[muxr2_i] <= 'h0;
mux_rd_fall3_r4[muxr2_i] <= 'h0;
end
end
end
endgenerate
// Registered signal indicates when mux_rd_rise/fall_r is valid
always @(posedge clk) begin
mux_rd_valid_r <= #TCQ ~phy_if_empty && prbs_rdlvl_start;
rd_valid_r1 <= #TCQ mux_rd_valid_r;
rd_valid_r2 <= #TCQ rd_valid_r1;
rd_valid_r3 <= #TCQ rd_valid_r2;
end
// Counter counts # of samples compared
// Reset sample counter when not "sampling"
// Otherwise, count # of samples compared
// Same counter is shared for three samples checked
always @(posedge clk)
if (rst)
samples_cnt_r <= #TCQ 'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT) begin
samples_cnt_r <= #TCQ 'b0;
end else if (complex_sample_cnt_inc) begin
samples_cnt_r <= #TCQ samples_cnt_r + 1;
/*if (!rd_valid_r1 ||
(prbs_state_r == PRBS_DEC_DQS_WAIT) ||
(prbs_state_r == PRBS_INC_DQS_WAIT) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(samples_cnt_r == NUM_SAMPLES_CNT) ||
(samples_cnt_r == NUM_SAMPLES_CNT1))
samples_cnt_r <= #TCQ 'b0;
else if (rd_valid_r1 &&
(((samples_cnt_r < NUM_SAMPLES_CNT) && ~samples_cnt1_en_r) ||
((samples_cnt_r < NUM_SAMPLES_CNT1) && ~samples_cnt2_en_r) ||
((samples_cnt_r < NUM_SAMPLES_CNT2) && samples_cnt2_en_r)))
samples_cnt_r <= #TCQ samples_cnt_r + 1;*/
end
// Count #2 enable generation
// Assert when correct number of samples compared
always @(posedge clk)
if (rst)
samples_cnt1_en_r <= #TCQ 1'b0;
else begin
if ((prbs_state_r == PRBS_IDLE) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
samples_cnt1_en_r <= #TCQ 1'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT) && rd_valid_r1)
samples_cnt1_en_r <= #TCQ 1'b1;
end
// Counter #3 enable generation
// Assert when correct number of samples compared
always @(posedge clk)
if (rst)
samples_cnt2_en_r <= #TCQ 1'b0;
else begin
if ((prbs_state_r == PRBS_IDLE) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
samples_cnt2_en_r <= #TCQ 1'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT1) && rd_valid_r1 && samples_cnt1_en_r)
samples_cnt2_en_r <= #TCQ 1'b1;
end
// Victim selection logic
always @(posedge clk)
if (rst)
rd_victim_sel <= #TCQ 'd0;
else if (num_samples_done_r)
rd_victim_sel <= #TCQ 'd0;
else if (samples_cnt_r == NUM_SAMPLES_CNT) begin
if (rd_victim_sel < 'd7)
rd_victim_sel <= #TCQ rd_victim_sel + 1;
end
// Output row count increment pulse to phy_init
always @(posedge clk)
if (rst)
complex_victim_inc <= #TCQ 1'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT)
complex_victim_inc <= #TCQ 1'b1;
else
complex_victim_inc <= #TCQ 1'b0;
generate
if (FIXED_VICTIM == "TRUE") begin: victim_fixed
always @(posedge clk)
if (rst)
num_samples_done_r <= #TCQ 1'b0;
else if ((prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS)||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == FINE_PI_DEC))
num_samples_done_r <= #TCQ 'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT)
num_samples_done_r <= #TCQ 1'b1;
end else begin: victim_not_fixed
always @(posedge clk)
if (rst)
num_samples_done_r <= #TCQ 1'b0;
else if ((prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS)||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == FINE_PI_DEC))
num_samples_done_r <= #TCQ 'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT) && (rd_victim_sel == 'd7))
num_samples_done_r <= #TCQ 1'b1;
end
endgenerate
//***************************************************************************
// Compare Read Data for the byte being Leveled with Expected data from PRBS
// generator. Resulting compare_err signal used to determine read data valid
// edge.
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: cmp_err_4to1
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r) begin
compare_err <= #TCQ 1'b0;
compare_err_r0 <= #TCQ 1'b0;
compare_err_f0 <= #TCQ 1'b0;
compare_err_r1 <= #TCQ 1'b0;
compare_err_f1 <= #TCQ 1'b0;
compare_err_r2 <= #TCQ 1'b0;
compare_err_f2 <= #TCQ 1'b0;
compare_err_r3 <= #TCQ 1'b0;
compare_err_f3 <= #TCQ 1'b0;
end else if (rd_valid_r2) begin
compare_err_r0 <= #TCQ (mux_rd_rise0_r3 != compare_data_rise0_r1);
compare_err_f0 <= #TCQ (mux_rd_fall0_r3 != compare_data_fall0_r1);
compare_err_r1 <= #TCQ (mux_rd_rise1_r3 != compare_data_rise1_r1);
compare_err_f1 <= #TCQ (mux_rd_fall1_r3 != compare_data_fall1_r1);
compare_err_r2 <= #TCQ (mux_rd_rise2_r3 != compare_data_rise2_r1);
compare_err_f2 <= #TCQ (mux_rd_fall2_r3 != compare_data_fall2_r1);
compare_err_r3 <= #TCQ (mux_rd_rise3_r3 != compare_data_rise3_r1);
compare_err_f3 <= #TCQ (mux_rd_fall3_r3 != compare_data_fall3_r1);
compare_err <= #TCQ (compare_err_r0 | compare_err_f0 |
compare_err_r1 | compare_err_f1 |
compare_err_r2 | compare_err_f2 |
compare_err_r3 | compare_err_f3);
end
end
end else begin: cmp_err_2to1
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r) begin
compare_err <= #TCQ 1'b0;
compare_err_r0 <= #TCQ 1'b0;
compare_err_f0 <= #TCQ 1'b0;
compare_err_r1 <= #TCQ 1'b0;
compare_err_f1 <= #TCQ 1'b0;
end else if (rd_valid_r2) begin
compare_err_r0 <= #TCQ (mux_rd_rise0_r3 != compare_data_rise0_r1);
compare_err_f0 <= #TCQ (mux_rd_fall0_r3 != compare_data_fall0_r1);
compare_err_r1 <= #TCQ (mux_rd_rise1_r3 != compare_data_rise1_r1);
compare_err_f1 <= #TCQ (mux_rd_fall1_r3 != compare_data_fall1_r1);
compare_err <= #TCQ (compare_err_r0 | compare_err_f0 |
compare_err_r1 | compare_err_f1);
end
end
end
endgenerate
//***************************************************************************
// Decrement initial Phaser_IN fine delay value before proceeding with
// read calibration
//***************************************************************************
//***************************************************************************
// Demultiplexor to control Phaser_IN delay values
//***************************************************************************
// Read DQS
always @(posedge clk) begin
if (rst) begin
pi_en_stg2_f_timing <= #TCQ 'b0;
pi_stg2_f_incdec_timing <= #TCQ 'b0;
end else if (prbs_tap_en_r) begin
// Change only specified DQS
pi_en_stg2_f_timing <= #TCQ 1'b1;
pi_stg2_f_incdec_timing <= #TCQ prbs_tap_inc_r;
end else begin
pi_en_stg2_f_timing <= #TCQ 'b0;
pi_stg2_f_incdec_timing <= #TCQ 'b0;
end
end
// registered for timing
always @(posedge clk) begin
pi_en_stg2_f <= #TCQ pi_en_stg2_f_timing;
pi_stg2_f_incdec <= #TCQ pi_stg2_f_incdec_timing;
end
//***************************************************************************
// generate request to PHY_INIT logic to issue precharged. Required when
// calibration can take a long time (during which there are only constant
// reads present on this bus). In this case need to issue perioidic
// precharges to avoid tRAS violation. This signal must meet the following
// requirements: (1) only transition from 0->1 when prech is first needed,
// (2) stay at 1 and only transition 1->0 when RDLVL_PRECH_DONE asserted
//***************************************************************************
always @(posedge clk)
if (rst)
prbs_rdlvl_prech_req <= #TCQ 1'b0;
else
prbs_rdlvl_prech_req <= #TCQ prbs_prech_req_r;
//*****************************************************************
// keep track of edge tap counts found, and current capture clock
// tap count
//*****************************************************************
always @(posedge clk)
if (rst) begin
prbs_dqs_tap_cnt_r <= #TCQ 'b0;
rdlvl_cpt_tap_cnt <= #TCQ 'b0;
end else if (new_cnt_dqs_r) begin
prbs_dqs_tap_cnt_r <= #TCQ pi_counter_read_val;
rdlvl_cpt_tap_cnt <= #TCQ pi_counter_read_val;
end else if (prbs_tap_en_r) begin
if (prbs_tap_inc_r)
prbs_dqs_tap_cnt_r <= #TCQ prbs_dqs_tap_cnt_r + 1;
else if (prbs_dqs_tap_cnt_r != 'd0)
prbs_dqs_tap_cnt_r <= #TCQ prbs_dqs_tap_cnt_r - 1;
end
always @(posedge clk)
if (rst) begin
prbs_dec_tap_calc_plus_3 <= #TCQ 'b0;
prbs_dec_tap_calc_minus_3 <= #TCQ 'b0;
end else if (new_cnt_dqs_r) begin
prbs_dec_tap_calc_plus_3 <= #TCQ 'b000011;
prbs_dec_tap_calc_minus_3 <= #TCQ 'b111100;
end else begin
prbs_dec_tap_calc_plus_3 <= #TCQ (prbs_dqs_tap_cnt_r - rdlvl_cpt_tap_cnt + 3);
prbs_dec_tap_calc_minus_3 <= #TCQ (prbs_dqs_tap_cnt_r - rdlvl_cpt_tap_cnt - 3);
end
always @(posedge clk)
if (rst || new_cnt_dqs_r)
prbs_dqs_tap_limit_r <= #TCQ 1'b0;
else if (prbs_dqs_tap_cnt_r == 6'd63)
prbs_dqs_tap_limit_r <= #TCQ 1'b1;
else
prbs_dqs_tap_limit_r <= #TCQ 1'b0;
// Temp wire for timing.
// The following in the always block below causes timing issues
// due to DSP block inference
// 6*prbs_dqs_cnt_r.
// replacing this with two left shifts + one left shift to avoid
// DSP multiplier.
assign prbs_dqs_cnt_timing = {2'd0, prbs_dqs_cnt_r};
always @(posedge clk)
prbs_dqs_cnt_timing_r <= #TCQ prbs_dqs_cnt_timing;
// Storing DQS tap values at the end of each DQS read leveling
always @(posedge clk) begin
if (rst) begin
prbs_final_dqs_tap_cnt_r <= #TCQ 'b0;
end else if ((prbs_state_r == PRBS_NEXT_DQS) && (prbs_state_r1 != PRBS_NEXT_DQS)) begin
prbs_final_dqs_tap_cnt_r[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_dqs_tap_cnt_r;
end
end
//*****************************************************************
always @(posedge clk) begin
prbs_state_r1 <= #TCQ prbs_state_r;
prbs_rdlvl_start_r <= #TCQ prbs_rdlvl_start;
end
// Wait counter for wait states
always @(posedge clk)
if ((prbs_state_r == PRBS_NEW_DQS_WAIT) ||
(prbs_state_r == PRBS_INC_DQS_WAIT) ||
(prbs_state_r == PRBS_DEC_DQS_WAIT) ||
(prbs_state_r == FINE_PI_DEC_WAIT) ||
(prbs_state_r == FINE_PI_INC_WAIT) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
wait_state_cnt_en_r <= #TCQ 1'b1;
else
wait_state_cnt_en_r <= #TCQ 1'b0;
always @(posedge clk)
if (!wait_state_cnt_en_r) begin
wait_state_cnt_r <= #TCQ 'b0;
cnt_wait_state <= #TCQ 1'b0;
end else begin
if (wait_state_cnt_r < 'd15) begin
wait_state_cnt_r <= #TCQ wait_state_cnt_r + 1;
cnt_wait_state <= #TCQ 1'b0;
end else begin
// Need to reset to 0 to handle the case when there are two
// different WAIT states back-to-back
wait_state_cnt_r <= #TCQ 'b0;
cnt_wait_state <= #TCQ 1'b1;
end
end
always @ (posedge clk)
err_chk_invalid <= #TCQ (wait_state_cnt_r < 'd14);
//*****************************************************************
// compare error checking per-bit
//****************************************************************
generate
genvar pb_i;
if (nCK_PER_CLK == 4) begin: cmp_err_pb_4to1
for(pb_i=0 ; pb_i<DRAM_WIDTH; pb_i=pb_i+1) begin
always @ (posedge clk) begin
//prevent error check during PI inc/dec and wait
if (rst || new_cnt_dqs_r || (prbs_state_r == FINE_PI_INC) || (prbs_state_r == FINE_PI_DEC) ||
(err_chk_invalid && ((prbs_state_r == FINE_PI_DEC_WAIT)||(prbs_state_r == FINE_PI_INC_WAIT))))
compare_err_pb[pb_i] <= #TCQ 1'b0;
else if (rd_valid_r2)
compare_err_pb[pb_i] <= #TCQ (mux_rd_rise0_r3[pb_i] != compare_data_rise0_r1[pb_i]) |
(mux_rd_fall0_r3[pb_i] != compare_data_fall0_r1[pb_i]) |
(mux_rd_rise1_r3[pb_i] != compare_data_rise1_r1[pb_i]) |
(mux_rd_fall1_r3[pb_i] != compare_data_fall1_r1[pb_i]) |
(mux_rd_rise2_r3[pb_i] != compare_data_rise2_r1[pb_i]) |
(mux_rd_fall2_r3[pb_i] != compare_data_fall2_r1[pb_i]) |
(mux_rd_rise3_r3[pb_i] != compare_data_rise3_r1[pb_i]) |
(mux_rd_fall3_r3[pb_i] != compare_data_fall3_r1[pb_i]) ;
end //always
end //for
end else begin: cmp_err_pb_2to1
for(pb_i=0 ; pb_i<DRAM_WIDTH; pb_i=pb_i+1) begin
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r || (prbs_state_r == FINE_PI_INC) || (prbs_state_r == FINE_PI_DEC) ||
(err_chk_invalid && ((prbs_state_r == FINE_PI_DEC_WAIT)||(prbs_state_r == FINE_PI_INC_WAIT))))
compare_err_pb[pb_i] <= #TCQ 1'b0;
else if (rd_valid_r2)
compare_err_pb[pb_i] <= #TCQ (mux_rd_rise0_r3[pb_i] != compare_data_rise0_r1[pb_i]) |
(mux_rd_fall0_r3[pb_i] != compare_data_fall0_r1[pb_i]) |
(mux_rd_rise1_r3[pb_i] != compare_data_rise1_r1[pb_i]) |
(mux_rd_fall1_r3[pb_i] != compare_data_fall1_r1[pb_i]) ;
end //always
end //for
end //if
endgenerate
//checking all bit has error
always @ (posedge clk) begin
if(rst || new_cnt_dqs_r) begin
compare_err_pb_and <= #TCQ 1'b0;
end else begin
compare_err_pb_and <= #TCQ &compare_err_pb;
end
end
//generate stick error bit - left/right edge
generate
genvar pb_r;
for(pb_r=0; pb_r<DRAM_WIDTH; pb_r=pb_r+1) begin
always @ (posedge clk) begin
if((prbs_state_r == FINE_PI_INC) | (prbs_state_r == FINE_PI_DEC) |
(~cnt_wait_state && ((prbs_state_r == FINE_PI_INC_WAIT)|(prbs_state_r == FINE_PI_DEC_WAIT))))
compare_err_pb_latch_r[pb_r] <= #TCQ 1'b0;
else
compare_err_pb_latch_r[pb_r] <= #TCQ compare_err_pb[pb_r]? 1'b1:compare_err_pb_latch_r[pb_r];
end
end
endgenerate
//in stage 0, if left edge found, update ref_bit (one hot)
always @ (posedge clk) begin
if (rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
ref_bit_per_bit <= #TCQ 'd0;
end else if ((prbs_state_r == FINE_PI_INC) && (stage_cnt=='b0)) begin
if(|left_edge_updated) ref_bit_per_bit <= #TCQ left_edge_updated;
end
end
//ref bit with samllest right edge
//if bit 1 and 3 are set to ref_bit_per_bit but bit 1 has smaller right edge, bit is selected as ref_bit
always @ (posedge clk) begin
if(rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
bit_cnt <= #TCQ 'd0;
ref_right_edge <= #TCQ 6'h3f;
ref_bit <= #TCQ 'd0;
end else if ((prbs_state_r == FINE_CALC_TAPS_WAIT) && (stage_cnt == 'b0) && (bit_cnt < DRAM_WIDTH)) begin
bit_cnt <= #TCQ bit_cnt +'b1;
if ((ref_bit_per_bit[bit_cnt]==1'b1) && (right_edge_pb[bit_cnt*6+:6]<= ref_right_edge)) begin
ref_bit <= #TCQ bit_cnt;
ref_right_edge <= #TCQ right_edge_pb[bit_cnt*6+:6];
end
end
end
//pipe lining for reference bit left/right edge
always @ (posedge clk) begin
left_edge_ref <= #TCQ left_edge_pb[ref_bit*6+:6];
right_edge_ref <= #TCQ right_edge_pb[ref_bit*6+:6];
end
//left_edge/right_edge/left_loss/right_gain update
generate
genvar eg;
for(eg=0; eg<DRAM_WIDTH; eg = eg+1) begin
always @ (posedge clk) begin
if(rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
match_flag_pb[eg*5+:5] <= #TCQ 5'h1f;
left_edge_pb[eg*6+:6] <= #TCQ 'b0;
right_edge_pb[eg*6+:6] <= #TCQ 6'h3f;
left_edge_found_pb[eg] <= #TCQ 1'b0;
right_edge_found_pb[eg] <= #TCQ 1'b0;
left_loss_pb[eg*6+:6] <= #TCQ 'b0;
right_gain_pb[eg*6+:6] <= #TCQ 'b0;
left_edge_updated[eg] <= #TCQ 'b0;
end else begin
if((prbs_state_r == FINE_PAT_COMPARE_PER_BIT) && (num_samples_done_r || compare_err_pb_and)) begin
//left edge is updated when match flag becomes 100000 (1 fail , 5 success)
if(match_flag_pb[eg*5+:5]==5'b10000 && compare_err_pb_latch_r[eg]==0) begin
left_edge_pb[eg*6+:6] <= #TCQ prbs_dqs_tap_cnt_r-4;
left_edge_found_pb[eg] <= #TCQ 1'b1; //used for update largest_left_edge
left_edge_updated[eg] <= #TCQ 1'b1;
//check the loss of bit - update only for left edge found
if(~left_edge_found_pb[eg])
left_loss_pb[eg*6+:6] <= #TCQ (left_edge_ref > prbs_dqs_tap_cnt_r - 4)? 'd0
: prbs_dqs_tap_cnt_r-4-left_edge_ref;
//right edge is updated when match flag becomes 000001 (5 success, 1 fail)
end else if (match_flag_pb[eg*5+:5]==5'b00000 && compare_err_pb_latch_r[eg]) begin
right_edge_pb[eg*6+:6] <= #TCQ prbs_dqs_tap_cnt_r-1;
right_edge_found_pb[eg] <= #TCQ 1'b1;
//check the gain of bit - update only for right edge found
if(~right_edge_found_pb[eg])
right_gain_pb[eg*6+:6] <= #TCQ (right_edge_ref > prbs_dqs_tap_cnt_r-1)?
((right_edge_pb[eg*6 +:6] > prbs_dqs_tap_cnt_r-1)? 0: prbs_dqs_tap_cnt_r-1- right_edge_pb[eg*6+:6]):
((right_edge_pb[eg*6+:6] > right_edge_ref)? 0 : right_edge_ref - right_edge_pb[eg*6+:6]);
//no right edge found
end else if (prbs_dqs_tap_cnt_r == 6'h3f && ~right_edge_found_pb[eg]) begin
right_edge_pb[eg*6+:6] <= #TCQ 6'h3f;
right_edge_found_pb[eg] <= #TCQ 1'b1;
//right edge at 63. gain = max(0, ref_bit_right_tap - prev_right_edge)
right_gain_pb[eg*6+:6] <= #TCQ (right_edge_ref > right_edge_pb[eg*6+:6])?
(right_edge_ref - right_edge_pb[eg*6+:6]) : 0;
end
//update match flag - shift and update
match_flag_pb[eg*5+:5] <= #TCQ {match_flag_pb[(eg*5)+:4],compare_err_pb_latch_r[eg]};
end else if (prbs_state_r == FINE_PI_DEC) begin
left_edge_found_pb[eg] <= #TCQ 1'b0;
right_edge_found_pb[eg] <= #TCQ 1'b0;
left_loss_pb[eg*6+:6] <= #TCQ 'b0;
right_gain_pb[eg*6+:6] <= #TCQ 'b0;
match_flag_pb[eg*5+:5] <= #TCQ 5'h1f; //new fix
end else if (prbs_state_r == FINE_PI_INC) begin
left_edge_updated[eg] <= #TCQ 'b0; //used only for update largest ref_bit and largest_left_edge
end
end
end //always
end //for
endgenerate
//update fine_delay according to loss/gain value per bit
generate
genvar f_pb;
for(f_pb=0; f_pb<DRAM_WIDTH; f_pb=f_pb+1) begin
always @ (posedge clk) begin
if(rst | prbs_state_r == PRBS_NEW_DQS_WAIT ) begin
fine_delay_incdec_pb[f_pb] <= #TCQ 1'b0;
end else if((prbs_state_r == FINE_CALC_TAPS_WAIT) && (bit_cnt == DRAM_WIDTH)) begin
if(stage_cnt == 'd0) fine_delay_incdec_pb[f_pb] <= #TCQ (f_pb==ref_bit)? 1'b0:1'b1; //only for initial stage
else if(stage_cnt == 'd1) fine_delay_incdec_pb[f_pb] <= #TCQ (right_gain_pb[f_pb*6+:6]>left_loss_pb[f_pb*6+:6])?1'b1:1'b0;
end
end
end
endgenerate
//fine inc stage (stage cnt 0,1,2), fine dec stage (stage cnt 3)
always @ (posedge clk) begin
if (rst)
fine_inc_stage <= #TCQ 'b1;
else
fine_inc_stage <= #TCQ (stage_cnt!='d3);
end
//*****************************************************************
always @(posedge clk)
if (rst) begin
prbs_dqs_cnt_r <= #TCQ 'b0;
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
prbs_state_r <= #TCQ PRBS_IDLE;
prbs_found_1st_edge_r <= #TCQ 1'b0;
prbs_found_2nd_edge_r <= #TCQ 1'b0;
prbs_1st_edge_taps_r <= #TCQ 6'bxxxxxx;
prbs_inc_tap_cnt <= #TCQ 'b0;
prbs_dec_tap_cnt <= #TCQ 'b0;
new_cnt_dqs_r <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "FAST_CAL")
prbs_rdlvl_done <= #TCQ 1'b1;
else
prbs_rdlvl_done <= #TCQ 1'b0;
prbs_2nd_edge_taps_r <= #TCQ 6'bxxxxxx;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_tap_mod <= #TCQ 'd0;
reset_rd_addr <= #TCQ 'b0;
read_pause <= #TCQ 'b0;
fine_pi_dec_cnt <= #TCQ 'b0;
match_flag_and <= #TCQ 5'h1f;
stage_cnt <= #TCQ 2'b00;
right_edge_found <= #TCQ 1'b0;
largest_left_edge <= #TCQ 6'b000000;
smallest_right_edge <= #TCQ 6'b111111;
num_samples_done_ind <= #TCQ 'b0;
fine_delay_sel <= #TCQ 'b0;
fine_dly_error <= #TCQ 'b0;
end else begin
case (prbs_state_r)
PRBS_IDLE: begin
prbs_last_byte_done <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
if (prbs_rdlvl_start && ~prbs_rdlvl_start_r) begin
if (SIM_CAL_OPTION == "SKIP_CAL" || SIM_CAL_OPTION == "FAST_CAL") begin
prbs_state_r <= #TCQ PRBS_DONE;
reset_rd_addr <= #TCQ 1'b1;
end else begin
new_cnt_dqs_r <= #TCQ 1'b1;
prbs_state_r <= #TCQ PRBS_NEW_DQS_WAIT;
fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
end
end
end
// Wait for the new DQS group to change
// also gives time for the read data IN_FIFO to
// output the updated data for the new DQS group
PRBS_NEW_DQS_WAIT: begin
reset_rd_addr <= #TCQ 'b0;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
//fine_inc_stage <= #TCQ 1'b1;
stage_cnt <= #TCQ 2'b0;
match_flag_and <= #TCQ 5'h1f;
if (cnt_wait_state) begin
new_cnt_dqs_r <= #TCQ 1'b0;
prbs_state_r <= #TCQ fine_calib? FINE_PI_DEC:PRBS_PAT_COMPARE;
end
end
// Check for presence of data eye edge. During this state, we
// sample the read data multiple times, and look for changes
// in the read data, specifically:
// 1. A change in the read data compared with the value of
// read data from the previous delay tap. This indicates
// that the most recent tap delay increment has moved us
// into either a new window, or moved/kept us in the
// transition/jitter region between windows. Note that this
// condition only needs to be checked for once, and for
// logistical purposes, we check this soon after entering
// this state (see comment in PRBS_PAT_COMPARE below for
// why this is done)
// 2. A change in the read data while we are in this state
// (i.e. in the absence of a tap delay increment). This
// indicates that we're close enough to a window edge that
// jitter will cause the read data to change even in the
// absence of a tap delay change
PRBS_PAT_COMPARE: begin
// Continue to sample read data and look for edges until the
// appropriate time interval (shorter for simulation-only,
// much, much longer for actual h/w) has elapsed
if (num_samples_done_r || compare_err) begin
if (prbs_dqs_tap_limit_r)
// Only one edge detected and ran out of taps since only one
// bit time worth of taps available for window detection. This
// can happen if at tap 0 DQS is in previous window which results
// in only left edge being detected. Or at tap 0 DQS is in the
// current window resulting in only right edge being detected.
// Depending on the frequency this case can also happen if at
// tap 0 DQS is in the left noise region resulting in only left
// edge being detected.
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE;
else if (compare_err || (prbs_dqs_tap_cnt_r == 'd0)) begin
// Sticky bit - asserted after we encounter an edge, although
// the current edge may not be considered the "first edge" this
// just means we found at least one edge
prbs_found_1st_edge_r <= #TCQ 1'b1;
// Both edges of data valid window found:
// If we've found a second edge after a region of stability
// then we must have just passed the second ("right" edge of
// the window. Record this second_edge_taps = current tap-1,
// because we're one past the actual second edge tap, where
// the edge taps represent the extremes of the data valid
// window (i.e. smallest & largest taps where data still valid
if (prbs_found_1st_edge_r) begin
prbs_found_2nd_edge_r <= #TCQ 1'b1;
prbs_2nd_edge_taps_r <= #TCQ prbs_dqs_tap_cnt_r - 1;
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE;
end else begin
// Otherwise, an edge was found (just not the "second" edge)
// Assuming DQS is in the correct window at tap 0 of Phaser IN
// fine tap. The first edge found is the right edge of the valid
// window and is the beginning of the jitter region hence done!
if (compare_err)
prbs_1st_edge_taps_r <= #TCQ prbs_dqs_tap_cnt_r + 1;
else
prbs_1st_edge_taps_r <= #TCQ 'd0;
prbs_inc_tap_cnt <= #TCQ rdlvl_cpt_tap_cnt - prbs_dqs_tap_cnt_r;
prbs_state_r <= #TCQ PRBS_INC_DQS;
end
end else begin
// Otherwise, if we haven't found an edge....
// If we still have taps left to use, then keep incrementing
if (prbs_found_1st_edge_r)
prbs_state_r <= #TCQ PRBS_INC_DQS;
else
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end
end
end
// Increment Phaser_IN delay for DQS
PRBS_INC_DQS: begin
prbs_state_r <= #TCQ PRBS_INC_DQS_WAIT;
if (prbs_inc_tap_cnt > 'd0)
prbs_inc_tap_cnt <= #TCQ prbs_inc_tap_cnt - 1;
if (~prbs_dqs_tap_limit_r) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b1;
end
end
// Wait for Phaser_In to settle, before checking again for an edge
PRBS_INC_DQS_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
if (prbs_inc_tap_cnt > 'd0)
prbs_state_r <= #TCQ PRBS_INC_DQS;
else
prbs_state_r <= #TCQ PRBS_PAT_COMPARE;
end
end
// Calculate final value of Phaser_IN taps. At this point, one or both
// edges of data eye have been found, and/or all taps have been
// exhausted looking for the edges
// NOTE: The amount to be decrement by is calculated, not the
// absolute setting for DQS.
// CENTER compensation with shift by 1
PRBS_CALC_TAPS: begin
if (center_comp) begin
prbs_dec_tap_cnt <= #TCQ (dec_cnt[5] & dec_cnt[0])? 'd32: dec_cnt + pi_adj;
fine_dly_error <= #TCQ (dec_cnt[5] & dec_cnt[0])? 1'b1: fine_dly_error; //sticky bit
read_pause <= #TCQ 'b1;
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end else begin //No center compensation
if (prbs_found_2nd_edge_r && prbs_found_1st_edge_r)
// Both edges detected
prbs_dec_tap_cnt
<= #TCQ ((prbs_2nd_edge_taps_r -
prbs_1st_edge_taps_r)>>1) + 1 + pi_adj;
else if (~prbs_found_2nd_edge_r && prbs_found_1st_edge_r)
// Only left edge detected
prbs_dec_tap_cnt
<= #TCQ ((prbs_dqs_tap_cnt_r - prbs_1st_edge_taps_r)>>1) + pi_adj;
else
// No edges detected
prbs_dec_tap_cnt
<= #TCQ (prbs_dqs_tap_cnt_r>>1) + pi_adj;
// Now use the value we just calculated to decrement CPT taps
// to the desired calibration point
read_pause <= #TCQ 'b1;
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end
end
// decrement capture clock for final adjustment - center
// capture clock in middle of data eye. This adjustment will occur
// only when both the edges are found usign CPT taps. Must do this
// incrementally to avoid clock glitching (since CPT drives clock
// divider within each ISERDES)
PRBS_DEC_DQS: begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b0;
// once adjustment is complete, we're done with calibration for
// this DQS, repeat for next DQS
if (prbs_dec_tap_cnt > 'd0)
prbs_dec_tap_cnt <= #TCQ prbs_dec_tap_cnt - 1;
if (prbs_dec_tap_cnt == 6'b000001)
prbs_state_r <= #TCQ PRBS_NEXT_DQS;
else
prbs_state_r <= #TCQ PRBS_DEC_DQS_WAIT;
end
PRBS_DEC_DQS_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
if (prbs_dec_tap_cnt > 'd0)
prbs_state_r <= #TCQ PRBS_DEC_DQS;
else
prbs_state_r <= #TCQ PRBS_PAT_COMPARE;
end
end
// Determine whether we're done, or have more DQS's to calibrate
// Also request precharge after every byte, as appropriate
PRBS_NEXT_DQS: begin
read_pause <= #TCQ 'b0;
reset_rd_addr <= #TCQ 'b1;
prbs_prech_req_r <= #TCQ 1'b1;
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
// Prepare for another iteration with next DQS group
prbs_found_1st_edge_r <= #TCQ 1'b0;
prbs_found_2nd_edge_r <= #TCQ 1'b0;
prbs_1st_edge_taps_r <= #TCQ 'd0;
prbs_2nd_edge_taps_r <= #TCQ 'd0;
largest_left_edge <= #TCQ 6'b000000;
smallest_right_edge <= #TCQ 6'b111111;
if (prbs_dqs_cnt_r >= DQS_WIDTH-1) begin
prbs_last_byte_done <= #TCQ 1'b1;
end
// Wait until precharge that occurs in between calibration of
// DQS groups is finished
if (prech_done) begin
prbs_prech_req_r <= #TCQ 1'b0;
if (prbs_dqs_cnt_r >= DQS_WIDTH-1) begin
// All DQS groups done
prbs_state_r <= #TCQ PRBS_DONE;
end else begin
// Process next DQS group
new_cnt_dqs_r <= #TCQ 1'b1;
//fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
prbs_dqs_cnt_r <= #TCQ prbs_dqs_cnt_r + 1;
prbs_state_r <= #TCQ PRBS_NEW_DQS_PREWAIT;
end
end
end
PRBS_NEW_DQS_PREWAIT: begin
if (cnt_wait_state) begin
prbs_state_r <= #TCQ PRBS_NEW_DQS_WAIT;
fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
end
end
PRBS_CALC_TAPS_PRE:
begin
if(num_samples_done_r) begin
prbs_state_r <= #TCQ fine_calib? PRBS_NEXT_DQS:PRBS_CALC_TAPS_WAIT;
if(center_comp && ~fine_calib) begin
if(prbs_found_1st_edge_r) largest_left_edge <= #TCQ prbs_1st_edge_taps_r;
else largest_left_edge <= #TCQ 6'd0;
if(prbs_found_2nd_edge_r) smallest_right_edge <= #TCQ prbs_2nd_edge_taps_r;
else smallest_right_edge <= #TCQ 6'd63;
end
end
end
//wait for center compensation
PRBS_CALC_TAPS_WAIT:
begin
prbs_state_r <= #TCQ PRBS_CALC_TAPS;
end
//if it is fine_inc stage (first/second stage): dec to 0
//if it is fine_dec stage (third stage): dec to center
FINE_PI_DEC: begin
fine_delay_sel <= #TCQ 'b0;
if(fine_pi_dec_cnt > 0) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b0;
fine_pi_dec_cnt <= #TCQ fine_pi_dec_cnt - 'd1;
end
prbs_state_r <= #TCQ FINE_PI_DEC_WAIT;
end
//wait for phaser_in tap decrement.
//if first/second stage is done, goes to FINE_PI_INC
//if last stage is done, goes to NEXT_DQS
FINE_PI_DEC_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if(cnt_wait_state) begin
if(fine_pi_dec_cnt >0)
prbs_state_r <= #TCQ FINE_PI_DEC;
else
if(fine_inc_stage)
// prbs_state_r <= #TCQ FINE_PI_INC; //for temp change
prbs_state_r <= #TCQ FINE_PAT_COMPARE_PER_BIT; //start from pi tap "0"
else
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE; //finish the process and go to the next DQS
end
end
FINE_PI_INC: begin
if(|left_edge_updated) largest_left_edge <= #TCQ prbs_dqs_tap_cnt_r-4;
if(|right_edge_found_pb && ~right_edge_found) begin
smallest_right_edge <= #TCQ prbs_dqs_tap_cnt_r -1 ;
right_edge_found <= #TCQ 'b1;
end
//left_edge_found_pb <= #TCQ {DRAM_WIDTH{1'b0}};
prbs_state_r <= #TCQ FINE_PI_INC_WAIT;
if(~prbs_dqs_tap_limit_r) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b1;
end
end
//wait for phase_in tap increment
//need to do pattern compare for every bit
FINE_PI_INC_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
prbs_state_r <= #TCQ FINE_PAT_COMPARE_PER_BIT;
end
end
//compare per bit data and update flags,left/right edge
FINE_PAT_COMPARE_PER_BIT: begin
if(num_samples_done_r || compare_err_pb_and) begin
//update and_flag - shift and add
match_flag_and <= #TCQ {match_flag_and[3:0],compare_err_pb_and};
//if it is consecutive 5 passing taps followed by fail or tap limit (finish the search)
//don't go to fine_FINE_CALC_TAPS to prevent to skip whole stage
//Or if all right edge are found
if((match_flag_and == 5'b00000 && compare_err_pb_and && (prbs_dqs_tap_cnt_r > 5)) || prbs_dqs_tap_limit_r || (&right_edge_found_pb)) begin
prbs_state_r <= #TCQ FINE_CALC_TAPS;
//if all right edge are alined (all right edge found at the same time), update smallest right edge in here
//doesnt need to set right_edge_found to 1 since it is not used after this stage
if(!right_edge_found) smallest_right_edge <= #TCQ prbs_dqs_tap_cnt_r-1;
end else begin
prbs_state_r <= #TCQ FINE_PI_INC; //keep increase until all fail
end
num_samples_done_ind <= num_samples_done_r;
end
end
//for fine_inc stage, inc all fine delay
//for fine_dec stage, apply dec fine delay for specific bits (by calculating the loss/gain)
// put phaser_in taps to the center
FINE_CALC_TAPS: begin
if(num_samples_done_ind || num_samples_done_r) begin
num_samples_done_ind <= #TCQ 'b0; //indicate num_samples_done_r is set
right_edge_found <= #TCQ 1'b0; //reset right edge found
match_flag_and <= #TCQ 5'h1f; //reset match flag for all bits
prbs_state_r <= #TCQ FINE_CALC_TAPS_WAIT;
end
end
FINE_CALC_TAPS_WAIT: begin //wait for ROM read out
if(stage_cnt == 'd2) begin //last stage : back to center
if(center_comp) begin
fine_pi_dec_cnt <= #TCQ (dec_cnt[5]&dec_cnt[0])? 'd32: prbs_dqs_tap_cnt_r - smallest_right_edge + dec_cnt - 1 + pi_adj ; //going to the center value & shift by 1
fine_dly_error <= #TCQ (dec_cnt[5]&dec_cnt[0]) ? 1'b1: fine_dly_error;
end else begin
fine_pi_dec_cnt <= #TCQ prbs_dqs_tap_cnt_r - center_calc[6:1] - center_calc[0] + pi_adj; //going to the center value & shift left by 1
fine_dly_error <= #TCQ 1'b0;
end
end else begin
fine_pi_dec_cnt <= #TCQ prbs_dqs_tap_cnt_r;
end
if (bit_cnt == DRAM_WIDTH) begin
fine_delay_sel <= #TCQ 'b1;
stage_cnt <= #TCQ stage_cnt + 1;
prbs_state_r <= #TCQ FINE_PI_DEC;
end
end
// Done with this stage of calibration
PRBS_DONE: begin
prbs_prech_req_r <= #TCQ 1'b0;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_rdlvl_done <= #TCQ 1'b1;
reset_rd_addr <= #TCQ 1'b0;
end
endcase
end
//ROM generation for dec counter
always @ (largest_left_edge or smallest_right_edge) begin
case ({largest_left_edge, smallest_right_edge})
12'd0 : mem_out_dec = 6'b111111;
12'd1 : mem_out_dec = 6'b111111;
12'd2 : mem_out_dec = 6'b111111;
12'd3 : mem_out_dec = 6'b111111;
12'd4 : mem_out_dec = 6'b111111;
12'd5 : mem_out_dec = 6'b111111;
12'd6 : mem_out_dec = 6'b000100;
12'd7 : mem_out_dec = 6'b000101;
12'd8 : mem_out_dec = 6'b000101;
12'd9 : mem_out_dec = 6'b000110;
12'd10 : mem_out_dec = 6'b000110;
12'd11 : mem_out_dec = 6'b000111;
12'd12 : mem_out_dec = 6'b001000;
12'd13 : mem_out_dec = 6'b001000;
12'd14 : mem_out_dec = 6'b001001;
12'd15 : mem_out_dec = 6'b001010;
12'd16 : mem_out_dec = 6'b001010;
12'd17 : mem_out_dec = 6'b001011;
12'd18 : mem_out_dec = 6'b001011;
12'd19 : mem_out_dec = 6'b001100;
12'd20 : mem_out_dec = 6'b001100;
12'd21 : mem_out_dec = 6'b001100;
12'd22 : mem_out_dec = 6'b001100;
12'd23 : mem_out_dec = 6'b001101;
12'd24 : mem_out_dec = 6'b001100;
12'd25 : mem_out_dec = 6'b001100;
12'd26 : mem_out_dec = 6'b001101;
12'd27 : mem_out_dec = 6'b001110;
12'd28 : mem_out_dec = 6'b001110;
12'd29 : mem_out_dec = 6'b001111;
12'd30 : mem_out_dec = 6'b010000;
12'd31 : mem_out_dec = 6'b010001;
12'd32 : mem_out_dec = 6'b010001;
12'd33 : mem_out_dec = 6'b010010;
12'd34 : mem_out_dec = 6'b010010;
12'd35 : mem_out_dec = 6'b010010;
12'd36 : mem_out_dec = 6'b010011;
12'd37 : mem_out_dec = 6'b010100;
12'd38 : mem_out_dec = 6'b010100;
12'd39 : mem_out_dec = 6'b010101;
12'd40 : mem_out_dec = 6'b010101;
12'd41 : mem_out_dec = 6'b010110;
12'd42 : mem_out_dec = 6'b010110;
12'd43 : mem_out_dec = 6'b010111;
12'd44 : mem_out_dec = 6'b011000;
12'd45 : mem_out_dec = 6'b011001;
12'd46 : mem_out_dec = 6'b011001;
12'd47 : mem_out_dec = 6'b011010;
12'd48 : mem_out_dec = 6'b011010;
12'd49 : mem_out_dec = 6'b011011;
12'd50 : mem_out_dec = 6'b011011;
12'd51 : mem_out_dec = 6'b011100;
12'd52 : mem_out_dec = 6'b011100;
12'd53 : mem_out_dec = 6'b011100;
12'd54 : mem_out_dec = 6'b011100;
12'd55 : mem_out_dec = 6'b011100;
12'd56 : mem_out_dec = 6'b011100;
12'd57 : mem_out_dec = 6'b011100;
12'd58 : mem_out_dec = 6'b011100;
12'd59 : mem_out_dec = 6'b011101;
12'd60 : mem_out_dec = 6'b011110;
12'd61 : mem_out_dec = 6'b011111;
12'd62 : mem_out_dec = 6'b100000;
12'd63 : mem_out_dec = 6'b100000;
12'd64 : mem_out_dec = 6'b111111;
12'd65 : mem_out_dec = 6'b111111;
12'd66 : mem_out_dec = 6'b111111;
12'd67 : mem_out_dec = 6'b111111;
12'd68 : mem_out_dec = 6'b111111;
12'd69 : mem_out_dec = 6'b111111;
12'd70 : mem_out_dec = 6'b111111;
12'd71 : mem_out_dec = 6'b000100;
12'd72 : mem_out_dec = 6'b000100;
12'd73 : mem_out_dec = 6'b000101;
12'd74 : mem_out_dec = 6'b000110;
12'd75 : mem_out_dec = 6'b000111;
12'd76 : mem_out_dec = 6'b000111;
12'd77 : mem_out_dec = 6'b001000;
12'd78 : mem_out_dec = 6'b001001;
12'd79 : mem_out_dec = 6'b001001;
12'd80 : mem_out_dec = 6'b001010;
12'd81 : mem_out_dec = 6'b001010;
12'd82 : mem_out_dec = 6'b001011;
12'd83 : mem_out_dec = 6'b001011;
12'd84 : mem_out_dec = 6'b001011;
12'd85 : mem_out_dec = 6'b001011;
12'd86 : mem_out_dec = 6'b001011;
12'd87 : mem_out_dec = 6'b001100;
12'd88 : mem_out_dec = 6'b001011;
12'd89 : mem_out_dec = 6'b001100;
12'd90 : mem_out_dec = 6'b001100;
12'd91 : mem_out_dec = 6'b001101;
12'd92 : mem_out_dec = 6'b001110;
12'd93 : mem_out_dec = 6'b001111;
12'd94 : mem_out_dec = 6'b001111;
12'd95 : mem_out_dec = 6'b010000;
12'd96 : mem_out_dec = 6'b010001;
12'd97 : mem_out_dec = 6'b010001;
12'd98 : mem_out_dec = 6'b010010;
12'd99 : mem_out_dec = 6'b010010;
12'd100 : mem_out_dec = 6'b010011;
12'd101 : mem_out_dec = 6'b010011;
12'd102 : mem_out_dec = 6'b010100;
12'd103 : mem_out_dec = 6'b010100;
12'd104 : mem_out_dec = 6'b010100;
12'd105 : mem_out_dec = 6'b010101;
12'd106 : mem_out_dec = 6'b010110;
12'd107 : mem_out_dec = 6'b010111;
12'd108 : mem_out_dec = 6'b010111;
12'd109 : mem_out_dec = 6'b011000;
12'd110 : mem_out_dec = 6'b011001;
12'd111 : mem_out_dec = 6'b011001;
12'd112 : mem_out_dec = 6'b011010;
12'd113 : mem_out_dec = 6'b011010;
12'd114 : mem_out_dec = 6'b011011;
12'd115 : mem_out_dec = 6'b011011;
12'd116 : mem_out_dec = 6'b011011;
12'd117 : mem_out_dec = 6'b011011;
12'd118 : mem_out_dec = 6'b011011;
12'd119 : mem_out_dec = 6'b011011;
12'd120 : mem_out_dec = 6'b011011;
12'd121 : mem_out_dec = 6'b011011;
12'd122 : mem_out_dec = 6'b011100;
12'd123 : mem_out_dec = 6'b011101;
12'd124 : mem_out_dec = 6'b011110;
12'd125 : mem_out_dec = 6'b011110;
12'd126 : mem_out_dec = 6'b011111;
12'd127 : mem_out_dec = 6'b100000;
12'd128 : mem_out_dec = 6'b111111;
12'd129 : mem_out_dec = 6'b111111;
12'd130 : mem_out_dec = 6'b111111;
12'd131 : mem_out_dec = 6'b111111;
12'd132 : mem_out_dec = 6'b111111;
12'd133 : mem_out_dec = 6'b111111;
12'd134 : mem_out_dec = 6'b111111;
12'd135 : mem_out_dec = 6'b111111;
12'd136 : mem_out_dec = 6'b000100;
12'd137 : mem_out_dec = 6'b000101;
12'd138 : mem_out_dec = 6'b000101;
12'd139 : mem_out_dec = 6'b000110;
12'd140 : mem_out_dec = 6'b000110;
12'd141 : mem_out_dec = 6'b000111;
12'd142 : mem_out_dec = 6'b001000;
12'd143 : mem_out_dec = 6'b001001;
12'd144 : mem_out_dec = 6'b001001;
12'd145 : mem_out_dec = 6'b001010;
12'd146 : mem_out_dec = 6'b001010;
12'd147 : mem_out_dec = 6'b001010;
12'd148 : mem_out_dec = 6'b001010;
12'd149 : mem_out_dec = 6'b001010;
12'd150 : mem_out_dec = 6'b001010;
12'd151 : mem_out_dec = 6'b001011;
12'd152 : mem_out_dec = 6'b001010;
12'd153 : mem_out_dec = 6'b001011;
12'd154 : mem_out_dec = 6'b001100;
12'd155 : mem_out_dec = 6'b001101;
12'd156 : mem_out_dec = 6'b001101;
12'd157 : mem_out_dec = 6'b001110;
12'd158 : mem_out_dec = 6'b001111;
12'd159 : mem_out_dec = 6'b010000;
12'd160 : mem_out_dec = 6'b010000;
12'd161 : mem_out_dec = 6'b010001;
12'd162 : mem_out_dec = 6'b010001;
12'd163 : mem_out_dec = 6'b010010;
12'd164 : mem_out_dec = 6'b010010;
12'd165 : mem_out_dec = 6'b010011;
12'd166 : mem_out_dec = 6'b010011;
12'd167 : mem_out_dec = 6'b010100;
12'd168 : mem_out_dec = 6'b010100;
12'd169 : mem_out_dec = 6'b010101;
12'd170 : mem_out_dec = 6'b010101;
12'd171 : mem_out_dec = 6'b010110;
12'd172 : mem_out_dec = 6'b010111;
12'd173 : mem_out_dec = 6'b010111;
12'd174 : mem_out_dec = 6'b011000;
12'd175 : mem_out_dec = 6'b011001;
12'd176 : mem_out_dec = 6'b011001;
12'd177 : mem_out_dec = 6'b011010;
12'd178 : mem_out_dec = 6'b011010;
12'd179 : mem_out_dec = 6'b011010;
12'd180 : mem_out_dec = 6'b011010;
12'd181 : mem_out_dec = 6'b011010;
12'd182 : mem_out_dec = 6'b011010;
12'd183 : mem_out_dec = 6'b011010;
12'd184 : mem_out_dec = 6'b011010;
12'd185 : mem_out_dec = 6'b011011;
12'd186 : mem_out_dec = 6'b011100;
12'd187 : mem_out_dec = 6'b011100;
12'd188 : mem_out_dec = 6'b011101;
12'd189 : mem_out_dec = 6'b011110;
12'd190 : mem_out_dec = 6'b011111;
12'd191 : mem_out_dec = 6'b100000;
12'd192 : mem_out_dec = 6'b111111;
12'd193 : mem_out_dec = 6'b111111;
12'd194 : mem_out_dec = 6'b111111;
12'd195 : mem_out_dec = 6'b111111;
12'd196 : mem_out_dec = 6'b111111;
12'd197 : mem_out_dec = 6'b111111;
12'd198 : mem_out_dec = 6'b111111;
12'd199 : mem_out_dec = 6'b111111;
12'd200 : mem_out_dec = 6'b111111;
12'd201 : mem_out_dec = 6'b000100;
12'd202 : mem_out_dec = 6'b000100;
12'd203 : mem_out_dec = 6'b000101;
12'd204 : mem_out_dec = 6'b000110;
12'd205 : mem_out_dec = 6'b000111;
12'd206 : mem_out_dec = 6'b001000;
12'd207 : mem_out_dec = 6'b001000;
12'd208 : mem_out_dec = 6'b001001;
12'd209 : mem_out_dec = 6'b001001;
12'd210 : mem_out_dec = 6'b001001;
12'd211 : mem_out_dec = 6'b001001;
12'd212 : mem_out_dec = 6'b001001;
12'd213 : mem_out_dec = 6'b001001;
12'd214 : mem_out_dec = 6'b001001;
12'd215 : mem_out_dec = 6'b001010;
12'd216 : mem_out_dec = 6'b001010;
12'd217 : mem_out_dec = 6'b001011;
12'd218 : mem_out_dec = 6'b001011;
12'd219 : mem_out_dec = 6'b001100;
12'd220 : mem_out_dec = 6'b001101;
12'd221 : mem_out_dec = 6'b001110;
12'd222 : mem_out_dec = 6'b001111;
12'd223 : mem_out_dec = 6'b001111;
12'd224 : mem_out_dec = 6'b010000;
12'd225 : mem_out_dec = 6'b010000;
12'd226 : mem_out_dec = 6'b010001;
12'd227 : mem_out_dec = 6'b010001;
12'd228 : mem_out_dec = 6'b010010;
12'd229 : mem_out_dec = 6'b010010;
12'd230 : mem_out_dec = 6'b010011;
12'd231 : mem_out_dec = 6'b010011;
12'd232 : mem_out_dec = 6'b010011;
12'd233 : mem_out_dec = 6'b010100;
12'd234 : mem_out_dec = 6'b010100;
12'd235 : mem_out_dec = 6'b010101;
12'd236 : mem_out_dec = 6'b010110;
12'd237 : mem_out_dec = 6'b010111;
12'd238 : mem_out_dec = 6'b011000;
12'd239 : mem_out_dec = 6'b011000;
12'd240 : mem_out_dec = 6'b011001;
12'd241 : mem_out_dec = 6'b011001;
12'd242 : mem_out_dec = 6'b011001;
12'd243 : mem_out_dec = 6'b011001;
12'd244 : mem_out_dec = 6'b011001;
12'd245 : mem_out_dec = 6'b011001;
12'd246 : mem_out_dec = 6'b011001;
12'd247 : mem_out_dec = 6'b011001;
12'd248 : mem_out_dec = 6'b011010;
12'd249 : mem_out_dec = 6'b011010;
12'd250 : mem_out_dec = 6'b011011;
12'd251 : mem_out_dec = 6'b011100;
12'd252 : mem_out_dec = 6'b011101;
12'd253 : mem_out_dec = 6'b011110;
12'd254 : mem_out_dec = 6'b011110;
12'd255 : mem_out_dec = 6'b011111;
12'd256 : mem_out_dec = 6'b111111;
12'd257 : mem_out_dec = 6'b111111;
12'd258 : mem_out_dec = 6'b111111;
12'd259 : mem_out_dec = 6'b111111;
12'd260 : mem_out_dec = 6'b111111;
12'd261 : mem_out_dec = 6'b111111;
12'd262 : mem_out_dec = 6'b111111;
12'd263 : mem_out_dec = 6'b111111;
12'd264 : mem_out_dec = 6'b111111;
12'd265 : mem_out_dec = 6'b111111;
12'd266 : mem_out_dec = 6'b000100;
12'd267 : mem_out_dec = 6'b000101;
12'd268 : mem_out_dec = 6'b000110;
12'd269 : mem_out_dec = 6'b000110;
12'd270 : mem_out_dec = 6'b000111;
12'd271 : mem_out_dec = 6'b001000;
12'd272 : mem_out_dec = 6'b001000;
12'd273 : mem_out_dec = 6'b001000;
12'd274 : mem_out_dec = 6'b001000;
12'd275 : mem_out_dec = 6'b001000;
12'd276 : mem_out_dec = 6'b001000;
12'd277 : mem_out_dec = 6'b001000;
12'd278 : mem_out_dec = 6'b001000;
12'd279 : mem_out_dec = 6'b001001;
12'd280 : mem_out_dec = 6'b001001;
12'd281 : mem_out_dec = 6'b001010;
12'd282 : mem_out_dec = 6'b001011;
12'd283 : mem_out_dec = 6'b001100;
12'd284 : mem_out_dec = 6'b001101;
12'd285 : mem_out_dec = 6'b001101;
12'd286 : mem_out_dec = 6'b001110;
12'd287 : mem_out_dec = 6'b001111;
12'd288 : mem_out_dec = 6'b001111;
12'd289 : mem_out_dec = 6'b010000;
12'd290 : mem_out_dec = 6'b010000;
12'd291 : mem_out_dec = 6'b010001;
12'd292 : mem_out_dec = 6'b010001;
12'd293 : mem_out_dec = 6'b010010;
12'd294 : mem_out_dec = 6'b010010;
12'd295 : mem_out_dec = 6'b010011;
12'd296 : mem_out_dec = 6'b010010;
12'd297 : mem_out_dec = 6'b010011;
12'd298 : mem_out_dec = 6'b010100;
12'd299 : mem_out_dec = 6'b010101;
12'd300 : mem_out_dec = 6'b010110;
12'd301 : mem_out_dec = 6'b010110;
12'd302 : mem_out_dec = 6'b010111;
12'd303 : mem_out_dec = 6'b011000;
12'd304 : mem_out_dec = 6'b011000;
12'd305 : mem_out_dec = 6'b011000;
12'd306 : mem_out_dec = 6'b011000;
12'd307 : mem_out_dec = 6'b011000;
12'd308 : mem_out_dec = 6'b011000;
12'd309 : mem_out_dec = 6'b011000;
12'd310 : mem_out_dec = 6'b011000;
12'd311 : mem_out_dec = 6'b011001;
12'd312 : mem_out_dec = 6'b011001;
12'd313 : mem_out_dec = 6'b011010;
12'd314 : mem_out_dec = 6'b011011;
12'd315 : mem_out_dec = 6'b011100;
12'd316 : mem_out_dec = 6'b011100;
12'd317 : mem_out_dec = 6'b011101;
12'd318 : mem_out_dec = 6'b011110;
12'd319 : mem_out_dec = 6'b011111;
12'd320 : mem_out_dec = 6'b111111;
12'd321 : mem_out_dec = 6'b111111;
12'd322 : mem_out_dec = 6'b111111;
12'd323 : mem_out_dec = 6'b111111;
12'd324 : mem_out_dec = 6'b111111;
12'd325 : mem_out_dec = 6'b111111;
12'd326 : mem_out_dec = 6'b111111;
12'd327 : mem_out_dec = 6'b111111;
12'd328 : mem_out_dec = 6'b111111;
12'd329 : mem_out_dec = 6'b111111;
12'd330 : mem_out_dec = 6'b111111;
12'd331 : mem_out_dec = 6'b000100;
12'd332 : mem_out_dec = 6'b000101;
12'd333 : mem_out_dec = 6'b000110;
12'd334 : mem_out_dec = 6'b000111;
12'd335 : mem_out_dec = 6'b001000;
12'd336 : mem_out_dec = 6'b000111;
12'd337 : mem_out_dec = 6'b000111;
12'd338 : mem_out_dec = 6'b000111;
12'd339 : mem_out_dec = 6'b000111;
12'd340 : mem_out_dec = 6'b000111;
12'd341 : mem_out_dec = 6'b000111;
12'd342 : mem_out_dec = 6'b001000;
12'd343 : mem_out_dec = 6'b001001;
12'd344 : mem_out_dec = 6'b001001;
12'd345 : mem_out_dec = 6'b001010;
12'd346 : mem_out_dec = 6'b001011;
12'd347 : mem_out_dec = 6'b001011;
12'd348 : mem_out_dec = 6'b001100;
12'd349 : mem_out_dec = 6'b001101;
12'd350 : mem_out_dec = 6'b001110;
12'd351 : mem_out_dec = 6'b001110;
12'd352 : mem_out_dec = 6'b001111;
12'd353 : mem_out_dec = 6'b001111;
12'd354 : mem_out_dec = 6'b010000;
12'd355 : mem_out_dec = 6'b010000;
12'd356 : mem_out_dec = 6'b010001;
12'd357 : mem_out_dec = 6'b010001;
12'd358 : mem_out_dec = 6'b010001;
12'd359 : mem_out_dec = 6'b010010;
12'd360 : mem_out_dec = 6'b010010;
12'd361 : mem_out_dec = 6'b010011;
12'd362 : mem_out_dec = 6'b010100;
12'd363 : mem_out_dec = 6'b010100;
12'd364 : mem_out_dec = 6'b010101;
12'd365 : mem_out_dec = 6'b010110;
12'd366 : mem_out_dec = 6'b010111;
12'd367 : mem_out_dec = 6'b011000;
12'd368 : mem_out_dec = 6'b010111;
12'd369 : mem_out_dec = 6'b010111;
12'd370 : mem_out_dec = 6'b010111;
12'd371 : mem_out_dec = 6'b010111;
12'd372 : mem_out_dec = 6'b010111;
12'd373 : mem_out_dec = 6'b010111;
12'd374 : mem_out_dec = 6'b011000;
12'd375 : mem_out_dec = 6'b011001;
12'd376 : mem_out_dec = 6'b011001;
12'd377 : mem_out_dec = 6'b011010;
12'd378 : mem_out_dec = 6'b011010;
12'd379 : mem_out_dec = 6'b011011;
12'd380 : mem_out_dec = 6'b011100;
12'd381 : mem_out_dec = 6'b011101;
12'd382 : mem_out_dec = 6'b011101;
12'd383 : mem_out_dec = 6'b011110;
12'd384 : mem_out_dec = 6'b111111;
12'd385 : mem_out_dec = 6'b111111;
12'd386 : mem_out_dec = 6'b111111;
12'd387 : mem_out_dec = 6'b111111;
12'd388 : mem_out_dec = 6'b111111;
12'd389 : mem_out_dec = 6'b111111;
12'd390 : mem_out_dec = 6'b111111;
12'd391 : mem_out_dec = 6'b111111;
12'd392 : mem_out_dec = 6'b111111;
12'd393 : mem_out_dec = 6'b111111;
12'd394 : mem_out_dec = 6'b111111;
12'd395 : mem_out_dec = 6'b111111;
12'd396 : mem_out_dec = 6'b000101;
12'd397 : mem_out_dec = 6'b000110;
12'd398 : mem_out_dec = 6'b000110;
12'd399 : mem_out_dec = 6'b000111;
12'd400 : mem_out_dec = 6'b000110;
12'd401 : mem_out_dec = 6'b000110;
12'd402 : mem_out_dec = 6'b000110;
12'd403 : mem_out_dec = 6'b000110;
12'd404 : mem_out_dec = 6'b000110;
12'd405 : mem_out_dec = 6'b000111;
12'd406 : mem_out_dec = 6'b001000;
12'd407 : mem_out_dec = 6'b001000;
12'd408 : mem_out_dec = 6'b001001;
12'd409 : mem_out_dec = 6'b001001;
12'd410 : mem_out_dec = 6'b001010;
12'd411 : mem_out_dec = 6'b001011;
12'd412 : mem_out_dec = 6'b001100;
12'd413 : mem_out_dec = 6'b001100;
12'd414 : mem_out_dec = 6'b001101;
12'd415 : mem_out_dec = 6'b001110;
12'd416 : mem_out_dec = 6'b001110;
12'd417 : mem_out_dec = 6'b001111;
12'd418 : mem_out_dec = 6'b001111;
12'd419 : mem_out_dec = 6'b010000;
12'd420 : mem_out_dec = 6'b010000;
12'd421 : mem_out_dec = 6'b010000;
12'd422 : mem_out_dec = 6'b010001;
12'd423 : mem_out_dec = 6'b010001;
12'd424 : mem_out_dec = 6'b010010;
12'd425 : mem_out_dec = 6'b010011;
12'd426 : mem_out_dec = 6'b010011;
12'd427 : mem_out_dec = 6'b010100;
12'd428 : mem_out_dec = 6'b010101;
12'd429 : mem_out_dec = 6'b010110;
12'd430 : mem_out_dec = 6'b010111;
12'd431 : mem_out_dec = 6'b010111;
12'd432 : mem_out_dec = 6'b010110;
12'd433 : mem_out_dec = 6'b010110;
12'd434 : mem_out_dec = 6'b010110;
12'd435 : mem_out_dec = 6'b010110;
12'd436 : mem_out_dec = 6'b010110;
12'd437 : mem_out_dec = 6'b010111;
12'd438 : mem_out_dec = 6'b010111;
12'd439 : mem_out_dec = 6'b011000;
12'd440 : mem_out_dec = 6'b011001;
12'd441 : mem_out_dec = 6'b011001;
12'd442 : mem_out_dec = 6'b011010;
12'd443 : mem_out_dec = 6'b011011;
12'd444 : mem_out_dec = 6'b011011;
12'd445 : mem_out_dec = 6'b011100;
12'd446 : mem_out_dec = 6'b011101;
12'd447 : mem_out_dec = 6'b011110;
12'd448 : mem_out_dec = 6'b111111;
12'd449 : mem_out_dec = 6'b111111;
12'd450 : mem_out_dec = 6'b111111;
12'd451 : mem_out_dec = 6'b111111;
12'd452 : mem_out_dec = 6'b111111;
12'd453 : mem_out_dec = 6'b111111;
12'd454 : mem_out_dec = 6'b111111;
12'd455 : mem_out_dec = 6'b111111;
12'd456 : mem_out_dec = 6'b111111;
12'd457 : mem_out_dec = 6'b111111;
12'd458 : mem_out_dec = 6'b111111;
12'd459 : mem_out_dec = 6'b111111;
12'd460 : mem_out_dec = 6'b111111;
12'd461 : mem_out_dec = 6'b000101;
12'd462 : mem_out_dec = 6'b000110;
12'd463 : mem_out_dec = 6'b000110;
12'd464 : mem_out_dec = 6'b000110;
12'd465 : mem_out_dec = 6'b000110;
12'd466 : mem_out_dec = 6'b000110;
12'd467 : mem_out_dec = 6'b000110;
12'd468 : mem_out_dec = 6'b000110;
12'd469 : mem_out_dec = 6'b000111;
12'd470 : mem_out_dec = 6'b000111;
12'd471 : mem_out_dec = 6'b001000;
12'd472 : mem_out_dec = 6'b001000;
12'd473 : mem_out_dec = 6'b001001;
12'd474 : mem_out_dec = 6'b001010;
12'd475 : mem_out_dec = 6'b001011;
12'd476 : mem_out_dec = 6'b001011;
12'd477 : mem_out_dec = 6'b001100;
12'd478 : mem_out_dec = 6'b001101;
12'd479 : mem_out_dec = 6'b001110;
12'd480 : mem_out_dec = 6'b001110;
12'd481 : mem_out_dec = 6'b001110;
12'd482 : mem_out_dec = 6'b001111;
12'd483 : mem_out_dec = 6'b001111;
12'd484 : mem_out_dec = 6'b010000;
12'd485 : mem_out_dec = 6'b010000;
12'd486 : mem_out_dec = 6'b010000;
12'd487 : mem_out_dec = 6'b010001;
12'd488 : mem_out_dec = 6'b010001;
12'd489 : mem_out_dec = 6'b010010;
12'd490 : mem_out_dec = 6'b010011;
12'd491 : mem_out_dec = 6'b010100;
12'd492 : mem_out_dec = 6'b010101;
12'd493 : mem_out_dec = 6'b010101;
12'd494 : mem_out_dec = 6'b010110;
12'd495 : mem_out_dec = 6'b010110;
12'd496 : mem_out_dec = 6'b010110;
12'd497 : mem_out_dec = 6'b010110;
12'd498 : mem_out_dec = 6'b010101;
12'd499 : mem_out_dec = 6'b010101;
12'd500 : mem_out_dec = 6'b010110;
12'd501 : mem_out_dec = 6'b010111;
12'd502 : mem_out_dec = 6'b010111;
12'd503 : mem_out_dec = 6'b011000;
12'd504 : mem_out_dec = 6'b011000;
12'd505 : mem_out_dec = 6'b011001;
12'd506 : mem_out_dec = 6'b011010;
12'd507 : mem_out_dec = 6'b011010;
12'd508 : mem_out_dec = 6'b011011;
12'd509 : mem_out_dec = 6'b011100;
12'd510 : mem_out_dec = 6'b011101;
12'd511 : mem_out_dec = 6'b011101;
12'd512 : mem_out_dec = 6'b111111;
