module_content
stringlengths
18
1.05M
module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule
module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule
module generic_baseblocks_v2_1_comparator_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN | I; end else begin : USE_FPGA OR2L or2l_inst1 ( .O(O), .DI(CIN), .SRI(I) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN | I; end else begin : USE_FPGA OR2L or2l_inst1 ( .O(O), .DI(CIN), .SRI(I) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN | I; end else begin : USE_FPGA OR2L or2l_inst1 ( .O(O), .DI(CIN), .SRI(I) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry_latch_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN | I; end else begin : USE_FPGA OR2L or2l_inst1 ( .O(O), .DI(CIN), .SRI(I) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module t_case_write1_tasks (); // verilator lint_off WIDTH // verilator lint_off CASEINCOMPLETE parameter STRLEN = 78; task ozonerab; input [6:0] rab; inout [STRLEN*8:1] foobar; // verilator no_inline_task begin case (rab[6:0]) 7'h00 : foobar = {foobar, " 0"}; 7'h01 : foobar = {foobar, " 1"}; 7'h02 : foobar = {foobar, " 2"}; 7'h03 : foobar = {foobar, " 3"}; 7'h04 : foobar = {foobar, " 4"}; 7'h05 : foobar = {foobar, " 5"}; 7'h06 : foobar = {foobar, " 6"}; 7'h07 : foobar = {foobar, " 7"}; 7'h08 : foobar = {foobar, " 8"}; 7'h09 : foobar = {foobar, " 9"}; 7'h0a : foobar = {foobar, " 10"}; 7'h0b : foobar = {foobar, " 11"}; 7'h0c : foobar = {foobar, " 12"}; 7'h0d : foobar = {foobar, " 13"}; 7'h0e : foobar = {foobar, " 14"}; 7'h0f : foobar = {foobar, " 15"}; 7'h10 : foobar = {foobar, " 16"}; 7'h11 : foobar = {foobar, " 17"}; 7'h12 : foobar = {foobar, " 18"}; 7'h13 : foobar = {foobar, " 19"}; 7'h14 : foobar = {foobar, " 20"}; 7'h15 : foobar = {foobar, " 21"}; 7'h16 : foobar = {foobar, " 22"}; 7'h17 : foobar = {foobar, " 23"}; 7'h18 : foobar = {foobar, " 24"}; 7'h19 : foobar = {foobar, " 25"}; 7'h1a : foobar = {foobar, " 26"}; 7'h1b : foobar = {foobar, " 27"}; 7'h1c : foobar = {foobar, " 28"}; 7'h1d : foobar = {foobar, " 29"}; 7'h1e : foobar = {foobar, " 30"}; 7'h1f : foobar = {foobar, " 31"}; 7'h20 : foobar = {foobar, " 32"}; 7'h21 : foobar = {foobar, " 33"}; 7'h22 : foobar = {foobar, " 34"}; 7'h23 : foobar = {foobar, " 35"}; 7'h24 : foobar = {foobar, " 36"}; 7'h25 : foobar = {foobar, " 37"}; 7'h26 : foobar = {foobar, " 38"}; 7'h27 : foobar = {foobar, " 39"}; 7'h28 : foobar = {foobar, " 40"}; 7'h29 : foobar = {foobar, " 41"}; 7'h2a : foobar = {foobar, " 42"}; 7'h2b : foobar = {foobar, " 43"}; 7'h2c : foobar = {foobar, " 44"}; 7'h2d : foobar = {foobar, " 45"}; 7'h2e : foobar = {foobar, " 46"}; 7'h2f : foobar = {foobar, " 47"}; 7'h30 : foobar = {foobar, " 48"}; 7'h31 : foobar = {foobar, " 49"}; 7'h32 : foobar = {foobar, " 50"}; 7'h33 : foobar = {foobar, " 51"}; 7'h34 : foobar = {foobar, " 52"}; 7'h35 : foobar = {foobar, " 53"}; 7'h36 : foobar = {foobar, " 54"}; 7'h37 : foobar = {foobar, " 55"}; 7'h38 : foobar = {foobar, " 56"}; 7'h39 : foobar = {foobar, " 57"}; 7'h3a : foobar = {foobar, " 58"}; 7'h3b : foobar = {foobar, " 59"}; 7'h3c : foobar = {foobar, " 60"}; 7'h3d : foobar = {foobar, " 61"}; 7'h3e : foobar = {foobar, " 62"}; 7'h3f : foobar = {foobar, " 63"}; 7'h40 : foobar = {foobar, " 64"}; 7'h41 : foobar = {foobar, " 65"}; 7'h42 : foobar = {foobar, " 66"}; 7'h43 : foobar = {foobar, " 67"}; 7'h44 : foobar = {foobar, " 68"}; 7'h45 : foobar = {foobar, " 69"}; 7'h46 : foobar = {foobar, " 70"}; 7'h47 : foobar = {foobar, " 71"}; 7'h48 : foobar = {foobar, " 72"}; 7'h49 : foobar = {foobar, " 73"}; 7'h4a : foobar = {foobar, " 74"}; 7'h4b : foobar = {foobar, " 75"}; 7'h4c : foobar = {foobar, " 76"}; 7'h4d : foobar = {foobar, " 77"}; 7'h4e : foobar = {foobar, " 78"}; 7'h4f : foobar = {foobar, " 79"}; 7'h50 : foobar = {foobar, " 80"}; 7'h51 : foobar = {foobar, " 81"}; 7'h52 : foobar = {foobar, " 82"}; 7'h53 : foobar = {foobar, " 83"}; 7'h54 : foobar = {foobar, " 84"}; 7'h55 : foobar = {foobar, " 85"}; 7'h56 : foobar = {foobar, " 86"}; 7'h57 : foobar = {foobar, " 87"}; 7'h58 : foobar = {foobar, " 88"}; 7'h59 : foobar = {foobar, " 89"}; 7'h5a : foobar = {foobar, " 90"}; 7'h5b : foobar = {foobar, " 91"}; 7'h5c : foobar = {foobar, " 92"}; 7'h5d : foobar = {foobar, " 93"}; 7'h5e : foobar = {foobar, " 94"}; 7'h5f : foobar = {foobar, " 95"}; 7'h60 : foobar = {foobar, " 96"}; 7'h61 : foobar = {foobar, " 97"}; 7'h62 : foobar = {foobar, " 98"}; 7'h63 : foobar = {foobar, " 99"}; 7'h64 : foobar = {foobar, " 100"}; 7'h65 : foobar = {foobar, " 101"}; 7'h66 : foobar = {foobar, " 102"}; 7'h67 : foobar = {foobar, " 103"}; 7'h68 : foobar = {foobar, " 104"}; 7'h69 : foobar = {foobar, " 105"}; 7'h6a : foobar = {foobar, " 106"}; 7'h6b : foobar = {foobar, " 107"}; 7'h6c : foobar = {foobar, " 108"}; 7'h6d : foobar = {foobar, " 109"}; 7'h6e : foobar = {foobar, " 110"}; 7'h6f : foobar = {foobar, " 111"}; 7'h70 : foobar = {foobar, " 112"}; 7'h71 : foobar = {foobar, " 113"}; 7'h72 : foobar = {foobar, " 114"}; 7'h73 : foobar = {foobar, " 115"}; 7'h74 : foobar = {foobar, " 116"}; 7'h75 : foobar = {foobar, " 117"}; 7'h76 : foobar = {foobar, " 118"}; 7'h77 : foobar = {foobar, " 119"}; 7'h78 : foobar = {foobar, " 120"}; 7'h79 : foobar = {foobar, " 121"}; 7'h7a : foobar = {foobar, " 122"}; 7'h7b : foobar = {foobar, " 123"}; 7'h7c : foobar = {foobar, " 124"}; 7'h7d : foobar = {foobar, " 125"}; 7'h7e : foobar = {foobar, " 126"}; 7'h7f : foobar = {foobar, " 127"}; default:foobar = {foobar, " 128"}; endcase end endtask task ozonerb; input [5:0] rb; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (rb[5:0]) 6'h10, 6'h17, 6'h1e, 6'h1f: foobar = {foobar, " 129"}; default: ozonerab({1'b1, rb}, foobar); endcase end endtask task ozonef3f4_iext; input [1:0] foo; input [15:0] im16; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo) 2'h0 : begin skyway({4{im16[15]}}, foobar); skyway({4{im16[15]}}, foobar); skyway(im16[15:12], foobar); skyway(im16[11: 8], foobar); skyway(im16[ 7: 4], foobar); skyway(im16[ 3:0], foobar); foobar = {foobar, " 130"}; end 2'h1 : begin foobar = {foobar, " 131"}; skyway(im16[15:12], foobar); skyway(im16[11: 8], foobar); skyway(im16[ 7: 4], foobar); skyway(im16[ 3:0], foobar); end 2'h2 : begin skyway({4{im16[15]}}, foobar); skyway({4{im16[15]}}, foobar); skyway(im16[15:12], foobar); skyway(im16[11: 8], foobar); skyway(im16[ 7: 4], foobar); skyway(im16[ 3:0], foobar); foobar = {foobar, " 132"}; end 2'h3 : begin foobar = {foobar, " 133"}; skyway(im16[15:12], foobar); skyway(im16[11: 8], foobar); skyway(im16[ 7: 4], foobar); skyway(im16[ 3:0], foobar); end endcase end endtask task skyway; input [ 3:0] hex; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (hex) 4'h0 : foobar = {foobar, " 134"}; 4'h1 : foobar = {foobar, " 135"}; 4'h2 : foobar = {foobar, " 136"}; 4'h3 : foobar = {foobar, " 137"}; 4'h4 : foobar = {foobar, " 138"}; 4'h5 : foobar = {foobar, " 139"}; 4'h6 : foobar = {foobar, " 140"}; 4'h7 : foobar = {foobar, " 141"}; 4'h8 : foobar = {foobar, " 142"}; 4'h9 : foobar = {foobar, " 143"}; 4'ha : foobar = {foobar, " 144"}; 4'hb : foobar = {foobar, " 145"}; 4'hc : foobar = {foobar, " 146"}; 4'hd : foobar = {foobar, " 147"}; 4'he : foobar = {foobar, " 148"}; 4'hf : foobar = {foobar, " 149"}; endcase end endtask task ozonesr; input [ 15:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[11: 9]) 3'h0 : foobar = {foobar, " 158"}; 3'h1 : foobar = {foobar, " 159"}; 3'h2 : foobar = {foobar, " 160"}; 3'h3 : foobar = {foobar, " 161"}; 3'h4 : foobar = {foobar, " 162"}; 3'h5 : foobar = {foobar, " 163"}; 3'h6 : foobar = {foobar, " 164"}; 3'h7 : foobar = {foobar, " 165"}; endcase end endtask task ozonejk; input k; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin if (k) foobar = {foobar, " 166"}; else foobar = {foobar, " 167"}; end endtask task ozoneae; input [ 2:0] ae; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (ae) 3'b000 : foobar = {foobar, " 168"}; 3'b001 : foobar = {foobar, " 169"}; 3'b010 : foobar = {foobar, " 170"}; 3'b011 : foobar = {foobar, " 171"}; 3'b100 : foobar = {foobar, " 172"}; 3'b101 : foobar = {foobar, " 173"}; 3'b110 : foobar = {foobar, " 174"}; 3'b111 : foobar = {foobar, " 175"}; endcase end endtask task ozoneaee; input [ 2:0] aee; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (aee) 3'b001, 3'b011, 3'b101, 3'b111 : foobar = {foobar, " 176"}; 3'b000 : foobar = {foobar, " 177"}; 3'b010 : foobar = {foobar, " 178"}; 3'b100 : foobar = {foobar, " 179"}; 3'b110 : foobar = {foobar, " 180"}; endcase end endtask task ozoneape; input [ 2:0] ape; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (ape) 3'b001, 3'b011, 3'b101, 3'b111 : foobar = {foobar, " 181"}; 3'b000 : foobar = {foobar, " 182"}; 3'b010 : foobar = {foobar, " 183"}; 3'b100 : foobar = {foobar, " 184"}; 3'b110 : foobar = {foobar, " 185"}; endcase end endtask task ozonef1; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[24:21]) 4'h0 : if (foo[26]) foobar = {foobar, " 186"}; else foobar = {foobar, " 187"}; 4'h1 : case (foo[26:25]) 2'b00 : foobar = {foobar, " 188"}; 2'b01 : foobar = {foobar, " 189"}; 2'b10 : foobar = {foobar, " 190"}; 2'b11 : foobar = {foobar, " 191"}; endcase 4'h2 : foobar = {foobar, " 192"}; 4'h3 : case (foo[26:25]) 2'b00 : foobar = {foobar, " 193"}; 2'b01 : foobar = {foobar, " 194"}; 2'b10 : foobar = {foobar, " 195"}; 2'b11 : foobar = {foobar, " 196"}; endcase 4'h4 : if (foo[26]) foobar = {foobar, " 197"}; else foobar = {foobar, " 198"}; 4'h5 : case (foo[26:25]) 2'b00 : foobar = {foobar, " 199"}; 2'b01 : foobar = {foobar, " 200"}; 2'b10 : foobar = {foobar, " 201"}; 2'b11 : foobar = {foobar, " 202"}; endcase 4'h6 : foobar = {foobar, " 203"}; 4'h7 : case (foo[26:25]) 2'b00 : foobar = {foobar, " 204"}; 2'b01 : foobar = {foobar, " 205"}; 2'b10 : foobar = {foobar, " 206"}; 2'b11 : foobar = {foobar, " 207"}; endcase 4'h8 : case (foo[26:25]) 2'b00 : foobar = {foobar, " 208"}; 2'b01 : foobar = {foobar, " 209"}; 2'b10 : foobar = {foobar, " 210"}; 2'b11 : foobar = {foobar, " 211"}; endcase 4'h9 : case (foo[26:25]) 2'b00 : foobar = {foobar, " 212"}; 2'b01 : foobar = {foobar, " 213"}; 2'b10 : foobar = {foobar, " 214"}; 2'b11 : foobar = {foobar, " 215"}; endcase 4'ha : if (foo[25]) foobar = {foobar, " 216"}; else foobar = {foobar, " 217"}; 4'hb : if (foo[25]) foobar = {foobar, " 218"}; else foobar = {foobar, " 219"}; 4'hc : if (foo[26]) foobar = {foobar, " 220"}; else foobar = {foobar, " 221"}; 4'hd : case (foo[26:25]) 2'b00 : foobar = {foobar, " 222"}; 2'b01 : foobar = {foobar, " 223"}; 2'b10 : foobar = {foobar, " 224"}; 2'b11 : foobar = {foobar, " 225"}; endcase 4'he : case (foo[26:25]) 2'b00 : foobar = {foobar, " 226"}; 2'b01 : foobar = {foobar, " 227"}; 2'b10 : foobar = {foobar, " 228"}; 2'b11 : foobar = {foobar, " 229"}; endcase 4'hf : case (foo[26:25]) 2'b00 : foobar = {foobar, " 230"}; 2'b01 : foobar = {foobar, " 231"}; 2'b10 : foobar = {foobar, " 232"}; 2'b11 : foobar = {foobar, " 233"}; endcase endcase end endtask task ozonef1e; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[27:21]) 7'h00: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 234"}; foobar = {foobar, " 235"}; end 7'h01: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 236"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 237"}; foobar = {foobar, " 238"}; end 7'h02: foobar = {foobar, " 239"}; 7'h03: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 240"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 241"}; foobar = {foobar, " 242"}; end 7'h04: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 243"}; foobar = {foobar," 244"}; end 7'h05: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 245"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 246"}; end 7'h06: foobar = {foobar, " 247"}; 7'h07: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 248"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 249"}; end 7'h08: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 250"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 251"}; end 7'h09: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 252"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 253"}; end 7'h0a: begin ozoneae(foo[17:15], foobar); foobar = {foobar," 254"}; end 7'h0b: begin ozoneae(foo[17:15], foobar); foobar = {foobar," 255"}; end 7'h0c: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 256"}; end 7'h0d: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 257"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 258"}; end 7'h0e: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 259"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 260"}; end 7'h0f: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 261"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 262"}; end 7'h10: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 263"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 264"}; foobar = {foobar, " 265"}; foobar = {foobar, " 266"}; end 7'h11: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 267"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 268"}; foobar = {foobar, " 269"}; foobar = {foobar, " 270"}; end 7'h12: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 271"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 272"}; foobar = {foobar, " 273"}; foobar = {foobar, " 274"}; end 7'h13: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 275"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 276"}; foobar = {foobar, " 277"}; foobar = {foobar, " 278"}; end 7'h14: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 279"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 280"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 281"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 282"}; foobar = {foobar, " 283"}; foobar = {foobar, " 284"}; end 7'h15: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 285"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 286"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 287"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 288"}; foobar = {foobar, " 289"}; foobar = {foobar, " 290"}; end 7'h16: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 291"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 292"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 293"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 294"}; foobar = {foobar, " 295"}; foobar = {foobar, " 296"}; end 7'h17: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 297"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 298"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 299"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 300"}; foobar = {foobar, " 301"}; foobar = {foobar, " 302"}; end 7'h18: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 303"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 304"}; foobar = {foobar, " 305"}; foobar = {foobar, " 306"}; end 7'h19: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 307"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 308"}; foobar = {foobar, " 309"}; foobar = {foobar, " 310"}; end 7'h1a: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 311"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 312"}; foobar = {foobar, " 313"}; foobar = {foobar, " 314"}; end 7'h1b: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 315"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 316"}; foobar = {foobar, " 317"}; foobar = {foobar, " 318"}; end 7'h1c: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 319"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 320"}; foobar = {foobar, " 321"}; foobar = {foobar, " 322"}; end 7'h1d: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 323"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 324"}; foobar = {foobar, " 325"}; foobar = {foobar, " 326"}; end 7'h1e: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 327"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 328"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 329"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 330"}; foobar = {foobar, " 331"}; foobar = {foobar, " 332"}; end 7'h1f: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 333"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 334"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 335"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 336"}; foobar = {foobar, " 337"}; foobar = {foobar, " 338"}; end 7'h20: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 339"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 340"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 341"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 342"}; foobar = {foobar, " 343"}; foobar = {foobar, " 344"}; end 7'h21: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 345"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 346"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 347"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 348"}; foobar = {foobar, " 349"}; foobar = {foobar, " 350"}; end 7'h22: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 351"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 352"}; foobar = {foobar, " 353"}; foobar = {foobar, " 354"}; end 7'h23: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 355"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 356"}; foobar = {foobar, " 357"}; foobar = {foobar, " 358"}; end 7'h24: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 359"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 360"}; foobar = {foobar, " 361"}; foobar = {foobar, " 362"}; end 7'h25: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 363"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 364"}; foobar = {foobar, " 365"}; foobar = {foobar, " 366"}; end 7'h26: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 367"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 368"}; foobar = {foobar, " 369"}; foobar = {foobar, " 370"}; end 7'h27: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 371"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 372"}; foobar = {foobar, " 373"}; foobar = {foobar, " 374"}; end 7'h28: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 375"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 376"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 377"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 378"}; foobar = {foobar, " 379"}; foobar = {foobar, " 380"}; end 7'h29: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 381"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 382"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 383"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 384"}; foobar = {foobar, " 385"}; foobar = {foobar, " 386"}; end 7'h2a: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 387"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 388"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 389"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 390"}; foobar = {foobar, " 391"}; foobar = {foobar, " 392"}; end 7'h2b: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 393"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 394"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 395"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 396"}; foobar = {foobar, " 397"}; foobar = {foobar, " 398"}; end 7'h2c: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 399"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 400"}; foobar = {foobar, " 401"}; foobar = {foobar, " 402"}; end 7'h2d: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 403"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 404"}; foobar = {foobar, " 405"}; foobar = {foobar, " 406"}; end 7'h2e: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 407"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 408"}; foobar = {foobar, " 409"}; foobar = {foobar, " 410"}; end 7'h2f: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 411"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 412"}; foobar = {foobar, " 413"}; foobar = {foobar, " 414"}; end 7'h30: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 415"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 416"}; foobar = {foobar, " 417"}; foobar = {foobar, " 418"}; end 7'h31: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 419"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 420"}; foobar = {foobar, " 421"}; foobar = {foobar, " 422"}; end 7'h32: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 423"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 424"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 425"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 426"}; foobar = {foobar, " 427"}; foobar = {foobar, " 428"}; end 7'h33: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 429"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 430"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 431"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 432"}; foobar = {foobar, " 433"}; foobar = {foobar, " 434"}; end 7'h34: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 435"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 436"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 437"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 438"}; foobar = {foobar, " 439"}; foobar = {foobar, " 440"}; end 7'h35: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 441"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 442"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 443"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 444"}; foobar = {foobar, " 445"}; foobar = {foobar, " 446"}; end 7'h36: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 447"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 448"}; foobar = {foobar, " 449"}; foobar = {foobar, " 450"}; end 7'h37: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 451"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 452"}; foobar = {foobar, " 453"}; foobar = {foobar, " 454"}; end 7'h38: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 455"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 456"}; foobar = {foobar, " 457"}; end 7'h39: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 458"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 459"}; foobar = {foobar, " 460"}; end 7'h3a: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 461"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 462"}; foobar = {foobar, " 463"}; end 7'h3b: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 464"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 465"}; foobar = {foobar, " 466"}; end 7'h3c: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 467"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 468"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 469"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 470"}; foobar = {foobar, " 471"}; end 7'h3d: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 472"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 473"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 474"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 475"}; foobar = {foobar, " 476"}; end 7'h3e: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 477"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 478"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 479"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 480"}; foobar = {foobar, " 481"}; end 7'h3f: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 482"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 483"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 484"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 485"}; foobar = {foobar, " 486"}; end 7'h40: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 487"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 488"}; foobar = {foobar, " 489"}; foobar = {foobar, " 490"}; end 7'h41: begin foobar = {foobar, " 491"}; foobar = {foobar, " 492"}; end 7'h42: begin foobar = {foobar, " 493"}; foobar = {foobar, " 494"}; end 7'h43: begin foobar = {foobar, " 495"}; foobar = {foobar, " 496"}; end 7'h44: begin foobar = {foobar, " 497"}; foobar = {foobar, " 498"}; end 7'h45: foobar = {foobar, " 499"}; 7'h46: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 500"}; foobar = {foobar, " 501"}; foobar = {foobar, " 502"}; end 7'h47: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 503"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 504"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 505"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 506"}; foobar = {foobar, " 507"}; foobar = {foobar, " 508"}; end 7'h48: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 509"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 510"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 511"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 512"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 513"}; end 7'h49: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 514"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 515"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 516"}; end 7'h4a: foobar = {foobar," 517"}; 7'h4b: foobar = {foobar, " 518"}; 7'h4c: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 519"}; foobar = {foobar, " 520"}; foobar = {foobar, " 521"}; end 7'h4d: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 522"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 523"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 524"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 525"}; foobar = {foobar, " 526"}; foobar = {foobar, " 527"}; end 7'h4e: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 528"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 529"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 530"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 531"}; end 7'h4f: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 532"}; end 7'h50: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 533"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 534"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 535"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 536"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 537"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 538"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 539"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 540"}; end 7'h51: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 541"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 542"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 543"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 544"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 545"}; end 7'h52: foobar = {foobar, " 546"}; 7'h53: begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 547"}; end 7'h54: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 548"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 549"}; end 7'h55: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 550"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 551"}; end 7'h56: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 552"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 553"}; foobar = {foobar, " 554"}; end 7'h57: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 555"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 556"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 557"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 558"}; end 7'h58: begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 559"}; end 7'h59: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 560"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 561"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 562"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 563"}; end 7'h5a: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 564"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 565"}; end 7'h5b: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 566"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 567"}; end 7'h5c: begin foobar = {foobar," 568"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 569"}; foobar = {foobar," 570"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 571"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 572"}; ozoneaee(foo[17:15], foobar); foobar = {foobar, " 573"}; end 7'h5d: begin foobar = {foobar," 574"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 575"}; foobar = {foobar," 576"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 577"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 578"}; ozoneaee(foo[17:15], foobar); foobar = {foobar, " 579"}; end 7'h5e: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 580"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 581"}; end 7'h5f: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 582"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 583"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 584"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 585"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 586"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 587"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 588"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 589"}; end 7'h60: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 590"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 591"}; end 7'h61: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 592"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 593"}; end 7'h62: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 594"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 595"}; end 7'h63: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 596"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 597"}; end 7'h64: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 598"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 599"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 600"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 601"}; end 7'h65: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 602"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 603"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 604"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 605"}; end 7'h66: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 606"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 607"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 608"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 609"}; end 7'h67: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 610"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 611"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 612"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 613"}; end 7'h68: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 614"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 615"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 616"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 617"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 618"}; ozoneape(foo[17:15], foobar); end 7'h69: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 619"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 620"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 621"}; end 7'h6a: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 622"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 623"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 624"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 625"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 626"}; ozoneae(foo[17:15], foobar); end 7'h6b: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 627"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 628"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 629"}; end 7'h6c: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 630"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 631"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 632"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 633"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 634"}; ozoneae(foo[17:15], foobar); end 7'h6d: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 635"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 636"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 637"}; end 7'h6e: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 638"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 639"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 640"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 641"}; end 7'h6f: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 642"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 643"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 644"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 645"}; end 7'h70: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 646"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 647"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 648"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 649"}; end 7'h71: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 650"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 651"}; end 7'h72: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 652"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 653"}; end 7'h73: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 654"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 655"}; ozoneae(foo[17:15], foobar); end 7'h74: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 656"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 657"}; ozoneae(foo[17:15], foobar); end 7'h75: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 658"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 659"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 660"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 661"}; foobar = {foobar, " 662"}; foobar = {foobar, " 663"}; end 7'h76: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 664"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 665"}; ozoneaee(foo[20:18], foobar); foobar = {foobar," 666"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 667"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 668"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 669"}; end 7'h77: begin ozoneaee(foo[20:18], foobar); foobar = {foobar," 670"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 671"}; ozoneaee(foo[17:15], foobar); foobar = {foobar," 672"}; ozoneape(foo[20:18], foobar); foobar = {foobar," 673"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 674"}; ozoneape(foo[17:15], foobar); foobar = {foobar," 675"}; end 7'h78, 7'h79, 7'h7a, 7'h7b, 7'h7c, 7'h7d, 7'h7e, 7'h7f: foobar = {foobar," 676"}; endcase end endtask task ozonef2; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[24:21]) 4'h0 : case (foo[26:25]) 2'b00 : foobar = {foobar," 677"}; 2'b01 : foobar = {foobar," 678"}; 2'b10 : foobar = {foobar," 679"}; 2'b11 : foobar = {foobar," 680"}; endcase 4'h1 : case (foo[26:25]) 2'b00 : foobar = {foobar," 681"}; 2'b01 : foobar = {foobar," 682"}; 2'b10 : foobar = {foobar," 683"}; 2'b11 : foobar = {foobar," 684"}; endcase 4'h2 : case (foo[26:25]) 2'b00 : foobar = {foobar," 685"}; 2'b01 : foobar = {foobar," 686"}; 2'b10 : foobar = {foobar," 687"}; 2'b11 : foobar = {foobar," 688"}; endcase 4'h3 : case (foo[26:25]) 2'b00 : foobar = {foobar," 689"}; 2'b01 : foobar = {foobar," 690"}; 2'b10 : foobar = {foobar," 691"}; 2'b11 : foobar = {foobar," 692"}; endcase 4'h4 : case (foo[26:25]) 2'b00 : foobar = {foobar," 693"}; 2'b01 : foobar = {foobar," 694"}; 2'b10 : foobar = {foobar," 695"}; 2'b11 : foobar = {foobar," 696"}; endcase 4'h5 : case (foo[26:25]) 2'b00 : foobar = {foobar," 697"}; 2'b01 : foobar = {foobar," 698"}; 2'b10 : foobar = {foobar," 699"}; 2'b11 : foobar = {foobar," 700"}; endcase 4'h6 : case (foo[26:25]) 2'b00 : foobar = {foobar," 701"}; 2'b01 : foobar = {foobar," 702"}; 2'b10 : foobar = {foobar," 703"}; 2'b11 : foobar = {foobar," 704"}; endcase 4'h7 : case (foo[26:25]) 2'b00 : foobar = {foobar," 705"}; 2'b01 : foobar = {foobar," 706"}; 2'b10 : foobar = {foobar," 707"}; 2'b11 : foobar = {foobar," 708"}; endcase 4'h8 : if (foo[26]) foobar = {foobar," 709"}; else foobar = {foobar," 710"}; 4'h9 : case (foo[26:25]) 2'b00 : foobar = {foobar," 711"}; 2'b01 : foobar = {foobar," 712"}; 2'b10 : foobar = {foobar," 713"}; 2'b11 : foobar = {foobar," 714"}; endcase 4'ha : case (foo[26:25]) 2'b00 : foobar = {foobar," 715"}; 2'b01 : foobar = {foobar," 716"}; 2'b10 : foobar = {foobar," 717"}; 2'b11 : foobar = {foobar," 718"}; endcase 4'hb : case (foo[26:25]) 2'b00 : foobar = {foobar," 719"}; 2'b01 : foobar = {foobar," 720"}; 2'b10 : foobar = {foobar," 721"}; 2'b11 : foobar = {foobar," 722"}; endcase 4'hc : if (foo[26]) foobar = {foobar," 723"}; else foobar = {foobar," 724"}; 4'hd : case (foo[26:25]) 2'b00 : foobar = {foobar," 725"}; 2'b01 : foobar = {foobar," 726"}; 2'b10 : foobar = {foobar," 727"}; 2'b11 : foobar = {foobar," 728"}; endcase 4'he : case (foo[26:25]) 2'b00 : foobar = {foobar," 729"}; 2'b01 : foobar = {foobar," 730"}; 2'b10 : foobar = {foobar," 731"}; 2'b11 : foobar = {foobar," 732"}; endcase 4'hf : case (foo[26:25]) 2'b00 : foobar = {foobar," 733"}; 2'b01 : foobar = {foobar," 734"}; 2'b10 : foobar = {foobar," 735"}; 2'b11 : foobar = {foobar," 736"}; endcase endcase end endtask task ozonef2e; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin casez (foo[25:21]) 5'h00 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 737"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 738"}; end 5'h01 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 739"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 740"}; end 5'h02 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 741"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 742"}; end 5'h03 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 743"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 744"}; end 5'h04 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 745"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 746"}; end 5'h05 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 747"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 748"}; end 5'h06 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 749"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 750"}; end 5'h07 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 751"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 752"}; end 5'h08 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 753"}; if (foo[ 6]) foobar = {foobar," 754"}; else foobar = {foobar," 755"}; end 5'h09 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 756"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 757"}; end 5'h0a : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 758"}; ozoneae(foo[17:15], foobar); end 5'h0b : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 759"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 760"}; end 5'h0c : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 761"}; end 5'h0d : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 762"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 763"}; end 5'h0e : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 764"}; ozoneae(foo[17:15], foobar); end 5'h0f : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 765"}; ozoneae(foo[17:15], foobar); end 5'h10 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 766"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 767"}; end 5'h11 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 768"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 769"}; end 5'h18 : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 770"}; if (foo[ 6]) foobar = {foobar," 771"}; else foobar = {foobar," 772"}; end 5'h1a : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 773"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 774"}; end 5'h1b : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 775"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 776"}; if (foo[ 6]) foobar = {foobar," 777"}; else foobar = {foobar," 778"}; foobar = {foobar," 779"}; end 5'h1c : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 780"}; end 5'h1d : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 781"}; if (foo[ 6]) foobar = {foobar," 782"}; else foobar = {foobar," 783"}; foobar = {foobar," 784"}; end 5'h1e : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 785"}; if (foo[ 6]) foobar = {foobar," 786"}; else foobar = {foobar," 787"}; foobar = {foobar," 788"}; end 5'h1f : begin ozoneae(foo[20:18], foobar); foobar = {foobar," 789"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 790"}; if (foo[ 6]) foobar = {foobar," 791"}; else foobar = {foobar," 792"}; foobar = {foobar," 793"}; end default : foobar = {foobar," 794"}; endcase end endtask task ozonef3e; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[25:21]) 5'h00, 5'h01, 5'h02: begin ozoneae(foo[20:18], foobar); case (foo[22:21]) 2'h0: foobar = {foobar," 795"}; 2'h1: foobar = {foobar," 796"}; 2'h2: foobar = {foobar," 797"}; endcase ozoneae(foo[17:15], foobar); foobar = {foobar," 798"}; if (foo[ 9]) ozoneae(foo[ 8: 6], foobar); else ozonef3e_te(foo[ 8: 6], foobar); foobar = {foobar," 799"}; end 5'h08, 5'h09, 5'h0d, 5'h0e, 5'h0f: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 800"}; ozoneae(foo[17:15], foobar); case (foo[23:21]) 3'h0: foobar = {foobar," 801"}; 3'h1: foobar = {foobar," 802"}; 3'h5: foobar = {foobar," 803"}; 3'h6: foobar = {foobar," 804"}; 3'h7: foobar = {foobar," 805"}; endcase if (foo[ 9]) ozoneae(foo[ 8: 6], foobar); else ozonef3e_te(foo[ 8: 6], foobar); end 5'h0a, 5'h0b: begin ozoneae(foo[17:15], foobar); if (foo[21]) foobar = {foobar," 806"}; else foobar = {foobar," 807"}; if (foo[ 9]) ozoneae(foo[ 8: 6], foobar); else ozonef3e_te(foo[ 8: 6], foobar); end 5'h0c: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 808"}; if (foo[ 9]) ozoneae(foo[ 8: 6], foobar); else ozonef3e_te(foo[ 8: 6], foobar); foobar = {foobar," 809"}; ozoneae(foo[17:15], foobar); end 5'h10, 5'h11, 5'h12, 5'h13: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 810"}; ozoneae(foo[17:15], foobar); case (foo[22:21]) 2'h0, 2'h2: foobar = {foobar," 811"}; 2'h1, 2'h3: foobar = {foobar," 812"}; endcase ozoneae(foo[ 8: 6], foobar); foobar = {foobar," 813"}; ozoneae((foo[20:18]+1), foobar); foobar = {foobar," 814"}; ozoneae((foo[17:15]+1), foobar); case (foo[22:21]) 2'h0, 2'h3: foobar = {foobar," 815"}; 2'h1, 2'h2: foobar = {foobar," 816"}; endcase ozoneae((foo[ 8: 6]+1), foobar); end 5'h18: begin ozoneae(foo[20:18], foobar); foobar = {foobar," 817"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 818"}; ozoneae(foo[ 8: 6], foobar); foobar = {foobar," 819"}; ozoneae(foo[20:18], foobar); foobar = {foobar," 820"}; ozoneae(foo[17:15], foobar); foobar = {foobar," 821"}; ozoneae(foo[ 8: 6], foobar); end default : foobar = {foobar," 822"}; endcase end endtask task ozonef3e_te; input [ 2:0] te; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (te) 3'b100 : foobar = {foobar, " 823"}; 3'b101 : foobar = {foobar, " 824"}; 3'b110 : foobar = {foobar, " 825"}; default: foobar = {foobar, " 826"}; endcase end endtask task ozonearm; input [ 2:0] ate; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (ate) 3'b000 : foobar = {foobar, " 827"}; 3'b001 : foobar = {foobar, " 828"}; 3'b010 : foobar = {foobar, " 829"}; 3'b011 : foobar = {foobar, " 830"}; 3'b100 : foobar = {foobar, " 831"}; 3'b101 : foobar = {foobar, " 832"}; 3'b110 : foobar = {foobar, " 833"}; 3'b111 : foobar = {foobar, " 834"}; endcase end endtask task ozonebmuop; input [ 4:0] f4; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (f4[ 4:0]) 5'h00, 5'h04 : foobar = {foobar, " 835"}; 5'h01, 5'h05 : foobar = {foobar, " 836"}; 5'h02, 5'h06 : foobar = {foobar, " 837"}; 5'h03, 5'h07 : foobar = {foobar, " 838"}; 5'h08, 5'h18 : foobar = {foobar, " 839"}; 5'h09, 5'h19 : foobar = {foobar, " 840"}; 5'h0a, 5'h1a : foobar = {foobar, " 841"}; 5'h0b : foobar = {foobar, " 842"}; 5'h1b : foobar = {foobar, " 843"}; 5'h0c, 5'h1c : foobar = {foobar, " 844"}; 5'h0d, 5'h1d : foobar = {foobar, " 845"}; 5'h1e : foobar = {foobar, " 846"}; endcase end endtask task ozonef3; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; reg nacho; // verilator no_inline_task begin : f3_body nacho = 1'b0; case (foo[24:21]) 4'h0: case (foo[26:25]) 2'b00 : foobar = {foobar, " 847"}; 2'b01 : foobar = {foobar, " 848"}; 2'b10 : foobar = {foobar, " 849"}; 2'b11 : foobar = {foobar, " 850"}; endcase 4'h1: case (foo[26:25]) 2'b00 : foobar = {foobar, " 851"}; 2'b01 : foobar = {foobar, " 852"}; 2'b10 : foobar = {foobar, " 853"}; 2'b11 : foobar = {foobar, " 854"}; endcase 4'h2: case (foo[26:25]) 2'b00 : foobar = {foobar, " 855"}; 2'b01 : foobar = {foobar, " 856"}; 2'b10 : foobar = {foobar, " 857"}; 2'b11 : foobar = {foobar, " 858"}; endcase 4'h8, 4'h9, 4'hd, 4'he, 4'hf : case (foo[26:25]) 2'b00 : foobar = {foobar, " 859"}; 2'b01 : foobar = {foobar, " 860"}; 2'b10 : foobar = {foobar, " 861"}; 2'b11 : foobar = {foobar, " 862"}; endcase 4'ha, 4'hb : if (foo[25]) foobar = {foobar, " 863"}; else foobar = {foobar, " 864"}; 4'hc : if (foo[26]) foobar = {foobar, " 865"}; else foobar = {foobar, " 866"}; default : begin foobar = {foobar, " 867"}; nacho = 1'b1; end endcase if (~nacho) begin case (foo[24:21]) 4'h8 : foobar = {foobar, " 868"}; 4'h9 : foobar = {foobar, " 869"}; 4'ha, 4'he : foobar = {foobar, " 870"}; 4'hb, 4'hf : foobar = {foobar, " 871"}; 4'hd : foobar = {foobar, " 872"}; endcase if (foo[20]) case (foo[18:16]) 3'b000 : foobar = {foobar, " 873"}; 3'b100 : foobar = {foobar, " 874"}; default: foobar = {foobar, " 875"}; endcase else ozoneae(foo[18:16], foobar); if (foo[24:21] === 4'hc) if (foo[25]) foobar = {foobar, " 876"}; else foobar = {foobar, " 877"}; case (foo[24:21]) 4'h0, 4'h1, 4'h2: foobar = {foobar, " 878"}; endcase end end endtask task ozonerx; input [ 31:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[19:18]) 2'h0 : foobar = {foobar, " 879"}; 2'h1 : foobar = {foobar, " 880"}; 2'h2 : foobar = {foobar, " 881"}; 2'h3 : foobar = {foobar, " 882"}; endcase case (foo[17:16]) 2'h1 : foobar = {foobar, " 883"}; 2'h2 : foobar = {foobar, " 884"}; 2'h3 : foobar = {foobar, " 885"}; endcase end endtask task ozonerme; input [ 2:0] rme; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (rme) 3'h0 : foobar = {foobar, " 886"}; 3'h1 : foobar = {foobar, " 887"}; 3'h2 : foobar = {foobar, " 888"}; 3'h3 : foobar = {foobar, " 889"}; 3'h4 : foobar = {foobar, " 890"}; 3'h5 : foobar = {foobar, " 891"}; 3'h6 : foobar = {foobar, " 892"}; 3'h7 : foobar = {foobar, " 893"}; endcase end endtask task ozoneye; input [5:0] ye; input l; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin foobar = {foobar, " 894"}; ozonerme(ye[5:3],foobar); case ({ye[ 2:0], l}) 4'h2, 4'ha: foobar = {foobar, " 895"}; 4'h4, 4'hb: foobar = {foobar, " 896"}; 4'h6, 4'he: foobar = {foobar, " 897"}; 4'h8, 4'hc: foobar = {foobar, " 898"}; endcase end endtask task ozonef1e_ye; input [5:0] ye; input l; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin foobar = {foobar, " 899"}; ozonerme(ye[5:3],foobar); ozonef1e_inc_dec(ye[5:0], l ,foobar); end endtask task ozonef1e_h; input [ 2:0] e; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin if (e[ 2:0] <= 3'h4) foobar = {foobar, " 900"}; end endtask task ozonef1e_inc_dec; input [5:0] ye; input l; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case ({ye[ 2:0], l}) 4'h2, 4'h3, 4'ha: foobar = {foobar, " 901"}; 4'h4, 4'h5, 4'hb: foobar = {foobar, " 902"}; 4'h6, 4'h7, 4'he: foobar = {foobar, " 903"}; 4'h8, 4'h9, 4'hc: foobar = {foobar, " 904"}; 4'hf: foobar = {foobar, " 905"}; endcase end endtask task ozonef1e_hl; input [ 2:0] e; input l; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case ({e[ 2:0], l}) 4'h0, 4'h2, 4'h4, 4'h6, 4'h8: foobar = {foobar, " 906"}; 4'h1, 4'h3, 4'h5, 4'h7, 4'h9: foobar = {foobar, " 907"}; endcase end endtask task ozonexe; input [ 3:0] xe; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (xe[3]) 1'b0 : foobar = {foobar, " 908"}; 1'b1 : foobar = {foobar, " 909"}; endcase case (xe[ 2:0]) 3'h1, 3'h5: foobar = {foobar, " 910"}; 3'h2, 3'h6: foobar = {foobar, " 911"}; 3'h3, 3'h7: foobar = {foobar, " 912"}; 3'h4: foobar = {foobar, " 913"}; endcase end endtask task ozonerp; input [ 2:0] rp; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (rp) 3'h0 : foobar = {foobar, " 914"}; 3'h1 : foobar = {foobar, " 915"}; 3'h2 : foobar = {foobar, " 916"}; 3'h3 : foobar = {foobar, " 917"}; 3'h4 : foobar = {foobar, " 918"}; 3'h5 : foobar = {foobar, " 919"}; 3'h6 : foobar = {foobar, " 920"}; 3'h7 : foobar = {foobar, " 921"}; endcase end endtask task ozonery; input [ 3:0] ry; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (ry) 4'h0 : foobar = {foobar, " 922"}; 4'h1 : foobar = {foobar, " 923"}; 4'h2 : foobar = {foobar, " 924"}; 4'h3 : foobar = {foobar, " 925"}; 4'h4 : foobar = {foobar, " 926"}; 4'h5 : foobar = {foobar, " 927"}; 4'h6 : foobar = {foobar, " 928"}; 4'h7 : foobar = {foobar, " 929"}; 4'h8 : foobar = {foobar, " 930"}; 4'h9 : foobar = {foobar, " 931"}; 4'ha : foobar = {foobar, " 932"}; 4'hb : foobar = {foobar, " 933"}; 4'hc : foobar = {foobar, " 934"}; 4'hd : foobar = {foobar, " 935"}; 4'he : foobar = {foobar, " 936"}; 4'hf : foobar = {foobar, " 937"}; endcase end endtask task ozonearx; input [ 15:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[1:0]) 2'h0 : foobar = {foobar, " 938"}; 2'h1 : foobar = {foobar, " 939"}; 2'h2 : foobar = {foobar, " 940"}; 2'h3 : foobar = {foobar, " 941"}; endcase end endtask task ozonef3f4imop; input [ 4:0] f3f4iml; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin casez (f3f4iml) 5'b000??: foobar = {foobar, " 942"}; 5'b001??: foobar = {foobar, " 943"}; 5'b?10??: foobar = {foobar, " 944"}; 5'b0110?: foobar = {foobar, " 945"}; 5'b01110: foobar = {foobar, " 946"}; 5'b01111: foobar = {foobar, " 947"}; 5'b10???: foobar = {foobar, " 948"}; 5'b11100: foobar = {foobar, " 949"}; 5'b11101: foobar = {foobar, " 950"}; 5'b11110: foobar = {foobar, " 951"}; 5'b11111: foobar = {foobar, " 952"}; endcase end endtask task ozonecon; input [ 4:0] con; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (con) 5'h00 : foobar = {foobar, " 953"}; 5'h01 : foobar = {foobar, " 954"}; 5'h02 : foobar = {foobar, " 955"}; 5'h03 : foobar = {foobar, " 956"}; 5'h04 : foobar = {foobar, " 957"}; 5'h05 : foobar = {foobar, " 958"}; 5'h06 : foobar = {foobar, " 959"}; 5'h07 : foobar = {foobar, " 960"}; 5'h08 : foobar = {foobar, " 961"}; 5'h09 : foobar = {foobar, " 962"}; 5'h0a : foobar = {foobar, " 963"}; 5'h0b : foobar = {foobar, " 964"}; 5'h0c : foobar = {foobar, " 965"}; 5'h0d : foobar = {foobar, " 966"}; 5'h0e : foobar = {foobar, " 967"}; 5'h0f : foobar = {foobar, " 968"}; 5'h10 : foobar = {foobar, " 969"}; 5'h11 : foobar = {foobar, " 970"}; 5'h12 : foobar = {foobar, " 971"}; 5'h13 : foobar = {foobar, " 972"}; 5'h14 : foobar = {foobar, " 973"}; 5'h15 : foobar = {foobar, " 974"}; 5'h16 : foobar = {foobar, " 975"}; 5'h17 : foobar = {foobar, " 976"}; 5'h18 : foobar = {foobar, " 977"}; 5'h19 : foobar = {foobar, " 978"}; 5'h1a : foobar = {foobar, " 979"}; 5'h1b : foobar = {foobar, " 980"}; 5'h1c : foobar = {foobar, " 981"}; 5'h1d : foobar = {foobar, " 982"}; 5'h1e : foobar = {foobar, " 983"}; 5'h1f : foobar = {foobar, " 984"}; endcase end endtask task ozonedr; input [ 15:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[ 9: 6]) 4'h0 : foobar = {foobar, " 985"}; 4'h1 : foobar = {foobar, " 986"}; 4'h2 : foobar = {foobar, " 987"}; 4'h3 : foobar = {foobar, " 988"}; 4'h4 : foobar = {foobar, " 989"}; 4'h5 : foobar = {foobar, " 990"}; 4'h6 : foobar = {foobar, " 991"}; 4'h7 : foobar = {foobar, " 992"}; 4'h8 : foobar = {foobar, " 993"}; 4'h9 : foobar = {foobar, " 994"}; 4'ha : foobar = {foobar, " 995"}; 4'hb : foobar = {foobar, " 996"}; 4'hc : foobar = {foobar, " 997"}; 4'hd : foobar = {foobar, " 998"}; 4'he : foobar = {foobar, " 999"}; 4'hf : foobar = {foobar, " 1000"}; endcase end endtask task ozoneshift; input [ 15:0] foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo[ 4: 3]) 2'h0 : foobar = {foobar, " 1001"}; 2'h1 : foobar = {foobar, " 1002"}; 2'h2 : foobar = {foobar, " 1003"}; 2'h3 : foobar = {foobar, " 1004"}; endcase end endtask task ozoneacc; input foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo) 2'h0 : foobar = {foobar, " 1005"}; 2'h1 : foobar = {foobar, " 1006"}; endcase end endtask task ozonehl; input foo; inout [STRLEN*8: 1] foobar; // verilator no_inline_task begin case (foo) 2'h0 : foobar = {foobar, " 1007"}; 2'h1 : foobar = {foobar, " 1008"}; endcase end endtask task dude; inout [STRLEN*8: 1] foobar; reg [ 7:0] temp; integer i; reg nacho; // verilator no_inline_task begin : justify_block nacho = 1'b0; for (i=STRLEN-1; i>1; i=i-1) begin temp = foobar>>((STRLEN-1)*8); if (temp || nacho) nacho = 1'b1; else begin foobar = foobar<<8; foobar[8:1] = 32; end end end endtask task big_case; input [ 31:0] fd; input [ 31:0] foo; reg [STRLEN*8: 1] foobar; // verilator no_inline_task begin foobar = " 1009"; if (&foo === 1'bx) $fwrite(fd, " 1010"); else casez ( {foo[31:26], foo[19:15], foo[5:0]} ) 17'b00_111?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1011"}; ozoneacc(~foo[26], foobar); ozonehl(foo[20], foobar); foobar = {foobar, " 1012"}; ozonerx(foo, foobar); dude(foobar); $fwrite (fd, " 1013:%s", foobar); end 17'b01_001?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1014"}; ozonerx(foo, foobar); foobar = {foobar, " 1015"}; foobar = {foobar, " 1016"}; ozonehl(foo[20], foobar); dude(foobar); $fwrite (fd, " 1017:%s", foobar); end 17'b10_100?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1018"}; ozonerx(foo, foobar); foobar = {foobar, " 1019"}; foobar = {foobar, " 1020"}; ozonehl(foo[20], foobar); dude(foobar); $fwrite (fd, " 1021:%s", foobar); end 17'b10_101?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1022"}; if (foo[20]) begin foobar = {foobar, " 1023"}; ozoneacc(foo[18], foobar); foobar = {foobar, " 1024"}; foobar = {foobar, " 1025"}; if (foo[19]) foobar = {foobar, " 1026"}; else foobar = {foobar, " 1027"}; end else ozonerx(foo, foobar); dude(foobar); $fwrite (fd, " 1028:%s", foobar); end 17'b10_110?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1029"}; foobar = {foobar, " 1030"}; ozonehl(foo[20], foobar); foobar = {foobar, " 1031"}; ozonerx(foo, foobar); dude(foobar); $fwrite (fd, " 1032:%s", foobar); end 17'b10_111?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1033"}; foobar = {foobar, " 1034"}; ozonehl(foo[20], foobar); foobar = {foobar, " 1035"}; ozonerx(foo, foobar); dude(foobar); $fwrite (fd, " 1036:%s", foobar); end 17'b11_001?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1037"}; ozonerx(foo, foobar); foobar = {foobar, " 1038"}; foobar = {foobar, " 1039"}; ozonehl(foo[20], foobar); dude(foobar); $fwrite (fd, " 1040:%s", foobar); end 17'b11_111?_?_????_??_???? : begin ozonef1(foo, foobar); foobar = {foobar, " 1041"}; foobar = {foobar, " 1042"}; ozonerx(foo, foobar); foobar = {foobar, " 1043"}; if (foo[20]) foobar = {foobar, " 1044"}; else foobar = {foobar, " 1045"}; dude(foobar); $fwrite (fd, " 1046:%s", foobar); end 17'b00_10??_?_????_?1_1111 : casez (foo[11: 5]) 7'b??_0_010_0: begin foobar = " 1047"; ozonecon(foo[14:10], foobar); foobar = {foobar, " 1048"}; ozonef1e(foo, foobar); dude(foobar); $fwrite (fd, " 1049:%s", foobar); end 7'b00_?_110_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1050"}; case ({foo[ 9],foo[ 5]}) 2'b00: begin foobar = {foobar, " 1051"}; ozoneae(foo[14:12], foobar); ozonehl(foo[ 5], foobar); end 2'b01: begin foobar = {foobar, " 1052"}; ozoneae(foo[14:12], foobar); ozonehl(foo[ 5], foobar); end 2'b10: begin foobar = {foobar, " 1053"}; ozoneae(foo[14:12], foobar); end 2'b11: foobar = {foobar, " 1054"}; endcase dude(foobar); $fwrite (fd, " 1055:%s", foobar); end 7'b01_?_110_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1056"}; case ({foo[ 9],foo[ 5]}) 2'b00: begin ozoneae(foo[14:12], foobar); ozonehl(foo[ 5], foobar); foobar = {foobar, " 1057"}; end 2'b01: begin ozoneae(foo[14:12], foobar); ozonehl(foo[ 5], foobar); foobar = {foobar, " 1058"}; end 2'b10: begin ozoneae(foo[14:12], foobar); foobar = {foobar, " 1059"}; end 2'b11: foobar = {foobar, " 1060"}; endcase dude(foobar); $fwrite (fd, " 1061:%s", foobar); end 7'b10_0_110_0: begin ozonef1e(foo, foobar); foobar = {foobar, " 1062"}; foobar = {foobar, " 1063"}; if (foo[12]) foobar = {foobar, " 1064"}; else ozonerab({4'b1001, foo[14:12]}, foobar); dude(foobar); $fwrite (fd, " 1065:%s", foobar); end 7'b10_0_110_1: begin ozonef1e(foo, foobar); foobar = {foobar, " 1066"}; if (foo[12]) foobar = {foobar, " 1067"}; else ozonerab({4'b1001, foo[14:12]}, foobar); foobar = {foobar, " 1068"}; dude(foobar); $fwrite (fd, " 1069:%s", foobar); end 7'b??_?_000_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1070"}; foobar = {foobar, " 1071"}; ozonef1e_hl(foo[11:9],foo[ 5],foobar); foobar = {foobar, " 1072"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1073:%s", foobar); end 7'b??_?_100_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1074"}; foobar = {foobar, " 1075"}; ozonef1e_hl(foo[11:9],foo[ 5],foobar); foobar = {foobar, " 1076"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1077:%s", foobar); end 7'b??_?_001_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1078"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); foobar = {foobar, " 1079"}; foobar = {foobar, " 1080"}; ozonef1e_hl(foo[11:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1081:%s", foobar); end 7'b??_?_011_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1082"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); foobar = {foobar, " 1083"}; foobar = {foobar, " 1084"}; ozonef1e_hl(foo[11:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1085:%s", foobar); end 7'b??_?_101_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1086"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1087:%s", foobar); end endcase 17'b00_10??_?_????_?0_0110 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1088"}; ozoneae(foo[ 8: 6], foobar); ozonef1e_hl(foo[11:9],foo[ 5],foobar); foobar = {foobar, " 1089"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1090:%s", foobar); end 17'b00_10??_?_????_00_0111 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1091"}; if (foo[ 6]) foobar = {foobar, " 1092"}; else ozonerab({4'b1001, foo[ 8: 6]}, foobar); foobar = {foobar, " 1093"}; foobar = {foobar, " 1094"}; ozonerme(foo[14:12],foobar); case (foo[11: 9]) 3'h2, 3'h5, 3'h6, 3'h7: ozonef1e_inc_dec(foo[14:9],1'b0,foobar); 3'h1, 3'h3, 3'h4: foobar = {foobar, " 1095"}; endcase dude(foobar); $fwrite (fd, " 1096:%s", foobar); end 17'b00_10??_?_????_?0_0100 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1097"}; ozonef1e_ye(foo[14:9],foo[ 5],foobar); foobar = {foobar, " 1098"}; ozoneae(foo[ 8: 6], foobar); ozonef1e_hl(foo[11:9],foo[ 5],foobar); dude(foobar); $fwrite (fd, " 1099:%s", foobar); end 17'b00_10??_?_????_10_0111 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1100"}; foobar = {foobar, " 1101"}; ozonerme(foo[14:12],foobar); case (foo[11: 9]) 3'h2, 3'h5, 3'h6, 3'h7: ozonef1e_inc_dec(foo[14:9],1'b0,foobar); 3'h1, 3'h3, 3'h4: foobar = {foobar, " 1102"}; endcase foobar = {foobar, " 1103"}; if (foo[ 6]) foobar = {foobar, " 1104"}; else ozonerab({4'b1001, foo[ 8: 6]}, foobar); dude(foobar); $fwrite (fd, " 1105:%s", foobar); end 17'b00_10??_?_????_?0_1110 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1106"}; case (foo[11:9]) 3'h2: begin foobar = {foobar, " 1107"}; if (foo[14:12] == 3'h0) foobar = {foobar, " 1108"}; else ozonerme(foo[14:12],foobar); foobar = {foobar, " 1109"}; end 3'h6: begin foobar = {foobar, " 1110"}; if (foo[14:12] == 3'h0) foobar = {foobar, " 1111"}; else ozonerme(foo[14:12],foobar); foobar = {foobar, " 1112"}; end 3'h0: begin foobar = {foobar, " 1113"}; if (foo[14:12] == 3'h0) foobar = {foobar, " 1114"}; else ozonerme(foo[14:12],foobar); foobar = {foobar, " 1115"}; if (foo[ 7: 5] >= 3'h5) foobar = {foobar, " 1116"}; else ozonexe(foo[ 8: 5], foobar); end 3'h1: begin foobar = {foobar, " 1117"}; if (foo[14:12] == 3'h0) foobar = {foobar, " 1118"}; else ozonerme(foo[14:12],foobar); foobar = {foobar, " 1119"}; if (foo[ 7: 5] >= 3'h5) foobar = {foobar, " 1120"}; else ozonexe(foo[ 8: 5], foobar); end 3'h4: begin foobar = {foobar, " 1121"}; if (foo[14:12] == 3'h0) foobar = {foobar, " 1122"}; else ozonerme(foo[14:12],foobar); foobar = {foobar, " 1123"}; if (foo[ 7: 5] >= 3'h5) foobar = {foobar, " 1124"}; else ozonexe(foo[ 8: 5], foobar); end 3'h5: begin foobar = {foobar, " 1125"}; if (foo[14:12] == 3'h0) foobar = {foobar, " 1126"}; else ozonerme(foo[14:12],foobar); foobar = {foobar, " 1127"}; if (foo[ 7: 5] >= 3'h5) foobar = {foobar, " 1128"}; else ozonexe(foo[ 8: 5], foobar); end endcase dude(foobar); $fwrite (fd, " 1129:%s", foobar); end 17'b00_10??_?_????_?0_1111 : casez (foo[14: 9]) 6'b001_10_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1130"}; foobar = {foobar, " 1131"}; ozonef1e_hl(foo[ 7: 5],foo[ 9],foobar); foobar = {foobar, " 1132"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1133:%s", foobar); end 6'b???_11_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1134"}; ozoneae(foo[14:12], foobar); ozonef1e_hl(foo[ 7: 5],foo[ 9],foobar); foobar = {foobar, " 1135"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1136:%s", foobar); end 6'b000_10_1, 6'b010_10_1, 6'b100_10_1, 6'b110_10_1: begin ozonef1e(foo, foobar); foobar = {foobar, " 1137"}; ozonerab({4'b1001, foo[14:12]}, foobar); foobar = {foobar, " 1138"}; if ((foo[ 7: 5] >= 3'h1) & (foo[ 7: 5] <= 3'h3)) foobar = {foobar, " 1139"}; else ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1140:%s", foobar); end 6'b000_10_0, 6'b010_10_0, 6'b100_10_0, 6'b110_10_0: begin ozonef1e(foo, foobar); foobar = {foobar, " 1141"}; foobar = {foobar, " 1142"}; ozonerab({4'b1001, foo[14:12]}, foobar); foobar = {foobar, " 1143"}; foobar = {foobar, " 1144"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1145"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1146:%s", foobar); end 6'b???_00_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1147"}; if (foo[ 9]) begin foobar = {foobar, " 1148"}; ozoneae(foo[14:12], foobar); end else begin foobar = {foobar, " 1149"}; ozoneae(foo[14:12], foobar); foobar = {foobar, " 1150"}; end foobar = {foobar, " 1151"}; foobar = {foobar, " 1152"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1153"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1154:%s", foobar); end 6'b???_01_?: begin ozonef1e(foo, foobar); foobar = {foobar, " 1155"}; ozoneae(foo[14:12], foobar); if (foo[ 9]) foobar = {foobar, " 1156"}; else foobar = {foobar, " 1157"}; foobar = {foobar, " 1158"}; foobar = {foobar, " 1159"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1160"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1161:%s", foobar); end 6'b011_10_0: begin ozonef1e(foo, foobar); foobar = {foobar, " 1162"}; case (foo[ 8: 5]) 4'h0: foobar = {foobar, " 1163"}; 4'h1: foobar = {foobar, " 1164"}; 4'h2: foobar = {foobar, " 1165"}; 4'h3: foobar = {foobar, " 1166"}; 4'h4: foobar = {foobar, " 1167"}; 4'h5: foobar = {foobar, " 1168"}; 4'h8: foobar = {foobar, " 1169"}; 4'h9: foobar = {foobar, " 1170"}; 4'ha: foobar = {foobar, " 1171"}; 4'hb: foobar = {foobar, " 1172"}; 4'hc: foobar = {foobar, " 1173"}; 4'hd: foobar = {foobar, " 1174"}; default: foobar = {foobar, " 1175"}; endcase dude(foobar); $fwrite (fd, " 1176:%s", foobar); end default: foobar = {foobar, " 1177"}; endcase 17'b00_10??_?_????_?0_110? : begin ozonef1e(foo, foobar); foobar = {foobar, " 1178"}; foobar = {foobar, " 1179"}; ozonef1e_hl(foo[11:9], foo[0], foobar); foobar = {foobar, " 1180"}; ozonef1e_ye(foo[14:9],1'b0,foobar); foobar = {foobar, " 1181"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1182"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1183:%s", foobar); end 17'b00_10??_?_????_?1_110? : begin ozonef1e(foo, foobar); foobar = {foobar, " 1184"}; foobar = {foobar, " 1185"}; ozonef1e_hl(foo[11:9],foo[0],foobar); foobar = {foobar, " 1186"}; ozonef1e_ye(foo[14:9],foo[ 0],foobar); foobar = {foobar, " 1187"}; foobar = {foobar, " 1188"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1189"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1190:%s", foobar); end 17'b00_10??_?_????_?0_101? : begin ozonef1e(foo, foobar); foobar = {foobar, " 1191"}; ozonef1e_ye(foo[14:9],foo[ 0],foobar); foobar = {foobar, " 1192"}; foobar = {foobar, " 1193"}; ozonef1e_hl(foo[11:9],foo[0],foobar); foobar = {foobar, " 1194"}; foobar = {foobar, " 1195"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1196"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1197:%s", foobar); end 17'b00_10??_?_????_?0_1001 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1198"}; foobar = {foobar, " 1199"}; ozonef1e_h(foo[11:9],foobar); foobar = {foobar, " 1200"}; ozonef1e_ye(foo[14:9],1'b0,foobar); foobar = {foobar, " 1201"}; case (foo[ 7: 5]) 3'h1, 3'h2, 3'h3: foobar = {foobar, " 1202"}; default: begin foobar = {foobar, " 1203"}; foobar = {foobar, " 1204"}; ozonexe(foo[ 8: 5], foobar); end endcase dude(foobar); $fwrite (fd, " 1205:%s", foobar); end 17'b00_10??_?_????_?0_0101 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1206"}; case (foo[11: 9]) 3'h1, 3'h3, 3'h4: foobar = {foobar, " 1207"}; default: begin ozonef1e_ye(foo[14:9],1'b0,foobar); foobar = {foobar, " 1208"}; foobar = {foobar, " 1209"}; end endcase foobar = {foobar, " 1210"}; foobar = {foobar, " 1211"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1212"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1213:%s", foobar); end 17'b00_10??_?_????_?1_1110 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1214"}; ozonef1e_ye(foo[14:9],1'b0,foobar); foobar = {foobar, " 1215"}; foobar = {foobar, " 1216"}; ozonef1e_h(foo[11: 9],foobar); foobar = {foobar, " 1217"}; foobar = {foobar, " 1218"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1219"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1220:%s", foobar); end 17'b00_10??_?_????_?0_1000 : begin ozonef1e(foo, foobar); foobar = {foobar, " 1221"}; ozonef1e_ye(foo[14:9],1'b0,foobar); foobar = {foobar, " 1222"}; foobar = {foobar, " 1223"}; ozonef1e_h(foo[11: 9],foobar); foobar = {foobar, " 1224"}; foobar = {foobar, " 1225"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1226"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite (fd, " 1227:%s", foobar); end 17'b10_01??_?_????_??_???? : begin if (foo[27]) foobar = " 1228"; else foobar = " 1229"; ozonecon(foo[20:16], foobar); foobar = {foobar, " 1230"}; ozonef2(foo[31:0], foobar); dude(foobar); $fwrite (fd, " 1231:%s", foobar); end 17'b00_1000_?_????_01_0011 : if (~|foo[ 9: 8]) begin if (foo[ 7]) foobar = " 1232"; else foobar = " 1233"; ozonecon(foo[14:10], foobar); foobar = {foobar, " 1234"}; ozonef2e(foo[31:0], foobar); dude(foobar); $fwrite (fd, " 1235:%s", foobar); end else begin foobar = " 1236"; ozonecon(foo[14:10], foobar); foobar = {foobar, " 1237"}; ozonef3e(foo[31:0], foobar); dude(foobar); $fwrite (fd, " 1238:%s", foobar); end 17'b11_110?_1_????_??_???? : begin ozonef3(foo[31:0], foobar); dude(foobar); $fwrite(fd, " 1239:%s", foobar); end 17'b11_110?_0_????_??_???? : begin : f4_body casez (foo[24:20]) 5'b0_1110, 5'b1_0???, 5'b1_1111: begin $fwrite (fd, " 1240"); end 5'b0_00??: begin ozoneacc(foo[26], foobar); foobar = {foobar, " 1241"}; ozoneacc(foo[25], foobar); ozonebmuop(foo[24:20], foobar); ozoneae(foo[18:16], foobar); foobar = {foobar, " 1242"}; dude(foobar); $fwrite(fd, " 1243:%s", foobar); end 5'b0_01??: begin ozoneacc(foo[26], foobar); foobar = {foobar, " 1244"}; ozoneacc(foo[25], foobar); ozonebmuop(foo[24:20], foobar); ozonearm(foo[18:16], foobar); dude(foobar); $fwrite(fd, " 1245:%s", foobar); end 5'b0_1011: begin ozoneacc(foo[26], foobar); foobar = {foobar, " 1246"}; ozonebmuop(foo[24:20], foobar); foobar = {foobar, " 1247"}; ozoneae(foo[18:16], foobar); foobar = {foobar, " 1248"}; dude(foobar); $fwrite(fd, " 1249:%s", foobar); end 5'b0_100?, 5'b0_1010, 5'b0_110? : begin ozoneacc(foo[26], foobar); foobar = {foobar, " 1250"}; ozonebmuop(foo[24:20], foobar); foobar = {foobar, " 1251"}; ozoneacc(foo[25], foobar); foobar = {foobar, " 1252"}; ozoneae(foo[18:16], foobar); foobar = {foobar, " 1253"}; dude(foobar); $fwrite(fd, " 1254:%s", foobar); end 5'b0_1111 : begin ozoneacc(foo[26], foobar); foobar = {foobar, " 1255"}; ozoneacc(foo[25], foobar); foobar = {foobar, " 1256"}; ozoneae(foo[18:16], foobar); dude(foobar); $fwrite(fd, " 1257:%s", foobar); end 5'b1_10??, 5'b1_110?, 5'b1_1110 : begin ozoneacc(foo[26], foobar); foobar = {foobar, " 1258"}; ozonebmuop(foo[24:20], foobar); foobar = {foobar, " 1259"}; ozoneacc(foo[25], foobar); foobar = {foobar, " 1260"}; ozonearm(foo[18:16], foobar); foobar = {foobar, " 1261"}; dude(foobar); $fwrite(fd, " 1262:%s", foobar); end endcase end 17'b11_100?