module_content
stringlengths 18
1.05M
|
---|
module axi_protocol_converter_v2_1_a_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AUSER_WIDTH = 1,
parameter integer C_AXI_CHANNEL = 0,
// 0 = AXI AW Channel.
// 1 = AXI AR Channel.
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface (W/R)
output wire cmd_valid,
output wire cmd_split,
output wire [C_AXI_ID_WIDTH-1:0] cmd_id,
output wire [4-1:0] cmd_length,
input wire cmd_ready,
// Command Interface (B)
output wire cmd_b_valid,
output wire cmd_b_split,
output wire [4-1:0] cmd_b_repeat,
input wire cmd_b_ready,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR,
input wire [8-1:0] S_AXI_ALEN,
input wire [3-1:0] S_AXI_ASIZE,
input wire [2-1:0] S_AXI_ABURST,
input wire [1-1:0] S_AXI_ALOCK,
input wire [4-1:0] S_AXI_ACACHE,
input wire [3-1:0] S_AXI_APROT,
input wire [4-1:0] S_AXI_AQOS,
input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER,
input wire S_AXI_AVALID,
output wire S_AXI_AREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR,
output wire [4-1:0] M_AXI_ALEN,
output wire [3-1:0] M_AXI_ASIZE,
output wire [2-1:0] M_AXI_ABURST,
output wire [2-1:0] M_AXI_ALOCK,
output wire [4-1:0] M_AXI_ACACHE,
output wire [3-1:0] M_AXI_APROT,
output wire [4-1:0] M_AXI_AQOS,
output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER,
output wire M_AXI_AVALID,
input wire M_AXI_AREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for burst types.
localparam [2-1:0] C_FIX_BURST = 2'b00;
localparam [2-1:0] C_INCR_BURST = 2'b01;
localparam [2-1:0] C_WRAP_BURST = 2'b10;
// Depth for command FIFO.
localparam integer C_FIFO_DEPTH_LOG = 5;
// Constants used to generate size mask.
localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000};
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Access decoding related signals.
wire access_is_incr;
wire [4-1:0] num_transactions;
wire incr_need_to_split;
reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr;
reg split_ongoing;
reg [4-1:0] pushed_commands;
reg [16-1:0] addr_step;
reg [16-1:0] first_step;
wire [8-1:0] first_beats;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask;
// Access decoding related signals for internal pipestage.
reg access_is_incr_q;
reg incr_need_to_split_q;
wire need_to_split_q;
reg [4-1:0] num_transactions_q;
reg [16-1:0] addr_step_q;
reg [16-1:0] first_step_q;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q;
// Command buffer help signals.
reg [C_FIFO_DEPTH_LOG:0] cmd_depth;
reg cmd_empty;
reg [C_AXI_ID_WIDTH-1:0] queue_id;
wire id_match;
wire cmd_id_check;
wire s_ready;
wire cmd_full;
wire allow_this_cmd;
wire allow_new_cmd;
wire cmd_push;
reg cmd_push_block;
reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth;
reg cmd_b_empty;
wire cmd_b_full;
wire cmd_b_push;
reg cmd_b_push_block;
wire pushed_new_cmd;
wire last_incr_split;
wire last_split;
wire first_split;
wire no_cmd;
wire allow_split_cmd;
wire almost_empty;
wire no_b_cmd;
wire allow_non_split_cmd;
wire almost_b_empty;
reg multiple_id_non_split;
reg split_in_progress;
// Internal Command Interface signals (W/R).
wire cmd_split_i;
wire [C_AXI_ID_WIDTH-1:0] cmd_id_i;
reg [4-1:0] cmd_length_i;
// Internal Command Interface signals (B).
wire cmd_b_split_i;
wire [4-1:0] cmd_b_repeat_i;
// Throttling help signals.
wire mi_stalling;
reg command_ongoing;
// Internal SI-side signals.
reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q;
reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q;
reg [8-1:0] S_AXI_ALEN_Q;
reg [3-1:0] S_AXI_ASIZE_Q;
reg [2-1:0] S_AXI_ABURST_Q;
reg [2-1:0] S_AXI_ALOCK_Q;
reg [4-1:0] S_AXI_ACACHE_Q;
reg [3-1:0] S_AXI_APROT_Q;
reg [4-1:0] S_AXI_AQOS_Q;
reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q;
reg S_AXI_AREADY_I;
// Internal MI-side signals.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I;
reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I;
reg [8-1:0] M_AXI_ALEN_I;
wire [3-1:0] M_AXI_ASIZE_I;
wire [2-1:0] M_AXI_ABURST_I;
reg [2-1:0] M_AXI_ALOCK_I;
wire [4-1:0] M_AXI_ACACHE_I;
wire [3-1:0] M_AXI_APROT_I;
wire [4-1:0] M_AXI_AQOS_I;
wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I;
wire M_AXI_AVALID_I;
wire M_AXI_AREADY_I;
reg [1:0] areset_d; // Reset delay register
always @(posedge ACLK) begin
areset_d <= {areset_d[0], ARESET};
end
/////////////////////////////////////////////////////////////////////////////
// Capture SI-Side signals.
//
/////////////////////////////////////////////////////////////////////////////
// Register SI-Side signals.
always @ (posedge ACLK) begin
if ( ARESET ) begin
S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}};
S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}};
S_AXI_ALEN_Q <= 8'b0;
S_AXI_ASIZE_Q <= 3'b0;
S_AXI_ABURST_Q <= 2'b0;
S_AXI_ALOCK_Q <= 2'b0;
S_AXI_ACACHE_Q <= 4'b0;
S_AXI_APROT_Q <= 3'b0;
S_AXI_AQOS_Q <= 4'b0;
S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
S_AXI_AID_Q <= S_AXI_AID;
S_AXI_AADDR_Q <= S_AXI_AADDR;
S_AXI_ALEN_Q <= S_AXI_ALEN;
S_AXI_ASIZE_Q <= S_AXI_ASIZE;
S_AXI_ABURST_Q <= S_AXI_ABURST;
S_AXI_ALOCK_Q <= S_AXI_ALOCK;
S_AXI_ACACHE_Q <= S_AXI_ACACHE;
S_AXI_APROT_Q <= S_AXI_APROT;
S_AXI_AQOS_Q <= S_AXI_AQOS;
S_AXI_AUSER_Q <= S_AXI_AUSER;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Decode the Incoming Transaction.
//
// Extract transaction type and the number of splits that may be needed.
//
// Calculate the step size so that the address for each part of a split can
// can be calculated.
//
/////////////////////////////////////////////////////////////////////////////
// Transaction burst type.
assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST );
// Get number of transactions for split INCR.
assign num_transactions = S_AXI_ALEN[4 +: 4];
assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01;
// Generate address increment of first split transaction.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: first_step = first_beats << 0;
3'b001: first_step = first_beats << 1;
3'b010: first_step = first_beats << 2;
3'b011: first_step = first_beats << 3;
3'b100: first_step = first_beats << 4;
3'b101: first_step = first_beats << 5;
3'b110: first_step = first_beats << 6;
3'b111: first_step = first_beats << 7;
endcase
end
// Generate address increment for remaining split transactions.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: addr_step = 16'h0010;
3'b001: addr_step = 16'h0020;
3'b010: addr_step = 16'h0040;
3'b011: addr_step = 16'h0080;
3'b100: addr_step = 16'h0100;
3'b101: addr_step = 16'h0200;
3'b110: addr_step = 16'h0400;
3'b111: addr_step = 16'h0800;
endcase
end
// Generate address mask bits to remove split transaction unalignment.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH];
3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH];
3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH];
3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH];
3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH];
3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH];
3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH];
3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH];
endcase
end
/////////////////////////////////////////////////////////////////////////////
// Transfer SI-Side signals to internal Pipeline Stage.
//
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
if ( ARESET ) begin
access_is_incr_q <= 1'b0;
incr_need_to_split_q <= 1'b0;
num_transactions_q <= 4'b0;
addr_step_q <= 16'b0;
first_step_q <= 16'b0;
size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
access_is_incr_q <= access_is_incr;
incr_need_to_split_q <= incr_need_to_split;
num_transactions_q <= num_transactions;
addr_step_q <= addr_step;
first_step_q <= first_step;
size_mask_q <= size_mask;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Generate Command Information.
//
// Detect if current transation needs to be split, and keep track of all
// the generated split transactions.
//
//
/////////////////////////////////////////////////////////////////////////////
// Detect when INCR must be split.
assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) &
( C_SUPPORT_SPLITTING == 1 ) &
( C_SUPPORT_BURSTS == 1 );
// Detect when a command has to be split.
assign need_to_split_q = incr_need_to_split_q;
// Handle progress of split transactions.
always @ (posedge ACLK) begin
if ( ARESET ) begin
split_ongoing <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
split_ongoing <= need_to_split_q & ~last_split;
end
end
end
// Keep track of number of transactions generated.
always @ (posedge ACLK) begin
if ( ARESET ) begin
pushed_commands <= 4'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
pushed_commands <= 4'b0;
end else if ( pushed_new_cmd ) begin
pushed_commands <= pushed_commands + 4'b1;
end
end
end
// Detect last part of a command, split or not.
assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands );
assign last_split = last_incr_split | ~access_is_incr_q |
( C_SUPPORT_SPLITTING == 0 ) |
( C_SUPPORT_BURSTS == 0 );
assign first_split = (pushed_commands == 4'b0);
// Calculate base for next address.
always @ (posedge ACLK) begin
if ( ARESET ) begin
next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}};
end else if ( pushed_new_cmd ) begin
next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q);
end
end
/////////////////////////////////////////////////////////////////////////////
// Translating Transaction.
//
// Set Split transaction information on all part except last for a transaction
// that needs splitting.
// The B Channel will only get one command for a Split transaction and in
// the Split bflag will be set in that case.
//
// The AWID is extracted and applied to all commands generated for the current
// incomming SI-Side transaction.
//
// The address is increased for each part of a Split transaction, the amount
// depends on the siSIZE for the transaction.
//
// The length has to be changed for Split transactions. All part except tha
// last one will have 0xF, the last one uses the 4 lsb bits from the SI-side
// transaction as length.
//
// Non-Split has untouched address and length information.
//
// Exclusive access are diasabled for a Split transaction because it is not
// possible to guarantee concistency between all the parts.
//
/////////////////////////////////////////////////////////////////////////////
// Assign Split signals.
assign cmd_split_i = need_to_split_q & ~last_split;
assign cmd_b_split_i = need_to_split_q & ~last_split;
// Copy AW ID to W.
assign cmd_id_i = S_AXI_AID_Q;
// Set B Responses to merge.
assign cmd_b_repeat_i = num_transactions_q;
// Select new size or remaining size.
always @ *
begin
if ( split_ongoing & access_is_incr_q ) begin
M_AXI_AADDR_I = next_mi_addr & size_mask_q;
end else begin
M_AXI_AADDR_I = S_AXI_AADDR_Q;
end
end
// Generate the base length for each transaction.
always @ *
begin
if ( first_split | ~need_to_split_q ) begin
M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4];
cmd_length_i = S_AXI_ALEN_Q[0 +: 4];
end else begin
M_AXI_ALEN_I = 4'hF;
cmd_length_i = 4'hF;
end
end
// Kill Exclusive for Split transactions.
always @ *
begin
if ( need_to_split_q ) begin
M_AXI_ALOCK_I = 2'b00;
end else begin
M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q};
end
end
/////////////////////////////////////////////////////////////////////////////
// Forward the command to the MI-side interface.
//
// It is determined that this is an allowed command/access when there is
// room in the command queue (and it passes ID and Split checks as required).
//
/////////////////////////////////////////////////////////////////////////////
// Move SI-side transaction to internal pipe stage.
always @ (posedge ACLK) begin
if (ARESET) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b0;
end else begin
if (areset_d == 2'b10) begin
S_AXI_AREADY_I <= 1'b1;
end else begin
if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin
command_ongoing <= 1'b1;
S_AXI_AREADY_I <= 1'b0;
end else if ( pushed_new_cmd & last_split ) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b1;
end
end
end
end
// Generate ready signal.
assign S_AXI_AREADY = S_AXI_AREADY_I;
// Only allowed to forward translated command when command queue is ok with it.
assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Simple transfer of paramters that doesn't need to be adjusted.
//
// ID - Transaction still recognized with the same ID.
// CACHE - No need to change the chache features. Even if the modyfiable
// bit is overridden (forcefully) there is no need to let downstream
// component beleive it is ok to modify it further.
// PROT - Security level of access is not changed when upsizing.
// QOS - Quality of Service is static 0.
// USER - User bits remains the same.
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID_I = S_AXI_AID_Q;
assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q;
assign M_AXI_ABURST_I = S_AXI_ABURST_Q;
assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q;
assign M_AXI_APROT_I = S_AXI_APROT_Q;
assign M_AXI_AQOS_I = S_AXI_AQOS_Q;
assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Control command queue to W/R channel.
//
// Commands can be pushed into the Cmd FIFO even if MI-side is stalling.
// A flag is set if MI-side is stalling when Command is pushed to the
// Cmd FIFO. This will prevent multiple push of the same Command as well as
// keeping the MI-side Valid signal if the Allow Cmd requirement has been
// updated to disable furter Commands (I.e. it is made sure that the SI-side
// Command has been forwarded to both Cmd FIFO and MI-side).
//
// It is allowed to continue pushing new commands as long as
// * There is room in the queue(s)
// * The ID is the same as previously queued. Since data is not reordered
// for the same ID it is always OK to let them proceed.
// Or, if no split transaction is ongoing any ID can be allowed.
//
/////////////////////////////////////////////////////////////////////////////
// Keep track of current ID in queue.
always @ (posedge ACLK) begin
if (ARESET) begin
queue_id <= {C_AXI_ID_WIDTH{1'b0}};
multiple_id_non_split <= 1'b0;
split_in_progress <= 1'b0;
end else begin
if ( cmd_push ) begin
// Store ID (it will be matching ID or a "new beginning").
queue_id <= S_AXI_AID_Q;
end
if ( no_cmd & no_b_cmd ) begin
multiple_id_non_split <= 1'b0;
end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin
multiple_id_non_split <= 1'b1;
end
if ( no_cmd & no_b_cmd ) begin
split_in_progress <= 1'b0;
end else if ( cmd_push & allow_split_cmd ) begin
split_in_progress <= 1'b1;
end
end
end
// Determine if the command FIFOs are empty.
assign no_cmd = almost_empty & cmd_ready | cmd_empty;
assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty;
// Check ID to make sure this command is allowed.
assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q);
assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) );
// Command type affects possibility to push immediately or wait.
assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split;
assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress);
assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 );
// Check if it is allowed to push more commands.
assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) |
cmd_push_block;
// Push new command when allowed and MI-side is able to receive the command.
assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block;
assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0);
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_push_block <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
cmd_push_block <= 1'b0;
end else if ( cmd_push & mi_stalling ) begin
cmd_push_block <= 1'b1;
end
end
end
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_block <= 1'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
cmd_b_push_block <= 1'b0;
end else if ( cmd_b_push ) begin
cmd_b_push_block <= 1'b1;
end
end
end
// Acknowledge command when we can push it into queue (and forward it).
assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue (W/R):
//
// Instantiate a FIFO as the queue and adjust the control signals.
//
// The features from Command FIFO can be reduced depending on configuration:
// Read Channel only need the split information.
// Write Channel always require ID information. When bursts are supported
// Split and Length information is also used.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_split_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_split}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_id = {C_AXI_ID_WIDTH{1'b0}};
assign cmd_length = 4'b0;
end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH+4),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i, cmd_length_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id, cmd_length}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
end else begin : NO_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
assign cmd_length = 4'b0;
end
endgenerate
// Queue is concidered full when not ready.
assign cmd_full = ~s_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_empty <= 1'b1;
cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_push & ~cmd_ready ) begin
// Push only => Increase depth.
cmd_depth <= cmd_depth + 1'b1;
cmd_empty <= 1'b0;
end else if ( ~cmd_push & cmd_ready ) begin
// Pop only => Decrease depth.
cmd_depth <= cmd_depth - 1'b1;
cmd_empty <= almost_empty;
end
end
end
assign almost_empty = ( cmd_depth == 1 );
/////////////////////////////////////////////////////////////////////////////
// Command Queue (B):
//
// Add command queue for B channel only when it is AW channel and both burst
// and splitting is supported.
//
// When turned off the command appears always empty.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL
wire cmd_b_valid_i;
wire s_b_ready;
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1+4),
.C_FIFO_TYPE("lut")
)
cmd_b_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_b_split_i, cmd_b_repeat_i}),
.S_VALID(cmd_b_push),
.S_READY(s_b_ready),
.M_MESG({cmd_b_split, cmd_b_repeat}),
.M_VALID(cmd_b_valid_i),
.M_READY(cmd_b_ready)
);
// Queue is concidered full when not ready.
assign cmd_b_full = ~s_b_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_b_push & ~cmd_b_ready ) begin
// Push only => Increase depth.
cmd_b_depth <= cmd_b_depth + 1'b1;
cmd_b_empty <= 1'b0;
end else if ( ~cmd_b_push & cmd_b_ready ) begin
// Pop only => Decrease depth.
cmd_b_depth <= cmd_b_depth - 1'b1;
cmd_b_empty <= ( cmd_b_depth == 1 );
end
end
end
assign almost_b_empty = ( cmd_b_depth == 1 );
// Assign external signal.
assign cmd_b_valid = cmd_b_valid_i;
end else begin : NO_B_CHANNEL
// Assign external command signals.
assign cmd_b_valid = 1'b0;
assign cmd_b_split = 1'b0;
assign cmd_b_repeat = 4'b0;
// Assign internal command FIFO signals.
assign cmd_b_full = 1'b0;
assign almost_b_empty = 1'b0;
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
// Constant FF due to ModelSim behavior.
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end
end
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID = M_AXI_AID_I;
assign M_AXI_AADDR = M_AXI_AADDR_I;
assign M_AXI_ALEN = M_AXI_ALEN_I;
assign M_AXI_ASIZE = M_AXI_ASIZE_I;
assign M_AXI_ABURST = M_AXI_ABURST_I;
assign M_AXI_ALOCK = M_AXI_ALOCK_I;
assign M_AXI_ACACHE = M_AXI_ACACHE_I;
assign M_AXI_APROT = M_AXI_APROT_I;
assign M_AXI_AQOS = M_AXI_AQOS_I;
assign M_AXI_AUSER = M_AXI_AUSER_I;
assign M_AXI_AVALID = M_AXI_AVALID_I;
assign M_AXI_AREADY_I = M_AXI_AREADY;
endmodule
|
module axi_protocol_converter_v2_1_a_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AUSER_WIDTH = 1,
parameter integer C_AXI_CHANNEL = 0,
// 0 = AXI AW Channel.
// 1 = AXI AR Channel.
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface (W/R)
output wire cmd_valid,
output wire cmd_split,
output wire [C_AXI_ID_WIDTH-1:0] cmd_id,
output wire [4-1:0] cmd_length,
input wire cmd_ready,
// Command Interface (B)
output wire cmd_b_valid,
output wire cmd_b_split,
output wire [4-1:0] cmd_b_repeat,
input wire cmd_b_ready,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR,
input wire [8-1:0] S_AXI_ALEN,
input wire [3-1:0] S_AXI_ASIZE,
input wire [2-1:0] S_AXI_ABURST,
input wire [1-1:0] S_AXI_ALOCK,
input wire [4-1:0] S_AXI_ACACHE,
input wire [3-1:0] S_AXI_APROT,
input wire [4-1:0] S_AXI_AQOS,
input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER,
input wire S_AXI_AVALID,
output wire S_AXI_AREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR,
output wire [4-1:0] M_AXI_ALEN,
output wire [3-1:0] M_AXI_ASIZE,
output wire [2-1:0] M_AXI_ABURST,
output wire [2-1:0] M_AXI_ALOCK,
output wire [4-1:0] M_AXI_ACACHE,
output wire [3-1:0] M_AXI_APROT,
output wire [4-1:0] M_AXI_AQOS,
output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER,
output wire M_AXI_AVALID,
input wire M_AXI_AREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for burst types.
localparam [2-1:0] C_FIX_BURST = 2'b00;
localparam [2-1:0] C_INCR_BURST = 2'b01;
localparam [2-1:0] C_WRAP_BURST = 2'b10;
// Depth for command FIFO.
localparam integer C_FIFO_DEPTH_LOG = 5;
// Constants used to generate size mask.
localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000};
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Access decoding related signals.
wire access_is_incr;
wire [4-1:0] num_transactions;
wire incr_need_to_split;
reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr;
reg split_ongoing;
reg [4-1:0] pushed_commands;
reg [16-1:0] addr_step;
reg [16-1:0] first_step;
wire [8-1:0] first_beats;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask;
// Access decoding related signals for internal pipestage.
reg access_is_incr_q;
reg incr_need_to_split_q;
wire need_to_split_q;
reg [4-1:0] num_transactions_q;
reg [16-1:0] addr_step_q;
reg [16-1:0] first_step_q;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q;
// Command buffer help signals.
reg [C_FIFO_DEPTH_LOG:0] cmd_depth;
reg cmd_empty;
reg [C_AXI_ID_WIDTH-1:0] queue_id;
wire id_match;
wire cmd_id_check;
wire s_ready;
wire cmd_full;
wire allow_this_cmd;
wire allow_new_cmd;
wire cmd_push;
reg cmd_push_block;
reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth;
reg cmd_b_empty;
wire cmd_b_full;
wire cmd_b_push;
reg cmd_b_push_block;
wire pushed_new_cmd;
wire last_incr_split;
wire last_split;
wire first_split;
wire no_cmd;
wire allow_split_cmd;
wire almost_empty;
wire no_b_cmd;
wire allow_non_split_cmd;
wire almost_b_empty;
reg multiple_id_non_split;
reg split_in_progress;
// Internal Command Interface signals (W/R).
wire cmd_split_i;
wire [C_AXI_ID_WIDTH-1:0] cmd_id_i;
reg [4-1:0] cmd_length_i;
// Internal Command Interface signals (B).
wire cmd_b_split_i;
wire [4-1:0] cmd_b_repeat_i;
// Throttling help signals.
wire mi_stalling;
reg command_ongoing;
// Internal SI-side signals.
reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q;
reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q;
reg [8-1:0] S_AXI_ALEN_Q;
reg [3-1:0] S_AXI_ASIZE_Q;
reg [2-1:0] S_AXI_ABURST_Q;
reg [2-1:0] S_AXI_ALOCK_Q;
reg [4-1:0] S_AXI_ACACHE_Q;
reg [3-1:0] S_AXI_APROT_Q;
reg [4-1:0] S_AXI_AQOS_Q;
reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q;
reg S_AXI_AREADY_I;
// Internal MI-side signals.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I;
reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I;
reg [8-1:0] M_AXI_ALEN_I;
wire [3-1:0] M_AXI_ASIZE_I;
wire [2-1:0] M_AXI_ABURST_I;
reg [2-1:0] M_AXI_ALOCK_I;
wire [4-1:0] M_AXI_ACACHE_I;
wire [3-1:0] M_AXI_APROT_I;
wire [4-1:0] M_AXI_AQOS_I;
wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I;
wire M_AXI_AVALID_I;
wire M_AXI_AREADY_I;
reg [1:0] areset_d; // Reset delay register
always @(posedge ACLK) begin
areset_d <= {areset_d[0], ARESET};
end
/////////////////////////////////////////////////////////////////////////////
// Capture SI-Side signals.
//
/////////////////////////////////////////////////////////////////////////////
// Register SI-Side signals.
always @ (posedge ACLK) begin
if ( ARESET ) begin
S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}};
S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}};
S_AXI_ALEN_Q <= 8'b0;
S_AXI_ASIZE_Q <= 3'b0;
S_AXI_ABURST_Q <= 2'b0;
S_AXI_ALOCK_Q <= 2'b0;
S_AXI_ACACHE_Q <= 4'b0;
S_AXI_APROT_Q <= 3'b0;
S_AXI_AQOS_Q <= 4'b0;
S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
S_AXI_AID_Q <= S_AXI_AID;
S_AXI_AADDR_Q <= S_AXI_AADDR;
S_AXI_ALEN_Q <= S_AXI_ALEN;
S_AXI_ASIZE_Q <= S_AXI_ASIZE;
S_AXI_ABURST_Q <= S_AXI_ABURST;
S_AXI_ALOCK_Q <= S_AXI_ALOCK;
S_AXI_ACACHE_Q <= S_AXI_ACACHE;
S_AXI_APROT_Q <= S_AXI_APROT;
S_AXI_AQOS_Q <= S_AXI_AQOS;
S_AXI_AUSER_Q <= S_AXI_AUSER;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Decode the Incoming Transaction.
//
// Extract transaction type and the number of splits that may be needed.
//
// Calculate the step size so that the address for each part of a split can
// can be calculated.
//
/////////////////////////////////////////////////////////////////////////////
// Transaction burst type.
assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST );
// Get number of transactions for split INCR.
assign num_transactions = S_AXI_ALEN[4 +: 4];
assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01;
// Generate address increment of first split transaction.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: first_step = first_beats << 0;
3'b001: first_step = first_beats << 1;
3'b010: first_step = first_beats << 2;
3'b011: first_step = first_beats << 3;
3'b100: first_step = first_beats << 4;
3'b101: first_step = first_beats << 5;
3'b110: first_step = first_beats << 6;
3'b111: first_step = first_beats << 7;
endcase
end
// Generate address increment for remaining split transactions.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: addr_step = 16'h0010;
3'b001: addr_step = 16'h0020;
3'b010: addr_step = 16'h0040;
3'b011: addr_step = 16'h0080;
3'b100: addr_step = 16'h0100;
3'b101: addr_step = 16'h0200;
3'b110: addr_step = 16'h0400;
3'b111: addr_step = 16'h0800;
endcase
end
// Generate address mask bits to remove split transaction unalignment.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH];
3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH];
3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH];
3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH];
3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH];
3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH];
3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH];
3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH];
endcase
end
/////////////////////////////////////////////////////////////////////////////
// Transfer SI-Side signals to internal Pipeline Stage.
//
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
if ( ARESET ) begin
access_is_incr_q <= 1'b0;
incr_need_to_split_q <= 1'b0;
num_transactions_q <= 4'b0;
addr_step_q <= 16'b0;
first_step_q <= 16'b0;
size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
access_is_incr_q <= access_is_incr;
incr_need_to_split_q <= incr_need_to_split;
num_transactions_q <= num_transactions;
addr_step_q <= addr_step;
first_step_q <= first_step;
size_mask_q <= size_mask;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Generate Command Information.
//
// Detect if current transation needs to be split, and keep track of all
// the generated split transactions.
//
//
/////////////////////////////////////////////////////////////////////////////
// Detect when INCR must be split.
assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) &
( C_SUPPORT_SPLITTING == 1 ) &
( C_SUPPORT_BURSTS == 1 );
// Detect when a command has to be split.
assign need_to_split_q = incr_need_to_split_q;
// Handle progress of split transactions.
always @ (posedge ACLK) begin
if ( ARESET ) begin
split_ongoing <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
split_ongoing <= need_to_split_q & ~last_split;
end
end
end
// Keep track of number of transactions generated.
always @ (posedge ACLK) begin
if ( ARESET ) begin
pushed_commands <= 4'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
pushed_commands <= 4'b0;
end else if ( pushed_new_cmd ) begin
pushed_commands <= pushed_commands + 4'b1;
end
end
end
// Detect last part of a command, split or not.
assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands );
assign last_split = last_incr_split | ~access_is_incr_q |
( C_SUPPORT_SPLITTING == 0 ) |
( C_SUPPORT_BURSTS == 0 );
assign first_split = (pushed_commands == 4'b0);
// Calculate base for next address.
always @ (posedge ACLK) begin
if ( ARESET ) begin
next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}};
end else if ( pushed_new_cmd ) begin
next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q);
end
end
/////////////////////////////////////////////////////////////////////////////
// Translating Transaction.
//
// Set Split transaction information on all part except last for a transaction
// that needs splitting.
