module_content
stringlengths
18
1.05M
module axi_protocol_converter_v2_1_a_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AUSER_WIDTH = 1, parameter integer C_AXI_CHANNEL = 0, // 0 = AXI AW Channel. // 1 = AXI AR Channel. parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface (W/R) output wire cmd_valid, output wire cmd_split, output wire [C_AXI_ID_WIDTH-1:0] cmd_id, output wire [4-1:0] cmd_length, input wire cmd_ready, // Command Interface (B) output wire cmd_b_valid, output wire cmd_b_split, output wire [4-1:0] cmd_b_repeat, input wire cmd_b_ready, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR, input wire [8-1:0] S_AXI_ALEN, input wire [3-1:0] S_AXI_ASIZE, input wire [2-1:0] S_AXI_ABURST, input wire [1-1:0] S_AXI_ALOCK, input wire [4-1:0] S_AXI_ACACHE, input wire [3-1:0] S_AXI_APROT, input wire [4-1:0] S_AXI_AQOS, input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER, input wire S_AXI_AVALID, output wire S_AXI_AREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR, output wire [4-1:0] M_AXI_ALEN, output wire [3-1:0] M_AXI_ASIZE, output wire [2-1:0] M_AXI_ABURST, output wire [2-1:0] M_AXI_ALOCK, output wire [4-1:0] M_AXI_ACACHE, output wire [3-1:0] M_AXI_APROT, output wire [4-1:0] M_AXI_AQOS, output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER, output wire M_AXI_AVALID, input wire M_AXI_AREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Depth for command FIFO. localparam integer C_FIFO_DEPTH_LOG = 5; // Constants used to generate size mask. localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000}; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Access decoding related signals. wire access_is_incr; wire [4-1:0] num_transactions; wire incr_need_to_split; reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr; reg split_ongoing; reg [4-1:0] pushed_commands; reg [16-1:0] addr_step; reg [16-1:0] first_step; wire [8-1:0] first_beats; reg [C_AXI_ADDR_WIDTH-1:0] size_mask; // Access decoding related signals for internal pipestage. reg access_is_incr_q; reg incr_need_to_split_q; wire need_to_split_q; reg [4-1:0] num_transactions_q; reg [16-1:0] addr_step_q; reg [16-1:0] first_step_q; reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q; // Command buffer help signals. reg [C_FIFO_DEPTH_LOG:0] cmd_depth; reg cmd_empty; reg [C_AXI_ID_WIDTH-1:0] queue_id; wire id_match; wire cmd_id_check; wire s_ready; wire cmd_full; wire allow_this_cmd; wire allow_new_cmd; wire cmd_push; reg cmd_push_block; reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth; reg cmd_b_empty; wire cmd_b_full; wire cmd_b_push; reg cmd_b_push_block; wire pushed_new_cmd; wire last_incr_split; wire last_split; wire first_split; wire no_cmd; wire allow_split_cmd; wire almost_empty; wire no_b_cmd; wire allow_non_split_cmd; wire almost_b_empty; reg multiple_id_non_split; reg split_in_progress; // Internal Command Interface signals (W/R). wire cmd_split_i; wire [C_AXI_ID_WIDTH-1:0] cmd_id_i; reg [4-1:0] cmd_length_i; // Internal Command Interface signals (B). wire cmd_b_split_i; wire [4-1:0] cmd_b_repeat_i; // Throttling help signals. wire mi_stalling; reg command_ongoing; // Internal SI-side signals. reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q; reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q; reg [8-1:0] S_AXI_ALEN_Q; reg [3-1:0] S_AXI_ASIZE_Q; reg [2-1:0] S_AXI_ABURST_Q; reg [2-1:0] S_AXI_ALOCK_Q; reg [4-1:0] S_AXI_ACACHE_Q; reg [3-1:0] S_AXI_APROT_Q; reg [4-1:0] S_AXI_AQOS_Q; reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q; reg S_AXI_AREADY_I; // Internal MI-side signals. wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I; reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I; reg [8-1:0] M_AXI_ALEN_I; wire [3-1:0] M_AXI_ASIZE_I; wire [2-1:0] M_AXI_ABURST_I; reg [2-1:0] M_AXI_ALOCK_I; wire [4-1:0] M_AXI_ACACHE_I; wire [3-1:0] M_AXI_APROT_I; wire [4-1:0] M_AXI_AQOS_I; wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I; wire M_AXI_AVALID_I; wire M_AXI_AREADY_I; reg [1:0] areset_d; // Reset delay register always @(posedge ACLK) begin areset_d <= {areset_d[0], ARESET}; end ///////////////////////////////////////////////////////////////////////////// // Capture SI-Side signals. // ///////////////////////////////////////////////////////////////////////////// // Register SI-Side signals. always @ (posedge ACLK) begin if ( ARESET ) begin S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}}; S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}}; S_AXI_ALEN_Q <= 8'b0; S_AXI_ASIZE_Q <= 3'b0; S_AXI_ABURST_Q <= 2'b0; S_AXI_ALOCK_Q <= 2'b0; S_AXI_ACACHE_Q <= 4'b0; S_AXI_APROT_Q <= 3'b0; S_AXI_AQOS_Q <= 4'b0; S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}}; end else begin if ( S_AXI_AREADY_I ) begin S_AXI_AID_Q <= S_AXI_AID; S_AXI_AADDR_Q <= S_AXI_AADDR; S_AXI_ALEN_Q <= S_AXI_ALEN; S_AXI_ASIZE_Q <= S_AXI_ASIZE; S_AXI_ABURST_Q <= S_AXI_ABURST; S_AXI_ALOCK_Q <= S_AXI_ALOCK; S_AXI_ACACHE_Q <= S_AXI_ACACHE; S_AXI_APROT_Q <= S_AXI_APROT; S_AXI_AQOS_Q <= S_AXI_AQOS; S_AXI_AUSER_Q <= S_AXI_AUSER; end end end ///////////////////////////////////////////////////////////////////////////// // Decode the Incoming Transaction. // // Extract transaction type and the number of splits that may be needed. // // Calculate the step size so that the address for each part of a split can // can be calculated. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST ); // Get number of transactions for split INCR. assign num_transactions = S_AXI_ALEN[4 +: 4]; assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01; // Generate address increment of first split transaction. always @ * begin case (S_AXI_ASIZE) 3'b000: first_step = first_beats << 0; 3'b001: first_step = first_beats << 1; 3'b010: first_step = first_beats << 2; 3'b011: first_step = first_beats << 3; 3'b100: first_step = first_beats << 4; 3'b101: first_step = first_beats << 5; 3'b110: first_step = first_beats << 6; 3'b111: first_step = first_beats << 7; endcase end // Generate address increment for remaining split transactions. always @ * begin case (S_AXI_ASIZE) 3'b000: addr_step = 16'h0010; 3'b001: addr_step = 16'h0020; 3'b010: addr_step = 16'h0040; 3'b011: addr_step = 16'h0080; 3'b100: addr_step = 16'h0100; 3'b101: addr_step = 16'h0200; 3'b110: addr_step = 16'h0400; 3'b111: addr_step = 16'h0800; endcase end // Generate address mask bits to remove split transaction unalignment. always @ * begin case (S_AXI_ASIZE) 3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH]; 3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH]; 3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH]; 3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH]; 3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH]; 3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH]; 3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH]; 3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH]; endcase end ///////////////////////////////////////////////////////////////////////////// // Transfer SI-Side signals to internal Pipeline Stage. // ///////////////////////////////////////////////////////////////////////////// always @ (posedge ACLK) begin if ( ARESET ) begin access_is_incr_q <= 1'b0; incr_need_to_split_q <= 1'b0; num_transactions_q <= 4'b0; addr_step_q <= 16'b0; first_step_q <= 16'b0; size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}}; end else begin if ( S_AXI_AREADY_I ) begin access_is_incr_q <= access_is_incr; incr_need_to_split_q <= incr_need_to_split; num_transactions_q <= num_transactions; addr_step_q <= addr_step; first_step_q <= first_step; size_mask_q <= size_mask; end end end ///////////////////////////////////////////////////////////////////////////// // Generate Command Information. // // Detect if current transation needs to be split, and keep track of all // the generated split transactions. // // ///////////////////////////////////////////////////////////////////////////// // Detect when INCR must be split. assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) & ( C_SUPPORT_SPLITTING == 1 ) & ( C_SUPPORT_BURSTS == 1 ); // Detect when a command has to be split. assign need_to_split_q = incr_need_to_split_q; // Handle progress of split transactions. always @ (posedge ACLK) begin if ( ARESET ) begin split_ongoing <= 1'b0; end else begin if ( pushed_new_cmd ) begin split_ongoing <= need_to_split_q & ~last_split; end end end // Keep track of number of transactions generated. always @ (posedge ACLK) begin if ( ARESET ) begin pushed_commands <= 4'b0; end else begin if ( S_AXI_AREADY_I ) begin pushed_commands <= 4'b0; end else if ( pushed_new_cmd ) begin pushed_commands <= pushed_commands + 4'b1; end end end // Detect last part of a command, split or not. assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands ); assign last_split = last_incr_split | ~access_is_incr_q | ( C_SUPPORT_SPLITTING == 0 ) | ( C_SUPPORT_BURSTS == 0 ); assign first_split = (pushed_commands == 4'b0); // Calculate base for next address. always @ (posedge ACLK) begin if ( ARESET ) begin next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}}; end else if ( pushed_new_cmd ) begin next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q); end end ///////////////////////////////////////////////////////////////////////////// // Translating Transaction. // // Set Split transaction information on all part except last for a transaction // that needs splitting. // The B Channel will only get one command for a Split transaction and in // the Split bflag will be set in that case. // // The AWID is extracted and applied to all commands generated for the current // incomming SI-Side transaction. // // The address is increased for each part of a Split transaction, the amount // depends on the siSIZE for the transaction. // // The length has to be changed for Split transactions. All part except tha // last one will have 0xF, the last one uses the 4 lsb bits from the SI-side // transaction as length. // // Non-Split has untouched address and length information. // // Exclusive access are diasabled for a Split transaction because it is not // possible to guarantee concistency between all the parts. // ///////////////////////////////////////////////////////////////////////////// // Assign Split signals. assign cmd_split_i = need_to_split_q & ~last_split; assign cmd_b_split_i = need_to_split_q & ~last_split; // Copy AW ID to W. assign cmd_id_i = S_AXI_AID_Q; // Set B Responses to merge. assign cmd_b_repeat_i = num_transactions_q; // Select new size or remaining size. always @ * begin if ( split_ongoing & access_is_incr_q ) begin M_AXI_AADDR_I = next_mi_addr & size_mask_q; end else begin M_AXI_AADDR_I = S_AXI_AADDR_Q; end end // Generate the base length for each transaction. always @ * begin if ( first_split | ~need_to_split_q ) begin M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4]; cmd_length_i = S_AXI_ALEN_Q[0 +: 4]; end else begin M_AXI_ALEN_I = 4'hF; cmd_length_i = 4'hF; end end // Kill Exclusive for Split transactions. always @ * begin if ( need_to_split_q ) begin M_AXI_ALOCK_I = 2'b00; end else begin M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q}; end end ///////////////////////////////////////////////////////////////////////////// // Forward the command to the MI-side interface. // // It is determined that this is an allowed command/access when there is // room in the command queue (and it passes ID and Split checks as required). // ///////////////////////////////////////////////////////////////////////////// // Move SI-side transaction to internal pipe stage. always @ (posedge ACLK) begin if (ARESET) begin command_ongoing <= 1'b0; S_AXI_AREADY_I <= 1'b0; end else begin if (areset_d == 2'b10) begin S_AXI_AREADY_I <= 1'b1; end else begin if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin command_ongoing <= 1'b1; S_AXI_AREADY_I <= 1'b0; end else if ( pushed_new_cmd & last_split ) begin command_ongoing <= 1'b0; S_AXI_AREADY_I <= 1'b1; end end end end // Generate ready signal. assign S_AXI_AREADY = S_AXI_AREADY_I; // Only allowed to forward translated command when command queue is ok with it. assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple transfer of paramters that doesn't need to be adjusted. // // ID - Transaction still recognized with the same ID. // CACHE - No need to change the chache features. Even if the modyfiable // bit is overridden (forcefully) there is no need to let downstream // component beleive it is ok to modify it further. // PROT - Security level of access is not changed when upsizing. // QOS - Quality of Service is static 0. // USER - User bits remains the same. // ///////////////////////////////////////////////////////////////////////////// assign M_AXI_AID_I = S_AXI_AID_Q; assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q; assign M_AXI_ABURST_I = S_AXI_ABURST_Q; assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q; assign M_AXI_APROT_I = S_AXI_APROT_Q; assign M_AXI_AQOS_I = S_AXI_AQOS_Q; assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}}; ///////////////////////////////////////////////////////////////////////////// // Control command queue to W/R channel. // // Commands can be pushed into the Cmd FIFO even if MI-side is stalling. // A flag is set if MI-side is stalling when Command is pushed to the // Cmd FIFO. This will prevent multiple push of the same Command as well as // keeping the MI-side Valid signal if the Allow Cmd requirement has been // updated to disable furter Commands (I.e. it is made sure that the SI-side // Command has been forwarded to both Cmd FIFO and MI-side). // // It is allowed to continue pushing new commands as long as // * There is room in the queue(s) // * The ID is the same as previously queued. Since data is not reordered // for the same ID it is always OK to let them proceed. // Or, if no split transaction is ongoing any ID can be allowed. // ///////////////////////////////////////////////////////////////////////////// // Keep track of current ID in queue. always @ (posedge ACLK) begin if (ARESET) begin queue_id <= {C_AXI_ID_WIDTH{1'b0}}; multiple_id_non_split <= 1'b0; split_in_progress <= 1'b0; end else begin if ( cmd_push ) begin // Store ID (it will be matching ID or a "new beginning"). queue_id <= S_AXI_AID_Q; end if ( no_cmd & no_b_cmd ) begin multiple_id_non_split <= 1'b0; end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin multiple_id_non_split <= 1'b1; end if ( no_cmd & no_b_cmd ) begin split_in_progress <= 1'b0; end else if ( cmd_push & allow_split_cmd ) begin split_in_progress <= 1'b1; end end end // Determine if the command FIFOs are empty. assign no_cmd = almost_empty & cmd_ready | cmd_empty; assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty; // Check ID to make sure this command is allowed. assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q); assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) ); // Command type affects possibility to push immediately or wait. assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split; assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress); assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 ); // Check if it is allowed to push more commands. assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) | cmd_push_block; // Push new command when allowed and MI-side is able to receive the command. assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block; assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0); // Block furter push until command has been forwarded to MI-side. always @ (posedge ACLK) begin if (ARESET) begin cmd_push_block <= 1'b0; end else begin if ( pushed_new_cmd ) begin cmd_push_block <= 1'b0; end else if ( cmd_push & mi_stalling ) begin cmd_push_block <= 1'b1; end end end // Block furter push until command has been forwarded to MI-side. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_block <= 1'b0; end else begin if ( S_AXI_AREADY_I ) begin cmd_b_push_block <= 1'b0; end else if ( cmd_b_push ) begin cmd_b_push_block <= 1'b1; end end end // Acknowledge command when we can push it into queue (and forward it). assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue (W/R): // // Instantiate a FIFO as the queue and adjust the control signals. // // The features from Command FIFO can be reduced depending on configuration: // Read Channel only need the split information. // Write Channel always require ID information. When bursts are supported // Split and Length information is also used. // ///////////////////////////////////////////////////////////////////////////// // Instantiated queue. generate if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(1), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_split_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_split}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_id = {C_AXI_ID_WIDTH{1'b0}}; assign cmd_length = 4'b0; end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_AXI_ID_WIDTH+4), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_id_i, cmd_length_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_id, cmd_length}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_split = 1'b0; end else begin : NO_BURSTS axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_AXI_ID_WIDTH), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_id_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_id}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_split = 1'b0; assign cmd_length = 4'b0; end endgenerate // Queue is concidered full when not ready. assign cmd_full = ~s_ready; // Queue is empty when no data at output port. always @ (posedge ACLK) begin if (ARESET) begin cmd_empty <= 1'b1; cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin if ( cmd_push & ~cmd_ready ) begin // Push only => Increase depth. cmd_depth <= cmd_depth + 1'b1; cmd_empty <= 1'b0; end else if ( ~cmd_push & cmd_ready ) begin // Pop only => Decrease depth. cmd_depth <= cmd_depth - 1'b1; cmd_empty <= almost_empty; end end end assign almost_empty = ( cmd_depth == 1 ); ///////////////////////////////////////////////////////////////////////////// // Command Queue (B): // // Add command queue for B channel only when it is AW channel and both burst // and splitting is supported. // // When turned off the command appears always empty. // ///////////////////////////////////////////////////////////////////////////// // Instantiated queue. generate if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL wire cmd_b_valid_i; wire s_b_ready; axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(1+4), .C_FIFO_TYPE("lut") ) cmd_b_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_b_split_i, cmd_b_repeat_i}), .S_VALID(cmd_b_push), .S_READY(s_b_ready), .M_MESG({cmd_b_split, cmd_b_repeat}), .M_VALID(cmd_b_valid_i), .M_READY(cmd_b_ready) ); // Queue is concidered full when not ready. assign cmd_b_full = ~s_b_ready; // Queue is empty when no data at output port. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin if ( cmd_b_push & ~cmd_b_ready ) begin // Push only => Increase depth. cmd_b_depth <= cmd_b_depth + 1'b1; cmd_b_empty <= 1'b0; end else if ( ~cmd_b_push & cmd_b_ready ) begin // Pop only => Decrease depth. cmd_b_depth <= cmd_b_depth - 1'b1; cmd_b_empty <= ( cmd_b_depth == 1 ); end end end assign almost_b_empty = ( cmd_b_depth == 1 ); // Assign external signal. assign cmd_b_valid = cmd_b_valid_i; end else begin : NO_B_CHANNEL // Assign external command signals. assign cmd_b_valid = 1'b0; assign cmd_b_split = 1'b0; assign cmd_b_repeat = 4'b0; // Assign internal command FIFO signals. assign cmd_b_full = 1'b0; assign almost_b_empty = 1'b0; always @ (posedge ACLK) begin if (ARESET) begin cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin // Constant FF due to ModelSim behavior. cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end end end endgenerate ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// assign M_AXI_AID = M_AXI_AID_I; assign M_AXI_AADDR = M_AXI_AADDR_I; assign M_AXI_ALEN = M_AXI_ALEN_I; assign M_AXI_ASIZE = M_AXI_ASIZE_I; assign M_AXI_ABURST = M_AXI_ABURST_I; assign M_AXI_ALOCK = M_AXI_ALOCK_I; assign M_AXI_ACACHE = M_AXI_ACACHE_I; assign M_AXI_APROT = M_AXI_APROT_I; assign M_AXI_AQOS = M_AXI_AQOS_I; assign M_AXI_AUSER = M_AXI_AUSER_I; assign M_AXI_AVALID = M_AXI_AVALID_I; assign M_AXI_AREADY_I = M_AXI_AREADY; endmodule
module axi_protocol_converter_v2_1_a_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AUSER_WIDTH = 1, parameter integer C_AXI_CHANNEL = 0, // 0 = AXI AW Channel. // 1 = AXI AR Channel. parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface (W/R) output wire cmd_valid, output wire cmd_split, output wire [C_AXI_ID_WIDTH-1:0] cmd_id, output wire [4-1:0] cmd_length, input wire cmd_ready, // Command Interface (B) output wire cmd_b_valid, output wire cmd_b_split, output wire [4-1:0] cmd_b_repeat, input wire cmd_b_ready, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR, input wire [8-1:0] S_AXI_ALEN, input wire [3-1:0] S_AXI_ASIZE, input wire [2-1:0] S_AXI_ABURST, input wire [1-1:0] S_AXI_ALOCK, input wire [4-1:0] S_AXI_ACACHE, input wire [3-1:0] S_AXI_APROT, input wire [4-1:0] S_AXI_AQOS, input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER, input wire S_AXI_AVALID, output wire S_AXI_AREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR, output wire [4-1:0] M_AXI_ALEN, output wire [3-1:0] M_AXI_ASIZE, output wire [2-1:0] M_AXI_ABURST, output wire [2-1:0] M_AXI_ALOCK, output wire [4-1:0] M_AXI_ACACHE, output wire [3-1:0] M_AXI_APROT, output wire [4-1:0] M_AXI_AQOS, output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER, output wire M_AXI_AVALID, input wire M_AXI_AREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Depth for command FIFO. localparam integer C_FIFO_DEPTH_LOG = 5; // Constants used to generate size mask. localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000}; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Access decoding related signals. wire access_is_incr; wire [4-1:0] num_transactions; wire incr_need_to_split; reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr; reg split_ongoing; reg [4-1:0] pushed_commands; reg [16-1:0] addr_step; reg [16-1:0] first_step; wire [8-1:0] first_beats; reg [C_AXI_ADDR_WIDTH-1:0] size_mask; // Access decoding related signals for internal pipestage. reg access_is_incr_q; reg incr_need_to_split_q; wire need_to_split_q; reg [4-1:0] num_transactions_q; reg [16-1:0] addr_step_q; reg [16-1:0] first_step_q; reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q; // Command buffer help signals. reg [C_FIFO_DEPTH_LOG:0] cmd_depth; reg cmd_empty; reg [C_AXI_ID_WIDTH-1:0] queue_id; wire id_match; wire cmd_id_check; wire s_ready; wire cmd_full; wire allow_this_cmd; wire allow_new_cmd; wire cmd_push; reg cmd_push_block; reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth; reg cmd_b_empty; wire cmd_b_full; wire cmd_b_push; reg cmd_b_push_block; wire pushed_new_cmd; wire last_incr_split; wire last_split; wire first_split; wire no_cmd; wire allow_split_cmd; wire almost_empty; wire no_b_cmd; wire allow_non_split_cmd; wire almost_b_empty; reg multiple_id_non_split; reg split_in_progress; // Internal Command Interface signals (W/R). wire cmd_split_i; wire [C_AXI_ID_WIDTH-1:0] cmd_id_i; reg [4-1:0] cmd_length_i; // Internal Command Interface signals (B). wire cmd_b_split_i; wire [4-1:0] cmd_b_repeat_i; // Throttling help signals. wire mi_stalling; reg command_ongoing; // Internal SI-side signals. reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q; reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q; reg [8-1:0] S_AXI_ALEN_Q; reg [3-1:0] S_AXI_ASIZE_Q; reg [2-1:0] S_AXI_ABURST_Q; reg [2-1:0] S_AXI_ALOCK_Q; reg [4-1:0] S_AXI_ACACHE_Q; reg [3-1:0] S_AXI_APROT_Q; reg [4-1:0] S_AXI_AQOS_Q; reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q; reg S_AXI_AREADY_I; // Internal MI-side signals. wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I; reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I; reg [8-1:0] M_AXI_ALEN_I; wire [3-1:0] M_AXI_ASIZE_I; wire [2-1:0] M_AXI_ABURST_I; reg [2-1:0] M_AXI_ALOCK_I; wire [4-1:0] M_AXI_ACACHE_I; wire [3-1:0] M_AXI_APROT_I; wire [4-1:0] M_AXI_AQOS_I; wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I; wire M_AXI_AVALID_I; wire M_AXI_AREADY_I; reg [1:0] areset_d; // Reset delay register always @(posedge ACLK) begin areset_d <= {areset_d[0], ARESET}; end ///////////////////////////////////////////////////////////////////////////// // Capture SI-Side signals. // ///////////////////////////////////////////////////////////////////////////// // Register SI-Side signals. always @ (posedge ACLK) begin if ( ARESET ) begin S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}}; S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}}; S_AXI_ALEN_Q <= 8'b0; S_AXI_ASIZE_Q <= 3'b0; S_AXI_ABURST_Q <= 2'b0; S_AXI_ALOCK_Q <= 2'b0; S_AXI_ACACHE_Q <= 4'b0; S_AXI_APROT_Q <= 3'b0; S_AXI_AQOS_Q <= 4'b0; S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}}; end else begin if ( S_AXI_AREADY_I ) begin S_AXI_AID_Q <= S_AXI_AID; S_AXI_AADDR_Q <= S_AXI_AADDR; S_AXI_ALEN_Q <= S_AXI_ALEN; S_AXI_ASIZE_Q <= S_AXI_ASIZE; S_AXI_ABURST_Q <= S_AXI_ABURST; S_AXI_ALOCK_Q <= S_AXI_ALOCK; S_AXI_ACACHE_Q <= S_AXI_ACACHE; S_AXI_APROT_Q <= S_AXI_APROT; S_AXI_AQOS_Q <= S_AXI_AQOS; S_AXI_AUSER_Q <= S_AXI_AUSER; end end end ///////////////////////////////////////////////////////////////////////////// // Decode the Incoming Transaction. // // Extract transaction type and the number of splits that may be needed. // // Calculate the step size so that the address for each part of a split can // can be calculated. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST ); // Get number of transactions for split INCR. assign num_transactions = S_AXI_ALEN[4 +: 4]; assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01; // Generate address increment of first split transaction. always @ * begin case (S_AXI_ASIZE) 3'b000: first_step = first_beats << 0; 3'b001: first_step = first_beats << 1; 3'b010: first_step = first_beats << 2; 3'b011: first_step = first_beats << 3; 3'b100: first_step = first_beats << 4; 3'b101: first_step = first_beats << 5; 3'b110: first_step = first_beats << 6; 3'b111: first_step = first_beats << 7; endcase end // Generate address increment for remaining split transactions. always @ * begin case (S_AXI_ASIZE) 3'b000: addr_step = 16'h0010; 3'b001: addr_step = 16'h0020; 3'b010: addr_step = 16'h0040; 3'b011: addr_step = 16'h0080; 3'b100: addr_step = 16'h0100; 3'b101: addr_step = 16'h0200; 3'b110: addr_step = 16'h0400; 3'b111: addr_step = 16'h0800; endcase end // Generate address mask bits to remove split transaction unalignment. always @ * begin case (S_AXI_ASIZE) 3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH]; 3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH]; 3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH]; 3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH]; 3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH]; 3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH]; 3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH]; 3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH]; endcase end ///////////////////////////////////////////////////////////////////////////// // Transfer SI-Side signals to internal Pipeline Stage. // ///////////////////////////////////////////////////////////////////////////// always @ (posedge ACLK) begin if ( ARESET ) begin access_is_incr_q <= 1'b0; incr_need_to_split_q <= 1'b0; num_transactions_q <= 4'b0; addr_step_q <= 16'b0; first_step_q <= 16'b0; size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}}; end else begin if ( S_AXI_AREADY_I ) begin access_is_incr_q <= access_is_incr; incr_need_to_split_q <= incr_need_to_split; num_transactions_q <= num_transactions; addr_step_q <= addr_step; first_step_q <= first_step; size_mask_q <= size_mask; end end end ///////////////////////////////////////////////////////////////////////////// // Generate Command Information. // // Detect if current transation needs to be split, and keep track of all // the generated split transactions. // // ///////////////////////////////////////////////////////////////////////////// // Detect when INCR must be split. assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) & ( C_SUPPORT_SPLITTING == 1 ) & ( C_SUPPORT_BURSTS == 1 ); // Detect when a command has to be split. assign need_to_split_q = incr_need_to_split_q; // Handle progress of split transactions. always @ (posedge ACLK) begin if ( ARESET ) begin split_ongoing <= 1'b0; end else begin if ( pushed_new_cmd ) begin split_ongoing <= need_to_split_q & ~last_split; end end end // Keep track of number of transactions generated. always @ (posedge ACLK) begin if ( ARESET ) begin pushed_commands <= 4'b0; end else begin if ( S_AXI_AREADY_I ) begin pushed_commands <= 4'b0; end else if ( pushed_new_cmd ) begin pushed_commands <= pushed_commands + 4'b1; end end end // Detect last part of a command, split or not. assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands ); assign last_split = last_incr_split | ~access_is_incr_q | ( C_SUPPORT_SPLITTING == 0 ) | ( C_SUPPORT_BURSTS == 0 ); assign first_split = (pushed_commands == 4'b0); // Calculate base for next address. always @ (posedge ACLK) begin if ( ARESET ) begin next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}}; end else if ( pushed_new_cmd ) begin next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q); end end ///////////////////////////////////////////////////////////////////////////// // Translating Transaction. // // Set Split transaction information on all part except last for a transaction // that needs splitting. // The B Channel will only get one command for a Split transaction and in // the Split bflag will be set in that case. // // The AWID is extracted and applied to all commands generated for the current // incomming SI-Side transaction. // // The address is increased for each part of a Split transaction, the amount // depends on the siSIZE for the transaction. // // The length has to be changed for Split transactions. All part except tha // last one will have 0xF, the last one uses the 4 lsb bits from the SI-side // transaction as length. // // Non-Split has untouched address and length information. // // Exclusive access are diasabled for a Split transaction because it is not // possible to guarantee concistency between all the parts. // ///////////////////////////////////////////////////////////////////////////// // Assign Split signals. assign cmd_split_i = need_to_split_q & ~last_split; assign cmd_b_split_i = need_to_split_q & ~last_split; // Copy AW ID to W. assign cmd_id_i = S_AXI_AID_Q; // Set B Responses to merge. assign cmd_b_repeat_i = num_transactions_q; // Select new size or remaining size. always @ * begin if ( split_ongoing & access_is_incr_q ) begin M_AXI_AADDR_I = next_mi_addr & size_mask_q; end else begin M_AXI_AADDR_I = S_AXI_AADDR_Q; end end // Generate the base length for each transaction. always @ * begin if ( first_split | ~need_to_split_q ) begin M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4]; cmd_length_i = S_AXI_ALEN_Q[0 +: 4]; end else begin M_AXI_ALEN_I = 4'hF; cmd_length_i = 4'hF; end end // Kill Exclusive for Split transactions. always @ * begin if ( need_to_split_q ) begin M_AXI_ALOCK_I = 2'b00; end else begin M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q}; end end ///////////////////////////////////////////////////////////////////////////// // Forward the command to the MI-side interface. // // It is determined that this is an allowed command/access when there is // room in the command queue (and it passes ID and Split checks as required). // ///////////////////////////////////////////////////////////////////////////// // Move SI-side transaction to internal pipe stage. always @ (posedge ACLK) begin if (ARESET) begin command_ongoing <= 1'b0; S_AXI_AREADY_I <= 1'b0; end else begin if (areset_d == 2'b10) begin S_AXI_AREADY_I <= 1'b1; end else begin if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin command_ongoing <= 1'b1; S_AXI_AREADY_I <= 1'b0; end else if ( pushed_new_cmd & last_split ) begin command_ongoing <= 1'b0; S_AXI_AREADY_I <= 1'b1; end end end end // Generate ready signal. assign S_AXI_AREADY = S_AXI_AREADY_I; // Only allowed to forward translated command when command queue is ok with it. assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple transfer of paramters that doesn't need to be adjusted. // // ID - Transaction still recognized with the same ID. // CACHE - No need to change the chache features. Even if the modyfiable // bit is overridden (forcefully) there is no need to let downstream // component beleive it is ok to modify it further. // PROT - Security level of access is not changed when upsizing. // QOS - Quality of Service is static 0. // USER - User bits remains the same. // ///////////////////////////////////////////////////////////////////////////// assign M_AXI_AID_I = S_AXI_AID_Q; assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q; assign M_AXI_ABURST_I = S_AXI_ABURST_Q; assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q; assign M_AXI_APROT_I = S_AXI_APROT_Q; assign M_AXI_AQOS_I = S_AXI_AQOS_Q; assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}}; ///////////////////////////////////////////////////////////////////////////// // Control command queue to W/R channel. // // Commands can be pushed into the Cmd FIFO even if MI-side is stalling. // A flag is set if MI-side is stalling when Command is pushed to the // Cmd FIFO. This will prevent multiple push of the same Command as well as // keeping the MI-side Valid signal if the Allow Cmd requirement has been // updated to disable furter Commands (I.e. it is made sure that the SI-side // Command has been forwarded to both Cmd FIFO and MI-side). // // It is allowed to continue pushing new commands as long as // * There is room in the queue(s) // * The ID is the same as previously queued. Since data is not reordered // for the same ID it is always OK to let them proceed. // Or, if no split transaction is ongoing any ID can be allowed. // ///////////////////////////////////////////////////////////////////////////// // Keep track of current ID in queue. always @ (posedge ACLK) begin if (ARESET) begin queue_id <= {C_AXI_ID_WIDTH{1'b0}}; multiple_id_non_split <= 1'b0; split_in_progress <= 1'b0; end else begin if ( cmd_push ) begin // Store ID (it will be matching ID or a "new beginning"). queue_id <= S_AXI_AID_Q; end if ( no_cmd & no_b_cmd ) begin multiple_id_non_split <= 1'b0; end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin multiple_id_non_split <= 1'b1; end if ( no_cmd & no_b_cmd ) begin split_in_progress <= 1'b0; end else if ( cmd_push & allow_split_cmd ) begin split_in_progress <= 1'b1; end end end // Determine if the command FIFOs are empty. assign no_cmd = almost_empty & cmd_ready | cmd_empty; assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty; // Check ID to make sure this command is allowed. assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q); assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) ); // Command type affects possibility to push immediately or wait. assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split; assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress); assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 ); // Check if it is allowed to push more commands. assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) | cmd_push_block; // Push new command when allowed and MI-side is able to receive the command. assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block; assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0); // Block furter push until command has been forwarded to MI-side. always @ (posedge ACLK) begin if (ARESET) begin cmd_push_block <= 1'b0; end else begin if ( pushed_new_cmd ) begin cmd_push_block <= 1'b0; end else if ( cmd_push & mi_stalling ) begin cmd_push_block <= 1'b1; end end end // Block furter push until command has been forwarded to MI-side. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_block <= 1'b0; end else begin if ( S_AXI_AREADY_I ) begin cmd_b_push_block <= 1'b0; end else if ( cmd_b_push ) begin cmd_b_push_block <= 1'b1; end end end // Acknowledge command when we can push it into queue (and forward it). assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue (W/R): // // Instantiate a FIFO as the queue and adjust the control signals. // // The features from Command FIFO can be reduced depending on configuration: // Read Channel only need the split information. // Write Channel always require ID information. When bursts are supported // Split and Length information is also used. // ///////////////////////////////////////////////////////////////////////////// // Instantiated queue. generate if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(1), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_split_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_split}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_id = {C_AXI_ID_WIDTH{1'b0}}; assign cmd_length = 4'b0; end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_AXI_ID_WIDTH+4), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_id_i, cmd_length_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_id, cmd_length}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_split = 1'b0; end else begin : NO_BURSTS axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_AXI_ID_WIDTH), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_id_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_id}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_split = 1'b0; assign cmd_length = 4'b0; end endgenerate // Queue is concidered full when not ready. assign cmd_full = ~s_ready; // Queue is empty when no data at output port. always @ (posedge ACLK) begin if (ARESET) begin cmd_empty <= 1'b1; cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin if ( cmd_push & ~cmd_ready ) begin // Push only => Increase depth. cmd_depth <= cmd_depth + 1'b1; cmd_empty <= 1'b0; end else if ( ~cmd_push & cmd_ready ) begin // Pop only => Decrease depth. cmd_depth <= cmd_depth - 1'b1; cmd_empty <= almost_empty; end end end assign almost_empty = ( cmd_depth == 1 ); ///////////////////////////////////////////////////////////////////////////// // Command Queue (B): // // Add command queue for B channel only when it is AW channel and both burst // and splitting is supported. // // When turned off the command appears always empty. // ///////////////////////////////////////////////////////////////////////////// // Instantiated queue. generate if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL wire cmd_b_valid_i; wire s_b_ready; axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(1+4), .C_FIFO_TYPE("lut") ) cmd_b_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_b_split_i, cmd_b_repeat_i}), .S_VALID(cmd_b_push), .S_READY(s_b_ready), .M_MESG({cmd_b_split, cmd_b_repeat}), .M_VALID(cmd_b_valid_i), .M_READY(cmd_b_ready) ); // Queue is concidered full when not ready. assign cmd_b_full = ~s_b_ready; // Queue is empty when no data at output port. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin if ( cmd_b_push & ~cmd_b_ready ) begin // Push only => Increase depth. cmd_b_depth <= cmd_b_depth + 1'b1; cmd_b_empty <= 1'b0; end else if ( ~cmd_b_push & cmd_b_ready ) begin // Pop only => Decrease depth. cmd_b_depth <= cmd_b_depth - 1'b1; cmd_b_empty <= ( cmd_b_depth == 1 ); end end end assign almost_b_empty = ( cmd_b_depth == 1 ); // Assign external signal. assign cmd_b_valid = cmd_b_valid_i; end else begin : NO_B_CHANNEL // Assign external command signals. assign cmd_b_valid = 1'b0; assign cmd_b_split = 1'b0; assign cmd_b_repeat = 4'b0; // Assign internal command FIFO signals. assign cmd_b_full = 1'b0; assign almost_b_empty = 1'b0; always @ (posedge ACLK) begin if (ARESET) begin cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin // Constant FF due to ModelSim behavior. cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end end end endgenerate ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// assign M_AXI_AID = M_AXI_AID_I; assign M_AXI_AADDR = M_AXI_AADDR_I; assign M_AXI_ALEN = M_AXI_ALEN_I; assign M_AXI_ASIZE = M_AXI_ASIZE_I; assign M_AXI_ABURST = M_AXI_ABURST_I; assign M_AXI_ALOCK = M_AXI_ALOCK_I; assign M_AXI_ACACHE = M_AXI_ACACHE_I; assign M_AXI_APROT = M_AXI_APROT_I; assign M_AXI_AQOS = M_AXI_AQOS_I; assign M_AXI_AUSER = M_AXI_AUSER_I; assign M_AXI_AVALID = M_AXI_AVALID_I; assign M_AXI_AREADY_I = M_AXI_AREADY; endmodule
module axi_protocol_converter_v2_1_a_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AUSER_WIDTH = 1, parameter integer C_AXI_CHANNEL = 0, // 0 = AXI AW Channel. // 1 = AXI AR Channel. parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface (W/R) output wire cmd_valid, output wire cmd_split, output wire [C_AXI_ID_WIDTH-1:0] cmd_id, output wire [4-1:0] cmd_length, input wire cmd_ready, // Command Interface (B) output wire cmd_b_valid, output wire cmd_b_split, output wire [4-1:0] cmd_b_repeat, input wire cmd_b_ready, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR, input wire [8-1:0] S_AXI_ALEN, input wire [3-1:0] S_AXI_ASIZE, input wire [2-1:0] S_AXI_ABURST, input wire [1-1:0] S_AXI_ALOCK, input wire [4-1:0] S_AXI_ACACHE, input wire [3-1:0] S_AXI_APROT, input wire [4-1:0] S_AXI_AQOS, input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER, input wire S_AXI_AVALID, output wire S_AXI_AREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR, output wire [4-1:0] M_AXI_ALEN, output wire [3-1:0] M_AXI_ASIZE, output wire [2-1:0] M_AXI_ABURST, output wire [2-1:0] M_AXI_ALOCK, output wire [4-1:0] M_AXI_ACACHE, output wire [3-1:0] M_AXI_APROT, output wire [4-1:0] M_AXI_AQOS, output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER, output wire M_AXI_AVALID, input wire M_AXI_AREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for burst types. localparam [2-1:0] C_FIX_BURST = 2'b00; localparam [2-1:0] C_INCR_BURST = 2'b01; localparam [2-1:0] C_WRAP_BURST = 2'b10; // Depth for command FIFO. localparam integer C_FIFO_DEPTH_LOG = 5; // Constants used to generate size mask. localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000}; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Access decoding related signals. wire access_is_incr; wire [4-1:0] num_transactions; wire incr_need_to_split; reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr; reg split_ongoing; reg [4-1:0] pushed_commands; reg [16-1:0] addr_step; reg [16-1:0] first_step; wire [8-1:0] first_beats; reg [C_AXI_ADDR_WIDTH-1:0] size_mask; // Access decoding related signals for internal pipestage. reg access_is_incr_q; reg incr_need_to_split_q; wire need_to_split_q; reg [4-1:0] num_transactions_q; reg [16-1:0] addr_step_q; reg [16-1:0] first_step_q; reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q; // Command buffer help signals. reg [C_FIFO_DEPTH_LOG:0] cmd_depth; reg cmd_empty; reg [C_AXI_ID_WIDTH-1:0] queue_id; wire id_match; wire cmd_id_check; wire s_ready; wire cmd_full; wire allow_this_cmd; wire allow_new_cmd; wire cmd_push; reg cmd_push_block; reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth; reg cmd_b_empty; wire cmd_b_full; wire cmd_b_push; reg cmd_b_push_block; wire pushed_new_cmd; wire last_incr_split; wire last_split; wire first_split; wire no_cmd; wire allow_split_cmd; wire almost_empty; wire no_b_cmd; wire allow_non_split_cmd; wire almost_b_empty; reg multiple_id_non_split; reg split_in_progress; // Internal Command Interface signals (W/R). wire cmd_split_i; wire [C_AXI_ID_WIDTH-1:0] cmd_id_i; reg [4-1:0] cmd_length_i; // Internal Command Interface signals (B). wire cmd_b_split_i; wire [4-1:0] cmd_b_repeat_i; // Throttling help signals. wire mi_stalling; reg command_ongoing; // Internal SI-side signals. reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q; reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q; reg [8-1:0] S_AXI_ALEN_Q; reg [3-1:0] S_AXI_ASIZE_Q; reg [2-1:0] S_AXI_ABURST_Q; reg [2-1:0] S_AXI_ALOCK_Q; reg [4-1:0] S_AXI_ACACHE_Q; reg [3-1:0] S_AXI_APROT_Q; reg [4-1:0] S_AXI_AQOS_Q; reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q; reg S_AXI_AREADY_I; // Internal MI-side signals. wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I; reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I; reg [8-1:0] M_AXI_ALEN_I; wire [3-1:0] M_AXI_ASIZE_I; wire [2-1:0] M_AXI_ABURST_I; reg [2-1:0] M_AXI_ALOCK_I; wire [4-1:0] M_AXI_ACACHE_I; wire [3-1:0] M_AXI_APROT_I; wire [4-1:0] M_AXI_AQOS_I; wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I; wire M_AXI_AVALID_I; wire M_AXI_AREADY_I; reg [1:0] areset_d; // Reset delay register always @(posedge ACLK) begin areset_d <= {areset_d[0], ARESET}; end ///////////////////////////////////////////////////////////////////////////// // Capture SI-Side signals. // ///////////////////////////////////////////////////////////////////////////// // Register SI-Side signals. always @ (posedge ACLK) begin if ( ARESET ) begin S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}}; S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}}; S_AXI_ALEN_Q <= 8'b0; S_AXI_ASIZE_Q <= 3'b0; S_AXI_ABURST_Q <= 2'b0; S_AXI_ALOCK_Q <= 2'b0; S_AXI_ACACHE_Q <= 4'b0; S_AXI_APROT_Q <= 3'b0; S_AXI_AQOS_Q <= 4'b0; S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}}; end else begin if ( S_AXI_AREADY_I ) begin S_AXI_AID_Q <= S_AXI_AID; S_AXI_AADDR_Q <= S_AXI_AADDR; S_AXI_ALEN_Q <= S_AXI_ALEN; S_AXI_ASIZE_Q <= S_AXI_ASIZE; S_AXI_ABURST_Q <= S_AXI_ABURST; S_AXI_ALOCK_Q <= S_AXI_ALOCK; S_AXI_ACACHE_Q <= S_AXI_ACACHE; S_AXI_APROT_Q <= S_AXI_APROT; S_AXI_AQOS_Q <= S_AXI_AQOS; S_AXI_AUSER_Q <= S_AXI_AUSER; end end end ///////////////////////////////////////////////////////////////////////////// // Decode the Incoming Transaction. // // Extract transaction type and the number of splits that may be needed. // // Calculate the step size so that the address for each part of a split can // can be calculated. // ///////////////////////////////////////////////////////////////////////////// // Transaction burst type. assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST ); // Get number of transactions for split INCR. assign num_transactions = S_AXI_ALEN[4 +: 4]; assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01; // Generate address increment of first split transaction. always @ * begin case (S_AXI_ASIZE) 3'b000: first_step = first_beats << 0; 3'b001: first_step = first_beats << 1; 3'b010: first_step = first_beats << 2; 3'b011: first_step = first_beats << 3; 3'b100: first_step = first_beats << 4; 3'b101: first_step = first_beats << 5; 3'b110: first_step = first_beats << 6; 3'b111: first_step = first_beats << 7; endcase end // Generate address increment for remaining split transactions. always @ * begin case (S_AXI_ASIZE) 3'b000: addr_step = 16'h0010; 3'b001: addr_step = 16'h0020; 3'b010: addr_step = 16'h0040; 3'b011: addr_step = 16'h0080; 3'b100: addr_step = 16'h0100; 3'b101: addr_step = 16'h0200; 3'b110: addr_step = 16'h0400; 3'b111: addr_step = 16'h0800; endcase end // Generate address mask bits to remove split transaction unalignment. always @ * begin case (S_AXI_ASIZE) 3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH]; 3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH]; 3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH]; 3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH]; 3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH]; 3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH]; 3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH]; 3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH]; endcase end ///////////////////////////////////////////////////////////////////////////// // Transfer SI-Side signals to internal Pipeline Stage. // ///////////////////////////////////////////////////////////////////////////// always @ (posedge ACLK) begin if ( ARESET ) begin access_is_incr_q <= 1'b0; incr_need_to_split_q <= 1'b0; num_transactions_q <= 4'b0; addr_step_q <= 16'b0; first_step_q <= 16'b0; size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}}; end else begin if ( S_AXI_AREADY_I ) begin access_is_incr_q <= access_is_incr; incr_need_to_split_q <= incr_need_to_split; num_transactions_q <= num_transactions; addr_step_q <= addr_step; first_step_q <= first_step; size_mask_q <= size_mask; end end end ///////////////////////////////////////////////////////////////////////////// // Generate Command Information. // // Detect if current transation needs to be split, and keep track of all // the generated split transactions. // // ///////////////////////////////////////////////////////////////////////////// // Detect when INCR must be split. assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) & ( C_SUPPORT_SPLITTING == 1 ) & ( C_SUPPORT_BURSTS == 1 ); // Detect when a command has to be split. assign need_to_split_q = incr_need_to_split_q; // Handle progress of split transactions. always @ (posedge ACLK) begin if ( ARESET ) begin split_ongoing <= 1'b0; end else begin if ( pushed_new_cmd ) begin split_ongoing <= need_to_split_q & ~last_split; end end end // Keep track of number of transactions generated. always @ (posedge ACLK) begin if ( ARESET ) begin pushed_commands <= 4'b0; end else begin if ( S_AXI_AREADY_I ) begin pushed_commands <= 4'b0; end else if ( pushed_new_cmd ) begin pushed_commands <= pushed_commands + 4'b1; end end end // Detect last part of a command, split or not. assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands ); assign last_split = last_incr_split | ~access_is_incr_q | ( C_SUPPORT_SPLITTING == 0 ) | ( C_SUPPORT_BURSTS == 0 ); assign first_split = (pushed_commands == 4'b0); // Calculate base for next address. always @ (posedge ACLK) begin if ( ARESET ) begin next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}}; end else if ( pushed_new_cmd ) begin next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q); end end ///////////////////////////////////////////////////////////////////////////// // Translating Transaction. // // Set Split transaction information on all part except last for a transaction // that needs splitting. // The B Channel will only get one command for a Split transaction and in // the Split bflag will be set in that case. // // The AWID is extracted and applied to all commands generated for the current // incomming SI-Side transaction. // // The address is increased for each part of a Split transaction, the amount // depends on the siSIZE for the transaction. // // The length has to be changed for Split transactions. All part except tha // last one will have 0xF, the last one uses the 4 lsb bits from the SI-side // transaction as length. // // Non-Split has untouched address and length information. // // Exclusive access are diasabled for a Split transaction because it is not // possible to guarantee concistency between all the parts. // ///////////////////////////////////////////////////////////////////////////// // Assign Split signals. assign cmd_split_i = need_to_split_q & ~last_split; assign cmd_b_split_i = need_to_split_q & ~last_split; // Copy AW ID to W. assign cmd_id_i = S_AXI_AID_Q; // Set B Responses to merge. assign cmd_b_repeat_i = num_transactions_q; // Select new size or remaining size. always @ * begin if ( split_ongoing & access_is_incr_q ) begin M_AXI_AADDR_I = next_mi_addr & size_mask_q; end else begin M_AXI_AADDR_I = S_AXI_AADDR_Q; end end // Generate the base length for each