_?_????_??_???? : casez (foo[23:19]) 5'b111??, 5'b0111?: begin ozoneae(foo[26:24], foobar); foobar = {foobar, " 1263"}; ozonef3f4imop(foo[23:19], foobar); foobar = {foobar, " 1264"}; ozoneae(foo[18:16], foobar); foobar = {foobar, " 1265"}; skyway(foo[15:12], foobar); skyway(foo[11: 8], foobar); skyway(foo[ 7: 4], foobar); skyway(foo[ 3:0], foobar); foobar = {foobar, " 1266"}; dude(foobar); $fwrite(fd, " 1267:%s", foobar); end 5'b?0???, 5'b110??: begin ozoneae(foo[26:24], foobar); foobar = {foobar, " 1268"}; if (foo[23:21] == 3'b100) foobar = {foobar, " 1269"}; ozoneae(foo[18:16], foobar); if (foo[19]) foobar = {foobar, " 1270"}; else foobar = {foobar, " 1271"}; ozonef3f4imop(foo[23:19], foobar); foobar = {foobar, " 1272"}; ozonef3f4_iext(foo[20:19], foo[15:0], foobar); dude(foobar); $fwrite(fd, " 1273:%s", foobar); end 5'b010??, 5'b0110?: begin ozoneae(foo[18:16], foobar); if (foo[19]) foobar = {foobar, " 1274"}; else foobar = {foobar, " 1275"}; ozonef3f4imop(foo[23:19], foobar); foobar = {foobar, " 1276"}; ozonef3f4_iext(foo[20:19], foo[15:0], foobar); dude(foobar); $fwrite(fd, " 1277:%s", foobar); end endcase 17'b00_1000_?_????_11_0011 : begin foobar = " 1278"; ozonecon(foo[14:10], foobar); foobar = {foobar, " 1279"}; casez (foo[25:21]) 5'b0_1110, 5'b1_0???, 5'b1_1111: begin $fwrite(fd, " 1280"); end 5'b0_00??: begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 1281"}; ozoneae(foo[17:15], foobar); ozonebmuop(foo[25:21], foobar); ozoneae(foo[ 8: 6], foobar); foobar = {foobar, " 1282"}; dude(foobar); $fwrite(fd, " 1283:%s", foobar); end 5'b0_01??: begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 1284"}; ozoneae(foo[17:15], foobar); ozonebmuop(foo[25:21], foobar); ozonearm(foo[ 8: 6], foobar); dude(foobar); $fwrite(fd, " 1285:%s", foobar); end 5'b0_1011: begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 1286"}; ozonebmuop(foo[25:21], foobar); foobar = {foobar, " 1287"}; ozoneae(foo[ 8: 6], foobar); foobar = {foobar, " 1288"}; dude(foobar); $fwrite(fd, " 1289:%s", foobar); end 5'b0_100?, 5'b0_1010, 5'b0_110? : begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 1290"}; ozonebmuop(foo[25:21], foobar); foobar = {foobar, " 1291"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 1292"}; ozoneae(foo[ 8: 6], foobar); foobar = {foobar, " 1293"}; dude(foobar); $fwrite(fd, " 1294:%s", foobar); end 5'b0_1111 : begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 1295"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 1296"}; ozoneae(foo[ 8: 6], foobar); dude(foobar); $fwrite(fd, " 1297:%s", foobar); end 5'b1_10??, 5'b1_110?, 5'b1_1110 : begin ozoneae(foo[20:18], foobar); foobar = {foobar, " 1298"}; ozonebmuop(foo[25:21], foobar); foobar = {foobar, " 1299"}; ozoneae(foo[17:15], foobar); foobar = {foobar, " 1300"}; ozonearm(foo[ 8: 6], foobar); foobar = {foobar, " 1301"}; dude(foobar); $fwrite(fd, " 1302:%s", foobar); end endcase end 17'b00_0010_?_????_??_???? : begin $fwrite(fd, " 1304a:%x;%x", foobar, foo[25:20]); ozonerab({1'b0, foo[25:20]}, foobar); $fwrite(fd, " 1304b:%x", foobar); foobar = {foobar, " 1303"}; $fwrite(fd, " 1304c:%x;%x", foobar, foo[19:16]); skyway(foo[19:16], foobar); $fwrite(fd, " 1304d:%x", foobar); dude(foobar); $fwrite(fd, " 1304e:%x", foobar); $fwrite(fd, " 1304:%s", foobar); end 17'b00_01??_?_????_??_???? : begin if (foo[27]) begin foobar = {foobar, " 1305"}; if (foo[26]) foobar = {foobar, " 1306"}; else foobar = {foobar, " 1307"}; skyway(foo[19:16], foobar); foobar = {foobar, " 1308"}; ozonerab({1'b0, foo[25:20]}, foobar); end else begin ozonerab({1'b0, foo[25:20]}, foobar); foobar = {foobar, " 1309"}; if (foo[26]) foobar = {foobar, " 1310"}; else foobar = {foobar, " 1311"}; skyway(foo[19:16], foobar); foobar = {foobar, " 1312"}; end dude(foobar); $fwrite(fd, " 1313:%s", foobar); end 17'b01_000?_?_????_??_???? : begin if (foo[26]) begin ozonerb(foo[25:20], foobar); foobar = {foobar, " 1314"}; ozoneae(foo[18:16], foobar); ozonehl(foo[19], foobar); end else begin ozoneae(foo[18:16], foobar); ozonehl(foo[19], foobar); foobar = {foobar, " 1315"}; ozonerb(foo[25:20], foobar); end dude(foobar); $fwrite(fd, " 1316:%s", foobar); end 17'b01_10??_?_????_??_???? : begin if (foo[27]) begin ozonerab({1'b0, foo[25:20]}, foobar); foobar = {foobar, " 1317"}; ozonerx(foo, foobar); end else begin ozonerx(foo, foobar); foobar = {foobar, " 1318"}; ozonerab({1'b0, foo[25:20]}, foobar); end dude(foobar); $fwrite(fd, " 1319:%s", foobar); end 17'b11_101?_?_????_??_???? : begin ozonerab (foo[26:20], foobar); foobar = {foobar, " 1320"}; skyway(foo[19:16], foobar); skyway(foo[15:12], foobar); skyway(foo[11: 8], foobar); skyway(foo[ 7: 4], foobar); skyway(foo[ 3: 0], foobar); dude(foobar); $fwrite(fd, " 1321:%s", foobar); end 17'b11_0000_?_????_??_???? : begin casez (foo[25:23]) 3'b00?: begin ozonerab(foo[22:16], foobar); foobar = {foobar, " 1322"}; end 3'b01?: begin foobar = {foobar, " 1323"}; if (foo[22:16]>=7'h60) foobar = {foobar, " 1324"}; else ozonerab(foo[22:16], foobar); end 3'b110: foobar = {foobar, " 1325"}; 3'b10?: begin foobar = {foobar, " 1326"}; if (foo[22:16]>=7'h60) foobar = {foobar, " 1327"}; else ozonerab(foo[22:16], foobar); end 3'b111: begin foobar = {foobar, " 1328"}; ozonerab(foo[22:16], foobar); foobar = {foobar, " 1329"}; end endcase dude(foobar); $fwrite(fd, " 1330:%s", foobar); end 17'b00_10??_?_????_?1_0000 : begin if (foo[27]) begin foobar = {foobar, " 1331"}; ozonerp(foo[14:12], foobar); foobar = {foobar, " 1332"}; skyway(foo[19:16], foobar); skyway({foo[15],foo[11: 9]}, foobar); skyway(foo[ 8: 5], foobar); foobar = {foobar, " 1333"}; if (foo[26:20]>=7'h60) foobar = {foobar, " 1334"}; else ozonerab(foo[26:20], foobar); end else begin ozonerab(foo[26:20], foobar); foobar = {foobar, " 1335"}; foobar = {foobar, " 1336"}; ozonerp(foo[14:12], foobar); foobar = {foobar, " 1337"}; skyway(foo[19:16], foobar); skyway({foo[15],foo[11: 9]}, foobar); skyway(foo[ 8: 5], foobar); foobar = {foobar, " 1338"}; end dude(foobar); $fwrite(fd, " 1339:%s", foobar); end 17'b00_101?_1_0000_?1_0010 : if (~|foo[11: 7]) begin if (foo[ 6]) begin foobar = {foobar, " 1340"}; ozonerp(foo[14:12], foobar); foobar = {foobar, " 1341"}; ozonejk(foo[ 5], foobar); foobar = {foobar, " 1342"}; if (foo[26:20]>=7'h60) foobar = {foobar, " 1343"}; else ozonerab(foo[26:20], foobar); end else begin ozonerab(foo[26:20], foobar); foobar = {foobar, " 1344"}; foobar = {foobar, " 1345"}; ozonerp(foo[14:12], foobar); foobar = {foobar, " 1346"}; ozonejk(foo[ 5], foobar); foobar = {foobar, " 1347"}; end dude(foobar); $fwrite(fd, " 1348:%s", foobar); end else $fwrite(fd, " 1349"); 17'b00_100?_0_0011_?1_0101 : if (~|foo[ 8: 7]) begin if (foo[6]) begin ozonerab(foo[26:20], foobar); foobar = {foobar, " 1350"}; ozoneye(foo[14: 9],foo[ 5], foobar); end else begin ozoneye(foo[14: 9],foo[ 5], foobar); foobar = {foobar, " 1351"}; if (foo[26:20]>=7'h60) foobar = {foobar, " 1352"}; else ozonerab(foo[26:20], foobar); end dude(foobar); $fwrite(fd, " 1353:%s", foobar); end else $fwrite(fd, " 1354"); 17'b00_1001_0_0000_?1_0010 : if (~|foo[25:20]) begin ozoneye(foo[14: 9],1'b0, foobar); foobar = {foobar, " 1355"}; ozonef1e_h(foo[11: 9],foobar); foobar = {foobar, " 1356"}; ozonef1e_h(foo[ 7: 5],foobar); foobar = {foobar, " 1357"}; ozonexe(foo[ 8: 5], foobar); dude(foobar); $fwrite(fd, " 1358:%s", foobar); end else $fwrite(fd, " 1359"); 17'b00_101?_0_????_?1_0010 : if (~foo[13]) begin if (foo[12]) begin foobar = {foobar, " 1360"}; if (foo[26:20]>=7'h60) foobar = {foobar, " 1361"}; else ozonerab(foo[26:20], foobar); foobar = {foobar, " 1362"}; foobar = {foobar, " 1363"}; skyway({1'b0,foo[18:16]}, foobar); skyway({foo[15],foo[11: 9]}, foobar); skyway(foo[ 8: 5], foobar); dude(foobar); $fwrite(fd, " 1364:%s", foobar); end else begin ozonerab(foo[26:20], foobar); foobar = {foobar, " 1365"}; foobar = {foobar, " 1366"}; skyway({1'b0,foo[18:16]}, foobar); skyway({foo[15],foo[11: 9]}, foobar); skyway(foo[ 8: 5], foobar); dude(foobar); $fwrite(fd, " 1367:%s", foobar); end end else $fwrite(fd, " 1368"); 17'b01_01??_?_????_??_???? : begin ozonerab({1'b0,foo[27:26],foo[19:16]}, foobar); foobar = {foobar, " 1369"}; ozonerab({1'b0,foo[25:20]}, foobar); dude(foobar); $fwrite(fd, " 1370:%s", foobar); end 17'b00_100?_?_???0_11_0101 : if (~foo[6]) begin foobar = " 1371"; ozonecon(foo[14:10], foobar); foobar = {foobar, " 1372"}; ozonerab({foo[ 9: 7],foo[19:16]}, foobar); foobar = {foobar, " 1373"}; ozonerab({foo[26:20]}, foobar); dude(foobar); $fwrite(fd, " 1374:%s", foobar); end else $fwrite(fd, " 1375"); 17'b00_1000_?_????_?1_0010 : if (~|foo[25:24]) begin ozonery(foo[23:20], foobar); foobar = {foobar, " 1376"}; ozonerp(foo[14:12], foobar); foobar = {foobar, " 1377"}; skyway(foo[19:16], foobar); skyway({foo[15],foo[11: 9]}, foobar); skyway(foo[ 8: 5], foobar); dude(foobar); $fwrite(fd, " 1378:%s", foobar); end else if ((foo[25:24] == 2'b10) & ~|foo[19:15] & ~|foo[11: 6]) begin ozonery(foo[23:20], foobar); foobar = {foobar, " 1379"}; ozonerp(foo[14:12], foobar); foobar = {foobar, " 1380"}; ozonejk(foo[ 5], foobar); dude(foobar); $fwrite(fd, " 1381:%s", foobar); end else $fwrite(fd, " 1382"); 17'b11_01??_?_????_??_????, 17'b10_00??_?_????_??_???? : if (foo[30]) $fwrite(fd, " 1383:%s", foo[27:16]); else $fwrite(fd, " 1384:%s", foo[27:16]); 17'b00_10??_?_????_01_1000 : if (~foo[6]) begin if (foo[7]) $fwrite(fd, " 1385:%s", foo[27: 8]); else $fwrite(fd, " 1386:%s", foo[27: 8]); end else $fwrite(fd, " 1387"); 17'b00_10??_?_????_11_1000 : begin foobar = " 1388"; ozonecon(foo[14:10], foobar); foobar = {foobar, " 1389"}; if (foo[15]) foobar = {foobar, " 1390"}; else foobar = {foobar, " 1391"}; skyway(foo[27:24], foobar); skyway(foo[23:20], foobar); skyway(foo[19:16], foobar); skyway(foo[ 9: 6], foobar); dude(foobar); $fwrite(fd, " 1392:%s", foobar); end 17'b11_0001_?_????_??_???? : casez (foo[25:22]) 4'b01?? : begin foobar = " 1393"; ozonecon(foo[20:16], foobar); case (foo[23:21]) 3'h0 : foobar = {foobar, " 1394"}; 3'h1 : foobar = {foobar, " 1395"}; 3'h2 : foobar = {foobar, " 1396"}; 3'h3 : foobar = {foobar, " 1397"}; 3'h4 : foobar = {foobar, " 1398"}; 3'h5 : foobar = {foobar, " 1399"}; 3'h6 : foobar = {foobar, " 1400"}; 3'h7 : foobar = {foobar, " 1401"}; endcase dude(foobar); $fwrite(fd, " 1402:%s", foobar); end 4'b0000 : $fwrite(fd, " 1403:%s", foo[21:16]); 4'b0010 : if (~|foo[21:16]) $fwrite(fd, " 1404"); 4'b1010 : if (~|foo[21:17]) begin if (foo[16]) $fwrite(fd, " 1405"); else $fwrite(fd, " 1406"); end default : $fwrite(fd, " 1407"); endcase 17'b01_11??_?_????_??_???? : if (foo[27:23] === 5'h00) $fwrite(fd, " 1408:%s", foo[22:16]); else $fwrite(fd, " 1409:%s", foo[22:16]); default: $fwrite(fd, " 1410"); endcase end endtask //(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\",\",\\4,\");\");" nil nil nil) //(query-replace-regexp "\\([a-z0-9_]+\\) *( *\\([][a-z0-9_~': ]+\\) *, *\\([][a-z0-9'~: ]+\\) *);" "$c(\"\\1(\",\\2,\",\",\\3,\");\");" nil nil nil) endmodule
module outputs) wire [63:0] HighLogicImm; // From example of example.v wire [63:0] LogicImm; // From example of example.v wire [63:0] LowLogicImm; // From example of example.v // End of automatics wire [5:0] LowMaskSel_Top = crc[5:0]; wire [5:0] LowMaskSel_Bot = crc[5:0]; wire [5:0] HighMaskSel_Top = crc[5:0]+{4'b0,crc[7:6]}; wire [5:0] HighMaskSel_Bot = crc[5:0]+{4'b0,crc[7:6]}; example example (/*AUTOINST*/ // Outputs .LogicImm (LogicImm[63:0]), .LowLogicImm (LowLogicImm[63:0]), .HighLogicImm (HighLogicImm[63:0]), // Inputs .LowMaskSel_Top (LowMaskSel_Top[5:0]), .HighMaskSel_Top (HighMaskSel_Top[5:0]), .LowMaskSel_Bot (LowMaskSel_Bot[5:0]), .HighMaskSel_Bot (HighMaskSel_Bot[5:0])); always @ (posedge clk) begin cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%b %d.%d,%d.%d -> %x.%x -> %x\n",$time, cyc, crc, LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot, LowLogicImm, HighLogicImm, LogicImm); `endif if (cyc==0) begin // Single case crc <= 8'h0; sum <= 64'h0; end else if (cyc==1) begin // Setup crc <= 8'hed; sum <= 64'h0; end else if (cyc<90) begin sum <= {sum[62:0],sum[63]} ^ LogicImm; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum); if (crc !== 8'b00111000) $stop; if (sum !== 64'h58743ffa61e41075) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule
module example (/*AUTOARG*/ // Outputs LogicImm, LowLogicImm, HighLogicImm, // Inputs LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot ); input [5:0] LowMaskSel_Top, HighMaskSel_Top; input [5:0] LowMaskSel_Bot, HighMaskSel_Bot; output [63:0] LogicImm; output [63:0] LowLogicImm, HighLogicImm; wire [63:0] LowLogicImm, HighLogicImm; /* verilator lint_off UNSIGNED */ /* verilator lint_off CMPCONST */ genvar i; generate for (i=0;i<64;i=i+1) begin : MaskVal if (i >= 32) begin assign LowLogicImm[i] = (LowMaskSel_Top <= i[5:0]); assign HighLogicImm[i] = (HighMaskSel_Top >= i[5:0]); end else begin assign LowLogicImm[i] = (LowMaskSel_Bot <= i[5:0]); assign HighLogicImm[i] = (HighMaskSel_Bot >= i[5:0]); end end endgenerate /* verilator lint_on UNSIGNED */ /* verilator lint_on CMPCONST */ assign LogicImm = LowLogicImm & HighLogicImm; endmodule
module outputs) wire [63:0] HighLogicImm; // From example of example.v wire [63:0] LogicImm; // From example of example.v wire [63:0] LowLogicImm; // From example of example.v // End of automatics wire [5:0] LowMaskSel_Top = crc[5:0]; wire [5:0] LowMaskSel_Bot = crc[5:0]; wire [5:0] HighMaskSel_Top = crc[5:0]+{4'b0,crc[7:6]}; wire [5:0] HighMaskSel_Bot = crc[5:0]+{4'b0,crc[7:6]}; example example (/*AUTOINST*/ // Outputs .LogicImm (LogicImm[63:0]), .LowLogicImm (LowLogicImm[63:0]), .HighLogicImm (HighLogicImm[63:0]), // Inputs .LowMaskSel_Top (LowMaskSel_Top[5:0]), .HighMaskSel_Top (HighMaskSel_Top[5:0]), .LowMaskSel_Bot (LowMaskSel_Bot[5:0]), .HighMaskSel_Bot (HighMaskSel_Bot[5:0])); always @ (posedge clk) begin cyc <= cyc + 1; crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%b %d.%d,%d.%d -> %x.%x -> %x\n",$time, cyc, crc, LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot, LowLogicImm, HighLogicImm, LogicImm); `endif if (cyc==0) begin // Single case crc <= 8'h0; sum <= 64'h0; end else if (cyc==1) begin // Setup crc <= 8'hed; sum <= 64'h0; end else if (cyc<90) begin sum <= {sum[62:0],sum[63]} ^ LogicImm; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%b %x\n",$time, cyc, crc, sum); if (crc !== 8'b00111000) $stop; if (sum !== 64'h58743ffa61e41075) $stop; $write("*-* All Finished *-*\n"); $finish; end end endmodule
module example (/*AUTOARG*/ // Outputs LogicImm, LowLogicImm, HighLogicImm, // Inputs LowMaskSel_Top, HighMaskSel_Top, LowMaskSel_Bot, HighMaskSel_Bot ); input [5:0] LowMaskSel_Top, HighMaskSel_Top; input [5:0] LowMaskSel_Bot, HighMaskSel_Bot; output [63:0] LogicImm; output [63:0] LowLogicImm, HighLogicImm; wire [63:0] LowLogicImm, HighLogicImm; /* verilator lint_off UNSIGNED */ /* verilator lint_off CMPCONST */ genvar i; generate for (i=0;i<64;i=i+1) begin : MaskVal if (i >= 32) begin assign LowLogicImm[i] = (LowMaskSel_Top <= i[5:0]); assign HighLogicImm[i] = (HighMaskSel_Top >= i[5:0]); end else begin assign LowLogicImm[i] = (LowMaskSel_Bot <= i[5:0]); assign HighLogicImm[i] = (HighMaskSel_Bot >= i[5:0]); end end endgenerate /* verilator lint_on UNSIGNED */ /* verilator lint_on CMPCONST */ assign LogicImm = LowLogicImm & HighLogicImm; endmodule
module outputs) wire [7:0] entry_vld; // From test of Test.v wire [7:0] ff_en_vld; // From test of Test.v // End of automatics Test test (/*AUTOINST*/ // Outputs .ff_en_vld (ff_en_vld[7:0]), .entry_vld (entry_vld[7:0]), // Inputs .clk (clk), .dvld (dvld[7:0]), .ff_en_e1 (ff_en_e1[7:0])); reg err_code; reg ffq_clk_active; reg [7:0] prv_dvld; initial begin err_code = 0; ffq_clk_active = 0; end always @ (posedge clk) begin prv_dvld = test.dvld; end always @ (negedge test.ff_entry_dvld_0.clk) begin ffq_clk_active = 1; if (test.entry_vld[0] !== prv_dvld[0]) err_code = 1; end // Test loop always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x ",$time, cyc, crc); $display(" en=%b fen=%b d=%b ev=%b", test.flop_en_vld[0], test.ff_en_vld[0], test.dvld[0], test.entry_vld[0]); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; if (cyc<3) begin crc <= 64'h5aef0c8d_d70a4497; end else if (cyc==99) begin $write("[%0t] cyc==%0d crc=%x\n",$time, cyc, crc); if (ffq_clk_active == 0) begin $display ("----"); $display ("%%Error: TESTCASE FAILED with no Clock arriving at FFQs"); $display ("----"); $stop; end else if (err_code) begin $display ("----"); $display ("%%Error: TESTCASE FAILED with invalid propagation of 'd' to 'q' of FFQs"); $display ("----"); $stop; end else begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module llq (clk, d, q); parameter WIDTH = 32; input clk; input [WIDTH-1:0] d; output [WIDTH-1:0] q; reg [WIDTH-1:0] qr; /* verilator lint_off COMBDLY */ always @(clk or d) if (clk == 1'b0) qr <= d; /* verilator lint_on COMBDLY */ assign q = qr; endmodule
module ffq (clk, d, q); parameter WIDTH = 32; input clk; input [WIDTH-1:0] d; output [WIDTH-1:0] q; reg [WIDTH-1:0] qr; always @(posedge clk) qr <= d; assign q = qr; endmodule
module Test (/*AUTOARG*/ // Outputs ff_en_vld, entry_vld, // Inputs clk, dvld, ff_en_e1 ); input clk; input [7:0] dvld; input [7:0] ff_en_e1; output [7:0] ff_en_vld; output wire [7:0] entry_vld; wire [7:0] gclk_vld; wire [7:0] ff_en_vld /*verilator clock_enable*/; reg [7:0] flop_en_vld; always @(posedge clk) flop_en_vld <= ff_en_e1; // clock gating `ifdef GATED_CLK_TESTCASE assign gclk_vld = {8{clk}} & ff_en_vld; `else assign gclk_vld = {8{clk}}; `endif // latch for avoiding glitch on the clock gating control llq #(8) dp_ff_en_vld (.clk(clk), .d(flop_en_vld), .q(ff_en_vld)); // flops that use the gated clock signal ffq #(1) ff_entry_dvld_0 (.clk(gclk_vld[0]), .d(dvld[0]), .q(entry_vld[0])); ffq #(1) ff_entry_dvld_1 (.clk(gclk_vld[1]), .d(dvld[1]), .q(entry_vld[1])); ffq #(1) ff_entry_dvld_2 (.clk(gclk_vld[2]), .d(dvld[2]), .q(entry_vld[2])); ffq #(1) ff_entry_dvld_3 (.clk(gclk_vld[3]), .d(dvld[3]), .q(entry_vld[3])); ffq #(1) ff_entry_dvld_4 (.clk(gclk_vld[4]), .d(dvld[4]), .q(entry_vld[4])); ffq #(1) ff_entry_dvld_5 (.clk(gclk_vld[5]), .d(dvld[5]), .q(entry_vld[5])); ffq #(1) ff_entry_dvld_6 (.clk(gclk_vld[6]), .d(dvld[6]), .q(entry_vld[6])); ffq #(1) ff_entry_dvld_7 (.clk(gclk_vld[7]), .d(dvld[7]), .q(entry_vld[7])); endmodule
module hi_read_tx( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, adc_d, adc_clk, ssp_frame, ssp_din, ssp_dout, ssp_clk, cross_hi, cross_lo, dbg, shallow_modulation ); input pck0, ck_1356meg, ck_1356megb; output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; input [7:0] adc_d; output adc_clk; input ssp_dout; output ssp_frame, ssp_din, ssp_clk; input cross_hi, cross_lo; output dbg; input shallow_modulation; // The high-frequency stuff. For now, for testing, just bring out the carrier, // and allow the ARM to modulate it over the SSP. reg pwr_hi; reg pwr_oe1; reg pwr_oe2; reg pwr_oe3; reg pwr_oe4; always @(ck_1356megb or ssp_dout or shallow_modulation) begin if(shallow_modulation) begin pwr_hi <= ck_1356megb; pwr_oe1 <= ~ssp_dout; pwr_oe2 <= ~ssp_dout; pwr_oe3 <= ~ssp_dout; pwr_oe4 <= 1'b0; end else begin pwr_hi <= ck_1356megb & ssp_dout; pwr_oe1 <= 1'b0; pwr_oe2 <= 1'b0; pwr_oe3 <= 1'b0; pwr_oe4 <= 1'b0; end end // Then just divide the 13.56 MHz clock down to produce appropriate clocks // for the synchronous serial port. reg [6:0] hi_div_by_128; always @(posedge ck_1356meg) hi_div_by_128 <= hi_div_by_128 + 1; assign ssp_clk = hi_div_by_128[6]; reg [2:0] hi_byte_div; always @(negedge ssp_clk) hi_byte_div <= hi_byte_div + 1; assign ssp_frame = (hi_byte_div == 3'b000); // Implement a hysteresis to give out the received signal on // ssp_din. Sample at fc. assign adc_clk = ck_1356meg; // ADC data appears on the rising edge, so sample it on the falling edge reg after_hysteresis; always @(negedge adc_clk) begin if(& adc_d[7:0]) after_hysteresis <= 1'b1; else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; end assign ssp_din = after_hysteresis; assign pwr_lo = 1'b0; assign dbg = ssp_din; endmodule
module, including test, but that'll make a mess timeunit 1ns; timeprecision 1ns; `endif input clk; integer cyc; initial cyc=1; supply0 [1:0] low; supply1 [1:0] high; reg [7:0] isizedwire; reg ionewire; wire oonewire; wire [7:0] osizedreg; // From sub of t_inst_v2k_sub.v t_inst sub ( .osizedreg, .oonewire, // Inputs .isizedwire (isizedwire[7:0]), .* //.ionewire (ionewire) ); always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin ionewire <= 1'b1; isizedwire <= 8'd8; end if (cyc==2) begin if (low != 2'b00) $stop; if (high != 2'b11) $stop; if (oonewire !== 1'b1) $stop; if (isizedwire !== 8'd8) $stop; end if (cyc==3) begin ionewire <= 1'b0; isizedwire <= 8'd7; end if (cyc==4) begin if (oonewire !== 1'b0) $stop; if (isizedwire !== 8'd7) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t_inst ( output reg [7:0] osizedreg, output wire oonewire /*verilator public*/, input [7:0] isizedwire, input wire ionewire ); assign oonewire = ionewire; always @* begin osizedreg = isizedwire; end endmodule
module, including test, but that'll make a mess timeunit 1ns; timeprecision 1ns; `endif input clk; integer cyc; initial cyc=1; supply0 [1:0] low; supply1 [1:0] high; reg [7:0] isizedwire; reg ionewire; wire oonewire; wire [7:0] osizedreg; // From sub of t_inst_v2k_sub.v t_inst sub ( .osizedreg, .oonewire, // Inputs .isizedwire (isizedwire[7:0]), .* //.ionewire (ionewire) ); always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin ionewire <= 1'b1; isizedwire <= 8'd8; end if (cyc==2) begin if (low != 2'b00) $stop; if (high != 2'b11) $stop; if (oonewire !== 1'b1) $stop; if (isizedwire !== 8'd8) $stop; end if (cyc==3) begin ionewire <= 1'b0; isizedwire <= 8'd7; end if (cyc==4) begin if (oonewire !== 1'b0) $stop; if (isizedwire !== 8'd7) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t_inst ( output reg [7:0] osizedreg, output wire oonewire /*verilator public*/, input [7:0] isizedwire, input wire ionewire ); assign oonewire = ionewire; always @* begin osizedreg = isizedwire; end endmodule