// The B Channel will only get one command for a Split transaction and in
// the Split bflag will be set in that case.
//
// The AWID is extracted and applied to all commands generated for the current
// incomming SI-Side transaction.
//
// The address is increased for each part of a Split transaction, the amount
// depends on the siSIZE for the transaction.
//
// The length has to be changed for Split transactions. All part except tha
// last one will have 0xF, the last one uses the 4 lsb bits from the SI-side
// transaction as length.
//
// Non-Split has untouched address and length information.
//
// Exclusive access are diasabled for a Split transaction because it is not
// possible to guarantee concistency between all the parts.
//
/////////////////////////////////////////////////////////////////////////////
// Assign Split signals.
assign cmd_split_i = need_to_split_q & ~last_split;
assign cmd_b_split_i = need_to_split_q & ~last_split;
// Copy AW ID to W.
assign cmd_id_i = S_AXI_AID_Q;
// Set B Responses to merge.
assign cmd_b_repeat_i = num_transactions_q;
// Select new size or remaining size.
always @ *
begin
if ( split_ongoing & access_is_incr_q ) begin
M_AXI_AADDR_I = next_mi_addr & size_mask_q;
end else begin
M_AXI_AADDR_I = S_AXI_AADDR_Q;
end
end
// Generate the base length for each transaction.
always @ *
begin
if ( first_split | ~need_to_split_q ) begin
M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4];
cmd_length_i = S_AXI_ALEN_Q[0 +: 4];
end else begin
M_AXI_ALEN_I = 4'hF;
cmd_length_i = 4'hF;
end
end
// Kill Exclusive for Split transactions.
always @ *
begin
if ( need_to_split_q ) begin
M_AXI_ALOCK_I = 2'b00;
end else begin
M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q};
end
end
/////////////////////////////////////////////////////////////////////////////
// Forward the command to the MI-side interface.
//
// It is determined that this is an allowed command/access when there is
// room in the command queue (and it passes ID and Split checks as required).
//
/////////////////////////////////////////////////////////////////////////////
// Move SI-side transaction to internal pipe stage.
always @ (posedge ACLK) begin
if (ARESET) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b0;
end else begin
if (areset_d == 2'b10) begin
S_AXI_AREADY_I <= 1'b1;
end else begin
if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin
command_ongoing <= 1'b1;
S_AXI_AREADY_I <= 1'b0;
end else if ( pushed_new_cmd & last_split ) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b1;
end
end
end
end
// Generate ready signal.
assign S_AXI_AREADY = S_AXI_AREADY_I;
// Only allowed to forward translated command when command queue is ok with it.
assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Simple transfer of paramters that doesn't need to be adjusted.
//
// ID - Transaction still recognized with the same ID.
// CACHE - No need to change the chache features. Even if the modyfiable
// bit is overridden (forcefully) there is no need to let downstream
// component beleive it is ok to modify it further.
// PROT - Security level of access is not changed when upsizing.
// QOS - Quality of Service is static 0.
// USER - User bits remains the same.
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID_I = S_AXI_AID_Q;
assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q;
assign M_AXI_ABURST_I = S_AXI_ABURST_Q;
assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q;
assign M_AXI_APROT_I = S_AXI_APROT_Q;
assign M_AXI_AQOS_I = S_AXI_AQOS_Q;
assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Control command queue to W/R channel.
//
// Commands can be pushed into the Cmd FIFO even if MI-side is stalling.
// A flag is set if MI-side is stalling when Command is pushed to the
// Cmd FIFO. This will prevent multiple push of the same Command as well as
// keeping the MI-side Valid signal if the Allow Cmd requirement has been
// updated to disable furter Commands (I.e. it is made sure that the SI-side
// Command has been forwarded to both Cmd FIFO and MI-side).
//
// It is allowed to continue pushing new commands as long as
// * There is room in the queue(s)
// * The ID is the same as previously queued. Since data is not reordered
// for the same ID it is always OK to let them proceed.
// Or, if no split transaction is ongoing any ID can be allowed.
//
/////////////////////////////////////////////////////////////////////////////
// Keep track of current ID in queue.
always @ (posedge ACLK) begin
if (ARESET) begin
queue_id <= {C_AXI_ID_WIDTH{1'b0}};
multiple_id_non_split <= 1'b0;
split_in_progress <= 1'b0;
end else begin
if ( cmd_push ) begin
// Store ID (it will be matching ID or a "new beginning").
queue_id <= S_AXI_AID_Q;
end
if ( no_cmd & no_b_cmd ) begin
multiple_id_non_split <= 1'b0;
end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin
multiple_id_non_split <= 1'b1;
end
if ( no_cmd & no_b_cmd ) begin
split_in_progress <= 1'b0;
end else if ( cmd_push & allow_split_cmd ) begin
split_in_progress <= 1'b1;
end
end
end
// Determine if the command FIFOs are empty.
assign no_cmd = almost_empty & cmd_ready | cmd_empty;
assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty;
// Check ID to make sure this command is allowed.
assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q);
assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) );
// Command type affects possibility to push immediately or wait.
assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split;
assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress);
assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 );
// Check if it is allowed to push more commands.
assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) |
cmd_push_block;
// Push new command when allowed and MI-side is able to receive the command.
assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block;
assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0);
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_push_block <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
cmd_push_block <= 1'b0;
end else if ( cmd_push & mi_stalling ) begin
cmd_push_block <= 1'b1;
end
end
end
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_block <= 1'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
cmd_b_push_block <= 1'b0;
end else if ( cmd_b_push ) begin
cmd_b_push_block <= 1'b1;
end
end
end
// Acknowledge command when we can push it into queue (and forward it).
assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue (W/R):
//
// Instantiate a FIFO as the queue and adjust the control signals.
//
// The features from Command FIFO can be reduced depending on configuration:
// Read Channel only need the split information.
// Write Channel always require ID information. When bursts are supported
// Split and Length information is also used.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_split_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_split}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_id = {C_AXI_ID_WIDTH{1'b0}};
assign cmd_length = 4'b0;
end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH+4),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i, cmd_length_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id, cmd_length}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
end else begin : NO_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
assign cmd_length = 4'b0;
end
endgenerate
// Queue is concidered full when not ready.
assign cmd_full = ~s_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_empty <= 1'b1;
cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_push & ~cmd_ready ) begin
// Push only => Increase depth.
cmd_depth <= cmd_depth + 1'b1;
cmd_empty <= 1'b0;
end else if ( ~cmd_push & cmd_ready ) begin
// Pop only => Decrease depth.
cmd_depth <= cmd_depth - 1'b1;
cmd_empty <= almost_empty;
end
end
end
assign almost_empty = ( cmd_depth == 1 );
/////////////////////////////////////////////////////////////////////////////
// Command Queue (B):
//
// Add command queue for B channel only when it is AW channel and both burst
// and splitting is supported.
//
// When turned off the command appears always empty.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL
wire cmd_b_valid_i;
wire s_b_ready;
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1+4),
.C_FIFO_TYPE("lut")
)
cmd_b_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_b_split_i, cmd_b_repeat_i}),
.S_VALID(cmd_b_push),
.S_READY(s_b_ready),
.M_MESG({cmd_b_split, cmd_b_repeat}),
.M_VALID(cmd_b_valid_i),
.M_READY(cmd_b_ready)
);
// Queue is concidered full when not ready.
assign cmd_b_full = ~s_b_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_b_push & ~cmd_b_ready ) begin
// Push only => Increase depth.
cmd_b_depth <= cmd_b_depth + 1'b1;
cmd_b_empty <= 1'b0;
end else if ( ~cmd_b_push & cmd_b_ready ) begin
// Pop only => Decrease depth.
cmd_b_depth <= cmd_b_depth - 1'b1;
cmd_b_empty <= ( cmd_b_depth == 1 );
end
end
end
assign almost_b_empty = ( cmd_b_depth == 1 );
// Assign external signal.
assign cmd_b_valid = cmd_b_valid_i;
end else begin : NO_B_CHANNEL
// Assign external command signals.
assign cmd_b_valid = 1'b0;
assign cmd_b_split = 1'b0;
assign cmd_b_repeat = 4'b0;
// Assign internal command FIFO signals.
assign cmd_b_full = 1'b0;
assign almost_b_empty = 1'b0;
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
// Constant FF due to ModelSim behavior.
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end
end
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID = M_AXI_AID_I;
assign M_AXI_AADDR = M_AXI_AADDR_I;
assign M_AXI_ALEN = M_AXI_ALEN_I;
assign M_AXI_ASIZE = M_AXI_ASIZE_I;
assign M_AXI_ABURST = M_AXI_ABURST_I;
assign M_AXI_ALOCK = M_AXI_ALOCK_I;
assign M_AXI_ACACHE = M_AXI_ACACHE_I;
assign M_AXI_APROT = M_AXI_APROT_I;
assign M_AXI_AQOS = M_AXI_AQOS_I;
assign M_AXI_AUSER = M_AXI_AUSER_I;
assign M_AXI_AVALID = M_AXI_AVALID_I;
assign M_AXI_AREADY_I = M_AXI_AREADY;
endmodule
|
module axi_protocol_converter_v2_1_a_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AUSER_WIDTH = 1,
parameter integer C_AXI_CHANNEL = 0,
// 0 = AXI AW Channel.
// 1 = AXI AR Channel.
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface (W/R)
output wire cmd_valid,
output wire cmd_split,
output wire [C_AXI_ID_WIDTH-1:0] cmd_id,
output wire [4-1:0] cmd_length,
input wire cmd_ready,
// Command Interface (B)
output wire cmd_b_valid,
output wire cmd_b_split,
output wire [4-1:0] cmd_b_repeat,
input wire cmd_b_ready,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR,
input wire [8-1:0] S_AXI_ALEN,
input wire [3-1:0] S_AXI_ASIZE,
input wire [2-1:0] S_AXI_ABURST,
input wire [1-1:0] S_AXI_ALOCK,
input wire [4-1:0] S_AXI_ACACHE,
input wire [3-1:0] S_AXI_APROT,
input wire [4-1:0] S_AXI_AQOS,
input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER,
input wire S_AXI_AVALID,
output wire S_AXI_AREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR,
output wire [4-1:0] M_AXI_ALEN,
output wire [3-1:0] M_AXI_ASIZE,
output wire [2-1:0] M_AXI_ABURST,
output wire [2-1:0] M_AXI_ALOCK,
output wire [4-1:0] M_AXI_ACACHE,
output wire [3-1:0] M_AXI_APROT,
output wire [4-1:0] M_AXI_AQOS,
output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER,
output wire M_AXI_AVALID,
input wire M_AXI_AREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for burst types.
localparam [2-1:0] C_FIX_BURST = 2'b00;
localparam [2-1:0] C_INCR_BURST = 2'b01;
localparam [2-1:0] C_WRAP_BURST = 2'b10;
// Depth for command FIFO.
localparam integer C_FIFO_DEPTH_LOG = 5;
// Constants used to generate size mask.
localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000};
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Access decoding related signals.
wire access_is_incr;
wire [4-1:0] num_transactions;
wire incr_need_to_split;
reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr;
reg split_ongoing;
reg [4-1:0] pushed_commands;
reg [16-1:0] addr_step;
reg [16-1:0] first_step;
wire [8-1:0] first_beats;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask;
// Access decoding related signals for internal pipestage.
reg access_is_incr_q;
reg incr_need_to_split_q;
wire need_to_split_q;
reg [4-1:0] num_transactions_q;
reg [16-1:0] addr_step_q;
reg [16-1:0] first_step_q;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q;
// Command buffer help signals.
reg [C_FIFO_DEPTH_LOG:0] cmd_depth;
reg cmd_empty;
reg [C_AXI_ID_WIDTH-1:0] queue_id;
wire id_match;
wire cmd_id_check;
wire s_ready;
wire cmd_full;
wire allow_this_cmd;
wire allow_new_cmd;
wire cmd_push;
reg cmd_push_block;
reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth;
reg cmd_b_empty;
wire cmd_b_full;
wire cmd_b_push;
reg cmd_b_push_block;
wire pushed_new_cmd;
wire last_incr_split;
wire last_split;
wire first_split;
wire no_cmd;
wire allow_split_cmd;
wire almost_empty;
wire no_b_cmd;
wire allow_non_split_cmd;
wire almost_b_empty;
reg multiple_id_non_split;
reg split_in_progress;
// Internal Command Interface signals (W/R).
wire cmd_split_i;
wire [C_AXI_ID_WIDTH-1:0] cmd_id_i;
reg [4-1:0] cmd_length_i;
// Internal Command Interface signals (B).
wire cmd_b_split_i;
wire [4-1:0] cmd_b_repeat_i;
// Throttling help signals.
wire mi_stalling;
reg command_ongoing;
// Internal SI-side signals.
reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q;
reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q;
reg [8-1:0] S_AXI_ALEN_Q;
reg [3-1:0] S_AXI_ASIZE_Q;
reg [2-1:0] S_AXI_ABURST_Q;
reg [2-1:0] S_AXI_ALOCK_Q;
reg [4-1:0] S_AXI_ACACHE_Q;
reg [3-1:0] S_AXI_APROT_Q;
reg [4-1:0] S_AXI_AQOS_Q;
reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q;
reg S_AXI_AREADY_I;
// Internal MI-side signals.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I;
reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I;
reg [8-1:0] M_AXI_ALEN_I;
wire [3-1:0] M_AXI_ASIZE_I;
wire [2-1:0] M_AXI_ABURST_I;
reg [2-1:0] M_AXI_ALOCK_I;
wire [4-1:0] M_AXI_ACACHE_I;
wire [3-1:0] M_AXI_APROT_I;
wire [4-1:0] M_AXI_AQOS_I;
wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I;
wire M_AXI_AVALID_I;
wire M_AXI_AREADY_I;
reg [1:0] areset_d; // Reset delay register
always @(posedge ACLK) begin
areset_d <= {areset_d[0], ARESET};
end
/////////////////////////////////////////////////////////////////////////////
// Capture SI-Side signals.
//
/////////////////////////////////////////////////////////////////////////////
// Register SI-Side signals.
always @ (posedge ACLK) begin
if ( ARESET ) begin
S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}};
S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}};
S_AXI_ALEN_Q <= 8'b0;
S_AXI_ASIZE_Q <= 3'b0;
S_AXI_ABURST_Q <= 2'b0;
S_AXI_ALOCK_Q <= 2'b0;
S_AXI_ACACHE_Q <= 4'b0;
S_AXI_APROT_Q <= 3'b0;
S_AXI_AQOS_Q <= 4'b0;
S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
S_AXI_AID_Q <= S_AXI_AID;
S_AXI_AADDR_Q <= S_AXI_AADDR;
S_AXI_ALEN_Q <= S_AXI_ALEN;
S_AXI_ASIZE_Q <= S_AXI_ASIZE;
S_AXI_ABURST_Q <= S_AXI_ABURST;
S_AXI_ALOCK_Q <= S_AXI_ALOCK;
S_AXI_ACACHE_Q <= S_AXI_ACACHE;
S_AXI_APROT_Q <= S_AXI_APROT;
S_AXI_AQOS_Q <= S_AXI_AQOS;
S_AXI_AUSER_Q <= S_AXI_AUSER;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Decode the Incoming Transaction.
//
// Extract transaction type and the number of splits that may be needed.
//
// Calculate the step size so that the address for each part of a split can
// can be calculated.
//
/////////////////////////////////////////////////////////////////////////////
// Transaction burst type.
assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST );
// Get number of transactions for split INCR.
assign num_transactions = S_AXI_ALEN[4 +: 4];
assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01;
// Generate address increment of first split transaction.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: first_step = first_beats << 0;
3'b001: first_step = first_beats << 1;
3'b010: first_step = first_beats << 2;
3'b011: first_step = first_beats << 3;
3'b100: first_step = first_beats << 4;
3'b101: first_step = first_beats << 5;
3'b110: first_step = first_beats << 6;
3'b111: first_step = first_beats << 7;
endcase
end
// Generate address increment for remaining split transactions.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: addr_step = 16'h0010;
3'b001: addr_step = 16'h0020;
3'b010: addr_step = 16'h0040;
3'b011: addr_step = 16'h0080;
3'b100: addr_step = 16'h0100;
3'b101: addr_step = 16'h0200;
3'b110: addr_step = 16'h0400;
3'b111: addr_step = 16'h0800;
endcase
end
// Generate address mask bits to remove split transaction unalignment.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH];
3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH];
3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH];
3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH];
3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH];
3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH];
3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH];
3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH];
endcase
end
/////////////////////////////////////////////////////////////////////////////
// Transfer SI-Side signals to internal Pipeline Stage.
//
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
if ( ARESET ) begin
access_is_incr_q <= 1'b0;
incr_need_to_split_q <= 1'b0;
num_transactions_q <= 4'b0;
addr_step_q <= 16'b0;
first_step_q <= 16'b0;
size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
access_is_incr_q <= access_is_incr;
incr_need_to_split_q <= incr_need_to_split;
num_transactions_q <= num_transactions;
addr_step_q <= addr_step;
first_step_q <= first_step;
size_mask_q <= size_mask;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Generate Command Information.
//
// Detect if current transation needs to be split, and keep track of all
// the generated split transactions.
//
//
/////////////////////////////////////////////////////////////////////////////
// Detect when INCR must be split.
assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) &
( C_SUPPORT_SPLITTING == 1 ) &
( C_SUPPORT_BURSTS == 1 );
// Detect when a command has to be split.
assign need_to_split_q = incr_need_to_split_q;
// Handle progress of split transactions.
always @ (posedge ACLK) begin
if ( ARESET ) begin
split_ongoing <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
split_ongoing <= need_to_split_q & ~last_split;
end
end
end
// Keep track of number of transactions generated.
always @ (posedge ACLK) begin
if ( ARESET ) begin
pushed_commands <= 4'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
pushed_commands <= 4'b0;
end else if ( pushed_new_cmd ) begin
pushed_commands <= pushed_commands + 4'b1;
end
end
end
// Detect last part of a command, split or not.
assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands );
assign last_split = last_incr_split | ~access_is_incr_q |
( C_SUPPORT_SPLITTING == 0 ) |
( C_SUPPORT_BURSTS == 0 );
assign first_split = (pushed_commands == 4'b0);
// Calculate base for next address.
always @ (posedge ACLK) begin
if ( ARESET ) begin
next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}};
end else if ( pushed_new_cmd ) begin
next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q);
end
end
/////////////////////////////////////////////////////////////////////////////
// Translating Transaction.
//
// Set Split transaction information on all part except last for a transaction
// that needs splitting.
// The B Channel will only get one command for a Split transaction and in
// the Split bflag will be set in that case.
//
// The AWID is extracted and applied to all commands generated for the current
// incomming SI-Side transaction.
//
// The address is increased for each part of a Split transaction, the amount
// depends on the siSIZE for the transaction.
//
// The length has to be changed for Split transactions. All part except tha
// last one will have 0xF, the last one uses the 4 lsb bits from the SI-side
// transaction as length.
//
// Non-Split has untouched address and length information.
//
// Exclusive access are diasabled for a Split transaction because it is not
// possible to guarantee concistency between all the parts.
//
/////////////////////////////////////////////////////////////////////////////
// Assign Split signals.
assign cmd_split_i = need_to_split_q & ~last_split;
assign cmd_b_split_i = need_to_split_q & ~last_split;
// Copy AW ID to W.
assign cmd_id_i = S_AXI_AID_Q;
// Set B Responses to merge.
assign cmd_b_repeat_i = num_transactions_q;
// Select new size or remaining size.
always @ *
begin
if ( split_ongoing & access_is_incr_q ) begin
M_AXI_AADDR_I = next_mi_addr & size_mask_q;
end else begin
M_AXI_AADDR_I = S_AXI_AADDR_Q;
end
end
// Generate the base length for each transaction.
always @ *
begin
if ( first_split | ~need_to_split_q ) begin
M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4];
cmd_length_i = S_AXI_ALEN_Q[0 +: 4];
end else begin
M_AXI_ALEN_I = 4'hF;
cmd_length_i = 4'hF;
end
end
// Kill Exclusive for Split transactions.
always @ *
begin
if ( need_to_split_q ) begin
M_AXI_ALOCK_I = 2'b00;
end else begin
M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q};
end
end
/////////////////////////////////////////////////////////////////////////////
// Forward the command to the MI-side interface.
//
// It is determined that this is an allowed command/access when there is
// room in the command queue (and it passes ID and Split checks as required).
//
/////////////////////////////////////////////////////////////////////////////
// Move SI-side transaction to internal pipe stage.
always @ (posedge ACLK) begin
if (ARESET) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b0;
end else begin
if (areset_d == 2'b10) begin
S_AXI_AREADY_I <= 1'b1;
end else begin
if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin
command_ongoing <= 1'b1;
S_AXI_AREADY_I <= 1'b0;
end else if ( pushed_new_cmd & last_split ) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b1;
end
end
end
end
// Generate ready signal.
assign S_AXI_AREADY = S_AXI_AREADY_I;
// Only allowed to forward translated command when command queue is ok with it.
assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Simple transfer of paramters that doesn't need to be adjusted.
//
// ID - Transaction still recognized with the same ID.
// CACHE - No need to change the chache features. Even if the modyfiable
// bit is overridden (forcefully) there is no need to let downstream
// component beleive it is ok to modify it further.
// PROT - Security level of access is not changed when upsizing.
// QOS - Quality of Service is static 0.
// USER - User bits remains the same.
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID_I = S_AXI_AID_Q;
assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q;
assign M_AXI_ABURST_I = S_AXI_ABURST_Q;
assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q;
assign M_AXI_APROT_I = S_AXI_APROT_Q;
assign M_AXI_AQOS_I = S_AXI_AQOS_Q;
assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Control command queue to W/R channel.
//
// Commands can be pushed into the Cmd FIFO even if MI-side is stalling.
// A flag is set if MI-side is stalling when Command is pushed to the
// Cmd FIFO. This will prevent multiple push of the same Command as well as
// keeping the MI-side Valid signal if the Allow Cmd requirement has been
// updated to disable furter Commands (I.e. it is made sure that the SI-side
// Command has been forwarded to both Cmd FIFO and MI-side).
//
// It is allowed to continue pushing new commands as long as
// * There is room in the queue(s)
// * The ID is the same as previously queued. Since data is not reordered
// for the same ID it is always OK to let them proceed.
// Or, if no split transaction is ongoing any ID can be allowed.
//
/////////////////////////////////////////////////////////////////////////////
// Keep track of current ID in queue.
always @ (posedge ACLK) begin
if (ARESET) begin
queue_id <= {C_AXI_ID_WIDTH{1'b0}};
multiple_id_non_split <= 1'b0;
split_in_progress <= 1'b0;
end else begin
if ( cmd_push ) begin
// Store ID (it will be matching ID or a "new beginning").
queue_id <= S_AXI_AID_Q;
end
if ( no_cmd & no_b_cmd ) begin
multiple_id_non_split <= 1'b0;
end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin
multiple_id_non_split <= 1'b1;
end
if ( no_cmd & no_b_cmd ) begin
split_in_progress <= 1'b0;
end else if ( cmd_push & allow_split_cmd ) begin
split_in_progress <= 1'b1;
end
end
end
// Determine if the command FIFOs are empty.
assign no_cmd = almost_empty & cmd_ready | cmd_empty;
assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty;
// Check ID to make sure this command is allowed.
assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q);
assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) );
// Command type affects possibility to push immediately or wait.
assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split;
assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress);
assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 );
// Check if it is allowed to push more commands.
assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) |
cmd_push_block;
// Push new command when allowed and MI-side is able to receive the command.
assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block;
assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0);
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_push_block <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
cmd_push_block <= 1'b0;
end else if ( cmd_push & mi_stalling ) begin
cmd_push_block <= 1'b1;
end
end
end
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_block <= 1'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
cmd_b_push_block <= 1'b0;
end else if ( cmd_b_push ) begin
cmd_b_push_block <= 1'b1;
end
end
end
// Acknowledge command when we can push it into queue (and forward it).
assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue (W/R):
//
// Instantiate a FIFO as the queue and adjust the control signals.
//
// The features from Command FIFO can be reduced depending on configuration:
// Read Channel only need the split information.
// Write Channel always require ID information. When bursts are supported
// Split and Length information is also used.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_split_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_split}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_id = {C_AXI_ID_WIDTH{1'b0}};
assign cmd_length = 4'b0;
end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH+4),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i, cmd_length_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id, cmd_length}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
end else begin : NO_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
assign cmd_length = 4'b0;
end
endgenerate
// Queue is concidered full when not ready.
assign cmd_full = ~s_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_empty <= 1'b1;
cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_push & ~cmd_ready ) begin
// Push only => Increase depth.
cmd_depth <= cmd_depth + 1'b1;
cmd_empty <= 1'b0;
end else if ( ~cmd_push & cmd_ready ) begin
// Pop only => Decrease depth.
cmd_depth <= cmd_depth - 1'b1;
cmd_empty <= almost_empty;
end
end
end
assign almost_empty = ( cmd_depth == 1 );
/////////////////////////////////////////////////////////////////////////////
// Command Queue (B):
//
// Add command queue for B channel only when it is AW channel and both burst
// and splitting is supported.
//
// When turned off the command appears always empty.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL
wire cmd_b_valid_i;
wire s_b_ready;
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1+4),
.C_FIFO_TYPE("lut")
)
cmd_b_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_b_split_i, cmd_b_repeat_i}),
.S_VALID(cmd_b_push),
.S_READY(s_b_ready),
.M_MESG({cmd_b_split, cmd_b_repeat}),
.M_VALID(cmd_b_valid_i),
.M_READY(cmd_b_ready)
);
// Queue is concidered full when not ready.
assign cmd_b_full = ~s_b_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_b_push & ~cmd_b_ready ) begin
// Push only => Increase depth.
cmd_b_depth <= cmd_b_depth + 1'b1;
cmd_b_empty <= 1'b0;
end else if ( ~cmd_b_push & cmd_b_ready ) begin
// Pop only => Decrease depth.
cmd_b_depth <= cmd_b_depth - 1'b1;
cmd_b_empty <= ( cmd_b_depth == 1 );
end
end
end
assign almost_b_empty = ( cmd_b_depth == 1 );
// Assign external signal.
assign cmd_b_valid = cmd_b_valid_i;
end else begin : NO_B_CHANNEL
// Assign external command signals.
assign cmd_b_valid = 1'b0;
assign cmd_b_split = 1'b0;
assign cmd_b_repeat = 4'b0;
// Assign internal command FIFO signals.
assign cmd_b_full = 1'b0;
assign almost_b_empty = 1'b0;
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
// Constant FF due to ModelSim behavior.