transaction. always @ * begin if ( first_split | ~need_to_split_q ) begin M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4]; cmd_length_i = S_AXI_ALEN_Q[0 +: 4]; end else begin M_AXI_ALEN_I = 4'hF; cmd_length_i = 4'hF; end end // Kill Exclusive for Split transactions. always @ * begin if ( need_to_split_q ) begin M_AXI_ALOCK_I = 2'b00; end else begin M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q}; end end ///////////////////////////////////////////////////////////////////////////// // Forward the command to the MI-side interface. // // It is determined that this is an allowed command/access when there is // room in the command queue (and it passes ID and Split checks as required). // ///////////////////////////////////////////////////////////////////////////// // Move SI-side transaction to internal pipe stage. always @ (posedge ACLK) begin if (ARESET) begin command_ongoing <= 1'b0; S_AXI_AREADY_I <= 1'b0; end else begin if (areset_d == 2'b10) begin S_AXI_AREADY_I <= 1'b1; end else begin if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin command_ongoing <= 1'b1; S_AXI_AREADY_I <= 1'b0; end else if ( pushed_new_cmd & last_split ) begin command_ongoing <= 1'b0; S_AXI_AREADY_I <= 1'b1; end end end end // Generate ready signal. assign S_AXI_AREADY = S_AXI_AREADY_I; // Only allowed to forward translated command when command queue is ok with it. assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I; ///////////////////////////////////////////////////////////////////////////// // Simple transfer of paramters that doesn't need to be adjusted. // // ID - Transaction still recognized with the same ID. // CACHE - No need to change the chache features. Even if the modyfiable // bit is overridden (forcefully) there is no need to let downstream // component beleive it is ok to modify it further. // PROT - Security level of access is not changed when upsizing. // QOS - Quality of Service is static 0. // USER - User bits remains the same. // ///////////////////////////////////////////////////////////////////////////// assign M_AXI_AID_I = S_AXI_AID_Q; assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q; assign M_AXI_ABURST_I = S_AXI_ABURST_Q; assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q; assign M_AXI_APROT_I = S_AXI_APROT_Q; assign M_AXI_AQOS_I = S_AXI_AQOS_Q; assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}}; ///////////////////////////////////////////////////////////////////////////// // Control command queue to W/R channel. // // Commands can be pushed into the Cmd FIFO even if MI-side is stalling. // A flag is set if MI-side is stalling when Command is pushed to the // Cmd FIFO. This will prevent multiple push of the same Command as well as // keeping the MI-side Valid signal if the Allow Cmd requirement has been // updated to disable furter Commands (I.e. it is made sure that the SI-side // Command has been forwarded to both Cmd FIFO and MI-side). // // It is allowed to continue pushing new commands as long as // * There is room in the queue(s) // * The ID is the same as previously queued. Since data is not reordered // for the same ID it is always OK to let them proceed. // Or, if no split transaction is ongoing any ID can be allowed. // ///////////////////////////////////////////////////////////////////////////// // Keep track of current ID in queue. always @ (posedge ACLK) begin if (ARESET) begin queue_id <= {C_AXI_ID_WIDTH{1'b0}}; multiple_id_non_split <= 1'b0; split_in_progress <= 1'b0; end else begin if ( cmd_push ) begin // Store ID (it will be matching ID or a "new beginning"). queue_id <= S_AXI_AID_Q; end if ( no_cmd & no_b_cmd ) begin multiple_id_non_split <= 1'b0; end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin multiple_id_non_split <= 1'b1; end if ( no_cmd & no_b_cmd ) begin split_in_progress <= 1'b0; end else if ( cmd_push & allow_split_cmd ) begin split_in_progress <= 1'b1; end end end // Determine if the command FIFOs are empty. assign no_cmd = almost_empty & cmd_ready | cmd_empty; assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty; // Check ID to make sure this command is allowed. assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q); assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) ); // Command type affects possibility to push immediately or wait. assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split; assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress); assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 ); // Check if it is allowed to push more commands. assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) | cmd_push_block; // Push new command when allowed and MI-side is able to receive the command. assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block; assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0); // Block furter push until command has been forwarded to MI-side. always @ (posedge ACLK) begin if (ARESET) begin cmd_push_block <= 1'b0; end else begin if ( pushed_new_cmd ) begin cmd_push_block <= 1'b0; end else if ( cmd_push & mi_stalling ) begin cmd_push_block <= 1'b1; end end end // Block furter push until command has been forwarded to MI-side. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_push_block <= 1'b0; end else begin if ( S_AXI_AREADY_I ) begin cmd_b_push_block <= 1'b0; end else if ( cmd_b_push ) begin cmd_b_push_block <= 1'b1; end end end // Acknowledge command when we can push it into queue (and forward it). assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I; ///////////////////////////////////////////////////////////////////////////// // Command Queue (W/R): // // Instantiate a FIFO as the queue and adjust the control signals. // // The features from Command FIFO can be reduced depending on configuration: // Read Channel only need the split information. // Write Channel always require ID information. When bursts are supported // Split and Length information is also used. // ///////////////////////////////////////////////////////////////////////////// // Instantiated queue. generate if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(1), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_split_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_split}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_id = {C_AXI_ID_WIDTH{1'b0}}; assign cmd_length = 4'b0; end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_AXI_ID_WIDTH+4), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_id_i, cmd_length_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_id, cmd_length}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_split = 1'b0; end else begin : NO_BURSTS axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_AXI_ID_WIDTH), .C_FIFO_TYPE("lut") ) cmd_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_id_i}), .S_VALID(cmd_push), .S_READY(s_ready), .M_MESG({cmd_id}), .M_VALID(cmd_valid), .M_READY(cmd_ready) ); assign cmd_split = 1'b0; assign cmd_length = 4'b0; end endgenerate // Queue is concidered full when not ready. assign cmd_full = ~s_ready; // Queue is empty when no data at output port. always @ (posedge ACLK) begin if (ARESET) begin cmd_empty <= 1'b1; cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin if ( cmd_push & ~cmd_ready ) begin // Push only => Increase depth. cmd_depth <= cmd_depth + 1'b1; cmd_empty <= 1'b0; end else if ( ~cmd_push & cmd_ready ) begin // Pop only => Decrease depth. cmd_depth <= cmd_depth - 1'b1; cmd_empty <= almost_empty; end end end assign almost_empty = ( cmd_depth == 1 ); ///////////////////////////////////////////////////////////////////////////// // Command Queue (B): // // Add command queue for B channel only when it is AW channel and both burst // and splitting is supported. // // When turned off the command appears always empty. // ///////////////////////////////////////////////////////////////////////////// // Instantiated queue. generate if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL wire cmd_b_valid_i; wire s_b_ready; axi_data_fifo_v2_1_axic_fifo # ( .C_FAMILY(C_FAMILY), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(1+4), .C_FIFO_TYPE("lut") ) cmd_b_queue ( .ACLK(ACLK), .ARESET(ARESET), .S_MESG({cmd_b_split_i, cmd_b_repeat_i}), .S_VALID(cmd_b_push), .S_READY(s_b_ready), .M_MESG({cmd_b_split, cmd_b_repeat}), .M_VALID(cmd_b_valid_i), .M_READY(cmd_b_ready) ); // Queue is concidered full when not ready. assign cmd_b_full = ~s_b_ready; // Queue is empty when no data at output port. always @ (posedge ACLK) begin if (ARESET) begin cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin if ( cmd_b_push & ~cmd_b_ready ) begin // Push only => Increase depth. cmd_b_depth <= cmd_b_depth + 1'b1; cmd_b_empty <= 1'b0; end else if ( ~cmd_b_push & cmd_b_ready ) begin // Pop only => Decrease depth. cmd_b_depth <= cmd_b_depth - 1'b1; cmd_b_empty <= ( cmd_b_depth == 1 ); end end end assign almost_b_empty = ( cmd_b_depth == 1 ); // Assign external signal. assign cmd_b_valid = cmd_b_valid_i; end else begin : NO_B_CHANNEL // Assign external command signals. assign cmd_b_valid = 1'b0; assign cmd_b_split = 1'b0; assign cmd_b_repeat = 4'b0; // Assign internal command FIFO signals. assign cmd_b_full = 1'b0; assign almost_b_empty = 1'b0; always @ (posedge ACLK) begin if (ARESET) begin cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end else begin // Constant FF due to ModelSim behavior. cmd_b_empty <= 1'b1; cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}}; end end end endgenerate ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// assign M_AXI_AID = M_AXI_AID_I; assign M_AXI_AADDR = M_AXI_AADDR_I; assign M_AXI_ALEN = M_AXI_ALEN_I; assign M_AXI_ASIZE = M_AXI_ASIZE_I; assign M_AXI_ABURST = M_AXI_ABURST_I; assign M_AXI_ALOCK = M_AXI_ALOCK_I; assign M_AXI_ACACHE = M_AXI_ACACHE_I; assign M_AXI_APROT = M_AXI_APROT_I; assign M_AXI_AQOS = M_AXI_AQOS_I; assign M_AXI_AUSER = M_AXI_AUSER_I; assign M_AXI_AVALID = M_AXI_AVALID_I; assign M_AXI_AREADY_I = M_AXI_AREADY; endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; reg [11:0] axaddr_incr; reg [8:0] axlen_cnt; reg next_pending_r; wire [3:0] axsize_shift; wire [11:0] axsize_mask; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // calculate cmd_byte_addr generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_incr[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_incr[11:0]; end endgenerate assign axsize_shift = (1 << axsize[1:0]); assign axsize_mask = ~(axsize_shift - 1'b1); // Incremented version of axaddr always @(posedge clk) begin if (sel_first) begin if(~next) begin axaddr_incr <= axaddr[11:0] & axsize_mask; end else begin axaddr_incr <= (axaddr[11:0] & axsize_mask) + axsize_shift; end end else if (next) begin axaddr_incr <= axaddr_incr + axsize_shift; end end always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen; next_pending_r <= (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= ((axlen_cnt - 1) >= 1); end else begin axlen_cnt <= 9'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin next_pending = ((axlen_cnt - 1) >= 1); end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; reg [11:0] axaddr_incr; reg [8:0] axlen_cnt; reg next_pending_r; wire [3:0] axsize_shift; wire [11:0] axsize_mask; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // calculate cmd_byte_addr generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_incr[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_incr[11:0]; end endgenerate assign axsize_shift = (1 << axsize[1:0]); assign axsize_mask = ~(axsize_shift - 1'b1); // Incremented version of axaddr always @(posedge clk) begin if (sel_first) begin if(~next) begin axaddr_incr <= axaddr[11:0] & axsize_mask; end else begin axaddr_incr <= (axaddr[11:0] & axsize_mask) + axsize_shift; end end else if (next) begin axaddr_incr <= axaddr_incr + axsize_shift; end end always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen; next_pending_r <= (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= ((axlen_cnt - 1) >= 1); end else begin axlen_cnt <= 9'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = (axlen >= 1); end else if (next) begin if (axlen_cnt > 1) begin next_pending = ((axlen_cnt - 1) >= 1); end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule
module axi_protocol_converter_v2_1_axilite_conv # ( parameter C_FAMILY = "virtex6", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1 ) ( // System Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [3-1:0] S_AXI_AWPROT, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, // Constant =0 output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [3-1:0] S_AXI_ARPROT, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, // Constant =1 output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, // Constant =0 output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [3-1:0] M_AXI_AWPROT, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [2-1:0] M_AXI_BRESP, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [3-1:0] M_AXI_ARPROT, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); wire s_awvalid_i; wire s_arvalid_i; wire [C_AXI_ADDR_WIDTH-1:0] m_axaddr; // Arbiter reg read_active; reg write_active; reg busy; wire read_req; wire write_req; wire read_complete; wire write_complete; reg [1:0] areset_d; // Reset delay register always @(posedge ACLK) begin areset_d <= {areset_d[0], ~ARESETN}; end assign s_awvalid_i = S_AXI_AWVALID & (C_AXI_SUPPORTS_WRITE != 0); assign s_arvalid_i = S_AXI_ARVALID & (C_AXI_SUPPORTS_READ != 0); assign read_req = s_arvalid_i & ~busy & ~|areset_d & ~write_active; assign write_req = s_awvalid_i & ~busy & ~|areset_d & ((~read_active & ~s_arvalid_i) | write_active); assign read_complete = M_AXI_RVALID & S_AXI_RREADY; assign write_complete = M_AXI_BVALID & S_AXI_BREADY; always @(posedge ACLK) begin : arbiter_read_ff if (|areset_d) read_active <= 1'b0; else if (read_complete) read_active <= 1'b0; else if (read_req) read_active <= 1'b1; end always @(posedge ACLK) begin : arbiter_write_ff if (|areset_d) write_active <= 1'b0; else if (write_complete) write_active <= 1'b0; else if (write_req) write_active <= 1'b1; end always @(posedge ACLK) begin : arbiter_busy_ff if (|areset_d) busy <= 1'b0; else if (read_complete | write_complete) busy <= 1'b0; else if ((write_req & M_AXI_AWREADY) | (read_req & M_AXI_ARREADY)) busy <= 1'b1; end assign M_AXI_ARVALID = read_req; assign S_AXI_ARREADY = M_AXI_ARREADY & read_req; assign M_AXI_AWVALID = write_req; assign S_AXI_AWREADY = M_AXI_AWREADY & write_req; assign M_AXI_RREADY = S_AXI_RREADY & read_active; assign S_AXI_RVALID = M_AXI_RVALID & read_active; assign M_AXI_BREADY = S_AXI_BREADY & write_active; assign S_AXI_BVALID = M_AXI_BVALID & write_active; // Address multiplexer assign m_axaddr = (read_req | (C_AXI_SUPPORTS_WRITE == 0)) ? S_AXI_ARADDR : S_AXI_AWADDR; // Id multiplexer and flip-flop reg [C_AXI_ID_WIDTH-1:0] s_axid; always @(posedge ACLK) begin : axid if (read_req) s_axid <= S_AXI_ARID; else if (write_req) s_axid <= S_AXI_AWID; end assign S_AXI_BID = s_axid; assign S_AXI_RID = s_axid; assign M_AXI_AWADDR = m_axaddr; assign M_AXI_ARADDR = m_axaddr; // Feed-through signals assign S_AXI_WREADY = M_AXI_WREADY & ~|areset_d; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = 1'b1; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign M_AXI_AWPROT = S_AXI_AWPROT; assign M_AXI_WVALID = S_AXI_WVALID & ~|areset_d; assign M_AXI_WDATA = S_AXI_WDATA; assign M_AXI_WSTRB = S_AXI_WSTRB; assign M_AXI_ARPROT = S_AXI_ARPROT; endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module output wire b_push , output wire [C_ID_WIDTH-1:0] b_awid , output wire [7:0] b_awlen , input wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_awid_r; reg [7:0] s_awlen_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_awaddr ) , .s_axlen ( s_awlen ) , .s_axsize ( s_awsize ) , .s_axburst ( s_awburst ) , .s_axhandshake ( s_awvalid & a_push ) , .m_axaddr ( m_awaddr ) , .incr_burst ( incr_burst ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_wr_cmd_fsm aw_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_awready ( s_awready ) , .s_awvalid ( s_awvalid ) , .m_awvalid ( m_awvalid ) , .m_awready ( m_awready ) , .next ( next ) , .next_pending ( next_pending ) , .b_push ( b_push ) , .b_full ( b_full ) , .a_push ( a_push ) ); assign b_awid = s_awid_r; assign b_awlen = s_awlen_r; always @(posedge clk) begin s_awid_r <= s_awid ; s_awlen_r <= s_awlen ; end endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output reg next_pending ); //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg sel_first; wire [11:0] axaddr_i; wire [3:0] axlen_i; reg [11:0] wrap_boundary_axaddr; reg [3:0] axaddr_offset; reg [3:0] wrap_second_len; reg [11:0] wrap_boundary_axaddr_r; reg [3:0] axaddr_offset_r; reg [3:0] wrap_second_len_r; reg [4:0] axlen_cnt; reg [4:0] wrap_cnt_r; wire [4:0] wrap_cnt; reg [11:0] axaddr_wrap; reg next_pending_r; localparam L_AXI_ADDR_LOW_BIT = (C_AXI_ADDR_WIDTH >= 12) ? 12 : 11; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// generate if (C_AXI_ADDR_WIDTH > 12) begin : ADDR_GT_4K assign cmd_byte_addr = (sel_first) ? axaddr : {axaddr[C_AXI_ADDR_WIDTH-1:L_AXI_ADDR_LOW_BIT],axaddr_wrap[11:0]}; end else begin : ADDR_4K assign cmd_byte_addr = (sel_first) ? axaddr : axaddr_wrap[11:0]; end endgenerate assign axaddr_i = axaddr[11:0]; assign axlen_i = axlen[3:0]; // Mask bits based on transaction length to get wrap boundary low address // Offset used to calculate the length of each transaction always @( * ) begin if(axhandshake) begin wrap_boundary_axaddr = axaddr_i & ~(axlen_i << axsize[1:0]); axaddr_offset = axaddr_i[axsize[1:0] +: 4] & axlen_i; end else begin wrap_boundary_axaddr = wrap_boundary_axaddr_r; axaddr_offset = axaddr_offset_r; end end // case (axsize[1:0]) // 2'b00 : axaddr_offset = axaddr_i[4:0] & axlen_i; // 2'b01 : axaddr_offset = axaddr_i[5:1] & axlen_i; // 2'b10 : axaddr_offset = axaddr_i[6:2] & axlen_i; // 2'b11 : axaddr_offset = axaddr_i[7:3] & axlen_i; // default : axaddr_offset = axaddr_i[7:3] & axlen_i; // endcase // The first and the second command from the wrap transaction could // be of odd length or even length with address offset. This will be // an issue with BL8, extra transactions have to be issued. // Rounding up the length to account for extra transactions. always @( * ) begin if(axhandshake) begin wrap_second_len = (axaddr_offset >0) ? axaddr_offset - 1 : 0; end else begin wrap_second_len = wrap_second_len_r; end end // registering to be used in the combo logic. always @(posedge clk) begin wrap_boundary_axaddr_r <= wrap_boundary_axaddr; axaddr_offset_r <= axaddr_offset; wrap_second_len_r <= wrap_second_len; end // determining if extra data is required for even offsets // wrap_cnt used to switch the address for first and second transaction. assign wrap_cnt = {1'b0, wrap_second_len + {3'b000, (|axaddr_offset)}}; always @(posedge clk) wrap_cnt_r <= wrap_cnt; always @(posedge clk) begin if (axhandshake) begin axaddr_wrap <= axaddr[11:0]; end if(next)begin if(axlen_cnt == wrap_cnt_r) begin axaddr_wrap <= wrap_boundary_axaddr_r; end else begin axaddr_wrap <= axaddr_wrap + (1 << axsize[1:0]); end end end // Even numbber of transactions with offset, inc len by 2 for BL8 always @(posedge clk) begin if (axhandshake)begin axlen_cnt <= axlen_i; next_pending_r <= axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin axlen_cnt <= axlen_cnt - 1; next_pending_r <= (axlen_cnt - 1) >= 1; end else begin axlen_cnt <= 5'd0; next_pending_r <= 1'b0; end end end always @( * ) begin if (axhandshake)begin next_pending = axlen_i >= 1; end else if (next) begin if (axlen_cnt > 1) begin next_pending = (axlen_cnt - 1) >= 1; end else begin next_pending = 1'b0; end end else begin next_pending = next_pending_r; end end // last and ignore signals to data channel. These signals are used for // BL8 to ignore and insert data for even len transactions with offset // and odd len transactions // For odd len transactions with no offset the last read is ignored and // last write is masked // For odd len transactions with offset the first read is ignored and // first write is masked // For even len transactions with offset the last & first read is ignored and // last& first write is masked // For even len transactions no ingnores or masks. // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end endmodule
module input wire r_push , output wire r_full , // length not needed. Can be removed. input wire [C_ID_WIDTH-1:0] r_arid , input wire r_rlast ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam P_WIDTH = 1+C_ID_WIDTH; localparam P_DEPTH = 32; localparam P_AWIDTH = 5; localparam P_D_WIDTH = C_DATA_WIDTH + 2; // rd data FIFO depth varies based on burst length. // For Bl8 it is two times the size of transaction FIFO. // Only in 2:1 mode BL8 transactions will happen which results in // two beats of read data per read transaction. localparam P_D_DEPTH = 32; localparam P_D_AWIDTH = 5; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// wire [C_ID_WIDTH+1-1:0] trans_in; wire [C_ID_WIDTH+1-1:0] trans_out; wire tr_empty; wire rhandshake; wire r_valid_i; wire [P_D_WIDTH-1:0] rd_data_fifo_in; wire [P_D_WIDTH-1:0] rd_data_fifo_out; wire rd_en; wire rd_full; wire rd_empty; wire rd_a_full; wire fifo_a_full; reg [C_ID_WIDTH-1:0] r_arid_r; reg r_rlast_r; reg r_push_r; wire fifo_full; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH]; assign s_rid = trans_out[1+:C_ID_WIDTH]; assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0]; assign s_rlast = trans_out[0]; assign s_rvalid = ~rd_empty & ~tr_empty; // assign MCB outputs assign rd_en = rhandshake & (~rd_empty); assign rhandshake =(s_rvalid & s_rready); // register for timing always @(posedge clk) begin r_arid_r <= r_arid; r_rlast_r <= r_rlast; r_push_r <= r_push; end assign trans_in[0] = r_rlast_r; assign trans_in[1+:C_ID_WIDTH] = r_arid_r; // rd data fifo axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_D_WIDTH), .C_AWIDTH (P_D_AWIDTH), .C_DEPTH (P_D_DEPTH) ) rd_data_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( m_rvalid & m_rready ) , .rd_en ( rd_en ) , .din ( rd_data_fifo_in ) , .dout ( rd_data_fifo_out ) , .a_full ( rd_a_full ) , .full ( rd_full ) , .a_empty ( ) , .empty ( rd_empty ) ); assign rd_data_fifo_in = {m_rresp, m_rdata}; axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) transaction_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( r_push_r ) , .rd_en ( rd_en ) , .din ( trans_in ) , .dout ( trans_out ) , .a_full ( fifo_a_full ) , .full ( ) , .a_empty ( ) , .empty ( tr_empty ) ); assign fifo_full = fifo_a_full | rd_a_full ; assign r_full = fifo_full ; assign m_rready = ~rd_a_full; endmodule
module input wire r_push , output wire r_full , // length not needed. Can be removed. input wire [C_ID_WIDTH-1:0] r_arid , input wire r_rlast ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam P_WIDTH = 1+C_ID_WIDTH; localparam P_DEPTH = 32; localparam P_AWIDTH = 5; localparam P_D_WIDTH = C_DATA_WIDTH + 2; // rd data FIFO depth varies based on burst length. // For Bl8 it is two times the size of transaction FIFO. // Only in 2:1 mode BL8 transactions will happen which results in // two beats of read data per read transaction. localparam P_D_DEPTH = 32; localparam P_D_AWIDTH = 5; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// wire [C_ID_WIDTH+1-1:0] trans_in; wire [C_ID_WIDTH+1-1:0] trans_out; wire tr_empty; wire rhandshake; wire r_valid_i; wire [P_D_WIDTH-1:0] rd_data_fifo_in; wire [P_D_WIDTH-1:0] rd_data_fifo_out; wire rd_en; wire rd_full; wire rd_empty; wire rd_a_full; wire fifo_a_full; reg [C_ID_WIDTH-1:0] r_arid_r; reg r_rlast_r; reg r_push_r; wire fifo_full; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH]; assign s_rid = trans_out[1+:C_ID_WIDTH]; assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0]; assign s_rlast = trans_out[0]; assign s_rvalid = ~rd_empty & ~tr_empty; // assign MCB outputs assign rd_en = rhandshake & (~rd_empty); assign rhandshake =(s_rvalid & s_rready); // register for timing always @(posedge clk) begin r_arid_r <= r_arid; r_rlast_r <= r_rlast; r_push_r <= r_push; end assign trans_in[0] = r_rlast_r; assign trans_in[1+:C_ID_WIDTH] = r_arid_r; // rd data fifo axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_D_WIDTH), .C_AWIDTH (P_D_AWIDTH), .C_DEPTH (P_D_DEPTH) ) rd_data_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( m_rvalid & m_rready ) , .rd_en ( rd_en ) , .din ( rd_data_fifo_in ) , .dout ( rd_data_fifo_out ) , .a_full ( rd_a_full ) , .full ( rd_full ) , .a_empty ( ) , .empty ( rd_empty ) ); assign rd_data_fifo_in = {m_rresp, m_rdata}; axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) transaction_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( r_push_r ) , .rd_en ( rd_en ) , .din ( trans_in ) , .dout ( trans_out ) , .a_full ( fifo_a_full ) , .full ( ) , .a_empty ( ) , .empty ( tr_empty ) ); assign fifo_full = fifo_a_full | rd_a_full ; assign r_full = fifo_full ; assign m_rready = ~rd_a_full; endmodule