12'd513 : mem_out_dec = 6'b111111;
12'd514 : mem_out_dec = 6'b111111;
12'd515 : mem_out_dec = 6'b111111;
12'd516 : mem_out_dec = 6'b111111;
12'd517 : mem_out_dec = 6'b111111;
12'd518 : mem_out_dec = 6'b111111;
12'd519 : mem_out_dec = 6'b111111;
12'd520 : mem_out_dec = 6'b111111;
12'd521 : mem_out_dec = 6'b111111;
12'd522 : mem_out_dec = 6'b111111;
12'd523 : mem_out_dec = 6'b111111;
12'd524 : mem_out_dec = 6'b111111;
12'd525 : mem_out_dec = 6'b111111;
12'd526 : mem_out_dec = 6'b000100;
12'd527 : mem_out_dec = 6'b000101;
12'd528 : mem_out_dec = 6'b000100;
12'd529 : mem_out_dec = 6'b000100;
12'd530 : mem_out_dec = 6'b000100;
12'd531 : mem_out_dec = 6'b000101;
12'd532 : mem_out_dec = 6'b000101;
12'd533 : mem_out_dec = 6'b000110;
12'd534 : mem_out_dec = 6'b000111;
12'd535 : mem_out_dec = 6'b000111;
12'd536 : mem_out_dec = 6'b000111;
12'd537 : mem_out_dec = 6'b001000;
12'd538 : mem_out_dec = 6'b001001;
12'd539 : mem_out_dec = 6'b001010;
12'd540 : mem_out_dec = 6'b001011;
12'd541 : mem_out_dec = 6'b001011;
12'd542 : mem_out_dec = 6'b001100;
12'd543 : mem_out_dec = 6'b001101;
12'd544 : mem_out_dec = 6'b001101;
12'd545 : mem_out_dec = 6'b001101;
12'd546 : mem_out_dec = 6'b001110;
12'd547 : mem_out_dec = 6'b001110;
12'd548 : mem_out_dec = 6'b001110;
12'd549 : mem_out_dec = 6'b001111;
12'd550 : mem_out_dec = 6'b010000;
12'd551 : mem_out_dec = 6'b010000;
12'd552 : mem_out_dec = 6'b010001;
12'd553 : mem_out_dec = 6'b010001;
12'd554 : mem_out_dec = 6'b010010;
12'd555 : mem_out_dec = 6'b010010;
12'd556 : mem_out_dec = 6'b010011;
12'd557 : mem_out_dec = 6'b010100;
12'd558 : mem_out_dec = 6'b010100;
12'd559 : mem_out_dec = 6'b010100;
12'd560 : mem_out_dec = 6'b010100;
12'd561 : mem_out_dec = 6'b010100;
12'd562 : mem_out_dec = 6'b010100;
12'd563 : mem_out_dec = 6'b010101;
12'd564 : mem_out_dec = 6'b010101;
12'd565 : mem_out_dec = 6'b010110;
12'd566 : mem_out_dec = 6'b010111;
12'd567 : mem_out_dec = 6'b010111;
12'd568 : mem_out_dec = 6'b010111;
12'd569 : mem_out_dec = 6'b011000;
12'd570 : mem_out_dec = 6'b011001;
12'd571 : mem_out_dec = 6'b011010;
12'd572 : mem_out_dec = 6'b011010;
12'd573 : mem_out_dec = 6'b011011;
12'd574 : mem_out_dec = 6'b011100;
12'd575 : mem_out_dec = 6'b011101;
12'd576 : mem_out_dec = 6'b111111;
12'd577 : mem_out_dec = 6'b111111;
12'd578 : mem_out_dec = 6'b111111;
12'd579 : mem_out_dec = 6'b111111;
12'd580 : mem_out_dec = 6'b111111;
12'd581 : mem_out_dec = 6'b111111;
12'd582 : mem_out_dec = 6'b111111;
12'd583 : mem_out_dec = 6'b111111;
12'd584 : mem_out_dec = 6'b111111;
12'd585 : mem_out_dec = 6'b111111;
12'd586 : mem_out_dec = 6'b111111;
12'd587 : mem_out_dec = 6'b111111;
12'd588 : mem_out_dec = 6'b111111;
12'd589 : mem_out_dec = 6'b111111;
12'd590 : mem_out_dec = 6'b111111;
12'd591 : mem_out_dec = 6'b000100;
12'd592 : mem_out_dec = 6'b000011;
12'd593 : mem_out_dec = 6'b000011;
12'd594 : mem_out_dec = 6'b000100;
12'd595 : mem_out_dec = 6'b000101;
12'd596 : mem_out_dec = 6'b000101;
12'd597 : mem_out_dec = 6'b000110;
12'd598 : mem_out_dec = 6'b000110;
12'd599 : mem_out_dec = 6'b000111;
12'd600 : mem_out_dec = 6'b000111;
12'd601 : mem_out_dec = 6'b001000;
12'd602 : mem_out_dec = 6'b001001;
12'd603 : mem_out_dec = 6'b001010;
12'd604 : mem_out_dec = 6'b001010;
12'd605 : mem_out_dec = 6'b001011;
12'd606 : mem_out_dec = 6'b001100;
12'd607 : mem_out_dec = 6'b001101;
12'd608 : mem_out_dec = 6'b001101;
12'd609 : mem_out_dec = 6'b001101;
12'd610 : mem_out_dec = 6'b001110;
12'd611 : mem_out_dec = 6'b001110;
12'd612 : mem_out_dec = 6'b001110;
12'd613 : mem_out_dec = 6'b001111;
12'd614 : mem_out_dec = 6'b010000;
12'd615 : mem_out_dec = 6'b010000;
12'd616 : mem_out_dec = 6'b010000;
12'd617 : mem_out_dec = 6'b010001;
12'd618 : mem_out_dec = 6'b010001;
12'd619 : mem_out_dec = 6'b010010;
12'd620 : mem_out_dec = 6'b010010;
12'd621 : mem_out_dec = 6'b010011;
12'd622 : mem_out_dec = 6'b010011;
12'd623 : mem_out_dec = 6'b010100;
12'd624 : mem_out_dec = 6'b010011;
12'd625 : mem_out_dec = 6'b010011;
12'd626 : mem_out_dec = 6'b010100;
12'd627 : mem_out_dec = 6'b010100;
12'd628 : mem_out_dec = 6'b010101;
12'd629 : mem_out_dec = 6'b010110;
12'd630 : mem_out_dec = 6'b010110;
12'd631 : mem_out_dec = 6'b010111;
12'd632 : mem_out_dec = 6'b010111;
12'd633 : mem_out_dec = 6'b011000;
12'd634 : mem_out_dec = 6'b011001;
12'd635 : mem_out_dec = 6'b011001;
12'd636 : mem_out_dec = 6'b011010;
12'd637 : mem_out_dec = 6'b011011;
12'd638 : mem_out_dec = 6'b011100;
12'd639 : mem_out_dec = 6'b011100;
12'd640 : mem_out_dec = 6'b111111;
12'd641 : mem_out_dec = 6'b111111;
12'd642 : mem_out_dec = 6'b111111;
12'd643 : mem_out_dec = 6'b111111;
12'd644 : mem_out_dec = 6'b111111;
12'd645 : mem_out_dec = 6'b111111;
12'd646 : mem_out_dec = 6'b111111;
12'd647 : mem_out_dec = 6'b111111;
12'd648 : mem_out_dec = 6'b111111;
12'd649 : mem_out_dec = 6'b111111;
12'd650 : mem_out_dec = 6'b111111;
12'd651 : mem_out_dec = 6'b111111;
12'd652 : mem_out_dec = 6'b111111;
12'd653 : mem_out_dec = 6'b111111;
12'd654 : mem_out_dec = 6'b111111;
12'd655 : mem_out_dec = 6'b111111;
12'd656 : mem_out_dec = 6'b000011;
12'd657 : mem_out_dec = 6'b000011;
12'd658 : mem_out_dec = 6'b000100;
12'd659 : mem_out_dec = 6'b000100;
12'd660 : mem_out_dec = 6'b000101;
12'd661 : mem_out_dec = 6'b000110;
12'd662 : mem_out_dec = 6'b000110;
12'd663 : mem_out_dec = 6'b000111;
12'd664 : mem_out_dec = 6'b000111;
12'd665 : mem_out_dec = 6'b001000;
12'd666 : mem_out_dec = 6'b001001;
12'd667 : mem_out_dec = 6'b001001;
12'd668 : mem_out_dec = 6'b001010;
12'd669 : mem_out_dec = 6'b001011;
12'd670 : mem_out_dec = 6'b001100;
12'd671 : mem_out_dec = 6'b001100;
12'd672 : mem_out_dec = 6'b001100;
12'd673 : mem_out_dec = 6'b001101;
12'd674 : mem_out_dec = 6'b001101;
12'd675 : mem_out_dec = 6'b001101;
12'd676 : mem_out_dec = 6'b001110;
12'd677 : mem_out_dec = 6'b001111;
12'd678 : mem_out_dec = 6'b001111;
12'd679 : mem_out_dec = 6'b010000;
12'd680 : mem_out_dec = 6'b010000;
12'd681 : mem_out_dec = 6'b010000;
12'd682 : mem_out_dec = 6'b010001;
12'd683 : mem_out_dec = 6'b010001;
12'd684 : mem_out_dec = 6'b010010;
12'd685 : mem_out_dec = 6'b010010;
12'd686 : mem_out_dec = 6'b010011;
12'd687 : mem_out_dec = 6'b010011;
12'd688 : mem_out_dec = 6'b010011;
12'd689 : mem_out_dec = 6'b010011;
12'd690 : mem_out_dec = 6'b010100;
12'd691 : mem_out_dec = 6'b010100;
12'd692 : mem_out_dec = 6'b010101;
12'd693 : mem_out_dec = 6'b010101;
12'd694 : mem_out_dec = 6'b010110;
12'd695 : mem_out_dec = 6'b010111;
12'd696 : mem_out_dec = 6'b010111;
12'd697 : mem_out_dec = 6'b011000;
12'd698 : mem_out_dec = 6'b011000;
12'd699 : mem_out_dec = 6'b011001;
12'd700 : mem_out_dec = 6'b011010;
12'd701 : mem_out_dec = 6'b011011;
12'd702 : mem_out_dec = 6'b011011;
12'd703 : mem_out_dec = 6'b011100;
12'd704 : mem_out_dec = 6'b111111;
12'd705 : mem_out_dec = 6'b111111;
12'd706 : mem_out_dec = 6'b111111;
12'd707 : mem_out_dec = 6'b111111;
12'd708 : mem_out_dec = 6'b111111;
12'd709 : mem_out_dec = 6'b111111;
12'd710 : mem_out_dec = 6'b111111;
12'd711 : mem_out_dec = 6'b111111;
12'd712 : mem_out_dec = 6'b111111;
12'd713 : mem_out_dec = 6'b111111;
12'd714 : mem_out_dec = 6'b111111;
12'd715 : mem_out_dec = 6'b111111;
12'd716 : mem_out_dec = 6'b111111;
12'd717 : mem_out_dec = 6'b111111;
12'd718 : mem_out_dec = 6'b111111;
12'd719 : mem_out_dec = 6'b111111;
12'd720 : mem_out_dec = 6'b111111;
12'd721 : mem_out_dec = 6'b000011;
12'd722 : mem_out_dec = 6'b000100;
12'd723 : mem_out_dec = 6'b000100;
12'd724 : mem_out_dec = 6'b000101;
12'd725 : mem_out_dec = 6'b000101;
12'd726 : mem_out_dec = 6'b000110;
12'd727 : mem_out_dec = 6'b000111;
12'd728 : mem_out_dec = 6'b000111;
12'd729 : mem_out_dec = 6'b000111;
12'd730 : mem_out_dec = 6'b001000;
12'd731 : mem_out_dec = 6'b001001;
12'd732 : mem_out_dec = 6'b001010;
12'd733 : mem_out_dec = 6'b001011;
12'd734 : mem_out_dec = 6'b001011;
12'd735 : mem_out_dec = 6'b001100;
12'd736 : mem_out_dec = 6'b001100;
12'd737 : mem_out_dec = 6'b001101;
12'd738 : mem_out_dec = 6'b001101;
12'd739 : mem_out_dec = 6'b001101;
12'd740 : mem_out_dec = 6'b001110;
12'd741 : mem_out_dec = 6'b001110;
12'd742 : mem_out_dec = 6'b001111;
12'd743 : mem_out_dec = 6'b010000;
12'd744 : mem_out_dec = 6'b001111;
12'd745 : mem_out_dec = 6'b010000;
12'd746 : mem_out_dec = 6'b010000;
12'd747 : mem_out_dec = 6'b010001;
12'd748 : mem_out_dec = 6'b010001;
12'd749 : mem_out_dec = 6'b010010;
12'd750 : mem_out_dec = 6'b010010;
12'd751 : mem_out_dec = 6'b010011;
12'd752 : mem_out_dec = 6'b010010;
12'd753 : mem_out_dec = 6'b010011;
12'd754 : mem_out_dec = 6'b010011;
12'd755 : mem_out_dec = 6'b010100;
12'd756 : mem_out_dec = 6'b010101;
12'd757 : mem_out_dec = 6'b010101;
12'd758 : mem_out_dec = 6'b010110;
12'd759 : mem_out_dec = 6'b010110;
12'd760 : mem_out_dec = 6'b010111;
12'd761 : mem_out_dec = 6'b010111;
12'd762 : mem_out_dec = 6'b011000;
12'd763 : mem_out_dec = 6'b011001;
12'd764 : mem_out_dec = 6'b011010;
12'd765 : mem_out_dec = 6'b011010;
12'd766 : mem_out_dec = 6'b011011;
12'd767 : mem_out_dec = 6'b011100;
12'd768 : mem_out_dec = 6'b111111;
12'd769 : mem_out_dec = 6'b111111;
12'd770 : mem_out_dec = 6'b111111;
12'd771 : mem_out_dec = 6'b111111;
12'd772 : mem_out_dec = 6'b111111;
12'd773 : mem_out_dec = 6'b111111;
12'd774 : mem_out_dec = 6'b111111;
12'd775 : mem_out_dec = 6'b111111;
12'd776 : mem_out_dec = 6'b111111;
12'd777 : mem_out_dec = 6'b111111;
12'd778 : mem_out_dec = 6'b111111;
12'd779 : mem_out_dec = 6'b111111;
12'd780 : mem_out_dec = 6'b111111;
12'd781 : mem_out_dec = 6'b111111;
12'd782 : mem_out_dec = 6'b111111;
12'd783 : mem_out_dec = 6'b111111;
12'd784 : mem_out_dec = 6'b111111;
12'd785 : mem_out_dec = 6'b111111;
12'd786 : mem_out_dec = 6'b000011;
12'd787 : mem_out_dec = 6'b000100;
12'd788 : mem_out_dec = 6'b000101;
12'd789 : mem_out_dec = 6'b000101;
12'd790 : mem_out_dec = 6'b000110;
12'd791 : mem_out_dec = 6'b000110;
12'd792 : mem_out_dec = 6'b000110;
12'd793 : mem_out_dec = 6'b000111;
12'd794 : mem_out_dec = 6'b001000;
12'd795 : mem_out_dec = 6'b001001;
12'd796 : mem_out_dec = 6'b001010;
12'd797 : mem_out_dec = 6'b001010;
12'd798 : mem_out_dec = 6'b001011;
12'd799 : mem_out_dec = 6'b001100;
12'd800 : mem_out_dec = 6'b001100;
12'd801 : mem_out_dec = 6'b001100;
12'd802 : mem_out_dec = 6'b001101;
12'd803 : mem_out_dec = 6'b001101;
12'd804 : mem_out_dec = 6'b001110;
12'd805 : mem_out_dec = 6'b001110;
12'd806 : mem_out_dec = 6'b001111;
12'd807 : mem_out_dec = 6'b010000;
12'd808 : mem_out_dec = 6'b001111;
12'd809 : mem_out_dec = 6'b001111;
12'd810 : mem_out_dec = 6'b010000;
12'd811 : mem_out_dec = 6'b010000;
12'd812 : mem_out_dec = 6'b010001;
12'd813 : mem_out_dec = 6'b010001;
12'd814 : mem_out_dec = 6'b010010;
12'd815 : mem_out_dec = 6'b010010;
12'd816 : mem_out_dec = 6'b010010;
12'd817 : mem_out_dec = 6'b010011;
12'd818 : mem_out_dec = 6'b010011;
12'd819 : mem_out_dec = 6'b010100;
12'd820 : mem_out_dec = 6'b010100;
12'd821 : mem_out_dec = 6'b010101;
12'd822 : mem_out_dec = 6'b010110;
12'd823 : mem_out_dec = 6'b010110;
12'd824 : mem_out_dec = 6'b010110;
12'd825 : mem_out_dec = 6'b010111;
12'd826 : mem_out_dec = 6'b011000;
12'd827 : mem_out_dec = 6'b011001;
12'd828 : mem_out_dec = 6'b011001;
12'd829 : mem_out_dec = 6'b011010;
12'd830 : mem_out_dec = 6'b011011;
12'd831 : mem_out_dec = 6'b011100;
12'd832 : mem_out_dec = 6'b111111;
12'd833 : mem_out_dec = 6'b111111;
12'd834 : mem_out_dec = 6'b111111;
12'd835 : mem_out_dec = 6'b111111;
12'd836 : mem_out_dec = 6'b111111;
12'd837 : mem_out_dec = 6'b111111;
12'd838 : mem_out_dec = 6'b111111;
12'd839 : mem_out_dec = 6'b111111;
12'd840 : mem_out_dec = 6'b111111;
12'd841 : mem_out_dec = 6'b111111;
12'd842 : mem_out_dec = 6'b111111;
12'd843 : mem_out_dec = 6'b111111;
12'd844 : mem_out_dec = 6'b111111;
12'd845 : mem_out_dec = 6'b111111;
12'd846 : mem_out_dec = 6'b111111;
12'd847 : mem_out_dec = 6'b111111;
12'd848 : mem_out_dec = 6'b111111;
12'd849 : mem_out_dec = 6'b111111;
12'd850 : mem_out_dec = 6'b111111;
12'd851 : mem_out_dec = 6'b000100;
12'd852 : mem_out_dec = 6'b000100;
12'd853 : mem_out_dec = 6'b000101;
12'd854 : mem_out_dec = 6'b000101;
12'd855 : mem_out_dec = 6'b000110;
12'd856 : mem_out_dec = 6'b000110;
12'd857 : mem_out_dec = 6'b000111;
12'd858 : mem_out_dec = 6'b001000;
12'd859 : mem_out_dec = 6'b001001;
12'd860 : mem_out_dec = 6'b001001;
12'd861 : mem_out_dec = 6'b001010;
12'd862 : mem_out_dec = 6'b001011;
12'd863 : mem_out_dec = 6'b001100;
12'd864 : mem_out_dec = 6'b001100;
12'd865 : mem_out_dec = 6'b001100;
12'd866 : mem_out_dec = 6'b001100;
12'd867 : mem_out_dec = 6'b001101;
12'd868 : mem_out_dec = 6'b001101;
12'd869 : mem_out_dec = 6'b001110;
12'd870 : mem_out_dec = 6'b001111;
12'd871 : mem_out_dec = 6'b001111;
12'd872 : mem_out_dec = 6'b001110;
12'd873 : mem_out_dec = 6'b001111;
12'd874 : mem_out_dec = 6'b001111;
12'd875 : mem_out_dec = 6'b010000;
12'd876 : mem_out_dec = 6'b010000;
12'd877 : mem_out_dec = 6'b010001;
12'd878 : mem_out_dec = 6'b010001;
12'd879 : mem_out_dec = 6'b010010;
12'd880 : mem_out_dec = 6'b010010;
12'd881 : mem_out_dec = 6'b010010;
12'd882 : mem_out_dec = 6'b010011;
12'd883 : mem_out_dec = 6'b010100;
12'd884 : mem_out_dec = 6'b010100;
12'd885 : mem_out_dec = 6'b010101;
12'd886 : mem_out_dec = 6'b010101;
12'd887 : mem_out_dec = 6'b010110;
12'd888 : mem_out_dec = 6'b010110;
12'd889 : mem_out_dec = 6'b010111;
12'd890 : mem_out_dec = 6'b011000;
12'd891 : mem_out_dec = 6'b011000;
12'd892 : mem_out_dec = 6'b011001;
12'd893 : mem_out_dec = 6'b011010;
12'd894 : mem_out_dec = 6'b011011;
12'd895 : mem_out_dec = 6'b011011;
12'd896 : mem_out_dec = 6'b111111;
12'd897 : mem_out_dec = 6'b111111;
12'd898 : mem_out_dec = 6'b111111;
12'd899 : mem_out_dec = 6'b111111;
12'd900 : mem_out_dec = 6'b111111;
12'd901 : mem_out_dec = 6'b111111;
12'd902 : mem_out_dec = 6'b111111;
12'd903 : mem_out_dec = 6'b111111;
12'd904 : mem_out_dec = 6'b111111;
12'd905 : mem_out_dec = 6'b111111;
12'd906 : mem_out_dec = 6'b111111;
12'd907 : mem_out_dec = 6'b111111;
12'd908 : mem_out_dec = 6'b111111;
12'd909 : mem_out_dec = 6'b111111;
12'd910 : mem_out_dec = 6'b111111;
12'd911 : mem_out_dec = 6'b111111;
12'd912 : mem_out_dec = 6'b111111;
12'd913 : mem_out_dec = 6'b111111;
12'd914 : mem_out_dec = 6'b111111;
12'd915 : mem_out_dec = 6'b111111;
12'd916 : mem_out_dec = 6'b000100;
12'd917 : mem_out_dec = 6'b000101;
12'd918 : mem_out_dec = 6'b000101;
12'd919 : mem_out_dec = 6'b000110;
12'd920 : mem_out_dec = 6'b000110;
12'd921 : mem_out_dec = 6'b000111;
12'd922 : mem_out_dec = 6'b001000;
12'd923 : mem_out_dec = 6'b001000;
12'd924 : mem_out_dec = 6'b001001;
12'd925 : mem_out_dec = 6'b001010;
12'd926 : mem_out_dec = 6'b001011;
12'd927 : mem_out_dec = 6'b001011;
12'd928 : mem_out_dec = 6'b001011;
12'd929 : mem_out_dec = 6'b001100;
12'd930 : mem_out_dec = 6'b001100;
12'd931 : mem_out_dec = 6'b001101;
12'd932 : mem_out_dec = 6'b001101;
12'd933 : mem_out_dec = 6'b001110;
12'd934 : mem_out_dec = 6'b001110;
12'd935 : mem_out_dec = 6'b001111;
12'd936 : mem_out_dec = 6'b001110;
12'd937 : mem_out_dec = 6'b001110;
12'd938 : mem_out_dec = 6'b001111;
12'd939 : mem_out_dec = 6'b001111;
12'd940 : mem_out_dec = 6'b010000;
12'd941 : mem_out_dec = 6'b010000;
12'd942 : mem_out_dec = 6'b010001;
12'd943 : mem_out_dec = 6'b010001;
12'd944 : mem_out_dec = 6'b010010;
12'd945 : mem_out_dec = 6'b010010;
12'd946 : mem_out_dec = 6'b010011;
12'd947 : mem_out_dec = 6'b010011;
12'd948 : mem_out_dec = 6'b010100;
12'd949 : mem_out_dec = 6'b010100;
12'd950 : mem_out_dec = 6'b010101;
12'd951 : mem_out_dec = 6'b010110;
12'd952 : mem_out_dec = 6'b010110;
12'd953 : mem_out_dec = 6'b010111;
12'd954 : mem_out_dec = 6'b010111;
12'd955 : mem_out_dec = 6'b011000;
12'd956 : mem_out_dec = 6'b011001;
12'd957 : mem_out_dec = 6'b011010;
12'd958 : mem_out_dec = 6'b011010;
12'd959 : mem_out_dec = 6'b011011;
12'd960 : mem_out_dec = 6'b111111;
12'd961 : mem_out_dec = 6'b111111;
12'd962 : mem_out_dec = 6'b111111;
12'd963 : mem_out_dec = 6'b111111;
12'd964 : mem_out_dec = 6'b111111;
12'd965 : mem_out_dec = 6'b111111;
12'd966 : mem_out_dec = 6'b111111;
12'd967 : mem_out_dec = 6'b111111;
12'd968 : mem_out_dec = 6'b111111;
12'd969 : mem_out_dec = 6'b111111;
12'd970 : mem_out_dec = 6'b111111;
12'd971 : mem_out_dec = 6'b111111;
12'd972 : mem_out_dec = 6'b111111;
12'd973 : mem_out_dec = 6'b111111;
12'd974 : mem_out_dec = 6'b111111;
12'd975 : mem_out_dec = 6'b111111;
12'd976 : mem_out_dec = 6'b111111;
12'd977 : mem_out_dec = 6'b111111;
12'd978 : mem_out_dec = 6'b111111;
12'd979 : mem_out_dec = 6'b111111;
12'd980 : mem_out_dec = 6'b111111;
12'd981 : mem_out_dec = 6'b000100;
12'd982 : mem_out_dec = 6'b000101;
12'd983 : mem_out_dec = 6'b000110;
12'd984 : mem_out_dec = 6'b000110;
12'd985 : mem_out_dec = 6'b000111;
12'd986 : mem_out_dec = 6'b000111;
12'd987 : mem_out_dec = 6'b001000;
12'd988 : mem_out_dec = 6'b001001;
12'd989 : mem_out_dec = 6'b001010;
12'd990 : mem_out_dec = 6'b001010;
12'd991 : mem_out_dec = 6'b001011;
12'd992 : mem_out_dec = 6'b001011;
12'd993 : mem_out_dec = 6'b001011;
12'd994 : mem_out_dec = 6'b001100;
12'd995 : mem_out_dec = 6'b001100;
12'd996 : mem_out_dec = 6'b001101;
12'd997 : mem_out_dec = 6'b001110;
12'd998 : mem_out_dec = 6'b001110;
12'd999 : mem_out_dec = 6'b001110;
12'd1000 : mem_out_dec = 6'b001101;
12'd1001 : mem_out_dec = 6'b001110;
12'd1002 : mem_out_dec = 6'b001110;
12'd1003 : mem_out_dec = 6'b001111;
12'd1004 : mem_out_dec = 6'b001111;
12'd1005 : mem_out_dec = 6'b010000;
12'd1006 : mem_out_dec = 6'b010000;
12'd1007 : mem_out_dec = 6'b010001;
12'd1008 : mem_out_dec = 6'b010001;
12'd1009 : mem_out_dec = 6'b010010;
12'd1010 : mem_out_dec = 6'b010011;
12'd1011 : mem_out_dec = 6'b010011;
12'd1012 : mem_out_dec = 6'b010100;
12'd1013 : mem_out_dec = 6'b010100;
12'd1014 : mem_out_dec = 6'b010101;
12'd1015 : mem_out_dec = 6'b010110;
12'd1016 : mem_out_dec = 6'b010110;
12'd1017 : mem_out_dec = 6'b010110;
12'd1018 : mem_out_dec = 6'b010111;
12'd1019 : mem_out_dec = 6'b011000;
12'd1020 : mem_out_dec = 6'b011001;
12'd1021 : mem_out_dec = 6'b011001;
12'd1022 : mem_out_dec = 6'b011010;
12'd1023 : mem_out_dec = 6'b011011;
12'd1024 : mem_out_dec = 6'b111111;
12'd1025 : mem_out_dec = 6'b111111;
12'd1026 : mem_out_dec = 6'b111111;
12'd1027 : mem_out_dec = 6'b111111;
12'd1028 : mem_out_dec = 6'b111111;
12'd1029 : mem_out_dec = 6'b111111;
12'd1030 : mem_out_dec = 6'b111111;
12'd1031 : mem_out_dec = 6'b111111;
12'd1032 : mem_out_dec = 6'b111111;
12'd1033 : mem_out_dec = 6'b111111;
12'd1034 : mem_out_dec = 6'b111111;
12'd1035 : mem_out_dec = 6'b111111;
12'd1036 : mem_out_dec = 6'b111111;
12'd1037 : mem_out_dec = 6'b111111;
12'd1038 : mem_out_dec = 6'b111111;
12'd1039 : mem_out_dec = 6'b111111;
12'd1040 : mem_out_dec = 6'b111111;
12'd1041 : mem_out_dec = 6'b111111;
12'd1042 : mem_out_dec = 6'b111111;
12'd1043 : mem_out_dec = 6'b111111;
12'd1044 : mem_out_dec = 6'b111111;
12'd1045 : mem_out_dec = 6'b111111;
12'd1046 : mem_out_dec = 6'b000100;
12'd1047 : mem_out_dec = 6'b000101;
12'd1048 : mem_out_dec = 6'b000101;
12'd1049 : mem_out_dec = 6'b000110;
12'd1050 : mem_out_dec = 6'b000110;
12'd1051 : mem_out_dec = 6'b000111;
12'd1052 : mem_out_dec = 6'b001000;
12'd1053 : mem_out_dec = 6'b001001;
12'd1054 : mem_out_dec = 6'b001001;
12'd1055 : mem_out_dec = 6'b001010;
12'd1056 : mem_out_dec = 6'b001010;
12'd1057 : mem_out_dec = 6'b001011;
12'd1058 : mem_out_dec = 6'b001011;
12'd1059 : mem_out_dec = 6'b001100;
12'd1060 : mem_out_dec = 6'b001100;
12'd1061 : mem_out_dec = 6'b001100;
12'd1062 : mem_out_dec = 6'b001100;
12'd1063 : mem_out_dec = 6'b001100;
12'd1064 : mem_out_dec = 6'b001100;
12'd1065 : mem_out_dec = 6'b001100;
12'd1066 : mem_out_dec = 6'b001101;
12'd1067 : mem_out_dec = 6'b001101;
12'd1068 : mem_out_dec = 6'b001110;
12'd1069 : mem_out_dec = 6'b001111;
12'd1070 : mem_out_dec = 6'b010000;
12'd1071 : mem_out_dec = 6'b010000;
12'd1072 : mem_out_dec = 6'b010001;
12'd1073 : mem_out_dec = 6'b010001;
12'd1074 : mem_out_dec = 6'b010010;
12'd1075 : mem_out_dec = 6'b010010;
12'd1076 : mem_out_dec = 6'b010011;
12'd1077 : mem_out_dec = 6'b010011;
12'd1078 : mem_out_dec = 6'b010100;
12'd1079 : mem_out_dec = 6'b010101;
12'd1080 : mem_out_dec = 6'b010101;
12'd1081 : mem_out_dec = 6'b010110;
12'd1082 : mem_out_dec = 6'b010110;
12'd1083 : mem_out_dec = 6'b010111;
12'd1084 : mem_out_dec = 6'b011000;
12'd1085 : mem_out_dec = 6'b011000;
12'd1086 : mem_out_dec = 6'b011001;
12'd1087 : mem_out_dec = 6'b011010;
12'd1088 : mem_out_dec = 6'b111111;
12'd1089 : mem_out_dec = 6'b111111;
12'd1090 : mem_out_dec = 6'b111111;
12'd1091 : mem_out_dec = 6'b111111;
12'd1092 : mem_out_dec = 6'b111111;
12'd1093 : mem_out_dec = 6'b111111;
12'd1094 : mem_out_dec = 6'b111111;
12'd1095 : mem_out_dec = 6'b111111;
12'd1096 : mem_out_dec = 6'b111111;
12'd1097 : mem_out_dec = 6'b111111;
12'd1098 : mem_out_dec = 6'b111111;
12'd1099 : mem_out_dec = 6'b111111;
12'd1100 : mem_out_dec = 6'b111111;
12'd1101 : mem_out_dec = 6'b111111;
12'd1102 : mem_out_dec = 6'b111111;
12'd1103 : mem_out_dec = 6'b111111;
12'd1104 : mem_out_dec = 6'b111111;
12'd1105 : mem_out_dec = 6'b111111;
12'd1106 : mem_out_dec = 6'b111111;
12'd1107 : mem_out_dec = 6'b111111;
12'd1108 : mem_out_dec = 6'b111111;
12'd1109 : mem_out_dec = 6'b111111;
12'd1110 : mem_out_dec = 6'b111111;
12'd1111 : mem_out_dec = 6'b000100;
12'd1112 : mem_out_dec = 6'b000100;
12'd1113 : mem_out_dec = 6'b000101;
12'd1114 : mem_out_dec = 6'b000110;
12'd1115 : mem_out_dec = 6'b000111;
12'd1116 : mem_out_dec = 6'b000111;
12'd1117 : mem_out_dec = 6'b001000;
12'd1118 : mem_out_dec = 6'b001001;
12'd1119 : mem_out_dec = 6'b001001;
12'd1120 : mem_out_dec = 6'b001010;
12'd1121 : mem_out_dec = 6'b001010;
12'd1122 : mem_out_dec = 6'b001011;
12'd1123 : mem_out_dec = 6'b001011;
12'd1124 : mem_out_dec = 6'b001011;
12'd1125 : mem_out_dec = 6'b001011;
12'd1126 : mem_out_dec = 6'b001011;
12'd1127 : mem_out_dec = 6'b001011;
12'd1128 : mem_out_dec = 6'b001011;
12'd1129 : mem_out_dec = 6'b001011;
12'd1130 : mem_out_dec = 6'b001100;
12'd1131 : mem_out_dec = 6'b001101;
12'd1132 : mem_out_dec = 6'b001110;
12'd1133 : mem_out_dec = 6'b001110;
12'd1134 : mem_out_dec = 6'b001111;
12'd1135 : mem_out_dec = 6'b010000;
12'd1136 : mem_out_dec = 6'b010000;
12'd1137 : mem_out_dec = 6'b010001;
12'd1138 : mem_out_dec = 6'b010001;
12'd1139 : mem_out_dec = 6'b010010;
12'd1140 : mem_out_dec = 6'b010010;
12'd1141 : mem_out_dec = 6'b010011;
12'd1142 : mem_out_dec = 6'b010100;
12'd1143 : mem_out_dec = 6'b010100;
12'd1144 : mem_out_dec = 6'b010100;
12'd1145 : mem_out_dec = 6'b010101;
12'd1146 : mem_out_dec = 6'b010110;
12'd1147 : mem_out_dec = 6'b010110;
12'd1148 : mem_out_dec = 6'b010111;
12'd1149 : mem_out_dec = 6'b011000;
12'd1150 : mem_out_dec = 6'b011000;
12'd1151 : mem_out_dec = 6'b011001;
12'd1152 : mem_out_dec = 6'b111111;
12'd1153 : mem_out_dec = 6'b111111;
12'd1154 : mem_out_dec = 6'b111111;
12'd1155 : mem_out_dec = 6'b111111;
12'd1156 : mem_out_dec = 6'b111111;
12'd1157 : mem_out_dec = 6'b111111;
12'd1158 : mem_out_dec = 6'b111111;
12'd1159 : mem_out_dec = 6'b111111;
12'd1160 : mem_out_dec = 6'b111111;
12'd1161 : mem_out_dec = 6'b111111;
12'd1162 : mem_out_dec = 6'b111111;
12'd1163 : mem_out_dec = 6'b111111;
12'd1164 : mem_out_dec = 6'b111111;
12'd1165 : mem_out_dec = 6'b111111;
12'd1166 : mem_out_dec = 6'b111111;
12'd1167 : mem_out_dec = 6'b111111;
12'd1168 : mem_out_dec = 6'b111111;
12'd1169 : mem_out_dec = 6'b111111;
12'd1170 : mem_out_dec = 6'b111111;
12'd1171 : mem_out_dec = 6'b111111;
12'd1172 : mem_out_dec = 6'b111111;
12'd1173 : mem_out_dec = 6'b111111;
12'd1174 : mem_out_dec = 6'b111111;
12'd1175 : mem_out_dec = 6'b111111;
12'd1176 : mem_out_dec = 6'b000100;
12'd1177 : mem_out_dec = 6'b000101;
12'd1178 : mem_out_dec = 6'b000101;
12'd1179 : mem_out_dec = 6'b000110;
12'd1180 : mem_out_dec = 6'b000111;
12'd1181 : mem_out_dec = 6'b000111;
12'd1182 : mem_out_dec = 6'b001000;
12'd1183 : mem_out_dec = 6'b001001;
12'd1184 : mem_out_dec = 6'b001001;
12'd1185 : mem_out_dec = 6'b001010;
12'd1186 : mem_out_dec = 6'b001010;
12'd1187 : mem_out_dec = 6'b001010;
12'd1188 : mem_out_dec = 6'b001010;
12'd1189 : mem_out_dec = 6'b001010;
12'd1190 : mem_out_dec = 6'b001010;
12'd1191 : mem_out_dec = 6'b001010;
12'd1192 : mem_out_dec = 6'b001010;
12'd1193 : mem_out_dec = 6'b001011;
12'd1194 : mem_out_dec = 6'b001100;
12'd1195 : mem_out_dec = 6'b001100;
12'd1196 : mem_out_dec = 6'b001101;
12'd1197 : mem_out_dec = 6'b001110;
12'd1198 : mem_out_dec = 6'b001111;
12'd1199 : mem_out_dec = 6'b010000;
12'd1200 : mem_out_dec = 6'b010000;
12'd1201 : mem_out_dec = 6'b010000;
12'd1202 : mem_out_dec = 6'b010001;
12'd1203 : mem_out_dec = 6'b010001;
12'd1204 : mem_out_dec = 6'b010010;
12'd1205 : mem_out_dec = 6'b010011;
12'd1206 : mem_out_dec = 6'b010011;
12'd1207 : mem_out_dec = 6'b010100;
12'd1208 : mem_out_dec = 6'b010100;
12'd1209 : mem_out_dec = 6'b010100;
12'd1210 : mem_out_dec = 6'b010101;
12'd1211 : mem_out_dec = 6'b010110;
12'd1212 : mem_out_dec = 6'b010110;
12'd1213 : mem_out_dec = 6'b010111;
12'd1214 : mem_out_dec = 6'b011000;
12'd1215 : mem_out_dec = 6'b011001;
12'd1216 : mem_out_dec = 6'b111111;
12'd1217 : mem_out_dec = 6'b111111;
12'd1218 : mem_out_dec = 6'b111111;
12'd1219 : mem_out_dec = 6'b111111;
12'd1220 : mem_out_dec = 6'b111111;
12'd1221 : mem_out_dec = 6'b111111;
12'd1222 : mem_out_dec = 6'b111111;
12'd1223 : mem_out_dec = 6'b111111;
12'd1224 : mem_out_dec = 6'b111111;
12'd1225 : mem_out_dec = 6'b111111;
12'd1226 : mem_out_dec = 6'b111111;
12'd1227 : mem_out_dec = 6'b111111;
12'd1228 : mem_out_dec = 6'b111111;
12'd1229 : mem_out_dec = 6'b111111;
12'd1230 : mem_out_dec = 6'b111111;
12'd1231 : mem_out_dec = 6'b111111;
12'd1232 : mem_out_dec = 6'b111111;
12'd1233 : mem_out_dec = 6'b111111;
12'd1234 : mem_out_dec = 6'b111111;
12'd1235 : mem_out_dec = 6'b111111;
12'd1236 : mem_out_dec = 6'b111111;
12'd1237 : mem_out_dec = 6'b111111;
12'd1238 : mem_out_dec = 6'b111111;
12'd1239 : mem_out_dec = 6'b111111;
12'd1240 : mem_out_dec = 6'b111111;
12'd1241 : mem_out_dec = 6'b000100;
12'd1242 : mem_out_dec = 6'b000100;
12'd1243 : mem_out_dec = 6'b000101;
12'd1244 : mem_out_dec = 6'b000110;
12'd1245 : mem_out_dec = 6'b000111;
12'd1246 : mem_out_dec = 6'b001000;
12'd1247 : mem_out_dec = 6'b001000;
12'd1248 : mem_out_dec = 6'b001001;
12'd1249 : mem_out_dec = 6'b001001;
12'd1250 : mem_out_dec = 6'b001001;
12'd1251 : mem_out_dec = 6'b001001;
12'd1252 : mem_out_dec = 6'b001001;
12'd1253 : mem_out_dec = 6'b001001;
12'd1254 : mem_out_dec = 6'b001001;
12'd1255 : mem_out_dec = 6'b001001;
12'd1256 : mem_out_dec = 6'b001010;
12'd1257 : mem_out_dec = 6'b001010;
12'd1258 : mem_out_dec = 6'b001011;
12'd1259 : mem_out_dec = 6'b001100;
12'd1260 : mem_out_dec = 6'b001101;
12'd1261 : mem_out_dec = 6'b001110;
12'd1262 : mem_out_dec = 6'b001110;
12'd1263 : mem_out_dec = 6'b001111;
12'd1264 : mem_out_dec = 6'b001111;
12'd1265 : mem_out_dec = 6'b010000;
12'd1266 : mem_out_dec = 6'b010000;
12'd1267 : mem_out_dec = 6'b010001;
12'd1268 : mem_out_dec = 6'b010001;
12'd1269 : mem_out_dec = 6'b010010;
12'd1270 : mem_out_dec = 6'b010011;
12'd1271 : mem_out_dec = 6'b010011;
12'd1272 : mem_out_dec = 6'b010011;
12'd1273 : mem_out_dec = 6'b010100;
12'd1274 : mem_out_dec = 6'b010100;
12'd1275 : mem_out_dec = 6'b010101;
12'd1276 : mem_out_dec = 6'b010110;
12'd1277 : mem_out_dec = 6'b010111;
12'd1278 : mem_out_dec = 6'b011000;
12'd1279 : mem_out_dec = 6'b011000;
12'd1280 : mem_out_dec = 6'b111111;
12'd1281 : mem_out_dec = 6'b111111;
12'd1282 : mem_out_dec = 6'b111111;
12'd1283 : mem_out_dec = 6'b111111;
12'd1284 : mem_out_dec = 6'b111111;
12'd1285 : mem_out_dec = 6'b111111;
12'd1286 : mem_out_dec = 6'b111111;
12'd1287 : mem_out_dec = 6'b111111;
12'd1288 : mem_out_dec = 6'b111111;
12'd1289 : mem_out_dec = 6'b111111;
12'd1290 : mem_out_dec = 6'b111111;
12'd1291 : mem_out_dec = 6'b111111;
12'd1292 : mem_out_dec = 6'b111111;
12'd1293 : mem_out_dec = 6'b111111;
12'd1294 : mem_out_dec = 6'b111111;
12'd1295 : mem_out_dec = 6'b111111;
12'd1296 : mem_out_dec = 6'b111111;
12'd1297 : mem_out_dec = 6'b111111;
12'd1298 : mem_out_dec = 6'b111111;
12'd1299 : mem_out_dec = 6'b111111;
12'd1300 : mem_out_dec = 6'b111111;
12'd1301 : mem_out_dec = 6'b111111;
12'd1302 : mem_out_dec = 6'b111111;
12'd1303 : mem_out_dec = 6'b111111;
12'd1304 : mem_out_dec = 6'b111111;
12'd1305 : mem_out_dec = 6'b111111;
12'd1306 : mem_out_dec = 6'b000100;
12'd1307 : mem_out_dec = 6'b000101;
12'd1308 : mem_out_dec = 6'b000110;
12'd1309 : mem_out_dec = 6'b000110;
12'd1310 : mem_out_dec = 6'b000111;
12'd1311 : mem_out_dec = 6'b001000;
12'd1312 : mem_out_dec = 6'b001000;
12'd1313 : mem_out_dec = 6'b001000;
12'd1314 : mem_out_dec = 6'b001000;
12'd1315 : mem_out_dec = 6'b001000;
12'd1316 : mem_out_dec = 6'b001000;
12'd1317 : mem_out_dec = 6'b001000;
12'd1318 : mem_out_dec = 6'b001000;
12'd1319 : mem_out_dec = 6'b001001;
12'd1320 : mem_out_dec = 6'b001001;
12'd1321 : mem_out_dec = 6'b001010;
12'd1322 : mem_out_dec = 6'b001011;
12'd1323 : mem_out_dec = 6'b001100;
12'd1324 : mem_out_dec = 6'b001100;
12'd1325 : mem_out_dec = 6'b001101;
12'd1326 : mem_out_dec = 6'b001110;
12'd1327 : mem_out_dec = 6'b001111;
12'd1328 : mem_out_dec = 6'b001111;
12'd1329 : mem_out_dec = 6'b001111;
12'd1330 : mem_out_dec = 6'b010000;
12'd1331 : mem_out_dec = 6'b010000;
12'd1332 : mem_out_dec = 6'b010001;
12'd1333 : mem_out_dec = 6'b010001;
12'd1334 : mem_out_dec = 6'b010010;
12'd1335 : mem_out_dec = 6'b010011;
12'd1336 : mem_out_dec = 6'b010010;
12'd1337 : mem_out_dec = 6'b010011;
12'd1338 : mem_out_dec = 6'b010100;
12'd1339 : mem_out_dec = 6'b010101;
12'd1340 : mem_out_dec = 6'b010110;
12'd1341 : mem_out_dec = 6'b010110;
12'd1342 : mem_out_dec = 6'b010111;
12'd1343 : mem_out_dec = 6'b011000;
12'd1344 : mem_out_dec = 6'b111111;
12'd1345 : mem_out_dec = 6'b111111;
12'd1346 : mem_out_dec = 6'b111111;
12'd1347 : mem_out_dec = 6'b111111;
12'd1348 : mem_out_dec = 6'b111111;
12'd1349 : mem_out_dec = 6'b111111;
12'd1350 : mem_out_dec = 6'b111111;
12'd1351 : mem_out_dec = 6'b111111;
12'd1352 : mem_out_dec = 6'b111111;
12'd1353 : mem_out_dec = 6'b111111;
12'd1354 : mem_out_dec = 6'b111111;
12'd1355 : mem_out_dec = 6'b111111;
12'd1356 : mem_out_dec = 6'b111111;
12'd1357 : mem_out_dec = 6'b111111;
12'd1358 : mem_out_dec = 6'b111111;
12'd1359 : mem_out_dec = 6'b111111;
12'd1360 : mem_out_dec = 6'b111111;
12'd1361 : mem_out_dec = 6'b111111;
12'd1362 : mem_out_dec = 6'b111111;
12'd1363 : mem_out_dec = 6'b111111;
12'd1364 : mem_out_dec = 6'b111111;
12'd1365 : mem_out_dec = 6'b111111;
12'd1366 : mem_out_dec = 6'b111111;
12'd1367 : mem_out_dec = 6'b111111;
12'd1368 : mem_out_dec = 6'b111111;
12'd1369 : mem_out_dec = 6'b111111;
12'd1370 : mem_out_dec = 6'b111111;
12'd1371 : mem_out_dec = 6'b000101;
12'd1372 : mem_out_dec = 6'b000101;
12'd1373 : mem_out_dec = 6'b000110;
12'd1374 : mem_out_dec = 6'b000111;
12'd1375 : mem_out_dec = 6'b001000;
12'd1376 : mem_out_dec = 6'b000111;
12'd1377 : mem_out_dec = 6'b000111;
12'd1378 : mem_out_dec = 6'b000111;
12'd1379 : mem_out_dec = 6'b000111;
12'd1380 : mem_out_dec = 6'b000111;
12'd1381 : mem_out_dec = 6'b000111;
12'd1382 : mem_out_dec = 6'b001000;
12'd1383 : mem_out_dec = 6'b001001;
12'd1384 : mem_out_dec = 6'b001001;
12'd1385 : mem_out_dec = 6'b001010;
12'd1386 : mem_out_dec = 6'b001010;
12'd1387 : mem_out_dec = 6'b001011;
12'd1388 : mem_out_dec = 6'b001100;
12'd1389 : mem_out_dec = 6'b001101;
12'd1390 : mem_out_dec = 6'b001110;
12'd1391 : mem_out_dec = 6'b001110;
12'd1392 : mem_out_dec = 6'b001111;
12'd1393 : mem_out_dec = 6'b001111;
12'd1394 : mem_out_dec = 6'b010000;
12'd1395 : mem_out_dec = 6'b010000;
12'd1396 : mem_out_dec = 6'b010001;
12'd1397 : mem_out_dec = 6'b010001;
12'd1398 : mem_out_dec = 6'b010010;
12'd1399 : mem_out_dec = 6'b010010;
12'd1400 : mem_out_dec = 6'b010010;
12'd1401 : mem_out_dec = 6'b010011;
12'd1402 : mem_out_dec = 6'b010100;
12'd1403 : mem_out_dec = 6'b010100;
12'd1404 : mem_out_dec = 6'b010101;
12'd1405 : mem_out_dec = 6'b010110;
12'd1406 : mem_out_dec = 6'b010111;
12'd1407 : mem_out_dec = 6'b010111;
12'd1408 : mem_out_dec = 6'b111111;
12'd1409 : mem_out_dec = 6'b111111;
12'd1410 : mem_out_dec = 6'b111111;
12'd1411 : mem_out_dec = 6'b111111;
12'd1412 : mem_out_dec = 6'b111111;
12'd1413 : mem_out_dec = 6'b111111;
12'd1414 : mem_out_dec = 6'b111111;
12'd1415 : mem_out_dec = 6'b111111;
12'd1416 : mem_out_dec = 6'b111111;
12'd1417 : mem_out_dec = 6'b111111;
12'd1418 : mem_out_dec = 6'b111111;
12'd1419 : mem_out_dec = 6'b111111;
12'd1420 : mem_out_dec = 6'b111111;
12'd1421 : mem_out_dec = 6'b111111;
12'd1422 : mem_out_dec = 6'b111111;
12'd1423 : mem_out_dec = 6'b111111;
12'd1424 : mem_out_dec = 6'b111111;
12'd1425 : mem_out_dec = 6'b111111;
12'd1426 : mem_out_dec = 6'b111111;
12'd1427 : mem_out_dec = 6'b111111;
12'd1428 : mem_out_dec = 6'b111111;
12'd1429 : mem_out_dec = 6'b111111;
12'd1430 : mem_out_dec = 6'b111111;
12'd1431 : mem_out_dec = 6'b111111;
12'd1432 : mem_out_dec = 6'b111111;
12'd1433 : mem_out_dec = 6'b111111;
12'd1434 : mem_out_dec = 6'b111111;
12'd1435 : mem_out_dec = 6'b111111;
12'd1436 : mem_out_dec = 6'b000101;
12'd1437 : mem_out_dec = 6'b000110;
12'd1438 : mem_out_dec = 6'b000111;
12'd1439 : mem_out_dec = 6'b000111;
12'd1440 : mem_out_dec = 6'b000110;
12'd1441 : mem_out_dec = 6'b000110;
12'd1442 : mem_out_dec = 6'b000110;
12'd1443 : mem_out_dec = 6'b000110;
12'd1444 : mem_out_dec = 6'b000110;
12'd1445 : mem_out_dec = 6'b000111;
12'd1446 : mem_out_dec = 6'b000111;
12'd1447 : mem_out_dec = 6'b001000;
12'd1448 : mem_out_dec = 6'b001001;
12'd1449 : mem_out_dec = 6'b001001;
12'd1450 : mem_out_dec = 6'b001010;
12'd1451 : mem_out_dec = 6'b001011;
12'd1452 : mem_out_dec = 6'b001100;
12'd1453 : mem_out_dec = 6'b001100;
12'd1454 : mem_out_dec = 6'b001101;
12'd1455 : mem_out_dec = 6'b001110;
12'd1456 : mem_out_dec = 6'b001110;
12'd1457 : mem_out_dec = 6'b001111;
12'd1458 : mem_out_dec = 6'b001111;
12'd1459 : mem_out_dec = 6'b010000;
12'd1460 : mem_out_dec = 6'b010000;
12'd1461 : mem_out_dec = 6'b010001;
12'd1462 : mem_out_dec = 6'b010001;
12'd1463 : mem_out_dec = 6'b010010;
12'd1464 : mem_out_dec = 6'b010010;
12'd1465 : mem_out_dec = 6'b010011;
12'd1466 : mem_out_dec = 6'b010011;
12'd1467 : mem_out_dec = 6'b010100;
12'd1468 : mem_out_dec = 6'b010101;
12'd1469 : mem_out_dec = 6'b010110;
12'd1470 : mem_out_dec = 6'b010110;
12'd1471 : mem_out_dec = 6'b010111;
12'd1472 : mem_out_dec = 6'b111111;
12'd1473 : mem_out_dec = 6'b111111;
12'd1474 : mem_out_dec = 6'b111111;
12'd1475 : mem_out_dec = 6'b111111;
12'd1476 : mem_out_dec = 6'b111111;
12'd1477 : mem_out_dec = 6'b111111;
12'd1478 : mem_out_dec = 6'b111111;
12'd1479 : mem_out_dec = 6'b111111;
12'd1480 : mem_out_dec = 6'b111111;
12'd1481 : mem_out_dec = 6'b111111;
12'd1482 : mem_out_dec = 6'b111111;
12'd1483 : mem_out_dec = 6'b111111;
12'd1484 : mem_out_dec = 6'b111111;
12'd1485 : mem_out_dec = 6'b111111;
12'd1486 : mem_out_dec = 6'b111111;
12'd1487 : mem_out_dec = 6'b111111;
12'd1488 : mem_out_dec = 6'b111111;
12'd1489 : mem_out_dec = 6'b111111;
12'd1490 : mem_out_dec = 6'b111111;
12'd1491 : mem_out_dec = 6'b111111;
12'd1492 : mem_out_dec = 6'b111111;
12'd1493 : mem_out_dec = 6'b111111;
12'd1494 : mem_out_dec = 6'b111111;
12'd1495 : mem_out_dec = 6'b111111;
12'd1496 : mem_out_dec = 6'b111111;
12'd1497 : mem_out_dec = 6'b111111;
12'd1498 : mem_out_dec = 6'b111111;
12'd1499 : mem_out_dec = 6'b111111;
12'd1500 : mem_out_dec = 6'b111111;
12'd1501 : mem_out_dec = 6'b000101;
12'd1502 : mem_out_dec = 6'b000110;
12'd1503 : mem_out_dec = 6'b000110;
12'd1504 : mem_out_dec = 6'b000110;
12'd1505 : mem_out_dec = 6'b000110;
12'd1506 : mem_out_dec = 6'b000101;
12'd1507 : mem_out_dec = 6'b000101;
12'd1508 : mem_out_dec = 6'b000110;
12'd1509 : mem_out_dec = 6'b000111;
12'd1510 : mem_out_dec = 6'b000111;
12'd1511 : mem_out_dec = 6'b001000;
12'd1512 : mem_out_dec = 6'b001000;
12'd1513 : mem_out_dec = 6'b001001;
12'd1514 : mem_out_dec = 6'b001010;
12'd1515 : mem_out_dec = 6'b001011;
12'd1516 : mem_out_dec = 6'b001011;
12'd1517 : mem_out_dec = 6'b001100;
12'd1518 : mem_out_dec = 6'b001101;
12'd1519 : mem_out_dec = 6'b001110;
12'd1520 : mem_out_dec = 6'b001110;
12'd1521 : mem_out_dec = 6'b001110;
12'd1522 : mem_out_dec = 6'b001111;
12'd1523 : mem_out_dec = 6'b001111;
12'd1524 : mem_out_dec = 6'b010000;
12'd1525 : mem_out_dec = 6'b010000;
12'd1526 : mem_out_dec = 6'b010001;
12'd1527 : mem_out_dec = 6'b010001;
12'd1528 : mem_out_dec = 6'b010001;
12'd1529 : mem_out_dec = 6'b010010;
12'd1530 : mem_out_dec = 6'b010011;
12'd1531 : mem_out_dec = 6'b010100;
12'd1532 : mem_out_dec = 6'b010101;
12'd1533 : mem_out_dec = 6'b010101;
12'd1534 : mem_out_dec = 6'b010110;
12'd1535 : mem_out_dec = 6'b010110;
12'd1536 : mem_out_dec = 6'b111111;
12'd1537 : mem_out_dec = 6'b111111;
12'd1538 : mem_out_dec = 6'b111111;
12'd1539 : mem_out_dec = 6'b111111;
12'd1540 : mem_out_dec = 6'b111111;
12'd1541 : mem_out_dec = 6'b111111;
12'd1542 : mem_out_dec = 6'b111111;
12'd1543 : mem_out_dec = 6'b111111;
12'd1544 : mem_out_dec = 6'b111111;
12'd1545 : mem_out_dec = 6'b111111;
12'd1546 : mem_out_dec = 6'b111111;
12'd1547 : mem_out_dec = 6'b111111;
12'd1548 : mem_out_dec = 6'b111111;
12'd1549 : mem_out_dec = 6'b111111;
12'd1550 : mem_out_dec = 6'b111111;
12'd1551 : mem_out_dec = 6'b111111;
12'd1552 : mem_out_dec = 6'b111111;
12'd1553 : mem_out_dec = 6'b111111;
12'd1554 : mem_out_dec = 6'b111111;
12'd1555 : mem_out_dec = 6'b111111;
12'd1556 : mem_out_dec = 6'b111111;
12'd1557 : mem_out_dec = 6'b111111;
12'd1558 : mem_out_dec = 6'b111111;
12'd1559 : mem_out_dec = 6'b111111;
12'd1560 : mem_out_dec = 6'b111111;
12'd1561 : mem_out_dec = 6'b111111;
12'd1562 : mem_out_dec = 6'b111111;
12'd1563 : mem_out_dec = 6'b111111;
12'd1564 : mem_out_dec = 6'b111111;
12'd1565 : mem_out_dec = 6'b111111;
12'd1566 : mem_out_dec = 6'b000100;
12'd1567 : mem_out_dec = 6'b000100;
12'd1568 : mem_out_dec = 6'b000100;
12'd1569 : mem_out_dec = 6'b000100;
12'd1570 : mem_out_dec = 6'b000100;
12'd1571 : mem_out_dec = 6'b000101;
12'd1572 : mem_out_dec = 6'b000101;
12'd1573 : mem_out_dec = 6'b000110;
12'd1574 : mem_out_dec = 6'b000111;
12'd1575 : mem_out_dec = 6'b000111;
12'd1576 : mem_out_dec = 6'b000111;
12'd1577 : mem_out_dec = 6'b001000;
12'd1578 : mem_out_dec = 6'b001001;
12'd1579 : mem_out_dec = 6'b001010;
12'd1580 : mem_out_dec = 6'b001010;
12'd1581 : mem_out_dec = 6'b001011;
12'd1582 : mem_out_dec = 6'b001100;
12'd1583 : mem_out_dec = 6'b001101;
12'd1584 : mem_out_dec = 6'b001101;
12'd1585 : mem_out_dec = 6'b001101;
12'd1586 : mem_out_dec = 6'b001110;
12'd1587 : mem_out_dec = 6'b001110;
12'd1588 : mem_out_dec = 6'b001111;
12'd1589 : mem_out_dec = 6'b001111;
12'd1590 : mem_out_dec = 6'b010000;
12'd1591 : mem_out_dec = 6'b010001;
12'd1592 : mem_out_dec = 6'b010001;
12'd1593 : mem_out_dec = 6'b010001;
12'd1594 : mem_out_dec = 6'b010010;
12'd1595 : mem_out_dec = 6'b010010;
12'd1596 : mem_out_dec = 6'b010011;
12'd1597 : mem_out_dec = 6'b010011;
12'd1598 : mem_out_dec = 6'b010100;
12'd1599 : mem_out_dec = 6'b010100;
12'd1600 : mem_out_dec = 6'b111111;
12'd1601 : mem_out_dec = 6'b111111;
12'd1602 : mem_out_dec = 6'b111111;
12'd1603 : mem_out_dec = 6'b111111;
12'd1604 : mem_out_dec = 6'b111111;
12'd1605 : mem_out_dec = 6'b111111;
12'd1606 : mem_out_dec = 6'b111111;
12'd1607 : mem_out_dec = 6'b111111;
12'd1608 : mem_out_dec = 6'b111111;
12'd1609 : mem_out_dec = 6'b111111;
12'd1610 : mem_out_dec = 6'b111111;
12'd1611 : mem_out_dec = 6'b111111;
12'd1612 : mem_out_dec = 6'b111111;
12'd1613 : mem_out_dec = 6'b111111;
12'd1614 : mem_out_dec = 6'b111111;
12'd1615 : mem_out_dec = 6'b111111;
12'd1616 : mem_out_dec = 6'b111111;
12'd1617 : mem_out_dec = 6'b111111;
12'd1618 : mem_out_dec = 6'b111111;
12'd1619 : mem_out_dec = 6'b111111;
12'd1620 : mem_out_dec = 6'b111111;
12'd1621 : mem_out_dec = 6'b111111;
12'd1622 : mem_out_dec = 6'b111111;
12'd1623 : mem_out_dec = 6'b111111;
12'd1624 : mem_out_dec = 6'b111111;
12'd1625 : mem_out_dec = 6'b111111;
12'd1626 : mem_out_dec = 6'b111111;
12'd1627 : mem_out_dec = 6'b111111;
12'd1628 : mem_out_dec = 6'b111111;
12'd1629 : mem_out_dec = 6'b111111;
12'd1630 : mem_out_dec = 6'b111111;
12'd1631 : mem_out_dec = 6'b000100;
12'd1632 : mem_out_dec = 6'b000011;
12'd1633 : mem_out_dec = 6'b000011;
12'd1634 : mem_out_dec = 6'b000100;
12'd1635 : mem_out_dec = 6'b000100;
12'd1636 : mem_out_dec = 6'b000101;
12'd1637 : mem_out_dec = 6'b000110;
12'd1638 : mem_out_dec = 6'b000110;
12'd1639 : mem_out_dec = 6'b000111;
12'd1640 : mem_out_dec = 6'b000111;
12'd1641 : mem_out_dec = 6'b001000;
12'd1642 : mem_out_dec = 6'b001001;
12'd1643 : mem_out_dec = 6'b001001;
12'd1644 : mem_out_dec = 6'b001010;
12'd1645 : mem_out_dec = 6'b001011;
12'd1646 : mem_out_dec = 6'b001100;
12'd1647 : mem_out_dec = 6'b001101;
12'd1648 : mem_out_dec = 6'b001101;
12'd1649 : mem_out_dec = 6'b001101;
12'd1650 : mem_out_dec = 6'b001110;
12'd1651 : mem_out_dec = 6'b001110;
12'd1652 : mem_out_dec = 6'b001110;
12'd1653 : mem_out_dec = 6'b001111;
12'd1654 : mem_out_dec = 6'b010000;
12'd1655 : mem_out_dec = 6'b010000;
12'd1656 : mem_out_dec = 6'b010001;
12'd1657 : mem_out_dec = 6'b010001;
12'd1658 : mem_out_dec = 6'b010001;
12'd1659 : mem_out_dec = 6'b010010;
12'd1660 : mem_out_dec = 6'b010010;
12'd1661 : mem_out_dec = 6'b010011;
12'd1662 : mem_out_dec = 6'b010011;
12'd1663 : mem_out_dec = 6'b010100;
12'd1664 : mem_out_dec = 6'b111111;
12'd1665 : mem_out_dec = 6'b111111;
12'd1666 : mem_out_dec = 6'b111111;
12'd1667 : mem_out_dec = 6'b111111;
12'd1668 : mem_out_dec = 6'b111111;
12'd1669 : mem_out_dec = 6'b111111;
12'd1670 : mem_out_dec = 6'b111111;
12'd1671 : mem_out_dec = 6'b111111;
12'd1672 : mem_out_dec = 6'b111111;
12'd1673 : mem_out_dec = 6'b111111;
12'd1674 : mem_out_dec = 6'b111111;
12'd1675 : mem_out_dec = 6'b111111;
12'd1676 : mem_out_dec = 6'b111111;
12'd1677 : mem_out_dec = 6'b111111;
12'd1678 : mem_out_dec = 6'b111111;
12'd1679 : mem_out_dec = 6'b111111;
12'd1680 : mem_out_dec = 6'b111111;
12'd1681 : mem_out_dec = 6'b111111;
12'd1682 : mem_out_dec = 6'b111111;
12'd1683 : mem_out_dec = 6'b111111;
12'd1684 : mem_out_dec = 6'b111111;
12'd1685 : mem_out_dec = 6'b111111;
12'd1686 : mem_out_dec = 6'b111111;
12'd1687 : mem_out_dec = 6'b111111;
12'd1688 : mem_out_dec = 6'b111111;
12'd1689 : mem_out_dec = 6'b111111;
12'd1690 : mem_out_dec = 6'b111111;
12'd1691 : mem_out_dec = 6'b111111;
12'd1692 : mem_out_dec = 6'b111111;
12'd1693 : mem_out_dec = 6'b111111;
12'd1694 : mem_out_dec = 6'b111111;
12'd1695 : mem_out_dec = 6'b111111;
12'd1696 : mem_out_dec = 6'b000011;
12'd1697 : mem_out_dec = 6'b000011;
12'd1698 : mem_out_dec = 6'b000100;
12'd1699 : mem_out_dec = 6'b000100;
12'd1700 : mem_out_dec = 6'b000101;
12'd1701 : mem_out_dec = 6'b000101;
12'd1702 : mem_out_dec = 6'b000110;
12'd1703 : mem_out_dec = 6'b000111;
12'd1704 : mem_out_dec = 6'b000111;
12'd1705 : mem_out_dec = 6'b001000;
12'd1706 : mem_out_dec = 6'b001000;
12'd1707 : mem_out_dec = 6'b001001;
12'd1708 : mem_out_dec = 6'b001010;
12'd1709 : mem_out_dec = 6'b001011;
12'd1710 : mem_out_dec = 6'b001100;
12'd1711 : mem_out_dec = 6'b001100;
12'd1712 : mem_out_dec = 6'b001100;
12'd1713 : mem_out_dec = 6'b001101;
12'd1714 : mem_out_dec = 6'b001101;
12'd1715 : mem_out_dec = 6'b001110;
12'd1716 : mem_out_dec = 6'b001110;
12'd1717 : mem_out_dec = 6'b001111;
12'd1718 : mem_out_dec = 6'b001111;
12'd1719 : mem_out_dec = 6'b010000;
12'd1720 : mem_out_dec = 6'b010000;
12'd1721 : mem_out_dec = 6'b010000;
12'd1722 : mem_out_dec = 6'b010001;
12'd1723 : mem_out_dec = 6'b010001;
12'd1724 : mem_out_dec = 6'b010010;
12'd1725 : mem_out_dec = 6'b010010;
12'd1726 : mem_out_dec = 6'b010011;
12'd1727 : mem_out_dec = 6'b010011;
12'd1728 : mem_out_dec = 6'b111111;
12'd1729 : mem_out_dec = 6'b111111;
12'd1730 : mem_out_dec = 6'b111111;
12'd1731 : mem_out_dec = 6'b111111;
12'd1732 : mem_out_dec = 6'b111111;
12'd1733 : mem_out_dec = 6'b111111;
12'd1734 : mem_out_dec = 6'b111111;
12'd1735 : mem_out_dec = 6'b111111;
12'd1736 : mem_out_dec = 6'b111111;
12'd1737 : mem_out_dec = 6'b111111;
12'd1738 : mem_out_dec = 6'b111111;
12'd1739 : mem_out_dec = 6'b111111;
12'd1740 : mem_out_dec = 6'b111111;
12'd1741 : mem_out_dec = 6'b111111;
12'd1742 : mem_out_dec = 6'b111111;
12'd1743 : mem_out_dec = 6'b111111;
12'd1744 : mem_out_dec = 6'b111111;
12'd1745 : mem_out_dec = 6'b111111;
12'd1746 : mem_out_dec = 6'b111111;
12'd1747 : mem_out_dec = 6'b111111;
12'd1748 : mem_out_dec = 6'b111111;
12'd1749 : mem_out_dec = 6'b111111;
12'd1750 : mem_out_dec = 6'b111111;
12'd1751 : mem_out_dec = 6'b111111;
12'd1752 : mem_out_dec = 6'b111111;
12'd1753 : mem_out_dec = 6'b111111;
12'd1754 : mem_out_dec = 6'b111111;
12'd1755 : mem_out_dec = 6'b111111;
12'd1756 : mem_out_dec = 6'b111111;
12'd1757 : mem_out_dec = 6'b111111;
12'd1758 : mem_out_dec = 6'b111111;
12'd1759 : mem_out_dec = 6'b111111;
12'd1760 : mem_out_dec = 6'b111111;
12'd1761 : mem_out_dec = 6'b000011;
12'd1762 : mem_out_dec = 6'b000011;
12'd1763 : mem_out_dec = 6'b000100;
12'd1764 : mem_out_dec = 6'b000101;
12'd1765 : mem_out_dec = 6'b000101;
12'd1766 : mem_out_dec = 6'b000110;
12'd1767 : mem_out_dec = 6'b000111;
12'd1768 : mem_out_dec = 6'b000111;
12'd1769 : mem_out_dec = 6'b000111;
12'd1770 : mem_out_dec = 6'b001000;
12'd1771 : mem_out_dec = 6'b001001;
12'd1772 : mem_out_dec = 6'b001010;
12'd1773 : mem_out_dec = 6'b001011;
12'd1774 : mem_out_dec = 6'b001011;
12'd1775 : mem_out_dec = 6'b001100;
12'd1776 : mem_out_dec = 6'b001100;
12'd1777 : mem_out_dec = 6'b001101;
12'd1778 : mem_out_dec = 6'b001101;
12'd1779 : mem_out_dec = 6'b001101;
12'd1780 : mem_out_dec = 6'b001110;
12'd1781 : mem_out_dec = 6'b001111;
12'd1782 : mem_out_dec = 6'b001111;
12'd1783 : mem_out_dec = 6'b010000;
12'd1784 : mem_out_dec = 6'b010000;
12'd1785 : mem_out_dec = 6'b010000;
12'd1786 : mem_out_dec = 6'b010000;
12'd1787 : mem_out_dec = 6'b010001;
12'd1788 : mem_out_dec = 6'b010001;
12'd1789 : mem_out_dec = 6'b010010;
12'd1790 : mem_out_dec = 6'b010010;
12'd1791 : mem_out_dec = 6'b010011;
12'd1792 : mem_out_dec = 6'b111111;
12'd1793 : mem_out_dec = 6'b111111;
12'd1794 : mem_out_dec = 6'b111111;
12'd1795 : mem_out_dec = 6'b111111;
12'd1796 : mem_out_dec = 6'b111111;
12'd1797 : mem_out_dec = 6'b111111;
12'd1798 : mem_out_dec = 6'b111111;
12'd1799 : mem_out_dec = 6'b111111;
12'd1800 : mem_out_dec = 6'b111111;
12'd1801 : mem_out_dec = 6'b111111;
12'd1802 : mem_out_dec = 6'b111111;
12'd1803 : mem_out_dec = 6'b111111;
12'd1804 : mem_out_dec = 6'b111111;
12'd1805 : mem_out_dec = 6'b111111;
12'd1806 : mem_out_dec = 6'b111111;
12'd1807 : mem_out_dec = 6'b111111;
12'd1808 : mem_out_dec = 6'b111111;
12'd1809 : mem_out_dec = 6'b111111;
12'd1810 : mem_out_dec = 6'b111111;
12'd1811 : mem_out_dec = 6'b111111;
12'd1812 : mem_out_dec = 6'b111111;
12'd1813 : mem_out_dec = 6'b111111;
12'd1814 : mem_out_dec = 6'b111111;
12'd1815 : mem_out_dec = 6'b111111;
12'd1816 : mem_out_dec = 6'b111111;
12'd1817 : mem_out_dec = 6'b111111;
12'd1818 : mem_out_dec = 6'b111111;
12'd1819 : mem_out_dec = 6'b111111;
12'd1820 : mem_out_dec = 6'b111111;
12'd1821 : mem_out_dec = 6'b111111;
12'd1822 : mem_out_dec = 6'b111111;
12'd1823 : mem_out_dec = 6'b111111;
12'd1824 : mem_out_dec = 6'b111111;
12'd1825 : mem_out_dec = 6'b111111;
12'd1826 : mem_out_dec = 6'b000011;
12'd1827 : mem_out_dec = 6'b000100;
12'd1828 : mem_out_dec = 6'b000100;
12'd1829 : mem_out_dec = 6'b000101;
12'd1830 : mem_out_dec = 6'b000110;
12'd1831 : mem_out_dec = 6'b000110;
12'd1832 : mem_out_dec = 6'b000110;
12'd1833 : mem_out_dec = 6'b000111;
12'd1834 : mem_out_dec = 6'b001000;
12'd1835 : mem_out_dec = 6'b001001;
12'd1836 : mem_out_dec = 6'b001010;
12'd1837 : mem_out_dec = 6'b001010;
12'd1838 : mem_out_dec = 6'b001011;
12'd1839 : mem_out_dec = 6'b001100;
12'd1840 : mem_out_dec = 6'b001100;
12'd1841 : mem_out_dec = 6'b001100;
12'd1842 : mem_out_dec = 6'b001101;
12'd1843 : mem_out_dec = 6'b001101;
12'd1844 : mem_out_dec = 6'b001110;
12'd1845 : mem_out_dec = 6'b001110;
12'd1846 : mem_out_dec = 6'b001111;
12'd1847 : mem_out_dec = 6'b010000;
12'd1848 : mem_out_dec = 6'b001111;
12'd1849 : mem_out_dec = 6'b001111;
12'd1850 : mem_out_dec = 6'b010000;
12'd1851 : mem_out_dec = 6'b010000;
12'd1852 : mem_out_dec = 6'b010001;
12'd1853 : mem_out_dec = 6'b010001;
12'd1854 : mem_out_dec = 6'b010010;
12'd1855 : mem_out_dec = 6'b010010;
12'd1856 : mem_out_dec = 6'b111111;
12'd1857 : mem_out_dec = 6'b111111;
12'd1858 : mem_out_dec = 6'b111111;
12'd1859 : mem_out_dec = 6'b111111;
12'd1860 : mem_out_dec = 6'b111111;
12'd1861 : mem_out_dec = 6'b111111;
12'd1862 : mem_out_dec = 6'b111111;
12'd1863 : mem_out_dec = 6'b111111;
12'd1864 : mem_out_dec = 6'b111111;
12'd1865 : mem_out_dec = 6'b111111;
12'd1866 : mem_out_dec = 6'b111111;
12'd1867 : mem_out_dec = 6'b111111;