module, including test, but that'll make a mess timeunit 1ns; timeprecision 1ns; `endif input clk; integer cyc; initial cyc=1; supply0 [1:0] low; supply1 [1:0] high; reg [7:0] isizedwire; reg ionewire; wire oonewire; wire [7:0] osizedreg; // From sub of t_inst_v2k_sub.v t_inst sub ( .osizedreg, .oonewire, // Inputs .isizedwire (isizedwire[7:0]), .* //.ionewire (ionewire) ); always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin ionewire <= 1'b1; isizedwire <= 8'd8; end if (cyc==2) begin if (low != 2'b00) $stop; if (high != 2'b11) $stop; if (oonewire !== 1'b1) $stop; if (isizedwire !== 8'd8) $stop; end if (cyc==3) begin ionewire <= 1'b0; isizedwire <= 8'd7; end if (cyc==4) begin if (oonewire !== 1'b0) $stop; if (isizedwire !== 8'd7) $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t_inst ( output reg [7:0] osizedreg, output wire oonewire /*verilator public*/, input [7:0] isizedwire, input wire ionewire ); assign oonewire = ionewire; always @* begin osizedreg = isizedwire; end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; reg b; wire vconst1 = 1'b0; wire vconst2 = !(vconst1); wire vconst3 = !vconst2; wire vconst = vconst3; wire qa; wire qb; wire qc; wire qd; wire qe; ta ta (.b(b), .vconst(vconst), .q(qa)); tb tb (.clk(clk), .vconst(vconst), .q(qb)); tc tc (.b(b), .vconst(vconst), .q(qc)); td td (.b(b), .vconst(vconst), .q(qd)); te te (.clk(clk), .b(b), .vconst(vconst), .q(qe)); always @ (posedge clk) begin `ifdef TEST_VERBOSE $display("%b",{qa,qb,qc,qd,qe}); `endif if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin b <= 1'b1; end if (cyc==2) begin if (qa!=1'b1) $stop; if (qb!=1'b0) $stop; if (qd!=1'b0) $stop; b <= 1'b0; end if (cyc==3) begin if (qa!=1'b0) $stop; if (qb!=1'b0) $stop; if (qd!=1'b0) $stop; if (qe!=1'b0) $stop; b <= 1'b1; end if (cyc==4) begin if (qa!=1'b1) $stop; if (qb!=1'b0) $stop; if (qd!=1'b0) $stop; if (qe!=1'b1) $stop; b <= 1'b0; end if (cyc==5) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module ta ( input vconst, input b, output reg q); always @ (/*AS*/b or vconst) begin q = vconst | b; end endmodule
module tb ( input vconst, input clk, output reg q); always @ (posedge clk) begin q <= vconst; end endmodule
module tc ( input vconst, input b, output reg q); always @ (posedge vconst) begin q <= b; $stop; end endmodule
module td ( input vconst, input b, output reg q); always @ (/*AS*/vconst) begin q = vconst; end endmodule
module te ( input clk, input vconst, input b, output reg q); reg qmid; always @ (posedge vconst or posedge clk) begin qmid <= b; end always @ (posedge clk or posedge vconst) begin q <= qmid; end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; reg a; initial a = 1'b1; reg b_fc; initial b_fc = 1'b0; reg b_pc; initial b_pc = 1'b0; reg b_oh; initial b_oh = 1'b0; reg b_oc; initial b_oc = 1'b0; wire a_l = ~a; wire b_oc_l = ~b_oc; // Note we must insure that full, parallel, etc, only fire during // edges (not mid-cycle), and must provide a way to turn them off. // SystemVerilog provides: $asserton and $assertoff. // verilator lint_off CASEINCOMPLETE always @* begin // Note not all tools support directives on casez's case ({a,b_fc}) // synopsys full_case 2'b0_0: ; 2'b0_1: ; 2'b1_0: ; // Note no default endcase priority case ({a,b_fc}) 2'b0_0: ; 2'b0_1: ; 2'b1_0: ; // Note no default endcase end always @* begin case (1'b1) // synopsys full_case parallel_case a: ; b_pc: ; endcase end `ifdef NOT_YET_VERILATOR // Unsupported // ambit synthesis one_hot "a, b_oh" // cadence one_cold "a_l, b_oc_l" `endif integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin a <= 1'b1; b_fc <= 1'b0; b_pc <= 1'b0; b_oh <= 1'b0; b_oc <= 1'b0; end if (cyc==2) begin a <= 1'b0; b_fc <= 1'b1; b_pc <= 1'b1; b_oh <= 1'b1; b_oc <= 1'b1; end if (cyc==3) begin a <= 1'b1; b_fc <= 1'b0; b_pc <= 1'b0; b_oh <= 1'b0; b_oc <= 1'b0; end if (cyc==4) begin `ifdef FAILING_FULL b_fc <= 1'b1; `endif `ifdef FAILING_PARALLEL b_pc <= 1'b1; `endif `ifdef FAILING_OH b_oh <= 1'b1; `endif `ifdef FAILING_OC b_oc <= 1'b1; `endif end if (cyc==10) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; reg a; initial a = 1'b1; reg b_fc; initial b_fc = 1'b0; reg b_pc; initial b_pc = 1'b0; reg b_oh; initial b_oh = 1'b0; reg b_oc; initial b_oc = 1'b0; wire a_l = ~a; wire b_oc_l = ~b_oc; // Note we must insure that full, parallel, etc, only fire during // edges (not mid-cycle), and must provide a way to turn them off. // SystemVerilog provides: $asserton and $assertoff. // verilator lint_off CASEINCOMPLETE always @* begin // Note not all tools support directives on casez's case ({a,b_fc}) // synopsys full_case 2'b0_0: ; 2'b0_1: ; 2'b1_0: ; // Note no default endcase priority case ({a,b_fc}) 2'b0_0: ; 2'b0_1: ; 2'b1_0: ; // Note no default endcase end always @* begin case (1'b1) // synopsys full_case parallel_case a: ; b_pc: ; endcase end `ifdef NOT_YET_VERILATOR // Unsupported // ambit synthesis one_hot "a, b_oh" // cadence one_cold "a_l, b_oc_l" `endif integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; if (cyc==1) begin a <= 1'b1; b_fc <= 1'b0; b_pc <= 1'b0; b_oh <= 1'b0; b_oc <= 1'b0; end if (cyc==2) begin a <= 1'b0; b_fc <= 1'b1; b_pc <= 1'b1; b_oh <= 1'b1; b_oc <= 1'b1; end if (cyc==3) begin a <= 1'b1; b_fc <= 1'b0; b_pc <= 1'b0; b_oh <= 1'b0; b_oc <= 1'b0; end if (cyc==4) begin `ifdef FAILING_FULL b_fc <= 1'b1; `endif `ifdef FAILING_PARALLEL b_pc <= 1'b1; `endif `ifdef FAILING_OH b_oh <= 1'b1; `endif `ifdef FAILING_OC b_oc <= 1'b1; `endif end if (cyc==10) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; reg out1; sub sub (.in(crc[23:0]), .out1(out1)); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x sum=%x out=%x\n",$time, cyc, crc, sum, out1); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {sum[62:0], sum[63]^sum[2]^sum[0]} ^ {63'h0,out1}; if (cyc==1) begin // Setup crc <= 64'h00000000_00000097; sum <= 64'h0; end else if (cyc==90) begin if (sum !== 64'h2e5cb972eb02b8a0) $stop; end else if (cyc==91) begin end else if (cyc==92) begin end else if (cyc==93) begin end else if (cyc==94) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule
module sub (/*AUTOARG*/ // Outputs out1, // Inputs in ); input [23:0] in; output reg [0:0] out1; // Note this tests a vector of 1 bit, which is different from a non-arrayed signal parameter [1023:0] RANDOM = 1024'b101011010100011011100111101001000000101000001111111111100110000110011011010110011101000100110000110101111101000111100100010111001001110001010101000111000100010000010011100001100011110110110000101100011111000110111110010110011000011111111010101110001101010010001111110111100000110111101100110101110001110110000010000110101110111001111001100001101110001011100111001001110101001010000110101010100101111000010000010110100101110100110000110110101000100011101111100011000110011001100010010011001101100100101110010100110101001110011111110010000111001111000010001101100101101110111110001000010110010011100101001011111110011010110111110000110010011110001110110011010011010110011011111001110100010110100011100001011000101111000010011111010111001110110011101110101011111001100011000101000001000100111110010100111011101010101011001101000100000101111110010011010011010001111010001110000110010100011110110011001010000011001010010110111101010010011111111010001000101100010100100010011001100110000111111000001000000001001111101110000100101; always @* begin casez (in[17:16]) 2'b00: casez (in[2:0]) 3'h0: out1[0] = in[0]^RANDOM[0]; 3'h1: out1[0] = in[0]^RANDOM[1]; 3'h2: out1[0] = in[0]^RANDOM[2]; 3'h3: out1[0] = in[0]^RANDOM[3]; 3'h4: out1[0] = in[0]^RANDOM[4]; 3'h5: out1[0] = in[0]^RANDOM[5]; 3'h6: out1[0] = in[0]^RANDOM[6]; 3'h7: out1[0] = in[0]^RANDOM[7]; endcase 2'b01: casez (in[2:0]) 3'h0: out1[0] = RANDOM[10]; 3'h1: out1[0] = RANDOM[11]; 3'h2: out1[0] = RANDOM[12]; 3'h3: out1[0] = RANDOM[13]; 3'h4: out1[0] = RANDOM[14]; 3'h5: out1[0] = RANDOM[15]; 3'h6: out1[0] = RANDOM[16]; 3'h7: out1[0] = RANDOM[17]; endcase 2'b1?: casez (in[4]) 1'b1: casez (in[2:0]) 3'h0: out1[0] = RANDOM[20]; 3'h1: out1[0] = RANDOM[21]; 3'h2: out1[0] = RANDOM[22]; 3'h3: out1[0] = RANDOM[23]; 3'h4: out1[0] = RANDOM[24]; 3'h5: out1[0] = RANDOM[25]; 3'h6: out1[0] = RANDOM[26]; 3'h7: out1[0] = RANDOM[27]; endcase 1'b0: casez (in[2:0]) 3'h0: out1[0] = RANDOM[30]; 3'h1: out1[0] = RANDOM[31]; 3'h2: out1[0] = RANDOM[32]; 3'h3: out1[0] = RANDOM[33]; 3'h4: out1[0] = RANDOM[34]; 3'h5: out1[0] = RANDOM[35]; 3'h6: out1[0] = RANDOM[36]; 3'h7: out1[0] = RANDOM[37]; endcase endcase endcase end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; reg out1; sub sub (.in(crc[23:0]), .out1(out1)); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x sum=%x out=%x\n",$time, cyc, crc, sum, out1); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {sum[62:0], sum[63]^sum[2]^sum[0]} ^ {63'h0,out1}; if (cyc==1) begin // Setup crc <= 64'h00000000_00000097; sum <= 64'h0; end else if (cyc==90) begin if (sum !== 64'h2e5cb972eb02b8a0) $stop; end else if (cyc==91) begin end else if (cyc==92) begin end else if (cyc==93) begin end else if (cyc==94) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule
module sub (/*AUTOARG*/ // Outputs out1, // Inputs in ); input [23:0] in; output reg [0:0] out1; // Note this tests a vector of 1 bit, which is different from a non-arrayed signal parameter [1023:0] RANDOM = 1024'b101011010100011011100111101001000000101000001111111111100110000110011011010110011101000100110000110101111101000111100100010111001001110001010101000111000100010000010011100001100011110110110000101100011111000110111110010110011000011111111010101110001101010010001111110111100000110111101100110101110001110110000010000110101110111001111001100001101110001011100111001001110101001010000110101010100101111000010000010110100101110100110000110110101000100011101111100011000110011001100010010011001101100100101110010100110101001110011111110010000111001111000010001101100101101110111110001000010110010011100101001011111110011010110111110000110010011110001110110011010011010110011011111001110100010110100011100001011000101111000010011111010111001110110011101110101011111001100011000101000001000100111110010100111011101010101011001101000100000101111110010011010011010001111010001110000110010100011110110011001010000011001010010110111101010010011111111010001000101100010100100010011001100110000111111000001000000001001111101110000100101; always @* begin casez (in[17:16]) 2'b00: casez (in[2:0]) 3'h0: out1[0] = in[0]^RANDOM[0]; 3'h1: out1[0] = in[0]^RANDOM[1]; 3'h2: out1[0] = in[0]^RANDOM[2]; 3'h3: out1[0] = in[0]^RANDOM[3]; 3'h4: out1[0] = in[0]^RANDOM[4]; 3'h5: out1[0] = in[0]^RANDOM[5]; 3'h6: out1[0] = in[0]^RANDOM[6]; 3'h7: out1[0] = in[0]^RANDOM[7]; endcase 2'b01: casez (in[2:0]) 3'h0: out1[0] = RANDOM[10]; 3'h1: out1[0] = RANDOM[11]; 3'h2: out1[0] = RANDOM[12]; 3'h3: out1[0] = RANDOM[13]; 3'h4: out1[0] = RANDOM[14]; 3'h5: out1[0] = RANDOM[15]; 3'h6: out1[0] = RANDOM[16]; 3'h7: out1[0] = RANDOM[17]; endcase 2'b1?: casez (in[4]) 1'b1: casez (in[2:0]) 3'h0: out1[0] = RANDOM[20]; 3'h1: out1[0] = RANDOM[21]; 3'h2: out1[0] = RANDOM[22]; 3'h3: out1[0] = RANDOM[23]; 3'h4: out1[0] = RANDOM[24]; 3'h5: out1[0] = RANDOM[25]; 3'h6: out1[0] = RANDOM[26]; 3'h7: out1[0] = RANDOM[27]; endcase 1'b0: casez (in[2:0]) 3'h0: out1[0] = RANDOM[30]; 3'h1: out1[0] = RANDOM[31]; 3'h2: out1[0] = RANDOM[32]; 3'h3: out1[0] = RANDOM[33]; 3'h4: out1[0] = RANDOM[34]; 3'h5: out1[0] = RANDOM[35]; 3'h6: out1[0] = RANDOM[36]; 3'h7: out1[0] = RANDOM[37]; endcase endcase endcase end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=0; reg [63:0] crc; reg [63:0] sum; reg out1; sub sub (.in(crc[23:0]), .out1(out1)); always @ (posedge clk) begin `ifdef TEST_VERBOSE $write("[%0t] cyc==%0d crc=%x sum=%x out=%x\n",$time, cyc, crc, sum, out1); `endif cyc <= cyc + 1; crc <= {crc[62:0], crc[63]^crc[2]^crc[0]}; sum <= {sum[62:0], sum[63]^sum[2]^sum[0]} ^ {63'h0,out1}; if (cyc==1) begin // Setup crc <= 64'h00000000_00000097; sum <= 64'h0; end else if (cyc==90) begin if (sum !== 64'h2e5cb972eb02b8a0) $stop; end else if (cyc==91) begin end else if (cyc==92) begin end else if (cyc==93) begin end else if (cyc==94) begin end else if (cyc==99) begin $write("*-* All Finished *-*\n"); $finish; end end endmodule
module sub (/*AUTOARG*/ // Outputs out1, // Inputs in ); input [23:0] in; output reg [0:0] out1; // Note this tests a vector of 1 bit, which is different from a non-arrayed signal parameter [1023:0] RANDOM = 1024'b101011010100011011100111101001000000101000001111111111100110000110011011010110011101000100110000110101111101000111100100010111001001110001010101000111000100010000010011100001100011110110110000101100011111000110111110010110011000011111111010101110001101010010001111110111100000110111101100110101110001110110000010000110101110111001111001100001101110001011100111001001110101001010000110101010100101111000010000010110100101110100110000110110101000100011101111100011000110011001100010010011001101100100101110010100110101001110011111110010000111001111000010001101100101101110111110001000010110010011100101001011111110011010110111110000110010011110001110110011010011010110011011111001110100010110100011100001011000101111000010011111010111001110110011101110101011111001100011000101000001000100111110010100111011101010101011001101000100000101111110010011010011010001111010001110000110010100011110110011001010000011001010010110111101010010011111111010001000101100010100100010011001100110000111111000001000000001001111101110000100101; always @* begin casez (in[17:16]) 2'b00: casez (in[2:0]) 3'h0: out1[0] = in[0]^RANDOM[0]; 3'h1: out1[0] = in[0]^RANDOM[1]; 3'h2: out1[0] = in[0]^RANDOM[2]; 3'h3: out1[0] = in[0]^RANDOM[3]; 3'h4: out1[0] = in[0]^RANDOM[4]; 3'h5: out1[0] = in[0]^RANDOM[5]; 3'h6: out1[0] = in[0]^RANDOM[6]; 3'h7: out1[0] = in[0]^RANDOM[7]; endcase 2'b01: casez (in[2:0]) 3'h0: out1[0] = RANDOM[10]; 3'h1: out1[0] = RANDOM[11]; 3'h2: out1[0] = RANDOM[12]; 3'h3: out1[0] = RANDOM[13]; 3'h4: out1[0] = RANDOM[14]; 3'h5: out1[0] = RANDOM[15]; 3'h6: out1[0] = RANDOM[16]; 3'h7: out1[0] = RANDOM[17]; endcase 2'b1?: casez (in[4]) 1'b1: casez (in[2:0]) 3'h0: out1[0] = RANDOM[20]; 3'h1: out1[0] = RANDOM[21]; 3'h2: out1[0] = RANDOM[22]; 3'h3: out1[0] = RANDOM[23]; 3'h4: out1[0] = RANDOM[24]; 3'h5: out1[0] = RANDOM[25]; 3'h6: out1[0] = RANDOM[26]; 3'h7: out1[0] = RANDOM[27]; endcase 1'b0: casez (in[2:0]) 3'h0: out1[0] = RANDOM[30]; 3'h1: out1[0] = RANDOM[31]; 3'h2: out1[0] = RANDOM[32]; 3'h3: out1[0] = RANDOM[33]; 3'h4: out1[0] = RANDOM[34]; 3'h5: out1[0] = RANDOM[35]; 3'h6: out1[0] = RANDOM[36]; 3'h7: out1[0] = RANDOM[37]; endcase endcase endcase end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; localparam // synopsys enum En_State EP_State_IDLE = {3'b000,5'd00}, EP_State_CMDSHIFT0 = {3'b001,5'd00}, EP_State_CMDSHIFT13 = {3'b001,5'd13}, EP_State_CMDSHIFT14 = {3'b001,5'd14}, EP_State_CMDSHIFT15 = {3'b001,5'd15}, EP_State_CMDSHIFT16 = {3'b001,5'd16}, EP_State_DWAIT = {3'b010,5'd00}, EP_State_DSHIFT0 = {3'b100,5'd00}, EP_State_DSHIFT1 = {3'b100,5'd01}, EP_State_DSHIFT15 = {3'b100,5'd15}; reg [7:0] /* synopsys enum En_State */ m_state_xr; // Last command, for debugging /*AUTOASCIIENUM("m_state_xr", "m_stateAscii_xr", "EP_State_")*/ // Beginning of automatic ASCII enum decoding reg [79:0] m_stateAscii_xr; // Decode of m_state_xr always @(m_state_xr) begin case ({m_state_xr}) EP_State_IDLE: m_stateAscii_xr = "idle "; EP_State_CMDSHIFT0: m_stateAscii_xr = "cmdshift0 "; EP_State_CMDSHIFT13: m_stateAscii_xr = "cmdshift13"; EP_State_CMDSHIFT14: m_stateAscii_xr = "cmdshift14"; EP_State_CMDSHIFT15: m_stateAscii_xr = "cmdshift15"; EP_State_CMDSHIFT16: m_stateAscii_xr = "cmdshift16"; EP_State_DWAIT: m_stateAscii_xr = "dwait "; EP_State_DSHIFT0: m_stateAscii_xr = "dshift0 "; EP_State_DSHIFT1: m_stateAscii_xr = "dshift1 "; EP_State_DSHIFT15: m_stateAscii_xr = "dshift15 "; default: m_stateAscii_xr = "%Error "; endcase end // End of automatics integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; //$write("%d %x %x %x\n", cyc, data, wrapcheck_a, wrapcheck_b); if (cyc==1) begin m_state_xr <= EP_State_IDLE; end if (cyc==2) begin if (m_stateAscii_xr != "idle ") $stop; m_state_xr <= EP_State_CMDSHIFT13; end if (cyc==3) begin if (m_stateAscii_xr != "cmdshift13") $stop; m_state_xr <= EP_State_CMDSHIFT16; end if (cyc==4) begin if (m_stateAscii_xr != "cmdshift16") $stop; m_state_xr <= EP_State_DWAIT; end if (cyc==9) begin if (m_stateAscii_xr != "dwait ") $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; localparam // synopsys enum En_State EP_State_IDLE = {3'b000,5'd00}, EP_State_CMDSHIFT0 = {3'b001,5'd00}, EP_State_CMDSHIFT13 = {3'b001,5'd13}, EP_State_CMDSHIFT14 = {3'b001,5'd14}, EP_State_CMDSHIFT15 = {3'b001,5'd15}, EP_State_CMDSHIFT16 = {3'b001,5'd16}, EP_State_DWAIT = {3'b010,5'd00}, EP_State_DSHIFT0 = {3'b100,5'd00}, EP_State_DSHIFT1 = {3'b100,5'd01}, EP_State_DSHIFT15 = {3'b100,5'd15}; reg [7:0] /* synopsys enum En_State */ m_state_xr; // Last command, for debugging /*AUTOASCIIENUM("m_state_xr", "m_stateAscii_xr", "EP_State_")*/ // Beginning of automatic ASCII enum decoding reg [79:0] m_stateAscii_xr; // Decode of m_state_xr always @(m_state_xr) begin case ({m_state_xr}) EP_State_IDLE: m_stateAscii_xr = "idle "; EP_State_CMDSHIFT0: m_stateAscii_xr = "cmdshift0 "; EP_State_CMDSHIFT13: m_stateAscii_xr = "cmdshift13"; EP_State_CMDSHIFT14: m_stateAscii_xr = "cmdshift14"; EP_State_CMDSHIFT15: m_stateAscii_xr = "cmdshift15"; EP_State_CMDSHIFT16: m_stateAscii_xr = "cmdshift16"; EP_State_DWAIT: m_stateAscii_xr = "dwait "; EP_State_DSHIFT0: m_stateAscii_xr = "dshift0 "; EP_State_DSHIFT1: m_stateAscii_xr = "dshift1 "; EP_State_DSHIFT15: m_stateAscii_xr = "dshift15 "; default: m_stateAscii_xr = "%Error "; endcase end // End of automatics integer cyc; initial cyc=1; always @ (posedge clk) begin if (cyc!=0) begin cyc <= cyc + 1; //$write("%d %x %x %x\n", cyc, data, wrapcheck_a, wrapcheck_b); if (cyc==1) begin m_state_xr <= EP_State_IDLE; end if (cyc==2) begin if (m_stateAscii_xr != "idle ") $stop; m_state_xr <= EP_State_CMDSHIFT13; end if (cyc==3) begin if (m_stateAscii_xr != "cmdshift13") $stop; m_state_xr <= EP_State_CMDSHIFT16; end if (cyc==4) begin if (m_stateAscii_xr != "cmdshift16") $stop; m_state_xr <= EP_State_DWAIT; end if (cyc==9) begin if (m_stateAscii_xr != "dwait ") $stop; $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; reg [7:0] crc; // Build up assignments wire [7:0] bitrev; assign bitrev[7] = crc[0]; assign bitrev[6] = crc[1]; assign bitrev[5] = crc[2]; assign bitrev[4] = crc[3]; assign bitrev[0] = crc[7]; assign bitrev[1] = crc[6]; assign bitrev[2] = crc[5]; assign bitrev[3] = crc[4]; // Build up always assignments reg [7:0] bitrevb; always @ (/*AS*/crc) begin bitrevb[7] = crc[0]; bitrevb[6] = crc[1]; bitrevb[5] = crc[2]; bitrevb[4] = crc[3]; bitrevb[0] = crc[7]; bitrevb[1] = crc[6]; bitrevb[2] = crc[5]; bitrevb[3] = crc[4]; end // Build up always assignments reg [7:0] bitrevr; always @ (posedge clk) begin bitrevr[7] <= crc[0]; bitrevr[6] <= crc[1]; bitrevr[5] <= crc[2]; bitrevr[4] <= crc[3]; bitrevr[0] <= crc[7]; bitrevr[1] <= crc[6]; bitrevr[2] <= crc[5]; bitrevr[3] <= crc[4]; end always @ (posedge clk) begin if (cyc!=0) begin cyc<=cyc+1; //$write("cyc=%0d crc=%x r=%x\n", cyc, crc, bitrev); crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==1) begin crc <= 8'hed; end if (cyc==2 && bitrev!=8'hb7) $stop; if (cyc==3 && bitrev!=8'h5b) $stop; if (cyc==4 && bitrev!=8'h2d) $stop; if (cyc==5 && bitrev!=8'h16) $stop; if (cyc==6 && bitrev!=8'h8b) $stop; if (cyc==7 && bitrev!=8'hc5) $stop; if (cyc==8 && bitrev!=8'he2) $stop; if (cyc==9 && bitrev!=8'hf1) $stop; if (bitrevb != bitrev) $stop; if (cyc==3 && bitrevr!=8'hb7) $stop; if (cyc==4 && bitrevr!=8'h5b) $stop; if (cyc==5 && bitrevr!=8'h2d) $stop; if (cyc==6 && bitrevr!=8'h16) $stop; if (cyc==7 && bitrevr!=8'h8b) $stop; if (cyc==8 && bitrevr!=8'hc5) $stop; if (cyc==9) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; reg [7:0] crc; // Build up assignments wire [7:0] bitrev; assign bitrev[7] = crc[0]; assign bitrev[6] = crc[1]; assign bitrev[5] = crc[2]; assign bitrev[4] = crc[3]; assign bitrev[0] = crc[7]; assign bitrev[1] = crc[6]; assign bitrev[2] = crc[5]; assign bitrev[3] = crc[4]; // Build up always assignments reg [7:0] bitrevb; always @ (/*AS*/crc) begin bitrevb[7] = crc[0]; bitrevb[6] = crc[1]; bitrevb[5] = crc[2]; bitrevb[4] = crc[3]; bitrevb[0] = crc[7]; bitrevb[1] = crc[6]; bitrevb[2] = crc[5]; bitrevb[3] = crc[4]; end // Build up always assignments reg [7:0] bitrevr; always @ (posedge clk) begin bitrevr[7] <= crc[0]; bitrevr[6] <= crc[1]; bitrevr[5] <= crc[2]; bitrevr[4] <= crc[3]; bitrevr[0] <= crc[7]; bitrevr[1] <= crc[6]; bitrevr[2] <= crc[5]; bitrevr[3] <= crc[4]; end always @ (posedge clk) begin if (cyc!=0) begin cyc<=cyc+1; //$write("cyc=%0d crc=%x r=%x\n", cyc, crc, bitrev); crc <= {crc[6:0], ~^ {crc[7],crc[5],crc[4],crc[3]}}; if (cyc==1) begin crc <= 8'hed; end if (cyc==2 && bitrev!=8'hb7) $stop; if (cyc==3 && bitrev!=8'h5b) $stop; if (cyc==4 && bitrev!=8'h2d) $stop; if (cyc==5 && bitrev!=8'h16) $stop; if (cyc==6 && bitrev!=8'h8b) $stop; if (cyc==7 && bitrev!=8'hc5) $stop; if (cyc==8 && bitrev!=8'he2) $stop; if (cyc==9 && bitrev!=8'hf1) $stop; if (bitrevb != bitrev) $stop; if (cyc==3 && bitrevr!=8'hb7) $stop; if (cyc==4 && bitrevr!=8'h5b) $stop; if (cyc==5 && bitrevr!=8'h2d) $stop; if (cyc==6 && bitrevr!=8'h16) $stop; if (cyc==7 && bitrevr!=8'h8b) $stop; if (cyc==8 && bitrevr!=8'hc5) $stop; if (cyc==9) begin $write("*-* All Finished *-*\n"); $finish; end end end endmodule