module input wire r_push , output wire r_full , // length not needed. Can be removed. input wire [C_ID_WIDTH-1:0] r_arid , input wire r_rlast ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam P_WIDTH = 1+C_ID_WIDTH; localparam P_DEPTH = 32; localparam P_AWIDTH = 5; localparam P_D_WIDTH = C_DATA_WIDTH + 2; // rd data FIFO depth varies based on burst length. // For Bl8 it is two times the size of transaction FIFO. // Only in 2:1 mode BL8 transactions will happen which results in // two beats of read data per read transaction. localparam P_D_DEPTH = 32; localparam P_D_AWIDTH = 5; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// wire [C_ID_WIDTH+1-1:0] trans_in; wire [C_ID_WIDTH+1-1:0] trans_out; wire tr_empty; wire rhandshake; wire r_valid_i; wire [P_D_WIDTH-1:0] rd_data_fifo_in; wire [P_D_WIDTH-1:0] rd_data_fifo_out; wire rd_en; wire rd_full; wire rd_empty; wire rd_a_full; wire fifo_a_full; reg [C_ID_WIDTH-1:0] r_arid_r; reg r_rlast_r; reg r_push_r; wire fifo_full; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// assign s_rresp = rd_data_fifo_out[P_D_WIDTH-1:C_DATA_WIDTH]; assign s_rid = trans_out[1+:C_ID_WIDTH]; assign s_rdata = rd_data_fifo_out[C_DATA_WIDTH-1:0]; assign s_rlast = trans_out[0]; assign s_rvalid = ~rd_empty & ~tr_empty; // assign MCB outputs assign rd_en = rhandshake & (~rd_empty); assign rhandshake =(s_rvalid & s_rready); // register for timing always @(posedge clk) begin r_arid_r <= r_arid; r_rlast_r <= r_rlast; r_push_r <= r_push; end assign trans_in[0] = r_rlast_r; assign trans_in[1+:C_ID_WIDTH] = r_arid_r; // rd data fifo axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_D_WIDTH), .C_AWIDTH (P_D_AWIDTH), .C_DEPTH (P_D_DEPTH) ) rd_data_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( m_rvalid & m_rready ) , .rd_en ( rd_en ) , .din ( rd_data_fifo_in ) , .dout ( rd_data_fifo_out ) , .a_full ( rd_a_full ) , .full ( rd_full ) , .a_empty ( ) , .empty ( rd_empty ) ); assign rd_data_fifo_in = {m_rresp, m_rdata}; axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) transaction_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( r_push_r ) , .rd_en ( rd_en ) , .din ( trans_in ) , .dout ( trans_out ) , .a_full ( fifo_a_full ) , .full ( ) , .a_empty ( ) , .empty ( tr_empty ) ); assign fifo_full = fifo_a_full | rd_a_full ; assign r_full = fifo_full ; assign m_rready = ~rd_a_full; endmodule
module axi_protocol_converter_v2_1_b2s_b_channel # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of ID signals. // Range: >= 1. parameter integer C_ID_WIDTH = 4 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk, input wire reset, // AXI signals output wire [C_ID_WIDTH-1:0] s_bid, output wire [1:0] s_bresp, output wire s_bvalid, input wire s_bready, input wire [1:0] m_bresp, input wire m_bvalid, output wire m_bready, // Signals to/from the axi_protocol_converter_v2_1_b2s_aw_channel modules input wire b_push, input wire [C_ID_WIDTH-1:0] b_awid, input wire [7:0] b_awlen, input wire b_resp_rdy, output wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXI protocol responses: localparam [1:0] LP_RESP_OKAY = 2'b00; localparam [1:0] LP_RESP_EXOKAY = 2'b01; localparam [1:0] LP_RESP_SLVERROR = 2'b10; localparam [1:0] LP_RESP_DECERR = 2'b11; // FIFO settings localparam P_WIDTH = C_ID_WIDTH + 8; localparam P_DEPTH = 4; localparam P_AWIDTH = 2; localparam P_RWIDTH = 2; localparam P_RDEPTH = 4; localparam P_RAWIDTH = 2; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg bvalid_i; wire [C_ID_WIDTH-1:0] bid_i; wire shandshake; reg shandshake_r; wire mhandshake; reg mhandshake_r; wire b_empty; wire bresp_full; wire bresp_empty; wire [7:0] b_awlen_i; reg [7:0] bresp_cnt; reg [1:0] s_bresp_acc; wire [1:0] s_bresp_acc_r; reg [1:0] s_bresp_i; wire need_to_update_bresp; wire bresp_push; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // assign AXI outputs assign s_bid = bid_i; assign s_bresp = s_bresp_acc_r; assign s_bvalid = bvalid_i; assign shandshake = s_bvalid & s_bready; assign mhandshake = m_bvalid & m_bready; always @(posedge clk) begin if (reset | shandshake) begin bvalid_i <= 1'b0; end else if (~b_empty & ~shandshake_r & ~bresp_empty) begin bvalid_i <= 1'b1; end end always @(posedge clk) begin shandshake_r <= shandshake; mhandshake_r <= mhandshake; end axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) bid_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( b_push ) , .rd_en ( shandshake_r ) , .din ( {b_awid, b_awlen} ) , .dout ( {bid_i, b_awlen_i}) , .a_full ( ) , .full ( b_full ) , .a_empty ( ) , .empty ( b_empty ) ); assign m_bready = ~mhandshake_r & bresp_empty; ///////////////////////////////////////////////////////////////////////////// // Update if more critical. assign need_to_update_bresp = ( m_bresp > s_bresp_acc ); // Select accumultated or direct depending on setting. always @( * ) begin if ( need_to_update_bresp ) begin s_bresp_i = m_bresp; end else begin s_bresp_i = s_bresp_acc; end end ///////////////////////////////////////////////////////////////////////////// // Accumulate MI-side BRESP. always @ (posedge clk) begin if (reset | bresp_push ) begin s_bresp_acc <= LP_RESP_OKAY; end else if ( mhandshake ) begin s_bresp_acc <= s_bresp_i; end end assign bresp_push = ( mhandshake_r ) & (bresp_cnt == b_awlen_i) & ~b_empty; always @ (posedge clk) begin if (reset | bresp_push ) begin bresp_cnt <= 8'h00; end else if ( mhandshake_r ) begin bresp_cnt <= bresp_cnt + 1'b1; end end axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_RWIDTH), .C_AWIDTH (P_RAWIDTH), .C_DEPTH (P_RDEPTH) ) bresp_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( bresp_push ) , .rd_en ( shandshake_r ) , .din ( s_bresp_acc ) , .dout ( s_bresp_acc_r) , .a_full ( ) , .full ( bresp_full ) , .a_empty ( ) , .empty ( bresp_empty ) ); endmodule
module axi_protocol_converter_v2_1_b2s_b_channel # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// // Width of ID signals. // Range: >= 1. parameter integer C_ID_WIDTH = 4 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire clk, input wire reset, // AXI signals output wire [C_ID_WIDTH-1:0] s_bid, output wire [1:0] s_bresp, output wire s_bvalid, input wire s_bready, input wire [1:0] m_bresp, input wire m_bvalid, output wire m_bready, // Signals to/from the axi_protocol_converter_v2_1_b2s_aw_channel modules input wire b_push, input wire [C_ID_WIDTH-1:0] b_awid, input wire [7:0] b_awlen, input wire b_resp_rdy, output wire b_full ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXI protocol responses: localparam [1:0] LP_RESP_OKAY = 2'b00; localparam [1:0] LP_RESP_EXOKAY = 2'b01; localparam [1:0] LP_RESP_SLVERROR = 2'b10; localparam [1:0] LP_RESP_DECERR = 2'b11; // FIFO settings localparam P_WIDTH = C_ID_WIDTH + 8; localparam P_DEPTH = 4; localparam P_AWIDTH = 2; localparam P_RWIDTH = 2; localparam P_RDEPTH = 4; localparam P_RAWIDTH = 2; //////////////////////////////////////////////////////////////////////////////// // Wire and register declarations //////////////////////////////////////////////////////////////////////////////// reg bvalid_i; wire [C_ID_WIDTH-1:0] bid_i; wire shandshake; reg shandshake_r; wire mhandshake; reg mhandshake_r; wire b_empty; wire bresp_full; wire bresp_empty; wire [7:0] b_awlen_i; reg [7:0] bresp_cnt; reg [1:0] s_bresp_acc; wire [1:0] s_bresp_acc_r; reg [1:0] s_bresp_i; wire need_to_update_bresp; wire bresp_push; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // assign AXI outputs assign s_bid = bid_i; assign s_bresp = s_bresp_acc_r; assign s_bvalid = bvalid_i; assign shandshake = s_bvalid & s_bready; assign mhandshake = m_bvalid & m_bready; always @(posedge clk) begin if (reset | shandshake) begin bvalid_i <= 1'b0; end else if (~b_empty & ~shandshake_r & ~bresp_empty) begin bvalid_i <= 1'b1; end end always @(posedge clk) begin shandshake_r <= shandshake; mhandshake_r <= mhandshake; end axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_WIDTH), .C_AWIDTH (P_AWIDTH), .C_DEPTH (P_DEPTH) ) bid_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( b_push ) , .rd_en ( shandshake_r ) , .din ( {b_awid, b_awlen} ) , .dout ( {bid_i, b_awlen_i}) , .a_full ( ) , .full ( b_full ) , .a_empty ( ) , .empty ( b_empty ) ); assign m_bready = ~mhandshake_r & bresp_empty; ///////////////////////////////////////////////////////////////////////////// // Update if more critical. assign need_to_update_bresp = ( m_bresp > s_bresp_acc ); // Select accumultated or direct depending on setting. always @( * ) begin if ( need_to_update_bresp ) begin s_bresp_i = m_bresp; end else begin s_bresp_i = s_bresp_acc; end end ///////////////////////////////////////////////////////////////////////////// // Accumulate MI-side BRESP. always @ (posedge clk) begin if (reset | bresp_push ) begin s_bresp_acc <= LP_RESP_OKAY; end else if ( mhandshake ) begin s_bresp_acc <= s_bresp_i; end end assign bresp_push = ( mhandshake_r ) & (bresp_cnt == b_awlen_i) & ~b_empty; always @ (posedge clk) begin if (reset | bresp_push ) begin bresp_cnt <= 8'h00; end else if ( mhandshake_r ) begin bresp_cnt <= bresp_cnt + 1'b1; end end axi_protocol_converter_v2_1_b2s_simple_fifo #( .C_WIDTH (P_RWIDTH), .C_AWIDTH (P_RAWIDTH), .C_DEPTH (P_RDEPTH) ) bresp_fifo_0 ( .clk ( clk ) , .rst ( reset ) , .wr_en ( bresp_push ) , .rd_en ( shandshake_r ) , .din ( s_bresp_acc ) , .dout ( s_bresp_acc_r) , .a_full ( ) , .full ( bresp_full ) , .a_empty ( ) , .empty ( bresp_empty ) ); endmodule
module output wire [C_ID_WIDTH-1:0] r_arid , output wire r_push , output wire r_rlast , input wire r_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_arid_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_araddr ) , .s_axlen ( s_arlen ) , .s_axsize ( s_arsize ) , .s_axburst ( s_arburst ) , .s_axhandshake ( s_arvalid & a_push ) , .incr_burst ( incr_burst ) , .m_axaddr ( m_araddr ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_rd_cmd_fsm ar_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_arready ( s_arready ) , .s_arvalid ( s_arvalid ) , .s_arlen ( s_arlen ) , .m_arvalid ( m_arvalid ) , .m_arready ( m_arready ) , .next ( next ) , .next_pending ( next_pending ) , .data_ready ( ~r_full ) , .a_push ( a_push ) , .r_push ( r_push ) ); // these signals can be moved out of this block to the top level. assign r_arid = s_arid_r; assign r_rlast = ~next_pending; always @(posedge clk) begin s_arid_r <= s_arid ; end endmodule
module output wire [C_ID_WIDTH-1:0] r_arid , output wire r_push , output wire r_rlast , input wire r_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_arid_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_araddr ) , .s_axlen ( s_arlen ) , .s_axsize ( s_arsize ) , .s_axburst ( s_arburst ) , .s_axhandshake ( s_arvalid & a_push ) , .incr_burst ( incr_burst ) , .m_axaddr ( m_araddr ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_rd_cmd_fsm ar_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_arready ( s_arready ) , .s_arvalid ( s_arvalid ) , .s_arlen ( s_arlen ) , .m_arvalid ( m_arvalid ) , .m_arready ( m_arready ) , .next ( next ) , .next_pending ( next_pending ) , .data_ready ( ~r_full ) , .a_push ( a_push ) , .r_push ( r_push ) ); // these signals can be moved out of this block to the top level. assign r_arid = s_arid_r; assign r_rlast = ~next_pending; always @(posedge clk) begin s_arid_r <= s_arid ; end endmodule
module output wire [C_ID_WIDTH-1:0] r_arid , output wire r_push , output wire r_rlast , input wire r_full ); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire next ; wire next_pending ; wire a_push; wire incr_burst; reg [C_ID_WIDTH-1:0] s_arid_r; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // Translate the AXI transaction to the MC transaction(s) axi_protocol_converter_v2_1_b2s_cmd_translator # ( .C_AXI_ADDR_WIDTH ( C_AXI_ADDR_WIDTH ) ) cmd_translator_0 ( .clk ( clk ) , .reset ( reset ) , .s_axaddr ( s_araddr ) , .s_axlen ( s_arlen ) , .s_axsize ( s_arsize ) , .s_axburst ( s_arburst ) , .s_axhandshake ( s_arvalid & a_push ) , .incr_burst ( incr_burst ) , .m_axaddr ( m_araddr ) , .next ( next ) , .next_pending ( next_pending ) ); axi_protocol_converter_v2_1_b2s_rd_cmd_fsm ar_cmd_fsm_0 ( .clk ( clk ) , .reset ( reset ) , .s_arready ( s_arready ) , .s_arvalid ( s_arvalid ) , .s_arlen ( s_arlen ) , .m_arvalid ( m_arvalid ) , .m_arready ( m_arready ) , .next ( next ) , .next_pending ( next_pending ) , .data_ready ( ~r_full ) , .a_push ( a_push ) , .r_push ( r_push ) ); // these signals can be moved out of this block to the top level. assign r_arid = s_arid_r; assign r_rlast = ~next_pending; always @(posedge clk) begin s_arid_r <= s_arid ; end endmodule
module axi_protocol_converter_v2_1_b_downsizer # ( parameter C_FAMILY = "none", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of converter. // Range: >= 1. parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, // 1 = Propagate all USER signals, 0 = Don�t propagate. parameter integer C_AXI_BUSER_WIDTH = 1 // Width of BUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_valid, input wire cmd_split, input wire [4-1:0] cmd_repeat, output wire cmd_ready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Repeat handling related. reg [4-1:0] repeat_cnt_pre; reg [4-1:0] repeat_cnt; wire [4-1:0] next_repeat_cnt; reg first_mi_word; wire last_word; // Ongoing split transaction. wire load_bresp; wire need_to_update_bresp; reg [2-1:0] S_AXI_BRESP_ACC; // Internal signals for MI-side. wire M_AXI_BREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID_I; reg [2-1:0] S_AXI_BRESP_I; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER_I; wire S_AXI_BVALID_I; wire S_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // The MI-side BRESP is popped when at once for split transactions, except // for the last cycle that behaves like a "normal" transaction. // A "normal" BRESP is popped once the SI-side is able to use it, // // ///////////////////////////////////////////////////////////////////////////// // Pop word from MI-side. assign M_AXI_BREADY_I = M_AXI_BVALID & ~mi_stalling; assign M_AXI_BREADY = M_AXI_BREADY_I; // Indicate when there is a BRESP available @ SI-side. assign S_AXI_BVALID_I = M_AXI_BVALID & last_word; // Get MI-side data. assign pop_mi_data = M_AXI_BVALID & M_AXI_BREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = (~S_AXI_BREADY_I & last_word); ///////////////////////////////////////////////////////////////////////////// // Handle the accumulation of BRESP. // // Forward the accumulated or MI-side BRESP value depending on state: // * MI-side BRESP is forwarded untouched when it is a non split cycle. // (MI-side BRESP value is also used when updating the accumulated for // the last access during a split access). // * The accumulated BRESP is for a split transaction. // // The accumulated BRESP register is updated for each MI-side response that // is used. // ///////////////////////////////////////////////////////////////////////////// // Force load accumulated BRESPs to first value assign load_bresp = (cmd_split & first_mi_word); // Update if more critical. assign need_to_update_bresp = ( M_AXI_BRESP > S_AXI_BRESP_ACC ); // Select accumultated or direct depending on setting. always @ * begin if ( cmd_split ) begin if ( load_bresp || need_to_update_bresp ) begin S_AXI_BRESP_I = M_AXI_BRESP; end else begin S_AXI_BRESP_I = S_AXI_BRESP_ACC; end end else begin S_AXI_BRESP_I = M_AXI_BRESP; end end // Accumulate MI-side BRESP. always @ (posedge ACLK) begin if (ARESET) begin S_AXI_BRESP_ACC <= C_RESP_OKAY; end else begin if ( pop_mi_data ) begin S_AXI_BRESP_ACC <= S_AXI_BRESP_I; end end end ///////////////////////////////////////////////////////////////////////////// // Keep track of BRESP repeat counter. // // Last BRESP word is either: // * The first and only word when not merging. // * The last value when merging. // // The internal counter is taken from the external command interface during // the first response when merging. The counter is updated each time a // BRESP is popped from the MI-side interface. // ///////////////////////////////////////////////////////////////////////////// // Determine last BRESP cycle. assign last_word = ( ( repeat_cnt == 4'b0 ) & ~first_mi_word ) | ~cmd_split; // Select command reapeat or counted repeat value. always @ * begin if ( first_mi_word ) begin repeat_cnt_pre = cmd_repeat; end else begin repeat_cnt_pre = repeat_cnt; end end // Calculate next repeat counter value. assign next_repeat_cnt = repeat_cnt_pre - 1'b1; // Keep track of the repeat count. always @ (posedge ACLK) begin if (ARESET) begin repeat_cnt <= 4'b0; first_mi_word <= 1'b1; end else begin if ( pop_mi_data ) begin repeat_cnt <= next_repeat_cnt; first_mi_word <= last_word; end end end ///////////////////////////////////////////////////////////////////////////// // BID Handling ///////////////////////////////////////////////////////////////////////////// assign S_AXI_BID_I = M_AXI_BID; ///////////////////////////////////////////////////////////////////////////// // USER Data bits // // The last USER bits are simply taken from the last BRESP that is merged. // Ground USER bits when unused. ///////////////////////////////////////////////////////////////////////////// // Select USER bits. assign S_AXI_BUSER_I = {C_AXI_BUSER_WIDTH{1'b0}}; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_BID = S_AXI_BID_I; assign S_AXI_BRESP = S_AXI_BRESP_I; assign S_AXI_BUSER = S_AXI_BUSER_I; assign S_AXI_BVALID = S_AXI_BVALID_I; assign S_AXI_BREADY_I = S_AXI_BREADY; endmodule
module axi_protocol_converter_v2_1_b_downsizer # ( parameter C_FAMILY = "none", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of converter. // Range: >= 1. parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, // 1 = Propagate all USER signals, 0 = Don�t propagate. parameter integer C_AXI_BUSER_WIDTH = 1 // Width of BUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_valid, input wire cmd_split, input wire [4-1:0] cmd_repeat, output wire cmd_ready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Repeat handling related. reg [4-1:0] repeat_cnt_pre; reg [4-1:0] repeat_cnt; wire [4-1:0] next_repeat_cnt; reg first_mi_word; wire last_word; // Ongoing split transaction. wire load_bresp; wire need_to_update_bresp; reg [2-1:0] S_AXI_BRESP_ACC; // Internal signals for MI-side. wire M_AXI_BREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID_I; reg [2-1:0] S_AXI_BRESP_I; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER_I; wire S_AXI_BVALID_I; wire S_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // The MI-side BRESP is popped when at once for split transactions, except // for the last cycle that behaves like a "normal" transaction. // A "normal" BRESP is popped once the SI-side is able to use it, // // ///////////////////////////////////////////////////////////////////////////// // Pop word from MI-side. assign M_AXI_BREADY_I = M_AXI_BVALID & ~mi_stalling; assign M_AXI_BREADY = M_AXI_BREADY_I; // Indicate when there is a BRESP available @ SI-side. assign S_AXI_BVALID_I = M_AXI_BVALID & last_word; // Get MI-side data. assign pop_mi_data = M_AXI_BVALID & M_AXI_BREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = (~S_AXI_BREADY_I & last_word); ///////////////////////////////////////////////////////////////////////////// // Handle the accumulation of BRESP. // // Forward the accumulated or MI-side BRESP value depending on state: // * MI-side BRESP is forwarded untouched when it is a non split cycle. // (MI-side BRESP value is also used when updating the accumulated for // the last access during a split access). // * The accumulated BRESP is for a split transaction. // // The accumulated BRESP register is updated for each MI-side response that // is used. // ///////////////////////////////////////////////////////////////////////////// // Force load accumulated BRESPs to first value assign load_bresp = (cmd_split & first_mi_word); // Update if more critical. assign need_to_update_bresp = ( M_AXI_BRESP > S_AXI_BRESP_ACC ); // Select accumultated or direct depending on setting. always @ * begin if ( cmd_split ) begin if ( load_bresp || need_to_update_bresp ) begin S_AXI_BRESP_I = M_AXI_BRESP; end else begin S_AXI_BRESP_I = S_AXI_BRESP_ACC; end end else begin S_AXI_BRESP_I = M_AXI_BRESP; end end // Accumulate MI-side BRESP. always @ (posedge ACLK) begin if (ARESET) begin S_AXI_BRESP_ACC <= C_RESP_OKAY; end else begin if ( pop_mi_data ) begin S_AXI_BRESP_ACC <= S_AXI_BRESP_I; end end end ///////////////////////////////////////////////////////////////////////////// // Keep track of BRESP repeat counter. // // Last BRESP word is either: // * The first and only word when not merging. // * The last value when merging. // // The internal counter is taken from the external command interface during // the first response when merging. The counter is updated each time a // BRESP is popped from the MI-side interface. // ///////////////////////////////////////////////////////////////////////////// // Determine last BRESP cycle. assign last_word = ( ( repeat_cnt == 4'b0 ) & ~first_mi_word ) | ~cmd_split; // Select command reapeat or counted repeat value. always @ * begin if ( first_mi_word ) begin repeat_cnt_pre = cmd_repeat; end else begin repeat_cnt_pre = repeat_cnt; end end // Calculate next repeat counter value. assign next_repeat_cnt = repeat_cnt_pre - 1'b1; // Keep track of the repeat count. always @ (posedge ACLK) begin if (ARESET) begin repeat_cnt <= 4'b0; first_mi_word <= 1'b1; end else begin if ( pop_mi_data ) begin repeat_cnt <= next_repeat_cnt; first_mi_word <= last_word; end end end ///////////////////////////////////////////////////////////////////////////// // BID Handling ///////////////////////////////////////////////////////////////////////////// assign S_AXI_BID_I = M_AXI_BID; ///////////////////////////////////////////////////////////////////////////// // USER Data bits // // The last USER bits are simply taken from the last BRESP that is merged. // Ground USER bits when unused. ///////////////////////////////////////////////////////////////////////////// // Select USER bits. assign S_AXI_BUSER_I = {C_AXI_BUSER_WIDTH{1'b0}}; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_BID = S_AXI_BID_I; assign S_AXI_BRESP = S_AXI_BRESP_I; assign S_AXI_BUSER = S_AXI_BUSER_I; assign S_AXI_BVALID = S_AXI_BVALID_I; assign S_AXI_BREADY_I = S_AXI_BREADY; endmodule
module axi_protocol_converter_v2_1_b_downsizer # ( parameter C_FAMILY = "none", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_AXI_ID_WIDTH = 4, // Width of all ID signals on SI and MI side of converter. // Range: >= 1. parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, // 1 = Propagate all USER signals, 0 = Don�t propagate. parameter integer C_AXI_BUSER_WIDTH = 1 // Width of BUSER signals. // Range: >= 1. ) ( // Global Signals input wire ARESET, input wire ACLK, // Command Interface input wire cmd_valid, input wire cmd_split, input wire [4-1:0] cmd_repeat, output wire cmd_ready, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Constants for packing levels. localparam [2-1:0] C_RESP_OKAY = 2'b00; localparam [2-1:0] C_RESP_EXOKAY = 2'b01; localparam [2-1:0] C_RESP_SLVERROR = 2'b10; localparam [2-1:0] C_RESP_DECERR = 2'b11; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Repeat handling related. reg [4-1:0] repeat_cnt_pre; reg [4-1:0] repeat_cnt; wire [4-1:0] next_repeat_cnt; reg first_mi_word; wire last_word; // Ongoing split transaction. wire load_bresp; wire need_to_update_bresp; reg [2-1:0] S_AXI_BRESP_ACC; // Internal signals for MI-side. wire M_AXI_BREADY_I; // Internal signals for SI-side. wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID_I; reg [2-1:0] S_AXI_BRESP_I; wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER_I; wire S_AXI_BVALID_I; wire S_AXI_BREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // The MI-side BRESP is popped when at once for split transactions, except // for the last cycle that behaves like a "normal" transaction. // A "normal" BRESP is popped once the SI-side is able to use it, // // ///////////////////////////////////////////////////////////////////////////// // Pop word from MI-side. assign M_AXI_BREADY_I = M_AXI_BVALID & ~mi_stalling; assign M_AXI_BREADY = M_AXI_BREADY_I; // Indicate when there is a BRESP available @ SI-side. assign S_AXI_BVALID_I = M_AXI_BVALID & last_word; // Get MI-side data. assign pop_mi_data = M_AXI_BVALID & M_AXI_BREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = (~S_AXI_BREADY_I & last_word); ///////////////////////////////////////////////////////////////////////////// // Handle the accumulation of BRESP. // // Forward the accumulated or MI-side BRESP value depending on state: // * MI-side BRESP is forwarded untouched when it is a non split cycle. // (MI-side BRESP value is also used when updating the accumulated for // the last access during a split access). // * The accumulated BRESP is for a split transaction. // // The accumulated BRESP register is updated for each MI-side response that // is used. // ///////////////////////////////////////////////////////////////////////////// // Force load accumulated BRESPs to first value assign load_bresp = (cmd_split & first_mi_word); // Update if more critical. assign need_to_update_bresp = ( M_AXI_BRESP > S_AXI_BRESP_ACC ); // Select accumultated or direct depending on setting. always @ * begin if ( cmd_split ) begin if ( load_bresp || need_to_update_bresp ) begin S_AXI_BRESP_I = M_AXI_BRESP; end else begin S_AXI_BRESP_I = S_AXI_BRESP_ACC; end end else begin S_AXI_BRESP_I = M_AXI_BRESP; end end // Accumulate MI-side BRESP. always @ (posedge ACLK) begin if (ARESET) begin S_AXI_BRESP_ACC <= C_RESP_OKAY; end else begin if ( pop_mi_data ) begin S_AXI_BRESP_ACC <= S_AXI_BRESP_I; end end end ///////////////////////////////////////////////////////////////////////////// // Keep track of BRESP repeat counter. // // Last BRESP word is either: // * The first and only word when not merging. // * The last value when merging. // // The internal counter is taken from the external command interface during // the first response when merging. The counter is updated each time a // BRESP is popped from the MI-side interface. // ///////////////////////////////////////////////////////////////////////////// // Determine last BRESP cycle. assign last_word = ( ( repeat_cnt == 4'b0 ) & ~first_mi_word ) | ~cmd_split; // Select command reapeat or counted repeat value. always @ * begin if ( first_mi_word ) begin repeat_cnt_pre = cmd_repeat; end else begin repeat_cnt_pre = repeat_cnt; end end // Calculate next repeat counter value. assign next_repeat_cnt = repeat_cnt_pre - 1'b1; // Keep track of the repeat count. always @ (posedge ACLK) begin if (ARESET) begin repeat_cnt <= 4'b0; first_mi_word <= 1'b1; end else begin if ( pop_mi_data ) begin repeat_cnt <= next_repeat_cnt; first_mi_word <= last_word; end end end ///////////////////////////////////////////////////////////////////////////// // BID Handling ///////////////////////////////////////////////////////////////////////////// assign S_AXI_BID_I = M_AXI_BID; ///////////////////////////////////////////////////////////////////////////// // USER Data bits // // The last USER bits are simply taken from the last BRESP that is merged. // Ground USER bits when unused. ///////////////////////////////////////////////////////////////////////////// // Select USER bits. assign S_AXI_BUSER_I = {C_AXI_BUSER_WIDTH{1'b0}}; ///////////////////////////////////////////////////////////////////////////// // SI-side output handling ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign S_AXI_BID = S_AXI_BID_I; assign S_AXI_BRESP = S_AXI_BRESP_I; assign S_AXI_BUSER = S_AXI_BUSER_I; assign S_AXI_BVALID = S_AXI_BVALID_I; assign S_AXI_BREADY_I = S_AXI_BREADY; endmodule