12'd1868 : mem_out_dec = 6'b111111;
12'd1869 : mem_out_dec = 6'b111111;
12'd1870 : mem_out_dec = 6'b111111;
12'd1871 : mem_out_dec = 6'b111111;
12'd1872 : mem_out_dec = 6'b111111;
12'd1873 : mem_out_dec = 6'b111111;
12'd1874 : mem_out_dec = 6'b111111;
12'd1875 : mem_out_dec = 6'b111111;
12'd1876 : mem_out_dec = 6'b111111;
12'd1877 : mem_out_dec = 6'b111111;
12'd1878 : mem_out_dec = 6'b111111;
12'd1879 : mem_out_dec = 6'b111111;
12'd1880 : mem_out_dec = 6'b111111;
12'd1881 : mem_out_dec = 6'b111111;
12'd1882 : mem_out_dec = 6'b111111;
12'd1883 : mem_out_dec = 6'b111111;
12'd1884 : mem_out_dec = 6'b111111;
12'd1885 : mem_out_dec = 6'b111111;
12'd1886 : mem_out_dec = 6'b111111;
12'd1887 : mem_out_dec = 6'b111111;
12'd1888 : mem_out_dec = 6'b111111;
12'd1889 : mem_out_dec = 6'b111111;
12'd1890 : mem_out_dec = 6'b111111;
12'd1891 : mem_out_dec = 6'b000100;
12'd1892 : mem_out_dec = 6'b000100;
12'd1893 : mem_out_dec = 6'b000101;
12'd1894 : mem_out_dec = 6'b000101;
12'd1895 : mem_out_dec = 6'b000110;
12'd1896 : mem_out_dec = 6'b000110;
12'd1897 : mem_out_dec = 6'b000111;
12'd1898 : mem_out_dec = 6'b001000;
12'd1899 : mem_out_dec = 6'b001001;
12'd1900 : mem_out_dec = 6'b001001;
12'd1901 : mem_out_dec = 6'b001010;
12'd1902 : mem_out_dec = 6'b001011;
12'd1903 : mem_out_dec = 6'b001100;
12'd1904 : mem_out_dec = 6'b001100;
12'd1905 : mem_out_dec = 6'b001100;
12'd1906 : mem_out_dec = 6'b001100;
12'd1907 : mem_out_dec = 6'b001101;
12'd1908 : mem_out_dec = 6'b001110;
12'd1909 : mem_out_dec = 6'b001110;
12'd1910 : mem_out_dec = 6'b001111;
12'd1911 : mem_out_dec = 6'b001111;
12'd1912 : mem_out_dec = 6'b001111;
12'd1913 : mem_out_dec = 6'b001111;
12'd1914 : mem_out_dec = 6'b001111;
12'd1915 : mem_out_dec = 6'b010000;
12'd1916 : mem_out_dec = 6'b010000;
12'd1917 : mem_out_dec = 6'b010001;
12'd1918 : mem_out_dec = 6'b010001;
12'd1919 : mem_out_dec = 6'b010010;
12'd1920 : mem_out_dec = 6'b111111;
12'd1921 : mem_out_dec = 6'b111111;
12'd1922 : mem_out_dec = 6'b111111;
12'd1923 : mem_out_dec = 6'b111111;
12'd1924 : mem_out_dec = 6'b111111;
12'd1925 : mem_out_dec = 6'b111111;
12'd1926 : mem_out_dec = 6'b111111;
12'd1927 : mem_out_dec = 6'b111111;
12'd1928 : mem_out_dec = 6'b111111;
12'd1929 : mem_out_dec = 6'b111111;
12'd1930 : mem_out_dec = 6'b111111;
12'd1931 : mem_out_dec = 6'b111111;
12'd1932 : mem_out_dec = 6'b111111;
12'd1933 : mem_out_dec = 6'b111111;
12'd1934 : mem_out_dec = 6'b111111;
12'd1935 : mem_out_dec = 6'b111111;
12'd1936 : mem_out_dec = 6'b111111;
12'd1937 : mem_out_dec = 6'b111111;
12'd1938 : mem_out_dec = 6'b111111;
12'd1939 : mem_out_dec = 6'b111111;
12'd1940 : mem_out_dec = 6'b111111;
12'd1941 : mem_out_dec = 6'b111111;
12'd1942 : mem_out_dec = 6'b111111;
12'd1943 : mem_out_dec = 6'b111111;
12'd1944 : mem_out_dec = 6'b111111;
12'd1945 : mem_out_dec = 6'b111111;
12'd1946 : mem_out_dec = 6'b111111;
12'd1947 : mem_out_dec = 6'b111111;
12'd1948 : mem_out_dec = 6'b111111;
12'd1949 : mem_out_dec = 6'b111111;
12'd1950 : mem_out_dec = 6'b111111;
12'd1951 : mem_out_dec = 6'b111111;
12'd1952 : mem_out_dec = 6'b111111;
12'd1953 : mem_out_dec = 6'b111111;
12'd1954 : mem_out_dec = 6'b111111;
12'd1955 : mem_out_dec = 6'b111111;
12'd1956 : mem_out_dec = 6'b000100;
12'd1957 : mem_out_dec = 6'b000101;
12'd1958 : mem_out_dec = 6'b000101;
12'd1959 : mem_out_dec = 6'b000110;
12'd1960 : mem_out_dec = 6'b000110;
12'd1961 : mem_out_dec = 6'b000111;
12'd1962 : mem_out_dec = 6'b001000;
12'd1963 : mem_out_dec = 6'b001000;
12'd1964 : mem_out_dec = 6'b001001;
12'd1965 : mem_out_dec = 6'b001010;
12'd1966 : mem_out_dec = 6'b001011;
12'd1967 : mem_out_dec = 6'b001011;
12'd1968 : mem_out_dec = 6'b001011;
12'd1969 : mem_out_dec = 6'b001100;
12'd1970 : mem_out_dec = 6'b001100;
12'd1971 : mem_out_dec = 6'b001101;
12'd1972 : mem_out_dec = 6'b001101;
12'd1973 : mem_out_dec = 6'b001110;
12'd1974 : mem_out_dec = 6'b001111;
12'd1975 : mem_out_dec = 6'b001111;
12'd1976 : mem_out_dec = 6'b001110;
12'd1977 : mem_out_dec = 6'b001110;
12'd1978 : mem_out_dec = 6'b001111;
12'd1979 : mem_out_dec = 6'b001111;
12'd1980 : mem_out_dec = 6'b010000;
12'd1981 : mem_out_dec = 6'b010000;
12'd1982 : mem_out_dec = 6'b010001;
12'd1983 : mem_out_dec = 6'b010001;
12'd1984 : mem_out_dec = 6'b111111;
12'd1985 : mem_out_dec = 6'b111111;
12'd1986 : mem_out_dec = 6'b111111;
12'd1987 : mem_out_dec = 6'b111111;
12'd1988 : mem_out_dec = 6'b111111;
12'd1989 : mem_out_dec = 6'b111111;
12'd1990 : mem_out_dec = 6'b111111;
12'd1991 : mem_out_dec = 6'b111111;
12'd1992 : mem_out_dec = 6'b111111;
12'd1993 : mem_out_dec = 6'b111111;
12'd1994 : mem_out_dec = 6'b111111;
12'd1995 : mem_out_dec = 6'b111111;
12'd1996 : mem_out_dec = 6'b111111;
12'd1997 : mem_out_dec = 6'b111111;
12'd1998 : mem_out_dec = 6'b111111;
12'd1999 : mem_out_dec = 6'b111111;
12'd2000 : mem_out_dec = 6'b111111;
12'd2001 : mem_out_dec = 6'b111111;
12'd2002 : mem_out_dec = 6'b111111;
12'd2003 : mem_out_dec = 6'b111111;
12'd2004 : mem_out_dec = 6'b111111;
12'd2005 : mem_out_dec = 6'b111111;
12'd2006 : mem_out_dec = 6'b111111;
12'd2007 : mem_out_dec = 6'b111111;
12'd2008 : mem_out_dec = 6'b111111;
12'd2009 : mem_out_dec = 6'b111111;
12'd2010 : mem_out_dec = 6'b111111;
12'd2011 : mem_out_dec = 6'b111111;
12'd2012 : mem_out_dec = 6'b111111;
12'd2013 : mem_out_dec = 6'b111111;
12'd2014 : mem_out_dec = 6'b111111;
12'd2015 : mem_out_dec = 6'b111111;
12'd2016 : mem_out_dec = 6'b111111;
12'd2017 : mem_out_dec = 6'b111111;
12'd2018 : mem_out_dec = 6'b111111;
12'd2019 : mem_out_dec = 6'b111111;
12'd2020 : mem_out_dec = 6'b111111;
12'd2021 : mem_out_dec = 6'b000100;
12'd2022 : mem_out_dec = 6'b000101;
12'd2023 : mem_out_dec = 6'b000110;
12'd2024 : mem_out_dec = 6'b000110;
12'd2025 : mem_out_dec = 6'b000111;
12'd2026 : mem_out_dec = 6'b000111;
12'd2027 : mem_out_dec = 6'b001000;
12'd2028 : mem_out_dec = 6'b001001;
12'd2029 : mem_out_dec = 6'b001010;
12'd2030 : mem_out_dec = 6'b001010;
12'd2031 : mem_out_dec = 6'b001011;
12'd2032 : mem_out_dec = 6'b001011;
12'd2033 : mem_out_dec = 6'b001011;
12'd2034 : mem_out_dec = 6'b001100;
12'd2035 : mem_out_dec = 6'b001101;
12'd2036 : mem_out_dec = 6'b001101;
12'd2037 : mem_out_dec = 6'b001110;
12'd2038 : mem_out_dec = 6'b001110;
12'd2039 : mem_out_dec = 6'b001110;
12'd2040 : mem_out_dec = 6'b001101;
12'd2041 : mem_out_dec = 6'b001110;
12'd2042 : mem_out_dec = 6'b001110;
12'd2043 : mem_out_dec = 6'b001111;
12'd2044 : mem_out_dec = 6'b001111;
12'd2045 : mem_out_dec = 6'b010000;
12'd2046 : mem_out_dec = 6'b010000;
12'd2047 : mem_out_dec = 6'b010001;
12'd2048 : mem_out_dec = 6'b111111;
12'd2049 : mem_out_dec = 6'b111111;
12'd2050 : mem_out_dec = 6'b111111;
12'd2051 : mem_out_dec = 6'b111111;
12'd2052 : mem_out_dec = 6'b111111;
12'd2053 : mem_out_dec = 6'b111111;
12'd2054 : mem_out_dec = 6'b111111;
12'd2055 : mem_out_dec = 6'b111111;
12'd2056 : mem_out_dec = 6'b111111;
12'd2057 : mem_out_dec = 6'b111111;
12'd2058 : mem_out_dec = 6'b111111;
12'd2059 : mem_out_dec = 6'b111111;
12'd2060 : mem_out_dec = 6'b111111;
12'd2061 : mem_out_dec = 6'b111111;
12'd2062 : mem_out_dec = 6'b111111;
12'd2063 : mem_out_dec = 6'b111111;
12'd2064 : mem_out_dec = 6'b111111;
12'd2065 : mem_out_dec = 6'b111111;
12'd2066 : mem_out_dec = 6'b111111;
12'd2067 : mem_out_dec = 6'b111111;
12'd2068 : mem_out_dec = 6'b111111;
12'd2069 : mem_out_dec = 6'b111111;
12'd2070 : mem_out_dec = 6'b111111;
12'd2071 : mem_out_dec = 6'b111111;
12'd2072 : mem_out_dec = 6'b111111;
12'd2073 : mem_out_dec = 6'b111111;
12'd2074 : mem_out_dec = 6'b111111;
12'd2075 : mem_out_dec = 6'b111111;
12'd2076 : mem_out_dec = 6'b111111;
12'd2077 : mem_out_dec = 6'b111111;
12'd2078 : mem_out_dec = 6'b111111;
12'd2079 : mem_out_dec = 6'b111111;
12'd2080 : mem_out_dec = 6'b111111;
12'd2081 : mem_out_dec = 6'b111111;
12'd2082 : mem_out_dec = 6'b111111;
12'd2083 : mem_out_dec = 6'b111111;
12'd2084 : mem_out_dec = 6'b111111;
12'd2085 : mem_out_dec = 6'b111111;
12'd2086 : mem_out_dec = 6'b000100;
12'd2087 : mem_out_dec = 6'b000101;
12'd2088 : mem_out_dec = 6'b000101;
12'd2089 : mem_out_dec = 6'b000110;
12'd2090 : mem_out_dec = 6'b000110;
12'd2091 : mem_out_dec = 6'b000111;
12'd2092 : mem_out_dec = 6'b001000;
12'd2093 : mem_out_dec = 6'b001001;
12'd2094 : mem_out_dec = 6'b001001;
12'd2095 : mem_out_dec = 6'b001010;
12'd2096 : mem_out_dec = 6'b001010;
12'd2097 : mem_out_dec = 6'b001011;
12'd2098 : mem_out_dec = 6'b001011;
12'd2099 : mem_out_dec = 6'b001100;
12'd2100 : mem_out_dec = 6'b001100;
12'd2101 : mem_out_dec = 6'b001100;
12'd2102 : mem_out_dec = 6'b001100;
12'd2103 : mem_out_dec = 6'b001101;
12'd2104 : mem_out_dec = 6'b001100;
12'd2105 : mem_out_dec = 6'b001100;
12'd2106 : mem_out_dec = 6'b001101;
12'd2107 : mem_out_dec = 6'b001101;
12'd2108 : mem_out_dec = 6'b001110;
12'd2109 : mem_out_dec = 6'b001111;
12'd2110 : mem_out_dec = 6'b010000;
12'd2111 : mem_out_dec = 6'b010000;
12'd2112 : mem_out_dec = 6'b111111;
12'd2113 : mem_out_dec = 6'b111111;
12'd2114 : mem_out_dec = 6'b111111;
12'd2115 : mem_out_dec = 6'b111111;
12'd2116 : mem_out_dec = 6'b111111;
12'd2117 : mem_out_dec = 6'b111111;
12'd2118 : mem_out_dec = 6'b111111;
12'd2119 : mem_out_dec = 6'b111111;
12'd2120 : mem_out_dec = 6'b111111;
12'd2121 : mem_out_dec = 6'b111111;
12'd2122 : mem_out_dec = 6'b111111;
12'd2123 : mem_out_dec = 6'b111111;
12'd2124 : mem_out_dec = 6'b111111;
12'd2125 : mem_out_dec = 6'b111111;
12'd2126 : mem_out_dec = 6'b111111;
12'd2127 : mem_out_dec = 6'b111111;
12'd2128 : mem_out_dec = 6'b111111;
12'd2129 : mem_out_dec = 6'b111111;
12'd2130 : mem_out_dec = 6'b111111;
12'd2131 : mem_out_dec = 6'b111111;
12'd2132 : mem_out_dec = 6'b111111;
12'd2133 : mem_out_dec = 6'b111111;
12'd2134 : mem_out_dec = 6'b111111;
12'd2135 : mem_out_dec = 6'b111111;
12'd2136 : mem_out_dec = 6'b111111;
12'd2137 : mem_out_dec = 6'b111111;
12'd2138 : mem_out_dec = 6'b111111;
12'd2139 : mem_out_dec = 6'b111111;
12'd2140 : mem_out_dec = 6'b111111;
12'd2141 : mem_out_dec = 6'b111111;
12'd2142 : mem_out_dec = 6'b111111;
12'd2143 : mem_out_dec = 6'b111111;
12'd2144 : mem_out_dec = 6'b111111;
12'd2145 : mem_out_dec = 6'b111111;
12'd2146 : mem_out_dec = 6'b111111;
12'd2147 : mem_out_dec = 6'b111111;
12'd2148 : mem_out_dec = 6'b111111;
12'd2149 : mem_out_dec = 6'b111111;
12'd2150 : mem_out_dec = 6'b111111;
12'd2151 : mem_out_dec = 6'b000100;
12'd2152 : mem_out_dec = 6'b000100;
12'd2153 : mem_out_dec = 6'b000101;
12'd2154 : mem_out_dec = 6'b000110;
12'd2155 : mem_out_dec = 6'b000111;
12'd2156 : mem_out_dec = 6'b000111;
12'd2157 : mem_out_dec = 6'b001000;
12'd2158 : mem_out_dec = 6'b001001;
12'd2159 : mem_out_dec = 6'b001001;
12'd2160 : mem_out_dec = 6'b001010;
12'd2161 : mem_out_dec = 6'b001010;
12'd2162 : mem_out_dec = 6'b001011;
12'd2163 : mem_out_dec = 6'b001011;
12'd2164 : mem_out_dec = 6'b001011;
12'd2165 : mem_out_dec = 6'b001011;
12'd2166 : mem_out_dec = 6'b001011;
12'd2167 : mem_out_dec = 6'b001100;
12'd2168 : mem_out_dec = 6'b001011;
12'd2169 : mem_out_dec = 6'b001011;
12'd2170 : mem_out_dec = 6'b001100;
12'd2171 : mem_out_dec = 6'b001101;
12'd2172 : mem_out_dec = 6'b001110;
12'd2173 : mem_out_dec = 6'b001110;
12'd2174 : mem_out_dec = 6'b001111;
12'd2175 : mem_out_dec = 6'b010000;
12'd2176 : mem_out_dec = 6'b111111;
12'd2177 : mem_out_dec = 6'b111111;
12'd2178 : mem_out_dec = 6'b111111;
12'd2179 : mem_out_dec = 6'b111111;
12'd2180 : mem_out_dec = 6'b111111;
12'd2181 : mem_out_dec = 6'b111111;
12'd2182 : mem_out_dec = 6'b111111;
12'd2183 : mem_out_dec = 6'b111111;
12'd2184 : mem_out_dec = 6'b111111;
12'd2185 : mem_out_dec = 6'b111111;
12'd2186 : mem_out_dec = 6'b111111;
12'd2187 : mem_out_dec = 6'b111111;
12'd2188 : mem_out_dec = 6'b111111;
12'd2189 : mem_out_dec = 6'b111111;
12'd2190 : mem_out_dec = 6'b111111;
12'd2191 : mem_out_dec = 6'b111111;
12'd2192 : mem_out_dec = 6'b111111;
12'd2193 : mem_out_dec = 6'b111111;
12'd2194 : mem_out_dec = 6'b111111;
12'd2195 : mem_out_dec = 6'b111111;
12'd2196 : mem_out_dec = 6'b111111;
12'd2197 : mem_out_dec = 6'b111111;
12'd2198 : mem_out_dec = 6'b111111;
12'd2199 : mem_out_dec = 6'b111111;
12'd2200 : mem_out_dec = 6'b111111;
12'd2201 : mem_out_dec = 6'b111111;
12'd2202 : mem_out_dec = 6'b111111;
12'd2203 : mem_out_dec = 6'b111111;
12'd2204 : mem_out_dec = 6'b111111;
12'd2205 : mem_out_dec = 6'b111111;
12'd2206 : mem_out_dec = 6'b111111;
12'd2207 : mem_out_dec = 6'b111111;
12'd2208 : mem_out_dec = 6'b111111;
12'd2209 : mem_out_dec = 6'b111111;
12'd2210 : mem_out_dec = 6'b111111;
12'd2211 : mem_out_dec = 6'b111111;
12'd2212 : mem_out_dec = 6'b111111;
12'd2213 : mem_out_dec = 6'b111111;
12'd2214 : mem_out_dec = 6'b111111;
12'd2215 : mem_out_dec = 6'b111111;
12'd2216 : mem_out_dec = 6'b000100;
12'd2217 : mem_out_dec = 6'b000101;
12'd2218 : mem_out_dec = 6'b000101;
12'd2219 : mem_out_dec = 6'b000110;
12'd2220 : mem_out_dec = 6'b000111;
12'd2221 : mem_out_dec = 6'b000111;
12'd2222 : mem_out_dec = 6'b001000;
12'd2223 : mem_out_dec = 6'b001001;
12'd2224 : mem_out_dec = 6'b001001;
12'd2225 : mem_out_dec = 6'b001010;
12'd2226 : mem_out_dec = 6'b001010;
12'd2227 : mem_out_dec = 6'b001010;
12'd2228 : mem_out_dec = 6'b001010;
12'd2229 : mem_out_dec = 6'b001010;
12'd2230 : mem_out_dec = 6'b001010;
12'd2231 : mem_out_dec = 6'b001010;
12'd2232 : mem_out_dec = 6'b001010;
12'd2233 : mem_out_dec = 6'b001011;
12'd2234 : mem_out_dec = 6'b001100;
12'd2235 : mem_out_dec = 6'b001100;
12'd2236 : mem_out_dec = 6'b001101;
12'd2237 : mem_out_dec = 6'b001110;
12'd2238 : mem_out_dec = 6'b001111;
12'd2239 : mem_out_dec = 6'b010000;
12'd2240 : mem_out_dec = 6'b111111;
12'd2241 : mem_out_dec = 6'b111111;
12'd2242 : mem_out_dec = 6'b111111;
12'd2243 : mem_out_dec = 6'b111111;
12'd2244 : mem_out_dec = 6'b111111;
12'd2245 : mem_out_dec = 6'b111111;
12'd2246 : mem_out_dec = 6'b111111;
12'd2247 : mem_out_dec = 6'b111111;
12'd2248 : mem_out_dec = 6'b111111;
12'd2249 : mem_out_dec = 6'b111111;
12'd2250 : mem_out_dec = 6'b111111;
12'd2251 : mem_out_dec = 6'b111111;
12'd2252 : mem_out_dec = 6'b111111;
12'd2253 : mem_out_dec = 6'b111111;
12'd2254 : mem_out_dec = 6'b111111;
12'd2255 : mem_out_dec = 6'b111111;
12'd2256 : mem_out_dec = 6'b111111;
12'd2257 : mem_out_dec = 6'b111111;
12'd2258 : mem_out_dec = 6'b111111;
12'd2259 : mem_out_dec = 6'b111111;
12'd2260 : mem_out_dec = 6'b111111;
12'd2261 : mem_out_dec = 6'b111111;
12'd2262 : mem_out_dec = 6'b111111;
12'd2263 : mem_out_dec = 6'b111111;
12'd2264 : mem_out_dec = 6'b111111;
12'd2265 : mem_out_dec = 6'b111111;
12'd2266 : mem_out_dec = 6'b111111;
12'd2267 : mem_out_dec = 6'b111111;
12'd2268 : mem_out_dec = 6'b111111;
12'd2269 : mem_out_dec = 6'b111111;
12'd2270 : mem_out_dec = 6'b111111;
12'd2271 : mem_out_dec = 6'b111111;
12'd2272 : mem_out_dec = 6'b111111;
12'd2273 : mem_out_dec = 6'b111111;
12'd2274 : mem_out_dec = 6'b111111;
12'd2275 : mem_out_dec = 6'b111111;
12'd2276 : mem_out_dec = 6'b111111;
12'd2277 : mem_out_dec = 6'b111111;
12'd2278 : mem_out_dec = 6'b111111;
12'd2279 : mem_out_dec = 6'b111111;
12'd2280 : mem_out_dec = 6'b111111;
12'd2281 : mem_out_dec = 6'b000100;
12'd2282 : mem_out_dec = 6'b000101;
12'd2283 : mem_out_dec = 6'b000101;
12'd2284 : mem_out_dec = 6'b000110;
12'd2285 : mem_out_dec = 6'b000111;
12'd2286 : mem_out_dec = 6'b001000;
12'd2287 : mem_out_dec = 6'b001001;
12'd2288 : mem_out_dec = 6'b001001;
12'd2289 : mem_out_dec = 6'b001001;
12'd2290 : mem_out_dec = 6'b001001;
12'd2291 : mem_out_dec = 6'b001001;
12'd2292 : mem_out_dec = 6'b001001;
12'd2293 : mem_out_dec = 6'b001001;
12'd2294 : mem_out_dec = 6'b001001;
12'd2295 : mem_out_dec = 6'b001001;
12'd2296 : mem_out_dec = 6'b001010;
12'd2297 : mem_out_dec = 6'b001010;
12'd2298 : mem_out_dec = 6'b001011;
12'd2299 : mem_out_dec = 6'b001100;
12'd2300 : mem_out_dec = 6'b001101;
12'd2301 : mem_out_dec = 6'b001110;
12'd2302 : mem_out_dec = 6'b001110;
12'd2303 : mem_out_dec = 6'b001111;
12'd2304 : mem_out_dec = 6'b111111;
12'd2305 : mem_out_dec = 6'b111111;
12'd2306 : mem_out_dec = 6'b111111;
12'd2307 : mem_out_dec = 6'b111111;
12'd2308 : mem_out_dec = 6'b111111;
12'd2309 : mem_out_dec = 6'b111111;
12'd2310 : mem_out_dec = 6'b111111;
12'd2311 : mem_out_dec = 6'b111111;
12'd2312 : mem_out_dec = 6'b111111;
12'd2313 : mem_out_dec = 6'b111111;
12'd2314 : mem_out_dec = 6'b111111;
12'd2315 : mem_out_dec = 6'b111111;
12'd2316 : mem_out_dec = 6'b111111;
12'd2317 : mem_out_dec = 6'b111111;
12'd2318 : mem_out_dec = 6'b111111;
12'd2319 : mem_out_dec = 6'b111111;
12'd2320 : mem_out_dec = 6'b111111;
12'd2321 : mem_out_dec = 6'b111111;
12'd2322 : mem_out_dec = 6'b111111;
12'd2323 : mem_out_dec = 6'b111111;
12'd2324 : mem_out_dec = 6'b111111;
12'd2325 : mem_out_dec = 6'b111111;
12'd2326 : mem_out_dec = 6'b111111;
12'd2327 : mem_out_dec = 6'b111111;
12'd2328 : mem_out_dec = 6'b111111;
12'd2329 : mem_out_dec = 6'b111111;
12'd2330 : mem_out_dec = 6'b111111;
12'd2331 : mem_out_dec = 6'b111111;
12'd2332 : mem_out_dec = 6'b111111;
12'd2333 : mem_out_dec = 6'b111111;
12'd2334 : mem_out_dec = 6'b111111;
12'd2335 : mem_out_dec = 6'b111111;
12'd2336 : mem_out_dec = 6'b111111;
12'd2337 : mem_out_dec = 6'b111111;
12'd2338 : mem_out_dec = 6'b111111;
12'd2339 : mem_out_dec = 6'b111111;
12'd2340 : mem_out_dec = 6'b111111;
12'd2341 : mem_out_dec = 6'b111111;
12'd2342 : mem_out_dec = 6'b111111;
12'd2343 : mem_out_dec = 6'b111111;
12'd2344 : mem_out_dec = 6'b111111;
12'd2345 : mem_out_dec = 6'b111111;
12'd2346 : mem_out_dec = 6'b000100;
12'd2347 : mem_out_dec = 6'b000101;
12'd2348 : mem_out_dec = 6'b000110;
12'd2349 : mem_out_dec = 6'b000111;
12'd2350 : mem_out_dec = 6'b000111;
12'd2351 : mem_out_dec = 6'b001000;
12'd2352 : mem_out_dec = 6'b001000;
12'd2353 : mem_out_dec = 6'b001000;
12'd2354 : mem_out_dec = 6'b001000;
12'd2355 : mem_out_dec = 6'b001000;
12'd2356 : mem_out_dec = 6'b001000;
12'd2357 : mem_out_dec = 6'b001000;
12'd2358 : mem_out_dec = 6'b001000;
12'd2359 : mem_out_dec = 6'b001001;
12'd2360 : mem_out_dec = 6'b001001;
12'd2361 : mem_out_dec = 6'b001010;
12'd2362 : mem_out_dec = 6'b001011;
12'd2363 : mem_out_dec = 6'b001100;
12'd2364 : mem_out_dec = 6'b001100;
12'd2365 : mem_out_dec = 6'b001101;
12'd2366 : mem_out_dec = 6'b001110;
12'd2367 : mem_out_dec = 6'b001111;
12'd2368 : mem_out_dec = 6'b111111;
12'd2369 : mem_out_dec = 6'b111111;
12'd2370 : mem_out_dec = 6'b111111;
12'd2371 : mem_out_dec = 6'b111111;
12'd2372 : mem_out_dec = 6'b111111;
12'd2373 : mem_out_dec = 6'b111111;
12'd2374 : mem_out_dec = 6'b111111;
12'd2375 : mem_out_dec = 6'b111111;
12'd2376 : mem_out_dec = 6'b111111;
12'd2377 : mem_out_dec = 6'b111111;
12'd2378 : mem_out_dec = 6'b111111;
12'd2379 : mem_out_dec = 6'b111111;
12'd2380 : mem_out_dec = 6'b111111;
12'd2381 : mem_out_dec = 6'b111111;
12'd2382 : mem_out_dec = 6'b111111;
12'd2383 : mem_out_dec = 6'b111111;
12'd2384 : mem_out_dec = 6'b111111;
12'd2385 : mem_out_dec = 6'b111111;
12'd2386 : mem_out_dec = 6'b111111;
12'd2387 : mem_out_dec = 6'b111111;
12'd2388 : mem_out_dec = 6'b111111;
12'd2389 : mem_out_dec = 6'b111111;
12'd2390 : mem_out_dec = 6'b111111;
12'd2391 : mem_out_dec = 6'b111111;
12'd2392 : mem_out_dec = 6'b111111;
12'd2393 : mem_out_dec = 6'b111111;
12'd2394 : mem_out_dec = 6'b111111;
12'd2395 : mem_out_dec = 6'b111111;
12'd2396 : mem_out_dec = 6'b111111;
12'd2397 : mem_out_dec = 6'b111111;
12'd2398 : mem_out_dec = 6'b111111;
12'd2399 : mem_out_dec = 6'b111111;
12'd2400 : mem_out_dec = 6'b111111;
12'd2401 : mem_out_dec = 6'b111111;
12'd2402 : mem_out_dec = 6'b111111;
12'd2403 : mem_out_dec = 6'b111111;
12'd2404 : mem_out_dec = 6'b111111;
12'd2405 : mem_out_dec = 6'b111111;
12'd2406 : mem_out_dec = 6'b111111;
12'd2407 : mem_out_dec = 6'b111111;
12'd2408 : mem_out_dec = 6'b111111;
12'd2409 : mem_out_dec = 6'b111111;
12'd2410 : mem_out_dec = 6'b111111;
12'd2411 : mem_out_dec = 6'b000101;
12'd2412 : mem_out_dec = 6'b000101;
12'd2413 : mem_out_dec = 6'b000110;
12'd2414 : mem_out_dec = 6'b000111;
12'd2415 : mem_out_dec = 6'b001000;
12'd2416 : mem_out_dec = 6'b000111;
12'd2417 : mem_out_dec = 6'b000111;
12'd2418 : mem_out_dec = 6'b000111;
12'd2419 : mem_out_dec = 6'b000111;
12'd2420 : mem_out_dec = 6'b000111;
12'd2421 : mem_out_dec = 6'b000111;
12'd2422 : mem_out_dec = 6'b001000;
12'd2423 : mem_out_dec = 6'b001001;
12'd2424 : mem_out_dec = 6'b001001;
12'd2425 : mem_out_dec = 6'b001010;
12'd2426 : mem_out_dec = 6'b001010;
12'd2427 : mem_out_dec = 6'b001011;
12'd2428 : mem_out_dec = 6'b001100;
12'd2429 : mem_out_dec = 6'b001101;
12'd2430 : mem_out_dec = 6'b001101;
12'd2431 : mem_out_dec = 6'b001110;
12'd2432 : mem_out_dec = 6'b111111;
12'd2433 : mem_out_dec = 6'b111111;
12'd2434 : mem_out_dec = 6'b111111;
12'd2435 : mem_out_dec = 6'b111111;
12'd2436 : mem_out_dec = 6'b111111;
12'd2437 : mem_out_dec = 6'b111111;
12'd2438 : mem_out_dec = 6'b111111;
12'd2439 : mem_out_dec = 6'b111111;
12'd2440 : mem_out_dec = 6'b111111;
12'd2441 : mem_out_dec = 6'b111111;
12'd2442 : mem_out_dec = 6'b111111;
12'd2443 : mem_out_dec = 6'b111111;
12'd2444 : mem_out_dec = 6'b111111;
12'd2445 : mem_out_dec = 6'b111111;
12'd2446 : mem_out_dec = 6'b111111;
12'd2447 : mem_out_dec = 6'b111111;
12'd2448 : mem_out_dec = 6'b111111;
12'd2449 : mem_out_dec = 6'b111111;
12'd2450 : mem_out_dec = 6'b111111;
12'd2451 : mem_out_dec = 6'b111111;
12'd2452 : mem_out_dec = 6'b111111;
12'd2453 : mem_out_dec = 6'b111111;
12'd2454 : mem_out_dec = 6'b111111;
12'd2455 : mem_out_dec = 6'b111111;
12'd2456 : mem_out_dec = 6'b111111;
12'd2457 : mem_out_dec = 6'b111111;
12'd2458 : mem_out_dec = 6'b111111;
12'd2459 : mem_out_dec = 6'b111111;
12'd2460 : mem_out_dec = 6'b111111;
12'd2461 : mem_out_dec = 6'b111111;
12'd2462 : mem_out_dec = 6'b111111;
12'd2463 : mem_out_dec = 6'b111111;
12'd2464 : mem_out_dec = 6'b111111;
12'd2465 : mem_out_dec = 6'b111111;
12'd2466 : mem_out_dec = 6'b111111;
12'd2467 : mem_out_dec = 6'b111111;
12'd2468 : mem_out_dec = 6'b111111;
12'd2469 : mem_out_dec = 6'b111111;
12'd2470 : mem_out_dec = 6'b111111;
12'd2471 : mem_out_dec = 6'b111111;
12'd2472 : mem_out_dec = 6'b111111;
12'd2473 : mem_out_dec = 6'b111111;
12'd2474 : mem_out_dec = 6'b111111;
12'd2475 : mem_out_dec = 6'b111111;
12'd2476 : mem_out_dec = 6'b000101;
12'd2477 : mem_out_dec = 6'b000110;
12'd2478 : mem_out_dec = 6'b000111;
12'd2479 : mem_out_dec = 6'b000111;
12'd2480 : mem_out_dec = 6'b000110;
12'd2481 : mem_out_dec = 6'b000110;
12'd2482 : mem_out_dec = 6'b000110;
12'd2483 : mem_out_dec = 6'b000110;
12'd2484 : mem_out_dec = 6'b000110;
12'd2485 : mem_out_dec = 6'b000111;
12'd2486 : mem_out_dec = 6'b000111;
12'd2487 : mem_out_dec = 6'b001000;
12'd2488 : mem_out_dec = 6'b001001;
12'd2489 : mem_out_dec = 6'b001001;
12'd2490 : mem_out_dec = 6'b001010;
12'd2491 : mem_out_dec = 6'b001011;
12'd2492 : mem_out_dec = 6'b001011;
12'd2493 : mem_out_dec = 6'b001100;
12'd2494 : mem_out_dec = 6'b001101;
12'd2495 : mem_out_dec = 6'b001110;
12'd2496 : mem_out_dec = 6'b111111;
12'd2497 : mem_out_dec = 6'b111111;
12'd2498 : mem_out_dec = 6'b111111;
12'd2499 : mem_out_dec = 6'b111111;
12'd2500 : mem_out_dec = 6'b111111;
12'd2501 : mem_out_dec = 6'b111111;
12'd2502 : mem_out_dec = 6'b111111;
12'd2503 : mem_out_dec = 6'b111111;
12'd2504 : mem_out_dec = 6'b111111;
12'd2505 : mem_out_dec = 6'b111111;
12'd2506 : mem_out_dec = 6'b111111;
12'd2507 : mem_out_dec = 6'b111111;
12'd2508 : mem_out_dec = 6'b111111;
12'd2509 : mem_out_dec = 6'b111111;
12'd2510 : mem_out_dec = 6'b111111;
12'd2511 : mem_out_dec = 6'b111111;
12'd2512 : mem_out_dec = 6'b111111;
12'd2513 : mem_out_dec = 6'b111111;
12'd2514 : mem_out_dec = 6'b111111;
12'd2515 : mem_out_dec = 6'b111111;
12'd2516 : mem_out_dec = 6'b111111;
12'd2517 : mem_out_dec = 6'b111111;
12'd2518 : mem_out_dec = 6'b111111;
12'd2519 : mem_out_dec = 6'b111111;
12'd2520 : mem_out_dec = 6'b111111;
12'd2521 : mem_out_dec = 6'b111111;
12'd2522 : mem_out_dec = 6'b111111;
12'd2523 : mem_out_dec = 6'b111111;
12'd2524 : mem_out_dec = 6'b111111;
12'd2525 : mem_out_dec = 6'b111111;
12'd2526 : mem_out_dec = 6'b111111;
12'd2527 : mem_out_dec = 6'b111111;
12'd2528 : mem_out_dec = 6'b111111;
12'd2529 : mem_out_dec = 6'b111111;
12'd2530 : mem_out_dec = 6'b111111;
12'd2531 : mem_out_dec = 6'b111111;
12'd2532 : mem_out_dec = 6'b111111;
12'd2533 : mem_out_dec = 6'b111111;
12'd2534 : mem_out_dec = 6'b111111;
12'd2535 : mem_out_dec = 6'b111111;
12'd2536 : mem_out_dec = 6'b111111;
12'd2537 : mem_out_dec = 6'b111111;
12'd2538 : mem_out_dec = 6'b111111;
12'd2539 : mem_out_dec = 6'b111111;
12'd2540 : mem_out_dec = 6'b111111;
12'd2541 : mem_out_dec = 6'b000101;
12'd2542 : mem_out_dec = 6'b000110;
12'd2543 : mem_out_dec = 6'b000110;
12'd2544 : mem_out_dec = 6'b000110;
12'd2545 : mem_out_dec = 6'b000110;
12'd2546 : mem_out_dec = 6'b000101;
12'd2547 : mem_out_dec = 6'b000101;
12'd2548 : mem_out_dec = 6'b000110;
12'd2549 : mem_out_dec = 6'b000111;
12'd2550 : mem_out_dec = 6'b000111;
12'd2551 : mem_out_dec = 6'b001000;
12'd2552 : mem_out_dec = 6'b001000;
12'd2553 : mem_out_dec = 6'b001001;
12'd2554 : mem_out_dec = 6'b001010;
12'd2555 : mem_out_dec = 6'b001010;
12'd2556 : mem_out_dec = 6'b001011;
12'd2557 : mem_out_dec = 6'b001100;
12'd2558 : mem_out_dec = 6'b001101;
12'd2559 : mem_out_dec = 6'b001101;
12'd2560 : mem_out_dec = 6'b111111;
12'd2561 : mem_out_dec = 6'b111111;
12'd2562 : mem_out_dec = 6'b111111;
12'd2563 : mem_out_dec = 6'b111111;
12'd2564 : mem_out_dec = 6'b111111;
12'd2565 : mem_out_dec = 6'b111111;
12'd2566 : mem_out_dec = 6'b111111;
12'd2567 : mem_out_dec = 6'b111111;
12'd2568 : mem_out_dec = 6'b111111;
12'd2569 : mem_out_dec = 6'b111111;
12'd2570 : mem_out_dec = 6'b111111;
12'd2571 : mem_out_dec = 6'b111111;
12'd2572 : mem_out_dec = 6'b111111;
12'd2573 : mem_out_dec = 6'b111111;
12'd2574 : mem_out_dec = 6'b111111;
12'd2575 : mem_out_dec = 6'b111111;
12'd2576 : mem_out_dec = 6'b111111;
12'd2577 : mem_out_dec = 6'b111111;
12'd2578 : mem_out_dec = 6'b111111;
12'd2579 : mem_out_dec = 6'b111111;
12'd2580 : mem_out_dec = 6'b111111;
12'd2581 : mem_out_dec = 6'b111111;
12'd2582 : mem_out_dec = 6'b111111;
12'd2583 : mem_out_dec = 6'b111111;
12'd2584 : mem_out_dec = 6'b111111;
12'd2585 : mem_out_dec = 6'b111111;
12'd2586 : mem_out_dec = 6'b111111;
12'd2587 : mem_out_dec = 6'b111111;
12'd2588 : mem_out_dec = 6'b111111;
12'd2589 : mem_out_dec = 6'b111111;
12'd2590 : mem_out_dec = 6'b111111;
12'd2591 : mem_out_dec = 6'b111111;
12'd2592 : mem_out_dec = 6'b111111;
12'd2593 : mem_out_dec = 6'b111111;
12'd2594 : mem_out_dec = 6'b111111;
12'd2595 : mem_out_dec = 6'b111111;
12'd2596 : mem_out_dec = 6'b111111;
12'd2597 : mem_out_dec = 6'b111111;
12'd2598 : mem_out_dec = 6'b111111;
12'd2599 : mem_out_dec = 6'b111111;
12'd2600 : mem_out_dec = 6'b111111;
12'd2601 : mem_out_dec = 6'b111111;
12'd2602 : mem_out_dec = 6'b111111;
12'd2603 : mem_out_dec = 6'b111111;
12'd2604 : mem_out_dec = 6'b111111;
12'd2605 : mem_out_dec = 6'b111111;
12'd2606 : mem_out_dec = 6'b000100;
12'd2607 : mem_out_dec = 6'b000101;
12'd2608 : mem_out_dec = 6'b000100;
12'd2609 : mem_out_dec = 6'b000100;
12'd2610 : mem_out_dec = 6'b000100;
12'd2611 : mem_out_dec = 6'b000101;
12'd2612 : mem_out_dec = 6'b000101;
12'd2613 : mem_out_dec = 6'b000110;
12'd2614 : mem_out_dec = 6'b000111;
12'd2615 : mem_out_dec = 6'b000111;
12'd2616 : mem_out_dec = 6'b000111;
12'd2617 : mem_out_dec = 6'b001000;
12'd2618 : mem_out_dec = 6'b001001;
12'd2619 : mem_out_dec = 6'b001010;
12'd2620 : mem_out_dec = 6'b001010;
12'd2621 : mem_out_dec = 6'b001011;
12'd2622 : mem_out_dec = 6'b001100;
12'd2623 : mem_out_dec = 6'b001101;
12'd2624 : mem_out_dec = 6'b111111;
12'd2625 : mem_out_dec = 6'b111111;
12'd2626 : mem_out_dec = 6'b111111;
12'd2627 : mem_out_dec = 6'b111111;
12'd2628 : mem_out_dec = 6'b111111;
12'd2629 : mem_out_dec = 6'b111111;
12'd2630 : mem_out_dec = 6'b111111;
12'd2631 : mem_out_dec = 6'b111111;
12'd2632 : mem_out_dec = 6'b111111;
12'd2633 : mem_out_dec = 6'b111111;
12'd2634 : mem_out_dec = 6'b111111;
12'd2635 : mem_out_dec = 6'b111111;
12'd2636 : mem_out_dec = 6'b111111;
12'd2637 : mem_out_dec = 6'b111111;
12'd2638 : mem_out_dec = 6'b111111;
12'd2639 : mem_out_dec = 6'b111111;
12'd2640 : mem_out_dec = 6'b111111;
12'd2641 : mem_out_dec = 6'b111111;
12'd2642 : mem_out_dec = 6'b111111;
12'd2643 : mem_out_dec = 6'b111111;
12'd2644 : mem_out_dec = 6'b111111;
12'd2645 : mem_out_dec = 6'b111111;
12'd2646 : mem_out_dec = 6'b111111;
12'd2647 : mem_out_dec = 6'b111111;
12'd2648 : mem_out_dec = 6'b111111;
12'd2649 : mem_out_dec = 6'b111111;
12'd2650 : mem_out_dec = 6'b111111;
12'd2651 : mem_out_dec = 6'b111111;
12'd2652 : mem_out_dec = 6'b111111;
12'd2653 : mem_out_dec = 6'b111111;
12'd2654 : mem_out_dec = 6'b111111;
12'd2655 : mem_out_dec = 6'b111111;
12'd2656 : mem_out_dec = 6'b111111;
12'd2657 : mem_out_dec = 6'b111111;
12'd2658 : mem_out_dec = 6'b111111;
12'd2659 : mem_out_dec = 6'b111111;
12'd2660 : mem_out_dec = 6'b111111;
12'd2661 : mem_out_dec = 6'b111111;
12'd2662 : mem_out_dec = 6'b111111;
12'd2663 : mem_out_dec = 6'b111111;
12'd2664 : mem_out_dec = 6'b111111;
12'd2665 : mem_out_dec = 6'b111111;
12'd2666 : mem_out_dec = 6'b111111;
12'd2667 : mem_out_dec = 6'b111111;
12'd2668 : mem_out_dec = 6'b111111;
12'd2669 : mem_out_dec = 6'b111111;
12'd2670 : mem_out_dec = 6'b111111;
12'd2671 : mem_out_dec = 6'b000100;
12'd2672 : mem_out_dec = 6'b000011;
12'd2673 : mem_out_dec = 6'b000011;
12'd2674 : mem_out_dec = 6'b000100;
12'd2675 : mem_out_dec = 6'b000100;
12'd2676 : mem_out_dec = 6'b000101;
12'd2677 : mem_out_dec = 6'b000110;
12'd2678 : mem_out_dec = 6'b000110;
12'd2679 : mem_out_dec = 6'b000111;
12'd2680 : mem_out_dec = 6'b000111;
12'd2681 : mem_out_dec = 6'b001000;
12'd2682 : mem_out_dec = 6'b001001;
12'd2683 : mem_out_dec = 6'b001001;
12'd2684 : mem_out_dec = 6'b001010;
12'd2685 : mem_out_dec = 6'b001011;
12'd2686 : mem_out_dec = 6'b001100;
12'd2687 : mem_out_dec = 6'b001100;
12'd2688 : mem_out_dec = 6'b111111;
12'd2689 : mem_out_dec = 6'b111111;
12'd2690 : mem_out_dec = 6'b111111;
12'd2691 : mem_out_dec = 6'b111111;
12'd2692 : mem_out_dec = 6'b111111;
12'd2693 : mem_out_dec = 6'b111111;
12'd2694 : mem_out_dec = 6'b111111;
12'd2695 : mem_out_dec = 6'b111111;
12'd2696 : mem_out_dec = 6'b111111;
12'd2697 : mem_out_dec = 6'b111111;
12'd2698 : mem_out_dec = 6'b111111;
12'd2699 : mem_out_dec = 6'b111111;
12'd2700 : mem_out_dec = 6'b111111;
12'd2701 : mem_out_dec = 6'b111111;
12'd2702 : mem_out_dec = 6'b111111;
12'd2703 : mem_out_dec = 6'b111111;
12'd2704 : mem_out_dec = 6'b111111;
12'd2705 : mem_out_dec = 6'b111111;
12'd2706 : mem_out_dec = 6'b111111;
12'd2707 : mem_out_dec = 6'b111111;
12'd2708 : mem_out_dec = 6'b111111;
12'd2709 : mem_out_dec = 6'b111111;
12'd2710 : mem_out_dec = 6'b111111;
12'd2711 : mem_out_dec = 6'b111111;
12'd2712 : mem_out_dec = 6'b111111;
12'd2713 : mem_out_dec = 6'b111111;
12'd2714 : mem_out_dec = 6'b111111;
12'd2715 : mem_out_dec = 6'b111111;
12'd2716 : mem_out_dec = 6'b111111;
12'd2717 : mem_out_dec = 6'b111111;
12'd2718 : mem_out_dec = 6'b111111;
12'd2719 : mem_out_dec = 6'b111111;
12'd2720 : mem_out_dec = 6'b111111;
12'd2721 : mem_out_dec = 6'b111111;
12'd2722 : mem_out_dec = 6'b111111;
12'd2723 : mem_out_dec = 6'b111111;
12'd2724 : mem_out_dec = 6'b111111;
12'd2725 : mem_out_dec = 6'b111111;
12'd2726 : mem_out_dec = 6'b111111;
12'd2727 : mem_out_dec = 6'b111111;
12'd2728 : mem_out_dec = 6'b111111;
12'd2729 : mem_out_dec = 6'b111111;
12'd2730 : mem_out_dec = 6'b111111;
12'd2731 : mem_out_dec = 6'b111111;
12'd2732 : mem_out_dec = 6'b111111;
12'd2733 : mem_out_dec = 6'b111111;
12'd2734 : mem_out_dec = 6'b111111;
12'd2735 : mem_out_dec = 6'b111111;
12'd2736 : mem_out_dec = 6'b000011;
12'd2737 : mem_out_dec = 6'b000011;
12'd2738 : mem_out_dec = 6'b000100;
12'd2739 : mem_out_dec = 6'b000100;
12'd2740 : mem_out_dec = 6'b000101;
12'd2741 : mem_out_dec = 6'b000101;
12'd2742 : mem_out_dec = 6'b000110;
12'd2743 : mem_out_dec = 6'b000111;
12'd2744 : mem_out_dec = 6'b000111;
12'd2745 : mem_out_dec = 6'b001000;
12'd2746 : mem_out_dec = 6'b001000;
12'd2747 : mem_out_dec = 6'b001001;
12'd2748 : mem_out_dec = 6'b001010;
12'd2749 : mem_out_dec = 6'b001011;
12'd2750 : mem_out_dec = 6'b001011;
12'd2751 : mem_out_dec = 6'b001100;
12'd2752 : mem_out_dec = 6'b111111;
12'd2753 : mem_out_dec = 6'b111111;
12'd2754 : mem_out_dec = 6'b111111;
12'd2755 : mem_out_dec = 6'b111111;
12'd2756 : mem_out_dec = 6'b111111;
12'd2757 : mem_out_dec = 6'b111111;
12'd2758 : mem_out_dec = 6'b111111;
12'd2759 : mem_out_dec = 6'b111111;
12'd2760 : mem_out_dec = 6'b111111;
12'd2761 : mem_out_dec = 6'b111111;
12'd2762 : mem_out_dec = 6'b111111;
12'd2763 : mem_out_dec = 6'b111111;
12'd2764 : mem_out_dec = 6'b111111;
12'd2765 : mem_out_dec = 6'b111111;
12'd2766 : mem_out_dec = 6'b111111;
12'd2767 : mem_out_dec = 6'b111111;
12'd2768 : mem_out_dec = 6'b111111;
12'd2769 : mem_out_dec = 6'b111111;
12'd2770 : mem_out_dec = 6'b111111;
12'd2771 : mem_out_dec = 6'b111111;
12'd2772 : mem_out_dec = 6'b111111;
12'd2773 : mem_out_dec = 6'b111111;
12'd2774 : mem_out_dec = 6'b111111;
12'd2775 : mem_out_dec = 6'b111111;
12'd2776 : mem_out_dec = 6'b111111;
12'd2777 : mem_out_dec = 6'b111111;
12'd2778 : mem_out_dec = 6'b111111;
12'd2779 : mem_out_dec = 6'b111111;
12'd2780 : mem_out_dec = 6'b111111;
12'd2781 : mem_out_dec = 6'b111111;
12'd2782 : mem_out_dec = 6'b111111;
12'd2783 : mem_out_dec = 6'b111111;
12'd2784 : mem_out_dec = 6'b111111;
12'd2785 : mem_out_dec = 6'b111111;
12'd2786 : mem_out_dec = 6'b111111;
12'd2787 : mem_out_dec = 6'b111111;
12'd2788 : mem_out_dec = 6'b111111;
12'd2789 : mem_out_dec = 6'b111111;
12'd2790 : mem_out_dec = 6'b111111;
12'd2791 : mem_out_dec = 6'b111111;
12'd2792 : mem_out_dec = 6'b111111;
12'd2793 : mem_out_dec = 6'b111111;
12'd2794 : mem_out_dec = 6'b111111;
12'd2795 : mem_out_dec = 6'b111111;
12'd2796 : mem_out_dec = 6'b111111;
12'd2797 : mem_out_dec = 6'b111111;
12'd2798 : mem_out_dec = 6'b111111;
12'd2799 : mem_out_dec = 6'b111111;
12'd2800 : mem_out_dec = 6'b111111;
12'd2801 : mem_out_dec = 6'b000011;
12'd2802 : mem_out_dec = 6'b000011;
12'd2803 : mem_out_dec = 6'b000100;
12'd2804 : mem_out_dec = 6'b000101;
12'd2805 : mem_out_dec = 6'b000101;
12'd2806 : mem_out_dec = 6'b000110;
12'd2807 : mem_out_dec = 6'b000111;
12'd2808 : mem_out_dec = 6'b000111;
12'd2809 : mem_out_dec = 6'b000111;
12'd2810 : mem_out_dec = 6'b001000;
12'd2811 : mem_out_dec = 6'b001001;
12'd2812 : mem_out_dec = 6'b001010;
12'd2813 : mem_out_dec = 6'b001010;
12'd2814 : mem_out_dec = 6'b001011;
12'd2815 : mem_out_dec = 6'b001100;
12'd2816 : mem_out_dec = 6'b111111;
12'd2817 : mem_out_dec = 6'b111111;
12'd2818 : mem_out_dec = 6'b111111;
12'd2819 : mem_out_dec = 6'b111111;
12'd2820 : mem_out_dec = 6'b111111;
12'd2821 : mem_out_dec = 6'b111111;
12'd2822 : mem_out_dec = 6'b111111;
12'd2823 : mem_out_dec = 6'b111111;
12'd2824 : mem_out_dec = 6'b111111;
12'd2825 : mem_out_dec = 6'b111111;
12'd2826 : mem_out_dec = 6'b111111;
12'd2827 : mem_out_dec = 6'b111111;
12'd2828 : mem_out_dec = 6'b111111;
12'd2829 : mem_out_dec = 6'b111111;
12'd2830 : mem_out_dec = 6'b111111;
12'd2831 : mem_out_dec = 6'b111111;
12'd2832 : mem_out_dec = 6'b111111;
12'd2833 : mem_out_dec = 6'b111111;
12'd2834 : mem_out_dec = 6'b111111;
12'd2835 : mem_out_dec = 6'b111111;
12'd2836 : mem_out_dec = 6'b111111;
12'd2837 : mem_out_dec = 6'b111111;
12'd2838 : mem_out_dec = 6'b111111;
12'd2839 : mem_out_dec = 6'b111111;
12'd2840 : mem_out_dec = 6'b111111;
12'd2841 : mem_out_dec = 6'b111111;
12'd2842 : mem_out_dec = 6'b111111;
12'd2843 : mem_out_dec = 6'b111111;
12'd2844 : mem_out_dec = 6'b111111;
12'd2845 : mem_out_dec = 6'b111111;
12'd2846 : mem_out_dec = 6'b111111;
12'd2847 : mem_out_dec = 6'b111111;
12'd2848 : mem_out_dec = 6'b111111;
12'd2849 : mem_out_dec = 6'b111111;
12'd2850 : mem_out_dec = 6'b111111;
12'd2851 : mem_out_dec = 6'b111111;
12'd2852 : mem_out_dec = 6'b111111;
12'd2853 : mem_out_dec = 6'b111111;
12'd2854 : mem_out_dec = 6'b111111;
12'd2855 : mem_out_dec = 6'b111111;
12'd2856 : mem_out_dec = 6'b111111;
12'd2857 : mem_out_dec = 6'b111111;
12'd2858 : mem_out_dec = 6'b111111;
12'd2859 : mem_out_dec = 6'b111111;
12'd2860 : mem_out_dec = 6'b111111;
12'd2861 : mem_out_dec = 6'b111111;
12'd2862 : mem_out_dec = 6'b111111;
12'd2863 : mem_out_dec = 6'b111111;
12'd2864 : mem_out_dec = 6'b111111;
12'd2865 : mem_out_dec = 6'b111111;
12'd2866 : mem_out_dec = 6'b000011;
12'd2867 : mem_out_dec = 6'b000100;
12'd2868 : mem_out_dec = 6'b000100;
12'd2869 : mem_out_dec = 6'b000101;
12'd2870 : mem_out_dec = 6'b000110;
12'd2871 : mem_out_dec = 6'b000110;
12'd2872 : mem_out_dec = 6'b000110;
12'd2873 : mem_out_dec = 6'b000111;
12'd2874 : mem_out_dec = 6'b001000;
12'd2875 : mem_out_dec = 6'b001001;
12'd2876 : mem_out_dec = 6'b001001;
12'd2877 : mem_out_dec = 6'b001010;
12'd2878 : mem_out_dec = 6'b001011;
12'd2879 : mem_out_dec = 6'b001100;
12'd2880 : mem_out_dec = 6'b111111;
12'd2881 : mem_out_dec = 6'b111111;
12'd2882 : mem_out_dec = 6'b111111;
12'd2883 : mem_out_dec = 6'b111111;
12'd2884 : mem_out_dec = 6'b111111;
12'd2885 : mem_out_dec = 6'b111111;
12'd2886 : mem_out_dec = 6'b111111;
12'd2887 : mem_out_dec = 6'b111111;
12'd2888 : mem_out_dec = 6'b111111;
12'd2889 : mem_out_dec = 6'b111111;
12'd2890 : mem_out_dec = 6'b111111;
12'd2891 : mem_out_dec = 6'b111111;
12'd2892 : mem_out_dec = 6'b111111;
12'd2893 : mem_out_dec = 6'b111111;
12'd2894 : mem_out_dec = 6'b111111;
12'd2895 : mem_out_dec = 6'b111111;
12'd2896 : mem_out_dec = 6'b111111;
12'd2897 : mem_out_dec = 6'b111111;
12'd2898 : mem_out_dec = 6'b111111;
12'd2899 : mem_out_dec = 6'b111111;
12'd2900 : mem_out_dec = 6'b111111;
12'd2901 : mem_out_dec = 6'b111111;
12'd2902 : mem_out_dec = 6'b111111;
12'd2903 : mem_out_dec = 6'b111111;
12'd2904 : mem_out_dec = 6'b111111;
12'd2905 : mem_out_dec = 6'b111111;
12'd2906 : mem_out_dec = 6'b111111;
12'd2907 : mem_out_dec = 6'b111111;
12'd2908 : mem_out_dec = 6'b111111;
12'd2909 : mem_out_dec = 6'b111111;
12'd2910 : mem_out_dec = 6'b111111;
12'd2911 : mem_out_dec = 6'b111111;
12'd2912 : mem_out_dec = 6'b111111;
12'd2913 : mem_out_dec = 6'b111111;
12'd2914 : mem_out_dec = 6'b111111;
12'd2915 : mem_out_dec = 6'b111111;
12'd2916 : mem_out_dec = 6'b111111;
12'd2917 : mem_out_dec = 6'b111111;
12'd2918 : mem_out_dec = 6'b111111;
12'd2919 : mem_out_dec = 6'b111111;
12'd2920 : mem_out_dec = 6'b111111;
12'd2921 : mem_out_dec = 6'b111111;
12'd2922 : mem_out_dec = 6'b111111;
12'd2923 : mem_out_dec = 6'b111111;
12'd2924 : mem_out_dec = 6'b111111;
12'd2925 : mem_out_dec = 6'b111111;
12'd2926 : mem_out_dec = 6'b111111;
12'd2927 : mem_out_dec = 6'b111111;
12'd2928 : mem_out_dec = 6'b111111;
12'd2929 : mem_out_dec = 6'b111111;
12'd2930 : mem_out_dec = 6'b111111;
12'd2931 : mem_out_dec = 6'b000100;
12'd2932 : mem_out_dec = 6'b000100;
12'd2933 : mem_out_dec = 6'b000101;
12'd2934 : mem_out_dec = 6'b000101;
12'd2935 : mem_out_dec = 6'b000110;
12'd2936 : mem_out_dec = 6'b000110;
12'd2937 : mem_out_dec = 6'b000111;
12'd2938 : mem_out_dec = 6'b001000;
12'd2939 : mem_out_dec = 6'b001000;
12'd2940 : mem_out_dec = 6'b001001;
12'd2941 : mem_out_dec = 6'b001010;
12'd2942 : mem_out_dec = 6'b001011;
12'd2943 : mem_out_dec = 6'b001011;
12'd2944 : mem_out_dec = 6'b111111;
12'd2945 : mem_out_dec = 6'b111111;
12'd2946 : mem_out_dec = 6'b111111;
12'd2947 : mem_out_dec = 6'b111111;
12'd2948 : mem_out_dec = 6'b111111;
12'd2949 : mem_out_dec = 6'b111111;
12'd2950 : mem_out_dec = 6'b111111;
12'd2951 : mem_out_dec = 6'b111111;
12'd2952 : mem_out_dec = 6'b111111;
12'd2953 : mem_out_dec = 6'b111111;
12'd2954 : mem_out_dec = 6'b111111;
12'd2955 : mem_out_dec = 6'b111111;
12'd2956 : mem_out_dec = 6'b111111;
12'd2957 : mem_out_dec = 6'b111111;
12'd2958 : mem_out_dec = 6'b111111;
12'd2959 : mem_out_dec = 6'b111111;
12'd2960 : mem_out_dec = 6'b111111;
12'd2961 : mem_out_dec = 6'b111111;
12'd2962 : mem_out_dec = 6'b111111;
12'd2963 : mem_out_dec = 6'b111111;
12'd2964 : mem_out_dec = 6'b111111;
12'd2965 : mem_out_dec = 6'b111111;
12'd2966 : mem_out_dec = 6'b111111;
12'd2967 : mem_out_dec = 6'b111111;
12'd2968 : mem_out_dec = 6'b111111;
12'd2969 : mem_out_dec = 6'b111111;
12'd2970 : mem_out_dec = 6'b111111;
12'd2971 : mem_out_dec = 6'b111111;
12'd2972 : mem_out_dec = 6'b111111;
12'd2973 : mem_out_dec = 6'b111111;
12'd2974 : mem_out_dec = 6'b111111;
12'd2975 : mem_out_dec = 6'b111111;
12'd2976 : mem_out_dec = 6'b111111;
12'd2977 : mem_out_dec = 6'b111111;
12'd2978 : mem_out_dec = 6'b111111;
12'd2979 : mem_out_dec = 6'b111111;
12'd2980 : mem_out_dec = 6'b111111;
12'd2981 : mem_out_dec = 6'b111111;
12'd2982 : mem_out_dec = 6'b111111;
12'd2983 : mem_out_dec = 6'b111111;
12'd2984 : mem_out_dec = 6'b111111;
12'd2985 : mem_out_dec = 6'b111111;
12'd2986 : mem_out_dec = 6'b111111;
12'd2987 : mem_out_dec = 6'b111111;
12'd2988 : mem_out_dec = 6'b111111;
12'd2989 : mem_out_dec = 6'b111111;
12'd2990 : mem_out_dec = 6'b111111;
12'd2991 : mem_out_dec = 6'b111111;
12'd2992 : mem_out_dec = 6'b111111;
12'd2993 : mem_out_dec = 6'b111111;
12'd2994 : mem_out_dec = 6'b111111;
12'd2995 : mem_out_dec = 6'b111111;
12'd2996 : mem_out_dec = 6'b000100;
12'd2997 : mem_out_dec = 6'b000101;
12'd2998 : mem_out_dec = 6'b000101;
12'd2999 : mem_out_dec = 6'b000110;
12'd3000 : mem_out_dec = 6'b000110;
12'd3001 : mem_out_dec = 6'b000111;
12'd3002 : mem_out_dec = 6'b000111;
12'd3003 : mem_out_dec = 6'b001000;
12'd3004 : mem_out_dec = 6'b001001;
12'd3005 : mem_out_dec = 6'b001010;
12'd3006 : mem_out_dec = 6'b001010;
12'd3007 : mem_out_dec = 6'b001011;
12'd3008 : mem_out_dec = 6'b111111;
12'd3009 : mem_out_dec = 6'b111111;
12'd3010 : mem_out_dec = 6'b111111;
12'd3011 : mem_out_dec = 6'b111111;
12'd3012 : mem_out_dec = 6'b111111;
12'd3013 : mem_out_dec = 6'b111111;
12'd3014 : mem_out_dec = 6'b111111;
12'd3015 : mem_out_dec = 6'b111111;
12'd3016 : mem_out_dec = 6'b111111;
12'd3017 : mem_out_dec = 6'b111111;
12'd3018 : mem_out_dec = 6'b111111;
12'd3019 : mem_out_dec = 6'b111111;
12'd3020 : mem_out_dec = 6'b111111;
12'd3021 : mem_out_dec = 6'b111111;
12'd3022 : mem_out_dec = 6'b111111;
12'd3023 : mem_out_dec = 6'b111111;
12'd3024 : mem_out_dec = 6'b111111;
12'd3025 : mem_out_dec = 6'b111111;
12'd3026 : mem_out_dec = 6'b111111;
12'd3027 : mem_out_dec = 6'b111111;
12'd3028 : mem_out_dec = 6'b111111;
12'd3029 : mem_out_dec = 6'b111111;
12'd3030 : mem_out_dec = 6'b111111;
12'd3031 : mem_out_dec = 6'b111111;
12'd3032 : mem_out_dec = 6'b111111;
12'd3033 : mem_out_dec = 6'b111111;
12'd3034 : mem_out_dec = 6'b111111;
12'd3035 : mem_out_dec = 6'b111111;
12'd3036 : mem_out_dec = 6'b111111;
12'd3037 : mem_out_dec = 6'b111111;
12'd3038 : mem_out_dec = 6'b111111;
12'd3039 : mem_out_dec = 6'b111111;
12'd3040 : mem_out_dec = 6'b111111;
12'd3041 : mem_out_dec = 6'b111111;
12'd3042 : mem_out_dec = 6'b111111;
12'd3043 : mem_out_dec = 6'b111111;
12'd3044 : mem_out_dec = 6'b111111;
12'd3045 : mem_out_dec = 6'b111111;
12'd3046 : mem_out_dec = 6'b111111;
12'd3047 : mem_out_dec = 6'b111111;
12'd3048 : mem_out_dec = 6'b111111;
12'd3049 : mem_out_dec = 6'b111111;
12'd3050 : mem_out_dec = 6'b111111;
12'd3051 : mem_out_dec = 6'b111111;
12'd3052 : mem_out_dec = 6'b111111;
12'd3053 : mem_out_dec = 6'b111111;
12'd3054 : mem_out_dec = 6'b111111;
12'd3055 : mem_out_dec = 6'b111111;
12'd3056 : mem_out_dec = 6'b111111;
12'd3057 : mem_out_dec = 6'b111111;
12'd3058 : mem_out_dec = 6'b111111;
12'd3059 : mem_out_dec = 6'b111111;
12'd3060 : mem_out_dec = 6'b111111;
12'd3061 : mem_out_dec = 6'b000100;
12'd3062 : mem_out_dec = 6'b000101;
12'd3063 : mem_out_dec = 6'b000110;
12'd3064 : mem_out_dec = 6'b000110;
12'd3065 : mem_out_dec = 6'b000111;
12'd3066 : mem_out_dec = 6'b000111;
12'd3067 : mem_out_dec = 6'b001000;
12'd3068 : mem_out_dec = 6'b001001;
12'd3069 : mem_out_dec = 6'b001001;
12'd3070 : mem_out_dec = 6'b001010;
12'd3071 : mem_out_dec = 6'b001011;
12'd3072 : mem_out_dec = 6'b111111;
12'd3073 : mem_out_dec = 6'b111111;
12'd3074 : mem_out_dec = 6'b111111;
12'd3075 : mem_out_dec = 6'b111111;
12'd3076 : mem_out_dec = 6'b111111;
12'd3077 : mem_out_dec = 6'b111111;
12'd3078 : mem_out_dec = 6'b111111;
12'd3079 : mem_out_dec = 6'b111111;
12'd3080 : mem_out_dec = 6'b111111;
12'd3081 : mem_out_dec = 6'b111111;
12'd3082 : mem_out_dec = 6'b111111;
12'd3083 : mem_out_dec = 6'b111111;
12'd3084 : mem_out_dec = 6'b111111;
12'd3085 : mem_out_dec = 6'b111111;
12'd3086 : mem_out_dec = 6'b111111;
12'd3087 : mem_out_dec = 6'b111111;
12'd3088 : mem_out_dec = 6'b111111;
12'd3089 : mem_out_dec = 6'b111111;
12'd3090 : mem_out_dec = 6'b111111;
12'd3091 : mem_out_dec = 6'b111111;
12'd3092 : mem_out_dec = 6'b111111;
12'd3093 : mem_out_dec = 6'b111111;
12'd3094 : mem_out_dec = 6'b111111;
12'd3095 : mem_out_dec = 6'b111111;
12'd3096 : mem_out_dec = 6'b111111;
12'd3097 : mem_out_dec = 6'b111111;
12'd3098 : mem_out_dec = 6'b111111;
12'd3099 : mem_out_dec = 6'b111111;
12'd3100 : mem_out_dec = 6'b111111;
12'd3101 : mem_out_dec = 6'b111111;
12'd3102 : mem_out_dec = 6'b111111;
12'd3103 : mem_out_dec = 6'b111111;
12'd3104 : mem_out_dec = 6'b111111;
12'd3105 : mem_out_dec = 6'b111111;
12'd3106 : mem_out_dec = 6'b111111;
12'd3107 : mem_out_dec = 6'b111111;
12'd3108 : mem_out_dec = 6'b111111;
12'd3109 : mem_out_dec = 6'b111111;
12'd3110 : mem_out_dec = 6'b111111;
12'd3111 : mem_out_dec = 6'b111111;
12'd3112 : mem_out_dec = 6'b111111;
12'd3113 : mem_out_dec = 6'b111111;
12'd3114 : mem_out_dec = 6'b111111;
12'd3115 : mem_out_dec = 6'b111111;
12'd3116 : mem_out_dec = 6'b111111;
12'd3117 : mem_out_dec = 6'b111111;
12'd3118 : mem_out_dec = 6'b111111;
12'd3119 : mem_out_dec = 6'b111111;
12'd3120 : mem_out_dec = 6'b111111;
12'd3121 : mem_out_dec = 6'b111111;
12'd3122 : mem_out_dec = 6'b111111;
12'd3123 : mem_out_dec = 6'b111111;
12'd3124 : mem_out_dec = 6'b111111;
12'd3125 : mem_out_dec = 6'b111111;
12'd3126 : mem_out_dec = 6'b000100;
12'd3127 : mem_out_dec = 6'b000101;
12'd3128 : mem_out_dec = 6'b000101;
12'd3129 : mem_out_dec = 6'b000110;
12'd3130 : mem_out_dec = 6'b000110;
12'd3131 : mem_out_dec = 6'b000111;
12'd3132 : mem_out_dec = 6'b001000;
12'd3133 : mem_out_dec = 6'b001000;
12'd3134 : mem_out_dec = 6'b001001;
12'd3135 : mem_out_dec = 6'b001010;
12'd3136 : mem_out_dec = 6'b111111;
12'd3137 : mem_out_dec = 6'b111111;
12'd3138 : mem_out_dec = 6'b111111;
12'd3139 : mem_out_dec = 6'b111111;
12'd3140 : mem_out_dec = 6'b111111;
12'd3141 : mem_out_dec = 6'b111111;
12'd3142 : mem_out_dec = 6'b111111;
12'd3143 : mem_out_dec = 6'b111111;
12'd3144 : mem_out_dec = 6'b111111;
12'd3145 : mem_out_dec = 6'b111111;
12'd3146 : mem_out_dec = 6'b111111;
12'd3147 : mem_out_dec = 6'b111111;
12'd3148 : mem_out_dec = 6'b111111;
12'd3149 : mem_out_dec = 6'b111111;
12'd3150 : mem_out_dec = 6'b111111;
12'd3151 : mem_out_dec = 6'b111111;
12'd3152 : mem_out_dec = 6'b111111;
12'd3153 : mem_out_dec = 6'b111111;
12'd3154 : mem_out_dec = 6'b111111;
12'd3155 : mem_out_dec = 6'b111111;
12'd3156 : mem_out_dec = 6'b111111;
12'd3157 : mem_out_dec = 6'b111111;
12'd3158 : mem_out_dec = 6'b111111;
12'd3159 : mem_out_dec = 6'b111111;
12'd3160 : mem_out_dec = 6'b111111;
12'd3161 : mem_out_dec = 6'b111111;
12'd3162 : mem_out_dec = 6'b111111;
12'd3163 : mem_out_dec = 6'b111111;
12'd3164 : mem_out_dec = 6'b111111;
12'd3165 : mem_out_dec = 6'b111111;
12'd3166 : mem_out_dec = 6'b111111;
12'd3167 : mem_out_dec = 6'b111111;
12'd3168 : mem_out_dec = 6'b111111;
12'd3169 : mem_out_dec = 6'b111111;
12'd3170 : mem_out_dec = 6'b111111;
12'd3171 : mem_out_dec = 6'b111111;
12'd3172 : mem_out_dec = 6'b111111;
12'd3173 : mem_out_dec = 6'b111111;
12'd3174 : mem_out_dec = 6'b111111;
12'd3175 : mem_out_dec = 6'b111111;
12'd3176 : mem_out_dec = 6'b111111;
12'd3177 : mem_out_dec = 6'b111111;
12'd3178 : mem_out_dec = 6'b111111;
12'd3179 : mem_out_dec = 6'b111111;
12'd3180 : mem_out_dec = 6'b111111;
12'd3181 : mem_out_dec = 6'b111111;
12'd3182 : mem_out_dec = 6'b111111;
12'd3183 : mem_out_dec = 6'b111111;
12'd3184 : mem_out_dec = 6'b111111;
12'd3185 : mem_out_dec = 6'b111111;
12'd3186 : mem_out_dec = 6'b111111;
12'd3187 : mem_out_dec = 6'b111111;
12'd3188 : mem_out_dec = 6'b111111;
12'd3189 : mem_out_dec = 6'b111111;
12'd3190 : mem_out_dec = 6'b111111;
12'd3191 : mem_out_dec = 6'b000100;
12'd3192 : mem_out_dec = 6'b000100;
12'd3193 : mem_out_dec = 6'b000101;
12'd3194 : mem_out_dec = 6'b000110;
12'd3195 : mem_out_dec = 6'b000110;
12'd3196 : mem_out_dec = 6'b000111;
12'd3197 : mem_out_dec = 6'b001000;
12'd3198 : mem_out_dec = 6'b001000;
12'd3199 : mem_out_dec = 6'b001001;
12'd3200 : mem_out_dec = 6'b111111;
12'd3201 : mem_out_dec = 6'b111111;
12'd3202 : mem_out_dec = 6'b111111;
12'd3203 : mem_out_dec = 6'b111111;
12'd3204 : mem_out_dec = 6'b111111;
12'd3205 : mem_out_dec = 6'b111111;
12'd3206 : mem_out_dec = 6'b111111;
12'd3207 : mem_out_dec = 6'b111111;
12'd3208 : mem_out_dec = 6'b111111;