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end
end
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID = M_AXI_AID_I;
assign M_AXI_AADDR = M_AXI_AADDR_I;
assign M_AXI_ALEN = M_AXI_ALEN_I;
assign M_AXI_ASIZE = M_AXI_ASIZE_I;
assign M_AXI_ABURST = M_AXI_ABURST_I;
assign M_AXI_ALOCK = M_AXI_ALOCK_I;
assign M_AXI_ACACHE = M_AXI_ACACHE_I;
assign M_AXI_APROT = M_AXI_APROT_I;
assign M_AXI_AQOS = M_AXI_AQOS_I;
assign M_AXI_AUSER = M_AXI_AUSER_I;
assign M_AXI_AVALID = M_AXI_AVALID_I;
assign M_AXI_AREADY_I = M_AXI_AREADY;
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output reg next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg sel_first;
reg [11:0] axaddr_incr;
reg [8:0] axlen_cnt;
reg next_pending_r;
wire [3:0] axsize_shift;
wire [11:0] axsize_mask;
localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// calculate cmd_byte_addr
generate
if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K
assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_incr[11:0]};
end else begin : ADDR_4K
assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_incr[11:0];
end
endgenerate
assign axsize_shift = (1 << axsize[1:0]);
assign axsize_mask = ~(axsize_shift - 1'b1);
// Incremented version of axaddr
always @(posedge clk) begin
if (sel_first) begin
if(~next) begin
axaddr_incr <= axaddr[11:0] & axsize_mask;
end else begin
axaddr_incr <= (axaddr[11:0] & axsize_mask) + axsize_shift;
end
end else if (next) begin
axaddr_incr <= axaddr_incr + axsize_shift;
end
end
always @(posedge clk) begin
if (axhandshake)begin
axlen_cnt <= axlen;
next_pending_r <= (axlen >= 1);
end else if (next) begin
if (axlen_cnt > 1) begin
axlen_cnt <= axlen_cnt - 1;
next_pending_r <= ((axlen_cnt - 1) >= 1);
end else begin
axlen_cnt <= 9'd0;
next_pending_r <= 1'b0;
end
end
end
always @( * ) begin
if (axhandshake)begin
next_pending = (axlen >= 1);
end else if (next) begin
if (axlen_cnt > 1) begin
next_pending = ((axlen_cnt - 1) >= 1);
end else begin
next_pending = 1'b0;
end
end else begin
next_pending = next_pending_r;
end
end
// last and ignore signals to data channel. These signals are used for
// BL8 to ignore and insert data for even len transactions with offset
// and odd len transactions
// For odd len transactions with no offset the last read is ignored and
// last write is masked
// For odd len transactions with offset the first read is ignored and
// first write is masked
// For even len transactions with offset the last & first read is ignored and
// last& first write is masked
// For even len transactions no ingnores or masks.
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output reg next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg sel_first;
reg [11:0] axaddr_incr;
reg [8:0] axlen_cnt;
reg next_pending_r;
wire [3:0] axsize_shift;
wire [11:0] axsize_mask;
localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// calculate cmd_byte_addr
generate
if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K
assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_incr[11:0]};
end else begin : ADDR_4K
assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_incr[11:0];
end
endgenerate
assign axsize_shift = (1 << axsize[1:0]);
assign axsize_mask = ~(axsize_shift - 1'b1);
// Incremented version of axaddr
always @(posedge clk) begin
if (sel_first) begin
if(~next) begin
axaddr_incr <= axaddr[11:0] & axsize_mask;
end else begin
axaddr_incr <= (axaddr[11:0] & axsize_mask) + axsize_shift;
end
end else if (next) begin
axaddr_incr <= axaddr_incr + axsize_shift;
end
end
always @(posedge clk) begin
if (axhandshake)begin
axlen_cnt <= axlen;
next_pending_r <= (axlen >= 1);
end else if (next) begin
if (axlen_cnt > 1) begin
axlen_cnt <= axlen_cnt - 1;
next_pending_r <= ((axlen_cnt - 1) >= 1);
end else begin
axlen_cnt <= 9'd0;
next_pending_r <= 1'b0;
end
end
end
always @( * ) begin
if (axhandshake)begin
next_pending = (axlen >= 1);
end else if (next) begin
if (axlen_cnt > 1) begin
next_pending = ((axlen_cnt - 1) >= 1);
end else begin
next_pending = 1'b0;
end
end else begin
next_pending = next_pending_r;
end
end
// last and ignore signals to data channel. These signals are used for
// BL8 to ignore and insert data for even len transactions with offset
// and odd len transactions
// For odd len transactions with no offset the last read is ignored and
// last write is masked
// For odd len transactions with offset the first read is ignored and
// first write is masked
// For even len transactions with offset the last & first read is ignored and
// last& first write is masked
// For even len transactions no ingnores or masks.
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
endmodule
|
module axi_protocol_converter_v2_1_axilite_conv #
(
parameter C_FAMILY = "virtex6",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1
)
(
// System Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [3-1:0] S_AXI_AWPROT,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, // Constant =0
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [3-1:0] S_AXI_ARPROT,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST, // Constant =1
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, // Constant =0
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [3-1:0] M_AXI_AWPROT,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [2-1:0] M_AXI_BRESP,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [3-1:0] M_AXI_ARPROT,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
wire s_awvalid_i;
wire s_arvalid_i;
wire [C_AXI_ADDR_WIDTH-1:0] m_axaddr;
// Arbiter
reg read_active;
reg write_active;
reg busy;
wire read_req;
wire write_req;
wire read_complete;
wire write_complete;
reg [1:0] areset_d; // Reset delay register
always @(posedge ACLK) begin
areset_d <= {areset_d[0], ~ARESETN};
end
assign s_awvalid_i = S_AXI_AWVALID & (C_AXI_SUPPORTS_WRITE != 0);
assign s_arvalid_i = S_AXI_ARVALID & (C_AXI_SUPPORTS_READ != 0);
assign read_req = s_arvalid_i & ~busy & ~|areset_d & ~write_active;
assign write_req = s_awvalid_i & ~busy & ~|areset_d & ((~read_active & ~s_arvalid_i) | write_active);
assign read_complete = M_AXI_RVALID & S_AXI_RREADY;
assign write_complete = M_AXI_BVALID & S_AXI_BREADY;
always @(posedge ACLK) begin : arbiter_read_ff
if (|areset_d)
read_active <= 1'b0;
else if (read_complete)
read_active <= 1'b0;
else if (read_req)
read_active <= 1'b1;
end
always @(posedge ACLK) begin : arbiter_write_ff
if (|areset_d)
write_active <= 1'b0;
else if (write_complete)
write_active <= 1'b0;
else if (write_req)
write_active <= 1'b1;
end
always @(posedge ACLK) begin : arbiter_busy_ff
if (|areset_d)
busy <= 1'b0;
else if (read_complete | write_complete)
busy <= 1'b0;
else if ((write_req & M_AXI_AWREADY) | (read_req & M_AXI_ARREADY))
busy <= 1'b1;
end
assign M_AXI_ARVALID = read_req;
assign S_AXI_ARREADY = M_AXI_ARREADY & read_req;
assign M_AXI_AWVALID = write_req;
assign S_AXI_AWREADY = M_AXI_AWREADY & write_req;
assign M_AXI_RREADY = S_AXI_RREADY & read_active;
assign S_AXI_RVALID = M_AXI_RVALID & read_active;
assign M_AXI_BREADY = S_AXI_BREADY & write_active;
assign S_AXI_BVALID = M_AXI_BVALID & write_active;
// Address multiplexer
assign m_axaddr = (read_req | (C_AXI_SUPPORTS_WRITE == 0)) ? S_AXI_ARADDR : S_AXI_AWADDR;
// Id multiplexer and flip-flop
reg [C_AXI_ID_WIDTH-1:0] s_axid;
always @(posedge ACLK) begin : axid
if (read_req) s_axid <= S_AXI_ARID;
else if (write_req) s_axid <= S_AXI_AWID;
end
assign S_AXI_BID = s_axid;
assign S_AXI_RID = s_axid;
assign M_AXI_AWADDR = m_axaddr;
assign M_AXI_ARADDR = m_axaddr;
// Feed-through signals
assign S_AXI_WREADY = M_AXI_WREADY & ~|areset_d;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign M_AXI_AWPROT = S_AXI_AWPROT;
assign M_AXI_WVALID = S_AXI_WVALID & ~|areset_d;
assign M_AXI_WDATA = S_AXI_WDATA;
assign M_AXI_WSTRB = S_AXI_WSTRB;
assign M_AXI_ARPROT = S_AXI_ARPROT;
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
output wire b_push ,
output wire [C_ID_WIDTH-1:0] b_awid ,
output wire [7:0] b_awlen ,
input wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_awid_r;
reg [7:0] s_awlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_awaddr ) ,
.s_axlen ( s_awlen ) ,
.s_axsize ( s_awsize ) ,
.s_axburst ( s_awburst ) ,
.s_axhandshake ( s_awvalid & a_push ) ,
.m_axaddr ( m_awaddr ) ,
.incr_burst ( incr_burst ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_awready ( s_awready ) ,
.s_awvalid ( s_awvalid ) ,
.m_awvalid ( m_awvalid ) ,
.m_awready ( m_awready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.b_push ( b_push ) ,
.b_full ( b_full ) ,
.a_push ( a_push )
);
assign b_awid = s_awid_r;
assign b_awlen = s_awlen_r;
always @(posedge clk) begin
s_awid_r <= s_awid ;
s_awlen_r <= s_awlen ;
end
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output reg next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg sel_first;
wire [11:0] axaddr_i;
wire [3:0] axlen_i;
reg [11:0] wrap_boundary_axaddr;
reg [3:0] axaddr_offset;
reg [3:0] wrap_second_len;
reg [11:0] wrap_boundary_axaddr_r;
reg [3:0] axaddr_offset_r;
reg [3:0] wrap_second_len_r;
reg [4:0] axlen_cnt;
reg [4:0] wrap_cnt_r;
wire [4:0] wrap_cnt;
reg [11:0] axaddr_wrap;
reg next_pending_r;
localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K
assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]};
end else begin : ADDR_4K
assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0];
end
endgenerate
assign axaddr_i = axaddr[11:0];
assign axlen_i = axlen[3:0];
// Mask bits based on transaction length to get wrap boundary low address
// Offset used to calculate the length of each transaction
always @( * ) begin
if(axhandshake) begin
wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]);
axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i;
end else begin
wrap_boundary_axaddr = wrap_boundary_axaddr_r;
axaddr_offset = axaddr_offset_r;
end
end
// case (axsize[1:0])
// 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i;
// 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i;
// 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i;
// 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i;
// default : axaddr_offset = axaddr_i[7:3] & axlen_i;
// endcase
// The first and the second command from the wrap transaction could
// be of odd length or even length with address offset. This will be
// an issue with BL8, extra transactions have to be issued.
// Rounding up the length to account for extra transactions.
always @( * ) begin
if(axhandshake) begin
wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0;
end else begin
wrap_second_len = wrap_second_len_r;
end
end
// registering to be used in the combo logic.
always @(posedge clk) begin
wrap_boundary_axaddr_r <= wrap_boundary_axaddr;
axaddr_offset_r <= axaddr_offset;
wrap_second_len_r <= wrap_second_len;
end
// determining if extra data is required for even offsets
// wrap_cnt used to switch the address for first and second transaction.
assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}};
always @(posedge clk)
wrap_cnt_r <= wrap_cnt;
always @(posedge clk) begin
if (axhandshake) begin
axaddr_wrap <= axaddr[11:0];
end if(next)begin
if(axlen_cnt == wrap_cnt_r) begin
axaddr_wrap <= wrap_boundary_axaddr_r;
end else begin
axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]);
end
end
end
// Even numbber of transactions with offset, inc len by 2 for BL8
always @(posedge clk) begin
if (axhandshake)begin
axlen_cnt <= axlen_i;
next_pending_r <= axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
axlen_cnt <= axlen_cnt - 1;
next_pending_r <= (axlen_cnt - 1) >= 1;
end else begin
axlen_cnt <= 5'd0;
next_pending_r <= 1'b0;
end
end
end
always @( * ) begin
if (axhandshake)begin
next_pending = axlen_i >= 1;
end else if (next) begin
if (axlen_cnt > 1) begin
next_pending = (axlen_cnt - 1) >= 1;
end else begin
next_pending = 1'b0;
end
end else begin
next_pending = next_pending_r;
end
end
// last and ignore signals to data channel. These signals are used for
// BL8 to ignore and insert data for even len transactions with offset
// and odd len transactions
// For odd len transactions with no offset the last read is ignored and
// last write is masked
// For odd len transactions with offset the first read is ignored and
// first write is masked
// For even len transactions with offset the last & first read is ignored and
// last& first write is masked
// For even len transactions no ingnores or masks.
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
endmodule
|
module
input wire r_push ,
output wire r_full ,
// length not needed. Can be removed.
input wire [C_ID_WIDTH-1:0] r_arid ,
input wire r_rlast
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam P_WIDTH = 1+C_ID_WIDTH;
localparam P_DEPTH = 32;
localparam P_AWIDTH = 5;
localparam P_D_WIDTH = C_DATA_WIDTH + 2;
// rd data FIFO depth varies based on burst length.
// For Bl8 it is two times the size of transaction FIFO.
// Only in 2:1 mode BL8 transactions will happen which results in
// two beats of read data per read transaction.
localparam P_D_DEPTH = 32;
localparam P_D_AWIDTH = 5;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_ID_WIDTH+1-1:0] trans_in;
wire [C_ID_WIDTH+1-1:0] trans_out;
wire tr_empty;
wire rhandshake;
wire r_valid_i;
wire [P_D_WIDTH-1:0] rd_data_fifo_in;
wire [P_D_WIDTH-1:0] rd_data_fifo_out;
wire rd_en;
wire rd_full;
wire rd_empty;
wire rd_a_full;
wire fifo_a_full;
reg [C_ID_WIDTH-1:0] r_arid_r;
reg r_rlast_r;
reg r_push_r;
wire fifo_full;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH];
assign s_rid = trans_out[1+:C_ID_WIDTH];
assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0];
assign s_rlast = trans_out[0];
assign s_rvalid = ~rd_empty & ~tr_empty;
// assign MCB outputs
assign rd_en = rhandshake & (~rd_empty);
assign rhandshake =(s_rvalid & s_rready);
// register for timing
always @(posedge clk) begin
r_arid_r <= r_arid;
r_rlast_r <= r_rlast;
r_push_r <= r_push;
end
assign trans_in[0] = r_rlast_r;
assign trans_in[1+:C_ID_WIDTH] = r_arid_r;
// rd data fifo
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_D_WIDTH),
.C_AWIDTH (P_D_AWIDTH),
.C_DEPTH (P_D_DEPTH)
)
rd_data_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( m_rvalid & m_rready ) ,
.rd_en ( rd_en ) ,
.din ( rd_data_fifo_in ) ,
.dout ( rd_data_fifo_out ) ,
.a_full ( rd_a_full ) ,
.full ( rd_full ) ,
.a_empty ( ) ,
.empty ( rd_empty )
);
assign rd_data_fifo_in = {m_rresp, m_rdata};
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
transaction_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( r_push_r ) ,
.rd_en ( rd_en ) ,
.din ( trans_in ) ,
.dout ( trans_out ) ,
.a_full ( fifo_a_full ) ,
.full ( ) ,
.a_empty ( ) ,
.empty ( tr_empty )
);
assign fifo_full = fifo_a_full | rd_a_full ;
assign r_full = fifo_full ;
assign m_rready = ~rd_a_full;
endmodule
|
module
input wire r_push ,
output wire r_full ,
// length not needed. Can be removed.
input wire [C_ID_WIDTH-1:0] r_arid ,
input wire r_rlast
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam P_WIDTH = 1+C_ID_WIDTH;
localparam P_DEPTH = 32;
localparam P_AWIDTH = 5;
localparam P_D_WIDTH = C_DATA_WIDTH + 2;
// rd data FIFO depth varies based on burst length.
// For Bl8 it is two times the size of transaction FIFO.
// Only in 2:1 mode BL8 transactions will happen which results in
// two beats of read data per read transaction.
localparam P_D_DEPTH = 32;
localparam P_D_AWIDTH = 5;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_ID_WIDTH+1-1:0] trans_in;
wire [C_ID_WIDTH+1-1:0] trans_out;
wire tr_empty;
wire rhandshake;
wire r_valid_i;
wire [P_D_WIDTH-1:0] rd_data_fifo_in;
wire [P_D_WIDTH-1:0] rd_data_fifo_out;
wire rd_en;
wire rd_full;
wire rd_empty;
wire rd_a_full;
wire fifo_a_full;
reg [C_ID_WIDTH-1:0] r_arid_r;
reg r_rlast_r;
reg r_push_r;
wire fifo_full;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH];
assign s_rid = trans_out[1+:C_ID_WIDTH];
assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0];
assign s_rlast = trans_out[0];
assign s_rvalid = ~rd_empty & ~tr_empty;
// assign MCB outputs
assign rd_en = rhandshake & (~rd_empty);
assign rhandshake =(s_rvalid & s_rready);
// register for timing
always @(posedge clk) begin
r_arid_r <= r_arid;
r_rlast_r <= r_rlast;
r_push_r <= r_push;
end
assign trans_in[0] = r_rlast_r;
assign trans_in[1+:C_ID_WIDTH] = r_arid_r;
// rd data fifo
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_D_WIDTH),
.C_AWIDTH (P_D_AWIDTH),
.C_DEPTH (P_D_DEPTH)
)
rd_data_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( m_rvalid & m_rready ) ,
.rd_en ( rd_en ) ,
.din ( rd_data_fifo_in ) ,
.dout ( rd_data_fifo_out ) ,
.a_full ( rd_a_full ) ,
.full ( rd_full ) ,
.a_empty ( ) ,
.empty ( rd_empty )
);
assign rd_data_fifo_in = {m_rresp, m_rdata};
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
transaction_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( r_push_r ) ,
.rd_en ( rd_en ) ,
.din ( trans_in ) ,
.dout ( trans_out ) ,
.a_full ( fifo_a_full ) ,
.full ( ) ,
.a_empty ( ) ,
.empty ( tr_empty )
);
assign fifo_full = fifo_a_full | rd_a_full ;
assign r_full = fifo_full ;
assign m_rready = ~rd_a_full;
endmodule
|
module
input wire r_push ,
output wire r_full ,
// length not needed. Can be removed.
input wire [C_ID_WIDTH-1:0] r_arid ,
input wire r_rlast
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
localparam P_WIDTH = 1+C_ID_WIDTH;
localparam P_DEPTH = 32;
localparam P_AWIDTH = 5;
localparam P_D_WIDTH = C_DATA_WIDTH + 2;
// rd data FIFO depth varies based on burst length.
// For Bl8 it is two times the size of transaction FIFO.
// Only in 2:1 mode BL8 transactions will happen which results in
// two beats of read data per read transaction.
localparam P_D_DEPTH = 32;
localparam P_D_AWIDTH = 5;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_ID_WIDTH+1-1:0] trans_in;
wire [C_ID_WIDTH+1-1:0] trans_out;
wire tr_empty;
wire rhandshake;
wire r_valid_i;
wire [P_D_WIDTH-1:0] rd_data_fifo_in;
wire [P_D_WIDTH-1:0] rd_data_fifo_out;
wire rd_en;
wire rd_full;
wire rd_empty;
wire rd_a_full;
wire fifo_a_full;
reg [C_ID_WIDTH-1:0] r_arid_r;
reg r_rlast_r;
reg r_push_r;
wire fifo_full;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH];
assign s_rid = trans_out[1+:C_ID_WIDTH];
assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0];
assign s_rlast = trans_out[0];
assign s_rvalid = ~rd_empty & ~tr_empty;
// assign MCB outputs
assign rd_en = rhandshake & (~rd_empty);
assign rhandshake =(s_rvalid & s_rready);
// register for timing
always @(posedge clk) begin
r_arid_r <= r_arid;
r_rlast_r <= r_rlast;
r_push_r <= r_push;
end
assign trans_in[0] = r_rlast_r;
assign trans_in[1+:C_ID_WIDTH] = r_arid_r;
// rd data fifo
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_D_WIDTH),
.C_AWIDTH (P_D_AWIDTH),
.C_DEPTH (P_D_DEPTH)
)
rd_data_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( m_rvalid & m_rready ) ,
.rd_en ( rd_en ) ,
.din ( rd_data_fifo_in ) ,
.dout ( rd_data_fifo_out ) ,
.a_full ( rd_a_full ) ,
.full ( rd_full ) ,
.a_empty ( ) ,
.empty ( rd_empty )
);
assign rd_data_fifo_in = {m_rresp, m_rdata};
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
transaction_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( r_push_r ) ,
.rd_en ( rd_en ) ,
.din ( trans_in ) ,
.dout ( trans_out ) ,
.a_full ( fifo_a_full ) ,
.full ( ) ,
.a_empty ( ) ,
.empty ( tr_empty )
);
assign fifo_full = fifo_a_full | rd_a_full ;
assign r_full = fifo_full ;
assign m_rready = ~rd_a_full;
endmodule
|
module axi_protocol_converter_v2_1_b2s_b_channel #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
// Width of ID signals.
// Range: >= 1.
parameter integer C_ID_WIDTH = 4
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk,
input wire reset,
// AXI signals
output wire [C_ID_WIDTH-1:0] s_bid,
output wire [1:0] s_bresp,
output wire s_bvalid,
input wire s_bready,
input wire [1:0] m_bresp,
input wire m_bvalid,
output wire m_bready,
// Signals to/from the axi_protocol_converter_v2_1_b2s_aw_channel modules
input wire b_push,
input wire [C_ID_WIDTH-1:0] b_awid,
input wire [7:0] b_awlen,
input wire b_resp_rdy,
output wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXI protocol responses:
localparam [1:0] LP_RESP_OKAY = 2'b00;
localparam [1:0] LP_RESP_EXOKAY = 2'b01;
localparam [1:0] LP_RESP_SLVERROR = 2'b10;
localparam [1:0] LP_RESP_DECERR = 2'b11;
// FIFO settings
localparam P_WIDTH = C_ID_WIDTH + 8;
localparam P_DEPTH = 4;
localparam P_AWIDTH = 2;
localparam P_RWIDTH = 2;
localparam P_RDEPTH = 4;
localparam P_RAWIDTH = 2;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg bvalid_i;
wire [C_ID_WIDTH-1:0] bid_i;
wire shandshake;
reg shandshake_r;
wire mhandshake;
reg mhandshake_r;
wire b_empty;
wire bresp_full;
wire bresp_empty;
wire [7:0] b_awlen_i;
reg [7:0] bresp_cnt;
reg [1:0] s_bresp_acc;
wire [1:0] s_bresp_acc_r;
reg [1:0] s_bresp_i;
wire need_to_update_bresp;
wire bresp_push;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// assign AXI outputs
assign s_bid = bid_i;
assign s_bresp = s_bresp_acc_r;
assign s_bvalid = bvalid_i;
assign shandshake = s_bvalid & s_bready;
assign mhandshake = m_bvalid & m_bready;
always @(posedge clk) begin
if (reset | shandshake) begin
bvalid_i <= 1'b0;
end else if (~b_empty & ~shandshake_r & ~bresp_empty) begin
bvalid_i <= 1'b1;
end
end
always @(posedge clk) begin
shandshake_r <= shandshake;
mhandshake_r <= mhandshake;
end
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
bid_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( b_push ) ,
.rd_en ( shandshake_r ) ,
.din ( {b_awid, b_awlen} ) ,
.dout ( {bid_i, b_awlen_i}) ,
.a_full ( ) ,
.full ( b_full ) ,
.a_empty ( ) ,
.empty ( b_empty )
);
assign m_bready = ~mhandshake_r & bresp_empty;
/////////////////////////////////////////////////////////////////////////////
// Update if more critical.
assign need_to_update_bresp = ( m_bresp > s_bresp_acc );
// Select accumultated or direct depending on setting.
always @( * ) begin
if ( need_to_update_bresp ) begin
s_bresp_i = m_bresp;
end else begin
s_bresp_i = s_bresp_acc;
end
end
/////////////////////////////////////////////////////////////////////////////
// Accumulate MI-side BRESP.
always @ (posedge clk) begin
if (reset | bresp_push ) begin
s_bresp_acc <= LP_RESP_OKAY;
end else if ( mhandshake ) begin
s_bresp_acc <= s_bresp_i;
end
end
assign bresp_push = ( mhandshake_r ) & (bresp_cnt == b_awlen_i) & ~b_empty;
always @ (posedge clk) begin
if (reset | bresp_push ) begin
bresp_cnt <= 8'h00;
end else if ( mhandshake_r ) begin
bresp_cnt <= bresp_cnt + 1'b1;
end
end
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_RWIDTH),
.C_AWIDTH (P_RAWIDTH),
.C_DEPTH (P_RDEPTH)
)
bresp_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( bresp_push ) ,
.rd_en ( shandshake_r ) ,
.din ( s_bresp_acc ) ,
.dout ( s_bresp_acc_r) ,
.a_full ( ) ,
.full ( bresp_full ) ,
.a_empty ( ) ,
.empty ( bresp_empty )
);
endmodule
|
module axi_protocol_converter_v2_1_b2s_b_channel #
(
///////////////////////////////////////////////////////////////////////////////
// Parameter Definitions
///////////////////////////////////////////////////////////////////////////////
// Width of ID signals.