module axi_protocol_converter_v2_1_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [8-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [1-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [4-1:0] S_AXI_AWQOS, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [8-1:0] S_AXI_ARLEN, input wire [3-1:0] S_AXI_ARSIZE, input wire [2-1:0] S_AXI_ARBURST, input wire [1-1:0] S_AXI_ARLOCK, input wire [4-1:0] S_AXI_ARCACHE, input wire [3-1:0] S_AXI_ARPROT, input wire [4-1:0] S_AXI_ARQOS, input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [4-1:0] M_AXI_AWQOS, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [4-1:0] M_AXI_ARLEN, output wire [3-1:0] M_AXI_ARSIZE, output wire [2-1:0] M_AXI_ARBURST, output wire [2-1:0] M_AXI_ARLOCK, output wire [4-1:0] M_AXI_ARCACHE, output wire [3-1:0] M_AXI_ARPROT, output wire [4-1:0] M_AXI_ARQOS, output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Handle Write Channels (AW/W/B) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE // Write Channel Signals for Commands Queue Interface. wire wr_cmd_valid; wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id; wire [4-1:0] wr_cmd_length; wire wr_cmd_ready; wire wr_cmd_b_valid; wire wr_cmd_b_split; wire [4-1:0] wr_cmd_b_repeat; wire wr_cmd_b_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_AXI_CHANNEL (0), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) write_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (W) .cmd_valid (wr_cmd_valid), .cmd_split (), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Command Interface (B) .cmd_b_valid (wr_cmd_b_valid), .cmd_b_split (wr_cmd_b_split), .cmd_b_repeat (wr_cmd_b_repeat), .cmd_b_ready (wr_cmd_b_ready), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_AWID), .S_AXI_AADDR (S_AXI_AWADDR), .S_AXI_ALEN (S_AXI_AWLEN), .S_AXI_ASIZE (S_AXI_AWSIZE), .S_AXI_ABURST (S_AXI_AWBURST), .S_AXI_ALOCK (S_AXI_AWLOCK), .S_AXI_ACACHE (S_AXI_AWCACHE), .S_AXI_APROT (S_AXI_AWPROT), .S_AXI_AQOS (S_AXI_AWQOS), .S_AXI_AUSER (S_AXI_AWUSER), .S_AXI_AVALID (S_AXI_AWVALID), .S_AXI_AREADY (S_AXI_AWREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_AWID), .M_AXI_AADDR (M_AXI_AWADDR), .M_AXI_ALEN (M_AXI_AWLEN), .M_AXI_ASIZE (M_AXI_AWSIZE), .M_AXI_ABURST (M_AXI_AWBURST), .M_AXI_ALOCK (M_AXI_AWLOCK), .M_AXI_ACACHE (M_AXI_AWCACHE), .M_AXI_APROT (M_AXI_AWPROT), .M_AXI_AQOS (M_AXI_AWQOS), .M_AXI_AUSER (M_AXI_AWUSER), .M_AXI_AVALID (M_AXI_AWVALID), .M_AXI_AREADY (M_AXI_AWREADY) ); // Write Data Channel. axi_protocol_converter_v2_1_w_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) write_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_valid), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Slave Interface Write Data Ports .S_AXI_WDATA (S_AXI_WDATA), .S_AXI_WSTRB (S_AXI_WSTRB), .S_AXI_WLAST (S_AXI_WLAST), .S_AXI_WUSER (S_AXI_WUSER), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), // Master Interface Write Data Ports .M_AXI_WID (M_AXI_WID), .M_AXI_WDATA (M_AXI_WDATA), .M_AXI_WSTRB (M_AXI_WSTRB), .M_AXI_WLAST (M_AXI_WLAST), .M_AXI_WUSER (M_AXI_WUSER), .M_AXI_WVALID (M_AXI_WVALID), .M_AXI_WREADY (M_AXI_WREADY) ); if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W // Write Data Response Channel. axi_protocol_converter_v2_1_b_downsizer # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH) ) write_resp_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_b_valid), .cmd_split (wr_cmd_b_split), .cmd_repeat (wr_cmd_b_repeat), .cmd_ready (wr_cmd_b_ready), // Slave Interface Write Response Ports .S_AXI_BID (S_AXI_BID), .S_AXI_BRESP (S_AXI_BRESP), .S_AXI_BUSER (S_AXI_BUSER), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), // Master Interface Write Response Ports .M_AXI_BID (M_AXI_BID), .M_AXI_BRESP (M_AXI_BRESP), .M_AXI_BUSER (M_AXI_BUSER), .M_AXI_BVALID (M_AXI_BVALID), .M_AXI_BREADY (M_AXI_BREADY) ); end else begin : NO_SPLIT_W // MI -> SI Interface Write Response Ports assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign S_AXI_BVALID = M_AXI_BVALID; assign M_AXI_BREADY = S_AXI_BREADY; end end else begin : NO_WRITE // Slave Interface Write Address Ports assign S_AXI_AWREADY = 1'b0; // Slave Interface Write Data Ports assign S_AXI_WREADY = 1'b0; // Slave Interface Write Response Ports assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_BRESP = 2'b0; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_BVALID = 1'b0; // Master Interface Write Address Port assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_AWLEN = 4'b0; assign M_AXI_AWSIZE = 3'b0; assign M_AXI_AWBURST = 2'b0; assign M_AXI_AWLOCK = 2'b0; assign M_AXI_AWCACHE = 4'b0; assign M_AXI_AWPROT = 3'b0; assign M_AXI_AWQOS = 4'b0; assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}}; assign M_AXI_AWVALID = 1'b0; // Master Interface Write Data Ports assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}}; assign M_AXI_WLAST = 1'b0; assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}}; assign M_AXI_WVALID = 1'b0; // Master Interface Write Response Ports assign M_AXI_BREADY = 1'b0; end endgenerate ///////////////////////////////////////////////////////////////////////////// // Handle Read Channels (AR/R) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ // Write Response channel. if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R // Read Channel Signals for Commands Queue Interface. wire rd_cmd_valid; wire rd_cmd_split; wire rd_cmd_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH), .C_AXI_CHANNEL (1), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) read_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (R) .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_id (), .cmd_length (), .cmd_ready (rd_cmd_ready), // Command Interface (B) .cmd_b_valid (), .cmd_b_split (), .cmd_b_repeat (), .cmd_b_ready (1'b0), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_ARID), .S_AXI_AADDR (S_AXI_ARADDR), .S_AXI_ALEN (S_AXI_ARLEN), .S_AXI_ASIZE (S_AXI_ARSIZE), .S_AXI_ABURST (S_AXI_ARBURST), .S_AXI_ALOCK (S_AXI_ARLOCK), .S_AXI_ACACHE (S_AXI_ARCACHE), .S_AXI_APROT (S_AXI_ARPROT), .S_AXI_AQOS (S_AXI_ARQOS), .S_AXI_AUSER (S_AXI_ARUSER), .S_AXI_AVALID (S_AXI_ARVALID), .S_AXI_AREADY (S_AXI_ARREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_ARID), .M_AXI_AADDR (M_AXI_ARADDR), .M_AXI_ALEN (M_AXI_ARLEN), .M_AXI_ASIZE (M_AXI_ARSIZE), .M_AXI_ABURST (M_AXI_ARBURST), .M_AXI_ALOCK (M_AXI_ARLOCK), .M_AXI_ACACHE (M_AXI_ARCACHE), .M_AXI_APROT (M_AXI_ARPROT), .M_AXI_AQOS (M_AXI_ARQOS), .M_AXI_AUSER (M_AXI_ARUSER), .M_AXI_AVALID (M_AXI_ARVALID), .M_AXI_AREADY (M_AXI_ARREADY) ); // Read Data Channel. axi_protocol_converter_v2_1_r_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) read_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_ready (rd_cmd_ready), // Slave Interface Read Data Ports .S_AXI_RID (S_AXI_RID), .S_AXI_RDATA (S_AXI_RDATA), .S_AXI_RRESP (S_AXI_RRESP), .S_AXI_RLAST (S_AXI_RLAST), .S_AXI_RUSER (S_AXI_RUSER), .S_AXI_RVALID (S_AXI_RVALID), .S_AXI_RREADY (S_AXI_RREADY), // Master Interface Read Data Ports .M_AXI_RID (M_AXI_RID), .M_AXI_RDATA (M_AXI_RDATA), .M_AXI_RRESP (M_AXI_RRESP), .M_AXI_RLAST (M_AXI_RLAST), .M_AXI_RUSER (M_AXI_RUSER), .M_AXI_RVALID (M_AXI_RVALID), .M_AXI_RREADY (M_AXI_RREADY) ); end else begin : NO_SPLIT_R // SI -> MI Interface Write Address Port assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARUSER = S_AXI_ARUSER; assign M_AXI_ARVALID = S_AXI_ARVALID; assign S_AXI_ARREADY = M_AXI_ARREADY; // MI -> SI Interface Read Data Ports assign S_AXI_RID = M_AXI_RID; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end end else begin : NO_READ // Slave Interface Read Address Ports assign S_AXI_ARREADY = 1'b0; // Slave Interface Read Data Ports assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_RRESP = 2'b0; assign S_AXI_RLAST = 1'b0; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_RVALID = 1'b0; // Master Interface Read Address Port assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_ARLEN = 4'b0; assign M_AXI_ARSIZE = 3'b0; assign M_AXI_ARBURST = 2'b0; assign M_AXI_ARLOCK = 2'b0; assign M_AXI_ARCACHE = 4'b0; assign M_AXI_ARPROT = 3'b0; assign M_AXI_ARQOS = 4'b0; assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}}; assign M_AXI_ARVALID = 1'b0; // Master Interface Read Data Ports assign M_AXI_RREADY = 1'b0; end endgenerate endmodule
module axi_protocol_converter_v2_1_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [8-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [1-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [4-1:0] S_AXI_AWQOS, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [8-1:0] S_AXI_ARLEN, input wire [3-1:0] S_AXI_ARSIZE, input wire [2-1:0] S_AXI_ARBURST, input wire [1-1:0] S_AXI_ARLOCK, input wire [4-1:0] S_AXI_ARCACHE, input wire [3-1:0] S_AXI_ARPROT, input wire [4-1:0] S_AXI_ARQOS, input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [4-1:0] M_AXI_AWQOS, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [4-1:0] M_AXI_ARLEN, output wire [3-1:0] M_AXI_ARSIZE, output wire [2-1:0] M_AXI_ARBURST, output wire [2-1:0] M_AXI_ARLOCK, output wire [4-1:0] M_AXI_ARCACHE, output wire [3-1:0] M_AXI_ARPROT, output wire [4-1:0] M_AXI_ARQOS, output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Handle Write Channels (AW/W/B) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE // Write Channel Signals for Commands Queue Interface. wire wr_cmd_valid; wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id; wire [4-1:0] wr_cmd_length; wire wr_cmd_ready; wire wr_cmd_b_valid; wire wr_cmd_b_split; wire [4-1:0] wr_cmd_b_repeat; wire wr_cmd_b_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_AXI_CHANNEL (0), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) write_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (W) .cmd_valid (wr_cmd_valid), .cmd_split (), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Command Interface (B) .cmd_b_valid (wr_cmd_b_valid), .cmd_b_split (wr_cmd_b_split), .cmd_b_repeat (wr_cmd_b_repeat), .cmd_b_ready (wr_cmd_b_ready), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_AWID), .S_AXI_AADDR (S_AXI_AWADDR), .S_AXI_ALEN (S_AXI_AWLEN), .S_AXI_ASIZE (S_AXI_AWSIZE), .S_AXI_ABURST (S_AXI_AWBURST), .S_AXI_ALOCK (S_AXI_AWLOCK), .S_AXI_ACACHE (S_AXI_AWCACHE), .S_AXI_APROT (S_AXI_AWPROT), .S_AXI_AQOS (S_AXI_AWQOS), .S_AXI_AUSER (S_AXI_AWUSER), .S_AXI_AVALID (S_AXI_AWVALID), .S_AXI_AREADY (S_AXI_AWREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_AWID), .M_AXI_AADDR (M_AXI_AWADDR), .M_AXI_ALEN (M_AXI_AWLEN), .M_AXI_ASIZE (M_AXI_AWSIZE), .M_AXI_ABURST (M_AXI_AWBURST), .M_AXI_ALOCK (M_AXI_AWLOCK), .M_AXI_ACACHE (M_AXI_AWCACHE), .M_AXI_APROT (M_AXI_AWPROT), .M_AXI_AQOS (M_AXI_AWQOS), .M_AXI_AUSER (M_AXI_AWUSER), .M_AXI_AVALID (M_AXI_AWVALID), .M_AXI_AREADY (M_AXI_AWREADY) ); // Write Data Channel. axi_protocol_converter_v2_1_w_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) write_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_valid), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Slave Interface Write Data Ports .S_AXI_WDATA (S_AXI_WDATA), .S_AXI_WSTRB (S_AXI_WSTRB), .S_AXI_WLAST (S_AXI_WLAST), .S_AXI_WUSER (S_AXI_WUSER), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), // Master Interface Write Data Ports .M_AXI_WID (M_AXI_WID), .M_AXI_WDATA (M_AXI_WDATA), .M_AXI_WSTRB (M_AXI_WSTRB), .M_AXI_WLAST (M_AXI_WLAST), .M_AXI_WUSER (M_AXI_WUSER), .M_AXI_WVALID (M_AXI_WVALID), .M_AXI_WREADY (M_AXI_WREADY) ); if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W // Write Data Response Channel. axi_protocol_converter_v2_1_b_downsizer # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH) ) write_resp_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_b_valid), .cmd_split (wr_cmd_b_split), .cmd_repeat (wr_cmd_b_repeat), .cmd_ready (wr_cmd_b_ready), // Slave Interface Write Response Ports .S_AXI_BID (S_AXI_BID), .S_AXI_BRESP (S_AXI_BRESP), .S_AXI_BUSER (S_AXI_BUSER), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), // Master Interface Write Response Ports .M_AXI_BID (M_AXI_BID), .M_AXI_BRESP (M_AXI_BRESP), .M_AXI_BUSER (M_AXI_BUSER), .M_AXI_BVALID (M_AXI_BVALID), .M_AXI_BREADY (M_AXI_BREADY) ); end else begin : NO_SPLIT_W // MI -> SI Interface Write Response Ports assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign S_AXI_BVALID = M_AXI_BVALID; assign M_AXI_BREADY = S_AXI_BREADY; end end else begin : NO_WRITE // Slave Interface Write Address Ports assign S_AXI_AWREADY = 1'b0; // Slave Interface Write Data Ports assign S_AXI_WREADY = 1'b0; // Slave Interface Write Response Ports assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_BRESP = 2'b0; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_BVALID = 1'b0; // Master Interface Write Address Port assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_AWLEN = 4'b0; assign M_AXI_AWSIZE = 3'b0; assign M_AXI_AWBURST = 2'b0; assign M_AXI_AWLOCK = 2'b0; assign M_AXI_AWCACHE = 4'b0; assign M_AXI_AWPROT = 3'b0; assign M_AXI_AWQOS = 4'b0; assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}}; assign M_AXI_AWVALID = 1'b0; // Master Interface Write Data Ports assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}}; assign M_AXI_WLAST = 1'b0; assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}}; assign M_AXI_WVALID = 1'b0; // Master Interface Write Response Ports assign M_AXI_BREADY = 1'b0; end endgenerate ///////////////////////////////////////////////////////////////////////////// // Handle Read Channels (AR/R) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ // Write Response channel. if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R // Read Channel Signals for Commands Queue Interface. wire rd_cmd_valid; wire rd_cmd_split; wire rd_cmd_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH), .C_AXI_CHANNEL (1), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) read_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (R) .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_id (), .cmd_length (), .cmd_ready (rd_cmd_ready), // Command Interface (B) .cmd_b_valid (), .cmd_b_split (), .cmd_b_repeat (), .cmd_b_ready (1'b0), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_ARID), .S_AXI_AADDR (S_AXI_ARADDR), .S_AXI_ALEN (S_AXI_ARLEN), .S_AXI_ASIZE (S_AXI_ARSIZE), .S_AXI_ABURST (S_AXI_ARBURST), .S_AXI_ALOCK (S_AXI_ARLOCK), .S_AXI_ACACHE (S_AXI_ARCACHE), .S_AXI_APROT (S_AXI_ARPROT), .S_AXI_AQOS (S_AXI_ARQOS), .S_AXI_AUSER (S_AXI_ARUSER), .S_AXI_AVALID (S_AXI_ARVALID), .S_AXI_AREADY (S_AXI_ARREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_ARID), .M_AXI_AADDR (M_AXI_ARADDR), .M_AXI_ALEN (M_AXI_ARLEN), .M_AXI_ASIZE (M_AXI_ARSIZE), .M_AXI_ABURST (M_AXI_ARBURST), .M_AXI_ALOCK (M_AXI_ARLOCK), .M_AXI_ACACHE (M_AXI_ARCACHE), .M_AXI_APROT (M_AXI_ARPROT), .M_AXI_AQOS (M_AXI_ARQOS), .M_AXI_AUSER (M_AXI_ARUSER), .M_AXI_AVALID (M_AXI_ARVALID), .M_AXI_AREADY (M_AXI_ARREADY) ); // Read Data Channel. axi_protocol_converter_v2_1_r_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) read_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_ready (rd_cmd_ready), // Slave Interface Read Data Ports .S_AXI_RID (S_AXI_RID), .S_AXI_RDATA (S_AXI_RDATA), .S_AXI_RRESP (S_AXI_RRESP), .S_AXI_RLAST (S_AXI_RLAST), .S_AXI_RUSER (S_AXI_RUSER), .S_AXI_RVALID (S_AXI_RVALID), .S_AXI_RREADY (S_AXI_RREADY), // Master Interface Read Data Ports .M_AXI_RID (M_AXI_RID), .M_AXI_RDATA (M_AXI_RDATA), .M_AXI_RRESP (M_AXI_RRESP), .M_AXI_RLAST (M_AXI_RLAST), .M_AXI_RUSER (M_AXI_RUSER), .M_AXI_RVALID (M_AXI_RVALID), .M_AXI_RREADY (M_AXI_RREADY) ); end else begin : NO_SPLIT_R // SI -> MI Interface Write Address Port assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARUSER = S_AXI_ARUSER; assign M_AXI_ARVALID = S_AXI_ARVALID; assign S_AXI_ARREADY = M_AXI_ARREADY; // MI -> SI Interface Read Data Ports assign S_AXI_RID = M_AXI_RID; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end end else begin : NO_READ // Slave Interface Read Address Ports assign S_AXI_ARREADY = 1'b0; // Slave Interface Read Data Ports assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_RRESP = 2'b0; assign S_AXI_RLAST = 1'b0; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_RVALID = 1'b0; // Master Interface Read Address Port assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_ARLEN = 4'b0; assign M_AXI_ARSIZE = 3'b0; assign M_AXI_ARBURST = 2'b0; assign M_AXI_ARLOCK = 2'b0; assign M_AXI_ARCACHE = 4'b0; assign M_AXI_ARPROT = 3'b0; assign M_AXI_ARQOS = 4'b0; assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}}; assign M_AXI_ARVALID = 1'b0; // Master Interface Read Data Ports assign M_AXI_RREADY = 1'b0; end endgenerate endmodule
module axi_protocol_converter_v2_1_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [8-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [1-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [4-1:0] S_AXI_AWQOS, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [8-1:0] S_AXI_ARLEN, input wire [3-1:0] S_AXI_ARSIZE, input wire [2-1:0] S_AXI_ARBURST, input wire [1-1:0] S_AXI_ARLOCK, input wire [4-1:0] S_AXI_ARCACHE, input wire [3-1:0] S_AXI_ARPROT, input wire [4-1:0] S_AXI_ARQOS, input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [4-1:0] M_AXI_AWQOS, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [4-1:0] M_AXI_ARLEN, output wire [3-1:0] M_AXI_ARSIZE, output wire [2-1:0] M_AXI_ARBURST, output wire [2-1:0] M_AXI_ARLOCK, output wire [4-1:0] M_AXI_ARCACHE, output wire [3-1:0] M_AXI_ARPROT, output wire [4-1:0] M_AXI_ARQOS, output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Handle Write Channels (AW/W/B) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE // Write Channel Signals for Commands Queue Interface. wire wr_cmd_valid; wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id; wire [4-1:0] wr_cmd_length; wire wr_cmd_ready; wire wr_cmd_b_valid; wire wr_cmd_b_split; wire [4-1:0] wr_cmd_b_repeat; wire wr_cmd_b_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_AXI_CHANNEL (0), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) write_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (W) .cmd_valid (wr_cmd_valid), .cmd_split (), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Command Interface (B) .cmd_b_valid (wr_cmd_b_valid), .cmd_b_split (wr_cmd_b_split), .cmd_b_repeat (wr_cmd_b_repeat), .cmd_b_ready (wr_cmd_b_ready), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_AWID), .S_AXI_AADDR (S_AXI_AWADDR), .S_AXI_ALEN (S_AXI_AWLEN), .S_AXI_ASIZE (S_AXI_AWSIZE), .S_AXI_ABURST (S_AXI_AWBURST), .S_AXI_ALOCK (S_AXI_AWLOCK), .S_AXI_ACACHE (S_AXI_AWCACHE), .S_AXI_APROT (S_AXI_AWPROT), .S_AXI_AQOS (S_AXI_AWQOS), .S_AXI_AUSER (S_AXI_AWUSER), .S_AXI_AVALID (S_AXI_AWVALID), .S_AXI_AREADY (S_AXI_AWREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_AWID), .M_AXI_AADDR (M_AXI_AWADDR), .M_AXI_ALEN (M_AXI_AWLEN), .M_AXI_ASIZE (M_AXI_AWSIZE), .M_AXI_ABURST (M_AXI_AWBURST), .M_AXI_ALOCK (M_AXI_AWLOCK), .M_AXI_ACACHE (M_AXI_AWCACHE), .M_AXI_APROT (M_AXI_AWPROT), .M_AXI_AQOS (M_AXI_AWQOS), .M_AXI_AUSER (M_AXI_AWUSER), .M_AXI_AVALID (M_AXI_AWVALID), .M_AXI_AREADY (M_AXI_AWREADY) ); // Write Data Channel. axi_protocol_converter_v2_1_w_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) write_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_valid), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Slave Interface Write Data Ports .S_AXI_WDATA (S_AXI_WDATA), .S_AXI_WSTRB (S_AXI_WSTRB), .S_AXI_WLAST (S_AXI_WLAST), .S_AXI_WUSER (S_AXI_WUSER), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), // Master Interface Write Data Ports .M_AXI_WID (M_AXI_WID), .M_AXI_WDATA (M_AXI_WDATA), .M_AXI_WSTRB (M_AXI_WSTRB), .M_AXI_WLAST (M_AXI_WLAST), .M_AXI_WUSER (M_AXI_WUSER), .M_AXI_WVALID (M_AXI_WVALID), .M_AXI_WREADY (M_AXI_WREADY) ); if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W // Write Data Response Channel. axi_protocol_converter_v2_1_b_downsizer # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH) ) write_resp_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_b_valid), .cmd_split (wr_cmd_b_split), .cmd_repeat (wr_cmd_b_repeat), .cmd_ready (wr_cmd_b_ready), // Slave Interface Write Response Ports .S_AXI_BID (S_AXI_BID), .S_AXI_BRESP (S_AXI_BRESP), .S_AXI_BUSER (S_AXI_BUSER), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), // Master Interface Write Response Ports .M_AXI_BID (M_AXI_BID), .M_AXI_BRESP (M_AXI_BRESP), .M_AXI_BUSER (M_AXI_BUSER), .M_AXI_BVALID (M_AXI_BVALID), .M_AXI_BREADY (M_AXI_BREADY) ); end else begin : NO_SPLIT_W // MI -> SI Interface Write Response Ports assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign S_AXI_BVALID = M_AXI_BVALID; assign M_AXI_BREADY = S_AXI_BREADY; end end else begin : NO_WRITE // Slave Interface Write Address Ports assign S_AXI_AWREADY = 1'b0; // Slave Interface Write Data Ports assign S_AXI_WREADY = 1'b0; // Slave Interface Write Response Ports assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_BRESP = 2'b0; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_BVALID = 1'b0; // Master Interface Write Address Port assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_AWLEN = 4'b0; assign M_AXI_AWSIZE = 3'b0; assign M_AXI_AWBURST = 2'b0; assign M_AXI_AWLOCK = 2'b0; assign M_AXI_AWCACHE = 4'b0; assign M_AXI_AWPROT = 3'b0; assign M_AXI_AWQOS = 4'b0; assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}}; assign M_AXI_AWVALID = 1'b0; // Master Interface Write Data Ports assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}}; assign M_AXI_WLAST = 1'b0; assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}}; assign M_AXI_WVALID = 1'b0; // Master Interface Write Response Ports assign M_AXI_BREADY = 1'b0; end endgenerate ///////////////////////////////////////////////////////////////////////////// // Handle Read Channels (AR/R) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ // Write Response channel. if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R // Read Channel Signals for Commands Queue Interface. wire rd_cmd_valid; wire rd_cmd_split; wire rd_cmd_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH), .C_AXI_CHANNEL (1), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) read_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (R) .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_id (), .cmd_length (), .cmd_ready (rd_cmd_ready), // Command Interface (B) .cmd_b_valid (), .cmd_b_split (), .cmd_b_repeat (), .cmd_b_ready (1'b0), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_ARID), .S_AXI_AADDR (S_AXI_ARADDR), .S_AXI_ALEN (S_AXI_ARLEN), .S_AXI_ASIZE (S_AXI_ARSIZE), .S_AXI_ABURST (S_AXI_ARBURST), .S_AXI_ALOCK (S_AXI_ARLOCK), .S_AXI_ACACHE (S_AXI_ARCACHE), .S_AXI_APROT (S_AXI_ARPROT), .S_AXI_AQOS (S_AXI_ARQOS), .S_AXI_AUSER (S_AXI_ARUSER), .S_AXI_AVALID (S_AXI_ARVALID), .S_AXI_AREADY (S_AXI_ARREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_ARID), .M_AXI_AADDR (M_AXI_ARADDR), .M_AXI_ALEN (M_AXI_ARLEN), .M_AXI_ASIZE (M_AXI_ARSIZE), .M_AXI_ABURST (M_AXI_ARBURST), .M_AXI_ALOCK (M_AXI_ARLOCK), .M_AXI_ACACHE (M_AXI_ARCACHE), .M_AXI_APROT (M_AXI_ARPROT), .M_AXI_AQOS (M_AXI_ARQOS), .M_AXI_AUSER (M_AXI_ARUSER), .M_AXI_AVALID (M_AXI_ARVALID), .M_AXI_AREADY (M_AXI_ARREADY) ); // Read Data Channel. axi_protocol_converter_v2_1_r_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) read_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_ready (rd_cmd_ready), // Slave Interface Read Data Ports .S_AXI_RID (S_AXI_RID), .S_AXI_RDATA (S_AXI_RDATA), .S_AXI_RRESP (S_AXI_RRESP), .S_AXI_RLAST (S_AXI_RLAST), .S_AXI_RUSER (S_AXI_RUSER), .S_AXI_RVALID (S_AXI_RVALID), .S_AXI_RREADY (S_AXI_RREADY), // Master Interface Read Data Ports .M_AXI_RID (M_AXI_RID), .M_AXI_RDATA (M_AXI_RDATA), .M_AXI_RRESP (M_AXI_RRESP), .M_AXI_RLAST (M_AXI_RLAST), .M_AXI_RUSER (M_AXI_RUSER), .M_AXI_RVALID (M_AXI_RVALID), .M_AXI_RREADY (M_AXI_RREADY) ); end else begin : NO_SPLIT_R // SI -> MI Interface Write Address Port assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARUSER = S_AXI_ARUSER; assign M_AXI_ARVALID = S_AXI_ARVALID; assign S_AXI_ARREADY = M_AXI_ARREADY; // MI -> SI Interface Read Data Ports assign S_AXI_RID = M_AXI_RID; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end end else begin : NO_READ // Slave Interface Read Address Ports assign S_AXI_ARREADY = 1'b0; // Slave Interface Read Data Ports assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_RRESP = 2'b0; assign S_AXI_RLAST = 1'b0; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_RVALID = 1'b0; // Master Interface Read Address Port assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_ARLEN = 4'b0; assign M_AXI_ARSIZE = 3'b0; assign M_AXI_ARBURST = 2'b0; assign M_AXI_ARLOCK = 2'b0; assign M_AXI_ARCACHE = 4'b0; assign M_AXI_ARPROT = 3'b0; assign M_AXI_ARQOS = 4'b0; assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}}; assign M_AXI_ARVALID = 1'b0; // Master Interface Read Data Ports assign M_AXI_RREADY = 1'b0; end endgenerate endmodule