12'd3209 : mem_out_dec = 6'b111111;
12'd3210 : mem_out_dec = 6'b111111;
12'd3211 : mem_out_dec = 6'b111111;
12'd3212 : mem_out_dec = 6'b111111;
12'd3213 : mem_out_dec = 6'b111111;
12'd3214 : mem_out_dec = 6'b111111;
12'd3215 : mem_out_dec = 6'b111111;
12'd3216 : mem_out_dec = 6'b111111;
12'd3217 : mem_out_dec = 6'b111111;
12'd3218 : mem_out_dec = 6'b111111;
12'd3219 : mem_out_dec = 6'b111111;
12'd3220 : mem_out_dec = 6'b111111;
12'd3221 : mem_out_dec = 6'b111111;
12'd3222 : mem_out_dec = 6'b111111;
12'd3223 : mem_out_dec = 6'b111111;
12'd3224 : mem_out_dec = 6'b111111;
12'd3225 : mem_out_dec = 6'b111111;
12'd3226 : mem_out_dec = 6'b111111;
12'd3227 : mem_out_dec = 6'b111111;
12'd3228 : mem_out_dec = 6'b111111;
12'd3229 : mem_out_dec = 6'b111111;
12'd3230 : mem_out_dec = 6'b111111;
12'd3231 : mem_out_dec = 6'b111111;
12'd3232 : mem_out_dec = 6'b111111;
12'd3233 : mem_out_dec = 6'b111111;
12'd3234 : mem_out_dec = 6'b111111;
12'd3235 : mem_out_dec = 6'b111111;
12'd3236 : mem_out_dec = 6'b111111;
12'd3237 : mem_out_dec = 6'b111111;
12'd3238 : mem_out_dec = 6'b111111;
12'd3239 : mem_out_dec = 6'b111111;
12'd3240 : mem_out_dec = 6'b111111;
12'd3241 : mem_out_dec = 6'b111111;
12'd3242 : mem_out_dec = 6'b111111;
12'd3243 : mem_out_dec = 6'b111111;
12'd3244 : mem_out_dec = 6'b111111;
12'd3245 : mem_out_dec = 6'b111111;
12'd3246 : mem_out_dec = 6'b111111;
12'd3247 : mem_out_dec = 6'b111111;
12'd3248 : mem_out_dec = 6'b111111;
12'd3249 : mem_out_dec = 6'b111111;
12'd3250 : mem_out_dec = 6'b111111;
12'd3251 : mem_out_dec = 6'b111111;
12'd3252 : mem_out_dec = 6'b111111;
12'd3253 : mem_out_dec = 6'b111111;
12'd3254 : mem_out_dec = 6'b111111;
12'd3255 : mem_out_dec = 6'b111111;
12'd3256 : mem_out_dec = 6'b000100;
12'd3257 : mem_out_dec = 6'b000100;
12'd3258 : mem_out_dec = 6'b000101;
12'd3259 : mem_out_dec = 6'b000110;
12'd3260 : mem_out_dec = 6'b000110;
12'd3261 : mem_out_dec = 6'b000111;
12'd3262 : mem_out_dec = 6'b001000;
12'd3263 : mem_out_dec = 6'b001001;
12'd3264 : mem_out_dec = 6'b111111;
12'd3265 : mem_out_dec = 6'b111111;
12'd3266 : mem_out_dec = 6'b111111;
12'd3267 : mem_out_dec = 6'b111111;
12'd3268 : mem_out_dec = 6'b111111;
12'd3269 : mem_out_dec = 6'b111111;
12'd3270 : mem_out_dec = 6'b111111;
12'd3271 : mem_out_dec = 6'b111111;
12'd3272 : mem_out_dec = 6'b111111;
12'd3273 : mem_out_dec = 6'b111111;
12'd3274 : mem_out_dec = 6'b111111;
12'd3275 : mem_out_dec = 6'b111111;
12'd3276 : mem_out_dec = 6'b111111;
12'd3277 : mem_out_dec = 6'b111111;
12'd3278 : mem_out_dec = 6'b111111;
12'd3279 : mem_out_dec = 6'b111111;
12'd3280 : mem_out_dec = 6'b111111;
12'd3281 : mem_out_dec = 6'b111111;
12'd3282 : mem_out_dec = 6'b111111;
12'd3283 : mem_out_dec = 6'b111111;
12'd3284 : mem_out_dec = 6'b111111;
12'd3285 : mem_out_dec = 6'b111111;
12'd3286 : mem_out_dec = 6'b111111;
12'd3287 : mem_out_dec = 6'b111111;
12'd3288 : mem_out_dec = 6'b111111;
12'd3289 : mem_out_dec = 6'b111111;
12'd3290 : mem_out_dec = 6'b111111;
12'd3291 : mem_out_dec = 6'b111111;
12'd3292 : mem_out_dec = 6'b111111;
12'd3293 : mem_out_dec = 6'b111111;
12'd3294 : mem_out_dec = 6'b111111;
12'd3295 : mem_out_dec = 6'b111111;
12'd3296 : mem_out_dec = 6'b111111;
12'd3297 : mem_out_dec = 6'b111111;
12'd3298 : mem_out_dec = 6'b111111;
12'd3299 : mem_out_dec = 6'b111111;
12'd3300 : mem_out_dec = 6'b111111;
12'd3301 : mem_out_dec = 6'b111111;
12'd3302 : mem_out_dec = 6'b111111;
12'd3303 : mem_out_dec = 6'b111111;
12'd3304 : mem_out_dec = 6'b111111;
12'd3305 : mem_out_dec = 6'b111111;
12'd3306 : mem_out_dec = 6'b111111;
12'd3307 : mem_out_dec = 6'b111111;
12'd3308 : mem_out_dec = 6'b111111;
12'd3309 : mem_out_dec = 6'b111111;
12'd3310 : mem_out_dec = 6'b111111;
12'd3311 : mem_out_dec = 6'b111111;
12'd3312 : mem_out_dec = 6'b111111;
12'd3313 : mem_out_dec = 6'b111111;
12'd3314 : mem_out_dec = 6'b111111;
12'd3315 : mem_out_dec = 6'b111111;
12'd3316 : mem_out_dec = 6'b111111;
12'd3317 : mem_out_dec = 6'b111111;
12'd3318 : mem_out_dec = 6'b111111;
12'd3319 : mem_out_dec = 6'b111111;
12'd3320 : mem_out_dec = 6'b111111;
12'd3321 : mem_out_dec = 6'b000100;
12'd3322 : mem_out_dec = 6'b000100;
12'd3323 : mem_out_dec = 6'b000101;
12'd3324 : mem_out_dec = 6'b000110;
12'd3325 : mem_out_dec = 6'b000111;
12'd3326 : mem_out_dec = 6'b001000;
12'd3327 : mem_out_dec = 6'b001000;
12'd3328 : mem_out_dec = 6'b111111;
12'd3329 : mem_out_dec = 6'b111111;
12'd3330 : mem_out_dec = 6'b111111;
12'd3331 : mem_out_dec = 6'b111111;
12'd3332 : mem_out_dec = 6'b111111;
12'd3333 : mem_out_dec = 6'b111111;
12'd3334 : mem_out_dec = 6'b111111;
12'd3335 : mem_out_dec = 6'b111111;
12'd3336 : mem_out_dec = 6'b111111;
12'd3337 : mem_out_dec = 6'b111111;
12'd3338 : mem_out_dec = 6'b111111;
12'd3339 : mem_out_dec = 6'b111111;
12'd3340 : mem_out_dec = 6'b111111;
12'd3341 : mem_out_dec = 6'b111111;
12'd3342 : mem_out_dec = 6'b111111;
12'd3343 : mem_out_dec = 6'b111111;
12'd3344 : mem_out_dec = 6'b111111;
12'd3345 : mem_out_dec = 6'b111111;
12'd3346 : mem_out_dec = 6'b111111;
12'd3347 : mem_out_dec = 6'b111111;
12'd3348 : mem_out_dec = 6'b111111;
12'd3349 : mem_out_dec = 6'b111111;
12'd3350 : mem_out_dec = 6'b111111;
12'd3351 : mem_out_dec = 6'b111111;
12'd3352 : mem_out_dec = 6'b111111;
12'd3353 : mem_out_dec = 6'b111111;
12'd3354 : mem_out_dec = 6'b111111;
12'd3355 : mem_out_dec = 6'b111111;
12'd3356 : mem_out_dec = 6'b111111;
12'd3357 : mem_out_dec = 6'b111111;
12'd3358 : mem_out_dec = 6'b111111;
12'd3359 : mem_out_dec = 6'b111111;
12'd3360 : mem_out_dec = 6'b111111;
12'd3361 : mem_out_dec = 6'b111111;
12'd3362 : mem_out_dec = 6'b111111;
12'd3363 : mem_out_dec = 6'b111111;
12'd3364 : mem_out_dec = 6'b111111;
12'd3365 : mem_out_dec = 6'b111111;
12'd3366 : mem_out_dec = 6'b111111;
12'd3367 : mem_out_dec = 6'b111111;
12'd3368 : mem_out_dec = 6'b111111;
12'd3369 : mem_out_dec = 6'b111111;
12'd3370 : mem_out_dec = 6'b111111;
12'd3371 : mem_out_dec = 6'b111111;
12'd3372 : mem_out_dec = 6'b111111;
12'd3373 : mem_out_dec = 6'b111111;
12'd3374 : mem_out_dec = 6'b111111;
12'd3375 : mem_out_dec = 6'b111111;
12'd3376 : mem_out_dec = 6'b111111;
12'd3377 : mem_out_dec = 6'b111111;
12'd3378 : mem_out_dec = 6'b111111;
12'd3379 : mem_out_dec = 6'b111111;
12'd3380 : mem_out_dec = 6'b111111;
12'd3381 : mem_out_dec = 6'b111111;
12'd3382 : mem_out_dec = 6'b111111;
12'd3383 : mem_out_dec = 6'b111111;
12'd3384 : mem_out_dec = 6'b111111;
12'd3385 : mem_out_dec = 6'b111111;
12'd3386 : mem_out_dec = 6'b000100;
12'd3387 : mem_out_dec = 6'b000101;
12'd3388 : mem_out_dec = 6'b000110;
12'd3389 : mem_out_dec = 6'b000110;
12'd3390 : mem_out_dec = 6'b000111;
12'd3391 : mem_out_dec = 6'b001000;
12'd3392 : mem_out_dec = 6'b111111;
12'd3393 : mem_out_dec = 6'b111111;
12'd3394 : mem_out_dec = 6'b111111;
12'd3395 : mem_out_dec = 6'b111111;
12'd3396 : mem_out_dec = 6'b111111;
12'd3397 : mem_out_dec = 6'b111111;
12'd3398 : mem_out_dec = 6'b111111;
12'd3399 : mem_out_dec = 6'b111111;
12'd3400 : mem_out_dec = 6'b111111;
12'd3401 : mem_out_dec = 6'b111111;
12'd3402 : mem_out_dec = 6'b111111;
12'd3403 : mem_out_dec = 6'b111111;
12'd3404 : mem_out_dec = 6'b111111;
12'd3405 : mem_out_dec = 6'b111111;
12'd3406 : mem_out_dec = 6'b111111;
12'd3407 : mem_out_dec = 6'b111111;
12'd3408 : mem_out_dec = 6'b111111;
12'd3409 : mem_out_dec = 6'b111111;
12'd3410 : mem_out_dec = 6'b111111;
12'd3411 : mem_out_dec = 6'b111111;
12'd3412 : mem_out_dec = 6'b111111;
12'd3413 : mem_out_dec = 6'b111111;
12'd3414 : mem_out_dec = 6'b111111;
12'd3415 : mem_out_dec = 6'b111111;
12'd3416 : mem_out_dec = 6'b111111;
12'd3417 : mem_out_dec = 6'b111111;
12'd3418 : mem_out_dec = 6'b111111;
12'd3419 : mem_out_dec = 6'b111111;
12'd3420 : mem_out_dec = 6'b111111;
12'd3421 : mem_out_dec = 6'b111111;
12'd3422 : mem_out_dec = 6'b111111;
12'd3423 : mem_out_dec = 6'b111111;
12'd3424 : mem_out_dec = 6'b111111;
12'd3425 : mem_out_dec = 6'b111111;
12'd3426 : mem_out_dec = 6'b111111;
12'd3427 : mem_out_dec = 6'b111111;
12'd3428 : mem_out_dec = 6'b111111;
12'd3429 : mem_out_dec = 6'b111111;
12'd3430 : mem_out_dec = 6'b111111;
12'd3431 : mem_out_dec = 6'b111111;
12'd3432 : mem_out_dec = 6'b111111;
12'd3433 : mem_out_dec = 6'b111111;
12'd3434 : mem_out_dec = 6'b111111;
12'd3435 : mem_out_dec = 6'b111111;
12'd3436 : mem_out_dec = 6'b111111;
12'd3437 : mem_out_dec = 6'b111111;
12'd3438 : mem_out_dec = 6'b111111;
12'd3439 : mem_out_dec = 6'b111111;
12'd3440 : mem_out_dec = 6'b111111;
12'd3441 : mem_out_dec = 6'b111111;
12'd3442 : mem_out_dec = 6'b111111;
12'd3443 : mem_out_dec = 6'b111111;
12'd3444 : mem_out_dec = 6'b111111;
12'd3445 : mem_out_dec = 6'b111111;
12'd3446 : mem_out_dec = 6'b111111;
12'd3447 : mem_out_dec = 6'b111111;
12'd3448 : mem_out_dec = 6'b111111;
12'd3449 : mem_out_dec = 6'b111111;
12'd3450 : mem_out_dec = 6'b111111;
12'd3451 : mem_out_dec = 6'b000100;
12'd3452 : mem_out_dec = 6'b000101;
12'd3453 : mem_out_dec = 6'b000110;
12'd3454 : mem_out_dec = 6'b000111;
12'd3455 : mem_out_dec = 6'b001000;
12'd3456 : mem_out_dec = 6'b111111;
12'd3457 : mem_out_dec = 6'b111111;
12'd3458 : mem_out_dec = 6'b111111;
12'd3459 : mem_out_dec = 6'b111111;
12'd3460 : mem_out_dec = 6'b111111;
12'd3461 : mem_out_dec = 6'b111111;
12'd3462 : mem_out_dec = 6'b111111;
12'd3463 : mem_out_dec = 6'b111111;
12'd3464 : mem_out_dec = 6'b111111;
12'd3465 : mem_out_dec = 6'b111111;
12'd3466 : mem_out_dec = 6'b111111;
12'd3467 : mem_out_dec = 6'b111111;
12'd3468 : mem_out_dec = 6'b111111;
12'd3469 : mem_out_dec = 6'b111111;
12'd3470 : mem_out_dec = 6'b111111;
12'd3471 : mem_out_dec = 6'b111111;
12'd3472 : mem_out_dec = 6'b111111;
12'd3473 : mem_out_dec = 6'b111111;
12'd3474 : mem_out_dec = 6'b111111;
12'd3475 : mem_out_dec = 6'b111111;
12'd3476 : mem_out_dec = 6'b111111;
12'd3477 : mem_out_dec = 6'b111111;
12'd3478 : mem_out_dec = 6'b111111;
12'd3479 : mem_out_dec = 6'b111111;
12'd3480 : mem_out_dec = 6'b111111;
12'd3481 : mem_out_dec = 6'b111111;
12'd3482 : mem_out_dec = 6'b111111;
12'd3483 : mem_out_dec = 6'b111111;
12'd3484 : mem_out_dec = 6'b111111;
12'd3485 : mem_out_dec = 6'b111111;
12'd3486 : mem_out_dec = 6'b111111;
12'd3487 : mem_out_dec = 6'b111111;
12'd3488 : mem_out_dec = 6'b111111;
12'd3489 : mem_out_dec = 6'b111111;
12'd3490 : mem_out_dec = 6'b111111;
12'd3491 : mem_out_dec = 6'b111111;
12'd3492 : mem_out_dec = 6'b111111;
12'd3493 : mem_out_dec = 6'b111111;
12'd3494 : mem_out_dec = 6'b111111;
12'd3495 : mem_out_dec = 6'b111111;
12'd3496 : mem_out_dec = 6'b111111;
12'd3497 : mem_out_dec = 6'b111111;
12'd3498 : mem_out_dec = 6'b111111;
12'd3499 : mem_out_dec = 6'b111111;
12'd3500 : mem_out_dec = 6'b111111;
12'd3501 : mem_out_dec = 6'b111111;
12'd3502 : mem_out_dec = 6'b111111;
12'd3503 : mem_out_dec = 6'b111111;
12'd3504 : mem_out_dec = 6'b111111;
12'd3505 : mem_out_dec = 6'b111111;
12'd3506 : mem_out_dec = 6'b111111;
12'd3507 : mem_out_dec = 6'b111111;
12'd3508 : mem_out_dec = 6'b111111;
12'd3509 : mem_out_dec = 6'b111111;
12'd3510 : mem_out_dec = 6'b111111;
12'd3511 : mem_out_dec = 6'b111111;
12'd3512 : mem_out_dec = 6'b111111;
12'd3513 : mem_out_dec = 6'b111111;
12'd3514 : mem_out_dec = 6'b111111;
12'd3515 : mem_out_dec = 6'b111111;
12'd3516 : mem_out_dec = 6'b000101;
12'd3517 : mem_out_dec = 6'b000110;
12'd3518 : mem_out_dec = 6'b000110;
12'd3519 : mem_out_dec = 6'b000111;
12'd3520 : mem_out_dec = 6'b111111;
12'd3521 : mem_out_dec = 6'b111111;
12'd3522 : mem_out_dec = 6'b111111;
12'd3523 : mem_out_dec = 6'b111111;
12'd3524 : mem_out_dec = 6'b111111;
12'd3525 : mem_out_dec = 6'b111111;
12'd3526 : mem_out_dec = 6'b111111;
12'd3527 : mem_out_dec = 6'b111111;
12'd3528 : mem_out_dec = 6'b111111;
12'd3529 : mem_out_dec = 6'b111111;
12'd3530 : mem_out_dec = 6'b111111;
12'd3531 : mem_out_dec = 6'b111111;
12'd3532 : mem_out_dec = 6'b111111;
12'd3533 : mem_out_dec = 6'b111111;
12'd3534 : mem_out_dec = 6'b111111;
12'd3535 : mem_out_dec = 6'b111111;
12'd3536 : mem_out_dec = 6'b111111;
12'd3537 : mem_out_dec = 6'b111111;
12'd3538 : mem_out_dec = 6'b111111;
12'd3539 : mem_out_dec = 6'b111111;
12'd3540 : mem_out_dec = 6'b111111;
12'd3541 : mem_out_dec = 6'b111111;
12'd3542 : mem_out_dec = 6'b111111;
12'd3543 : mem_out_dec = 6'b111111;
12'd3544 : mem_out_dec = 6'b111111;
12'd3545 : mem_out_dec = 6'b111111;
12'd3546 : mem_out_dec = 6'b111111;
12'd3547 : mem_out_dec = 6'b111111;
12'd3548 : mem_out_dec = 6'b111111;
12'd3549 : mem_out_dec = 6'b111111;
12'd3550 : mem_out_dec = 6'b111111;
12'd3551 : mem_out_dec = 6'b111111;
12'd3552 : mem_out_dec = 6'b111111;
12'd3553 : mem_out_dec = 6'b111111;
12'd3554 : mem_out_dec = 6'b111111;
12'd3555 : mem_out_dec = 6'b111111;
12'd3556 : mem_out_dec = 6'b111111;
12'd3557 : mem_out_dec = 6'b111111;
12'd3558 : mem_out_dec = 6'b111111;
12'd3559 : mem_out_dec = 6'b111111;
12'd3560 : mem_out_dec = 6'b111111;
12'd3561 : mem_out_dec = 6'b111111;
12'd3562 : mem_out_dec = 6'b111111;
12'd3563 : mem_out_dec = 6'b111111;
12'd3564 : mem_out_dec = 6'b111111;
12'd3565 : mem_out_dec = 6'b111111;
12'd3566 : mem_out_dec = 6'b111111;
12'd3567 : mem_out_dec = 6'b111111;
12'd3568 : mem_out_dec = 6'b111111;
12'd3569 : mem_out_dec = 6'b111111;
12'd3570 : mem_out_dec = 6'b111111;
12'd3571 : mem_out_dec = 6'b111111;
12'd3572 : mem_out_dec = 6'b111111;
12'd3573 : mem_out_dec = 6'b111111;
12'd3574 : mem_out_dec = 6'b111111;
12'd3575 : mem_out_dec = 6'b111111;
12'd3576 : mem_out_dec = 6'b111111;
12'd3577 : mem_out_dec = 6'b111111;
12'd3578 : mem_out_dec = 6'b111111;
12'd3579 : mem_out_dec = 6'b111111;
12'd3580 : mem_out_dec = 6'b111111;
12'd3581 : mem_out_dec = 6'b000101;
12'd3582 : mem_out_dec = 6'b000110;
12'd3583 : mem_out_dec = 6'b000110;
12'd3584 : mem_out_dec = 6'b111111;
12'd3585 : mem_out_dec = 6'b111111;
12'd3586 : mem_out_dec = 6'b111111;
12'd3587 : mem_out_dec = 6'b111111;
12'd3588 : mem_out_dec = 6'b111111;
12'd3589 : mem_out_dec = 6'b111111;
12'd3590 : mem_out_dec = 6'b111111;
12'd3591 : mem_out_dec = 6'b111111;
12'd3592 : mem_out_dec = 6'b111111;
12'd3593 : mem_out_dec = 6'b111111;
12'd3594 : mem_out_dec = 6'b111111;
12'd3595 : mem_out_dec = 6'b111111;
12'd3596 : mem_out_dec = 6'b111111;
12'd3597 : mem_out_dec = 6'b111111;
12'd3598 : mem_out_dec = 6'b111111;
12'd3599 : mem_out_dec = 6'b111111;
12'd3600 : mem_out_dec = 6'b111111;
12'd3601 : mem_out_dec = 6'b111111;
12'd3602 : mem_out_dec = 6'b111111;
12'd3603 : mem_out_dec = 6'b111111;
12'd3604 : mem_out_dec = 6'b111111;
12'd3605 : mem_out_dec = 6'b111111;
12'd3606 : mem_out_dec = 6'b111111;
12'd3607 : mem_out_dec = 6'b111111;
12'd3608 : mem_out_dec = 6'b111111;
12'd3609 : mem_out_dec = 6'b111111;
12'd3610 : mem_out_dec = 6'b111111;
12'd3611 : mem_out_dec = 6'b111111;
12'd3612 : mem_out_dec = 6'b111111;
12'd3613 : mem_out_dec = 6'b111111;
12'd3614 : mem_out_dec = 6'b111111;
12'd3615 : mem_out_dec = 6'b111111;
12'd3616 : mem_out_dec = 6'b111111;
12'd3617 : mem_out_dec = 6'b111111;
12'd3618 : mem_out_dec = 6'b111111;
12'd3619 : mem_out_dec = 6'b111111;
12'd3620 : mem_out_dec = 6'b111111;
12'd3621 : mem_out_dec = 6'b111111;
12'd3622 : mem_out_dec = 6'b111111;
12'd3623 : mem_out_dec = 6'b111111;
12'd3624 : mem_out_dec = 6'b111111;
12'd3625 : mem_out_dec = 6'b111111;
12'd3626 : mem_out_dec = 6'b111111;
12'd3627 : mem_out_dec = 6'b111111;
12'd3628 : mem_out_dec = 6'b111111;
12'd3629 : mem_out_dec = 6'b111111;
12'd3630 : mem_out_dec = 6'b111111;
12'd3631 : mem_out_dec = 6'b111111;
12'd3632 : mem_out_dec = 6'b111111;
12'd3633 : mem_out_dec = 6'b111111;
12'd3634 : mem_out_dec = 6'b111111;
12'd3635 : mem_out_dec = 6'b111111;
12'd3636 : mem_out_dec = 6'b111111;
12'd3637 : mem_out_dec = 6'b111111;
12'd3638 : mem_out_dec = 6'b111111;
12'd3639 : mem_out_dec = 6'b111111;
12'd3640 : mem_out_dec = 6'b111111;
12'd3641 : mem_out_dec = 6'b111111;
12'd3642 : mem_out_dec = 6'b111111;
12'd3643 : mem_out_dec = 6'b111111;
12'd3644 : mem_out_dec = 6'b111111;
12'd3645 : mem_out_dec = 6'b111111;
12'd3646 : mem_out_dec = 6'b000100;
12'd3647 : mem_out_dec = 6'b000101;
12'd3648 : mem_out_dec = 6'b111111;
12'd3649 : mem_out_dec = 6'b111111;
12'd3650 : mem_out_dec = 6'b111111;
12'd3651 : mem_out_dec = 6'b111111;
12'd3652 : mem_out_dec = 6'b111111;
12'd3653 : mem_out_dec = 6'b111111;
12'd3654 : mem_out_dec = 6'b111111;
12'd3655 : mem_out_dec = 6'b111111;
12'd3656 : mem_out_dec = 6'b111111;
12'd3657 : mem_out_dec = 6'b111111;
12'd3658 : mem_out_dec = 6'b111111;
12'd3659 : mem_out_dec = 6'b111111;
12'd3660 : mem_out_dec = 6'b111111;
12'd3661 : mem_out_dec = 6'b111111;
12'd3662 : mem_out_dec = 6'b111111;
12'd3663 : mem_out_dec = 6'b111111;
12'd3664 : mem_out_dec = 6'b111111;
12'd3665 : mem_out_dec = 6'b111111;
12'd3666 : mem_out_dec = 6'b111111;
12'd3667 : mem_out_dec = 6'b111111;
12'd3668 : mem_out_dec = 6'b111111;
12'd3669 : mem_out_dec = 6'b111111;
12'd3670 : mem_out_dec = 6'b111111;
12'd3671 : mem_out_dec = 6'b111111;
12'd3672 : mem_out_dec = 6'b111111;
12'd3673 : mem_out_dec = 6'b111111;
12'd3674 : mem_out_dec = 6'b111111;
12'd3675 : mem_out_dec = 6'b111111;
12'd3676 : mem_out_dec = 6'b111111;
12'd3677 : mem_out_dec = 6'b111111;
12'd3678 : mem_out_dec = 6'b111111;
12'd3679 : mem_out_dec = 6'b111111;
12'd3680 : mem_out_dec = 6'b111111;
12'd3681 : mem_out_dec = 6'b111111;
12'd3682 : mem_out_dec = 6'b111111;
12'd3683 : mem_out_dec = 6'b111111;
12'd3684 : mem_out_dec = 6'b111111;
12'd3685 : mem_out_dec = 6'b111111;
12'd3686 : mem_out_dec = 6'b111111;
12'd3687 : mem_out_dec = 6'b111111;
12'd3688 : mem_out_dec = 6'b111111;
12'd3689 : mem_out_dec = 6'b111111;
12'd3690 : mem_out_dec = 6'b111111;
12'd3691 : mem_out_dec = 6'b111111;
12'd3692 : mem_out_dec = 6'b111111;
12'd3693 : mem_out_dec = 6'b111111;
12'd3694 : mem_out_dec = 6'b111111;
12'd3695 : mem_out_dec = 6'b111111;
12'd3696 : mem_out_dec = 6'b111111;
12'd3697 : mem_out_dec = 6'b111111;
12'd3698 : mem_out_dec = 6'b111111;
12'd3699 : mem_out_dec = 6'b111111;
12'd3700 : mem_out_dec = 6'b111111;
12'd3701 : mem_out_dec = 6'b111111;
12'd3702 : mem_out_dec = 6'b111111;
12'd3703 : mem_out_dec = 6'b111111;
12'd3704 : mem_out_dec = 6'b111111;
12'd3705 : mem_out_dec = 6'b111111;
12'd3706 : mem_out_dec = 6'b111111;
12'd3707 : mem_out_dec = 6'b111111;
12'd3708 : mem_out_dec = 6'b111111;
12'd3709 : mem_out_dec = 6'b111111;
12'd3710 : mem_out_dec = 6'b111111;
12'd3711 : mem_out_dec = 6'b000100;
12'd3712 : mem_out_dec = 6'b111111;
12'd3713 : mem_out_dec = 6'b111111;
12'd3714 : mem_out_dec = 6'b111111;
12'd3715 : mem_out_dec = 6'b111111;
12'd3716 : mem_out_dec = 6'b111111;
12'd3717 : mem_out_dec = 6'b111111;
12'd3718 : mem_out_dec = 6'b111111;
12'd3719 : mem_out_dec = 6'b111111;
12'd3720 : mem_out_dec = 6'b111111;
12'd3721 : mem_out_dec = 6'b111111;
12'd3722 : mem_out_dec = 6'b111111;
12'd3723 : mem_out_dec = 6'b111111;
12'd3724 : mem_out_dec = 6'b111111;
12'd3725 : mem_out_dec = 6'b111111;
12'd3726 : mem_out_dec = 6'b111111;
12'd3727 : mem_out_dec = 6'b111111;
12'd3728 : mem_out_dec = 6'b111111;
12'd3729 : mem_out_dec = 6'b111111;
12'd3730 : mem_out_dec = 6'b111111;
12'd3731 : mem_out_dec = 6'b111111;
12'd3732 : mem_out_dec = 6'b111111;
12'd3733 : mem_out_dec = 6'b111111;
12'd3734 : mem_out_dec = 6'b111111;
12'd3735 : mem_out_dec = 6'b111111;
12'd3736 : mem_out_dec = 6'b111111;
12'd3737 : mem_out_dec = 6'b111111;
12'd3738 : mem_out_dec = 6'b111111;
12'd3739 : mem_out_dec = 6'b111111;
12'd3740 : mem_out_dec = 6'b111111;
12'd3741 : mem_out_dec = 6'b111111;
12'd3742 : mem_out_dec = 6'b111111;
12'd3743 : mem_out_dec = 6'b111111;
12'd3744 : mem_out_dec = 6'b111111;
12'd3745 : mem_out_dec = 6'b111111;
12'd3746 : mem_out_dec = 6'b111111;
12'd3747 : mem_out_dec = 6'b111111;
12'd3748 : mem_out_dec = 6'b111111;
12'd3749 : mem_out_dec = 6'b111111;
12'd3750 : mem_out_dec = 6'b111111;
12'd3751 : mem_out_dec = 6'b111111;
12'd3752 : mem_out_dec = 6'b111111;
12'd3753 : mem_out_dec = 6'b111111;
12'd3754 : mem_out_dec = 6'b111111;
12'd3755 : mem_out_dec = 6'b111111;
12'd3756 : mem_out_dec = 6'b111111;
12'd3757 : mem_out_dec = 6'b111111;
12'd3758 : mem_out_dec = 6'b111111;
12'd3759 : mem_out_dec = 6'b111111;
12'd3760 : mem_out_dec = 6'b111111;
12'd3761 : mem_out_dec = 6'b111111;
12'd3762 : mem_out_dec = 6'b111111;
12'd3763 : mem_out_dec = 6'b111111;
12'd3764 : mem_out_dec = 6'b111111;
12'd3765 : mem_out_dec = 6'b111111;
12'd3766 : mem_out_dec = 6'b111111;
12'd3767 : mem_out_dec = 6'b111111;
12'd3768 : mem_out_dec = 6'b111111;
12'd3769 : mem_out_dec = 6'b111111;
12'd3770 : mem_out_dec = 6'b111111;
12'd3771 : mem_out_dec = 6'b111111;
12'd3772 : mem_out_dec = 6'b111111;
12'd3773 : mem_out_dec = 6'b111111;
12'd3774 : mem_out_dec = 6'b111111;
12'd3775 : mem_out_dec = 6'b111111;
12'd3776 : mem_out_dec = 6'b111111;
12'd3777 : mem_out_dec = 6'b111111;
12'd3778 : mem_out_dec = 6'b111111;
12'd3779 : mem_out_dec = 6'b111111;
12'd3780 : mem_out_dec = 6'b111111;
12'd3781 : mem_out_dec = 6'b111111;
12'd3782 : mem_out_dec = 6'b111111;
12'd3783 : mem_out_dec = 6'b111111;
12'd3784 : mem_out_dec = 6'b111111;
12'd3785 : mem_out_dec = 6'b111111;
12'd3786 : mem_out_dec = 6'b111111;
12'd3787 : mem_out_dec = 6'b111111;
12'd3788 : mem_out_dec = 6'b111111;
12'd3789 : mem_out_dec = 6'b111111;
12'd3790 : mem_out_dec = 6'b111111;
12'd3791 : mem_out_dec = 6'b111111;
12'd3792 : mem_out_dec = 6'b111111;
12'd3793 : mem_out_dec = 6'b111111;
12'd3794 : mem_out_dec = 6'b111111;
12'd3795 : mem_out_dec = 6'b111111;
12'd3796 : mem_out_dec = 6'b111111;
12'd3797 : mem_out_dec = 6'b111111;
12'd3798 : mem_out_dec = 6'b111111;
12'd3799 : mem_out_dec = 6'b111111;
12'd3800 : mem_out_dec = 6'b111111;
12'd3801 : mem_out_dec = 6'b111111;
12'd3802 : mem_out_dec = 6'b111111;
12'd3803 : mem_out_dec = 6'b111111;
12'd3804 : mem_out_dec = 6'b111111;
12'd3805 : mem_out_dec = 6'b111111;
12'd3806 : mem_out_dec = 6'b111111;
12'd3807 : mem_out_dec = 6'b111111;
12'd3808 : mem_out_dec = 6'b111111;
12'd3809 : mem_out_dec = 6'b111111;
12'd3810 : mem_out_dec = 6'b111111;
12'd3811 : mem_out_dec = 6'b111111;
12'd3812 : mem_out_dec = 6'b111111;
12'd3813 : mem_out_dec = 6'b111111;
12'd3814 : mem_out_dec = 6'b111111;
12'd3815 : mem_out_dec = 6'b111111;
12'd3816 : mem_out_dec = 6'b111111;
12'd3817 : mem_out_dec = 6'b111111;
12'd3818 : mem_out_dec = 6'b111111;
12'd3819 : mem_out_dec = 6'b111111;
12'd3820 : mem_out_dec = 6'b111111;
12'd3821 : mem_out_dec = 6'b111111;
12'd3822 : mem_out_dec = 6'b111111;
12'd3823 : mem_out_dec = 6'b111111;
12'd3824 : mem_out_dec = 6'b111111;
12'd3825 : mem_out_dec = 6'b111111;
12'd3826 : mem_out_dec = 6'b111111;
12'd3827 : mem_out_dec = 6'b111111;
12'd3828 : mem_out_dec = 6'b111111;
12'd3829 : mem_out_dec = 6'b111111;
12'd3830 : mem_out_dec = 6'b111111;
12'd3831 : mem_out_dec = 6'b111111;
12'd3832 : mem_out_dec = 6'b111111;
12'd3833 : mem_out_dec = 6'b111111;
12'd3834 : mem_out_dec = 6'b111111;
12'd3835 : mem_out_dec = 6'b111111;
12'd3836 : mem_out_dec = 6'b111111;
12'd3837 : mem_out_dec = 6'b111111;
12'd3838 : mem_out_dec = 6'b111111;
12'd3839 : mem_out_dec = 6'b111111;
12'd3840 : mem_out_dec = 6'b111111;
12'd3841 : mem_out_dec = 6'b111111;
12'd3842 : mem_out_dec = 6'b111111;
12'd3843 : mem_out_dec = 6'b111111;
12'd3844 : mem_out_dec = 6'b111111;
12'd3845 : mem_out_dec = 6'b111111;
12'd3846 : mem_out_dec = 6'b111111;
12'd3847 : mem_out_dec = 6'b111111;
12'd3848 : mem_out_dec = 6'b111111;
12'd3849 : mem_out_dec = 6'b111111;
12'd3850 : mem_out_dec = 6'b111111;
12'd3851 : mem_out_dec = 6'b111111;
12'd3852 : mem_out_dec = 6'b111111;
12'd3853 : mem_out_dec = 6'b111111;
12'd3854 : mem_out_dec = 6'b111111;
12'd3855 : mem_out_dec = 6'b111111;
12'd3856 : mem_out_dec = 6'b111111;
12'd3857 : mem_out_dec = 6'b111111;
12'd3858 : mem_out_dec = 6'b111111;
12'd3859 : mem_out_dec = 6'b111111;
12'd3860 : mem_out_dec = 6'b111111;
12'd3861 : mem_out_dec = 6'b111111;
12'd3862 : mem_out_dec = 6'b111111;
12'd3863 : mem_out_dec = 6'b111111;
12'd3864 : mem_out_dec = 6'b111111;
12'd3865 : mem_out_dec = 6'b111111;
12'd3866 : mem_out_dec = 6'b111111;
12'd3867 : mem_out_dec = 6'b111111;
12'd3868 : mem_out_dec = 6'b111111;
12'd3869 : mem_out_dec = 6'b111111;
12'd3870 : mem_out_dec = 6'b111111;
12'd3871 : mem_out_dec = 6'b111111;
12'd3872 : mem_out_dec = 6'b111111;
12'd3873 : mem_out_dec = 6'b111111;
12'd3874 : mem_out_dec = 6'b111111;
12'd3875 : mem_out_dec = 6'b111111;
12'd3876 : mem_out_dec = 6'b111111;
12'd3877 : mem_out_dec = 6'b111111;
12'd3878 : mem_out_dec = 6'b111111;
12'd3879 : mem_out_dec = 6'b111111;
12'd3880 : mem_out_dec = 6'b111111;
12'd3881 : mem_out_dec = 6'b111111;
12'd3882 : mem_out_dec = 6'b111111;
12'd3883 : mem_out_dec = 6'b111111;
12'd3884 : mem_out_dec = 6'b111111;
12'd3885 : mem_out_dec = 6'b111111;
12'd3886 : mem_out_dec = 6'b111111;
12'd3887 : mem_out_dec = 6'b111111;
12'd3888 : mem_out_dec = 6'b111111;
12'd3889 : mem_out_dec = 6'b111111;
12'd3890 : mem_out_dec = 6'b111111;
12'd3891 : mem_out_dec = 6'b111111;
12'd3892 : mem_out_dec = 6'b111111;
12'd3893 : mem_out_dec = 6'b111111;
12'd3894 : mem_out_dec = 6'b111111;
12'd3895 : mem_out_dec = 6'b111111;
12'd3896 : mem_out_dec = 6'b111111;
12'd3897 : mem_out_dec = 6'b111111;
12'd3898 : mem_out_dec = 6'b111111;
12'd3899 : mem_out_dec = 6'b111111;
12'd3900 : mem_out_dec = 6'b111111;
12'd3901 : mem_out_dec = 6'b111111;
12'd3902 : mem_out_dec = 6'b111111;
12'd3903 : mem_out_dec = 6'b111111;
12'd3904 : mem_out_dec = 6'b111111;
12'd3905 : mem_out_dec = 6'b111111;
12'd3906 : mem_out_dec = 6'b111111;
12'd3907 : mem_out_dec = 6'b111111;
12'd3908 : mem_out_dec = 6'b111111;
12'd3909 : mem_out_dec = 6'b111111;
12'd3910 : mem_out_dec = 6'b111111;
12'd3911 : mem_out_dec = 6'b111111;
12'd3912 : mem_out_dec = 6'b111111;
12'd3913 : mem_out_dec = 6'b111111;
12'd3914 : mem_out_dec = 6'b111111;
12'd3915 : mem_out_dec = 6'b111111;
12'd3916 : mem_out_dec = 6'b111111;
12'd3917 : mem_out_dec = 6'b111111;
12'd3918 : mem_out_dec = 6'b111111;
12'd3919 : mem_out_dec = 6'b111111;
12'd3920 : mem_out_dec = 6'b111111;
12'd3921 : mem_out_dec = 6'b111111;
12'd3922 : mem_out_dec = 6'b111111;
12'd3923 : mem_out_dec = 6'b111111;
12'd3924 : mem_out_dec = 6'b111111;
12'd3925 : mem_out_dec = 6'b111111;
12'd3926 : mem_out_dec = 6'b111111;
12'd3927 : mem_out_dec = 6'b111111;
12'd3928 : mem_out_dec = 6'b111111;
12'd3929 : mem_out_dec = 6'b111111;
12'd3930 : mem_out_dec = 6'b111111;
12'd3931 : mem_out_dec = 6'b111111;
12'd3932 : mem_out_dec = 6'b111111;
12'd3933 : mem_out_dec = 6'b111111;
12'd3934 : mem_out_dec = 6'b111111;
12'd3935 : mem_out_dec = 6'b111111;
12'd3936 : mem_out_dec = 6'b111111;
12'd3937 : mem_out_dec = 6'b111111;
12'd3938 : mem_out_dec = 6'b111111;
12'd3939 : mem_out_dec = 6'b111111;
12'd3940 : mem_out_dec = 6'b111111;
12'd3941 : mem_out_dec = 6'b111111;
12'd3942 : mem_out_dec = 6'b111111;
12'd3943 : mem_out_dec = 6'b111111;
12'd3944 : mem_out_dec = 6'b111111;
12'd3945 : mem_out_dec = 6'b111111;
12'd3946 : mem_out_dec = 6'b111111;
12'd3947 : mem_out_dec = 6'b111111;
12'd3948 : mem_out_dec = 6'b111111;
12'd3949 : mem_out_dec = 6'b111111;
12'd3950 : mem_out_dec = 6'b111111;
12'd3951 : mem_out_dec = 6'b111111;
12'd3952 : mem_out_dec = 6'b111111;
12'd3953 : mem_out_dec = 6'b111111;
12'd3954 : mem_out_dec = 6'b111111;
12'd3955 : mem_out_dec = 6'b111111;
12'd3956 : mem_out_dec = 6'b111111;
12'd3957 : mem_out_dec = 6'b111111;
12'd3958 : mem_out_dec = 6'b111111;
12'd3959 : mem_out_dec = 6'b111111;
12'd3960 : mem_out_dec = 6'b111111;
12'd3961 : mem_out_dec = 6'b111111;
12'd3962 : mem_out_dec = 6'b111111;
12'd3963 : mem_out_dec = 6'b111111;
12'd3964 : mem_out_dec = 6'b111111;
12'd3965 : mem_out_dec = 6'b111111;
12'd3966 : mem_out_dec = 6'b111111;
12'd3967 : mem_out_dec = 6'b111111;
12'd3968 : mem_out_dec = 6'b111111;
12'd3969 : mem_out_dec = 6'b111111;
12'd3970 : mem_out_dec = 6'b111111;
12'd3971 : mem_out_dec = 6'b111111;
12'd3972 : mem_out_dec = 6'b111111;
12'd3973 : mem_out_dec = 6'b111111;
12'd3974 : mem_out_dec = 6'b111111;
12'd3975 : mem_out_dec = 6'b111111;
12'd3976 : mem_out_dec = 6'b111111;
12'd3977 : mem_out_dec = 6'b111111;
12'd3978 : mem_out_dec = 6'b111111;
12'd3979 : mem_out_dec = 6'b111111;
12'd3980 : mem_out_dec = 6'b111111;
12'd3981 : mem_out_dec = 6'b111111;
12'd3982 : mem_out_dec = 6'b111111;
12'd3983 : mem_out_dec = 6'b111111;
12'd3984 : mem_out_dec = 6'b111111;
12'd3985 : mem_out_dec = 6'b111111;
12'd3986 : mem_out_dec = 6'b111111;
12'd3987 : mem_out_dec = 6'b111111;
12'd3988 : mem_out_dec = 6'b111111;
12'd3989 : mem_out_dec = 6'b111111;
12'd3990 : mem_out_dec = 6'b111111;
12'd3991 : mem_out_dec = 6'b111111;
12'd3992 : mem_out_dec = 6'b111111;
12'd3993 : mem_out_dec = 6'b111111;
12'd3994 : mem_out_dec = 6'b111111;
12'd3995 : mem_out_dec = 6'b111111;
12'd3996 : mem_out_dec = 6'b111111;
12'd3997 : mem_out_dec = 6'b111111;
12'd3998 : mem_out_dec = 6'b111111;
12'd3999 : mem_out_dec = 6'b111111;
12'd4000 : mem_out_dec = 6'b111111;
12'd4001 : mem_out_dec = 6'b111111;
12'd4002 : mem_out_dec = 6'b111111;
12'd4003 : mem_out_dec = 6'b111111;
12'd4004 : mem_out_dec = 6'b111111;
12'd4005 : mem_out_dec = 6'b111111;
12'd4006 : mem_out_dec = 6'b111111;
12'd4007 : mem_out_dec = 6'b111111;
12'd4008 : mem_out_dec = 6'b111111;
12'd4009 : mem_out_dec = 6'b111111;
12'd4010 : mem_out_dec = 6'b111111;
12'd4011 : mem_out_dec = 6'b111111;
12'd4012 : mem_out_dec = 6'b111111;
12'd4013 : mem_out_dec = 6'b111111;
12'd4014 : mem_out_dec = 6'b111111;
12'd4015 : mem_out_dec = 6'b111111;
12'd4016 : mem_out_dec = 6'b111111;
12'd4017 : mem_out_dec = 6'b111111;
12'd4018 : mem_out_dec = 6'b111111;
12'd4019 : mem_out_dec = 6'b111111;
12'd4020 : mem_out_dec = 6'b111111;
12'd4021 : mem_out_dec = 6'b111111;
12'd4022 : mem_out_dec = 6'b111111;
12'd4023 : mem_out_dec = 6'b111111;
12'd4024 : mem_out_dec = 6'b111111;
12'd4025 : mem_out_dec = 6'b111111;
12'd4026 : mem_out_dec = 6'b111111;
12'd4027 : mem_out_dec = 6'b111111;
12'd4028 : mem_out_dec = 6'b111111;
12'd4029 : mem_out_dec = 6'b111111;
12'd4030 : mem_out_dec = 6'b111111;
12'd4031 : mem_out_dec = 6'b111111;
12'd4032 : mem_out_dec = 6'b111111;
12'd4033 : mem_out_dec = 6'b111111;
12'd4034 : mem_out_dec = 6'b111111;
12'd4035 : mem_out_dec = 6'b111111;
12'd4036 : mem_out_dec = 6'b111111;
12'd4037 : mem_out_dec = 6'b111111;
12'd4038 : mem_out_dec = 6'b111111;
12'd4039 : mem_out_dec = 6'b111111;
12'd4040 : mem_out_dec = 6'b111111;
12'd4041 : mem_out_dec = 6'b111111;
12'd4042 : mem_out_dec = 6'b111111;
12'd4043 : mem_out_dec = 6'b111111;
12'd4044 : mem_out_dec = 6'b111111;
12'd4045 : mem_out_dec = 6'b111111;
12'd4046 : mem_out_dec = 6'b111111;
12'd4047 : mem_out_dec = 6'b111111;
12'd4048 : mem_out_dec = 6'b111111;
12'd4049 : mem_out_dec = 6'b111111;
12'd4050 : mem_out_dec = 6'b111111;
12'd4051 : mem_out_dec = 6'b111111;
12'd4052 : mem_out_dec = 6'b111111;
12'd4053 : mem_out_dec = 6'b111111;
12'd4054 : mem_out_dec = 6'b111111;
12'd4055 : mem_out_dec = 6'b111111;
12'd4056 : mem_out_dec = 6'b111111;
12'd4057 : mem_out_dec = 6'b111111;
12'd4058 : mem_out_dec = 6'b111111;
12'd4059 : mem_out_dec = 6'b111111;
12'd4060 : mem_out_dec = 6'b111111;
12'd4061 : mem_out_dec = 6'b111111;
12'd4062 : mem_out_dec = 6'b111111;
12'd4063 : mem_out_dec = 6'b111111;
12'd4064 : mem_out_dec = 6'b111111;
12'd4065 : mem_out_dec = 6'b111111;
12'd4066 : mem_out_dec = 6'b111111;
12'd4067 : mem_out_dec = 6'b111111;
12'd4068 : mem_out_dec = 6'b111111;
12'd4069 : mem_out_dec = 6'b111111;
12'd4070 : mem_out_dec = 6'b111111;
12'd4071 : mem_out_dec = 6'b111111;
12'd4072 : mem_out_dec = 6'b111111;
12'd4073 : mem_out_dec = 6'b111111;
12'd4074 : mem_out_dec = 6'b111111;
12'd4075 : mem_out_dec = 6'b111111;
12'd4076 : mem_out_dec = 6'b111111;
12'd4077 : mem_out_dec = 6'b111111;
12'd4078 : mem_out_dec = 6'b111111;
12'd4079 : mem_out_dec = 6'b111111;
12'd4080 : mem_out_dec = 6'b111111;
12'd4081 : mem_out_dec = 6'b111111;
12'd4082 : mem_out_dec = 6'b111111;
12'd4083 : mem_out_dec = 6'b111111;
12'd4084 : mem_out_dec = 6'b111111;
12'd4085 : mem_out_dec = 6'b111111;
12'd4086 : mem_out_dec = 6'b111111;
12'd4087 : mem_out_dec = 6'b111111;
12'd4088 : mem_out_dec = 6'b111111;
12'd4089 : mem_out_dec = 6'b111111;
12'd4090 : mem_out_dec = 6'b111111;
12'd4091 : mem_out_dec = 6'b111111;
12'd4092 : mem_out_dec = 6'b111111;
12'd4093 : mem_out_dec = 6'b111111;
12'd4094 : mem_out_dec = 6'b111111;
12'd4095 : mem_out_dec = 6'b111111;
endcase
end
always @ (posedge clk) begin
dec_cnt <= #TCQ mem_out_dec;
end
endmodule
|
module mig_7series_v2_3_ddr_phy_prbs_rdlvl #
(
parameter TCQ = 100, // clk->out delay (sim only)
parameter nCK_PER_CLK = 2, // # of memory clocks per CLK
parameter DQ_WIDTH = 64, // # of DQ (data)
parameter DQS_CNT_WIDTH = 3, // = ceil(log2(DQS_WIDTH))
parameter DQS_WIDTH = 8, // # of DQS (strobe)
parameter DRAM_WIDTH = 8, // # of DQ per DQS
parameter RANKS = 1, // # of DRAM ranks
parameter SIM_CAL_OPTION = "NONE", // Skip various calibration steps
parameter PRBS_WIDTH = 8, // PRBS generator output width
parameter FIXED_VICTIM = "TRUE", // No victim rotation when "TRUE"
parameter FINE_PER_BIT = "ON",
parameter CENTER_COMP_MODE = "ON",
parameter PI_VAL_ADJ = "ON"
)
(
input clk,
input rst,
// Calibration status, control signals
input prbs_rdlvl_start,
(* max_fanout = 100 *) output reg prbs_rdlvl_done,
output reg prbs_last_byte_done,
output reg prbs_rdlvl_prech_req,
input complex_sample_cnt_inc,
input prech_done,
input phy_if_empty,
// Captured data in fabric clock domain
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] rd_data,
//Expected data from PRBS generator
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] compare_data,
// Decrement initial Phaser_IN Fine tap delay
input [5:0] pi_counter_read_val,
// Stage 1 calibration outputs
output reg pi_en_stg2_f,
output reg pi_stg2_f_incdec,
output [255:0] dbg_prbs_rdlvl,
output [DQS_CNT_WIDTH:0] pi_stg2_prbs_rdlvl_cnt,
output reg [2:0] rd_victim_sel,
output reg complex_victim_inc,
output reg reset_rd_addr,
output reg read_pause,
output reg [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r,
output reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps,
output reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps,
output reg [DRAM_WIDTH-1:0] fine_delay_incdec_pb, //fine_delay decreament per bit
output reg fine_delay_sel //fine delay selection - actual update of fine delay
);
localparam [5:0] PRBS_IDLE = 6'h00;
localparam [5:0] PRBS_NEW_DQS_WAIT = 6'h01;
localparam [5:0] PRBS_PAT_COMPARE = 6'h02;
localparam [5:0] PRBS_DEC_DQS = 6'h03;
localparam [5:0] PRBS_DEC_DQS_WAIT = 6'h04;
localparam [5:0] PRBS_INC_DQS = 6'h05;
localparam [5:0] PRBS_INC_DQS_WAIT = 6'h06;
localparam [5:0] PRBS_CALC_TAPS = 6'h07;
localparam [5:0] PRBS_NEXT_DQS = 6'h08;
localparam [5:0] PRBS_NEW_DQS_PREWAIT = 6'h09;
localparam [5:0] PRBS_DONE = 6'h0A;
localparam [5:0] PRBS_CALC_TAPS_PRE = 6'h0B;
localparam [5:0] PRBS_CALC_TAPS_WAIT = 6'h0C;
localparam [5:0] FINE_PI_DEC = 6'h0D; //go back to all fail or back to center
localparam [5:0] FINE_PI_DEC_WAIT = 6'h0E; //wait for PI tap dec settle
localparam [5:0] FINE_PI_INC = 6'h0F; //increse up to 1 fail
localparam [5:0] FINE_PI_INC_WAIT = 6'h10; //wait for PI tap int settle
localparam [5:0] FINE_PAT_COMPARE_PER_BIT = 6'h11; //compare per bit error and check left/right/gain/loss
localparam [5:0] FINE_CALC_TAPS = 6'h12; //setup fine_delay_incdec_pb for better window size
localparam [5:0] FINE_CALC_TAPS_WAIT = 6'h13; //wait for ROM value for dec cnt
localparam [11:0] NUM_SAMPLES_CNT = (SIM_CAL_OPTION == "NONE") ? 'd50 : 12'h001;
localparam [11:0] NUM_SAMPLES_CNT1 = (SIM_CAL_OPTION == "NONE") ? 'd20 : 12'h001;
localparam [11:0] NUM_SAMPLES_CNT2 = (SIM_CAL_OPTION == "NONE") ? 'd10 : 12'h001;
wire [DQS_CNT_WIDTH+2:0]prbs_dqs_cnt_timing;
reg [DQS_CNT_WIDTH+2:0] prbs_dqs_cnt_timing_r;
reg [DQS_CNT_WIDTH:0] prbs_dqs_cnt_r;
reg prbs_prech_req_r;
reg [5:0] prbs_state_r;
reg [5:0] prbs_state_r1;
reg wait_state_cnt_en_r;
reg [3:0] wait_state_cnt_r;
reg cnt_wait_state;
reg err_chk_invalid;
// reg found_edge_r;
reg prbs_found_1st_edge_r;
reg prbs_found_2nd_edge_r;
reg [5:0] prbs_1st_edge_taps_r;
// reg found_stable_eye_r;
reg [5:0] prbs_dqs_tap_cnt_r;
reg [5:0] prbs_dec_tap_calc_plus_3;
reg [5:0] prbs_dec_tap_calc_minus_3;
reg prbs_dqs_tap_limit_r;
reg [5:0] prbs_inc_tap_cnt;
reg [5:0] prbs_dec_tap_cnt;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r1;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r1;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r2;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r2;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r3;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r3;
reg [DRAM_WIDTH-1:0] mux_rd_fall0_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall1_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise0_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise1_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall2_r4;
reg [DRAM_WIDTH-1:0] mux_rd_fall3_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise2_r4;
reg [DRAM_WIDTH-1:0] mux_rd_rise3_r4;
reg mux_rd_valid_r;
reg rd_valid_r1;
reg rd_valid_r2;
reg rd_valid_r3;
reg new_cnt_dqs_r;
reg prbs_tap_en_r;
reg prbs_tap_inc_r;
reg pi_en_stg2_f_timing;
reg pi_stg2_f_incdec_timing;
wire [DQ_WIDTH-1:0] rd_data_rise0;
wire [DQ_WIDTH-1:0] rd_data_fall0;
wire [DQ_WIDTH-1:0] rd_data_rise1;
wire [DQ_WIDTH-1:0] rd_data_fall1;
wire [DQ_WIDTH-1:0] rd_data_rise2;
wire [DQ_WIDTH-1:0] rd_data_fall2;
wire [DQ_WIDTH-1:0] rd_data_rise3;
wire [DQ_WIDTH-1:0] rd_data_fall3;
wire [DQ_WIDTH-1:0] compare_data_r0;
wire [DQ_WIDTH-1:0] compare_data_f0;
wire [DQ_WIDTH-1:0] compare_data_r1;
wire [DQ_WIDTH-1:0] compare_data_f1;
wire [DQ_WIDTH-1:0] compare_data_r2;
wire [DQ_WIDTH-1:0] compare_data_f2;
wire [DQ_WIDTH-1:0] compare_data_r3;
wire [DQ_WIDTH-1:0] compare_data_f3;
reg [DRAM_WIDTH-1:0] compare_data_rise0_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall0_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise1_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall1_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise2_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall2_r1;
reg [DRAM_WIDTH-1:0] compare_data_rise3_r1;
reg [DRAM_WIDTH-1:0] compare_data_fall3_r1;
reg [DQS_CNT_WIDTH:0] rd_mux_sel_r;
reg [5:0] prbs_2nd_edge_taps_r;
// reg [6*DQS_WIDTH*RANKS-1:0] prbs_final_dqs_tap_cnt_r;
reg [5:0] rdlvl_cpt_tap_cnt;
reg prbs_rdlvl_start_r;
reg compare_err;
reg compare_err_r0;
reg compare_err_f0;
reg compare_err_r1;
reg compare_err_f1;
reg compare_err_r2;
reg compare_err_f2;
reg compare_err_r3;
reg compare_err_f3;
reg samples_cnt1_en_r;
reg samples_cnt2_en_r;
reg [11:0] samples_cnt_r;
reg num_samples_done_r;
reg num_samples_done_ind; //indicate num_samples_done_r is set in FINE_PAT_COMPARE_PER_BIT to prevent victim_sel_rd out of sync
reg [DQS_WIDTH-1:0] prbs_tap_mod;
//reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_first_edge_taps;
//reg [6*DQS_WIDTH*RANKS-1:0] dbg_prbs_second_edge_taps;
//**************************************************************************
// signals for per-bit algorithm of fine_delay calculations
//**************************************************************************
reg [6*DRAM_WIDTH-1:0] left_edge_pb; //left edge value per bit
reg [6*DRAM_WIDTH-1:0] right_edge_pb; //right edge value per bit
reg [5*DRAM_WIDTH-1:0] match_flag_pb; //5 consecutive match flag per bit
reg [4:0] match_flag_and; //5 consecute match flag of all bits (1: all bit fail)
reg [DRAM_WIDTH-1:0] left_edge_found_pb; //left_edge found per bit - use for loss calculation
reg [DRAM_WIDTH-1:0] left_edge_updated; //left edge was updated for this PI tap - used for largest left edge /ref bit update
reg [DRAM_WIDTH-1:0] right_edge_found_pb; //right_edge found per bit - use for gail calulation and smallest right edge update
reg right_edge_found; //smallest right_edge found
reg [DRAM_WIDTH*6-1:0] left_loss_pb; //left_edge loss per bit
reg [DRAM_WIDTH*6-1:0] right_gain_pb; //right_edge gain per bit
reg [DRAM_WIDTH-1:0] ref_bit; //bit number which has largest left edge (with smaller right edge)
reg [DRAM_WIDTH-1:0] bit_cnt; //bit number used to calculate ref bit
reg [DRAM_WIDTH-1:0] ref_bit_per_bit; //bit flags which have largest left edge
reg [5:0] ref_right_edge; //ref_bit right edge - keep the smallest edge of ref bits
reg [5:0] largest_left_edge; //biggest left edge of per bit - will be left edge of byte
reg [5:0] smallest_right_edge; //smallest right edge of per bit - will be right edge of byte
reg [5:0] fine_pi_dec_cnt; //Phase In tap decrement count (to go back to '0' or center)
reg [6:0] center_calc; //used for calculate the dec tap for centering
reg [5:0] right_edge_ref; //ref_bit right edge
reg [5:0] left_edge_ref; //ref_bit left edge
reg [DRAM_WIDTH-1:0] compare_err_pb; //compare error per bit
reg [DRAM_WIDTH-1:0] compare_err_pb_latch_r; //sticky compare error per bit used for left/right edge
reg compare_err_pb_and; //indicate all bit fail
reg fine_inc_stage; //fine_inc_stage (1: increment all except ref_bit, 0: only inc for gain bit)
reg [1:0] stage_cnt; //stage cnt (0,1: fine delay inc stage, 2: fine delay dec stage)
wire fine_calib; //turn on/off fine delay calibration
reg [5:0] mem_out_dec;
reg [5:0] dec_cnt;
reg fine_dly_error; //indicate it has wrong left/right edge
wire center_comp;
wire pi_adj;
//**************************************************************************
// DQS count to hard PHY during write calibration using Phaser_OUT Stage2
// coarse delay
//**************************************************************************
assign pi_stg2_prbs_rdlvl_cnt = prbs_dqs_cnt_r;
//fine delay turn on
assign fine_calib = (FINE_PER_BIT=="ON")? 1:0;
assign center_comp = (CENTER_COMP_MODE == "ON")? 1: 0;
assign pi_adj = (PI_VAL_ADJ == "ON")?1:0;
assign dbg_prbs_rdlvl[0+:6] = left_edge_pb[0+:6];
assign dbg_prbs_rdlvl[7:6] = left_loss_pb[0+:2];
assign dbg_prbs_rdlvl[8+:6] = left_edge_pb[6+:6];
assign dbg_prbs_rdlvl[15:14] = left_loss_pb[6+:2];
assign dbg_prbs_rdlvl[16+:6] = left_edge_pb[12+:6] ;
assign dbg_prbs_rdlvl[23:22] = left_loss_pb[12+:2];
assign dbg_prbs_rdlvl[24+:6] = left_edge_pb[18+:6] ;
assign dbg_prbs_rdlvl[31:30] = left_loss_pb[18+:2];
assign dbg_prbs_rdlvl[32+:6] = left_edge_pb[24+:6];
assign dbg_prbs_rdlvl[39:38] = left_loss_pb[24+:2];
assign dbg_prbs_rdlvl[40+:6] = left_edge_pb[30+:6];
assign dbg_prbs_rdlvl[47:46] = left_loss_pb[30+:2];
assign dbg_prbs_rdlvl[48+:6] = left_edge_pb[36+:6];
assign dbg_prbs_rdlvl[55:54] = left_loss_pb[36+:2];
assign dbg_prbs_rdlvl[56+:6] = left_edge_pb[42+:6];
assign dbg_prbs_rdlvl[63:62] = left_loss_pb[42+:2];
assign dbg_prbs_rdlvl[64+:6] = right_edge_pb[0+:6];
assign dbg_prbs_rdlvl[71:70] = right_gain_pb[0+:2];
assign dbg_prbs_rdlvl[72+:6] = right_edge_pb[6+:6] ;
assign dbg_prbs_rdlvl[79:78] = right_gain_pb[6+:2];
assign dbg_prbs_rdlvl[80+:6] = right_edge_pb[12+:6];
assign dbg_prbs_rdlvl[87:86] = right_gain_pb[12+:2];
assign dbg_prbs_rdlvl[88+:6] = right_edge_pb[18+:6];
assign dbg_prbs_rdlvl[95:94] = right_gain_pb[18+:2];
assign dbg_prbs_rdlvl[96+:6] = right_edge_pb[24+:6];
assign dbg_prbs_rdlvl[103:102] = right_gain_pb[24+:2];
assign dbg_prbs_rdlvl[104+:6] = right_edge_pb[30+:6];
assign dbg_prbs_rdlvl[111:110] = right_gain_pb[30+:2];
assign dbg_prbs_rdlvl[112+:6] = right_edge_pb[36+:6];
assign dbg_prbs_rdlvl[119:118] = right_gain_pb[36+:2];
assign dbg_prbs_rdlvl[120+:6] = right_edge_pb[42+:6];
assign dbg_prbs_rdlvl[127:126] = right_gain_pb[42+:2];
assign dbg_prbs_rdlvl[128+:6] = pi_counter_read_val;
assign dbg_prbs_rdlvl[134+:6] = prbs_dqs_tap_cnt_r;
assign dbg_prbs_rdlvl[140] = prbs_found_1st_edge_r;
assign dbg_prbs_rdlvl[141] = prbs_found_2nd_edge_r;
assign dbg_prbs_rdlvl[142] = compare_err;
assign dbg_prbs_rdlvl[143] = phy_if_empty;
assign dbg_prbs_rdlvl[144] = prbs_rdlvl_start;
assign dbg_prbs_rdlvl[145] = prbs_rdlvl_done;
assign dbg_prbs_rdlvl[146+:5] = prbs_dqs_cnt_r;
assign dbg_prbs_rdlvl[151+:6] = left_edge_pb[prbs_dqs_cnt_r*6+:6] ;
assign dbg_prbs_rdlvl[157+:6] = right_edge_pb[prbs_dqs_cnt_r*6+:6];
assign dbg_prbs_rdlvl[163+:6] = {2'h0,complex_victim_inc, rd_victim_sel[2:0]};
assign dbg_prbs_rdlvl[169+:6] =right_gain_pb[prbs_dqs_cnt_r*6+:6] ;
assign dbg_prbs_rdlvl[177:175] = ref_bit[2:0];
assign dbg_prbs_rdlvl[178+:6] = prbs_state_r1[5:0];
assign dbg_prbs_rdlvl[184] = rd_valid_r2;
assign dbg_prbs_rdlvl[185] = compare_err_r0;
assign dbg_prbs_rdlvl[186] = compare_err_f0;
assign dbg_prbs_rdlvl[187] = compare_err_r1;
assign dbg_prbs_rdlvl[188] = compare_err_f1;
assign dbg_prbs_rdlvl[189] = compare_err_r2;
assign dbg_prbs_rdlvl[190] = compare_err_f2;
assign dbg_prbs_rdlvl[191] = compare_err_r3;
assign dbg_prbs_rdlvl[192] = compare_err_f3;
assign dbg_prbs_rdlvl[193+:8] = left_edge_found_pb;
assign dbg_prbs_rdlvl[201+:8] = right_edge_found_pb;
assign dbg_prbs_rdlvl[209+:6] =largest_left_edge ;
assign dbg_prbs_rdlvl[215+:6] =smallest_right_edge ;
assign dbg_prbs_rdlvl[221+:8] = fine_delay_incdec_pb;
assign dbg_prbs_rdlvl[229] = fine_delay_sel;
assign dbg_prbs_rdlvl[230+:8] = compare_err_pb_latch_r;
assign dbg_prbs_rdlvl[238+:6] = fine_pi_dec_cnt;
assign dbg_prbs_rdlvl[244+:5] = match_flag_and ;
assign dbg_prbs_rdlvl[249+:2] =stage_cnt ;
assign dbg_prbs_rdlvl[251] = fine_inc_stage ;
assign dbg_prbs_rdlvl[252] = compare_err_pb_and ;
assign dbg_prbs_rdlvl[253] = right_edge_found ;
assign dbg_prbs_rdlvl[254] = fine_dly_error ;
assign dbg_prbs_rdlvl[255]= 'b0;//reserved
//**************************************************************************
// Record first and second edges found during calibration
//**************************************************************************
generate
always @(posedge clk)
if (rst) begin
dbg_prbs_first_edge_taps <= #TCQ 'b0;
dbg_prbs_second_edge_taps <= #TCQ 'b0;
end else if (prbs_state_r == PRBS_CALC_TAPS) begin
// Record tap counts of first and second edge edges during
// calibration for each DQS group. If neither edge has
// been found, then those taps will remain 0
if (prbs_found_1st_edge_r)
dbg_prbs_first_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_1st_edge_taps_r;
if (prbs_found_2nd_edge_r)
dbg_prbs_second_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_2nd_edge_taps_r;
end else if (prbs_state_r == FINE_CALC_TAPS) begin
if(stage_cnt == 'd2) begin
dbg_prbs_first_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ largest_left_edge;
dbg_prbs_second_edge_taps[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ smallest_right_edge;
end
end
endgenerate
//padded calculation
always @ (smallest_right_edge or largest_left_edge)
center_calc <= {1'b0, smallest_right_edge} + {1'b0,largest_left_edge};
//***************************************************************************
//***************************************************************************
// Data mux to route appropriate bit to calibration logic - i.e. calibration
// is done sequentially, one bit (or DQS group) at a time
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: rd_data_div4_logic_clk
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign rd_data_rise2 = rd_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign rd_data_fall2 = rd_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign rd_data_rise3 = rd_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign rd_data_fall3 = rd_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
assign compare_data_r0 = compare_data[DQ_WIDTH-1:0];
assign compare_data_f0 = compare_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign compare_data_r1 = compare_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign compare_data_f1 = compare_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r2 = compare_data[5*DQ_WIDTH-1:4*DQ_WIDTH];
assign compare_data_f2 = compare_data[6*DQ_WIDTH-1:5*DQ_WIDTH];
assign compare_data_r3 = compare_data[7*DQ_WIDTH-1:6*DQ_WIDTH];
assign compare_data_f3 = compare_data[8*DQ_WIDTH-1:7*DQ_WIDTH];
end else begin: rd_data_div2_logic_clk
assign rd_data_rise0 = rd_data[DQ_WIDTH-1:0];
assign rd_data_fall0 = rd_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign rd_data_rise1 = rd_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign rd_data_fall1 = rd_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r0 = compare_data[DQ_WIDTH-1:0];
assign compare_data_f0 = compare_data[2*DQ_WIDTH-1:DQ_WIDTH];
assign compare_data_r1 = compare_data[3*DQ_WIDTH-1:2*DQ_WIDTH];
assign compare_data_f1 = compare_data[4*DQ_WIDTH-1:3*DQ_WIDTH];
assign compare_data_r2 = 'h0;
assign compare_data_f2 = 'h0;
assign compare_data_r3 = 'h0;
assign compare_data_f3 = 'h0;
end
endgenerate
always @(posedge clk) begin
rd_mux_sel_r <= #TCQ prbs_dqs_cnt_r;
end
// Register outputs for improved timing.
// NOTE: Will need to change when per-bit DQ deskew is supported.