// Range: >= 1.
parameter integer C_ID_WIDTH = 4
)
(
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk,
input wire reset,
// AXI signals
output wire [C_ID_WIDTH-1:0] s_bid,
output wire [1:0] s_bresp,
output wire s_bvalid,
input wire s_bready,
input wire [1:0] m_bresp,
input wire m_bvalid,
output wire m_bready,
// Signals to/from the axi_protocol_converter_v2_1_b2s_aw_channel modules
input wire b_push,
input wire [C_ID_WIDTH-1:0] b_awid,
input wire [7:0] b_awlen,
input wire b_resp_rdy,
output wire b_full
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXI protocol responses:
localparam [1:0] LP_RESP_OKAY = 2'b00;
localparam [1:0] LP_RESP_EXOKAY = 2'b01;
localparam [1:0] LP_RESP_SLVERROR = 2'b10;
localparam [1:0] LP_RESP_DECERR = 2'b11;
// FIFO settings
localparam P_WIDTH = C_ID_WIDTH + 8;
localparam P_DEPTH = 4;
localparam P_AWIDTH = 2;
localparam P_RWIDTH = 2;
localparam P_RDEPTH = 4;
localparam P_RAWIDTH = 2;
////////////////////////////////////////////////////////////////////////////////
// Wire and register declarations
////////////////////////////////////////////////////////////////////////////////
reg bvalid_i;
wire [C_ID_WIDTH-1:0] bid_i;
wire shandshake;
reg shandshake_r;
wire mhandshake;
reg mhandshake_r;
wire b_empty;
wire bresp_full;
wire bresp_empty;
wire [7:0] b_awlen_i;
reg [7:0] bresp_cnt;
reg [1:0] s_bresp_acc;
wire [1:0] s_bresp_acc_r;
reg [1:0] s_bresp_i;
wire need_to_update_bresp;
wire bresp_push;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// assign AXI outputs
assign s_bid = bid_i;
assign s_bresp = s_bresp_acc_r;
assign s_bvalid = bvalid_i;
assign shandshake = s_bvalid & s_bready;
assign mhandshake = m_bvalid & m_bready;
always @(posedge clk) begin
if (reset | shandshake) begin
bvalid_i <= 1'b0;
end else if (~b_empty & ~shandshake_r & ~bresp_empty) begin
bvalid_i <= 1'b1;
end
end
always @(posedge clk) begin
shandshake_r <= shandshake;
mhandshake_r <= mhandshake;
end
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_WIDTH),
.C_AWIDTH (P_AWIDTH),
.C_DEPTH (P_DEPTH)
)
bid_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( b_push ) ,
.rd_en ( shandshake_r ) ,
.din ( {b_awid, b_awlen} ) ,
.dout ( {bid_i, b_awlen_i}) ,
.a_full ( ) ,
.full ( b_full ) ,
.a_empty ( ) ,
.empty ( b_empty )
);
assign m_bready = ~mhandshake_r & bresp_empty;
/////////////////////////////////////////////////////////////////////////////
// Update if more critical.
assign need_to_update_bresp = ( m_bresp > s_bresp_acc );
// Select accumultated or direct depending on setting.
always @( * ) begin
if ( need_to_update_bresp ) begin
s_bresp_i = m_bresp;
end else begin
s_bresp_i = s_bresp_acc;
end
end
/////////////////////////////////////////////////////////////////////////////
// Accumulate MI-side BRESP.
always @ (posedge clk) begin
if (reset | bresp_push ) begin
s_bresp_acc <= LP_RESP_OKAY;
end else if ( mhandshake ) begin
s_bresp_acc <= s_bresp_i;
end
end
assign bresp_push = ( mhandshake_r ) & (bresp_cnt == b_awlen_i) & ~b_empty;
always @ (posedge clk) begin
if (reset | bresp_push ) begin
bresp_cnt <= 8'h00;
end else if ( mhandshake_r ) begin
bresp_cnt <= bresp_cnt + 1'b1;
end
end
axi_protocol_converter_v2_1_b2s_simple_fifo #(
.C_WIDTH (P_RWIDTH),
.C_AWIDTH (P_RAWIDTH),
.C_DEPTH (P_RDEPTH)
)
bresp_fifo_0
(
.clk ( clk ) ,
.rst ( reset ) ,
.wr_en ( bresp_push ) ,
.rd_en ( shandshake_r ) ,
.din ( s_bresp_acc ) ,
.dout ( s_bresp_acc_r) ,
.a_full ( ) ,
.full ( bresp_full ) ,
.a_empty ( ) ,
.empty ( bresp_empty )
);
endmodule
|
module
output wire [C_ID_WIDTH-1:0] r_arid ,
output wire r_push ,
output wire r_rlast ,
input wire r_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_arid_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_araddr ) ,
.s_axlen ( s_arlen ) ,
.s_axsize ( s_arsize ) ,
.s_axburst ( s_arburst ) ,
.s_axhandshake ( s_arvalid & a_push ) ,
.incr_burst ( incr_burst ) ,
.m_axaddr ( m_araddr ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_rd_cmd_fsm ar_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_arready ( s_arready ) ,
.s_arvalid ( s_arvalid ) ,
.s_arlen ( s_arlen ) ,
.m_arvalid ( m_arvalid ) ,
.m_arready ( m_arready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.data_ready ( ~r_full ) ,
.a_push ( a_push ) ,
.r_push ( r_push )
);
// these signals can be moved out of this block to the top level.
assign r_arid = s_arid_r;
assign r_rlast = ~next_pending;
always @(posedge clk) begin
s_arid_r <= s_arid ;
end
endmodule
|
module
output wire [C_ID_WIDTH-1:0] r_arid ,
output wire r_push ,
output wire r_rlast ,
input wire r_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_arid_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_araddr ) ,
.s_axlen ( s_arlen ) ,
.s_axsize ( s_arsize ) ,
.s_axburst ( s_arburst ) ,
.s_axhandshake ( s_arvalid & a_push ) ,
.incr_burst ( incr_burst ) ,
.m_axaddr ( m_araddr ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_rd_cmd_fsm ar_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_arready ( s_arready ) ,
.s_arvalid ( s_arvalid ) ,
.s_arlen ( s_arlen ) ,
.m_arvalid ( m_arvalid ) ,
.m_arready ( m_arready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.data_ready ( ~r_full ) ,
.a_push ( a_push ) ,
.r_push ( r_push )
);
// these signals can be moved out of this block to the top level.
assign r_arid = s_arid_r;
assign r_rlast = ~next_pending;
always @(posedge clk) begin
s_arid_r <= s_arid ;
end
endmodule
|
module
output wire [C_ID_WIDTH-1:0] r_arid ,
output wire r_push ,
output wire r_rlast ,
input wire r_full
);
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire next ;
wire next_pending ;
wire a_push;
wire incr_burst;
reg [C_ID_WIDTH-1:0] s_arid_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// Translate the AXI transaction to the MC transaction(s)
axi_protocol_converter_v2_1_b2s_cmd_translator #
(
.C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH )
)
cmd_translator_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_axaddr ( s_araddr ) ,
.s_axlen ( s_arlen ) ,
.s_axsize ( s_arsize ) ,
.s_axburst ( s_arburst ) ,
.s_axhandshake ( s_arvalid & a_push ) ,
.incr_burst ( incr_burst ) ,
.m_axaddr ( m_araddr ) ,
.next ( next ) ,
.next_pending ( next_pending )
);
axi_protocol_converter_v2_1_b2s_rd_cmd_fsm ar_cmd_fsm_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.s_arready ( s_arready ) ,
.s_arvalid ( s_arvalid ) ,
.s_arlen ( s_arlen ) ,
.m_arvalid ( m_arvalid ) ,
.m_arready ( m_arready ) ,
.next ( next ) ,
.next_pending ( next_pending ) ,
.data_ready ( ~r_full ) ,
.a_push ( a_push ) ,
.r_push ( r_push )
);
// these signals can be moved out of this block to the top level.
assign r_arid = s_arid_r;
assign r_rlast = ~next_pending;
always @(posedge clk) begin
s_arid_r <= s_arid ;
end
endmodule
|
module axi_protocol_converter_v2_1_b_downsizer #
(
parameter C_FAMILY = "none",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of converter.
// Range: >= 1.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Don�t propagate.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_valid,
input wire cmd_split,
input wire [4-1:0] cmd_repeat,
output wire cmd_ready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Repeat handling related.
reg [4-1:0] repeat_cnt_pre;
reg [4-1:0] repeat_cnt;
wire [4-1:0] next_repeat_cnt;
reg first_mi_word;
wire last_word;
// Ongoing split transaction.
wire load_bresp;
wire need_to_update_bresp;
reg [2-1:0] S_AXI_BRESP_ACC;
// Internal signals for MI-side.
wire M_AXI_BREADY_I;
// Internal signals for SI-side.
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID_I;
reg [2-1:0] S_AXI_BRESP_I;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER_I;
wire S_AXI_BVALID_I;
wire S_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// The MI-side BRESP is popped when at once for split transactions, except
// for the last cycle that behaves like a "normal" transaction.
// A "normal" BRESP is popped once the SI-side is able to use it,
//
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from MI-side.
assign M_AXI_BREADY_I = M_AXI_BVALID & ~mi_stalling;
assign M_AXI_BREADY = M_AXI_BREADY_I;
// Indicate when there is a BRESP available @ SI-side.
assign S_AXI_BVALID_I = M_AXI_BVALID & last_word;
// Get MI-side data.
assign pop_mi_data = M_AXI_BVALID & M_AXI_BREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = (~S_AXI_BREADY_I & last_word);
/////////////////////////////////////////////////////////////////////////////
// Handle the accumulation of BRESP.
//
// Forward the accumulated or MI-side BRESP value depending on state:
// * MI-side BRESP is forwarded untouched when it is a non split cycle.
// (MI-side BRESP value is also used when updating the accumulated for
// the last access during a split access).
// * The accumulated BRESP is for a split transaction.
//
// The accumulated BRESP register is updated for each MI-side response that
// is used.
//
/////////////////////////////////////////////////////////////////////////////
// Force load accumulated BRESPs to first value
assign load_bresp = (cmd_split & first_mi_word);
// Update if more critical.
assign need_to_update_bresp = ( M_AXI_BRESP > S_AXI_BRESP_ACC );
// Select accumultated or direct depending on setting.
always @ *
begin
if ( cmd_split ) begin
if ( load_bresp || need_to_update_bresp ) begin
S_AXI_BRESP_I = M_AXI_BRESP;
end else begin
S_AXI_BRESP_I = S_AXI_BRESP_ACC;
end
end else begin
S_AXI_BRESP_I = M_AXI_BRESP;
end
end
// Accumulate MI-side BRESP.
always @ (posedge ACLK) begin
if (ARESET) begin
S_AXI_BRESP_ACC <= C_RESP_OKAY;
end else begin
if ( pop_mi_data ) begin
S_AXI_BRESP_ACC <= S_AXI_BRESP_I;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Keep track of BRESP repeat counter.
//
// Last BRESP word is either:
// * The first and only word when not merging.
// * The last value when merging.
//
// The internal counter is taken from the external command interface during
// the first response when merging. The counter is updated each time a
// BRESP is popped from the MI-side interface.
//
/////////////////////////////////////////////////////////////////////////////
// Determine last BRESP cycle.
assign last_word = ( ( repeat_cnt == 4'b0 ) & ~first_mi_word ) |
~cmd_split;
// Select command reapeat or counted repeat value.
always @ *
begin
if ( first_mi_word ) begin
repeat_cnt_pre = cmd_repeat;
end else begin
repeat_cnt_pre = repeat_cnt;
end
end
// Calculate next repeat counter value.
assign next_repeat_cnt = repeat_cnt_pre - 1'b1;
// Keep track of the repeat count.
always @ (posedge ACLK) begin
if (ARESET) begin
repeat_cnt <= 4'b0;
first_mi_word <= 1'b1;
end else begin
if ( pop_mi_data ) begin
repeat_cnt <= next_repeat_cnt;
first_mi_word <= last_word;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// BID Handling
/////////////////////////////////////////////////////////////////////////////
assign S_AXI_BID_I = M_AXI_BID;
/////////////////////////////////////////////////////////////////////////////
// USER Data bits
//
// The last USER bits are simply taken from the last BRESP that is merged.
// Ground USER bits when unused.
/////////////////////////////////////////////////////////////////////////////
// Select USER bits.
assign S_AXI_BUSER_I = {C_AXI_BUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// SI-side output handling
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign S_AXI_BID = S_AXI_BID_I;
assign S_AXI_BRESP = S_AXI_BRESP_I;
assign S_AXI_BUSER = S_AXI_BUSER_I;
assign S_AXI_BVALID = S_AXI_BVALID_I;
assign S_AXI_BREADY_I = S_AXI_BREADY;
endmodule
|
module axi_protocol_converter_v2_1_b_downsizer #
(
parameter C_FAMILY = "none",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of converter.
// Range: >= 1.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Don�t propagate.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_valid,
input wire cmd_split,
input wire [4-1:0] cmd_repeat,
output wire cmd_ready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Repeat handling related.
reg [4-1:0] repeat_cnt_pre;
reg [4-1:0] repeat_cnt;
wire [4-1:0] next_repeat_cnt;
reg first_mi_word;
wire last_word;
// Ongoing split transaction.
wire load_bresp;
wire need_to_update_bresp;
reg [2-1:0] S_AXI_BRESP_ACC;
// Internal signals for MI-side.
wire M_AXI_BREADY_I;
// Internal signals for SI-side.
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID_I;
reg [2-1:0] S_AXI_BRESP_I;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER_I;
wire S_AXI_BVALID_I;
wire S_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// The MI-side BRESP is popped when at once for split transactions, except
// for the last cycle that behaves like a "normal" transaction.
// A "normal" BRESP is popped once the SI-side is able to use it,
//
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from MI-side.
assign M_AXI_BREADY_I = M_AXI_BVALID & ~mi_stalling;
assign M_AXI_BREADY = M_AXI_BREADY_I;
// Indicate when there is a BRESP available @ SI-side.
assign S_AXI_BVALID_I = M_AXI_BVALID & last_word;
// Get MI-side data.
assign pop_mi_data = M_AXI_BVALID & M_AXI_BREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = (~S_AXI_BREADY_I & last_word);
/////////////////////////////////////////////////////////////////////////////
// Handle the accumulation of BRESP.
//
// Forward the accumulated or MI-side BRESP value depending on state:
// * MI-side BRESP is forwarded untouched when it is a non split cycle.
// (MI-side BRESP value is also used when updating the accumulated for
// the last access during a split access).
// * The accumulated BRESP is for a split transaction.
//
// The accumulated BRESP register is updated for each MI-side response that
// is used.
//
/////////////////////////////////////////////////////////////////////////////
// Force load accumulated BRESPs to first value
assign load_bresp = (cmd_split & first_mi_word);
// Update if more critical.
assign need_to_update_bresp = ( M_AXI_BRESP > S_AXI_BRESP_ACC );
// Select accumultated or direct depending on setting.
always @ *
begin
if ( cmd_split ) begin
if ( load_bresp || need_to_update_bresp ) begin
S_AXI_BRESP_I = M_AXI_BRESP;
end else begin
S_AXI_BRESP_I = S_AXI_BRESP_ACC;
end
end else begin
S_AXI_BRESP_I = M_AXI_BRESP;
end
end
// Accumulate MI-side BRESP.
always @ (posedge ACLK) begin
if (ARESET) begin
S_AXI_BRESP_ACC <= C_RESP_OKAY;
end else begin
if ( pop_mi_data ) begin
S_AXI_BRESP_ACC <= S_AXI_BRESP_I;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Keep track of BRESP repeat counter.
//
// Last BRESP word is either:
// * The first and only word when not merging.
// * The last value when merging.
//
// The internal counter is taken from the external command interface during
// the first response when merging. The counter is updated each time a
// BRESP is popped from the MI-side interface.
//
/////////////////////////////////////////////////////////////////////////////
// Determine last BRESP cycle.
assign last_word = ( ( repeat_cnt == 4'b0 ) & ~first_mi_word ) |
~cmd_split;
// Select command reapeat or counted repeat value.
always @ *
begin
if ( first_mi_word ) begin
repeat_cnt_pre = cmd_repeat;
end else begin
repeat_cnt_pre = repeat_cnt;
end
end
// Calculate next repeat counter value.
assign next_repeat_cnt = repeat_cnt_pre - 1'b1;
// Keep track of the repeat count.
always @ (posedge ACLK) begin
if (ARESET) begin
repeat_cnt <= 4'b0;
first_mi_word <= 1'b1;
end else begin
if ( pop_mi_data ) begin
repeat_cnt <= next_repeat_cnt;
first_mi_word <= last_word;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// BID Handling
/////////////////////////////////////////////////////////////////////////////
assign S_AXI_BID_I = M_AXI_BID;
/////////////////////////////////////////////////////////////////////////////
// USER Data bits
//
// The last USER bits are simply taken from the last BRESP that is merged.
// Ground USER bits when unused.
/////////////////////////////////////////////////////////////////////////////
// Select USER bits.
assign S_AXI_BUSER_I = {C_AXI_BUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// SI-side output handling
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign S_AXI_BID = S_AXI_BID_I;
assign S_AXI_BRESP = S_AXI_BRESP_I;
assign S_AXI_BUSER = S_AXI_BUSER_I;
assign S_AXI_BVALID = S_AXI_BVALID_I;
assign S_AXI_BREADY_I = S_AXI_BREADY;
endmodule
|
module axi_protocol_converter_v2_1_b_downsizer #
(
parameter C_FAMILY = "none",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_AXI_ID_WIDTH = 4,
// Width of all ID signals on SI and MI side of converter.
// Range: >= 1.
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Don�t propagate.
parameter integer C_AXI_BUSER_WIDTH = 1
// Width of BUSER signals.
// Range: >= 1.
)
(
// Global Signals
input wire ARESET,
input wire ACLK,
// Command Interface
input wire cmd_valid,
input wire cmd_split,
input wire [4-1:0] cmd_repeat,
output wire cmd_ready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Repeat handling related.
reg [4-1:0] repeat_cnt_pre;
reg [4-1:0] repeat_cnt;
wire [4-1:0] next_repeat_cnt;
reg first_mi_word;
wire last_word;
// Ongoing split transaction.
wire load_bresp;
wire need_to_update_bresp;
reg [2-1:0] S_AXI_BRESP_ACC;
// Internal signals for MI-side.
wire M_AXI_BREADY_I;
// Internal signals for SI-side.
wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID_I;
reg [2-1:0] S_AXI_BRESP_I;
wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER_I;
wire S_AXI_BVALID_I;
wire S_AXI_BREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// The MI-side BRESP is popped when at once for split transactions, except
// for the last cycle that behaves like a "normal" transaction.
// A "normal" BRESP is popped once the SI-side is able to use it,
//
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from MI-side.
assign M_AXI_BREADY_I = M_AXI_BVALID & ~mi_stalling;
assign M_AXI_BREADY = M_AXI_BREADY_I;
// Indicate when there is a BRESP available @ SI-side.
assign S_AXI_BVALID_I = M_AXI_BVALID & last_word;
// Get MI-side data.
assign pop_mi_data = M_AXI_BVALID & M_AXI_BREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = (~S_AXI_BREADY_I & last_word);
/////////////////////////////////////////////////////////////////////////////
// Handle the accumulation of BRESP.
//
// Forward the accumulated or MI-side BRESP value depending on state:
// * MI-side BRESP is forwarded untouched when it is a non split cycle.
// (MI-side BRESP value is also used when updating the accumulated for
// the last access during a split access).
// * The accumulated BRESP is for a split transaction.
//
// The accumulated BRESP register is updated for each MI-side response that
// is used.
//
/////////////////////////////////////////////////////////////////////////////
// Force load accumulated BRESPs to first value
assign load_bresp = (cmd_split & first_mi_word);
// Update if more critical.
assign need_to_update_bresp = ( M_AXI_BRESP > S_AXI_BRESP_ACC );
// Select accumultated or direct depending on setting.
always @ *
begin
if ( cmd_split ) begin
if ( load_bresp || need_to_update_bresp ) begin
S_AXI_BRESP_I = M_AXI_BRESP;
end else begin
S_AXI_BRESP_I = S_AXI_BRESP_ACC;
end
end else begin
S_AXI_BRESP_I = M_AXI_BRESP;
end
end
// Accumulate MI-side BRESP.
always @ (posedge ACLK) begin
if (ARESET) begin
S_AXI_BRESP_ACC <= C_RESP_OKAY;
end else begin
if ( pop_mi_data ) begin
S_AXI_BRESP_ACC <= S_AXI_BRESP_I;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Keep track of BRESP repeat counter.
//
// Last BRESP word is either:
// * The first and only word when not merging.
// * The last value when merging.
//
// The internal counter is taken from the external command interface during
// the first response when merging. The counter is updated each time a
// BRESP is popped from the MI-side interface.
//
/////////////////////////////////////////////////////////////////////////////
// Determine last BRESP cycle.
assign last_word = ( ( repeat_cnt == 4'b0 ) & ~first_mi_word ) |
~cmd_split;
// Select command reapeat or counted repeat value.
always @ *
begin
if ( first_mi_word ) begin
repeat_cnt_pre = cmd_repeat;
end else begin
repeat_cnt_pre = repeat_cnt;
end
end
// Calculate next repeat counter value.
assign next_repeat_cnt = repeat_cnt_pre - 1'b1;
// Keep track of the repeat count.
always @ (posedge ACLK) begin
if (ARESET) begin
repeat_cnt <= 4'b0;
first_mi_word <= 1'b1;
end else begin
if ( pop_mi_data ) begin
repeat_cnt <= next_repeat_cnt;
first_mi_word <= last_word;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// BID Handling
/////////////////////////////////////////////////////////////////////////////
assign S_AXI_BID_I = M_AXI_BID;
/////////////////////////////////////////////////////////////////////////////
// USER Data bits
//
// The last USER bits are simply taken from the last BRESP that is merged.
// Ground USER bits when unused.
/////////////////////////////////////////////////////////////////////////////
// Select USER bits.
assign S_AXI_BUSER_I = {C_AXI_BUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// SI-side output handling
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign S_AXI_BID = S_AXI_BID_I;
assign S_AXI_BRESP = S_AXI_BRESP_I;
assign S_AXI_BUSER = S_AXI_BUSER_I;
assign S_AXI_BVALID = S_AXI_BVALID_I;
assign S_AXI_BREADY_I = S_AXI_BREADY;
endmodule
|
module axi_protocol_converter_v2_1_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [8-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [1-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [4-1:0] S_AXI_AWQOS,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [8-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [1-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [4-1:0] S_AXI_ARQOS,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [4-1:0] M_AXI_AWQOS,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [4-1:0] M_AXI_ARQOS,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE
// Write Channel Signals for Commands Queue Interface.
wire wr_cmd_valid;
wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id;
wire [4-1:0] wr_cmd_length;
wire wr_cmd_ready;
wire wr_cmd_b_valid;
wire wr_cmd_b_split;
wire [4-1:0] wr_cmd_b_repeat;
wire wr_cmd_b_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_CHANNEL (0),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) write_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (W)
.cmd_valid (wr_cmd_valid),
.cmd_split (),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Command Interface (B)
.cmd_b_valid (wr_cmd_b_valid),
.cmd_b_split (wr_cmd_b_split),
.cmd_b_repeat (wr_cmd_b_repeat),
.cmd_b_ready (wr_cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_AWID),
.S_AXI_AADDR (S_AXI_AWADDR),
.S_AXI_ALEN (S_AXI_AWLEN),
.S_AXI_ASIZE (S_AXI_AWSIZE),
.S_AXI_ABURST (S_AXI_AWBURST),
.S_AXI_ALOCK (S_AXI_AWLOCK),
.S_AXI_ACACHE (S_AXI_AWCACHE),
.S_AXI_APROT (S_AXI_AWPROT),
.S_AXI_AQOS (S_AXI_AWQOS),
.S_AXI_AUSER (S_AXI_AWUSER),
.S_AXI_AVALID (S_AXI_AWVALID),
.S_AXI_AREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_AWID),
.M_AXI_AADDR (M_AXI_AWADDR),
.M_AXI_ALEN (M_AXI_AWLEN),
.M_AXI_ASIZE (M_AXI_AWSIZE),
.M_AXI_ABURST (M_AXI_AWBURST),
.M_AXI_ALOCK (M_AXI_AWLOCK),
.M_AXI_ACACHE (M_AXI_AWCACHE),
.M_AXI_APROT (M_AXI_AWPROT),
.M_AXI_AQOS (M_AXI_AWQOS),
.M_AXI_AUSER (M_AXI_AWUSER),
.M_AXI_AVALID (M_AXI_AWVALID),
.M_AXI_AREADY (M_AXI_AWREADY)
);
// Write Data Channel.
axi_protocol_converter_v2_1_w_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) write_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_valid),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Slave Interface Write Data Ports
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W
// Write Data Response Channel.
axi_protocol_converter_v2_1_b_downsizer #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) write_resp_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_b_valid),
.cmd_split (wr_cmd_b_split),
.cmd_repeat (wr_cmd_b_repeat),
.cmd_ready (wr_cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY)
);
end else begin : NO_SPLIT_W
// MI -> SI Interface Write Response Ports
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign S_AXI_BVALID = M_AXI_BVALID;
assign M_AXI_BREADY = S_AXI_BREADY;
end
end else begin : NO_WRITE
// Slave Interface Write Address Ports
assign S_AXI_AWREADY = 1'b0;
// Slave Interface Write Data Ports
assign S_AXI_WREADY = 1'b0;
// Slave Interface Write Response Ports
assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_BRESP = 2'b0;
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_BVALID = 1'b0;
// Master Interface Write Address Port
assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_AWLEN = 4'b0;
assign M_AXI_AWSIZE = 3'b0;
assign M_AXI_AWBURST = 2'b0;
assign M_AXI_AWLOCK = 2'b0;
assign M_AXI_AWCACHE = 4'b0;
assign M_AXI_AWPROT = 3'b0;
assign M_AXI_AWQOS = 4'b0;
assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}};
assign M_AXI_AWVALID = 1'b0;
// Master Interface Write Data Ports
assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}};
assign M_AXI_WLAST = 1'b0;
assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}};
assign M_AXI_WVALID = 1'b0;
// Master Interface Write Response Ports
assign M_AXI_BREADY = 1'b0;
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ
// Write Response channel.
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R
// Read Channel Signals for Commands Queue Interface.
wire rd_cmd_valid;
wire rd_cmd_split;
wire rd_cmd_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_CHANNEL (1),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) read_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (R)
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_id (),
.cmd_length (),
.cmd_ready (rd_cmd_ready),
// Command Interface (B)
.cmd_b_valid (),
.cmd_b_split (),
.cmd_b_repeat (),
.cmd_b_ready (1'b0),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_ARID),
.S_AXI_AADDR (S_AXI_ARADDR),
.S_AXI_ALEN (S_AXI_ARLEN),
.S_AXI_ASIZE (S_AXI_ARSIZE),
.S_AXI_ABURST (S_AXI_ARBURST),
.S_AXI_ALOCK (S_AXI_ARLOCK),
.S_AXI_ACACHE (S_AXI_ARCACHE),
.S_AXI_APROT (S_AXI_ARPROT),
.S_AXI_AQOS (S_AXI_ARQOS),
.S_AXI_AUSER (S_AXI_ARUSER),
.S_AXI_AVALID (S_AXI_ARVALID),
.S_AXI_AREADY (S_AXI_ARREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_ARID),
.M_AXI_AADDR (M_AXI_ARADDR),
.M_AXI_ALEN (M_AXI_ARLEN),
.M_AXI_ASIZE (M_AXI_ARSIZE),
.M_AXI_ABURST (M_AXI_ARBURST),
.M_AXI_ALOCK (M_AXI_ARLOCK),
.M_AXI_ACACHE (M_AXI_ARCACHE),
.M_AXI_APROT (M_AXI_ARPROT),
.M_AXI_AQOS (M_AXI_ARQOS),
.M_AXI_AUSER (M_AXI_ARUSER),
.M_AXI_AVALID (M_AXI_ARVALID),
.M_AXI_AREADY (M_AXI_ARREADY)
);
// Read Data Channel.
axi_protocol_converter_v2_1_r_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) read_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_ready (rd_cmd_ready),
// Slave Interface Read Data Ports
.S_AXI_RID (S_AXI_RID),
.S_AXI_RDATA (S_AXI_RDATA),
.S_AXI_RRESP (S_AXI_RRESP),
.S_AXI_RLAST (S_AXI_RLAST),
.S_AXI_RUSER (S_AXI_RUSER),
.S_AXI_RVALID (S_AXI_RVALID),
.S_AXI_RREADY (S_AXI_RREADY),
// Master Interface Read Data Ports
.M_AXI_RID (M_AXI_RID),
.M_AXI_RDATA (M_AXI_RDATA),
.M_AXI_RRESP (M_AXI_RRESP),
.M_AXI_RLAST (M_AXI_RLAST),
.M_AXI_RUSER (M_AXI_RUSER),
.M_AXI_RVALID (M_AXI_RVALID),
.M_AXI_RREADY (M_AXI_RREADY)
);
end else begin : NO_SPLIT_R
// SI -> MI Interface Write Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// MI -> SI Interface Read Data Ports
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end
end else begin : NO_READ
// Slave Interface Read Address Ports
assign S_AXI_ARREADY = 1'b0;
// Slave Interface Read Data Ports
assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_RRESP = 2'b0;
assign S_AXI_RLAST = 1'b0;
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_RVALID = 1'b0;
// Master Interface Read Address Port
assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_ARLEN = 4'b0;
assign M_AXI_ARSIZE = 3'b0;
assign M_AXI_ARBURST = 2'b0;
assign M_AXI_ARLOCK = 2'b0;
assign M_AXI_ARCACHE = 4'b0;
assign M_AXI_ARPROT = 3'b0;
assign M_AXI_ARQOS = 4'b0;
assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}};
assign M_AXI_ARVALID = 1'b0;
// Master Interface Read Data Ports
assign M_AXI_RREADY = 1'b0;
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [8-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [1-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [4-1:0] S_AXI_AWQOS,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [8-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [1-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [4-1:0] S_AXI_ARQOS,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [4-1:0] M_AXI_AWQOS,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [4-1:0] M_AXI_ARQOS,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE
// Write Channel Signals for Commands Queue Interface.
wire wr_cmd_valid;
wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id;
wire [4-1:0] wr_cmd_length;
wire wr_cmd_ready;
wire wr_cmd_b_valid;
wire wr_cmd_b_split;
wire [4-1:0] wr_cmd_b_repeat;
wire wr_cmd_b_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_CHANNEL (0),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) write_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (W)
.cmd_valid (wr_cmd_valid),
.cmd_split (),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Command Interface (B)
.cmd_b_valid (wr_cmd_b_valid),
.cmd_b_split (wr_cmd_b_split),
.cmd_b_repeat (wr_cmd_b_repeat),
.cmd_b_ready (wr_cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_AWID),
.S_AXI_AADDR (S_AXI_AWADDR),
.S_AXI_ALEN (S_AXI_AWLEN),
.S_AXI_ASIZE (S_AXI_AWSIZE),
.S_AXI_ABURST (S_AXI_AWBURST),
.S_AXI_ALOCK (S_AXI_AWLOCK),
.S_AXI_ACACHE (S_AXI_AWCACHE),
.S_AXI_APROT (S_AXI_AWPROT),
.S_AXI_AQOS (S_AXI_AWQOS),
.S_AXI_AUSER (S_AXI_AWUSER),
.S_AXI_AVALID (S_AXI_AWVALID),
.S_AXI_AREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_AWID),
.M_AXI_AADDR (M_AXI_AWADDR),
.M_AXI_ALEN (M_AXI_AWLEN),
.M_AXI_ASIZE (M_AXI_AWSIZE),
.M_AXI_ABURST (M_AXI_AWBURST),
.M_AXI_ALOCK (M_AXI_AWLOCK),
.M_AXI_ACACHE (M_AXI_AWCACHE),
.M_AXI_APROT (M_AXI_AWPROT),
.M_AXI_AQOS (M_AXI_AWQOS),
.M_AXI_AUSER (M_AXI_AWUSER),
.M_AXI_AVALID (M_AXI_AWVALID),
.M_AXI_AREADY (M_AXI_AWREADY)
);
// Write Data Channel.
axi_protocol_converter_v2_1_w_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) write_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_valid),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Slave Interface Write Data Ports
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W
// Write Data Response Channel.
axi_protocol_converter_v2_1_b_downsizer #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) write_resp_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_b_valid),
.cmd_split (wr_cmd_b_split),
.cmd_repeat (wr_cmd_b_repeat),
.cmd_ready (wr_cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY)
);
end else begin : NO_SPLIT_W
// MI -> SI Interface Write Response Ports
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign S_AXI_BVALID = M_AXI_BVALID;
assign M_AXI_BREADY = S_AXI_BREADY;
end
end else begin : NO_WRITE
// Slave Interface Write Address Ports
assign S_AXI_AWREADY = 1'b0;
// Slave Interface Write Data Ports
assign S_AXI_WREADY = 1'b0;
// Slave Interface Write Response Ports
assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_BRESP = 2'b0;
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_BVALID = 1'b0;
// Master Interface Write Address Port
assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_AWLEN = 4'b0;
assign M_AXI_AWSIZE = 3'b0;
assign M_AXI_AWBURST = 2'b0;
assign M_AXI_AWLOCK = 2'b0;
assign M_AXI_AWCACHE = 4'b0;
assign M_AXI_AWPROT = 3'b0;
assign M_AXI_AWQOS = 4'b0;
assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}};
assign M_AXI_AWVALID = 1'b0;
// Master Interface Write Data Ports
assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}};
assign M_AXI_WLAST = 1'b0;
assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}};
assign M_AXI_WVALID = 1'b0;
// Master Interface Write Response Ports
assign M_AXI_BREADY = 1'b0;
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ
// Write Response channel.
