module_content
stringlengths 18
1.05M
|
---|
module MM_to_ST_Adapter (
clk,
reset,
length,
length_counter,
address,
reads_pending,
start,
readdata,
readdatavalid,
fifo_data,
fifo_write,
fifo_empty,
fifo_sop,
fifo_eop
);
parameter DATA_WIDTH = 32; // 8, 16, 32, 64, 128, or 256 are valid values (if 8 is used then disable unaligned accesses and turn on full word only accesses)
parameter LENGTH_WIDTH = 32;
parameter ADDRESS_WIDTH = 32;
parameter BYTE_ADDRESS_WIDTH = 2; // log2(DATA_WIDTH/8)
parameter READS_PENDING_WIDTH = 5;
parameter EMPTY_WIDTH = 2; // log2(DATA_WIDTH/8)
parameter PACKET_SUPPORT = 1; // when set to 1 eop, sop, and empty will be driven, otherwise they will be grounded
// only set one of these at a time
parameter UNALIGNED_ACCESS_ENABLE = 1; // when set to 1 this block will support packets and starting/ending on any boundary, do not use this if DATA_WIDTH is 8 (use 'FULL_WORD_ACCESS_ONLY')
parameter FULL_WORD_ACCESS_ONLY = 0; // when set to 1 this block will assume only full words are arriving (must start and stop on a word boundary).
input clk;
input reset;
input [LENGTH_WIDTH-1:0] length;
input [LENGTH_WIDTH-1:0] length_counter;
input [ADDRESS_WIDTH-1:0] address;
input [READS_PENDING_WIDTH-1:0] reads_pending;
input start; // one cycle strobe at the start of a transfer used to capture bytes_to_transfer
input [DATA_WIDTH-1:0] readdata;
input readdatavalid;
output wire [DATA_WIDTH-1:0] fifo_data;
output wire fifo_write;
output wire [EMPTY_WIDTH-1:0] fifo_empty;
output wire fifo_sop;
output wire fifo_eop;
// internal registers and wires
reg [DATA_WIDTH-1:0] readdata_d1;
reg readdatavalid_d1;
wire [DATA_WIDTH-1:0] data_in; // data_in will either be readdata or a pipelined copy of readdata depending on whether unaligned access support is enabled
wire valid_in; // valid in will either be readdatavalid or a pipelined copy of readdatavalid depending on whether unaligned access support is enabled
reg valid_in_d1;
wire [DATA_WIDTH-1:0] barrelshifter_A; // shifted current read data
wire [DATA_WIDTH-1:0] barrelshifter_B;
reg [DATA_WIDTH-1:0] barrelshifter_B_d1; // shifted previously read data
wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap)
wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs
wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs
wire extra_access_enable;
reg extra_access;
wire last_unaligned_fifo_write;
reg first_access_seen;
reg second_access_seen;
wire first_access_seen_rising_edge;
wire second_access_seen_rising_edge;
reg [BYTE_ADDRESS_WIDTH-1:0] byte_address;
reg [EMPTY_WIDTH-1:0] last_empty; // only the last word written into the FIFO can have empty bytes
reg start_and_end_same_cycle; // when the amount of data to transfer is only a full word or less
generate
if (UNALIGNED_ACCESS_ENABLE == 1) // unaligned so using a pipelined input
begin
assign data_in = readdata_d1;
assign valid_in = readdatavalid_d1;
end
else
begin
assign data_in = readdata; // no barrelshifters in this case so pipelining is not necessary
assign valid_in = readdatavalid;
end
endgenerate
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdata_d1 <= 0;
end
else
begin
if (readdatavalid == 1)
begin
readdata_d1 <= readdata;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdatavalid_d1 <= 0;
valid_in_d1 <= 0;
end
else
begin
readdatavalid_d1 <= readdatavalid;
valid_in_d1 <= valid_in; // used to flush the pipeline (extra fifo write) and prolong eop for one additional clock cycle
end
end
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
barrelshifter_B_d1 <= 0;
end
else
begin
if (valid_in == 1)
begin
barrelshifter_B_d1 <= barrelshifter_B;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
first_access_seen <= 0;
end
else
begin
if (start == 1)
begin
first_access_seen <= 0;
end
else if (valid_in == 1)
begin
first_access_seen <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
second_access_seen <= 0;
end
else
begin
if (start == 1)
begin
second_access_seen <= 0;
end
else if ((first_access_seen == 1) & (valid_in == 1))
begin
second_access_seen <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
byte_address <= 0;
end
else if (start == 1)
begin
byte_address <= address[BYTE_ADDRESS_WIDTH-1:0];
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
last_empty <= 0;
end
else if (start == 1)
begin
last_empty <= ((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}; // if length isn't a multiple of the word size then we'll have some empty symbols/bytes during the last fifo write
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
extra_access <= 0;
end
else if (start == 1)
begin
extra_access <= extra_access_enable; // when set the number of reads and fifo writes are equal, otherwise there will be 1 less fifo write than reads (unaligned accesses only)
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
start_and_end_same_cycle <= 0;
end
else if (start == 1)
begin
start_and_end_same_cycle <= (length <= (DATA_WIDTH/8));
end
end
/* These barrelshifters will take the unaligned data coming into this block and shift the byte lanes appropriately to form a single packed word.
Zeros are shifted into the byte lanes that do not contain valid data for the combined word that will be buffered. This allows both barrelshifters
to be logically OR'ed together to form a single packed word. Shifter A is used to shift the current read data towards the upper bytes of the
combined word (since those are the upper addresses of the combined word). Shifter B after the pipeline stage called 'barrelshifter_B_d1' contains
the previously read data shifted towards the lower bytes (since those are the lower addresses of the combined word).
*/
generate
genvar input_offset;
for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1)
begin: barrel_shifter_inputs
assign barrelshifter_input_A[input_offset] = data_in << (8 * ((DATA_WIDTH/8) - input_offset));
assign barrelshifter_input_B[input_offset] = data_in >> (8 * input_offset);
end
endgenerate
assign barrelshifter_A = barrelshifter_input_A[byte_address]; // upper portion of the packed word
assign barrelshifter_B = barrelshifter_input_B[byte_address]; // lower portion of the packed word (will be pipelined so it will be the previous word read by the master)
assign combined_word = (barrelshifter_A | barrelshifter_B_d1); // barrelshifters shift in zeros so we can just OR the words together here to create a packed word
assign first_access_seen_rising_edge = (valid_in == 1) & (first_access_seen == 0);
assign second_access_seen_rising_edge = ((first_access_seen == 1) & (valid_in == 1)) & (second_access_seen == 0);
assign extra_access_enable = (((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}) >= address[BYTE_ADDRESS_WIDTH-1:0]; // enable when empty >= byte address
/* Need to keep track of the last write to the FIFO so that we can fire EOP correctly as well as flush the pipeline when unaligned accesses
is enabled. The first read is filtered since it is considered to be only a partial word to be written into the FIFO but there are cases
when there is extra data that is buffered in 'barrelshifter_B_d1' but the transfer is done so we need to issue an additional write.
In general for every 'N' Avalon-MM reads 'N-1' writes to the FIFO will occur unless there is data still buffered in which one more write
to the FIFO will immediately follow the last read.
*/
assign last_unaligned_fifo_write = (reads_pending == 0) & (length_counter == 0) &
( ((extra_access == 0) & (valid_in == 1)) | // don't need a pipeline flush
((extra_access == 1) & (valid_in_d1 == 1) & (valid_in == 0)) ); // last write to flush the pipeline (need to make sure valid_in isn't asserted to make sure the last data is indeed coming since valid_in is pipelined)
// This block should be optimized down depending on the packet support or access type settings. In the case where packet support is off
// and only full accesses are used this block should become zero logic elements.
generate
if (PACKET_SUPPORT == 1)
begin
if (UNALIGNED_ACCESS_ENABLE == 1)
begin
assign fifo_sop = (second_access_seen_rising_edge == 1) | ((start_and_end_same_cycle == 1) & (last_unaligned_fifo_write == 1));
assign fifo_eop = last_unaligned_fifo_write;
assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word
end
else
begin
assign fifo_sop = first_access_seen_rising_edge;
assign fifo_eop = (length_counter == 0) & (reads_pending == 1) & (valid_in == 1); // not using last_unaligned_fifo_write since it's pipelined and when unaligned accesses are disabled the input is not pipelined
if (FULL_WORD_ACCESS_ONLY == 1)
begin
assign fifo_empty = 0; // full accesses so no empty symbols throughout the transfer
end
else
begin
assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word
end
end
end
else
begin
assign fifo_eop = 0;
assign fifo_sop = 0;
assign fifo_empty = 0;
end
if (UNALIGNED_ACCESS_ENABLE == 1)
begin
assign fifo_data = combined_word;
assign fifo_write = (first_access_seen == 1) & ((valid_in == 1) | (last_unaligned_fifo_write == 1)); // last_unaligned_fifo_write will inject an extra pulse right after the last read occurs when flushing of the pipeline is needed
end
else
begin // don't need to pipeline since the data will not go through the barrel shifters
assign fifo_data = data_in; // don't need to barrelshift when aligned accesses are used
assign fifo_write = valid_in; // the number of writes to the fifo needs to always equal the number of reads from memory
end
endgenerate
endmodule
|
module acl_iface_ll_fifo(clk, reset, data_in, write, data_out, read, empty, full);
/* Parameters */
parameter WIDTH = 32;
parameter DEPTH = 32;
/* Ports */
input clk;
input reset;
input [WIDTH-1:0] data_in;
input write;
output [WIDTH-1:0] data_out;
input read;
output empty;
output full;
/* Architecture */
// One-hot write-pointer bit (indicates next position to write at),
// last bit indicates the FIFO is full
reg [DEPTH:0] wptr;
// Replicated copy of the stall / valid logic
reg [DEPTH:0] wptr_copy /* synthesis dont_merge */;
// FIFO data registers
reg [DEPTH-1:0][WIDTH-1:0] data;
// Write pointer updates:
wire wptr_hold; // Hold the value
wire wptr_dir; // Direction to shift
// Data register updates:
wire [DEPTH-1:0] data_hold; // Hold the value
wire [DEPTH-1:0] data_new; // Write the new data value in
// Write location is constant unless the occupancy changes
assign wptr_hold = !(read ^ write);
assign wptr_dir = read;
// Hold the value unless we are reading, or writing to this
// location
genvar i;
generate
for(i = 0; i < DEPTH; i++)
begin : data_mux
assign data_hold[i] = !(read | (write & wptr[i]));
assign data_new[i] = !read | wptr[i+1];
end
endgenerate
// The data registers
generate
for(i = 0; i < DEPTH-1; i++)
begin : data_reg
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
data[i] <= {WIDTH{1'b0}};
else
data[i] <= data_hold[i] ? data[i] :
data_new[i] ? data_in : data[i+1];
end
end
endgenerate
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
data[DEPTH-1] <= {WIDTH{1'b0}};
else
data[DEPTH-1] <= data_hold[DEPTH-1] ? data[DEPTH-1] : data_in;
end
// The write pointer
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
begin
wptr <= {{DEPTH{1'b0}}, 1'b1};
wptr_copy <= {{DEPTH{1'b0}}, 1'b1};
end
else
begin
wptr <= wptr_hold ? wptr :
wptr_dir ? {1'b0, wptr[DEPTH:1]} : {wptr[DEPTH-1:0], 1'b0};
wptr_copy <= wptr_hold ? wptr_copy :
wptr_dir ? {1'b0, wptr_copy[DEPTH:1]} : {wptr_copy[DEPTH-1:0], 1'b0};
end
end
// Outputs
assign empty = wptr_copy[0];
assign full = wptr_copy[DEPTH];
assign data_out = data[0];
endmodule
|
module snoop_adapter (
clk,
reset,
kernel_clk,
kernel_reset,
address,
read,
readdata,
readdatavalid,
write,
writedata,
burstcount,
byteenable,
waitrequest,
burstbegin,
snoop_data,
snoop_valid,
snoop_ready,
export_address,
export_read,
export_readdata,
export_readdatavalid,
export_write,
export_writedata,
export_burstcount,
export_burstbegin,
export_byteenable,
export_waitrequest
);
parameter NUM_BYTES = 4;
parameter BYTE_ADDRESS_WIDTH = 32;
parameter WORD_ADDRESS_WIDTH = 32;
parameter BURSTCOUNT_WIDTH = 1;
localparam DATA_WIDTH = NUM_BYTES * 8;
localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH;
localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks
localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH;
localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE);
input clk;
input reset;
input kernel_clk;
input kernel_reset;
input [WORD_ADDRESS_WIDTH-1:0] address;
input read;
output [DATA_WIDTH-1:0] readdata;
output readdatavalid;
input write;
input [DATA_WIDTH-1:0] writedata;
input [BURSTCOUNT_WIDTH-1:0] burstcount;
input burstbegin;
input [NUM_BYTES-1:0] byteenable;
output waitrequest;
output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data;
output snoop_valid;
input snoop_ready;
output [BYTE_ADDRESS_WIDTH-1:0] export_address;
output export_read;
input [DATA_WIDTH-1:0] export_readdata;
input export_readdatavalid;
output export_write;
output [DATA_WIDTH-1:0] export_writedata;
output [BURSTCOUNT_WIDTH-1:0] export_burstcount;
output export_burstbegin;
output [NUM_BYTES-1:0] export_byteenable;
input export_waitrequest;
reg snoop_overflow;
// Register snoop data first
reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address
reg snoop_valid_r;
wire snoop_fifo_empty;
wire overflow;
wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw;
always@(posedge clk)
begin
snoop_data_r<={address,export_burstcount};
snoop_valid_r<=export_write && !export_waitrequest;
end
// 1) Fifo to store snooped accesses from host
dcfifo dcfifo_component (
.wrclk (clk),
.data (snoop_data_r),
.wrreq (snoop_valid_r),
.rdclk (kernel_clk),
.rdreq (snoop_valid & snoop_ready),
.q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]),
.rdempty (snoop_fifo_empty),
.rdfull (overflow),
.aclr (1'b0),
.rdusedw (rdusedw),
.wrempty (),
.wrfull (),
.wrusedw ());
defparam
dcfifo_component.intended_device_family = "Stratix IV",
dcfifo_component.lpm_numwords = FIFO_SIZE,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH,
dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE,
dcfifo_component.overflow_checking = "ON",
dcfifo_component.rdsync_delaypipe = 4,
dcfifo_component.underflow_checking = "ON",
dcfifo_component.use_eab = "ON",
dcfifo_component.wrsync_delaypipe = 4;
assign snoop_valid=~snoop_fifo_empty;
always@(posedge kernel_clk)
snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) );
// Overflow piggy backed onto MSB of stream. Since overflow guarantees
// there is something to be read out, we can be sure that this will reach
// the cache.
assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow;
assign export_address = address << ADDRESS_SHIFT;
assign export_read = read;
assign readdata = export_readdata;
assign readdatavalid = export_readdatavalid;
assign export_write = write;
assign export_writedata = writedata;
assign export_burstcount = burstcount;
assign export_burstbegin = burstbegin;
assign export_byteenable = byteenable;
assign waitrequest = export_waitrequest;
endmodule
|
module generic_baseblocks_v2_1_0_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_sel_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_mask #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_sel #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_sel #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_sel #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module uses it
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 4)
begin
thirty_two_bit_byteenable_FSM the_thirty_two_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 8)
begin
sixty_four_bit_byteenable_FSM the_sixty_four_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 16)
begin
one_hundred_twenty_eight_bit_byteenable_FSM the_one_hundred_twenty_eight_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 32)
begin
two_hundred_fifty_six_bit_byteenable_FSM the_two_hundred_fifty_six_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 64)
begin
five_hundred_twelve_bit_byteenable_FSM the_five_hundred_twelve_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 128)
begin
one_thousand_twenty_four_byteenable_FSM the_one_thousand_twenty_four_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
endgenerate
endmodule
|
module one_thousand_twenty_four_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [127:0] byteenable_in;
output wire waitrequest_out;
output wire [127:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[63:0] != 0);
assign full_lower_half_transfer = (byteenable_in[63:0] == 64'hFFFFFFFFFFFFFFFF);
assign partial_upper_half_transfer = (byteenable_in[127:64] != 0);
assign full_upper_half_transfer = (byteenable_in[127:64] == 64'hFFFFFFFFFFFFFFFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
five_hundred_twelve_bit_byteenable_FSM lower_five_hundred_twelve_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[63:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[63:0]),
.waitrequest_in (waitrequest_in)
);
five_hundred_twelve_bit_byteenable_FSM upper_five_hundred_twelve_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[127:64]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[127:64]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module five_hundred_twelve_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [63:0] byteenable_in;
output wire waitrequest_out;
output wire [63:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[31:0] != 0);
assign full_lower_half_transfer = (byteenable_in[31:0] == 32'hFFFFFFFF);
assign partial_upper_half_transfer = (byteenable_in[63:32] != 0);
assign full_upper_half_transfer = (byteenable_in[63:32] == 32'hFFFFFFFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
two_hundred_fifty_six_bit_byteenable_FSM lower_two_hundred_fifty_six_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[31:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[31:0]),
.waitrequest_in (waitrequest_in)
);
two_hundred_fifty_six_bit_byteenable_FSM upper_two_hundred_fifty_six_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[63:32]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[63:32]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module two_hundred_fifty_six_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [31:0] byteenable_in;
output wire waitrequest_out;
output wire [31:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[15:0] != 0);
assign full_lower_half_transfer = (byteenable_in[15:0] == 16'hFFFF);
assign partial_upper_half_transfer = (byteenable_in[31:16] != 0);
assign full_upper_half_transfer = (byteenable_in[31:16] == 16'hFFFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
one_hundred_twenty_eight_bit_byteenable_FSM lower_one_hundred_twenty_eight_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[15:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[15:0]),
.waitrequest_in (waitrequest_in)
);
one_hundred_twenty_eight_bit_byteenable_FSM upper_one_hundred_twenty_eight_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[31:16]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[31:16]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module one_hundred_twenty_eight_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [15:0] byteenable_in;
output wire waitrequest_out;
output wire [15:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[7:0] != 0);
assign full_lower_half_transfer = (byteenable_in[7:0] == 8'hFF);
assign partial_upper_half_transfer = (byteenable_in[15:8] != 0);
assign full_upper_half_transfer = (byteenable_in[15:8] == 8'hFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
sixty_four_bit_byteenable_FSM lower_sixty_four_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[7:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[7:0]),
.waitrequest_in (waitrequest_in)
);
sixty_four_bit_byteenable_FSM upper_sixty_four_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[15:8]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[15:8]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module sixty_four_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [7:0] byteenable_in;
output wire waitrequest_out;
output wire [7:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[3:0] != 0);
assign full_lower_half_transfer = (byteenable_in[3:0] == 4'hF);
assign partial_upper_half_transfer = (byteenable_in[7:4] != 0);
assign full_upper_half_transfer = (byteenable_in[7:4] == 4'hF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
thirty_two_bit_byteenable_FSM lower_thirty_two_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[3:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[3:0]),
.waitrequest_in (waitrequest_in)
);
thirty_two_bit_byteenable_FSM upper_thirty_two_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[7:4]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[7:4]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module thirty_two_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [3:0] byteenable_in;
output wire waitrequest_out;
output wire [3:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[1:0] != 0);
assign full_lower_half_transfer = (byteenable_in[1:0] == 2'h3);
assign partial_upper_half_transfer = (byteenable_in[3:2] != 0);
assign full_upper_half_transfer = (byteenable_in[3:2] == 2'h3);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
sixteen_bit_byteenable_FSM lower_sixteen_bit_byteenable_FSM (
.write_in (lower_enable),
.byteenable_in (byteenable_in[1:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[1:0]),
.waitrequest_in (waitrequest_in)
);
sixteen_bit_byteenable_FSM upper_sixteen_bit_byteenable_FSM (
.write_in (upper_enable),
.byteenable_in (byteenable_in[3:2]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[3:2]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module sixteen_bit_byteenable_FSM (
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input write_in;
input [1:0] byteenable_in;
output wire waitrequest_out;
output wire [1:0] byteenable_out;
input waitrequest_in;
assign byteenable_out = byteenable_in & {2{write_in}}; // all 2 bit byte enable pairs are supported, masked with write in to turn the byte lanes off when writing is disabled
assign waitrequest_out = (write_in == 1) & (waitrequest_in == 1); // transfer always completes on the first cycle unless waitrequest is asserted
endmodule
|
module uses it
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 4)
begin
thirty_two_bit_byteenable_FSM the_thirty_two_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 8)
begin
sixty_four_bit_byteenable_FSM the_sixty_four_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 16)
begin
one_hundred_twenty_eight_bit_byteenable_FSM the_one_hundred_twenty_eight_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 32)
begin
two_hundred_fifty_six_bit_byteenable_FSM the_two_hundred_fifty_six_bit_byteenable_FSM(
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 64)
begin
five_hundred_twelve_bit_byteenable_FSM the_five_hundred_twelve_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
else if (BYTEENABLE_WIDTH == 128)
begin
one_thousand_twenty_four_byteenable_FSM the_one_thousand_twenty_four_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (write_in),
.byteenable_in (byteenable_in),
.waitrequest_out (waitrequest_out),
.byteenable_out (byteenable_out),
.waitrequest_in (waitrequest_in)
);
end
endgenerate
endmodule
|
module one_thousand_twenty_four_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [127:0] byteenable_in;
output wire waitrequest_out;
output wire [127:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[63:0] != 0);
assign full_lower_half_transfer = (byteenable_in[63:0] == 64'hFFFFFFFFFFFFFFFF);
assign partial_upper_half_transfer = (byteenable_in[127:64] != 0);
assign full_upper_half_transfer = (byteenable_in[127:64] == 64'hFFFFFFFFFFFFFFFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
five_hundred_twelve_bit_byteenable_FSM lower_five_hundred_twelve_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[63:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[63:0]),
.waitrequest_in (waitrequest_in)
);
five_hundred_twelve_bit_byteenable_FSM upper_five_hundred_twelve_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[127:64]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[127:64]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module five_hundred_twelve_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [63:0] byteenable_in;
output wire waitrequest_out;
output wire [63:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[31:0] != 0);
assign full_lower_half_transfer = (byteenable_in[31:0] == 32'hFFFFFFFF);
assign partial_upper_half_transfer = (byteenable_in[63:32] != 0);
assign full_upper_half_transfer = (byteenable_in[63:32] == 32'hFFFFFFFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
two_hundred_fifty_six_bit_byteenable_FSM lower_two_hundred_fifty_six_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[31:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[31:0]),
.waitrequest_in (waitrequest_in)
);
two_hundred_fifty_six_bit_byteenable_FSM upper_two_hundred_fifty_six_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[63:32]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[63:32]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module two_hundred_fifty_six_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [31:0] byteenable_in;
output wire waitrequest_out;
output wire [31:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[15:0] != 0);
assign full_lower_half_transfer = (byteenable_in[15:0] == 16'hFFFF);
assign partial_upper_half_transfer = (byteenable_in[31:16] != 0);
assign full_upper_half_transfer = (byteenable_in[31:16] == 16'hFFFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
one_hundred_twenty_eight_bit_byteenable_FSM lower_one_hundred_twenty_eight_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[15:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[15:0]),
.waitrequest_in (waitrequest_in)
);
one_hundred_twenty_eight_bit_byteenable_FSM upper_one_hundred_twenty_eight_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[31:16]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[31:16]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module one_hundred_twenty_eight_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [15:0] byteenable_in;
output wire waitrequest_out;
output wire [15:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[7:0] != 0);
assign full_lower_half_transfer = (byteenable_in[7:0] == 8'hFF);
assign partial_upper_half_transfer = (byteenable_in[15:8] != 0);
assign full_upper_half_transfer = (byteenable_in[15:8] == 8'hFF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
sixty_four_bit_byteenable_FSM lower_sixty_four_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[7:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[7:0]),
.waitrequest_in (waitrequest_in)
);
sixty_four_bit_byteenable_FSM upper_sixty_four_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[15:8]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[15:8]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module sixty_four_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [7:0] byteenable_in;
output wire waitrequest_out;
output wire [7:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[3:0] != 0);
assign full_lower_half_transfer = (byteenable_in[3:0] == 4'hF);
assign partial_upper_half_transfer = (byteenable_in[7:4] != 0);
assign full_upper_half_transfer = (byteenable_in[7:4] == 4'hF);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
thirty_two_bit_byteenable_FSM lower_thirty_two_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (lower_enable),
.byteenable_in (byteenable_in[3:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[3:0]),
.waitrequest_in (waitrequest_in)
);
thirty_two_bit_byteenable_FSM upper_thirty_two_bit_byteenable_FSM (
.clk (clk),
.reset (reset),
.write_in (upper_enable),
.byteenable_in (byteenable_in[7:4]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[7:4]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module thirty_two_bit_byteenable_FSM (
clk,
reset,
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input clk;
input reset;
input write_in;
input [3:0] byteenable_in;
output wire waitrequest_out;
output wire [3:0] byteenable_out;
input waitrequest_in;
// internal statemachine signals
wire partial_lower_half_transfer;
wire full_lower_half_transfer;
wire partial_upper_half_transfer;
wire full_upper_half_transfer;
wire full_word_transfer;
reg state_bit;
wire transfer_done;
wire advance_to_next_state;
wire lower_enable;
wire upper_enable;
wire lower_stall;
wire upper_stall;
wire two_stage_transfer;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
state_bit <= 0;
end
else
begin
if (transfer_done == 1)
begin
state_bit <= 0;
end
else if (advance_to_next_state == 1)
begin
state_bit <= 1;
end
end
end
assign partial_lower_half_transfer = (byteenable_in[1:0] != 0);
assign full_lower_half_transfer = (byteenable_in[1:0] == 2'h3);
assign partial_upper_half_transfer = (byteenable_in[3:2] != 0);
assign full_upper_half_transfer = (byteenable_in[3:2] == 2'h3);
assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1);
assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1);
assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still
assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete
((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete
((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete
assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer)
assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer
((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer
((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer)
sixteen_bit_byteenable_FSM lower_sixteen_bit_byteenable_FSM (
.write_in (lower_enable),
.byteenable_in (byteenable_in[1:0]),
.waitrequest_out (lower_stall),
.byteenable_out (byteenable_out[1:0]),
.waitrequest_in (waitrequest_in)
);
sixteen_bit_byteenable_FSM upper_sixteen_bit_byteenable_FSM (
.write_in (upper_enable),
.byteenable_in (byteenable_in[3:2]),
.waitrequest_out (upper_stall),
.byteenable_out (byteenable_out[3:2]),
.waitrequest_in (waitrequest_in)
);
assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1));
endmodule
|
module sixteen_bit_byteenable_FSM (
write_in,
byteenable_in,
waitrequest_out,
byteenable_out,
waitrequest_in
);
input write_in;
input [1:0] byteenable_in;
output wire waitrequest_out;
output wire [1:0] byteenable_out;
input waitrequest_in;
assign byteenable_out = byteenable_in & {2{write_in}}; // all 2 bit byte enable pairs are supported, masked with write in to turn the byte lanes off when writing is disabled
assign waitrequest_out = (write_in == 1) & (waitrequest_in == 1); // transfer always completes on the first cycle unless waitrequest is asserted
endmodule
|
module generic_baseblocks_v2_1_0_command_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_ENABLE_S_VALID_CARRY = 0,
parameter integer C_ENABLE_REGISTERED_OUTPUT = 0,
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [4:5].
parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512]
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Information
output wire EMPTY, // FIFO empty (all stages)
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for data vector.
genvar addr_cnt;
genvar bit_cnt;
integer index;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIFO_DEPTH_LOG-1:0] addr;
wire buffer_Full;
wire buffer_Empty;
wire next_Data_Exists;
reg data_Exists_I;
wire valid_Write;
wire new_write;
wire [C_FIFO_DEPTH_LOG-1:0] hsum_A;
wire [C_FIFO_DEPTH_LOG-1:0] sum_A;
wire [C_FIFO_DEPTH_LOG-1:0] addr_cy;
wire buffer_full_early;
wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload
wire M_VALID_I; // FIFO not empty
wire M_READY_I; // FIFO pop
/////////////////////////////////////////////////////////////////////////////
// Create Flags
/////////////////////////////////////////////////////////////////////////////
assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) |
( buffer_Full & ~M_READY_I );
assign S_READY = ~buffer_Full;
assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}});
assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) |
(buffer_Empty & S_VALID) |
(data_Exists_I & ~(M_READY_I & data_Exists_I));
always @ (posedge ACLK) begin
if (ARESET) begin
data_Exists_I <= 1'b0;
end else begin
data_Exists_I <= next_Data_Exists;
end
end
assign M_VALID_I = data_Exists_I;
// Select RTL or FPGA optimized instatiations for critical parts.