// Currenly all bits in DQS group are checked in aggregate
generate
genvar mux_i;
for (mux_i = 0; mux_i < DRAM_WIDTH; mux_i = mux_i + 1) begin: gen_mux_rd
always @(posedge clk) begin
mux_rd_rise0_r1[mux_i] <= #TCQ rd_data_rise0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall0_r1[mux_i] <= #TCQ rd_data_fall0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise1_r1[mux_i] <= #TCQ rd_data_rise1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall1_r1[mux_i] <= #TCQ rd_data_fall1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise2_r1[mux_i] <= #TCQ rd_data_rise2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall2_r1[mux_i] <= #TCQ rd_data_fall2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_rise3_r1[mux_i] <= #TCQ rd_data_rise3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
mux_rd_fall3_r1[mux_i] <= #TCQ rd_data_fall3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
//Compare data
compare_data_rise0_r1[mux_i] <= #TCQ compare_data_r0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall0_r1[mux_i] <= #TCQ compare_data_f0[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise1_r1[mux_i] <= #TCQ compare_data_r1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall1_r1[mux_i] <= #TCQ compare_data_f1[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise2_r1[mux_i] <= #TCQ compare_data_r2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall2_r1[mux_i] <= #TCQ compare_data_f2[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_rise3_r1[mux_i] <= #TCQ compare_data_r3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
compare_data_fall3_r1[mux_i] <= #TCQ compare_data_f3[DRAM_WIDTH*rd_mux_sel_r + mux_i];
end
end
endgenerate
generate
genvar muxr2_i;
if (nCK_PER_CLK == 4) begin: gen_mux_div4
for (muxr2_i = 0; muxr2_i < DRAM_WIDTH; muxr2_i = muxr2_i + 1) begin: gen_rd_4
always @(posedge clk) begin
if (mux_rd_valid_r) begin
mux_rd_rise0_r2[muxr2_i] <= #TCQ mux_rd_rise0_r1[muxr2_i];
mux_rd_fall0_r2[muxr2_i] <= #TCQ mux_rd_fall0_r1[muxr2_i];
mux_rd_rise1_r2[muxr2_i] <= #TCQ mux_rd_rise1_r1[muxr2_i];
mux_rd_fall1_r2[muxr2_i] <= #TCQ mux_rd_fall1_r1[muxr2_i];
mux_rd_rise2_r2[muxr2_i] <= #TCQ mux_rd_rise2_r1[muxr2_i];
mux_rd_fall2_r2[muxr2_i] <= #TCQ mux_rd_fall2_r1[muxr2_i];
mux_rd_rise3_r2[muxr2_i] <= #TCQ mux_rd_rise3_r1[muxr2_i];
mux_rd_fall3_r2[muxr2_i] <= #TCQ mux_rd_fall3_r1[muxr2_i];
end
//pipeline stage
mux_rd_rise0_r3[muxr2_i] <= #TCQ mux_rd_rise0_r2[muxr2_i];
mux_rd_fall0_r3[muxr2_i] <= #TCQ mux_rd_fall0_r2[muxr2_i];
mux_rd_rise1_r3[muxr2_i] <= #TCQ mux_rd_rise1_r2[muxr2_i];
mux_rd_fall1_r3[muxr2_i] <= #TCQ mux_rd_fall1_r2[muxr2_i];
mux_rd_rise2_r3[muxr2_i] <= #TCQ mux_rd_rise2_r2[muxr2_i];
mux_rd_fall2_r3[muxr2_i] <= #TCQ mux_rd_fall2_r2[muxr2_i];
mux_rd_rise3_r3[muxr2_i] <= #TCQ mux_rd_rise3_r2[muxr2_i];
mux_rd_fall3_r3[muxr2_i] <= #TCQ mux_rd_fall3_r2[muxr2_i];
//pipeline stage
mux_rd_rise0_r4[muxr2_i] <= #TCQ mux_rd_rise0_r3[muxr2_i];
mux_rd_fall0_r4[muxr2_i] <= #TCQ mux_rd_fall0_r3[muxr2_i];
mux_rd_rise1_r4[muxr2_i] <= #TCQ mux_rd_rise1_r3[muxr2_i];
mux_rd_fall1_r4[muxr2_i] <= #TCQ mux_rd_fall1_r3[muxr2_i];
mux_rd_rise2_r4[muxr2_i] <= #TCQ mux_rd_rise2_r3[muxr2_i];
mux_rd_fall2_r4[muxr2_i] <= #TCQ mux_rd_fall2_r3[muxr2_i];
mux_rd_rise3_r4[muxr2_i] <= #TCQ mux_rd_rise3_r3[muxr2_i];
mux_rd_fall3_r4[muxr2_i] <= #TCQ mux_rd_fall3_r3[muxr2_i];
end
end
end else if (nCK_PER_CLK == 2) begin: gen_mux_div2
for (muxr2_i = 0; muxr2_i < DRAM_WIDTH; muxr2_i = muxr2_i + 1) begin: gen_rd_2
always @(posedge clk) begin
if (mux_rd_valid_r) begin
mux_rd_rise0_r2[muxr2_i] <= #TCQ mux_rd_rise0_r1[muxr2_i];
mux_rd_fall0_r2[muxr2_i] <= #TCQ mux_rd_fall0_r1[muxr2_i];
mux_rd_rise1_r2[muxr2_i] <= #TCQ mux_rd_rise1_r1[muxr2_i];
mux_rd_fall1_r2[muxr2_i] <= #TCQ mux_rd_fall1_r1[muxr2_i];
mux_rd_rise2_r2[muxr2_i] <= 'h0;
mux_rd_fall2_r2[muxr2_i] <= 'h0;
mux_rd_rise3_r2[muxr2_i] <= 'h0;
mux_rd_fall3_r2[muxr2_i] <= 'h0;
end
mux_rd_rise0_r3[muxr2_i] <= #TCQ mux_rd_rise0_r2[muxr2_i];
mux_rd_fall0_r3[muxr2_i] <= #TCQ mux_rd_fall0_r2[muxr2_i];
mux_rd_rise1_r3[muxr2_i] <= #TCQ mux_rd_rise1_r2[muxr2_i];
mux_rd_fall1_r3[muxr2_i] <= #TCQ mux_rd_fall1_r2[muxr2_i];
mux_rd_rise2_r3[muxr2_i] <= 'h0;
mux_rd_fall2_r3[muxr2_i] <= 'h0;
mux_rd_rise3_r3[muxr2_i] <= 'h0;
mux_rd_fall3_r3[muxr2_i] <= 'h0;
//pipeline stage
mux_rd_rise0_r4[muxr2_i] <= #TCQ mux_rd_rise0_r3[muxr2_i];
mux_rd_fall0_r4[muxr2_i] <= #TCQ mux_rd_fall0_r3[muxr2_i];
mux_rd_rise1_r4[muxr2_i] <= #TCQ mux_rd_rise1_r3[muxr2_i];
mux_rd_fall1_r4[muxr2_i] <= #TCQ mux_rd_fall1_r3[muxr2_i];
mux_rd_rise2_r4[muxr2_i] <= 'h0;
mux_rd_fall2_r4[muxr2_i] <= 'h0;
mux_rd_rise3_r4[muxr2_i] <= 'h0;
mux_rd_fall3_r4[muxr2_i] <= 'h0;
end
end
end
endgenerate
// Registered signal indicates when mux_rd_rise/fall_r is valid
always @(posedge clk) begin
mux_rd_valid_r <= #TCQ ~phy_if_empty && prbs_rdlvl_start;
rd_valid_r1 <= #TCQ mux_rd_valid_r;
rd_valid_r2 <= #TCQ rd_valid_r1;
rd_valid_r3 <= #TCQ rd_valid_r2;
end
// Counter counts # of samples compared
// Reset sample counter when not "sampling"
// Otherwise, count # of samples compared
// Same counter is shared for three samples checked
always @(posedge clk)
if (rst)
samples_cnt_r <= #TCQ 'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT) begin
samples_cnt_r <= #TCQ 'b0;
end else if (complex_sample_cnt_inc) begin
samples_cnt_r <= #TCQ samples_cnt_r + 1;
/*if (!rd_valid_r1 ||
(prbs_state_r == PRBS_DEC_DQS_WAIT) ||
(prbs_state_r == PRBS_INC_DQS_WAIT) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(samples_cnt_r == NUM_SAMPLES_CNT) ||
(samples_cnt_r == NUM_SAMPLES_CNT1))
samples_cnt_r <= #TCQ 'b0;
else if (rd_valid_r1 &&
(((samples_cnt_r < NUM_SAMPLES_CNT) && ~samples_cnt1_en_r) ||
((samples_cnt_r < NUM_SAMPLES_CNT1) && ~samples_cnt2_en_r) ||
((samples_cnt_r < NUM_SAMPLES_CNT2) && samples_cnt2_en_r)))
samples_cnt_r <= #TCQ samples_cnt_r + 1;*/
end
// Count #2 enable generation
// Assert when correct number of samples compared
always @(posedge clk)
if (rst)
samples_cnt1_en_r <= #TCQ 1'b0;
else begin
if ((prbs_state_r == PRBS_IDLE) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
samples_cnt1_en_r <= #TCQ 1'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT) && rd_valid_r1)
samples_cnt1_en_r <= #TCQ 1'b1;
end
// Counter #3 enable generation
// Assert when correct number of samples compared
always @(posedge clk)
if (rst)
samples_cnt2_en_r <= #TCQ 1'b0;
else begin
if ((prbs_state_r == PRBS_IDLE) ||
(prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS) ||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
samples_cnt2_en_r <= #TCQ 1'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT1) && rd_valid_r1 && samples_cnt1_en_r)
samples_cnt2_en_r <= #TCQ 1'b1;
end
// Victim selection logic
always @(posedge clk)
if (rst)
rd_victim_sel <= #TCQ 'd0;
else if (num_samples_done_r)
rd_victim_sel <= #TCQ 'd0;
else if (samples_cnt_r == NUM_SAMPLES_CNT) begin
if (rd_victim_sel < 'd7)
rd_victim_sel <= #TCQ rd_victim_sel + 1;
end
// Output row count increment pulse to phy_init
always @(posedge clk)
if (rst)
complex_victim_inc <= #TCQ 1'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT)
complex_victim_inc <= #TCQ 1'b1;
else
complex_victim_inc <= #TCQ 1'b0;
generate
if (FIXED_VICTIM == "TRUE") begin: victim_fixed
always @(posedge clk)
if (rst)
num_samples_done_r <= #TCQ 1'b0;
else if ((prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS)||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == FINE_PI_DEC))
num_samples_done_r <= #TCQ 'b0;
else if (samples_cnt_r == NUM_SAMPLES_CNT)
num_samples_done_r <= #TCQ 1'b1;
end else begin: victim_not_fixed
always @(posedge clk)
if (rst)
num_samples_done_r <= #TCQ 1'b0;
else if ((prbs_state_r == PRBS_DEC_DQS) ||
(prbs_state_r == PRBS_INC_DQS)||
(prbs_state_r == FINE_PI_INC) ||
(prbs_state_r == FINE_PI_DEC))
num_samples_done_r <= #TCQ 'b0;
else if ((samples_cnt_r == NUM_SAMPLES_CNT) && (rd_victim_sel == 'd7))
num_samples_done_r <= #TCQ 1'b1;
end
endgenerate
//***************************************************************************
// Compare Read Data for the byte being Leveled with Expected data from PRBS
// generator. Resulting compare_err signal used to determine read data valid
// edge.
//***************************************************************************
generate
if (nCK_PER_CLK == 4) begin: cmp_err_4to1
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r) begin
compare_err <= #TCQ 1'b0;
compare_err_r0 <= #TCQ 1'b0;
compare_err_f0 <= #TCQ 1'b0;
compare_err_r1 <= #TCQ 1'b0;
compare_err_f1 <= #TCQ 1'b0;
compare_err_r2 <= #TCQ 1'b0;
compare_err_f2 <= #TCQ 1'b0;
compare_err_r3 <= #TCQ 1'b0;
compare_err_f3 <= #TCQ 1'b0;
end else if (rd_valid_r2) begin
compare_err_r0 <= #TCQ (mux_rd_rise0_r3 != compare_data_rise0_r1);
compare_err_f0 <= #TCQ (mux_rd_fall0_r3 != compare_data_fall0_r1);
compare_err_r1 <= #TCQ (mux_rd_rise1_r3 != compare_data_rise1_r1);
compare_err_f1 <= #TCQ (mux_rd_fall1_r3 != compare_data_fall1_r1);
compare_err_r2 <= #TCQ (mux_rd_rise2_r3 != compare_data_rise2_r1);
compare_err_f2 <= #TCQ (mux_rd_fall2_r3 != compare_data_fall2_r1);
compare_err_r3 <= #TCQ (mux_rd_rise3_r3 != compare_data_rise3_r1);
compare_err_f3 <= #TCQ (mux_rd_fall3_r3 != compare_data_fall3_r1);
compare_err <= #TCQ (compare_err_r0 | compare_err_f0 |
compare_err_r1 | compare_err_f1 |
compare_err_r2 | compare_err_f2 |
compare_err_r3 | compare_err_f3);
end
end
end else begin: cmp_err_2to1
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r) begin
compare_err <= #TCQ 1'b0;
compare_err_r0 <= #TCQ 1'b0;
compare_err_f0 <= #TCQ 1'b0;
compare_err_r1 <= #TCQ 1'b0;
compare_err_f1 <= #TCQ 1'b0;
end else if (rd_valid_r2) begin
compare_err_r0 <= #TCQ (mux_rd_rise0_r3 != compare_data_rise0_r1);
compare_err_f0 <= #TCQ (mux_rd_fall0_r3 != compare_data_fall0_r1);
compare_err_r1 <= #TCQ (mux_rd_rise1_r3 != compare_data_rise1_r1);
compare_err_f1 <= #TCQ (mux_rd_fall1_r3 != compare_data_fall1_r1);
compare_err <= #TCQ (compare_err_r0 | compare_err_f0 |
compare_err_r1 | compare_err_f1);
end
end
end
endgenerate
//***************************************************************************
// Decrement initial Phaser_IN fine delay value before proceeding with
// read calibration
//***************************************************************************
//***************************************************************************
// Demultiplexor to control Phaser_IN delay values
//***************************************************************************
// Read DQS
always @(posedge clk) begin
if (rst) begin
pi_en_stg2_f_timing <= #TCQ 'b0;
pi_stg2_f_incdec_timing <= #TCQ 'b0;
end else if (prbs_tap_en_r) begin
// Change only specified DQS
pi_en_stg2_f_timing <= #TCQ 1'b1;
pi_stg2_f_incdec_timing <= #TCQ prbs_tap_inc_r;
end else begin
pi_en_stg2_f_timing <= #TCQ 'b0;
pi_stg2_f_incdec_timing <= #TCQ 'b0;
end
end
// registered for timing
always @(posedge clk) begin
pi_en_stg2_f <= #TCQ pi_en_stg2_f_timing;
pi_stg2_f_incdec <= #TCQ pi_stg2_f_incdec_timing;
end
//***************************************************************************
// generate request to PHY_INIT logic to issue precharged. Required when
// calibration can take a long time (during which there are only constant
// reads present on this bus). In this case need to issue perioidic
// precharges to avoid tRAS violation. This signal must meet the following
// requirements: (1) only transition from 0->1 when prech is first needed,
// (2) stay at 1 and only transition 1->0 when RDLVL_PRECH_DONE asserted
//***************************************************************************
always @(posedge clk)
if (rst)
prbs_rdlvl_prech_req <= #TCQ 1'b0;
else
prbs_rdlvl_prech_req <= #TCQ prbs_prech_req_r;
//*****************************************************************
// keep track of edge tap counts found, and current capture clock
// tap count
//*****************************************************************
always @(posedge clk)
if (rst) begin
prbs_dqs_tap_cnt_r <= #TCQ 'b0;
rdlvl_cpt_tap_cnt <= #TCQ 'b0;
end else if (new_cnt_dqs_r) begin
prbs_dqs_tap_cnt_r <= #TCQ pi_counter_read_val;
rdlvl_cpt_tap_cnt <= #TCQ pi_counter_read_val;
end else if (prbs_tap_en_r) begin
if (prbs_tap_inc_r)
prbs_dqs_tap_cnt_r <= #TCQ prbs_dqs_tap_cnt_r + 1;
else if (prbs_dqs_tap_cnt_r != 'd0)
prbs_dqs_tap_cnt_r <= #TCQ prbs_dqs_tap_cnt_r - 1;
end
always @(posedge clk)
if (rst) begin
prbs_dec_tap_calc_plus_3 <= #TCQ 'b0;
prbs_dec_tap_calc_minus_3 <= #TCQ 'b0;
end else if (new_cnt_dqs_r) begin
prbs_dec_tap_calc_plus_3 <= #TCQ 'b000011;
prbs_dec_tap_calc_minus_3 <= #TCQ 'b111100;
end else begin
prbs_dec_tap_calc_plus_3 <= #TCQ (prbs_dqs_tap_cnt_r - rdlvl_cpt_tap_cnt + 3);
prbs_dec_tap_calc_minus_3 <= #TCQ (prbs_dqs_tap_cnt_r - rdlvl_cpt_tap_cnt - 3);
end
always @(posedge clk)
if (rst || new_cnt_dqs_r)
prbs_dqs_tap_limit_r <= #TCQ 1'b0;
else if (prbs_dqs_tap_cnt_r == 6'd63)
prbs_dqs_tap_limit_r <= #TCQ 1'b1;
else
prbs_dqs_tap_limit_r <= #TCQ 1'b0;
// Temp wire for timing.
// The following in the always block below causes timing issues
// due to DSP block inference
// 6*prbs_dqs_cnt_r.
// replacing this with two left shifts + one left shift to avoid
// DSP multiplier.
assign prbs_dqs_cnt_timing = {2'd0, prbs_dqs_cnt_r};
always @(posedge clk)
prbs_dqs_cnt_timing_r <= #TCQ prbs_dqs_cnt_timing;
// Storing DQS tap values at the end of each DQS read leveling
always @(posedge clk) begin
if (rst) begin
prbs_final_dqs_tap_cnt_r <= #TCQ 'b0;
end else if ((prbs_state_r == PRBS_NEXT_DQS) && (prbs_state_r1 != PRBS_NEXT_DQS)) begin
prbs_final_dqs_tap_cnt_r[(prbs_dqs_cnt_timing_r*6)+:6]
<= #TCQ prbs_dqs_tap_cnt_r;
end
end
//*****************************************************************
always @(posedge clk) begin
prbs_state_r1 <= #TCQ prbs_state_r;
prbs_rdlvl_start_r <= #TCQ prbs_rdlvl_start;
end
// Wait counter for wait states
always @(posedge clk)
if ((prbs_state_r == PRBS_NEW_DQS_WAIT) ||
(prbs_state_r == PRBS_INC_DQS_WAIT) ||
(prbs_state_r == PRBS_DEC_DQS_WAIT) ||
(prbs_state_r == FINE_PI_DEC_WAIT) ||
(prbs_state_r == FINE_PI_INC_WAIT) ||
(prbs_state_r == PRBS_NEW_DQS_PREWAIT))
wait_state_cnt_en_r <= #TCQ 1'b1;
else
wait_state_cnt_en_r <= #TCQ 1'b0;
always @(posedge clk)
if (!wait_state_cnt_en_r) begin
wait_state_cnt_r <= #TCQ 'b0;
cnt_wait_state <= #TCQ 1'b0;
end else begin
if (wait_state_cnt_r < 'd15) begin
wait_state_cnt_r <= #TCQ wait_state_cnt_r + 1;
cnt_wait_state <= #TCQ 1'b0;
end else begin
// Need to reset to 0 to handle the case when there are two
// different WAIT states back-to-back
wait_state_cnt_r <= #TCQ 'b0;
cnt_wait_state <= #TCQ 1'b1;
end
end
always @ (posedge clk)
err_chk_invalid <= #TCQ (wait_state_cnt_r < 'd14);
//*****************************************************************
// compare error checking per-bit
//****************************************************************
generate
genvar pb_i;
if (nCK_PER_CLK == 4) begin: cmp_err_pb_4to1
for(pb_i=0 ; pb_i<DRAM_WIDTH; pb_i=pb_i+1) begin
always @ (posedge clk) begin
//prevent error check during PI inc/dec and wait
if (rst || new_cnt_dqs_r || (prbs_state_r == FINE_PI_INC) || (prbs_state_r == FINE_PI_DEC) ||
(err_chk_invalid && ((prbs_state_r == FINE_PI_DEC_WAIT)||(prbs_state_r == FINE_PI_INC_WAIT))))
compare_err_pb[pb_i] <= #TCQ 1'b0;
else if (rd_valid_r2)
compare_err_pb[pb_i] <= #TCQ (mux_rd_rise0_r3[pb_i] != compare_data_rise0_r1[pb_i]) |
(mux_rd_fall0_r3[pb_i] != compare_data_fall0_r1[pb_i]) |
(mux_rd_rise1_r3[pb_i] != compare_data_rise1_r1[pb_i]) |
(mux_rd_fall1_r3[pb_i] != compare_data_fall1_r1[pb_i]) |
(mux_rd_rise2_r3[pb_i] != compare_data_rise2_r1[pb_i]) |
(mux_rd_fall2_r3[pb_i] != compare_data_fall2_r1[pb_i]) |
(mux_rd_rise3_r3[pb_i] != compare_data_rise3_r1[pb_i]) |
(mux_rd_fall3_r3[pb_i] != compare_data_fall3_r1[pb_i]) ;
end //always
end //for
end else begin: cmp_err_pb_2to1
for(pb_i=0 ; pb_i<DRAM_WIDTH; pb_i=pb_i+1) begin
always @ (posedge clk) begin
if (rst || new_cnt_dqs_r || (prbs_state_r == FINE_PI_INC) || (prbs_state_r == FINE_PI_DEC) ||
(err_chk_invalid && ((prbs_state_r == FINE_PI_DEC_WAIT)||(prbs_state_r == FINE_PI_INC_WAIT))))
compare_err_pb[pb_i] <= #TCQ 1'b0;
else if (rd_valid_r2)
compare_err_pb[pb_i] <= #TCQ (mux_rd_rise0_r3[pb_i] != compare_data_rise0_r1[pb_i]) |
(mux_rd_fall0_r3[pb_i] != compare_data_fall0_r1[pb_i]) |
(mux_rd_rise1_r3[pb_i] != compare_data_rise1_r1[pb_i]) |
(mux_rd_fall1_r3[pb_i] != compare_data_fall1_r1[pb_i]) ;
end //always
end //for
end //if
endgenerate
//checking all bit has error
always @ (posedge clk) begin
if(rst || new_cnt_dqs_r) begin
compare_err_pb_and <= #TCQ 1'b0;
end else begin
compare_err_pb_and <= #TCQ &compare_err_pb;
end
end
//generate stick error bit - left/right edge
generate
genvar pb_r;
for(pb_r=0; pb_r<DRAM_WIDTH; pb_r=pb_r+1) begin
always @ (posedge clk) begin
if((prbs_state_r == FINE_PI_INC) | (prbs_state_r == FINE_PI_DEC) |
(~cnt_wait_state && ((prbs_state_r == FINE_PI_INC_WAIT)|(prbs_state_r == FINE_PI_DEC_WAIT))))
compare_err_pb_latch_r[pb_r] <= #TCQ 1'b0;
else
compare_err_pb_latch_r[pb_r] <= #TCQ compare_err_pb[pb_r]? 1'b1:compare_err_pb_latch_r[pb_r];
end
end
endgenerate
//in stage 0, if left edge found, update ref_bit (one hot)
always @ (posedge clk) begin
if (rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
ref_bit_per_bit <= #TCQ 'd0;
end else if ((prbs_state_r == FINE_PI_INC) && (stage_cnt=='b0)) begin
if(|left_edge_updated) ref_bit_per_bit <= #TCQ left_edge_updated;
end
end
//ref bit with samllest right edge
//if bit 1 and 3 are set to ref_bit_per_bit but bit 1 has smaller right edge, bit is selected as ref_bit
always @ (posedge clk) begin
if(rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
bit_cnt <= #TCQ 'd0;
ref_right_edge <= #TCQ 6'h3f;
ref_bit <= #TCQ 'd0;
end else if ((prbs_state_r == FINE_CALC_TAPS_WAIT) && (stage_cnt == 'b0) && (bit_cnt < DRAM_WIDTH)) begin
bit_cnt <= #TCQ bit_cnt +'b1;
if ((ref_bit_per_bit[bit_cnt]==1'b1) && (right_edge_pb[bit_cnt*6+:6]<= ref_right_edge)) begin
ref_bit <= #TCQ bit_cnt;
ref_right_edge <= #TCQ right_edge_pb[bit_cnt*6+:6];
end
end
end
//pipe lining for reference bit left/right edge
always @ (posedge clk) begin
left_edge_ref <= #TCQ left_edge_pb[ref_bit*6+:6];
right_edge_ref <= #TCQ right_edge_pb[ref_bit*6+:6];
end
//left_edge/right_edge/left_loss/right_gain update
generate
genvar eg;
for(eg=0; eg<DRAM_WIDTH; eg = eg+1) begin
always @ (posedge clk) begin
if(rst | (prbs_state_r == PRBS_NEW_DQS_WAIT)) begin
match_flag_pb[eg*5+:5] <= #TCQ 5'h1f;
left_edge_pb[eg*6+:6] <= #TCQ 'b0;
right_edge_pb[eg*6+:6] <= #TCQ 6'h3f;
left_edge_found_pb[eg] <= #TCQ 1'b0;
right_edge_found_pb[eg] <= #TCQ 1'b0;
left_loss_pb[eg*6+:6] <= #TCQ 'b0;
right_gain_pb[eg*6+:6] <= #TCQ 'b0;
left_edge_updated[eg] <= #TCQ 'b0;
end else begin
if((prbs_state_r == FINE_PAT_COMPARE_PER_BIT) && (num_samples_done_r || compare_err_pb_and)) begin
//left edge is updated when match flag becomes 100000 (1 fail , 5 success)
if(match_flag_pb[eg*5+:5]==5'b10000 && compare_err_pb_latch_r[eg]==0) begin
left_edge_pb[eg*6+:6] <= #TCQ prbs_dqs_tap_cnt_r-4;
left_edge_found_pb[eg] <= #TCQ 1'b1; //used for update largest_left_edge
left_edge_updated[eg] <= #TCQ 1'b1;
//check the loss of bit - update only for left edge found
if(~left_edge_found_pb[eg])
left_loss_pb[eg*6+:6] <= #TCQ (left_edge_ref > prbs_dqs_tap_cnt_r - 4)? 'd0
: prbs_dqs_tap_cnt_r-4-left_edge_ref;
//right edge is updated when match flag becomes 000001 (5 success, 1 fail)
end else if (match_flag_pb[eg*5+:5]==5'b00000 && compare_err_pb_latch_r[eg]) begin
right_edge_pb[eg*6+:6] <= #TCQ prbs_dqs_tap_cnt_r-1;
right_edge_found_pb[eg] <= #TCQ 1'b1;
//check the gain of bit - update only for right edge found
if(~right_edge_found_pb[eg])
right_gain_pb[eg*6+:6] <= #TCQ (right_edge_ref > prbs_dqs_tap_cnt_r-1)?
((right_edge_pb[eg*6 +:6] > prbs_dqs_tap_cnt_r-1)? 0: prbs_dqs_tap_cnt_r-1- right_edge_pb[eg*6+:6]):
((right_edge_pb[eg*6+:6] > right_edge_ref)? 0 : right_edge_ref - right_edge_pb[eg*6+:6]);
//no right edge found
end else if (prbs_dqs_tap_cnt_r == 6'h3f && ~right_edge_found_pb[eg]) begin
right_edge_pb[eg*6+:6] <= #TCQ 6'h3f;
right_edge_found_pb[eg] <= #TCQ 1'b1;
//right edge at 63. gain = max(0, ref_bit_right_tap - prev_right_edge)
right_gain_pb[eg*6+:6] <= #TCQ (right_edge_ref > right_edge_pb[eg*6+:6])?
(right_edge_ref - right_edge_pb[eg*6+:6]) : 0;
end
//update match flag - shift and update
match_flag_pb[eg*5+:5] <= #TCQ {match_flag_pb[(eg*5)+:4],compare_err_pb_latch_r[eg]};
end else if (prbs_state_r == FINE_PI_DEC) begin
left_edge_found_pb[eg] <= #TCQ 1'b0;
right_edge_found_pb[eg] <= #TCQ 1'b0;
left_loss_pb[eg*6+:6] <= #TCQ 'b0;
right_gain_pb[eg*6+:6] <= #TCQ 'b0;
match_flag_pb[eg*5+:5] <= #TCQ 5'h1f; //new fix
end else if (prbs_state_r == FINE_PI_INC) begin
left_edge_updated[eg] <= #TCQ 'b0; //used only for update largest ref_bit and largest_left_edge
end
end
end //always
end //for
endgenerate
//update fine_delay according to loss/gain value per bit
generate
genvar f_pb;
for(f_pb=0; f_pb<DRAM_WIDTH; f_pb=f_pb+1) begin
always @ (posedge clk) begin
if(rst | prbs_state_r == PRBS_NEW_DQS_WAIT ) begin
fine_delay_incdec_pb[f_pb] <= #TCQ 1'b0;
end else if((prbs_state_r == FINE_CALC_TAPS_WAIT) && (bit_cnt == DRAM_WIDTH)) begin
if(stage_cnt == 'd0) fine_delay_incdec_pb[f_pb] <= #TCQ (f_pb==ref_bit)? 1'b0:1'b1; //only for initial stage
else if(stage_cnt == 'd1) fine_delay_incdec_pb[f_pb] <= #TCQ (right_gain_pb[f_pb*6+:6]>left_loss_pb[f_pb*6+:6])?1'b1:1'b0;
end
end
end
endgenerate
//fine inc stage (stage cnt 0,1,2), fine dec stage (stage cnt 3)
always @ (posedge clk) begin
if (rst)
fine_inc_stage <= #TCQ 'b1;
else
fine_inc_stage <= #TCQ (stage_cnt!='d3);
end
//*****************************************************************
always @(posedge clk)
if (rst) begin
prbs_dqs_cnt_r <= #TCQ 'b0;
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
prbs_state_r <= #TCQ PRBS_IDLE;
prbs_found_1st_edge_r <= #TCQ 1'b0;
prbs_found_2nd_edge_r <= #TCQ 1'b0;
prbs_1st_edge_taps_r <= #TCQ 6'bxxxxxx;
prbs_inc_tap_cnt <= #TCQ 'b0;
prbs_dec_tap_cnt <= #TCQ 'b0;
new_cnt_dqs_r <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "FAST_CAL")
prbs_rdlvl_done <= #TCQ 1'b1;
else
prbs_rdlvl_done <= #TCQ 1'b0;
prbs_2nd_edge_taps_r <= #TCQ 6'bxxxxxx;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_tap_mod <= #TCQ 'd0;
reset_rd_addr <= #TCQ 'b0;
read_pause <= #TCQ 'b0;
fine_pi_dec_cnt <= #TCQ 'b0;
match_flag_and <= #TCQ 5'h1f;
stage_cnt <= #TCQ 2'b00;
right_edge_found <= #TCQ 1'b0;
largest_left_edge <= #TCQ 6'b000000;
smallest_right_edge <= #TCQ 6'b111111;
num_samples_done_ind <= #TCQ 'b0;
fine_delay_sel <= #TCQ 'b0;
fine_dly_error <= #TCQ 'b0;
end else begin
case (prbs_state_r)
PRBS_IDLE: begin
prbs_last_byte_done <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
if (prbs_rdlvl_start && ~prbs_rdlvl_start_r) begin
if (SIM_CAL_OPTION == "SKIP_CAL" || SIM_CAL_OPTION == "FAST_CAL") begin
prbs_state_r <= #TCQ PRBS_DONE;
reset_rd_addr <= #TCQ 1'b1;
end else begin
new_cnt_dqs_r <= #TCQ 1'b1;
prbs_state_r <= #TCQ PRBS_NEW_DQS_WAIT;
fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
end
end
end
// Wait for the new DQS group to change
// also gives time for the read data IN_FIFO to
// output the updated data for the new DQS group
PRBS_NEW_DQS_WAIT: begin
reset_rd_addr <= #TCQ 'b0;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_prech_req_r <= #TCQ 1'b0;
//fine_inc_stage <= #TCQ 1'b1;
stage_cnt <= #TCQ 2'b0;
match_flag_and <= #TCQ 5'h1f;
if (cnt_wait_state) begin
new_cnt_dqs_r <= #TCQ 1'b0;
prbs_state_r <= #TCQ fine_calib? FINE_PI_DEC:PRBS_PAT_COMPARE;
end
end
// Check for presence of data eye edge. During this state, we
// sample the read data multiple times, and look for changes
// in the read data, specifically:
// 1. A change in the read data compared with the value of
// read data from the previous delay tap. This indicates
// that the most recent tap delay increment has moved us
// into either a new window, or moved/kept us in the
// transition/jitter region between windows. Note that this
// condition only needs to be checked for once, and for
// logistical purposes, we check this soon after entering
// this state (see comment in PRBS_PAT_COMPARE below for
// why this is done)
// 2. A change in the read data while we are in this state
// (i.e. in the absence of a tap delay increment). This
// indicates that we're close enough to a window edge that
// jitter will cause the read data to change even in the
// absence of a tap delay change
PRBS_PAT_COMPARE: begin
// Continue to sample read data and look for edges until the
// appropriate time interval (shorter for simulation-only,
// much, much longer for actual h/w) has elapsed
if (num_samples_done_r || compare_err) begin
if (prbs_dqs_tap_limit_r)
// Only one edge detected and ran out of taps since only one
// bit time worth of taps available for window detection. This
// can happen if at tap 0 DQS is in previous window which results
// in only left edge being detected. Or at tap 0 DQS is in the
// current window resulting in only right edge being detected.
// Depending on the frequency this case can also happen if at
// tap 0 DQS is in the left noise region resulting in only left
// edge being detected.
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE;
else if (compare_err || (prbs_dqs_tap_cnt_r == 'd0)) begin
// Sticky bit - asserted after we encounter an edge, although
// the current edge may not be considered the "first edge" this
// just means we found at least one edge
prbs_found_1st_edge_r <= #TCQ 1'b1;
// Both edges of data valid window found:
// If we've found a second edge after a region of stability
// then we must have just passed the second ("right" edge of
// the window. Record this second_edge_taps = current tap-1,
// because we're one past the actual second edge tap, where
// the edge taps represent the extremes of the data valid
// window (i.e. smallest & largest taps where data still valid
if (prbs_found_1st_edge_r) begin
prbs_found_2nd_edge_r <= #TCQ 1'b1;
prbs_2nd_edge_taps_r <= #TCQ prbs_dqs_tap_cnt_r - 1;
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE;
end else begin
// Otherwise, an edge was found (just not the "second" edge)
// Assuming DQS is in the correct window at tap 0 of Phaser IN
// fine tap. The first edge found is the right edge of the valid
// window and is the beginning of the jitter region hence done!
if (compare_err)
prbs_1st_edge_taps_r <= #TCQ prbs_dqs_tap_cnt_r + 1;
else
prbs_1st_edge_taps_r <= #TCQ 'd0;
prbs_inc_tap_cnt <= #TCQ rdlvl_cpt_tap_cnt - prbs_dqs_tap_cnt_r;
prbs_state_r <= #TCQ PRBS_INC_DQS;
end
end else begin
// Otherwise, if we haven't found an edge....
// If we still have taps left to use, then keep incrementing
if (prbs_found_1st_edge_r)
prbs_state_r <= #TCQ PRBS_INC_DQS;
else
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end
end
end
// Increment Phaser_IN delay for DQS
PRBS_INC_DQS: begin
prbs_state_r <= #TCQ PRBS_INC_DQS_WAIT;
if (prbs_inc_tap_cnt > 'd0)
prbs_inc_tap_cnt <= #TCQ prbs_inc_tap_cnt - 1;
if (~prbs_dqs_tap_limit_r) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b1;
end
end
// Wait for Phaser_In to settle, before checking again for an edge
PRBS_INC_DQS_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
if (prbs_inc_tap_cnt > 'd0)
prbs_state_r <= #TCQ PRBS_INC_DQS;
else
prbs_state_r <= #TCQ PRBS_PAT_COMPARE;
end
end
// Calculate final value of Phaser_IN taps. At this point, one or both
// edges of data eye have been found, and/or all taps have been
// exhausted looking for the edges
// NOTE: The amount to be decrement by is calculated, not the
// absolute setting for DQS.
// CENTER compensation with shift by 1
PRBS_CALC_TAPS: begin
if (center_comp) begin
prbs_dec_tap_cnt <= #TCQ (dec_cnt[5] & dec_cnt[0])? 'd32: dec_cnt + pi_adj;
fine_dly_error <= #TCQ (dec_cnt[5] & dec_cnt[0])? 1'b1: fine_dly_error; //sticky bit
read_pause <= #TCQ 'b1;
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end else begin //No center compensation
if (prbs_found_2nd_edge_r && prbs_found_1st_edge_r)
// Both edges detected
prbs_dec_tap_cnt
<= #TCQ ((prbs_2nd_edge_taps_r -
prbs_1st_edge_taps_r)>>1) + 1 + pi_adj;
else if (~prbs_found_2nd_edge_r && prbs_found_1st_edge_r)
// Only left edge detected
prbs_dec_tap_cnt
<= #TCQ ((prbs_dqs_tap_cnt_r - prbs_1st_edge_taps_r)>>1) + pi_adj;
else
// No edges detected
prbs_dec_tap_cnt
<= #TCQ (prbs_dqs_tap_cnt_r>>1) + pi_adj;
// Now use the value we just calculated to decrement CPT taps
// to the desired calibration point
read_pause <= #TCQ 'b1;
prbs_state_r <= #TCQ PRBS_DEC_DQS;
end
end
// decrement capture clock for final adjustment - center
// capture clock in middle of data eye. This adjustment will occur
// only when both the edges are found usign CPT taps. Must do this
// incrementally to avoid clock glitching (since CPT drives clock
// divider within each ISERDES)
PRBS_DEC_DQS: begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b0;
// once adjustment is complete, we're done with calibration for
// this DQS, repeat for next DQS
if (prbs_dec_tap_cnt > 'd0)
prbs_dec_tap_cnt <= #TCQ prbs_dec_tap_cnt - 1;
if (prbs_dec_tap_cnt == 6'b000001)
prbs_state_r <= #TCQ PRBS_NEXT_DQS;
else
prbs_state_r <= #TCQ PRBS_DEC_DQS_WAIT;
end
PRBS_DEC_DQS_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
if (prbs_dec_tap_cnt > 'd0)
prbs_state_r <= #TCQ PRBS_DEC_DQS;
else
prbs_state_r <= #TCQ PRBS_PAT_COMPARE;
end
end
// Determine whether we're done, or have more DQS's to calibrate
// Also request precharge after every byte, as appropriate
PRBS_NEXT_DQS: begin
read_pause <= #TCQ 'b0;
reset_rd_addr <= #TCQ 'b1;
prbs_prech_req_r <= #TCQ 1'b1;
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
// Prepare for another iteration with next DQS group
prbs_found_1st_edge_r <= #TCQ 1'b0;
prbs_found_2nd_edge_r <= #TCQ 1'b0;
prbs_1st_edge_taps_r <= #TCQ 'd0;
prbs_2nd_edge_taps_r <= #TCQ 'd0;
largest_left_edge <= #TCQ 6'b000000;
smallest_right_edge <= #TCQ 6'b111111;
if (prbs_dqs_cnt_r >= DQS_WIDTH-1) begin
prbs_last_byte_done <= #TCQ 1'b1;
end
// Wait until precharge that occurs in between calibration of
// DQS groups is finished
if (prech_done) begin
prbs_prech_req_r <= #TCQ 1'b0;
if (prbs_dqs_cnt_r >= DQS_WIDTH-1) begin
// All DQS groups done
prbs_state_r <= #TCQ PRBS_DONE;
end else begin
// Process next DQS group
new_cnt_dqs_r <= #TCQ 1'b1;
//fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
prbs_dqs_cnt_r <= #TCQ prbs_dqs_cnt_r + 1;
prbs_state_r <= #TCQ PRBS_NEW_DQS_PREWAIT;
end
end
end
PRBS_NEW_DQS_PREWAIT: begin
if (cnt_wait_state) begin
prbs_state_r <= #TCQ PRBS_NEW_DQS_WAIT;
fine_pi_dec_cnt <= #TCQ pi_counter_read_val;//.
end
end
PRBS_CALC_TAPS_PRE:
begin
if(num_samples_done_r) begin
prbs_state_r <= #TCQ fine_calib? PRBS_NEXT_DQS:PRBS_CALC_TAPS_WAIT;
if(center_comp && ~fine_calib) begin
if(prbs_found_1st_edge_r) largest_left_edge <= #TCQ prbs_1st_edge_taps_r;
else largest_left_edge <= #TCQ 6'd0;
if(prbs_found_2nd_edge_r) smallest_right_edge <= #TCQ prbs_2nd_edge_taps_r;
else smallest_right_edge <= #TCQ 6'd63;
end
end
end
//wait for center compensation
PRBS_CALC_TAPS_WAIT:
begin
prbs_state_r <= #TCQ PRBS_CALC_TAPS;
end
//if it is fine_inc stage (first/second stage): dec to 0
//if it is fine_dec stage (third stage): dec to center
FINE_PI_DEC: begin
fine_delay_sel <= #TCQ 'b0;
if(fine_pi_dec_cnt > 0) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b0;
fine_pi_dec_cnt <= #TCQ fine_pi_dec_cnt - 'd1;
end
prbs_state_r <= #TCQ FINE_PI_DEC_WAIT;
end
//wait for phaser_in tap decrement.
//if first/second stage is done, goes to FINE_PI_INC
//if last stage is done, goes to NEXT_DQS
FINE_PI_DEC_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if(cnt_wait_state) begin
if(fine_pi_dec_cnt >0)
prbs_state_r <= #TCQ FINE_PI_DEC;
else
if(fine_inc_stage)
// prbs_state_r <= #TCQ FINE_PI_INC; //for temp change
prbs_state_r <= #TCQ FINE_PAT_COMPARE_PER_BIT; //start from pi tap "0"
else
prbs_state_r <= #TCQ PRBS_CALC_TAPS_PRE; //finish the process and go to the next DQS
end
end
FINE_PI_INC: begin
if(|left_edge_updated) largest_left_edge <= #TCQ prbs_dqs_tap_cnt_r-4;
if(|right_edge_found_pb && ~right_edge_found) begin
smallest_right_edge <= #TCQ prbs_dqs_tap_cnt_r -1 ;
right_edge_found <= #TCQ 'b1;
end
//left_edge_found_pb <= #TCQ {DRAM_WIDTH{1'b0}};
prbs_state_r <= #TCQ FINE_PI_INC_WAIT;
if(~prbs_dqs_tap_limit_r) begin
prbs_tap_en_r <= #TCQ 1'b1;
prbs_tap_inc_r <= #TCQ 1'b1;
end
end
//wait for phase_in tap increment
//need to do pattern compare for every bit
FINE_PI_INC_WAIT: begin
prbs_tap_en_r <= #TCQ 1'b0;
prbs_tap_inc_r <= #TCQ 1'b0;
if (cnt_wait_state) begin
prbs_state_r <= #TCQ FINE_PAT_COMPARE_PER_BIT;
end
end
//compare per bit data and update flags,left/right edge
FINE_PAT_COMPARE_PER_BIT: begin
if(num_samples_done_r || compare_err_pb_and) begin
//update and_flag - shift and add
match_flag_and <= #TCQ {match_flag_and[3:0],compare_err_pb_and};
//if it is consecutive 5 passing taps followed by fail or tap limit (finish the search)
//don't go to fine_FINE_CALC_TAPS to prevent to skip whole stage
//Or if all right edge are found
if((match_flag_and == 5'b00000 && compare_err_pb_and && (prbs_dqs_tap_cnt_r > 5)) || prbs_dqs_tap_limit_r || (&right_edge_found_pb)) begin
prbs_state_r <= #TCQ FINE_CALC_TAPS;
//if all right edge are alined (all right edge found at the same time), update smallest right edge in here
//doesnt need to set right_edge_found to 1 since it is not used after this stage
if(!right_edge_found) smallest_right_edge <= #TCQ prbs_dqs_tap_cnt_r-1;
end else begin
prbs_state_r <= #TCQ FINE_PI_INC; //keep increase until all fail
end
num_samples_done_ind <= num_samples_done_r;
end
end
//for fine_inc stage, inc all fine delay
//for fine_dec stage, apply dec fine delay for specific bits (by calculating the loss/gain)
// put phaser_in taps to the center
FINE_CALC_TAPS: begin
if(num_samples_done_ind || num_samples_done_r) begin
num_samples_done_ind <= #TCQ 'b0; //indicate num_samples_done_r is set
right_edge_found <= #TCQ 1'b0; //reset right edge found
match_flag_and <= #TCQ 5'h1f; //reset match flag for all bits
prbs_state_r <= #TCQ FINE_CALC_TAPS_WAIT;
end
end
FINE_CALC_TAPS_WAIT: begin //wait for ROM read out
if(stage_cnt == 'd2) begin //last stage : back to center
if(center_comp) begin
fine_pi_dec_cnt <= #TCQ (dec_cnt[5]&dec_cnt[0])? 'd32: prbs_dqs_tap_cnt_r - smallest_right_edge + dec_cnt - 1 + pi_adj ; //going to the center value & shift by 1
fine_dly_error <= #TCQ (dec_cnt[5]&dec_cnt[0]) ? 1'b1: fine_dly_error;
end else begin
fine_pi_dec_cnt <= #TCQ prbs_dqs_tap_cnt_r - center_calc[6:1] - center_calc[0] + pi_adj; //going to the center value & shift left by 1
fine_dly_error <= #TCQ 1'b0;
end
end else begin
fine_pi_dec_cnt <= #TCQ prbs_dqs_tap_cnt_r;
end
if (bit_cnt == DRAM_WIDTH) begin
fine_delay_sel <= #TCQ 'b1;
stage_cnt <= #TCQ stage_cnt + 1;
prbs_state_r <= #TCQ FINE_PI_DEC;
end
end
// Done with this stage of calibration
PRBS_DONE: begin
prbs_prech_req_r <= #TCQ 1'b0;
prbs_last_byte_done <= #TCQ 1'b0;
prbs_rdlvl_done <= #TCQ 1'b1;
reset_rd_addr <= #TCQ 1'b0;
end
endcase
end
//ROM generation for dec counter
always @ (largest_left_edge or smallest_right_edge) begin
case ({largest_left_edge, smallest_right_edge})
12'd0 : mem_out_dec = 6'b111111;
12'd1 : mem_out_dec = 6'b111111;
12'd2 : mem_out_dec = 6'b111111;
12'd3 : mem_out_dec = 6'b111111;
12'd4 : mem_out_dec = 6'b111111;
12'd5 : mem_out_dec = 6'b111111;
12'd6 : mem_out_dec = 6'b000100;
12'd7 : mem_out_dec = 6'b000101;
12'd8 : mem_out_dec = 6'b000101;
12'd9 : mem_out_dec = 6'b000110;
12'd10 : mem_out_dec = 6'b000110;
12'd11 : mem_out_dec = 6'b000111;
12'd12 : mem_out_dec = 6'b001000;
12'd13 : mem_out_dec = 6'b001000;
12'd14 : mem_out_dec = 6'b001001;
12'd15 : mem_out_dec = 6'b001010;
12'd16 : mem_out_dec = 6'b001010;
12'd17 : mem_out_dec = 6'b001011;
12'd18 : mem_out_dec = 6'b001011;
12'd19 : mem_out_dec = 6'b001100;
12'd20 : mem_out_dec = 6'b001100;
12'd21 : mem_out_dec = 6'b001100;
12'd22 : mem_out_dec = 6'b001100;
12'd23 : mem_out_dec = 6'b001101;
12'd24 : mem_out_dec = 6'b001100;
12'd25 : mem_out_dec = 6'b001100;
12'd26 : mem_out_dec = 6'b001101;
12'd27 : mem_out_dec = 6'b001110;
12'd28 : mem_out_dec = 6'b001110;
12'd29 : mem_out_dec = 6'b001111;
12'd30 : mem_out_dec = 6'b010000;
12'd31 : mem_out_dec = 6'b010001;
12'd32 : mem_out_dec = 6'b010001;
12'd33 : mem_out_dec = 6'b010010;
12'd34 : mem_out_dec = 6'b010010;
12'd35 : mem_out_dec = 6'b010010;
12'd36 : mem_out_dec = 6'b010011;
12'd37 : mem_out_dec = 6'b010100;
12'd38 : mem_out_dec = 6'b010100;
12'd39 : mem_out_dec = 6'b010101;
12'd40 : mem_out_dec = 6'b010101;
12'd41 : mem_out_dec = 6'b010110;
12'd42 : mem_out_dec = 6'b010110;
12'd43 : mem_out_dec = 6'b010111;
12'd44 : mem_out_dec = 6'b011000;
12'd45 : mem_out_dec = 6'b011001;
12'd46 : mem_out_dec = 6'b011001;
12'd47 : mem_out_dec = 6'b011010;
12'd48 : mem_out_dec = 6'b011010;
12'd49 : mem_out_dec = 6'b011011;
12'd50 : mem_out_dec = 6'b011011;
12'd51 : mem_out_dec = 6'b011100;
12'd52 : mem_out_dec = 6'b011100;
12'd53 : mem_out_dec = 6'b011100;
12'd54 : mem_out_dec = 6'b011100;
12'd55 : mem_out_dec = 6'b011100;
12'd56 : mem_out_dec = 6'b011100;
12'd57 : mem_out_dec = 6'b011100;
12'd58 : mem_out_dec = 6'b011100;
12'd59 : mem_out_dec = 6'b011101;
12'd60 : mem_out_dec = 6'b011110;
12'd61 : mem_out_dec = 6'b011111;
12'd62 : mem_out_dec = 6'b100000;
12'd63 : mem_out_dec = 6'b100000;
12'd64 : mem_out_dec = 6'b111111;
12'd65 : mem_out_dec = 6'b111111;
12'd66 : mem_out_dec = 6'b111111;
12'd67 : mem_out_dec = 6'b111111;
12'd68 : mem_out_dec = 6'b111111;
12'd69 : mem_out_dec = 6'b111111;
12'd70 : mem_out_dec = 6'b111111;
12'd71 : mem_out_dec = 6'b000100;
12'd72 : mem_out_dec = 6'b000100;
12'd73 : mem_out_dec = 6'b000101;
12'd74 : mem_out_dec = 6'b000110;
12'd75 : mem_out_dec = 6'b000111;
12'd76 : mem_out_dec = 6'b000111;
12'd77 : mem_out_dec = 6'b001000;
12'd78 : mem_out_dec = 6'b001001;
12'd79 : mem_out_dec = 6'b001001;
12'd80 : mem_out_dec = 6'b001010;
12'd81 : mem_out_dec = 6'b001010;
12'd82 : mem_out_dec = 6'b001011;
12'd83 : mem_out_dec = 6'b001011;
12'd84 : mem_out_dec = 6'b001011;
12'd85 : mem_out_dec = 6'b001011;
12'd86 : mem_out_dec = 6'b001011;
12'd87 : mem_out_dec = 6'b001100;
12'd88 : mem_out_dec = 6'b001011;
12'd89 : mem_out_dec = 6'b001100;
12'd90 : mem_out_dec = 6'b001100;
12'd91 : mem_out_dec = 6'b001101;
12'd92 : mem_out_dec = 6'b001110;
12'd93 : mem_out_dec = 6'b001111;
12'd94 : mem_out_dec = 6'b001111;
12'd95 : mem_out_dec = 6'b010000;
12'd96 : mem_out_dec = 6'b010001;
12'd97 : mem_out_dec = 6'b010001;
12'd98 : mem_out_dec = 6'b010010;
12'd99 : mem_out_dec = 6'b010010;
12'd100 : mem_out_dec = 6'b010011;
12'd101 : mem_out_dec = 6'b010011;
12'd102 : mem_out_dec = 6'b010100;
12'd103 : mem_out_dec = 6'b010100;
12'd104 : mem_out_dec = 6'b010100;
12'd105 : mem_out_dec = 6'b010101;
12'd106 : mem_out_dec = 6'b010110;
12'd107 : mem_out_dec = 6'b010111;
12'd108 : mem_out_dec = 6'b010111;
12'd109 : mem_out_dec = 6'b011000;
12'd110 : mem_out_dec = 6'b011001;
12'd111 : mem_out_dec = 6'b011001;
12'd112 : mem_out_dec = 6'b011010;
12'd113 : mem_out_dec = 6'b011010;
12'd114 : mem_out_dec = 6'b011011;
12'd115 : mem_out_dec = 6'b011011;
12'd116 : mem_out_dec = 6'b011011;
12'd117 : mem_out_dec = 6'b011011;
12'd118 : mem_out_dec = 6'b011011;
12'd119 : mem_out_dec = 6'b011011;
12'd120 : mem_out_dec = 6'b011011;
12'd121 : mem_out_dec = 6'b011011;
12'd122 : mem_out_dec = 6'b011100;
12'd123 : mem_out_dec = 6'b011101;
12'd124 : mem_out_dec = 6'b011110;
12'd125 : mem_out_dec = 6'b011110;
12'd126 : mem_out_dec = 6'b011111;
12'd127 : mem_out_dec = 6'b100000;
12'd128 : mem_out_dec = 6'b111111;
12'd129 : mem_out_dec = 6'b111111;
12'd130 : mem_out_dec = 6'b111111;
12'd131 : mem_out_dec = 6'b111111;
12'd132 : mem_out_dec = 6'b111111;
12'd133 : mem_out_dec = 6'b111111;
12'd134 : mem_out_dec = 6'b111111;
12'd135 : mem_out_dec = 6'b111111;
12'd136 : mem_out_dec = 6'b000100;
12'd137 : mem_out_dec = 6'b000101;
12'd138 : mem_out_dec = 6'b000101;
12'd139 : mem_out_dec = 6'b000110;
12'd140 : mem_out_dec = 6'b000110;
12'd141 : mem_out_dec = 6'b000111;
12'd142 : mem_out_dec = 6'b001000;
12'd143 : mem_out_dec = 6'b001001;
12'd144 : mem_out_dec = 6'b001001;
12'd145 : mem_out_dec = 6'b001010;
12'd146 : mem_out_dec = 6'b001010;
12'd147 : mem_out_dec = 6'b001010;
12'd148 : mem_out_dec = 6'b001010;
12'd149 : mem_out_dec = 6'b001010;
12'd150 : mem_out_dec = 6'b001010;
12'd151 : mem_out_dec = 6'b001011;
12'd152 : mem_out_dec = 6'b001010;
12'd153 : mem_out_dec = 6'b001011;
12'd154 : mem_out_dec = 6'b001100;
12'd155 : mem_out_dec = 6'b001101;
12'd156 : mem_out_dec = 6'b001101;
12'd157 : mem_out_dec = 6'b001110;
12'd158 : mem_out_dec = 6'b001111;
12'd159 : mem_out_dec = 6'b010000;
12'd160 : mem_out_dec = 6'b010000;
12'd161 : mem_out_dec = 6'b010001;
12'd162 : mem_out_dec = 6'b010001;
12'd163 : mem_out_dec = 6'b010010;
12'd164 : mem_out_dec = 6'b010010;
12'd165 : mem_out_dec = 6'b010011;
12'd166 : mem_out_dec = 6'b010011;
12'd167 : mem_out_dec = 6'b010100;
12'd168 : mem_out_dec = 6'b010100;
12'd169 : mem_out_dec = 6'b010101;
12'd170 : mem_out_dec = 6'b010101;
12'd171 : mem_out_dec = 6'b010110;
12'd172 : mem_out_dec = 6'b010111;
12'd173 : mem_out_dec = 6'b010111;
12'd174 : mem_out_dec = 6'b011000;
12'd175 : mem_out_dec = 6'b011001;
12'd176 : mem_out_dec = 6'b011001;
12'd177 : mem_out_dec = 6'b011010;
12'd178 : mem_out_dec = 6'b011010;
12'd179 : mem_out_dec = 6'b011010;
12'd180 : mem_out_dec = 6'b011010;
12'd181 : mem_out_dec = 6'b011010;
12'd182 : mem_out_dec = 6'b011010;
12'd183 : mem_out_dec = 6'b011010;
12'd184 : mem_out_dec = 6'b011010;
12'd185 : mem_out_dec = 6'b011011;
12'd186 : mem_out_dec = 6'b011100;
12'd187 : mem_out_dec = 6'b011100;
12'd188 : mem_out_dec = 6'b011101;
12'd189 : mem_out_dec = 6'b011110;
12'd190 : mem_out_dec = 6'b011111;
12'd191 : mem_out_dec = 6'b100000;
12'd192 : mem_out_dec = 6'b111111;
12'd193 : mem_out_dec = 6'b111111;
12'd194 : mem_out_dec = 6'b111111;
12'd195 : mem_out_dec = 6'b111111;
12'd196 : mem_out_dec = 6'b111111;
12'd197 : mem_out_dec = 6'b111111;
12'd198 : mem_out_dec = 6'b111111;
12'd199 : mem_out_dec = 6'b111111;
12'd200 : mem_out_dec = 6'b111111;
12'd201 : mem_out_dec = 6'b000100;
12'd202 : mem_out_dec = 6'b000100;
12'd203 : mem_out_dec = 6'b000101;
12'd204 : mem_out_dec = 6'b000110;
12'd205 : mem_out_dec = 6'b000111;
12'd206 : mem_out_dec = 6'b001000;
12'd207 : mem_out_dec = 6'b001000;
12'd208 : mem_out_dec = 6'b001001;
12'd209 : mem_out_dec = 6'b001001;
12'd210 : mem_out_dec = 6'b001001;
12'd211 : mem_out_dec = 6'b001001;
12'd212 : mem_out_dec = 6'b001001;
12'd213 : mem_out_dec = 6'b001001;
12'd214 : mem_out_dec = 6'b001001;
12'd215 : mem_out_dec = 6'b001010;
12'd216 : mem_out_dec = 6'b001010;
12'd217 : mem_out_dec = 6'b001011;
12'd218 : mem_out_dec = 6'b001011;
12'd219 : mem_out_dec = 6'b001100;
12'd220 : mem_out_dec = 6'b001101;
12'd221 : mem_out_dec = 6'b001110;
12'd222 : mem_out_dec = 6'b001111;
12'd223 : mem_out_dec = 6'b001111;
12'd224 : mem_out_dec = 6'b010000;
12'd225 : mem_out_dec = 6'b010000;
12'd226 : mem_out_dec = 6'b010001;
12'd227 : mem_out_dec = 6'b010001;
12'd228 : mem_out_dec = 6'b010010;
12'd229 : mem_out_dec = 6'b010010;
12'd230 : mem_out_dec = 6'b010011;
12'd231 : mem_out_dec = 6'b010011;
12'd232 : mem_out_dec = 6'b010011;
12'd233 : mem_out_dec = 6'b010100;
12'd234 : mem_out_dec = 6'b010100;
12'd235 : mem_out_dec = 6'b010101;
12'd236 : mem_out_dec = 6'b010110;
12'd237 : mem_out_dec = 6'b010111;
12'd238 : mem_out_dec = 6'b011000;
12'd239 : mem_out_dec = 6'b011000;
12'd240 : mem_out_dec = 6'b011001;
12'd241 : mem_out_dec = 6'b011001;
12'd242 : mem_out_dec = 6'b011001;
12'd243 : mem_out_dec = 6'b011001;
12'd244 : mem_out_dec = 6'b011001;
12'd245 : mem_out_dec = 6'b011001;
12'd246 : mem_out_dec = 6'b011001;
12'd247 : mem_out_dec = 6'b011001;
12'd248 : mem_out_dec = 6'b011010;
12'd249 : mem_out_dec = 6'b011010;
12'd250 : mem_out_dec = 6'b011011;
12'd251 : mem_out_dec = 6'b011100;
12'd252 : mem_out_dec = 6'b011101;
12'd253 : mem_out_dec = 6'b011110;
12'd254 : mem_out_dec = 6'b011110;
12'd255 : mem_out_dec = 6'b011111;
12'd256 : mem_out_dec = 6'b111111;
12'd257 : mem_out_dec = 6'b111111;
12'd258 : mem_out_dec = 6'b111111;
12'd259 : mem_out_dec = 6'b111111;
12'd260 : mem_out_dec = 6'b111111;
12'd261 : mem_out_dec = 6'b111111;
12'd262 : mem_out_dec = 6'b111111;
12'd263 : mem_out_dec = 6'b111111;
12'd264 : mem_out_dec = 6'b111111;
12'd265 : mem_out_dec = 6'b111111;
12'd266 : mem_out_dec = 6'b000100;
12'd267 : mem_out_dec = 6'b000101;
12'd268 : mem_out_dec = 6'b000110;
12'd269 : mem_out_dec = 6'b000110;
12'd270 : mem_out_dec = 6'b000111;
12'd271 : mem_out_dec = 6'b001000;
12'd272 : mem_out_dec = 6'b001000;
12'd273 : mem_out_dec = 6'b001000;
12'd274 : mem_out_dec = 6'b001000;
12'd275 : mem_out_dec = 6'b001000;
12'd276 : mem_out_dec = 6'b001000;
12'd277 : mem_out_dec = 6'b001000;
12'd278 : mem_out_dec = 6'b001000;
12'd279 : mem_out_dec = 6'b001001;
12'd280 : mem_out_dec = 6'b001001;
12'd281 : mem_out_dec = 6'b001010;
12'd282 : mem_out_dec = 6'b001011;
12'd283 : mem_out_dec = 6'b001100;
12'd284 : mem_out_dec = 6'b001101;
12'd285 : mem_out_dec = 6'b001101;
12'd286 : mem_out_dec = 6'b001110;
12'd287 : mem_out_dec = 6'b001111;
12'd288 : mem_out_dec = 6'b001111;
12'd289 : mem_out_dec = 6'b010000;
12'd290 : mem_out_dec = 6'b010000;
12'd291 : mem_out_dec = 6'b010001;
12'd292 : mem_out_dec = 6'b010001;
12'd293 : mem_out_dec = 6'b010010;
12'd294 : mem_out_dec = 6'b010010;
12'd295 : mem_out_dec = 6'b010011;
12'd296 : mem_out_dec = 6'b010010;
12'd297 : mem_out_dec = 6'b010011;
12'd298 : mem_out_dec = 6'b010100;
12'd299 : mem_out_dec = 6'b010101;
12'd300 : mem_out_dec = 6'b010110;
12'd301 : mem_out_dec = 6'b010110;
12'd302 : mem_out_dec = 6'b010111;
12'd303 : mem_out_dec = 6'b011000;
12'd304 : mem_out_dec = 6'b011000;
12'd305 : mem_out_dec = 6'b011000;
12'd306 : mem_out_dec = 6'b011000;
12'd307 : mem_out_dec = 6'b011000;
12'd308 : mem_out_dec = 6'b011000;
12'd309 : mem_out_dec = 6'b011000;
12'd310 : mem_out_dec = 6'b011000;
12'd311 : mem_out_dec = 6'b011001;
12'd312 : mem_out_dec = 6'b011001;
12'd313 : mem_out_dec = 6'b011010;
12'd314 : mem_out_dec = 6'b011011;
12'd315 : mem_out_dec = 6'b011100;
12'd316 : mem_out_dec = 6'b011100;
12'd317 : mem_out_dec = 6'b011101;
12'd318 : mem_out_dec = 6'b011110;
12'd319 : mem_out_dec = 6'b011111;
12'd320 : mem_out_dec = 6'b111111;
12'd321 : mem_out_dec = 6'b111111;
12'd322 : mem_out_dec = 6'b111111;
12'd323 : mem_out_dec = 6'b111111;
12'd324 : mem_out_dec = 6'b111111;
12'd325 : mem_out_dec = 6'b111111;
12'd326 : mem_out_dec = 6'b111111;
12'd327 : mem_out_dec = 6'b111111;
12'd328 : mem_out_dec = 6'b111111;
12'd329 : mem_out_dec = 6'b111111;
12'd330 : mem_out_dec = 6'b111111;
12'd331 : mem_out_dec = 6'b000100;
12'd332 : mem_out_dec = 6'b000101;
12'd333 : mem_out_dec = 6'b000110;
12'd334 : mem_out_dec = 6'b000111;
12'd335 : mem_out_dec = 6'b001000;
12'd336 : mem_out_dec = 6'b000111;
12'd337 : mem_out_dec = 6'b000111;
12'd338 : mem_out_dec = 6'b000111;
12'd339 : mem_out_dec = 6'b000111;
12'd340 : mem_out_dec = 6'b000111;
12'd341 : mem_out_dec = 6'b000111;
12'd342 : mem_out_dec = 6'b001000;
12'd343 : mem_out_dec = 6'b001001;
12'd344 : mem_out_dec = 6'b001001;
12'd345 : mem_out_dec = 6'b001010;
12'd346 : mem_out_dec = 6'b001011;
12'd347 : mem_out_dec = 6'b001011;
12'd348 : mem_out_dec = 6'b001100;
12'd349 : mem_out_dec = 6'b001101;
12'd350 : mem_out_dec = 6'b001110;
12'd351 : mem_out_dec = 6'b001110;
12'd352 : mem_out_dec = 6'b001111;
12'd353 : mem_out_dec = 6'b001111;
12'd354 : mem_out_dec = 6'b010000;
12'd355 : mem_out_dec = 6'b010000;
12'd356 : mem_out_dec = 6'b010001;
12'd357 : mem_out_dec = 6'b010001;