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R
// Read Channel Signals for Commands Queue Interface.
wire rd_cmd_valid;
wire rd_cmd_split;
wire rd_cmd_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_CHANNEL (1),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) read_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (R)
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_id (),
.cmd_length (),
.cmd_ready (rd_cmd_ready),
// Command Interface (B)
.cmd_b_valid (),
.cmd_b_split (),
.cmd_b_repeat (),
.cmd_b_ready (1'b0),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_ARID),
.S_AXI_AADDR (S_AXI_ARADDR),
.S_AXI_ALEN (S_AXI_ARLEN),
.S_AXI_ASIZE (S_AXI_ARSIZE),
.S_AXI_ABURST (S_AXI_ARBURST),
.S_AXI_ALOCK (S_AXI_ARLOCK),
.S_AXI_ACACHE (S_AXI_ARCACHE),
.S_AXI_APROT (S_AXI_ARPROT),
.S_AXI_AQOS (S_AXI_ARQOS),
.S_AXI_AUSER (S_AXI_ARUSER),
.S_AXI_AVALID (S_AXI_ARVALID),
.S_AXI_AREADY (S_AXI_ARREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_ARID),
.M_AXI_AADDR (M_AXI_ARADDR),
.M_AXI_ALEN (M_AXI_ARLEN),
.M_AXI_ASIZE (M_AXI_ARSIZE),
.M_AXI_ABURST (M_AXI_ARBURST),
.M_AXI_ALOCK (M_AXI_ARLOCK),
.M_AXI_ACACHE (M_AXI_ARCACHE),
.M_AXI_APROT (M_AXI_ARPROT),
.M_AXI_AQOS (M_AXI_ARQOS),
.M_AXI_AUSER (M_AXI_ARUSER),
.M_AXI_AVALID (M_AXI_ARVALID),
.M_AXI_AREADY (M_AXI_ARREADY)
);
// Read Data Channel.
axi_protocol_converter_v2_1_r_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) read_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_ready (rd_cmd_ready),
// Slave Interface Read Data Ports
.S_AXI_RID (S_AXI_RID),
.S_AXI_RDATA (S_AXI_RDATA),
.S_AXI_RRESP (S_AXI_RRESP),
.S_AXI_RLAST (S_AXI_RLAST),
.S_AXI_RUSER (S_AXI_RUSER),
.S_AXI_RVALID (S_AXI_RVALID),
.S_AXI_RREADY (S_AXI_RREADY),
// Master Interface Read Data Ports
.M_AXI_RID (M_AXI_RID),
.M_AXI_RDATA (M_AXI_RDATA),
.M_AXI_RRESP (M_AXI_RRESP),
.M_AXI_RLAST (M_AXI_RLAST),
.M_AXI_RUSER (M_AXI_RUSER),
.M_AXI_RVALID (M_AXI_RVALID),
.M_AXI_RREADY (M_AXI_RREADY)
);
end else begin : NO_SPLIT_R
// SI -> MI Interface Write Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// MI -> SI Interface Read Data Ports
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end
end else begin : NO_READ
// Slave Interface Read Address Ports
assign S_AXI_ARREADY = 1'b0;
// Slave Interface Read Data Ports
assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_RRESP = 2'b0;
assign S_AXI_RLAST = 1'b0;
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_RVALID = 1'b0;
// Master Interface Read Address Port
assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_ARLEN = 4'b0;
assign M_AXI_ARSIZE = 3'b0;
assign M_AXI_ARBURST = 2'b0;
assign M_AXI_ARLOCK = 2'b0;
assign M_AXI_ARCACHE = 4'b0;
assign M_AXI_ARPROT = 3'b0;
assign M_AXI_ARQOS = 4'b0;
assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}};
assign M_AXI_ARVALID = 1'b0;
// Master Interface Read Data Ports
assign M_AXI_RREADY = 1'b0;
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [8-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [1-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [4-1:0] S_AXI_AWQOS,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [8-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [1-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [4-1:0] S_AXI_ARQOS,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [4-1:0] M_AXI_AWQOS,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [4-1:0] M_AXI_ARQOS,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE
// Write Channel Signals for Commands Queue Interface.
wire wr_cmd_valid;
wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id;
wire [4-1:0] wr_cmd_length;
wire wr_cmd_ready;
wire wr_cmd_b_valid;
wire wr_cmd_b_split;
wire [4-1:0] wr_cmd_b_repeat;
wire wr_cmd_b_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_CHANNEL (0),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) write_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (W)
.cmd_valid (wr_cmd_valid),
.cmd_split (),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Command Interface (B)
.cmd_b_valid (wr_cmd_b_valid),
.cmd_b_split (wr_cmd_b_split),
.cmd_b_repeat (wr_cmd_b_repeat),
.cmd_b_ready (wr_cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_AWID),
.S_AXI_AADDR (S_AXI_AWADDR),
.S_AXI_ALEN (S_AXI_AWLEN),
.S_AXI_ASIZE (S_AXI_AWSIZE),
.S_AXI_ABURST (S_AXI_AWBURST),
.S_AXI_ALOCK (S_AXI_AWLOCK),
.S_AXI_ACACHE (S_AXI_AWCACHE),
.S_AXI_APROT (S_AXI_AWPROT),
.S_AXI_AQOS (S_AXI_AWQOS),
.S_AXI_AUSER (S_AXI_AWUSER),
.S_AXI_AVALID (S_AXI_AWVALID),
.S_AXI_AREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_AWID),
.M_AXI_AADDR (M_AXI_AWADDR),
.M_AXI_ALEN (M_AXI_AWLEN),
.M_AXI_ASIZE (M_AXI_AWSIZE),
.M_AXI_ABURST (M_AXI_AWBURST),
.M_AXI_ALOCK (M_AXI_AWLOCK),
.M_AXI_ACACHE (M_AXI_AWCACHE),
.M_AXI_APROT (M_AXI_AWPROT),
.M_AXI_AQOS (M_AXI_AWQOS),
.M_AXI_AUSER (M_AXI_AWUSER),
.M_AXI_AVALID (M_AXI_AWVALID),
.M_AXI_AREADY (M_AXI_AWREADY)
);
// Write Data Channel.
axi_protocol_converter_v2_1_w_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) write_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_valid),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Slave Interface Write Data Ports
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W
// Write Data Response Channel.
axi_protocol_converter_v2_1_b_downsizer #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) write_resp_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_b_valid),
.cmd_split (wr_cmd_b_split),
.cmd_repeat (wr_cmd_b_repeat),
.cmd_ready (wr_cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY)
);
end else begin : NO_SPLIT_W
// MI -> SI Interface Write Response Ports
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign S_AXI_BVALID = M_AXI_BVALID;
assign M_AXI_BREADY = S_AXI_BREADY;
end
end else begin : NO_WRITE
// Slave Interface Write Address Ports
assign S_AXI_AWREADY = 1'b0;
// Slave Interface Write Data Ports
assign S_AXI_WREADY = 1'b0;
// Slave Interface Write Response Ports
assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_BRESP = 2'b0;
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_BVALID = 1'b0;
// Master Interface Write Address Port
assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_AWLEN = 4'b0;
assign M_AXI_AWSIZE = 3'b0;
assign M_AXI_AWBURST = 2'b0;
assign M_AXI_AWLOCK = 2'b0;
assign M_AXI_AWCACHE = 4'b0;
assign M_AXI_AWPROT = 3'b0;
assign M_AXI_AWQOS = 4'b0;
assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}};
assign M_AXI_AWVALID = 1'b0;
// Master Interface Write Data Ports
assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}};
assign M_AXI_WLAST = 1'b0;
assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}};
assign M_AXI_WVALID = 1'b0;
// Master Interface Write Response Ports
assign M_AXI_BREADY = 1'b0;
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ
// Write Response channel.
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R
// Read Channel Signals for Commands Queue Interface.
wire rd_cmd_valid;
wire rd_cmd_split;
wire rd_cmd_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_CHANNEL (1),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) read_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (R)
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_id (),
.cmd_length (),
.cmd_ready (rd_cmd_ready),
// Command Interface (B)
.cmd_b_valid (),
.cmd_b_split (),
.cmd_b_repeat (),
.cmd_b_ready (1'b0),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_ARID),
.S_AXI_AADDR (S_AXI_ARADDR),
.S_AXI_ALEN (S_AXI_ARLEN),
.S_AXI_ASIZE (S_AXI_ARSIZE),
.S_AXI_ABURST (S_AXI_ARBURST),
.S_AXI_ALOCK (S_AXI_ARLOCK),
.S_AXI_ACACHE (S_AXI_ARCACHE),
.S_AXI_APROT (S_AXI_ARPROT),
.S_AXI_AQOS (S_AXI_ARQOS),
.S_AXI_AUSER (S_AXI_ARUSER),
.S_AXI_AVALID (S_AXI_ARVALID),
.S_AXI_AREADY (S_AXI_ARREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_ARID),
.M_AXI_AADDR (M_AXI_ARADDR),
.M_AXI_ALEN (M_AXI_ARLEN),
.M_AXI_ASIZE (M_AXI_ARSIZE),
.M_AXI_ABURST (M_AXI_ARBURST),
.M_AXI_ALOCK (M_AXI_ARLOCK),
.M_AXI_ACACHE (M_AXI_ARCACHE),
.M_AXI_APROT (M_AXI_ARPROT),
.M_AXI_AQOS (M_AXI_ARQOS),
.M_AXI_AUSER (M_AXI_ARUSER),
.M_AXI_AVALID (M_AXI_ARVALID),
.M_AXI_AREADY (M_AXI_ARREADY)
);
// Read Data Channel.
axi_protocol_converter_v2_1_r_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) read_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_ready (rd_cmd_ready),
// Slave Interface Read Data Ports
.S_AXI_RID (S_AXI_RID),
.S_AXI_RDATA (S_AXI_RDATA),
.S_AXI_RRESP (S_AXI_RRESP),
.S_AXI_RLAST (S_AXI_RLAST),
.S_AXI_RUSER (S_AXI_RUSER),
.S_AXI_RVALID (S_AXI_RVALID),
.S_AXI_RREADY (S_AXI_RREADY),
// Master Interface Read Data Ports
.M_AXI_RID (M_AXI_RID),
.M_AXI_RDATA (M_AXI_RDATA),
.M_AXI_RRESP (M_AXI_RRESP),
.M_AXI_RLAST (M_AXI_RLAST),
.M_AXI_RUSER (M_AXI_RUSER),
.M_AXI_RVALID (M_AXI_RVALID),
.M_AXI_RREADY (M_AXI_RREADY)
);
end else begin : NO_SPLIT_R
// SI -> MI Interface Write Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// MI -> SI Interface Read Data Ports
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end
end else begin : NO_READ
// Slave Interface Read Address Ports
assign S_AXI_ARREADY = 1'b0;
// Slave Interface Read Data Ports
assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_RRESP = 2'b0;
assign S_AXI_RLAST = 1'b0;
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_RVALID = 1'b0;
// Master Interface Read Address Port
assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_ARLEN = 4'b0;
assign M_AXI_ARSIZE = 3'b0;
assign M_AXI_ARBURST = 2'b0;
assign M_AXI_ARLOCK = 2'b0;
assign M_AXI_ARCACHE = 4'b0;
assign M_AXI_ARPROT = 3'b0;
assign M_AXI_ARQOS = 4'b0;
assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}};
assign M_AXI_ARVALID = 1'b0;
// Master Interface Read Data Ports
assign M_AXI_RREADY = 1'b0;
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [8-1:0] S_AXI_AWLEN,
input wire [3-1:0] S_AXI_AWSIZE,
input wire [2-1:0] S_AXI_AWBURST,
input wire [1-1:0] S_AXI_AWLOCK,
input wire [4-1:0] S_AXI_AWCACHE,
input wire [3-1:0] S_AXI_AWPROT,
input wire [4-1:0] S_AXI_AWQOS,
input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [2-1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [8-1:0] S_AXI_ARLEN,
input wire [3-1:0] S_AXI_ARSIZE,
input wire [2-1:0] S_AXI_ARBURST,
input wire [1-1:0] S_AXI_ARLOCK,
input wire [4-1:0] S_AXI_ARCACHE,
input wire [3-1:0] S_AXI_ARPROT,
input wire [4-1:0] S_AXI_ARQOS,
input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [4-1:0] M_AXI_AWLEN,
output wire [3-1:0] M_AXI_AWSIZE,
output wire [2-1:0] M_AXI_AWBURST,
output wire [2-1:0] M_AXI_AWLOCK,
output wire [4-1:0] M_AXI_AWCACHE,
output wire [3-1:0] M_AXI_AWPROT,
output wire [4-1:0] M_AXI_AWQOS,
output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [2-1:0] M_AXI_BRESP,
input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire M_AXI_BVALID,
output wire M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [4-1:0] M_AXI_ARLEN,
output wire [3-1:0] M_AXI_ARSIZE,
output wire [2-1:0] M_AXI_ARBURST,
output wire [2-1:0] M_AXI_ARLOCK,
output wire [4-1:0] M_AXI_ARCACHE,
output wire [3-1:0] M_AXI_ARPROT,
output wire [4-1:0] M_AXI_ARQOS,
output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Handle Write Channels (AW/W/B)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE
// Write Channel Signals for Commands Queue Interface.
wire wr_cmd_valid;
wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id;
wire [4-1:0] wr_cmd_length;
wire wr_cmd_ready;
wire wr_cmd_b_valid;
wire wr_cmd_b_split;
wire [4-1:0] wr_cmd_b_repeat;
wire wr_cmd_b_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_CHANNEL (0),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) write_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (W)
.cmd_valid (wr_cmd_valid),
.cmd_split (),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Command Interface (B)
.cmd_b_valid (wr_cmd_b_valid),
.cmd_b_split (wr_cmd_b_split),
.cmd_b_repeat (wr_cmd_b_repeat),
.cmd_b_ready (wr_cmd_b_ready),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_AWID),
.S_AXI_AADDR (S_AXI_AWADDR),
.S_AXI_ALEN (S_AXI_AWLEN),
.S_AXI_ASIZE (S_AXI_AWSIZE),
.S_AXI_ABURST (S_AXI_AWBURST),
.S_AXI_ALOCK (S_AXI_AWLOCK),
.S_AXI_ACACHE (S_AXI_AWCACHE),
.S_AXI_APROT (S_AXI_AWPROT),
.S_AXI_AQOS (S_AXI_AWQOS),
.S_AXI_AUSER (S_AXI_AWUSER),
.S_AXI_AVALID (S_AXI_AWVALID),
.S_AXI_AREADY (S_AXI_AWREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_AWID),
.M_AXI_AADDR (M_AXI_AWADDR),
.M_AXI_ALEN (M_AXI_AWLEN),
.M_AXI_ASIZE (M_AXI_AWSIZE),
.M_AXI_ABURST (M_AXI_AWBURST),
.M_AXI_ALOCK (M_AXI_AWLOCK),
.M_AXI_ACACHE (M_AXI_AWCACHE),
.M_AXI_APROT (M_AXI_AWPROT),
.M_AXI_AQOS (M_AXI_AWQOS),
.M_AXI_AUSER (M_AXI_AWUSER),
.M_AXI_AVALID (M_AXI_AWVALID),
.M_AXI_AREADY (M_AXI_AWREADY)
);
// Write Data Channel.
axi_protocol_converter_v2_1_w_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) write_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_valid),
.cmd_id (wr_cmd_id),
.cmd_length (wr_cmd_length),
.cmd_ready (wr_cmd_ready),
// Slave Interface Write Data Ports
.S_AXI_WDATA (S_AXI_WDATA),
.S_AXI_WSTRB (S_AXI_WSTRB),
.S_AXI_WLAST (S_AXI_WLAST),
.S_AXI_WUSER (S_AXI_WUSER),
.S_AXI_WVALID (S_AXI_WVALID),
.S_AXI_WREADY (S_AXI_WREADY),
// Master Interface Write Data Ports
.M_AXI_WID (M_AXI_WID),
.M_AXI_WDATA (M_AXI_WDATA),
.M_AXI_WSTRB (M_AXI_WSTRB),
.M_AXI_WLAST (M_AXI_WLAST),
.M_AXI_WUSER (M_AXI_WUSER),
.M_AXI_WVALID (M_AXI_WVALID),
.M_AXI_WREADY (M_AXI_WREADY)
);
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W
// Write Data Response Channel.
axi_protocol_converter_v2_1_b_downsizer #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) write_resp_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (wr_cmd_b_valid),
.cmd_split (wr_cmd_b_split),
.cmd_repeat (wr_cmd_b_repeat),
.cmd_ready (wr_cmd_b_ready),
// Slave Interface Write Response Ports
.S_AXI_BID (S_AXI_BID),
.S_AXI_BRESP (S_AXI_BRESP),
.S_AXI_BUSER (S_AXI_BUSER),
.S_AXI_BVALID (S_AXI_BVALID),
.S_AXI_BREADY (S_AXI_BREADY),
// Master Interface Write Response Ports
.M_AXI_BID (M_AXI_BID),
.M_AXI_BRESP (M_AXI_BRESP),
.M_AXI_BUSER (M_AXI_BUSER),
.M_AXI_BVALID (M_AXI_BVALID),
.M_AXI_BREADY (M_AXI_BREADY)
);
end else begin : NO_SPLIT_W
// MI -> SI Interface Write Response Ports
assign S_AXI_BID = M_AXI_BID;
assign S_AXI_BRESP = M_AXI_BRESP;
assign S_AXI_BUSER = M_AXI_BUSER;
assign S_AXI_BVALID = M_AXI_BVALID;
assign M_AXI_BREADY = S_AXI_BREADY;
end
end else begin : NO_WRITE
// Slave Interface Write Address Ports
assign S_AXI_AWREADY = 1'b0;
// Slave Interface Write Data Ports
assign S_AXI_WREADY = 1'b0;
// Slave Interface Write Response Ports
assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_BRESP = 2'b0;
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_BVALID = 1'b0;
// Master Interface Write Address Port
assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_AWLEN = 4'b0;
assign M_AXI_AWSIZE = 3'b0;
assign M_AXI_AWBURST = 2'b0;
assign M_AXI_AWLOCK = 2'b0;
assign M_AXI_AWCACHE = 4'b0;
assign M_AXI_AWPROT = 3'b0;
assign M_AXI_AWQOS = 4'b0;
assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}};
assign M_AXI_AWVALID = 1'b0;
// Master Interface Write Data Ports
assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}};
assign M_AXI_WLAST = 1'b0;
assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}};
assign M_AXI_WVALID = 1'b0;
// Master Interface Write Response Ports
assign M_AXI_BREADY = 1'b0;
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Handle Read Channels (AR/R)
/////////////////////////////////////////////////////////////////////////////
generate
if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ
// Write Response channel.
if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R
// Read Channel Signals for Commands Queue Interface.
wire rd_cmd_valid;
wire rd_cmd_split;
wire rd_cmd_ready;
// Write Address Channel.
axi_protocol_converter_v2_1_a_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_CHANNEL (1),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS),
.C_SINGLE_THREAD (C_SINGLE_THREAD)
) read_addr_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface (R)
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_id (),
.cmd_length (),
.cmd_ready (rd_cmd_ready),
// Command Interface (B)
.cmd_b_valid (),
.cmd_b_split (),
.cmd_b_repeat (),
.cmd_b_ready (1'b0),
// Slave Interface Write Address Ports
.S_AXI_AID (S_AXI_ARID),
.S_AXI_AADDR (S_AXI_ARADDR),
.S_AXI_ALEN (S_AXI_ARLEN),
.S_AXI_ASIZE (S_AXI_ARSIZE),
.S_AXI_ABURST (S_AXI_ARBURST),
.S_AXI_ALOCK (S_AXI_ARLOCK),
.S_AXI_ACACHE (S_AXI_ARCACHE),
.S_AXI_APROT (S_AXI_ARPROT),
.S_AXI_AQOS (S_AXI_ARQOS),
.S_AXI_AUSER (S_AXI_ARUSER),
.S_AXI_AVALID (S_AXI_ARVALID),
.S_AXI_AREADY (S_AXI_ARREADY),
// Master Interface Write Address Port
.M_AXI_AID (M_AXI_ARID),
.M_AXI_AADDR (M_AXI_ARADDR),
.M_AXI_ALEN (M_AXI_ARLEN),
.M_AXI_ASIZE (M_AXI_ARSIZE),
.M_AXI_ABURST (M_AXI_ARBURST),
.M_AXI_ALOCK (M_AXI_ARLOCK),
.M_AXI_ACACHE (M_AXI_ARCACHE),
.M_AXI_APROT (M_AXI_ARPROT),
.M_AXI_AQOS (M_AXI_ARQOS),
.M_AXI_AUSER (M_AXI_ARUSER),
.M_AXI_AVALID (M_AXI_ARVALID),
.M_AXI_AREADY (M_AXI_ARREADY)
);
// Read Data Channel.
axi_protocol_converter_v2_1_r_axi3_conv #
(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING),
.C_SUPPORT_BURSTS (C_SUPPORT_BURSTS)
) read_data_inst
(
// Global Signals
.ARESET (~ARESETN),
.ACLK (ACLK),
// Command Interface
.cmd_valid (rd_cmd_valid),
.cmd_split (rd_cmd_split),
.cmd_ready (rd_cmd_ready),
// Slave Interface Read Data Ports
.S_AXI_RID (S_AXI_RID),
.S_AXI_RDATA (S_AXI_RDATA),
.S_AXI_RRESP (S_AXI_RRESP),
.S_AXI_RLAST (S_AXI_RLAST),
.S_AXI_RUSER (S_AXI_RUSER),
.S_AXI_RVALID (S_AXI_RVALID),
.S_AXI_RREADY (S_AXI_RREADY),
// Master Interface Read Data Ports
.M_AXI_RID (M_AXI_RID),
.M_AXI_RDATA (M_AXI_RDATA),
.M_AXI_RRESP (M_AXI_RRESP),
.M_AXI_RLAST (M_AXI_RLAST),
.M_AXI_RUSER (M_AXI_RUSER),
.M_AXI_RVALID (M_AXI_RVALID),
.M_AXI_RREADY (M_AXI_RREADY)
);
end else begin : NO_SPLIT_R
// SI -> MI Interface Write Address Port
assign M_AXI_ARID = S_AXI_ARID;
assign M_AXI_ARADDR = S_AXI_ARADDR;
assign M_AXI_ARLEN = S_AXI_ARLEN;
assign M_AXI_ARSIZE = S_AXI_ARSIZE;
assign M_AXI_ARBURST = S_AXI_ARBURST;
assign M_AXI_ARLOCK = S_AXI_ARLOCK;
assign M_AXI_ARCACHE = S_AXI_ARCACHE;
assign M_AXI_ARPROT = S_AXI_ARPROT;
assign M_AXI_ARQOS = S_AXI_ARQOS;
assign M_AXI_ARUSER = S_AXI_ARUSER;
assign M_AXI_ARVALID = S_AXI_ARVALID;
assign S_AXI_ARREADY = M_AXI_ARREADY;
// MI -> SI Interface Read Data Ports
assign S_AXI_RID = M_AXI_RID;
assign S_AXI_RDATA = M_AXI_RDATA;
assign S_AXI_RRESP = M_AXI_RRESP;
assign S_AXI_RLAST = M_AXI_RLAST;
assign S_AXI_RUSER = M_AXI_RUSER;
assign S_AXI_RVALID = M_AXI_RVALID;
assign M_AXI_RREADY = S_AXI_RREADY;
end
end else begin : NO_READ
// Slave Interface Read Address Ports
assign S_AXI_ARREADY = 1'b0;
// Slave Interface Read Data Ports
assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}};
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_RRESP = 2'b0;
assign S_AXI_RLAST = 1'b0;
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_RVALID = 1'b0;
// Master Interface Read Address Port
assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}};
assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}};
assign M_AXI_ARLEN = 4'b0;
assign M_AXI_ARSIZE = 3'b0;
assign M_AXI_ARBURST = 2'b0;
assign M_AXI_ARLOCK = 2'b0;
assign M_AXI_ARCACHE = 4'b0;
assign M_AXI_ARPROT = 3'b0;
assign M_AXI_ARQOS = 4'b0;
assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}};
assign M_AXI_ARVALID = 1'b0;
// Master Interface Read Data Ports
assign M_AXI_RREADY = 1'b0;
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11,
parameter integer C_IGNORE_ID = 0
)
(
input wire ACLK,
input wire ARESETN,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 2'b00;
localparam P_READ_START = 2'b01;
localparam P_READ_DATA = 2'b10;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
reg s_axi_rvalid_en;
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
end
end else if (S_AXI_WVALID & s_axi_wready_i) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
end
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rvalid_en <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
s_axi_arready_i <= 1'b1;
end
end else if (s_axi_rvalid_en) begin
s_axi_rvalid_en <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_en <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt;
reg [1:0] write_cs;
reg [1:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i;
assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i;
always @(posedge ACLK) begin
if (~ARESETN) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rlast_i <= (S_AXI_ARLEN == 0);
read_cs <= P_READ_START;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_START:
begin
s_axi_rvalid_i <= 1'b1;
read_cs <= P_READ_DATA;
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11,
parameter integer C_IGNORE_ID = 0
)
(
input wire ACLK,
input wire ARESETN,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 2'b00;
localparam P_READ_START = 2'b01;
localparam P_READ_DATA = 2'b10;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
reg s_axi_rvalid_en;
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
end
end else if (S_AXI_WVALID & s_axi_wready_i) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
end
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rvalid_en <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
s_axi_arready_i <= 1'b1;
end
end else if (s_axi_rvalid_en) begin
s_axi_rvalid_en <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_en <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt;
reg [1:0] write_cs;
reg [1:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i;
assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i;
always @(posedge ACLK) begin
if (~ARESETN) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rlast_i <= (S_AXI_ARLEN == 0);
read_cs <= P_READ_START;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_START:
begin
s_axi_rvalid_i <= 1'b1;
read_cs <= P_READ_DATA;
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11,
parameter integer C_IGNORE_ID = 0
)
(
input wire ACLK,
input wire ARESETN,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 2'b00;
localparam P_READ_START = 2'b01;
localparam P_READ_DATA = 2'b10;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
reg s_axi_rvalid_en;
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
end
end else if (S_AXI_WVALID & s_axi_wready_i) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
end
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rvalid_en <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
s_axi_arready_i <= 1'b1;
end
end else if (s_axi_rvalid_en) begin
s_axi_rvalid_en <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_en <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt;
reg [1:0] write_cs;
reg [1:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i;
assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i;
always @(posedge ACLK) begin
if (~ARESETN) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rlast_i <= (S_AXI_ARLEN == 0);
read_cs <= P_READ_START;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_START:
begin
s_axi_rvalid_i <= 1'b1;
read_cs <= P_READ_DATA;
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11,
parameter integer C_IGNORE_ID = 0
)
(
input wire ACLK,
input wire ARESETN,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 2'b00;
localparam P_READ_START = 2'b01;
localparam P_READ_DATA = 2'b10;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
reg s_axi_rvalid_en;
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
end
end else if (S_AXI_WVALID & s_axi_wready_i) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
end
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rvalid_en <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
s_axi_arready_i <= 1'b1;
end
end else if (s_axi_rvalid_en) begin
s_axi_rvalid_en <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_en <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt;
reg [1:0] write_cs;
reg [1:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i;
assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i;
always @(posedge ACLK) begin
if (~ARESETN) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rlast_i <= (S_AXI_ARLEN == 0);
read_cs <= P_READ_START;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_START:
begin
s_axi_rvalid_i <= 1'b1;
read_cs <= P_READ_DATA;
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11,
parameter integer C_IGNORE_ID = 0
)
(
input wire ACLK,
input wire ARESETN,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 2'b00;
localparam P_READ_START = 2'b01;
localparam P_READ_DATA = 2'b10;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
reg s_axi_rvalid_en;
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
end
end else if (S_AXI_WVALID & s_axi_wready_i) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
end
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rvalid_en <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
s_axi_arready_i <= 1'b1;
end
end else if (s_axi_rvalid_en) begin
s_axi_rvalid_en <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_en <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt;
reg [1:0] write_cs;
reg [1:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i;
assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i;
always @(posedge ACLK) begin
if (~ARESETN) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge ACLK) begin
if (~ARESETN) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rlast_i <= (S_AXI_ARLEN == 0);
read_cs <= P_READ_START;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_START:
begin
s_axi_rvalid_i <= 1'b1;
read_cs <= P_READ_DATA;
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_w_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface
input wire cmd_valid,
input wire [C_AXI_ID_WIDTH-1:0] cmd_id,
input wire [4-1:0] cmd_length,
output wire cmd_ready,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Burst length handling.
reg first_mi_word;
reg [8-1:0] length_counter_1;
reg [8-1:0] length_counter;
wire [8-1:0] next_length_counter;
wire last_beat;
wire last_word;
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Internal SI side control signals.
wire S_AXI_WREADY_I;
// Internal signals for MI-side.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I;
wire M_AXI_WLAST_I;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I;
wire M_AXI_WVALID_I;
wire M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// Forward data from SI-Side to MI-Side while a command is available. When
// the transaction has completed the command is popped from the Command FIFO.