generate
if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE
reg buffer_Full_q;
assign valid_Write = S_VALID & ~buffer_Full;
assign new_write = (S_VALID | ~buffer_Empty);
assign addr_cy[0] = valid_Write;
always @ (posedge ACLK) begin
if (ARESET) begin
buffer_Full_q <= 1'b0;
end else if ( data_Exists_I ) begin
buffer_Full_q <= buffer_full_early;
end
end
assign buffer_Full = buffer_Full_q;
end else begin : USE_FPGA_VALID_WRITE
wire s_valid_dummy1;
wire s_valid_dummy2;
wire sel_s_valid;
wire sel_new_write;
wire valid_Write_dummy1;
wire valid_Write_dummy2;
assign sel_s_valid = ~buffer_Full;
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst1
(
.CIN(S_VALID),
.S(1'b1),
.COUT(s_valid_dummy1)
);
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst2
(
.CIN(s_valid_dummy1),
.S(1'b1),
.COUT(s_valid_dummy2)
);
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_inst
(
.CIN(s_valid_dummy2),
.S(sel_s_valid),
.COUT(valid_Write)
);
assign sel_new_write = ~buffer_Empty;
generic_baseblocks_v2_1_0_carry_latch_or #
(
.C_FAMILY(C_FAMILY)
) new_write_inst
(
.CIN(valid_Write),
.I(sel_new_write),
.O(new_write)
);
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst1
(
.CIN(valid_Write),
.S(1'b1),
.COUT(valid_Write_dummy1)
);
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst2
(
.CIN(valid_Write_dummy1),
.S(1'b1),
.COUT(valid_Write_dummy2)
);
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst3
(
.CIN(valid_Write_dummy2),
.S(1'b1),
.COUT(addr_cy[0])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_I1 (
.Q(buffer_Full), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(buffer_full_early) // Data input
);
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Create address pointer
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR
reg [C_FIFO_DEPTH_LOG-1:0] addr_q;
always @ (posedge ACLK) begin
if (ARESET) begin
addr_q <= {C_FIFO_DEPTH_LOG{1'b0}};
end else if ( data_Exists_I ) begin
if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin
addr_q <= addr_q + 1'b1;
end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin
addr_q <= addr_q - 1'b1;
end
else begin
addr_q <= addr_q;
end
end
else begin
addr_q <= addr_q;
end
end
assign addr = addr_q;
end else begin : USE_FPGA_ADDR
for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN
assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write;
// Don't need the last muxcy, addr_cy(last) is not used anywhere
if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY
MUXCY MUXCY_inst (
.DI(addr[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.S(hsum_A[addr_cnt]),
.O(addr_cy[addr_cnt+1])
);
end
else begin : NO_MUXCY
end
XORCY XORCY_inst (
.LI(hsum_A[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.O(sum_A[addr_cnt])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(addr[addr_cnt]), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(sum_A[addr_cnt]) // Data input
);
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Data storage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO
reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0];
always @ (posedge ACLK) begin
if ( valid_Write ) begin
for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= S_MESG;
end
end
assign M_MESG_I = data_srl[addr];
end else begin : USE_FPGA_FIFO
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32
SRLC32E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC32E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q31(), // SRL cascade output pin
.A(addr), // 5-bit shift depth select input
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end else begin : USE_16
SRLC16E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC16E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q15(), // SRL cascade output pin
.A0(addr[0]), // 4-bit shift depth select input 0
.A1(addr[1]), // 4-bit shift depth select input 1
.A2(addr[2]), // 4-bit shift depth select input 2
.A3(addr[3]), // 4-bit shift depth select input 3
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end // C_FIFO_DEPTH_LOG
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Pipeline stage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT
wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload
wire M_VALID_FF; // FIFO not empty
// Select RTL or FPGA optimized instatiations for critical parts.
if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload
reg M_VALID_Q; // FIFO not empty
always @ (posedge ACLK) begin
if (ARESET) begin
M_MESG_Q <= {C_FIFO_WIDTH{1'b0}};
M_VALID_Q <= 1'b0;
end else begin
if ( M_READY_I ) begin
M_MESG_Q <= M_MESG_I;
M_VALID_Q <= M_VALID_I;
end
end
end
assign M_MESG_FF = M_MESG_Q;
assign M_VALID_FF = M_VALID_Q;
end else begin : USE_FPGA_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload
reg M_VALID_CMB; // FIFO not empty
always @ *
begin
if ( M_READY_I ) begin
M_MESG_CMB <= M_MESG_I;
M_VALID_CMB <= M_VALID_I;
end else begin
M_MESG_CMB <= M_MESG_FF;
M_VALID_CMB <= M_VALID_FF;
end
end
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_MESG_FF[bit_cnt]), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_MESG_CMB[bit_cnt]) // Data input
);
end // end for bit_cnt
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_VALID_FF), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_VALID_CMB) // Data input
);
end
assign EMPTY = ~M_VALID_I & ~M_VALID_FF;
assign M_MESG = M_MESG_FF;
assign M_VALID = M_VALID_FF;
assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF;
end else begin : NO_FF_OUT
assign EMPTY = ~M_VALID_I;
assign M_MESG = M_MESG_I;
assign M_VALID = M_VALID_I;
assign M_READY_I = M_READY;
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_0_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_0_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_vector2axi #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
// Slave Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
// Slave Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
// Slave Interface Read Address Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
// Slave Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
// payloads
input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload,
input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload,
output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload,
input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload,
output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_0_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH];
assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH];
assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH];
assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH];
assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp;
assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH];
assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH];
assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata;
assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp;
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ;
assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH];
assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH];
assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ;
assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ;
assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ;
assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ;
assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ;
end
else begin : gen_no_axi3_wid_packing
assign m_axi_wid = 1'b0;
end
assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid;
assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ;
assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH];
assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH];
assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ;
assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ;
assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ;
assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ;
assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast;
assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ;
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH];
assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH];
end
else begin : gen_no_region_signals
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH];
assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ;
assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ;
assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH];
assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ;
end
else begin : gen_no_user_signals
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_awburst = 'b0;
assign m_axi_awcache = 'b0;
assign m_axi_awlen = 'b0;
assign m_axi_awlock = 'b0;
assign m_axi_awid = 'b0;
assign m_axi_awqos = 'b0;
assign m_axi_wlast = 1'b1;
assign m_axi_wid = 'b0;
assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3;
assign m_axi_arburst = 'b0;
assign m_axi_arcache = 'b0;
assign m_axi_arlen = 'b0;
assign m_axi_arlock = 'b0;
assign m_axi_arid = 'b0;
assign m_axi_arqos = 'b0;
assign m_axi_awregion = 'b0;
assign m_axi_arregion = 'b0;
assign m_axi_awuser = 'b0;
assign m_axi_wuser = 'b0;
assign m_axi_aruser = 'b0;
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_0_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_axi2vector #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AWPAYLOAD_WIDTH = 61,
parameter integer C_WPAYLOAD_WIDTH = 73,
parameter integer C_BPAYLOAD_WIDTH = 6,
parameter integer C_ARPAYLOAD_WIDTH = 61,
parameter integer C_RPAYLOAD_WIDTH = 69
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
// payloads
output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload,
output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload,
input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload,
output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload,
input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
`include "axi_infrastructure_v1_1_0_header.vh"
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// AXI4, AXI4LITE, AXI3 packing
assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr;
assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot;
assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata;
assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb;
assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH];
assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr;
assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot;
assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH];
assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH];
generate
if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing
assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize;
assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst;
assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache;
assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen;
assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock;
assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid;
assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos;
assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast;
if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing
assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid;
end
else begin : gen_no_axi3_wid_packing
end
assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH];
assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize;
assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst;
assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache;
assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen;
assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock;
assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid;
assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos;
assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH];
assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH];
if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals
assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion;
assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion;
end
else begin : gen_no_region_signals
end
if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals
assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser;
assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser;
assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH];
assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser;
assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH];
end
else begin : gen_no_user_signals
assign s_axi_buser = 'b0;
assign s_axi_ruser = 'b0;
end
end
else begin : gen_axi4lite_packing
assign s_axi_bid = 'b0;
assign s_axi_buser = 'b0;
assign s_axi_rlast = 1'b1;
assign s_axi_rid = 'b0;
assign s_axi_ruser = 'b0;
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_sel_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module will barrelshift the data from the FIFO when unaligned accesses is enabled (we are using
part of the FIFO word when off boundary). When unaligned accesses is disabled then the data passes
as wires. The byte enable generator might require multiple cycles to perform partial accesses so a
'stall' bit is used (triggers a stall like waitrequest)
*/
ST_to_MM_Adapter the_ST_to_MM_Adapter (
.clk (clk),
.reset (reset),
.enable (st_to_mm_adapter_enable),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.start (go),
.waitrequest (master_waitrequest),
.stall (write_stall_from_byte_enable_generator | write_stall_from_write_burst_control),
.write_data (master_writedata),
.fifo_data (buffered_data),
.fifo_empty (fifo_empty),
.fifo_readack (fifo_read)
);
defparam the_ST_to_MM_Adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_ST_to_MM_Adapter.BYTEENABLE_WIDTH_LOG2 = BYTE_ENABLE_WIDTH_LOG2;
defparam the_ST_to_MM_Adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_ST_to_MM_Adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
/* this block is responsible for presenting the fabric with supported byte enable combinations which can
take multiple cycles, if full word only support is enabled this block will reduce to wires during synthesis */
byte_enable_generator the_byte_enable_generator (
.clk (clk),
.reset (reset),
.write_in (write),
.byteenable_in (unsupported_byteenable),
.waitrequest_out (write_stall_from_byte_enable_generator),
.byteenable_out (supported_byteenable),
.waitrequest_in (master_waitrequest | write_stall_from_write_burst_control)
);
defparam the_byte_enable_generator.BYTEENABLE_WIDTH = BYTE_ENABLE_WIDTH;
// this block will be used to drive write, address, and burstcount to the fabric
write_burst_control the_write_burst_control (
.clk (clk),
.reset (reset),
.sw_reset (sw_reset_in),
.sw_stop (sw_stop_in),
.length (length_counter),
.eop_enabled (descriptor_end_on_eop_enable_d1),
.eop (snk_eop),
.ready (snk_ready),
.valid (snk_valid),
.early_termination (early_termination),
.address_in (address),
.write_in (write),
.max_burst_count (maximum_burst_count),
.write_fifo_used ({fifo_full,fifo_used}),
.waitrequest (master_waitrequest),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.address_out (master_address),
.write_out (master_write), // filtered version of 'write'
.burst_count (master_burstcount),
.stall (write_stall_from_write_burst_control),
.reset_taken (reset_taken_from_write_burst_control),
.stopped (stopped_from_write_burst_control)
);
defparam the_write_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_write_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_write_burst_control.WORD_SIZE = BYTE_ENABLE_WIDTH;
defparam the_write_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_write_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_write_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_write_burst_control.WRITE_FIFO_USED_WIDTH = FIFO_DEPTH_LOG2;
defparam the_write_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/********************************************* END MODULE INSTANTIATIONS ************************************************************************/
/********************************************* CONTROL AND COMBINATIONAL SIGNALS ****************************************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[123:92], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_programmable_burst_count = snk_command_data[75:68];
assign descriptor_stride = snk_command_data[91:76];
assign descriptor_end_on_eop_enable = snk_command_data[64];
assign sw_stop_in = snk_command_data[66];
assign sw_reset_in = snk_command_data[67];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
assign eop_enable = (PACKET_ENABLE == 1)? descriptor_end_on_eop_enable_d1 : 1'b0; // no eop or early termination support when packet support is disabled
assign done_strobe = (done == 1) & (done_d1 == 0) & (reset_taken == 0); // set_done asserts the done register so this strobe fires when the last write completes
assign response_error = (ERROR_ENABLE == 1)? error : 8'b00000000;
assign response_actual_bytes_transferred = (PACKET_ENABLE == 1)? actual_bytes_transferred_counter : 32'h00000000;
// transfer size amounts for special cases (starting unaligned, ending with a partial word, starting unaligned and ending with a partial word on the same write)
assign short_first_access_size = BYTE_ENABLE_WIDTH - start_byte_address;
assign short_last_access_size = (eop_enable == 1)? (packet_beat_size + packet_bytes_buffered_d1) : (length_counter & LSB_MASK);
assign short_first_and_last_access_size = (eop_enable == 1)? (BYTE_ENABLE_WIDTH - buffered_empty) : (length_counter & LSB_MASK);
/* special case transfer enables and counter increment values (address_counter, length_counter, and actual_bytes_transferred)
short_first_access_enable is for transfers that start aligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end with on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (may or may not be aligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
// all three enables are mutually exclusive to provide one-hot encoding for the bytes to transfer mux
assign short_first_access_enable = (start_byte_address != 0) & (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) >= BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 0));
assign short_last_access_enable = (first_access == 0) & ((eop_enable == 1)? ((packet_beat_size + packet_bytes_buffered_d1) < BYTE_ENABLE_WIDTH): (length_counter < BYTE_ENABLE_WIDTH));
assign short_first_and_last_access_enable = (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) < BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 1));
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = (eop_enable == 1)? (buffered_eop == 1) : (length_counter < BYTE_ENABLE_WIDTH); // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount;
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH;
end
end
endgenerate
// the control logic ensures this mux is one-hot with the fall through being the typical full word aligned access
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size; // unaligned and reaches the next word boundary
3'b010: bytes_to_transfer_mux = short_last_access_size; // aligned and does not reach the next word boundary
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size; // unaligned and does not reach the next word boundary
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH; // aligned and reaches the next word boundary (i.e. a full word transfer)
endcase
end
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before jamming them into the FIFO, changing the symbol width to something other than 8 might break something...
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign fifo_write_data[i +SYMBOL_WIDTH -1: i] = snk_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
// sticking the error, empty, eop, and eop bits at the top of the FIFO write data, flooring empty to zero when eop is not asserted (empty is only valid on eop cycles)
assign fifo_write_data[FIFO_WIDTH-1:DATA_WIDTH] = {snk_error, (snk_eop == 1)? snk_empty:0, snk_sop, snk_eop};
// swap the bytes if big endian is enabled (remember that this isn't tested so use at your own risk and make sure you understand the software impact this has)
generate
if(BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign fifo_read_data_rearranged[j +8 -1: j] = fifo_read_data[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
assign master_byteenable[j/8] = supported_byteenable[(DATA_WIDTH -j -1)/8];
end
end
else
begin
assign fifo_read_data_rearranged = fifo_read_data[DATA_WIDTH-1:0]; // little endian so no byte swapping necessary
assign master_byteenable = supported_byteenable; // dito
end
endgenerate
// fifo read data is in the format of {error, empty, sop, eop, data} with the following widths {ERROR_WIDTH, NUMBER_OF_SYMBOLS_LOG2, 1, 1, DATA_WIDTH}
assign buffered_data = fifo_read_data_rearranged;
assign buffered_error = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH -1: DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2];
generate
if (PACKET_ENABLE == 1)
begin
assign buffered_eop = fifo_read_data[DATA_WIDTH];
assign buffered_sop = fifo_read_data[DATA_WIDTH +1];
if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign buffered_empty = 0; // ignore the empty signal and assume it was a full beat
end
else
begin
assign buffered_empty = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 -1: DATA_WIDTH +2]; // empty is packed into the upper FIFO bits
end
end
else
begin
assign buffered_empty = 0;
assign buffered_eop = 0;
assign buffered_sop = 0;
end
endgenerate
/* Generating mask bits based on the size of the transfer before the unaligned access adjustment. This is based on the
transfer size to determine how many byte enables would be asserted in the aligned case. Afterwards the
byte enables will be shifted left based on how far out of alignment the address counter is (should only happen for the
first transfer). If the data path is 32 bits wide then the following masks are generated:
Transfer Size Index Mask
1 0 0001
2 1 0011
3 2 0111
4 3 1111
Note that the index is just the transfer size minus one
*/
generate if (BYTE_ENABLE_WIDTH > 1)
begin
genvar k;
for (k = 0; k < BYTE_ENABLE_WIDTH; k = k + 1)
begin: byte_enable_loop
assign byteenable_masks[k] = { {(BYTE_ENABLE_WIDTH-k-1){1'b0}}, {(k+1){1'b1}} }; // Byte enable width - k zeros followed by k ones
end
end
else
begin
assign byteenable_masks[0] = 1'b1; // will be stubbed at top level
end
endgenerate
/* byteenable_mask is based on an aligned access determined by the transfer size. This value is then shifted
to the left by the unaligned offset (first transfer only) to compensate for the unaligned offset so that the
correct byte enables are enabled. When the accesses are aligned then no barrelshifting is needed and when full
accesses are used then all byte enables will be asserted always. */
generate if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign unsupported_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // always full accesses so the byte enables are all ones
end
else if (UNALIGNED_ACCESSES_ENABLE == 0)
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1]; // aligned so no unaligned adjustment required
end
else // unaligned case
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1] << (address_counter & LSB_MASK); // barrelshift adjusts for unaligned start address
end
endgenerate
generate if (BYTE_ENABLE_WIDTH > 1)
begin
assign address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign done = (length_counter == 0) | ((PACKET_ENABLE == 1) & (eop_enable == 1) & (eop_seen == 1) & (extra_write == 0));
assign packet_beat_size = (eop_seen == 1) ? 0 : (BYTE_ENABLE_WIDTH - buffered_empty); // when the eop arrives we can't add more to packet_bytes_buffered_d1
assign packet_bytes_buffered = packet_beat_size + packet_bytes_buffered_d1 - bytes_to_transfer;
// extra_write is only applicable when unaligned accesses are performed. This extra access gets the remaining data buffered in the ST to MM adapter block written to memory
assign extra_write = (UNALIGNED_ACCESSES_ENABLE == 1) & (((PACKET_ENABLE == 1) & (eop_enable == 1))?
((eop_seen == 1) & (packet_bytes_buffered_d1 != 0)) : // when packets are used if there are left over bytes buffered after eop is seen perform an extra write
((first_access == 0) & (start_byte_address != 0) & (short_last_access_enable == 1) & (start_byte_address >= length_counter[BYTE_ENABLE_WIDTH_LOG2-1:0]))); // non-packet transfer and there are extra bytes buffered so performing an extra access
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary (not used for packet transfers)
assign write = ((fifo_empty == 0) | (extra_write == 1)) & (done == 0) & (stopped == 0);
assign st_to_mm_adapter_enable = (done == 0) & (extra_write == 0);
assign write_complete = (write == 1) & (master_waitrequest == 0) & (write_stall_from_byte_enable_generator == 0) & (write_stall_from_write_burst_control == 0); // writing still occuring and no reasons to prevent the write cycle from completing
assign increment_address = ((write == 1) & (write_complete == 1)) & (stopped == 0);
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign snk_ready = (fifo_full == 0) & // need to make sure more streaming data doesn't come in when the FIFO is full
(((PACKET_ENABLE == 1) & (snk_sop == 1) & (fifo_empty == 0)) != 1); // need to make sure that only one packet is buffered at any given time (sop will continue to be asserted until the buffer is written out)
assign length_sync_reset = (((reset_taken == 1) | (early_termination_d1 == 1)) & (done == 0)) | (done_strobe == 1); // abrupt stop cases or packet transfer just completed (otherwise the length register will reach 0 by itself)
assign fifo_write = (snk_ready == 1) & (snk_valid == 1);
assign early_termination = (eop_enable == 1) & (write_complete == 1) & (length_counter < bytes_to_transfer); // packet transfer and the length counter is about to roll over so stop transfering
assign stop_state = stopped;
assign reset_delayed = (reset_taken == 0) & (sw_reset_in == 1);
assign src_response_data = {{212{1'b0}}, done_strobe, early_termination_d1, response_error, stop_state, reset_delayed, response_actual_bytes_transferred};
/********************************************* END CONTROL AND COMBINATIONAL SIGNALS ************************************************************/
endmodule
|
module will barrelshift the data from the FIFO when unaligned accesses is enabled (we are using
part of the FIFO word when off boundary). When unaligned accesses is disabled then the data passes
as wires. The byte enable generator might require multiple cycles to perform partial accesses so a
'stall' bit is used (triggers a stall like waitrequest)
*/
ST_to_MM_Adapter the_ST_to_MM_Adapter (
.clk (clk),
.reset (reset),
.enable (st_to_mm_adapter_enable),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.start (go),
.waitrequest (master_waitrequest),
.stall (write_stall_from_byte_enable_generator | write_stall_from_write_burst_control),
.write_data (master_writedata),
.fifo_data (buffered_data),
.fifo_empty (fifo_empty),
.fifo_readack (fifo_read)
);
defparam the_ST_to_MM_Adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_ST_to_MM_Adapter.BYTEENABLE_WIDTH_LOG2 = BYTE_ENABLE_WIDTH_LOG2;
defparam the_ST_to_MM_Adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_ST_to_MM_Adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
/* this block is responsible for presenting the fabric with supported byte enable combinations which can
take multiple cycles, if full word only support is enabled this block will reduce to wires during synthesis */
byte_enable_generator the_byte_enable_generator (
.clk (clk),
.reset (reset),
.write_in (write),
.byteenable_in (unsupported_byteenable),
.waitrequest_out (write_stall_from_byte_enable_generator),
.byteenable_out (supported_byteenable),
.waitrequest_in (master_waitrequest | write_stall_from_write_burst_control)
);
defparam the_byte_enable_generator.BYTEENABLE_WIDTH = BYTE_ENABLE_WIDTH;
// this block will be used to drive write, address, and burstcount to the fabric
write_burst_control the_write_burst_control (
.clk (clk),
.reset (reset),
.sw_reset (sw_reset_in),
.sw_stop (sw_stop_in),
.length (length_counter),
.eop_enabled (descriptor_end_on_eop_enable_d1),
.eop (snk_eop),
.ready (snk_ready),
.valid (snk_valid),
.early_termination (early_termination),
.address_in (address),
.write_in (write),
.max_burst_count (maximum_burst_count),
.write_fifo_used ({fifo_full,fifo_used}),
.waitrequest (master_waitrequest),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.address_out (master_address),
.write_out (master_write), // filtered version of 'write'
.burst_count (master_burstcount),
.stall (write_stall_from_write_burst_control),
.reset_taken (reset_taken_from_write_burst_control),
.stopped (stopped_from_write_burst_control)
);
defparam the_write_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_write_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_write_burst_control.WORD_SIZE = BYTE_ENABLE_WIDTH;
defparam the_write_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_write_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_write_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_write_burst_control.WRITE_FIFO_USED_WIDTH = FIFO_DEPTH_LOG2;
defparam the_write_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/********************************************* END MODULE INSTANTIATIONS ************************************************************************/
/********************************************* CONTROL AND COMBINATIONAL SIGNALS ****************************************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[123:92], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_programmable_burst_count = snk_command_data[75:68];
assign descriptor_stride = snk_command_data[91:76];
assign descriptor_end_on_eop_enable = snk_command_data[64];
assign sw_stop_in = snk_command_data[66];
assign sw_reset_in = snk_command_data[67];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
assign eop_enable = (PACKET_ENABLE == 1)? descriptor_end_on_eop_enable_d1 : 1'b0; // no eop or early termination support when packet support is disabled
assign done_strobe = (done == 1) & (done_d1 == 0) & (reset_taken == 0); // set_done asserts the done register so this strobe fires when the last write completes
assign response_error = (ERROR_ENABLE == 1)? error : 8'b00000000;
assign response_actual_bytes_transferred = (PACKET_ENABLE == 1)? actual_bytes_transferred_counter : 32'h00000000;
// transfer size amounts for special cases (starting unaligned, ending with a partial word, starting unaligned and ending with a partial word on the same write)
assign short_first_access_size = BYTE_ENABLE_WIDTH - start_byte_address;
assign short_last_access_size = (eop_enable == 1)? (packet_beat_size + packet_bytes_buffered_d1) : (length_counter & LSB_MASK);
assign short_first_and_last_access_size = (eop_enable == 1)? (BYTE_ENABLE_WIDTH - buffered_empty) : (length_counter & LSB_MASK);
/* special case transfer enables and counter increment values (address_counter, length_counter, and actual_bytes_transferred)
short_first_access_enable is for transfers that start aligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end with on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (may or may not be aligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
// all three enables are mutually exclusive to provide one-hot encoding for the bytes to transfer mux
assign short_first_access_enable = (start_byte_address != 0) & (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) >= BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 0));
assign short_last_access_enable = (first_access == 0) & ((eop_enable == 1)? ((packet_beat_size + packet_bytes_buffered_d1) < BYTE_ENABLE_WIDTH): (length_counter < BYTE_ENABLE_WIDTH));
assign short_first_and_last_access_enable = (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) < BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 1));
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = (eop_enable == 1)? (buffered_eop == 1) : (length_counter < BYTE_ENABLE_WIDTH); // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount;
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH;
end
end
endgenerate
// the control logic ensures this mux is one-hot with the fall through being the typical full word aligned access
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size; // unaligned and reaches the next word boundary
3'b010: bytes_to_transfer_mux = short_last_access_size; // aligned and does not reach the next word boundary
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size; // unaligned and does not reach the next word boundary
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH; // aligned and reaches the next word boundary (i.e. a full word transfer)
endcase
end
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before jamming them into the FIFO, changing the symbol width to something other than 8 might break something...
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign fifo_write_data[i +SYMBOL_WIDTH -1: i] = snk_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
// sticking the error, empty, eop, and eop bits at the top of the FIFO write data, flooring empty to zero when eop is not asserted (empty is only valid on eop cycles)
assign fifo_write_data[FIFO_WIDTH-1:DATA_WIDTH] = {snk_error, (snk_eop == 1)? snk_empty:0, snk_sop, snk_eop};
// swap the bytes if big endian is enabled (remember that this isn't tested so use at your own risk and make sure you understand the software impact this has)
generate
if(BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign fifo_read_data_rearranged[j +8 -1: j] = fifo_read_data[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
assign master_byteenable[j/8] = supported_byteenable[(DATA_WIDTH -j -1)/8];
end
end
else
begin
assign fifo_read_data_rearranged = fifo_read_data[DATA_WIDTH-1:0]; // little endian so no byte swapping necessary
assign master_byteenable = supported_byteenable; // dito
end
endgenerate
// fifo read data is in the format of {error, empty, sop, eop, data} with the following widths {ERROR_WIDTH, NUMBER_OF_SYMBOLS_LOG2, 1, 1, DATA_WIDTH}
assign buffered_data = fifo_read_data_rearranged;
assign buffered_error = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH -1: DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2];
generate
if (PACKET_ENABLE == 1)
begin
assign buffered_eop = fifo_read_data[DATA_WIDTH];
assign buffered_sop = fifo_read_data[DATA_WIDTH +1];
if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign buffered_empty = 0; // ignore the empty signal and assume it was a full beat
end
else
begin
assign buffered_empty = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 -1: DATA_WIDTH +2]; // empty is packed into the upper FIFO bits
end
end
else
begin
assign buffered_empty = 0;
assign buffered_eop = 0;
assign buffered_sop = 0;
end
endgenerate
/* Generating mask bits based on the size of the transfer before the unaligned access adjustment. This is based on the
transfer size to determine how many byte enables would be asserted in the aligned case. Afterwards the
byte enables will be shifted left based on how far out of alignment the address counter is (should only happen for the
first transfer). If the data path is 32 bits wide then the following masks are generated:
Transfer Size Index Mask
1 0 0001
2 1 0011
3 2 0111
4 3 1111
Note that the index is just the transfer size minus one
*/
generate if (BYTE_ENABLE_WIDTH > 1)
begin
genvar k;
for (k = 0; k < BYTE_ENABLE_WIDTH; k = k + 1)
begin: byte_enable_loop
assign byteenable_masks[k] = { {(BYTE_ENABLE_WIDTH-k-1){1'b0}}, {(k+1){1'b1}} }; // Byte enable width - k zeros followed by k ones
end
end
else
begin
assign byteenable_masks[0] = 1'b1; // will be stubbed at top level
end
endgenerate
/* byteenable_mask is based on an aligned access determined by the transfer size. This value is then shifted
to the left by the unaligned offset (first transfer only) to compensate for the unaligned offset so that the
correct byte enables are enabled. When the accesses are aligned then no barrelshifting is needed and when full
accesses are used then all byte enables will be asserted always. */
generate if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign unsupported_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // always full accesses so the byte enables are all ones
end
else if (UNALIGNED_ACCESSES_ENABLE == 0)
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1]; // aligned so no unaligned adjustment required
end
else // unaligned case
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1] << (address_counter & LSB_MASK); // barrelshift adjusts for unaligned start address
end
endgenerate
generate if (BYTE_ENABLE_WIDTH > 1)
begin
assign address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign done = (length_counter == 0) | ((PACKET_ENABLE == 1) & (eop_enable == 1) & (eop_seen == 1) & (extra_write == 0));
assign packet_beat_size = (eop_seen == 1) ? 0 : (BYTE_ENABLE_WIDTH - buffered_empty); // when the eop arrives we can't add more to packet_bytes_buffered_d1
assign packet_bytes_buffered = packet_beat_size + packet_bytes_buffered_d1 - bytes_to_transfer;
// extra_write is only applicable when unaligned accesses are performed. This extra access gets the remaining data buffered in the ST to MM adapter block written to memory
assign extra_write = (UNALIGNED_ACCESSES_ENABLE == 1) & (((PACKET_ENABLE == 1) & (eop_enable == 1))?