12'd358 : mem_out_dec = 6'b010001;
12'd359 : mem_out_dec = 6'b010010;
12'd360 : mem_out_dec = 6'b010010;
12'd361 : mem_out_dec = 6'b010011;
12'd362 : mem_out_dec = 6'b010100;
12'd363 : mem_out_dec = 6'b010100;
12'd364 : mem_out_dec = 6'b010101;
12'd365 : mem_out_dec = 6'b010110;
12'd366 : mem_out_dec = 6'b010111;
12'd367 : mem_out_dec = 6'b011000;
12'd368 : mem_out_dec = 6'b010111;
12'd369 : mem_out_dec = 6'b010111;
12'd370 : mem_out_dec = 6'b010111;
12'd371 : mem_out_dec = 6'b010111;
12'd372 : mem_out_dec = 6'b010111;
12'd373 : mem_out_dec = 6'b010111;
12'd374 : mem_out_dec = 6'b011000;
12'd375 : mem_out_dec = 6'b011001;
12'd376 : mem_out_dec = 6'b011001;
12'd377 : mem_out_dec = 6'b011010;
12'd378 : mem_out_dec = 6'b011010;
12'd379 : mem_out_dec = 6'b011011;
12'd380 : mem_out_dec = 6'b011100;
12'd381 : mem_out_dec = 6'b011101;
12'd382 : mem_out_dec = 6'b011101;
12'd383 : mem_out_dec = 6'b011110;
12'd384 : mem_out_dec = 6'b111111;
12'd385 : mem_out_dec = 6'b111111;
12'd386 : mem_out_dec = 6'b111111;
12'd387 : mem_out_dec = 6'b111111;
12'd388 : mem_out_dec = 6'b111111;
12'd389 : mem_out_dec = 6'b111111;
12'd390 : mem_out_dec = 6'b111111;
12'd391 : mem_out_dec = 6'b111111;
12'd392 : mem_out_dec = 6'b111111;
12'd393 : mem_out_dec = 6'b111111;
12'd394 : mem_out_dec = 6'b111111;
12'd395 : mem_out_dec = 6'b111111;
12'd396 : mem_out_dec = 6'b000101;
12'd397 : mem_out_dec = 6'b000110;
12'd398 : mem_out_dec = 6'b000110;
12'd399 : mem_out_dec = 6'b000111;
12'd400 : mem_out_dec = 6'b000110;
12'd401 : mem_out_dec = 6'b000110;
12'd402 : mem_out_dec = 6'b000110;
12'd403 : mem_out_dec = 6'b000110;
12'd404 : mem_out_dec = 6'b000110;
12'd405 : mem_out_dec = 6'b000111;
12'd406 : mem_out_dec = 6'b001000;
12'd407 : mem_out_dec = 6'b001000;
12'd408 : mem_out_dec = 6'b001001;
12'd409 : mem_out_dec = 6'b001001;
12'd410 : mem_out_dec = 6'b001010;
12'd411 : mem_out_dec = 6'b001011;
12'd412 : mem_out_dec = 6'b001100;
12'd413 : mem_out_dec = 6'b001100;
12'd414 : mem_out_dec = 6'b001101;
12'd415 : mem_out_dec = 6'b001110;
12'd416 : mem_out_dec = 6'b001110;
12'd417 : mem_out_dec = 6'b001111;
12'd418 : mem_out_dec = 6'b001111;
12'd419 : mem_out_dec = 6'b010000;
12'd420 : mem_out_dec = 6'b010000;
12'd421 : mem_out_dec = 6'b010000;
12'd422 : mem_out_dec = 6'b010001;
12'd423 : mem_out_dec = 6'b010001;
12'd424 : mem_out_dec = 6'b010010;
12'd425 : mem_out_dec = 6'b010011;
12'd426 : mem_out_dec = 6'b010011;
12'd427 : mem_out_dec = 6'b010100;
12'd428 : mem_out_dec = 6'b010101;
12'd429 : mem_out_dec = 6'b010110;
12'd430 : mem_out_dec = 6'b010111;
12'd431 : mem_out_dec = 6'b010111;
12'd432 : mem_out_dec = 6'b010110;
12'd433 : mem_out_dec = 6'b010110;
12'd434 : mem_out_dec = 6'b010110;
12'd435 : mem_out_dec = 6'b010110;
12'd436 : mem_out_dec = 6'b010110;
12'd437 : mem_out_dec = 6'b010111;
12'd438 : mem_out_dec = 6'b010111;
12'd439 : mem_out_dec = 6'b011000;
12'd440 : mem_out_dec = 6'b011001;
12'd441 : mem_out_dec = 6'b011001;
12'd442 : mem_out_dec = 6'b011010;
12'd443 : mem_out_dec = 6'b011011;
12'd444 : mem_out_dec = 6'b011011;
12'd445 : mem_out_dec = 6'b011100;
12'd446 : mem_out_dec = 6'b011101;
12'd447 : mem_out_dec = 6'b011110;
12'd448 : mem_out_dec = 6'b111111;
12'd449 : mem_out_dec = 6'b111111;
12'd450 : mem_out_dec = 6'b111111;
12'd451 : mem_out_dec = 6'b111111;
12'd452 : mem_out_dec = 6'b111111;
12'd453 : mem_out_dec = 6'b111111;
12'd454 : mem_out_dec = 6'b111111;
12'd455 : mem_out_dec = 6'b111111;
12'd456 : mem_out_dec = 6'b111111;
12'd457 : mem_out_dec = 6'b111111;
12'd458 : mem_out_dec = 6'b111111;
12'd459 : mem_out_dec = 6'b111111;
12'd460 : mem_out_dec = 6'b111111;
12'd461 : mem_out_dec = 6'b000101;
12'd462 : mem_out_dec = 6'b000110;
12'd463 : mem_out_dec = 6'b000110;
12'd464 : mem_out_dec = 6'b000110;
12'd465 : mem_out_dec = 6'b000110;
12'd466 : mem_out_dec = 6'b000110;
12'd467 : mem_out_dec = 6'b000110;
12'd468 : mem_out_dec = 6'b000110;
12'd469 : mem_out_dec = 6'b000111;
12'd470 : mem_out_dec = 6'b000111;
12'd471 : mem_out_dec = 6'b001000;
12'd472 : mem_out_dec = 6'b001000;
12'd473 : mem_out_dec = 6'b001001;
12'd474 : mem_out_dec = 6'b001010;
12'd475 : mem_out_dec = 6'b001011;
12'd476 : mem_out_dec = 6'b001011;
12'd477 : mem_out_dec = 6'b001100;
12'd478 : mem_out_dec = 6'b001101;
12'd479 : mem_out_dec = 6'b001110;
12'd480 : mem_out_dec = 6'b001110;
12'd481 : mem_out_dec = 6'b001110;
12'd482 : mem_out_dec = 6'b001111;
12'd483 : mem_out_dec = 6'b001111;
12'd484 : mem_out_dec = 6'b010000;
12'd485 : mem_out_dec = 6'b010000;
12'd486 : mem_out_dec = 6'b010000;
12'd487 : mem_out_dec = 6'b010001;
12'd488 : mem_out_dec = 6'b010001;
12'd489 : mem_out_dec = 6'b010010;
12'd490 : mem_out_dec = 6'b010011;
12'd491 : mem_out_dec = 6'b010100;
12'd492 : mem_out_dec = 6'b010101;
12'd493 : mem_out_dec = 6'b010101;
12'd494 : mem_out_dec = 6'b010110;
12'd495 : mem_out_dec = 6'b010110;
12'd496 : mem_out_dec = 6'b010110;
12'd497 : mem_out_dec = 6'b010110;
12'd498 : mem_out_dec = 6'b010101;
12'd499 : mem_out_dec = 6'b010101;
12'd500 : mem_out_dec = 6'b010110;
12'd501 : mem_out_dec = 6'b010111;
12'd502 : mem_out_dec = 6'b010111;
12'd503 : mem_out_dec = 6'b011000;
12'd504 : mem_out_dec = 6'b011000;
12'd505 : mem_out_dec = 6'b011001;
12'd506 : mem_out_dec = 6'b011010;
12'd507 : mem_out_dec = 6'b011010;
12'd508 : mem_out_dec = 6'b011011;
12'd509 : mem_out_dec = 6'b011100;
12'd510 : mem_out_dec = 6'b011101;
12'd511 : mem_out_dec = 6'b011101;
12'd512 : mem_out_dec = 6'b111111;
12'd513 : mem_out_dec = 6'b111111;
12'd514 : mem_out_dec = 6'b111111;
12'd515 : mem_out_dec = 6'b111111;
12'd516 : mem_out_dec = 6'b111111;
12'd517 : mem_out_dec = 6'b111111;
12'd518 : mem_out_dec = 6'b111111;
12'd519 : mem_out_dec = 6'b111111;
12'd520 : mem_out_dec = 6'b111111;
12'd521 : mem_out_dec = 6'b111111;
12'd522 : mem_out_dec = 6'b111111;
12'd523 : mem_out_dec = 6'b111111;
12'd524 : mem_out_dec = 6'b111111;
12'd525 : mem_out_dec = 6'b111111;
12'd526 : mem_out_dec = 6'b000100;
12'd527 : mem_out_dec = 6'b000101;
12'd528 : mem_out_dec = 6'b000100;
12'd529 : mem_out_dec = 6'b000100;
12'd530 : mem_out_dec = 6'b000100;
12'd531 : mem_out_dec = 6'b000101;
12'd532 : mem_out_dec = 6'b000101;
12'd533 : mem_out_dec = 6'b000110;
12'd534 : mem_out_dec = 6'b000111;
12'd535 : mem_out_dec = 6'b000111;
12'd536 : mem_out_dec = 6'b000111;
12'd537 : mem_out_dec = 6'b001000;
12'd538 : mem_out_dec = 6'b001001;
12'd539 : mem_out_dec = 6'b001010;
12'd540 : mem_out_dec = 6'b001011;
12'd541 : mem_out_dec = 6'b001011;
12'd542 : mem_out_dec = 6'b001100;
12'd543 : mem_out_dec = 6'b001101;
12'd544 : mem_out_dec = 6'b001101;
12'd545 : mem_out_dec = 6'b001101;
12'd546 : mem_out_dec = 6'b001110;
12'd547 : mem_out_dec = 6'b001110;
12'd548 : mem_out_dec = 6'b001110;
12'd549 : mem_out_dec = 6'b001111;
12'd550 : mem_out_dec = 6'b010000;
12'd551 : mem_out_dec = 6'b010000;
12'd552 : mem_out_dec = 6'b010001;
12'd553 : mem_out_dec = 6'b010001;
12'd554 : mem_out_dec = 6'b010010;
12'd555 : mem_out_dec = 6'b010010;
12'd556 : mem_out_dec = 6'b010011;
12'd557 : mem_out_dec = 6'b010100;
12'd558 : mem_out_dec = 6'b010100;
12'd559 : mem_out_dec = 6'b010100;
12'd560 : mem_out_dec = 6'b010100;
12'd561 : mem_out_dec = 6'b010100;
12'd562 : mem_out_dec = 6'b010100;
12'd563 : mem_out_dec = 6'b010101;
12'd564 : mem_out_dec = 6'b010101;
12'd565 : mem_out_dec = 6'b010110;
12'd566 : mem_out_dec = 6'b010111;
12'd567 : mem_out_dec = 6'b010111;
12'd568 : mem_out_dec = 6'b010111;
12'd569 : mem_out_dec = 6'b011000;
12'd570 : mem_out_dec = 6'b011001;
12'd571 : mem_out_dec = 6'b011010;
12'd572 : mem_out_dec = 6'b011010;
12'd573 : mem_out_dec = 6'b011011;
12'd574 : mem_out_dec = 6'b011100;
12'd575 : mem_out_dec = 6'b011101;
12'd576 : mem_out_dec = 6'b111111;
12'd577 : mem_out_dec = 6'b111111;
12'd578 : mem_out_dec = 6'b111111;
12'd579 : mem_out_dec = 6'b111111;
12'd580 : mem_out_dec = 6'b111111;
12'd581 : mem_out_dec = 6'b111111;
12'd582 : mem_out_dec = 6'b111111;
12'd583 : mem_out_dec = 6'b111111;
12'd584 : mem_out_dec = 6'b111111;
12'd585 : mem_out_dec = 6'b111111;
12'd586 : mem_out_dec = 6'b111111;
12'd587 : mem_out_dec = 6'b111111;
12'd588 : mem_out_dec = 6'b111111;
12'd589 : mem_out_dec = 6'b111111;
12'd590 : mem_out_dec = 6'b111111;
12'd591 : mem_out_dec = 6'b000100;
12'd592 : mem_out_dec = 6'b000011;
12'd593 : mem_out_dec = 6'b000011;
12'd594 : mem_out_dec = 6'b000100;
12'd595 : mem_out_dec = 6'b000101;
12'd596 : mem_out_dec = 6'b000101;
12'd597 : mem_out_dec = 6'b000110;
12'd598 : mem_out_dec = 6'b000110;
12'd599 : mem_out_dec = 6'b000111;
12'd600 : mem_out_dec = 6'b000111;
12'd601 : mem_out_dec = 6'b001000;
12'd602 : mem_out_dec = 6'b001001;
12'd603 : mem_out_dec = 6'b001010;
12'd604 : mem_out_dec = 6'b001010;
12'd605 : mem_out_dec = 6'b001011;
12'd606 : mem_out_dec = 6'b001100;
12'd607 : mem_out_dec = 6'b001101;
12'd608 : mem_out_dec = 6'b001101;
12'd609 : mem_out_dec = 6'b001101;
12'd610 : mem_out_dec = 6'b001110;
12'd611 : mem_out_dec = 6'b001110;
12'd612 : mem_out_dec = 6'b001110;
12'd613 : mem_out_dec = 6'b001111;
12'd614 : mem_out_dec = 6'b010000;
12'd615 : mem_out_dec = 6'b010000;
12'd616 : mem_out_dec = 6'b010000;
12'd617 : mem_out_dec = 6'b010001;
12'd618 : mem_out_dec = 6'b010001;
12'd619 : mem_out_dec = 6'b010010;
12'd620 : mem_out_dec = 6'b010010;
12'd621 : mem_out_dec = 6'b010011;
12'd622 : mem_out_dec = 6'b010011;
12'd623 : mem_out_dec = 6'b010100;
12'd624 : mem_out_dec = 6'b010011;
12'd625 : mem_out_dec = 6'b010011;
12'd626 : mem_out_dec = 6'b010100;
12'd627 : mem_out_dec = 6'b010100;
12'd628 : mem_out_dec = 6'b010101;
12'd629 : mem_out_dec = 6'b010110;
12'd630 : mem_out_dec = 6'b010110;
12'd631 : mem_out_dec = 6'b010111;
12'd632 : mem_out_dec = 6'b010111;
12'd633 : mem_out_dec = 6'b011000;
12'd634 : mem_out_dec = 6'b011001;
12'd635 : mem_out_dec = 6'b011001;
12'd636 : mem_out_dec = 6'b011010;
12'd637 : mem_out_dec = 6'b011011;
12'd638 : mem_out_dec = 6'b011100;
12'd639 : mem_out_dec = 6'b011100;
12'd640 : mem_out_dec = 6'b111111;
12'd641 : mem_out_dec = 6'b111111;
12'd642 : mem_out_dec = 6'b111111;
12'd643 : mem_out_dec = 6'b111111;
12'd644 : mem_out_dec = 6'b111111;
12'd645 : mem_out_dec = 6'b111111;
12'd646 : mem_out_dec = 6'b111111;
12'd647 : mem_out_dec = 6'b111111;
12'd648 : mem_out_dec = 6'b111111;
12'd649 : mem_out_dec = 6'b111111;
12'd650 : mem_out_dec = 6'b111111;
12'd651 : mem_out_dec = 6'b111111;
12'd652 : mem_out_dec = 6'b111111;
12'd653 : mem_out_dec = 6'b111111;
12'd654 : mem_out_dec = 6'b111111;
12'd655 : mem_out_dec = 6'b111111;
12'd656 : mem_out_dec = 6'b000011;
12'd657 : mem_out_dec = 6'b000011;
12'd658 : mem_out_dec = 6'b000100;
12'd659 : mem_out_dec = 6'b000100;
12'd660 : mem_out_dec = 6'b000101;
12'd661 : mem_out_dec = 6'b000110;
12'd662 : mem_out_dec = 6'b000110;
12'd663 : mem_out_dec = 6'b000111;
12'd664 : mem_out_dec = 6'b000111;
12'd665 : mem_out_dec = 6'b001000;
12'd666 : mem_out_dec = 6'b001001;
12'd667 : mem_out_dec = 6'b001001;
12'd668 : mem_out_dec = 6'b001010;
12'd669 : mem_out_dec = 6'b001011;
12'd670 : mem_out_dec = 6'b001100;
12'd671 : mem_out_dec = 6'b001100;
12'd672 : mem_out_dec = 6'b001100;
12'd673 : mem_out_dec = 6'b001101;
12'd674 : mem_out_dec = 6'b001101;
12'd675 : mem_out_dec = 6'b001101;
12'd676 : mem_out_dec = 6'b001110;
12'd677 : mem_out_dec = 6'b001111;
12'd678 : mem_out_dec = 6'b001111;
12'd679 : mem_out_dec = 6'b010000;
12'd680 : mem_out_dec = 6'b010000;
12'd681 : mem_out_dec = 6'b010000;
12'd682 : mem_out_dec = 6'b010001;
12'd683 : mem_out_dec = 6'b010001;
12'd684 : mem_out_dec = 6'b010010;
12'd685 : mem_out_dec = 6'b010010;
12'd686 : mem_out_dec = 6'b010011;
12'd687 : mem_out_dec = 6'b010011;
12'd688 : mem_out_dec = 6'b010011;
12'd689 : mem_out_dec = 6'b010011;
12'd690 : mem_out_dec = 6'b010100;
12'd691 : mem_out_dec = 6'b010100;
12'd692 : mem_out_dec = 6'b010101;
12'd693 : mem_out_dec = 6'b010101;
12'd694 : mem_out_dec = 6'b010110;
12'd695 : mem_out_dec = 6'b010111;
12'd696 : mem_out_dec = 6'b010111;
12'd697 : mem_out_dec = 6'b011000;
12'd698 : mem_out_dec = 6'b011000;
12'd699 : mem_out_dec = 6'b011001;
12'd700 : mem_out_dec = 6'b011010;
12'd701 : mem_out_dec = 6'b011011;
12'd702 : mem_out_dec = 6'b011011;
12'd703 : mem_out_dec = 6'b011100;
12'd704 : mem_out_dec = 6'b111111;
12'd705 : mem_out_dec = 6'b111111;
12'd706 : mem_out_dec = 6'b111111;
12'd707 : mem_out_dec = 6'b111111;
12'd708 : mem_out_dec = 6'b111111;
12'd709 : mem_out_dec = 6'b111111;
12'd710 : mem_out_dec = 6'b111111;
12'd711 : mem_out_dec = 6'b111111;
12'd712 : mem_out_dec = 6'b111111;
12'd713 : mem_out_dec = 6'b111111;
12'd714 : mem_out_dec = 6'b111111;
12'd715 : mem_out_dec = 6'b111111;
12'd716 : mem_out_dec = 6'b111111;
12'd717 : mem_out_dec = 6'b111111;
12'd718 : mem_out_dec = 6'b111111;
12'd719 : mem_out_dec = 6'b111111;
12'd720 : mem_out_dec = 6'b111111;
12'd721 : mem_out_dec = 6'b000011;
12'd722 : mem_out_dec = 6'b000100;
12'd723 : mem_out_dec = 6'b000100;
12'd724 : mem_out_dec = 6'b000101;
12'd725 : mem_out_dec = 6'b000101;
12'd726 : mem_out_dec = 6'b000110;
12'd727 : mem_out_dec = 6'b000111;
12'd728 : mem_out_dec = 6'b000111;
12'd729 : mem_out_dec = 6'b000111;
12'd730 : mem_out_dec = 6'b001000;
12'd731 : mem_out_dec = 6'b001001;
12'd732 : mem_out_dec = 6'b001010;
12'd733 : mem_out_dec = 6'b001011;
12'd734 : mem_out_dec = 6'b001011;
12'd735 : mem_out_dec = 6'b001100;
12'd736 : mem_out_dec = 6'b001100;
12'd737 : mem_out_dec = 6'b001101;
12'd738 : mem_out_dec = 6'b001101;
12'd739 : mem_out_dec = 6'b001101;
12'd740 : mem_out_dec = 6'b001110;
12'd741 : mem_out_dec = 6'b001110;
12'd742 : mem_out_dec = 6'b001111;
12'd743 : mem_out_dec = 6'b010000;
12'd744 : mem_out_dec = 6'b001111;
12'd745 : mem_out_dec = 6'b010000;
12'd746 : mem_out_dec = 6'b010000;
12'd747 : mem_out_dec = 6'b010001;
12'd748 : mem_out_dec = 6'b010001;
12'd749 : mem_out_dec = 6'b010010;
12'd750 : mem_out_dec = 6'b010010;
12'd751 : mem_out_dec = 6'b010011;
12'd752 : mem_out_dec = 6'b010010;
12'd753 : mem_out_dec = 6'b010011;
12'd754 : mem_out_dec = 6'b010011;
12'd755 : mem_out_dec = 6'b010100;
12'd756 : mem_out_dec = 6'b010101;
12'd757 : mem_out_dec = 6'b010101;
12'd758 : mem_out_dec = 6'b010110;
12'd759 : mem_out_dec = 6'b010110;
12'd760 : mem_out_dec = 6'b010111;
12'd761 : mem_out_dec = 6'b010111;
12'd762 : mem_out_dec = 6'b011000;
12'd763 : mem_out_dec = 6'b011001;
12'd764 : mem_out_dec = 6'b011010;
12'd765 : mem_out_dec = 6'b011010;
12'd766 : mem_out_dec = 6'b011011;
12'd767 : mem_out_dec = 6'b011100;
12'd768 : mem_out_dec = 6'b111111;
12'd769 : mem_out_dec = 6'b111111;
12'd770 : mem_out_dec = 6'b111111;
12'd771 : mem_out_dec = 6'b111111;
12'd772 : mem_out_dec = 6'b111111;
12'd773 : mem_out_dec = 6'b111111;
12'd774 : mem_out_dec = 6'b111111;
12'd775 : mem_out_dec = 6'b111111;
12'd776 : mem_out_dec = 6'b111111;
12'd777 : mem_out_dec = 6'b111111;
12'd778 : mem_out_dec = 6'b111111;
12'd779 : mem_out_dec = 6'b111111;
12'd780 : mem_out_dec = 6'b111111;
12'd781 : mem_out_dec = 6'b111111;
12'd782 : mem_out_dec = 6'b111111;
12'd783 : mem_out_dec = 6'b111111;
12'd784 : mem_out_dec = 6'b111111;
12'd785 : mem_out_dec = 6'b111111;
12'd786 : mem_out_dec = 6'b000011;
12'd787 : mem_out_dec = 6'b000100;
12'd788 : mem_out_dec = 6'b000101;
12'd789 : mem_out_dec = 6'b000101;
12'd790 : mem_out_dec = 6'b000110;
12'd791 : mem_out_dec = 6'b000110;
12'd792 : mem_out_dec = 6'b000110;
12'd793 : mem_out_dec = 6'b000111;
12'd794 : mem_out_dec = 6'b001000;
12'd795 : mem_out_dec = 6'b001001;
12'd796 : mem_out_dec = 6'b001010;
12'd797 : mem_out_dec = 6'b001010;
12'd798 : mem_out_dec = 6'b001011;
12'd799 : mem_out_dec = 6'b001100;
12'd800 : mem_out_dec = 6'b001100;
12'd801 : mem_out_dec = 6'b001100;
12'd802 : mem_out_dec = 6'b001101;
12'd803 : mem_out_dec = 6'b001101;
12'd804 : mem_out_dec = 6'b001110;
12'd805 : mem_out_dec = 6'b001110;
12'd806 : mem_out_dec = 6'b001111;
12'd807 : mem_out_dec = 6'b010000;
12'd808 : mem_out_dec = 6'b001111;
12'd809 : mem_out_dec = 6'b001111;
12'd810 : mem_out_dec = 6'b010000;
12'd811 : mem_out_dec = 6'b010000;
12'd812 : mem_out_dec = 6'b010001;
12'd813 : mem_out_dec = 6'b010001;
12'd814 : mem_out_dec = 6'b010010;
12'd815 : mem_out_dec = 6'b010010;
12'd816 : mem_out_dec = 6'b010010;
12'd817 : mem_out_dec = 6'b010011;
12'd818 : mem_out_dec = 6'b010011;
12'd819 : mem_out_dec = 6'b010100;
12'd820 : mem_out_dec = 6'b010100;
12'd821 : mem_out_dec = 6'b010101;
12'd822 : mem_out_dec = 6'b010110;
12'd823 : mem_out_dec = 6'b010110;
12'd824 : mem_out_dec = 6'b010110;
12'd825 : mem_out_dec = 6'b010111;
12'd826 : mem_out_dec = 6'b011000;
12'd827 : mem_out_dec = 6'b011001;
12'd828 : mem_out_dec = 6'b011001;
12'd829 : mem_out_dec = 6'b011010;
12'd830 : mem_out_dec = 6'b011011;
12'd831 : mem_out_dec = 6'b011100;
12'd832 : mem_out_dec = 6'b111111;
12'd833 : mem_out_dec = 6'b111111;
12'd834 : mem_out_dec = 6'b111111;
12'd835 : mem_out_dec = 6'b111111;
12'd836 : mem_out_dec = 6'b111111;
12'd837 : mem_out_dec = 6'b111111;
12'd838 : mem_out_dec = 6'b111111;
12'd839 : mem_out_dec = 6'b111111;
12'd840 : mem_out_dec = 6'b111111;
12'd841 : mem_out_dec = 6'b111111;
12'd842 : mem_out_dec = 6'b111111;
12'd843 : mem_out_dec = 6'b111111;
12'd844 : mem_out_dec = 6'b111111;
12'd845 : mem_out_dec = 6'b111111;
12'd846 : mem_out_dec = 6'b111111;
12'd847 : mem_out_dec = 6'b111111;
12'd848 : mem_out_dec = 6'b111111;
12'd849 : mem_out_dec = 6'b111111;
12'd850 : mem_out_dec = 6'b111111;
12'd851 : mem_out_dec = 6'b000100;
12'd852 : mem_out_dec = 6'b000100;
12'd853 : mem_out_dec = 6'b000101;
12'd854 : mem_out_dec = 6'b000101;
12'd855 : mem_out_dec = 6'b000110;
12'd856 : mem_out_dec = 6'b000110;
12'd857 : mem_out_dec = 6'b000111;
12'd858 : mem_out_dec = 6'b001000;
12'd859 : mem_out_dec = 6'b001001;
12'd860 : mem_out_dec = 6'b001001;
12'd861 : mem_out_dec = 6'b001010;
12'd862 : mem_out_dec = 6'b001011;
12'd863 : mem_out_dec = 6'b001100;
12'd864 : mem_out_dec = 6'b001100;
12'd865 : mem_out_dec = 6'b001100;
12'd866 : mem_out_dec = 6'b001100;
12'd867 : mem_out_dec = 6'b001101;
12'd868 : mem_out_dec = 6'b001101;
12'd869 : mem_out_dec = 6'b001110;
12'd870 : mem_out_dec = 6'b001111;
12'd871 : mem_out_dec = 6'b001111;
12'd872 : mem_out_dec = 6'b001110;
12'd873 : mem_out_dec = 6'b001111;
12'd874 : mem_out_dec = 6'b001111;
12'd875 : mem_out_dec = 6'b010000;
12'd876 : mem_out_dec = 6'b010000;
12'd877 : mem_out_dec = 6'b010001;
12'd878 : mem_out_dec = 6'b010001;
12'd879 : mem_out_dec = 6'b010010;
12'd880 : mem_out_dec = 6'b010010;
12'd881 : mem_out_dec = 6'b010010;
12'd882 : mem_out_dec = 6'b010011;
12'd883 : mem_out_dec = 6'b010100;
12'd884 : mem_out_dec = 6'b010100;
12'd885 : mem_out_dec = 6'b010101;
12'd886 : mem_out_dec = 6'b010101;
12'd887 : mem_out_dec = 6'b010110;
12'd888 : mem_out_dec = 6'b010110;
12'd889 : mem_out_dec = 6'b010111;
12'd890 : mem_out_dec = 6'b011000;
12'd891 : mem_out_dec = 6'b011000;
12'd892 : mem_out_dec = 6'b011001;
12'd893 : mem_out_dec = 6'b011010;
12'd894 : mem_out_dec = 6'b011011;
12'd895 : mem_out_dec = 6'b011011;
12'd896 : mem_out_dec = 6'b111111;
12'd897 : mem_out_dec = 6'b111111;
12'd898 : mem_out_dec = 6'b111111;
12'd899 : mem_out_dec = 6'b111111;
12'd900 : mem_out_dec = 6'b111111;
12'd901 : mem_out_dec = 6'b111111;
12'd902 : mem_out_dec = 6'b111111;
12'd903 : mem_out_dec = 6'b111111;
12'd904 : mem_out_dec = 6'b111111;
12'd905 : mem_out_dec = 6'b111111;
12'd906 : mem_out_dec = 6'b111111;
12'd907 : mem_out_dec = 6'b111111;
12'd908 : mem_out_dec = 6'b111111;
12'd909 : mem_out_dec = 6'b111111;
12'd910 : mem_out_dec = 6'b111111;
12'd911 : mem_out_dec = 6'b111111;
12'd912 : mem_out_dec = 6'b111111;
12'd913 : mem_out_dec = 6'b111111;
12'd914 : mem_out_dec = 6'b111111;
12'd915 : mem_out_dec = 6'b111111;
12'd916 : mem_out_dec = 6'b000100;
12'd917 : mem_out_dec = 6'b000101;
12'd918 : mem_out_dec = 6'b000101;
12'd919 : mem_out_dec = 6'b000110;
12'd920 : mem_out_dec = 6'b000110;
12'd921 : mem_out_dec = 6'b000111;
12'd922 : mem_out_dec = 6'b001000;
12'd923 : mem_out_dec = 6'b001000;
12'd924 : mem_out_dec = 6'b001001;
12'd925 : mem_out_dec = 6'b001010;
12'd926 : mem_out_dec = 6'b001011;
12'd927 : mem_out_dec = 6'b001011;
12'd928 : mem_out_dec = 6'b001011;
12'd929 : mem_out_dec = 6'b001100;
12'd930 : mem_out_dec = 6'b001100;
12'd931 : mem_out_dec = 6'b001101;
12'd932 : mem_out_dec = 6'b001101;
12'd933 : mem_out_dec = 6'b001110;
12'd934 : mem_out_dec = 6'b001110;
12'd935 : mem_out_dec = 6'b001111;
12'd936 : mem_out_dec = 6'b001110;
12'd937 : mem_out_dec = 6'b001110;
12'd938 : mem_out_dec = 6'b001111;
12'd939 : mem_out_dec = 6'b001111;
12'd940 : mem_out_dec = 6'b010000;
12'd941 : mem_out_dec = 6'b010000;
12'd942 : mem_out_dec = 6'b010001;
12'd943 : mem_out_dec = 6'b010001;
12'd944 : mem_out_dec = 6'b010010;
12'd945 : mem_out_dec = 6'b010010;
12'd946 : mem_out_dec = 6'b010011;
12'd947 : mem_out_dec = 6'b010011;
12'd948 : mem_out_dec = 6'b010100;
12'd949 : mem_out_dec = 6'b010100;
12'd950 : mem_out_dec = 6'b010101;
12'd951 : mem_out_dec = 6'b010110;
12'd952 : mem_out_dec = 6'b010110;
12'd953 : mem_out_dec = 6'b010111;
12'd954 : mem_out_dec = 6'b010111;
12'd955 : mem_out_dec = 6'b011000;
12'd956 : mem_out_dec = 6'b011001;
12'd957 : mem_out_dec = 6'b011010;
12'd958 : mem_out_dec = 6'b011010;
12'd959 : mem_out_dec = 6'b011011;
12'd960 : mem_out_dec = 6'b111111;
12'd961 : mem_out_dec = 6'b111111;
12'd962 : mem_out_dec = 6'b111111;
12'd963 : mem_out_dec = 6'b111111;
12'd964 : mem_out_dec = 6'b111111;
12'd965 : mem_out_dec = 6'b111111;
12'd966 : mem_out_dec = 6'b111111;
12'd967 : mem_out_dec = 6'b111111;
12'd968 : mem_out_dec = 6'b111111;
12'd969 : mem_out_dec = 6'b111111;
12'd970 : mem_out_dec = 6'b111111;
12'd971 : mem_out_dec = 6'b111111;
12'd972 : mem_out_dec = 6'b111111;
12'd973 : mem_out_dec = 6'b111111;
12'd974 : mem_out_dec = 6'b111111;
12'd975 : mem_out_dec = 6'b111111;
12'd976 : mem_out_dec = 6'b111111;
12'd977 : mem_out_dec = 6'b111111;
12'd978 : mem_out_dec = 6'b111111;
12'd979 : mem_out_dec = 6'b111111;
12'd980 : mem_out_dec = 6'b111111;
12'd981 : mem_out_dec = 6'b000100;
12'd982 : mem_out_dec = 6'b000101;
12'd983 : mem_out_dec = 6'b000110;
12'd984 : mem_out_dec = 6'b000110;
12'd985 : mem_out_dec = 6'b000111;
12'd986 : mem_out_dec = 6'b000111;
12'd987 : mem_out_dec = 6'b001000;
12'd988 : mem_out_dec = 6'b001001;
12'd989 : mem_out_dec = 6'b001010;
12'd990 : mem_out_dec = 6'b001010;
12'd991 : mem_out_dec = 6'b001011;
12'd992 : mem_out_dec = 6'b001011;
12'd993 : mem_out_dec = 6'b001011;
12'd994 : mem_out_dec = 6'b001100;
12'd995 : mem_out_dec = 6'b001100;
12'd996 : mem_out_dec = 6'b001101;
12'd997 : mem_out_dec = 6'b001110;
12'd998 : mem_out_dec = 6'b001110;
12'd999 : mem_out_dec = 6'b001110;
12'd1000 : mem_out_dec = 6'b001101;
12'd1001 : mem_out_dec = 6'b001110;
12'd1002 : mem_out_dec = 6'b001110;
12'd1003 : mem_out_dec = 6'b001111;
12'd1004 : mem_out_dec = 6'b001111;
12'd1005 : mem_out_dec = 6'b010000;
12'd1006 : mem_out_dec = 6'b010000;
12'd1007 : mem_out_dec = 6'b010001;
12'd1008 : mem_out_dec = 6'b010001;
12'd1009 : mem_out_dec = 6'b010010;
12'd1010 : mem_out_dec = 6'b010011;
12'd1011 : mem_out_dec = 6'b010011;
12'd1012 : mem_out_dec = 6'b010100;
12'd1013 : mem_out_dec = 6'b010100;
12'd1014 : mem_out_dec = 6'b010101;
12'd1015 : mem_out_dec = 6'b010110;
12'd1016 : mem_out_dec = 6'b010110;
12'd1017 : mem_out_dec = 6'b010110;
12'd1018 : mem_out_dec = 6'b010111;
12'd1019 : mem_out_dec = 6'b011000;
12'd1020 : mem_out_dec = 6'b011001;
12'd1021 : mem_out_dec = 6'b011001;
12'd1022 : mem_out_dec = 6'b011010;
12'd1023 : mem_out_dec = 6'b011011;
12'd1024 : mem_out_dec = 6'b111111;
12'd1025 : mem_out_dec = 6'b111111;
12'd1026 : mem_out_dec = 6'b111111;
12'd1027 : mem_out_dec = 6'b111111;
12'd1028 : mem_out_dec = 6'b111111;
12'd1029 : mem_out_dec = 6'b111111;
12'd1030 : mem_out_dec = 6'b111111;
12'd1031 : mem_out_dec = 6'b111111;
12'd1032 : mem_out_dec = 6'b111111;
12'd1033 : mem_out_dec = 6'b111111;
12'd1034 : mem_out_dec = 6'b111111;
12'd1035 : mem_out_dec = 6'b111111;
12'd1036 : mem_out_dec = 6'b111111;
12'd1037 : mem_out_dec = 6'b111111;
12'd1038 : mem_out_dec = 6'b111111;
12'd1039 : mem_out_dec = 6'b111111;
12'd1040 : mem_out_dec = 6'b111111;
12'd1041 : mem_out_dec = 6'b111111;
12'd1042 : mem_out_dec = 6'b111111;
12'd1043 : mem_out_dec = 6'b111111;
12'd1044 : mem_out_dec = 6'b111111;
12'd1045 : mem_out_dec = 6'b111111;
12'd1046 : mem_out_dec = 6'b000100;
12'd1047 : mem_out_dec = 6'b000101;
12'd1048 : mem_out_dec = 6'b000101;
12'd1049 : mem_out_dec = 6'b000110;
12'd1050 : mem_out_dec = 6'b000110;
12'd1051 : mem_out_dec = 6'b000111;
12'd1052 : mem_out_dec = 6'b001000;
12'd1053 : mem_out_dec = 6'b001001;
12'd1054 : mem_out_dec = 6'b001001;
12'd1055 : mem_out_dec = 6'b001010;
12'd1056 : mem_out_dec = 6'b001010;
12'd1057 : mem_out_dec = 6'b001011;
12'd1058 : mem_out_dec = 6'b001011;
12'd1059 : mem_out_dec = 6'b001100;
12'd1060 : mem_out_dec = 6'b001100;
12'd1061 : mem_out_dec = 6'b001100;
12'd1062 : mem_out_dec = 6'b001100;
12'd1063 : mem_out_dec = 6'b001100;
12'd1064 : mem_out_dec = 6'b001100;
12'd1065 : mem_out_dec = 6'b001100;
12'd1066 : mem_out_dec = 6'b001101;
12'd1067 : mem_out_dec = 6'b001101;
12'd1068 : mem_out_dec = 6'b001110;
12'd1069 : mem_out_dec = 6'b001111;
12'd1070 : mem_out_dec = 6'b010000;
12'd1071 : mem_out_dec = 6'b010000;
12'd1072 : mem_out_dec = 6'b010001;
12'd1073 : mem_out_dec = 6'b010001;
12'd1074 : mem_out_dec = 6'b010010;
12'd1075 : mem_out_dec = 6'b010010;
12'd1076 : mem_out_dec = 6'b010011;
12'd1077 : mem_out_dec = 6'b010011;
12'd1078 : mem_out_dec = 6'b010100;
12'd1079 : mem_out_dec = 6'b010101;
12'd1080 : mem_out_dec = 6'b010101;
12'd1081 : mem_out_dec = 6'b010110;
12'd1082 : mem_out_dec = 6'b010110;
12'd1083 : mem_out_dec = 6'b010111;
12'd1084 : mem_out_dec = 6'b011000;
12'd1085 : mem_out_dec = 6'b011000;
12'd1086 : mem_out_dec = 6'b011001;
12'd1087 : mem_out_dec = 6'b011010;
12'd1088 : mem_out_dec = 6'b111111;
12'd1089 : mem_out_dec = 6'b111111;
12'd1090 : mem_out_dec = 6'b111111;
12'd1091 : mem_out_dec = 6'b111111;
12'd1092 : mem_out_dec = 6'b111111;
12'd1093 : mem_out_dec = 6'b111111;
12'd1094 : mem_out_dec = 6'b111111;
12'd1095 : mem_out_dec = 6'b111111;
12'd1096 : mem_out_dec = 6'b111111;
12'd1097 : mem_out_dec = 6'b111111;
12'd1098 : mem_out_dec = 6'b111111;
12'd1099 : mem_out_dec = 6'b111111;
12'd1100 : mem_out_dec = 6'b111111;
12'd1101 : mem_out_dec = 6'b111111;
12'd1102 : mem_out_dec = 6'b111111;
12'd1103 : mem_out_dec = 6'b111111;
12'd1104 : mem_out_dec = 6'b111111;
12'd1105 : mem_out_dec = 6'b111111;
12'd1106 : mem_out_dec = 6'b111111;
12'd1107 : mem_out_dec = 6'b111111;
12'd1108 : mem_out_dec = 6'b111111;
12'd1109 : mem_out_dec = 6'b111111;
12'd1110 : mem_out_dec = 6'b111111;
12'd1111 : mem_out_dec = 6'b000100;
12'd1112 : mem_out_dec = 6'b000100;
12'd1113 : mem_out_dec = 6'b000101;
12'd1114 : mem_out_dec = 6'b000110;
12'd1115 : mem_out_dec = 6'b000111;
12'd1116 : mem_out_dec = 6'b000111;
12'd1117 : mem_out_dec = 6'b001000;
12'd1118 : mem_out_dec = 6'b001001;
12'd1119 : mem_out_dec = 6'b001001;
12'd1120 : mem_out_dec = 6'b001010;
12'd1121 : mem_out_dec = 6'b001010;
12'd1122 : mem_out_dec = 6'b001011;
12'd1123 : mem_out_dec = 6'b001011;
12'd1124 : mem_out_dec = 6'b001011;
12'd1125 : mem_out_dec = 6'b001011;
12'd1126 : mem_out_dec = 6'b001011;
12'd1127 : mem_out_dec = 6'b001011;
12'd1128 : mem_out_dec = 6'b001011;
12'd1129 : mem_out_dec = 6'b001011;
12'd1130 : mem_out_dec = 6'b001100;
12'd1131 : mem_out_dec = 6'b001101;
12'd1132 : mem_out_dec = 6'b001110;
12'd1133 : mem_out_dec = 6'b001110;
12'd1134 : mem_out_dec = 6'b001111;
12'd1135 : mem_out_dec = 6'b010000;
12'd1136 : mem_out_dec = 6'b010000;
12'd1137 : mem_out_dec = 6'b010001;
12'd1138 : mem_out_dec = 6'b010001;
12'd1139 : mem_out_dec = 6'b010010;
12'd1140 : mem_out_dec = 6'b010010;
12'd1141 : mem_out_dec = 6'b010011;
12'd1142 : mem_out_dec = 6'b010100;
12'd1143 : mem_out_dec = 6'b010100;
12'd1144 : mem_out_dec = 6'b010100;
12'd1145 : mem_out_dec = 6'b010101;
12'd1146 : mem_out_dec = 6'b010110;
12'd1147 : mem_out_dec = 6'b010110;
12'd1148 : mem_out_dec = 6'b010111;
12'd1149 : mem_out_dec = 6'b011000;
12'd1150 : mem_out_dec = 6'b011000;
12'd1151 : mem_out_dec = 6'b011001;
12'd1152 : mem_out_dec = 6'b111111;
12'd1153 : mem_out_dec = 6'b111111;
12'd1154 : mem_out_dec = 6'b111111;
12'd1155 : mem_out_dec = 6'b111111;
12'd1156 : mem_out_dec = 6'b111111;
12'd1157 : mem_out_dec = 6'b111111;
12'd1158 : mem_out_dec = 6'b111111;
12'd1159 : mem_out_dec = 6'b111111;
12'd1160 : mem_out_dec = 6'b111111;
12'd1161 : mem_out_dec = 6'b111111;
12'd1162 : mem_out_dec = 6'b111111;
12'd1163 : mem_out_dec = 6'b111111;
12'd1164 : mem_out_dec = 6'b111111;
12'd1165 : mem_out_dec = 6'b111111;
12'd1166 : mem_out_dec = 6'b111111;
12'd1167 : mem_out_dec = 6'b111111;
12'd1168 : mem_out_dec = 6'b111111;
12'd1169 : mem_out_dec = 6'b111111;
12'd1170 : mem_out_dec = 6'b111111;
12'd1171 : mem_out_dec = 6'b111111;
12'd1172 : mem_out_dec = 6'b111111;
12'd1173 : mem_out_dec = 6'b111111;
12'd1174 : mem_out_dec = 6'b111111;
12'd1175 : mem_out_dec = 6'b111111;
12'd1176 : mem_out_dec = 6'b000100;
12'd1177 : mem_out_dec = 6'b000101;
12'd1178 : mem_out_dec = 6'b000101;
12'd1179 : mem_out_dec = 6'b000110;
12'd1180 : mem_out_dec = 6'b000111;
12'd1181 : mem_out_dec = 6'b000111;
12'd1182 : mem_out_dec = 6'b001000;
12'd1183 : mem_out_dec = 6'b001001;
12'd1184 : mem_out_dec = 6'b001001;
12'd1185 : mem_out_dec = 6'b001010;
12'd1186 : mem_out_dec = 6'b001010;
12'd1187 : mem_out_dec = 6'b001010;
12'd1188 : mem_out_dec = 6'b001010;
12'd1189 : mem_out_dec = 6'b001010;
12'd1190 : mem_out_dec = 6'b001010;
12'd1191 : mem_out_dec = 6'b001010;
12'd1192 : mem_out_dec = 6'b001010;
12'd1193 : mem_out_dec = 6'b001011;
12'd1194 : mem_out_dec = 6'b001100;
12'd1195 : mem_out_dec = 6'b001100;
12'd1196 : mem_out_dec = 6'b001101;
12'd1197 : mem_out_dec = 6'b001110;
12'd1198 : mem_out_dec = 6'b001111;
12'd1199 : mem_out_dec = 6'b010000;
12'd1200 : mem_out_dec = 6'b010000;
12'd1201 : mem_out_dec = 6'b010000;
12'd1202 : mem_out_dec = 6'b010001;
12'd1203 : mem_out_dec = 6'b010001;
12'd1204 : mem_out_dec = 6'b010010;
12'd1205 : mem_out_dec = 6'b010011;
12'd1206 : mem_out_dec = 6'b010011;
12'd1207 : mem_out_dec = 6'b010100;
12'd1208 : mem_out_dec = 6'b010100;
12'd1209 : mem_out_dec = 6'b010100;
12'd1210 : mem_out_dec = 6'b010101;
12'd1211 : mem_out_dec = 6'b010110;
12'd1212 : mem_out_dec = 6'b010110;
12'd1213 : mem_out_dec = 6'b010111;
12'd1214 : mem_out_dec = 6'b011000;
12'd1215 : mem_out_dec = 6'b011001;
12'd1216 : mem_out_dec = 6'b111111;
12'd1217 : mem_out_dec = 6'b111111;
12'd1218 : mem_out_dec = 6'b111111;
12'd1219 : mem_out_dec = 6'b111111;
12'd1220 : mem_out_dec = 6'b111111;
12'd1221 : mem_out_dec = 6'b111111;
12'd1222 : mem_out_dec = 6'b111111;
12'd1223 : mem_out_dec = 6'b111111;
12'd1224 : mem_out_dec = 6'b111111;
12'd1225 : mem_out_dec = 6'b111111;
12'd1226 : mem_out_dec = 6'b111111;
12'd1227 : mem_out_dec = 6'b111111;
12'd1228 : mem_out_dec = 6'b111111;
12'd1229 : mem_out_dec = 6'b111111;
12'd1230 : mem_out_dec = 6'b111111;
12'd1231 : mem_out_dec = 6'b111111;
12'd1232 : mem_out_dec = 6'b111111;
12'd1233 : mem_out_dec = 6'b111111;
12'd1234 : mem_out_dec = 6'b111111;
12'd1235 : mem_out_dec = 6'b111111;
12'd1236 : mem_out_dec = 6'b111111;
12'd1237 : mem_out_dec = 6'b111111;
12'd1238 : mem_out_dec = 6'b111111;
12'd1239 : mem_out_dec = 6'b111111;
12'd1240 : mem_out_dec = 6'b111111;
12'd1241 : mem_out_dec = 6'b000100;
12'd1242 : mem_out_dec = 6'b000100;
12'd1243 : mem_out_dec = 6'b000101;
12'd1244 : mem_out_dec = 6'b000110;
12'd1245 : mem_out_dec = 6'b000111;
12'd1246 : mem_out_dec = 6'b001000;
12'd1247 : mem_out_dec = 6'b001000;
12'd1248 : mem_out_dec = 6'b001001;
12'd1249 : mem_out_dec = 6'b001001;
12'd1250 : mem_out_dec = 6'b001001;
12'd1251 : mem_out_dec = 6'b001001;
12'd1252 : mem_out_dec = 6'b001001;
12'd1253 : mem_out_dec = 6'b001001;
12'd1254 : mem_out_dec = 6'b001001;
12'd1255 : mem_out_dec = 6'b001001;
12'd1256 : mem_out_dec = 6'b001010;
12'd1257 : mem_out_dec = 6'b001010;
12'd1258 : mem_out_dec = 6'b001011;
12'd1259 : mem_out_dec = 6'b001100;
12'd1260 : mem_out_dec = 6'b001101;
12'd1261 : mem_out_dec = 6'b001110;
12'd1262 : mem_out_dec = 6'b001110;
12'd1263 : mem_out_dec = 6'b001111;
12'd1264 : mem_out_dec = 6'b001111;
12'd1265 : mem_out_dec = 6'b010000;
12'd1266 : mem_out_dec = 6'b010000;
12'd1267 : mem_out_dec = 6'b010001;
12'd1268 : mem_out_dec = 6'b010001;
12'd1269 : mem_out_dec = 6'b010010;
12'd1270 : mem_out_dec = 6'b010011;
12'd1271 : mem_out_dec = 6'b010011;
12'd1272 : mem_out_dec = 6'b010011;
12'd1273 : mem_out_dec = 6'b010100;
12'd1274 : mem_out_dec = 6'b010100;
12'd1275 : mem_out_dec = 6'b010101;
12'd1276 : mem_out_dec = 6'b010110;
12'd1277 : mem_out_dec = 6'b010111;
12'd1278 : mem_out_dec = 6'b011000;
12'd1279 : mem_out_dec = 6'b011000;
12'd1280 : mem_out_dec = 6'b111111;
12'd1281 : mem_out_dec = 6'b111111;
12'd1282 : mem_out_dec = 6'b111111;
12'd1283 : mem_out_dec = 6'b111111;
12'd1284 : mem_out_dec = 6'b111111;
12'd1285 : mem_out_dec = 6'b111111;
12'd1286 : mem_out_dec = 6'b111111;
12'd1287 : mem_out_dec = 6'b111111;
12'd1288 : mem_out_dec = 6'b111111;
12'd1289 : mem_out_dec = 6'b111111;
12'd1290 : mem_out_dec = 6'b111111;
12'd1291 : mem_out_dec = 6'b111111;
12'd1292 : mem_out_dec = 6'b111111;
12'd1293 : mem_out_dec = 6'b111111;
12'd1294 : mem_out_dec = 6'b111111;
12'd1295 : mem_out_dec = 6'b111111;
12'd1296 : mem_out_dec = 6'b111111;
12'd1297 : mem_out_dec = 6'b111111;
12'd1298 : mem_out_dec = 6'b111111;
12'd1299 : mem_out_dec = 6'b111111;
12'd1300 : mem_out_dec = 6'b111111;
12'd1301 : mem_out_dec = 6'b111111;
12'd1302 : mem_out_dec = 6'b111111;
12'd1303 : mem_out_dec = 6'b111111;
12'd1304 : mem_out_dec = 6'b111111;
12'd1305 : mem_out_dec = 6'b111111;
12'd1306 : mem_out_dec = 6'b000100;
12'd1307 : mem_out_dec = 6'b000101;
12'd1308 : mem_out_dec = 6'b000110;
12'd1309 : mem_out_dec = 6'b000110;
12'd1310 : mem_out_dec = 6'b000111;
12'd1311 : mem_out_dec = 6'b001000;
12'd1312 : mem_out_dec = 6'b001000;
12'd1313 : mem_out_dec = 6'b001000;
12'd1314 : mem_out_dec = 6'b001000;
12'd1315 : mem_out_dec = 6'b001000;
12'd1316 : mem_out_dec = 6'b001000;
12'd1317 : mem_out_dec = 6'b001000;
12'd1318 : mem_out_dec = 6'b001000;
12'd1319 : mem_out_dec = 6'b001001;
12'd1320 : mem_out_dec = 6'b001001;
12'd1321 : mem_out_dec = 6'b001010;
12'd1322 : mem_out_dec = 6'b001011;
12'd1323 : mem_out_dec = 6'b001100;
12'd1324 : mem_out_dec = 6'b001100;
12'd1325 : mem_out_dec = 6'b001101;
12'd1326 : mem_out_dec = 6'b001110;
12'd1327 : mem_out_dec = 6'b001111;
12'd1328 : mem_out_dec = 6'b001111;
12'd1329 : mem_out_dec = 6'b001111;
12'd1330 : mem_out_dec = 6'b010000;
12'd1331 : mem_out_dec = 6'b010000;
12'd1332 : mem_out_dec = 6'b010001;
12'd1333 : mem_out_dec = 6'b010001;
12'd1334 : mem_out_dec = 6'b010010;
12'd1335 : mem_out_dec = 6'b010011;
12'd1336 : mem_out_dec = 6'b010010;
12'd1337 : mem_out_dec = 6'b010011;
12'd1338 : mem_out_dec = 6'b010100;
12'd1339 : mem_out_dec = 6'b010101;
12'd1340 : mem_out_dec = 6'b010110;
12'd1341 : mem_out_dec = 6'b010110;
12'd1342 : mem_out_dec = 6'b010111;
12'd1343 : mem_out_dec = 6'b011000;
12'd1344 : mem_out_dec = 6'b111111;
12'd1345 : mem_out_dec = 6'b111111;
12'd1346 : mem_out_dec = 6'b111111;
12'd1347 : mem_out_dec = 6'b111111;
12'd1348 : mem_out_dec = 6'b111111;
12'd1349 : mem_out_dec = 6'b111111;
12'd1350 : mem_out_dec = 6'b111111;
12'd1351 : mem_out_dec = 6'b111111;
12'd1352 : mem_out_dec = 6'b111111;
12'd1353 : mem_out_dec = 6'b111111;
12'd1354 : mem_out_dec = 6'b111111;
12'd1355 : mem_out_dec = 6'b111111;
12'd1356 : mem_out_dec = 6'b111111;
12'd1357 : mem_out_dec = 6'b111111;
12'd1358 : mem_out_dec = 6'b111111;
12'd1359 : mem_out_dec = 6'b111111;
12'd1360 : mem_out_dec = 6'b111111;
12'd1361 : mem_out_dec = 6'b111111;
12'd1362 : mem_out_dec = 6'b111111;
12'd1363 : mem_out_dec = 6'b111111;
12'd1364 : mem_out_dec = 6'b111111;
12'd1365 : mem_out_dec = 6'b111111;
12'd1366 : mem_out_dec = 6'b111111;
12'd1367 : mem_out_dec = 6'b111111;
12'd1368 : mem_out_dec = 6'b111111;
12'd1369 : mem_out_dec = 6'b111111;
12'd1370 : mem_out_dec = 6'b111111;
12'd1371 : mem_out_dec = 6'b000101;
12'd1372 : mem_out_dec = 6'b000101;
12'd1373 : mem_out_dec = 6'b000110;
12'd1374 : mem_out_dec = 6'b000111;
12'd1375 : mem_out_dec = 6'b001000;
12'd1376 : mem_out_dec = 6'b000111;
12'd1377 : mem_out_dec = 6'b000111;
12'd1378 : mem_out_dec = 6'b000111;
12'd1379 : mem_out_dec = 6'b000111;
12'd1380 : mem_out_dec = 6'b000111;
12'd1381 : mem_out_dec = 6'b000111;
12'd1382 : mem_out_dec = 6'b001000;
12'd1383 : mem_out_dec = 6'b001001;
12'd1384 : mem_out_dec = 6'b001001;
12'd1385 : mem_out_dec = 6'b001010;
12'd1386 : mem_out_dec = 6'b001010;
12'd1387 : mem_out_dec = 6'b001011;
12'd1388 : mem_out_dec = 6'b001100;
12'd1389 : mem_out_dec = 6'b001101;
12'd1390 : mem_out_dec = 6'b001110;
12'd1391 : mem_out_dec = 6'b001110;
12'd1392 : mem_out_dec = 6'b001111;
12'd1393 : mem_out_dec = 6'b001111;
12'd1394 : mem_out_dec = 6'b010000;
12'd1395 : mem_out_dec = 6'b010000;
12'd1396 : mem_out_dec = 6'b010001;
12'd1397 : mem_out_dec = 6'b010001;
12'd1398 : mem_out_dec = 6'b010010;
12'd1399 : mem_out_dec = 6'b010010;
12'd1400 : mem_out_dec = 6'b010010;
12'd1401 : mem_out_dec = 6'b010011;
12'd1402 : mem_out_dec = 6'b010100;
12'd1403 : mem_out_dec = 6'b010100;
12'd1404 : mem_out_dec = 6'b010101;
12'd1405 : mem_out_dec = 6'b010110;
12'd1406 : mem_out_dec = 6'b010111;
12'd1407 : mem_out_dec = 6'b010111;
12'd1408 : mem_out_dec = 6'b111111;
12'd1409 : mem_out_dec = 6'b111111;
12'd1410 : mem_out_dec = 6'b111111;
12'd1411 : mem_out_dec = 6'b111111;
12'd1412 : mem_out_dec = 6'b111111;
12'd1413 : mem_out_dec = 6'b111111;
12'd1414 : mem_out_dec = 6'b111111;
12'd1415 : mem_out_dec = 6'b111111;
12'd1416 : mem_out_dec = 6'b111111;
12'd1417 : mem_out_dec = 6'b111111;
12'd1418 : mem_out_dec = 6'b111111;
12'd1419 : mem_out_dec = 6'b111111;
12'd1420 : mem_out_dec = 6'b111111;
12'd1421 : mem_out_dec = 6'b111111;
12'd1422 : mem_out_dec = 6'b111111;
12'd1423 : mem_out_dec = 6'b111111;
12'd1424 : mem_out_dec = 6'b111111;
12'd1425 : mem_out_dec = 6'b111111;
12'd1426 : mem_out_dec = 6'b111111;
12'd1427 : mem_out_dec = 6'b111111;
12'd1428 : mem_out_dec = 6'b111111;
12'd1429 : mem_out_dec = 6'b111111;
12'd1430 : mem_out_dec = 6'b111111;
12'd1431 : mem_out_dec = 6'b111111;
12'd1432 : mem_out_dec = 6'b111111;
12'd1433 : mem_out_dec = 6'b111111;
12'd1434 : mem_out_dec = 6'b111111;
12'd1435 : mem_out_dec = 6'b111111;
12'd1436 : mem_out_dec = 6'b000101;
12'd1437 : mem_out_dec = 6'b000110;
12'd1438 : mem_out_dec = 6'b000111;
12'd1439 : mem_out_dec = 6'b000111;
12'd1440 : mem_out_dec = 6'b000110;
12'd1441 : mem_out_dec = 6'b000110;
12'd1442 : mem_out_dec = 6'b000110;
12'd1443 : mem_out_dec = 6'b000110;
12'd1444 : mem_out_dec = 6'b000110;
12'd1445 : mem_out_dec = 6'b000111;
12'd1446 : mem_out_dec = 6'b000111;
12'd1447 : mem_out_dec = 6'b001000;
12'd1448 : mem_out_dec = 6'b001001;
12'd1449 : mem_out_dec = 6'b001001;
12'd1450 : mem_out_dec = 6'b001010;
12'd1451 : mem_out_dec = 6'b001011;
12'd1452 : mem_out_dec = 6'b001100;
12'd1453 : mem_out_dec = 6'b001100;
12'd1454 : mem_out_dec = 6'b001101;
12'd1455 : mem_out_dec = 6'b001110;
12'd1456 : mem_out_dec = 6'b001110;
12'd1457 : mem_out_dec = 6'b001111;
12'd1458 : mem_out_dec = 6'b001111;
12'd1459 : mem_out_dec = 6'b010000;
12'd1460 : mem_out_dec = 6'b010000;
12'd1461 : mem_out_dec = 6'b010001;
12'd1462 : mem_out_dec = 6'b010001;
12'd1463 : mem_out_dec = 6'b010010;
12'd1464 : mem_out_dec = 6'b010010;
12'd1465 : mem_out_dec = 6'b010011;
12'd1466 : mem_out_dec = 6'b010011;
12'd1467 : mem_out_dec = 6'b010100;
12'd1468 : mem_out_dec = 6'b010101;
12'd1469 : mem_out_dec = 6'b010110;
12'd1470 : mem_out_dec = 6'b010110;
12'd1471 : mem_out_dec = 6'b010111;
12'd1472 : mem_out_dec = 6'b111111;
12'd1473 : mem_out_dec = 6'b111111;
12'd1474 : mem_out_dec = 6'b111111;
12'd1475 : mem_out_dec = 6'b111111;
12'd1476 : mem_out_dec = 6'b111111;
12'd1477 : mem_out_dec = 6'b111111;
12'd1478 : mem_out_dec = 6'b111111;
12'd1479 : mem_out_dec = 6'b111111;
12'd1480 : mem_out_dec = 6'b111111;
12'd1481 : mem_out_dec = 6'b111111;
12'd1482 : mem_out_dec = 6'b111111;
12'd1483 : mem_out_dec = 6'b111111;
12'd1484 : mem_out_dec = 6'b111111;
12'd1485 : mem_out_dec = 6'b111111;
12'd1486 : mem_out_dec = 6'b111111;
12'd1487 : mem_out_dec = 6'b111111;
12'd1488 : mem_out_dec = 6'b111111;
12'd1489 : mem_out_dec = 6'b111111;
12'd1490 : mem_out_dec = 6'b111111;
12'd1491 : mem_out_dec = 6'b111111;
12'd1492 : mem_out_dec = 6'b111111;
12'd1493 : mem_out_dec = 6'b111111;
12'd1494 : mem_out_dec = 6'b111111;
12'd1495 : mem_out_dec = 6'b111111;
12'd1496 : mem_out_dec = 6'b111111;
12'd1497 : mem_out_dec = 6'b111111;
12'd1498 : mem_out_dec = 6'b111111;
12'd1499 : mem_out_dec = 6'b111111;
12'd1500 : mem_out_dec = 6'b111111;
12'd1501 : mem_out_dec = 6'b000101;
12'd1502 : mem_out_dec = 6'b000110;
12'd1503 : mem_out_dec = 6'b000110;
12'd1504 : mem_out_dec = 6'b000110;
12'd1505 : mem_out_dec = 6'b000110;
12'd1506 : mem_out_dec = 6'b000101;
12'd1507 : mem_out_dec = 6'b000101;
12'd1508 : mem_out_dec = 6'b000110;
12'd1509 : mem_out_dec = 6'b000111;
12'd1510 : mem_out_dec = 6'b000111;
12'd1511 : mem_out_dec = 6'b001000;
12'd1512 : mem_out_dec = 6'b001000;
12'd1513 : mem_out_dec = 6'b001001;
12'd1514 : mem_out_dec = 6'b001010;
12'd1515 : mem_out_dec = 6'b001011;
12'd1516 : mem_out_dec = 6'b001011;
12'd1517 : mem_out_dec = 6'b001100;
12'd1518 : mem_out_dec = 6'b001101;
12'd1519 : mem_out_dec = 6'b001110;
12'd1520 : mem_out_dec = 6'b001110;
12'd1521 : mem_out_dec = 6'b001110;
12'd1522 : mem_out_dec = 6'b001111;
12'd1523 : mem_out_dec = 6'b001111;
12'd1524 : mem_out_dec = 6'b010000;
12'd1525 : mem_out_dec = 6'b010000;
12'd1526 : mem_out_dec = 6'b010001;
12'd1527 : mem_out_dec = 6'b010001;
12'd1528 : mem_out_dec = 6'b010001;
12'd1529 : mem_out_dec = 6'b010010;
12'd1530 : mem_out_dec = 6'b010011;
12'd1531 : mem_out_dec = 6'b010100;
12'd1532 : mem_out_dec = 6'b010101;
12'd1533 : mem_out_dec = 6'b010101;
12'd1534 : mem_out_dec = 6'b010110;
12'd1535 : mem_out_dec = 6'b010110;
12'd1536 : mem_out_dec = 6'b111111;
12'd1537 : mem_out_dec = 6'b111111;
12'd1538 : mem_out_dec = 6'b111111;
12'd1539 : mem_out_dec = 6'b111111;
12'd1540 : mem_out_dec = 6'b111111;
12'd1541 : mem_out_dec = 6'b111111;
12'd1542 : mem_out_dec = 6'b111111;
12'd1543 : mem_out_dec = 6'b111111;
12'd1544 : mem_out_dec = 6'b111111;
12'd1545 : mem_out_dec = 6'b111111;
12'd1546 : mem_out_dec = 6'b111111;
12'd1547 : mem_out_dec = 6'b111111;
12'd1548 : mem_out_dec = 6'b111111;
12'd1549 : mem_out_dec = 6'b111111;
12'd1550 : mem_out_dec = 6'b111111;
12'd1551 : mem_out_dec = 6'b111111;
12'd1552 : mem_out_dec = 6'b111111;
12'd1553 : mem_out_dec = 6'b111111;
12'd1554 : mem_out_dec = 6'b111111;
12'd1555 : mem_out_dec = 6'b111111;
12'd1556 : mem_out_dec = 6'b111111;
12'd1557 : mem_out_dec = 6'b111111;
12'd1558 : mem_out_dec = 6'b111111;
12'd1559 : mem_out_dec = 6'b111111;
12'd1560 : mem_out_dec = 6'b111111;
12'd1561 : mem_out_dec = 6'b111111;
12'd1562 : mem_out_dec = 6'b111111;
12'd1563 : mem_out_dec = 6'b111111;
12'd1564 : mem_out_dec = 6'b111111;
12'd1565 : mem_out_dec = 6'b111111;
12'd1566 : mem_out_dec = 6'b000100;
12'd1567 : mem_out_dec = 6'b000100;
12'd1568 : mem_out_dec = 6'b000100;
12'd1569 : mem_out_dec = 6'b000100;
12'd1570 : mem_out_dec = 6'b000100;
12'd1571 : mem_out_dec = 6'b000101;
12'd1572 : mem_out_dec = 6'b000101;
12'd1573 : mem_out_dec = 6'b000110;
12'd1574 : mem_out_dec = 6'b000111;
12'd1575 : mem_out_dec = 6'b000111;
12'd1576 : mem_out_dec = 6'b000111;
12'd1577 : mem_out_dec = 6'b001000;
12'd1578 : mem_out_dec = 6'b001001;
12'd1579 : mem_out_dec = 6'b001010;
12'd1580 : mem_out_dec = 6'b001010;
12'd1581 : mem_out_dec = 6'b001011;
12'd1582 : mem_out_dec = 6'b001100;
12'd1583 : mem_out_dec = 6'b001101;
12'd1584 : mem_out_dec = 6'b001101;
12'd1585 : mem_out_dec = 6'b001101;
12'd1586 : mem_out_dec = 6'b001110;
12'd1587 : mem_out_dec = 6'b001110;
12'd1588 : mem_out_dec = 6'b001111;
12'd1589 : mem_out_dec = 6'b001111;
12'd1590 : mem_out_dec = 6'b010000;
12'd1591 : mem_out_dec = 6'b010001;
12'd1592 : mem_out_dec = 6'b010001;
12'd1593 : mem_out_dec = 6'b010001;
12'd1594 : mem_out_dec = 6'b010010;
12'd1595 : mem_out_dec = 6'b010010;
12'd1596 : mem_out_dec = 6'b010011;
12'd1597 : mem_out_dec = 6'b010011;
12'd1598 : mem_out_dec = 6'b010100;
12'd1599 : mem_out_dec = 6'b010100;
12'd1600 : mem_out_dec = 6'b111111;
12'd1601 : mem_out_dec = 6'b111111;
12'd1602 : mem_out_dec = 6'b111111;
12'd1603 : mem_out_dec = 6'b111111;
12'd1604 : mem_out_dec = 6'b111111;
12'd1605 : mem_out_dec = 6'b111111;
12'd1606 : mem_out_dec = 6'b111111;
12'd1607 : mem_out_dec = 6'b111111;
12'd1608 : mem_out_dec = 6'b111111;
12'd1609 : mem_out_dec = 6'b111111;
12'd1610 : mem_out_dec = 6'b111111;
12'd1611 : mem_out_dec = 6'b111111;
12'd1612 : mem_out_dec = 6'b111111;
12'd1613 : mem_out_dec = 6'b111111;
12'd1614 : mem_out_dec = 6'b111111;
12'd1615 : mem_out_dec = 6'b111111;
12'd1616 : mem_out_dec = 6'b111111;
12'd1617 : mem_out_dec = 6'b111111;
12'd1618 : mem_out_dec = 6'b111111;
12'd1619 : mem_out_dec = 6'b111111;
12'd1620 : mem_out_dec = 6'b111111;
12'd1621 : mem_out_dec = 6'b111111;
12'd1622 : mem_out_dec = 6'b111111;
12'd1623 : mem_out_dec = 6'b111111;
12'd1624 : mem_out_dec = 6'b111111;
12'd1625 : mem_out_dec = 6'b111111;
12'd1626 : mem_out_dec = 6'b111111;
12'd1627 : mem_out_dec = 6'b111111;
12'd1628 : mem_out_dec = 6'b111111;
12'd1629 : mem_out_dec = 6'b111111;
12'd1630 : mem_out_dec = 6'b111111;
12'd1631 : mem_out_dec = 6'b000100;
12'd1632 : mem_out_dec = 6'b000011;
12'd1633 : mem_out_dec = 6'b000011;
12'd1634 : mem_out_dec = 6'b000100;
12'd1635 : mem_out_dec = 6'b000100;
12'd1636 : mem_out_dec = 6'b000101;
12'd1637 : mem_out_dec = 6'b000110;
12'd1638 : mem_out_dec = 6'b000110;
12'd1639 : mem_out_dec = 6'b000111;
12'd1640 : mem_out_dec = 6'b000111;
12'd1641 : mem_out_dec = 6'b001000;
12'd1642 : mem_out_dec = 6'b001001;
12'd1643 : mem_out_dec = 6'b001001;
12'd1644 : mem_out_dec = 6'b001010;
12'd1645 : mem_out_dec = 6'b001011;
12'd1646 : mem_out_dec = 6'b001100;
12'd1647 : mem_out_dec = 6'b001101;
12'd1648 : mem_out_dec = 6'b001101;
12'd1649 : mem_out_dec = 6'b001101;
12'd1650 : mem_out_dec = 6'b001110;
12'd1651 : mem_out_dec = 6'b001110;
12'd1652 : mem_out_dec = 6'b001110;
12'd1653 : mem_out_dec = 6'b001111;
12'd1654 : mem_out_dec = 6'b010000;
12'd1655 : mem_out_dec = 6'b010000;
12'd1656 : mem_out_dec = 6'b010001;
12'd1657 : mem_out_dec = 6'b010001;
12'd1658 : mem_out_dec = 6'b010001;
12'd1659 : mem_out_dec = 6'b010010;
12'd1660 : mem_out_dec = 6'b010010;
12'd1661 : mem_out_dec = 6'b010011;
12'd1662 : mem_out_dec = 6'b010011;
12'd1663 : mem_out_dec = 6'b010100;
12'd1664 : mem_out_dec = 6'b111111;
12'd1665 : mem_out_dec = 6'b111111;
12'd1666 : mem_out_dec = 6'b111111;
12'd1667 : mem_out_dec = 6'b111111;
12'd1668 : mem_out_dec = 6'b111111;
12'd1669 : mem_out_dec = 6'b111111;
12'd1670 : mem_out_dec = 6'b111111;
12'd1671 : mem_out_dec = 6'b111111;
12'd1672 : mem_out_dec = 6'b111111;
12'd1673 : mem_out_dec = 6'b111111;
12'd1674 : mem_out_dec = 6'b111111;
12'd1675 : mem_out_dec = 6'b111111;
12'd1676 : mem_out_dec = 6'b111111;
12'd1677 : mem_out_dec = 6'b111111;
12'd1678 : mem_out_dec = 6'b111111;
12'd1679 : mem_out_dec = 6'b111111;
12'd1680 : mem_out_dec = 6'b111111;
12'd1681 : mem_out_dec = 6'b111111;
12'd1682 : mem_out_dec = 6'b111111;
12'd1683 : mem_out_dec = 6'b111111;
12'd1684 : mem_out_dec = 6'b111111;
12'd1685 : mem_out_dec = 6'b111111;
12'd1686 : mem_out_dec = 6'b111111;
12'd1687 : mem_out_dec = 6'b111111;
12'd1688 : mem_out_dec = 6'b111111;
12'd1689 : mem_out_dec = 6'b111111;
12'd1690 : mem_out_dec = 6'b111111;
12'd1691 : mem_out_dec = 6'b111111;
12'd1692 : mem_out_dec = 6'b111111;
12'd1693 : mem_out_dec = 6'b111111;
12'd1694 : mem_out_dec = 6'b111111;
12'd1695 : mem_out_dec = 6'b111111;
12'd1696 : mem_out_dec = 6'b000011;