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from SI-side.
assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling;
assign S_AXI_WREADY = S_AXI_WREADY_I;
// Indicate when there is data available @ MI-side.
assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid;
// Get MI-side data.
assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Keep track of data forwarding:
//
// On the first cycle of the transaction is the length taken from the Command
// FIFO. The length is decreased until 0 is reached which indicates last data
// word.
//
// If bursts are unsupported will all data words be the last word, each one
// from a separate transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Select command length or counted length.
always @ *
begin
if ( first_mi_word )
length_counter = cmd_length;
else
length_counter = length_counter_1;
end
// Calculate next length counter value.
assign next_length_counter = length_counter - 1'b1;
// Keep track of burst length.
always @ (posedge ACLK) begin
if (ARESET) begin
first_mi_word <= 1'b1;
length_counter_1 <= 4'b0;
end else begin
if ( pop_mi_data ) begin
if ( M_AXI_WLAST_I ) begin
first_mi_word <= 1'b1;
end else begin
first_mi_word <= 1'b0;
end
length_counter_1 <= next_length_counter;
end
end
end
// Detect last beat in a burst.
assign last_beat = ( length_counter == 4'b0 );
// Determine if this last word that shall be extracted from this SI-side word.
assign last_word = ( last_beat ) |
( C_SUPPORT_BURSTS == 0 );
/////////////////////////////////////////////////////////////////////////////
// Select the SI-side word to write.
//
// Most information can be reused directly (DATA, STRB, ID and USER).
// ID is taken from the Command FIFO.
//
// Split transactions needs to insert new LAST transactions. So to simplify
// is the LAST signal always generated.
//
/////////////////////////////////////////////////////////////////////////////
// ID and USER is copied from the SI word to all MI word transactions.
assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}};
// Data has to be multiplexed.
assign M_AXI_WDATA_I = S_AXI_WDATA;
assign M_AXI_WSTRB_I = S_AXI_WSTRB;
// ID is taken directly from the command queue.
assign M_AXI_WID_I = cmd_id;
// Handle last flag, i.e. set for MI-side last word.
assign M_AXI_WLAST_I = last_word;
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign M_AXI_WID = M_AXI_WID_I;
assign M_AXI_WDATA = M_AXI_WDATA_I;
assign M_AXI_WSTRB = M_AXI_WSTRB_I;
assign M_AXI_WLAST = M_AXI_WLAST_I;
assign M_AXI_WUSER = M_AXI_WUSER_I;
assign M_AXI_WVALID = M_AXI_WVALID_I;
assign M_AXI_WREADY_I = M_AXI_WREADY;
endmodule
|
module axi_protocol_converter_v2_1_w_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface
input wire cmd_valid,
input wire [C_AXI_ID_WIDTH-1:0] cmd_id,
input wire [4-1:0] cmd_length,
output wire cmd_ready,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Burst length handling.
reg first_mi_word;
reg [8-1:0] length_counter_1;
reg [8-1:0] length_counter;
wire [8-1:0] next_length_counter;
wire last_beat;
wire last_word;
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Internal SI side control signals.
wire S_AXI_WREADY_I;
// Internal signals for MI-side.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I;
wire M_AXI_WLAST_I;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I;
wire M_AXI_WVALID_I;
wire M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// Forward data from SI-Side to MI-Side while a command is available. When
// the transaction has completed the command is popped from the Command FIFO.
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from SI-side.
assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling;
assign S_AXI_WREADY = S_AXI_WREADY_I;
// Indicate when there is data available @ MI-side.
assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid;
// Get MI-side data.
assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Keep track of data forwarding:
//
// On the first cycle of the transaction is the length taken from the Command
// FIFO. The length is decreased until 0 is reached which indicates last data
// word.
//
// If bursts are unsupported will all data words be the last word, each one
// from a separate transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Select command length or counted length.
always @ *
begin
if ( first_mi_word )
length_counter = cmd_length;
else
length_counter = length_counter_1;
end
// Calculate next length counter value.
assign next_length_counter = length_counter - 1'b1;
// Keep track of burst length.
always @ (posedge ACLK) begin
if (ARESET) begin
first_mi_word <= 1'b1;
length_counter_1 <= 4'b0;
end else begin
if ( pop_mi_data ) begin
if ( M_AXI_WLAST_I ) begin
first_mi_word <= 1'b1;
end else begin
first_mi_word <= 1'b0;
end
length_counter_1 <= next_length_counter;
end
end
end
// Detect last beat in a burst.
assign last_beat = ( length_counter == 4'b0 );
// Determine if this last word that shall be extracted from this SI-side word.
assign last_word = ( last_beat ) |
( C_SUPPORT_BURSTS == 0 );
/////////////////////////////////////////////////////////////////////////////
// Select the SI-side word to write.
//
// Most information can be reused directly (DATA, STRB, ID and USER).
// ID is taken from the Command FIFO.
//
// Split transactions needs to insert new LAST transactions. So to simplify
// is the LAST signal always generated.
//
/////////////////////////////////////////////////////////////////////////////
// ID and USER is copied from the SI word to all MI word transactions.
assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}};
// Data has to be multiplexed.
assign M_AXI_WDATA_I = S_AXI_WDATA;
assign M_AXI_WSTRB_I = S_AXI_WSTRB;
// ID is taken directly from the command queue.
assign M_AXI_WID_I = cmd_id;
// Handle last flag, i.e. set for MI-side last word.
assign M_AXI_WLAST_I = last_word;
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign M_AXI_WID = M_AXI_WID_I;
assign M_AXI_WDATA = M_AXI_WDATA_I;
assign M_AXI_WSTRB = M_AXI_WSTRB_I;
assign M_AXI_WLAST = M_AXI_WLAST_I;
assign M_AXI_WUSER = M_AXI_WUSER_I;
assign M_AXI_WVALID = M_AXI_WVALID_I;
assign M_AXI_WREADY_I = M_AXI_WREADY;
endmodule
|
module axi_protocol_converter_v2_1_w_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface
input wire cmd_valid,
input wire [C_AXI_ID_WIDTH-1:0] cmd_id,
input wire [4-1:0] cmd_length,
output wire cmd_ready,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Burst length handling.
reg first_mi_word;
reg [8-1:0] length_counter_1;
reg [8-1:0] length_counter;
wire [8-1:0] next_length_counter;
wire last_beat;
wire last_word;
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Internal SI side control signals.
wire S_AXI_WREADY_I;
// Internal signals for MI-side.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I;
wire M_AXI_WLAST_I;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I;
wire M_AXI_WVALID_I;
wire M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// Forward data from SI-Side to MI-Side while a command is available. When
// the transaction has completed the command is popped from the Command FIFO.
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from SI-side.
assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling;
assign S_AXI_WREADY = S_AXI_WREADY_I;
// Indicate when there is data available @ MI-side.
assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid;
// Get MI-side data.
assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Keep track of data forwarding:
//
// On the first cycle of the transaction is the length taken from the Command
// FIFO. The length is decreased until 0 is reached which indicates last data
// word.
//
// If bursts are unsupported will all data words be the last word, each one
// from a separate transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Select command length or counted length.
always @ *
begin
if ( first_mi_word )
length_counter = cmd_length;
else
length_counter = length_counter_1;
end
// Calculate next length counter value.
assign next_length_counter = length_counter - 1'b1;
// Keep track of burst length.
always @ (posedge ACLK) begin
if (ARESET) begin
first_mi_word <= 1'b1;
length_counter_1 <= 4'b0;
end else begin
if ( pop_mi_data ) begin
if ( M_AXI_WLAST_I ) begin
first_mi_word <= 1'b1;
end else begin
first_mi_word <= 1'b0;
end
length_counter_1 <= next_length_counter;
end
end
end
// Detect last beat in a burst.
assign last_beat = ( length_counter == 4'b0 );
// Determine if this last word that shall be extracted from this SI-side word.
assign last_word = ( last_beat ) |
( C_SUPPORT_BURSTS == 0 );
/////////////////////////////////////////////////////////////////////////////
// Select the SI-side word to write.
//
// Most information can be reused directly (DATA, STRB, ID and USER).
// ID is taken from the Command FIFO.
//
// Split transactions needs to insert new LAST transactions. So to simplify
// is the LAST signal always generated.
//
/////////////////////////////////////////////////////////////////////////////
// ID and USER is copied from the SI word to all MI word transactions.
assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}};
// Data has to be multiplexed.
assign M_AXI_WDATA_I = S_AXI_WDATA;
assign M_AXI_WSTRB_I = S_AXI_WSTRB;
// ID is taken directly from the command queue.
assign M_AXI_WID_I = cmd_id;
// Handle last flag, i.e. set for MI-side last word.
assign M_AXI_WLAST_I = last_word;
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign M_AXI_WID = M_AXI_WID_I;
assign M_AXI_WDATA = M_AXI_WDATA_I;
assign M_AXI_WSTRB = M_AXI_WSTRB_I;
assign M_AXI_WLAST = M_AXI_WLAST_I;
assign M_AXI_WUSER = M_AXI_WUSER_I;
assign M_AXI_WVALID = M_AXI_WVALID_I;
assign M_AXI_WREADY_I = M_AXI_WREADY;
endmodule
|
module axi_protocol_converter_v2_1_w_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface
input wire cmd_valid,
input wire [C_AXI_ID_WIDTH-1:0] cmd_id,
input wire [4-1:0] cmd_length,
output wire cmd_ready,
// Slave Interface Write Data Ports
input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire S_AXI_WLAST,
input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire M_AXI_WVALID,
input wire M_AXI_WREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Burst length handling.
reg first_mi_word;
reg [8-1:0] length_counter_1;
reg [8-1:0] length_counter;
wire [8-1:0] next_length_counter;
wire last_beat;
wire last_word;
// Throttling help signals.
wire cmd_ready_i;
wire pop_mi_data;
wire mi_stalling;
// Internal SI side control signals.
wire S_AXI_WREADY_I;
// Internal signals for MI-side.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I;
wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I;
wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I;
wire M_AXI_WLAST_I;
wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I;
wire M_AXI_WVALID_I;
wire M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// Forward data from SI-Side to MI-Side while a command is available. When
// the transaction has completed the command is popped from the Command FIFO.
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from SI-side.
assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling;
assign S_AXI_WREADY = S_AXI_WREADY_I;
// Indicate when there is data available @ MI-side.
assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid;
// Get MI-side data.
assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_mi_data & last_word;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Keep track of data forwarding:
//
// On the first cycle of the transaction is the length taken from the Command
// FIFO. The length is decreased until 0 is reached which indicates last data
// word.
//
// If bursts are unsupported will all data words be the last word, each one
// from a separate transaction.
//
/////////////////////////////////////////////////////////////////////////////
// Select command length or counted length.
always @ *
begin
if ( first_mi_word )
length_counter = cmd_length;
else
length_counter = length_counter_1;
end
// Calculate next length counter value.
assign next_length_counter = length_counter - 1'b1;
// Keep track of burst length.
always @ (posedge ACLK) begin
if (ARESET) begin
first_mi_word <= 1'b1;
length_counter_1 <= 4'b0;
end else begin
if ( pop_mi_data ) begin
if ( M_AXI_WLAST_I ) begin
first_mi_word <= 1'b1;
end else begin
first_mi_word <= 1'b0;
end
length_counter_1 <= next_length_counter;
end
end
end
// Detect last beat in a burst.
assign last_beat = ( length_counter == 4'b0 );
// Determine if this last word that shall be extracted from this SI-side word.
assign last_word = ( last_beat ) |
( C_SUPPORT_BURSTS == 0 );
/////////////////////////////////////////////////////////////////////////////
// Select the SI-side word to write.
//
// Most information can be reused directly (DATA, STRB, ID and USER).
// ID is taken from the Command FIFO.
//
// Split transactions needs to insert new LAST transactions. So to simplify
// is the LAST signal always generated.
//
/////////////////////////////////////////////////////////////////////////////
// ID and USER is copied from the SI word to all MI word transactions.
assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}};
// Data has to be multiplexed.
assign M_AXI_WDATA_I = S_AXI_WDATA;
assign M_AXI_WSTRB_I = S_AXI_WSTRB;
// ID is taken directly from the command queue.
assign M_AXI_WID_I = cmd_id;
// Handle last flag, i.e. set for MI-side last word.
assign M_AXI_WLAST_I = last_word;
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign M_AXI_WID = M_AXI_WID_I;
assign M_AXI_WDATA = M_AXI_WDATA_I;
assign M_AXI_WSTRB = M_AXI_WSTRB_I;
assign M_AXI_WLAST = M_AXI_WLAST_I;
assign M_AXI_WUSER = M_AXI_WUSER_I;
assign M_AXI_WVALID = M_AXI_WVALID_I;
assign M_AXI_WREADY_I = M_AXI_WREADY;
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule
|
module
// signal to increment to the next mc transaction
input wire next ,
// signal to the fsm there is another transaction required
output wire next_pending
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// AXBURST decodes
localparam P_AXBURST_FIXED = 2'b00;
localparam P_AXBURST_INCR = 2'b01;
localparam P_AXBURST_WRAP = 2'b10;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr;
wire incr_next_pending;
wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr;
wire wrap_next_pending;
reg sel_first;
reg s_axburst_eq1;
reg s_axburst_eq0;
reg sel_first_i;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
////////////////////////////////////////////////////////////////////////////////
// INCR and WRAP translations are calcuated in independently, select the one
// for our transactions
// right shift by the UI width to the DRAM width ratio
assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr :
(s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr :
wrap_cmd_byte_addr;
assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1;
// Indicates if we are on the first transaction of a mc translation with more
// than 1 transaction.
always @(posedge clk) begin
if (reset | s_axhandshake) begin
sel_first <= 1'b1;
end else if (next) begin
sel_first <= 1'b0;
end
end
always @( * ) begin
if (reset | s_axhandshake) begin
sel_first_i = 1'b1;
end else if (next) begin
sel_first_i = 1'b0;
end else begin
sel_first_i = sel_first;
end
end
assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0;
always @(posedge clk) begin
if (sel_first_i || s_axburst[1]) begin
s_axburst_eq1 <= wrap_next_pending;
end else begin
s_axburst_eq1 <= incr_next_pending;
end
if (sel_first_i || !s_axburst[1]) begin
s_axburst_eq0 <= incr_next_pending;
end else begin
s_axburst_eq0 <= wrap_next_pending;
end
end
axi_protocol_converter_v2_1_b2s_incr_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
incr_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( incr_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( incr_next_pending )
);
axi_protocol_converter_v2_1_b2s_wrap_cmd #(
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH)
)
wrap_cmd_0
(
.clk ( clk ) ,
.reset ( reset ) ,
.axaddr ( s_axaddr ) ,
.axlen ( s_axlen ) ,
.axsize ( s_axsize ) ,
.axhandshake ( s_axhandshake ) ,
.cmd_byte_addr ( wrap_cmd_byte_addr ) ,
.next ( next ) ,
.next_pending ( wrap_next_pending )
);
endmodule
|
module generic_baseblocks_v2_1_command_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_ENABLE_S_VALID_CARRY = 0,
parameter integer C_ENABLE_REGISTERED_OUTPUT = 0,
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [4:5].
parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512]
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Information
output wire EMPTY, // FIFO empty (all stages)
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for data vector.
genvar addr_cnt;
genvar bit_cnt;
integer index;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIFO_DEPTH_LOG-1:0] addr;
wire buffer_Full;
wire buffer_Empty;
wire next_Data_Exists;
reg data_Exists_I;
wire valid_Write;
wire new_write;
wire [C_FIFO_DEPTH_LOG-1:0] hsum_A;
wire [C_FIFO_DEPTH_LOG-1:0] sum_A;
wire [C_FIFO_DEPTH_LOG-1:0] addr_cy;
wire buffer_full_early;
wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload
wire M_VALID_I; // FIFO not empty
wire M_READY_I; // FIFO pop
/////////////////////////////////////////////////////////////////////////////
// Create Flags
/////////////////////////////////////////////////////////////////////////////
assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) |
( buffer_Full & ~M_READY_I );
assign S_READY = ~buffer_Full;
assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}});
assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) |
(buffer_Empty & S_VALID) |
(data_Exists_I & ~(M_READY_I & data_Exists_I));
always @ (posedge ACLK) begin
if (ARESET) begin
data_Exists_I <= 1'b0;
end else begin
data_Exists_I <= next_Data_Exists;
end
end
assign M_VALID_I = data_Exists_I;
// Select RTL or FPGA optimized instatiations for critical parts.
generate
if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE
reg buffer_Full_q;
assign valid_Write = S_VALID & ~buffer_Full;
assign new_write = (S_VALID | ~buffer_Empty);
assign addr_cy[0] = valid_Write;
always @ (posedge ACLK) begin
if (ARESET) begin
buffer_Full_q <= 1'b0;
end else if ( data_Exists_I ) begin
buffer_Full_q <= buffer_full_early;
end
end
assign buffer_Full = buffer_Full_q;
end else begin : USE_FPGA_VALID_WRITE
wire s_valid_dummy1;
wire s_valid_dummy2;
wire sel_s_valid;
wire sel_new_write;
wire valid_Write_dummy1;
wire valid_Write_dummy2;
assign sel_s_valid = ~buffer_Full;
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst1
(
.CIN(S_VALID),
.S(1'b1),
.COUT(s_valid_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst2
(
.CIN(s_valid_dummy1),
.S(1'b1),
.COUT(s_valid_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_inst
(
.CIN(s_valid_dummy2),
.S(sel_s_valid),
.COUT(valid_Write)
);
assign sel_new_write = ~buffer_Empty;
generic_baseblocks_v2_1_carry_latch_or #
(
.C_FAMILY(C_FAMILY)
) new_write_inst
(
.CIN(valid_Write),
.I(sel_new_write),
.O(new_write)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst1
(
.CIN(valid_Write),
.S(1'b1),
.COUT(valid_Write_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst2
(
.CIN(valid_Write_dummy1),
.S(1'b1),
.COUT(valid_Write_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst3
(
.CIN(valid_Write_dummy2),
.S(1'b1),
.COUT(addr_cy[0])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_I1 (
.Q(buffer_Full), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(buffer_full_early) // Data input
);
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Create address pointer
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR
reg [C_FIFO_DEPTH_LOG-1:0] addr_q;
always @ (posedge ACLK) begin
if (ARESET) begin
addr_q <= {C_FIFO_DEPTH_LOG{1'b0}};
end else if ( data_Exists_I ) begin
if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin
addr_q <= addr_q + 1'b1;
end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin
addr_q <= addr_q - 1'b1;
end
else begin
addr_q <= addr_q;
end
end
else begin
addr_q <= addr_q;
end
end
assign addr = addr_q;
end else begin : USE_FPGA_ADDR
for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN
assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write;
// Don't need the last muxcy, addr_cy(last) is not used anywhere
if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY
MUXCY MUXCY_inst (
.DI(addr[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.S(hsum_A[addr_cnt]),
.O(addr_cy[addr_cnt+1])
);
end
else begin : NO_MUXCY
end
XORCY XORCY_inst (
.LI(hsum_A[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.O(sum_A[addr_cnt])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(addr[addr_cnt]), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(sum_A[addr_cnt]) // Data input
);
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Data storage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO
reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0];
always @ (posedge ACLK) begin
if ( valid_Write ) begin
for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= S_MESG;
end
end
assign M_MESG_I = data_srl[addr];
end else begin : USE_FPGA_FIFO
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32
SRLC32E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC32E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q31(), // SRL cascade output pin
.A(addr), // 5-bit shift depth select input
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end else begin : USE_16
SRLC16E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC16E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q15(), // SRL cascade output pin
.A0(addr[0]), // 4-bit shift depth select input 0
.A1(addr[1]), // 4-bit shift depth select input 1
.A2(addr[2]), // 4-bit shift depth select input 2
.A3(addr[3]), // 4-bit shift depth select input 3
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end // C_FIFO_DEPTH_LOG
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Pipeline stage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT
wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload
wire M_VALID_FF; // FIFO not empty
// Select RTL or FPGA optimized instatiations for critical parts.
if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload
reg M_VALID_Q; // FIFO not empty
always @ (posedge ACLK) begin
if (ARESET) begin
M_MESG_Q <= {C_FIFO_WIDTH{1'b0}};
M_VALID_Q <= 1'b0;
end else begin
if ( M_READY_I ) begin
M_MESG_Q <= M_MESG_I;
M_VALID_Q <= M_VALID_I;
end
end
end
assign M_MESG_FF = M_MESG_Q;
assign M_VALID_FF = M_VALID_Q;
end else begin : USE_FPGA_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload
reg M_VALID_CMB; // FIFO not empty
always @ *
begin
if ( M_READY_I ) begin
M_MESG_CMB <= M_MESG_I;
M_VALID_CMB <= M_VALID_I;
end else begin
M_MESG_CMB <= M_MESG_FF;
M_VALID_CMB <= M_VALID_FF;
end
end
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_MESG_FF[bit_cnt]), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_MESG_CMB[bit_cnt]) // Data input
);
end // end for bit_cnt
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_VALID_FF), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_VALID_CMB) // Data input
);
end
assign EMPTY = ~M_VALID_I & ~M_VALID_FF;
assign M_MESG = M_MESG_FF;
assign M_VALID = M_VALID_FF;
assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF;
end else begin : NO_FF_OUT
assign EMPTY = ~M_VALID_I;
assign M_MESG = M_MESG_I;
assign M_VALID = M_VALID_I;
assign M_READY_I = M_READY;
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_command_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_ENABLE_S_VALID_CARRY = 0,
parameter integer C_ENABLE_REGISTERED_OUTPUT = 0,
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [4:5].
parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512]
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Information
output wire EMPTY, // FIFO empty (all stages)
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for data vector.
genvar addr_cnt;
genvar bit_cnt;
integer index;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIFO_DEPTH_LOG-1:0] addr;
wire buffer_Full;
wire buffer_Empty;
wire next_Data_Exists;
reg data_Exists_I;
wire valid_Write;
wire new_write;
wire [C_FIFO_DEPTH_LOG-1:0] hsum_A;
wire [C_FIFO_DEPTH_LOG-1:0] sum_A;
wire [C_FIFO_DEPTH_LOG-1:0] addr_cy;
wire buffer_full_early;
wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload
wire M_VALID_I; // FIFO not empty
wire M_READY_I; // FIFO pop
/////////////////////////////////////////////////////////////////////////////
// Create Flags
/////////////////////////////////////////////////////////////////////////////
assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) |
( buffer_Full & ~M_READY_I );
assign S_READY = ~buffer_Full;
assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}});
assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) |
(buffer_Empty & S_VALID) |
(data_Exists_I & ~(M_READY_I & data_Exists_I));
always @ (posedge ACLK) begin
if (ARESET) begin
data_Exists_I <= 1'b0;
end else begin
data_Exists_I <= next_Data_Exists;
end
end
assign M_VALID_I = data_Exists_I;
// Select RTL or FPGA optimized instatiations for critical parts.
generate
if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE
reg buffer_Full_q;
assign valid_Write = S_VALID & ~buffer_Full;
assign new_write = (S_VALID | ~buffer_Empty);
assign addr_cy[0] = valid_Write;
always @ (posedge ACLK) begin
if (ARESET) begin
buffer_Full_q <= 1'b0;
end else if ( data_Exists_I ) begin
buffer_Full_q <= buffer_full_early;
end
end
assign buffer_Full = buffer_Full_q;
end else begin : USE_FPGA_VALID_WRITE
wire s_valid_dummy1;
wire s_valid_dummy2;
wire sel_s_valid;
wire sel_new_write;
wire valid_Write_dummy1;
wire valid_Write_dummy2;
assign sel_s_valid = ~buffer_Full;
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst1
(
.CIN(S_VALID),
.S(1'b1),
.COUT(s_valid_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst2
(
.CIN(s_valid_dummy1),
.S(1'b1),
.COUT(s_valid_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_inst
(
.CIN(s_valid_dummy2),
.S(sel_s_valid),
.COUT(valid_Write)
);
assign sel_new_write = ~buffer_Empty;
generic_baseblocks_v2_1_carry_latch_or #
(
.C_FAMILY(C_FAMILY)
) new_write_inst
(
.CIN(valid_Write),
.I(sel_new_write),
.O(new_write)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst1
(
.CIN(valid_Write),
.S(1'b1),
.COUT(valid_Write_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst2
(
.CIN(valid_Write_dummy1),
.S(1'b1),
.COUT(valid_Write_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst3
(
.CIN(valid_Write_dummy2),
.S(1'b1),
.COUT(addr_cy[0])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_I1 (
.Q(buffer_Full), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(buffer_full_early) // Data input
);
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Create address pointer
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR
reg [C_FIFO_DEPTH_LOG-1:0] addr_q;
always @ (posedge ACLK) begin
if (ARESET) begin
addr_q <= {C_FIFO_DEPTH_LOG{1'b0}};
end else if ( data_Exists_I ) begin
if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin
addr_q <= addr_q + 1'b1;
end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin
addr_q <= addr_q - 1'b1;
end
else begin
addr_q <= addr_q;
end
end
else begin
addr_q <= addr_q;
end
end
assign addr = addr_q;
end else begin : USE_FPGA_ADDR
for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN
assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write;
// Don't need the last muxcy, addr_cy(last) is not used anywhere
if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY
MUXCY MUXCY_inst (
.DI(addr[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.S(hsum_A[addr_cnt]),
.O(addr_cy[addr_cnt+1])
);
end
else begin : NO_MUXCY
end
XORCY XORCY_inst (
.LI(hsum_A[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.O(sum_A[addr_cnt])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(addr[addr_cnt]), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(sum_A[addr_cnt]) // Data input
);
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Data storage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO
reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0];
always @ (posedge ACLK) begin
if ( valid_Write ) begin
for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= S_MESG;
end
end
assign M_MESG_I = data_srl[addr];
end else begin : USE_FPGA_FIFO
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32
SRLC32E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC32E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q31(), // SRL cascade output pin
.A(addr), // 5-bit shift depth select input
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end else begin : USE_16
SRLC16E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC16E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q15(), // SRL cascade output pin
.A0(addr[0]), // 4-bit shift depth select input 0
.A1(addr[1]), // 4-bit shift depth select input 1
.A2(addr[2]), // 4-bit shift depth select input 2
.A3(addr[3]), // 4-bit shift depth select input 3
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end // C_FIFO_DEPTH_LOG
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Pipeline stage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT
wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload
wire M_VALID_FF; // FIFO not empty
// Select RTL or FPGA optimized instatiations for critical parts.