((eop_seen == 1) & (packet_bytes_buffered_d1 != 0)) : // when packets are used if there are left over bytes buffered after eop is seen perform an extra write
((first_access == 0) & (start_byte_address != 0) & (short_last_access_enable == 1) & (start_byte_address >= length_counter[BYTE_ENABLE_WIDTH_LOG2-1:0]))); // non-packet transfer and there are extra bytes buffered so performing an extra access
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary (not used for packet transfers)
assign write = ((fifo_empty == 0) | (extra_write == 1)) & (done == 0) & (stopped == 0);
assign st_to_mm_adapter_enable = (done == 0) & (extra_write == 0);
assign write_complete = (write == 1) & (master_waitrequest == 0) & (write_stall_from_byte_enable_generator == 0) & (write_stall_from_write_burst_control == 0); // writing still occuring and no reasons to prevent the write cycle from completing
assign increment_address = ((write == 1) & (write_complete == 1)) & (stopped == 0);
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign snk_ready = (fifo_full == 0) & // need to make sure more streaming data doesn't come in when the FIFO is full
(((PACKET_ENABLE == 1) & (snk_sop == 1) & (fifo_empty == 0)) != 1); // need to make sure that only one packet is buffered at any given time (sop will continue to be asserted until the buffer is written out)
assign length_sync_reset = (((reset_taken == 1) | (early_termination_d1 == 1)) & (done == 0)) | (done_strobe == 1); // abrupt stop cases or packet transfer just completed (otherwise the length register will reach 0 by itself)
assign fifo_write = (snk_ready == 1) & (snk_valid == 1);
assign early_termination = (eop_enable == 1) & (write_complete == 1) & (length_counter < bytes_to_transfer); // packet transfer and the length counter is about to roll over so stop transfering
assign stop_state = stopped;
assign reset_delayed = (reset_taken == 0) & (sw_reset_in == 1);
assign src_response_data = {{212{1'b0}}, done_strobe, early_termination_d1, response_error, stop_state, reset_delayed, response_actual_bytes_transferred};
/********************************************* END CONTROL AND COMBINATIONAL SIGNALS ************************************************************/
endmodule
|
module will barrelshift the data from the FIFO when unaligned accesses is enabled (we are using
part of the FIFO word when off boundary). When unaligned accesses is disabled then the data passes
as wires. The byte enable generator might require multiple cycles to perform partial accesses so a
'stall' bit is used (triggers a stall like waitrequest)
*/
ST_to_MM_Adapter the_ST_to_MM_Adapter (
.clk (clk),
.reset (reset),
.enable (st_to_mm_adapter_enable),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.start (go),
.waitrequest (master_waitrequest),
.stall (write_stall_from_byte_enable_generator | write_stall_from_write_burst_control),
.write_data (master_writedata),
.fifo_data (buffered_data),
.fifo_empty (fifo_empty),
.fifo_readack (fifo_read)
);
defparam the_ST_to_MM_Adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_ST_to_MM_Adapter.BYTEENABLE_WIDTH_LOG2 = BYTE_ENABLE_WIDTH_LOG2;
defparam the_ST_to_MM_Adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_ST_to_MM_Adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
/* this block is responsible for presenting the fabric with supported byte enable combinations which can
take multiple cycles, if full word only support is enabled this block will reduce to wires during synthesis */
byte_enable_generator the_byte_enable_generator (
.clk (clk),
.reset (reset),
.write_in (write),
.byteenable_in (unsupported_byteenable),
.waitrequest_out (write_stall_from_byte_enable_generator),
.byteenable_out (supported_byteenable),
.waitrequest_in (master_waitrequest | write_stall_from_write_burst_control)
);
defparam the_byte_enable_generator.BYTEENABLE_WIDTH = BYTE_ENABLE_WIDTH;
// this block will be used to drive write, address, and burstcount to the fabric
write_burst_control the_write_burst_control (
.clk (clk),
.reset (reset),
.sw_reset (sw_reset_in),
.sw_stop (sw_stop_in),
.length (length_counter),
.eop_enabled (descriptor_end_on_eop_enable_d1),
.eop (snk_eop),
.ready (snk_ready),
.valid (snk_valid),
.early_termination (early_termination),
.address_in (address),
.write_in (write),
.max_burst_count (maximum_burst_count),
.write_fifo_used ({fifo_full,fifo_used}),
.waitrequest (master_waitrequest),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.address_out (master_address),
.write_out (master_write), // filtered version of 'write'
.burst_count (master_burstcount),
.stall (write_stall_from_write_burst_control),
.reset_taken (reset_taken_from_write_burst_control),
.stopped (stopped_from_write_burst_control)
);
defparam the_write_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_write_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_write_burst_control.WORD_SIZE = BYTE_ENABLE_WIDTH;
defparam the_write_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_write_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_write_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_write_burst_control.WRITE_FIFO_USED_WIDTH = FIFO_DEPTH_LOG2;
defparam the_write_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/********************************************* END MODULE INSTANTIATIONS ************************************************************************/
/********************************************* CONTROL AND COMBINATIONAL SIGNALS ****************************************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[123:92], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_programmable_burst_count = snk_command_data[75:68];
assign descriptor_stride = snk_command_data[91:76];
assign descriptor_end_on_eop_enable = snk_command_data[64];
assign sw_stop_in = snk_command_data[66];
assign sw_reset_in = snk_command_data[67];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
assign eop_enable = (PACKET_ENABLE == 1)? descriptor_end_on_eop_enable_d1 : 1'b0; // no eop or early termination support when packet support is disabled
assign done_strobe = (done == 1) & (done_d1 == 0) & (reset_taken == 0); // set_done asserts the done register so this strobe fires when the last write completes
assign response_error = (ERROR_ENABLE == 1)? error : 8'b00000000;
assign response_actual_bytes_transferred = (PACKET_ENABLE == 1)? actual_bytes_transferred_counter : 32'h00000000;
// transfer size amounts for special cases (starting unaligned, ending with a partial word, starting unaligned and ending with a partial word on the same write)
assign short_first_access_size = BYTE_ENABLE_WIDTH - start_byte_address;
assign short_last_access_size = (eop_enable == 1)? (packet_beat_size + packet_bytes_buffered_d1) : (length_counter & LSB_MASK);
assign short_first_and_last_access_size = (eop_enable == 1)? (BYTE_ENABLE_WIDTH - buffered_empty) : (length_counter & LSB_MASK);
/* special case transfer enables and counter increment values (address_counter, length_counter, and actual_bytes_transferred)
short_first_access_enable is for transfers that start aligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end with on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (may or may not be aligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
// all three enables are mutually exclusive to provide one-hot encoding for the bytes to transfer mux
assign short_first_access_enable = (start_byte_address != 0) & (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) >= BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 0));
assign short_last_access_enable = (first_access == 0) & ((eop_enable == 1)? ((packet_beat_size + packet_bytes_buffered_d1) < BYTE_ENABLE_WIDTH): (length_counter < BYTE_ENABLE_WIDTH));
assign short_first_and_last_access_enable = (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) < BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 1));
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = (eop_enable == 1)? (buffered_eop == 1) : (length_counter < BYTE_ENABLE_WIDTH); // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount;
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH;
end
end
endgenerate
// the control logic ensures this mux is one-hot with the fall through being the typical full word aligned access
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size; // unaligned and reaches the next word boundary
3'b010: bytes_to_transfer_mux = short_last_access_size; // aligned and does not reach the next word boundary
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size; // unaligned and does not reach the next word boundary
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH; // aligned and reaches the next word boundary (i.e. a full word transfer)
endcase
end
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before jamming them into the FIFO, changing the symbol width to something other than 8 might break something...
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign fifo_write_data[i +SYMBOL_WIDTH -1: i] = snk_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
// sticking the error, empty, eop, and eop bits at the top of the FIFO write data, flooring empty to zero when eop is not asserted (empty is only valid on eop cycles)
assign fifo_write_data[FIFO_WIDTH-1:DATA_WIDTH] = {snk_error, (snk_eop == 1)? snk_empty:0, snk_sop, snk_eop};
// swap the bytes if big endian is enabled (remember that this isn't tested so use at your own risk and make sure you understand the software impact this has)
generate
if(BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign fifo_read_data_rearranged[j +8 -1: j] = fifo_read_data[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
assign master_byteenable[j/8] = supported_byteenable[(DATA_WIDTH -j -1)/8];
end
end
else
begin
assign fifo_read_data_rearranged = fifo_read_data[DATA_WIDTH-1:0]; // little endian so no byte swapping necessary
assign master_byteenable = supported_byteenable; // dito
end
endgenerate
// fifo read data is in the format of {error, empty, sop, eop, data} with the following widths {ERROR_WIDTH, NUMBER_OF_SYMBOLS_LOG2, 1, 1, DATA_WIDTH}
assign buffered_data = fifo_read_data_rearranged;
assign buffered_error = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH -1: DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2];
generate
if (PACKET_ENABLE == 1)
begin
assign buffered_eop = fifo_read_data[DATA_WIDTH];
assign buffered_sop = fifo_read_data[DATA_WIDTH +1];
if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign buffered_empty = 0; // ignore the empty signal and assume it was a full beat
end
else
begin
assign buffered_empty = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 -1: DATA_WIDTH +2]; // empty is packed into the upper FIFO bits
end
end
else
begin
assign buffered_empty = 0;
assign buffered_eop = 0;
assign buffered_sop = 0;
end
endgenerate
/* Generating mask bits based on the size of the transfer before the unaligned access adjustment. This is based on the
transfer size to determine how many byte enables would be asserted in the aligned case. Afterwards the
byte enables will be shifted left based on how far out of alignment the address counter is (should only happen for the
first transfer). If the data path is 32 bits wide then the following masks are generated:
Transfer Size Index Mask
1 0 0001
2 1 0011
3 2 0111
4 3 1111
Note that the index is just the transfer size minus one
*/
generate if (BYTE_ENABLE_WIDTH > 1)
begin
genvar k;
for (k = 0; k < BYTE_ENABLE_WIDTH; k = k + 1)
begin: byte_enable_loop
assign byteenable_masks[k] = { {(BYTE_ENABLE_WIDTH-k-1){1'b0}}, {(k+1){1'b1}} }; // Byte enable width - k zeros followed by k ones
end
end
else
begin
assign byteenable_masks[0] = 1'b1; // will be stubbed at top level
end
endgenerate
/* byteenable_mask is based on an aligned access determined by the transfer size. This value is then shifted
to the left by the unaligned offset (first transfer only) to compensate for the unaligned offset so that the
correct byte enables are enabled. When the accesses are aligned then no barrelshifting is needed and when full
accesses are used then all byte enables will be asserted always. */
generate if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign unsupported_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // always full accesses so the byte enables are all ones
end
else if (UNALIGNED_ACCESSES_ENABLE == 0)
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1]; // aligned so no unaligned adjustment required
end
else // unaligned case
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1] << (address_counter & LSB_MASK); // barrelshift adjusts for unaligned start address
end
endgenerate
generate if (BYTE_ENABLE_WIDTH > 1)
begin
assign address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign done = (length_counter == 0) | ((PACKET_ENABLE == 1) & (eop_enable == 1) & (eop_seen == 1) & (extra_write == 0));
assign packet_beat_size = (eop_seen == 1) ? 0 : (BYTE_ENABLE_WIDTH - buffered_empty); // when the eop arrives we can't add more to packet_bytes_buffered_d1
assign packet_bytes_buffered = packet_beat_size + packet_bytes_buffered_d1 - bytes_to_transfer;
// extra_write is only applicable when unaligned accesses are performed. This extra access gets the remaining data buffered in the ST to MM adapter block written to memory
assign extra_write = (UNALIGNED_ACCESSES_ENABLE == 1) & (((PACKET_ENABLE == 1) & (eop_enable == 1))?
((eop_seen == 1) & (packet_bytes_buffered_d1 != 0)) : // when packets are used if there are left over bytes buffered after eop is seen perform an extra write
((first_access == 0) & (start_byte_address != 0) & (short_last_access_enable == 1) & (start_byte_address >= length_counter[BYTE_ENABLE_WIDTH_LOG2-1:0]))); // non-packet transfer and there are extra bytes buffered so performing an extra access
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary (not used for packet transfers)
assign write = ((fifo_empty == 0) | (extra_write == 1)) & (done == 0) & (stopped == 0);
assign st_to_mm_adapter_enable = (done == 0) & (extra_write == 0);
assign write_complete = (write == 1) & (master_waitrequest == 0) & (write_stall_from_byte_enable_generator == 0) & (write_stall_from_write_burst_control == 0); // writing still occuring and no reasons to prevent the write cycle from completing
assign increment_address = ((write == 1) & (write_complete == 1)) & (stopped == 0);
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign snk_ready = (fifo_full == 0) & // need to make sure more streaming data doesn't come in when the FIFO is full
(((PACKET_ENABLE == 1) & (snk_sop == 1) & (fifo_empty == 0)) != 1); // need to make sure that only one packet is buffered at any given time (sop will continue to be asserted until the buffer is written out)
assign length_sync_reset = (((reset_taken == 1) | (early_termination_d1 == 1)) & (done == 0)) | (done_strobe == 1); // abrupt stop cases or packet transfer just completed (otherwise the length register will reach 0 by itself)
assign fifo_write = (snk_ready == 1) & (snk_valid == 1);
assign early_termination = (eop_enable == 1) & (write_complete == 1) & (length_counter < bytes_to_transfer); // packet transfer and the length counter is about to roll over so stop transfering
assign stop_state = stopped;
assign reset_delayed = (reset_taken == 0) & (sw_reset_in == 1);
assign src_response_data = {{212{1'b0}}, done_strobe, early_termination_d1, response_error, stop_state, reset_delayed, response_actual_bytes_transferred};
/********************************************* END CONTROL AND COMBINATIONAL SIGNALS ************************************************************/
endmodule
|
module will barrelshift the data from the FIFO when unaligned accesses is enabled (we are using
part of the FIFO word when off boundary). When unaligned accesses is disabled then the data passes
as wires. The byte enable generator might require multiple cycles to perform partial accesses so a
'stall' bit is used (triggers a stall like waitrequest)
*/
ST_to_MM_Adapter the_ST_to_MM_Adapter (
.clk (clk),
.reset (reset),
.enable (st_to_mm_adapter_enable),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.start (go),
.waitrequest (master_waitrequest),
.stall (write_stall_from_byte_enable_generator | write_stall_from_write_burst_control),
.write_data (master_writedata),
.fifo_data (buffered_data),
.fifo_empty (fifo_empty),
.fifo_readack (fifo_read)
);
defparam the_ST_to_MM_Adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_ST_to_MM_Adapter.BYTEENABLE_WIDTH_LOG2 = BYTE_ENABLE_WIDTH_LOG2;
defparam the_ST_to_MM_Adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_ST_to_MM_Adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
/* this block is responsible for presenting the fabric with supported byte enable combinations which can
take multiple cycles, if full word only support is enabled this block will reduce to wires during synthesis */
byte_enable_generator the_byte_enable_generator (
.clk (clk),
.reset (reset),
.write_in (write),
.byteenable_in (unsupported_byteenable),
.waitrequest_out (write_stall_from_byte_enable_generator),
.byteenable_out (supported_byteenable),
.waitrequest_in (master_waitrequest | write_stall_from_write_burst_control)
);
defparam the_byte_enable_generator.BYTEENABLE_WIDTH = BYTE_ENABLE_WIDTH;
// this block will be used to drive write, address, and burstcount to the fabric
write_burst_control the_write_burst_control (
.clk (clk),
.reset (reset),
.sw_reset (sw_reset_in),
.sw_stop (sw_stop_in),
.length (length_counter),
.eop_enabled (descriptor_end_on_eop_enable_d1),
.eop (snk_eop),
.ready (snk_ready),
.valid (snk_valid),
.early_termination (early_termination),
.address_in (address),
.write_in (write),
.max_burst_count (maximum_burst_count),
.write_fifo_used ({fifo_full,fifo_used}),
.waitrequest (master_waitrequest),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.address_out (master_address),
.write_out (master_write), // filtered version of 'write'
.burst_count (master_burstcount),
.stall (write_stall_from_write_burst_control),
.reset_taken (reset_taken_from_write_burst_control),
.stopped (stopped_from_write_burst_control)
);
defparam the_write_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_write_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_write_burst_control.WORD_SIZE = BYTE_ENABLE_WIDTH;
defparam the_write_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_write_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_write_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_write_burst_control.WRITE_FIFO_USED_WIDTH = FIFO_DEPTH_LOG2;
defparam the_write_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/********************************************* END MODULE INSTANTIATIONS ************************************************************************/
/********************************************* CONTROL AND COMBINATIONAL SIGNALS ****************************************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[123:92], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_programmable_burst_count = snk_command_data[75:68];
assign descriptor_stride = snk_command_data[91:76];
assign descriptor_end_on_eop_enable = snk_command_data[64];
assign sw_stop_in = snk_command_data[66];
assign sw_reset_in = snk_command_data[67];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
assign eop_enable = (PACKET_ENABLE == 1)? descriptor_end_on_eop_enable_d1 : 1'b0; // no eop or early termination support when packet support is disabled
assign done_strobe = (done == 1) & (done_d1 == 0) & (reset_taken == 0); // set_done asserts the done register so this strobe fires when the last write completes
assign response_error = (ERROR_ENABLE == 1)? error : 8'b00000000;
assign response_actual_bytes_transferred = (PACKET_ENABLE == 1)? actual_bytes_transferred_counter : 32'h00000000;
// transfer size amounts for special cases (starting unaligned, ending with a partial word, starting unaligned and ending with a partial word on the same write)
assign short_first_access_size = BYTE_ENABLE_WIDTH - start_byte_address;
assign short_last_access_size = (eop_enable == 1)? (packet_beat_size + packet_bytes_buffered_d1) : (length_counter & LSB_MASK);
assign short_first_and_last_access_size = (eop_enable == 1)? (BYTE_ENABLE_WIDTH - buffered_empty) : (length_counter & LSB_MASK);
/* special case transfer enables and counter increment values (address_counter, length_counter, and actual_bytes_transferred)
short_first_access_enable is for transfers that start aligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end with on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (may or may not be aligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
// all three enables are mutually exclusive to provide one-hot encoding for the bytes to transfer mux
assign short_first_access_enable = (start_byte_address != 0) & (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) >= BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 0));
assign short_last_access_enable = (first_access == 0) & ((eop_enable == 1)? ((packet_beat_size + packet_bytes_buffered_d1) < BYTE_ENABLE_WIDTH): (length_counter < BYTE_ENABLE_WIDTH));
assign short_first_and_last_access_enable = (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) < BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 1));
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = (eop_enable == 1)? (buffered_eop == 1) : (length_counter < BYTE_ENABLE_WIDTH); // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount;
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH;
end
end
endgenerate
// the control logic ensures this mux is one-hot with the fall through being the typical full word aligned access
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size; // unaligned and reaches the next word boundary
3'b010: bytes_to_transfer_mux = short_last_access_size; // aligned and does not reach the next word boundary
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size; // unaligned and does not reach the next word boundary
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH; // aligned and reaches the next word boundary (i.e. a full word transfer)
endcase
end
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before jamming them into the FIFO, changing the symbol width to something other than 8 might break something...
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign fifo_write_data[i +SYMBOL_WIDTH -1: i] = snk_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
// sticking the error, empty, eop, and eop bits at the top of the FIFO write data, flooring empty to zero when eop is not asserted (empty is only valid on eop cycles)
assign fifo_write_data[FIFO_WIDTH-1:DATA_WIDTH] = {snk_error, (snk_eop == 1)? snk_empty:0, snk_sop, snk_eop};
// swap the bytes if big endian is enabled (remember that this isn't tested so use at your own risk and make sure you understand the software impact this has)
generate
if(BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign fifo_read_data_rearranged[j +8 -1: j] = fifo_read_data[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
assign master_byteenable[j/8] = supported_byteenable[(DATA_WIDTH -j -1)/8];
end
end
else
begin
assign fifo_read_data_rearranged = fifo_read_data[DATA_WIDTH-1:0]; // little endian so no byte swapping necessary
assign master_byteenable = supported_byteenable; // dito
end
endgenerate
// fifo read data is in the format of {error, empty, sop, eop, data} with the following widths {ERROR_WIDTH, NUMBER_OF_SYMBOLS_LOG2, 1, 1, DATA_WIDTH}
assign buffered_data = fifo_read_data_rearranged;
assign buffered_error = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH -1: DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2];
generate
if (PACKET_ENABLE == 1)
begin
assign buffered_eop = fifo_read_data[DATA_WIDTH];
assign buffered_sop = fifo_read_data[DATA_WIDTH +1];
if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign buffered_empty = 0; // ignore the empty signal and assume it was a full beat
end
else
begin
assign buffered_empty = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 -1: DATA_WIDTH +2]; // empty is packed into the upper FIFO bits
end
end
else
begin
assign buffered_empty = 0;
assign buffered_eop = 0;
assign buffered_sop = 0;
end
endgenerate
/* Generating mask bits based on the size of the transfer before the unaligned access adjustment. This is based on the
transfer size to determine how many byte enables would be asserted in the aligned case. Afterwards the
byte enables will be shifted left based on how far out of alignment the address counter is (should only happen for the
first transfer). If the data path is 32 bits wide then the following masks are generated:
Transfer Size Index Mask
1 0 0001
2 1 0011
3 2 0111
4 3 1111
Note that the index is just the transfer size minus one
*/
generate if (BYTE_ENABLE_WIDTH > 1)
begin
genvar k;
for (k = 0; k < BYTE_ENABLE_WIDTH; k = k + 1)
begin: byte_enable_loop
assign byteenable_masks[k] = { {(BYTE_ENABLE_WIDTH-k-1){1'b0}}, {(k+1){1'b1}} }; // Byte enable width - k zeros followed by k ones
end
end
else
begin
assign byteenable_masks[0] = 1'b1; // will be stubbed at top level
end
endgenerate
/* byteenable_mask is based on an aligned access determined by the transfer size. This value is then shifted
to the left by the unaligned offset (first transfer only) to compensate for the unaligned offset so that the
correct byte enables are enabled. When the accesses are aligned then no barrelshifting is needed and when full
accesses are used then all byte enables will be asserted always. */
generate if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign unsupported_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // always full accesses so the byte enables are all ones
end
else if (UNALIGNED_ACCESSES_ENABLE == 0)
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1]; // aligned so no unaligned adjustment required
end
else // unaligned case
begin
assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1] << (address_counter & LSB_MASK); // barrelshift adjusts for unaligned start address
end
endgenerate
generate if (BYTE_ENABLE_WIDTH > 1)
begin
assign address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign done = (length_counter == 0) | ((PACKET_ENABLE == 1) & (eop_enable == 1) & (eop_seen == 1) & (extra_write == 0));
assign packet_beat_size = (eop_seen == 1) ? 0 : (BYTE_ENABLE_WIDTH - buffered_empty); // when the eop arrives we can't add more to packet_bytes_buffered_d1
assign packet_bytes_buffered = packet_beat_size + packet_bytes_buffered_d1 - bytes_to_transfer;
// extra_write is only applicable when unaligned accesses are performed. This extra access gets the remaining data buffered in the ST to MM adapter block written to memory
assign extra_write = (UNALIGNED_ACCESSES_ENABLE == 1) & (((PACKET_ENABLE == 1) & (eop_enable == 1))?
((eop_seen == 1) & (packet_bytes_buffered_d1 != 0)) : // when packets are used if there are left over bytes buffered after eop is seen perform an extra write
((first_access == 0) & (start_byte_address != 0) & (short_last_access_enable == 1) & (start_byte_address >= length_counter[BYTE_ENABLE_WIDTH_LOG2-1:0]))); // non-packet transfer and there are extra bytes buffered so performing an extra access
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary (not used for packet transfers)
assign write = ((fifo_empty == 0) | (extra_write == 1)) & (done == 0) & (stopped == 0);
assign st_to_mm_adapter_enable = (done == 0) & (extra_write == 0);
assign write_complete = (write == 1) & (master_waitrequest == 0) & (write_stall_from_byte_enable_generator == 0) & (write_stall_from_write_burst_control == 0); // writing still occuring and no reasons to prevent the write cycle from completing
assign increment_address = ((write == 1) & (write_complete == 1)) & (stopped == 0);
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign snk_ready = (fifo_full == 0) & // need to make sure more streaming data doesn't come in when the FIFO is full
(((PACKET_ENABLE == 1) & (snk_sop == 1) & (fifo_empty == 0)) != 1); // need to make sure that only one packet is buffered at any given time (sop will continue to be asserted until the buffer is written out)
assign length_sync_reset = (((reset_taken == 1) | (early_termination_d1 == 1)) & (done == 0)) | (done_strobe == 1); // abrupt stop cases or packet transfer just completed (otherwise the length register will reach 0 by itself)
assign fifo_write = (snk_ready == 1) & (snk_valid == 1);
assign early_termination = (eop_enable == 1) & (write_complete == 1) & (length_counter < bytes_to_transfer); // packet transfer and the length counter is about to roll over so stop transfering
assign stop_state = stopped;
assign reset_delayed = (reset_taken == 0) & (sw_reset_in == 1);
assign src_response_data = {{212{1'b0}}, done_strobe, early_termination_d1, response_error, stop_state, reset_delayed, response_actual_bytes_transferred};
/********************************************* END CONTROL AND COMBINATIONAL SIGNALS ************************************************************/
endmodule
|
module generic_baseblocks_v2_1_0_carry_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN & S;
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b0),
.S (S)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_carry_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN & S;
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b0),
.S (S)
);
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
|
module axi_infrastructure_v1_1_0_axic_srl_fifo #(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
parameter C_FAMILY = "virtex7",
parameter integer C_PAYLOAD_WIDTH = 1,
parameter integer C_FIFO_DEPTH = 16 // Range: 4-16.