module axi_protocol_converter_v2_1_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_SUPPORTS_WRITE = 1, parameter integer C_AXI_SUPPORTS_READ = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1, // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. parameter integer C_SINGLE_THREAD = 1 // 0 = Ignore ID when propagating transactions (assume all responses are in order). // 1 = Enforce single-threading (one ID at a time) when any outstanding or // requested transaction requires splitting. // While no split is ongoing any new non-split transaction will pass immediately regardless // off ID. // A split transaction will stall if there are multiple ID (non-split) transactions // ongoing, once it has been forwarded only transactions with the same ID is allowed // (split or not) until all ongoing split transactios has been completed. ) ( // System Signals input wire ACLK, input wire ARESETN, // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR, input wire [8-1:0] S_AXI_AWLEN, input wire [3-1:0] S_AXI_AWSIZE, input wire [2-1:0] S_AXI_AWBURST, input wire [1-1:0] S_AXI_AWLOCK, input wire [4-1:0] S_AXI_AWCACHE, input wire [3-1:0] S_AXI_AWPROT, input wire [4-1:0] S_AXI_AWQOS, input wire [C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID, output wire [2-1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR, input wire [8-1:0] S_AXI_ARLEN, input wire [3-1:0] S_AXI_ARSIZE, input wire [2-1:0] S_AXI_ARBURST, input wire [1-1:0] S_AXI_ARLOCK, input wire [4-1:0] S_AXI_ARCACHE, input wire [3-1:0] S_AXI_ARPROT, input wire [4-1:0] S_AXI_ARQOS, input wire [C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID, output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA, output wire [2-1:0] S_AXI_RRESP, output wire S_AXI_RLAST, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RVALID, input wire S_AXI_RREADY, // Master Interface Write Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR, output wire [4-1:0] M_AXI_AWLEN, output wire [3-1:0] M_AXI_AWSIZE, output wire [2-1:0] M_AXI_AWBURST, output wire [2-1:0] M_AXI_AWLOCK, output wire [4-1:0] M_AXI_AWCACHE, output wire [3-1:0] M_AXI_AWPROT, output wire [4-1:0] M_AXI_AWQOS, output wire [C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER, output wire M_AXI_AWVALID, input wire M_AXI_AWREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY, // Master Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID, input wire [2-1:0] M_AXI_BRESP, input wire [C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER, input wire M_AXI_BVALID, output wire M_AXI_BREADY, // Master Interface Read Address Port output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID, output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR, output wire [4-1:0] M_AXI_ARLEN, output wire [3-1:0] M_AXI_ARSIZE, output wire [2-1:0] M_AXI_ARBURST, output wire [2-1:0] M_AXI_ARLOCK, output wire [4-1:0] M_AXI_ARCACHE, output wire [3-1:0] M_AXI_ARPROT, output wire [4-1:0] M_AXI_ARQOS, output wire [C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER, output wire M_AXI_ARVALID, input wire M_AXI_ARREADY, // Master Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID, input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA, input wire [2-1:0] M_AXI_RRESP, input wire M_AXI_RLAST, input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER, input wire M_AXI_RVALID, output wire M_AXI_RREADY ); ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Handle Write Channels (AW/W/B) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_WRITE == 1) begin : USE_WRITE // Write Channel Signals for Commands Queue Interface. wire wr_cmd_valid; wire [C_AXI_ID_WIDTH-1:0] wr_cmd_id; wire [4-1:0] wr_cmd_length; wire wr_cmd_ready; wire wr_cmd_b_valid; wire wr_cmd_b_split; wire [4-1:0] wr_cmd_b_repeat; wire wr_cmd_b_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_AWUSER_WIDTH), .C_AXI_CHANNEL (0), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) write_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (W) .cmd_valid (wr_cmd_valid), .cmd_split (), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Command Interface (B) .cmd_b_valid (wr_cmd_b_valid), .cmd_b_split (wr_cmd_b_split), .cmd_b_repeat (wr_cmd_b_repeat), .cmd_b_ready (wr_cmd_b_ready), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_AWID), .S_AXI_AADDR (S_AXI_AWADDR), .S_AXI_ALEN (S_AXI_AWLEN), .S_AXI_ASIZE (S_AXI_AWSIZE), .S_AXI_ABURST (S_AXI_AWBURST), .S_AXI_ALOCK (S_AXI_AWLOCK), .S_AXI_ACACHE (S_AXI_AWCACHE), .S_AXI_APROT (S_AXI_AWPROT), .S_AXI_AQOS (S_AXI_AWQOS), .S_AXI_AUSER (S_AXI_AWUSER), .S_AXI_AVALID (S_AXI_AWVALID), .S_AXI_AREADY (S_AXI_AWREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_AWID), .M_AXI_AADDR (M_AXI_AWADDR), .M_AXI_ALEN (M_AXI_AWLEN), .M_AXI_ASIZE (M_AXI_AWSIZE), .M_AXI_ABURST (M_AXI_AWBURST), .M_AXI_ALOCK (M_AXI_AWLOCK), .M_AXI_ACACHE (M_AXI_AWCACHE), .M_AXI_APROT (M_AXI_AWPROT), .M_AXI_AQOS (M_AXI_AWQOS), .M_AXI_AUSER (M_AXI_AWUSER), .M_AXI_AVALID (M_AXI_AWVALID), .M_AXI_AREADY (M_AXI_AWREADY) ); // Write Data Channel. axi_protocol_converter_v2_1_w_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) write_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_valid), .cmd_id (wr_cmd_id), .cmd_length (wr_cmd_length), .cmd_ready (wr_cmd_ready), // Slave Interface Write Data Ports .S_AXI_WDATA (S_AXI_WDATA), .S_AXI_WSTRB (S_AXI_WSTRB), .S_AXI_WLAST (S_AXI_WLAST), .S_AXI_WUSER (S_AXI_WUSER), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), // Master Interface Write Data Ports .M_AXI_WID (M_AXI_WID), .M_AXI_WDATA (M_AXI_WDATA), .M_AXI_WSTRB (M_AXI_WSTRB), .M_AXI_WLAST (M_AXI_WLAST), .M_AXI_WUSER (M_AXI_WUSER), .M_AXI_WVALID (M_AXI_WVALID), .M_AXI_WREADY (M_AXI_WREADY) ); if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_W // Write Data Response Channel. axi_protocol_converter_v2_1_b_downsizer # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH) ) write_resp_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (wr_cmd_b_valid), .cmd_split (wr_cmd_b_split), .cmd_repeat (wr_cmd_b_repeat), .cmd_ready (wr_cmd_b_ready), // Slave Interface Write Response Ports .S_AXI_BID (S_AXI_BID), .S_AXI_BRESP (S_AXI_BRESP), .S_AXI_BUSER (S_AXI_BUSER), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), // Master Interface Write Response Ports .M_AXI_BID (M_AXI_BID), .M_AXI_BRESP (M_AXI_BRESP), .M_AXI_BUSER (M_AXI_BUSER), .M_AXI_BVALID (M_AXI_BVALID), .M_AXI_BREADY (M_AXI_BREADY) ); end else begin : NO_SPLIT_W // MI -> SI Interface Write Response Ports assign S_AXI_BID = M_AXI_BID; assign S_AXI_BRESP = M_AXI_BRESP; assign S_AXI_BUSER = M_AXI_BUSER; assign S_AXI_BVALID = M_AXI_BVALID; assign M_AXI_BREADY = S_AXI_BREADY; end end else begin : NO_WRITE // Slave Interface Write Address Ports assign S_AXI_AWREADY = 1'b0; // Slave Interface Write Data Ports assign S_AXI_WREADY = 1'b0; // Slave Interface Write Response Ports assign S_AXI_BID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_BRESP = 2'b0; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_BVALID = 1'b0; // Master Interface Write Address Port assign M_AXI_AWID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_AWADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_AWLEN = 4'b0; assign M_AXI_AWSIZE = 3'b0; assign M_AXI_AWBURST = 2'b0; assign M_AXI_AWLOCK = 2'b0; assign M_AXI_AWCACHE = 4'b0; assign M_AXI_AWPROT = 3'b0; assign M_AXI_AWQOS = 4'b0; assign M_AXI_AWUSER = {C_AXI_AWUSER_WIDTH{1'b0}}; assign M_AXI_AWVALID = 1'b0; // Master Interface Write Data Ports assign M_AXI_WDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign M_AXI_WSTRB = {C_AXI_DATA_WIDTH/8{1'b0}}; assign M_AXI_WLAST = 1'b0; assign M_AXI_WUSER = {C_AXI_WUSER_WIDTH{1'b0}}; assign M_AXI_WVALID = 1'b0; // Master Interface Write Response Ports assign M_AXI_BREADY = 1'b0; end endgenerate ///////////////////////////////////////////////////////////////////////////// // Handle Read Channels (AR/R) ///////////////////////////////////////////////////////////////////////////// generate if (C_AXI_SUPPORTS_READ == 1) begin : USE_READ // Write Response channel. if ( C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_SPLIT_R // Read Channel Signals for Commands Queue Interface. wire rd_cmd_valid; wire rd_cmd_split; wire rd_cmd_ready; // Write Address Channel. axi_protocol_converter_v2_1_a_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_AUSER_WIDTH (C_AXI_ARUSER_WIDTH), .C_AXI_CHANNEL (1), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS), .C_SINGLE_THREAD (C_SINGLE_THREAD) ) read_addr_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface (R) .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_id (), .cmd_length (), .cmd_ready (rd_cmd_ready), // Command Interface (B) .cmd_b_valid (), .cmd_b_split (), .cmd_b_repeat (), .cmd_b_ready (1'b0), // Slave Interface Write Address Ports .S_AXI_AID (S_AXI_ARID), .S_AXI_AADDR (S_AXI_ARADDR), .S_AXI_ALEN (S_AXI_ARLEN), .S_AXI_ASIZE (S_AXI_ARSIZE), .S_AXI_ABURST (S_AXI_ARBURST), .S_AXI_ALOCK (S_AXI_ARLOCK), .S_AXI_ACACHE (S_AXI_ARCACHE), .S_AXI_APROT (S_AXI_ARPROT), .S_AXI_AQOS (S_AXI_ARQOS), .S_AXI_AUSER (S_AXI_ARUSER), .S_AXI_AVALID (S_AXI_ARVALID), .S_AXI_AREADY (S_AXI_ARREADY), // Master Interface Write Address Port .M_AXI_AID (M_AXI_ARID), .M_AXI_AADDR (M_AXI_ARADDR), .M_AXI_ALEN (M_AXI_ARLEN), .M_AXI_ASIZE (M_AXI_ARSIZE), .M_AXI_ABURST (M_AXI_ARBURST), .M_AXI_ALOCK (M_AXI_ARLOCK), .M_AXI_ACACHE (M_AXI_ARCACHE), .M_AXI_APROT (M_AXI_ARPROT), .M_AXI_AQOS (M_AXI_ARQOS), .M_AXI_AUSER (M_AXI_ARUSER), .M_AXI_AVALID (M_AXI_ARVALID), .M_AXI_AREADY (M_AXI_ARREADY) ); // Read Data Channel. axi_protocol_converter_v2_1_r_axi3_conv # ( .C_FAMILY (C_FAMILY), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH), .C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS), .C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH), .C_SUPPORT_SPLITTING (C_SUPPORT_SPLITTING), .C_SUPPORT_BURSTS (C_SUPPORT_BURSTS) ) read_data_inst ( // Global Signals .ARESET (~ARESETN), .ACLK (ACLK), // Command Interface .cmd_valid (rd_cmd_valid), .cmd_split (rd_cmd_split), .cmd_ready (rd_cmd_ready), // Slave Interface Read Data Ports .S_AXI_RID (S_AXI_RID), .S_AXI_RDATA (S_AXI_RDATA), .S_AXI_RRESP (S_AXI_RRESP), .S_AXI_RLAST (S_AXI_RLAST), .S_AXI_RUSER (S_AXI_RUSER), .S_AXI_RVALID (S_AXI_RVALID), .S_AXI_RREADY (S_AXI_RREADY), // Master Interface Read Data Ports .M_AXI_RID (M_AXI_RID), .M_AXI_RDATA (M_AXI_RDATA), .M_AXI_RRESP (M_AXI_RRESP), .M_AXI_RLAST (M_AXI_RLAST), .M_AXI_RUSER (M_AXI_RUSER), .M_AXI_RVALID (M_AXI_RVALID), .M_AXI_RREADY (M_AXI_RREADY) ); end else begin : NO_SPLIT_R // SI -> MI Interface Write Address Port assign M_AXI_ARID = S_AXI_ARID; assign M_AXI_ARADDR = S_AXI_ARADDR; assign M_AXI_ARLEN = S_AXI_ARLEN; assign M_AXI_ARSIZE = S_AXI_ARSIZE; assign M_AXI_ARBURST = S_AXI_ARBURST; assign M_AXI_ARLOCK = S_AXI_ARLOCK; assign M_AXI_ARCACHE = S_AXI_ARCACHE; assign M_AXI_ARPROT = S_AXI_ARPROT; assign M_AXI_ARQOS = S_AXI_ARQOS; assign M_AXI_ARUSER = S_AXI_ARUSER; assign M_AXI_ARVALID = S_AXI_ARVALID; assign S_AXI_ARREADY = M_AXI_ARREADY; // MI -> SI Interface Read Data Ports assign S_AXI_RID = M_AXI_RID; assign S_AXI_RDATA = M_AXI_RDATA; assign S_AXI_RRESP = M_AXI_RRESP; assign S_AXI_RLAST = M_AXI_RLAST; assign S_AXI_RUSER = M_AXI_RUSER; assign S_AXI_RVALID = M_AXI_RVALID; assign M_AXI_RREADY = S_AXI_RREADY; end end else begin : NO_READ // Slave Interface Read Address Ports assign S_AXI_ARREADY = 1'b0; // Slave Interface Read Data Ports assign S_AXI_RID = {C_AXI_ID_WIDTH{1'b0}}; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_RRESP = 2'b0; assign S_AXI_RLAST = 1'b0; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_RVALID = 1'b0; // Master Interface Read Address Port assign M_AXI_ARID = {C_AXI_ID_WIDTH{1'b0}}; assign M_AXI_ARADDR = {C_AXI_ADDR_WIDTH{1'b0}}; assign M_AXI_ARLEN = 4'b0; assign M_AXI_ARSIZE = 3'b0; assign M_AXI_ARBURST = 2'b0; assign M_AXI_ARLOCK = 2'b0; assign M_AXI_ARCACHE = 4'b0; assign M_AXI_ARPROT = 3'b0; assign M_AXI_ARQOS = 4'b0; assign M_AXI_ARUSER = {C_AXI_ARUSER_WIDTH{1'b0}}; assign M_AXI_ARVALID = 1'b0; // Master Interface Read Data Ports assign M_AXI_RREADY = 1'b0; end endgenerate endmodule
module axi_protocol_converter_v2_1_decerr_slave # ( parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_PROTOCOL = 0, parameter integer C_RESP = 2'b11, parameter integer C_IGNORE_ID = 0 ) ( input wire ACLK, input wire ARESETN, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, input wire S_AXI_WLAST, input wire S_AXI_WVALID, output wire S_AXI_WREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID, output wire [1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID, output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA, output wire [1:0] S_AXI_RRESP, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RLAST, output wire S_AXI_RVALID, input wire S_AXI_RREADY ); reg s_axi_awready_i; reg s_axi_wready_i; reg s_axi_bvalid_i; reg s_axi_arready_i; reg s_axi_rvalid_i; localparam P_WRITE_IDLE = 2'b00; localparam P_WRITE_DATA = 2'b01; localparam P_WRITE_RESP = 2'b10; localparam P_READ_IDLE = 2'b00; localparam P_READ_START = 2'b01; localparam P_READ_DATA = 2'b10; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; assign S_AXI_BRESP = C_RESP; assign S_AXI_RRESP = C_RESP; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_AWREADY = s_axi_awready_i; assign S_AXI_WREADY = s_axi_wready_i; assign S_AXI_BVALID = s_axi_bvalid_i; assign S_AXI_ARREADY = s_axi_arready_i; assign S_AXI_RVALID = s_axi_rvalid_i; generate if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite reg s_axi_rvalid_en; assign S_AXI_RLAST = 1'b1; assign S_AXI_BID = 0; assign S_AXI_RID = 0; always @(posedge ACLK) begin if (~ARESETN) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; end else begin if (s_axi_bvalid_i) begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; end end else if (S_AXI_WVALID & s_axi_wready_i) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; end else if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b1; end else begin s_axi_awready_i <= 1'b1; end end end always @(posedge ACLK) begin if (~ARESETN) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rvalid_en <= 1'b0; end else begin if (s_axi_rvalid_i) begin if (S_AXI_RREADY) begin s_axi_rvalid_i <= 1'b0; s_axi_arready_i <= 1'b1; end end else if (s_axi_rvalid_en) begin s_axi_rvalid_en <= 1'b0; s_axi_rvalid_i <= 1'b1; end else if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_en <= 1'b1; end else begin s_axi_arready_i <= 1'b1; end end end end else begin : gen_axi reg s_axi_rlast_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i; reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt; reg [1:0] write_cs; reg [1:0] read_cs; assign S_AXI_RLAST = s_axi_rlast_i; assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i; assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i; always @(posedge ACLK) begin if (~ARESETN) begin write_cs <= P_WRITE_IDLE; s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; s_axi_bid_i <= 0; end else begin case (write_cs) P_WRITE_IDLE: begin if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID; s_axi_wready_i <= 1'b1; write_cs <= P_WRITE_DATA; end else begin s_axi_awready_i <= 1'b1; end end P_WRITE_DATA: begin if (S_AXI_WVALID & S_AXI_WLAST) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; write_cs <= P_WRITE_RESP; end end P_WRITE_RESP: begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; write_cs <= P_WRITE_IDLE; end end endcase end end always @(posedge ACLK) begin if (~ARESETN) begin read_cs <= P_READ_IDLE; s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_rid_i <= 0; read_cnt <= 0; end else begin case (read_cs) P_READ_IDLE: begin if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID; read_cnt <= S_AXI_ARLEN; s_axi_rlast_i <= (S_AXI_ARLEN == 0); read_cs <= P_READ_START; end else begin s_axi_arready_i <= 1'b1; end end P_READ_START: begin s_axi_rvalid_i <= 1'b1; read_cs <= P_READ_DATA; end P_READ_DATA: begin if (S_AXI_RREADY) begin if (read_cnt == 0) begin s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_arready_i <= 1'b1; read_cs <= P_READ_IDLE; end else begin if (read_cnt == 1) begin s_axi_rlast_i <= 1'b1; end read_cnt <= read_cnt - 1; end end end endcase end end end endgenerate endmodule
module axi_protocol_converter_v2_1_decerr_slave # ( parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_PROTOCOL = 0, parameter integer C_RESP = 2'b11, parameter integer C_IGNORE_ID = 0 ) ( input wire ACLK, input wire ARESETN, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, input wire S_AXI_WLAST, input wire S_AXI_WVALID, output wire S_AXI_WREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID, output wire [1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID, output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA, output wire [1:0] S_AXI_RRESP, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RLAST, output wire S_AXI_RVALID, input wire S_AXI_RREADY ); reg s_axi_awready_i; reg s_axi_wready_i; reg s_axi_bvalid_i; reg s_axi_arready_i; reg s_axi_rvalid_i; localparam P_WRITE_IDLE = 2'b00; localparam P_WRITE_DATA = 2'b01; localparam P_WRITE_RESP = 2'b10; localparam P_READ_IDLE = 2'b00; localparam P_READ_START = 2'b01; localparam P_READ_DATA = 2'b10; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; assign S_AXI_BRESP = C_RESP; assign S_AXI_RRESP = C_RESP; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_AWREADY = s_axi_awready_i; assign S_AXI_WREADY = s_axi_wready_i; assign S_AXI_BVALID = s_axi_bvalid_i; assign S_AXI_ARREADY = s_axi_arready_i; assign S_AXI_RVALID = s_axi_rvalid_i; generate if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite reg s_axi_rvalid_en; assign S_AXI_RLAST = 1'b1; assign S_AXI_BID = 0; assign S_AXI_RID = 0; always @(posedge ACLK) begin if (~ARESETN) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; end else begin if (s_axi_bvalid_i) begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; end end else if (S_AXI_WVALID & s_axi_wready_i) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; end else if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b1; end else begin s_axi_awready_i <= 1'b1; end end end always @(posedge ACLK) begin if (~ARESETN) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rvalid_en <= 1'b0; end else begin if (s_axi_rvalid_i) begin if (S_AXI_RREADY) begin s_axi_rvalid_i <= 1'b0; s_axi_arready_i <= 1'b1; end end else if (s_axi_rvalid_en) begin s_axi_rvalid_en <= 1'b0; s_axi_rvalid_i <= 1'b1; end else if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_en <= 1'b1; end else begin s_axi_arready_i <= 1'b1; end end end end else begin : gen_axi reg s_axi_rlast_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i; reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt; reg [1:0] write_cs; reg [1:0] read_cs; assign S_AXI_RLAST = s_axi_rlast_i; assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i; assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i; always @(posedge ACLK) begin if (~ARESETN) begin write_cs <= P_WRITE_IDLE; s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; s_axi_bid_i <= 0; end else begin case (write_cs) P_WRITE_IDLE: begin if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID; s_axi_wready_i <= 1'b1; write_cs <= P_WRITE_DATA; end else begin s_axi_awready_i <= 1'b1; end end P_WRITE_DATA: begin if (S_AXI_WVALID & S_AXI_WLAST) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; write_cs <= P_WRITE_RESP; end end P_WRITE_RESP: begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; write_cs <= P_WRITE_IDLE; end end endcase end end always @(posedge ACLK) begin if (~ARESETN) begin read_cs <= P_READ_IDLE; s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_rid_i <= 0; read_cnt <= 0; end else begin case (read_cs) P_READ_IDLE: begin if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID; read_cnt <= S_AXI_ARLEN; s_axi_rlast_i <= (S_AXI_ARLEN == 0); read_cs <= P_READ_START; end else begin s_axi_arready_i <= 1'b1; end end P_READ_START: begin s_axi_rvalid_i <= 1'b1; read_cs <= P_READ_DATA; end P_READ_DATA: begin if (S_AXI_RREADY) begin if (read_cnt == 0) begin s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_arready_i <= 1'b1; read_cs <= P_READ_IDLE; end else begin if (read_cnt == 1) begin s_axi_rlast_i <= 1'b1; end read_cnt <= read_cnt - 1; end end end endcase end end end endgenerate endmodule
module axi_protocol_converter_v2_1_decerr_slave # ( parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_PROTOCOL = 0, parameter integer C_RESP = 2'b11, parameter integer C_IGNORE_ID = 0 ) ( input wire ACLK, input wire ARESETN, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, input wire S_AXI_WLAST, input wire S_AXI_WVALID, output wire S_AXI_WREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID, output wire [1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID, output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA, output wire [1:0] S_AXI_RRESP, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RLAST, output wire S_AXI_RVALID, input wire S_AXI_RREADY ); reg s_axi_awready_i; reg s_axi_wready_i; reg s_axi_bvalid_i; reg s_axi_arready_i; reg s_axi_rvalid_i; localparam P_WRITE_IDLE = 2'b00; localparam P_WRITE_DATA = 2'b01; localparam P_WRITE_RESP = 2'b10; localparam P_READ_IDLE = 2'b00; localparam P_READ_START = 2'b01; localparam P_READ_DATA = 2'b10; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; assign S_AXI_BRESP = C_RESP; assign S_AXI_RRESP = C_RESP; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_AWREADY = s_axi_awready_i; assign S_AXI_WREADY = s_axi_wready_i; assign S_AXI_BVALID = s_axi_bvalid_i; assign S_AXI_ARREADY = s_axi_arready_i; assign S_AXI_RVALID = s_axi_rvalid_i; generate if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite reg s_axi_rvalid_en; assign S_AXI_RLAST = 1'b1; assign S_AXI_BID = 0; assign S_AXI_RID = 0; always @(posedge ACLK) begin if (~ARESETN) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; end else begin if (s_axi_bvalid_i) begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; end end else if (S_AXI_WVALID & s_axi_wready_i) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; end else if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b1; end else begin s_axi_awready_i <= 1'b1; end end end always @(posedge ACLK) begin if (~ARESETN) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rvalid_en <= 1'b0; end else begin if (s_axi_rvalid_i) begin if (S_AXI_RREADY) begin s_axi_rvalid_i <= 1'b0; s_axi_arready_i <= 1'b1; end end else if (s_axi_rvalid_en) begin s_axi_rvalid_en <= 1'b0; s_axi_rvalid_i <= 1'b1; end else if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_en <= 1'b1; end else begin s_axi_arready_i <= 1'b1; end end end end else begin : gen_axi reg s_axi_rlast_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i; reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt; reg [1:0] write_cs; reg [1:0] read_cs; assign S_AXI_RLAST = s_axi_rlast_i; assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i; assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i; always @(posedge ACLK) begin if (~ARESETN) begin write_cs <= P_WRITE_IDLE; s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; s_axi_bid_i <= 0; end else begin case (write_cs) P_WRITE_IDLE: begin if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID; s_axi_wready_i <= 1'b1; write_cs <= P_WRITE_DATA; end else begin s_axi_awready_i <= 1'b1; end end P_WRITE_DATA: begin if (S_AXI_WVALID & S_AXI_WLAST) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; write_cs <= P_WRITE_RESP; end end P_WRITE_RESP: begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; write_cs <= P_WRITE_IDLE; end end endcase end end always @(posedge ACLK) begin if (~ARESETN) begin read_cs <= P_READ_IDLE; s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_rid_i <= 0; read_cnt <= 0; end else begin case (read_cs) P_READ_IDLE: begin if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID; read_cnt <= S_AXI_ARLEN; s_axi_rlast_i <= (S_AXI_ARLEN == 0); read_cs <= P_READ_START; end else begin s_axi_arready_i <= 1'b1; end end P_READ_START: begin s_axi_rvalid_i <= 1'b1; read_cs <= P_READ_DATA; end P_READ_DATA: begin if (S_AXI_RREADY) begin if (read_cnt == 0) begin s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_arready_i <= 1'b1; read_cs <= P_READ_IDLE; end else begin if (read_cnt == 1) begin s_axi_rlast_i <= 1'b1; end read_cnt <= read_cnt - 1; end end end endcase end end end endgenerate endmodule