if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload
reg M_VALID_Q; // FIFO not empty
always @ (posedge ACLK) begin
if (ARESET) begin
M_MESG_Q <= {C_FIFO_WIDTH{1'b0}};
M_VALID_Q <= 1'b0;
end else begin
if ( M_READY_I ) begin
M_MESG_Q <= M_MESG_I;
M_VALID_Q <= M_VALID_I;
end
end
end
assign M_MESG_FF = M_MESG_Q;
assign M_VALID_FF = M_VALID_Q;
end else begin : USE_FPGA_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload
reg M_VALID_CMB; // FIFO not empty
always @ *
begin
if ( M_READY_I ) begin
M_MESG_CMB <= M_MESG_I;
M_VALID_CMB <= M_VALID_I;
end else begin
M_MESG_CMB <= M_MESG_FF;
M_VALID_CMB <= M_VALID_FF;
end
end
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_MESG_FF[bit_cnt]), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_MESG_CMB[bit_cnt]) // Data input
);
end // end for bit_cnt
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_VALID_FF), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_VALID_CMB) // Data input
);
end
assign EMPTY = ~M_VALID_I & ~M_VALID_FF;
assign M_MESG = M_MESG_FF;
assign M_VALID = M_VALID_FF;
assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF;
end else begin : NO_FF_OUT
assign EMPTY = ~M_VALID_I;
assign M_MESG = M_MESG_I;
assign M_VALID = M_VALID_I;
assign M_READY_I = M_READY;
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_command_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_ENABLE_S_VALID_CARRY = 0,
parameter integer C_ENABLE_REGISTERED_OUTPUT = 0,
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [4:5].
parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512]
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Information
output wire EMPTY, // FIFO empty (all stages)
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for data vector.
genvar addr_cnt;
genvar bit_cnt;
integer index;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIFO_DEPTH_LOG-1:0] addr;
wire buffer_Full;
wire buffer_Empty;
wire next_Data_Exists;
reg data_Exists_I;
wire valid_Write;
wire new_write;
wire [C_FIFO_DEPTH_LOG-1:0] hsum_A;
wire [C_FIFO_DEPTH_LOG-1:0] sum_A;
wire [C_FIFO_DEPTH_LOG-1:0] addr_cy;
wire buffer_full_early;
wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload
wire M_VALID_I; // FIFO not empty
wire M_READY_I; // FIFO pop
/////////////////////////////////////////////////////////////////////////////
// Create Flags
/////////////////////////////////////////////////////////////////////////////
assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) |
( buffer_Full & ~M_READY_I );
assign S_READY = ~buffer_Full;
assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}});
assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) |
(buffer_Empty & S_VALID) |
(data_Exists_I & ~(M_READY_I & data_Exists_I));
always @ (posedge ACLK) begin
if (ARESET) begin
data_Exists_I <= 1'b0;
end else begin
data_Exists_I <= next_Data_Exists;
end
end
assign M_VALID_I = data_Exists_I;
// Select RTL or FPGA optimized instatiations for critical parts.
generate
if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE
reg buffer_Full_q;
assign valid_Write = S_VALID & ~buffer_Full;
assign new_write = (S_VALID | ~buffer_Empty);
assign addr_cy[0] = valid_Write;
always @ (posedge ACLK) begin
if (ARESET) begin
buffer_Full_q <= 1'b0;
end else if ( data_Exists_I ) begin
buffer_Full_q <= buffer_full_early;
end
end
assign buffer_Full = buffer_Full_q;
end else begin : USE_FPGA_VALID_WRITE
wire s_valid_dummy1;
wire s_valid_dummy2;
wire sel_s_valid;
wire sel_new_write;
wire valid_Write_dummy1;
wire valid_Write_dummy2;
assign sel_s_valid = ~buffer_Full;
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst1
(
.CIN(S_VALID),
.S(1'b1),
.COUT(s_valid_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst2
(
.CIN(s_valid_dummy1),
.S(1'b1),
.COUT(s_valid_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_inst
(
.CIN(s_valid_dummy2),
.S(sel_s_valid),
.COUT(valid_Write)
);
assign sel_new_write = ~buffer_Empty;
generic_baseblocks_v2_1_carry_latch_or #
(
.C_FAMILY(C_FAMILY)
) new_write_inst
(
.CIN(valid_Write),
.I(sel_new_write),
.O(new_write)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst1
(
.CIN(valid_Write),
.S(1'b1),
.COUT(valid_Write_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst2
(
.CIN(valid_Write_dummy1),
.S(1'b1),
.COUT(valid_Write_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst3
(
.CIN(valid_Write_dummy2),
.S(1'b1),
.COUT(addr_cy[0])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_I1 (
.Q(buffer_Full), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(buffer_full_early) // Data input
);
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Create address pointer
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR
reg [C_FIFO_DEPTH_LOG-1:0] addr_q;
always @ (posedge ACLK) begin
if (ARESET) begin
addr_q <= {C_FIFO_DEPTH_LOG{1'b0}};
end else if ( data_Exists_I ) begin
if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin
addr_q <= addr_q + 1'b1;
end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin
addr_q <= addr_q - 1'b1;
end
else begin
addr_q <= addr_q;
end
end
else begin
addr_q <= addr_q;
end
end
assign addr = addr_q;
end else begin : USE_FPGA_ADDR
for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN
assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write;
// Don't need the last muxcy, addr_cy(last) is not used anywhere
if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY
MUXCY MUXCY_inst (
.DI(addr[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.S(hsum_A[addr_cnt]),
.O(addr_cy[addr_cnt+1])
);
end
else begin : NO_MUXCY
end
XORCY XORCY_inst (
.LI(hsum_A[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.O(sum_A[addr_cnt])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(addr[addr_cnt]), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(sum_A[addr_cnt]) // Data input
);
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Data storage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO
reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0];
always @ (posedge ACLK) begin
if ( valid_Write ) begin
for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= S_MESG;
end
end
assign M_MESG_I = data_srl[addr];
end else begin : USE_FPGA_FIFO
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32
SRLC32E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC32E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q31(), // SRL cascade output pin
.A(addr), // 5-bit shift depth select input
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end else begin : USE_16
SRLC16E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC16E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q15(), // SRL cascade output pin
.A0(addr[0]), // 4-bit shift depth select input 0
.A1(addr[1]), // 4-bit shift depth select input 1
.A2(addr[2]), // 4-bit shift depth select input 2
.A3(addr[3]), // 4-bit shift depth select input 3
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end // C_FIFO_DEPTH_LOG
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Pipeline stage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT
wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload
wire M_VALID_FF; // FIFO not empty
// Select RTL or FPGA optimized instatiations for critical parts.
if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload
reg M_VALID_Q; // FIFO not empty
always @ (posedge ACLK) begin
if (ARESET) begin
M_MESG_Q <= {C_FIFO_WIDTH{1'b0}};
M_VALID_Q <= 1'b0;
end else begin
if ( M_READY_I ) begin
M_MESG_Q <= M_MESG_I;
M_VALID_Q <= M_VALID_I;
end
end
end
assign M_MESG_FF = M_MESG_Q;
assign M_VALID_FF = M_VALID_Q;
end else begin : USE_FPGA_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload
reg M_VALID_CMB; // FIFO not empty
always @ *
begin
if ( M_READY_I ) begin
M_MESG_CMB <= M_MESG_I;
M_VALID_CMB <= M_VALID_I;
end else begin
M_MESG_CMB <= M_MESG_FF;
M_VALID_CMB <= M_VALID_FF;
end
end
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_MESG_FF[bit_cnt]), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_MESG_CMB[bit_cnt]) // Data input
);
end // end for bit_cnt
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_VALID_FF), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_VALID_CMB) // Data input
);
end
assign EMPTY = ~M_VALID_I & ~M_VALID_FF;
assign M_MESG = M_MESG_FF;
assign M_VALID = M_VALID_FF;
assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF;
end else begin : NO_FF_OUT
assign EMPTY = ~M_VALID_I;
assign M_MESG = M_MESG_I;
assign M_VALID = M_VALID_I;
assign M_READY_I = M_READY;
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_command_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_ENABLE_S_VALID_CARRY = 0,
parameter integer C_ENABLE_REGISTERED_OUTPUT = 0,
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [4:5].
parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512]
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Information
output wire EMPTY, // FIFO empty (all stages)
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for data vector.
genvar addr_cnt;
genvar bit_cnt;
integer index;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIFO_DEPTH_LOG-1:0] addr;
wire buffer_Full;
wire buffer_Empty;
wire next_Data_Exists;
reg data_Exists_I;
wire valid_Write;
wire new_write;
wire [C_FIFO_DEPTH_LOG-1:0] hsum_A;
wire [C_FIFO_DEPTH_LOG-1:0] sum_A;
wire [C_FIFO_DEPTH_LOG-1:0] addr_cy;
wire buffer_full_early;
wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload
wire M_VALID_I; // FIFO not empty
wire M_READY_I; // FIFO pop
/////////////////////////////////////////////////////////////////////////////
// Create Flags
/////////////////////////////////////////////////////////////////////////////
assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) |
( buffer_Full & ~M_READY_I );
assign S_READY = ~buffer_Full;
assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}});
assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) |
(buffer_Empty & S_VALID) |
(data_Exists_I & ~(M_READY_I & data_Exists_I));
always @ (posedge ACLK) begin
if (ARESET) begin
data_Exists_I <= 1'b0;
end else begin
data_Exists_I <= next_Data_Exists;
end
end
assign M_VALID_I = data_Exists_I;
// Select RTL or FPGA optimized instatiations for critical parts.
generate
if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE
reg buffer_Full_q;
assign valid_Write = S_VALID & ~buffer_Full;
assign new_write = (S_VALID | ~buffer_Empty);
assign addr_cy[0] = valid_Write;
always @ (posedge ACLK) begin
if (ARESET) begin
buffer_Full_q <= 1'b0;
end else if ( data_Exists_I ) begin
buffer_Full_q <= buffer_full_early;
end
end
assign buffer_Full = buffer_Full_q;
end else begin : USE_FPGA_VALID_WRITE
wire s_valid_dummy1;
wire s_valid_dummy2;
wire sel_s_valid;
wire sel_new_write;
wire valid_Write_dummy1;
wire valid_Write_dummy2;
assign sel_s_valid = ~buffer_Full;
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst1
(
.CIN(S_VALID),
.S(1'b1),
.COUT(s_valid_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst2
(
.CIN(s_valid_dummy1),
.S(1'b1),
.COUT(s_valid_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_inst
(
.CIN(s_valid_dummy2),
.S(sel_s_valid),
.COUT(valid_Write)
);
assign sel_new_write = ~buffer_Empty;
generic_baseblocks_v2_1_carry_latch_or #
(
.C_FAMILY(C_FAMILY)
) new_write_inst
(
.CIN(valid_Write),
.I(sel_new_write),
.O(new_write)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst1
(
.CIN(valid_Write),
.S(1'b1),
.COUT(valid_Write_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst2
(
.CIN(valid_Write_dummy1),
.S(1'b1),
.COUT(valid_Write_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst3
(
.CIN(valid_Write_dummy2),
.S(1'b1),
.COUT(addr_cy[0])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_I1 (
.Q(buffer_Full), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(buffer_full_early) // Data input
);
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Create address pointer
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR
reg [C_FIFO_DEPTH_LOG-1:0] addr_q;
always @ (posedge ACLK) begin
if (ARESET) begin
addr_q <= {C_FIFO_DEPTH_LOG{1'b0}};
end else if ( data_Exists_I ) begin
if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin
addr_q <= addr_q + 1'b1;
end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin
addr_q <= addr_q - 1'b1;
end
else begin
addr_q <= addr_q;
end
end
else begin
addr_q <= addr_q;
end
end
assign addr = addr_q;
end else begin : USE_FPGA_ADDR
for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN
assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write;
// Don't need the last muxcy, addr_cy(last) is not used anywhere
if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY
MUXCY MUXCY_inst (
.DI(addr[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.S(hsum_A[addr_cnt]),
.O(addr_cy[addr_cnt+1])
);
end
else begin : NO_MUXCY
end
XORCY XORCY_inst (
.LI(hsum_A[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.O(sum_A[addr_cnt])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(addr[addr_cnt]), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(sum_A[addr_cnt]) // Data input
);
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Data storage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO
reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0];
always @ (posedge ACLK) begin
if ( valid_Write ) begin
for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= S_MESG;
end
end
assign M_MESG_I = data_srl[addr];
end else begin : USE_FPGA_FIFO
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32
SRLC32E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC32E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q31(), // SRL cascade output pin
.A(addr), // 5-bit shift depth select input
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end else begin : USE_16
SRLC16E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC16E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q15(), // SRL cascade output pin
.A0(addr[0]), // 4-bit shift depth select input 0
.A1(addr[1]), // 4-bit shift depth select input 1
.A2(addr[2]), // 4-bit shift depth select input 2
.A3(addr[3]), // 4-bit shift depth select input 3
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end // C_FIFO_DEPTH_LOG
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Pipeline stage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT
wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload
wire M_VALID_FF; // FIFO not empty
// Select RTL or FPGA optimized instatiations for critical parts.
if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload
reg M_VALID_Q; // FIFO not empty
always @ (posedge ACLK) begin
if (ARESET) begin
M_MESG_Q <= {C_FIFO_WIDTH{1'b0}};
M_VALID_Q <= 1'b0;
end else begin
if ( M_READY_I ) begin
M_MESG_Q <= M_MESG_I;
M_VALID_Q <= M_VALID_I;
end
end
end
assign M_MESG_FF = M_MESG_Q;
assign M_VALID_FF = M_VALID_Q;
end else begin : USE_FPGA_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload
reg M_VALID_CMB; // FIFO not empty
always @ *
begin
if ( M_READY_I ) begin
M_MESG_CMB <= M_MESG_I;
M_VALID_CMB <= M_VALID_I;
end else begin
M_MESG_CMB <= M_MESG_FF;
M_VALID_CMB <= M_VALID_FF;
end
end
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_MESG_FF[bit_cnt]), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_MESG_CMB[bit_cnt]) // Data input
);
end // end for bit_cnt
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_VALID_FF), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_VALID_CMB) // Data input
);
end
assign EMPTY = ~M_VALID_I & ~M_VALID_FF;
assign M_MESG = M_MESG_FF;
assign M_VALID = M_VALID_FF;
assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF;
end else begin : NO_FF_OUT
assign EMPTY = ~M_VALID_I;
assign M_MESG = M_MESG_I;
assign M_VALID = M_VALID_I;
assign M_READY_I = M_READY;
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_command_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_ENABLE_S_VALID_CARRY = 0,
parameter integer C_ENABLE_REGISTERED_OUTPUT = 0,
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [4:5].
parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512]
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Information
output wire EMPTY, // FIFO empty (all stages)
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for data vector.
genvar addr_cnt;
genvar bit_cnt;
integer index;
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIFO_DEPTH_LOG-1:0] addr;
wire buffer_Full;
wire buffer_Empty;
wire next_Data_Exists;
reg data_Exists_I;
wire valid_Write;
wire new_write;
wire [C_FIFO_DEPTH_LOG-1:0] hsum_A;
wire [C_FIFO_DEPTH_LOG-1:0] sum_A;
wire [C_FIFO_DEPTH_LOG-1:0] addr_cy;
wire buffer_full_early;
wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload
wire M_VALID_I; // FIFO not empty
wire M_READY_I; // FIFO pop
/////////////////////////////////////////////////////////////////////////////
// Create Flags
/////////////////////////////////////////////////////////////////////////////
assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) |
( buffer_Full & ~M_READY_I );
assign S_READY = ~buffer_Full;
assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}});
assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) |
(buffer_Empty & S_VALID) |
(data_Exists_I & ~(M_READY_I & data_Exists_I));
always @ (posedge ACLK) begin
if (ARESET) begin
data_Exists_I <= 1'b0;
end else begin
data_Exists_I <= next_Data_Exists;
end
end
assign M_VALID_I = data_Exists_I;
// Select RTL or FPGA optimized instatiations for critical parts.
generate
if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE
reg buffer_Full_q;
assign valid_Write = S_VALID & ~buffer_Full;
assign new_write = (S_VALID | ~buffer_Empty);
assign addr_cy[0] = valid_Write;
always @ (posedge ACLK) begin
if (ARESET) begin
buffer_Full_q <= 1'b0;
end else if ( data_Exists_I ) begin
buffer_Full_q <= buffer_full_early;
end
end
assign buffer_Full = buffer_Full_q;
end else begin : USE_FPGA_VALID_WRITE
wire s_valid_dummy1;
wire s_valid_dummy2;
wire sel_s_valid;
wire sel_new_write;
wire valid_Write_dummy1;
wire valid_Write_dummy2;
assign sel_s_valid = ~buffer_Full;
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst1
(
.CIN(S_VALID),
.S(1'b1),
.COUT(s_valid_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) s_valid_dummy_inst2
(
.CIN(s_valid_dummy1),
.S(1'b1),
.COUT(s_valid_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_inst
(
.CIN(s_valid_dummy2),
.S(sel_s_valid),
.COUT(valid_Write)
);
assign sel_new_write = ~buffer_Empty;
generic_baseblocks_v2_1_carry_latch_or #
(
.C_FAMILY(C_FAMILY)
) new_write_inst
(
.CIN(valid_Write),
.I(sel_new_write),
.O(new_write)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst1
(
.CIN(valid_Write),
.S(1'b1),
.COUT(valid_Write_dummy1)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst2
(
.CIN(valid_Write_dummy1),
.S(1'b1),
.COUT(valid_Write_dummy2)
);
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) valid_write_dummy_inst3
(
.CIN(valid_Write_dummy2),
.S(1'b1),
.COUT(addr_cy[0])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_I1 (
.Q(buffer_Full), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(buffer_full_early) // Data input
);
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Create address pointer
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR
reg [C_FIFO_DEPTH_LOG-1:0] addr_q;
always @ (posedge ACLK) begin
if (ARESET) begin
addr_q <= {C_FIFO_DEPTH_LOG{1'b0}};
end else if ( data_Exists_I ) begin
if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin
addr_q <= addr_q + 1'b1;
end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin
addr_q <= addr_q - 1'b1;
end
else begin
addr_q <= addr_q;
end
end
else begin
addr_q <= addr_q;
end
end
assign addr = addr_q;
end else begin : USE_FPGA_ADDR
for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN
assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write;
// Don't need the last muxcy, addr_cy(last) is not used anywhere
if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY
MUXCY MUXCY_inst (
.DI(addr[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.S(hsum_A[addr_cnt]),
.O(addr_cy[addr_cnt+1])
);
end
else begin : NO_MUXCY
end
XORCY XORCY_inst (
.LI(hsum_A[addr_cnt]),
.CI(addr_cy[addr_cnt]),
.O(sum_A[addr_cnt])
);
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(addr[addr_cnt]), // Data output
.C(ACLK), // Clock input
.CE(data_Exists_I), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(sum_A[addr_cnt]) // Data input
);
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Data storage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO
reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0];
always @ (posedge ACLK) begin
if ( valid_Write ) begin
for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin
data_srl[index+1] <= data_srl[index];
end
data_srl[0] <= S_MESG;
end
end
assign M_MESG_I = data_srl[addr];
end else begin : USE_FPGA_FIFO
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32
SRLC32E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC32E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q31(), // SRL cascade output pin
.A(addr), // 5-bit shift depth select input
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end else begin : USE_16
SRLC16E # (
.INIT(32'h00000000) // Initial Value of Shift Register
) SRLC16E_inst (
.Q(M_MESG_I[bit_cnt]), // SRL data output
.Q15(), // SRL cascade output pin
.A0(addr[0]), // 4-bit shift depth select input 0
.A1(addr[1]), // 4-bit shift depth select input 1
.A2(addr[2]), // 4-bit shift depth select input 2
.A3(addr[3]), // 4-bit shift depth select input 3
.CE(valid_Write), // Clock enable input
.CLK(ACLK), // Clock input
.D(S_MESG[bit_cnt]) // SRL data input
);
end // C_FIFO_DEPTH_LOG
end // end for bit_cnt
end // C_FAMILY
endgenerate
/////////////////////////////////////////////////////////////////////////////
// Pipeline stage
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT
wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload
wire M_VALID_FF; // FIFO not empty
// Select RTL or FPGA optimized instatiations for critical parts.
if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload
reg M_VALID_Q; // FIFO not empty
always @ (posedge ACLK) begin
if (ARESET) begin
M_MESG_Q <= {C_FIFO_WIDTH{1'b0}};
M_VALID_Q <= 1'b0;
end else begin
if ( M_READY_I ) begin
M_MESG_Q <= M_MESG_I;
M_VALID_Q <= M_VALID_I;
end
end
end
assign M_MESG_FF = M_MESG_Q;
assign M_VALID_FF = M_VALID_Q;
end else begin : USE_FPGA_OUTPUT_PIPELINE
reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload
reg M_VALID_CMB; // FIFO not empty
always @ *
begin
if ( M_READY_I ) begin
M_MESG_CMB <= M_MESG_I;
M_VALID_CMB <= M_VALID_I;
end else begin
M_MESG_CMB <= M_MESG_FF;
M_VALID_CMB <= M_VALID_FF;
end
end
for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_MESG_FF[bit_cnt]), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_MESG_CMB[bit_cnt]) // Data input
);
end // end for bit_cnt
FDRE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRE_inst (
.Q(M_VALID_FF), // Data output
.C(ACLK), // Clock input
.CE(1'b1), // Clock enable input
.R(ARESET), // Synchronous reset input
.D(M_VALID_CMB) // Data input
);
end
assign EMPTY = ~M_VALID_I & ~M_VALID_FF;
assign M_MESG = M_MESG_FF;
assign M_VALID = M_VALID_FF;
assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF;
end else begin : NO_FF_OUT
assign EMPTY = ~M_VALID_I;
assign M_MESG = M_MESG_I;
assign M_VALID = M_VALID_I;
assign M_READY_I = M_READY;
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign m_local = M;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) |
( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [5:9] when TYPE="lut",
// Range = [5:12] when TYPE="bram",
parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512]
parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based,
// "bram" = BRAM based
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
axi_data_fifo_v2_1_fifo_gen #(
.C_FAMILY(C_FAMILY),
.C_COMMON_CLOCK(1),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_FIFO_WIDTH),
.C_FIFO_TYPE(C_FIFO_TYPE))
inst (
.clk(ACLK),
.rst(ARESET),
.wr_clk(1'b0),
.wr_en(S_VALID),
.wr_ready(S_READY),
.wr_data(S_MESG),
.rd_clk(1'b0),
.rd_en(M_READY),
.rd_valid(M_VALID),
.rd_data(M_MESG));
endmodule
|
module axi_data_fifo_v2_1_axic_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [5:9] when TYPE="lut",
// Range = [5:12] when TYPE="bram",
parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512]
parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based,
// "bram" = BRAM based
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
axi_data_fifo_v2_1_fifo_gen #(
.C_FAMILY(C_FAMILY),
.C_COMMON_CLOCK(1),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_FIFO_WIDTH),
.C_FIFO_TYPE(C_FIFO_TYPE))
inst (
.clk(ACLK),
.rst(ARESET),
.wr_clk(1'b0),
.wr_en(S_VALID),
.wr_ready(S_READY),
.wr_data(S_MESG),
.rd_clk(1'b0),
.rd_en(M_READY),
.rd_valid(M_VALID),
.rd_data(M_MESG));
endmodule
|
module axi_data_fifo_v2_1_axic_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [5:9] when TYPE="lut",
// Range = [5:12] when TYPE="bram",
parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512]
parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based,
// "bram" = BRAM based
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
axi_data_fifo_v2_1_fifo_gen #(
.C_FAMILY(C_FAMILY),
.C_COMMON_CLOCK(1),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_FIFO_WIDTH),
.C_FIFO_TYPE(C_FIFO_TYPE))
inst (
.clk(ACLK),
.rst(ARESET),
.wr_clk(1'b0),
.wr_en(S_VALID),
.wr_ready(S_READY),
.wr_data(S_MESG),
.rd_clk(1'b0),
.rd_en(M_READY),
.rd_valid(M_VALID),
.rd_data(M_MESG));
endmodule
|
module axi_data_fifo_v2_1_axic_fifo #
(
parameter C_FAMILY = "virtex6",
parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG
// Range = [5:9] when TYPE="lut",
// Range = [5:12] when TYPE="bram",
parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512]
parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based,
// "bram" = BRAM based
)
(
// Global inputs
input wire ACLK, // Clock
input wire ARESET, // Reset
// Slave Port
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals)
input wire S_VALID, // FIFO push
output wire S_READY, // FIFO not full
// Master Port
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload
output wire M_VALID, // FIFO not empty
input wire M_READY // FIFO pop
);
axi_data_fifo_v2_1_fifo_gen #(
.C_FAMILY(C_FAMILY),
.C_COMMON_CLOCK(1),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_FIFO_WIDTH),
.C_FIFO_TYPE(C_FIFO_TYPE))
inst (
.clk(ACLK),
.rst(ARESET),
.wr_clk(1'b0),
.wr_en(S_VALID),
.wr_ready(S_READY),
.wr_data(S_MESG),
.rd_clk(1'b0),
.rd_en(M_READY),
.rd_valid(M_VALID),
.rd_data(M_MESG));
endmodule
|
module generic_baseblocks_v2_1_comparator_sel #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
input wire [C_DATA_WIDTH-1:0] V,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 1;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = V;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux_enc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_RATIO = 4,
// Mux select ratio. Can be any binary value (>= 1)
parameter integer C_SEL_WIDTH = 2,
// Log2-ceiling of C_RATIO (>= 1)
parameter integer C_DATA_WIDTH = 1
// Data width for generic_baseblocks_v2_1_comparator (>= 1)
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [C_RATIO*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O,
input wire OE
);
wire [C_DATA_WIDTH-1:0] o_i;
genvar bit_cnt;
function [C_DATA_WIDTH-1:0] f_mux
(
input [C_SEL_WIDTH-1:0] s,
input [C_RATIO*C_DATA_WIDTH-1:0] a
);
integer i;
reg [C_RATIO*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)];
end
endfunction
function [C_DATA_WIDTH-1:0] f_mux4
(
input [1:0] s,
input [4*C_DATA_WIDTH-1:0] a
);
integer i;
reg [4*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<4;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3];
end
endfunction
assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic)
generate
if ( C_RATIO < 2 ) begin : gen_bypass
assign o_i = A;
end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl
assign o_i = f_mux(S, A);
end else begin : gen_fpga
wire [C_DATA_WIDTH-1:0] l;
wire [C_DATA_WIDTH-1:0] h;
wire [C_DATA_WIDTH-1:0] ll;
wire [C_DATA_WIDTH-1:0] lh;
wire [C_DATA_WIDTH-1:0] hl;
wire [C_DATA_WIDTH-1:0] hh;
case (C_RATIO)
1, 5, 9, 13:
assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH];
2, 6, 10, 14:
assign hh = S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ;
3, 7, 11, 15:
assign hh = S[1] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
(S[0] ?