module processing_system7_bfm_v2_0_5_axi_master ( M_RESETN, M_ARVALID, M_AWVALID, M_BREADY, M_RREADY, M_WLAST, M_WVALID, M_ARID, M_AWID, M_WID, M_ARBURST, M_ARLOCK, M_ARSIZE, M_AWBURST, M_AWLOCK, M_AWSIZE, M_ARPROT, M_AWPROT, M_ARADDR, M_AWADDR, M_WDATA, M_ARCACHE, M_ARLEN, M_AWCACHE, M_AWLEN, M_ARQOS, // not connected to AXI BFM M_AWQOS, // not connected to AXI BFM M_WSTRB, M_ACLK, M_ARREADY, M_AWREADY, M_BVALID, M_RLAST, M_RVALID, M_WREADY, M_BID, M_RID, M_BRESP, M_RRESP, M_RDATA ); parameter enable_this_port = 0; parameter master_name = "Master"; parameter data_bus_width = 32; parameter address_bus_width = 32; parameter id_bus_width = 6; parameter max_outstanding_transactions = 8; parameter exclusive_access_supported = 0; parameter ID = 12'hC00; `include "processing_system7_bfm_v2_0_5_local_params.v" /* IDs for Masters // l2m1 (CPU000) 12'b11_000_000_00_00 12'b11_010_000_00_00 12'b11_011_000_00_00 12'b11_100_000_00_00 12'b11_101_000_00_00 12'b11_110_000_00_00 12'b11_111_000_00_00 // l2m1 (CPU001) 12'b11_000_001_00_00 12'b11_010_001_00_00 12'b11_011_001_00_00 12'b11_100_001_00_00 12'b11_101_001_00_00 12'b11_110_001_00_00 12'b11_111_001_00_00 */ input M_RESETN; output M_ARVALID; output M_AWVALID; output M_BREADY; output M_RREADY; output M_WLAST; output M_WVALID; output [id_bus_width-1:0] M_ARID; output [id_bus_width-1:0] M_AWID; output [id_bus_width-1:0] M_WID; output [axi_brst_type_width-1:0] M_ARBURST; output [axi_lock_width-1:0] M_ARLOCK; output [axi_size_width-1:0] M_ARSIZE; output [axi_brst_type_width-1:0] M_AWBURST; output [axi_lock_width-1:0] M_AWLOCK; output [axi_size_width-1:0] M_AWSIZE; output [axi_prot_width-1:0] M_ARPROT; output [axi_prot_width-1:0] M_AWPROT; output [address_bus_width-1:0] M_ARADDR; output [address_bus_width-1:0] M_AWADDR; output [data_bus_width-1:0] M_WDATA; output [axi_cache_width-1:0] M_ARCACHE; output [axi_len_width-1:0] M_ARLEN; output [axi_qos_width-1:0] M_ARQOS; // not connected to AXI BFM output [axi_cache_width-1:0] M_AWCACHE; output [axi_len_width-1:0] M_AWLEN; output [axi_qos_width-1:0] M_AWQOS; // not connected to AXI BFM output [(data_bus_width/8)-1:0] M_WSTRB; input M_ACLK; input M_ARREADY; input M_AWREADY; input M_BVALID; input M_RLAST; input M_RVALID; input M_WREADY; input [id_bus_width-1:0] M_BID; input [id_bus_width-1:0] M_RID; input [axi_rsp_width-1:0] M_BRESP; input [axi_rsp_width-1:0] M_RRESP; input [data_bus_width-1:0] M_RDATA; wire net_RESETN; wire net_RVALID; wire net_BVALID; reg DEBUG_INFO = 1'b1; reg STOP_ON_ERROR = 1'b1; integer use_id_no = 0; assign M_ARQOS = 'b0; assign M_AWQOS = 'b0; assign net_RESETN = M_RESETN; //ENABLE_THIS_PORT ? M_RESETN : 1'b0; assign net_RVALID = enable_this_port ? M_RVALID : 1'b0; assign net_BVALID = enable_this_port ? M_BVALID : 1'b0; initial begin if(DEBUG_INFO) begin if(enable_this_port) $display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, master_name); else $display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, master_name); end end initial master.set_disable_reset_value_checks(1); initial begin repeat(2) @(posedge M_ACLK); if(!enable_this_port) begin master.set_channel_level_info(0); master.set_function_level_info(0); end master.RESPONSE_TIMEOUT = 0; end cdn_axi3_master_bfm #(master_name, data_bus_width, address_bus_width, id_bus_width, max_outstanding_transactions, exclusive_access_supported) master (.ACLK (M_ACLK), .ARESETn (net_RESETN), /// confirm this // Write Address Channel .AWID (M_AWID), .AWADDR (M_AWADDR), .AWLEN (M_AWLEN), .AWSIZE (M_AWSIZE), .AWBURST (M_AWBURST), .AWLOCK (M_AWLOCK), .AWCACHE (M_AWCACHE), .AWPROT (M_AWPROT), .AWVALID (M_AWVALID), .AWREADY (M_AWREADY), // Write Data Channel Signals. .WID (M_WID), .WDATA (M_WDATA), .WSTRB (M_WSTRB), .WLAST (M_WLAST), .WVALID (M_WVALID), .WREADY (M_WREADY), // Write Response Channel Signals. .BID (M_BID), .BRESP (M_BRESP), .BVALID (net_BVALID), .BREADY (M_BREADY), // Read Address Channel Signals. .ARID (M_ARID), .ARADDR (M_ARADDR), .ARLEN (M_ARLEN), .ARSIZE (M_ARSIZE), .ARBURST (M_ARBURST), .ARLOCK (M_ARLOCK), .ARCACHE (M_ARCACHE), .ARPROT (M_ARPROT), .ARVALID (M_ARVALID), .ARREADY (M_ARREADY), // Read Data Channel Signals. .RID (M_RID), .RDATA (M_RDATA), .RRESP (M_RRESP), .RLAST (M_RLAST), .RVALID (net_RVALID), .RREADY (M_RREADY)); /* Call to BFM APIs */ task automatic read_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,output [(axi_mgp_data_width*axi_burst_len)-1:0] data, output [(axi_rsp_width*axi_burst_len)-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); else master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst_concurrent(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst_concurrent' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask /* local */ function automatic[id_bus_width-1:0] get_id; input dummy; begin case(use_id_no) // l2m1 (CPU000) 0 : get_id = 12'b11_000_000_00_00; 1 : get_id = 12'b11_010_000_00_00; 2 : get_id = 12'b11_011_000_00_00; 3 : get_id = 12'b11_100_000_00_00; 4 : get_id = 12'b11_101_000_00_00; 5 : get_id = 12'b11_110_000_00_00; 6 : get_id = 12'b11_111_000_00_00; // l2m1 (CPU001) 7 : get_id = 12'b11_000_001_00_00; 8 : get_id = 12'b11_010_001_00_00; 9 : get_id = 12'b11_011_001_00_00; 10 : get_id = 12'b11_100_001_00_00; 11 : get_id = 12'b11_101_001_00_00; 12 : get_id = 12'b11_110_001_00_00; 13 : get_id = 12'b11_111_001_00_00; endcase if(use_id_no == 13) use_id_no = 0; else use_id_no = use_id_no+1; end endfunction /* Write data from file */ task automatic write_from_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] wr_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [(axi_burst_len*data_bus_width)-1 : 0] wr_data; integer bytes; integer trnsfr_bytes; integer wr_fd; integer succ; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_from_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; bytes = wr_size; wresp = 0; concurrent = $random; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_bytes = (axi_burst_len * data_bus_width/8); else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wr_id = ID; wr_fd = $fopen(file_name,"r"); while (bytes > 0) begin repeat(axi_burst_len) begin /// get the data for 1 AXI burst transaction wr_data = wr_data >> data_bus_width; succ = $fscanf(wr_fd,"%h",wr_data[(axi_burst_len*data_bus_width)-1 :(axi_burst_len*data_bus_width)-data_bus_width ]); /// write as 4 bytes (data_bus_width) .. end if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes >= (axi_burst_len * data_bus_width/8) ) trnsfr_bytes = (axi_burst_len * data_bus_width/8); // else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data to file */ task automatic read_to_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] rd_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp, rrrsp; reg [addr_width-1:0] addr; integer bytes; integer trnsfr_lngth; reg [(axi_burst_len*data_bus_width)-1 :0] rd_data; integer rd_fd; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_to_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; rresp = 0; bytes = rd_size; rd_id = ID; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rd_fd = $fopen(file_name,"w"); while (bytes > 0) begin master.READ_BURST(rd_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, rd_data, rrrsp); repeat(trnsfr_lngth+1) begin $fdisplayh(rd_fd,rd_data[data_bus_width-1:0]); rd_data = rd_data >> data_bus_width; end addr = addr + (trnsfr_lngth+1)*4; if(bytes >= (axi_burst_len * data_bus_width/8) ) bytes = bytes - (axi_burst_len * data_bus_width/8); // else bytes = 0; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rresp = rresp | rrrsp; end /// while response = rresp; end end endtask /* Write data (used for transfer size <= 128 Bytes */ task automatic write_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] wr_size; input [(max_transfer_bytes*8)-1:0] w_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [7:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1:0] wr_data; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = wr_size; wresp = 0; wr_data = w_data; concurrent = $random; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; wr_id = ID; if(bytes+pad_bytes > (data_bus_width/8*axi_burst_len)) begin /// for unaligned address trnsfr_bytes = (data_bus_width*axi_burst_len)/8 - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); wr_data = wr_data >> (trnsfr_bytes*8); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data (used for transfer size <= 128 Bytes */ task automatic read_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] rd_size; output [(max_transfer_bytes*8)-1:0] r_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp,rdrsp; reg [addr_width-1:0] addr; reg [max_transfer_bytes_width:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1 : 0] rd_data; reg [(axi_burst_len*data_bus_width)-1:0] rcv_rd_data; integer total_rcvd_bytes; integer trnsfr_lngth; integer i; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = rd_size; rresp = 0; total_rcvd_bytes = 0; rd_data = 0; rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; if(bytes+ pad_bytes > (axi_burst_len * data_bus_width/8)) begin /// for unaligned address trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_rd_data, rdrsp); for(i = 0; i < trnsfr_bytes; i = i+1) begin rd_data = rd_data >> 8; rd_data[(max_transfer_bytes*8)-1 : (max_transfer_bytes*8)-8] = rcv_rd_data[7:0]; rcv_rd_data = rcv_rd_data >> 8; total_rcvd_bytes = total_rcvd_bytes+1; end bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = 15; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end rresp = rresp | rdrsp; end /// while rd_data = rd_data >> (max_transfer_bytes - total_rcvd_bytes)*8; r_data = rd_data; response = rresp; end end endtask /* Wait Register Update in PL */ /* Issue a series of 1 burst length reads until the expected data pattern is received */ task automatic wait_reg_update; input [addr_width-1:0] addri; input [data_width-1:0] datai; input [data_width-1:0] maski; input [int_width-1:0] time_interval; input [int_width-1:0] time_out; output [data_width-1:0] data_o; output upd_done; reg [addr_width-1:0] addr; reg [data_width-1:0] data_i; reg [data_width-1:0] mask_i; integer time_int; integer timeout; reg [axi_rsp_width-1:0] rdrsp; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; reg [data_width-1:0] rcv_data; integer trnsfr_lngth; reg rd_loop; reg timed_out; integer i; integer cycle_cnt; begin addr = addri; data_i = datai; mask_i = maski; time_int = time_interval; timeout = time_out; timed_out = 0; cycle_cnt = 0; if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'wait_reg_update' will not be executed...",$time, DISP_ERR, master_name); upd_done = 0; if(STOP_ON_ERROR) $stop; end else begin rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; trnsfr_lngth = 0; rd_loop = 1; fork begin while(!timed_out & rd_loop) begin cycle_cnt = cycle_cnt + 1; if(cycle_cnt >= timeout) timed_out = 1; @(posedge M_ACLK); end end begin while (rd_loop) begin if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register mapped at Address(0x%0h) ",$time, master_name, DISP_INFO, addr); master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_data, rdrsp); if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register returned (0x%0h) ",$time, master_name, DISP_INFO, rcv_data); if(((rcv_data & ~mask_i) === (data_i & ~mask_i)) | timed_out) rd_loop = 0; else repeat(time_int) @(posedge M_ACLK); end /// while end join data_o = rcv_data & ~mask_i; if(timed_out) begin $display("[%0d] : %0s : %0s : 'wait_reg_update' timed out ... Register is not updated ",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else upd_done = 1; end end endtask endmodule
module processing_system7_bfm_v2_0_5_axi_master ( M_RESETN, M_ARVALID, M_AWVALID, M_BREADY, M_RREADY, M_WLAST, M_WVALID, M_ARID, M_AWID, M_WID, M_ARBURST, M_ARLOCK, M_ARSIZE, M_AWBURST, M_AWLOCK, M_AWSIZE, M_ARPROT, M_AWPROT, M_ARADDR, M_AWADDR, M_WDATA, M_ARCACHE, M_ARLEN, M_AWCACHE, M_AWLEN, M_ARQOS, // not connected to AXI BFM M_AWQOS, // not connected to AXI BFM M_WSTRB, M_ACLK, M_ARREADY, M_AWREADY, M_BVALID, M_RLAST, M_RVALID, M_WREADY, M_BID, M_RID, M_BRESP, M_RRESP, M_RDATA ); parameter enable_this_port = 0; parameter master_name = "Master"; parameter data_bus_width = 32; parameter address_bus_width = 32; parameter id_bus_width = 6; parameter max_outstanding_transactions = 8; parameter exclusive_access_supported = 0; parameter ID = 12'hC00; `include "processing_system7_bfm_v2_0_5_local_params.v" /* IDs for Masters // l2m1 (CPU000) 12'b11_000_000_00_00 12'b11_010_000_00_00 12'b11_011_000_00_00 12'b11_100_000_00_00 12'b11_101_000_00_00 12'b11_110_000_00_00 12'b11_111_000_00_00 // l2m1 (CPU001) 12'b11_000_001_00_00 12'b11_010_001_00_00 12'b11_011_001_00_00 12'b11_100_001_00_00 12'b11_101_001_00_00 12'b11_110_001_00_00 12'b11_111_001_00_00 */ input M_RESETN; output M_ARVALID; output M_AWVALID; output M_BREADY; output M_RREADY; output M_WLAST; output M_WVALID; output [id_bus_width-1:0] M_ARID; output [id_bus_width-1:0] M_AWID; output [id_bus_width-1:0] M_WID; output [axi_brst_type_width-1:0] M_ARBURST; output [axi_lock_width-1:0] M_ARLOCK; output [axi_size_width-1:0] M_ARSIZE; output [axi_brst_type_width-1:0] M_AWBURST; output [axi_lock_width-1:0] M_AWLOCK; output [axi_size_width-1:0] M_AWSIZE; output [axi_prot_width-1:0] M_ARPROT; output [axi_prot_width-1:0] M_AWPROT; output [address_bus_width-1:0] M_ARADDR; output [address_bus_width-1:0] M_AWADDR; output [data_bus_width-1:0] M_WDATA; output [axi_cache_width-1:0] M_ARCACHE; output [axi_len_width-1:0] M_ARLEN; output [axi_qos_width-1:0] M_ARQOS; // not connected to AXI BFM output [axi_cache_width-1:0] M_AWCACHE; output [axi_len_width-1:0] M_AWLEN; output [axi_qos_width-1:0] M_AWQOS; // not connected to AXI BFM output [(data_bus_width/8)-1:0] M_WSTRB; input M_ACLK; input M_ARREADY; input M_AWREADY; input M_BVALID; input M_RLAST; input M_RVALID; input M_WREADY; input [id_bus_width-1:0] M_BID; input [id_bus_width-1:0] M_RID; input [axi_rsp_width-1:0] M_BRESP; input [axi_rsp_width-1:0] M_RRESP; input [data_bus_width-1:0] M_RDATA; wire net_RESETN; wire net_RVALID; wire net_BVALID; reg DEBUG_INFO = 1'b1; reg STOP_ON_ERROR = 1'b1; integer use_id_no = 0; assign M_ARQOS = 'b0; assign M_AWQOS = 'b0; assign net_RESETN = M_RESETN; //ENABLE_THIS_PORT ? M_RESETN : 1'b0; assign net_RVALID = enable_this_port ? M_RVALID : 1'b0; assign net_BVALID = enable_this_port ? M_BVALID : 1'b0; initial begin if(DEBUG_INFO) begin if(enable_this_port) $display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, master_name); else $display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, master_name); end end initial master.set_disable_reset_value_checks(1); initial begin repeat(2) @(posedge M_ACLK); if(!enable_this_port) begin master.set_channel_level_info(0); master.set_function_level_info(0); end master.RESPONSE_TIMEOUT = 0; end cdn_axi3_master_bfm #(master_name, data_bus_width, address_bus_width, id_bus_width, max_outstanding_transactions, exclusive_access_supported) master (.ACLK (M_ACLK), .ARESETn (net_RESETN), /// confirm this // Write Address Channel .AWID (M_AWID), .AWADDR (M_AWADDR), .AWLEN (M_AWLEN), .AWSIZE (M_AWSIZE), .AWBURST (M_AWBURST), .AWLOCK (M_AWLOCK), .AWCACHE (M_AWCACHE), .AWPROT (M_AWPROT), .AWVALID (M_AWVALID), .AWREADY (M_AWREADY), // Write Data Channel Signals. .WID (M_WID), .WDATA (M_WDATA), .WSTRB (M_WSTRB), .WLAST (M_WLAST), .WVALID (M_WVALID), .WREADY (M_WREADY), // Write Response Channel Signals. .BID (M_BID), .BRESP (M_BRESP), .BVALID (net_BVALID), .BREADY (M_BREADY), // Read Address Channel Signals. .ARID (M_ARID), .ARADDR (M_ARADDR), .ARLEN (M_ARLEN), .ARSIZE (M_ARSIZE), .ARBURST (M_ARBURST), .ARLOCK (M_ARLOCK), .ARCACHE (M_ARCACHE), .ARPROT (M_ARPROT), .ARVALID (M_ARVALID), .ARREADY (M_ARREADY), // Read Data Channel Signals. .RID (M_RID), .RDATA (M_RDATA), .RRESP (M_RRESP), .RLAST (M_RLAST), .RVALID (net_RVALID), .RREADY (M_RREADY)); /* Call to BFM APIs */ task automatic read_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,output [(axi_mgp_data_width*axi_burst_len)-1:0] data, output [(axi_rsp_width*axi_burst_len)-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); else master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst_concurrent(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst_concurrent' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask /* local */ function automatic[id_bus_width-1:0] get_id; input dummy; begin case(use_id_no) // l2m1 (CPU000) 0 : get_id = 12'b11_000_000_00_00; 1 : get_id = 12'b11_010_000_00_00; 2 : get_id = 12'b11_011_000_00_00; 3 : get_id = 12'b11_100_000_00_00; 4 : get_id = 12'b11_101_000_00_00; 5 : get_id = 12'b11_110_000_00_00; 6 : get_id = 12'b11_111_000_00_00; // l2m1 (CPU001) 7 : get_id = 12'b11_000_001_00_00; 8 : get_id = 12'b11_010_001_00_00; 9 : get_id = 12'b11_011_001_00_00; 10 : get_id = 12'b11_100_001_00_00; 11 : get_id = 12'b11_101_001_00_00; 12 : get_id = 12'b11_110_001_00_00; 13 : get_id = 12'b11_111_001_00_00; endcase if(use_id_no == 13) use_id_no = 0; else use_id_no = use_id_no+1; end endfunction /* Write data from file */ task automatic write_from_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] wr_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [(axi_burst_len*data_bus_width)-1 : 0] wr_data; integer bytes; integer trnsfr_bytes; integer wr_fd; integer succ; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_from_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; bytes = wr_size; wresp = 0; concurrent = $random; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_bytes = (axi_burst_len * data_bus_width/8); else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wr_id = ID; wr_fd = $fopen(file_name,"r"); while (bytes > 0) begin repeat(axi_burst_len) begin /// get the data for 1 AXI burst transaction wr_data = wr_data >> data_bus_width; succ = $fscanf(wr_fd,"%h",wr_data[(axi_burst_len*data_bus_width)-1 :(axi_burst_len*data_bus_width)-data_bus_width ]); /// write as 4 bytes (data_bus_width) .. end if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes >= (axi_burst_len * data_bus_width/8) ) trnsfr_bytes = (axi_burst_len * data_bus_width/8); // else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data to file */ task automatic read_to_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] rd_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp, rrrsp; reg [addr_width-1:0] addr; integer bytes; integer trnsfr_lngth; reg [(axi_burst_len*data_bus_width)-1 :0] rd_data; integer rd_fd; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_to_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; rresp = 0; bytes = rd_size; rd_id = ID; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rd_fd = $fopen(file_name,"w"); while (bytes > 0) begin master.READ_BURST(rd_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, rd_data, rrrsp); repeat(trnsfr_lngth+1) begin $fdisplayh(rd_fd,rd_data[data_bus_width-1:0]); rd_data = rd_data >> data_bus_width; end addr = addr + (trnsfr_lngth+1)*4; if(bytes >= (axi_burst_len * data_bus_width/8) ) bytes = bytes - (axi_burst_len * data_bus_width/8); // else bytes = 0; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rresp = rresp | rrrsp; end /// while response = rresp; end end endtask /* Write data (used for transfer size <= 128 Bytes */ task automatic write_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] wr_size; input [(max_transfer_bytes*8)-1:0] w_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [7:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1:0] wr_data; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = wr_size; wresp = 0; wr_data = w_data; concurrent = $random; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; wr_id = ID; if(bytes+pad_bytes > (data_bus_width/8*axi_burst_len)) begin /// for unaligned address trnsfr_bytes = (data_bus_width*axi_burst_len)/8 - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); wr_data = wr_data >> (trnsfr_bytes*8); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data (used for transfer size <= 128 Bytes */ task automatic read_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] rd_size; output [(max_transfer_bytes*8)-1:0] r_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp,rdrsp; reg [addr_width-1:0] addr; reg [max_transfer_bytes_width:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1 : 0] rd_data; reg [(axi_burst_len*data_bus_width)-1:0] rcv_rd_data; integer total_rcvd_bytes; integer trnsfr_lngth; integer i; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = rd_size; rresp = 0; total_rcvd_bytes = 0; rd_data = 0; rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; if(bytes+ pad_bytes > (axi_burst_len * data_bus_width/8)) begin /// for unaligned address trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_rd_data, rdrsp); for(i = 0; i < trnsfr_bytes; i = i+1) begin rd_data = rd_data >> 8; rd_data[(max_transfer_bytes*8)-1 : (max_transfer_bytes*8)-8] = rcv_rd_data[7:0]; rcv_rd_data = rcv_rd_data >> 8; total_rcvd_bytes = total_rcvd_bytes+1; end bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = 15; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end rresp = rresp | rdrsp; end /// while rd_data = rd_data >> (max_transfer_bytes - total_rcvd_bytes)*8; r_data = rd_data; response = rresp; end end endtask /* Wait Register Update in PL */ /* Issue a series of 1 burst length reads until the expected data pattern is received */ task automatic wait_reg_update; input [addr_width-1:0] addri; input [data_width-1:0] datai; input [data_width-1:0] maski; input [int_width-1:0] time_interval; input [int_width-1:0] time_out; output [data_width-1:0] data_o; output upd_done; reg [addr_width-1:0] addr; reg [data_width-1:0] data_i; reg [data_width-1:0] mask_i; integer time_int; integer timeout; reg [axi_rsp_width-1:0] rdrsp; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; reg [data_width-1:0] rcv_data; integer trnsfr_lngth; reg rd_loop; reg timed_out; integer i; integer cycle_cnt; begin addr = addri; data_i = datai; mask_i = maski; time_int = time_interval; timeout = time_out; timed_out = 0; cycle_cnt = 0; if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'wait_reg_update' will not be executed...",$time, DISP_ERR, master_name); upd_done = 0; if(STOP_ON_ERROR) $stop; end else begin rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; trnsfr_lngth = 0; rd_loop = 1; fork begin while(!timed_out & rd_loop) begin cycle_cnt = cycle_cnt + 1; if(cycle_cnt >= timeout) timed_out = 1; @(posedge M_ACLK); end end begin while (rd_loop) begin if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register mapped at Address(0x%0h) ",$time, master_name, DISP_INFO, addr); master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_data, rdrsp); if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register returned (0x%0h) ",$time, master_name, DISP_INFO, rcv_data); if(((rcv_data & ~mask_i) === (data_i & ~mask_i)) | timed_out) rd_loop = 0; else repeat(time_int) @(posedge M_ACLK); end /// while end join data_o = rcv_data & ~mask_i; if(timed_out) begin $display("[%0d] : %0s : %0s : 'wait_reg_update' timed out ... Register is not updated ",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else upd_done = 1; end end endtask endmodule