12'd1697 : mem_out_dec = 6'b000011;
12'd1698 : mem_out_dec = 6'b000100;
12'd1699 : mem_out_dec = 6'b000100;
12'd1700 : mem_out_dec = 6'b000101;
12'd1701 : mem_out_dec = 6'b000101;
12'd1702 : mem_out_dec = 6'b000110;
12'd1703 : mem_out_dec = 6'b000111;
12'd1704 : mem_out_dec = 6'b000111;
12'd1705 : mem_out_dec = 6'b001000;
12'd1706 : mem_out_dec = 6'b001000;
12'd1707 : mem_out_dec = 6'b001001;
12'd1708 : mem_out_dec = 6'b001010;
12'd1709 : mem_out_dec = 6'b001011;
12'd1710 : mem_out_dec = 6'b001100;
12'd1711 : mem_out_dec = 6'b001100;
12'd1712 : mem_out_dec = 6'b001100;
12'd1713 : mem_out_dec = 6'b001101;
12'd1714 : mem_out_dec = 6'b001101;
12'd1715 : mem_out_dec = 6'b001110;
12'd1716 : mem_out_dec = 6'b001110;
12'd1717 : mem_out_dec = 6'b001111;
12'd1718 : mem_out_dec = 6'b001111;
12'd1719 : mem_out_dec = 6'b010000;
12'd1720 : mem_out_dec = 6'b010000;
12'd1721 : mem_out_dec = 6'b010000;
12'd1722 : mem_out_dec = 6'b010001;
12'd1723 : mem_out_dec = 6'b010001;
12'd1724 : mem_out_dec = 6'b010010;
12'd1725 : mem_out_dec = 6'b010010;
12'd1726 : mem_out_dec = 6'b010011;
12'd1727 : mem_out_dec = 6'b010011;
12'd1728 : mem_out_dec = 6'b111111;
12'd1729 : mem_out_dec = 6'b111111;
12'd1730 : mem_out_dec = 6'b111111;
12'd1731 : mem_out_dec = 6'b111111;
12'd1732 : mem_out_dec = 6'b111111;
12'd1733 : mem_out_dec = 6'b111111;
12'd1734 : mem_out_dec = 6'b111111;
12'd1735 : mem_out_dec = 6'b111111;
12'd1736 : mem_out_dec = 6'b111111;
12'd1737 : mem_out_dec = 6'b111111;
12'd1738 : mem_out_dec = 6'b111111;
12'd1739 : mem_out_dec = 6'b111111;
12'd1740 : mem_out_dec = 6'b111111;
12'd1741 : mem_out_dec = 6'b111111;
12'd1742 : mem_out_dec = 6'b111111;
12'd1743 : mem_out_dec = 6'b111111;
12'd1744 : mem_out_dec = 6'b111111;
12'd1745 : mem_out_dec = 6'b111111;
12'd1746 : mem_out_dec = 6'b111111;
12'd1747 : mem_out_dec = 6'b111111;
12'd1748 : mem_out_dec = 6'b111111;
12'd1749 : mem_out_dec = 6'b111111;
12'd1750 : mem_out_dec = 6'b111111;
12'd1751 : mem_out_dec = 6'b111111;
12'd1752 : mem_out_dec = 6'b111111;
12'd1753 : mem_out_dec = 6'b111111;
12'd1754 : mem_out_dec = 6'b111111;
12'd1755 : mem_out_dec = 6'b111111;
12'd1756 : mem_out_dec = 6'b111111;
12'd1757 : mem_out_dec = 6'b111111;
12'd1758 : mem_out_dec = 6'b111111;
12'd1759 : mem_out_dec = 6'b111111;
12'd1760 : mem_out_dec = 6'b111111;
12'd1761 : mem_out_dec = 6'b000011;
12'd1762 : mem_out_dec = 6'b000011;
12'd1763 : mem_out_dec = 6'b000100;
12'd1764 : mem_out_dec = 6'b000101;
12'd1765 : mem_out_dec = 6'b000101;
12'd1766 : mem_out_dec = 6'b000110;
12'd1767 : mem_out_dec = 6'b000111;
12'd1768 : mem_out_dec = 6'b000111;
12'd1769 : mem_out_dec = 6'b000111;
12'd1770 : mem_out_dec = 6'b001000;
12'd1771 : mem_out_dec = 6'b001001;
12'd1772 : mem_out_dec = 6'b001010;
12'd1773 : mem_out_dec = 6'b001011;
12'd1774 : mem_out_dec = 6'b001011;
12'd1775 : mem_out_dec = 6'b001100;
12'd1776 : mem_out_dec = 6'b001100;
12'd1777 : mem_out_dec = 6'b001101;
12'd1778 : mem_out_dec = 6'b001101;
12'd1779 : mem_out_dec = 6'b001101;
12'd1780 : mem_out_dec = 6'b001110;
12'd1781 : mem_out_dec = 6'b001111;
12'd1782 : mem_out_dec = 6'b001111;
12'd1783 : mem_out_dec = 6'b010000;
12'd1784 : mem_out_dec = 6'b010000;
12'd1785 : mem_out_dec = 6'b010000;
12'd1786 : mem_out_dec = 6'b010000;
12'd1787 : mem_out_dec = 6'b010001;
12'd1788 : mem_out_dec = 6'b010001;
12'd1789 : mem_out_dec = 6'b010010;
12'd1790 : mem_out_dec = 6'b010010;
12'd1791 : mem_out_dec = 6'b010011;
12'd1792 : mem_out_dec = 6'b111111;
12'd1793 : mem_out_dec = 6'b111111;
12'd1794 : mem_out_dec = 6'b111111;
12'd1795 : mem_out_dec = 6'b111111;
12'd1796 : mem_out_dec = 6'b111111;
12'd1797 : mem_out_dec = 6'b111111;
12'd1798 : mem_out_dec = 6'b111111;
12'd1799 : mem_out_dec = 6'b111111;
12'd1800 : mem_out_dec = 6'b111111;
12'd1801 : mem_out_dec = 6'b111111;
12'd1802 : mem_out_dec = 6'b111111;
12'd1803 : mem_out_dec = 6'b111111;
12'd1804 : mem_out_dec = 6'b111111;
12'd1805 : mem_out_dec = 6'b111111;
12'd1806 : mem_out_dec = 6'b111111;
12'd1807 : mem_out_dec = 6'b111111;
12'd1808 : mem_out_dec = 6'b111111;
12'd1809 : mem_out_dec = 6'b111111;
12'd1810 : mem_out_dec = 6'b111111;
12'd1811 : mem_out_dec = 6'b111111;
12'd1812 : mem_out_dec = 6'b111111;
12'd1813 : mem_out_dec = 6'b111111;
12'd1814 : mem_out_dec = 6'b111111;
12'd1815 : mem_out_dec = 6'b111111;
12'd1816 : mem_out_dec = 6'b111111;
12'd1817 : mem_out_dec = 6'b111111;
12'd1818 : mem_out_dec = 6'b111111;
12'd1819 : mem_out_dec = 6'b111111;
12'd1820 : mem_out_dec = 6'b111111;
12'd1821 : mem_out_dec = 6'b111111;
12'd1822 : mem_out_dec = 6'b111111;
12'd1823 : mem_out_dec = 6'b111111;
12'd1824 : mem_out_dec = 6'b111111;
12'd1825 : mem_out_dec = 6'b111111;
12'd1826 : mem_out_dec = 6'b000011;
12'd1827 : mem_out_dec = 6'b000100;
12'd1828 : mem_out_dec = 6'b000100;
12'd1829 : mem_out_dec = 6'b000101;
12'd1830 : mem_out_dec = 6'b000110;
12'd1831 : mem_out_dec = 6'b000110;
12'd1832 : mem_out_dec = 6'b000110;
12'd1833 : mem_out_dec = 6'b000111;
12'd1834 : mem_out_dec = 6'b001000;
12'd1835 : mem_out_dec = 6'b001001;
12'd1836 : mem_out_dec = 6'b001010;
12'd1837 : mem_out_dec = 6'b001010;
12'd1838 : mem_out_dec = 6'b001011;
12'd1839 : mem_out_dec = 6'b001100;
12'd1840 : mem_out_dec = 6'b001100;
12'd1841 : mem_out_dec = 6'b001100;
12'd1842 : mem_out_dec = 6'b001101;
12'd1843 : mem_out_dec = 6'b001101;
12'd1844 : mem_out_dec = 6'b001110;
12'd1845 : mem_out_dec = 6'b001110;
12'd1846 : mem_out_dec = 6'b001111;
12'd1847 : mem_out_dec = 6'b010000;
12'd1848 : mem_out_dec = 6'b001111;
12'd1849 : mem_out_dec = 6'b001111;
12'd1850 : mem_out_dec = 6'b010000;
12'd1851 : mem_out_dec = 6'b010000;
12'd1852 : mem_out_dec = 6'b010001;
12'd1853 : mem_out_dec = 6'b010001;
12'd1854 : mem_out_dec = 6'b010010;
12'd1855 : mem_out_dec = 6'b010010;
12'd1856 : mem_out_dec = 6'b111111;
12'd1857 : mem_out_dec = 6'b111111;
12'd1858 : mem_out_dec = 6'b111111;
12'd1859 : mem_out_dec = 6'b111111;
12'd1860 : mem_out_dec = 6'b111111;
12'd1861 : mem_out_dec = 6'b111111;
12'd1862 : mem_out_dec = 6'b111111;
12'd1863 : mem_out_dec = 6'b111111;
12'd1864 : mem_out_dec = 6'b111111;
12'd1865 : mem_out_dec = 6'b111111;
12'd1866 : mem_out_dec = 6'b111111;
12'd1867 : mem_out_dec = 6'b111111;
12'd1868 : mem_out_dec = 6'b111111;
12'd1869 : mem_out_dec = 6'b111111;
12'd1870 : mem_out_dec = 6'b111111;
12'd1871 : mem_out_dec = 6'b111111;
12'd1872 : mem_out_dec = 6'b111111;
12'd1873 : mem_out_dec = 6'b111111;
12'd1874 : mem_out_dec = 6'b111111;
12'd1875 : mem_out_dec = 6'b111111;
12'd1876 : mem_out_dec = 6'b111111;
12'd1877 : mem_out_dec = 6'b111111;
12'd1878 : mem_out_dec = 6'b111111;
12'd1879 : mem_out_dec = 6'b111111;
12'd1880 : mem_out_dec = 6'b111111;
12'd1881 : mem_out_dec = 6'b111111;
12'd1882 : mem_out_dec = 6'b111111;
12'd1883 : mem_out_dec = 6'b111111;
12'd1884 : mem_out_dec = 6'b111111;
12'd1885 : mem_out_dec = 6'b111111;
12'd1886 : mem_out_dec = 6'b111111;
12'd1887 : mem_out_dec = 6'b111111;
12'd1888 : mem_out_dec = 6'b111111;
12'd1889 : mem_out_dec = 6'b111111;
12'd1890 : mem_out_dec = 6'b111111;
12'd1891 : mem_out_dec = 6'b000100;
12'd1892 : mem_out_dec = 6'b000100;
12'd1893 : mem_out_dec = 6'b000101;
12'd1894 : mem_out_dec = 6'b000101;
12'd1895 : mem_out_dec = 6'b000110;
12'd1896 : mem_out_dec = 6'b000110;
12'd1897 : mem_out_dec = 6'b000111;
12'd1898 : mem_out_dec = 6'b001000;
12'd1899 : mem_out_dec = 6'b001001;
12'd1900 : mem_out_dec = 6'b001001;
12'd1901 : mem_out_dec = 6'b001010;
12'd1902 : mem_out_dec = 6'b001011;
12'd1903 : mem_out_dec = 6'b001100;
12'd1904 : mem_out_dec = 6'b001100;
12'd1905 : mem_out_dec = 6'b001100;
12'd1906 : mem_out_dec = 6'b001100;
12'd1907 : mem_out_dec = 6'b001101;
12'd1908 : mem_out_dec = 6'b001110;
12'd1909 : mem_out_dec = 6'b001110;
12'd1910 : mem_out_dec = 6'b001111;
12'd1911 : mem_out_dec = 6'b001111;
12'd1912 : mem_out_dec = 6'b001111;
12'd1913 : mem_out_dec = 6'b001111;
12'd1914 : mem_out_dec = 6'b001111;
12'd1915 : mem_out_dec = 6'b010000;
12'd1916 : mem_out_dec = 6'b010000;
12'd1917 : mem_out_dec = 6'b010001;
12'd1918 : mem_out_dec = 6'b010001;
12'd1919 : mem_out_dec = 6'b010010;
12'd1920 : mem_out_dec = 6'b111111;
12'd1921 : mem_out_dec = 6'b111111;
12'd1922 : mem_out_dec = 6'b111111;
12'd1923 : mem_out_dec = 6'b111111;
12'd1924 : mem_out_dec = 6'b111111;
12'd1925 : mem_out_dec = 6'b111111;
12'd1926 : mem_out_dec = 6'b111111;
12'd1927 : mem_out_dec = 6'b111111;
12'd1928 : mem_out_dec = 6'b111111;
12'd1929 : mem_out_dec = 6'b111111;
12'd1930 : mem_out_dec = 6'b111111;
12'd1931 : mem_out_dec = 6'b111111;
12'd1932 : mem_out_dec = 6'b111111;
12'd1933 : mem_out_dec = 6'b111111;
12'd1934 : mem_out_dec = 6'b111111;
12'd1935 : mem_out_dec = 6'b111111;
12'd1936 : mem_out_dec = 6'b111111;
12'd1937 : mem_out_dec = 6'b111111;
12'd1938 : mem_out_dec = 6'b111111;
12'd1939 : mem_out_dec = 6'b111111;
12'd1940 : mem_out_dec = 6'b111111;
12'd1941 : mem_out_dec = 6'b111111;
12'd1942 : mem_out_dec = 6'b111111;
12'd1943 : mem_out_dec = 6'b111111;
12'd1944 : mem_out_dec = 6'b111111;
12'd1945 : mem_out_dec = 6'b111111;
12'd1946 : mem_out_dec = 6'b111111;
12'd1947 : mem_out_dec = 6'b111111;
12'd1948 : mem_out_dec = 6'b111111;
12'd1949 : mem_out_dec = 6'b111111;
12'd1950 : mem_out_dec = 6'b111111;
12'd1951 : mem_out_dec = 6'b111111;
12'd1952 : mem_out_dec = 6'b111111;
12'd1953 : mem_out_dec = 6'b111111;
12'd1954 : mem_out_dec = 6'b111111;
12'd1955 : mem_out_dec = 6'b111111;
12'd1956 : mem_out_dec = 6'b000100;
12'd1957 : mem_out_dec = 6'b000101;
12'd1958 : mem_out_dec = 6'b000101;
12'd1959 : mem_out_dec = 6'b000110;
12'd1960 : mem_out_dec = 6'b000110;
12'd1961 : mem_out_dec = 6'b000111;
12'd1962 : mem_out_dec = 6'b001000;
12'd1963 : mem_out_dec = 6'b001000;
12'd1964 : mem_out_dec = 6'b001001;
12'd1965 : mem_out_dec = 6'b001010;
12'd1966 : mem_out_dec = 6'b001011;
12'd1967 : mem_out_dec = 6'b001011;
12'd1968 : mem_out_dec = 6'b001011;
12'd1969 : mem_out_dec = 6'b001100;
12'd1970 : mem_out_dec = 6'b001100;
12'd1971 : mem_out_dec = 6'b001101;
12'd1972 : mem_out_dec = 6'b001101;
12'd1973 : mem_out_dec = 6'b001110;
12'd1974 : mem_out_dec = 6'b001111;
12'd1975 : mem_out_dec = 6'b001111;
12'd1976 : mem_out_dec = 6'b001110;
12'd1977 : mem_out_dec = 6'b001110;
12'd1978 : mem_out_dec = 6'b001111;
12'd1979 : mem_out_dec = 6'b001111;
12'd1980 : mem_out_dec = 6'b010000;
12'd1981 : mem_out_dec = 6'b010000;
12'd1982 : mem_out_dec = 6'b010001;
12'd1983 : mem_out_dec = 6'b010001;
12'd1984 : mem_out_dec = 6'b111111;
12'd1985 : mem_out_dec = 6'b111111;
12'd1986 : mem_out_dec = 6'b111111;
12'd1987 : mem_out_dec = 6'b111111;
12'd1988 : mem_out_dec = 6'b111111;
12'd1989 : mem_out_dec = 6'b111111;
12'd1990 : mem_out_dec = 6'b111111;
12'd1991 : mem_out_dec = 6'b111111;
12'd1992 : mem_out_dec = 6'b111111;
12'd1993 : mem_out_dec = 6'b111111;
12'd1994 : mem_out_dec = 6'b111111;
12'd1995 : mem_out_dec = 6'b111111;
12'd1996 : mem_out_dec = 6'b111111;
12'd1997 : mem_out_dec = 6'b111111;
12'd1998 : mem_out_dec = 6'b111111;
12'd1999 : mem_out_dec = 6'b111111;
12'd2000 : mem_out_dec = 6'b111111;
12'd2001 : mem_out_dec = 6'b111111;
12'd2002 : mem_out_dec = 6'b111111;
12'd2003 : mem_out_dec = 6'b111111;
12'd2004 : mem_out_dec = 6'b111111;
12'd2005 : mem_out_dec = 6'b111111;
12'd2006 : mem_out_dec = 6'b111111;
12'd2007 : mem_out_dec = 6'b111111;
12'd2008 : mem_out_dec = 6'b111111;
12'd2009 : mem_out_dec = 6'b111111;
12'd2010 : mem_out_dec = 6'b111111;
12'd2011 : mem_out_dec = 6'b111111;
12'd2012 : mem_out_dec = 6'b111111;
12'd2013 : mem_out_dec = 6'b111111;
12'd2014 : mem_out_dec = 6'b111111;
12'd2015 : mem_out_dec = 6'b111111;
12'd2016 : mem_out_dec = 6'b111111;
12'd2017 : mem_out_dec = 6'b111111;
12'd2018 : mem_out_dec = 6'b111111;
12'd2019 : mem_out_dec = 6'b111111;
12'd2020 : mem_out_dec = 6'b111111;
12'd2021 : mem_out_dec = 6'b000100;
12'd2022 : mem_out_dec = 6'b000101;
12'd2023 : mem_out_dec = 6'b000110;
12'd2024 : mem_out_dec = 6'b000110;
12'd2025 : mem_out_dec = 6'b000111;
12'd2026 : mem_out_dec = 6'b000111;
12'd2027 : mem_out_dec = 6'b001000;
12'd2028 : mem_out_dec = 6'b001001;
12'd2029 : mem_out_dec = 6'b001010;
12'd2030 : mem_out_dec = 6'b001010;
12'd2031 : mem_out_dec = 6'b001011;
12'd2032 : mem_out_dec = 6'b001011;
12'd2033 : mem_out_dec = 6'b001011;
12'd2034 : mem_out_dec = 6'b001100;
12'd2035 : mem_out_dec = 6'b001101;
12'd2036 : mem_out_dec = 6'b001101;
12'd2037 : mem_out_dec = 6'b001110;
12'd2038 : mem_out_dec = 6'b001110;
12'd2039 : mem_out_dec = 6'b001110;
12'd2040 : mem_out_dec = 6'b001101;
12'd2041 : mem_out_dec = 6'b001110;
12'd2042 : mem_out_dec = 6'b001110;
12'd2043 : mem_out_dec = 6'b001111;
12'd2044 : mem_out_dec = 6'b001111;
12'd2045 : mem_out_dec = 6'b010000;
12'd2046 : mem_out_dec = 6'b010000;
12'd2047 : mem_out_dec = 6'b010001;
12'd2048 : mem_out_dec = 6'b111111;
12'd2049 : mem_out_dec = 6'b111111;
12'd2050 : mem_out_dec = 6'b111111;
12'd2051 : mem_out_dec = 6'b111111;
12'd2052 : mem_out_dec = 6'b111111;
12'd2053 : mem_out_dec = 6'b111111;
12'd2054 : mem_out_dec = 6'b111111;
12'd2055 : mem_out_dec = 6'b111111;
12'd2056 : mem_out_dec = 6'b111111;
12'd2057 : mem_out_dec = 6'b111111;
12'd2058 : mem_out_dec = 6'b111111;
12'd2059 : mem_out_dec = 6'b111111;
12'd2060 : mem_out_dec = 6'b111111;
12'd2061 : mem_out_dec = 6'b111111;
12'd2062 : mem_out_dec = 6'b111111;
12'd2063 : mem_out_dec = 6'b111111;
12'd2064 : mem_out_dec = 6'b111111;
12'd2065 : mem_out_dec = 6'b111111;
12'd2066 : mem_out_dec = 6'b111111;
12'd2067 : mem_out_dec = 6'b111111;
12'd2068 : mem_out_dec = 6'b111111;
12'd2069 : mem_out_dec = 6'b111111;
12'd2070 : mem_out_dec = 6'b111111;
12'd2071 : mem_out_dec = 6'b111111;
12'd2072 : mem_out_dec = 6'b111111;
12'd2073 : mem_out_dec = 6'b111111;
12'd2074 : mem_out_dec = 6'b111111;
12'd2075 : mem_out_dec = 6'b111111;
12'd2076 : mem_out_dec = 6'b111111;
12'd2077 : mem_out_dec = 6'b111111;
12'd2078 : mem_out_dec = 6'b111111;
12'd2079 : mem_out_dec = 6'b111111;
12'd2080 : mem_out_dec = 6'b111111;
12'd2081 : mem_out_dec = 6'b111111;
12'd2082 : mem_out_dec = 6'b111111;
12'd2083 : mem_out_dec = 6'b111111;
12'd2084 : mem_out_dec = 6'b111111;
12'd2085 : mem_out_dec = 6'b111111;
12'd2086 : mem_out_dec = 6'b000100;
12'd2087 : mem_out_dec = 6'b000101;
12'd2088 : mem_out_dec = 6'b000101;
12'd2089 : mem_out_dec = 6'b000110;
12'd2090 : mem_out_dec = 6'b000110;
12'd2091 : mem_out_dec = 6'b000111;
12'd2092 : mem_out_dec = 6'b001000;
12'd2093 : mem_out_dec = 6'b001001;
12'd2094 : mem_out_dec = 6'b001001;
12'd2095 : mem_out_dec = 6'b001010;
12'd2096 : mem_out_dec = 6'b001010;
12'd2097 : mem_out_dec = 6'b001011;
12'd2098 : mem_out_dec = 6'b001011;
12'd2099 : mem_out_dec = 6'b001100;
12'd2100 : mem_out_dec = 6'b001100;
12'd2101 : mem_out_dec = 6'b001100;
12'd2102 : mem_out_dec = 6'b001100;
12'd2103 : mem_out_dec = 6'b001101;
12'd2104 : mem_out_dec = 6'b001100;
12'd2105 : mem_out_dec = 6'b001100;
12'd2106 : mem_out_dec = 6'b001101;
12'd2107 : mem_out_dec = 6'b001101;
12'd2108 : mem_out_dec = 6'b001110;
12'd2109 : mem_out_dec = 6'b001111;
12'd2110 : mem_out_dec = 6'b010000;
12'd2111 : mem_out_dec = 6'b010000;
12'd2112 : mem_out_dec = 6'b111111;
12'd2113 : mem_out_dec = 6'b111111;
12'd2114 : mem_out_dec = 6'b111111;
12'd2115 : mem_out_dec = 6'b111111;
12'd2116 : mem_out_dec = 6'b111111;
12'd2117 : mem_out_dec = 6'b111111;
12'd2118 : mem_out_dec = 6'b111111;
12'd2119 : mem_out_dec = 6'b111111;
12'd2120 : mem_out_dec = 6'b111111;
12'd2121 : mem_out_dec = 6'b111111;
12'd2122 : mem_out_dec = 6'b111111;
12'd2123 : mem_out_dec = 6'b111111;
12'd2124 : mem_out_dec = 6'b111111;
12'd2125 : mem_out_dec = 6'b111111;
12'd2126 : mem_out_dec = 6'b111111;
12'd2127 : mem_out_dec = 6'b111111;
12'd2128 : mem_out_dec = 6'b111111;
12'd2129 : mem_out_dec = 6'b111111;
12'd2130 : mem_out_dec = 6'b111111;
12'd2131 : mem_out_dec = 6'b111111;
12'd2132 : mem_out_dec = 6'b111111;
12'd2133 : mem_out_dec = 6'b111111;
12'd2134 : mem_out_dec = 6'b111111;
12'd2135 : mem_out_dec = 6'b111111;
12'd2136 : mem_out_dec = 6'b111111;
12'd2137 : mem_out_dec = 6'b111111;
12'd2138 : mem_out_dec = 6'b111111;
12'd2139 : mem_out_dec = 6'b111111;
12'd2140 : mem_out_dec = 6'b111111;
12'd2141 : mem_out_dec = 6'b111111;
12'd2142 : mem_out_dec = 6'b111111;
12'd2143 : mem_out_dec = 6'b111111;
12'd2144 : mem_out_dec = 6'b111111;
12'd2145 : mem_out_dec = 6'b111111;
12'd2146 : mem_out_dec = 6'b111111;
12'd2147 : mem_out_dec = 6'b111111;
12'd2148 : mem_out_dec = 6'b111111;
12'd2149 : mem_out_dec = 6'b111111;
12'd2150 : mem_out_dec = 6'b111111;
12'd2151 : mem_out_dec = 6'b000100;
12'd2152 : mem_out_dec = 6'b000100;
12'd2153 : mem_out_dec = 6'b000101;
12'd2154 : mem_out_dec = 6'b000110;
12'd2155 : mem_out_dec = 6'b000111;
12'd2156 : mem_out_dec = 6'b000111;
12'd2157 : mem_out_dec = 6'b001000;
12'd2158 : mem_out_dec = 6'b001001;
12'd2159 : mem_out_dec = 6'b001001;
12'd2160 : mem_out_dec = 6'b001010;
12'd2161 : mem_out_dec = 6'b001010;
12'd2162 : mem_out_dec = 6'b001011;
12'd2163 : mem_out_dec = 6'b001011;
12'd2164 : mem_out_dec = 6'b001011;
12'd2165 : mem_out_dec = 6'b001011;
12'd2166 : mem_out_dec = 6'b001011;
12'd2167 : mem_out_dec = 6'b001100;
12'd2168 : mem_out_dec = 6'b001011;
12'd2169 : mem_out_dec = 6'b001011;
12'd2170 : mem_out_dec = 6'b001100;
12'd2171 : mem_out_dec = 6'b001101;
12'd2172 : mem_out_dec = 6'b001110;
12'd2173 : mem_out_dec = 6'b001110;
12'd2174 : mem_out_dec = 6'b001111;
12'd2175 : mem_out_dec = 6'b010000;
12'd2176 : mem_out_dec = 6'b111111;
12'd2177 : mem_out_dec = 6'b111111;
12'd2178 : mem_out_dec = 6'b111111;
12'd2179 : mem_out_dec = 6'b111111;
12'd2180 : mem_out_dec = 6'b111111;
12'd2181 : mem_out_dec = 6'b111111;
12'd2182 : mem_out_dec = 6'b111111;
12'd2183 : mem_out_dec = 6'b111111;
12'd2184 : mem_out_dec = 6'b111111;
12'd2185 : mem_out_dec = 6'b111111;
12'd2186 : mem_out_dec = 6'b111111;
12'd2187 : mem_out_dec = 6'b111111;
12'd2188 : mem_out_dec = 6'b111111;
12'd2189 : mem_out_dec = 6'b111111;
12'd2190 : mem_out_dec = 6'b111111;
12'd2191 : mem_out_dec = 6'b111111;
12'd2192 : mem_out_dec = 6'b111111;
12'd2193 : mem_out_dec = 6'b111111;
12'd2194 : mem_out_dec = 6'b111111;
12'd2195 : mem_out_dec = 6'b111111;
12'd2196 : mem_out_dec = 6'b111111;
12'd2197 : mem_out_dec = 6'b111111;
12'd2198 : mem_out_dec = 6'b111111;
12'd2199 : mem_out_dec = 6'b111111;
12'd2200 : mem_out_dec = 6'b111111;
12'd2201 : mem_out_dec = 6'b111111;
12'd2202 : mem_out_dec = 6'b111111;
12'd2203 : mem_out_dec = 6'b111111;
12'd2204 : mem_out_dec = 6'b111111;
12'd2205 : mem_out_dec = 6'b111111;
12'd2206 : mem_out_dec = 6'b111111;
12'd2207 : mem_out_dec = 6'b111111;
12'd2208 : mem_out_dec = 6'b111111;
12'd2209 : mem_out_dec = 6'b111111;
12'd2210 : mem_out_dec = 6'b111111;
12'd2211 : mem_out_dec = 6'b111111;
12'd2212 : mem_out_dec = 6'b111111;
12'd2213 : mem_out_dec = 6'b111111;
12'd2214 : mem_out_dec = 6'b111111;
12'd2215 : mem_out_dec = 6'b111111;
12'd2216 : mem_out_dec = 6'b000100;
12'd2217 : mem_out_dec = 6'b000101;
12'd2218 : mem_out_dec = 6'b000101;
12'd2219 : mem_out_dec = 6'b000110;
12'd2220 : mem_out_dec = 6'b000111;
12'd2221 : mem_out_dec = 6'b000111;
12'd2222 : mem_out_dec = 6'b001000;
12'd2223 : mem_out_dec = 6'b001001;
12'd2224 : mem_out_dec = 6'b001001;
12'd2225 : mem_out_dec = 6'b001010;
12'd2226 : mem_out_dec = 6'b001010;
12'd2227 : mem_out_dec = 6'b001010;
12'd2228 : mem_out_dec = 6'b001010;
12'd2229 : mem_out_dec = 6'b001010;
12'd2230 : mem_out_dec = 6'b001010;
12'd2231 : mem_out_dec = 6'b001010;
12'd2232 : mem_out_dec = 6'b001010;
12'd2233 : mem_out_dec = 6'b001011;
12'd2234 : mem_out_dec = 6'b001100;
12'd2235 : mem_out_dec = 6'b001100;
12'd2236 : mem_out_dec = 6'b001101;
12'd2237 : mem_out_dec = 6'b001110;
12'd2238 : mem_out_dec = 6'b001111;
12'd2239 : mem_out_dec = 6'b010000;
12'd2240 : mem_out_dec = 6'b111111;
12'd2241 : mem_out_dec = 6'b111111;
12'd2242 : mem_out_dec = 6'b111111;
12'd2243 : mem_out_dec = 6'b111111;
12'd2244 : mem_out_dec = 6'b111111;
12'd2245 : mem_out_dec = 6'b111111;
12'd2246 : mem_out_dec = 6'b111111;
12'd2247 : mem_out_dec = 6'b111111;
12'd2248 : mem_out_dec = 6'b111111;
12'd2249 : mem_out_dec = 6'b111111;
12'd2250 : mem_out_dec = 6'b111111;
12'd2251 : mem_out_dec = 6'b111111;
12'd2252 : mem_out_dec = 6'b111111;
12'd2253 : mem_out_dec = 6'b111111;
12'd2254 : mem_out_dec = 6'b111111;
12'd2255 : mem_out_dec = 6'b111111;
12'd2256 : mem_out_dec = 6'b111111;
12'd2257 : mem_out_dec = 6'b111111;
12'd2258 : mem_out_dec = 6'b111111;
12'd2259 : mem_out_dec = 6'b111111;
12'd2260 : mem_out_dec = 6'b111111;
12'd2261 : mem_out_dec = 6'b111111;
12'd2262 : mem_out_dec = 6'b111111;
12'd2263 : mem_out_dec = 6'b111111;
12'd2264 : mem_out_dec = 6'b111111;
12'd2265 : mem_out_dec = 6'b111111;
12'd2266 : mem_out_dec = 6'b111111;
12'd2267 : mem_out_dec = 6'b111111;
12'd2268 : mem_out_dec = 6'b111111;
12'd2269 : mem_out_dec = 6'b111111;
12'd2270 : mem_out_dec = 6'b111111;
12'd2271 : mem_out_dec = 6'b111111;
12'd2272 : mem_out_dec = 6'b111111;
12'd2273 : mem_out_dec = 6'b111111;
12'd2274 : mem_out_dec = 6'b111111;
12'd2275 : mem_out_dec = 6'b111111;
12'd2276 : mem_out_dec = 6'b111111;
12'd2277 : mem_out_dec = 6'b111111;
12'd2278 : mem_out_dec = 6'b111111;
12'd2279 : mem_out_dec = 6'b111111;
12'd2280 : mem_out_dec = 6'b111111;
12'd2281 : mem_out_dec = 6'b000100;
12'd2282 : mem_out_dec = 6'b000101;
12'd2283 : mem_out_dec = 6'b000101;
12'd2284 : mem_out_dec = 6'b000110;
12'd2285 : mem_out_dec = 6'b000111;
12'd2286 : mem_out_dec = 6'b001000;
12'd2287 : mem_out_dec = 6'b001001;
12'd2288 : mem_out_dec = 6'b001001;
12'd2289 : mem_out_dec = 6'b001001;
12'd2290 : mem_out_dec = 6'b001001;
12'd2291 : mem_out_dec = 6'b001001;
12'd2292 : mem_out_dec = 6'b001001;
12'd2293 : mem_out_dec = 6'b001001;
12'd2294 : mem_out_dec = 6'b001001;
12'd2295 : mem_out_dec = 6'b001001;
12'd2296 : mem_out_dec = 6'b001010;
12'd2297 : mem_out_dec = 6'b001010;
12'd2298 : mem_out_dec = 6'b001011;
12'd2299 : mem_out_dec = 6'b001100;
12'd2300 : mem_out_dec = 6'b001101;
12'd2301 : mem_out_dec = 6'b001110;
12'd2302 : mem_out_dec = 6'b001110;
12'd2303 : mem_out_dec = 6'b001111;
12'd2304 : mem_out_dec = 6'b111111;
12'd2305 : mem_out_dec = 6'b111111;
12'd2306 : mem_out_dec = 6'b111111;
12'd2307 : mem_out_dec = 6'b111111;
12'd2308 : mem_out_dec = 6'b111111;
12'd2309 : mem_out_dec = 6'b111111;
12'd2310 : mem_out_dec = 6'b111111;
12'd2311 : mem_out_dec = 6'b111111;
12'd2312 : mem_out_dec = 6'b111111;
12'd2313 : mem_out_dec = 6'b111111;
12'd2314 : mem_out_dec = 6'b111111;
12'd2315 : mem_out_dec = 6'b111111;
12'd2316 : mem_out_dec = 6'b111111;
12'd2317 : mem_out_dec = 6'b111111;
12'd2318 : mem_out_dec = 6'b111111;
12'd2319 : mem_out_dec = 6'b111111;
12'd2320 : mem_out_dec = 6'b111111;
12'd2321 : mem_out_dec = 6'b111111;
12'd2322 : mem_out_dec = 6'b111111;
12'd2323 : mem_out_dec = 6'b111111;
12'd2324 : mem_out_dec = 6'b111111;
12'd2325 : mem_out_dec = 6'b111111;
12'd2326 : mem_out_dec = 6'b111111;
12'd2327 : mem_out_dec = 6'b111111;
12'd2328 : mem_out_dec = 6'b111111;
12'd2329 : mem_out_dec = 6'b111111;
12'd2330 : mem_out_dec = 6'b111111;
12'd2331 : mem_out_dec = 6'b111111;
12'd2332 : mem_out_dec = 6'b111111;
12'd2333 : mem_out_dec = 6'b111111;
12'd2334 : mem_out_dec = 6'b111111;
12'd2335 : mem_out_dec = 6'b111111;
12'd2336 : mem_out_dec = 6'b111111;
12'd2337 : mem_out_dec = 6'b111111;
12'd2338 : mem_out_dec = 6'b111111;
12'd2339 : mem_out_dec = 6'b111111;
12'd2340 : mem_out_dec = 6'b111111;
12'd2341 : mem_out_dec = 6'b111111;
12'd2342 : mem_out_dec = 6'b111111;
12'd2343 : mem_out_dec = 6'b111111;
12'd2344 : mem_out_dec = 6'b111111;
12'd2345 : mem_out_dec = 6'b111111;
12'd2346 : mem_out_dec = 6'b000100;
12'd2347 : mem_out_dec = 6'b000101;
12'd2348 : mem_out_dec = 6'b000110;
12'd2349 : mem_out_dec = 6'b000111;
12'd2350 : mem_out_dec = 6'b000111;
12'd2351 : mem_out_dec = 6'b001000;
12'd2352 : mem_out_dec = 6'b001000;
12'd2353 : mem_out_dec = 6'b001000;
12'd2354 : mem_out_dec = 6'b001000;
12'd2355 : mem_out_dec = 6'b001000;
12'd2356 : mem_out_dec = 6'b001000;
12'd2357 : mem_out_dec = 6'b001000;
12'd2358 : mem_out_dec = 6'b001000;
12'd2359 : mem_out_dec = 6'b001001;
12'd2360 : mem_out_dec = 6'b001001;
12'd2361 : mem_out_dec = 6'b001010;
12'd2362 : mem_out_dec = 6'b001011;
12'd2363 : mem_out_dec = 6'b001100;
12'd2364 : mem_out_dec = 6'b001100;
12'd2365 : mem_out_dec = 6'b001101;
12'd2366 : mem_out_dec = 6'b001110;
12'd2367 : mem_out_dec = 6'b001111;
12'd2368 : mem_out_dec = 6'b111111;
12'd2369 : mem_out_dec = 6'b111111;
12'd2370 : mem_out_dec = 6'b111111;
12'd2371 : mem_out_dec = 6'b111111;
12'd2372 : mem_out_dec = 6'b111111;
12'd2373 : mem_out_dec = 6'b111111;
12'd2374 : mem_out_dec = 6'b111111;
12'd2375 : mem_out_dec = 6'b111111;
12'd2376 : mem_out_dec = 6'b111111;
12'd2377 : mem_out_dec = 6'b111111;
12'd2378 : mem_out_dec = 6'b111111;
12'd2379 : mem_out_dec = 6'b111111;
12'd2380 : mem_out_dec = 6'b111111;
12'd2381 : mem_out_dec = 6'b111111;
12'd2382 : mem_out_dec = 6'b111111;
12'd2383 : mem_out_dec = 6'b111111;
12'd2384 : mem_out_dec = 6'b111111;
12'd2385 : mem_out_dec = 6'b111111;
12'd2386 : mem_out_dec = 6'b111111;
12'd2387 : mem_out_dec = 6'b111111;
12'd2388 : mem_out_dec = 6'b111111;
12'd2389 : mem_out_dec = 6'b111111;
12'd2390 : mem_out_dec = 6'b111111;
12'd2391 : mem_out_dec = 6'b111111;
12'd2392 : mem_out_dec = 6'b111111;
12'd2393 : mem_out_dec = 6'b111111;
12'd2394 : mem_out_dec = 6'b111111;
12'd2395 : mem_out_dec = 6'b111111;
12'd2396 : mem_out_dec = 6'b111111;
12'd2397 : mem_out_dec = 6'b111111;
12'd2398 : mem_out_dec = 6'b111111;
12'd2399 : mem_out_dec = 6'b111111;
12'd2400 : mem_out_dec = 6'b111111;
12'd2401 : mem_out_dec = 6'b111111;
12'd2402 : mem_out_dec = 6'b111111;
12'd2403 : mem_out_dec = 6'b111111;
12'd2404 : mem_out_dec = 6'b111111;
12'd2405 : mem_out_dec = 6'b111111;
12'd2406 : mem_out_dec = 6'b111111;
12'd2407 : mem_out_dec = 6'b111111;
12'd2408 : mem_out_dec = 6'b111111;
12'd2409 : mem_out_dec = 6'b111111;
12'd2410 : mem_out_dec = 6'b111111;
12'd2411 : mem_out_dec = 6'b000101;
12'd2412 : mem_out_dec = 6'b000101;
12'd2413 : mem_out_dec = 6'b000110;
12'd2414 : mem_out_dec = 6'b000111;
12'd2415 : mem_out_dec = 6'b001000;
12'd2416 : mem_out_dec = 6'b000111;
12'd2417 : mem_out_dec = 6'b000111;
12'd2418 : mem_out_dec = 6'b000111;
12'd2419 : mem_out_dec = 6'b000111;
12'd2420 : mem_out_dec = 6'b000111;
12'd2421 : mem_out_dec = 6'b000111;
12'd2422 : mem_out_dec = 6'b001000;
12'd2423 : mem_out_dec = 6'b001001;
12'd2424 : mem_out_dec = 6'b001001;
12'd2425 : mem_out_dec = 6'b001010;
12'd2426 : mem_out_dec = 6'b001010;
12'd2427 : mem_out_dec = 6'b001011;
12'd2428 : mem_out_dec = 6'b001100;
12'd2429 : mem_out_dec = 6'b001101;
12'd2430 : mem_out_dec = 6'b001101;
12'd2431 : mem_out_dec = 6'b001110;
12'd2432 : mem_out_dec = 6'b111111;
12'd2433 : mem_out_dec = 6'b111111;
12'd2434 : mem_out_dec = 6'b111111;
12'd2435 : mem_out_dec = 6'b111111;
12'd2436 : mem_out_dec = 6'b111111;
12'd2437 : mem_out_dec = 6'b111111;
12'd2438 : mem_out_dec = 6'b111111;
12'd2439 : mem_out_dec = 6'b111111;
12'd2440 : mem_out_dec = 6'b111111;
12'd2441 : mem_out_dec = 6'b111111;
12'd2442 : mem_out_dec = 6'b111111;
12'd2443 : mem_out_dec = 6'b111111;
12'd2444 : mem_out_dec = 6'b111111;
12'd2445 : mem_out_dec = 6'b111111;
12'd2446 : mem_out_dec = 6'b111111;
12'd2447 : mem_out_dec = 6'b111111;
12'd2448 : mem_out_dec = 6'b111111;
12'd2449 : mem_out_dec = 6'b111111;
12'd2450 : mem_out_dec = 6'b111111;
12'd2451 : mem_out_dec = 6'b111111;
12'd2452 : mem_out_dec = 6'b111111;
12'd2453 : mem_out_dec = 6'b111111;
12'd2454 : mem_out_dec = 6'b111111;
12'd2455 : mem_out_dec = 6'b111111;
12'd2456 : mem_out_dec = 6'b111111;
12'd2457 : mem_out_dec = 6'b111111;
12'd2458 : mem_out_dec = 6'b111111;
12'd2459 : mem_out_dec = 6'b111111;
12'd2460 : mem_out_dec = 6'b111111;
12'd2461 : mem_out_dec = 6'b111111;
12'd2462 : mem_out_dec = 6'b111111;
12'd2463 : mem_out_dec = 6'b111111;
12'd2464 : mem_out_dec = 6'b111111;
12'd2465 : mem_out_dec = 6'b111111;
12'd2466 : mem_out_dec = 6'b111111;
12'd2467 : mem_out_dec = 6'b111111;
12'd2468 : mem_out_dec = 6'b111111;
12'd2469 : mem_out_dec = 6'b111111;
12'd2470 : mem_out_dec = 6'b111111;
12'd2471 : mem_out_dec = 6'b111111;
12'd2472 : mem_out_dec = 6'b111111;
12'd2473 : mem_out_dec = 6'b111111;
12'd2474 : mem_out_dec = 6'b111111;
12'd2475 : mem_out_dec = 6'b111111;
12'd2476 : mem_out_dec = 6'b000101;
12'd2477 : mem_out_dec = 6'b000110;
12'd2478 : mem_out_dec = 6'b000111;
12'd2479 : mem_out_dec = 6'b000111;
12'd2480 : mem_out_dec = 6'b000110;
12'd2481 : mem_out_dec = 6'b000110;
12'd2482 : mem_out_dec = 6'b000110;
12'd2483 : mem_out_dec = 6'b000110;
12'd2484 : mem_out_dec = 6'b000110;
12'd2485 : mem_out_dec = 6'b000111;
12'd2486 : mem_out_dec = 6'b000111;
12'd2487 : mem_out_dec = 6'b001000;
12'd2488 : mem_out_dec = 6'b001001;
12'd2489 : mem_out_dec = 6'b001001;
12'd2490 : mem_out_dec = 6'b001010;
12'd2491 : mem_out_dec = 6'b001011;
12'd2492 : mem_out_dec = 6'b001011;
12'd2493 : mem_out_dec = 6'b001100;
12'd2494 : mem_out_dec = 6'b001101;
12'd2495 : mem_out_dec = 6'b001110;
12'd2496 : mem_out_dec = 6'b111111;
12'd2497 : mem_out_dec = 6'b111111;
12'd2498 : mem_out_dec = 6'b111111;
12'd2499 : mem_out_dec = 6'b111111;
12'd2500 : mem_out_dec = 6'b111111;
12'd2501 : mem_out_dec = 6'b111111;
12'd2502 : mem_out_dec = 6'b111111;
12'd2503 : mem_out_dec = 6'b111111;
12'd2504 : mem_out_dec = 6'b111111;
12'd2505 : mem_out_dec = 6'b111111;
12'd2506 : mem_out_dec = 6'b111111;
12'd2507 : mem_out_dec = 6'b111111;
12'd2508 : mem_out_dec = 6'b111111;
12'd2509 : mem_out_dec = 6'b111111;
12'd2510 : mem_out_dec = 6'b111111;
12'd2511 : mem_out_dec = 6'b111111;
12'd2512 : mem_out_dec = 6'b111111;
12'd2513 : mem_out_dec = 6'b111111;
12'd2514 : mem_out_dec = 6'b111111;
12'd2515 : mem_out_dec = 6'b111111;
12'd2516 : mem_out_dec = 6'b111111;
12'd2517 : mem_out_dec = 6'b111111;
12'd2518 : mem_out_dec = 6'b111111;
12'd2519 : mem_out_dec = 6'b111111;
12'd2520 : mem_out_dec = 6'b111111;
12'd2521 : mem_out_dec = 6'b111111;
12'd2522 : mem_out_dec = 6'b111111;
12'd2523 : mem_out_dec = 6'b111111;
12'd2524 : mem_out_dec = 6'b111111;
12'd2525 : mem_out_dec = 6'b111111;
12'd2526 : mem_out_dec = 6'b111111;
12'd2527 : mem_out_dec = 6'b111111;
12'd2528 : mem_out_dec = 6'b111111;
12'd2529 : mem_out_dec = 6'b111111;
12'd2530 : mem_out_dec = 6'b111111;
12'd2531 : mem_out_dec = 6'b111111;
12'd2532 : mem_out_dec = 6'b111111;
12'd2533 : mem_out_dec = 6'b111111;
12'd2534 : mem_out_dec = 6'b111111;
12'd2535 : mem_out_dec = 6'b111111;
12'd2536 : mem_out_dec = 6'b111111;
12'd2537 : mem_out_dec = 6'b111111;
12'd2538 : mem_out_dec = 6'b111111;
12'd2539 : mem_out_dec = 6'b111111;
12'd2540 : mem_out_dec = 6'b111111;
12'd2541 : mem_out_dec = 6'b000101;
12'd2542 : mem_out_dec = 6'b000110;
12'd2543 : mem_out_dec = 6'b000110;
12'd2544 : mem_out_dec = 6'b000110;
12'd2545 : mem_out_dec = 6'b000110;
12'd2546 : mem_out_dec = 6'b000101;
12'd2547 : mem_out_dec = 6'b000101;
12'd2548 : mem_out_dec = 6'b000110;
12'd2549 : mem_out_dec = 6'b000111;
12'd2550 : mem_out_dec = 6'b000111;
12'd2551 : mem_out_dec = 6'b001000;
12'd2552 : mem_out_dec = 6'b001000;
12'd2553 : mem_out_dec = 6'b001001;
12'd2554 : mem_out_dec = 6'b001010;
12'd2555 : mem_out_dec = 6'b001010;
12'd2556 : mem_out_dec = 6'b001011;
12'd2557 : mem_out_dec = 6'b001100;
12'd2558 : mem_out_dec = 6'b001101;
12'd2559 : mem_out_dec = 6'b001101;
12'd2560 : mem_out_dec = 6'b111111;
12'd2561 : mem_out_dec = 6'b111111;
12'd2562 : mem_out_dec = 6'b111111;
12'd2563 : mem_out_dec = 6'b111111;
12'd2564 : mem_out_dec = 6'b111111;
12'd2565 : mem_out_dec = 6'b111111;
12'd2566 : mem_out_dec = 6'b111111;
12'd2567 : mem_out_dec = 6'b111111;
12'd2568 : mem_out_dec = 6'b111111;
12'd2569 : mem_out_dec = 6'b111111;
12'd2570 : mem_out_dec = 6'b111111;
12'd2571 : mem_out_dec = 6'b111111;
12'd2572 : mem_out_dec = 6'b111111;
12'd2573 : mem_out_dec = 6'b111111;
12'd2574 : mem_out_dec = 6'b111111;
12'd2575 : mem_out_dec = 6'b111111;
12'd2576 : mem_out_dec = 6'b111111;
12'd2577 : mem_out_dec = 6'b111111;
12'd2578 : mem_out_dec = 6'b111111;
12'd2579 : mem_out_dec = 6'b111111;
12'd2580 : mem_out_dec = 6'b111111;
12'd2581 : mem_out_dec = 6'b111111;
12'd2582 : mem_out_dec = 6'b111111;
12'd2583 : mem_out_dec = 6'b111111;
12'd2584 : mem_out_dec = 6'b111111;
12'd2585 : mem_out_dec = 6'b111111;
12'd2586 : mem_out_dec = 6'b111111;
12'd2587 : mem_out_dec = 6'b111111;
12'd2588 : mem_out_dec = 6'b111111;
12'd2589 : mem_out_dec = 6'b111111;
12'd2590 : mem_out_dec = 6'b111111;
12'd2591 : mem_out_dec = 6'b111111;
12'd2592 : mem_out_dec = 6'b111111;
12'd2593 : mem_out_dec = 6'b111111;
12'd2594 : mem_out_dec = 6'b111111;
12'd2595 : mem_out_dec = 6'b111111;
12'd2596 : mem_out_dec = 6'b111111;
12'd2597 : mem_out_dec = 6'b111111;
12'd2598 : mem_out_dec = 6'b111111;
12'd2599 : mem_out_dec = 6'b111111;
12'd2600 : mem_out_dec = 6'b111111;
12'd2601 : mem_out_dec = 6'b111111;
12'd2602 : mem_out_dec = 6'b111111;
12'd2603 : mem_out_dec = 6'b111111;
12'd2604 : mem_out_dec = 6'b111111;
12'd2605 : mem_out_dec = 6'b111111;
12'd2606 : mem_out_dec = 6'b000100;
12'd2607 : mem_out_dec = 6'b000101;
12'd2608 : mem_out_dec = 6'b000100;
12'd2609 : mem_out_dec = 6'b000100;
12'd2610 : mem_out_dec = 6'b000100;
12'd2611 : mem_out_dec = 6'b000101;
12'd2612 : mem_out_dec = 6'b000101;
12'd2613 : mem_out_dec = 6'b000110;
12'd2614 : mem_out_dec = 6'b000111;
12'd2615 : mem_out_dec = 6'b000111;
12'd2616 : mem_out_dec = 6'b000111;
12'd2617 : mem_out_dec = 6'b001000;
12'd2618 : mem_out_dec = 6'b001001;
12'd2619 : mem_out_dec = 6'b001010;
12'd2620 : mem_out_dec = 6'b001010;
12'd2621 : mem_out_dec = 6'b001011;
12'd2622 : mem_out_dec = 6'b001100;
12'd2623 : mem_out_dec = 6'b001101;
12'd2624 : mem_out_dec = 6'b111111;
12'd2625 : mem_out_dec = 6'b111111;
12'd2626 : mem_out_dec = 6'b111111;
12'd2627 : mem_out_dec = 6'b111111;
12'd2628 : mem_out_dec = 6'b111111;
12'd2629 : mem_out_dec = 6'b111111;
12'd2630 : mem_out_dec = 6'b111111;
12'd2631 : mem_out_dec = 6'b111111;
12'd2632 : mem_out_dec = 6'b111111;
12'd2633 : mem_out_dec = 6'b111111;
12'd2634 : mem_out_dec = 6'b111111;
12'd2635 : mem_out_dec = 6'b111111;
12'd2636 : mem_out_dec = 6'b111111;
12'd2637 : mem_out_dec = 6'b111111;
12'd2638 : mem_out_dec = 6'b111111;
12'd2639 : mem_out_dec = 6'b111111;
12'd2640 : mem_out_dec = 6'b111111;
12'd2641 : mem_out_dec = 6'b111111;
12'd2642 : mem_out_dec = 6'b111111;
12'd2643 : mem_out_dec = 6'b111111;
12'd2644 : mem_out_dec = 6'b111111;
12'd2645 : mem_out_dec = 6'b111111;
12'd2646 : mem_out_dec = 6'b111111;
12'd2647 : mem_out_dec = 6'b111111;
12'd2648 : mem_out_dec = 6'b111111;
12'd2649 : mem_out_dec = 6'b111111;
12'd2650 : mem_out_dec = 6'b111111;
12'd2651 : mem_out_dec = 6'b111111;
12'd2652 : mem_out_dec = 6'b111111;
12'd2653 : mem_out_dec = 6'b111111;
12'd2654 : mem_out_dec = 6'b111111;
12'd2655 : mem_out_dec = 6'b111111;
12'd2656 : mem_out_dec = 6'b111111;
12'd2657 : mem_out_dec = 6'b111111;
12'd2658 : mem_out_dec = 6'b111111;
12'd2659 : mem_out_dec = 6'b111111;
12'd2660 : mem_out_dec = 6'b111111;
12'd2661 : mem_out_dec = 6'b111111;
12'd2662 : mem_out_dec = 6'b111111;
12'd2663 : mem_out_dec = 6'b111111;
12'd2664 : mem_out_dec = 6'b111111;
12'd2665 : mem_out_dec = 6'b111111;
12'd2666 : mem_out_dec = 6'b111111;
12'd2667 : mem_out_dec = 6'b111111;
12'd2668 : mem_out_dec = 6'b111111;
12'd2669 : mem_out_dec = 6'b111111;
12'd2670 : mem_out_dec = 6'b111111;
12'd2671 : mem_out_dec = 6'b000100;
12'd2672 : mem_out_dec = 6'b000011;
12'd2673 : mem_out_dec = 6'b000011;
12'd2674 : mem_out_dec = 6'b000100;
12'd2675 : mem_out_dec = 6'b000100;
12'd2676 : mem_out_dec = 6'b000101;
12'd2677 : mem_out_dec = 6'b000110;
12'd2678 : mem_out_dec = 6'b000110;
12'd2679 : mem_out_dec = 6'b000111;
12'd2680 : mem_out_dec = 6'b000111;
12'd2681 : mem_out_dec = 6'b001000;
12'd2682 : mem_out_dec = 6'b001001;
12'd2683 : mem_out_dec = 6'b001001;
12'd2684 : mem_out_dec = 6'b001010;
12'd2685 : mem_out_dec = 6'b001011;
12'd2686 : mem_out_dec = 6'b001100;
12'd2687 : mem_out_dec = 6'b001100;
12'd2688 : mem_out_dec = 6'b111111;
12'd2689 : mem_out_dec = 6'b111111;
12'd2690 : mem_out_dec = 6'b111111;
12'd2691 : mem_out_dec = 6'b111111;
12'd2692 : mem_out_dec = 6'b111111;
12'd2693 : mem_out_dec = 6'b111111;
12'd2694 : mem_out_dec = 6'b111111;
12'd2695 : mem_out_dec = 6'b111111;
12'd2696 : mem_out_dec = 6'b111111;
12'd2697 : mem_out_dec = 6'b111111;
12'd2698 : mem_out_dec = 6'b111111;
12'd2699 : mem_out_dec = 6'b111111;
12'd2700 : mem_out_dec = 6'b111111;
12'd2701 : mem_out_dec = 6'b111111;
12'd2702 : mem_out_dec = 6'b111111;
12'd2703 : mem_out_dec = 6'b111111;
12'd2704 : mem_out_dec = 6'b111111;
12'd2705 : mem_out_dec = 6'b111111;
12'd2706 : mem_out_dec = 6'b111111;
12'd2707 : mem_out_dec = 6'b111111;
12'd2708 : mem_out_dec = 6'b111111;
12'd2709 : mem_out_dec = 6'b111111;
12'd2710 : mem_out_dec = 6'b111111;
12'd2711 : mem_out_dec = 6'b111111;
12'd2712 : mem_out_dec = 6'b111111;
12'd2713 : mem_out_dec = 6'b111111;
12'd2714 : mem_out_dec = 6'b111111;
12'd2715 : mem_out_dec = 6'b111111;
12'd2716 : mem_out_dec = 6'b111111;
12'd2717 : mem_out_dec = 6'b111111;
12'd2718 : mem_out_dec = 6'b111111;
12'd2719 : mem_out_dec = 6'b111111;
12'd2720 : mem_out_dec = 6'b111111;
12'd2721 : mem_out_dec = 6'b111111;
12'd2722 : mem_out_dec = 6'b111111;
12'd2723 : mem_out_dec = 6'b111111;
12'd2724 : mem_out_dec = 6'b111111;
12'd2725 : mem_out_dec = 6'b111111;
12'd2726 : mem_out_dec = 6'b111111;
12'd2727 : mem_out_dec = 6'b111111;
12'd2728 : mem_out_dec = 6'b111111;
12'd2729 : mem_out_dec = 6'b111111;
12'd2730 : mem_out_dec = 6'b111111;
12'd2731 : mem_out_dec = 6'b111111;
12'd2732 : mem_out_dec = 6'b111111;
12'd2733 : mem_out_dec = 6'b111111;
12'd2734 : mem_out_dec = 6'b111111;
12'd2735 : mem_out_dec = 6'b111111;
12'd2736 : mem_out_dec = 6'b000011;
12'd2737 : mem_out_dec = 6'b000011;
12'd2738 : mem_out_dec = 6'b000100;
12'd2739 : mem_out_dec = 6'b000100;
12'd2740 : mem_out_dec = 6'b000101;
12'd2741 : mem_out_dec = 6'b000101;
12'd2742 : mem_out_dec = 6'b000110;
12'd2743 : mem_out_dec = 6'b000111;
12'd2744 : mem_out_dec = 6'b000111;
12'd2745 : mem_out_dec = 6'b001000;
12'd2746 : mem_out_dec = 6'b001000;
12'd2747 : mem_out_dec = 6'b001001;
12'd2748 : mem_out_dec = 6'b001010;
12'd2749 : mem_out_dec = 6'b001011;
12'd2750 : mem_out_dec = 6'b001011;
12'd2751 : mem_out_dec = 6'b001100;
12'd2752 : mem_out_dec = 6'b111111;
12'd2753 : mem_out_dec = 6'b111111;
12'd2754 : mem_out_dec = 6'b111111;
12'd2755 : mem_out_dec = 6'b111111;
12'd2756 : mem_out_dec = 6'b111111;
12'd2757 : mem_out_dec = 6'b111111;
12'd2758 : mem_out_dec = 6'b111111;
12'd2759 : mem_out_dec = 6'b111111;
12'd2760 : mem_out_dec = 6'b111111;
12'd2761 : mem_out_dec = 6'b111111;
12'd2762 : mem_out_dec = 6'b111111;
12'd2763 : mem_out_dec = 6'b111111;
12'd2764 : mem_out_dec = 6'b111111;
12'd2765 : mem_out_dec = 6'b111111;
12'd2766 : mem_out_dec = 6'b111111;
12'd2767 : mem_out_dec = 6'b111111;
12'd2768 : mem_out_dec = 6'b111111;
12'd2769 : mem_out_dec = 6'b111111;
12'd2770 : mem_out_dec = 6'b111111;
12'd2771 : mem_out_dec = 6'b111111;
12'd2772 : mem_out_dec = 6'b111111;
12'd2773 : mem_out_dec = 6'b111111;
12'd2774 : mem_out_dec = 6'b111111;
12'd2775 : mem_out_dec = 6'b111111;
12'd2776 : mem_out_dec = 6'b111111;
12'd2777 : mem_out_dec = 6'b111111;
12'd2778 : mem_out_dec = 6'b111111;
12'd2779 : mem_out_dec = 6'b111111;
12'd2780 : mem_out_dec = 6'b111111;
12'd2781 : mem_out_dec = 6'b111111;
12'd2782 : mem_out_dec = 6'b111111;
12'd2783 : mem_out_dec = 6'b111111;
12'd2784 : mem_out_dec = 6'b111111;
12'd2785 : mem_out_dec = 6'b111111;
12'd2786 : mem_out_dec = 6'b111111;
12'd2787 : mem_out_dec = 6'b111111;
12'd2788 : mem_out_dec = 6'b111111;
12'd2789 : mem_out_dec = 6'b111111;
12'd2790 : mem_out_dec = 6'b111111;
12'd2791 : mem_out_dec = 6'b111111;
12'd2792 : mem_out_dec = 6'b111111;
12'd2793 : mem_out_dec = 6'b111111;
12'd2794 : mem_out_dec = 6'b111111;
12'd2795 : mem_out_dec = 6'b111111;
12'd2796 : mem_out_dec = 6'b111111;
12'd2797 : mem_out_dec = 6'b111111;
12'd2798 : mem_out_dec = 6'b111111;
12'd2799 : mem_out_dec = 6'b111111;
12'd2800 : mem_out_dec = 6'b111111;
12'd2801 : mem_out_dec = 6'b000011;
12'd2802 : mem_out_dec = 6'b000011;
12'd2803 : mem_out_dec = 6'b000100;
12'd2804 : mem_out_dec = 6'b000101;
12'd2805 : mem_out_dec = 6'b000101;
12'd2806 : mem_out_dec = 6'b000110;
12'd2807 : mem_out_dec = 6'b000111;
12'd2808 : mem_out_dec = 6'b000111;
12'd2809 : mem_out_dec = 6'b000111;
12'd2810 : mem_out_dec = 6'b001000;
12'd2811 : mem_out_dec = 6'b001001;
12'd2812 : mem_out_dec = 6'b001010;
12'd2813 : mem_out_dec = 6'b001010;
12'd2814 : mem_out_dec = 6'b001011;
12'd2815 : mem_out_dec = 6'b001100;
12'd2816 : mem_out_dec = 6'b111111;
12'd2817 : mem_out_dec = 6'b111111;
12'd2818 : mem_out_dec = 6'b111111;
12'd2819 : mem_out_dec = 6'b111111;
12'd2820 : mem_out_dec = 6'b111111;
12'd2821 : mem_out_dec = 6'b111111;
12'd2822 : mem_out_dec = 6'b111111;
12'd2823 : mem_out_dec = 6'b111111;
12'd2824 : mem_out_dec = 6'b111111;
12'd2825 : mem_out_dec = 6'b111111;
12'd2826 : mem_out_dec = 6'b111111;
12'd2827 : mem_out_dec = 6'b111111;
12'd2828 : mem_out_dec = 6'b111111;
12'd2829 : mem_out_dec = 6'b111111;
12'd2830 : mem_out_dec = 6'b111111;
12'd2831 : mem_out_dec = 6'b111111;
12'd2832 : mem_out_dec = 6'b111111;
12'd2833 : mem_out_dec = 6'b111111;
12'd2834 : mem_out_dec = 6'b111111;
12'd2835 : mem_out_dec = 6'b111111;
12'd2836 : mem_out_dec = 6'b111111;
12'd2837 : mem_out_dec = 6'b111111;
12'd2838 : mem_out_dec = 6'b111111;
12'd2839 : mem_out_dec = 6'b111111;
12'd2840 : mem_out_dec = 6'b111111;
12'd2841 : mem_out_dec = 6'b111111;
12'd2842 : mem_out_dec = 6'b111111;
12'd2843 : mem_out_dec = 6'b111111;
12'd2844 : mem_out_dec = 6'b111111;
12'd2845 : mem_out_dec = 6'b111111;
12'd2846 : mem_out_dec = 6'b111111;
12'd2847 : mem_out_dec = 6'b111111;
12'd2848 : mem_out_dec = 6'b111111;
12'd2849 : mem_out_dec = 6'b111111;
12'd2850 : mem_out_dec = 6'b111111;
12'd2851 : mem_out_dec = 6'b111111;
12'd2852 : mem_out_dec = 6'b111111;
12'd2853 : mem_out_dec = 6'b111111;
12'd2854 : mem_out_dec = 6'b111111;
12'd2855 : mem_out_dec = 6'b111111;
12'd2856 : mem_out_dec = 6'b111111;
12'd2857 : mem_out_dec = 6'b111111;
12'd2858 : mem_out_dec = 6'b111111;
12'd2859 : mem_out_dec = 6'b111111;
12'd2860 : mem_out_dec = 6'b111111;
12'd2861 : mem_out_dec = 6'b111111;
12'd2862 : mem_out_dec = 6'b111111;
12'd2863 : mem_out_dec = 6'b111111;
12'd2864 : mem_out_dec = 6'b111111;
12'd2865 : mem_out_dec = 6'b111111;
12'd2866 : mem_out_dec = 6'b000011;
12'd2867 : mem_out_dec = 6'b000100;
12'd2868 : mem_out_dec = 6'b000100;
12'd2869 : mem_out_dec = 6'b000101;
12'd2870 : mem_out_dec = 6'b000110;
12'd2871 : mem_out_dec = 6'b000110;
12'd2872 : mem_out_dec = 6'b000110;
12'd2873 : mem_out_dec = 6'b000111;
12'd2874 : mem_out_dec = 6'b001000;
12'd2875 : mem_out_dec = 6'b001001;
12'd2876 : mem_out_dec = 6'b001001;
12'd2877 : mem_out_dec = 6'b001010;
12'd2878 : mem_out_dec = 6'b001011;
12'd2879 : mem_out_dec = 6'b001100;
12'd2880 : mem_out_dec = 6'b111111;
12'd2881 : mem_out_dec = 6'b111111;
12'd2882 : mem_out_dec = 6'b111111;
12'd2883 : mem_out_dec = 6'b111111;
12'd2884 : mem_out_dec = 6'b111111;
12'd2885 : mem_out_dec = 6'b111111;
12'd2886 : mem_out_dec = 6'b111111;
12'd2887 : mem_out_dec = 6'b111111;
12'd2888 : mem_out_dec = 6'b111111;
12'd2889 : mem_out_dec = 6'b111111;
12'd2890 : mem_out_dec = 6'b111111;
12'd2891 : mem_out_dec = 6'b111111;
12'd2892 : mem_out_dec = 6'b111111;
12'd2893 : mem_out_dec = 6'b111111;
12'd2894 : mem_out_dec = 6'b111111;
12'd2895 : mem_out_dec = 6'b111111;
12'd2896 : mem_out_dec = 6'b111111;
12'd2897 : mem_out_dec = 6'b111111;
12'd2898 : mem_out_dec = 6'b111111;
12'd2899 : mem_out_dec = 6'b111111;
12'd2900 : mem_out_dec = 6'b111111;
12'd2901 : mem_out_dec = 6'b111111;
12'd2902 : mem_out_dec = 6'b111111;
12'd2903 : mem_out_dec = 6'b111111;
12'd2904 : mem_out_dec = 6'b111111;
12'd2905 : mem_out_dec = 6'b111111;
12'd2906 : mem_out_dec = 6'b111111;
12'd2907 : mem_out_dec = 6'b111111;
12'd2908 : mem_out_dec = 6'b111111;
12'd2909 : mem_out_dec = 6'b111111;
12'd2910 : mem_out_dec = 6'b111111;
12'd2911 : mem_out_dec = 6'b111111;
12'd2912 : mem_out_dec = 6'b111111;
12'd2913 : mem_out_dec = 6'b111111;
12'd2914 : mem_out_dec = 6'b111111;
12'd2915 : mem_out_dec = 6'b111111;
12'd2916 : mem_out_dec = 6'b111111;
12'd2917 : mem_out_dec = 6'b111111;
12'd2918 : mem_out_dec = 6'b111111;
12'd2919 : mem_out_dec = 6'b111111;
12'd2920 : mem_out_dec = 6'b111111;
12'd2921 : mem_out_dec = 6'b111111;
12'd2922 : mem_out_dec = 6'b111111;
12'd2923 : mem_out_dec = 6'b111111;
12'd2924 : mem_out_dec = 6'b111111;
12'd2925 : mem_out_dec = 6'b111111;
12'd2926 : mem_out_dec = 6'b111111;
12'd2927 : mem_out_dec = 6'b111111;
12'd2928 : mem_out_dec = 6'b111111;
12'd2929 : mem_out_dec = 6'b111111;
12'd2930 : mem_out_dec = 6'b111111;
12'd2931 : mem_out_dec = 6'b000100;
12'd2932 : mem_out_dec = 6'b000100;
12'd2933 : mem_out_dec = 6'b000101;
12'd2934 : mem_out_dec = 6'b000101;
12'd2935 : mem_out_dec = 6'b000110;
12'd2936 : mem_out_dec = 6'b000110;
12'd2937 : mem_out_dec = 6'b000111;
12'd2938 : mem_out_dec = 6'b001000;
12'd2939 : mem_out_dec = 6'b001000;
12'd2940 : mem_out_dec = 6'b001001;
12'd2941 : mem_out_dec = 6'b001010;
12'd2942 : mem_out_dec = 6'b001011;
12'd2943 : mem_out_dec = 6'b001011;
12'd2944 : mem_out_dec = 6'b111111;
12'd2945 : mem_out_dec = 6'b111111;
12'd2946 : mem_out_dec = 6'b111111;
12'd2947 : mem_out_dec = 6'b111111;
12'd2948 : mem_out_dec = 6'b111111;
12'd2949 : mem_out_dec = 6'b111111;
12'd2950 : mem_out_dec = 6'b111111;
12'd2951 : mem_out_dec = 6'b111111;
12'd2952 : mem_out_dec = 6'b111111;
12'd2953 : mem_out_dec = 6'b111111;
12'd2954 : mem_out_dec = 6'b111111;
12'd2955 : mem_out_dec = 6'b111111;
12'd2956 : mem_out_dec = 6'b111111;
12'd2957 : mem_out_dec = 6'b111111;
12'd2958 : mem_out_dec = 6'b111111;
12'd2959 : mem_out_dec = 6'b111111;
12'd2960 : mem_out_dec = 6'b111111;
12'd2961 : mem_out_dec = 6'b111111;
12'd2962 : mem_out_dec = 6'b111111;
12'd2963 : mem_out_dec = 6'b111111;
12'd2964 : mem_out_dec = 6'b111111;
12'd2965 : mem_out_dec = 6'b111111;
12'd2966 : mem_out_dec = 6'b111111;
12'd2967 : mem_out_dec = 6'b111111;
12'd2968 : mem_out_dec = 6'b111111;
12'd2969 : mem_out_dec = 6'b111111;
12'd2970 : mem_out_dec = 6'b111111;
12'd2971 : mem_out_dec = 6'b111111;
12'd2972 : mem_out_dec = 6'b111111;
12'd2973 : mem_out_dec = 6'b111111;
12'd2974 : mem_out_dec = 6'b111111;
12'd2975 : mem_out_dec = 6'b111111;
12'd2976 : mem_out_dec = 6'b111111;
12'd2977 : mem_out_dec = 6'b111111;
12'd2978 : mem_out_dec = 6'b111111;
12'd2979 : mem_out_dec = 6'b111111;
12'd2980 : mem_out_dec = 6'b111111;
12'd2981 : mem_out_dec = 6'b111111;
12'd2982 : mem_out_dec = 6'b111111;
12'd2983 : mem_out_dec = 6'b111111;
12'd2984 : mem_out_dec = 6'b111111;
12'd2985 : mem_out_dec = 6'b111111;
12'd2986 : mem_out_dec = 6'b111111;
12'd2987 : mem_out_dec = 6'b111111;
12'd2988 : mem_out_dec = 6'b111111;
12'd2989 : mem_out_dec = 6'b111111;
12'd2990 : mem_out_dec = 6'b111111;
12'd2991 : mem_out_dec = 6'b111111;
12'd2992 : mem_out_dec = 6'b111111;
12'd2993 : mem_out_dec = 6'b111111;
12'd2994 : mem_out_dec = 6'b111111;
12'd2995 : mem_out_dec = 6'b111111;
12'd2996 : mem_out_dec = 6'b000100;
12'd2997 : mem_out_dec = 6'b000101;
12'd2998 : mem_out_dec = 6'b000101;
12'd2999 : mem_out_dec = 6'b000110;
12'd3000 : mem_out_dec = 6'b000110;
12'd3001 : mem_out_dec = 6'b000111;
12'd3002 : mem_out_dec = 6'b000111;
12'd3003 : mem_out_dec = 6'b001000;
12'd3004 : mem_out_dec = 6'b001001;
12'd3005 : mem_out_dec = 6'b001010;
12'd3006 : mem_out_dec = 6'b001010;
12'd3007 : mem_out_dec = 6'b001011;
12'd3008 : mem_out_dec = 6'b111111;
12'd3009 : mem_out_dec = 6'b111111;
12'd3010 : mem_out_dec = 6'b111111;
12'd3011 : mem_out_dec = 6'b111111;
12'd3012 : mem_out_dec = 6'b111111;
12'd3013 : mem_out_dec = 6'b111111;
12'd3014 : mem_out_dec = 6'b111111;
12'd3015 : mem_out_dec = 6'b111111;
12'd3016 : mem_out_dec = 6'b111111;
12'd3017 : mem_out_dec = 6'b111111;