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] );
4, 8, 12, 16:
assign hh = S[1] ?
(S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] );
17:
assign hh = S[1] ?
(S[0] ?
A[15*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[13*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[12*C_DATA_WIDTH +: C_DATA_WIDTH] );
default:
assign hh = 0;
endcase
case (C_RATIO)
5, 6, 7, 8: begin
assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8
MUXF7 mux_s2_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (o_i[bit_cnt])
);
end
end
9, 10, 11, 12: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
13,14,15,16: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
17: begin
assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
default: // If RATIO > 17, use RTL
assign o_i = f_mux(S, A);
endcase
end // gen_fpga
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux_enc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_RATIO = 4,
// Mux select ratio. Can be any binary value (>= 1)
parameter integer C_SEL_WIDTH = 2,
// Log2-ceiling of C_RATIO (>= 1)
parameter integer C_DATA_WIDTH = 1
// Data width for generic_baseblocks_v2_1_comparator (>= 1)
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [C_RATIO*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O,
input wire OE
);
wire [C_DATA_WIDTH-1:0] o_i;
genvar bit_cnt;
function [C_DATA_WIDTH-1:0] f_mux
(
input [C_SEL_WIDTH-1:0] s,
input [C_RATIO*C_DATA_WIDTH-1:0] a
);
integer i;
reg [C_RATIO*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)];
end
endfunction
function [C_DATA_WIDTH-1:0] f_mux4
(
input [1:0] s,
input [4*C_DATA_WIDTH-1:0] a
);
integer i;
reg [4*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<4;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3];
end
endfunction
assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic)
generate
if ( C_RATIO < 2 ) begin : gen_bypass
assign o_i = A;
end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl
assign o_i = f_mux(S, A);
end else begin : gen_fpga
wire [C_DATA_WIDTH-1:0] l;
wire [C_DATA_WIDTH-1:0] h;
wire [C_DATA_WIDTH-1:0] ll;
wire [C_DATA_WIDTH-1:0] lh;
wire [C_DATA_WIDTH-1:0] hl;
wire [C_DATA_WIDTH-1:0] hh;
case (C_RATIO)
1, 5, 9, 13:
assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH];
2, 6, 10, 14:
assign hh = S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ;
3, 7, 11, 15:
assign hh = S[1] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
(S[0] ?
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] );
4, 8, 12, 16:
assign hh = S[1] ?
(S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] );
17:
assign hh = S[1] ?
(S[0] ?
A[15*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[13*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[12*C_DATA_WIDTH +: C_DATA_WIDTH] );
default:
assign hh = 0;
endcase
case (C_RATIO)
5, 6, 7, 8: begin
assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8
MUXF7 mux_s2_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (o_i[bit_cnt])
);
end
end
9, 10, 11, 12: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
13,14,15,16: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
17: begin
assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
default: // If RATIO > 17, use RTL
assign o_i = f_mux(S, A);
endcase
end // gen_fpga
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux_enc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_RATIO = 4,
// Mux select ratio. Can be any binary value (>= 1)
parameter integer C_SEL_WIDTH = 2,
// Log2-ceiling of C_RATIO (>= 1)
parameter integer C_DATA_WIDTH = 1
// Data width for generic_baseblocks_v2_1_comparator (>= 1)
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [C_RATIO*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O,
input wire OE
);
wire [C_DATA_WIDTH-1:0] o_i;
genvar bit_cnt;
function [C_DATA_WIDTH-1:0] f_mux
(
input [C_SEL_WIDTH-1:0] s,
input [C_RATIO*C_DATA_WIDTH-1:0] a
);
integer i;
reg [C_RATIO*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)];
end
endfunction
function [C_DATA_WIDTH-1:0] f_mux4
(
input [1:0] s,
input [4*C_DATA_WIDTH-1:0] a
);
integer i;
reg [4*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<4;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3];
end
endfunction
assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic)
generate
if ( C_RATIO < 2 ) begin : gen_bypass
assign o_i = A;
end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl
assign o_i = f_mux(S, A);
end else begin : gen_fpga
wire [C_DATA_WIDTH-1:0] l;
wire [C_DATA_WIDTH-1:0] h;
wire [C_DATA_WIDTH-1:0] ll;
wire [C_DATA_WIDTH-1:0] lh;
wire [C_DATA_WIDTH-1:0] hl;
wire [C_DATA_WIDTH-1:0] hh;
case (C_RATIO)
1, 5, 9, 13:
assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH];
2, 6, 10, 14:
assign hh = S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ;
3, 7, 11, 15:
assign hh = S[1] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
(S[0] ?
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] );
4, 8, 12, 16:
assign hh = S[1] ?
(S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] );
17:
assign hh = S[1] ?
(S[0] ?
A[15*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[13*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[12*C_DATA_WIDTH +: C_DATA_WIDTH] );
default:
assign hh = 0;
endcase
case (C_RATIO)
5, 6, 7, 8: begin
assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8
MUXF7 mux_s2_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (o_i[bit_cnt])
);
end
end
9, 10, 11, 12: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
13,14,15,16: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
17: begin
assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
default: // If RATIO > 17, use RTL
assign o_i = f_mux(S, A);
endcase
end // gen_fpga
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux_enc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_RATIO = 4,
// Mux select ratio. Can be any binary value (>= 1)
parameter integer C_SEL_WIDTH = 2,
// Log2-ceiling of C_RATIO (>= 1)
parameter integer C_DATA_WIDTH = 1
// Data width for generic_baseblocks_v2_1_comparator (>= 1)
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [C_RATIO*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O,
input wire OE
);
wire [C_DATA_WIDTH-1:0] o_i;
genvar bit_cnt;
function [C_DATA_WIDTH-1:0] f_mux
(
input [C_SEL_WIDTH-1:0] s,
input [C_RATIO*C_DATA_WIDTH-1:0] a
);
integer i;
reg [C_RATIO*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)];
end
endfunction
function [C_DATA_WIDTH-1:0] f_mux4
(
input [1:0] s,
input [4*C_DATA_WIDTH-1:0] a
);
integer i;
reg [4*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<4;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3];
end
endfunction
assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic)
generate
if ( C_RATIO < 2 ) begin : gen_bypass
assign o_i = A;
end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl
assign o_i = f_mux(S, A);
end else begin : gen_fpga
wire [C_DATA_WIDTH-1:0] l;
wire [C_DATA_WIDTH-1:0] h;
wire [C_DATA_WIDTH-1:0] ll;
wire [C_DATA_WIDTH-1:0] lh;
wire [C_DATA_WIDTH-1:0] hl;
wire [C_DATA_WIDTH-1:0] hh;
case (C_RATIO)
1, 5, 9, 13:
assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH];
2, 6, 10, 14:
assign hh = S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ;
3, 7, 11, 15:
assign hh = S[1] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
(S[0] ?
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] );
4, 8, 12, 16:
assign hh = S[1] ?
(S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] );
17:
assign hh = S[1] ?
(S[0] ?
A[15*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[13*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[12*C_DATA_WIDTH +: C_DATA_WIDTH] );
default:
assign hh = 0;
endcase
case (C_RATIO)
5, 6, 7, 8: begin
assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8
MUXF7 mux_s2_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (o_i[bit_cnt])
);
end
end
9, 10, 11, 12: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
13,14,15,16: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
17: begin
assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
default: // If RATIO > 17, use RTL
assign o_i = f_mux(S, A);
endcase
end // gen_fpga
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux_enc #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_RATIO = 4,
// Mux select ratio. Can be any binary value (>= 1)
parameter integer C_SEL_WIDTH = 2,
// Log2-ceiling of C_RATIO (>= 1)
parameter integer C_DATA_WIDTH = 1
// Data width for generic_baseblocks_v2_1_comparator (>= 1)
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [C_RATIO*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O,
input wire OE
);
wire [C_DATA_WIDTH-1:0] o_i;
genvar bit_cnt;
function [C_DATA_WIDTH-1:0] f_mux
(
input [C_SEL_WIDTH-1:0] s,
input [C_RATIO*C_DATA_WIDTH-1:0] a
);
integer i;
reg [C_RATIO*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)];
end
endfunction
function [C_DATA_WIDTH-1:0] f_mux4
(
input [1:0] s,
input [4*C_DATA_WIDTH-1:0] a
);
integer i;
reg [4*C_DATA_WIDTH-1:0] carry;
begin
carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0];
for (i=1;i<4;i=i+1) begin : gen_carrychain_enc
carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] =
carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] |
({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]);
end
f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3];
end
endfunction
assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic)
generate
if ( C_RATIO < 2 ) begin : gen_bypass
assign o_i = A;
end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl
assign o_i = f_mux(S, A);
end else begin : gen_fpga
wire [C_DATA_WIDTH-1:0] l;
wire [C_DATA_WIDTH-1:0] h;
wire [C_DATA_WIDTH-1:0] ll;
wire [C_DATA_WIDTH-1:0] lh;
wire [C_DATA_WIDTH-1:0] hl;
wire [C_DATA_WIDTH-1:0] hh;
case (C_RATIO)
1, 5, 9, 13:
assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH];
2, 6, 10, 14:
assign hh = S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ;
3, 7, 11, 15:
assign hh = S[1] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
(S[0] ?
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] );
4, 8, 12, 16:
assign hh = S[1] ?
(S[0] ?
A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] );
17:
assign hh = S[1] ?
(S[0] ?
A[15*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) :
(S[0] ?
A[13*C_DATA_WIDTH +: C_DATA_WIDTH] :
A[12*C_DATA_WIDTH +: C_DATA_WIDTH] );
default:
assign hh = 0;
endcase
case (C_RATIO)
5, 6, 7, 8: begin
assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8
MUXF7 mux_s2_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (o_i[bit_cnt])
);
end
end
9, 10, 11, 12: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
13,14,15,16: begin
assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]);
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
17: begin
assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux
assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]);
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17
MUXF7 muxf_s2_low_inst
(
.I0 (ll[bit_cnt]),
.I1 (lh[bit_cnt]),
.S (S[2]),
.O (l[bit_cnt])
);
MUXF7 muxf_s2_hi_inst
(
.I0 (hl[bit_cnt]),
.I1 (hh[bit_cnt]),
.S (S[2]),
.O (h[bit_cnt])
);
MUXF8 muxf_s3_inst
(
.I0 (l[bit_cnt]),
.I1 (h[bit_cnt]),
.S (S[3]),
.O (o_i[bit_cnt])
);
end
end
default: // If RATIO > 17, use RTL
assign o_i = f_mux(S, A);
endcase
end // gen_fpga
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg m_valid_i;
reg s_ready_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
reg [C_FIFO_WIDTH-1:0] storage_data1;
wire [C_FIFO_WIDTH-1:0] storage_data2; // Intermediate SRL data
reg load_s1;
wire load_s1_from_s2;
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
assign M_VALID = m_valid_i;
assign S_READY = C_USE_FULL ? s_ready_i : 1'b1;
assign push = (S_VALID & (C_USE_FULL ? s_ready_i : 1'b1) & (state == TWO)) | (~M_READY & S_VALID & (state == ONE));
assign pop = M_READY & (state == TWO);
assign M_MESG = storage_data1;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_MESG;
end
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (areset_d1) begin
state <= ZERO;
m_valid_i <= 1'b0;
end else begin
case (state)
// No transaction stored locally
ZERO: begin
if (S_VALID) begin
state <= ONE; // Got one so move to ONE
m_valid_i <= 1'b1;
end
end
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) begin
state <= ZERO; // Read out one so move to ZERO
m_valid_i <= 1'b0;
end else if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
m_valid_i <= 1'b1;
end
end
// TWO transaction stored locally
TWO: begin
if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
state <= ONE; // Read out one so move to ONE
m_valid_i <= 1'b1;
end
end
endcase // case (state)
end
end // always @ (posedge ACLK)
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
s_ready_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
s_ready_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (storage_data2[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg m_valid_i;
reg s_ready_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
reg [C_FIFO_WIDTH-1:0] storage_data1;
wire [C_FIFO_WIDTH-1:0] storage_data2; // Intermediate SRL data
reg load_s1;
wire load_s1_from_s2;
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
assign M_VALID = m_valid_i;
assign S_READY = C_USE_FULL ? s_ready_i : 1'b1;
assign push = (S_VALID & (C_USE_FULL ? s_ready_i : 1'b1) & (state == TWO)) | (~M_READY & S_VALID & (state == ONE));
assign pop = M_READY & (state == TWO);
assign M_MESG = storage_data1;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_MESG;
end
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (areset_d1) begin
state <= ZERO;
m_valid_i <= 1'b0;
end else begin
case (state)
// No transaction stored locally
ZERO: begin
if (S_VALID) begin
state <= ONE; // Got one so move to ONE
m_valid_i <= 1'b1;
end
end
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) begin
state <= ZERO; // Read out one so move to ZERO
m_valid_i <= 1'b0;
end else if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
m_valid_i <= 1'b1;
end
end
// TWO transaction stored locally
TWO: begin
if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
state <= ONE; // Read out one so move to ONE
m_valid_i <= 1'b1;
end
end
endcase // case (state)
end
end // always @ (posedge ACLK)
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
s_ready_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
s_ready_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (storage_data2[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_reg_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg m_valid_i;
reg s_ready_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
reg [C_FIFO_WIDTH-1:0] storage_data1;
wire [C_FIFO_WIDTH-1:0] storage_data2; // Intermediate SRL data
reg load_s1;
wire load_s1_from_s2;
reg [1:0] state;
localparam [1:0]
ZERO = 2'b10,
ONE = 2'b11,
TWO = 2'b01;
assign M_VALID = m_valid_i;
assign S_READY = C_USE_FULL ? s_ready_i : 1'b1;
assign push = (S_VALID & (C_USE_FULL ? s_ready_i : 1'b1) & (state == TWO)) | (~M_READY & S_VALID & (state == ONE));
assign pop = M_READY & (state == TWO);
assign M_MESG = storage_data1;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
// Load storage1 with either slave side data or from storage2
always @(posedge ACLK)
begin
if (load_s1)
if (load_s1_from_s2)
storage_data1 <= storage_data2;
else
storage_data1 <= S_MESG;
end
// Loading s1
always @ *
begin
if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction
// Load when ONE if we both have read and write at the same time
((state == ONE) && (S_VALID == 1) && (M_READY == 1)) ||
// Load when TWO and we have a transaction on Master side
((state == TWO) && (M_READY == 1)))
load_s1 = 1'b1;
else
load_s1 = 1'b0;
end // always @ *
assign load_s1_from_s2 = (state == TWO);
// State Machine for handling output signals
always @(posedge ACLK)
begin
if (areset_d1) begin
state <= ZERO;
m_valid_i <= 1'b0;
end else begin
case (state)
// No transaction stored locally
ZERO: begin
if (S_VALID) begin
state <= ONE; // Got one so move to ONE
m_valid_i <= 1'b1;
end
end
// One transaction stored locally
ONE: begin
if (M_READY & ~S_VALID) begin
state <= ZERO; // Read out one so move to ZERO
m_valid_i <= 1'b0;
end else if (~M_READY & S_VALID) begin
state <= TWO; // Got another one so move to TWO
m_valid_i <= 1'b1;
end
end
// TWO transaction stored locally
TWO: begin
if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
state <= ONE; // Read out one so move to ONE
m_valid_i <= 1'b1;
end
end
endcase // case (state)
end
end // always @ (posedge ACLK)
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
always @(posedge ACLK) begin
if (ARESET) begin
s_ready_i <= 1'b0;
end else if (areset_d1) begin
s_ready_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
s_ready_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
s_ready_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (storage_data2[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_sel_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire S,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 2;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] v_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
assign v_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) |
( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg M_VALID_i;
reg S_READY_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data
assign M_VALID = M_VALID_i;
assign S_READY = C_USE_FULL ? S_READY_i : 1'b1;
assign M_MESG = m_axi_mesg_i;
assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1);
assign pop = M_VALID_i & M_READY;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
//---------------------------------------------------------------------------
// When FIFO is empty, reset master valid bit. When not empty set valid bit.
// When FIFO is full, reset slave ready bit. When not full set ready bit.
//---------------------------------------------------------------------------
always @(posedge ACLK) begin
if (ARESET) begin
M_VALID_i <= 1'b0;
end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
M_VALID_i <= 1'b0;
end else if (push) begin
M_VALID_i <= 1'b1;
end
end
always @(posedge ACLK) begin
if (ARESET) begin
S_READY_i <= 1'b0;
end else if (areset_d1) begin
S_READY_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
S_READY_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
S_READY_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg M_VALID_i;
reg S_READY_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data
assign M_VALID = M_VALID_i;
assign S_READY = C_USE_FULL ? S_READY_i : 1'b1;
assign M_MESG = m_axi_mesg_i;
assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1);
assign pop = M_VALID_i & M_READY;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
//---------------------------------------------------------------------------
// When FIFO is empty, reset master valid bit. When not empty set valid bit.
// When FIFO is full, reset slave ready bit. When not full set ready bit.
//---------------------------------------------------------------------------
always @(posedge ACLK) begin
if (ARESET) begin
M_VALID_i <= 1'b0;
end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
M_VALID_i <= 1'b0;
end else if (push) begin
M_VALID_i <= 1'b1;
end
end
always @(posedge ACLK) begin
if (ARESET) begin
S_READY_i <= 1'b0;
end else if (areset_d1) begin
S_READY_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
S_READY_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
S_READY_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg M_VALID_i;
reg S_READY_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data
assign M_VALID = M_VALID_i;
assign S_READY = C_USE_FULL ? S_READY_i : 1'b1;
assign M_MESG = m_axi_mesg_i;
assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1);
assign pop = M_VALID_i & M_READY;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
//---------------------------------------------------------------------------
// When FIFO is empty, reset master valid bit. When not empty set valid bit.
// When FIFO is full, reset slave ready bit. When not full set ready bit.
//---------------------------------------------------------------------------
always @(posedge ACLK) begin
if (ARESET) begin
M_VALID_i <= 1'b0;
end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
M_VALID_i <= 1'b0;
end else if (push) begin
M_VALID_i <= 1'b1;
end
end
always @(posedge ACLK) begin
if (ARESET) begin
S_READY_i <= 1'b0;
end else if (areset_d1) begin
S_READY_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
S_READY_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
S_READY_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg M_VALID_i;
reg S_READY_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data
assign M_VALID = M_VALID_i;
assign S_READY = C_USE_FULL ? S_READY_i : 1'b1;
assign M_MESG = m_axi_mesg_i;
assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1);
assign pop = M_VALID_i & M_READY;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
//---------------------------------------------------------------------------
// When FIFO is empty, reset master valid bit. When not empty set valid bit.
// When FIFO is full, reset slave ready bit. When not full set ready bit.
//---------------------------------------------------------------------------
always @(posedge ACLK) begin
if (ARESET) begin
M_VALID_i <= 1'b0;
end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
M_VALID_i <= 1'b0;
end else if (push) begin
M_VALID_i <= 1'b1;
end
end
always @(posedge ACLK) begin
if (ARESET) begin
S_READY_i <= 1'b0;
end else if (areset_d1) begin
S_READY_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
S_READY_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
S_READY_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg M_VALID_i;
reg S_READY_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data
assign M_VALID = M_VALID_i;
assign S_READY = C_USE_FULL ? S_READY_i : 1'b1;
assign M_MESG = m_axi_mesg_i;
assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1);
assign pop = M_VALID_i & M_READY;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
//---------------------------------------------------------------------------
// When FIFO is empty, reset master valid bit. When not empty set valid bit.
// When FIFO is full, reset slave ready bit. When not full set ready bit.
//---------------------------------------------------------------------------
always @(posedge ACLK) begin
if (ARESET) begin
M_VALID_i <= 1'b0;
end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
M_VALID_i <= 1'b0;
end else if (push) begin
M_VALID_i <= 1'b1;
end
end
always @(posedge ACLK) begin
if (ARESET) begin
S_READY_i <= 1'b0;
end else if (areset_d1) begin
S_READY_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
S_READY_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
S_READY_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module axi_data_fifo_v2_1_axic_srl_fifo #
(
parameter C_FAMILY = "none", // FPGA Family
parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG.
parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits
// the control logic can be used
// on before the control logic
// needs to be replicated.
parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG.
// The minimum size fifo generated is 4-deep.
parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY.
)
(
input wire ACLK, // Clock
input wire ARESET, // Reset
input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data
input wire S_VALID, // Input data valid
output wire S_READY, // Input data ready
output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data
output wire M_VALID, // Output data valid
input wire M_READY // Output data ready
);
localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2;
localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}};
localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}};
localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0};
localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG];
localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ?
(C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT :
((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1;
(* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr;
(* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i;
genvar i;
genvar j;
reg M_VALID_i;
reg S_READY_i;
wire push; // FIFO push
wire pop; // FIFO pop
reg areset_d1; // Reset delay register
wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data
assign M_VALID = M_VALID_i;
assign S_READY = C_USE_FULL ? S_READY_i : 1'b1;
assign M_MESG = m_axi_mesg_i;
assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1);
assign pop = M_VALID_i & M_READY;
always @(posedge ACLK) begin
areset_d1 <= ARESET;
end
generate
//---------------------------------------------------------------------------
// Create count of number of elements in FIFOs
//---------------------------------------------------------------------------
for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep
assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] =
push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 :
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1;
always @(posedge ACLK) begin
if (ARESET)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
{P_FIFO_DEPTH_LOG{1'b1}};
else if (push ^ pop)
fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <=
fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i];
end
end
//---------------------------------------------------------------------------
// When FIFO is empty, reset master valid bit. When not empty set valid bit.
// When FIFO is full, reset slave ready bit. When not full set ready bit.
//---------------------------------------------------------------------------
always @(posedge ACLK) begin
if (ARESET) begin
M_VALID_i <= 1'b0;
end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTEMPTY) && pop && ~push) begin
M_VALID_i <= 1'b0;
end else if (push) begin
M_VALID_i <= 1'b1;
end
end
always @(posedge ACLK) begin
if (ARESET) begin
S_READY_i <= 1'b0;
end else if (areset_d1) begin
S_READY_i <= 1'b1;
end else if (C_USE_FULL &&
((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] ==
P_ALMOSTFULL) && push && ~pop)) begin
S_READY_i <= 1'b0;
end else if (C_USE_FULL && pop) begin
S_READY_i <= 1'b1;
end
end
//---------------------------------------------------------------------------
// Instantiate SRLs
//---------------------------------------------------------------------------
for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls
for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep
axi_data_fifo_v2_1_ndeep_srl #
(
.C_FAMILY (C_FAMILY),
.C_A_WIDTH (P_FIFO_DEPTH_LOG)
)
srl_nx1
(
.CLK (ACLK),
.A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:
P_FIFO_DEPTH_LOG*(i)]),
.CE (push),
.D (S_MESG[i*C_MAX_CTRL_FANOUT+j]),
.Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j])
);
end
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_mask_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] M,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar lut_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_FIX_DATA_WIDTH-1:0] m_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
assign m_local = M;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ==
( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] &
m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[lut_cnt+1]),
.CIN (carry_local[lut_cnt]),
.S (sel[lut_cnt])
);
end // end for lut_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
input wire [C_DATA_WIDTH-1:0] B,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 3;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = B;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_carry_latch_and #
(
parameter C_FAMILY = "virtex6"
// FPGA Family. Current version: virtex6 or spartan6.
)
(
input wire CIN,
input wire I,
output wire O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" ) begin : USE_RTL
assign O = CIN & ~I;
end else begin : USE_FPGA
wire I_n;
assign I_n = ~I;
AND2B1L and2b1l_inst
(
.O(O),
.DI(CIN),
.SRI(I_n)
);
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_mux #
(
parameter C_FAMILY = "rtl",
// FPGA Family. Current version: virtex6 or spartan6.
parameter integer C_SEL_WIDTH = 4,
// Data width for comparator.
parameter integer C_DATA_WIDTH = 2
// Data width for comparator.
)
(
input wire [C_SEL_WIDTH-1:0] S,
input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A,
output wire [C_DATA_WIDTH-1:0] O
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Instantiate or use RTL code
/////////////////////////////////////////////////////////////////////////////
generate
if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL
assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH];
end else begin : USE_FPGA
wire [C_DATA_WIDTH-1:0] C;
wire [C_DATA_WIDTH-1:0] D;
// Lower half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_c_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]),
.O (C)
);
// Upper half recursively.
generic_baseblocks_v2_1_mux #
(
.C_FAMILY (C_FAMILY),
.C_SEL_WIDTH (C_SEL_WIDTH-1),
.C_DATA_WIDTH (C_DATA_WIDTH)
) mux_d_inst
(
.S (S[C_SEL_WIDTH-2:0]),
.A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]),
.O (D)
);
// Generate instantiated generic_baseblocks_v2_1_mux components as required.
for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM
if ( C_SEL_WIDTH == 4 ) begin : USE_F8
MUXF8 muxf8_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7
MUXF7 muxf7_inst
(
.I0 (C[bit_cnt]),
.I1 (D[bit_cnt]),
.S (S[C_SEL_WIDTH-1]),
.O (O[bit_cnt])
);
end // C_SEL_WIDTH
end // end for bit_cnt
end
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_comparator_static #
(
parameter C_FAMILY = "virtex6",
// FPGA Family. Current version: virtex6 or spartan6.
parameter C_VALUE = 4'b0,
// Static value to compare against.
parameter integer C_DATA_WIDTH = 4
// Data width for comparator.
)
(
input wire CIN,
input wire [C_DATA_WIDTH-1:0] A,
output wire COUT
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
// Generate variable for bit vector.
genvar bit_cnt;
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Bits per LUT for this architecture.
localparam integer C_BITS_PER_LUT = 6;
// Constants for packing levels.
localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT;
//
localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT :
C_DATA_WIDTH;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
wire [C_FIX_DATA_WIDTH-1:0] a_local;
wire [C_FIX_DATA_WIDTH-1:0] b_local;
wire [C_NUM_LUT-1:0] sel;
wire [C_NUM_LUT:0] carry_local;
/////////////////////////////////////////////////////////////////////////////
//
/////////////////////////////////////////////////////////////////////////////
generate
// Assign input to local vectors.
assign carry_local[0] = CIN;
// Extend input data to fit.
if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA
assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}};
end else begin : NO_EXTENDED_DATA
assign a_local = A;
assign b_local = C_VALUE;
end
// Instantiate one generic_baseblocks_v2_1_carry and per level.
for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL
// Create the local select signal
assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ==
b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] );
// Instantiate each LUT level.
generic_baseblocks_v2_1_carry_and #
(
.C_FAMILY(C_FAMILY)
) compare_inst
(
.COUT (carry_local[bit_cnt+1]),
.CIN (carry_local[bit_cnt]),
.S (sel[bit_cnt])
);
end // end for bit_cnt
// Assign output from local vector.
assign COUT = carry_local[C_NUM_LUT];
endgenerate
endmodule
|
module generic_baseblocks_v2_1_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
module generic_baseblocks_v2_1_nto1_mux #
(
parameter integer C_RATIO = 1, // Range: >=1
parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO)
parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1
parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT)
)
(
input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1)
input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0)
input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width)
output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector
);
wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry;
genvar i;
generate
if (C_ONEHOT == 0) begin : gen_encoded
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end else begin : gen_onehot
assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0];
for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot
assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] =
carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] |
{C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH];
end
end
endgenerate
assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1:
C_DATAOUT_WIDTH*(C_RATIO-1)];
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.