module processing_system7_bfm_v2_0_5_axi_master ( M_RESETN, M_ARVALID, M_AWVALID, M_BREADY, M_RREADY, M_WLAST, M_WVALID, M_ARID, M_AWID, M_WID, M_ARBURST, M_ARLOCK, M_ARSIZE, M_AWBURST, M_AWLOCK, M_AWSIZE, M_ARPROT, M_AWPROT, M_ARADDR, M_AWADDR, M_WDATA, M_ARCACHE, M_ARLEN, M_AWCACHE, M_AWLEN, M_ARQOS, // not connected to AXI BFM M_AWQOS, // not connected to AXI BFM M_WSTRB, M_ACLK, M_ARREADY, M_AWREADY, M_BVALID, M_RLAST, M_RVALID, M_WREADY, M_BID, M_RID, M_BRESP, M_RRESP, M_RDATA ); parameter enable_this_port = 0; parameter master_name = "Master"; parameter data_bus_width = 32; parameter address_bus_width = 32; parameter id_bus_width = 6; parameter max_outstanding_transactions = 8; parameter exclusive_access_supported = 0; parameter ID = 12'hC00; `include "processing_system7_bfm_v2_0_5_local_params.v" /* IDs for Masters // l2m1 (CPU000) 12'b11_000_000_00_00 12'b11_010_000_00_00 12'b11_011_000_00_00 12'b11_100_000_00_00 12'b11_101_000_00_00 12'b11_110_000_00_00 12'b11_111_000_00_00 // l2m1 (CPU001) 12'b11_000_001_00_00 12'b11_010_001_00_00 12'b11_011_001_00_00 12'b11_100_001_00_00 12'b11_101_001_00_00 12'b11_110_001_00_00 12'b11_111_001_00_00 */ input M_RESETN; output M_ARVALID; output M_AWVALID; output M_BREADY; output M_RREADY; output M_WLAST; output M_WVALID; output [id_bus_width-1:0] M_ARID; output [id_bus_width-1:0] M_AWID; output [id_bus_width-1:0] M_WID; output [axi_brst_type_width-1:0] M_ARBURST; output [axi_lock_width-1:0] M_ARLOCK; output [axi_size_width-1:0] M_ARSIZE; output [axi_brst_type_width-1:0] M_AWBURST; output [axi_lock_width-1:0] M_AWLOCK; output [axi_size_width-1:0] M_AWSIZE; output [axi_prot_width-1:0] M_ARPROT; output [axi_prot_width-1:0] M_AWPROT; output [address_bus_width-1:0] M_ARADDR; output [address_bus_width-1:0] M_AWADDR; output [data_bus_width-1:0] M_WDATA; output [axi_cache_width-1:0] M_ARCACHE; output [axi_len_width-1:0] M_ARLEN; output [axi_qos_width-1:0] M_ARQOS; // not connected to AXI BFM output [axi_cache_width-1:0] M_AWCACHE; output [axi_len_width-1:0] M_AWLEN; output [axi_qos_width-1:0] M_AWQOS; // not connected to AXI BFM output [(data_bus_width/8)-1:0] M_WSTRB; input M_ACLK; input M_ARREADY; input M_AWREADY; input M_BVALID; input M_RLAST; input M_RVALID; input M_WREADY; input [id_bus_width-1:0] M_BID; input [id_bus_width-1:0] M_RID; input [axi_rsp_width-1:0] M_BRESP; input [axi_rsp_width-1:0] M_RRESP; input [data_bus_width-1:0] M_RDATA; wire net_RESETN; wire net_RVALID; wire net_BVALID; reg DEBUG_INFO = 1'b1; reg STOP_ON_ERROR = 1'b1; integer use_id_no = 0; assign M_ARQOS = 'b0; assign M_AWQOS = 'b0; assign net_RESETN = M_RESETN; //ENABLE_THIS_PORT ? M_RESETN : 1'b0; assign net_RVALID = enable_this_port ? M_RVALID : 1'b0; assign net_BVALID = enable_this_port ? M_BVALID : 1'b0; initial begin if(DEBUG_INFO) begin if(enable_this_port) $display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, master_name); else $display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, master_name); end end initial master.set_disable_reset_value_checks(1); initial begin repeat(2) @(posedge M_ACLK); if(!enable_this_port) begin master.set_channel_level_info(0); master.set_function_level_info(0); end master.RESPONSE_TIMEOUT = 0; end cdn_axi3_master_bfm #(master_name, data_bus_width, address_bus_width, id_bus_width, max_outstanding_transactions, exclusive_access_supported) master (.ACLK (M_ACLK), .ARESETn (net_RESETN), /// confirm this // Write Address Channel .AWID (M_AWID), .AWADDR (M_AWADDR), .AWLEN (M_AWLEN), .AWSIZE (M_AWSIZE), .AWBURST (M_AWBURST), .AWLOCK (M_AWLOCK), .AWCACHE (M_AWCACHE), .AWPROT (M_AWPROT), .AWVALID (M_AWVALID), .AWREADY (M_AWREADY), // Write Data Channel Signals. .WID (M_WID), .WDATA (M_WDATA), .WSTRB (M_WSTRB), .WLAST (M_WLAST), .WVALID (M_WVALID), .WREADY (M_WREADY), // Write Response Channel Signals. .BID (M_BID), .BRESP (M_BRESP), .BVALID (net_BVALID), .BREADY (M_BREADY), // Read Address Channel Signals. .ARID (M_ARID), .ARADDR (M_ARADDR), .ARLEN (M_ARLEN), .ARSIZE (M_ARSIZE), .ARBURST (M_ARBURST), .ARLOCK (M_ARLOCK), .ARCACHE (M_ARCACHE), .ARPROT (M_ARPROT), .ARVALID (M_ARVALID), .ARREADY (M_ARREADY), // Read Data Channel Signals. .RID (M_RID), .RDATA (M_RDATA), .RRESP (M_RRESP), .RLAST (M_RLAST), .RVALID (net_RVALID), .RREADY (M_RREADY)); /* Call to BFM APIs */ task automatic read_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,output [(axi_mgp_data_width*axi_burst_len)-1:0] data, output [(axi_rsp_width*axi_burst_len)-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); else master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst_concurrent(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst_concurrent' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask /* local */ function automatic[id_bus_width-1:0] get_id; input dummy; begin case(use_id_no) // l2m1 (CPU000) 0 : get_id = 12'b11_000_000_00_00; 1 : get_id = 12'b11_010_000_00_00; 2 : get_id = 12'b11_011_000_00_00; 3 : get_id = 12'b11_100_000_00_00; 4 : get_id = 12'b11_101_000_00_00; 5 : get_id = 12'b11_110_000_00_00; 6 : get_id = 12'b11_111_000_00_00; // l2m1 (CPU001) 7 : get_id = 12'b11_000_001_00_00; 8 : get_id = 12'b11_010_001_00_00; 9 : get_id = 12'b11_011_001_00_00; 10 : get_id = 12'b11_100_001_00_00; 11 : get_id = 12'b11_101_001_00_00; 12 : get_id = 12'b11_110_001_00_00; 13 : get_id = 12'b11_111_001_00_00; endcase if(use_id_no == 13) use_id_no = 0; else use_id_no = use_id_no+1; end endfunction /* Write data from file */ task automatic write_from_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] wr_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [(axi_burst_len*data_bus_width)-1 : 0] wr_data; integer bytes; integer trnsfr_bytes; integer wr_fd; integer succ; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_from_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; bytes = wr_size; wresp = 0; concurrent = $random; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_bytes = (axi_burst_len * data_bus_width/8); else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wr_id = ID; wr_fd = $fopen(file_name,"r"); while (bytes > 0) begin repeat(axi_burst_len) begin /// get the data for 1 AXI burst transaction wr_data = wr_data >> data_bus_width; succ = $fscanf(wr_fd,"%h",wr_data[(axi_burst_len*data_bus_width)-1 :(axi_burst_len*data_bus_width)-data_bus_width ]); /// write as 4 bytes (data_bus_width) .. end if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes >= (axi_burst_len * data_bus_width/8) ) trnsfr_bytes = (axi_burst_len * data_bus_width/8); // else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data to file */ task automatic read_to_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] rd_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp, rrrsp; reg [addr_width-1:0] addr; integer bytes; integer trnsfr_lngth; reg [(axi_burst_len*data_bus_width)-1 :0] rd_data; integer rd_fd; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_to_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; rresp = 0; bytes = rd_size; rd_id = ID; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rd_fd = $fopen(file_name,"w"); while (bytes > 0) begin master.READ_BURST(rd_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, rd_data, rrrsp); repeat(trnsfr_lngth+1) begin $fdisplayh(rd_fd,rd_data[data_bus_width-1:0]); rd_data = rd_data >> data_bus_width; end addr = addr + (trnsfr_lngth+1)*4; if(bytes >= (axi_burst_len * data_bus_width/8) ) bytes = bytes - (axi_burst_len * data_bus_width/8); // else bytes = 0; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rresp = rresp | rrrsp; end /// while response = rresp; end end endtask /* Write data (used for transfer size <= 128 Bytes */ task automatic write_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] wr_size; input [(max_transfer_bytes*8)-1:0] w_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [7:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1:0] wr_data; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = wr_size; wresp = 0; wr_data = w_data; concurrent = $random; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; wr_id = ID; if(bytes+pad_bytes > (data_bus_width/8*axi_burst_len)) begin /// for unaligned address trnsfr_bytes = (data_bus_width*axi_burst_len)/8 - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); wr_data = wr_data >> (trnsfr_bytes*8); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data (used for transfer size <= 128 Bytes */ task automatic read_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] rd_size; output [(max_transfer_bytes*8)-1:0] r_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp,rdrsp; reg [addr_width-1:0] addr; reg [max_transfer_bytes_width:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1 : 0] rd_data; reg [(axi_burst_len*data_bus_width)-1:0] rcv_rd_data; integer total_rcvd_bytes; integer trnsfr_lngth; integer i; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = rd_size; rresp = 0; total_rcvd_bytes = 0; rd_data = 0; rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; if(bytes+ pad_bytes > (axi_burst_len * data_bus_width/8)) begin /// for unaligned address trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_rd_data, rdrsp); for(i = 0; i < trnsfr_bytes; i = i+1) begin rd_data = rd_data >> 8; rd_data[(max_transfer_bytes*8)-1 : (max_transfer_bytes*8)-8] = rcv_rd_data[7:0]; rcv_rd_data = rcv_rd_data >> 8; total_rcvd_bytes = total_rcvd_bytes+1; end bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = 15; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end rresp = rresp | rdrsp; end /// while rd_data = rd_data >> (max_transfer_bytes - total_rcvd_bytes)*8; r_data = rd_data; response = rresp; end end endtask /* Wait Register Update in PL */ /* Issue a series of 1 burst length reads until the expected data pattern is received */ task automatic wait_reg_update; input [addr_width-1:0] addri; input [data_width-1:0] datai; input [data_width-1:0] maski; input [int_width-1:0] time_interval; input [int_width-1:0] time_out; output [data_width-1:0] data_o; output upd_done; reg [addr_width-1:0] addr; reg [data_width-1:0] data_i; reg [data_width-1:0] mask_i; integer time_int; integer timeout; reg [axi_rsp_width-1:0] rdrsp; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; reg [data_width-1:0] rcv_data; integer trnsfr_lngth; reg rd_loop; reg timed_out; integer i; integer cycle_cnt; begin addr = addri; data_i = datai; mask_i = maski; time_int = time_interval; timeout = time_out; timed_out = 0; cycle_cnt = 0; if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'wait_reg_update' will not be executed...",$time, DISP_ERR, master_name); upd_done = 0; if(STOP_ON_ERROR) $stop; end else begin rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; trnsfr_lngth = 0; rd_loop = 1; fork begin while(!timed_out & rd_loop) begin cycle_cnt = cycle_cnt + 1; if(cycle_cnt >= timeout) timed_out = 1; @(posedge M_ACLK); end end begin while (rd_loop) begin if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register mapped at Address(0x%0h) ",$time, master_name, DISP_INFO, addr); master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_data, rdrsp); if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register returned (0x%0h) ",$time, master_name, DISP_INFO, rcv_data); if(((rcv_data & ~mask_i) === (data_i & ~mask_i)) | timed_out) rd_loop = 0; else repeat(time_int) @(posedge M_ACLK); end /// while end join data_o = rcv_data & ~mask_i; if(timed_out) begin $display("[%0d] : %0s : %0s : 'wait_reg_update' timed out ... Register is not updated ",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else upd_done = 1; end end endtask endmodule
module processing_system7_bfm_v2_0_5_axi_master ( M_RESETN, M_ARVALID, M_AWVALID, M_BREADY, M_RREADY, M_WLAST, M_WVALID, M_ARID, M_AWID, M_WID, M_ARBURST, M_ARLOCK, M_ARSIZE, M_AWBURST, M_AWLOCK, M_AWSIZE, M_ARPROT, M_AWPROT, M_ARADDR, M_AWADDR, M_WDATA, M_ARCACHE, M_ARLEN, M_AWCACHE, M_AWLEN, M_ARQOS, // not connected to AXI BFM M_AWQOS, // not connected to AXI BFM M_WSTRB, M_ACLK, M_ARREADY, M_AWREADY, M_BVALID, M_RLAST, M_RVALID, M_WREADY, M_BID, M_RID, M_BRESP, M_RRESP, M_RDATA ); parameter enable_this_port = 0; parameter master_name = "Master"; parameter data_bus_width = 32; parameter address_bus_width = 32; parameter id_bus_width = 6; parameter max_outstanding_transactions = 8; parameter exclusive_access_supported = 0; parameter ID = 12'hC00; `include "processing_system7_bfm_v2_0_5_local_params.v" /* IDs for Masters // l2m1 (CPU000) 12'b11_000_000_00_00 12'b11_010_000_00_00 12'b11_011_000_00_00 12'b11_100_000_00_00 12'b11_101_000_00_00 12'b11_110_000_00_00 12'b11_111_000_00_00 // l2m1 (CPU001) 12'b11_000_001_00_00 12'b11_010_001_00_00 12'b11_011_001_00_00 12'b11_100_001_00_00 12'b11_101_001_00_00 12'b11_110_001_00_00 12'b11_111_001_00_00 */ input M_RESETN; output M_ARVALID; output M_AWVALID; output M_BREADY; output M_RREADY; output M_WLAST; output M_WVALID; output [id_bus_width-1:0] M_ARID; output [id_bus_width-1:0] M_AWID; output [id_bus_width-1:0] M_WID; output [axi_brst_type_width-1:0] M_ARBURST; output [axi_lock_width-1:0] M_ARLOCK; output [axi_size_width-1:0] M_ARSIZE; output [axi_brst_type_width-1:0] M_AWBURST; output [axi_lock_width-1:0] M_AWLOCK; output [axi_size_width-1:0] M_AWSIZE; output [axi_prot_width-1:0] M_ARPROT; output [axi_prot_width-1:0] M_AWPROT; output [address_bus_width-1:0] M_ARADDR; output [address_bus_width-1:0] M_AWADDR; output [data_bus_width-1:0] M_WDATA; output [axi_cache_width-1:0] M_ARCACHE; output [axi_len_width-1:0] M_ARLEN; output [axi_qos_width-1:0] M_ARQOS; // not connected to AXI BFM output [axi_cache_width-1:0] M_AWCACHE; output [axi_len_width-1:0] M_AWLEN; output [axi_qos_width-1:0] M_AWQOS; // not connected to AXI BFM output [(data_bus_width/8)-1:0] M_WSTRB; input M_ACLK; input M_ARREADY; input M_AWREADY; input M_BVALID; input M_RLAST; input M_RVALID; input M_WREADY; input [id_bus_width-1:0] M_BID; input [id_bus_width-1:0] M_RID; input [axi_rsp_width-1:0] M_BRESP; input [axi_rsp_width-1:0] M_RRESP; input [data_bus_width-1:0] M_RDATA; wire net_RESETN; wire net_RVALID; wire net_BVALID; reg DEBUG_INFO = 1'b1; reg STOP_ON_ERROR = 1'b1; integer use_id_no = 0; assign M_ARQOS = 'b0; assign M_AWQOS = 'b0; assign net_RESETN = M_RESETN; //ENABLE_THIS_PORT ? M_RESETN : 1'b0; assign net_RVALID = enable_this_port ? M_RVALID : 1'b0; assign net_BVALID = enable_this_port ? M_BVALID : 1'b0; initial begin if(DEBUG_INFO) begin if(enable_this_port) $display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, master_name); else $display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, master_name); end end initial master.set_disable_reset_value_checks(1); initial begin repeat(2) @(posedge M_ACLK); if(!enable_this_port) begin master.set_channel_level_info(0); master.set_function_level_info(0); end master.RESPONSE_TIMEOUT = 0; end cdn_axi3_master_bfm #(master_name, data_bus_width, address_bus_width, id_bus_width, max_outstanding_transactions, exclusive_access_supported) master (.ACLK (M_ACLK), .ARESETn (net_RESETN), /// confirm this // Write Address Channel .AWID (M_AWID), .AWADDR (M_AWADDR), .AWLEN (M_AWLEN), .AWSIZE (M_AWSIZE), .AWBURST (M_AWBURST), .AWLOCK (M_AWLOCK), .AWCACHE (M_AWCACHE), .AWPROT (M_AWPROT), .AWVALID (M_AWVALID), .AWREADY (M_AWREADY), // Write Data Channel Signals. .WID (M_WID), .WDATA (M_WDATA), .WSTRB (M_WSTRB), .WLAST (M_WLAST), .WVALID (M_WVALID), .WREADY (M_WREADY), // Write Response Channel Signals. .BID (M_BID), .BRESP (M_BRESP), .BVALID (net_BVALID), .BREADY (M_BREADY), // Read Address Channel Signals. .ARID (M_ARID), .ARADDR (M_ARADDR), .ARLEN (M_ARLEN), .ARSIZE (M_ARSIZE), .ARBURST (M_ARBURST), .ARLOCK (M_ARLOCK), .ARCACHE (M_ARCACHE), .ARPROT (M_ARPROT), .ARVALID (M_ARVALID), .ARREADY (M_ARREADY), // Read Data Channel Signals. .RID (M_RID), .RDATA (M_RDATA), .RRESP (M_RRESP), .RLAST (M_RLAST), .RVALID (net_RVALID), .RREADY (M_RREADY)); /* Call to BFM APIs */ task automatic read_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,output [(axi_mgp_data_width*axi_burst_len)-1:0] data, output [(axi_rsp_width*axi_burst_len)-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); else master.READ_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask task automatic write_burst_concurrent(input [address_bus_width-1:0] addr,input [axi_len_width-1:0] len,input [axi_size_width-1:0] siz,input [axi_brst_type_width-1:0] burst,input [axi_lock_width-1:0] lck,input [axi_cache_width-1:0] cache,input [axi_prot_width-1:0] prot,input [(axi_mgp_data_width*axi_burst_len)-1:0] data,input integer datasize, output [axi_rsp_width-1:0] response); if(enable_this_port)begin if(lck !== AXI_NRML) master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); else master.WRITE_BURST_CONCURRENT(ID,addr,len,siz,burst,lck,cache,prot,data,datasize,response); end else begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_burst_concurrent' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end endtask /* local */ function automatic[id_bus_width-1:0] get_id; input dummy; begin case(use_id_no) // l2m1 (CPU000) 0 : get_id = 12'b11_000_000_00_00; 1 : get_id = 12'b11_010_000_00_00; 2 : get_id = 12'b11_011_000_00_00; 3 : get_id = 12'b11_100_000_00_00; 4 : get_id = 12'b11_101_000_00_00; 5 : get_id = 12'b11_110_000_00_00; 6 : get_id = 12'b11_111_000_00_00; // l2m1 (CPU001) 7 : get_id = 12'b11_000_001_00_00; 8 : get_id = 12'b11_010_001_00_00; 9 : get_id = 12'b11_011_001_00_00; 10 : get_id = 12'b11_100_001_00_00; 11 : get_id = 12'b11_101_001_00_00; 12 : get_id = 12'b11_110_001_00_00; 13 : get_id = 12'b11_111_001_00_00; endcase if(use_id_no == 13) use_id_no = 0; else use_id_no = use_id_no+1; end endfunction /* Write data from file */ task automatic write_from_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] wr_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [(axi_burst_len*data_bus_width)-1 : 0] wr_data; integer bytes; integer trnsfr_bytes; integer wr_fd; integer succ; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_from_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; bytes = wr_size; wresp = 0; concurrent = $random; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_bytes = (axi_burst_len * data_bus_width/8); else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wr_id = ID; wr_fd = $fopen(file_name,"r"); while (bytes > 0) begin repeat(axi_burst_len) begin /// get the data for 1 AXI burst transaction wr_data = wr_data >> data_bus_width; succ = $fscanf(wr_fd,"%h",wr_data[(axi_burst_len*data_bus_width)-1 :(axi_burst_len*data_bus_width)-data_bus_width ]); /// write as 4 bytes (data_bus_width) .. end if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data, trnsfr_bytes, rwrsp); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes >= (axi_burst_len * data_bus_width/8) ) trnsfr_bytes = (axi_burst_len * data_bus_width/8); // else trnsfr_bytes = bytes; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data to file */ task automatic read_to_file; input [(max_chars*8)-1:0] file_name; input [addr_width-1:0] start_addr; input [int_width-1:0] rd_size; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp, rrrsp; reg [addr_width-1:0] addr; integer bytes; integer trnsfr_lngth; reg [(axi_burst_len*data_bus_width)-1 :0] rd_data; integer rd_fd; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_to_file' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; addr = start_addr; rresp = 0; bytes = rd_size; rd_id = ID; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rd_fd = $fopen(file_name,"w"); while (bytes > 0) begin master.READ_BURST(rd_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, rd_data, rrrsp); repeat(trnsfr_lngth+1) begin $fdisplayh(rd_fd,rd_data[data_bus_width-1:0]); rd_data = rd_data >> data_bus_width; end addr = addr + (trnsfr_lngth+1)*4; if(bytes >= (axi_burst_len * data_bus_width/8) ) bytes = bytes - (axi_burst_len * data_bus_width/8); // else bytes = 0; if(bytes > (axi_burst_len * data_bus_width/8)) trnsfr_lngth = axi_burst_len-1; else if(bytes%(data_bus_width/8) == 0) trnsfr_lngth = bytes/(data_bus_width/8) - 1; else trnsfr_lngth = bytes/(data_bus_width/8); rresp = rresp | rrrsp; end /// while response = rresp; end end endtask /* Write data (used for transfer size <= 128 Bytes */ task automatic write_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] wr_size; input [(max_transfer_bytes*8)-1:0] w_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] wresp,rwrsp; reg [addr_width-1:0] addr; reg [7:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1:0] wr_data; integer trnsfr_lngth; reg concurrent; reg [id_bus_width-1:0] wr_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'write_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = wr_size; wresp = 0; wr_data = w_data; concurrent = $random; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; wr_id = ID; if(bytes+pad_bytes > (data_bus_width/8*axi_burst_len)) begin /// for unaligned address trnsfr_bytes = (data_bus_width*axi_burst_len)/8 - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin if(concurrent) master.WRITE_BURST_CONCURRENT(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); else master.WRITE_BURST(wr_id, addr, trnsfr_lngth, siz, burst, lck, cache, prot, wr_data[(axi_burst_len*data_bus_width)-1:0], trnsfr_bytes, rwrsp); wr_data = wr_data >> (trnsfr_bytes*8); bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end wresp = wresp | rwrsp; end /// while response = wresp; end end endtask /* Read data (used for transfer size <= 128 Bytes */ task automatic read_data; input [addr_width-1:0] start_addr; input [max_transfer_bytes_width:0] rd_size; output [(max_transfer_bytes*8)-1:0] r_data; output [axi_rsp_width-1:0] response; reg [axi_rsp_width-1:0] rresp,rdrsp; reg [addr_width-1:0] addr; reg [max_transfer_bytes_width:0] bytes,tmp_bytes; integer trnsfr_bytes; reg [(max_transfer_bytes*8)-1 : 0] rd_data; reg [(axi_burst_len*data_bus_width)-1:0] rcv_rd_data; integer total_rcvd_bytes; integer trnsfr_lngth; integer i; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; integer pad_bytes; begin if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'read_data' will not be executed...",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else begin addr = start_addr; bytes = rd_size; rresp = 0; total_rcvd_bytes = 0; rd_data = 0; rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; pad_bytes = start_addr[clogb2(data_bus_width/8)-1:0]; if(bytes+ pad_bytes > (axi_burst_len * data_bus_width/8)) begin /// for unaligned address trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = axi_burst_len-1; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end while (bytes > 0) begin master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_rd_data, rdrsp); for(i = 0; i < trnsfr_bytes; i = i+1) begin rd_data = rd_data >> 8; rd_data[(max_transfer_bytes*8)-1 : (max_transfer_bytes*8)-8] = rcv_rd_data[7:0]; rcv_rd_data = rcv_rd_data >> 8; total_rcvd_bytes = total_rcvd_bytes+1; end bytes = bytes - trnsfr_bytes; addr = addr + trnsfr_bytes; if(bytes > (axi_burst_len * data_bus_width/8)) begin trnsfr_bytes = (axi_burst_len * data_bus_width/8) - pad_bytes;//start_addr[1:0]; trnsfr_lngth = 15; end else begin trnsfr_bytes = bytes; tmp_bytes = bytes + pad_bytes;//start_addr[1:0]; if(tmp_bytes%(data_bus_width/8) == 0) trnsfr_lngth = tmp_bytes/(data_bus_width/8) - 1; else trnsfr_lngth = tmp_bytes/(data_bus_width/8); end rresp = rresp | rdrsp; end /// while rd_data = rd_data >> (max_transfer_bytes - total_rcvd_bytes)*8; r_data = rd_data; response = rresp; end end endtask /* Wait Register Update in PL */ /* Issue a series of 1 burst length reads until the expected data pattern is received */ task automatic wait_reg_update; input [addr_width-1:0] addri; input [data_width-1:0] datai; input [data_width-1:0] maski; input [int_width-1:0] time_interval; input [int_width-1:0] time_out; output [data_width-1:0] data_o; output upd_done; reg [addr_width-1:0] addr; reg [data_width-1:0] data_i; reg [data_width-1:0] mask_i; integer time_int; integer timeout; reg [axi_rsp_width-1:0] rdrsp; reg [id_bus_width-1:0] rd_id; reg [axi_size_width-1:0] siz; reg [axi_brst_type_width-1:0] burst; reg [axi_lock_width-1:0] lck; reg [axi_cache_width-1:0] cache; reg [axi_prot_width-1:0] prot; reg [data_width-1:0] rcv_data; integer trnsfr_lngth; reg rd_loop; reg timed_out; integer i; integer cycle_cnt; begin addr = addri; data_i = datai; mask_i = maski; time_int = time_interval; timeout = time_out; timed_out = 0; cycle_cnt = 0; if(!enable_this_port) begin $display("[%0d] : %0s : %0s : Port is disabled. 