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire aclk, // Clock
input wire aresetn, // Reset
input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data
input wire s_valid, // Input data valid
output reg s_ready, // Input data ready
output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data
output reg m_valid, // Output data valid
input wire m_ready // Output data ready
);
////////////////////////////////////////////////////////////////////////////////
// Functions
////////////////////////////////////////////////////////////////////////////////
// ceiling logb2
function integer f_clogb2 (input integer size);
integer s;
begin
s = size;
s = s - 1;
for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1)
s = s >> 1;
end
endfunction // clogb2
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index;
wire [4-1:0] fifo_addr;
wire push;
wire pop ;
reg areset_r1;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
always @(posedge aclk) begin
areset_r1 <= ~aresetn;
end
always @(posedge aclk) begin
if (~aresetn) begin
fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}};
end
else begin
fifo_index <= push & ~pop ? fifo_index + 1'b1 :
~push & pop ? fifo_index - 1'b1 :
fifo_index;
end
end
assign push = s_valid & s_ready;
always @(posedge aclk) begin
if (~aresetn) begin
s_ready <= 1'b0;
end
else begin
s_ready <= areset_r1 ? 1'b1 :
push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 :
~push & pop ? 1'b1 :
s_ready;
end
end
assign pop = m_valid & m_ready;
always @(posedge aclk) begin
if (~aresetn) begin
m_valid <= 1'b0;
end
else begin
m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 :
push & ~pop ? 1'b1 :
m_valid;
end
end
generate
if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr
assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}};
end
else begin : gen_fifo_addr
assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0];
end
endgenerate
generate
genvar i;
for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit
SRL16E
u_srl_fifo(
.Q ( m_payload[i] ) ,
.A0 ( fifo_addr[0] ) ,
.A1 ( fifo_addr[1] ) ,
.A2 ( fifo_addr[2] ) ,
.A3 ( fifo_addr[3] ) ,
.CE ( push ) ,
.CLK ( aclk ) ,
.D ( s_payload[i] )
);
end
endgenerate
endmodule
|
module reset_and_status
#(
parameter PIO_WIDTH=32
)
(
input clk,
input resetn,
output reg [PIO_WIDTH-1 : 0 ] pio_in,
input [PIO_WIDTH-1 : 0 ] pio_out,
input lock_kernel_pll,
input fixedclk_locked, // pcie fixedclk lock
input mem0_local_cal_success,
input mem0_local_cal_fail,
input mem0_local_init_done,
input mem1_local_cal_success,
input mem1_local_cal_fail,
input mem1_local_init_done,
output reg [1:0] mem_organization,
output [1:0] mem_organization_export,
output pll_reset,
output reg sw_reset_n_out
);
reg [1:0] pio_out_ddr_mode;
reg pio_out_pll_reset;
reg pio_out_sw_reset;
reg [9:0] reset_count;
always@(posedge clk or negedge resetn)
if (!resetn)
reset_count <= 10'b0;
else if (pio_out_sw_reset)
reset_count <= 10'b0;
else if (!reset_count[9])
reset_count <= reset_count + 2'b01;
// false paths set for pio_out_*
(* altera_attribute = "-name SDC_STATEMENT \"set_false_path -to [get_registers *pio_out_*]\"" *)
always@(posedge clk)
begin
pio_out_ddr_mode = pio_out[9:8];
pio_out_pll_reset = pio_out[30];
pio_out_sw_reset = pio_out[31];
end
// false paths for pio_in - these are asynchronous
(* altera_attribute = "-name SDC_STATEMENT \"set_false_path -to [get_registers *pio_in*]\"" *)
always@(posedge clk)
begin
pio_in = {
lock_kernel_pll,
fixedclk_locked,
1'b0,
1'b0,
mem1_local_cal_fail,
mem0_local_cal_fail,
mem1_local_cal_success,
mem1_local_init_done,
mem0_local_cal_success,
mem0_local_init_done};
end
(* altera_attribute = "-name SDC_STATEMENT \"set_false_path -from [get_registers *mem_organization*]\"" *)
always@(posedge clk)
mem_organization = pio_out_ddr_mode;
assign mem_organization_export = mem_organization;
assign pll_reset = pio_out_pll_reset;
// Export sw kernel reset out of iface to connect to kernel
always@(posedge clk)
sw_reset_n_out = !(!reset_count[9] && (reset_count[8:0] != 0));
endmodule
|
module generic_baseblocks_v2_1_0_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_0_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_0_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_0_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_0_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_0_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_0_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
module dispatcher (
clk,
reset,
// 128/256 bit write only port for feeding the dispatcher descriptors, no address since it's only one word wide, blocking when too many descriptors are buffered
descriptor_writedata,
descriptor_byteenable,
descriptor_write,
descriptor_waitrequest,
// control and status port, 32 bits wide with a read latency of 2 and non-blocking
csr_writedata,
csr_byteenable,
csr_write,
csr_readdata,
csr_read,
csr_address, // 4 addresses when ENHANCED_FEATURES is off (zero) otherwise 8 addresses are available
csr_irq, // only available if the response port is not an ST source (in that case the SGDMA pre-fetching block will issue interrupts)
// response slave port (when "RESPONSE_PORT" is set to 0), 32 bits wide, read only, and a read latency of 3 cycles
mm_response_readdata,
mm_response_read,
mm_response_address, // only two addresses
mm_response_byteenable, // last byte read pops the response FIFO
mm_response_waitrequest,
// response source port (when "RESPONSE_PORT" is set to 1),
src_response_data,
src_response_valid,
src_response_ready,
// write master source port (sends commands to write master)
src_write_master_data,
src_write_master_valid,
src_write_master_ready,
// write master sink port (recieves response from write master)
snk_write_master_data,
snk_write_master_valid,
snk_write_master_ready,
// read master source port (sends commands to read master)
src_read_master_data,
src_read_master_valid,
src_read_master_ready,
// read master sink port (recieves response from the read master)
snk_read_master_data,
snk_read_master_valid,
snk_read_master_ready
);
// y = log2(x)
function integer log2;
input integer x;
begin
x = x-1;
for(log2=0; x>0; log2=log2+1)
x = x>>1;
end
endfunction
parameter MODE = 0; // 0 for MM->MM, 1 for MM->ST, 2 for ST->MM
parameter RESPONSE_PORT = 0; // 0 for MM, 1 for ST, 2 for Disabled // normally disabled for all but ST->MM transfers
parameter DESCRIPTOR_FIFO_DEPTH = 128; // 16-1024 in powers of 2
parameter ENHANCED_FEATURES = 1; // 1 for Enabled, 0 for Disabled
parameter DESCRIPTOR_WIDTH = 256; // 256 when enhanced mode is on, 128 for off (needs to be controlled by callback since it influences data width)
parameter DESCRIPTOR_BYTEENABLE_WIDTH = 32; // 32 when enhanced mode is on, 16 for off (needs to be controlled by callback since it influences byte enable width)
parameter CSR_ADDRESS_WIDTH = 3; // always 3 bits wide
localparam RESPONSE_FIFO_DEPTH = 2 * DESCRIPTOR_FIFO_DEPTH;
localparam DESCRIPTOR_FIFO_DEPTH_LOG2 = log2(DESCRIPTOR_FIFO_DEPTH);
localparam RESPONSE_FIFO_DEPTH_LOG2 = log2(RESPONSE_FIFO_DEPTH);
input clk;
input reset;
input [DESCRIPTOR_WIDTH-1:0] descriptor_writedata;
input [DESCRIPTOR_BYTEENABLE_WIDTH-1:0] descriptor_byteenable;
input descriptor_write;
output wire descriptor_waitrequest;
input [31:0] csr_writedata;
input [3:0] csr_byteenable;
input csr_write;
output wire [31:0] csr_readdata;
input csr_read;
input [CSR_ADDRESS_WIDTH-1:0] csr_address;
output wire csr_irq;
// Used by a host with a master (like Nios II)
output wire [31:0] mm_response_readdata;
input mm_response_read;
input mm_response_address;
input [3:0] mm_response_byteenable;
output wire mm_response_waitrequest;
// Used by a pre-fetching master
output wire [255:0] src_response_data; // making wide in case we need to jam more signals in here, unnecessary bits will be grounded/optimized away
output wire src_response_valid;
input src_response_ready;
output wire [255:0] src_write_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away
output wire src_write_master_valid;
input src_write_master_ready;
input [255:0] snk_write_master_data; // might need to jam more bits in......
input snk_write_master_valid;
output wire snk_write_master_ready;
output wire [255:0] src_read_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away
output wire src_read_master_valid;
input src_read_master_ready;
input [255:0] snk_read_master_data; // might need to jam more bits in......
input snk_read_master_valid;
output wire snk_read_master_ready;
/* Internal wires and registers */
// descriptor information
wire read_command_valid;
wire read_command_ready;
wire [255:0] read_command_data;
wire read_command_empty;
wire read_command_full;
wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] read_command_used; // true used signal so extra MSB is included
wire write_command_valid;
wire write_command_ready;
wire [255:0] write_command_data;
wire write_command_empty;
wire write_command_full;
wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] write_command_used; // true used signal so extra MSB is included
wire [31:0] sequence_number;
wire transfer_complete_IRQ_mask;
wire early_termination_IRQ_mask;
wire [7:0] error_IRQ_mask;
wire descriptor_buffer_empty;
wire descriptor_buffer_full;
wire [15:0] write_descriptor_watermark;
wire [15:0] read_descriptor_watermark;
wire [31:0] descriptor_watermark;
wire busy;
wire done;
wire done_strobe;
wire stop_issuing_commands;
wire stop;
wire sw_reset;
wire stop_on_error;
wire stop_on_early_termination;
wire stop_descriptors;
wire reset_stalled;
wire master_stop_state;
wire descriptors_stop_state;
wire stop_state;
wire stopped_on_error;
wire stopped_on_early_termination;
wire response_fifo_full;
wire response_fifo_empty;
wire [15:0] response_watermark;
wire [7:0] response_error;
wire response_early_termination;
wire [31:0] response_actual_bytes_transferred;
/************************************************ REGISTERS *******************************************************/
/********************************************** END REGISTERS *****************************************************/
/******************************************* MODULE DECLERATIONS **************************************************/
// the descriptor buffers block instantiates the descriptor FIFOs and handshaking logic with the master command ports
descriptor_buffers the_descriptor_buffers (
.clk (clk),
.reset (reset),
.writedata (descriptor_writedata),
.write (descriptor_write),
.byteenable (descriptor_byteenable),
.waitrequest (descriptor_waitrequest),
.read_command_valid (read_command_valid),
.read_command_ready (read_command_ready),
.read_command_data (read_command_data),
.read_command_empty (read_command_empty),
.read_command_full (read_command_full),
.read_command_used (read_command_used),
.write_command_valid (write_command_valid),
.write_command_ready (write_command_ready),
.write_command_data (write_command_data),
.write_command_empty (write_command_empty),
.write_command_full (write_command_full),
.write_command_used (write_command_used),
.stop_issuing_commands (stop_issuing_commands),
.stop (stop),
.sw_reset (sw_reset),
.sequence_number (sequence_number),
.transfer_complete_IRQ_mask (transfer_complete_IRQ_mask),
.early_termination_IRQ_mask (early_termination_IRQ_mask),
.error_IRQ_mask (error_IRQ_mask)
);
defparam the_descriptor_buffers.MODE = MODE;
defparam the_descriptor_buffers.DATA_WIDTH = DESCRIPTOR_WIDTH;
defparam the_descriptor_buffers.BYTE_ENABLE_WIDTH = DESCRIPTOR_WIDTH/8;
defparam the_descriptor_buffers.FIFO_DEPTH = DESCRIPTOR_FIFO_DEPTH;
defparam the_descriptor_buffers.FIFO_DEPTH_LOG2 = DESCRIPTOR_FIFO_DEPTH_LOG2;
// Control and status registers (and interrupts when a host connects directly to this block)
csr_block the_csr_block (
.clk (clk),
.reset (reset),
.csr_writedata (csr_writedata),
.csr_write (csr_write),
.csr_byteenable (csr_byteenable),
.csr_readdata (csr_readdata),
.csr_read (csr_read),
.csr_address (csr_address),
.csr_irq (csr_irq),
.done_strobe (done_strobe),
.busy (busy),
.descriptor_buffer_empty (descriptor_buffer_empty),
.descriptor_buffer_full (descriptor_buffer_full),
.stop_state (stop_state),
.stopped_on_error (stopped_on_error),
.stopped_on_early_termination (stopped_on_early_termination),
.stop_descriptors (stop_descriptors),
.reset_stalled (reset_stalled), // from the master(s) to tell the CSR block that it's still resetting
.stop (stop),
.sw_reset (sw_reset),
.stop_on_error (stop_on_error),
.stop_on_early_termination (stop_on_early_termination),
.sequence_number (sequence_number),
.descriptor_watermark (descriptor_watermark),
.response_watermark (response_watermark),
.response_buffer_empty (response_fifo_empty),
.response_buffer_full (response_fifo_full),
.transfer_complete_IRQ_mask (transfer_complete_IRQ_mask),
.error_IRQ_mask (error_IRQ_mask),
.early_termination_IRQ_mask (early_termination_IRQ_mask),
.error (response_error),
.early_termination (response_early_termination)
);
defparam the_csr_block.ADDRESS_WIDTH = CSR_ADDRESS_WIDTH;
// Optional response port. When using a directly connected host it'll be a slave port and using a pre-fetching descriptor master it will be a streaming source port.
response_block the_response_block (
.clk (clk),
.reset (reset),
.mm_response_readdata (mm_response_readdata),
.mm_response_read (mm_response_read),
.mm_response_address (mm_response_address),
.mm_response_byteenable (mm_response_byteenable),
.mm_response_waitrequest (mm_response_waitrequest),
.src_response_data (src_response_data),
.src_response_valid (src_response_valid),
.src_response_ready (src_response_ready),
.sw_reset (sw_reset),
.response_watermark (response_watermark),
.response_fifo_full (response_fifo_full),
.response_fifo_empty (response_fifo_empty),
.done_strobe (done_strobe),
.actual_bytes_transferred (response_actual_bytes_transferred),
.error (response_error),
.early_termination (response_early_termination),
.transfer_complete_IRQ_mask (transfer_complete_IRQ_mask),
.error_IRQ_mask (error_IRQ_mask),
.early_termination_IRQ_mask (early_termination_IRQ_mask),
.descriptor_buffer_full (descriptor_buffer_full)
);
defparam the_response_block.RESPONSE_PORT = RESPONSE_PORT;
defparam the_response_block.FIFO_DEPTH = RESPONSE_FIFO_DEPTH;
defparam the_response_block.FIFO_DEPTH_LOG2 = RESPONSE_FIFO_DEPTH_LOG2;
/***************************************** END MODULE DECLERATIONS ************************************************/
/****************************************** COMBINATIONAL SIGNALS *************************************************/
// this block issues the commands so it's always ready for a response. The response FIFO fill level will be used to
// make sure additional ST-->MM commands are not issued if there is no room to catch the response.
assign snk_write_master_ready = 1'b1;
assign snk_read_master_ready = 1'b1;
assign done = (MODE == 1)? snk_read_master_ready : snk_write_master_ready;
assign done_strobe = (MODE == 1)? (snk_read_master_ready & snk_read_master_valid) : (snk_write_master_ready & snk_write_master_valid);
assign stop_issuing_commands = (response_fifo_full == 1) | (stop_descriptors == 1);
assign src_write_master_valid = write_command_valid;
assign write_command_ready = src_write_master_ready;
assign src_write_master_data = write_command_data;
assign src_read_master_valid = read_command_valid;
assign read_command_ready = src_read_master_ready;
assign src_read_master_data = read_command_data;
assign busy = (read_command_empty == 0) | (write_command_empty == 0) | // still have descriptors buffered in the FIFOs
(done == 0); // current transfer is still occuring
assign descriptor_buffer_empty = (read_command_empty == 1) & (write_command_empty == 1);
assign descriptor_buffer_full = (read_command_full == 1) | (write_command_full == 1);
assign write_descriptor_watermark = 16'h0000 | write_command_used; // zero padding the upper unused bits
assign read_descriptor_watermark = 16'h0000 | read_command_used; // zero padding the upper unused bits
assign descriptor_watermark = {write_descriptor_watermark, read_descriptor_watermark};
assign reset_stalled = snk_read_master_data[0] | snk_write_master_data[32];
assign master_stop_state = ((MODE == 0)? (snk_read_master_data[1] & snk_write_master_data[33]) :
(MODE == 1)? snk_read_master_data[1] : snk_write_master_data[33]);
assign descriptors_stop_state = (stop_descriptors == 1) & ((MODE == 0)? ((src_read_master_ready == 1) & (src_write_master_ready == 1)) :
(MODE == 1)? (src_read_master_ready == 1) : (src_write_master_ready == 1));
assign stop_state = (master_stop_state == 1) | (descriptors_stop_state == 1);
assign response_actual_bytes_transferred = snk_write_master_data[31:0];
assign response_error = snk_write_master_data[41:34];
assign response_early_termination = snk_write_master_data[42];
/**************************************** END COMBINATIONAL SIGNALS ***********************************************/
endmodule
|
module channel_ram
( // System
input txclk, input reset,
// USB side
input [31:0] datain, input WR, input WR_done, output have_space,
// Reader side
output [31:0] dataout, input RD, input RD_done, output packet_waiting);
reg [6:0] wr_addr, rd_addr;
reg [1:0] which_ram_wr, which_ram_rd;
reg [2:0] nb_packets;
reg [31:0] ram0 [0:127];
reg [31:0] ram1 [0:127];
reg [31:0] ram2 [0:127];
reg [31:0] ram3 [0:127];
reg [31:0] dataout0;
reg [31:0] dataout1;
reg [31:0] dataout2;
reg [31:0] dataout3;
wire wr_done_int;
wire rd_done_int;
wire [6:0] rd_addr_final;
wire [1:0] which_ram_rd_final;
// USB side
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd0)) ram0[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd1)) ram1[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd2)) ram2[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd3)) ram3[wr_addr] <= datain;
assign wr_done_int = ((WR && (wr_addr == 7'd127)) || WR_done);
always @(posedge txclk)
if(reset)
wr_addr <= 0;
else if (WR_done)
wr_addr <= 0;
else if (WR)
wr_addr <= wr_addr + 7'd1;
always @(posedge txclk)
if(reset)
which_ram_wr <= 0;
else if (wr_done_int)
which_ram_wr <= which_ram_wr + 2'd1;
assign have_space = (nb_packets < 3'd3);
// Reader side
// short hand fifo
// rd_addr_final is what rd_addr is going to be next clock cycle
// which_ram_rd_final is what which_ram_rd is going to be next clock cycle
always @(posedge txclk) dataout0 <= ram0[rd_addr_final];
always @(posedge txclk) dataout1 <= ram1[rd_addr_final];
always @(posedge txclk) dataout2 <= ram2[rd_addr_final];
always @(posedge txclk) dataout3 <= ram3[rd_addr_final];
assign dataout = (which_ram_rd_final[1]) ?
(which_ram_rd_final[0] ? dataout3 : dataout2) :
(which_ram_rd_final[0] ? dataout1 : dataout0);
//RD_done is the only way to signal the end of one packet
assign rd_done_int = RD_done;
always @(posedge txclk)
if (reset)
rd_addr <= 0;
else if (RD_done)
rd_addr <= 0;
else if (RD)
rd_addr <= rd_addr + 7'd1;
assign rd_addr_final = (reset|RD_done) ? (6'd0) :
((RD)?(rd_addr+7'd1):rd_addr);
always @(posedge txclk)
if (reset)
which_ram_rd <= 0;
else if (rd_done_int)
which_ram_rd <= which_ram_rd + 2'd1;
assign which_ram_rd_final = (reset) ? (2'd0):
((rd_done_int) ? (which_ram_rd + 2'd1) : which_ram_rd);
//packet_waiting is set to zero if rd_done_int is high
//because there is no guarantee that nb_packets will be pos.
assign packet_waiting = (nb_packets > 1) | ((nb_packets == 1)&(~rd_done_int));
always @(posedge txclk)
if (reset)
nb_packets <= 0;
else if (wr_done_int & ~rd_done_int)
nb_packets <= nb_packets + 3'd1;
else if (rd_done_int & ~wr_done_int)
nb_packets <= nb_packets - 3'd1;
endmodule
|
module channel_ram
( // System
input txclk, input reset,
// USB side
input [31:0] datain, input WR, input WR_done, output have_space,
// Reader side
output [31:0] dataout, input RD, input RD_done, output packet_waiting);
reg [6:0] wr_addr, rd_addr;
reg [1:0] which_ram_wr, which_ram_rd;
reg [2:0] nb_packets;
reg [31:0] ram0 [0:127];
reg [31:0] ram1 [0:127];
reg [31:0] ram2 [0:127];
reg [31:0] ram3 [0:127];
reg [31:0] dataout0;
reg [31:0] dataout1;
reg [31:0] dataout2;
reg [31:0] dataout3;
wire wr_done_int;
wire rd_done_int;
wire [6:0] rd_addr_final;
wire [1:0] which_ram_rd_final;
// USB side
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd0)) ram0[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd1)) ram1[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd2)) ram2[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd3)) ram3[wr_addr] <= datain;
assign wr_done_int = ((WR && (wr_addr == 7'd127)) || WR_done);
always @(posedge txclk)
if(reset)
wr_addr <= 0;
else if (WR_done)
wr_addr <= 0;
else if (WR)
wr_addr <= wr_addr + 7'd1;
always @(posedge txclk)
if(reset)
which_ram_wr <= 0;
else if (wr_done_int)
which_ram_wr <= which_ram_wr + 2'd1;
assign have_space = (nb_packets < 3'd3);
// Reader side
// short hand fifo
// rd_addr_final is what rd_addr is going to be next clock cycle
// which_ram_rd_final is what which_ram_rd is going to be next clock cycle
always @(posedge txclk) dataout0 <= ram0[rd_addr_final];
always @(posedge txclk) dataout1 <= ram1[rd_addr_final];
always @(posedge txclk) dataout2 <= ram2[rd_addr_final];
always @(posedge txclk) dataout3 <= ram3[rd_addr_final];
assign dataout = (which_ram_rd_final[1]) ?
(which_ram_rd_final[0] ? dataout3 : dataout2) :
(which_ram_rd_final[0] ? dataout1 : dataout0);
//RD_done is the only way to signal the end of one packet
assign rd_done_int = RD_done;
always @(posedge txclk)
if (reset)
rd_addr <= 0;
else if (RD_done)
rd_addr <= 0;
else if (RD)
rd_addr <= rd_addr + 7'd1;
assign rd_addr_final = (reset|RD_done) ? (6'd0) :
((RD)?(rd_addr+7'd1):rd_addr);
always @(posedge txclk)
if (reset)
which_ram_rd <= 0;
else if (rd_done_int)
which_ram_rd <= which_ram_rd + 2'd1;
assign which_ram_rd_final = (reset) ? (2'd0):
((rd_done_int) ? (which_ram_rd + 2'd1) : which_ram_rd);
//packet_waiting is set to zero if rd_done_int is high
//because there is no guarantee that nb_packets will be pos.
assign packet_waiting = (nb_packets > 1) | ((nb_packets == 1)&(~rd_done_int));
always @(posedge txclk)
if (reset)
nb_packets <= 0;
else if (wr_done_int & ~rd_done_int)
nb_packets <= nb_packets + 3'd1;
else if (rd_done_int & ~wr_done_int)
nb_packets <= nb_packets - 3'd1;
endmodule
|
module channel_ram
( // System
input txclk, input reset,
// USB side
input [31:0] datain, input WR, input WR_done, output have_space,
// Reader side
output [31:0] dataout, input RD, input RD_done, output packet_waiting);
reg [6:0] wr_addr, rd_addr;
reg [1:0] which_ram_wr, which_ram_rd;
reg [2:0] nb_packets;
reg [31:0] ram0 [0:127];
reg [31:0] ram1 [0:127];
reg [31:0] ram2 [0:127];
reg [31:0] ram3 [0:127];
reg [31:0] dataout0;
reg [31:0] dataout1;
reg [31:0] dataout2;
reg [31:0] dataout3;
wire wr_done_int;
wire rd_done_int;
wire [6:0] rd_addr_final;
wire [1:0] which_ram_rd_final;
// USB side
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd0)) ram0[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd1)) ram1[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd2)) ram2[wr_addr] <= datain;
always @(posedge txclk)
if(WR & (which_ram_wr == 2'd3)) ram3[wr_addr] <= datain;
assign wr_done_int = ((WR && (wr_addr == 7'd127)) || WR_done);
always @(posedge txclk)
if(reset)
wr_addr <= 0;
else if (WR_done)
wr_addr <= 0;
else if (WR)
wr_addr <= wr_addr + 7'd1;
always @(posedge txclk)
if(reset)
which_ram_wr <= 0;
else if (wr_done_int)
which_ram_wr <= which_ram_wr + 2'd1;
assign have_space = (nb_packets < 3'd3);
// Reader side
// short hand fifo
// rd_addr_final is what rd_addr is going to be next clock cycle
// which_ram_rd_final is what which_ram_rd is going to be next clock cycle
always @(posedge txclk) dataout0 <= ram0[rd_addr_final];
always @(posedge txclk) dataout1 <= ram1[rd_addr_final];
always @(posedge txclk) dataout2 <= ram2[rd_addr_final];
always @(posedge txclk) dataout3 <= ram3[rd_addr_final];
assign dataout = (which_ram_rd_final[1]) ?
(which_ram_rd_final[0] ? dataout3 : dataout2) :
(which_ram_rd_final[0] ? dataout1 : dataout0);
//RD_done is the only way to signal the end of one packet
assign rd_done_int = RD_done;
always @(posedge txclk)
if (reset)
rd_addr <= 0;
else if (RD_done)
rd_addr <= 0;
else if (RD)
rd_addr <= rd_addr + 7'd1;
assign rd_addr_final = (reset|RD_done) ? (6'd0) :
((RD)?(rd_addr+7'd1):rd_addr);
always @(posedge txclk)
if (reset)
which_ram_rd <= 0;
else if (rd_done_int)
which_ram_rd <= which_ram_rd + 2'd1;
assign which_ram_rd_final = (reset) ? (2'd0):
((rd_done_int) ? (which_ram_rd + 2'd1) : which_ram_rd);
//packet_waiting is set to zero if rd_done_int is high
//because there is no guarantee that nb_packets will be pos.