12'd3018 : mem_out_dec = 6'b111111;
12'd3019 : mem_out_dec = 6'b111111;
12'd3020 : mem_out_dec = 6'b111111;
12'd3021 : mem_out_dec = 6'b111111;
12'd3022 : mem_out_dec = 6'b111111;
12'd3023 : mem_out_dec = 6'b111111;
12'd3024 : mem_out_dec = 6'b111111;
12'd3025 : mem_out_dec = 6'b111111;
12'd3026 : mem_out_dec = 6'b111111;
12'd3027 : mem_out_dec = 6'b111111;
12'd3028 : mem_out_dec = 6'b111111;
12'd3029 : mem_out_dec = 6'b111111;
12'd3030 : mem_out_dec = 6'b111111;
12'd3031 : mem_out_dec = 6'b111111;
12'd3032 : mem_out_dec = 6'b111111;
12'd3033 : mem_out_dec = 6'b111111;
12'd3034 : mem_out_dec = 6'b111111;
12'd3035 : mem_out_dec = 6'b111111;
12'd3036 : mem_out_dec = 6'b111111;
12'd3037 : mem_out_dec = 6'b111111;
12'd3038 : mem_out_dec = 6'b111111;
12'd3039 : mem_out_dec = 6'b111111;
12'd3040 : mem_out_dec = 6'b111111;
12'd3041 : mem_out_dec = 6'b111111;
12'd3042 : mem_out_dec = 6'b111111;
12'd3043 : mem_out_dec = 6'b111111;
12'd3044 : mem_out_dec = 6'b111111;
12'd3045 : mem_out_dec = 6'b111111;
12'd3046 : mem_out_dec = 6'b111111;
12'd3047 : mem_out_dec = 6'b111111;
12'd3048 : mem_out_dec = 6'b111111;
12'd3049 : mem_out_dec = 6'b111111;
12'd3050 : mem_out_dec = 6'b111111;
12'd3051 : mem_out_dec = 6'b111111;
12'd3052 : mem_out_dec = 6'b111111;
12'd3053 : mem_out_dec = 6'b111111;
12'd3054 : mem_out_dec = 6'b111111;
12'd3055 : mem_out_dec = 6'b111111;
12'd3056 : mem_out_dec = 6'b111111;
12'd3057 : mem_out_dec = 6'b111111;
12'd3058 : mem_out_dec = 6'b111111;
12'd3059 : mem_out_dec = 6'b111111;
12'd3060 : mem_out_dec = 6'b111111;
12'd3061 : mem_out_dec = 6'b000100;
12'd3062 : mem_out_dec = 6'b000101;
12'd3063 : mem_out_dec = 6'b000110;
12'd3064 : mem_out_dec = 6'b000110;
12'd3065 : mem_out_dec = 6'b000111;
12'd3066 : mem_out_dec = 6'b000111;
12'd3067 : mem_out_dec = 6'b001000;
12'd3068 : mem_out_dec = 6'b001001;
12'd3069 : mem_out_dec = 6'b001001;
12'd3070 : mem_out_dec = 6'b001010;
12'd3071 : mem_out_dec = 6'b001011;
12'd3072 : mem_out_dec = 6'b111111;
12'd3073 : mem_out_dec = 6'b111111;
12'd3074 : mem_out_dec = 6'b111111;
12'd3075 : mem_out_dec = 6'b111111;
12'd3076 : mem_out_dec = 6'b111111;
12'd3077 : mem_out_dec = 6'b111111;
12'd3078 : mem_out_dec = 6'b111111;
12'd3079 : mem_out_dec = 6'b111111;
12'd3080 : mem_out_dec = 6'b111111;
12'd3081 : mem_out_dec = 6'b111111;
12'd3082 : mem_out_dec = 6'b111111;
12'd3083 : mem_out_dec = 6'b111111;
12'd3084 : mem_out_dec = 6'b111111;
12'd3085 : mem_out_dec = 6'b111111;
12'd3086 : mem_out_dec = 6'b111111;
12'd3087 : mem_out_dec = 6'b111111;
12'd3088 : mem_out_dec = 6'b111111;
12'd3089 : mem_out_dec = 6'b111111;
12'd3090 : mem_out_dec = 6'b111111;
12'd3091 : mem_out_dec = 6'b111111;
12'd3092 : mem_out_dec = 6'b111111;
12'd3093 : mem_out_dec = 6'b111111;
12'd3094 : mem_out_dec = 6'b111111;
12'd3095 : mem_out_dec = 6'b111111;
12'd3096 : mem_out_dec = 6'b111111;
12'd3097 : mem_out_dec = 6'b111111;
12'd3098 : mem_out_dec = 6'b111111;
12'd3099 : mem_out_dec = 6'b111111;
12'd3100 : mem_out_dec = 6'b111111;
12'd3101 : mem_out_dec = 6'b111111;
12'd3102 : mem_out_dec = 6'b111111;
12'd3103 : mem_out_dec = 6'b111111;
12'd3104 : mem_out_dec = 6'b111111;
12'd3105 : mem_out_dec = 6'b111111;
12'd3106 : mem_out_dec = 6'b111111;
12'd3107 : mem_out_dec = 6'b111111;
12'd3108 : mem_out_dec = 6'b111111;
12'd3109 : mem_out_dec = 6'b111111;
12'd3110 : mem_out_dec = 6'b111111;
12'd3111 : mem_out_dec = 6'b111111;
12'd3112 : mem_out_dec = 6'b111111;
12'd3113 : mem_out_dec = 6'b111111;
12'd3114 : mem_out_dec = 6'b111111;
12'd3115 : mem_out_dec = 6'b111111;
12'd3116 : mem_out_dec = 6'b111111;
12'd3117 : mem_out_dec = 6'b111111;
12'd3118 : mem_out_dec = 6'b111111;
12'd3119 : mem_out_dec = 6'b111111;
12'd3120 : mem_out_dec = 6'b111111;
12'd3121 : mem_out_dec = 6'b111111;
12'd3122 : mem_out_dec = 6'b111111;
12'd3123 : mem_out_dec = 6'b111111;
12'd3124 : mem_out_dec = 6'b111111;
12'd3125 : mem_out_dec = 6'b111111;
12'd3126 : mem_out_dec = 6'b000100;
12'd3127 : mem_out_dec = 6'b000101;
12'd3128 : mem_out_dec = 6'b000101;
12'd3129 : mem_out_dec = 6'b000110;
12'd3130 : mem_out_dec = 6'b000110;
12'd3131 : mem_out_dec = 6'b000111;
12'd3132 : mem_out_dec = 6'b001000;
12'd3133 : mem_out_dec = 6'b001000;
12'd3134 : mem_out_dec = 6'b001001;
12'd3135 : mem_out_dec = 6'b001010;
12'd3136 : mem_out_dec = 6'b111111;
12'd3137 : mem_out_dec = 6'b111111;
12'd3138 : mem_out_dec = 6'b111111;
12'd3139 : mem_out_dec = 6'b111111;
12'd3140 : mem_out_dec = 6'b111111;
12'd3141 : mem_out_dec = 6'b111111;
12'd3142 : mem_out_dec = 6'b111111;
12'd3143 : mem_out_dec = 6'b111111;
12'd3144 : mem_out_dec = 6'b111111;
12'd3145 : mem_out_dec = 6'b111111;
12'd3146 : mem_out_dec = 6'b111111;
12'd3147 : mem_out_dec = 6'b111111;
12'd3148 : mem_out_dec = 6'b111111;
12'd3149 : mem_out_dec = 6'b111111;
12'd3150 : mem_out_dec = 6'b111111;
12'd3151 : mem_out_dec = 6'b111111;
12'd3152 : mem_out_dec = 6'b111111;
12'd3153 : mem_out_dec = 6'b111111;
12'd3154 : mem_out_dec = 6'b111111;
12'd3155 : mem_out_dec = 6'b111111;
12'd3156 : mem_out_dec = 6'b111111;
12'd3157 : mem_out_dec = 6'b111111;
12'd3158 : mem_out_dec = 6'b111111;
12'd3159 : mem_out_dec = 6'b111111;
12'd3160 : mem_out_dec = 6'b111111;
12'd3161 : mem_out_dec = 6'b111111;
12'd3162 : mem_out_dec = 6'b111111;
12'd3163 : mem_out_dec = 6'b111111;
12'd3164 : mem_out_dec = 6'b111111;
12'd3165 : mem_out_dec = 6'b111111;
12'd3166 : mem_out_dec = 6'b111111;
12'd3167 : mem_out_dec = 6'b111111;
12'd3168 : mem_out_dec = 6'b111111;
12'd3169 : mem_out_dec = 6'b111111;
12'd3170 : mem_out_dec = 6'b111111;
12'd3171 : mem_out_dec = 6'b111111;
12'd3172 : mem_out_dec = 6'b111111;
12'd3173 : mem_out_dec = 6'b111111;
12'd3174 : mem_out_dec = 6'b111111;
12'd3175 : mem_out_dec = 6'b111111;
12'd3176 : mem_out_dec = 6'b111111;
12'd3177 : mem_out_dec = 6'b111111;
12'd3178 : mem_out_dec = 6'b111111;
12'd3179 : mem_out_dec = 6'b111111;
12'd3180 : mem_out_dec = 6'b111111;
12'd3181 : mem_out_dec = 6'b111111;
12'd3182 : mem_out_dec = 6'b111111;
12'd3183 : mem_out_dec = 6'b111111;
12'd3184 : mem_out_dec = 6'b111111;
12'd3185 : mem_out_dec = 6'b111111;
12'd3186 : mem_out_dec = 6'b111111;
12'd3187 : mem_out_dec = 6'b111111;
12'd3188 : mem_out_dec = 6'b111111;
12'd3189 : mem_out_dec = 6'b111111;
12'd3190 : mem_out_dec = 6'b111111;
12'd3191 : mem_out_dec = 6'b000100;
12'd3192 : mem_out_dec = 6'b000100;
12'd3193 : mem_out_dec = 6'b000101;
12'd3194 : mem_out_dec = 6'b000110;
12'd3195 : mem_out_dec = 6'b000110;
12'd3196 : mem_out_dec = 6'b000111;
12'd3197 : mem_out_dec = 6'b001000;
12'd3198 : mem_out_dec = 6'b001000;
12'd3199 : mem_out_dec = 6'b001001;
12'd3200 : mem_out_dec = 6'b111111;
12'd3201 : mem_out_dec = 6'b111111;
12'd3202 : mem_out_dec = 6'b111111;
12'd3203 : mem_out_dec = 6'b111111;
12'd3204 : mem_out_dec = 6'b111111;
12'd3205 : mem_out_dec = 6'b111111;
12'd3206 : mem_out_dec = 6'b111111;
12'd3207 : mem_out_dec = 6'b111111;
12'd3208 : mem_out_dec = 6'b111111;
12'd3209 : mem_out_dec = 6'b111111;
12'd3210 : mem_out_dec = 6'b111111;
12'd3211 : mem_out_dec = 6'b111111;
12'd3212 : mem_out_dec = 6'b111111;
12'd3213 : mem_out_dec = 6'b111111;
12'd3214 : mem_out_dec = 6'b111111;
12'd3215 : mem_out_dec = 6'b111111;
12'd3216 : mem_out_dec = 6'b111111;
12'd3217 : mem_out_dec = 6'b111111;
12'd3218 : mem_out_dec = 6'b111111;
12'd3219 : mem_out_dec = 6'b111111;
12'd3220 : mem_out_dec = 6'b111111;
12'd3221 : mem_out_dec = 6'b111111;
12'd3222 : mem_out_dec = 6'b111111;
12'd3223 : mem_out_dec = 6'b111111;
12'd3224 : mem_out_dec = 6'b111111;
12'd3225 : mem_out_dec = 6'b111111;
12'd3226 : mem_out_dec = 6'b111111;
12'd3227 : mem_out_dec = 6'b111111;
12'd3228 : mem_out_dec = 6'b111111;
12'd3229 : mem_out_dec = 6'b111111;
12'd3230 : mem_out_dec = 6'b111111;
12'd3231 : mem_out_dec = 6'b111111;
12'd3232 : mem_out_dec = 6'b111111;
12'd3233 : mem_out_dec = 6'b111111;
12'd3234 : mem_out_dec = 6'b111111;
12'd3235 : mem_out_dec = 6'b111111;
12'd3236 : mem_out_dec = 6'b111111;
12'd3237 : mem_out_dec = 6'b111111;
12'd3238 : mem_out_dec = 6'b111111;
12'd3239 : mem_out_dec = 6'b111111;
12'd3240 : mem_out_dec = 6'b111111;
12'd3241 : mem_out_dec = 6'b111111;
12'd3242 : mem_out_dec = 6'b111111;
12'd3243 : mem_out_dec = 6'b111111;
12'd3244 : mem_out_dec = 6'b111111;
12'd3245 : mem_out_dec = 6'b111111;
12'd3246 : mem_out_dec = 6'b111111;
12'd3247 : mem_out_dec = 6'b111111;
12'd3248 : mem_out_dec = 6'b111111;
12'd3249 : mem_out_dec = 6'b111111;
12'd3250 : mem_out_dec = 6'b111111;
12'd3251 : mem_out_dec = 6'b111111;
12'd3252 : mem_out_dec = 6'b111111;
12'd3253 : mem_out_dec = 6'b111111;
12'd3254 : mem_out_dec = 6'b111111;
12'd3255 : mem_out_dec = 6'b111111;
12'd3256 : mem_out_dec = 6'b000100;
12'd3257 : mem_out_dec = 6'b000100;
12'd3258 : mem_out_dec = 6'b000101;
12'd3259 : mem_out_dec = 6'b000110;
12'd3260 : mem_out_dec = 6'b000110;
12'd3261 : mem_out_dec = 6'b000111;
12'd3262 : mem_out_dec = 6'b001000;
12'd3263 : mem_out_dec = 6'b001001;
12'd3264 : mem_out_dec = 6'b111111;
12'd3265 : mem_out_dec = 6'b111111;
12'd3266 : mem_out_dec = 6'b111111;
12'd3267 : mem_out_dec = 6'b111111;
12'd3268 : mem_out_dec = 6'b111111;
12'd3269 : mem_out_dec = 6'b111111;
12'd3270 : mem_out_dec = 6'b111111;
12'd3271 : mem_out_dec = 6'b111111;
12'd3272 : mem_out_dec = 6'b111111;
12'd3273 : mem_out_dec = 6'b111111;
12'd3274 : mem_out_dec = 6'b111111;
12'd3275 : mem_out_dec = 6'b111111;
12'd3276 : mem_out_dec = 6'b111111;
12'd3277 : mem_out_dec = 6'b111111;
12'd3278 : mem_out_dec = 6'b111111;
12'd3279 : mem_out_dec = 6'b111111;
12'd3280 : mem_out_dec = 6'b111111;
12'd3281 : mem_out_dec = 6'b111111;
12'd3282 : mem_out_dec = 6'b111111;
12'd3283 : mem_out_dec = 6'b111111;
12'd3284 : mem_out_dec = 6'b111111;
12'd3285 : mem_out_dec = 6'b111111;
12'd3286 : mem_out_dec = 6'b111111;
12'd3287 : mem_out_dec = 6'b111111;
12'd3288 : mem_out_dec = 6'b111111;
12'd3289 : mem_out_dec = 6'b111111;
12'd3290 : mem_out_dec = 6'b111111;
12'd3291 : mem_out_dec = 6'b111111;
12'd3292 : mem_out_dec = 6'b111111;
12'd3293 : mem_out_dec = 6'b111111;
12'd3294 : mem_out_dec = 6'b111111;
12'd3295 : mem_out_dec = 6'b111111;
12'd3296 : mem_out_dec = 6'b111111;
12'd3297 : mem_out_dec = 6'b111111;
12'd3298 : mem_out_dec = 6'b111111;
12'd3299 : mem_out_dec = 6'b111111;
12'd3300 : mem_out_dec = 6'b111111;
12'd3301 : mem_out_dec = 6'b111111;
12'd3302 : mem_out_dec = 6'b111111;
12'd3303 : mem_out_dec = 6'b111111;
12'd3304 : mem_out_dec = 6'b111111;
12'd3305 : mem_out_dec = 6'b111111;
12'd3306 : mem_out_dec = 6'b111111;
12'd3307 : mem_out_dec = 6'b111111;
12'd3308 : mem_out_dec = 6'b111111;
12'd3309 : mem_out_dec = 6'b111111;
12'd3310 : mem_out_dec = 6'b111111;
12'd3311 : mem_out_dec = 6'b111111;
12'd3312 : mem_out_dec = 6'b111111;
12'd3313 : mem_out_dec = 6'b111111;
12'd3314 : mem_out_dec = 6'b111111;
12'd3315 : mem_out_dec = 6'b111111;
12'd3316 : mem_out_dec = 6'b111111;
12'd3317 : mem_out_dec = 6'b111111;
12'd3318 : mem_out_dec = 6'b111111;
12'd3319 : mem_out_dec = 6'b111111;
12'd3320 : mem_out_dec = 6'b111111;
12'd3321 : mem_out_dec = 6'b000100;
12'd3322 : mem_out_dec = 6'b000100;
12'd3323 : mem_out_dec = 6'b000101;
12'd3324 : mem_out_dec = 6'b000110;
12'd3325 : mem_out_dec = 6'b000111;
12'd3326 : mem_out_dec = 6'b001000;
12'd3327 : mem_out_dec = 6'b001000;
12'd3328 : mem_out_dec = 6'b111111;
12'd3329 : mem_out_dec = 6'b111111;
12'd3330 : mem_out_dec = 6'b111111;
12'd3331 : mem_out_dec = 6'b111111;
12'd3332 : mem_out_dec = 6'b111111;
12'd3333 : mem_out_dec = 6'b111111;
12'd3334 : mem_out_dec = 6'b111111;
12'd3335 : mem_out_dec = 6'b111111;
12'd3336 : mem_out_dec = 6'b111111;
12'd3337 : mem_out_dec = 6'b111111;
12'd3338 : mem_out_dec = 6'b111111;
12'd3339 : mem_out_dec = 6'b111111;
12'd3340 : mem_out_dec = 6'b111111;
12'd3341 : mem_out_dec = 6'b111111;
12'd3342 : mem_out_dec = 6'b111111;
12'd3343 : mem_out_dec = 6'b111111;
12'd3344 : mem_out_dec = 6'b111111;
12'd3345 : mem_out_dec = 6'b111111;
12'd3346 : mem_out_dec = 6'b111111;
12'd3347 : mem_out_dec = 6'b111111;
12'd3348 : mem_out_dec = 6'b111111;
12'd3349 : mem_out_dec = 6'b111111;
12'd3350 : mem_out_dec = 6'b111111;
12'd3351 : mem_out_dec = 6'b111111;
12'd3352 : mem_out_dec = 6'b111111;
12'd3353 : mem_out_dec = 6'b111111;
12'd3354 : mem_out_dec = 6'b111111;
12'd3355 : mem_out_dec = 6'b111111;
12'd3356 : mem_out_dec = 6'b111111;
12'd3357 : mem_out_dec = 6'b111111;
12'd3358 : mem_out_dec = 6'b111111;
12'd3359 : mem_out_dec = 6'b111111;
12'd3360 : mem_out_dec = 6'b111111;
12'd3361 : mem_out_dec = 6'b111111;
12'd3362 : mem_out_dec = 6'b111111;
12'd3363 : mem_out_dec = 6'b111111;
12'd3364 : mem_out_dec = 6'b111111;
12'd3365 : mem_out_dec = 6'b111111;
12'd3366 : mem_out_dec = 6'b111111;
12'd3367 : mem_out_dec = 6'b111111;
12'd3368 : mem_out_dec = 6'b111111;
12'd3369 : mem_out_dec = 6'b111111;
12'd3370 : mem_out_dec = 6'b111111;
12'd3371 : mem_out_dec = 6'b111111;
12'd3372 : mem_out_dec = 6'b111111;
12'd3373 : mem_out_dec = 6'b111111;
12'd3374 : mem_out_dec = 6'b111111;
12'd3375 : mem_out_dec = 6'b111111;
12'd3376 : mem_out_dec = 6'b111111;
12'd3377 : mem_out_dec = 6'b111111;
12'd3378 : mem_out_dec = 6'b111111;
12'd3379 : mem_out_dec = 6'b111111;
12'd3380 : mem_out_dec = 6'b111111;
12'd3381 : mem_out_dec = 6'b111111;
12'd3382 : mem_out_dec = 6'b111111;
12'd3383 : mem_out_dec = 6'b111111;
12'd3384 : mem_out_dec = 6'b111111;
12'd3385 : mem_out_dec = 6'b111111;
12'd3386 : mem_out_dec = 6'b000100;
12'd3387 : mem_out_dec = 6'b000101;
12'd3388 : mem_out_dec = 6'b000110;
12'd3389 : mem_out_dec = 6'b000110;
12'd3390 : mem_out_dec = 6'b000111;
12'd3391 : mem_out_dec = 6'b001000;
12'd3392 : mem_out_dec = 6'b111111;
12'd3393 : mem_out_dec = 6'b111111;
12'd3394 : mem_out_dec = 6'b111111;
12'd3395 : mem_out_dec = 6'b111111;
12'd3396 : mem_out_dec = 6'b111111;
12'd3397 : mem_out_dec = 6'b111111;
12'd3398 : mem_out_dec = 6'b111111;
12'd3399 : mem_out_dec = 6'b111111;
12'd3400 : mem_out_dec = 6'b111111;
12'd3401 : mem_out_dec = 6'b111111;
12'd3402 : mem_out_dec = 6'b111111;
12'd3403 : mem_out_dec = 6'b111111;
12'd3404 : mem_out_dec = 6'b111111;
12'd3405 : mem_out_dec = 6'b111111;
12'd3406 : mem_out_dec = 6'b111111;
12'd3407 : mem_out_dec = 6'b111111;
12'd3408 : mem_out_dec = 6'b111111;
12'd3409 : mem_out_dec = 6'b111111;
12'd3410 : mem_out_dec = 6'b111111;
12'd3411 : mem_out_dec = 6'b111111;
12'd3412 : mem_out_dec = 6'b111111;
12'd3413 : mem_out_dec = 6'b111111;
12'd3414 : mem_out_dec = 6'b111111;
12'd3415 : mem_out_dec = 6'b111111;
12'd3416 : mem_out_dec = 6'b111111;
12'd3417 : mem_out_dec = 6'b111111;
12'd3418 : mem_out_dec = 6'b111111;
12'd3419 : mem_out_dec = 6'b111111;
12'd3420 : mem_out_dec = 6'b111111;
12'd3421 : mem_out_dec = 6'b111111;
12'd3422 : mem_out_dec = 6'b111111;
12'd3423 : mem_out_dec = 6'b111111;
12'd3424 : mem_out_dec = 6'b111111;
12'd3425 : mem_out_dec = 6'b111111;
12'd3426 : mem_out_dec = 6'b111111;
12'd3427 : mem_out_dec = 6'b111111;
12'd3428 : mem_out_dec = 6'b111111;
12'd3429 : mem_out_dec = 6'b111111;
12'd3430 : mem_out_dec = 6'b111111;
12'd3431 : mem_out_dec = 6'b111111;
12'd3432 : mem_out_dec = 6'b111111;
12'd3433 : mem_out_dec = 6'b111111;
12'd3434 : mem_out_dec = 6'b111111;
12'd3435 : mem_out_dec = 6'b111111;
12'd3436 : mem_out_dec = 6'b111111;
12'd3437 : mem_out_dec = 6'b111111;
12'd3438 : mem_out_dec = 6'b111111;
12'd3439 : mem_out_dec = 6'b111111;
12'd3440 : mem_out_dec = 6'b111111;
12'd3441 : mem_out_dec = 6'b111111;
12'd3442 : mem_out_dec = 6'b111111;
12'd3443 : mem_out_dec = 6'b111111;
12'd3444 : mem_out_dec = 6'b111111;
12'd3445 : mem_out_dec = 6'b111111;
12'd3446 : mem_out_dec = 6'b111111;
12'd3447 : mem_out_dec = 6'b111111;
12'd3448 : mem_out_dec = 6'b111111;
12'd3449 : mem_out_dec = 6'b111111;
12'd3450 : mem_out_dec = 6'b111111;
12'd3451 : mem_out_dec = 6'b000100;
12'd3452 : mem_out_dec = 6'b000101;
12'd3453 : mem_out_dec = 6'b000110;
12'd3454 : mem_out_dec = 6'b000111;
12'd3455 : mem_out_dec = 6'b001000;
12'd3456 : mem_out_dec = 6'b111111;
12'd3457 : mem_out_dec = 6'b111111;
12'd3458 : mem_out_dec = 6'b111111;
12'd3459 : mem_out_dec = 6'b111111;
12'd3460 : mem_out_dec = 6'b111111;
12'd3461 : mem_out_dec = 6'b111111;
12'd3462 : mem_out_dec = 6'b111111;
12'd3463 : mem_out_dec = 6'b111111;
12'd3464 : mem_out_dec = 6'b111111;
12'd3465 : mem_out_dec = 6'b111111;
12'd3466 : mem_out_dec = 6'b111111;
12'd3467 : mem_out_dec = 6'b111111;
12'd3468 : mem_out_dec = 6'b111111;
12'd3469 : mem_out_dec = 6'b111111;
12'd3470 : mem_out_dec = 6'b111111;
12'd3471 : mem_out_dec = 6'b111111;
12'd3472 : mem_out_dec = 6'b111111;
12'd3473 : mem_out_dec = 6'b111111;
12'd3474 : mem_out_dec = 6'b111111;
12'd3475 : mem_out_dec = 6'b111111;
12'd3476 : mem_out_dec = 6'b111111;
12'd3477 : mem_out_dec = 6'b111111;
12'd3478 : mem_out_dec = 6'b111111;
12'd3479 : mem_out_dec = 6'b111111;
12'd3480 : mem_out_dec = 6'b111111;
12'd3481 : mem_out_dec = 6'b111111;
12'd3482 : mem_out_dec = 6'b111111;
12'd3483 : mem_out_dec = 6'b111111;
12'd3484 : mem_out_dec = 6'b111111;
12'd3485 : mem_out_dec = 6'b111111;
12'd3486 : mem_out_dec = 6'b111111;
12'd3487 : mem_out_dec = 6'b111111;
12'd3488 : mem_out_dec = 6'b111111;
12'd3489 : mem_out_dec = 6'b111111;
12'd3490 : mem_out_dec = 6'b111111;
12'd3491 : mem_out_dec = 6'b111111;
12'd3492 : mem_out_dec = 6'b111111;
12'd3493 : mem_out_dec = 6'b111111;
12'd3494 : mem_out_dec = 6'b111111;
12'd3495 : mem_out_dec = 6'b111111;
12'd3496 : mem_out_dec = 6'b111111;
12'd3497 : mem_out_dec = 6'b111111;
12'd3498 : mem_out_dec = 6'b111111;
12'd3499 : mem_out_dec = 6'b111111;
12'd3500 : mem_out_dec = 6'b111111;
12'd3501 : mem_out_dec = 6'b111111;
12'd3502 : mem_out_dec = 6'b111111;
12'd3503 : mem_out_dec = 6'b111111;
12'd3504 : mem_out_dec = 6'b111111;
12'd3505 : mem_out_dec = 6'b111111;
12'd3506 : mem_out_dec = 6'b111111;
12'd3507 : mem_out_dec = 6'b111111;
12'd3508 : mem_out_dec = 6'b111111;
12'd3509 : mem_out_dec = 6'b111111;
12'd3510 : mem_out_dec = 6'b111111;
12'd3511 : mem_out_dec = 6'b111111;
12'd3512 : mem_out_dec = 6'b111111;
12'd3513 : mem_out_dec = 6'b111111;
12'd3514 : mem_out_dec = 6'b111111;
12'd3515 : mem_out_dec = 6'b111111;
12'd3516 : mem_out_dec = 6'b000101;
12'd3517 : mem_out_dec = 6'b000110;
12'd3518 : mem_out_dec = 6'b000110;
12'd3519 : mem_out_dec = 6'b000111;
12'd3520 : mem_out_dec = 6'b111111;
12'd3521 : mem_out_dec = 6'b111111;
12'd3522 : mem_out_dec = 6'b111111;
12'd3523 : mem_out_dec = 6'b111111;
12'd3524 : mem_out_dec = 6'b111111;
12'd3525 : mem_out_dec = 6'b111111;
12'd3526 : mem_out_dec = 6'b111111;
12'd3527 : mem_out_dec = 6'b111111;
12'd3528 : mem_out_dec = 6'b111111;
12'd3529 : mem_out_dec = 6'b111111;
12'd3530 : mem_out_dec = 6'b111111;
12'd3531 : mem_out_dec = 6'b111111;
12'd3532 : mem_out_dec = 6'b111111;
12'd3533 : mem_out_dec = 6'b111111;
12'd3534 : mem_out_dec = 6'b111111;
12'd3535 : mem_out_dec = 6'b111111;
12'd3536 : mem_out_dec = 6'b111111;
12'd3537 : mem_out_dec = 6'b111111;
12'd3538 : mem_out_dec = 6'b111111;
12'd3539 : mem_out_dec = 6'b111111;
12'd3540 : mem_out_dec = 6'b111111;
12'd3541 : mem_out_dec = 6'b111111;
12'd3542 : mem_out_dec = 6'b111111;
12'd3543 : mem_out_dec = 6'b111111;
12'd3544 : mem_out_dec = 6'b111111;
12'd3545 : mem_out_dec = 6'b111111;
12'd3546 : mem_out_dec = 6'b111111;
12'd3547 : mem_out_dec = 6'b111111;
12'd3548 : mem_out_dec = 6'b111111;
12'd3549 : mem_out_dec = 6'b111111;
12'd3550 : mem_out_dec = 6'b111111;
12'd3551 : mem_out_dec = 6'b111111;
12'd3552 : mem_out_dec = 6'b111111;
12'd3553 : mem_out_dec = 6'b111111;
12'd3554 : mem_out_dec = 6'b111111;
12'd3555 : mem_out_dec = 6'b111111;
12'd3556 : mem_out_dec = 6'b111111;
12'd3557 : mem_out_dec = 6'b111111;
12'd3558 : mem_out_dec = 6'b111111;
12'd3559 : mem_out_dec = 6'b111111;
12'd3560 : mem_out_dec = 6'b111111;
12'd3561 : mem_out_dec = 6'b111111;
12'd3562 : mem_out_dec = 6'b111111;
12'd3563 : mem_out_dec = 6'b111111;
12'd3564 : mem_out_dec = 6'b111111;
12'd3565 : mem_out_dec = 6'b111111;
12'd3566 : mem_out_dec = 6'b111111;
12'd3567 : mem_out_dec = 6'b111111;
12'd3568 : mem_out_dec = 6'b111111;
12'd3569 : mem_out_dec = 6'b111111;
12'd3570 : mem_out_dec = 6'b111111;
12'd3571 : mem_out_dec = 6'b111111;
12'd3572 : mem_out_dec = 6'b111111;
12'd3573 : mem_out_dec = 6'b111111;
12'd3574 : mem_out_dec = 6'b111111;
12'd3575 : mem_out_dec = 6'b111111;
12'd3576 : mem_out_dec = 6'b111111;
12'd3577 : mem_out_dec = 6'b111111;
12'd3578 : mem_out_dec = 6'b111111;
12'd3579 : mem_out_dec = 6'b111111;
12'd3580 : mem_out_dec = 6'b111111;
12'd3581 : mem_out_dec = 6'b000101;
12'd3582 : mem_out_dec = 6'b000110;
12'd3583 : mem_out_dec = 6'b000110;
12'd3584 : mem_out_dec = 6'b111111;
12'd3585 : mem_out_dec = 6'b111111;
12'd3586 : mem_out_dec = 6'b111111;
12'd3587 : mem_out_dec = 6'b111111;
12'd3588 : mem_out_dec = 6'b111111;
12'd3589 : mem_out_dec = 6'b111111;
12'd3590 : mem_out_dec = 6'b111111;
12'd3591 : mem_out_dec = 6'b111111;
12'd3592 : mem_out_dec = 6'b111111;
12'd3593 : mem_out_dec = 6'b111111;
12'd3594 : mem_out_dec = 6'b111111;
12'd3595 : mem_out_dec = 6'b111111;
12'd3596 : mem_out_dec = 6'b111111;
12'd3597 : mem_out_dec = 6'b111111;
12'd3598 : mem_out_dec = 6'b111111;
12'd3599 : mem_out_dec = 6'b111111;
12'd3600 : mem_out_dec = 6'b111111;
12'd3601 : mem_out_dec = 6'b111111;
12'd3602 : mem_out_dec = 6'b111111;
12'd3603 : mem_out_dec = 6'b111111;
12'd3604 : mem_out_dec = 6'b111111;
12'd3605 : mem_out_dec = 6'b111111;
12'd3606 : mem_out_dec = 6'b111111;
12'd3607 : mem_out_dec = 6'b111111;
12'd3608 : mem_out_dec = 6'b111111;
12'd3609 : mem_out_dec = 6'b111111;
12'd3610 : mem_out_dec = 6'b111111;
12'd3611 : mem_out_dec = 6'b111111;
12'd3612 : mem_out_dec = 6'b111111;
12'd3613 : mem_out_dec = 6'b111111;
12'd3614 : mem_out_dec = 6'b111111;
12'd3615 : mem_out_dec = 6'b111111;
12'd3616 : mem_out_dec = 6'b111111;
12'd3617 : mem_out_dec = 6'b111111;
12'd3618 : mem_out_dec = 6'b111111;
12'd3619 : mem_out_dec = 6'b111111;
12'd3620 : mem_out_dec = 6'b111111;
12'd3621 : mem_out_dec = 6'b111111;
12'd3622 : mem_out_dec = 6'b111111;
12'd3623 : mem_out_dec = 6'b111111;
12'd3624 : mem_out_dec = 6'b111111;
12'd3625 : mem_out_dec = 6'b111111;
12'd3626 : mem_out_dec = 6'b111111;
12'd3627 : mem_out_dec = 6'b111111;
12'd3628 : mem_out_dec = 6'b111111;
12'd3629 : mem_out_dec = 6'b111111;
12'd3630 : mem_out_dec = 6'b111111;
12'd3631 : mem_out_dec = 6'b111111;
12'd3632 : mem_out_dec = 6'b111111;
12'd3633 : mem_out_dec = 6'b111111;
12'd3634 : mem_out_dec = 6'b111111;
12'd3635 : mem_out_dec = 6'b111111;
12'd3636 : mem_out_dec = 6'b111111;
12'd3637 : mem_out_dec = 6'b111111;
12'd3638 : mem_out_dec = 6'b111111;
12'd3639 : mem_out_dec = 6'b111111;
12'd3640 : mem_out_dec = 6'b111111;
12'd3641 : mem_out_dec = 6'b111111;
12'd3642 : mem_out_dec = 6'b111111;
12'd3643 : mem_out_dec = 6'b111111;
12'd3644 : mem_out_dec = 6'b111111;
12'd3645 : mem_out_dec = 6'b111111;
12'd3646 : mem_out_dec = 6'b000100;
12'd3647 : mem_out_dec = 6'b000101;
12'd3648 : mem_out_dec = 6'b111111;
12'd3649 : mem_out_dec = 6'b111111;
12'd3650 : mem_out_dec = 6'b111111;
12'd3651 : mem_out_dec = 6'b111111;
12'd3652 : mem_out_dec = 6'b111111;
12'd3653 : mem_out_dec = 6'b111111;
12'd3654 : mem_out_dec = 6'b111111;
12'd3655 : mem_out_dec = 6'b111111;
12'd3656 : mem_out_dec = 6'b111111;
12'd3657 : mem_out_dec = 6'b111111;
12'd3658 : mem_out_dec = 6'b111111;
12'd3659 : mem_out_dec = 6'b111111;
12'd3660 : mem_out_dec = 6'b111111;
12'd3661 : mem_out_dec = 6'b111111;
12'd3662 : mem_out_dec = 6'b111111;
12'd3663 : mem_out_dec = 6'b111111;
12'd3664 : mem_out_dec = 6'b111111;
12'd3665 : mem_out_dec = 6'b111111;
12'd3666 : mem_out_dec = 6'b111111;
12'd3667 : mem_out_dec = 6'b111111;
12'd3668 : mem_out_dec = 6'b111111;
12'd3669 : mem_out_dec = 6'b111111;
12'd3670 : mem_out_dec = 6'b111111;
12'd3671 : mem_out_dec = 6'b111111;
12'd3672 : mem_out_dec = 6'b111111;
12'd3673 : mem_out_dec = 6'b111111;
12'd3674 : mem_out_dec = 6'b111111;
12'd3675 : mem_out_dec = 6'b111111;
12'd3676 : mem_out_dec = 6'b111111;
12'd3677 : mem_out_dec = 6'b111111;
12'd3678 : mem_out_dec = 6'b111111;
12'd3679 : mem_out_dec = 6'b111111;
12'd3680 : mem_out_dec = 6'b111111;
12'd3681 : mem_out_dec = 6'b111111;
12'd3682 : mem_out_dec = 6'b111111;
12'd3683 : mem_out_dec = 6'b111111;
12'd3684 : mem_out_dec = 6'b111111;
12'd3685 : mem_out_dec = 6'b111111;
12'd3686 : mem_out_dec = 6'b111111;
12'd3687 : mem_out_dec = 6'b111111;
12'd3688 : mem_out_dec = 6'b111111;
12'd3689 : mem_out_dec = 6'b111111;
12'd3690 : mem_out_dec = 6'b111111;
12'd3691 : mem_out_dec = 6'b111111;
12'd3692 : mem_out_dec = 6'b111111;
12'd3693 : mem_out_dec = 6'b111111;
12'd3694 : mem_out_dec = 6'b111111;
12'd3695 : mem_out_dec = 6'b111111;
12'd3696 : mem_out_dec = 6'b111111;
12'd3697 : mem_out_dec = 6'b111111;
12'd3698 : mem_out_dec = 6'b111111;
12'd3699 : mem_out_dec = 6'b111111;
12'd3700 : mem_out_dec = 6'b111111;
12'd3701 : mem_out_dec = 6'b111111;
12'd3702 : mem_out_dec = 6'b111111;
12'd3703 : mem_out_dec = 6'b111111;
12'd3704 : mem_out_dec = 6'b111111;
12'd3705 : mem_out_dec = 6'b111111;
12'd3706 : mem_out_dec = 6'b111111;
12'd3707 : mem_out_dec = 6'b111111;
12'd3708 : mem_out_dec = 6'b111111;
12'd3709 : mem_out_dec = 6'b111111;
12'd3710 : mem_out_dec = 6'b111111;
12'd3711 : mem_out_dec = 6'b000100;
12'd3712 : mem_out_dec = 6'b111111;
12'd3713 : mem_out_dec = 6'b111111;
12'd3714 : mem_out_dec = 6'b111111;
12'd3715 : mem_out_dec = 6'b111111;
12'd3716 : mem_out_dec = 6'b111111;
12'd3717 : mem_out_dec = 6'b111111;
12'd3718 : mem_out_dec = 6'b111111;
12'd3719 : mem_out_dec = 6'b111111;
12'd3720 : mem_out_dec = 6'b111111;
12'd3721 : mem_out_dec = 6'b111111;
12'd3722 : mem_out_dec = 6'b111111;
12'd3723 : mem_out_dec = 6'b111111;
12'd3724 : mem_out_dec = 6'b111111;
12'd3725 : mem_out_dec = 6'b111111;
12'd3726 : mem_out_dec = 6'b111111;
12'd3727 : mem_out_dec = 6'b111111;
12'd3728 : mem_out_dec = 6'b111111;
12'd3729 : mem_out_dec = 6'b111111;
12'd3730 : mem_out_dec = 6'b111111;
12'd3731 : mem_out_dec = 6'b111111;
12'd3732 : mem_out_dec = 6'b111111;
12'd3733 : mem_out_dec = 6'b111111;
12'd3734 : mem_out_dec = 6'b111111;
12'd3735 : mem_out_dec = 6'b111111;
12'd3736 : mem_out_dec = 6'b111111;
12'd3737 : mem_out_dec = 6'b111111;
12'd3738 : mem_out_dec = 6'b111111;
12'd3739 : mem_out_dec = 6'b111111;
12'd3740 : mem_out_dec = 6'b111111;
12'd3741 : mem_out_dec = 6'b111111;
12'd3742 : mem_out_dec = 6'b111111;
12'd3743 : mem_out_dec = 6'b111111;
12'd3744 : mem_out_dec = 6'b111111;
12'd3745 : mem_out_dec = 6'b111111;
12'd3746 : mem_out_dec = 6'b111111;
12'd3747 : mem_out_dec = 6'b111111;
12'd3748 : mem_out_dec = 6'b111111;
12'd3749 : mem_out_dec = 6'b111111;
12'd3750 : mem_out_dec = 6'b111111;
12'd3751 : mem_out_dec = 6'b111111;
12'd3752 : mem_out_dec = 6'b111111;
12'd3753 : mem_out_dec = 6'b111111;
12'd3754 : mem_out_dec = 6'b111111;
12'd3755 : mem_out_dec = 6'b111111;
12'd3756 : mem_out_dec = 6'b111111;
12'd3757 : mem_out_dec = 6'b111111;
12'd3758 : mem_out_dec = 6'b111111;
12'd3759 : mem_out_dec = 6'b111111;
12'd3760 : mem_out_dec = 6'b111111;
12'd3761 : mem_out_dec = 6'b111111;
12'd3762 : mem_out_dec = 6'b111111;
12'd3763 : mem_out_dec = 6'b111111;
12'd3764 : mem_out_dec = 6'b111111;
12'd3765 : mem_out_dec = 6'b111111;
12'd3766 : mem_out_dec = 6'b111111;
12'd3767 : mem_out_dec = 6'b111111;
12'd3768 : mem_out_dec = 6'b111111;
12'd3769 : mem_out_dec = 6'b111111;
12'd3770 : mem_out_dec = 6'b111111;
12'd3771 : mem_out_dec = 6'b111111;
12'd3772 : mem_out_dec = 6'b111111;
12'd3773 : mem_out_dec = 6'b111111;
12'd3774 : mem_out_dec = 6'b111111;
12'd3775 : mem_out_dec = 6'b111111;
12'd3776 : mem_out_dec = 6'b111111;
12'd3777 : mem_out_dec = 6'b111111;
12'd3778 : mem_out_dec = 6'b111111;
12'd3779 : mem_out_dec = 6'b111111;
12'd3780 : mem_out_dec = 6'b111111;
12'd3781 : mem_out_dec = 6'b111111;
12'd3782 : mem_out_dec = 6'b111111;
12'd3783 : mem_out_dec = 6'b111111;
12'd3784 : mem_out_dec = 6'b111111;
12'd3785 : mem_out_dec = 6'b111111;
12'd3786 : mem_out_dec = 6'b111111;
12'd3787 : mem_out_dec = 6'b111111;
12'd3788 : mem_out_dec = 6'b111111;
12'd3789 : mem_out_dec = 6'b111111;
12'd3790 : mem_out_dec = 6'b111111;
12'd3791 : mem_out_dec = 6'b111111;
12'd3792 : mem_out_dec = 6'b111111;
12'd3793 : mem_out_dec = 6'b111111;
12'd3794 : mem_out_dec = 6'b111111;
12'd3795 : mem_out_dec = 6'b111111;
12'd3796 : mem_out_dec = 6'b111111;
12'd3797 : mem_out_dec = 6'b111111;
12'd3798 : mem_out_dec = 6'b111111;
12'd3799 : mem_out_dec = 6'b111111;
12'd3800 : mem_out_dec = 6'b111111;
12'd3801 : mem_out_dec = 6'b111111;
12'd3802 : mem_out_dec = 6'b111111;
12'd3803 : mem_out_dec = 6'b111111;
12'd3804 : mem_out_dec = 6'b111111;
12'd3805 : mem_out_dec = 6'b111111;
12'd3806 : mem_out_dec = 6'b111111;
12'd3807 : mem_out_dec = 6'b111111;
12'd3808 : mem_out_dec = 6'b111111;
12'd3809 : mem_out_dec = 6'b111111;
12'd3810 : mem_out_dec = 6'b111111;
12'd3811 : mem_out_dec = 6'b111111;
12'd3812 : mem_out_dec = 6'b111111;
12'd3813 : mem_out_dec = 6'b111111;
12'd3814 : mem_out_dec = 6'b111111;
12'd3815 : mem_out_dec = 6'b111111;
12'd3816 : mem_out_dec = 6'b111111;
12'd3817 : mem_out_dec = 6'b111111;
12'd3818 : mem_out_dec = 6'b111111;
12'd3819 : mem_out_dec = 6'b111111;
12'd3820 : mem_out_dec = 6'b111111;
12'd3821 : mem_out_dec = 6'b111111;
12'd3822 : mem_out_dec = 6'b111111;
12'd3823 : mem_out_dec = 6'b111111;
12'd3824 : mem_out_dec = 6'b111111;
12'd3825 : mem_out_dec = 6'b111111;
12'd3826 : mem_out_dec = 6'b111111;
12'd3827 : mem_out_dec = 6'b111111;
12'd3828 : mem_out_dec = 6'b111111;
12'd3829 : mem_out_dec = 6'b111111;
12'd3830 : mem_out_dec = 6'b111111;
12'd3831 : mem_out_dec = 6'b111111;
12'd3832 : mem_out_dec = 6'b111111;
12'd3833 : mem_out_dec = 6'b111111;
12'd3834 : mem_out_dec = 6'b111111;
12'd3835 : mem_out_dec = 6'b111111;
12'd3836 : mem_out_dec = 6'b111111;
12'd3837 : mem_out_dec = 6'b111111;
12'd3838 : mem_out_dec = 6'b111111;
12'd3839 : mem_out_dec = 6'b111111;
12'd3840 : mem_out_dec = 6'b111111;
12'd3841 : mem_out_dec = 6'b111111;
12'd3842 : mem_out_dec = 6'b111111;
12'd3843 : mem_out_dec = 6'b111111;
12'd3844 : mem_out_dec = 6'b111111;
12'd3845 : mem_out_dec = 6'b111111;
12'd3846 : mem_out_dec = 6'b111111;
12'd3847 : mem_out_dec = 6'b111111;
12'd3848 : mem_out_dec = 6'b111111;
12'd3849 : mem_out_dec = 6'b111111;
12'd3850 : mem_out_dec = 6'b111111;
12'd3851 : mem_out_dec = 6'b111111;
12'd3852 : mem_out_dec = 6'b111111;
12'd3853 : mem_out_dec = 6'b111111;
12'd3854 : mem_out_dec = 6'b111111;
12'd3855 : mem_out_dec = 6'b111111;
12'd3856 : mem_out_dec = 6'b111111;
12'd3857 : mem_out_dec = 6'b111111;
12'd3858 : mem_out_dec = 6'b111111;
12'd3859 : mem_out_dec = 6'b111111;
12'd3860 : mem_out_dec = 6'b111111;
12'd3861 : mem_out_dec = 6'b111111;
12'd3862 : mem_out_dec = 6'b111111;
12'd3863 : mem_out_dec = 6'b111111;
12'd3864 : mem_out_dec = 6'b111111;
12'd3865 : mem_out_dec = 6'b111111;
12'd3866 : mem_out_dec = 6'b111111;
12'd3867 : mem_out_dec = 6'b111111;
12'd3868 : mem_out_dec = 6'b111111;
12'd3869 : mem_out_dec = 6'b111111;
12'd3870 : mem_out_dec = 6'b111111;
12'd3871 : mem_out_dec = 6'b111111;
12'd3872 : mem_out_dec = 6'b111111;
12'd3873 : mem_out_dec = 6'b111111;
12'd3874 : mem_out_dec = 6'b111111;
12'd3875 : mem_out_dec = 6'b111111;
12'd3876 : mem_out_dec = 6'b111111;
12'd3877 : mem_out_dec = 6'b111111;
12'd3878 : mem_out_dec = 6'b111111;
12'd3879 : mem_out_dec = 6'b111111;
12'd3880 : mem_out_dec = 6'b111111;
12'd3881 : mem_out_dec = 6'b111111;
12'd3882 : mem_out_dec = 6'b111111;
12'd3883 : mem_out_dec = 6'b111111;
12'd3884 : mem_out_dec = 6'b111111;
12'd3885 : mem_out_dec = 6'b111111;
12'd3886 : mem_out_dec = 6'b111111;
12'd3887 : mem_out_dec = 6'b111111;
12'd3888 : mem_out_dec = 6'b111111;
12'd3889 : mem_out_dec = 6'b111111;
12'd3890 : mem_out_dec = 6'b111111;
12'd3891 : mem_out_dec = 6'b111111;
12'd3892 : mem_out_dec = 6'b111111;
12'd3893 : mem_out_dec = 6'b111111;
12'd3894 : mem_out_dec = 6'b111111;
12'd3895 : mem_out_dec = 6'b111111;
12'd3896 : mem_out_dec = 6'b111111;
12'd3897 : mem_out_dec = 6'b111111;
12'd3898 : mem_out_dec = 6'b111111;
12'd3899 : mem_out_dec = 6'b111111;
12'd3900 : mem_out_dec = 6'b111111;
12'd3901 : mem_out_dec = 6'b111111;
12'd3902 : mem_out_dec = 6'b111111;
12'd3903 : mem_out_dec = 6'b111111;
12'd3904 : mem_out_dec = 6'b111111;
12'd3905 : mem_out_dec = 6'b111111;
12'd3906 : mem_out_dec = 6'b111111;
12'd3907 : mem_out_dec = 6'b111111;
12'd3908 : mem_out_dec = 6'b111111;
12'd3909 : mem_out_dec = 6'b111111;
12'd3910 : mem_out_dec = 6'b111111;
12'd3911 : mem_out_dec = 6'b111111;
12'd3912 : mem_out_dec = 6'b111111;
12'd3913 : mem_out_dec = 6'b111111;
12'd3914 : mem_out_dec = 6'b111111;
12'd3915 : mem_out_dec = 6'b111111;
12'd3916 : mem_out_dec = 6'b111111;
12'd3917 : mem_out_dec = 6'b111111;
12'd3918 : mem_out_dec = 6'b111111;
12'd3919 : mem_out_dec = 6'b111111;
12'd3920 : mem_out_dec = 6'b111111;
12'd3921 : mem_out_dec = 6'b111111;
12'd3922 : mem_out_dec = 6'b111111;
12'd3923 : mem_out_dec = 6'b111111;
12'd3924 : mem_out_dec = 6'b111111;
12'd3925 : mem_out_dec = 6'b111111;
12'd3926 : mem_out_dec = 6'b111111;
12'd3927 : mem_out_dec = 6'b111111;
12'd3928 : mem_out_dec = 6'b111111;
12'd3929 : mem_out_dec = 6'b111111;
12'd3930 : mem_out_dec = 6'b111111;
12'd3931 : mem_out_dec = 6'b111111;
12'd3932 : mem_out_dec = 6'b111111;
12'd3933 : mem_out_dec = 6'b111111;
12'd3934 : mem_out_dec = 6'b111111;
12'd3935 : mem_out_dec = 6'b111111;
12'd3936 : mem_out_dec = 6'b111111;
12'd3937 : mem_out_dec = 6'b111111;
12'd3938 : mem_out_dec = 6'b111111;
12'd3939 : mem_out_dec = 6'b111111;
12'd3940 : mem_out_dec = 6'b111111;
12'd3941 : mem_out_dec = 6'b111111;
12'd3942 : mem_out_dec = 6'b111111;
12'd3943 : mem_out_dec = 6'b111111;
12'd3944 : mem_out_dec = 6'b111111;
12'd3945 : mem_out_dec = 6'b111111;
12'd3946 : mem_out_dec = 6'b111111;
12'd3947 : mem_out_dec = 6'b111111;
12'd3948 : mem_out_dec = 6'b111111;
12'd3949 : mem_out_dec = 6'b111111;
12'd3950 : mem_out_dec = 6'b111111;
12'd3951 : mem_out_dec = 6'b111111;
12'd3952 : mem_out_dec = 6'b111111;
12'd3953 : mem_out_dec = 6'b111111;
12'd3954 : mem_out_dec = 6'b111111;
12'd3955 : mem_out_dec = 6'b111111;
12'd3956 : mem_out_dec = 6'b111111;
12'd3957 : mem_out_dec = 6'b111111;
12'd3958 : mem_out_dec = 6'b111111;
12'd3959 : mem_out_dec = 6'b111111;
12'd3960 : mem_out_dec = 6'b111111;
12'd3961 : mem_out_dec = 6'b111111;
12'd3962 : mem_out_dec = 6'b111111;
12'd3963 : mem_out_dec = 6'b111111;
12'd3964 : mem_out_dec = 6'b111111;
12'd3965 : mem_out_dec = 6'b111111;
12'd3966 : mem_out_dec = 6'b111111;
12'd3967 : mem_out_dec = 6'b111111;
12'd3968 : mem_out_dec = 6'b111111;
12'd3969 : mem_out_dec = 6'b111111;
12'd3970 : mem_out_dec = 6'b111111;
12'd3971 : mem_out_dec = 6'b111111;
12'd3972 : mem_out_dec = 6'b111111;
12'd3973 : mem_out_dec = 6'b111111;
12'd3974 : mem_out_dec = 6'b111111;
12'd3975 : mem_out_dec = 6'b111111;
12'd3976 : mem_out_dec = 6'b111111;
12'd3977 : mem_out_dec = 6'b111111;
12'd3978 : mem_out_dec = 6'b111111;
12'd3979 : mem_out_dec = 6'b111111;
12'd3980 : mem_out_dec = 6'b111111;
12'd3981 : mem_out_dec = 6'b111111;
12'd3982 : mem_out_dec = 6'b111111;
12'd3983 : mem_out_dec = 6'b111111;
12'd3984 : mem_out_dec = 6'b111111;
12'd3985 : mem_out_dec = 6'b111111;
12'd3986 : mem_out_dec = 6'b111111;
12'd3987 : mem_out_dec = 6'b111111;
12'd3988 : mem_out_dec = 6'b111111;
12'd3989 : mem_out_dec = 6'b111111;
12'd3990 : mem_out_dec = 6'b111111;
12'd3991 : mem_out_dec = 6'b111111;
12'd3992 : mem_out_dec = 6'b111111;
12'd3993 : mem_out_dec = 6'b111111;
12'd3994 : mem_out_dec = 6'b111111;
12'd3995 : mem_out_dec = 6'b111111;
12'd3996 : mem_out_dec = 6'b111111;
12'd3997 : mem_out_dec = 6'b111111;
12'd3998 : mem_out_dec = 6'b111111;
12'd3999 : mem_out_dec = 6'b111111;
12'd4000 : mem_out_dec = 6'b111111;
12'd4001 : mem_out_dec = 6'b111111;
12'd4002 : mem_out_dec = 6'b111111;
12'd4003 : mem_out_dec = 6'b111111;
12'd4004 : mem_out_dec = 6'b111111;
12'd4005 : mem_out_dec = 6'b111111;
12'd4006 : mem_out_dec = 6'b111111;
12'd4007 : mem_out_dec = 6'b111111;
12'd4008 : mem_out_dec = 6'b111111;
12'd4009 : mem_out_dec = 6'b111111;
12'd4010 : mem_out_dec = 6'b111111;
12'd4011 : mem_out_dec = 6'b111111;
12'd4012 : mem_out_dec = 6'b111111;
12'd4013 : mem_out_dec = 6'b111111;
12'd4014 : mem_out_dec = 6'b111111;
12'd4015 : mem_out_dec = 6'b111111;
12'd4016 : mem_out_dec = 6'b111111;
12'd4017 : mem_out_dec = 6'b111111;
12'd4018 : mem_out_dec = 6'b111111;
12'd4019 : mem_out_dec = 6'b111111;
12'd4020 : mem_out_dec = 6'b111111;
12'd4021 : mem_out_dec = 6'b111111;
12'd4022 : mem_out_dec = 6'b111111;
12'd4023 : mem_out_dec = 6'b111111;
12'd4024 : mem_out_dec = 6'b111111;
12'd4025 : mem_out_dec = 6'b111111;
12'd4026 : mem_out_dec = 6'b111111;
12'd4027 : mem_out_dec = 6'b111111;
12'd4028 : mem_out_dec = 6'b111111;
12'd4029 : mem_out_dec = 6'b111111;
12'd4030 : mem_out_dec = 6'b111111;
12'd4031 : mem_out_dec = 6'b111111;
12'd4032 : mem_out_dec = 6'b111111;
12'd4033 : mem_out_dec = 6'b111111;
12'd4034 : mem_out_dec = 6'b111111;
12'd4035 : mem_out_dec = 6'b111111;
12'd4036 : mem_out_dec = 6'b111111;
12'd4037 : mem_out_dec = 6'b111111;
12'd4038 : mem_out_dec = 6'b111111;
12'd4039 : mem_out_dec = 6'b111111;
12'd4040 : mem_out_dec = 6'b111111;
12'd4041 : mem_out_dec = 6'b111111;
12'd4042 : mem_out_dec = 6'b111111;
12'd4043 : mem_out_dec = 6'b111111;
12'd4044 : mem_out_dec = 6'b111111;
12'd4045 : mem_out_dec = 6'b111111;
12'd4046 : mem_out_dec = 6'b111111;
12'd4047 : mem_out_dec = 6'b111111;
12'd4048 : mem_out_dec = 6'b111111;
12'd4049 : mem_out_dec = 6'b111111;
12'd4050 : mem_out_dec = 6'b111111;
12'd4051 : mem_out_dec = 6'b111111;
12'd4052 : mem_out_dec = 6'b111111;
12'd4053 : mem_out_dec = 6'b111111;
12'd4054 : mem_out_dec = 6'b111111;
12'd4055 : mem_out_dec = 6'b111111;
12'd4056 : mem_out_dec = 6'b111111;
12'd4057 : mem_out_dec = 6'b111111;
12'd4058 : mem_out_dec = 6'b111111;
12'd4059 : mem_out_dec = 6'b111111;
12'd4060 : mem_out_dec = 6'b111111;
12'd4061 : mem_out_dec = 6'b111111;
12'd4062 : mem_out_dec = 6'b111111;
12'd4063 : mem_out_dec = 6'b111111;
12'd4064 : mem_out_dec = 6'b111111;
12'd4065 : mem_out_dec = 6'b111111;
12'd4066 : mem_out_dec = 6'b111111;
12'd4067 : mem_out_dec = 6'b111111;
12'd4068 : mem_out_dec = 6'b111111;
12'd4069 : mem_out_dec = 6'b111111;
12'd4070 : mem_out_dec = 6'b111111;
12'd4071 : mem_out_dec = 6'b111111;
12'd4072 : mem_out_dec = 6'b111111;
12'd4073 : mem_out_dec = 6'b111111;
12'd4074 : mem_out_dec = 6'b111111;
12'd4075 : mem_out_dec = 6'b111111;
12'd4076 : mem_out_dec = 6'b111111;
12'd4077 : mem_out_dec = 6'b111111;
12'd4078 : mem_out_dec = 6'b111111;
12'd4079 : mem_out_dec = 6'b111111;
12'd4080 : mem_out_dec = 6'b111111;
12'd4081 : mem_out_dec = 6'b111111;
12'd4082 : mem_out_dec = 6'b111111;
12'd4083 : mem_out_dec = 6'b111111;
12'd4084 : mem_out_dec = 6'b111111;
12'd4085 : mem_out_dec = 6'b111111;
12'd4086 : mem_out_dec = 6'b111111;
12'd4087 : mem_out_dec = 6'b111111;
12'd4088 : mem_out_dec = 6'b111111;
12'd4089 : mem_out_dec = 6'b111111;
12'd4090 : mem_out_dec = 6'b111111;
12'd4091 : mem_out_dec = 6'b111111;
12'd4092 : mem_out_dec = 6'b111111;
12'd4093 : mem_out_dec = 6'b111111;
12'd4094 : mem_out_dec = 6'b111111;
12'd4095 : mem_out_dec = 6'b111111;
endcase
end
always @ (posedge clk) begin
dec_cnt <= #TCQ mem_out_dec;
end
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module mig_7series_v2_3_poc_tap_base #
(parameter MMCM_SAMP_WAIT = 10,
parameter POC_USE_METASTABLE_SAMP = "FALSE",
parameter TCQ = 100,
parameter SAMPCNTRWIDTH = 8,
parameter TAPCNTRWIDTH = 7,
parameter TAPSPERKCLK = 112)
(/*AUTOARG*/
// Outputs
psincdec, psen, run, run_end, run_polarity, samps_hi_held, tap,
// Inputs
pd_out, clk, samples, samps_solid_thresh, psdone, rst,
poc_sample_pd
);
function integer clogb2 (input integer size); // ceiling logb2
begin
size = size - 1;
for (clogb2=1; size>1; clogb2=clogb2+1)
size = size >> 1;
end
endfunction // clogb2
input pd_out;
input clk;
input [SAMPCNTRWIDTH:0] samples, samps_solid_thresh;
input psdone;
input rst;
localparam ONE = 1;
localparam SAMP_WAIT_WIDTH = clogb2(MMCM_SAMP_WAIT);
reg [SAMP_WAIT_WIDTH-1:0] samp_wait_ns, samp_wait_r;
always @(posedge clk) samp_wait_r <= #TCQ samp_wait_ns;
reg pd_out_r;
always @(posedge clk) pd_out_r <= #TCQ pd_out;
wire pd_out_sel = POC_USE_METASTABLE_SAMP == "TRUE" ? pd_out_r : pd_out;
output psincdec;
assign psincdec = 1'b1;
output psen;
reg psen_int;
assign psen = psen_int;
reg [TAPCNTRWIDTH-1:0] run_r;
reg [TAPCNTRWIDTH-1:0] run_ns;
always @(posedge clk) run_r <= #TCQ run_ns;
output [TAPCNTRWIDTH-1:0] run;
assign run = run_r;
output run_end;
reg run_end_int;
assign run_end = run_end_int;
reg run_polarity_r;
reg run_polarity_ns;
always @(posedge clk) run_polarity_r <= #TCQ run_polarity_ns;
output run_polarity;
assign run_polarity = run_polarity_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_r;
reg [SAMPCNTRWIDTH-1:0] samp_cntr_ns;
always @(posedge clk) samp_cntr_r <= #TCQ samp_cntr_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_r;
reg [SAMPCNTRWIDTH:0] samps_hi_ns;
always @(posedge clk) samps_hi_r <= #TCQ samps_hi_ns;
reg [SAMPCNTRWIDTH:0] samps_hi_held_r;
reg [SAMPCNTRWIDTH:0] samps_hi_held_ns;
always @(posedge clk) samps_hi_held_r <= #TCQ samps_hi_held_ns;
output [SAMPCNTRWIDTH:0] samps_hi_held;
assign samps_hi_held = samps_hi_held_r;
reg [TAPCNTRWIDTH-1:0] tap_ns, tap_r;
always @(posedge clk) tap_r <= #TCQ tap_ns;
output [TAPCNTRWIDTH-1:0] tap;
assign tap = tap_r;
localparam SMWIDTH = 2;
reg [SMWIDTH-1:0] sm_ns;
reg [SMWIDTH-1:0] sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
reg samps_zero_ns, samps_zero_r, samps_one_ns, samps_one_r;
always @(posedge clk) samps_zero_r <= #TCQ samps_zero_ns;
always @(posedge clk)samps_one_r <= #TCQ samps_one_ns;
// Interesting corner case... what if both samps_zero and samps_one are
// hi? Could happen for small sample counts and reasonable values of
// PCT_SAMPS_SOLID. Doesn't affect samps_solid. run_polarity assignment
// consistently breaks tie with samps_one_r.
wire [SAMPCNTRWIDTH:0] samps_lo = samples + ONE[SAMPCNTRWIDTH:0] - samps_hi_r;
always @(*) begin
samps_zero_ns = samps_zero_r;
samps_one_ns = samps_one_r;
samps_zero_ns = samps_lo >= samps_solid_thresh;
samps_one_ns = samps_hi_r >= samps_solid_thresh;
end // always @ begin
wire new_polarity = run_polarity_ns ^ run_polarity_r;
input poc_sample_pd;
always @(*) begin
if (rst == 1'b1) begin
// RESET next states
psen_int = 1'b0;
sm_ns = /*AUTOLINK("SAMPLE")*/2'd0;
run_polarity_ns = 1'b0;
run_ns = {TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b0;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
tap_ns = {TAPCNTRWIDTH{1'b0}};
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = {SAMPCNTRWIDTH+1{1'b0}};
end else begin
// Default next states;
psen_int = 1'b0;
sm_ns = sm_r;
run_polarity_ns = run_polarity_r;
run_ns = run_r;
run_end_int = 1'b0;
samp_cntr_ns = samp_cntr_r;
samps_hi_ns = samps_hi_r;
tap_ns = tap_r;
samp_wait_ns = samp_wait_r;
if (|samp_wait_r) samp_wait_ns = samp_wait_r - ONE[SAMP_WAIT_WIDTH-1:0];
samps_hi_held_ns = samps_hi_held_r;
// State based actions and next states.
case (sm_r)
/*AL("SAMPLE")*/2'd0: begin
if (~|samp_wait_r && poc_sample_pd | POC_USE_METASTABLE_SAMP == "TRUE") begin
if (POC_USE_METASTABLE_SAMP == "TRUE") samp_wait_ns = ONE[SAMP_WAIT_WIDTH-1:0];
if ({1'b0, samp_cntr_r} == samples) sm_ns = /*AK("COMPUTE")*/2'd1;
samps_hi_ns = samps_hi_r + {{SAMPCNTRWIDTH{1'b0}}, pd_out_sel};
samp_cntr_ns = samp_cntr_r + ONE[SAMPCNTRWIDTH-1:0];
end
end
/*AL("COMPUTE")*/2'd1:begin
sm_ns = /*AK("PSEN")*/2'd2;
end
/*AL("PSEN")*/2'd2:begin
sm_ns = /*AK("PSDONE_WAIT")*/2'd3;
psen_int = 1'b1;
samp_cntr_ns = {SAMPCNTRWIDTH{1'b0}};
samps_hi_ns = {SAMPCNTRWIDTH+1{1'b0}};
samps_hi_held_ns = samps_hi_r;
tap_ns = (tap_r < TAPSPERKCLK[TAPCNTRWIDTH-1:0] - ONE[TAPCNTRWIDTH-1:0])
? tap_r + ONE[TAPCNTRWIDTH-1:0]
: {TAPCNTRWIDTH{1'b0}};
if (run_polarity_r) begin
if (samps_zero_r) run_polarity_ns = 1'b0;
end else begin
if (samps_one_r) run_polarity_ns = 1'b1;
end
if (new_polarity) begin
run_ns ={TAPCNTRWIDTH{1'b0}};
run_end_int = 1'b1;
end else run_ns = run_r + ONE[TAPCNTRWIDTH-1:0];
end
/*AL("PSDONE_WAIT")*/2'd3:begin
samp_wait_ns = MMCM_SAMP_WAIT[SAMP_WAIT_WIDTH-1:0] - ONE[SAMP_WAIT_WIDTH-1:0];
if (psdone) sm_ns = /*AK("SAMPLE")*/2'd0;
end
endcase // case (sm_r)
end // else: !if(rst == 1'b1)
end // always @ (*)
endmodule
|
module outputs)
wire [3:0] ram_init_addr; // From ui_rd_data0 of ui_rd_data.v
wire ram_init_done_r; // From ui_rd_data0 of ui_rd_data.v
wire rd_accepted; // From ui_cmd0 of ui_cmd.v
wire rd_buf_full; // From ui_rd_data0 of ui_rd_data.v
wire [DATA_BUF_ADDR_WIDTH-1:0]rd_data_buf_addr_r;// From ui_rd_data0 of ui_rd_data.v
wire wr_accepted; // From ui_cmd0 of ui_cmd.v
wire [DATA_BUF_ADDR_WIDTH-1:0] wr_data_buf_addr;// From ui_wr_data0 of ui_wr_data.v
wire wr_req_16; // From ui_wr_data0 of ui_wr_data.v
// End of automatics
// In the UI, the read and write buffers are allowed to be asymmetric to
// to maximize read performance, but the MC's native interface requires
// symmetry, so we zero-fill the write pointer
generate
if(DATA_BUF_ADDR_WIDTH > 4) begin
assign wr_data_buf_addr[DATA_BUF_ADDR_WIDTH-1:4] = 0;
end
endgenerate
mig_7series_v2_3_ui_cmd #
(/*AUTOINSTPARAM*/
// Parameters
.TCQ (TCQ),
.ADDR_WIDTH (ADDR_WIDTH),
.BANK_WIDTH (BANK_WIDTH),
.COL_WIDTH (COL_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.RANK_WIDTH (RANK_WIDTH),
.ROW_WIDTH (ROW_WIDTH),
.RANKS (RANKS),
.MEM_ADDR_ORDER (MEM_ADDR_ORDER))
ui_cmd0
(/*AUTOINST*/
// Outputs
.app_rdy (app_rdy),
.use_addr (use_addr),
.rank (rank[RANK_WIDTH-1:0]),
.bank (bank[BANK_WIDTH-1:0]),
.row (row[ROW_WIDTH-1:0]),
.col (col[COL_WIDTH-1:0]),
.size (size),
.cmd (cmd[2:0]),
.hi_priority (hi_priority),
.rd_accepted (rd_accepted),
.wr_accepted (wr_accepted),
.data_buf_addr (data_buf_addr),
// Inputs
.rst (rst),
.clk (clk),
.accept_ns (accept_ns),
.rd_buf_full (rd_buf_full),
.wr_req_16 (wr_req_16),
.app_addr (app_addr[ADDR_WIDTH-1:0]),
.app_cmd (app_cmd[2:0]),
.app_sz (app_sz),
.app_hi_pri (app_hi_pri),
.app_en (app_en),
.wr_data_buf_addr (wr_data_buf_addr),
.rd_data_buf_addr_r (rd_data_buf_addr_r));
mig_7series_v2_3_ui_wr_data #
(/*AUTOINSTPARAM*/
// Parameters
.TCQ (TCQ),
.APP_DATA_WIDTH (APP_DATA_WIDTH),
.APP_MASK_WIDTH (APP_MASK_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.ECC (ECC),
.ECC_TEST (ECC_TEST),
.CWL (CWL_M))
ui_wr_data0
(/*AUTOINST*/
// Outputs
.app_wdf_rdy (app_wdf_rdy),
.wr_req_16 (wr_req_16),
.wr_data_buf_addr (wr_data_buf_addr[3:0]),
.wr_data (wr_data[APP_DATA_WIDTH-1:0]),
.wr_data_mask (wr_data_mask[APP_MASK_WIDTH-1:0]),
.raw_not_ecc (raw_not_ecc[2*nCK_PER_CLK-1:0]),
// Inputs
.rst (rst),
.clk (clk),
.app_wdf_data (app_wdf_data[APP_DATA_WIDTH-1:0]),
.app_wdf_mask (app_wdf_mask[APP_MASK_WIDTH-1:0]),
.app_raw_not_ecc (app_raw_not_ecc[2*nCK_PER_CLK-1:0]),
.app_wdf_wren (app_wdf_wren),
.app_wdf_end (app_wdf_end),
.wr_data_offset (wr_data_offset),
.wr_data_addr (wr_data_addr[3:0]),
.wr_data_en (wr_data_en),
.wr_accepted (wr_accepted),
.ram_init_done_r (ram_init_done_r),
.ram_init_addr (ram_init_addr));
mig_7series_v2_3_ui_rd_data #
(/*AUTOINSTPARAM*/
// Parameters
.TCQ (TCQ),
.APP_DATA_WIDTH (APP_DATA_WIDTH),
.DATA_BUF_ADDR_WIDTH (DATA_BUF_ADDR_WIDTH),
.nCK_PER_CLK (nCK_PER_CLK),
.ECC (ECC),
.ORDERING (ORDERING))
ui_rd_data0
(/*AUTOINST*/
// Outputs
.ram_init_done_r (ram_init_done_r),
.ram_init_addr (ram_init_addr),
.app_rd_data_valid (app_rd_data_valid),
.app_rd_data_end (app_rd_data_end),
.app_rd_data (app_rd_data[APP_DATA_WIDTH-1:0]),
.app_ecc_multiple_err (app_ecc_multiple_err[2*nCK_PER_CLK-1:0]),
.rd_buf_full (rd_buf_full),
.rd_data_buf_addr_r (rd_data_buf_addr_r),
// Inputs
.rst (rst),
.clk (clk),
.rd_data_en (rd_data_en),
.rd_data_addr (rd_data_addr),
.rd_data_offset (rd_data_offset),
.rd_data_end (rd_data_end),
.rd_data (rd_data[APP_DATA_WIDTH-1:0]),
.ecc_multiple (ecc_multiple[3:0]),
.rd_accepted (rd_accepted));
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.