'wait_reg_update' will not be executed...",$time, DISP_ERR, master_name); upd_done = 0; if(STOP_ON_ERROR) $stop; end else begin rd_id = ID; siz = 2; burst = 1; lck = 0; cache = 0; prot = 0; trnsfr_lngth = 0; rd_loop = 1; fork begin while(!timed_out & rd_loop) begin cycle_cnt = cycle_cnt + 1; if(cycle_cnt >= timeout) timed_out = 1; @(posedge M_ACLK); end end begin while (rd_loop) begin if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register mapped at Address(0x%0h) ",$time, master_name, DISP_INFO, addr); master.READ_BURST(rd_id,addr, trnsfr_lngth, siz, burst, lck, cache, prot, rcv_data, rdrsp); if(DEBUG_INFO) $display("[%0d] : %0s : %0s : Reading Register returned (0x%0h) ",$time, master_name, DISP_INFO, rcv_data); if(((rcv_data & ~mask_i) === (data_i & ~mask_i)) | timed_out) rd_loop = 0; else repeat(time_int) @(posedge M_ACLK); end /// while end join data_o = rcv_data & ~mask_i; if(timed_out) begin $display("[%0d] : %0s : %0s : 'wait_reg_update' timed out ... Register is not updated ",$time, DISP_ERR, master_name); if(STOP_ON_ERROR) $stop; end else upd_done = 1; end end endtask endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; // verilator lint_off UNOPT // verilator lint_off UNOPTFLAT // verilator lint_off MULTIDRIVEN // verilator lint_off BLKANDNBLK reg [31:0] comcnt; reg [31:0] dlycnt; initial dlycnt=0; reg [31:0] lastdlycnt; initial lastdlycnt = 0; reg [31:0] comrun; initial comrun = 0; reg [31:0] comrunm1; reg [31:0] dlyrun; initial dlyrun = 0; reg [31:0] dlyrunm1; always @ (posedge clk) begin $write("[%0t] cyc %d\n",$time,cyc); cyc <= cyc + 1; if (cyc==2) begin // Test # of iters lastdlycnt = 0; comcnt = 0; dlycnt <= 0; end if (cyc==3) begin dlyrun <= 5; dlycnt <= 0; end if (cyc==4) begin comrun = 4; end end always @ (negedge clk) begin if (cyc==5) begin $display("%d %d\n", dlycnt, comcnt); if (dlycnt != 32'd5) $stop; if (comcnt != 32'd19) $stop; $write("*-* All Finished *-*\n"); $finish; end end // This forms a "loop" where we keep going through the always till comrun=0 reg runclk; initial runclk = 1'b0; always @ (/*AS*/comrunm1 or dlycnt) begin if (lastdlycnt != dlycnt) begin comrun = 3; $write ("[%0t] comrun=%0d start\n", $time, comrun); end else if (comrun > 0) begin comrun = comrunm1; if (comrunm1==1) begin runclk = 1; $write ("[%0t] comrun=%0d [trigger clk]\n", $time, comrun); end else $write ("[%0t] comrun=%0d\n", $time, comrun); end lastdlycnt = dlycnt; end always @ (/*AS*/comrun) begin if (comrun!=0) begin comrunm1 = comrun - 32'd1; comcnt = comcnt + 32'd1; $write("[%0t] comcnt=%0d\n",$time,comcnt); end end // This forms a "loop" where we keep going through the always till dlyrun=0 reg runclkrst; always @ (posedge runclk) begin runclkrst <= 1; $write ("[%0t] runclk\n", $time); if (dlyrun > 0) begin dlyrun <= dlyrun - 32'd1; dlycnt <= dlycnt + 32'd1; $write ("[%0t] dlyrun<=%0d\n", $time, dlyrun-32'd1); end end always @* begin if (runclkrst) begin $write ("[%0t] runclk reset\n", $time); runclkrst = 0; runclk = 0; end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; // verilator lint_off UNOPT // verilator lint_off UNOPTFLAT // verilator lint_off MULTIDRIVEN // verilator lint_off BLKANDNBLK reg [31:0] comcnt; reg [31:0] dlycnt; initial dlycnt=0; reg [31:0] lastdlycnt; initial lastdlycnt = 0; reg [31:0] comrun; initial comrun = 0; reg [31:0] comrunm1; reg [31:0] dlyrun; initial dlyrun = 0; reg [31:0] dlyrunm1; always @ (posedge clk) begin $write("[%0t] cyc %d\n",$time,cyc); cyc <= cyc + 1; if (cyc==2) begin // Test # of iters lastdlycnt = 0; comcnt = 0; dlycnt <= 0; end if (cyc==3) begin dlyrun <= 5; dlycnt <= 0; end if (cyc==4) begin comrun = 4; end end always @ (negedge clk) begin if (cyc==5) begin $display("%d %d\n", dlycnt, comcnt); if (dlycnt != 32'd5) $stop; if (comcnt != 32'd19) $stop; $write("*-* All Finished *-*\n"); $finish; end end // This forms a "loop" where we keep going through the always till comrun=0 reg runclk; initial runclk = 1'b0; always @ (/*AS*/comrunm1 or dlycnt) begin if (lastdlycnt != dlycnt) begin comrun = 3; $write ("[%0t] comrun=%0d start\n", $time, comrun); end else if (comrun > 0) begin comrun = comrunm1; if (comrunm1==1) begin runclk = 1; $write ("[%0t] comrun=%0d [trigger clk]\n", $time, comrun); end else $write ("[%0t] comrun=%0d\n", $time, comrun); end lastdlycnt = dlycnt; end always @ (/*AS*/comrun) begin if (comrun!=0) begin comrunm1 = comrun - 32'd1; comcnt = comcnt + 32'd1; $write("[%0t] comcnt=%0d\n",$time,comcnt); end end // This forms a "loop" where we keep going through the always till dlyrun=0 reg runclkrst; always @ (posedge runclk) begin runclkrst <= 1; $write ("[%0t] runclk\n", $time); if (dlyrun > 0) begin dlyrun <= dlyrun - 32'd1; dlycnt <= dlycnt + 32'd1; $write ("[%0t] dlyrun<=%0d\n", $time, dlyrun-32'd1); end end always @* begin if (runclkrst) begin $write ("[%0t] runclk reset\n", $time); runclkrst = 0; runclk = 0; end end endmodule
module t (/*AUTOARG*/ // Inputs clk ); input clk; integer cyc; initial cyc=1; // verilator lint_off UNOPT // verilator lint_off UNOPTFLAT // verilator lint_off MULTIDRIVEN // verilator lint_off BLKANDNBLK reg [31:0] comcnt; reg [31:0] dlycnt; initial dlycnt=0; reg [31:0] lastdlycnt; initial lastdlycnt = 0; reg [31:0] comrun; initial comrun = 0; reg [31:0] comrunm1; reg [31:0] dlyrun; initial dlyrun = 0; reg [31:0] dlyrunm1; always @ (posedge clk) begin $write("[%0t] cyc %d\n",$time,cyc); cyc <= cyc + 1; if (cyc==2) begin // Test # of iters lastdlycnt = 0; comcnt = 0; dlycnt <= 0; end if (cyc==3) begin dlyrun <= 5; dlycnt <= 0; end if (cyc==4) begin comrun = 4; end end always @ (negedge clk) begin if (cyc==5) begin $display("%d %d\n", dlycnt, comcnt); if (dlycnt != 32'd5) $stop; if (comcnt != 32'd19) $stop; $write("*-* All Finished *-*\n"); $finish; end end // This forms a "loop" where we keep going through the always till comrun=0 reg runclk; initial runclk = 1'b0; always @ (/*AS*/comrunm1 or dlycnt) begin if (lastdlycnt != dlycnt) begin comrun = 3; $write ("[%0t] comrun=%0d start\n", $time, comrun); end else if (comrun > 0) begin comrun = comrunm1; if (comrunm1==1) begin runclk = 1; $write ("[%0t] comrun=%0d [trigger clk]\n", $time, comrun); end else $write ("[%0t] comrun=%0d\n", $time, comrun); end lastdlycnt = dlycnt; end always @ (/*AS*/comrun) begin if (comrun!=0) begin comrunm1 = comrun - 32'd1; comcnt = comcnt + 32'd1; $write("[%0t] comcnt=%0d\n",$time,comcnt); end end // This forms a "loop" where we keep going through the always till dlyrun=0 reg runclkrst; always @ (posedge runclk) begin runclkrst <= 1; $write ("[%0t] runclk\n", $time); if (dlyrun > 0) begin dlyrun <= dlyrun - 32'd1; dlycnt <= dlycnt + 32'd1; $write ("[%0t] dlyrun<=%0d\n", $time, dlyrun-32'd1); end end always @* begin if (runclkrst) begin $write ("[%0t] runclk reset\n", $time); runclkrst = 0; runclk = 0; end end endmodule
module generic_baseblocks_v2_1_0_comparator_sel_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_0_comparator_sel_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module generic_baseblocks_v2_1_0_comparator_sel_mask_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ read_signal_breakout the_read_signal_breakout ( .read_command_data_in (read_fifo_output), .read_command_data_out (read_command_data), .read_address (read_address), .read_length (read_length), .read_transmit_channel (read_transmit_channel), .read_generate_sop (read_generate_sop), .read_generate_eop (read_generate_eop), .read_park (read_park), .read_transfer_complete_IRQ_mask (read_transfer_complete_IRQ_mask), .read_burst_count (read_burst_count), .read_stride (read_stride), .read_sequence_number (read_sequence_number), .read_transmit_error (read_transmit_error), .read_early_done_enable (read_early_done_enable), .read_stop (stop), .read_sw_reset (sw_reset) ); defparam the_read_signal_breakout.DATA_WIDTH = DATA_WIDTH; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_read_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_read_fifo), .read_data (read_fifo_output), .pop (pop_read_fifo), .used (read_command_used), // this is a 'true used' signal with the full bit accounted for .full (read_command_full), .empty (read_command_empty) ); defparam the_read_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_read_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_read_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_read_command_FIFO.LATENCY = 2; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_write_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_write_fifo), .read_data (write_fifo_output), .pop (pop_write_fifo), .used (write_command_used), // this is a 'true used' signal with the full bit accounted for .full (write_command_full), .empty (write_command_empty) ); defparam the_write_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_write_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_write_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_write_command_FIFO.LATENCY = 2; /**************************************** End Module Instantiations ************************************************/ /****************************************** Combinational Signals **************************************************/ generate // all unnecessary signals and drivers will be optimized away if (MODE == 0) // MM-->MM begin assign waitrequest = (read_command_full == 1) | (write_command_full == 1); // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end else if (MODE == 1) // MM-->ST begin // information for the CSR or response blocks to use assign sequence_number = {16'h0000, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = read_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; assign waitrequest = (read_command_full == 1); // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = 0; assign write_park_enable = 0; assign write_command_valid = 0; assign issue_write_descriptor = 0; assign pop_write_fifo = 0; end else // ST-->MM begin // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, 16'h0000}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = write_early_termination_IRQ_mask_d1; assign error_IRQ_mask = write_error_IRQ_mask_d1; assign waitrequest = (write_command_full == 1); // read buffer flow control assign push_read_fifo = 0; assign read_park_enable = 0; assign read_command_valid = 0; assign issue_read_descriptor = 0; assign pop_read_fifo = 0; // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end endgenerate generate // go bit is in a different location depending on the width of the slave port if (DATA_WIDTH == 256) begin assign go_bit = (writedata[255] == 1) & (write == 1) & (byteenable[31] == 1) & (waitrequest == 0); end else begin assign go_bit = (writedata[127] == 1) & (write == 1) & (byteenable[15] == 1) & (waitrequest == 0); end endgenerate /**************************************** End Combinational Signals ************************************************/ endmodule
module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule
module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule
module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule
module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule
module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule
module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule
module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule
module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule
module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule
module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule
module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule
module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule
module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule
module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule
module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule
module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule
module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule
module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule
module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule
module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule
module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule
module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule
module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule
module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule
module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule
module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule
module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
module MM_to_ST_Adapter ( clk, reset, length, length_counter, address, reads_pending, start, readdata, readdatavalid, fifo_data, fifo_write, fifo_empty, fifo_sop, fifo_eop ); parameter DATA_WIDTH = 32; // 8, 16, 32, 64, 128, or 256 are valid values (if 8 is used then disable unaligned accesses and turn on full word only accesses) parameter LENGTH_WIDTH = 32; parameter ADDRESS_WIDTH = 32; parameter BYTE_ADDRESS_WIDTH = 2; // log2(DATA_WIDTH/8) parameter READS_PENDING_WIDTH = 5; parameter EMPTY_WIDTH = 2; // log2(DATA_WIDTH/8) parameter PACKET_SUPPORT = 1; // when set to 1 eop, sop, and empty will be driven, otherwise they will be grounded // only set one of these at a time parameter UNALIGNED_ACCESS_ENABLE = 1; // when set to 1 this block will support packets and starting/ending on any boundary, do not use this if DATA_WIDTH is 8 (use 'FULL_WORD_ACCESS_ONLY') parameter FULL_WORD_ACCESS_ONLY = 0; // when set to 1 this block will assume only full words are arriving (must start and stop on a word boundary). input clk; input reset; input [LENGTH_WIDTH-1:0] length; input [LENGTH_WIDTH-1:0] length_counter; input [ADDRESS_WIDTH-1:0] address; input [READS_PENDING_WIDTH-1:0] reads_pending; input start; // one cycle strobe at the start of a transfer used to capture bytes_to_transfer input [DATA_WIDTH-1:0] readdata; input readdatavalid; output wire [DATA_WIDTH-1:0] fifo_data; output wire fifo_write; output wire [EMPTY_WIDTH-1:0] fifo_empty; output wire fifo_sop; output wire fifo_eop; // internal registers and wires reg [DATA_WIDTH-1:0] readdata_d1; reg readdatavalid_d1; wire [DATA_WIDTH-1:0] data_in; // data_in will either be readdata or a pipelined copy of readdata depending on whether unaligned access support is enabled wire valid_in; // valid in will either be readdatavalid or a pipelined copy of readdatavalid depending on whether unaligned access support is enabled reg valid_in_d1; wire [DATA_WIDTH-1:0] barrelshifter_A; // shifted current read data wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; // shifted previously read data wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs wire extra_access_enable; reg extra_access; wire last_unaligned_fifo_write; reg first_access_seen; reg second_access_seen; wire first_access_seen_rising_edge; wire second_access_seen_rising_edge; reg [BYTE_ADDRESS_WIDTH-1:0] byte_address; reg [EMPTY_WIDTH-1:0] last_empty; // only the last word written into the FIFO can have empty bytes reg start_and_end_same_cycle; // when the amount of data to transfer is only a full word or less generate if (UNALIGNED_ACCESS_ENABLE == 1) // unaligned so using a pipelined input begin assign data_in = readdata_d1; assign valid_in = readdatavalid_d1; end else begin assign data_in = readdata; // no barrelshifters in this case so pipelining is not necessary assign valid_in = readdatavalid; end endgenerate always @ (posedge clk or posedge reset) begin if (reset) begin readdata_d1 <= 0; end else begin if (readdatavalid == 1) begin readdata_d1 <= readdata; end end end always @ (posedge clk or posedge reset) begin if (reset) begin readdatavalid_d1 <= 0; valid_in_d1 <= 0; end else begin readdatavalid_d1 <= readdatavalid; valid_in_d1 <= valid_in; // used to flush the pipeline (extra fifo write) and prolong eop for one additional clock cycle end end always @ (posedge clk or posedge reset) begin if (reset == 1) begin barrelshifter_B_d1 <= 0; end else begin if (valid_in == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end always @ (posedge clk or posedge reset) begin if (reset) begin first_access_seen <= 0; end else begin if (start == 1) begin first_access_seen <= 0; end else if (valid_in == 1) begin first_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin second_access_seen <= 0; end else begin if (start == 1) begin second_access_seen <= 0; end else if ((first_access_seen == 1) & (valid_in == 1)) begin second_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin byte_address <= 0; end else if (start == 1) begin byte_address <= address[BYTE_ADDRESS_WIDTH-1:0]; end end always @ (posedge clk or posedge reset) begin if (reset) begin last_empty <= 0; end else if (start == 1) begin last_empty <= ((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}; // if length isn't a multiple of the word size then we'll have some empty symbols/bytes during the last fifo write end end always @ (posedge clk or posedge reset) begin if (reset) begin extra_access <= 0; end else if (start == 1) begin extra_access <= extra_access_enable; // when set the number of reads and fifo writes are equal, otherwise there will be 1 less fifo write than reads (unaligned accesses only) end end always @ (posedge clk or posedge reset) begin if (reset) begin start_and_end_same_cycle <= 0; end else if (start == 1) begin start_and_end_same_cycle <= (length <= (DATA_WIDTH/8)); end end /* These barrelshifters will take the unaligned data coming into this block and shift the byte lanes appropriately to form a single packed word. Zeros are shifted into the byte lanes that do not contain valid data for the combined word that will be buffered. This allows both barrelshifters to be logically OR'ed together to form a single packed word. Shifter A is used to shift the current read data towards the upper bytes of the combined word (since those are the upper addresses of the combined word). Shifter B after the pipeline stage called 'barrelshifter_B_d1' contains the previously read data shifted towards the lower bytes (since those are the lower addresses of the combined word). */ generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = data_in << (8 * ((DATA_WIDTH/8) - input_offset)); assign barrelshifter_input_B[input_offset] = data_in >> (8 * input_offset); end endgenerate assign barrelshifter_A = barrelshifter_input_A[byte_address]; // upper portion of the packed word assign barrelshifter_B = barrelshifter_input_B[byte_address]; // lower portion of the packed word (will be pipelined so it will be the previous word read by the master) assign combined_word = (barrelshifter_A | barrelshifter_B_d1); // barrelshifters shift in zeros so we can just OR the words together here to create a packed word assign first_access_seen_rising_edge = (valid_in == 1) & (first_access_seen == 0); assign second_access_seen_rising_edge = ((first_access_seen == 1) & (valid_in == 1)) & (second_access_seen == 0); assign extra_access_enable = (((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}) >= address[BYTE_ADDRESS_WIDTH-1:0]; // enable when empty >= byte address /* Need to keep track of the last write to the FIFO so that we can fire EOP correctly as well as flush the pipeline when unaligned accesses is enabled. The first read is filtered since it is considered to be only a partial word to be written into the FIFO but there are cases when there is extra data that is buffered in 'barrelshifter_B_d1' but the transfer is done so we need to issue an additional write. In general for every 'N' Avalon-MM reads 'N-1' writes to the FIFO will occur unless there is data still buffered in which one more write to the FIFO will immediately follow the last read. */ assign last_unaligned_fifo_write = (reads_pending == 0) & (length_counter == 0) & ( ((extra_access == 0) & (valid_in == 1)) | // don't need a pipeline flush ((extra_access == 1) & (valid_in_d1 == 1) & (valid_in == 0)) ); // last write to flush the pipeline (need to make sure valid_in isn't asserted to make sure the last data is indeed coming since valid_in is pipelined) // This block should be optimized down depending on the packet support or access type settings. In the case where packet support is off // and only full accesses are used this block should become zero logic elements. generate if (PACKET_SUPPORT == 1) begin if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_sop = (second_access_seen_rising_edge == 1) | ((start_and_end_same_cycle == 1) & (last_unaligned_fifo_write == 1)); assign fifo_eop = last_unaligned_fifo_write; assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end else begin assign fifo_sop = first_access_seen_rising_edge; assign fifo_eop = (length_counter == 0) & (reads_pending == 1) & (valid_in == 1); // not using last_unaligned_fifo_write since it's pipelined and when unaligned accesses are disabled the input is not pipelined if (FULL_WORD_ACCESS_ONLY == 1) begin assign fifo_empty = 0; // full accesses so no empty symbols throughout the transfer end else begin assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end end end else begin assign fifo_eop = 0; assign fifo_sop = 0; assign fifo_empty = 0; end if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_data = combined_word; assign fifo_write = (first_access_seen == 1) & ((valid_in == 1) | (last_unaligned_fifo_write == 1)); // last_unaligned_fifo_write will inject an extra pulse right after the last read occurs when flushing of the pipeline is needed end else begin // don't need to pipeline since the data will not go through the barrel shifters assign fifo_data = data_in; // don't need to barrelshift when aligned accesses are used assign fifo_write = valid_in; // the number of writes to the fifo needs to always equal the number of reads from memory end endgenerate endmodule