assign packet_waiting = (nb_packets > 1) | ((nb_packets == 1)&(~rd_done_int));
always @(posedge txclk)
if (reset)
nb_packets <= 0;
else if (wr_done_int & ~rd_done_int)
nb_packets <= nb_packets + 3'd1;
else if (rd_done_int & ~wr_done_int)
nb_packets <= nb_packets - 3'd1;
endmodule
|
module usb_packet_fifo
( input reset,
input clock_in,
input clock_out,
input [15:0]ram_data_in,
input write_enable,
output reg [15:0]ram_data_out,
output reg pkt_waiting,
output reg have_space,
input read_enable,
input skip_packet ) ;
/* Some parameters for usage later on */
parameter DATA_WIDTH = 16 ;
parameter NUM_PACKETS = 4 ;
/* Create the RAM here */
reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ;
/* Create the address signals */
reg [7-2+NUM_PACKETS:0] usb_ram_ain ;
reg [7:0] usb_ram_offset ;
reg [1:0] usb_ram_packet ;
wire [7-2+NUM_PACKETS:0] usb_ram_aout ;
reg isfull;
assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ;
// Check if there is one full packet to process
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
pkt_waiting <= 0;
else if (usb_ram_ain == usb_ram_aout)
pkt_waiting <= isfull;
else if (usb_ram_ain > usb_ram_aout)
pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256;
else
pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256;
end
// Check if there is room
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
have_space <= 1;
else if (usb_ram_ain == usb_ram_aout)
have_space <= ~isfull;
else if (usb_ram_ain > usb_ram_aout)
have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1);
else
have_space <= (usb_ram_aout - usb_ram_ain) >= 256;
end
/* RAM Write Address process */
always @(posedge clock_in)
begin
if( reset )
usb_ram_ain <= 0 ;
else
if( write_enable )
begin
usb_ram_ain <= usb_ram_ain + 1 ;
if (usb_ram_ain + 1 == usb_ram_aout)
isfull <= 1;
end
end
/* RAM Writing process */
always @(posedge clock_in)
begin
if( write_enable )
begin
usb_ram[usb_ram_ain] <= ram_data_in ;
end
end
/* RAM Read Address process */
always @(posedge clock_out)
begin
if( reset )
begin
usb_ram_packet <= 0 ;
usb_ram_offset <= 0 ;
isfull <= 0;
end
else
if( skip_packet )
begin
usb_ram_packet <= usb_ram_packet + 1 ;
usb_ram_offset <= 0 ;
end
else if(read_enable)
if( usb_ram_offset == 8'b11111111 )
begin
usb_ram_offset <= 0 ;
usb_ram_packet <= usb_ram_packet + 1 ;
end
else
usb_ram_offset <= usb_ram_offset + 1 ;
if (usb_ram_ain == usb_ram_aout)
isfull <= 0;
end
/* RAM Reading Process */
always @(posedge clock_out)
begin
ram_data_out <= usb_ram[usb_ram_aout] ;
end
endmodule
|
module usb_packet_fifo
( input reset,
input clock_in,
input clock_out,
input [15:0]ram_data_in,
input write_enable,
output reg [15:0]ram_data_out,
output reg pkt_waiting,
output reg have_space,
input read_enable,
input skip_packet ) ;
/* Some parameters for usage later on */
parameter DATA_WIDTH = 16 ;
parameter NUM_PACKETS = 4 ;
/* Create the RAM here */
reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ;
/* Create the address signals */
reg [7-2+NUM_PACKETS:0] usb_ram_ain ;
reg [7:0] usb_ram_offset ;
reg [1:0] usb_ram_packet ;
wire [7-2+NUM_PACKETS:0] usb_ram_aout ;
reg isfull;
assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ;
// Check if there is one full packet to process
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
pkt_waiting <= 0;
else if (usb_ram_ain == usb_ram_aout)
pkt_waiting <= isfull;
else if (usb_ram_ain > usb_ram_aout)
pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256;
else
pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256;
end
// Check if there is room
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
have_space <= 1;
else if (usb_ram_ain == usb_ram_aout)
have_space <= ~isfull;
else if (usb_ram_ain > usb_ram_aout)
have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1);
else
have_space <= (usb_ram_aout - usb_ram_ain) >= 256;
end
/* RAM Write Address process */
always @(posedge clock_in)
begin
if( reset )
usb_ram_ain <= 0 ;
else
if( write_enable )
begin
usb_ram_ain <= usb_ram_ain + 1 ;
if (usb_ram_ain + 1 == usb_ram_aout)
isfull <= 1;
end
end
/* RAM Writing process */
always @(posedge clock_in)
begin
if( write_enable )
begin
usb_ram[usb_ram_ain] <= ram_data_in ;
end
end
/* RAM Read Address process */
always @(posedge clock_out)
begin
if( reset )
begin
usb_ram_packet <= 0 ;
usb_ram_offset <= 0 ;
isfull <= 0;
end
else
if( skip_packet )
begin
usb_ram_packet <= usb_ram_packet + 1 ;
usb_ram_offset <= 0 ;
end
else if(read_enable)
if( usb_ram_offset == 8'b11111111 )
begin
usb_ram_offset <= 0 ;
usb_ram_packet <= usb_ram_packet + 1 ;
end
else
usb_ram_offset <= usb_ram_offset + 1 ;
if (usb_ram_ain == usb_ram_aout)
isfull <= 0;
end
/* RAM Reading Process */
always @(posedge clock_out)
begin
ram_data_out <= usb_ram[usb_ram_aout] ;
end
endmodule
|
module usb_packet_fifo
( input reset,
input clock_in,
input clock_out,
input [15:0]ram_data_in,
input write_enable,
output reg [15:0]ram_data_out,
output reg pkt_waiting,
output reg have_space,
input read_enable,
input skip_packet ) ;
/* Some parameters for usage later on */
parameter DATA_WIDTH = 16 ;
parameter NUM_PACKETS = 4 ;
/* Create the RAM here */
reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ;
/* Create the address signals */
reg [7-2+NUM_PACKETS:0] usb_ram_ain ;
reg [7:0] usb_ram_offset ;
reg [1:0] usb_ram_packet ;
wire [7-2+NUM_PACKETS:0] usb_ram_aout ;
reg isfull;
assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ;
// Check if there is one full packet to process
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
pkt_waiting <= 0;
else if (usb_ram_ain == usb_ram_aout)
pkt_waiting <= isfull;
else if (usb_ram_ain > usb_ram_aout)
pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256;
else
pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256;
end
// Check if there is room
always @(usb_ram_ain, usb_ram_aout)
begin
if (reset)
have_space <= 1;
else if (usb_ram_ain == usb_ram_aout)
have_space <= ~isfull;
else if (usb_ram_ain > usb_ram_aout)
have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1);
else
have_space <= (usb_ram_aout - usb_ram_ain) >= 256;
end
/* RAM Write Address process */
always @(posedge clock_in)
begin
if( reset )
usb_ram_ain <= 0 ;
else
if( write_enable )
begin
usb_ram_ain <= usb_ram_ain + 1 ;
if (usb_ram_ain + 1 == usb_ram_aout)
isfull <= 1;
end
end
/* RAM Writing process */
always @(posedge clock_in)
begin
if( write_enable )
begin
usb_ram[usb_ram_ain] <= ram_data_in ;
end
end
/* RAM Read Address process */
always @(posedge clock_out)
begin
if( reset )
begin
usb_ram_packet <= 0 ;
usb_ram_offset <= 0 ;
isfull <= 0;
end
else
if( skip_packet )
begin
usb_ram_packet <= usb_ram_packet + 1 ;
usb_ram_offset <= 0 ;
end
else if(read_enable)
if( usb_ram_offset == 8'b11111111 )
begin
usb_ram_offset <= 0 ;
usb_ram_packet <= usb_ram_packet + 1 ;
end
else
usb_ram_offset <= usb_ram_offset + 1 ;
if (usb_ram_ain == usb_ram_aout)
isfull <= 0;
end
/* RAM Reading Process */
always @(posedge clock_out)
begin
ram_data_out <= usb_ram[usb_ram_aout] ;
end
endmodule
|
module write_signal_breakout (
write_command_data_in, // descriptor from the write FIFO
write_command_data_out, // reformated descriptor to the write master
// breakout of command information
write_address,
write_length,
write_park,
write_end_on_eop,
write_transfer_complete_IRQ_mask,
write_early_termination_IRQ_mask,
write_error_IRQ_mask,
write_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
write_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
write_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
// additional control information that needs to go out asynchronously with the command data
write_stop,
write_sw_reset
);
parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits
input [DATA_WIDTH-1:0] write_command_data_in;
output wire [255:0] write_command_data_out;
output wire [63:0] write_address;
output wire [31:0] write_length;
output wire write_park;
output wire write_end_on_eop;
output wire write_transfer_complete_IRQ_mask;
output wire write_early_termination_IRQ_mask;
output wire [7:0] write_error_IRQ_mask;
output wire [7:0] write_burst_count;
output wire [15:0] write_stride;
output wire [15:0] write_sequence_number;
input write_stop;
input write_sw_reset;
assign write_address[31:0] = write_command_data_in[63:32];
assign write_length = write_command_data_in[95:64];
generate
if (DATA_WIDTH == 256)
begin
assign write_park = write_command_data_in[235];
assign write_end_on_eop = write_command_data_in[236];
assign write_transfer_complete_IRQ_mask = write_command_data_in[238];
assign write_early_termination_IRQ_mask = write_command_data_in[239];
assign write_error_IRQ_mask = write_command_data_in[247:240];
assign write_burst_count = write_command_data_in[127:120];
assign write_stride = write_command_data_in[159:144];
assign write_sequence_number = write_command_data_in[111:96];
assign write_address[63:32] = write_command_data_in[223:192];
end
else
begin
assign write_park = write_command_data_in[107];
assign write_end_on_eop = write_command_data_in[108];
assign write_transfer_complete_IRQ_mask = write_command_data_in[110];
assign write_early_termination_IRQ_mask = write_command_data_in[111];
assign write_error_IRQ_mask = write_command_data_in[119:112];
assign write_burst_count = 8'h00;
assign write_stride = 16'h0000;
assign write_sequence_number = 16'h0000;
assign write_address[63:32] = 32'h00000000;
end
endgenerate
// big concat statement to glue all the signals back together to go out to the write master (MSBs to LSBs)
assign write_command_data_out = {{132{1'b0}}, // zero pad the upper 132 bits
write_address[63:32],
write_stride,
write_burst_count,
write_sw_reset,
write_stop,
1'b0, // used to be the early termination bit so now it's reserved
write_end_on_eop,
write_length,
write_address[31:0]};
endmodule
|
module write_signal_breakout (
write_command_data_in, // descriptor from the write FIFO
write_command_data_out, // reformated descriptor to the write master
// breakout of command information
write_address,
write_length,
write_park,
write_end_on_eop,
write_transfer_complete_IRQ_mask,
write_early_termination_IRQ_mask,
write_error_IRQ_mask,
write_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
write_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
write_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground
// additional control information that needs to go out asynchronously with the command data
write_stop,
write_sw_reset
);
parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits
input [DATA_WIDTH-1:0] write_command_data_in;
output wire [255:0] write_command_data_out;
output wire [63:0] write_address;
output wire [31:0] write_length;
output wire write_park;
output wire write_end_on_eop;
output wire write_transfer_complete_IRQ_mask;
output wire write_early_termination_IRQ_mask;
output wire [7:0] write_error_IRQ_mask;
output wire [7:0] write_burst_count;
output wire [15:0] write_stride;
output wire [15:0] write_sequence_number;
input write_stop;
input write_sw_reset;
assign write_address[31:0] = write_command_data_in[63:32];
assign write_length = write_command_data_in[95:64];
generate
if (DATA_WIDTH == 256)
begin
assign write_park = write_command_data_in[235];
assign write_end_on_eop = write_command_data_in[236];
assign write_transfer_complete_IRQ_mask = write_command_data_in[238];
assign write_early_termination_IRQ_mask = write_command_data_in[239];
assign write_error_IRQ_mask = write_command_data_in[247:240];
assign write_burst_count = write_command_data_in[127:120];
assign write_stride = write_command_data_in[159:144];
assign write_sequence_number = write_command_data_in[111:96];
assign write_address[63:32] = write_command_data_in[223:192];
end
else
begin
assign write_park = write_command_data_in[107];
assign write_end_on_eop = write_command_data_in[108];
assign write_transfer_complete_IRQ_mask = write_command_data_in[110];
assign write_early_termination_IRQ_mask = write_command_data_in[111];
assign write_error_IRQ_mask = write_command_data_in[119:112];
assign write_burst_count = 8'h00;
assign write_stride = 16'h0000;
assign write_sequence_number = 16'h0000;
assign write_address[63:32] = 32'h00000000;
end
endgenerate
// big concat statement to glue all the signals back together to go out to the write master (MSBs to LSBs)
assign write_command_data_out = {{132{1'b0}}, // zero pad the upper 132 bits
write_address[63:32],
write_stride,
write_burst_count,
write_sw_reset,
write_stop,
1'b0, // used to be the early termination bit so now it's reserved
write_end_on_eop,
write_length,
write_address[31:0]};
endmodule
|
module unpipeline #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 1,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = slave_read & ~master_waitrequest;
assign slave_readdata = master_readdata;
endmodule
|
module unpipeline #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 1,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = slave_read & ~master_waitrequest;
assign slave_readdata = master_readdata;
endmodule
|
module csr_block (
clk,
reset,
csr_writedata,
csr_write,
csr_byteenable,
csr_readdata,
csr_read,
csr_address,
csr_irq,
done_strobe,
busy,
descriptor_buffer_empty,
descriptor_buffer_full,
stop_state,
stopped_on_error,
stopped_on_early_termination,
reset_stalled,
stop,
sw_reset,
stop_on_error,
stop_on_early_termination,
stop_descriptors,
sequence_number,
descriptor_watermark,
response_watermark,
response_buffer_empty,
response_buffer_full,
transfer_complete_IRQ_mask,
error_IRQ_mask,
early_termination_IRQ_mask,
error,
early_termination
);
parameter ADDRESS_WIDTH = 3;
localparam CONTROL_REGISTER_ADDRESS = 3'b001;
input clk;
input reset;
input [31:0] csr_writedata;
input csr_write;
input [3:0] csr_byteenable;
output wire [31:0] csr_readdata;
input csr_read;
input [ADDRESS_WIDTH-1:0] csr_address;
output wire csr_irq;
input done_strobe;
input busy;
input descriptor_buffer_empty;
input descriptor_buffer_full;
input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to)
input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers
output wire stop;
output reg stopped_on_error;
output reg stopped_on_early_termination;
output reg sw_reset;
output wire stop_on_error;
output wire stop_on_early_termination;
output wire stop_descriptors;
input [31:0] sequence_number;
input [31:0] descriptor_watermark;
input [15:0] response_watermark;
input response_buffer_empty;
input response_buffer_full;
input transfer_complete_IRQ_mask;
input [7:0] error_IRQ_mask;
input early_termination_IRQ_mask;
input [7:0] error;
input early_termination;
/* Internal wires and registers */
wire [31:0] status;
reg [31:0] control;
reg [31:0] readdata;
reg [31:0] readdata_d1;
reg irq; // writing to the status register clears the irq bit
wire set_irq;
wire clear_irq;
reg [15:0] irq_count; // writing to bit 0 clears the counter
wire clear_irq_count;
wire incr_irq_count;
wire set_stopped_on_error;
wire set_stopped_on_early_termination;
wire set_stop;
wire clear_stop;
wire global_interrupt_enable;
wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset
wire set_sw_reset;
wire clear_sw_reset;
/********************************************** Registers ***************************************************/
// read latency is 1 cycle
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdata_d1 <= 0;
end
else if (csr_read == 1)
begin
readdata_d1 <= readdata;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[31:1] <= 0;
end
else
begin
if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset
begin
control[31:1] <= 0;
end
else
begin
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1))
begin
control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1))
begin
control[15:8] <= csr_writedata[15:8];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1))
begin
control[23:16] <= csr_writedata[23:16];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1))
begin
control[31:24] <= csr_writedata[31:24];
end
end
end
end
// control bit 0 (stop) is set by different sources so handling it seperately
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[0] <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
control[0] <= 0;
end
else
begin
case ({set_stop, clear_stop})
2'b00: control[0] <= control[0];
2'b01: control[0] <= 1'b0;
2'b10: control[0] <= 1'b1;
2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
sw_reset <= 0;
end
else
begin
if (set_sw_reset == 1)
begin
sw_reset <= 1;
end
else if (clear_sw_reset == 1)
begin
sw_reset <= 0;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_error <= 0;
end
else
begin
case ({set_stopped_on_error, clear_stop})
2'b00: stopped_on_error <= stopped_on_error;
2'b01: stopped_on_error <= 1'b0;
2'b10: stopped_on_error <= 1'b1;
2'b11: stopped_on_error <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_early_termination <= 0;
end
else
begin
case ({set_stopped_on_early_termination, clear_stop})
2'b00: stopped_on_early_termination <= stopped_on_early_termination;
2'b01: stopped_on_early_termination <= 1'b0;
2'b10: stopped_on_early_termination <= 1'b1;
2'b11: stopped_on_early_termination <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
irq <= 0;
end
else
begin
case ({clear_irq, set_irq})
2'b00: irq <= irq;
2'b01: irq <= 1'b1;
2'b10: irq <= 1'b0;
2'b11: irq <= 1'b1; // setting will win over a clear
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq_count <= {16{1'b0}};
end
else
begin
if (sw_reset_strobe == 1)
begin
irq_count <= {16{1'b0}};
end
else
begin
case ({clear_irq_count, incr_irq_count})
2'b00: irq_count <= irq_count;
2'b01: irq_count <= irq_count + 1;
2'b10: irq_count <= {16{1'b0}};
2'b11: irq_count <= {{15{1'b0}}, 1'b1};
endcase
end
end
end
/******************************************** End Registers *************************************************/
/**************************************** Combinational Signals *********************************************/
generate
if (ADDRESS_WIDTH == 3)
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
3'b011: readdata = response_watermark;
default: readdata = sequence_number; // all other addresses will decode to the sequence number
endcase
end
end
else
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
default: readdata = response_watermark; // all other addresses will decode to the response watermark
endcase
end
end
endgenerate
assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit
assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled
((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled
((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled
((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled
assign csr_irq = irq;
// Done count
assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset
assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit
assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0);
assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared
assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared
assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit
(set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master
(set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows
assign stop = control[0];
assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1);
assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0);
assign sw_reset_strobe = control[1];
assign stop_on_error = control[2];
assign stop_on_early_termination = control[3];
assign global_interrupt_enable = control[4];
assign stop_descriptors = control[5];
assign csr_readdata = readdata_d1;
assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit
/**************************************** Combinational Signals *********************************************/
endmodule
|
module csr_block (
clk,
reset,
csr_writedata,
csr_write,
csr_byteenable,
csr_readdata,
csr_read,
csr_address,
csr_irq,
done_strobe,
busy,
descriptor_buffer_empty,
descriptor_buffer_full,
stop_state,
stopped_on_error,
stopped_on_early_termination,
reset_stalled,
stop,
sw_reset,
stop_on_error,
stop_on_early_termination,
stop_descriptors,
sequence_number,
descriptor_watermark,
response_watermark,
response_buffer_empty,
response_buffer_full,
transfer_complete_IRQ_mask,
error_IRQ_mask,
early_termination_IRQ_mask,
error,
early_termination
);
parameter ADDRESS_WIDTH = 3;
localparam CONTROL_REGISTER_ADDRESS = 3'b001;
input clk;
input reset;
input [31:0] csr_writedata;
input csr_write;
input [3:0] csr_byteenable;
output wire [31:0] csr_readdata;
input csr_read;
input [ADDRESS_WIDTH-1:0] csr_address;
output wire csr_irq;
input done_strobe;
input busy;
input descriptor_buffer_empty;
input descriptor_buffer_full;
input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to)
input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers
output wire stop;
output reg stopped_on_error;
output reg stopped_on_early_termination;
output reg sw_reset;
output wire stop_on_error;
output wire stop_on_early_termination;
output wire stop_descriptors;
input [31:0] sequence_number;
input [31:0] descriptor_watermark;
input [15:0] response_watermark;
input response_buffer_empty;
input response_buffer_full;
input transfer_complete_IRQ_mask;
input [7:0] error_IRQ_mask;
input early_termination_IRQ_mask;
input [7:0] error;
input early_termination;
/* Internal wires and registers */
wire [31:0] status;
reg [31:0] control;
reg [31:0] readdata;
reg [31:0] readdata_d1;
reg irq; // writing to the status register clears the irq bit
wire set_irq;
wire clear_irq;
reg [15:0] irq_count; // writing to bit 0 clears the counter
wire clear_irq_count;
wire incr_irq_count;
wire set_stopped_on_error;
wire set_stopped_on_early_termination;
wire set_stop;
wire clear_stop;
wire global_interrupt_enable;
wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset
wire set_sw_reset;
wire clear_sw_reset;
/********************************************** Registers ***************************************************/
// read latency is 1 cycle
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdata_d1 <= 0;
end
else if (csr_read == 1)
begin
readdata_d1 <= readdata;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[31:1] <= 0;
end
else
begin
if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset
begin
control[31:1] <= 0;
end
else
begin
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1))
begin
control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1))
begin
control[15:8] <= csr_writedata[15:8];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1))
begin
control[23:16] <= csr_writedata[23:16];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1))
begin
control[31:24] <= csr_writedata[31:24];
end
end
end
end
// control bit 0 (stop) is set by different sources so handling it seperately
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[0] <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
control[0] <= 0;
end
else
begin
case ({set_stop, clear_stop})
2'b00: control[0] <= control[0];
2'b01: control[0] <= 1'b0;
2'b10: control[0] <= 1'b1;
2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
sw_reset <= 0;
end
else
begin
if (set_sw_reset == 1)
begin
sw_reset <= 1;
end
else if (clear_sw_reset == 1)
begin
sw_reset <= 0;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_error <= 0;
end
else
begin
case ({set_stopped_on_error, clear_stop})
2'b00: stopped_on_error <= stopped_on_error;
2'b01: stopped_on_error <= 1'b0;
2'b10: stopped_on_error <= 1'b1;
2'b11: stopped_on_error <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_early_termination <= 0;
end
else
begin
case ({set_stopped_on_early_termination, clear_stop})
2'b00: stopped_on_early_termination <= stopped_on_early_termination;
2'b01: stopped_on_early_termination <= 1'b0;
2'b10: stopped_on_early_termination <= 1'b1;
2'b11: stopped_on_early_termination <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
irq <= 0;
end
else
begin
case ({clear_irq, set_irq})
2'b00: irq <= irq;
2'b01: irq <= 1'b1;
2'b10: irq <= 1'b0;
2'b11: irq <= 1'b1; // setting will win over a clear
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq_count <= {16{1'b0}};
end
else
begin
if (sw_reset_strobe == 1)
begin
irq_count <= {16{1'b0}};
end
else
begin
case ({clear_irq_count, incr_irq_count})
2'b00: irq_count <= irq_count;
2'b01: irq_count <= irq_count + 1;
2'b10: irq_count <= {16{1'b0}};
2'b11: irq_count <= {{15{1'b0}}, 1'b1};
endcase
end
end
end
/******************************************** End Registers *************************************************/
/**************************************** Combinational Signals *********************************************/
generate
if (ADDRESS_WIDTH == 3)
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
3'b011: readdata = response_watermark;
default: readdata = sequence_number; // all other addresses will decode to the sequence number
endcase
end
end
else
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
default: readdata = response_watermark; // all other addresses will decode to the response watermark
endcase
end
end
endgenerate
assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit
assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled
((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled
((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled
((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled
assign csr_irq = irq;
// Done count
assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset
assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit
assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0);
assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared
assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared
assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit
(set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master
(set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows
assign stop = control[0];
assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1);
assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0);
assign sw_reset_strobe = control[1];
assign stop_on_error = control[2];
assign stop_on_early_termination = control[3];
assign global_interrupt_enable = control[4];
assign stop_descriptors = control[5];
assign csr_readdata = readdata_d1;
assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit
/**************************************** Combinational Signals *********************************************/
endmodule
|
module csr_block (
clk,
reset,
csr_writedata,
csr_write,
csr_byteenable,
csr_readdata,
csr_read,
csr_address,
csr_irq,
done_strobe,
busy,
descriptor_buffer_empty,
descriptor_buffer_full,
stop_state,
stopped_on_error,
stopped_on_early_termination,
reset_stalled,
stop,
sw_reset,
stop_on_error,
stop_on_early_termination,
stop_descriptors,
sequence_number,
descriptor_watermark,
response_watermark,
response_buffer_empty,
response_buffer_full,
transfer_complete_IRQ_mask,
error_IRQ_mask,
early_termination_IRQ_mask,
error,
early_termination
);
parameter ADDRESS_WIDTH = 3;
localparam CONTROL_REGISTER_ADDRESS = 3'b001;
input clk;
input reset;
input [31:0] csr_writedata;
input csr_write;
input [3:0] csr_byteenable;
output wire [31:0] csr_readdata;
input csr_read;
input [ADDRESS_WIDTH-1:0] csr_address;
output wire csr_irq;
input done_strobe;
input busy;
input descriptor_buffer_empty;
input descriptor_buffer_full;
input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to)
input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers
output wire stop;
output reg stopped_on_error;
output reg stopped_on_early_termination;
output reg sw_reset;
output wire stop_on_error;
output wire stop_on_early_termination;
output wire stop_descriptors;
input [31:0] sequence_number;
input [31:0] descriptor_watermark;
input [15:0] response_watermark;
input response_buffer_empty;
input response_buffer_full;
input transfer_complete_IRQ_mask;
input [7:0] error_IRQ_mask;
input early_termination_IRQ_mask;
input [7:0] error;
input early_termination;
/* Internal wires and registers */
wire [31:0] status;
reg [31:0] control;
reg [31:0] readdata;
reg [31:0] readdata_d1;
reg irq; // writing to the status register clears the irq bit
wire set_irq;
wire clear_irq;
reg [15:0] irq_count; // writing to bit 0 clears the counter
wire clear_irq_count;
wire incr_irq_count;
wire set_stopped_on_error;
wire set_stopped_on_early_termination;
wire set_stop;
wire clear_stop;
wire global_interrupt_enable;
wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset
wire set_sw_reset;
wire clear_sw_reset;
/********************************************** Registers ***************************************************/
// read latency is 1 cycle
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
readdata_d1 <= 0;
end
else if (csr_read == 1)
begin
readdata_d1 <= readdata;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[31:1] <= 0;
end
else
begin
if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset
begin
control[31:1] <= 0;
end
else
begin
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1))
begin
control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1))
begin
control[15:8] <= csr_writedata[15:8];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1))
begin
control[23:16] <= csr_writedata[23:16];
end
if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1))
begin
control[31:24] <= csr_writedata[31:24];
end
end
end
end
// control bit 0 (stop) is set by different sources so handling it seperately
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
control[0] <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
control[0] <= 0;
end
else
begin
case ({set_stop, clear_stop})
2'b00: control[0] <= control[0];
2'b01: control[0] <= 1'b0;
2'b10: control[0] <= 1'b1;
2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
sw_reset <= 0;
end
else
begin
if (set_sw_reset == 1)
begin
sw_reset <= 1;
end
else if (clear_sw_reset == 1)
begin
sw_reset <= 0;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_error <= 0;
end
else
begin
case ({set_stopped_on_error, clear_stop})
2'b00: stopped_on_error <= stopped_on_error;
2'b01: stopped_on_error <= 1'b0;
2'b10: stopped_on_error <= 1'b1;
2'b11: stopped_on_error <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped_on_early_termination <= 0;
end
else
begin
case ({set_stopped_on_early_termination, clear_stop})
2'b00: stopped_on_early_termination <= stopped_on_early_termination;
2'b01: stopped_on_early_termination <= 1'b0;
2'b10: stopped_on_early_termination <= 1'b1;
2'b11: stopped_on_early_termination <= 1'b0;
endcase
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq <= 0;
end
else
begin
if (sw_reset_strobe == 1)
begin
irq <= 0;
end
else
begin
case ({clear_irq, set_irq})
2'b00: irq <= irq;
2'b01: irq <= 1'b1;
2'b10: irq <= 1'b0;
2'b11: irq <= 1'b1; // setting will win over a clear
endcase
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
irq_count <= {16{1'b0}};
end
else
begin
if (sw_reset_strobe == 1)
begin
irq_count <= {16{1'b0}};
end
else
begin
case ({clear_irq_count, incr_irq_count})
2'b00: irq_count <= irq_count;
2'b01: irq_count <= irq_count + 1;
2'b10: irq_count <= {16{1'b0}};
2'b11: irq_count <= {{15{1'b0}}, 1'b1};
endcase
end
end
end
/******************************************** End Registers *************************************************/
/**************************************** Combinational Signals *********************************************/
generate
if (ADDRESS_WIDTH == 3)
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
3'b011: readdata = response_watermark;
default: readdata = sequence_number; // all other addresses will decode to the sequence number
endcase
end
end
else
begin
always @ (csr_address or status or control or descriptor_watermark or response_watermark)
begin
case (csr_address)
3'b000: readdata = status;
3'b001: readdata = control;
3'b010: readdata = descriptor_watermark;
default: readdata = response_watermark; // all other addresses will decode to the response watermark
endcase
end
end
endgenerate
assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit
assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled
((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled
((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled
((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled
assign csr_irq = irq;
// Done count
assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset
assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit
assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0);
assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared
assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared
assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit
(set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master
(set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows
assign stop = control[0];
assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1);
assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0);
assign sw_reset_strobe = control[1];
assign stop_on_error = control[2];
assign stop_on_early_termination = control[3];
assign global_interrupt_enable = control[4];
assign stop_descriptors = control[5];
assign csr_readdata = readdata_d1;
assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit
/**************************************** Combinational Signals *********************************************/
endmodule
|
module generic_baseblocks_v2_1_0_carry_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = CIN | S;
end else begin : USE_FPGA
wire S_n;
assign S_n = ~S;
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (1'b1),
.S (S_n)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_carry #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire S,
input wire DI,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign COUT = (CIN & S) | (DI & ~S);
end else begin : USE_FPGA
MUXCY and_inst
(
.O (COUT),
.CI (CIN),
.DI (DI),
.S (S)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_carry_latch_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN | I;
end else begin : USE_FPGA
OR2L or2l_inst1
(
.O(O),
.DI(CIN),
.SRI(I)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_carry_latch_or #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN | I;
end else begin : USE_FPGA
OR2L or2l_inst1
(
.O(O),
.DI(CIN),
.SRI(I)
);
end
endgenerate
endmodule
|
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
|
module fifo_4k_18 (
aclr,
data,
rdclk,
rdreq,
wrclk,
wrreq,
q,
rdempty,
rdusedw,
wrfull,
wrusedw);
input aclr;
input [17:0] data;
input rdclk;
input rdreq;
input wrclk;
input wrreq;
output [17:0] q;
output rdempty;
output [11:0] rdusedw;
output wrfull;
output [11:0] wrusedw;
wire sub_wire0;
wire [11:0] sub_wire1;
wire sub_wire2;
wire [17:0] sub_wire3;
wire [11:0] sub_wire4;
wire rdempty = sub_wire0;
wire [11:0] wrusedw = sub_wire1[11:0];
wire wrfull = sub_wire2;
wire [17:0] q = sub_wire3[17:0];
wire [11:0] rdusedw = sub_wire4[11:0];
dcfifo dcfifo_component (
.wrclk (wrclk),
.rdreq (rdreq),
.aclr (aclr),
.rdclk (rdclk),
.wrreq (wrreq),
.data (data),
.rdempty (sub_wire0),
.wrusedw (sub_wire1),
.wrfull (sub_wire2),
.q (sub_wire3),
.rdusedw (sub_wire4)
// synopsys translate_off
,
.rdfull (),
.wrempty ()
// synopsys translate_on
);
defparam
dcfifo_component.add_ram_output_register = "OFF",
dcfifo_component.clocks_are_synchronized = "FALSE",
dcfifo_component.intended_device_family = "Cyclone",
dcfifo_component.lpm_numwords = 4096,
dcfifo_component.lpm_showahead = "ON",
dcfifo_component.lpm_type = "dcfifo",
dcfifo_component.lpm_width = 18,
dcfifo_component.lpm_widthu = 12,
dcfifo_component.overflow_checking = "OFF",
dcfifo_component.underflow_checking = "OFF",
dcfifo_component.use_eab = "ON";
endmodule
|
module fake_nonburstboundary #
(
parameter WIDTH_D = 256,
parameter S_WIDTH_A = 26,
parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8),
parameter BURSTCOUNT_WIDTH = 6,
parameter BYTEENABLE_WIDTH = WIDTH_D,
parameter MAX_PENDING_READS = 64
)
(
input clk,
input resetn,
// Slave port
input [S_WIDTH_A-1:0] slave_address, // Word address
input [WIDTH_D-1:0] slave_writedata,
input slave_read,
input slave_write,
input [BURSTCOUNT_WIDTH-1:0] slave_burstcount,
input [BYTEENABLE_WIDTH-1:0] slave_byteenable,
output slave_waitrequest,
output [WIDTH_D-1:0] slave_readdata,
output slave_readdatavalid,
output [M_WIDTH_A-1:0] master_address, // Byte address
output [WIDTH_D-1:0] master_writedata,
output master_read,
output master_write,
output [BURSTCOUNT_WIDTH-1:0] master_burstcount,
output [BYTEENABLE_WIDTH-1:0] master_byteenable,
input master_waitrequest,
input [WIDTH_D-1:0] master_readdata,
input master_readdatavalid
);
assign master_read = slave_read;
assign master_write = slave_write;
assign master_writedata = slave_writedata;
assign master_burstcount = slave_burstcount;
assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr
assign master_byteenable = slave_byteenable;
assign slave_waitrequest = master_waitrequest;
assign slave_readdatavalid = master_readdatavalid;
assign slave_readdata = master_readdata;
endmodule
|
module generic_baseblocks_v2_1_0_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_0_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_0_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_0_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule
|
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule
|
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule
|
module fifo_with_byteenables (
clk,
areset,
sreset,
write_data,
write_byteenables,
write,
push,
read_data,
pop,
used,
full,
empty
);
parameter DATA_WIDTH = 32;
parameter FIFO_DEPTH = 128;
parameter FIFO_DEPTH_LOG2 = 7; // this impacts the width of the used port so it can't be local
parameter LATENCY = 1; // number of clock cycles after asserting 'pop' that valid data comes out
input clk;
input areset;
input sreset;
input [DATA_WIDTH-1:0] write_data;
input [(DATA_WIDTH/8)-1:0] write_byteenables;
input write;
input push; // when you have written to all the byte lanes assert this to commit the word (you can use it at the same time as the byte enables)
output wire [DATA_WIDTH-1:0] read_data;
input pop; // use this to read a word out of the FIFO
output wire [FIFO_DEPTH_LOG2:0] used;
output wire full;
output wire empty;
reg [FIFO_DEPTH_LOG2-1:0] write_address;
reg [FIFO_DEPTH_LOG2-1:0] read_address;
reg [FIFO_DEPTH_LOG2:0] internal_used;
wire internal_full;
wire internal_empty;
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
write_address <= 0;
end
else
begin
if (sreset)
begin
write_address <= 0;
end
else if (push == 1)
begin
write_address <= write_address + 1'b1;
end
end
end
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
read_address <= 0;
end
else
begin
if (sreset)
begin
read_address <= 0;
end
else if (pop == 1)
begin
read_address <= read_address + 1'b1;
end
end
end
// TODO: Change this to an inferrered RAM when Quartus II supports byte enables for inferred RAM
altsyncram the_dp_ram (
.clock0 (clk),
.wren_a (write),
.byteena_a (write_byteenables),
.data_a (write_data),
.address_a (write_address),
.q_b (read_data),
.address_b (read_address)
);
defparam the_dp_ram.operation_mode = "DUAL_PORT"; // simple dual port (one read, one write port)
defparam the_dp_ram.lpm_type = "altsyncram";
defparam the_dp_ram.read_during_write_mode_mixed_ports = "DONT_CARE";
defparam the_dp_ram.power_up_uninitialized = "TRUE";
defparam the_dp_ram.byte_size = 8;
defparam the_dp_ram.width_a = DATA_WIDTH;
defparam the_dp_ram.width_b = DATA_WIDTH;
defparam the_dp_ram.widthad_a = FIFO_DEPTH_LOG2;
defparam the_dp_ram.widthad_b = FIFO_DEPTH_LOG2;
defparam the_dp_ram.width_byteena_a = (DATA_WIDTH/8);
defparam the_dp_ram.numwords_a = FIFO_DEPTH;
defparam the_dp_ram.numwords_b = FIFO_DEPTH;
defparam the_dp_ram.address_reg_b = "CLOCK0";
defparam the_dp_ram.outdata_reg_b = (LATENCY == 2)? "CLOCK0" : "UNREGISTERED";
always @ (posedge clk or posedge areset)
begin
if (areset)
begin
internal_used <= 0;
end
else
begin
if (sreset)
begin
internal_used <= 0;
end
else
begin
case ({push, pop})
2'b01: internal_used <= internal_used - 1'b1;
2'b10: internal_used <= internal_used + 1'b1;
default: internal_used <= internal_used;
endcase
end
end
end
assign internal_empty = (read_address == write_address) & (internal_used == 0);
assign internal_full = (write_address == read_address) & (internal_used != 0);
assign used = internal_used; // this signal reflects the number of words in the FIFO
assign empty = internal_empty; // combinational so it'll glitch a little bit
assign full = internal_full; // dito
endmodule
|
module generic_baseblocks_v2_1_0_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
module generic_baseblocks_v2_1_0_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
module generic_baseblocks_v2_1_0_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
module generic_baseblocks_v2_1_0_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
module generic_baseblocks_v2_1_0_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_0_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
module write_burst_control (
clk,
reset,
sw_reset,
sw_stop,
length,
eop_enabled,
eop,
ready,
valid,
early_termination,
address_in,
write_in,
max_burst_count,
write_fifo_used,
waitrequest,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
address_out,
write_out,
burst_count,
stall,
reset_taken,
stopped
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE = 4;
parameter WORD_SIZE_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter WRITE_FIFO_USED_WIDTH = 5;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when the master supports programmable bursting.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input clk;
input reset;
input sw_reset;
input sw_stop;
input [LENGTH_WIDTH-1:0] length;
input eop_enabled;
input eop;
input ready;
input valid;
input early_termination;
input [ADDRESS_WIDTH-1:0] address_in;
input write_in;
input [BURST_COUNT_WIDTH-1:0] max_burst_count; // will be either a hardcoded input or programmable
input [WRITE_FIFO_USED_WIDTH:0] write_fifo_used; // using the fifo full MSB as well
input waitrequest; // this needs to be the waitrequest from the fabric and not the byte enable generator since partial transfers count as burst beats
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [ADDRESS_WIDTH-1:0] address_out;
output wire write_out;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
output wire stall; // need to issue a stall if there isn't enough data buffered to start a burst
output wire reset_taken; // if a reset occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
output wire stopped; // if a stop occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
reg [ADDRESS_WIDTH-1:0] address_d1;
reg [BURST_COUNT_WIDTH-1:0] burst_counter; // interal statemachine register
wire idle_state;
wire decrement_burst_counter;
wire ready_during_idle_state; // when there is enough data buffered to start up the burst counter state machine again
wire ready_for_quick_burst; // when there is enough data bufferred to start another burst immediately
wire burst_begin_from_idle_state;
wire burst_begin_quickly; // start another burst immediately after the previous burst completes
wire burst_begin;
wire burst_of_one_enable; // asserted when partial word accesses are occuring or the last early termination word is being written out
wire [BURST_COUNT_WIDTH-1:0] short_length_burst;
wire [BURST_COUNT_WIDTH-1:0] short_packet_burst;
wire short_length_burst_enable;
wire short_early_termination_burst_enable;
wire short_packet_burst_enable;
wire [3:0] mux_select;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count_d1;
reg packet_complete;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
packet_complete <= 0;
end
else
begin
if ((packet_complete == 1) & (write_fifo_used == 0))
begin
packet_complete <= 0;
end
else if ((eop == 1) & (ready == 1) & (valid == 1))
begin
packet_complete <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_d1 <= 0;
end
else if (burst_begin == 1)
begin
address_d1 <= (burst_begin_quickly == 1)? (address_in + WORD_SIZE) : address_in;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
burst_counter <= 0;
end
else
if ((burst_begin == 1) & (sw_reset == 0) & (sw_stop == 0)) // for reset and stop we need to let the burst complete so the fabric doesn't lock up
begin
burst_counter <= internal_burst_count;
end
else if (decrement_burst_counter == 1)
begin
burst_counter <= burst_counter - 1'b1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
internal_burst_count_d1 <= 0;
end
else if (burst_begin == 1)
begin
internal_burst_count_d1 <= internal_burst_count;
end
end
// state machine status and control
assign idle_state = (burst_counter == 0); // any time idle_state is set then there is no burst underway
assign decrement_burst_counter = (idle_state == 0) & (waitrequest == 0);
// control for all the various cases that a burst of one beat needs to be posted
assign burst_offset = address_in[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | (early_termination == 1) |
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 1) & (burst_offset != 0)) | // need to make sure bursts start on burst boundaries
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 0) & (burst_offset != (max_burst_count - 1))); // need to make sure bursts start on burst boundaries
assign short_length_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 0) & (burst_of_one_enable == 0);
assign short_early_termination_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 1) & (burst_of_one_enable == 0); // trim back the burst count regardless if there is enough data buffered for a full burst
assign short_packet_burst_enable = (short_early_termination_burst_enable == 0) & (eop_enabled == 1) & (packet_complete == 1) & (write_fifo_used < max_burst_count) & (burst_of_one_enable == 0);
// various burst amounts that are not the max burst count or 1 that feed the internal_burst_count mux. short_length_burst is used when short_length_burst_enable or short_early_termination_burst_enable is asserted.