module axi_protocol_converter_v2_1_decerr_slave # ( parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_PROTOCOL = 0, parameter integer C_RESP = 2'b11, parameter integer C_IGNORE_ID = 0 ) ( input wire ACLK, input wire ARESETN, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, input wire S_AXI_WLAST, input wire S_AXI_WVALID, output wire S_AXI_WREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID, output wire [1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID, output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA, output wire [1:0] S_AXI_RRESP, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RLAST, output wire S_AXI_RVALID, input wire S_AXI_RREADY ); reg s_axi_awready_i; reg s_axi_wready_i; reg s_axi_bvalid_i; reg s_axi_arready_i; reg s_axi_rvalid_i; localparam P_WRITE_IDLE = 2'b00; localparam P_WRITE_DATA = 2'b01; localparam P_WRITE_RESP = 2'b10; localparam P_READ_IDLE = 2'b00; localparam P_READ_START = 2'b01; localparam P_READ_DATA = 2'b10; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; assign S_AXI_BRESP = C_RESP; assign S_AXI_RRESP = C_RESP; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_AWREADY = s_axi_awready_i; assign S_AXI_WREADY = s_axi_wready_i; assign S_AXI_BVALID = s_axi_bvalid_i; assign S_AXI_ARREADY = s_axi_arready_i; assign S_AXI_RVALID = s_axi_rvalid_i; generate if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite reg s_axi_rvalid_en; assign S_AXI_RLAST = 1'b1; assign S_AXI_BID = 0; assign S_AXI_RID = 0; always @(posedge ACLK) begin if (~ARESETN) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; end else begin if (s_axi_bvalid_i) begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; end end else if (S_AXI_WVALID & s_axi_wready_i) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; end else if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b1; end else begin s_axi_awready_i <= 1'b1; end end end always @(posedge ACLK) begin if (~ARESETN) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rvalid_en <= 1'b0; end else begin if (s_axi_rvalid_i) begin if (S_AXI_RREADY) begin s_axi_rvalid_i <= 1'b0; s_axi_arready_i <= 1'b1; end end else if (s_axi_rvalid_en) begin s_axi_rvalid_en <= 1'b0; s_axi_rvalid_i <= 1'b1; end else if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_en <= 1'b1; end else begin s_axi_arready_i <= 1'b1; end end end end else begin : gen_axi reg s_axi_rlast_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i; reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt; reg [1:0] write_cs; reg [1:0] read_cs; assign S_AXI_RLAST = s_axi_rlast_i; assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i; assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i; always @(posedge ACLK) begin if (~ARESETN) begin write_cs <= P_WRITE_IDLE; s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; s_axi_bid_i <= 0; end else begin case (write_cs) P_WRITE_IDLE: begin if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID; s_axi_wready_i <= 1'b1; write_cs <= P_WRITE_DATA; end else begin s_axi_awready_i <= 1'b1; end end P_WRITE_DATA: begin if (S_AXI_WVALID & S_AXI_WLAST) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; write_cs <= P_WRITE_RESP; end end P_WRITE_RESP: begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; write_cs <= P_WRITE_IDLE; end end endcase end end always @(posedge ACLK) begin if (~ARESETN) begin read_cs <= P_READ_IDLE; s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_rid_i <= 0; read_cnt <= 0; end else begin case (read_cs) P_READ_IDLE: begin if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID; read_cnt <= S_AXI_ARLEN; s_axi_rlast_i <= (S_AXI_ARLEN == 0); read_cs <= P_READ_START; end else begin s_axi_arready_i <= 1'b1; end end P_READ_START: begin s_axi_rvalid_i <= 1'b1; read_cs <= P_READ_DATA; end P_READ_DATA: begin if (S_AXI_RREADY) begin if (read_cnt == 0) begin s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_arready_i <= 1'b1; read_cs <= P_READ_IDLE; end else begin if (read_cnt == 1) begin s_axi_rlast_i <= 1'b1; end read_cnt <= read_cnt - 1; end end end endcase end end end endgenerate endmodule
module axi_protocol_converter_v2_1_decerr_slave # ( parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AXI_PROTOCOL = 0, parameter integer C_RESP = 2'b11, parameter integer C_IGNORE_ID = 0 ) ( input wire ACLK, input wire ARESETN, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID, input wire S_AXI_AWVALID, output wire S_AXI_AWREADY, input wire S_AXI_WLAST, input wire S_AXI_WVALID, output wire S_AXI_WREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID, output wire [1:0] S_AXI_BRESP, output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER, output wire S_AXI_BVALID, input wire S_AXI_BREADY, input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] S_AXI_ARLEN, input wire S_AXI_ARVALID, output wire S_AXI_ARREADY, output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID, output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA, output wire [1:0] S_AXI_RRESP, output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER, output wire S_AXI_RLAST, output wire S_AXI_RVALID, input wire S_AXI_RREADY ); reg s_axi_awready_i; reg s_axi_wready_i; reg s_axi_bvalid_i; reg s_axi_arready_i; reg s_axi_rvalid_i; localparam P_WRITE_IDLE = 2'b00; localparam P_WRITE_DATA = 2'b01; localparam P_WRITE_RESP = 2'b10; localparam P_READ_IDLE = 2'b00; localparam P_READ_START = 2'b01; localparam P_READ_DATA = 2'b10; localparam integer P_AXI4 = 0; localparam integer P_AXI3 = 1; localparam integer P_AXILITE = 2; assign S_AXI_BRESP = C_RESP; assign S_AXI_RRESP = C_RESP; assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}}; assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}}; assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}}; assign S_AXI_AWREADY = s_axi_awready_i; assign S_AXI_WREADY = s_axi_wready_i; assign S_AXI_BVALID = s_axi_bvalid_i; assign S_AXI_ARREADY = s_axi_arready_i; assign S_AXI_RVALID = s_axi_rvalid_i; generate if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite reg s_axi_rvalid_en; assign S_AXI_RLAST = 1'b1; assign S_AXI_BID = 0; assign S_AXI_RID = 0; always @(posedge ACLK) begin if (~ARESETN) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; end else begin if (s_axi_bvalid_i) begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; end end else if (S_AXI_WVALID & s_axi_wready_i) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; end else if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b1; end else begin s_axi_awready_i <= 1'b1; end end end always @(posedge ACLK) begin if (~ARESETN) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rvalid_en <= 1'b0; end else begin if (s_axi_rvalid_i) begin if (S_AXI_RREADY) begin s_axi_rvalid_i <= 1'b0; s_axi_arready_i <= 1'b1; end end else if (s_axi_rvalid_en) begin s_axi_rvalid_en <= 1'b0; s_axi_rvalid_i <= 1'b1; end else if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; s_axi_rvalid_en <= 1'b1; end else begin s_axi_arready_i <= 1'b1; end end end end else begin : gen_axi reg s_axi_rlast_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i; reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i; reg [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] read_cnt; reg [1:0] write_cs; reg [1:0] read_cs; assign S_AXI_RLAST = s_axi_rlast_i; assign S_AXI_BID = C_IGNORE_ID ? 0 : s_axi_bid_i; assign S_AXI_RID = C_IGNORE_ID ? 0 : s_axi_rid_i; always @(posedge ACLK) begin if (~ARESETN) begin write_cs <= P_WRITE_IDLE; s_axi_awready_i <= 1'b0; s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b0; s_axi_bid_i <= 0; end else begin case (write_cs) P_WRITE_IDLE: begin if (S_AXI_AWVALID & s_axi_awready_i) begin s_axi_awready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_bid_i <= S_AXI_AWID; s_axi_wready_i <= 1'b1; write_cs <= P_WRITE_DATA; end else begin s_axi_awready_i <= 1'b1; end end P_WRITE_DATA: begin if (S_AXI_WVALID & S_AXI_WLAST) begin s_axi_wready_i <= 1'b0; s_axi_bvalid_i <= 1'b1; write_cs <= P_WRITE_RESP; end end P_WRITE_RESP: begin if (S_AXI_BREADY) begin s_axi_bvalid_i <= 1'b0; s_axi_awready_i <= 1'b1; write_cs <= P_WRITE_IDLE; end end endcase end end always @(posedge ACLK) begin if (~ARESETN) begin read_cs <= P_READ_IDLE; s_axi_arready_i <= 1'b0; s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_rid_i <= 0; read_cnt <= 0; end else begin case (read_cs) P_READ_IDLE: begin if (S_AXI_ARVALID & s_axi_arready_i) begin s_axi_arready_i <= 1'b0; if (C_IGNORE_ID == 0) s_axi_rid_i <= S_AXI_ARID; read_cnt <= S_AXI_ARLEN; s_axi_rlast_i <= (S_AXI_ARLEN == 0); read_cs <= P_READ_START; end else begin s_axi_arready_i <= 1'b1; end end P_READ_START: begin s_axi_rvalid_i <= 1'b1; read_cs <= P_READ_DATA; end P_READ_DATA: begin if (S_AXI_RREADY) begin if (read_cnt == 0) begin s_axi_rvalid_i <= 1'b0; s_axi_rlast_i <= 1'b0; s_axi_arready_i <= 1'b1; read_cs <= P_READ_IDLE; end else begin if (read_cnt == 1) begin s_axi_rlast_i <= 1'b1; end read_cnt <= read_cnt - 1; end end end endcase end end end endgenerate endmodule
module axi_protocol_converter_v2_1_w_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire [C_AXI_ID_WIDTH-1:0] cmd_id, input wire [4-1:0] cmd_length, output wire cmd_ready, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Burst length handling. reg first_mi_word; reg [8-1:0] length_counter_1; reg [8-1:0] length_counter; wire [8-1:0] next_length_counter; wire last_beat; wire last_word; // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Internal SI side control signals. wire S_AXI_WREADY_I; // Internal signals for MI-side. wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I; wire M_AXI_WLAST_I; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I; wire M_AXI_WVALID_I; wire M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from SI-Side to MI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling; assign S_AXI_WREADY = S_AXI_WREADY_I; // Indicate when there is data available @ MI-side. assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid; // Get MI-side data. assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Keep track of data forwarding: // // On the first cycle of the transaction is the length taken from the Command // FIFO. The length is decreased until 0 is reached which indicates last data // word. // // If bursts are unsupported will all data words be the last word, each one // from a separate transaction. // ///////////////////////////////////////////////////////////////////////////// // Select command length or counted length. always @ * begin if ( first_mi_word ) length_counter = cmd_length; else length_counter = length_counter_1; end // Calculate next length counter value. assign next_length_counter = length_counter - 1'b1; // Keep track of burst length. always @ (posedge ACLK) begin if (ARESET) begin first_mi_word <= 1'b1; length_counter_1 <= 4'b0; end else begin if ( pop_mi_data ) begin if ( M_AXI_WLAST_I ) begin first_mi_word <= 1'b1; end else begin first_mi_word <= 1'b0; end length_counter_1 <= next_length_counter; end end end // Detect last beat in a burst. assign last_beat = ( length_counter == 4'b0 ); // Determine if this last word that shall be extracted from this SI-side word. assign last_word = ( last_beat ) | ( C_SUPPORT_BURSTS == 0 ); ///////////////////////////////////////////////////////////////////////////// // Select the SI-side word to write. // // Most information can be reused directly (DATA, STRB, ID and USER). // ID is taken from the Command FIFO. // // Split transactions needs to insert new LAST transactions. So to simplify // is the LAST signal always generated. // ///////////////////////////////////////////////////////////////////////////// // ID and USER is copied from the SI word to all MI word transactions. assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}}; // Data has to be multiplexed. assign M_AXI_WDATA_I = S_AXI_WDATA; assign M_AXI_WSTRB_I = S_AXI_WSTRB; // ID is taken directly from the command queue. assign M_AXI_WID_I = cmd_id; // Handle last flag, i.e. set for MI-side last word. assign M_AXI_WLAST_I = last_word; ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign M_AXI_WID = M_AXI_WID_I; assign M_AXI_WDATA = M_AXI_WDATA_I; assign M_AXI_WSTRB = M_AXI_WSTRB_I; assign M_AXI_WLAST = M_AXI_WLAST_I; assign M_AXI_WUSER = M_AXI_WUSER_I; assign M_AXI_WVALID = M_AXI_WVALID_I; assign M_AXI_WREADY_I = M_AXI_WREADY; endmodule
module axi_protocol_converter_v2_1_w_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire [C_AXI_ID_WIDTH-1:0] cmd_id, input wire [4-1:0] cmd_length, output wire cmd_ready, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Burst length handling. reg first_mi_word; reg [8-1:0] length_counter_1; reg [8-1:0] length_counter; wire [8-1:0] next_length_counter; wire last_beat; wire last_word; // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Internal SI side control signals. wire S_AXI_WREADY_I; // Internal signals for MI-side. wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I; wire M_AXI_WLAST_I; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I; wire M_AXI_WVALID_I; wire M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from SI-Side to MI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling; assign S_AXI_WREADY = S_AXI_WREADY_I; // Indicate when there is data available @ MI-side. assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid; // Get MI-side data. assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Keep track of data forwarding: // // On the first cycle of the transaction is the length taken from the Command // FIFO. The length is decreased until 0 is reached which indicates last data // word. // // If bursts are unsupported will all data words be the last word, each one // from a separate transaction. // ///////////////////////////////////////////////////////////////////////////// // Select command length or counted length. always @ * begin if ( first_mi_word ) length_counter = cmd_length; else length_counter = length_counter_1; end // Calculate next length counter value. assign next_length_counter = length_counter - 1'b1; // Keep track of burst length. always @ (posedge ACLK) begin if (ARESET) begin first_mi_word <= 1'b1; length_counter_1 <= 4'b0; end else begin if ( pop_mi_data ) begin if ( M_AXI_WLAST_I ) begin first_mi_word <= 1'b1; end else begin first_mi_word <= 1'b0; end length_counter_1 <= next_length_counter; end end end // Detect last beat in a burst. assign last_beat = ( length_counter == 4'b0 ); // Determine if this last word that shall be extracted from this SI-side word. assign last_word = ( last_beat ) | ( C_SUPPORT_BURSTS == 0 ); ///////////////////////////////////////////////////////////////////////////// // Select the SI-side word to write. // // Most information can be reused directly (DATA, STRB, ID and USER). // ID is taken from the Command FIFO. // // Split transactions needs to insert new LAST transactions. So to simplify // is the LAST signal always generated. // ///////////////////////////////////////////////////////////////////////////// // ID and USER is copied from the SI word to all MI word transactions. assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}}; // Data has to be multiplexed. assign M_AXI_WDATA_I = S_AXI_WDATA; assign M_AXI_WSTRB_I = S_AXI_WSTRB; // ID is taken directly from the command queue. assign M_AXI_WID_I = cmd_id; // Handle last flag, i.e. set for MI-side last word. assign M_AXI_WLAST_I = last_word; ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign M_AXI_WID = M_AXI_WID_I; assign M_AXI_WDATA = M_AXI_WDATA_I; assign M_AXI_WSTRB = M_AXI_WSTRB_I; assign M_AXI_WLAST = M_AXI_WLAST_I; assign M_AXI_WUSER = M_AXI_WUSER_I; assign M_AXI_WVALID = M_AXI_WVALID_I; assign M_AXI_WREADY_I = M_AXI_WREADY; endmodule
module axi_protocol_converter_v2_1_w_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire [C_AXI_ID_WIDTH-1:0] cmd_id, input wire [4-1:0] cmd_length, output wire cmd_ready, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Burst length handling. reg first_mi_word; reg [8-1:0] length_counter_1; reg [8-1:0] length_counter; wire [8-1:0] next_length_counter; wire last_beat; wire last_word; // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Internal SI side control signals. wire S_AXI_WREADY_I; // Internal signals for MI-side. wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I; wire M_AXI_WLAST_I; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I; wire M_AXI_WVALID_I; wire M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from SI-Side to MI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling; assign S_AXI_WREADY = S_AXI_WREADY_I; // Indicate when there is data available @ MI-side. assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid; // Get MI-side data. assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Keep track of data forwarding: // // On the first cycle of the transaction is the length taken from the Command // FIFO. The length is decreased until 0 is reached which indicates last data // word. // // If bursts are unsupported will all data words be the last word, each one // from a separate transaction. // ///////////////////////////////////////////////////////////////////////////// // Select command length or counted length. always @ * begin if ( first_mi_word ) length_counter = cmd_length; else length_counter = length_counter_1; end // Calculate next length counter value. assign next_length_counter = length_counter - 1'b1; // Keep track of burst length. always @ (posedge ACLK) begin if (ARESET) begin first_mi_word <= 1'b1; length_counter_1 <= 4'b0; end else begin if ( pop_mi_data ) begin if ( M_AXI_WLAST_I ) begin first_mi_word <= 1'b1; end else begin first_mi_word <= 1'b0; end length_counter_1 <= next_length_counter; end end end // Detect last beat in a burst. assign last_beat = ( length_counter == 4'b0 ); // Determine if this last word that shall be extracted from this SI-side word. assign last_word = ( last_beat ) | ( C_SUPPORT_BURSTS == 0 ); ///////////////////////////////////////////////////////////////////////////// // Select the SI-side word to write. // // Most information can be reused directly (DATA, STRB, ID and USER). // ID is taken from the Command FIFO. // // Split transactions needs to insert new LAST transactions. So to simplify // is the LAST signal always generated. // ///////////////////////////////////////////////////////////////////////////// // ID and USER is copied from the SI word to all MI word transactions. assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}}; // Data has to be multiplexed. assign M_AXI_WDATA_I = S_AXI_WDATA; assign M_AXI_WSTRB_I = S_AXI_WSTRB; // ID is taken directly from the command queue. assign M_AXI_WID_I = cmd_id; // Handle last flag, i.e. set for MI-side last word. assign M_AXI_WLAST_I = last_word; ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign M_AXI_WID = M_AXI_WID_I; assign M_AXI_WDATA = M_AXI_WDATA_I; assign M_AXI_WSTRB = M_AXI_WSTRB_I; assign M_AXI_WLAST = M_AXI_WLAST_I; assign M_AXI_WUSER = M_AXI_WUSER_I; assign M_AXI_WVALID = M_AXI_WVALID_I; assign M_AXI_WREADY_I = M_AXI_WREADY; endmodule
module axi_protocol_converter_v2_1_w_axi3_conv # ( parameter C_FAMILY = "none", parameter integer C_AXI_ID_WIDTH = 1, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_SUPPORT_SPLITTING = 1, // Implement transaction splitting logic. // Disabled whan all connected masters are AXI3 and have same or narrower data width. parameter integer C_SUPPORT_BURSTS = 1 // Disabled when all connected masters are AxiLite, // allowing logic to be simplified. ) ( // System Signals input wire ACLK, input wire ARESET, // Command Interface input wire cmd_valid, input wire [C_AXI_ID_WIDTH-1:0] cmd_id, input wire [4-1:0] cmd_length, output wire cmd_ready, // Slave Interface Write Data Ports input wire [C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA, input wire [C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB, input wire S_AXI_WLAST, input wire [C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER, input wire S_AXI_WVALID, output wire S_AXI_WREADY, // Master Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID, output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA, output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB, output wire M_AXI_WLAST, output wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER, output wire M_AXI_WVALID, input wire M_AXI_WREADY ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// // Burst length handling. reg first_mi_word; reg [8-1:0] length_counter_1; reg [8-1:0] length_counter; wire [8-1:0] next_length_counter; wire last_beat; wire last_word; // Throttling help signals. wire cmd_ready_i; wire pop_mi_data; wire mi_stalling; // Internal SI side control signals. wire S_AXI_WREADY_I; // Internal signals for MI-side. wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID_I; wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA_I; wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB_I; wire M_AXI_WLAST_I; wire [C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER_I; wire M_AXI_WVALID_I; wire M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Handle interface handshaking: // // Forward data from SI-Side to MI-Side while a command is available. When // the transaction has completed the command is popped from the Command FIFO. // ///////////////////////////////////////////////////////////////////////////// // Pop word from SI-side. assign S_AXI_WREADY_I = S_AXI_WVALID & cmd_valid & ~mi_stalling; assign S_AXI_WREADY = S_AXI_WREADY_I; // Indicate when there is data available @ MI-side. assign M_AXI_WVALID_I = S_AXI_WVALID & cmd_valid; // Get MI-side data. assign pop_mi_data = M_AXI_WVALID_I & M_AXI_WREADY_I; // Signal that the command is done (so that it can be poped from command queue). assign cmd_ready_i = cmd_valid & pop_mi_data & last_word; assign cmd_ready = cmd_ready_i; // Detect when MI-side is stalling. assign mi_stalling = M_AXI_WVALID_I & ~M_AXI_WREADY_I; ///////////////////////////////////////////////////////////////////////////// // Keep track of data forwarding: // // On the first cycle of the transaction is the length taken from the Command // FIFO. The length is decreased until 0 is reached which indicates last data // word. // // If bursts are unsupported will all data words be the last word, each one // from a separate transaction. // ///////////////////////////////////////////////////////////////////////////// // Select command length or counted length. always @ * begin if ( first_mi_word ) length_counter = cmd_length; else length_counter = length_counter_1; end // Calculate next length counter value. assign next_length_counter = length_counter - 1'b1; // Keep track of burst length. always @ (posedge ACLK) begin if (ARESET) begin first_mi_word <= 1'b1; length_counter_1 <= 4'b0; end else begin if ( pop_mi_data ) begin if ( M_AXI_WLAST_I ) begin first_mi_word <= 1'b1; end else begin first_mi_word <= 1'b0; end length_counter_1 <= next_length_counter; end end end // Detect last beat in a burst. assign last_beat = ( length_counter == 4'b0 ); // Determine if this last word that shall be extracted from this SI-side word. assign last_word = ( last_beat ) | ( C_SUPPORT_BURSTS == 0 ); ///////////////////////////////////////////////////////////////////////////// // Select the SI-side word to write. // // Most information can be reused directly (DATA, STRB, ID and USER). // ID is taken from the Command FIFO. // // Split transactions needs to insert new LAST transactions. So to simplify // is the LAST signal always generated. // ///////////////////////////////////////////////////////////////////////////// // ID and USER is copied from the SI word to all MI word transactions. assign M_AXI_WUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_WUSER : {C_AXI_WUSER_WIDTH{1'b0}}; // Data has to be multiplexed. assign M_AXI_WDATA_I = S_AXI_WDATA; assign M_AXI_WSTRB_I = S_AXI_WSTRB; // ID is taken directly from the command queue. assign M_AXI_WID_I = cmd_id; // Handle last flag, i.e. set for MI-side last word. assign M_AXI_WLAST_I = last_word; ///////////////////////////////////////////////////////////////////////////// // MI-side output handling // ///////////////////////////////////////////////////////////////////////////// // TODO: registered? assign M_AXI_WID = M_AXI_WID_I; assign M_AXI_WDATA = M_AXI_WDATA_I; assign M_AXI_WSTRB = M_AXI_WSTRB_I; assign M_AXI_WLAST = M_AXI_WLAST_I; assign M_AXI_WUSER = M_AXI_WUSER_I; assign M_AXI_WVALID = M_AXI_WVALID_I; assign M_AXI_WREADY_I = M_AXI_WREADY; endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output wire next_pending ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXBURST decodes localparam P_AXBURST_FIXED = 2'b00; localparam P_AXBURST_INCR = 2'b01; localparam P_AXBURST_WRAP = 2'b10; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr; wire incr_next_pending; wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr; wire wrap_next_pending; reg sel_first; reg s_axburst_eq1; reg s_axburst_eq0; reg sel_first_i; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // INCR and WRAP translations are calcuated in independently, select the one // for our transactions // right shift by the UI width to the DRAM width ratio assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr : (s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr : wrap_cmd_byte_addr; assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1; // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | s_axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end always @( * ) begin if (reset | s_axhandshake) begin sel_first_i = 1'b1; end else if (next) begin sel_first_i = 1'b0; end else begin sel_first_i = sel_first; end end assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0; always @(posedge clk) begin if (sel_first_i || s_axburst[1]) begin s_axburst_eq1 <= wrap_next_pending; end else begin s_axburst_eq1 <= incr_next_pending; end if (sel_first_i || !s_axburst[1]) begin s_axburst_eq0 <= incr_next_pending; end else begin s_axburst_eq0 <= wrap_next_pending; end end axi_protocol_converter_v2_1_b2s_incr_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) incr_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( incr_cmd_byte_addr ) , .next ( next ) , .next_pending ( incr_next_pending ) ); axi_protocol_converter_v2_1_b2s_wrap_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) wrap_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( wrap_cmd_byte_addr ) , .next ( next ) , .next_pending ( wrap_next_pending ) ); endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output wire next_pending ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXBURST decodes localparam P_AXBURST_FIXED = 2'b00; localparam P_AXBURST_INCR = 2'b01; localparam P_AXBURST_WRAP = 2'b10; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr; wire incr_next_pending; wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr; wire wrap_next_pending; reg sel_first; reg s_axburst_eq1; reg s_axburst_eq0; reg sel_first_i; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // INCR and WRAP translations are calcuated in independently, select the one // for our transactions // right shift by the UI width to the DRAM width ratio assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr : (s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr : wrap_cmd_byte_addr; assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1; // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | s_axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end always @( * ) begin if (reset | s_axhandshake) begin sel_first_i = 1'b1; end else if (next) begin sel_first_i = 1'b0; end else begin sel_first_i = sel_first; end end assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0; always @(posedge clk) begin if (sel_first_i || s_axburst[1]) begin s_axburst_eq1 <= wrap_next_pending; end else begin s_axburst_eq1 <= incr_next_pending; end if (sel_first_i || !s_axburst[1]) begin s_axburst_eq0 <= incr_next_pending; end else begin s_axburst_eq0 <= wrap_next_pending; end end axi_protocol_converter_v2_1_b2s_incr_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) incr_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( incr_cmd_byte_addr ) , .next ( next ) , .next_pending ( incr_next_pending ) ); axi_protocol_converter_v2_1_b2s_wrap_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) wrap_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( wrap_cmd_byte_addr ) , .next ( next ) , .next_pending ( wrap_next_pending ) ); endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output wire next_pending ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXBURST decodes localparam P_AXBURST_FIXED = 2'b00; localparam P_AXBURST_INCR = 2'b01; localparam P_AXBURST_WRAP = 2'b10; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr; wire incr_next_pending; wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr; wire wrap_next_pending; reg sel_first; reg s_axburst_eq1; reg s_axburst_eq0; reg sel_first_i; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // INCR and WRAP translations are calcuated in independently, select the one // for our transactions // right shift by the UI width to the DRAM width ratio assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr : (s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr : wrap_cmd_byte_addr; assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1; // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | s_axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end always @( * ) begin if (reset | s_axhandshake) begin sel_first_i = 1'b1; end else if (next) begin sel_first_i = 1'b0; end else begin sel_first_i = sel_first; end end assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0; always @(posedge clk) begin if (sel_first_i || s_axburst[1]) begin s_axburst_eq1 <= wrap_next_pending; end else begin s_axburst_eq1 <= incr_next_pending; end if (sel_first_i || !s_axburst[1]) begin s_axburst_eq0 <= incr_next_pending; end else begin s_axburst_eq0 <= wrap_next_pending; end end axi_protocol_converter_v2_1_b2s_incr_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) incr_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( incr_cmd_byte_addr ) , .next ( next ) , .next_pending ( incr_next_pending ) ); axi_protocol_converter_v2_1_b2s_wrap_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) wrap_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( wrap_cmd_byte_addr ) , .next ( next ) , .next_pending ( wrap_next_pending ) ); endmodule