assign short_length_burst = (length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}};
assign short_packet_burst = (write_fifo_used & {(BURST_COUNT_WIDTH-1){1'b1}});
// since the write master may not have enough data buffered in the FIFO to start a burst the FIFO fill level must be checked before starting another burst
assign ready_during_idle_state = (burst_of_one_enable == 1) | // burst of one is only enabled when there is data in the write fifo so write_fifo_used doesn't need to be checked in this case
((write_fifo_used >= short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used >= short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used >= short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used >= max_burst_count);
// same as ready_during_idle_state only we need to make sure there is more data in the fifo than the burst being posted (since the FIFO is in the middle of being popped)
assign ready_for_quick_burst = (length >= (max_burst_count << WORD_SIZE_LOG2)) & (burst_of_one_enable == 0) & // address and length lags by one clock cycle so this will let the state machine catch up
( ((write_fifo_used > short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used > short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used > short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used > max_burst_count) );
// burst begin signals used to start up the burst counter state machine
assign burst_begin_from_idle_state = (write_in == 1) & (idle_state == 1) & (ready_during_idle_state == 1); // start the state machine up again
assign burst_begin_quickly = (write_in == 1) & (burst_counter == 1) & (waitrequest == 0) & (ready_for_quick_burst == 1); // enough data is buffered to start another burst immediately after the current burst
assign burst_begin = (burst_begin_quickly == 1) | (burst_begin_from_idle_state == 1);
assign mux_select = {short_packet_burst_enable, short_early_termination_burst_enable, short_length_burst_enable, burst_of_one_enable};
// one-hot mux that selects the appropriate burst count to present to the fabric
always @ (short_length_burst or short_packet_burst or max_burst_count or mux_select)
begin
case (mux_select)
4'b0001 : internal_burst_count = 1;
4'b0010 : internal_burst_count = short_length_burst;
4'b0100 : internal_burst_count = short_length_burst;
4'b1000 : internal_burst_count = short_packet_burst;
default : internal_burst_count = max_burst_count;
endcase
end
generate
if (BURST_ENABLE == 1)
begin
// outputs that need to be held constant throughout the entire burst transaction
assign address_out = address_d1;
assign burst_count = internal_burst_count_d1;
assign write_out = (idle_state == 0);
assign stall = (idle_state == 1);
assign reset_taken = (sw_reset == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct reset timing
assign stopped = (sw_stop == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct stop timing
end
else
begin
assign address_out = address_in;
assign burst_count = 1; // this will be stubbed at the top level
assign write_out = write_in;
assign stall = 0;
assign reset_taken = sw_reset;
assign stopped = sw_stop;
end
endgenerate
endmodule
|
module write_burst_control (
clk,
reset,
sw_reset,
sw_stop,
length,
eop_enabled,
eop,
ready,
valid,
early_termination,
address_in,
write_in,
max_burst_count,
write_fifo_used,
waitrequest,
short_first_access_enable,
short_last_access_enable,
short_first_and_last_access_enable,
address_out,
write_out,
burst_count,
stall,
reset_taken,
stopped
);
parameter BURST_ENABLE = 1; // set to 0 to hardwire the address and write signals straight out
parameter BURST_COUNT_WIDTH = 3;
parameter WORD_SIZE = 4;
parameter WORD_SIZE_LOG2 = 2;
parameter ADDRESS_WIDTH = 32;
parameter LENGTH_WIDTH = 32;
parameter WRITE_FIFO_USED_WIDTH = 5;
parameter BURST_WRAPPING_SUPPORT = 1; // set 1 for on, set 0 for off. This parameter can't be enabled when the master supports programmable bursting.
localparam BURST_OFFSET_WIDTH = (BURST_COUNT_WIDTH == 1)? 1: (BURST_COUNT_WIDTH-1);
input clk;
input reset;
input sw_reset;
input sw_stop;
input [LENGTH_WIDTH-1:0] length;
input eop_enabled;
input eop;
input ready;
input valid;
input early_termination;
input [ADDRESS_WIDTH-1:0] address_in;
input write_in;
input [BURST_COUNT_WIDTH-1:0] max_burst_count; // will be either a hardcoded input or programmable
input [WRITE_FIFO_USED_WIDTH:0] write_fifo_used; // using the fifo full MSB as well
input waitrequest; // this needs to be the waitrequest from the fabric and not the byte enable generator since partial transfers count as burst beats
input short_first_access_enable;
input short_last_access_enable;
input short_first_and_last_access_enable;
output wire [ADDRESS_WIDTH-1:0] address_out;
output wire write_out;
output wire [BURST_COUNT_WIDTH-1:0] burst_count;
output wire stall; // need to issue a stall if there isn't enough data buffered to start a burst
output wire reset_taken; // if a reset occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
output wire stopped; // if a stop occurs in the middle of a burst larger than 1 then the write master needs to know that the burst hasn't completed yet
reg [ADDRESS_WIDTH-1:0] address_d1;
reg [BURST_COUNT_WIDTH-1:0] burst_counter; // interal statemachine register
wire idle_state;
wire decrement_burst_counter;
wire ready_during_idle_state; // when there is enough data buffered to start up the burst counter state machine again
wire ready_for_quick_burst; // when there is enough data bufferred to start another burst immediately
wire burst_begin_from_idle_state;
wire burst_begin_quickly; // start another burst immediately after the previous burst completes
wire burst_begin;
wire burst_of_one_enable; // asserted when partial word accesses are occuring or the last early termination word is being written out
wire [BURST_COUNT_WIDTH-1:0] short_length_burst;
wire [BURST_COUNT_WIDTH-1:0] short_packet_burst;
wire short_length_burst_enable;
wire short_early_termination_burst_enable;
wire short_packet_burst_enable;
wire [3:0] mux_select;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count;
reg [BURST_COUNT_WIDTH-1:0] internal_burst_count_d1;
reg packet_complete;
wire [BURST_OFFSET_WIDTH-1:0] burst_offset;
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
packet_complete <= 0;
end
else
begin
if ((packet_complete == 1) & (write_fifo_used == 0))
begin
packet_complete <= 0;
end
else if ((eop == 1) & (ready == 1) & (valid == 1))
begin
packet_complete <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_d1 <= 0;
end
else if (burst_begin == 1)
begin
address_d1 <= (burst_begin_quickly == 1)? (address_in + WORD_SIZE) : address_in;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
burst_counter <= 0;
end
else
if ((burst_begin == 1) & (sw_reset == 0) & (sw_stop == 0)) // for reset and stop we need to let the burst complete so the fabric doesn't lock up
begin
burst_counter <= internal_burst_count;
end
else if (decrement_burst_counter == 1)
begin
burst_counter <= burst_counter - 1'b1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
internal_burst_count_d1 <= 0;
end
else if (burst_begin == 1)
begin
internal_burst_count_d1 <= internal_burst_count;
end
end
// state machine status and control
assign idle_state = (burst_counter == 0); // any time idle_state is set then there is no burst underway
assign decrement_burst_counter = (idle_state == 0) & (waitrequest == 0);
// control for all the various cases that a burst of one beat needs to be posted
assign burst_offset = address_in[BURST_OFFSET_WIDTH+WORD_SIZE_LOG2-1:WORD_SIZE_LOG2];
assign burst_of_one_enable = (short_first_access_enable == 1) | (short_last_access_enable == 1) | (short_first_and_last_access_enable == 1) | (early_termination == 1) |
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 1) & (burst_offset != 0)) | // need to make sure bursts start on burst boundaries
((BURST_WRAPPING_SUPPORT == 1) & (idle_state == 0) & (burst_offset != (max_burst_count - 1))); // need to make sure bursts start on burst boundaries
assign short_length_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 0) & (burst_of_one_enable == 0);
assign short_early_termination_burst_enable = ((length >> WORD_SIZE_LOG2) < max_burst_count) & (eop_enabled == 1) & (burst_of_one_enable == 0); // trim back the burst count regardless if there is enough data buffered for a full burst
assign short_packet_burst_enable = (short_early_termination_burst_enable == 0) & (eop_enabled == 1) & (packet_complete == 1) & (write_fifo_used < max_burst_count) & (burst_of_one_enable == 0);
// various burst amounts that are not the max burst count or 1 that feed the internal_burst_count mux. short_length_burst is used when short_length_burst_enable or short_early_termination_burst_enable is asserted.
assign short_length_burst = (length >> WORD_SIZE_LOG2) & {(BURST_COUNT_WIDTH-1){1'b1}};
assign short_packet_burst = (write_fifo_used & {(BURST_COUNT_WIDTH-1){1'b1}});
// since the write master may not have enough data buffered in the FIFO to start a burst the FIFO fill level must be checked before starting another burst
assign ready_during_idle_state = (burst_of_one_enable == 1) | // burst of one is only enabled when there is data in the write fifo so write_fifo_used doesn't need to be checked in this case
((write_fifo_used >= short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used >= short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used >= short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used >= max_burst_count);
// same as ready_during_idle_state only we need to make sure there is more data in the fifo than the burst being posted (since the FIFO is in the middle of being popped)
assign ready_for_quick_burst = (length >= (max_burst_count << WORD_SIZE_LOG2)) & (burst_of_one_enable == 0) & // address and length lags by one clock cycle so this will let the state machine catch up
( ((write_fifo_used > short_length_burst) & (short_length_burst_enable == 1)) |
((write_fifo_used > short_length_burst) & (short_early_termination_burst_enable == 1)) |
((write_fifo_used > short_packet_burst) & (short_packet_burst_enable == 1)) |
(write_fifo_used > max_burst_count) );
// burst begin signals used to start up the burst counter state machine
assign burst_begin_from_idle_state = (write_in == 1) & (idle_state == 1) & (ready_during_idle_state == 1); // start the state machine up again
assign burst_begin_quickly = (write_in == 1) & (burst_counter == 1) & (waitrequest == 0) & (ready_for_quick_burst == 1); // enough data is buffered to start another burst immediately after the current burst
assign burst_begin = (burst_begin_quickly == 1) | (burst_begin_from_idle_state == 1);
assign mux_select = {short_packet_burst_enable, short_early_termination_burst_enable, short_length_burst_enable, burst_of_one_enable};
// one-hot mux that selects the appropriate burst count to present to the fabric
always @ (short_length_burst or short_packet_burst or max_burst_count or mux_select)
begin
case (mux_select)
4'b0001 : internal_burst_count = 1;
4'b0010 : internal_burst_count = short_length_burst;
4'b0100 : internal_burst_count = short_length_burst;
4'b1000 : internal_burst_count = short_packet_burst;
default : internal_burst_count = max_burst_count;
endcase
end
generate
if (BURST_ENABLE == 1)
begin
// outputs that need to be held constant throughout the entire burst transaction
assign address_out = address_d1;
assign burst_count = internal_burst_count_d1;
assign write_out = (idle_state == 0);
assign stall = (idle_state == 1);
assign reset_taken = (sw_reset == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct reset timing
assign stopped = (sw_stop == 1) & (idle_state == 1); // for bursts of 1 the write master logic will handle the correct stop timing
end
else
begin
assign address_out = address_in;
assign burst_count = 1; // this will be stubbed at the top level
assign write_out = write_in;
assign stall = 0;
assign reset_taken = sw_reset;
assign stopped = sw_stop;
end
endgenerate
endmodule
|
module mem_window (
clk,
reset,
// Memory slave port
s1_address,
s1_read,
s1_readdata,
s1_readdatavalid,
s1_write,
s1_writedata,
s1_burstcount,
s1_byteenable,
s1_waitrequest,
// Configuration register slave port
cra_write,
cra_writedata,
cra_byteenable,
// Bridged master port to memory
m1_address,
m1_read,
m1_readdata,
m1_readdatavalid,
m1_write,
m1_writedata,
m1_burstcount,
m1_byteenable,
m1_waitrequest
);
parameter PAGE_ADDRESS_WIDTH = 20;
parameter MEM_ADDRESS_WIDTH = 32;
parameter NUM_BYTES = 32;
parameter BURSTCOUNT_WIDTH = 1;
parameter CRA_BITWIDTH = 32;
localparam ADDRESS_SHIFT = $clog2(NUM_BYTES);
localparam PAGE_ID_WIDTH = MEM_ADDRESS_WIDTH - PAGE_ADDRESS_WIDTH - ADDRESS_SHIFT;
localparam DATA_WIDTH = NUM_BYTES * 8;
input clk;
input reset;
// Memory slave port
input [PAGE_ADDRESS_WIDTH-1:0] s1_address;
input s1_read;
output [DATA_WIDTH-1:0] s1_readdata;
output s1_readdatavalid;
input s1_write;
input [DATA_WIDTH-1:0] s1_writedata;
input [BURSTCOUNT_WIDTH-1:0] s1_burstcount;
input [NUM_BYTES-1:0] s1_byteenable;
output s1_waitrequest;
// Bridged master port to memory
output [MEM_ADDRESS_WIDTH-1:0] m1_address;
output m1_read;
input [DATA_WIDTH-1:0] m1_readdata;
input m1_readdatavalid;
output m1_write;
output [DATA_WIDTH-1:0] m1_writedata;
output [BURSTCOUNT_WIDTH-1:0] m1_burstcount;
output [NUM_BYTES-1:0] m1_byteenable;
input m1_waitrequest;
// CRA slave
input cra_write;
input [CRA_BITWIDTH-1:0] cra_writedata;
input [CRA_BITWIDTH/8-1:0] cra_byteenable;
// Architecture
// CRA slave allows the master to change the active page
reg [PAGE_ID_WIDTH-1:0] page_id;
reg [CRA_BITWIDTH-1:0] cra_writemask;
integer i;
always@*
for (i=0; i<CRA_BITWIDTH; i=i+1)
cra_writemask[i] = cra_byteenable[i/8] & cra_write;
always@(posedge clk or posedge reset)
begin
if(reset == 1'b1)
page_id <= {PAGE_ID_WIDTH{1'b0}};
else
page_id <= (cra_writedata & cra_writemask) | (page_id & ~cra_writemask);
end
// The s1 port bridges to the m1 port - with the page ID tacked on to the address
assign m1_address = {page_id, s1_address, {ADDRESS_SHIFT{1'b0}}};
assign m1_read = s1_read;
assign s1_readdata = m1_readdata;
assign s1_readdatavalid = m1_readdatavalid;
assign m1_write = s1_write;
assign m1_writedata = s1_writedata;
assign m1_burstcount = s1_burstcount;
assign m1_byteenable = s1_byteenable;
assign s1_waitrequest = m1_waitrequest;
endmodule
|
module channel_demux
#(parameter NUM_CHAN = 2) ( //usb Side
input [31:0]usbdata_final,
input WR_final,
// TX Side
input reset,
input txclk,
output reg [NUM_CHAN:0] WR_channel,
output reg [31:0] ram_data,
output reg [NUM_CHAN:0] WR_done_channel );
/* Parse header and forward to ram */
reg [2:0]reader_state;
reg [4:0]channel ;
reg [6:0]read_length ;
// States
parameter IDLE = 3'd0;
parameter HEADER = 3'd1;
parameter WAIT = 3'd2;
parameter FORWARD = 3'd3;
`define CHANNEL 20:16
`define PKT_SIZE 127
wire [4:0] true_channel;
assign true_channel = (usbdata_final[`CHANNEL] == 5'h1f) ?
NUM_CHAN : (usbdata_final[`CHANNEL]);
always @(posedge txclk)
begin
if (reset)
begin
reader_state <= IDLE;
WR_channel <= 0;
WR_done_channel <= 0;
end
else
case (reader_state)
IDLE: begin
if (WR_final)
reader_state <= HEADER;
end
// Store channel and forware header
HEADER: begin
channel <= true_channel;
WR_channel[true_channel] <= 1;
ram_data <= usbdata_final;
read_length <= 7'd0 ;
reader_state <= WAIT;
end
WAIT: begin
WR_channel[channel] <= 0;
if (read_length == `PKT_SIZE)
reader_state <= IDLE;
else if (WR_final)
reader_state <= FORWARD;
end
FORWARD: begin
WR_channel[channel] <= 1;
ram_data <= usbdata_final;
read_length <= read_length + 7'd1;
reader_state <= WAIT;
end
default:
begin
//error handling
reader_state <= IDLE;
end
endcase
end
endmodule
|
module read_master (
clk,
reset,
// descriptor commands sink port
snk_command_data,
snk_command_valid,
snk_command_ready,
// response source port
src_response_data,
src_response_valid,
src_response_ready,
// data path sink port
src_data,
src_valid,
src_ready,
src_sop,
src_eop,
src_empty,
src_error,
src_channel,
// data path master port
master_address,
master_read,
master_byteenable,
master_readdata,
master_waitrequest,
master_readdatavalid,
master_burstcount
);
parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries
parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled
parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled
parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width
parameter PACKET_ENABLE = 0;
parameter ERROR_ENABLE = 0;
parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on
parameter CHANNEL_ENABLE = 0;
parameter CHANNEL_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when the channel enable is turned on
parameter DATA_WIDTH = 32;
parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI)
parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master
parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter)
parameter FIFO_DEPTH = 32;
parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI)
parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic.
parameter SYMBOL_WIDTH = 8; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS = 4; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter BURST_ENABLE = 0; // when enabled stride must be disabled, 1 to enable, 0 to disable
parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set maximum_burst_count to 1 (will be automatically done by .tcl file)
parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(maximum_burst_count) + 1
parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value "maximum_burst_count" will be used instead
parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment)
localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days
localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU.
// handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7
localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}};
// when packet data is supported then we need to buffer the empty, eop, sop, error, and channel bits
localparam FIFO_WIDTH = DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2 + ERROR_WIDTH + CHANNEL_WIDTH;
localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH);
localparam FIXED_STRIDE = 1'b1; // default stride distance used when stride is disabled. 1 means increment the address by a word (i.e. sequential transfer)
input clk;
input reset;
// descriptor commands sink port
input [255:0] snk_command_data;
input snk_command_valid;
output reg snk_command_ready;
// response source port
output wire [255:0] src_response_data;
output reg src_response_valid;
input src_response_ready;
// data path source port
output wire [DATA_WIDTH-1:0] src_data;
output wire src_valid;
input src_ready;
output wire src_sop;
output wire src_eop;
output wire [NUMBER_OF_SYMBOLS_LOG2-1:0] src_empty;
output wire [ERROR_WIDTH-1:0] src_error;
output wire [CHANNEL_WIDTH-1:0] src_channel;
// master inputs and outputs
input master_waitrequest;
output wire [ADDRESS_WIDTH-1:0] master_address;
output wire master_read;
output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable;
input [DATA_WIDTH-1:0] master_readdata;
input master_readdatavalid;
output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount;
// internal signals
wire [63:0] descriptor_address;
wire [31:0] descriptor_length;
wire [15:0] descriptor_stride;
wire [7:0] descriptor_channel;
wire descriptor_generate_sop;
wire descriptor_generate_eop;
wire [7:0] descriptor_error;
wire [7:0] descriptor_programmable_burst_count;
wire descriptor_early_done_enable;
wire sw_stop_in;
wire sw_reset_in;
reg early_done_enable_d1;
reg [ERROR_WIDTH-1:0] error_d1;
reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1;
wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count;
reg generate_sop_d1;
reg generate_eop_d1;
reg [ADDRESS_WIDTH-1:0] address_counter;
reg [LENGTH_WIDTH-1:0] length_counter;
reg [CHANNEL_WIDTH-1:0] channel_d1;
reg [STRIDE_WIDTH-1:0] stride_d1;
wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization
reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignment the master starts
reg first_access; // used to determine if the first read is occuring
wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary
reg first_word_boundary_not_reached_d1;
reg [FIFO_DEPTH_LOG2:0] pending_reads_counter;
reg [FIFO_DEPTH_LOG2:0] pending_reads_mux;
wire [FIFO_WIDTH-1:0] fifo_write_data;
wire [FIFO_WIDTH-1:0] fifo_read_data;
wire fifo_write;
wire fifo_read;
wire fifo_empty;
wire fifo_full;
wire [FIFO_DEPTH_LOG2-1:0] fifo_used;
wire too_many_pending_reads;
wire read_complete; // handy signal for determining when a read has occured and completed
wire address_increment_enable;
wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address
wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer;
wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary
wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary
wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size;
reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux;
wire go;
wire done; // asserted when last read is issued
reg done_d1;
wire done_strobe;
wire all_reads_returned; // asserted when last read returns
reg all_reads_returned_d1;
wire all_reads_returned_strobe;
reg all_reads_returned_strobe_d1;
reg all_reads_returned_strobe_d2; // used to trigger src_response_ready later than when the last read returns since the MM to ST has two pipeline stages
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout;
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout_rearranged;
wire MM_to_ST_adapter_sop;
wire MM_to_ST_adapter_eop;
wire [NUMBER_OF_SYMBOLS_LOG2-1:0] MM_to_ST_adapter_empty;
wire masked_sop;
wire masked_eop;
reg flush;
reg stopped;
wire length_sync_reset;
wire set_src_response_valid;
reg master_read_reg;
/********************************************* REGISTERS **************************************************/
// registering descriptor information
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
error_d1 <= 0;
generate_sop_d1 <= 0;
generate_eop_d1 <= 0;
channel_d1 <= 0;
stride_d1 <= 0;
programmable_burst_count_d1 <= 0;
early_done_enable_d1 <= 0;
end
else if (go == 1)
begin
error_d1 <= descriptor_error[ERROR_WIDTH-1:0];
generate_sop_d1 <= descriptor_generate_sop;
generate_eop_d1 <= descriptor_generate_eop;
channel_d1 <= descriptor_channel[CHANNEL_WIDTH-1:0];
stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0];
programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count;
early_done_enable_d1 <= ((UNALIGNED_ACCESSES_ENABLE == 1) | (PACKET_ENABLE == 1))? 0 : descriptor_early_done_enable; // early done cannot be used when unaligned data or packet support is enabled
end
end
// master word increment counter
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_counter <= 0;
end
else
begin
if (go == 1)
begin
address_counter <= descriptor_address[ADDRESS_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
address_counter <= address_counter + address_increment;
end
end
end
// master byte address, used to determine how far out of alignment the master began transfering data
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
start_byte_address <= 0;
end
else if (go == 1)
begin
start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0];
end
end
// first_access will be asserted only for the first read of a transaction, this will be used to determine what value will be used to increment the counters
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
first_access <= 0;
end
else
begin
if (go == 1)
begin
first_access <= 1;
end
else if ((first_access == 1) & (address_increment_enable == 1))
begin
first_access <= 0;
end
end
end
// this register is used to determine if the first word boundary will be reached
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
first_word_boundary_not_reached_d1 <= 0;
end
else if (go == 1)
begin
first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached;
end
end
// master length logic, this will typically be the critical path followed by the FIFO
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
length_counter <= 0;
end
else
begin
if (length_sync_reset == 1)
begin
length_counter <= 0;
end
else if (go == 1)
begin
length_counter <= descriptor_length[LENGTH_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled
end
end
end
// the pending reads counter is used to determine how many outstanding reads are posted. This will be used to determine
// if more reads can be posted based on the number of unused words in the FIFO.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
pending_reads_counter <= 0;
end
else
begin
pending_reads_counter <= pending_reads_mux;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
done_d1 <= 1; // master is done coming out of reset (need this to be set high so that done_strobe doesn't fire)
end
else
begin
done_d1 <= done;
end
end
// this is the 'final done' condition, since reads are pipelined need to make sure they have all returned before the master is really done.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_d1 <= 1;
end
else
begin
all_reads_returned_d1 <= all_reads_returned;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
flush <= 0;
end
else
begin
if ((pending_reads_counter == 0) & (flush == 1))
begin
flush <= 0;
end
else if ((sw_reset_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
flush <= 1; // will be used to reset the length counter to 0 and flush out pending reads (by letting them return without buffering them)
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped <= 0;
end
else
begin
if ((sw_stop_in == 0) | (sw_reset_in == 1))
begin
stopped <= 0;
end
else if ((sw_stop_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
stopped <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
snk_command_ready <= 1; // have to start ready to take commands
end
else
begin
if (go == 1)
begin
snk_command_ready <= 0;
end
else if ((src_response_ready == 1) & (src_response_valid == 1)) // need to make sure the response is popped before accepting more commands
begin
snk_command_ready <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_strobe_d1 <= 0;
all_reads_returned_strobe_d2 <= 0;
end
else
begin
all_reads_returned_strobe_d1 <= all_reads_returned_strobe;
all_reads_returned_strobe_d2 <= all_reads_returned_strobe_d1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
src_response_valid <= 0;
end
else
begin
if (flush == 1)
begin
src_response_valid <= 0;
end
else if (set_src_response_valid == 1) // all the reads have returned with MM to ST adapter latency taken into consideration
begin
src_response_valid <= 1; // will be set only once
end
else if ((src_response_valid == 1) & (src_response_ready == 1))
begin
src_response_valid <= 0; // will be reset only once when the dispatcher captures the data
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
master_read_reg <= 0;
end
else
begin
if ((done == 0) & (too_many_pending_reads == 0) & (sw_stop_in == 0) & (sw_reset_in == 0))
begin
master_read_reg <= 1;
end
else if ((done == 1) | ((read_complete == 1) & ((too_many_pending_reads == 1) | (sw_stop_in == 1))))
begin
master_read_reg <= 0;
end
end
end
/******************************************* END REGISTERS ************************************************/
/************************************** MODULE INSTANTIATIONS *********************************************/
// This block is pipelined and can't throttle the reads
MM_to_ST_Adapter the_MM_to_ST_adapter (
.clk (clk),
.reset (reset),
.length (descriptor_length[LENGTH_WIDTH-1:0]),
.length_counter (length_counter),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.reads_pending (pending_reads_counter),
.start (go),
.readdata (master_readdata),
.readdatavalid (master_readdatavalid),
.fifo_data (MM_to_ST_adapter_dataout),
.fifo_write (fifo_write),
.fifo_empty (MM_to_ST_adapter_empty),
.fifo_sop (MM_to_ST_adapter_sop),
.fifo_eop (MM_to_ST_adapter_eop)
);
defparam the_MM_to_ST_adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_MM_to_ST_adapter.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_MM_to_ST_adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_MM_to_ST_adapter.BYTE_ADDRESS_WIDTH = BYTE_ENABLE_WIDTH_LOG2;
defparam the_MM_to_ST_adapter.READS_PENDING_WIDTH = FIFO_DEPTH_LOG2 + 1;
defparam the_MM_to_ST_adapter.EMPTY_WIDTH = NUMBER_OF_SYMBOLS_LOG2;
defparam the_MM_to_ST_adapter.PACKET_SUPPORT = PACKET_ENABLE;
defparam the_MM_to_ST_adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
defparam the_MM_to_ST_adapter.FULL_WORD_ACCESS_ONLY = ONLY_FULL_ACCESS_ENABLE;
// buffered sop, eop, empty, data (in that order). sop, eop, and empty are only buffered when packet support is enabled
scfifo the_master_to_st_fifo (
.aclr (reset),
.clock (clk),
.data (fifo_write_data),
.full (fifo_full),
.empty (fifo_empty),
.usedw (fifo_used),
.q (fifo_read_data),
.rdreq (fifo_read),
.wrreq (fifo_write)
);
defparam the_master_to_st_fifo.lpm_width = FIFO_WIDTH;
defparam the_master_to_st_fifo.lpm_numwords = FIFO_DEPTH;
defparam the_master_to_st_fifo.lpm_widthu = FIFO_DEPTH_LOG2;
defparam the_master_to_st_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest
defparam the_master_to_st_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.underflow_checking = "OFF";
defparam the_master_to_st_fifo.overflow_checking = "OFF";
// burst block that takes the length and short access enables and forms a burst count based on them. If any of the short access bits are asserted the block will default to a burst count of 1
read_burst_control the_read_burst_control (
.address (master_address),
.length (length_counter),
.maximum_burst_count (maximum_burst_count),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.burst_count (master_burstcount)
);
defparam the_read_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_read_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_read_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_read_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_read_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_read_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/************************************ END MODULE INSTANTIATIONS *******************************************/
/******************************** CONTROL AND COMBINATIONAL SIGNALS ***************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[140:109], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_channel = snk_command_data[71:64];
assign descriptor_generate_sop = snk_command_data[72];
assign descriptor_generate_eop = snk_command_data[73];
assign descriptor_programmable_burst_count = snk_command_data[83:76];
assign descriptor_stride = snk_command_data[99:84];
assign descriptor_error = snk_command_data[107:100];
assign descriptor_early_done_enable = snk_command_data[108];
assign sw_stop_in = snk_command_data[74];
assign sw_reset_in = snk_command_data[75];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
// swap the bytes if big endian is enabled
generate
if (BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign MM_to_ST_adapter_dataout_rearranged[j +8 -1: j] = MM_to_ST_adapter_dataout[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
end
end
else
begin
assign MM_to_ST_adapter_dataout_rearranged = MM_to_ST_adapter_dataout;
end
endgenerate
assign masked_sop = MM_to_ST_adapter_sop & generate_sop_d1;
assign masked_eop = MM_to_ST_adapter_eop & generate_eop_d1;
assign fifo_write_data = {error_d1, channel_d1, masked_sop, masked_eop, ((masked_eop == 1)? MM_to_ST_adapter_empty : {NUMBER_OF_SYMBOLS_LOG2{1'b0}} ), MM_to_ST_adapter_dataout_rearranged};
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before sending them to the data stream
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign src_data[i +SYMBOL_WIDTH -1: i] = fifo_read_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
assign src_empty = (PACKET_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 - 1) : DATA_WIDTH] : 0;
assign src_eop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2] : 0;
assign src_sop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 1] : 0;
assign src_channel = (CHANNEL_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 1): (DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2)] : 0;
assign src_error = (ERROR_ENABLE == 1)? fifo_read_data[(FIFO_WIDTH-1):(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 2)] : 0;
assign short_first_access_size = BYTE_ENABLE_WIDTH - (address_counter & LSB_MASK);
assign short_last_access_size = length_counter & LSB_MASK;
assign short_first_and_last_access_size = length_counter & LSB_MASK;
/* special case transfer enables and counter increment values (address and length counter)
short_first_access_enable is for transfers that start unaligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (aligned or unaligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
assign short_first_access_enable = ((address_counter & LSB_MASK) != 0) & (first_access == 1) & (first_word_boundary_not_reached_d1 == 0);
assign short_last_access_enable = (first_access == 0) & (length_counter < BYTE_ENABLE_WIDTH);
assign short_first_and_last_access_enable = (first_access == 1) & (first_word_boundary_not_reached_d1 == 1);
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH * master_burstcount;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = length_counter < BYTE_ENABLE_WIDTH; // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
endgenerate
// the burst count will be 1 for all short accesses
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size or master_burstcount)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size;
3'b010: bytes_to_transfer_mux = short_last_access_size;
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size;
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH * master_burstcount; // this is the only time master_burstcount can be a value other than 1
endcase
end
always @ (master_readdatavalid or read_complete or pending_reads_counter or master_burstcount)
begin
case ({master_readdatavalid, read_complete})
2'b00: pending_reads_mux = pending_reads_counter; // no read posted and no read data returned
2'b01: pending_reads_mux = (pending_reads_counter + master_burstcount); // read posted and no read data returned
2'b10: pending_reads_mux = (pending_reads_counter - 1'b1); // no read posted but read data returned
2'b11: pending_reads_mux = (pending_reads_counter + master_burstcount - 1'b1); // read posted and read data returned
endcase
end
assign src_valid = (fifo_empty == 0);
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign done = (length_counter == 0); // all reads are posted but the master is not done since there could be reads pending
assign done_strobe = (done == 1) & (done_d1 == 0);
assign fifo_read = (src_valid == 1) & (src_ready == 1);
assign length_sync_reset = (flush == 1) & (pending_reads_counter == 0); // resetting the length counter will trigger the done condition
assign too_many_pending_reads = (({fifo_full,fifo_used} + pending_reads_counter) > (FIFO_DEPTH - (maximum_burst_count << 1))); // making sure a full burst can be posted, using 2x maximum_burst_count since the read signal is pipelined and so this signal will be late using maximum_burst_count alone
assign read_complete = (master_read == 1) & (master_waitrequest == 0);
assign address_increment_enable = read_complete;
assign master_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // master always asserts all byte enables and filters the data as it comes in (may lead to destructive reads in some cases)
generate if (DATA_WIDTH > 8)
begin
assign master_address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign master_address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign master_read = master_read_reg & (done == 0); // need to mask the read with done so that it doesn't issue one extra read at the end
assign all_reads_returned = (done == 1) & (pending_reads_counter == 0);
assign all_reads_returned_strobe = (all_reads_returned == 1) & (all_reads_returned_d1 == 0);
// for now the done and early done strobes are the same. Both will be triggered when the last data returns
generate
if (UNALIGNED_ACCESSES_ENABLE == 1) // need to use the delayed strobe since there are two stages of pipelining in the MM to ST adapter
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe_d2, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
else
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
endgenerate
assign set_src_response_valid = (UNALIGNED_ACCESSES_ENABLE == 1)? all_reads_returned_strobe_d2 : // all the reads have returned with MM to ST adapter latency taken into consideration
(early_done_enable_d1 == 1)? done_strobe : all_reads_returned_strobe; // when early done is enabled then the done strobe is sufficient to trigger the next command can enter, otherwise need to wait for the pending reads to return
/****************************** END CONTROL AND COMBINATIONAL SIGNALS *************************************/
endmodule
|
module read_master (
clk,
reset,
// descriptor commands sink port
snk_command_data,
snk_command_valid,
snk_command_ready,
// response source port
src_response_data,
src_response_valid,
src_response_ready,
// data path sink port
src_data,
src_valid,
src_ready,
src_sop,
src_eop,
src_empty,
src_error,
src_channel,
// data path master port
master_address,
master_read,
master_byteenable,
master_readdata,
master_waitrequest,
master_readdatavalid,
master_burstcount
);
parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries
parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled
parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled
parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width
parameter PACKET_ENABLE = 0;
parameter ERROR_ENABLE = 0;
parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on
parameter CHANNEL_ENABLE = 0;
parameter CHANNEL_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when the channel enable is turned on
parameter DATA_WIDTH = 32;
parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI)
parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master
parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter)
parameter FIFO_DEPTH = 32;
parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI)
parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic.
parameter SYMBOL_WIDTH = 8; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS = 4; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter BURST_ENABLE = 0; // when enabled stride must be disabled, 1 to enable, 0 to disable
parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set maximum_burst_count to 1 (will be automatically done by .tcl file)
parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(maximum_burst_count) + 1
parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value "maximum_burst_count" will be used instead
parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment)
localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days
localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU.
// handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7
localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}};
// when packet data is supported then we need to buffer the empty, eop, sop, error, and channel bits
localparam FIFO_WIDTH = DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2 + ERROR_WIDTH + CHANNEL_WIDTH;
localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH);
localparam FIXED_STRIDE = 1'b1; // default stride distance used when stride is disabled. 1 means increment the address by a word (i.e. sequential transfer)
input clk;
input reset;
// descriptor commands sink port
input [255:0] snk_command_data;
input snk_command_valid;
output reg snk_command_ready;
// response source port
output wire [255:0] src_response_data;
output reg src_response_valid;
input src_response_ready;
// data path source port
output wire [DATA_WIDTH-1:0] src_data;
output wire src_valid;
input src_ready;
output wire src_sop;
output wire src_eop;
output wire [NUMBER_OF_SYMBOLS_LOG2-1:0] src_empty;
output wire [ERROR_WIDTH-1:0] src_error;
output wire [CHANNEL_WIDTH-1:0] src_channel;
// master inputs and outputs
input master_waitrequest;
output wire [ADDRESS_WIDTH-1:0] master_address;
output wire master_read;
output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable;
input [DATA_WIDTH-1:0] master_readdata;
input master_readdatavalid;
output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount;
// internal signals
wire [63:0] descriptor_address;
wire [31:0] descriptor_length;
wire [15:0] descriptor_stride;
wire [7:0] descriptor_channel;
wire descriptor_generate_sop;
wire descriptor_generate_eop;
wire [7:0] descriptor_error;
wire [7:0] descriptor_programmable_burst_count;
wire descriptor_early_done_enable;
wire sw_stop_in;
wire sw_reset_in;
reg early_done_enable_d1;
reg [ERROR_WIDTH-1:0] error_d1;
reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1;
wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count;
reg generate_sop_d1;
reg generate_eop_d1;
reg [ADDRESS_WIDTH-1:0] address_counter;
reg [LENGTH_WIDTH-1:0] length_counter;
reg [CHANNEL_WIDTH-1:0] channel_d1;
reg [STRIDE_WIDTH-1:0] stride_d1;
wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization
reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignment the master starts
reg first_access; // used to determine if the first read is occuring
wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary
reg first_word_boundary_not_reached_d1;
reg [FIFO_DEPTH_LOG2:0] pending_reads_counter;
reg [FIFO_DEPTH_LOG2:0] pending_reads_mux;
wire [FIFO_WIDTH-1:0] fifo_write_data;
wire [FIFO_WIDTH-1:0] fifo_read_data;
wire fifo_write;
wire fifo_read;
wire fifo_empty;
wire fifo_full;
wire [FIFO_DEPTH_LOG2-1:0] fifo_used;
wire too_many_pending_reads;
wire read_complete; // handy signal for determining when a read has occured and completed
wire address_increment_enable;
wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address
wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer;
wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary
wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary
wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size;
reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux;
wire go;
wire done; // asserted when last read is issued
reg done_d1;
wire done_strobe;
wire all_reads_returned; // asserted when last read returns
reg all_reads_returned_d1;
wire all_reads_returned_strobe;
reg all_reads_returned_strobe_d1;
reg all_reads_returned_strobe_d2; // used to trigger src_response_ready later than when the last read returns since the MM to ST has two pipeline stages
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout;
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout_rearranged;
wire MM_to_ST_adapter_sop;
wire MM_to_ST_adapter_eop;
wire [NUMBER_OF_SYMBOLS_LOG2-1:0] MM_to_ST_adapter_empty;
wire masked_sop;
wire masked_eop;
reg flush;
reg stopped;
wire length_sync_reset;
wire set_src_response_valid;
reg master_read_reg;
/********************************************* REGISTERS **************************************************/
// registering descriptor information
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
error_d1 <= 0;
generate_sop_d1 <= 0;
generate_eop_d1 <= 0;
channel_d1 <= 0;
stride_d1 <= 0;
programmable_burst_count_d1 <= 0;
early_done_enable_d1 <= 0;
end
else if (go == 1)
begin
error_d1 <= descriptor_error[ERROR_WIDTH-1:0];
generate_sop_d1 <= descriptor_generate_sop;
generate_eop_d1 <= descriptor_generate_eop;
channel_d1 <= descriptor_channel[CHANNEL_WIDTH-1:0];
stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0];
programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count;
early_done_enable_d1 <= ((UNALIGNED_ACCESSES_ENABLE == 1) | (PACKET_ENABLE == 1))? 0 : descriptor_early_done_enable; // early done cannot be used when unaligned data or packet support is enabled
end
end
// master word increment counter
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_counter <= 0;
end
else
begin
if (go == 1)
begin
address_counter <= descriptor_address[ADDRESS_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
address_counter <= address_counter + address_increment;
end
end
end
// master byte address, used to determine how far out of alignment the master began transfering data
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
start_byte_address <= 0;
end
else if (go == 1)
begin
start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0];
end
end
// first_access will be asserted only for the first read of a transaction, this will be used to determine what value will be used to increment the counters
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
first_access <= 0;
end
else
begin
if (go == 1)
begin
first_access <= 1;
end
else if ((first_access == 1) & (address_increment_enable == 1))
begin
first_access <= 0;
end
end
end
// this register is used to determine if the first word boundary will be reached
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
first_word_boundary_not_reached_d1 <= 0;
end
else if (go == 1)
begin
first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached;
end
end
// master length logic, this will typically be the critical path followed by the FIFO
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
length_counter <= 0;
end
else
begin
if (length_sync_reset == 1)
begin
length_counter <= 0;
end
else if (go == 1)
begin
length_counter <= descriptor_length[LENGTH_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled
end
end
end
// the pending reads counter is used to determine how many outstanding reads are posted. This will be used to determine
// if more reads can be posted based on the number of unused words in the FIFO.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
pending_reads_counter <= 0;
end
else
begin
pending_reads_counter <= pending_reads_mux;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
done_d1 <= 1; // master is done coming out of reset (need this to be set high so that done_strobe doesn't fire)
end
else
begin
done_d1 <= done;
end
end
// this is the 'final done' condition, since reads are pipelined need to make sure they have all returned before the master is really done.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_d1 <= 1;
end
else
begin
all_reads_returned_d1 <= all_reads_returned;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
flush <= 0;
end
else
begin
if ((pending_reads_counter == 0) & (flush == 1))
begin
flush <= 0;
end
else if ((sw_reset_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
flush <= 1; // will be used to reset the length counter to 0 and flush out pending reads (by letting them return without buffering them)
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped <= 0;
end
else
begin
if ((sw_stop_in == 0) | (sw_reset_in == 1))
begin
stopped <= 0;
end
else if ((sw_stop_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
stopped <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
snk_command_ready <= 1; // have to start ready to take commands
end
else
begin
if (go == 1)
begin
snk_command_ready <= 0;
end
else if ((src_response_ready == 1) & (src_response_valid == 1)) // need to make sure the response is popped before accepting more commands
begin
snk_command_ready <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_strobe_d1 <= 0;
all_reads_returned_strobe_d2 <= 0;
end
else
begin
all_reads_returned_strobe_d1 <= all_reads_returned_strobe;
all_reads_returned_strobe_d2 <= all_reads_returned_strobe_d1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
src_response_valid <= 0;
end
else
begin
if (flush == 1)
begin
src_response_valid <= 0;
end
else if (set_src_response_valid == 1) // all the reads have returned with MM to ST adapter latency taken into consideration
begin
src_response_valid <= 1; // will be set only once
end
else if ((src_response_valid == 1) & (src_response_ready == 1))
begin
src_response_valid <= 0; // will be reset only once when the dispatcher captures the data
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
master_read_reg <= 0;
end
else
begin
if ((done == 0) & (too_many_pending_reads == 0) & (sw_stop_in == 0) & (sw_reset_in == 0))
begin
master_read_reg <= 1;
end
else if ((done == 1) | ((read_complete == 1) & ((too_many_pending_reads == 1) | (sw_stop_in == 1))))
begin
master_read_reg <= 0;
end
end
end
/******************************************* END REGISTERS ************************************************/
/************************************** MODULE INSTANTIATIONS *********************************************/
// This block is pipelined and can't throttle the reads
MM_to_ST_Adapter the_MM_to_ST_adapter (
.clk (clk),
.reset (reset),
.length (descriptor_length[LENGTH_WIDTH-1:0]),
.length_counter (length_counter),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.reads_pending (pending_reads_counter),
.start (go),
.readdata (master_readdata),
.readdatavalid (master_readdatavalid),
.fifo_data (MM_to_ST_adapter_dataout),
.fifo_write (fifo_write),
.fifo_empty (MM_to_ST_adapter_empty),
.fifo_sop (MM_to_ST_adapter_sop),
.fifo_eop (MM_to_ST_adapter_eop)
);
defparam the_MM_to_ST_adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_MM_to_ST_adapter.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_MM_to_ST_adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_MM_to_ST_adapter.BYTE_ADDRESS_WIDTH = BYTE_ENABLE_WIDTH_LOG2;
defparam the_MM_to_ST_adapter.READS_PENDING_WIDTH = FIFO_DEPTH_LOG2 + 1;
defparam the_MM_to_ST_adapter.EMPTY_WIDTH = NUMBER_OF_SYMBOLS_LOG2;
defparam the_MM_to_ST_adapter.PACKET_SUPPORT = PACKET_ENABLE;
defparam the_MM_to_ST_adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
defparam the_MM_to_ST_adapter.FULL_WORD_ACCESS_ONLY = ONLY_FULL_ACCESS_ENABLE;
// buffered sop, eop, empty, data (in that order). sop, eop, and empty are only buffered when packet support is enabled
scfifo the_master_to_st_fifo (
.aclr (reset),
.clock (clk),
.data (fifo_write_data),
.full (fifo_full),
.empty (fifo_empty),
.usedw (fifo_used),
.q (fifo_read_data),
.rdreq (fifo_read),
.wrreq (fifo_write)
);
defparam the_master_to_st_fifo.lpm_width = FIFO_WIDTH;
defparam the_master_to_st_fifo.lpm_numwords = FIFO_DEPTH;
defparam the_master_to_st_fifo.lpm_widthu = FIFO_DEPTH_LOG2;
defparam the_master_to_st_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest
defparam the_master_to_st_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.underflow_checking = "OFF";
defparam the_master_to_st_fifo.overflow_checking = "OFF";
// burst block that takes the length and short access enables and forms a burst count based on them. If any of the short access bits are asserted the block will default to a burst count of 1
read_burst_control the_read_burst_control (
.address (master_address),
.length (length_counter),
.maximum_burst_count (maximum_burst_count),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.burst_count (master_burstcount)
);
defparam the_read_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_read_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_read_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_read_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_read_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_read_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/************************************ END MODULE INSTANTIATIONS *******************************************/
/******************************** CONTROL AND COMBINATIONAL SIGNALS ***************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[140:109], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_channel = snk_command_data[71:64];
assign descriptor_generate_sop = snk_command_data[72];
assign descriptor_generate_eop = snk_command_data[73];
assign descriptor_programmable_burst_count = snk_command_data[83:76];
assign descriptor_stride = snk_command_data[99:84];
assign descriptor_error = snk_command_data[107:100];
assign descriptor_early_done_enable = snk_command_data[108];
assign sw_stop_in = snk_command_data[74];
assign sw_reset_in = snk_command_data[75];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
// swap the bytes if big endian is enabled
generate
if (BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign MM_to_ST_adapter_dataout_rearranged[j +8 -1: j] = MM_to_ST_adapter_dataout[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
end
end
else
begin
assign MM_to_ST_adapter_dataout_rearranged = MM_to_ST_adapter_dataout;
end
endgenerate
assign masked_sop = MM_to_ST_adapter_sop & generate_sop_d1;
assign masked_eop = MM_to_ST_adapter_eop & generate_eop_d1;
assign fifo_write_data = {error_d1, channel_d1, masked_sop, masked_eop, ((masked_eop == 1)? MM_to_ST_adapter_empty : {NUMBER_OF_SYMBOLS_LOG2{1'b0}} ), MM_to_ST_adapter_dataout_rearranged};
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before sending them to the data stream
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign src_data[i +SYMBOL_WIDTH -1: i] = fifo_read_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
assign src_empty = (PACKET_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 - 1) : DATA_WIDTH] : 0;
assign src_eop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2] : 0;
assign src_sop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 1] : 0;
assign src_channel = (CHANNEL_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 1): (DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2)] : 0;
assign src_error = (ERROR_ENABLE == 1)? fifo_read_data[(FIFO_WIDTH-1):(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 2)] : 0;
assign short_first_access_size = BYTE_ENABLE_WIDTH - (address_counter & LSB_MASK);
assign short_last_access_size = length_counter & LSB_MASK;
assign short_first_and_last_access_size = length_counter & LSB_MASK;
/* special case transfer enables and counter increment values (address and length counter)
short_first_access_enable is for transfers that start unaligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (aligned or unaligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
assign short_first_access_enable = ((address_counter & LSB_MASK) != 0) & (first_access == 1) & (first_word_boundary_not_reached_d1 == 0);
assign short_last_access_enable = (first_access == 0) & (length_counter < BYTE_ENABLE_WIDTH);
assign short_first_and_last_access_enable = (first_access == 1) & (first_word_boundary_not_reached_d1 == 1);
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH * master_burstcount;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = length_counter < BYTE_ENABLE_WIDTH; // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
endgenerate
// the burst count will be 1 for all short accesses
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size or master_burstcount)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size;
3'b010: bytes_to_transfer_mux = short_last_access_size;
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size;
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH * master_burstcount; // this is the only time master_burstcount can be a value other than 1
endcase
end
always @ (master_readdatavalid or read_complete or pending_reads_counter or master_burstcount)
begin
case ({master_readdatavalid, read_complete})
2'b00: pending_reads_mux = pending_reads_counter; // no read posted and no read data returned
2'b01: pending_reads_mux = (pending_reads_counter + master_burstcount); // read posted and no read data returned
2'b10: pending_reads_mux = (pending_reads_counter - 1'b1); // no read posted but read data returned
2'b11: pending_reads_mux = (pending_reads_counter + master_burstcount - 1'b1); // read posted and read data returned
endcase
end
assign src_valid = (fifo_empty == 0);
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign done = (length_counter == 0); // all reads are posted but the master is not done since there could be reads pending
assign done_strobe = (done == 1) & (done_d1 == 0);
assign fifo_read = (src_valid == 1) & (src_ready == 1);
assign length_sync_reset = (flush == 1) & (pending_reads_counter == 0); // resetting the length counter will trigger the done condition
assign too_many_pending_reads = (({fifo_full,fifo_used} + pending_reads_counter) > (FIFO_DEPTH - (maximum_burst_count << 1))); // making sure a full burst can be posted, using 2x maximum_burst_count since the read signal is pipelined and so this signal will be late using maximum_burst_count alone
assign read_complete = (master_read == 1) & (master_waitrequest == 0);
assign address_increment_enable = read_complete;
assign master_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // master always asserts all byte enables and filters the data as it comes in (may lead to destructive reads in some cases)
generate if (DATA_WIDTH > 8)
begin
assign master_address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign master_address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign master_read = master_read_reg & (done == 0); // need to mask the read with done so that it doesn't issue one extra read at the end
assign all_reads_returned = (done == 1) & (pending_reads_counter == 0);
assign all_reads_returned_strobe = (all_reads_returned == 1) & (all_reads_returned_d1 == 0);
// for now the done and early done strobes are the same. Both will be triggered when the last data returns
generate
if (UNALIGNED_ACCESSES_ENABLE == 1) // need to use the delayed strobe since there are two stages of pipelining in the MM to ST adapter
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe_d2, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
else
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
endgenerate
assign set_src_response_valid = (UNALIGNED_ACCESSES_ENABLE == 1)? all_reads_returned_strobe_d2 : // all the reads have returned with MM to ST adapter latency taken into consideration
(early_done_enable_d1 == 1)? done_strobe : all_reads_returned_strobe; // when early done is enabled then the done strobe is sufficient to trigger the next command can enter, otherwise need to wait for the pending reads to return
/****************************** END CONTROL AND COMBINATIONAL SIGNALS *************************************/
endmodule
|
module read_master (
clk,
reset,
// descriptor commands sink port
snk_command_data,
snk_command_valid,
snk_command_ready,
// response source port
src_response_data,
src_response_valid,
src_response_ready,
// data path sink port
src_data,
src_valid,
src_ready,
src_sop,
src_eop,
src_empty,
src_error,
src_channel,
// data path master port
master_address,
master_read,
master_byteenable,
master_readdata,
master_waitrequest,
master_readdatavalid,
master_burstcount
);
parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries
parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled
parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled
parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width
parameter PACKET_ENABLE = 0;
parameter ERROR_ENABLE = 0;
parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on
parameter CHANNEL_ENABLE = 0;
parameter CHANNEL_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when the channel enable is turned on
parameter DATA_WIDTH = 32;
parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI)
parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master
parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter)
parameter FIFO_DEPTH = 32;
parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI)
parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic.
parameter SYMBOL_WIDTH = 8; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS = 4; // set in the .tcl file (hidden in GUI)
parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI)
parameter BURST_ENABLE = 0; // when enabled stride must be disabled, 1 to enable, 0 to disable
parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set maximum_burst_count to 1 (will be automatically done by .tcl file)
parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(maximum_burst_count) + 1
parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value "maximum_burst_count" will be used instead
parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment)
localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days
localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU.
// handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7
localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}};
// when packet data is supported then we need to buffer the empty, eop, sop, error, and channel bits
localparam FIFO_WIDTH = DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2 + ERROR_WIDTH + CHANNEL_WIDTH;
localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH);
localparam FIXED_STRIDE = 1'b1; // default stride distance used when stride is disabled. 1 means increment the address by a word (i.e. sequential transfer)
input clk;
input reset;
// descriptor commands sink port
input [255:0] snk_command_data;
input snk_command_valid;
output reg snk_command_ready;
// response source port
output wire [255:0] src_response_data;
output reg src_response_valid;
input src_response_ready;
// data path source port
output wire [DATA_WIDTH-1:0] src_data;
output wire src_valid;
input src_ready;
output wire src_sop;
output wire src_eop;
output wire [NUMBER_OF_SYMBOLS_LOG2-1:0] src_empty;
output wire [ERROR_WIDTH-1:0] src_error;
output wire [CHANNEL_WIDTH-1:0] src_channel;
// master inputs and outputs
input master_waitrequest;
output wire [ADDRESS_WIDTH-1:0] master_address;
output wire master_read;
output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable;
input [DATA_WIDTH-1:0] master_readdata;
input master_readdatavalid;
output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount;
// internal signals
wire [63:0] descriptor_address;
wire [31:0] descriptor_length;
wire [15:0] descriptor_stride;
wire [7:0] descriptor_channel;
wire descriptor_generate_sop;
wire descriptor_generate_eop;
wire [7:0] descriptor_error;
wire [7:0] descriptor_programmable_burst_count;
wire descriptor_early_done_enable;
wire sw_stop_in;
wire sw_reset_in;
reg early_done_enable_d1;
reg [ERROR_WIDTH-1:0] error_d1;
reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1;
wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count;
reg generate_sop_d1;
reg generate_eop_d1;
reg [ADDRESS_WIDTH-1:0] address_counter;
reg [LENGTH_WIDTH-1:0] length_counter;
reg [CHANNEL_WIDTH-1:0] channel_d1;
reg [STRIDE_WIDTH-1:0] stride_d1;
wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization
reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignment the master starts
reg first_access; // used to determine if the first read is occuring
wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary
reg first_word_boundary_not_reached_d1;
reg [FIFO_DEPTH_LOG2:0] pending_reads_counter;
reg [FIFO_DEPTH_LOG2:0] pending_reads_mux;
wire [FIFO_WIDTH-1:0] fifo_write_data;
wire [FIFO_WIDTH-1:0] fifo_read_data;
wire fifo_write;
wire fifo_read;
wire fifo_empty;
wire fifo_full;
wire [FIFO_DEPTH_LOG2-1:0] fifo_used;
wire too_many_pending_reads;
wire read_complete; // handy signal for determining when a read has occured and completed
wire address_increment_enable;
wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address
wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer;
wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary
wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary
wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size;
wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size;
reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux;
wire go;
wire done; // asserted when last read is issued
reg done_d1;
wire done_strobe;
wire all_reads_returned; // asserted when last read returns
reg all_reads_returned_d1;
wire all_reads_returned_strobe;
reg all_reads_returned_strobe_d1;
reg all_reads_returned_strobe_d2; // used to trigger src_response_ready later than when the last read returns since the MM to ST has two pipeline stages
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout;
wire [DATA_WIDTH-1:0] MM_to_ST_adapter_dataout_rearranged;
wire MM_to_ST_adapter_sop;
wire MM_to_ST_adapter_eop;
wire [NUMBER_OF_SYMBOLS_LOG2-1:0] MM_to_ST_adapter_empty;
wire masked_sop;
wire masked_eop;
reg flush;
reg stopped;
wire length_sync_reset;
wire set_src_response_valid;
reg master_read_reg;
/********************************************* REGISTERS **************************************************/
// registering descriptor information
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
error_d1 <= 0;
generate_sop_d1 <= 0;
generate_eop_d1 <= 0;
channel_d1 <= 0;
stride_d1 <= 0;
programmable_burst_count_d1 <= 0;
early_done_enable_d1 <= 0;
end
else if (go == 1)
begin
error_d1 <= descriptor_error[ERROR_WIDTH-1:0];
generate_sop_d1 <= descriptor_generate_sop;
generate_eop_d1 <= descriptor_generate_eop;
channel_d1 <= descriptor_channel[CHANNEL_WIDTH-1:0];
stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0];
programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count;
early_done_enable_d1 <= ((UNALIGNED_ACCESSES_ENABLE == 1) | (PACKET_ENABLE == 1))? 0 : descriptor_early_done_enable; // early done cannot be used when unaligned data or packet support is enabled
end
end
// master word increment counter
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
address_counter <= 0;
end
else
begin
if (go == 1)
begin
address_counter <= descriptor_address[ADDRESS_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
address_counter <= address_counter + address_increment;
end
end
end
// master byte address, used to determine how far out of alignment the master began transfering data
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
start_byte_address <= 0;
end
else if (go == 1)
begin
start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0];
end
end
// first_access will be asserted only for the first read of a transaction, this will be used to determine what value will be used to increment the counters
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
first_access <= 0;
end
else
begin
if (go == 1)
begin
first_access <= 1;
end
else if ((first_access == 1) & (address_increment_enable == 1))
begin
first_access <= 0;
end
end
end
// this register is used to determine if the first word boundary will be reached
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
first_word_boundary_not_reached_d1 <= 0;
end
else if (go == 1)
begin
first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached;
end
end
// master length logic, this will typically be the critical path followed by the FIFO
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
length_counter <= 0;
end
else
begin
if (length_sync_reset == 1)
begin
length_counter <= 0;
end
else if (go == 1)
begin
length_counter <= descriptor_length[LENGTH_WIDTH-1:0];
end
else if (address_increment_enable == 1)
begin
length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled
end
end
end
// the pending reads counter is used to determine how many outstanding reads are posted. This will be used to determine
// if more reads can be posted based on the number of unused words in the FIFO.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
pending_reads_counter <= 0;
end
else
begin
pending_reads_counter <= pending_reads_mux;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
done_d1 <= 1; // master is done coming out of reset (need this to be set high so that done_strobe doesn't fire)
end
else
begin
done_d1 <= done;
end
end
// this is the 'final done' condition, since reads are pipelined need to make sure they have all returned before the master is really done.
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_d1 <= 1;
end
else
begin
all_reads_returned_d1 <= all_reads_returned;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset == 1)
begin
flush <= 0;
end
else
begin
if ((pending_reads_counter == 0) & (flush == 1))
begin
flush <= 0;
end
else if ((sw_reset_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
flush <= 1; // will be used to reset the length counter to 0 and flush out pending reads (by letting them return without buffering them)
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
stopped <= 0;
end
else
begin
if ((sw_stop_in == 0) | (sw_reset_in == 1))
begin
stopped <= 0;
end
else if ((sw_stop_in == 1) & ((read_complete == 1) | (snk_command_ready == 1) | (master_read_reg == 0)))
begin
stopped <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
snk_command_ready <= 1; // have to start ready to take commands
end
else
begin
if (go == 1)
begin
snk_command_ready <= 0;
end
else if ((src_response_ready == 1) & (src_response_valid == 1)) // need to make sure the response is popped before accepting more commands
begin
snk_command_ready <= 1;
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
all_reads_returned_strobe_d1 <= 0;
all_reads_returned_strobe_d2 <= 0;
end
else
begin
all_reads_returned_strobe_d1 <= all_reads_returned_strobe;
all_reads_returned_strobe_d2 <= all_reads_returned_strobe_d1;
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
src_response_valid <= 0;
end
else
begin
if (flush == 1)
begin
src_response_valid <= 0;
end
else if (set_src_response_valid == 1) // all the reads have returned with MM to ST adapter latency taken into consideration
begin
src_response_valid <= 1; // will be set only once
end
else if ((src_response_valid == 1) & (src_response_ready == 1))
begin
src_response_valid <= 0; // will be reset only once when the dispatcher captures the data
end
end
end
always @ (posedge clk or posedge reset)
begin
if (reset)
begin
master_read_reg <= 0;
end
else
begin
if ((done == 0) & (too_many_pending_reads == 0) & (sw_stop_in == 0) & (sw_reset_in == 0))
begin
master_read_reg <= 1;
end
else if ((done == 1) | ((read_complete == 1) & ((too_many_pending_reads == 1) | (sw_stop_in == 1))))
begin
master_read_reg <= 0;
end
end
end
/******************************************* END REGISTERS ************************************************/
/************************************** MODULE INSTANTIATIONS *********************************************/
// This block is pipelined and can't throttle the reads
MM_to_ST_Adapter the_MM_to_ST_adapter (
.clk (clk),
.reset (reset),
.length (descriptor_length[LENGTH_WIDTH-1:0]),
.length_counter (length_counter),
.address (descriptor_address[ADDRESS_WIDTH-1:0]),
.reads_pending (pending_reads_counter),
.start (go),
.readdata (master_readdata),
.readdatavalid (master_readdatavalid),
.fifo_data (MM_to_ST_adapter_dataout),
.fifo_write (fifo_write),
.fifo_empty (MM_to_ST_adapter_empty),
.fifo_sop (MM_to_ST_adapter_sop),
.fifo_eop (MM_to_ST_adapter_eop)
);
defparam the_MM_to_ST_adapter.DATA_WIDTH = DATA_WIDTH;
defparam the_MM_to_ST_adapter.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_MM_to_ST_adapter.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_MM_to_ST_adapter.BYTE_ADDRESS_WIDTH = BYTE_ENABLE_WIDTH_LOG2;
defparam the_MM_to_ST_adapter.READS_PENDING_WIDTH = FIFO_DEPTH_LOG2 + 1;
defparam the_MM_to_ST_adapter.EMPTY_WIDTH = NUMBER_OF_SYMBOLS_LOG2;
defparam the_MM_to_ST_adapter.PACKET_SUPPORT = PACKET_ENABLE;
defparam the_MM_to_ST_adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE;
defparam the_MM_to_ST_adapter.FULL_WORD_ACCESS_ONLY = ONLY_FULL_ACCESS_ENABLE;
// buffered sop, eop, empty, data (in that order). sop, eop, and empty are only buffered when packet support is enabled
scfifo the_master_to_st_fifo (
.aclr (reset),
.clock (clk),
.data (fifo_write_data),
.full (fifo_full),
.empty (fifo_empty),
.usedw (fifo_used),
.q (fifo_read_data),
.rdreq (fifo_read),
.wrreq (fifo_write)
);
defparam the_master_to_st_fifo.lpm_width = FIFO_WIDTH;
defparam the_master_to_st_fifo.lpm_numwords = FIFO_DEPTH;
defparam the_master_to_st_fifo.lpm_widthu = FIFO_DEPTH_LOG2;
defparam the_master_to_st_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest
defparam the_master_to_st_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF";
defparam the_master_to_st_fifo.underflow_checking = "OFF";
defparam the_master_to_st_fifo.overflow_checking = "OFF";
// burst block that takes the length and short access enables and forms a burst count based on them. If any of the short access bits are asserted the block will default to a burst count of 1
read_burst_control the_read_burst_control (
.address (master_address),
.length (length_counter),
.maximum_burst_count (maximum_burst_count),
.short_first_access_enable (short_first_access_enable),
.short_last_access_enable (short_last_access_enable),
.short_first_and_last_access_enable (short_first_and_last_access_enable),
.burst_count (master_burstcount)
);
defparam the_read_burst_control.BURST_ENABLE = BURST_ENABLE;
defparam the_read_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH;
defparam the_read_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits
defparam the_read_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH;
defparam the_read_burst_control.LENGTH_WIDTH = LENGTH_WIDTH;
defparam the_read_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT;
/************************************ END MODULE INSTANTIATIONS *******************************************/
/******************************** CONTROL AND COMBINATIONAL SIGNALS ***************************************/
// breakout the descriptor information into more manageable names
assign descriptor_address = {snk_command_data[140:109], snk_command_data[31:0]}; // 64-bit addressing support
assign descriptor_length = snk_command_data[63:32];
assign descriptor_channel = snk_command_data[71:64];
assign descriptor_generate_sop = snk_command_data[72];
assign descriptor_generate_eop = snk_command_data[73];
assign descriptor_programmable_burst_count = snk_command_data[83:76];
assign descriptor_stride = snk_command_data[99:84];
assign descriptor_error = snk_command_data[107:100];
assign descriptor_early_done_enable = snk_command_data[108];
assign sw_stop_in = snk_command_data[74];
assign sw_reset_in = snk_command_data[75];
assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled
assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT;
// swap the bytes if big endian is enabled
generate
if (BIG_ENDIAN_ACCESS == 1)
begin
genvar j;
for(j=0; j < DATA_WIDTH; j = j + 8)
begin: byte_swap
assign MM_to_ST_adapter_dataout_rearranged[j +8 -1: j] = MM_to_ST_adapter_dataout[DATA_WIDTH -j -1: DATA_WIDTH -j - 8];
end
end
else
begin
assign MM_to_ST_adapter_dataout_rearranged = MM_to_ST_adapter_dataout;
end
endgenerate
assign masked_sop = MM_to_ST_adapter_sop & generate_sop_d1;
assign masked_eop = MM_to_ST_adapter_eop & generate_eop_d1;
assign fifo_write_data = {error_d1, channel_d1, masked_sop, masked_eop, ((masked_eop == 1)? MM_to_ST_adapter_empty : {NUMBER_OF_SYMBOLS_LOG2{1'b0}} ), MM_to_ST_adapter_dataout_rearranged};
// Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before sending them to the data stream
generate
genvar i;
for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width
begin: symbol_swap
assign src_data[i +SYMBOL_WIDTH -1: i] = fifo_read_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH];
end
endgenerate
assign src_empty = (PACKET_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 - 1) : DATA_WIDTH] : 0;
assign src_eop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2] : 0;
assign src_sop = (PACKET_ENABLE == 1)? fifo_read_data[DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 1] : 0;
assign src_channel = (CHANNEL_ENABLE == 1)? fifo_read_data[(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 1): (DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + 2)] : 0;
assign src_error = (ERROR_ENABLE == 1)? fifo_read_data[(FIFO_WIDTH-1):(DATA_WIDTH + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH + 2)] : 0;
assign short_first_access_size = BYTE_ENABLE_WIDTH - (address_counter & LSB_MASK);
assign short_last_access_size = length_counter & LSB_MASK;
assign short_first_and_last_access_size = length_counter & LSB_MASK;
/* special case transfer enables and counter increment values (address and length counter)
short_first_access_enable is for transfers that start unaligned but reach the next word boundary
short_last_access_enable is for transfers that are not the first transfer but don't end on a word boundary
short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (aligned or unaligned)
*/
generate
if (UNALIGNED_ACCESSES_ENABLE == 1)
begin
assign short_first_access_enable = ((address_counter & LSB_MASK) != 0) & (first_access == 1) & (first_word_boundary_not_reached_d1 == 0);
assign short_last_access_enable = (first_access == 0) & (length_counter < BYTE_ENABLE_WIDTH);
assign short_first_and_last_access_enable = (first_access == 1) & (first_word_boundary_not_reached_d1 == 1);
assign bytes_to_transfer = bytes_to_transfer_mux;
assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled
end
else if (ONLY_FULL_ACCESS_ENABLE == 1)
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = 0;
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = BYTE_ENABLE_WIDTH * master_burstcount;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
else // must be aligned but can end with any number of bytes
begin
assign short_first_access_enable = 0;
assign short_last_access_enable = length_counter < BYTE_ENABLE_WIDTH; // less than a word to transfer
assign short_first_and_last_access_enable = 0;
assign bytes_to_transfer = bytes_to_transfer_mux;
if (STRIDE_ENABLE == 1)
begin
assign address_increment = BYTE_ENABLE_WIDTH * stride_amount * master_burstcount; // stride must be a static '1' when bursting is enabled
end
else
begin
assign address_increment = BYTE_ENABLE_WIDTH * master_burstcount; // stride must be a static '1' when bursting is enabled
end
end
endgenerate
// the burst count will be 1 for all short accesses
always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size or master_burstcount)
begin
case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable})
3'b001: bytes_to_transfer_mux = short_first_access_size;
3'b010: bytes_to_transfer_mux = short_last_access_size;
3'b100: bytes_to_transfer_mux = short_first_and_last_access_size;
default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH * master_burstcount; // this is the only time master_burstcount can be a value other than 1
endcase
end
always @ (master_readdatavalid or read_complete or pending_reads_counter or master_burstcount)
begin
case ({master_readdatavalid, read_complete})
2'b00: pending_reads_mux = pending_reads_counter; // no read posted and no read data returned
2'b01: pending_reads_mux = (pending_reads_counter + master_burstcount); // read posted and no read data returned
2'b10: pending_reads_mux = (pending_reads_counter - 1'b1); // no read posted but read data returned
2'b11: pending_reads_mux = (pending_reads_counter + master_burstcount - 1'b1); // read posted and read data returned
endcase
end
assign src_valid = (fifo_empty == 0);
assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size
(((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary
assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero)
assign done = (length_counter == 0); // all reads are posted but the master is not done since there could be reads pending
assign done_strobe = (done == 1) & (done_d1 == 0);
assign fifo_read = (src_valid == 1) & (src_ready == 1);
assign length_sync_reset = (flush == 1) & (pending_reads_counter == 0); // resetting the length counter will trigger the done condition
assign too_many_pending_reads = (({fifo_full,fifo_used} + pending_reads_counter) > (FIFO_DEPTH - (maximum_burst_count << 1))); // making sure a full burst can be posted, using 2x maximum_burst_count since the read signal is pipelined and so this signal will be late using maximum_burst_count alone
assign read_complete = (master_read == 1) & (master_waitrequest == 0);
assign address_increment_enable = read_complete;
assign master_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // master always asserts all byte enables and filters the data as it comes in (may lead to destructive reads in some cases)
generate if (DATA_WIDTH > 8)
begin
assign master_address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer
end
else
begin
assign master_address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time
end
endgenerate
assign master_read = master_read_reg & (done == 0); // need to mask the read with done so that it doesn't issue one extra read at the end
assign all_reads_returned = (done == 1) & (pending_reads_counter == 0);
assign all_reads_returned_strobe = (all_reads_returned == 1) & (all_reads_returned_d1 == 0);
// for now the done and early done strobes are the same. Both will be triggered when the last data returns
generate
if (UNALIGNED_ACCESSES_ENABLE == 1) // need to use the delayed strobe since there are two stages of pipelining in the MM to ST adapter
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe_d2, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
else
begin
assign src_response_data = {{252{1'b0}}, all_reads_returned_strobe, done_strobe, stopped, flush}; // 252 zeros: done strobe: early done strobe: stop state: reset delayed
end
endgenerate
assign set_src_response_valid = (UNALIGNED_ACCESSES_ENABLE == 1)? all_reads_returned_strobe_d2 : // all the reads have returned with MM to ST adapter latency taken into consideration
(early_done_enable_d1 == 1)? done_strobe : all_reads_returned_strobe; // when early done is enabled then the done strobe is sufficient to trigger the next command can enter, otherwise need to wait for the pending reads to return
/****************************** END CONTROL AND COMBINATIONAL SIGNALS *************************************/
endmodule
|
module fifo_1c_1k ( data, wrreq, rdreq, rdclk, wrclk, aclr, q,
rdfull, rdempty, rdusedw, wrfull, wrempty, wrusedw);
parameter width = 32;
parameter depth = 1024;
//`define rd_req 0; // Set this to 0 for rd_ack, 1 for rd_req
input [31:0] data;
input wrreq;
input rdreq;
input rdclk;
input wrclk;
input aclr;
output [31:0] q;
output rdfull;
output rdempty;
output [9:0] rdusedw;
output wrfull;
output wrempty;
output [9:0] wrusedw;
reg [width-1:0] mem [0:depth-1];
reg [7:0] rdptr;
reg [7:0] wrptr;
`ifdef rd_req
reg [width-1:0] q;
`else
wire [width-1:0] q;
`endif
reg [9:0] rdusedw;
reg [9:0] wrusedw;
integer i;
always @( aclr)
begin
wrptr <= #1 0;
rdptr <= #1 0;
for(i=0;i<depth;i=i+1)
mem[i] <= #1 0;
end
always @(posedge wrclk)
if(wrreq)
begin
wrptr <= #1 wrptr+1;
mem[wrptr] <= #1 data;
end
always @(posedge rdclk)
if(rdreq)
begin
rdptr <= #1 rdptr+1;
`ifdef rd_req
q <= #1 mem[rdptr];
`endif
end
`ifdef rd_req
`else
assign q = mem[rdptr];
`endif
// Fix these
always @(posedge wrclk)
wrusedw <= #1 wrptr - rdptr;
always @(posedge rdclk)
rdusedw <= #1 wrptr - rdptr;
assign wrempty = (wrusedw == 0);
assign wrfull = (wrusedw == depth-1);
assign rdempty = (rdusedw == 0);
assign rdfull = (rdusedw == depth-1);
endmodule
|
module pll (
inclk0,
c0);
input inclk0;
output c0;
endmodule
|
module pll (
inclk0,
c0);
input inclk0;
output c0;
endmodule
|
module rx_chain_dual
(input clock,
input clock_2x,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
input wire [31:0] freq0,
input wire [15:0] i_in0,
input wire [15:0] q_in0,
output wire [15:0] i_out0,
output wire [15:0] q_out0,
input wire [31:0] freq1,
input wire [15:0] i_in1,
input wire [15:0] q_in1,
output wire [15:0] i_out1,
output wire [15:0] q_out1
);
wire [15:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] i_in, q_in;
wire [31:0] phase0;
wire [31:0] phase1;
reg [15:0] bb_i0, bb_q0;
reg [15:0] bb_i1, bb_q1;
// We want to time-share the CORDIC by double-clocking it
phase_acc rx_phase_acc_0
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq0),.phase(phase0) );
phase_acc rx_phase_acc_1
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq1),.phase(phase1) );
assign phase = clock ? phase0[31:16] : phase1[31:16];
assign i_in = clock ? i_in0 : i_in1;
assign q_in = clock ? q_in0 : q_in1;
// This appears reversed because of the number of CORDIC stages
always @(posedge clock_2x)
if(clock)
begin
bb_i1 <= #1 bb_i;
bb_q1 <= #1 bb_q;
end
else
begin
bb_i0 <= #1 bb_i;
bb_q0 <= #1 bb_q;
end
cordic rx_cordic
( .clock(clock_2x),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase),
.xo(bb_i),.yo(bb_q),.zo() );
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i0),.signal_out(i_out0) );
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q0),.signal_out(q_out0) );
cic_decim cic_decim_i_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i1),.signal_out(i_out1) );
cic_decim cic_decim_q_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q1),.signal_out(q_out1) );
endmodule
|
module rx_chain_dual
(input clock,
input clock_2x,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
input wire [31:0] freq0,
input wire [15:0] i_in0,
input wire [15:0] q_in0,
output wire [15:0] i_out0,
output wire [15:0] q_out0,
input wire [31:0] freq1,
input wire [15:0] i_in1,
input wire [15:0] q_in1,
output wire [15:0] i_out1,
output wire [15:0] q_out1
);
wire [15:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] i_in, q_in;
wire [31:0] phase0;
wire [31:0] phase1;
reg [15:0] bb_i0, bb_q0;
reg [15:0] bb_i1, bb_q1;
// We want to time-share the CORDIC by double-clocking it
phase_acc rx_phase_acc_0
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq0),.phase(phase0) );
phase_acc rx_phase_acc_1
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq1),.phase(phase1) );
assign phase = clock ? phase0[31:16] : phase1[31:16];
assign i_in = clock ? i_in0 : i_in1;
assign q_in = clock ? q_in0 : q_in1;
// This appears reversed because of the number of CORDIC stages
always @(posedge clock_2x)
if(clock)
begin
bb_i1 <= #1 bb_i;
bb_q1 <= #1 bb_q;
end
else
begin
bb_i0 <= #1 bb_i;
bb_q0 <= #1 bb_q;
end
cordic rx_cordic
( .clock(clock_2x),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase),
.xo(bb_i),.yo(bb_q),.zo() );
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i0),.signal_out(i_out0) );
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q0),.signal_out(q_out0) );
cic_decim cic_decim_i_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i1),.signal_out(i_out1) );
cic_decim cic_decim_q_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q1),.signal_out(q_out1) );
endmodule
|
module rx_chain_dual
(input clock,
input clock_2x,
input reset,
input enable,
input wire [7:0] decim_rate,
input sample_strobe,
input decimator_strobe,
input wire [31:0] freq0,
input wire [15:0] i_in0,
input wire [15:0] q_in0,
output wire [15:0] i_out0,
output wire [15:0] q_out0,
input wire [31:0] freq1,
input wire [15:0] i_in1,
input wire [15:0] q_in1,
output wire [15:0] i_out1,
output wire [15:0] q_out1
);
wire [15:0] phase;
wire [15:0] bb_i, bb_q;
wire [15:0] i_in, q_in;
wire [31:0] phase0;
wire [31:0] phase1;
reg [15:0] bb_i0, bb_q0;
reg [15:0] bb_i1, bb_q1;
// We want to time-share the CORDIC by double-clocking it
phase_acc rx_phase_acc_0
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq0),.phase(phase0) );
phase_acc rx_phase_acc_1
(.clk(clock),.reset(reset),.enable(enable),
.strobe(sample_strobe),.freq(freq1),.phase(phase1) );
assign phase = clock ? phase0[31:16] : phase1[31:16];
assign i_in = clock ? i_in0 : i_in1;
assign q_in = clock ? q_in0 : q_in1;
// This appears reversed because of the number of CORDIC stages
always @(posedge clock_2x)
if(clock)
begin
bb_i1 <= #1 bb_i;
bb_q1 <= #1 bb_q;
end
else
begin
bb_i0 <= #1 bb_i;
bb_q0 <= #1 bb_q;
end
cordic rx_cordic
( .clock(clock_2x),.reset(reset),.enable(enable),
.xi(i_in),.yi(q_in),.zi(phase),
.xo(bb_i),.yo(bb_q),.zo() );
cic_decim cic_decim_i_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i0),.signal_out(i_out0) );
cic_decim cic_decim_q_0
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q0),.signal_out(q_out0) );
cic_decim cic_decim_i_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_i1),.signal_out(i_out1) );
cic_decim cic_decim_q_1
( .clock(clock),.reset(reset),.enable(enable),
.rate(decim_rate),.strobe_in(sample_strobe),.strobe_out(decimator_strobe),
.signal_in(bb_q1),.signal_out(q_out1) );
endmodule
|
module phase_acc (clk,reset,enable,strobe,serial_addr,serial_data,serial_strobe,phase);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
parameter resolution = 32;
input clk, reset, enable, strobe;
input [6:0] serial_addr;
input [31:0] serial_data;
input serial_strobe;
output reg [resolution-1:0] phase;
wire [resolution-1:0] freq;
setting_reg #(FREQADDR) sr_rxfreq0(.clock(clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(freq));
always @(posedge clk)
if(reset)
phase <= #1 32'b0;
else if(serial_strobe & (serial_addr == PHASEADDR))
phase <= #1 serial_data;
else if(enable & strobe)
phase <= #1 phase + freq;
endmodule
|
module phase_acc (clk,reset,enable,strobe,serial_addr,serial_data,serial_strobe,phase);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
parameter resolution = 32;
input clk, reset, enable, strobe;
input [6:0] serial_addr;
input [31:0] serial_data;
input serial_strobe;
output reg [resolution-1:0] phase;
wire [resolution-1:0] freq;
setting_reg #(FREQADDR) sr_rxfreq0(.clock(clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(freq));
always @(posedge clk)
if(reset)
phase <= #1 32'b0;
else if(serial_strobe & (serial_addr == PHASEADDR))
phase <= #1 serial_data;
else if(enable & strobe)
phase <= #1 phase + freq;
endmodule
|
module phase_acc (clk,reset,enable,strobe,serial_addr,serial_data,serial_strobe,phase);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
parameter resolution = 32;
input clk, reset, enable, strobe;
input [6:0] serial_addr;
input [31:0] serial_data;
input serial_strobe;
output reg [resolution-1:0] phase;
wire [resolution-1:0] freq;
setting_reg #(FREQADDR) sr_rxfreq0(.clock(clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(freq));
always @(posedge clk)
if(reset)
phase <= #1 32'b0;
else if(serial_strobe & (serial_addr == PHASEADDR))
phase <= #1 serial_data;
else if(enable & strobe)
phase <= #1 phase + freq;
endmodule
|
module phase_acc (clk,reset,enable,strobe,serial_addr,serial_data,serial_strobe,phase);
parameter FREQADDR = 0;
parameter PHASEADDR = 0;
parameter resolution = 32;
input clk, reset, enable, strobe;
input [6:0] serial_addr;
input [31:0] serial_data;
input serial_strobe;
output reg [resolution-1:0] phase;
wire [resolution-1:0] freq;
setting_reg #(FREQADDR) sr_rxfreq0(.clock(clk),.reset(1'b0),.strobe(serial_strobe),.addr(serial_addr),.in(serial_data),.out(freq));
always @(posedge clk)
if(reset)
phase <= #1 32'b0;
else if(serial_strobe & (serial_addr == PHASEADDR))
phase <= #1 serial_data;
else if(enable & strobe)
phase <= #1 phase + freq;
endmodule
|
module bustri (
data,
enabledt,
tridata);
input [15:0] data;
input enabledt;
inout [15:0] tridata;
lpm_bustri lpm_bustri_component (
.tridata (tridata),
.enabledt (enabledt),
.data (data));
defparam
lpm_bustri_component.lpm_width = 16,
lpm_bustri_component.lpm_type = "LPM_BUSTRI";
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.