module // signal to increment to the next mc transaction input wire next , // signal to the fsm there is another transaction required output wire next_pending ); //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// // AXBURST decodes localparam P_AXBURST_FIXED = 2'b00; localparam P_AXBURST_INCR = 2'b01; localparam P_AXBURST_WRAP = 2'b10; //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// wire [C_AXI_ADDR_WIDTH-1:0] incr_cmd_byte_addr; wire incr_next_pending; wire [C_AXI_ADDR_WIDTH-1:0] wrap_cmd_byte_addr; wire wrap_next_pending; reg sel_first; reg s_axburst_eq1; reg s_axburst_eq0; reg sel_first_i; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // INCR and WRAP translations are calcuated in independently, select the one // for our transactions // right shift by the UI width to the DRAM width ratio assign m_axaddr = (s_axburst == P_AXBURST_FIXED) ? s_axaddr : (s_axburst == P_AXBURST_INCR) ? incr_cmd_byte_addr : wrap_cmd_byte_addr; assign incr_burst = (s_axburst[1]) ? 1'b0 : 1'b1; // Indicates if we are on the first transaction of a mc translation with more // than 1 transaction. always @(posedge clk) begin if (reset | s_axhandshake) begin sel_first <= 1'b1; end else if (next) begin sel_first <= 1'b0; end end always @( * ) begin if (reset | s_axhandshake) begin sel_first_i = 1'b1; end else if (next) begin sel_first_i = 1'b0; end else begin sel_first_i = sel_first; end end assign next_pending = s_axburst[1] ? s_axburst_eq1 : s_axburst_eq0; always @(posedge clk) begin if (sel_first_i || s_axburst[1]) begin s_axburst_eq1 <= wrap_next_pending; end else begin s_axburst_eq1 <= incr_next_pending; end if (sel_first_i || !s_axburst[1]) begin s_axburst_eq0 <= incr_next_pending; end else begin s_axburst_eq0 <= wrap_next_pending; end end axi_protocol_converter_v2_1_b2s_incr_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) incr_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( incr_cmd_byte_addr ) , .next ( next ) , .next_pending ( incr_next_pending ) ); axi_protocol_converter_v2_1_b2s_wrap_cmd #( .C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH) ) wrap_cmd_0 ( .clk ( clk ) , .reset ( reset ) , .axaddr ( s_axaddr ) , .axlen ( s_axlen ) , .axsize ( s_axsize ) , .axhandshake ( s_axhandshake ) , .cmd_byte_addr ( wrap_cmd_byte_addr ) , .next ( next ) , .next_pending ( wrap_next_pending ) ); endmodule
module generic_baseblocks_v2_1_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
module generic_baseblocks_v2_1_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
module generic_baseblocks_v2_1_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
module generic_baseblocks_v2_1_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
module generic_baseblocks_v2_1_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module axi_data_fifo_v2_1_axic_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [5:9] when TYPE="lut", // Range = [5:12] when TYPE="bram", parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512] parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based, // "bram" = BRAM based ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); axi_data_fifo_v2_1_fifo_gen #( .C_FAMILY(C_FAMILY), .C_COMMON_CLOCK(1), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_FIFO_WIDTH), .C_FIFO_TYPE(C_FIFO_TYPE)) inst ( .clk(ACLK), .rst(ARESET), .wr_clk(1'b0), .wr_en(S_VALID), .wr_ready(S_READY), .wr_data(S_MESG), .rd_clk(1'b0), .rd_en(M_READY), .rd_valid(M_VALID), .rd_data(M_MESG)); endmodule
module axi_data_fifo_v2_1_axic_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [5:9] when TYPE="lut", // Range = [5:12] when TYPE="bram", parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512] parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based, // "bram" = BRAM based ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); axi_data_fifo_v2_1_fifo_gen #( .C_FAMILY(C_FAMILY), .C_COMMON_CLOCK(1), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_FIFO_WIDTH), .C_FIFO_TYPE(C_FIFO_TYPE)) inst ( .clk(ACLK), .rst(ARESET), .wr_clk(1'b0), .wr_en(S_VALID), .wr_ready(S_READY), .wr_data(S_MESG), .rd_clk(1'b0), .rd_en(M_READY), .rd_valid(M_VALID), .rd_data(M_MESG)); endmodule
module axi_data_fifo_v2_1_axic_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [5:9] when TYPE="lut", // Range = [5:12] when TYPE="bram", parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512] parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based, // "bram" = BRAM based ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); axi_data_fifo_v2_1_fifo_gen #( .C_FAMILY(C_FAMILY), .C_COMMON_CLOCK(1), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_FIFO_WIDTH), .C_FIFO_TYPE(C_FIFO_TYPE)) inst ( .clk(ACLK), .rst(ARESET), .wr_clk(1'b0), .wr_en(S_VALID), .wr_ready(S_READY), .wr_data(S_MESG), .rd_clk(1'b0), .rd_en(M_READY), .rd_valid(M_VALID), .rd_data(M_MESG)); endmodule
module axi_data_fifo_v2_1_axic_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [5:9] when TYPE="lut", // Range = [5:12] when TYPE="bram", parameter integer C_FIFO_WIDTH = 64, // Width of payload [1:512] parameter C_FIFO_TYPE = "lut" // "lut" = LUT (SRL) based, // "bram" = BRAM based ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); axi_data_fifo_v2_1_fifo_gen #( .C_FAMILY(C_FAMILY), .C_COMMON_CLOCK(1), .C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG), .C_FIFO_WIDTH(C_FIFO_WIDTH), .C_FIFO_TYPE(C_FIFO_TYPE)) inst ( .clk(ACLK), .rst(ARESET), .wr_clk(1'b0), .wr_en(S_VALID), .wr_ready(S_READY), .wr_data(S_MESG), .rd_clk(1'b0), .rd_en(M_READY), .rd_valid(M_VALID), .rd_data(M_MESG)); endmodule
module generic_baseblocks_v2_1_comparator_sel # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
module generic_baseblocks_v2_1_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
module generic_baseblocks_v2_1_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
module generic_baseblocks_v2_1_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
module generic_baseblocks_v2_1_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
module axi_data_fifo_v2_1_axic_reg_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg m_valid_i; reg s_ready_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register reg [C_FIFO_WIDTH-1:0] storage_data1; wire [C_FIFO_WIDTH-1:0] storage_data2; // Intermediate SRL data reg load_s1; wire load_s1_from_s2; reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; assign M_VALID = m_valid_i; assign S_READY = C_USE_FULL ? s_ready_i : 1'b1; assign push = (S_VALID & (C_USE_FULL ? s_ready_i : 1'b1) & (state == TWO)) | (~M_READY & S_VALID & (state == ONE)); assign pop = M_READY & (state == TWO); assign M_MESG = storage_data1; always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_MESG; end // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (areset_d1) begin state <= ZERO; m_valid_i <= 1'b0; end else begin case (state) // No transaction stored locally ZERO: begin if (S_VALID) begin state <= ONE; // Got one so move to ONE m_valid_i <= 1'b1; end end // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) begin state <= ZERO; // Read out one so move to ZERO m_valid_i <= 1'b0; end else if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO m_valid_i <= 1'b1; end end // TWO transaction stored locally TWO: begin if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin state <= ONE; // Read out one so move to ONE m_valid_i <= 1'b1; end end endcase // case (state) end end // always @ (posedge ACLK) generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin s_ready_i <= 1'b0; end else if (C_USE_FULL && pop) begin s_ready_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (storage_data2[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_reg_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg m_valid_i; reg s_ready_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register reg [C_FIFO_WIDTH-1:0] storage_data1; wire [C_FIFO_WIDTH-1:0] storage_data2; // Intermediate SRL data reg load_s1; wire load_s1_from_s2; reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; assign M_VALID = m_valid_i; assign S_READY = C_USE_FULL ? s_ready_i : 1'b1; assign push = (S_VALID & (C_USE_FULL ? s_ready_i : 1'b1) & (state == TWO)) | (~M_READY & S_VALID & (state == ONE)); assign pop = M_READY & (state == TWO); assign M_MESG = storage_data1; always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_MESG; end // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (areset_d1) begin state <= ZERO; m_valid_i <= 1'b0; end else begin case (state) // No transaction stored locally ZERO: begin if (S_VALID) begin state <= ONE; // Got one so move to ONE m_valid_i <= 1'b1; end end // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) begin state <= ZERO; // Read out one so move to ZERO m_valid_i <= 1'b0; end else if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO m_valid_i <= 1'b1; end end // TWO transaction stored locally TWO: begin if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin state <= ONE; // Read out one so move to ONE m_valid_i <= 1'b1; end end endcase // case (state) end end // always @ (posedge ACLK) generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin s_ready_i <= 1'b0; end else if (C_USE_FULL && pop) begin s_ready_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (storage_data2[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_reg_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg m_valid_i; reg s_ready_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register reg [C_FIFO_WIDTH-1:0] storage_data1; wire [C_FIFO_WIDTH-1:0] storage_data2; // Intermediate SRL data reg load_s1; wire load_s1_from_s2; reg [1:0] state; localparam [1:0] ZERO = 2'b10, ONE = 2'b11, TWO = 2'b01; assign M_VALID = m_valid_i; assign S_READY = C_USE_FULL ? s_ready_i : 1'b1; assign push = (S_VALID & (C_USE_FULL ? s_ready_i : 1'b1) & (state == TWO)) | (~M_READY & S_VALID & (state == ONE)); assign pop = M_READY & (state == TWO); assign M_MESG = storage_data1; always @(posedge ACLK) begin areset_d1 <= ARESET; end // Load storage1 with either slave side data or from storage2 always @(posedge ACLK) begin if (load_s1) if (load_s1_from_s2) storage_data1 <= storage_data2; else storage_data1 <= S_MESG; end // Loading s1 always @ * begin if ( ((state == ZERO) && (S_VALID == 1)) || // Load when empty on slave transaction // Load when ONE if we both have read and write at the same time ((state == ONE) && (S_VALID == 1) && (M_READY == 1)) || // Load when TWO and we have a transaction on Master side ((state == TWO) && (M_READY == 1))) load_s1 = 1'b1; else load_s1 = 1'b0; end // always @ * assign load_s1_from_s2 = (state == TWO); // State Machine for handling output signals always @(posedge ACLK) begin if (areset_d1) begin state <= ZERO; m_valid_i <= 1'b0; end else begin case (state) // No transaction stored locally ZERO: begin if (S_VALID) begin state <= ONE; // Got one so move to ONE m_valid_i <= 1'b1; end end // One transaction stored locally ONE: begin if (M_READY & ~S_VALID) begin state <= ZERO; // Read out one so move to ZERO m_valid_i <= 1'b0; end else if (~M_READY & S_VALID) begin state <= TWO; // Got another one so move to TWO m_valid_i <= 1'b1; end end // TWO transaction stored locally TWO: begin if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin state <= ONE; // Read out one so move to ONE m_valid_i <= 1'b1; end end endcase // case (state) end end // always @ (posedge ACLK) generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end always @(posedge ACLK) begin if (ARESET) begin s_ready_i <= 1'b0; end else if (areset_d1) begin s_ready_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin s_ready_i <= 1'b0; end else if (C_USE_FULL && pop) begin s_ready_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (storage_data2[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module axi_data_fifo_v2_1_axic_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg M_VALID_i; reg S_READY_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data assign M_VALID = M_VALID_i; assign S_READY = C_USE_FULL ? S_READY_i : 1'b1; assign M_MESG = m_axi_mesg_i; assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1); assign pop = M_VALID_i & M_READY; always @(posedge ACLK) begin areset_d1 <= ARESET; end generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end //--------------------------------------------------------------------------- // When FIFO is empty, reset master valid bit. When not empty set valid bit. // When FIFO is full, reset slave ready bit. When not full set ready bit. //--------------------------------------------------------------------------- always @(posedge ACLK) begin if (ARESET) begin M_VALID_i <= 1'b0; end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin M_VALID_i <= 1'b0; end else if (push) begin M_VALID_i <= 1'b1; end end always @(posedge ACLK) begin if (ARESET) begin S_READY_i <= 1'b0; end else if (areset_d1) begin S_READY_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin S_READY_i <= 1'b0; end else if (C_USE_FULL && pop) begin S_READY_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg M_VALID_i; reg S_READY_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data assign M_VALID = M_VALID_i; assign S_READY = C_USE_FULL ? S_READY_i : 1'b1; assign M_MESG = m_axi_mesg_i; assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1); assign pop = M_VALID_i & M_READY; always @(posedge ACLK) begin areset_d1 <= ARESET; end generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end //--------------------------------------------------------------------------- // When FIFO is empty, reset master valid bit. When not empty set valid bit. // When FIFO is full, reset slave ready bit. When not full set ready bit. //--------------------------------------------------------------------------- always @(posedge ACLK) begin if (ARESET) begin M_VALID_i <= 1'b0; end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin M_VALID_i <= 1'b0; end else if (push) begin M_VALID_i <= 1'b1; end end always @(posedge ACLK) begin if (ARESET) begin S_READY_i <= 1'b0; end else if (areset_d1) begin S_READY_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin S_READY_i <= 1'b0; end else if (C_USE_FULL && pop) begin S_READY_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg M_VALID_i; reg S_READY_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data assign M_VALID = M_VALID_i; assign S_READY = C_USE_FULL ? S_READY_i : 1'b1; assign M_MESG = m_axi_mesg_i; assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1); assign pop = M_VALID_i & M_READY; always @(posedge ACLK) begin areset_d1 <= ARESET; end generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end //--------------------------------------------------------------------------- // When FIFO is empty, reset master valid bit. When not empty set valid bit. // When FIFO is full, reset slave ready bit. When not full set ready bit. //--------------------------------------------------------------------------- always @(posedge ACLK) begin if (ARESET) begin M_VALID_i <= 1'b0; end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin M_VALID_i <= 1'b0; end else if (push) begin M_VALID_i <= 1'b1; end end always @(posedge ACLK) begin if (ARESET) begin S_READY_i <= 1'b0; end else if (areset_d1) begin S_READY_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin S_READY_i <= 1'b0; end else if (C_USE_FULL && pop) begin S_READY_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg M_VALID_i; reg S_READY_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data assign M_VALID = M_VALID_i; assign S_READY = C_USE_FULL ? S_READY_i : 1'b1; assign M_MESG = m_axi_mesg_i; assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1); assign pop = M_VALID_i & M_READY; always @(posedge ACLK) begin areset_d1 <= ARESET; end generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end //--------------------------------------------------------------------------- // When FIFO is empty, reset master valid bit. When not empty set valid bit. // When FIFO is full, reset slave ready bit. When not full set ready bit. //--------------------------------------------------------------------------- always @(posedge ACLK) begin if (ARESET) begin M_VALID_i <= 1'b0; end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin M_VALID_i <= 1'b0; end else if (push) begin M_VALID_i <= 1'b1; end end always @(posedge ACLK) begin if (ARESET) begin S_READY_i <= 1'b0; end else if (areset_d1) begin S_READY_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin S_READY_i <= 1'b0; end else if (C_USE_FULL && pop) begin S_READY_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg M_VALID_i; reg S_READY_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data assign M_VALID = M_VALID_i; assign S_READY = C_USE_FULL ? S_READY_i : 1'b1; assign M_MESG = m_axi_mesg_i; assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1); assign pop = M_VALID_i & M_READY; always @(posedge ACLK) begin areset_d1 <= ARESET; end generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end //--------------------------------------------------------------------------- // When FIFO is empty, reset master valid bit. When not empty set valid bit. // When FIFO is full, reset slave ready bit. When not full set ready bit. //--------------------------------------------------------------------------- always @(posedge ACLK) begin if (ARESET) begin M_VALID_i <= 1'b0; end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin M_VALID_i <= 1'b0; end else if (push) begin M_VALID_i <= 1'b1; end end always @(posedge ACLK) begin if (ARESET) begin S_READY_i <= 1'b0; end else if (areset_d1) begin S_READY_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin S_READY_i <= 1'b0; end else if (C_USE_FULL && pop) begin S_READY_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module axi_data_fifo_v2_1_axic_srl_fifo # ( parameter C_FAMILY = "none", // FPGA Family parameter integer C_FIFO_WIDTH = 1, // Width of S_MESG/M_MESG. parameter integer C_MAX_CTRL_FANOUT = 33, // Maximum number of mesg bits // the control logic can be used // on before the control logic // needs to be replicated. parameter integer C_FIFO_DEPTH_LOG = 2, // Depth of FIFO is 2**C_FIFO_DEPTH_LOG. // The minimum size fifo generated is 4-deep. parameter C_USE_FULL = 1 // Prevent overwrite by throttling S_READY. ) ( input wire ACLK, // Clock input wire ARESET, // Reset input wire [C_FIFO_WIDTH-1:0] S_MESG, // Input data input wire S_VALID, // Input data valid output wire S_READY, // Input data ready output wire [C_FIFO_WIDTH-1:0] M_MESG, // Output data output wire M_VALID, // Output data valid input wire M_READY // Output data ready ); localparam P_FIFO_DEPTH_LOG = (C_FIFO_DEPTH_LOG>1) ? C_FIFO_DEPTH_LOG : 2; localparam P_EMPTY = {P_FIFO_DEPTH_LOG{1'b1}}; localparam P_ALMOSTEMPTY = {P_FIFO_DEPTH_LOG{1'b0}}; localparam P_ALMOSTFULL_TEMP = {P_EMPTY, 1'b0}; localparam P_ALMOSTFULL = P_ALMOSTFULL_TEMP[0+:P_FIFO_DEPTH_LOG]; localparam P_NUM_REPS = (((C_FIFO_WIDTH+1)%C_MAX_CTRL_FANOUT) == 0) ? (C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT : ((C_FIFO_WIDTH+1)/C_MAX_CTRL_FANOUT)+1; (* syn_keep = "1" *) reg [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr; (* syn_keep = "1" *) wire [P_NUM_REPS*P_FIFO_DEPTH_LOG-1:0] fifoaddr_i; genvar i; genvar j; reg M_VALID_i; reg S_READY_i; wire push; // FIFO push wire pop; // FIFO pop reg areset_d1; // Reset delay register wire [C_FIFO_WIDTH-1:0] m_axi_mesg_i; // Intermediate SRL data assign M_VALID = M_VALID_i; assign S_READY = C_USE_FULL ? S_READY_i : 1'b1; assign M_MESG = m_axi_mesg_i; assign push = S_VALID & (C_USE_FULL ? S_READY_i : 1'b1); assign pop = M_VALID_i & M_READY; always @(posedge ACLK) begin areset_d1 <= ARESET; end generate //--------------------------------------------------------------------------- // Create count of number of elements in FIFOs //--------------------------------------------------------------------------- for (i=0;i<P_NUM_REPS;i=i+1) begin : gen_rep assign fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] = push ? fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] + 1 : fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] - 1; always @(posedge ACLK) begin if (ARESET) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= {P_FIFO_DEPTH_LOG{1'b1}}; else if (push ^ pop) fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i] <= fifoaddr_i[P_FIFO_DEPTH_LOG*(i+1)-1:P_FIFO_DEPTH_LOG*i]; end end //--------------------------------------------------------------------------- // When FIFO is empty, reset master valid bit. When not empty set valid bit. // When FIFO is full, reset slave ready bit. When not full set ready bit. //--------------------------------------------------------------------------- always @(posedge ACLK) begin if (ARESET) begin M_VALID_i <= 1'b0; end else if ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTEMPTY) && pop && ~push) begin M_VALID_i <= 1'b0; end else if (push) begin M_VALID_i <= 1'b1; end end always @(posedge ACLK) begin if (ARESET) begin S_READY_i <= 1'b0; end else if (areset_d1) begin S_READY_i <= 1'b1; end else if (C_USE_FULL && ((fifoaddr[P_FIFO_DEPTH_LOG*P_NUM_REPS-1:P_FIFO_DEPTH_LOG*(P_NUM_REPS-1)] == P_ALMOSTFULL) && push && ~pop)) begin S_READY_i <= 1'b0; end else if (C_USE_FULL && pop) begin S_READY_i <= 1'b1; end end //--------------------------------------------------------------------------- // Instantiate SRLs //--------------------------------------------------------------------------- for (i=0;i<(C_FIFO_WIDTH/C_MAX_CTRL_FANOUT)+((C_FIFO_WIDTH%C_MAX_CTRL_FANOUT)>0);i=i+1) begin : gen_srls for (j=0;((j<C_MAX_CTRL_FANOUT)&&(i*C_MAX_CTRL_FANOUT+j<C_FIFO_WIDTH));j=j+1) begin : gen_rep axi_data_fifo_v2_1_ndeep_srl # ( .C_FAMILY (C_FAMILY), .C_A_WIDTH (P_FIFO_DEPTH_LOG) ) srl_nx1 ( .CLK (ACLK), .A (fifoaddr[P_FIFO_DEPTH_LOG*(i+1)-1: P_FIFO_DEPTH_LOG*(i)]), .CE (push), .D (S_MESG[i*C_MAX_CTRL_FANOUT+j]), .Q (m_axi_mesg_i[i*C_MAX_CTRL_FANOUT+j]) ); end end endgenerate endmodule
module generic_baseblocks_v2_1_comparator_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 3; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
module generic_baseblocks_v2_1_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
module generic_baseblocks_v2_1_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
module generic_baseblocks_v2_1_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule
module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule