module_content
stringlengths 18
1.05M
|
---|
module mig_7series_v2_3_ddr_phy_wrlvl #
(
parameter TCQ = 100,
parameter DQS_CNT_WIDTH = 3,
parameter DQ_WIDTH = 64,
parameter DQS_WIDTH = 2,
parameter DRAM_WIDTH = 8,
parameter RANKS = 1,
parameter nCK_PER_CLK = 4,
parameter CLK_PERIOD = 4,
parameter SIM_CAL_OPTION = "NONE"
)
(
input clk,
input rst,
input phy_ctl_ready,
input wr_level_start,
input wl_sm_start,
input wrlvl_final,
input wrlvl_byte_redo,
input [DQS_CNT_WIDTH:0] wrcal_cnt,
input early1_data,
input early2_data,
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt,
input oclkdelay_calib_done,
input [(DQ_WIDTH)-1:0] rd_data_rise0,
output reg wrlvl_byte_done,
output reg dqs_po_dec_done /* synthesis syn_maxfan = 2 */,
output phy_ctl_rdy_dly,
output reg wr_level_done /* synthesis syn_maxfan = 2 */,
// to phy_init for cs logic
output wrlvl_rank_done,
output done_dqs_tap_inc,
output [DQS_CNT_WIDTH:0] po_stg2_wl_cnt,
// Fine delay line used only during write leveling
// Inc/dec Phaser_Out fine delay line
output reg dqs_po_stg2_f_incdec,
// Enable Phaser_Out fine delay inc/dec
output reg dqs_po_en_stg2_f,
// Coarse delay line used during write leveling
// only if 64 taps of fine delay line were not
// sufficient to detect a 0->1 transition
// Inc Phaser_Out coarse delay line
output reg dqs_wl_po_stg2_c_incdec,
// Enable Phaser_Out coarse delay inc/dec
output reg dqs_wl_po_en_stg2_c,
// Read Phaser_Out delay value
input [8:0] po_counter_read_val,
// output reg dqs_wl_po_stg2_load,
// output reg [8:0] dqs_wl_po_stg2_reg_l,
// CK edge undetected
output reg wrlvl_err,
output reg [3*DQS_WIDTH-1:0] wl_po_coarse_cnt,
output reg [6*DQS_WIDTH-1:0] wl_po_fine_cnt,
// Debug ports
output [5:0] dbg_wl_tap_cnt,
output dbg_wl_edge_detect_valid,
output [(DQS_WIDTH)-1:0] dbg_rd_data_edge_detect,
output [DQS_CNT_WIDTH:0] dbg_dqs_count,
output [4:0] dbg_wl_state,
output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt,
output [255:0] dbg_phy_wrlvl
);
localparam WL_IDLE = 5'h0;
localparam WL_INIT = 5'h1;
localparam WL_INIT_FINE_INC = 5'h2;
localparam WL_INIT_FINE_INC_WAIT1= 5'h3;
localparam WL_INIT_FINE_INC_WAIT = 5'h4;
localparam WL_INIT_FINE_DEC = 5'h5;
localparam WL_INIT_FINE_DEC_WAIT = 5'h6;
localparam WL_FINE_INC = 5'h7;
localparam WL_WAIT = 5'h8;
localparam WL_EDGE_CHECK = 5'h9;
localparam WL_DQS_CHECK = 5'hA;
localparam WL_DQS_CNT = 5'hB;
localparam WL_2RANK_TAP_DEC = 5'hC;
localparam WL_2RANK_DQS_CNT = 5'hD;
localparam WL_FINE_DEC = 5'hE;
localparam WL_FINE_DEC_WAIT = 5'hF;
localparam WL_CORSE_INC = 5'h10;
localparam WL_CORSE_INC_WAIT = 5'h11;
localparam WL_CORSE_INC_WAIT1 = 5'h12;
localparam WL_CORSE_INC_WAIT2 = 5'h13;
localparam WL_CORSE_DEC = 5'h14;
localparam WL_CORSE_DEC_WAIT = 5'h15;
localparam WL_CORSE_DEC_WAIT1 = 5'h16;
localparam WL_FINE_INC_WAIT = 5'h17;
localparam WL_2RANK_FINAL_TAP = 5'h18;
localparam WL_INIT_FINE_DEC_WAIT1= 5'h19;
localparam WL_FINE_DEC_WAIT1 = 5'h1A;
localparam WL_CORSE_INC_WAIT_TMP = 5'h1B;
localparam COARSE_TAPS = 7;
localparam FAST_CAL_FINE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 45 : 48;
localparam FAST_CAL_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 1 : 2;
localparam REDO_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 2 : 5;
integer i, j, k, l, p, q, r, s, t, m, n, u, v, w, x,y;
reg phy_ctl_ready_r1;
reg phy_ctl_ready_r2;
reg phy_ctl_ready_r3;
reg phy_ctl_ready_r4;
reg phy_ctl_ready_r5;
reg phy_ctl_ready_r6;
(* max_fanout = 50 *) reg [DQS_CNT_WIDTH:0] dqs_count_r;
reg [1:0] rank_cnt_r;
reg [DQS_WIDTH-1:0] rd_data_rise_wl_r;
reg [DQS_WIDTH-1:0] rd_data_previous_r;
reg [DQS_WIDTH-1:0] rd_data_edge_detect_r;
reg wr_level_done_r;
reg wrlvl_rank_done_r;
reg wr_level_start_r;
reg [4:0] wl_state_r, wl_state_r1;
reg inhibit_edge_detect_r;
reg wl_edge_detect_valid_r;
reg [5:0] wl_tap_count_r;
reg [5:0] fine_dec_cnt;
reg [5:0] fine_inc[0:DQS_WIDTH-1]; // DQS_WIDTH number of counters 6-bit each
reg [2:0] corse_dec[0:DQS_WIDTH-1];
reg [2:0] corse_inc[0:DQS_WIDTH-1];
reg dq_cnt_inc;
reg [3:0] stable_cnt;
reg flag_ck_negedge;
//reg past_negedge;
reg flag_init;
reg [2:0] corse_cnt[0:DQS_WIDTH-1];
reg [3*DQS_WIDTH-1:0] corse_cnt_dbg;
reg [2:0] wl_corse_cnt[0:RANKS-1][0:DQS_WIDTH-1];
//reg [3*DQS_WIDTH-1:0] coarse_tap_inc;
reg [2:0] final_coarse_tap[0:DQS_WIDTH-1];
reg [5:0] add_smallest[0:DQS_WIDTH-1];
reg [5:0] add_largest[0:DQS_WIDTH-1];
//reg [6*DQS_WIDTH-1:0] fine_tap_inc;
//reg [6*DQS_WIDTH-1:0] fine_tap_dec;
reg wr_level_done_r1;
reg wr_level_done_r2;
reg wr_level_done_r3;
reg wr_level_done_r4;
reg wr_level_done_r5;
reg [5:0] wl_dqs_tap_count_r[0:RANKS-1][0:DQS_WIDTH-1];
reg [5:0] smallest[0:DQS_WIDTH-1];
reg [5:0] largest[0:DQS_WIDTH-1];
reg [5:0] final_val[0:DQS_WIDTH-1];
reg [5:0] po_dec_cnt[0:DQS_WIDTH-1];
reg done_dqs_dec;
reg [8:0] po_rdval_cnt;
reg po_cnt_dec;
reg po_dec_done;
reg dual_rnk_dec;
wire [DQS_CNT_WIDTH+2:0] dqs_count_w;
reg [5:0] fast_cal_fine_cnt;
reg [2:0] fast_cal_coarse_cnt;
reg wrlvl_byte_redo_r;
reg [2:0] wrlvl_redo_corse_inc;
reg wrlvl_final_r;
reg final_corse_dec;
wire [DQS_CNT_WIDTH+2:0] oclk_count_w;
reg wrlvl_tap_done_r ;
reg [3:0] wait_cnt;
reg [3:0] incdec_wait_cnt;
// Debug ports
assign dbg_wl_edge_detect_valid = wl_edge_detect_valid_r;
assign dbg_rd_data_edge_detect = rd_data_edge_detect_r;
assign dbg_wl_tap_cnt = wl_tap_count_r;
assign dbg_dqs_count = dqs_count_r;
assign dbg_wl_state = wl_state_r;
assign dbg_wrlvl_fine_tap_cnt = wl_po_fine_cnt;
assign dbg_wrlvl_coarse_tap_cnt = wl_po_coarse_cnt;
always @(*) begin
for (v = 0; v < DQS_WIDTH; v = v + 1)
corse_cnt_dbg[3*v+:3] = corse_cnt[v];
end
assign dbg_phy_wrlvl[0+:27] = corse_cnt_dbg;
assign dbg_phy_wrlvl[27+:5] = wl_state_r;
assign dbg_phy_wrlvl[32+:4] = dqs_count_r;
assign dbg_phy_wrlvl[36+:9] = rd_data_rise_wl_r;
assign dbg_phy_wrlvl[45+:9] = rd_data_previous_r;
assign dbg_phy_wrlvl[54+:4] = stable_cnt;
assign dbg_phy_wrlvl[58] = 'd0;
assign dbg_phy_wrlvl[59] = flag_ck_negedge;
assign dbg_phy_wrlvl [60] = wl_edge_detect_valid_r;
assign dbg_phy_wrlvl [61+:6] = wl_tap_count_r;
assign dbg_phy_wrlvl [67+:9] = rd_data_edge_detect_r;
assign dbg_phy_wrlvl [76+:54] = wl_po_fine_cnt;
assign dbg_phy_wrlvl [130+:27] = wl_po_coarse_cnt;
//**************************************************************************
// DQS count to hard PHY during write leveling using Phaser_OUT Stage2 delay
//**************************************************************************
assign po_stg2_wl_cnt = dqs_count_r;
assign wrlvl_rank_done = wrlvl_rank_done_r;
assign done_dqs_tap_inc = done_dqs_dec;
assign phy_ctl_rdy_dly = phy_ctl_ready_r6;
always @(posedge clk) begin
phy_ctl_ready_r1 <= #TCQ phy_ctl_ready;
phy_ctl_ready_r2 <= #TCQ phy_ctl_ready_r1;
phy_ctl_ready_r3 <= #TCQ phy_ctl_ready_r2;
phy_ctl_ready_r4 <= #TCQ phy_ctl_ready_r3;
phy_ctl_ready_r5 <= #TCQ phy_ctl_ready_r4;
phy_ctl_ready_r6 <= #TCQ phy_ctl_ready_r5;
wrlvl_byte_redo_r <= #TCQ wrlvl_byte_redo;
wrlvl_final_r <= #TCQ wrlvl_final;
if ((wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
wr_level_done <= #TCQ 1'b0;
else
wr_level_done <= #TCQ done_dqs_dec;
end
// Status signal that will be asserted once the first
// pass of write leveling is done.
always @(posedge clk) begin
if(rst) begin
wrlvl_tap_done_r <= #TCQ 1'b0 ;
end else begin
if(wrlvl_tap_done_r == 1'b0) begin
if(oclkdelay_calib_done) begin
wrlvl_tap_done_r <= #TCQ 1'b1 ;
end
end
end
end
always @(posedge clk) begin
if (rst || po_cnt_dec)
wait_cnt <= #TCQ 'd8;
else if (phy_ctl_ready_r6 && (wait_cnt > 'd0))
wait_cnt <= #TCQ wait_cnt - 1;
end
always @(posedge clk) begin
if (rst) begin
po_rdval_cnt <= #TCQ 'd0;
end else if (phy_ctl_ready_r5 && ~phy_ctl_ready_r6) begin
po_rdval_cnt <= #TCQ po_counter_read_val;
end else if (po_rdval_cnt > 'd0) begin
if (po_cnt_dec)
po_rdval_cnt <= #TCQ po_rdval_cnt - 1;
else
po_rdval_cnt <= #TCQ po_rdval_cnt;
end else if (po_rdval_cnt == 'd0) begin
po_rdval_cnt <= #TCQ po_rdval_cnt;
end
end
always @(posedge clk) begin
if (rst || (po_rdval_cnt == 'd0))
po_cnt_dec <= #TCQ 1'b0;
else if (phy_ctl_ready_r6 && (po_rdval_cnt > 'd0) && (wait_cnt == 'd1))
po_cnt_dec <= #TCQ 1'b1;
else
po_cnt_dec <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst)
po_dec_done <= #TCQ 1'b0;
else if (((po_cnt_dec == 'd1) && (po_rdval_cnt == 'd1)) ||
(phy_ctl_ready_r6 && (po_rdval_cnt == 'd0))) begin
po_dec_done <= #TCQ 1'b1;
end
end
always @(posedge clk) begin
dqs_po_dec_done <= #TCQ po_dec_done;
wr_level_done_r1 <= #TCQ wr_level_done_r;
wr_level_done_r2 <= #TCQ wr_level_done_r1;
wr_level_done_r3 <= #TCQ wr_level_done_r2;
wr_level_done_r4 <= #TCQ wr_level_done_r3;
wr_level_done_r5 <= #TCQ wr_level_done_r4;
for (l = 0; l < DQS_WIDTH; l = l + 1) begin
wl_po_coarse_cnt[3*l+:3] <= #TCQ final_coarse_tap[l];
if ((RANKS == 1) || ~oclkdelay_calib_done)
wl_po_fine_cnt[6*l+:6] <= #TCQ smallest[l];
else
wl_po_fine_cnt[6*l+:6] <= #TCQ final_val[l];
end
end
generate
if (RANKS == 2) begin: dual_rank
always @(posedge clk) begin
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
done_dqs_dec <= #TCQ 1'b0;
else if ((SIM_CAL_OPTION == "FAST_CAL") || ~oclkdelay_calib_done)
done_dqs_dec <= #TCQ wr_level_done_r;
else if (wr_level_done_r5 && (wl_state_r == WL_IDLE))
done_dqs_dec <= #TCQ 1'b1;
end
end else begin: single_rank
always @(posedge clk) begin
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
done_dqs_dec <= #TCQ 1'b0;
else if (~oclkdelay_calib_done)
done_dqs_dec <= #TCQ wr_level_done_r;
else if (wr_level_done_r3 && ~wr_level_done_r4)
done_dqs_dec <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk)
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r))
wrlvl_byte_done <= #TCQ 1'b0;
else if (wrlvl_byte_redo && wr_level_done_r3 && ~wr_level_done_r4)
wrlvl_byte_done <= #TCQ 1'b1;
// Storing DQS tap values at the end of each DQS write leveling
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < RANKS; k = k + 1) begin: rst_wl_dqs_tap_count_loop
for (n = 0; n < DQS_WIDTH; n = n + 1) begin
wl_corse_cnt[k][n] <= #TCQ 'b0;
wl_dqs_tap_count_r[k][n] <= #TCQ 'b0;
end
end
end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_WAIT) |
(wl_state_r == WL_FINE_DEC_WAIT1) |
(wl_state_r == WL_2RANK_TAP_DEC)) begin
wl_dqs_tap_count_r[rank_cnt_r][dqs_count_r] <= #TCQ wl_tap_count_r;
wl_corse_cnt[rank_cnt_r][dqs_count_r] <= #TCQ corse_cnt[dqs_count_r];
end else if ((SIM_CAL_OPTION == "FAST_CAL") & (wl_state_r == WL_DQS_CHECK)) begin
for (p = 0; p < RANKS; p = p +1) begin: dqs_tap_rank_cnt
for(q = 0; q < DQS_WIDTH; q = q +1) begin: dqs_tap_dqs_cnt
wl_dqs_tap_count_r[p][q] <= #TCQ wl_tap_count_r;
wl_corse_cnt[p][q] <= #TCQ corse_cnt[0];
end
end
end
end
// Convert coarse delay to fine taps in case of unequal number of coarse
// taps between ranks. Assuming a difference of 1 coarse tap counts
// between ranks. A common fine and coarse tap value must be used for both ranks
// because Phaser_Out has only one rank register.
// Coarse tap1 = period(ps)*93/360 = 34 fine taps
// Other coarse taps = period(ps)*103/360 = 38 fine taps
generate
genvar cnt;
if (RANKS == 2) begin // Dual rank
for(cnt = 0; cnt < DQS_WIDTH; cnt = cnt +1) begin: coarse_dqs_cnt
always @(posedge clk) begin
if (rst) begin
//coarse_tap_inc[3*cnt+:3] <= #TCQ 'b0;
add_smallest[cnt] <= #TCQ 'd0;
add_largest[cnt] <= #TCQ 'd0;
final_coarse_tap[cnt] <= #TCQ 'd0;
end else if (wr_level_done_r1 & ~wr_level_done_r2) begin
if (~oclkdelay_calib_done) begin
for(y = 0 ; y < DQS_WIDTH; y = y+1) begin
final_coarse_tap[y] <= #TCQ wl_corse_cnt[0][y];
add_smallest[y] <= #TCQ 'd0;
add_largest[y] <= #TCQ 'd0;
end
end else
if (wl_corse_cnt[0][cnt] == wl_corse_cnt[1][cnt]) begin
// Both ranks have use the same number of coarse delay taps.
// No conversion of coarse tap to fine taps required.
//coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3];
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt];
add_smallest[cnt] <= #TCQ 'd0;
add_largest[cnt] <= #TCQ 'd0;
end else if (wl_corse_cnt[0][cnt] < wl_corse_cnt[1][cnt]) begin
// Rank 0 uses fewer coarse delay taps than rank1.
// conversion of coarse tap to fine taps required for rank1.
// The final coarse count will the smaller value.
//coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3] - 1;
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt] - 1;
if (|wl_corse_cnt[0][cnt])
// Coarse tap 2 or higher being converted to fine taps
// This will be added to 'largest' value in final_val
// computation
add_largest[cnt] <= #TCQ 'd38;
else
// Coarse tap 1 being converted to fine taps
// This will be added to 'largest' value in final_val
// computation
add_largest[cnt] <= #TCQ 'd34;
end else if (wl_corse_cnt[0][cnt] > wl_corse_cnt[1][cnt]) begin
// This may be an unlikely scenario in a real system.
// Rank 0 uses more coarse delay taps than rank1.
// conversion of coarse tap to fine taps required.
//coarse_tap_inc[3*cnt+:3] <= #TCQ 'd0;
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt];
if (|wl_corse_cnt[1][cnt])
// Coarse tap 2 or higher being converted to fine taps
// This will be added to 'smallest' value in final_val
// computation
add_smallest[cnt] <= #TCQ 'd38;
else
// Coarse tap 1 being converted to fine taps
// This will be added to 'smallest' value in
// final_val computation
add_smallest[cnt] <= #TCQ 'd34;
end
end
end
end
end else begin
// Single rank
always @(posedge clk) begin
//coarse_tap_inc <= #TCQ 'd0;
for(w = 0; w < DQS_WIDTH; w = w + 1) begin
final_coarse_tap[w] <= #TCQ wl_corse_cnt[0][w];
add_smallest[w] <= #TCQ 'd0;
add_largest[w] <= #TCQ 'd0;
end
end
end
endgenerate
// Determine delay value for DQS in multirank system
// Assuming delay value is the smallest for rank 0 DQS
// and largest delay value for rank 4 DQS
// Set to smallest + ((largest-smallest)/2)
always @(posedge clk) begin
if (rst) begin
for(x = 0; x < DQS_WIDTH; x = x +1) begin
smallest[x] <= #TCQ 'b0;
largest[x] <= #TCQ 'b0;
end
end else if ((wl_state_r == WL_DQS_CNT) & wrlvl_byte_redo) begin
smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
end else if ((wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_2RANK_TAP_DEC)) begin
smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[RANKS-1][dqs_count_r];
end else if (((SIM_CAL_OPTION == "FAST_CAL") |
(~oclkdelay_calib_done & ~wrlvl_byte_redo)) &
wr_level_done_r1 & ~wr_level_done_r2) begin
for(i = 0; i < DQS_WIDTH; i = i +1) begin: smallest_dqs
smallest[i] <= #TCQ wl_dqs_tap_count_r[0][i];
largest[i] <= #TCQ wl_dqs_tap_count_r[0][i];
end
end
end
// final_val to be used for all DQSs in all ranks
genvar wr_i;
generate
for (wr_i = 0; wr_i < DQS_WIDTH; wr_i = wr_i +1) begin: gen_final_tap
always @(posedge clk) begin
if (rst)
final_val[wr_i] <= #TCQ 'b0;
else if (wr_level_done_r2 && ~wr_level_done_r3) begin
if (~oclkdelay_calib_done)
final_val[wr_i] <= #TCQ (smallest[wr_i] + add_smallest[wr_i]);
else if ((smallest[wr_i] + add_smallest[wr_i]) <
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ ((smallest[wr_i] + add_smallest[wr_i]) +
(((largest[wr_i] + add_largest[wr_i]) -
(smallest[wr_i] + add_smallest[wr_i]))/2));
else if ((smallest[wr_i] + add_smallest[wr_i]) >
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ ((largest[wr_i] + add_largest[wr_i]) +
(((smallest[wr_i] + add_smallest[wr_i]) -
(largest[wr_i] + add_largest[wr_i]))/2));
else if ((smallest[wr_i] + add_smallest[wr_i]) ==
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ (largest[wr_i] + add_largest[wr_i]);
end
end
end
endgenerate
// // fine tap inc/dec value for all DQSs in all ranks
// genvar dqs_i;
// generate
// for (dqs_i = 0; dqs_i < DQS_WIDTH; dqs_i = dqs_i +1) begin: gen_fine_tap
// always @(posedge clk) begin
// if (rst)
// fine_tap_inc[6*dqs_i+:6] <= #TCQ 'd0;
// //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0;
// else if (wr_level_done_r3 && ~wr_level_done_r4) begin
// fine_tap_inc[6*dqs_i+:6] <= #TCQ final_val[6*dqs_i+:6];
// //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0;
// end
// end
// endgenerate
// Inc/Dec Phaser_Out stage 2 fine delay line
always @(posedge clk) begin
if (rst) begin
// Fine delay line used only during write leveling
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b0;
// Dec Phaser_Out fine delay (1)before write leveling,
// (2)if no 0 to 1 transition detected with 63 fine delay taps, or
// (3)dual rank case where fine taps for the first rank need to be 0
end else if (po_cnt_dec || (wl_state_r == WL_INIT_FINE_DEC) ||
(wl_state_r == WL_FINE_DEC)) begin
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b1;
// Inc Phaser_Out fine delay during write leveling
end else if ((wl_state_r == WL_INIT_FINE_INC) ||
(wl_state_r == WL_FINE_INC)) begin
dqs_po_stg2_f_incdec <= #TCQ 1'b1;
dqs_po_en_stg2_f <= #TCQ 1'b1;
end else begin
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b0;
end
end
// Inc Phaser_Out stage 2 Coarse delay line
always @(posedge clk) begin
if (rst) begin
// Coarse delay line used during write leveling
// only if no 0->1 transition undetected with 64
// fine delay line taps
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0;
dqs_wl_po_en_stg2_c <= #TCQ 1'b0;
end else if (wl_state_r == WL_CORSE_INC) begin
// Inc Phaser_Out coarse delay during write leveling
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b1;
dqs_wl_po_en_stg2_c <= #TCQ 1'b1;
end else begin
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0;
dqs_wl_po_en_stg2_c <= #TCQ 1'b0;
end
end
// only storing the rise data for checking. The data comming back during
// write leveling will be a static value. Just checking for rise data is
// enough.
genvar rd_i;
generate
for(rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i +1)begin: gen_rd
always @(posedge clk)
rd_data_rise_wl_r[rd_i] <=
#TCQ |rd_data_rise0[(rd_i*DRAM_WIDTH)+DRAM_WIDTH-1:rd_i*DRAM_WIDTH];
end
endgenerate
// storing the previous data for checking later.
always @(posedge clk)begin
if ((wl_state_r == WL_INIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT) ||
//(wl_state_r == WL_INIT_FINE_INC_WAIT1) ||
((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)) ||
(wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_FINE_DEC_WAIT) ||
(wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) ||
(wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2) ||
((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)))
rd_data_previous_r <= #TCQ rd_data_rise_wl_r;
end
// changed stable count from 3 to 7 because of fine tap resolution
always @(posedge clk)begin
if (rst | (wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_2RANK_TAP_DEC) |
(wl_state_r == WL_FINE_DEC) |
(rd_data_previous_r[dqs_count_r] != rd_data_rise_wl_r[dqs_count_r]) |
(wl_state_r1 == WL_INIT_FINE_DEC))
stable_cnt <= #TCQ 'd0;
else if ((wl_tap_count_r > 6'd0) &
(((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)) |
((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)))) begin
if ((rd_data_previous_r[dqs_count_r] == rd_data_rise_wl_r[dqs_count_r])
& (stable_cnt < 'd14))
stable_cnt <= #TCQ stable_cnt + 1;
end
end
// Signal to ensure that flag_ck_negedge does not incorrectly assert
// when DQS is very close to CK rising edge
//always @(posedge clk) begin
// if (rst | (wl_state_r == WL_DQS_CNT) |
// (wl_state_r == WL_DQS_CHECK) | wr_level_done_r)
// past_negedge <= #TCQ 1'b0;
// else if (~flag_ck_negedge && ~rd_data_previous_r[dqs_count_r] &&
// (stable_cnt == 'd0) && ((wl_state_r == WL_CORSE_INC_WAIT1) |
// (wl_state_r == WL_CORSE_INC_WAIT2)))
// past_negedge <= #TCQ 1'b1;
//end
// Flag to indicate negedge of CK detected and ignore 0->1 transitions
// in this region
always @(posedge clk)begin
if (rst | (wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_DQS_CHECK) | wr_level_done_r |
(wl_state_r1 == WL_INIT_FINE_DEC))
flag_ck_negedge <= #TCQ 1'd0;
else if ((rd_data_previous_r[dqs_count_r] && ((stable_cnt > 'd0) |
(wl_state_r == WL_FINE_DEC) | (wl_state_r == WL_FINE_DEC_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1))) |
(wl_state_r == WL_CORSE_INC))
flag_ck_negedge <= #TCQ 1'd1;
else if (~rd_data_previous_r[dqs_count_r] && (stable_cnt == 'd14))
//&& flag_ck_negedge)
flag_ck_negedge <= #TCQ 1'd0;
end
// Flag to inhibit rd_data_edge_detect_r before stable DQ
always @(posedge clk) begin
if (rst)
flag_init <= #TCQ 1'b1;
else if ((wl_state_r == WL_WAIT) && ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) ||
(wl_state_r1 == WL_INIT_FINE_DEC_WAIT)))
flag_init <= #TCQ 1'b0;
end
//checking for transition from 0 to 1
always @(posedge clk)begin
if (rst | flag_ck_negedge | flag_init | (wl_tap_count_r < 'd1) |
inhibit_edge_detect_r)
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else if (rd_data_edge_detect_r[dqs_count_r] == 1'b1) begin
if ((wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_FINE_DEC_WAIT1) ||
(wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) ||
(wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2))
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else
rd_data_edge_detect_r <= #TCQ rd_data_edge_detect_r;
end else if (rd_data_previous_r[dqs_count_r] && (stable_cnt < 'd14))
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else
rd_data_edge_detect_r <= #TCQ (~rd_data_previous_r & rd_data_rise_wl_r);
end
// registring the write level start signal
always@(posedge clk) begin
wr_level_start_r <= #TCQ wr_level_start;
end
// Assign dqs_count_r to dqs_count_w to perform the shift operation
// instead of multiply operation
assign dqs_count_w = {2'b00, dqs_count_r};
assign oclk_count_w = {2'b00, oclkdelay_calib_cnt};
always @(posedge clk) begin
if (rst)
incdec_wait_cnt <= #TCQ 'd0;
else if ((wl_state_r == WL_FINE_DEC_WAIT1) ||
(wl_state_r == WL_INIT_FINE_DEC_WAIT1) ||
(wl_state_r == WL_CORSE_INC_WAIT_TMP))
incdec_wait_cnt <= #TCQ incdec_wait_cnt + 1;
else
incdec_wait_cnt <= #TCQ 'd0;
end
// state machine to initiate the write leveling sequence
// The state machine operates on one byte at a time.
// It will increment the delays to the DQS OSERDES
// and sample the DQ from the memory. When it detects
// a transition from 1 to 0 then the write leveling is considered
// done.
always @(posedge clk) begin
if(rst)begin
wrlvl_err <= #TCQ 1'b0;
wr_level_done_r <= #TCQ 1'b0;
wrlvl_rank_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ {DQS_CNT_WIDTH+1{1'b0}};
dq_cnt_inc <= #TCQ 1'b1;
rank_cnt_r <= #TCQ 2'b00;
wl_state_r <= #TCQ WL_IDLE;
wl_state_r1 <= #TCQ WL_IDLE;
inhibit_edge_detect_r <= #TCQ 1'b1;
wl_edge_detect_valid_r <= #TCQ 1'b0;
wl_tap_count_r <= #TCQ 6'd0;
fine_dec_cnt <= #TCQ 6'd0;
for (r = 0; r < DQS_WIDTH; r = r + 1) begin
fine_inc[r] <= #TCQ 6'b0;
corse_dec[r] <= #TCQ 3'b0;
corse_inc[r] <= #TCQ 3'b0;
corse_cnt[r] <= #TCQ 3'b0;
end
dual_rnk_dec <= #TCQ 1'b0;
fast_cal_fine_cnt <= #TCQ FAST_CAL_FINE;
fast_cal_coarse_cnt <= #TCQ FAST_CAL_COARSE;
final_corse_dec <= #TCQ 1'b0;
//zero_tran_r <= #TCQ 1'b0;
wrlvl_redo_corse_inc <= #TCQ 'd0;
end else begin
wl_state_r1 <= #TCQ wl_state_r;
case (wl_state_r)
WL_IDLE: begin
wrlvl_rank_done_r <= #TCQ 1'd0;
inhibit_edge_detect_r <= #TCQ 1'b1;
if (wrlvl_byte_redo && ~wrlvl_byte_redo_r) begin
wr_level_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ wrcal_cnt;
corse_cnt[wrcal_cnt] <= #TCQ final_coarse_tap[wrcal_cnt];
wl_tap_count_r <= #TCQ smallest[wrcal_cnt];
if (early1_data &&
(((final_coarse_tap[wrcal_cnt] < 'd6) && (CLK_PERIOD/nCK_PER_CLK <= 2500)) ||
((final_coarse_tap[wrcal_cnt] < 'd3) && (CLK_PERIOD/nCK_PER_CLK > 2500))))
wrlvl_redo_corse_inc <= #TCQ REDO_COARSE;
else if (early2_data && (final_coarse_tap[wrcal_cnt] < 'd2))
wrlvl_redo_corse_inc <= #TCQ 3'd6;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else if (wrlvl_final && ~wrlvl_final_r) begin
wr_level_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ 'd0;
end
// verilint STARC-2.2.3.3 off
if(!wr_level_done_r & wr_level_start_r & wl_sm_start) begin
if (SIM_CAL_OPTION == "FAST_CAL")
wl_state_r <= #TCQ WL_FINE_INC;
else
wl_state_r <= #TCQ WL_INIT;
end
end
// verilint STARC-2.2.3.3 on
WL_INIT: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
inhibit_edge_detect_r <= #TCQ 1'b1;
wrlvl_rank_done_r <= #TCQ 1'd0;
//zero_tran_r <= #TCQ 1'b0;
if (wrlvl_final)
corse_cnt[dqs_count_w ] <= #TCQ final_coarse_tap[dqs_count_w ];
if (wrlvl_byte_redo) begin
if (|wl_tap_count_r) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else if(wl_sm_start)
wl_state_r <= #TCQ WL_INIT_FINE_INC;
end
// Initially Phaser_Out fine delay taps incremented
// until stable_cnt=14. A stable_cnt of 14 indicates
// that rd_data_rise_wl_r=rd_data_previous_r for 14 fine
// tap increments. This is done to inhibit false 0->1
// edge detection when DQS is initially aligned to the
// negedge of CK
WL_INIT_FINE_INC: begin
wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT1;
wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1;
final_corse_dec <= #TCQ 1'b0;
end
WL_INIT_FINE_INC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT;
end
// Case1: stable value of rd_data_previous_r=0 then
// proceed to 0->1 edge detection.
// Case2: stable value of rd_data_previous_r=1 then
// decrement fine taps to '0' and proceed to 0->1
// edge detection. Need to decrement in this case to
// make sure a valid 0->1 transition was not left
// undetected.
WL_INIT_FINE_INC_WAIT: begin
if (wl_sm_start) begin
if (stable_cnt < 'd14)
wl_state_r <= #TCQ WL_INIT_FINE_INC;
else if (~rd_data_previous_r[dqs_count_r]) begin
wl_state_r <= #TCQ WL_WAIT;
inhibit_edge_detect_r <= #TCQ 1'b0;
end else begin
wl_state_r <= #TCQ WL_INIT_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end
end
end
// Case2: stable value of rd_data_previous_r=1 then
// decrement fine taps to '0' and proceed to 0->1
// edge detection. Need to decrement in this case to
// make sure a valid 0->1 transition was not left
// undetected.
WL_INIT_FINE_DEC: begin
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT1;
if (fine_dec_cnt > 6'd0)
fine_dec_cnt <= #TCQ fine_dec_cnt - 1;
else
fine_dec_cnt <= #TCQ fine_dec_cnt;
end
WL_INIT_FINE_DEC_WAIT1: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT;
end
WL_INIT_FINE_DEC_WAIT: begin
if (fine_dec_cnt > 6'd0) begin
wl_state_r <= #TCQ WL_INIT_FINE_DEC;
inhibit_edge_detect_r <= #TCQ 1'b1;
end else begin
wl_state_r <= #TCQ WL_WAIT;
inhibit_edge_detect_r <= #TCQ 1'b0;
end
end
// Inc DQS Phaser_Out Stage2 Fine Delay line
WL_FINE_INC: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "FAST_CAL") begin
wl_state_r <= #TCQ WL_FINE_INC_WAIT;
if (fast_cal_fine_cnt > 'd0)
fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt - 1;
else
fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt;
end else if (wr_level_done_r5) begin
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_FINE_INC_WAIT;
if (|fine_inc[dqs_count_w])
fine_inc[dqs_count_w] <= #TCQ fine_inc[dqs_count_w] - 1;
end else begin
wl_state_r <= #TCQ WL_WAIT;
wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1;
end
end
WL_FINE_INC_WAIT: begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_fine_cnt > 'd0)
wl_state_r <= #TCQ WL_FINE_INC;
else if (fast_cal_coarse_cnt > 'd0)
wl_state_r <= #TCQ WL_CORSE_INC;
else
wl_state_r <= #TCQ WL_DQS_CNT;
end else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
else if (dqs_count_r == (DQS_WIDTH-1))
wl_state_r <= #TCQ WL_IDLE;
else begin
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
dqs_count_r <= #TCQ dqs_count_r + 1;
end
end
WL_FINE_DEC: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_FINE_DEC_WAIT1;
if (fine_dec_cnt > 6'd0)
fine_dec_cnt <= #TCQ fine_dec_cnt - 1;
else
fine_dec_cnt <= #TCQ fine_dec_cnt;
end
WL_FINE_DEC_WAIT1: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_FINE_DEC_WAIT;
end
WL_FINE_DEC_WAIT: begin
if (fine_dec_cnt > 6'd0)
wl_state_r <= #TCQ WL_FINE_DEC;
//else if (zero_tran_r)
// wl_state_r <= #TCQ WL_DQS_CNT;
else if (dual_rnk_dec) begin
if (|corse_dec[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_DEC;
else
wl_state_r <= #TCQ WL_2RANK_DQS_CNT;
end else if (wrlvl_byte_redo) begin
if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else
wl_state_r <= #TCQ WL_CORSE_INC;
end
WL_CORSE_DEC: begin
wl_state_r <= #TCQ WL_CORSE_DEC_WAIT;
dual_rnk_dec <= #TCQ 1'b0;
if (|corse_dec[dqs_count_r])
corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r] - 1;
else
corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r];
end
WL_CORSE_DEC_WAIT: begin
if (wl_sm_start) begin
//if (|corse_dec[dqs_count_r])
// wl_state_r <= #TCQ WL_CORSE_DEC;
if (|corse_dec[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_DEC_WAIT1;
else
wl_state_r <= #TCQ WL_2RANK_DQS_CNT;
end
end
WL_CORSE_DEC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_DEC;
end
WL_CORSE_INC: begin
wl_state_r <= #TCQ WL_CORSE_INC_WAIT_TMP;
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_coarse_cnt > 'd0)
fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt - 1;
else
fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt;
end else if (wrlvl_byte_redo) begin
corse_cnt[dqs_count_w] <= #TCQ corse_cnt[dqs_count_w] + 1;
if (|wrlvl_redo_corse_inc)
wrlvl_redo_corse_inc <= #TCQ wrlvl_redo_corse_inc - 1;
end else if (~wr_level_done_r5)
corse_cnt[dqs_count_r] <= #TCQ corse_cnt[dqs_count_r] + 1;
else if (|corse_inc[dqs_count_w])
corse_inc[dqs_count_w] <= #TCQ corse_inc[dqs_count_w] - 1;
end
WL_CORSE_INC_WAIT_TMP: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT;
end
WL_CORSE_INC_WAIT: begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_coarse_cnt > 'd0)
wl_state_r <= #TCQ WL_CORSE_INC;
else
wl_state_r <= #TCQ WL_DQS_CNT;
end else if (wrlvl_byte_redo) begin
if (|wrlvl_redo_corse_inc)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_INIT_FINE_INC;
inhibit_edge_detect_r <= #TCQ 1'b1;
end
end else if (~wr_level_done_r5 && wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT1;
else if (wr_level_done_r5) begin
if (|corse_inc[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_INC;
else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
else if (dqs_count_r == (DQS_WIDTH-1))
wl_state_r <= #TCQ WL_IDLE;
else begin
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
dqs_count_r <= #TCQ dqs_count_r + 1;
end
end
end
WL_CORSE_INC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT2;
end
WL_CORSE_INC_WAIT2: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_WAIT;
end
WL_WAIT: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_EDGE_CHECK;
end
WL_EDGE_CHECK: begin // Look for the edge
if (wl_edge_detect_valid_r == 1'b0) begin
wl_state_r <= #TCQ WL_WAIT;
wl_edge_detect_valid_r <= #TCQ 1'b1;
end
// 0->1 transition detected with DQS
else if(rd_data_edge_detect_r[dqs_count_r] &&
wl_edge_detect_valid_r)
begin
wl_tap_count_r <= #TCQ wl_tap_count_r;
if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) ||
~oclkdelay_calib_done)
wl_state_r <= #TCQ WL_DQS_CNT;
else
wl_state_r <= #TCQ WL_2RANK_TAP_DEC;
end
// For initial writes check only upto 56 taps. Reserving the
// remaining taps for OCLK calibration.
else if((~wrlvl_tap_done_r) && (wl_tap_count_r > 6'd55)) begin
if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else begin
wrlvl_err <= #TCQ 1'b1;
wl_state_r <= #TCQ WL_IDLE;
end
end else begin
if (wl_tap_count_r < 6'd56) //for reuse wrlvl for complex ocal
wl_state_r <= #TCQ WL_FINE_INC;
else if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else begin
wrlvl_err <= #TCQ 1'b1;
wl_state_r <= #TCQ WL_IDLE;
end
end
end
WL_2RANK_TAP_DEC: begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
for (m = 0; m < DQS_WIDTH; m = m + 1)
corse_dec[m] <= #TCQ corse_cnt[m];
wl_edge_detect_valid_r <= #TCQ 1'b0;
dual_rnk_dec <= #TCQ 1'b1;
end
WL_DQS_CNT: begin
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(dqs_count_r == (DQS_WIDTH-1)) ||
wrlvl_byte_redo) begin
dqs_count_r <= #TCQ dqs_count_r;
dq_cnt_inc <= #TCQ 1'b0;
end else begin
dqs_count_r <= #TCQ dqs_count_r + 1'b1;
dq_cnt_inc <= #TCQ 1'b1;
end
wl_state_r <= #TCQ WL_DQS_CHECK;
wl_edge_detect_valid_r <= #TCQ 1'b0;
end
WL_2RANK_DQS_CNT: begin
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(dqs_count_r == (DQS_WIDTH-1))) begin
dqs_count_r <= #TCQ dqs_count_r;
dq_cnt_inc <= #TCQ 1'b0;
end else begin
dqs_count_r <= #TCQ dqs_count_r + 1'b1;
dq_cnt_inc <= #TCQ 1'b1;
end
wl_state_r <= #TCQ WL_DQS_CHECK;
wl_edge_detect_valid_r <= #TCQ 1'b0;
dual_rnk_dec <= #TCQ 1'b0;
end
WL_DQS_CHECK: begin // check if all DQS have been calibrated
wl_tap_count_r <= #TCQ 'd0;
if (dq_cnt_inc == 1'b0)begin
wrlvl_rank_done_r <= #TCQ 1'd1;
for (t = 0; t < DQS_WIDTH; t = t + 1)
corse_cnt[t] <= #TCQ 3'b0;
if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) begin
wl_state_r <= #TCQ WL_IDLE;
if (wrlvl_byte_redo)
dqs_count_r <= #TCQ dqs_count_r;
else
dqs_count_r <= #TCQ 'd0;
end else if (rank_cnt_r == RANKS-1) begin
dqs_count_r <= #TCQ dqs_count_r;
if (RANKS > 1)
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
else
wl_state_r <= #TCQ WL_IDLE;
end else begin
wl_state_r <= #TCQ WL_INIT;
dqs_count_r <= #TCQ 'd0;
end
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(rank_cnt_r == RANKS-1)) begin
wr_level_done_r <= #TCQ 1'd1;
rank_cnt_r <= #TCQ 2'b00;
end else begin
wr_level_done_r <= #TCQ 1'd0;
rank_cnt_r <= #TCQ rank_cnt_r + 1'b1;
end
end else
wl_state_r <= #TCQ WL_INIT;
end
WL_2RANK_FINAL_TAP: begin
if (wr_level_done_r4 && ~wr_level_done_r5) begin
for(u = 0; u < DQS_WIDTH; u = u + 1) begin
corse_inc[u] <= #TCQ final_coarse_tap[u];
fine_inc[u] <= #TCQ final_val[u];
end
dqs_count_r <= #TCQ 'd0;
end else if (wr_level_done_r5) begin
if (|corse_inc[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_INC;
else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
end
end
endcase
end
end // always @ (posedge clk)
endmodule
|
module mig_7series_v2_3_ddr_phy_wrlvl #
(
parameter TCQ = 100,
parameter DQS_CNT_WIDTH = 3,
parameter DQ_WIDTH = 64,
parameter DQS_WIDTH = 2,
parameter DRAM_WIDTH = 8,
parameter RANKS = 1,
parameter nCK_PER_CLK = 4,
parameter CLK_PERIOD = 4,
parameter SIM_CAL_OPTION = "NONE"
)
(
input clk,
input rst,
input phy_ctl_ready,
input wr_level_start,
input wl_sm_start,
input wrlvl_final,
input wrlvl_byte_redo,
input [DQS_CNT_WIDTH:0] wrcal_cnt,
input early1_data,
input early2_data,
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt,
input oclkdelay_calib_done,
input [(DQ_WIDTH)-1:0] rd_data_rise0,
output reg wrlvl_byte_done,
output reg dqs_po_dec_done /* synthesis syn_maxfan = 2 */,
output phy_ctl_rdy_dly,
output reg wr_level_done /* synthesis syn_maxfan = 2 */,
// to phy_init for cs logic
output wrlvl_rank_done,
output done_dqs_tap_inc,
output [DQS_CNT_WIDTH:0] po_stg2_wl_cnt,
// Fine delay line used only during write leveling
// Inc/dec Phaser_Out fine delay line
output reg dqs_po_stg2_f_incdec,
// Enable Phaser_Out fine delay inc/dec
output reg dqs_po_en_stg2_f,
// Coarse delay line used during write leveling
// only if 64 taps of fine delay line were not
// sufficient to detect a 0->1 transition
// Inc Phaser_Out coarse delay line
output reg dqs_wl_po_stg2_c_incdec,
// Enable Phaser_Out coarse delay inc/dec
output reg dqs_wl_po_en_stg2_c,
// Read Phaser_Out delay value
input [8:0] po_counter_read_val,
// output reg dqs_wl_po_stg2_load,
// output reg [8:0] dqs_wl_po_stg2_reg_l,
// CK edge undetected
output reg wrlvl_err,
output reg [3*DQS_WIDTH-1:0] wl_po_coarse_cnt,
output reg [6*DQS_WIDTH-1:0] wl_po_fine_cnt,
// Debug ports
output [5:0] dbg_wl_tap_cnt,
output dbg_wl_edge_detect_valid,
output [(DQS_WIDTH)-1:0] dbg_rd_data_edge_detect,
output [DQS_CNT_WIDTH:0] dbg_dqs_count,
output [4:0] dbg_wl_state,
output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt,
output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt,
output [255:0] dbg_phy_wrlvl
);
localparam WL_IDLE = 5'h0;
localparam WL_INIT = 5'h1;
localparam WL_INIT_FINE_INC = 5'h2;
localparam WL_INIT_FINE_INC_WAIT1= 5'h3;
localparam WL_INIT_FINE_INC_WAIT = 5'h4;
localparam WL_INIT_FINE_DEC = 5'h5;
localparam WL_INIT_FINE_DEC_WAIT = 5'h6;
localparam WL_FINE_INC = 5'h7;
localparam WL_WAIT = 5'h8;
localparam WL_EDGE_CHECK = 5'h9;
localparam WL_DQS_CHECK = 5'hA;
localparam WL_DQS_CNT = 5'hB;
localparam WL_2RANK_TAP_DEC = 5'hC;
localparam WL_2RANK_DQS_CNT = 5'hD;
localparam WL_FINE_DEC = 5'hE;
localparam WL_FINE_DEC_WAIT = 5'hF;
localparam WL_CORSE_INC = 5'h10;
localparam WL_CORSE_INC_WAIT = 5'h11;
localparam WL_CORSE_INC_WAIT1 = 5'h12;
localparam WL_CORSE_INC_WAIT2 = 5'h13;
localparam WL_CORSE_DEC = 5'h14;
localparam WL_CORSE_DEC_WAIT = 5'h15;
localparam WL_CORSE_DEC_WAIT1 = 5'h16;
localparam WL_FINE_INC_WAIT = 5'h17;
localparam WL_2RANK_FINAL_TAP = 5'h18;
localparam WL_INIT_FINE_DEC_WAIT1= 5'h19;
localparam WL_FINE_DEC_WAIT1 = 5'h1A;
localparam WL_CORSE_INC_WAIT_TMP = 5'h1B;
localparam COARSE_TAPS = 7;
localparam FAST_CAL_FINE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 45 : 48;
localparam FAST_CAL_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 1 : 2;
localparam REDO_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 2 : 5;
integer i, j, k, l, p, q, r, s, t, m, n, u, v, w, x,y;
reg phy_ctl_ready_r1;
reg phy_ctl_ready_r2;
reg phy_ctl_ready_r3;
reg phy_ctl_ready_r4;
reg phy_ctl_ready_r5;
reg phy_ctl_ready_r6;
(* max_fanout = 50 *) reg [DQS_CNT_WIDTH:0] dqs_count_r;
reg [1:0] rank_cnt_r;
reg [DQS_WIDTH-1:0] rd_data_rise_wl_r;
reg [DQS_WIDTH-1:0] rd_data_previous_r;
reg [DQS_WIDTH-1:0] rd_data_edge_detect_r;
reg wr_level_done_r;
reg wrlvl_rank_done_r;
reg wr_level_start_r;
reg [4:0] wl_state_r, wl_state_r1;
reg inhibit_edge_detect_r;
reg wl_edge_detect_valid_r;
reg [5:0] wl_tap_count_r;
reg [5:0] fine_dec_cnt;
reg [5:0] fine_inc[0:DQS_WIDTH-1]; // DQS_WIDTH number of counters 6-bit each
reg [2:0] corse_dec[0:DQS_WIDTH-1];
reg [2:0] corse_inc[0:DQS_WIDTH-1];
reg dq_cnt_inc;
reg [3:0] stable_cnt;
reg flag_ck_negedge;
//reg past_negedge;
reg flag_init;
reg [2:0] corse_cnt[0:DQS_WIDTH-1];
reg [3*DQS_WIDTH-1:0] corse_cnt_dbg;
reg [2:0] wl_corse_cnt[0:RANKS-1][0:DQS_WIDTH-1];
//reg [3*DQS_WIDTH-1:0] coarse_tap_inc;
reg [2:0] final_coarse_tap[0:DQS_WIDTH-1];
reg [5:0] add_smallest[0:DQS_WIDTH-1];
reg [5:0] add_largest[0:DQS_WIDTH-1];
//reg [6*DQS_WIDTH-1:0] fine_tap_inc;
//reg [6*DQS_WIDTH-1:0] fine_tap_dec;
reg wr_level_done_r1;
reg wr_level_done_r2;
reg wr_level_done_r3;
reg wr_level_done_r4;
reg wr_level_done_r5;
reg [5:0] wl_dqs_tap_count_r[0:RANKS-1][0:DQS_WIDTH-1];
reg [5:0] smallest[0:DQS_WIDTH-1];
reg [5:0] largest[0:DQS_WIDTH-1];
reg [5:0] final_val[0:DQS_WIDTH-1];
reg [5:0] po_dec_cnt[0:DQS_WIDTH-1];
reg done_dqs_dec;
reg [8:0] po_rdval_cnt;
reg po_cnt_dec;
reg po_dec_done;
reg dual_rnk_dec;
wire [DQS_CNT_WIDTH+2:0] dqs_count_w;
reg [5:0] fast_cal_fine_cnt;
reg [2:0] fast_cal_coarse_cnt;
reg wrlvl_byte_redo_r;
reg [2:0] wrlvl_redo_corse_inc;
reg wrlvl_final_r;
reg final_corse_dec;
wire [DQS_CNT_WIDTH+2:0] oclk_count_w;
reg wrlvl_tap_done_r ;
reg [3:0] wait_cnt;
reg [3:0] incdec_wait_cnt;
// Debug ports
assign dbg_wl_edge_detect_valid = wl_edge_detect_valid_r;
assign dbg_rd_data_edge_detect = rd_data_edge_detect_r;
assign dbg_wl_tap_cnt = wl_tap_count_r;
assign dbg_dqs_count = dqs_count_r;
assign dbg_wl_state = wl_state_r;
assign dbg_wrlvl_fine_tap_cnt = wl_po_fine_cnt;
assign dbg_wrlvl_coarse_tap_cnt = wl_po_coarse_cnt;
always @(*) begin
for (v = 0; v < DQS_WIDTH; v = v + 1)
corse_cnt_dbg[3*v+:3] = corse_cnt[v];
end
assign dbg_phy_wrlvl[0+:27] = corse_cnt_dbg;
assign dbg_phy_wrlvl[27+:5] = wl_state_r;
assign dbg_phy_wrlvl[32+:4] = dqs_count_r;
assign dbg_phy_wrlvl[36+:9] = rd_data_rise_wl_r;
assign dbg_phy_wrlvl[45+:9] = rd_data_previous_r;
assign dbg_phy_wrlvl[54+:4] = stable_cnt;
assign dbg_phy_wrlvl[58] = 'd0;
assign dbg_phy_wrlvl[59] = flag_ck_negedge;
assign dbg_phy_wrlvl [60] = wl_edge_detect_valid_r;
assign dbg_phy_wrlvl [61+:6] = wl_tap_count_r;
assign dbg_phy_wrlvl [67+:9] = rd_data_edge_detect_r;
assign dbg_phy_wrlvl [76+:54] = wl_po_fine_cnt;
assign dbg_phy_wrlvl [130+:27] = wl_po_coarse_cnt;
//**************************************************************************
// DQS count to hard PHY during write leveling using Phaser_OUT Stage2 delay
//**************************************************************************
assign po_stg2_wl_cnt = dqs_count_r;
assign wrlvl_rank_done = wrlvl_rank_done_r;
assign done_dqs_tap_inc = done_dqs_dec;
assign phy_ctl_rdy_dly = phy_ctl_ready_r6;
always @(posedge clk) begin
phy_ctl_ready_r1 <= #TCQ phy_ctl_ready;
phy_ctl_ready_r2 <= #TCQ phy_ctl_ready_r1;
phy_ctl_ready_r3 <= #TCQ phy_ctl_ready_r2;
phy_ctl_ready_r4 <= #TCQ phy_ctl_ready_r3;
phy_ctl_ready_r5 <= #TCQ phy_ctl_ready_r4;
phy_ctl_ready_r6 <= #TCQ phy_ctl_ready_r5;
wrlvl_byte_redo_r <= #TCQ wrlvl_byte_redo;
wrlvl_final_r <= #TCQ wrlvl_final;
if ((wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
wr_level_done <= #TCQ 1'b0;
else
wr_level_done <= #TCQ done_dqs_dec;
end
// Status signal that will be asserted once the first
// pass of write leveling is done.
always @(posedge clk) begin
if(rst) begin
wrlvl_tap_done_r <= #TCQ 1'b0 ;
end else begin
if(wrlvl_tap_done_r == 1'b0) begin
if(oclkdelay_calib_done) begin
wrlvl_tap_done_r <= #TCQ 1'b1 ;
end
end
end
end
always @(posedge clk) begin
if (rst || po_cnt_dec)
wait_cnt <= #TCQ 'd8;
else if (phy_ctl_ready_r6 && (wait_cnt > 'd0))
wait_cnt <= #TCQ wait_cnt - 1;
end
always @(posedge clk) begin
if (rst) begin
po_rdval_cnt <= #TCQ 'd0;
end else if (phy_ctl_ready_r5 && ~phy_ctl_ready_r6) begin
po_rdval_cnt <= #TCQ po_counter_read_val;
end else if (po_rdval_cnt > 'd0) begin
if (po_cnt_dec)
po_rdval_cnt <= #TCQ po_rdval_cnt - 1;
else
po_rdval_cnt <= #TCQ po_rdval_cnt;
end else if (po_rdval_cnt == 'd0) begin
po_rdval_cnt <= #TCQ po_rdval_cnt;
end
end
always @(posedge clk) begin
if (rst || (po_rdval_cnt == 'd0))
po_cnt_dec <= #TCQ 1'b0;
else if (phy_ctl_ready_r6 && (po_rdval_cnt > 'd0) && (wait_cnt == 'd1))
po_cnt_dec <= #TCQ 1'b1;
else
po_cnt_dec <= #TCQ 1'b0;
end
always @(posedge clk) begin
if (rst)
po_dec_done <= #TCQ 1'b0;
else if (((po_cnt_dec == 'd1) && (po_rdval_cnt == 'd1)) ||
(phy_ctl_ready_r6 && (po_rdval_cnt == 'd0))) begin
po_dec_done <= #TCQ 1'b1;
end
end
always @(posedge clk) begin
dqs_po_dec_done <= #TCQ po_dec_done;
wr_level_done_r1 <= #TCQ wr_level_done_r;
wr_level_done_r2 <= #TCQ wr_level_done_r1;
wr_level_done_r3 <= #TCQ wr_level_done_r2;
wr_level_done_r4 <= #TCQ wr_level_done_r3;
wr_level_done_r5 <= #TCQ wr_level_done_r4;
for (l = 0; l < DQS_WIDTH; l = l + 1) begin
wl_po_coarse_cnt[3*l+:3] <= #TCQ final_coarse_tap[l];
if ((RANKS == 1) || ~oclkdelay_calib_done)
wl_po_fine_cnt[6*l+:6] <= #TCQ smallest[l];
else
wl_po_fine_cnt[6*l+:6] <= #TCQ final_val[l];
end
end
generate
if (RANKS == 2) begin: dual_rank
always @(posedge clk) begin
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
done_dqs_dec <= #TCQ 1'b0;
else if ((SIM_CAL_OPTION == "FAST_CAL") || ~oclkdelay_calib_done)
done_dqs_dec <= #TCQ wr_level_done_r;
else if (wr_level_done_r5 && (wl_state_r == WL_IDLE))
done_dqs_dec <= #TCQ 1'b1;
end
end else begin: single_rank
always @(posedge clk) begin
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) ||
(wrlvl_final && ~wrlvl_final_r))
done_dqs_dec <= #TCQ 1'b0;
else if (~oclkdelay_calib_done)
done_dqs_dec <= #TCQ wr_level_done_r;
else if (wr_level_done_r3 && ~wr_level_done_r4)
done_dqs_dec <= #TCQ 1'b1;
end
end
endgenerate
always @(posedge clk)
if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r))
wrlvl_byte_done <= #TCQ 1'b0;
else if (wrlvl_byte_redo && wr_level_done_r3 && ~wr_level_done_r4)
wrlvl_byte_done <= #TCQ 1'b1;
// Storing DQS tap values at the end of each DQS write leveling
always @(posedge clk) begin
if (rst) begin
for (k = 0; k < RANKS; k = k + 1) begin: rst_wl_dqs_tap_count_loop
for (n = 0; n < DQS_WIDTH; n = n + 1) begin
wl_corse_cnt[k][n] <= #TCQ 'b0;
wl_dqs_tap_count_r[k][n] <= #TCQ 'b0;
end
end
end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_WAIT) |
(wl_state_r == WL_FINE_DEC_WAIT1) |
(wl_state_r == WL_2RANK_TAP_DEC)) begin
wl_dqs_tap_count_r[rank_cnt_r][dqs_count_r] <= #TCQ wl_tap_count_r;
wl_corse_cnt[rank_cnt_r][dqs_count_r] <= #TCQ corse_cnt[dqs_count_r];
end else if ((SIM_CAL_OPTION == "FAST_CAL") & (wl_state_r == WL_DQS_CHECK)) begin
for (p = 0; p < RANKS; p = p +1) begin: dqs_tap_rank_cnt
for(q = 0; q < DQS_WIDTH; q = q +1) begin: dqs_tap_dqs_cnt
wl_dqs_tap_count_r[p][q] <= #TCQ wl_tap_count_r;
wl_corse_cnt[p][q] <= #TCQ corse_cnt[0];
end
end
end
end
// Convert coarse delay to fine taps in case of unequal number of coarse
// taps between ranks. Assuming a difference of 1 coarse tap counts
// between ranks. A common fine and coarse tap value must be used for both ranks
// because Phaser_Out has only one rank register.
// Coarse tap1 = period(ps)*93/360 = 34 fine taps
// Other coarse taps = period(ps)*103/360 = 38 fine taps
generate
genvar cnt;
if (RANKS == 2) begin // Dual rank
for(cnt = 0; cnt < DQS_WIDTH; cnt = cnt +1) begin: coarse_dqs_cnt
always @(posedge clk) begin
if (rst) begin
//coarse_tap_inc[3*cnt+:3] <= #TCQ 'b0;
add_smallest[cnt] <= #TCQ 'd0;
add_largest[cnt] <= #TCQ 'd0;
final_coarse_tap[cnt] <= #TCQ 'd0;
end else if (wr_level_done_r1 & ~wr_level_done_r2) begin
if (~oclkdelay_calib_done) begin
for(y = 0 ; y < DQS_WIDTH; y = y+1) begin
final_coarse_tap[y] <= #TCQ wl_corse_cnt[0][y];
add_smallest[y] <= #TCQ 'd0;
add_largest[y] <= #TCQ 'd0;
end
end else
if (wl_corse_cnt[0][cnt] == wl_corse_cnt[1][cnt]) begin
// Both ranks have use the same number of coarse delay taps.
// No conversion of coarse tap to fine taps required.
//coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3];
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt];
add_smallest[cnt] <= #TCQ 'd0;
add_largest[cnt] <= #TCQ 'd0;
end else if (wl_corse_cnt[0][cnt] < wl_corse_cnt[1][cnt]) begin
// Rank 0 uses fewer coarse delay taps than rank1.
// conversion of coarse tap to fine taps required for rank1.
// The final coarse count will the smaller value.
//coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3] - 1;
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt] - 1;
if (|wl_corse_cnt[0][cnt])
// Coarse tap 2 or higher being converted to fine taps
// This will be added to 'largest' value in final_val
// computation
add_largest[cnt] <= #TCQ 'd38;
else
// Coarse tap 1 being converted to fine taps
// This will be added to 'largest' value in final_val
// computation
add_largest[cnt] <= #TCQ 'd34;
end else if (wl_corse_cnt[0][cnt] > wl_corse_cnt[1][cnt]) begin
// This may be an unlikely scenario in a real system.
// Rank 0 uses more coarse delay taps than rank1.
// conversion of coarse tap to fine taps required.
//coarse_tap_inc[3*cnt+:3] <= #TCQ 'd0;
final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt];
if (|wl_corse_cnt[1][cnt])
// Coarse tap 2 or higher being converted to fine taps
// This will be added to 'smallest' value in final_val
// computation
add_smallest[cnt] <= #TCQ 'd38;
else
// Coarse tap 1 being converted to fine taps
// This will be added to 'smallest' value in
// final_val computation
add_smallest[cnt] <= #TCQ 'd34;
end
end
end
end
end else begin
// Single rank
always @(posedge clk) begin
//coarse_tap_inc <= #TCQ 'd0;
for(w = 0; w < DQS_WIDTH; w = w + 1) begin
final_coarse_tap[w] <= #TCQ wl_corse_cnt[0][w];
add_smallest[w] <= #TCQ 'd0;
add_largest[w] <= #TCQ 'd0;
end
end
end
endgenerate
// Determine delay value for DQS in multirank system
// Assuming delay value is the smallest for rank 0 DQS
// and largest delay value for rank 4 DQS
// Set to smallest + ((largest-smallest)/2)
always @(posedge clk) begin
if (rst) begin
for(x = 0; x < DQS_WIDTH; x = x +1) begin
smallest[x] <= #TCQ 'b0;
largest[x] <= #TCQ 'b0;
end
end else if ((wl_state_r == WL_DQS_CNT) & wrlvl_byte_redo) begin
smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
end else if ((wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_2RANK_TAP_DEC)) begin
smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r];
largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[RANKS-1][dqs_count_r];
end else if (((SIM_CAL_OPTION == "FAST_CAL") |
(~oclkdelay_calib_done & ~wrlvl_byte_redo)) &
wr_level_done_r1 & ~wr_level_done_r2) begin
for(i = 0; i < DQS_WIDTH; i = i +1) begin: smallest_dqs
smallest[i] <= #TCQ wl_dqs_tap_count_r[0][i];
largest[i] <= #TCQ wl_dqs_tap_count_r[0][i];
end
end
end
// final_val to be used for all DQSs in all ranks
genvar wr_i;
generate
for (wr_i = 0; wr_i < DQS_WIDTH; wr_i = wr_i +1) begin: gen_final_tap
always @(posedge clk) begin
if (rst)
final_val[wr_i] <= #TCQ 'b0;
else if (wr_level_done_r2 && ~wr_level_done_r3) begin
if (~oclkdelay_calib_done)
final_val[wr_i] <= #TCQ (smallest[wr_i] + add_smallest[wr_i]);
else if ((smallest[wr_i] + add_smallest[wr_i]) <
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ ((smallest[wr_i] + add_smallest[wr_i]) +
(((largest[wr_i] + add_largest[wr_i]) -
(smallest[wr_i] + add_smallest[wr_i]))/2));
else if ((smallest[wr_i] + add_smallest[wr_i]) >
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ ((largest[wr_i] + add_largest[wr_i]) +
(((smallest[wr_i] + add_smallest[wr_i]) -
(largest[wr_i] + add_largest[wr_i]))/2));
else if ((smallest[wr_i] + add_smallest[wr_i]) ==
(largest[wr_i] + add_largest[wr_i]))
final_val[wr_i] <= #TCQ (largest[wr_i] + add_largest[wr_i]);
end
end
end
endgenerate
// // fine tap inc/dec value for all DQSs in all ranks
// genvar dqs_i;
// generate
// for (dqs_i = 0; dqs_i < DQS_WIDTH; dqs_i = dqs_i +1) begin: gen_fine_tap
// always @(posedge clk) begin
// if (rst)
// fine_tap_inc[6*dqs_i+:6] <= #TCQ 'd0;
// //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0;
// else if (wr_level_done_r3 && ~wr_level_done_r4) begin
// fine_tap_inc[6*dqs_i+:6] <= #TCQ final_val[6*dqs_i+:6];
// //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0;
// end
// end
// endgenerate
// Inc/Dec Phaser_Out stage 2 fine delay line
always @(posedge clk) begin
if (rst) begin
// Fine delay line used only during write leveling
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b0;
// Dec Phaser_Out fine delay (1)before write leveling,
// (2)if no 0 to 1 transition detected with 63 fine delay taps, or
// (3)dual rank case where fine taps for the first rank need to be 0
end else if (po_cnt_dec || (wl_state_r == WL_INIT_FINE_DEC) ||
(wl_state_r == WL_FINE_DEC)) begin
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b1;
// Inc Phaser_Out fine delay during write leveling
end else if ((wl_state_r == WL_INIT_FINE_INC) ||
(wl_state_r == WL_FINE_INC)) begin
dqs_po_stg2_f_incdec <= #TCQ 1'b1;
dqs_po_en_stg2_f <= #TCQ 1'b1;
end else begin
dqs_po_stg2_f_incdec <= #TCQ 1'b0;
dqs_po_en_stg2_f <= #TCQ 1'b0;
end
end
// Inc Phaser_Out stage 2 Coarse delay line
always @(posedge clk) begin
if (rst) begin
// Coarse delay line used during write leveling
// only if no 0->1 transition undetected with 64
// fine delay line taps
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0;
dqs_wl_po_en_stg2_c <= #TCQ 1'b0;
end else if (wl_state_r == WL_CORSE_INC) begin
// Inc Phaser_Out coarse delay during write leveling
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b1;
dqs_wl_po_en_stg2_c <= #TCQ 1'b1;
end else begin
dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0;
dqs_wl_po_en_stg2_c <= #TCQ 1'b0;
end
end
// only storing the rise data for checking. The data comming back during
// write leveling will be a static value. Just checking for rise data is
// enough.
genvar rd_i;
generate
for(rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i +1)begin: gen_rd
always @(posedge clk)
rd_data_rise_wl_r[rd_i] <=
#TCQ |rd_data_rise0[(rd_i*DRAM_WIDTH)+DRAM_WIDTH-1:rd_i*DRAM_WIDTH];
end
endgenerate
// storing the previous data for checking later.
always @(posedge clk)begin
if ((wl_state_r == WL_INIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT) ||
//(wl_state_r == WL_INIT_FINE_INC_WAIT1) ||
((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)) ||
(wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_FINE_DEC_WAIT) ||
(wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) ||
(wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2) ||
((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)))
rd_data_previous_r <= #TCQ rd_data_rise_wl_r;
end
// changed stable count from 3 to 7 because of fine tap resolution
always @(posedge clk)begin
if (rst | (wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_2RANK_TAP_DEC) |
(wl_state_r == WL_FINE_DEC) |
(rd_data_previous_r[dqs_count_r] != rd_data_rise_wl_r[dqs_count_r]) |
(wl_state_r1 == WL_INIT_FINE_DEC))
stable_cnt <= #TCQ 'd0;
else if ((wl_tap_count_r > 6'd0) &
(((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)) |
((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)))) begin
if ((rd_data_previous_r[dqs_count_r] == rd_data_rise_wl_r[dqs_count_r])
& (stable_cnt < 'd14))
stable_cnt <= #TCQ stable_cnt + 1;
end
end
// Signal to ensure that flag_ck_negedge does not incorrectly assert
// when DQS is very close to CK rising edge
//always @(posedge clk) begin
// if (rst | (wl_state_r == WL_DQS_CNT) |
// (wl_state_r == WL_DQS_CHECK) | wr_level_done_r)
// past_negedge <= #TCQ 1'b0;
// else if (~flag_ck_negedge && ~rd_data_previous_r[dqs_count_r] &&
// (stable_cnt == 'd0) && ((wl_state_r == WL_CORSE_INC_WAIT1) |
// (wl_state_r == WL_CORSE_INC_WAIT2)))
// past_negedge <= #TCQ 1'b1;
//end
// Flag to indicate negedge of CK detected and ignore 0->1 transitions
// in this region
always @(posedge clk)begin
if (rst | (wl_state_r == WL_DQS_CNT) |
(wl_state_r == WL_DQS_CHECK) | wr_level_done_r |
(wl_state_r1 == WL_INIT_FINE_DEC))
flag_ck_negedge <= #TCQ 1'd0;
else if ((rd_data_previous_r[dqs_count_r] && ((stable_cnt > 'd0) |
(wl_state_r == WL_FINE_DEC) | (wl_state_r == WL_FINE_DEC_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1))) |
(wl_state_r == WL_CORSE_INC))
flag_ck_negedge <= #TCQ 1'd1;
else if (~rd_data_previous_r[dqs_count_r] && (stable_cnt == 'd14))
//&& flag_ck_negedge)
flag_ck_negedge <= #TCQ 1'd0;
end
// Flag to inhibit rd_data_edge_detect_r before stable DQ
always @(posedge clk) begin
if (rst)
flag_init <= #TCQ 1'b1;
else if ((wl_state_r == WL_WAIT) && ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) ||
(wl_state_r1 == WL_INIT_FINE_DEC_WAIT)))
flag_init <= #TCQ 1'b0;
end
//checking for transition from 0 to 1
always @(posedge clk)begin
if (rst | flag_ck_negedge | flag_init | (wl_tap_count_r < 'd1) |
inhibit_edge_detect_r)
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else if (rd_data_edge_detect_r[dqs_count_r] == 1'b1) begin
if ((wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_FINE_DEC_WAIT1) ||
(wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) ||
(wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2))
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else
rd_data_edge_detect_r <= #TCQ rd_data_edge_detect_r;
end else if (rd_data_previous_r[dqs_count_r] && (stable_cnt < 'd14))
rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}};
else
rd_data_edge_detect_r <= #TCQ (~rd_data_previous_r & rd_data_rise_wl_r);
end
// registring the write level start signal
always@(posedge clk) begin
wr_level_start_r <= #TCQ wr_level_start;
end
// Assign dqs_count_r to dqs_count_w to perform the shift operation
// instead of multiply operation
assign dqs_count_w = {2'b00, dqs_count_r};
assign oclk_count_w = {2'b00, oclkdelay_calib_cnt};
always @(posedge clk) begin
if (rst)
incdec_wait_cnt <= #TCQ 'd0;
else if ((wl_state_r == WL_FINE_DEC_WAIT1) ||
(wl_state_r == WL_INIT_FINE_DEC_WAIT1) ||
(wl_state_r == WL_CORSE_INC_WAIT_TMP))
incdec_wait_cnt <= #TCQ incdec_wait_cnt + 1;
else
incdec_wait_cnt <= #TCQ 'd0;
end
// state machine to initiate the write leveling sequence
// The state machine operates on one byte at a time.
// It will increment the delays to the DQS OSERDES
// and sample the DQ from the memory. When it detects
// a transition from 1 to 0 then the write leveling is considered
// done.
always @(posedge clk) begin
if(rst)begin
wrlvl_err <= #TCQ 1'b0;
wr_level_done_r <= #TCQ 1'b0;
wrlvl_rank_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ {DQS_CNT_WIDTH+1{1'b0}};
dq_cnt_inc <= #TCQ 1'b1;
rank_cnt_r <= #TCQ 2'b00;
wl_state_r <= #TCQ WL_IDLE;
wl_state_r1 <= #TCQ WL_IDLE;
inhibit_edge_detect_r <= #TCQ 1'b1;
wl_edge_detect_valid_r <= #TCQ 1'b0;
wl_tap_count_r <= #TCQ 6'd0;
fine_dec_cnt <= #TCQ 6'd0;
for (r = 0; r < DQS_WIDTH; r = r + 1) begin
fine_inc[r] <= #TCQ 6'b0;
corse_dec[r] <= #TCQ 3'b0;
corse_inc[r] <= #TCQ 3'b0;
corse_cnt[r] <= #TCQ 3'b0;
end
dual_rnk_dec <= #TCQ 1'b0;
fast_cal_fine_cnt <= #TCQ FAST_CAL_FINE;
fast_cal_coarse_cnt <= #TCQ FAST_CAL_COARSE;
final_corse_dec <= #TCQ 1'b0;
//zero_tran_r <= #TCQ 1'b0;
wrlvl_redo_corse_inc <= #TCQ 'd0;
end else begin
wl_state_r1 <= #TCQ wl_state_r;
case (wl_state_r)
WL_IDLE: begin
wrlvl_rank_done_r <= #TCQ 1'd0;
inhibit_edge_detect_r <= #TCQ 1'b1;
if (wrlvl_byte_redo && ~wrlvl_byte_redo_r) begin
wr_level_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ wrcal_cnt;
corse_cnt[wrcal_cnt] <= #TCQ final_coarse_tap[wrcal_cnt];
wl_tap_count_r <= #TCQ smallest[wrcal_cnt];
if (early1_data &&
(((final_coarse_tap[wrcal_cnt] < 'd6) && (CLK_PERIOD/nCK_PER_CLK <= 2500)) ||
((final_coarse_tap[wrcal_cnt] < 'd3) && (CLK_PERIOD/nCK_PER_CLK > 2500))))
wrlvl_redo_corse_inc <= #TCQ REDO_COARSE;
else if (early2_data && (final_coarse_tap[wrcal_cnt] < 'd2))
wrlvl_redo_corse_inc <= #TCQ 3'd6;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else if (wrlvl_final && ~wrlvl_final_r) begin
wr_level_done_r <= #TCQ 1'b0;
dqs_count_r <= #TCQ 'd0;
end
// verilint STARC-2.2.3.3 off
if(!wr_level_done_r & wr_level_start_r & wl_sm_start) begin
if (SIM_CAL_OPTION == "FAST_CAL")
wl_state_r <= #TCQ WL_FINE_INC;
else
wl_state_r <= #TCQ WL_INIT;
end
end
// verilint STARC-2.2.3.3 on
WL_INIT: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
inhibit_edge_detect_r <= #TCQ 1'b1;
wrlvl_rank_done_r <= #TCQ 1'd0;
//zero_tran_r <= #TCQ 1'b0;
if (wrlvl_final)
corse_cnt[dqs_count_w ] <= #TCQ final_coarse_tap[dqs_count_w ];
if (wrlvl_byte_redo) begin
if (|wl_tap_count_r) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else if(wl_sm_start)
wl_state_r <= #TCQ WL_INIT_FINE_INC;
end
// Initially Phaser_Out fine delay taps incremented
// until stable_cnt=14. A stable_cnt of 14 indicates
// that rd_data_rise_wl_r=rd_data_previous_r for 14 fine
// tap increments. This is done to inhibit false 0->1
// edge detection when DQS is initially aligned to the
// negedge of CK
WL_INIT_FINE_INC: begin
wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT1;
wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1;
final_corse_dec <= #TCQ 1'b0;
end
WL_INIT_FINE_INC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT;
end
// Case1: stable value of rd_data_previous_r=0 then
// proceed to 0->1 edge detection.
// Case2: stable value of rd_data_previous_r=1 then
// decrement fine taps to '0' and proceed to 0->1
// edge detection. Need to decrement in this case to
// make sure a valid 0->1 transition was not left
// undetected.
WL_INIT_FINE_INC_WAIT: begin
if (wl_sm_start) begin
if (stable_cnt < 'd14)
wl_state_r <= #TCQ WL_INIT_FINE_INC;
else if (~rd_data_previous_r[dqs_count_r]) begin
wl_state_r <= #TCQ WL_WAIT;
inhibit_edge_detect_r <= #TCQ 1'b0;
end else begin
wl_state_r <= #TCQ WL_INIT_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end
end
end
// Case2: stable value of rd_data_previous_r=1 then
// decrement fine taps to '0' and proceed to 0->1
// edge detection. Need to decrement in this case to
// make sure a valid 0->1 transition was not left
// undetected.
WL_INIT_FINE_DEC: begin
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT1;
if (fine_dec_cnt > 6'd0)
fine_dec_cnt <= #TCQ fine_dec_cnt - 1;
else
fine_dec_cnt <= #TCQ fine_dec_cnt;
end
WL_INIT_FINE_DEC_WAIT1: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT;
end
WL_INIT_FINE_DEC_WAIT: begin
if (fine_dec_cnt > 6'd0) begin
wl_state_r <= #TCQ WL_INIT_FINE_DEC;
inhibit_edge_detect_r <= #TCQ 1'b1;
end else begin
wl_state_r <= #TCQ WL_WAIT;
inhibit_edge_detect_r <= #TCQ 1'b0;
end
end
// Inc DQS Phaser_Out Stage2 Fine Delay line
WL_FINE_INC: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
if (SIM_CAL_OPTION == "FAST_CAL") begin
wl_state_r <= #TCQ WL_FINE_INC_WAIT;
if (fast_cal_fine_cnt > 'd0)
fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt - 1;
else
fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt;
end else if (wr_level_done_r5) begin
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_FINE_INC_WAIT;
if (|fine_inc[dqs_count_w])
fine_inc[dqs_count_w] <= #TCQ fine_inc[dqs_count_w] - 1;
end else begin
wl_state_r <= #TCQ WL_WAIT;
wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1;
end
end
WL_FINE_INC_WAIT: begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_fine_cnt > 'd0)
wl_state_r <= #TCQ WL_FINE_INC;
else if (fast_cal_coarse_cnt > 'd0)
wl_state_r <= #TCQ WL_CORSE_INC;
else
wl_state_r <= #TCQ WL_DQS_CNT;
end else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
else if (dqs_count_r == (DQS_WIDTH-1))
wl_state_r <= #TCQ WL_IDLE;
else begin
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
dqs_count_r <= #TCQ dqs_count_r + 1;
end
end
WL_FINE_DEC: begin
wl_edge_detect_valid_r <= #TCQ 1'b0;
wl_tap_count_r <= #TCQ 'd0;
wl_state_r <= #TCQ WL_FINE_DEC_WAIT1;
if (fine_dec_cnt > 6'd0)
fine_dec_cnt <= #TCQ fine_dec_cnt - 1;
else
fine_dec_cnt <= #TCQ fine_dec_cnt;
end
WL_FINE_DEC_WAIT1: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_FINE_DEC_WAIT;
end
WL_FINE_DEC_WAIT: begin
if (fine_dec_cnt > 6'd0)
wl_state_r <= #TCQ WL_FINE_DEC;
//else if (zero_tran_r)
// wl_state_r <= #TCQ WL_DQS_CNT;
else if (dual_rnk_dec) begin
if (|corse_dec[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_DEC;
else
wl_state_r <= #TCQ WL_2RANK_DQS_CNT;
end else if (wrlvl_byte_redo) begin
if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_IDLE;
wrlvl_err <= #TCQ 1'b1;
end
end else
wl_state_r <= #TCQ WL_CORSE_INC;
end
WL_CORSE_DEC: begin
wl_state_r <= #TCQ WL_CORSE_DEC_WAIT;
dual_rnk_dec <= #TCQ 1'b0;
if (|corse_dec[dqs_count_r])
corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r] - 1;
else
corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r];
end
WL_CORSE_DEC_WAIT: begin
if (wl_sm_start) begin
//if (|corse_dec[dqs_count_r])
// wl_state_r <= #TCQ WL_CORSE_DEC;
if (|corse_dec[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_DEC_WAIT1;
else
wl_state_r <= #TCQ WL_2RANK_DQS_CNT;
end
end
WL_CORSE_DEC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_DEC;
end
WL_CORSE_INC: begin
wl_state_r <= #TCQ WL_CORSE_INC_WAIT_TMP;
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_coarse_cnt > 'd0)
fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt - 1;
else
fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt;
end else if (wrlvl_byte_redo) begin
corse_cnt[dqs_count_w] <= #TCQ corse_cnt[dqs_count_w] + 1;
if (|wrlvl_redo_corse_inc)
wrlvl_redo_corse_inc <= #TCQ wrlvl_redo_corse_inc - 1;
end else if (~wr_level_done_r5)
corse_cnt[dqs_count_r] <= #TCQ corse_cnt[dqs_count_r] + 1;
else if (|corse_inc[dqs_count_w])
corse_inc[dqs_count_w] <= #TCQ corse_inc[dqs_count_w] - 1;
end
WL_CORSE_INC_WAIT_TMP: begin
if (incdec_wait_cnt == 'd8)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT;
end
WL_CORSE_INC_WAIT: begin
if (SIM_CAL_OPTION == "FAST_CAL") begin
if (fast_cal_coarse_cnt > 'd0)
wl_state_r <= #TCQ WL_CORSE_INC;
else
wl_state_r <= #TCQ WL_DQS_CNT;
end else if (wrlvl_byte_redo) begin
if (|wrlvl_redo_corse_inc)
wl_state_r <= #TCQ WL_CORSE_INC;
else begin
wl_state_r <= #TCQ WL_INIT_FINE_INC;
inhibit_edge_detect_r <= #TCQ 1'b1;
end
end else if (~wr_level_done_r5 && wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT1;
else if (wr_level_done_r5) begin
if (|corse_inc[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_INC;
else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
else if (dqs_count_r == (DQS_WIDTH-1))
wl_state_r <= #TCQ WL_IDLE;
else begin
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
dqs_count_r <= #TCQ dqs_count_r + 1;
end
end
end
WL_CORSE_INC_WAIT1: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_CORSE_INC_WAIT2;
end
WL_CORSE_INC_WAIT2: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_WAIT;
end
WL_WAIT: begin
if (wl_sm_start)
wl_state_r <= #TCQ WL_EDGE_CHECK;
end
WL_EDGE_CHECK: begin // Look for the edge
if (wl_edge_detect_valid_r == 1'b0) begin
wl_state_r <= #TCQ WL_WAIT;
wl_edge_detect_valid_r <= #TCQ 1'b1;
end
// 0->1 transition detected with DQS
else if(rd_data_edge_detect_r[dqs_count_r] &&
wl_edge_detect_valid_r)
begin
wl_tap_count_r <= #TCQ wl_tap_count_r;
if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) ||
~oclkdelay_calib_done)
wl_state_r <= #TCQ WL_DQS_CNT;
else
wl_state_r <= #TCQ WL_2RANK_TAP_DEC;
end
// For initial writes check only upto 56 taps. Reserving the
// remaining taps for OCLK calibration.
else if((~wrlvl_tap_done_r) && (wl_tap_count_r > 6'd55)) begin
if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else begin
wrlvl_err <= #TCQ 1'b1;
wl_state_r <= #TCQ WL_IDLE;
end
end else begin
if (wl_tap_count_r < 6'd56) //for reuse wrlvl for complex ocal
wl_state_r <= #TCQ WL_FINE_INC;
else if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
end else begin
wrlvl_err <= #TCQ 1'b1;
wl_state_r <= #TCQ WL_IDLE;
end
end
end
WL_2RANK_TAP_DEC: begin
wl_state_r <= #TCQ WL_FINE_DEC;
fine_dec_cnt <= #TCQ wl_tap_count_r;
for (m = 0; m < DQS_WIDTH; m = m + 1)
corse_dec[m] <= #TCQ corse_cnt[m];
wl_edge_detect_valid_r <= #TCQ 1'b0;
dual_rnk_dec <= #TCQ 1'b1;
end
WL_DQS_CNT: begin
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(dqs_count_r == (DQS_WIDTH-1)) ||
wrlvl_byte_redo) begin
dqs_count_r <= #TCQ dqs_count_r;
dq_cnt_inc <= #TCQ 1'b0;
end else begin
dqs_count_r <= #TCQ dqs_count_r + 1'b1;
dq_cnt_inc <= #TCQ 1'b1;
end
wl_state_r <= #TCQ WL_DQS_CHECK;
wl_edge_detect_valid_r <= #TCQ 1'b0;
end
WL_2RANK_DQS_CNT: begin
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(dqs_count_r == (DQS_WIDTH-1))) begin
dqs_count_r <= #TCQ dqs_count_r;
dq_cnt_inc <= #TCQ 1'b0;
end else begin
dqs_count_r <= #TCQ dqs_count_r + 1'b1;
dq_cnt_inc <= #TCQ 1'b1;
end
wl_state_r <= #TCQ WL_DQS_CHECK;
wl_edge_detect_valid_r <= #TCQ 1'b0;
dual_rnk_dec <= #TCQ 1'b0;
end
WL_DQS_CHECK: begin // check if all DQS have been calibrated
wl_tap_count_r <= #TCQ 'd0;
if (dq_cnt_inc == 1'b0)begin
wrlvl_rank_done_r <= #TCQ 1'd1;
for (t = 0; t < DQS_WIDTH; t = t + 1)
corse_cnt[t] <= #TCQ 3'b0;
if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) begin
wl_state_r <= #TCQ WL_IDLE;
if (wrlvl_byte_redo)
dqs_count_r <= #TCQ dqs_count_r;
else
dqs_count_r <= #TCQ 'd0;
end else if (rank_cnt_r == RANKS-1) begin
dqs_count_r <= #TCQ dqs_count_r;
if (RANKS > 1)
wl_state_r <= #TCQ WL_2RANK_FINAL_TAP;
else
wl_state_r <= #TCQ WL_IDLE;
end else begin
wl_state_r <= #TCQ WL_INIT;
dqs_count_r <= #TCQ 'd0;
end
if ((SIM_CAL_OPTION == "FAST_CAL") ||
(rank_cnt_r == RANKS-1)) begin
wr_level_done_r <= #TCQ 1'd1;
rank_cnt_r <= #TCQ 2'b00;
end else begin
wr_level_done_r <= #TCQ 1'd0;
rank_cnt_r <= #TCQ rank_cnt_r + 1'b1;
end
end else
wl_state_r <= #TCQ WL_INIT;
end
WL_2RANK_FINAL_TAP: begin
if (wr_level_done_r4 && ~wr_level_done_r5) begin
for(u = 0; u < DQS_WIDTH; u = u + 1) begin
corse_inc[u] <= #TCQ final_coarse_tap[u];
fine_inc[u] <= #TCQ final_val[u];
end
dqs_count_r <= #TCQ 'd0;
end else if (wr_level_done_r5) begin
if (|corse_inc[dqs_count_r])
wl_state_r <= #TCQ WL_CORSE_INC;
else if (|fine_inc[dqs_count_w])
wl_state_r <= #TCQ WL_FINE_INC;
end
end
endcase
end
end // always @ (posedge clk)
endmodule
|
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
module mig_7series_v2_3_ecc_dec_fix
#(
parameter TCQ = 100,
parameter PAYLOAD_WIDTH = 64,
parameter CODE_WIDTH = 72,
parameter DATA_WIDTH = 64,
parameter DQ_WIDTH = 72,
parameter ECC_WIDTH = 8,
parameter nCK_PER_CLK = 4
)
(
/*AUTOARG*/
// Outputs
rd_data, ecc_single, ecc_multiple,
// Inputs
clk, rst, h_rows, phy_rddata, correct_en, ecc_status_valid
);
input clk;
input rst;
// Compute syndromes.
input [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
input [2*nCK_PER_CLK*DQ_WIDTH-1:0] phy_rddata;
wire [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_ns;
genvar k;
genvar m;
generate
for (k=0; k<2*nCK_PER_CLK; k=k+1) begin : ecc_word
for (m=0; m<ECC_WIDTH; m=m+1) begin : ecc_bit
assign syndrome_ns[k*ECC_WIDTH+m] =
^(phy_rddata[k*DQ_WIDTH+:CODE_WIDTH] & h_rows[m*CODE_WIDTH+:CODE_WIDTH]);
end
end
endgenerate
reg [2*nCK_PER_CLK*ECC_WIDTH-1:0] syndrome_r;
always @(posedge clk) syndrome_r <= #TCQ syndrome_ns;
// Extract payload bits from raw DRAM bits and register.
wire [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_ns;
genvar i;
generate
for (i=0; i<2*nCK_PER_CLK; i=i+1) begin : extract_payload
assign ecc_rddata_ns[i*PAYLOAD_WIDTH+:PAYLOAD_WIDTH] =
phy_rddata[i*DQ_WIDTH+:PAYLOAD_WIDTH];
end
endgenerate
reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] ecc_rddata_r;
always @(posedge clk) ecc_rddata_r <= #TCQ ecc_rddata_ns;
// Regenerate h_matrix from h_rows leaving out the identity part
// since we're not going to correct the ECC bits themselves.
genvar n;
genvar p;
wire [ECC_WIDTH-1:0] h_matrix [DATA_WIDTH-1:0];
generate
for (n=0; n<DATA_WIDTH; n=n+1) begin : h_col
for (p=0; p<ECC_WIDTH; p=p+1) begin : h_bit
assign h_matrix [n][p] = h_rows [p*CODE_WIDTH+n];
end
end
endgenerate
// Compute flip bits.
wire [2*nCK_PER_CLK*DATA_WIDTH-1:0] flip_bits;
genvar q;
genvar r;
generate
for (q=0; q<2*nCK_PER_CLK; q=q+1) begin : flip_word
for (r=0; r<DATA_WIDTH; r=r+1) begin : flip_bit
assign flip_bits[q*DATA_WIDTH+r] =
h_matrix[r] == syndrome_r[q*ECC_WIDTH+:ECC_WIDTH];
end
end
endgenerate
// Correct data.
output reg [2*nCK_PER_CLK*PAYLOAD_WIDTH-1:0] rd_data;
input correct_en;
integer s;
always @(/*AS*/correct_en or ecc_rddata_r or flip_bits)
for (s=0; s<2*nCK_PER_CLK; s=s+1)
if (correct_en)
rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH] ^
flip_bits[s*DATA_WIDTH+:DATA_WIDTH];
else rd_data[s*PAYLOAD_WIDTH+:DATA_WIDTH] =
ecc_rddata_r[s*PAYLOAD_WIDTH+:DATA_WIDTH];
// Copy raw payload bits if ECC_TEST is ON.
localparam RAW_BIT_WIDTH = PAYLOAD_WIDTH - DATA_WIDTH;
genvar t;
generate
if (RAW_BIT_WIDTH > 0)
for (t=0; t<2*nCK_PER_CLK; t=t+1) begin : copy_raw_bits
always @(/*AS*/ecc_rddata_r)
rd_data[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH] =
ecc_rddata_r[(t+1)*PAYLOAD_WIDTH-1-:RAW_BIT_WIDTH];
end
endgenerate
// Generate status information.
input ecc_status_valid;
output wire [2*nCK_PER_CLK-1:0] ecc_single;
output wire [2*nCK_PER_CLK-1:0] ecc_multiple;
genvar v;
generate
for (v=0; v<2*nCK_PER_CLK; v=v+1) begin : compute_status
wire zero = ~|syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
wire odd = ^syndrome_r[v*ECC_WIDTH+:ECC_WIDTH];
assign ecc_single[v] = ecc_status_valid && ~zero && odd;
assign ecc_multiple[v] = ecc_status_valid && ~zero && ~odd;
end
endgenerate
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter nCK_PER_CLK = 4,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_done, ocal_num_samples_done_r, oclkdelay_center_calib_start,
oclkdelay_center_calib_done, oclk_center_write_resume, ocd2stg2_inc,
ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, stg3, simp_stg3_final,
cmplx_stg3_final, simp_stg3_final_sel, ninety_offsets,
scanning_right, ocd_ktap_left, ocd_ktap_right, ocd_edge_detect_rdy,
taps_set, use_noise_window, ocal_scan_win_not_found,
// Inputs
clk, rst, reset_scan, oclkdelay_init_val, lim2ocal_stg3_right_lim,
lim2ocal_stg3_left_lim, complex_oclkdelay_calib_start,
po_counter_read_val, oclkdelay_calib_cnt, mmcm_edge_detect_done,
mmcm_lbclk_edge_aligned, poc_backup, phy_rddata_en_3, zero2fuzz,
fuzz2zero, oneeighty2fuzz, fuzz2oneeighty, z2f, f2z, o2f, f2o,
scan_right, samp_done, wl_po_fine_cnt_sel, po_rdy
);
input clk;
input rst;
input reset_scan;
reg scan_done_r;
output scan_done;
assign scan_done = scan_done_r;
output [5:0] simp_stg3_final_sel;
reg cmplx_samples_done_ns, cmplx_samples_done_r;
always @(posedge clk) cmplx_samples_done_r <= #TCQ cmplx_samples_done_ns;
output ocal_num_samples_done_r;
assign ocal_num_samples_done_r = cmplx_samples_done_r;
// Write Level signals during OCLKDELAY calibration
input [5:0] oclkdelay_init_val;
input [5:0] lim2ocal_stg3_right_lim;
input [5:0] lim2ocal_stg3_left_lim;
input complex_oclkdelay_calib_start;
reg oclkdelay_center_calib_start_ns, oclkdelay_center_calib_start_r;
always @(posedge clk) oclkdelay_center_calib_start_r <= #TCQ oclkdelay_center_calib_start_ns;
output oclkdelay_center_calib_start;
assign oclkdelay_center_calib_start = oclkdelay_center_calib_start_r;
reg oclkdelay_center_calib_done_ns, oclkdelay_center_calib_done_r;
always @(posedge clk) oclkdelay_center_calib_done_r <= #TCQ oclkdelay_center_calib_done_ns;
output oclkdelay_center_calib_done;
assign oclkdelay_center_calib_done = oclkdelay_center_calib_done_r;
reg oclk_center_write_resume_ns, oclk_center_write_resume_r;
always @(posedge clk) oclk_center_write_resume_r <= #TCQ oclk_center_write_resume_ns;
output oclk_center_write_resume;
assign oclk_center_write_resume = oclk_center_write_resume_r;
reg ocd2stg2_inc_r, ocd2stg2_dec_r, ocd2stg3_inc_r, ocd2stg3_dec_r;
output ocd2stg2_inc, ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec;
assign ocd2stg2_inc = ocd2stg2_inc_r;
assign ocd2stg2_dec = ocd2stg2_dec_r;
assign ocd2stg3_inc = ocd2stg3_inc_r;
assign ocd2stg3_dec = ocd2stg3_dec_r;
// Remember, two stage 2 steps for every stg 3 step. And we need a sign bit.
reg [8:0] stg2_ns, stg2_r;
always @(posedge clk) stg2_r <= #TCQ stg2_ns;
reg [5:0] stg3_ns, stg3_r;
always @(posedge clk) stg3_r <= #TCQ stg3_ns;
output [5:0] stg3;
assign stg3 = stg3_r;
input [5:0] wl_po_fine_cnt_sel;
input [8:0] po_counter_read_val;
reg [5:0] po_counter_read_val_r;
always @(posedge clk) po_counter_read_val_r <= #TCQ po_counter_read_val[5:0];
reg [DQS_WIDTH*6-1:0] simp_stg3_final_ns, simp_stg3_final_r, cmplx_stg3_final_ns, cmplx_stg3_final_r;
always @(posedge clk) simp_stg3_final_r <= #TCQ simp_stg3_final_ns;
always @(posedge clk) cmplx_stg3_final_r <= #TCQ cmplx_stg3_final_ns;
output [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
assign simp_stg3_final = simp_stg3_final_r;
assign cmplx_stg3_final = cmplx_stg3_final_r;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [DQS_WIDTH*6-1:0] simp_stg3_final_shft = simp_stg3_final_r >> oclkdelay_calib_cnt * 6;
assign simp_stg3_final_sel = simp_stg3_final_shft[5:0];
wire [5:0] stg3_init = complex_oclkdelay_calib_start ? simp_stg3_final_sel : oclkdelay_init_val;
wire signed [8:0] stg2_steps = stg3_r > stg3_init
? -9'sd2 * $signed({3'b0, (stg3_r - stg3_init)})
: 9'sd2 * $signed({3'b0, (stg3_init - stg3_r)});
wire signed [8:0] stg2_target_ns = $signed({3'b0, wl_po_fine_cnt_sel}) + stg2_steps;
reg signed [8:0] stg2_target_r;
always @ (posedge clk) stg2_target_r <= #TCQ stg2_target_ns;
reg [5:0] stg2_final_ns, stg2_final_r;
always @(posedge clk) stg2_final_r <= #TCQ stg2_final_ns;
always @(*) stg2_final_ns = stg2_target_r[8] == 1'b1
? 6'd0
: stg2_target_r > 9'd63
? 6'd63
: stg2_target_r[5:0];
wire final_stg2_inc = stg2_final_r > po_counter_read_val_r;
wire final_stg2_dec = stg2_final_r < po_counter_read_val_r;
wire left_lim = stg3_r == lim2ocal_stg3_left_lim;
wire right_lim = stg3_r == lim2ocal_stg3_right_lim;
reg [1:0] ninety_offsets_ns, ninety_offsets_r;
always @(posedge clk) ninety_offsets_r <= #TCQ ninety_offsets_ns;
output [1:0] ninety_offsets;
assign ninety_offsets = ninety_offsets_r;
reg scanning_right_ns, scanning_right_r;
always @(posedge clk) scanning_right_r <= #TCQ scanning_right_ns;
output scanning_right;
assign scanning_right = scanning_right_r;
reg ocd_ktap_left_ns, ocd_ktap_left_r, ocd_ktap_right_ns, ocd_ktap_right_r;
always @(posedge clk) ocd_ktap_left_r <= #TCQ ocd_ktap_left_ns;
always @(posedge clk) ocd_ktap_right_r <= #TCQ ocd_ktap_right_ns;
output ocd_ktap_left, ocd_ktap_right;
assign ocd_ktap_left = ocd_ktap_left_r;
assign ocd_ktap_right = ocd_ktap_right_r;
reg ocd_edge_detect_rdy_ns, ocd_edge_detect_rdy_r;
always @(posedge clk) ocd_edge_detect_rdy_r <= #TCQ ocd_edge_detect_rdy_ns;
output ocd_edge_detect_rdy;
assign ocd_edge_detect_rdy = ocd_edge_detect_rdy_r;
input mmcm_edge_detect_done;
input mmcm_lbclk_edge_aligned;
input poc_backup;
reg poc_backup_ns, poc_backup_r;
always @(posedge clk) poc_backup_r <= #TCQ poc_backup_ns;
reg taps_set_r;
output taps_set;
assign taps_set = taps_set_r;
input phy_rddata_en_3;
input [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
input z2f, f2z, o2f, f2o;
wire zero = f2z && z2f;
wire noise = z2f && f2o;
wire oneeighty = f2o && o2f;
reg win_not_found;
reg [1:0] ninety_offsets_final;
reg [5:0] left, right, current_edge;
always @(*) begin
left = lim2ocal_stg3_left_lim;
right = lim2ocal_stg3_right_lim;
ninety_offsets_final = 2'd0;
win_not_found = 1'b0;
if (zero) begin
left = fuzz2zero;
right = zero2fuzz;
end
else if (noise) begin
left = zero2fuzz;
right = fuzz2oneeighty;
ninety_offsets_final = 2'd1;
end
else if (oneeighty) begin
left = fuzz2oneeighty;
right = oneeighty2fuzz;
ninety_offsets_final = 2'd2;
end
else if (z2f) begin
right = zero2fuzz;
end
else if (f2o) begin
left = fuzz2oneeighty;
ninety_offsets_final = 2'd2;
end
else if (f2z) begin
left = fuzz2zero;
end
else win_not_found = 1'b1;
current_edge = ocd_ktap_left_r ? left : right;
end // always @ begin
output use_noise_window;
assign use_noise_window = ninety_offsets == 2'd1;
reg ocal_scan_win_not_found_ns, ocal_scan_win_not_found_r;
always @(posedge clk) ocal_scan_win_not_found_r <= #TCQ ocal_scan_win_not_found_ns;
output ocal_scan_win_not_found;
assign ocal_scan_win_not_found = ocal_scan_win_not_found_r;
wire inc_po_ns = current_edge > stg3_r;
wire dec_po_ns = current_edge < stg3_r;
reg inc_po_r, dec_po_r;
always @(posedge clk) inc_po_r <= #TCQ inc_po_ns;
always @(posedge clk) dec_po_r <= #TCQ dec_po_ns;
input scan_right;
wire left_stop = left_lim || scan_right;
wire right_stop = right_lim || o2f;
reg [4:0] resume_wait_ns, resume_wait_r;
always @(posedge clk) resume_wait_r <= #TCQ resume_wait_ns;
wire resume_wait = |resume_wait_r;
reg po_done_ns, po_done_r;
always @(posedge clk) po_done_r <= #TCQ po_done_ns;
input samp_done;
input po_rdy;
reg up_ns, up_r;
always @(posedge clk) up_r <= #TCQ up_ns;
reg [1:0] two_ns, two_r;
always @(posedge clk) two_r <= #TCQ two_ns;
/* wire stg2_zero = ~|stg2_r;
wire [8:0] stg2_2_zero = stg2_r[8] ? 9'd0
: stg2_r > 9'd63
? 9'd63
: stg2_r; */
reg [3:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
(* dont_touch = "true" *) reg phy_rddata_en_3_second_ns, phy_rddata_en_3_second_r;
always @(posedge clk) phy_rddata_en_3_second_r <= #TCQ phy_rddata_en_3_second_ns;
always @(*) phy_rddata_en_3_second_ns = ~reset_scan && (phy_rddata_en_3
? ~phy_rddata_en_3_second_r
: phy_rddata_en_3_second_r);
(* dont_touch = "true" *) wire use_samp_done = nCK_PER_CLK == 2 ? phy_rddata_en_3 && phy_rddata_en_3_second_r : phy_rddata_en_3;
reg po_center_wait;
reg po_slew;
reg po_finish_scan;
always @(*) begin
// Default next state assignments.
cmplx_samples_done_ns = cmplx_samples_done_r;
cmplx_stg3_final_ns = cmplx_stg3_final_r;
scanning_right_ns = scanning_right_r;
ninety_offsets_ns = ninety_offsets_r;
ocal_scan_win_not_found_ns = ocal_scan_win_not_found_r;
ocd_edge_detect_rdy_ns = ocd_edge_detect_rdy_r;
ocd_ktap_left_ns = ocd_ktap_left_r;
ocd_ktap_right_ns = ocd_ktap_right_r;
ocd2stg2_inc_r = 1'b0;
ocd2stg2_dec_r = 1'b0;
ocd2stg3_inc_r = 1'b0;
ocd2stg3_dec_r = 1'b0;
oclkdelay_center_calib_start_ns = oclkdelay_center_calib_start_r;
oclkdelay_center_calib_done_ns = 1'b0;
oclk_center_write_resume_ns = oclk_center_write_resume_r;
po_center_wait = 1'b0;
po_done_ns = po_done_r;
po_finish_scan = 1'b0;
po_slew = 1'b0;
poc_backup_ns = poc_backup_r;
scan_done_r = 1'b0;
simp_stg3_final_ns = simp_stg3_final_r;
sm_ns = sm_r;
taps_set_r = 1'b0;
up_ns = up_r;
stg2_ns = stg2_r;
stg3_ns = stg3_r;
two_ns = two_r;
resume_wait_ns = resume_wait_r;
if (rst == 1'b1) begin
// RESET next states
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b0;
ocd_edge_detect_rdy_ns = 1'b0;
oclk_center_write_resume_ns = 1'b0;
oclkdelay_center_calib_start_ns = 1'b0;
po_done_ns = 1'b1;
resume_wait_ns = 5'd0;
sm_ns = /*AK("READY")*/4'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/4'd0:begin
poc_backup_ns = 1'b0;
stg2_ns = {3'b0, wl_po_fine_cnt_sel};
stg3_ns = stg3_init;
scanning_right_ns = 1'b0;
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
if (!reset_scan && ~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
end
end
/*AL("SAMPLING")*/4'd1:begin
if (samp_done && use_samp_done) begin
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
scanning_right_ns = scanning_right_r || left_stop;
if (right_stop && scanning_right_r) begin
oclkdelay_center_calib_start_ns = 1'b1;
ocd_ktap_left_ns = 1'b1;
ocal_scan_win_not_found_ns = win_not_found;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else begin
if (scanning_right_ns) ocd2stg3_inc_r = 1'b1;
else ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("PO_WAIT")*/4'd2;
end
end
end
/*AL("PO_WAIT")*/4'd2:begin
if (po_done_r && ~resume_wait) begin
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
cmplx_samples_done_ns = 1'b0;
end
end
/*AL("SLEW_PO")*/4'd3:begin
po_slew = 1'b1;
ninety_offsets_ns = |ninety_offsets_final ? 2'b01 : 2'b00;
if (~resume_wait) begin
if (po_done_r) begin
if (inc_po_r) ocd2stg3_inc_r = 1'b1;
else if (dec_po_r) ocd2stg3_dec_r = 1'b1;
else if (~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end // if (po_done)
end
end // case: 3'd3
/*AL("ALIGN_EDGES")*/4'd4:
if (~resume_wait) begin
if (mmcm_edge_detect_done) begin
ocd_edge_detect_rdy_ns = 1'b0;
if (ocd_ktap_left_r) begin
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b1;
oclk_center_write_resume_ns = 1'b0;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else if (ocd_ktap_right_r) begin
ocd_ktap_right_ns = 1'b0;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else if (~mmcm_lbclk_edge_aligned) begin
sm_ns = /*AK("DQS_STOP_WAIT")*/4'd6;
oclk_center_write_resume_ns = 1'b0;
end else begin
if (ninety_offsets_r != ninety_offsets_final && ocd_edge_detect_rdy_r) begin
ninety_offsets_ns = ninety_offsets_r + 2'b01;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else begin
oclk_center_write_resume_ns = 1'b0;
poc_backup_ns = poc_backup;
// stg2_ns = stg2_2_zero;
sm_ns = /*AK("FINISH_SCAN")*/4'd8;
end
end // else: !if(~mmcm_lbclk_edge_aligned)
end else ocd_edge_detect_rdy_ns = 1'b1;
end // if (~resume_wait)
/*AL("WAIT_ONE")*/4'd5:
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
/*AL("DQS_STOP_WAIT")*/4'd6:
if (~resume_wait) begin
ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("CENTER_PO_WAIT")*/4'd7;
end
/*AL("CENTER_PO_WAIT")*/4'd7: begin
po_center_wait = 1'b1; // Kludge to get around limitation of the AUTOs symbols.
if (po_done_r) begin
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end
/*AL("FINISH_SCAN")*/4'd8: begin
po_finish_scan = 1'b1;
if (resume_wait_r == 5'd1) begin
if (~poc_backup_r) begin
oclkdelay_center_calib_done_ns = 1'b1;
oclkdelay_center_calib_start_ns = 1'b0;
end
end
if (~resume_wait) begin
if (po_rdy)
if (poc_backup_r) begin
ocd2stg3_inc_r = 1'b1;
poc_backup_ns = 1'b0;
end
else if (~final_stg2_inc && ~final_stg2_dec) begin
if (complex_oclkdelay_calib_start) cmplx_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
else simp_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
sm_ns = /*AK("READY")*/4'd0;
scan_done_r = 1'b1;
end else begin
ocd2stg2_inc_r = final_stg2_inc;
ocd2stg2_dec_r = final_stg2_dec;
end
end // if (~resume_wait)
end // case: 4'd8
endcase // case (sm_r)
if (ocd2stg3_inc_r) begin
stg3_ns = stg3_r + 6'h1;
up_ns = 1'b0;
end
if (ocd2stg3_dec_r) begin
stg3_ns = stg3_r - 6'h1;
up_ns = 1'b1;
end
if (ocd2stg3_inc_r || ocd2stg3_dec_r) begin
po_done_ns = 1'b0;
two_ns = 2'b00;
end
if (~po_done_r)
if (po_rdy)
if (two_r == 2'b10 || po_center_wait || po_slew || po_finish_scan) po_done_ns = 1'b1;
else begin
two_ns = two_r + 2'b1;
if (up_r) begin
stg2_ns = stg2_r + 9'b1;
if (stg2_r >= 9'd0 && stg2_r < 9'd63) ocd2stg2_inc_r = 1'b1;
end else begin
stg2_ns = stg2_r - 9'b1;
if (stg2_r > 9'd0 && stg2_r <= 9'd63) ocd2stg2_dec_r = 1'b1;
end
end // else: !if(two_r == 2'b10)
if (ocd_ktap_left_ns && ~ocd_ktap_left_r) resume_wait_ns = 5'b1;
else if (oclk_center_write_resume_ns ^ oclk_center_write_resume_r) resume_wait_ns = 5'd15;
else if (cmplx_samples_done_ns & ~cmplx_samples_done_r ||
complex_oclkdelay_calib_start & reset_scan ||
poc_backup_r & ocd2stg3_inc_r) resume_wait_ns = 5'd31;
else if (|resume_wait_r) resume_wait_ns = resume_wait_r - 5'd1;
end // always @ begin
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter nCK_PER_CLK = 4,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_done, ocal_num_samples_done_r, oclkdelay_center_calib_start,
oclkdelay_center_calib_done, oclk_center_write_resume, ocd2stg2_inc,
ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, stg3, simp_stg3_final,
cmplx_stg3_final, simp_stg3_final_sel, ninety_offsets,
scanning_right, ocd_ktap_left, ocd_ktap_right, ocd_edge_detect_rdy,
taps_set, use_noise_window, ocal_scan_win_not_found,
// Inputs
clk, rst, reset_scan, oclkdelay_init_val, lim2ocal_stg3_right_lim,
lim2ocal_stg3_left_lim, complex_oclkdelay_calib_start,
po_counter_read_val, oclkdelay_calib_cnt, mmcm_edge_detect_done,
mmcm_lbclk_edge_aligned, poc_backup, phy_rddata_en_3, zero2fuzz,
fuzz2zero, oneeighty2fuzz, fuzz2oneeighty, z2f, f2z, o2f, f2o,
scan_right, samp_done, wl_po_fine_cnt_sel, po_rdy
);
input clk;
input rst;
input reset_scan;
reg scan_done_r;
output scan_done;
assign scan_done = scan_done_r;
output [5:0] simp_stg3_final_sel;
reg cmplx_samples_done_ns, cmplx_samples_done_r;
always @(posedge clk) cmplx_samples_done_r <= #TCQ cmplx_samples_done_ns;
output ocal_num_samples_done_r;
assign ocal_num_samples_done_r = cmplx_samples_done_r;
// Write Level signals during OCLKDELAY calibration
input [5:0] oclkdelay_init_val;
input [5:0] lim2ocal_stg3_right_lim;
input [5:0] lim2ocal_stg3_left_lim;
input complex_oclkdelay_calib_start;
reg oclkdelay_center_calib_start_ns, oclkdelay_center_calib_start_r;
always @(posedge clk) oclkdelay_center_calib_start_r <= #TCQ oclkdelay_center_calib_start_ns;
output oclkdelay_center_calib_start;
assign oclkdelay_center_calib_start = oclkdelay_center_calib_start_r;
reg oclkdelay_center_calib_done_ns, oclkdelay_center_calib_done_r;
always @(posedge clk) oclkdelay_center_calib_done_r <= #TCQ oclkdelay_center_calib_done_ns;
output oclkdelay_center_calib_done;
assign oclkdelay_center_calib_done = oclkdelay_center_calib_done_r;
reg oclk_center_write_resume_ns, oclk_center_write_resume_r;
always @(posedge clk) oclk_center_write_resume_r <= #TCQ oclk_center_write_resume_ns;
output oclk_center_write_resume;
assign oclk_center_write_resume = oclk_center_write_resume_r;
reg ocd2stg2_inc_r, ocd2stg2_dec_r, ocd2stg3_inc_r, ocd2stg3_dec_r;
output ocd2stg2_inc, ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec;
assign ocd2stg2_inc = ocd2stg2_inc_r;
assign ocd2stg2_dec = ocd2stg2_dec_r;
assign ocd2stg3_inc = ocd2stg3_inc_r;
assign ocd2stg3_dec = ocd2stg3_dec_r;
// Remember, two stage 2 steps for every stg 3 step. And we need a sign bit.
reg [8:0] stg2_ns, stg2_r;
always @(posedge clk) stg2_r <= #TCQ stg2_ns;
reg [5:0] stg3_ns, stg3_r;
always @(posedge clk) stg3_r <= #TCQ stg3_ns;
output [5:0] stg3;
assign stg3 = stg3_r;
input [5:0] wl_po_fine_cnt_sel;
input [8:0] po_counter_read_val;
reg [5:0] po_counter_read_val_r;
always @(posedge clk) po_counter_read_val_r <= #TCQ po_counter_read_val[5:0];
reg [DQS_WIDTH*6-1:0] simp_stg3_final_ns, simp_stg3_final_r, cmplx_stg3_final_ns, cmplx_stg3_final_r;
always @(posedge clk) simp_stg3_final_r <= #TCQ simp_stg3_final_ns;
always @(posedge clk) cmplx_stg3_final_r <= #TCQ cmplx_stg3_final_ns;
output [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
assign simp_stg3_final = simp_stg3_final_r;
assign cmplx_stg3_final = cmplx_stg3_final_r;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [DQS_WIDTH*6-1:0] simp_stg3_final_shft = simp_stg3_final_r >> oclkdelay_calib_cnt * 6;
assign simp_stg3_final_sel = simp_stg3_final_shft[5:0];
wire [5:0] stg3_init = complex_oclkdelay_calib_start ? simp_stg3_final_sel : oclkdelay_init_val;
wire signed [8:0] stg2_steps = stg3_r > stg3_init
? -9'sd2 * $signed({3'b0, (stg3_r - stg3_init)})
: 9'sd2 * $signed({3'b0, (stg3_init - stg3_r)});
wire signed [8:0] stg2_target_ns = $signed({3'b0, wl_po_fine_cnt_sel}) + stg2_steps;
reg signed [8:0] stg2_target_r;
always @ (posedge clk) stg2_target_r <= #TCQ stg2_target_ns;
reg [5:0] stg2_final_ns, stg2_final_r;
always @(posedge clk) stg2_final_r <= #TCQ stg2_final_ns;
always @(*) stg2_final_ns = stg2_target_r[8] == 1'b1
? 6'd0
: stg2_target_r > 9'd63
? 6'd63
: stg2_target_r[5:0];
wire final_stg2_inc = stg2_final_r > po_counter_read_val_r;
wire final_stg2_dec = stg2_final_r < po_counter_read_val_r;
wire left_lim = stg3_r == lim2ocal_stg3_left_lim;
wire right_lim = stg3_r == lim2ocal_stg3_right_lim;
reg [1:0] ninety_offsets_ns, ninety_offsets_r;
always @(posedge clk) ninety_offsets_r <= #TCQ ninety_offsets_ns;
output [1:0] ninety_offsets;
assign ninety_offsets = ninety_offsets_r;
reg scanning_right_ns, scanning_right_r;
always @(posedge clk) scanning_right_r <= #TCQ scanning_right_ns;
output scanning_right;
assign scanning_right = scanning_right_r;
reg ocd_ktap_left_ns, ocd_ktap_left_r, ocd_ktap_right_ns, ocd_ktap_right_r;
always @(posedge clk) ocd_ktap_left_r <= #TCQ ocd_ktap_left_ns;
always @(posedge clk) ocd_ktap_right_r <= #TCQ ocd_ktap_right_ns;
output ocd_ktap_left, ocd_ktap_right;
assign ocd_ktap_left = ocd_ktap_left_r;
assign ocd_ktap_right = ocd_ktap_right_r;
reg ocd_edge_detect_rdy_ns, ocd_edge_detect_rdy_r;
always @(posedge clk) ocd_edge_detect_rdy_r <= #TCQ ocd_edge_detect_rdy_ns;
output ocd_edge_detect_rdy;
assign ocd_edge_detect_rdy = ocd_edge_detect_rdy_r;
input mmcm_edge_detect_done;
input mmcm_lbclk_edge_aligned;
input poc_backup;
reg poc_backup_ns, poc_backup_r;
always @(posedge clk) poc_backup_r <= #TCQ poc_backup_ns;
reg taps_set_r;
output taps_set;
assign taps_set = taps_set_r;
input phy_rddata_en_3;
input [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
input z2f, f2z, o2f, f2o;
wire zero = f2z && z2f;
wire noise = z2f && f2o;
wire oneeighty = f2o && o2f;
reg win_not_found;
reg [1:0] ninety_offsets_final;
reg [5:0] left, right, current_edge;
always @(*) begin
left = lim2ocal_stg3_left_lim;
right = lim2ocal_stg3_right_lim;
ninety_offsets_final = 2'd0;
win_not_found = 1'b0;
if (zero) begin
left = fuzz2zero;
right = zero2fuzz;
end
else if (noise) begin
left = zero2fuzz;
right = fuzz2oneeighty;
ninety_offsets_final = 2'd1;
end
else if (oneeighty) begin
left = fuzz2oneeighty;
right = oneeighty2fuzz;
ninety_offsets_final = 2'd2;
end
else if (z2f) begin
right = zero2fuzz;
end
else if (f2o) begin
left = fuzz2oneeighty;
ninety_offsets_final = 2'd2;
end
else if (f2z) begin
left = fuzz2zero;
end
else win_not_found = 1'b1;
current_edge = ocd_ktap_left_r ? left : right;
end // always @ begin
output use_noise_window;
assign use_noise_window = ninety_offsets == 2'd1;
reg ocal_scan_win_not_found_ns, ocal_scan_win_not_found_r;
always @(posedge clk) ocal_scan_win_not_found_r <= #TCQ ocal_scan_win_not_found_ns;
output ocal_scan_win_not_found;
assign ocal_scan_win_not_found = ocal_scan_win_not_found_r;
wire inc_po_ns = current_edge > stg3_r;
wire dec_po_ns = current_edge < stg3_r;
reg inc_po_r, dec_po_r;
always @(posedge clk) inc_po_r <= #TCQ inc_po_ns;
always @(posedge clk) dec_po_r <= #TCQ dec_po_ns;
input scan_right;
wire left_stop = left_lim || scan_right;
wire right_stop = right_lim || o2f;
reg [4:0] resume_wait_ns, resume_wait_r;
always @(posedge clk) resume_wait_r <= #TCQ resume_wait_ns;
wire resume_wait = |resume_wait_r;
reg po_done_ns, po_done_r;
always @(posedge clk) po_done_r <= #TCQ po_done_ns;
input samp_done;
input po_rdy;
reg up_ns, up_r;
always @(posedge clk) up_r <= #TCQ up_ns;
reg [1:0] two_ns, two_r;
always @(posedge clk) two_r <= #TCQ two_ns;
/* wire stg2_zero = ~|stg2_r;
wire [8:0] stg2_2_zero = stg2_r[8] ? 9'd0
: stg2_r > 9'd63
? 9'd63
: stg2_r; */
reg [3:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
(* dont_touch = "true" *) reg phy_rddata_en_3_second_ns, phy_rddata_en_3_second_r;
always @(posedge clk) phy_rddata_en_3_second_r <= #TCQ phy_rddata_en_3_second_ns;
always @(*) phy_rddata_en_3_second_ns = ~reset_scan && (phy_rddata_en_3
? ~phy_rddata_en_3_second_r
: phy_rddata_en_3_second_r);
(* dont_touch = "true" *) wire use_samp_done = nCK_PER_CLK == 2 ? phy_rddata_en_3 && phy_rddata_en_3_second_r : phy_rddata_en_3;
reg po_center_wait;
reg po_slew;
reg po_finish_scan;
always @(*) begin
// Default next state assignments.
cmplx_samples_done_ns = cmplx_samples_done_r;
cmplx_stg3_final_ns = cmplx_stg3_final_r;
scanning_right_ns = scanning_right_r;
ninety_offsets_ns = ninety_offsets_r;
ocal_scan_win_not_found_ns = ocal_scan_win_not_found_r;
ocd_edge_detect_rdy_ns = ocd_edge_detect_rdy_r;
ocd_ktap_left_ns = ocd_ktap_left_r;
ocd_ktap_right_ns = ocd_ktap_right_r;
ocd2stg2_inc_r = 1'b0;
ocd2stg2_dec_r = 1'b0;
ocd2stg3_inc_r = 1'b0;
ocd2stg3_dec_r = 1'b0;
oclkdelay_center_calib_start_ns = oclkdelay_center_calib_start_r;
oclkdelay_center_calib_done_ns = 1'b0;
oclk_center_write_resume_ns = oclk_center_write_resume_r;
po_center_wait = 1'b0;
po_done_ns = po_done_r;
po_finish_scan = 1'b0;
po_slew = 1'b0;
poc_backup_ns = poc_backup_r;
scan_done_r = 1'b0;
simp_stg3_final_ns = simp_stg3_final_r;
sm_ns = sm_r;
taps_set_r = 1'b0;
up_ns = up_r;
stg2_ns = stg2_r;
stg3_ns = stg3_r;
two_ns = two_r;
resume_wait_ns = resume_wait_r;
if (rst == 1'b1) begin
// RESET next states
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b0;
ocd_edge_detect_rdy_ns = 1'b0;
oclk_center_write_resume_ns = 1'b0;
oclkdelay_center_calib_start_ns = 1'b0;
po_done_ns = 1'b1;
resume_wait_ns = 5'd0;
sm_ns = /*AK("READY")*/4'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/4'd0:begin
poc_backup_ns = 1'b0;
stg2_ns = {3'b0, wl_po_fine_cnt_sel};
stg3_ns = stg3_init;
scanning_right_ns = 1'b0;
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
if (!reset_scan && ~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
end
end
/*AL("SAMPLING")*/4'd1:begin
if (samp_done && use_samp_done) begin
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
scanning_right_ns = scanning_right_r || left_stop;
if (right_stop && scanning_right_r) begin
oclkdelay_center_calib_start_ns = 1'b1;
ocd_ktap_left_ns = 1'b1;
ocal_scan_win_not_found_ns = win_not_found;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else begin
if (scanning_right_ns) ocd2stg3_inc_r = 1'b1;
else ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("PO_WAIT")*/4'd2;
end
end
end
/*AL("PO_WAIT")*/4'd2:begin
if (po_done_r && ~resume_wait) begin
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
cmplx_samples_done_ns = 1'b0;
end
end
/*AL("SLEW_PO")*/4'd3:begin
po_slew = 1'b1;
ninety_offsets_ns = |ninety_offsets_final ? 2'b01 : 2'b00;
if (~resume_wait) begin
if (po_done_r) begin
if (inc_po_r) ocd2stg3_inc_r = 1'b1;
else if (dec_po_r) ocd2stg3_dec_r = 1'b1;
else if (~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end // if (po_done)
end
end // case: 3'd3
/*AL("ALIGN_EDGES")*/4'd4:
if (~resume_wait) begin
if (mmcm_edge_detect_done) begin
ocd_edge_detect_rdy_ns = 1'b0;
if (ocd_ktap_left_r) begin
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b1;
oclk_center_write_resume_ns = 1'b0;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else if (ocd_ktap_right_r) begin
ocd_ktap_right_ns = 1'b0;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else if (~mmcm_lbclk_edge_aligned) begin
sm_ns = /*AK("DQS_STOP_WAIT")*/4'd6;
oclk_center_write_resume_ns = 1'b0;
end else begin
if (ninety_offsets_r != ninety_offsets_final && ocd_edge_detect_rdy_r) begin
ninety_offsets_ns = ninety_offsets_r + 2'b01;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else begin
oclk_center_write_resume_ns = 1'b0;
poc_backup_ns = poc_backup;
// stg2_ns = stg2_2_zero;
sm_ns = /*AK("FINISH_SCAN")*/4'd8;
end
end // else: !if(~mmcm_lbclk_edge_aligned)
end else ocd_edge_detect_rdy_ns = 1'b1;
end // if (~resume_wait)
/*AL("WAIT_ONE")*/4'd5:
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
/*AL("DQS_STOP_WAIT")*/4'd6:
if (~resume_wait) begin
ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("CENTER_PO_WAIT")*/4'd7;
end
/*AL("CENTER_PO_WAIT")*/4'd7: begin
po_center_wait = 1'b1; // Kludge to get around limitation of the AUTOs symbols.
if (po_done_r) begin
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end
/*AL("FINISH_SCAN")*/4'd8: begin
po_finish_scan = 1'b1;
if (resume_wait_r == 5'd1) begin
if (~poc_backup_r) begin
oclkdelay_center_calib_done_ns = 1'b1;
oclkdelay_center_calib_start_ns = 1'b0;
end
end
if (~resume_wait) begin
if (po_rdy)
if (poc_backup_r) begin
ocd2stg3_inc_r = 1'b1;
poc_backup_ns = 1'b0;
end
else if (~final_stg2_inc && ~final_stg2_dec) begin
if (complex_oclkdelay_calib_start) cmplx_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
else simp_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
sm_ns = /*AK("READY")*/4'd0;
scan_done_r = 1'b1;
end else begin
ocd2stg2_inc_r = final_stg2_inc;
ocd2stg2_dec_r = final_stg2_dec;
end
end // if (~resume_wait)
end // case: 4'd8
endcase // case (sm_r)
if (ocd2stg3_inc_r) begin
stg3_ns = stg3_r + 6'h1;
up_ns = 1'b0;
end
if (ocd2stg3_dec_r) begin
stg3_ns = stg3_r - 6'h1;
up_ns = 1'b1;
end
if (ocd2stg3_inc_r || ocd2stg3_dec_r) begin
po_done_ns = 1'b0;
two_ns = 2'b00;
end
if (~po_done_r)
if (po_rdy)
if (two_r == 2'b10 || po_center_wait || po_slew || po_finish_scan) po_done_ns = 1'b1;
else begin
two_ns = two_r + 2'b1;
if (up_r) begin
stg2_ns = stg2_r + 9'b1;
if (stg2_r >= 9'd0 && stg2_r < 9'd63) ocd2stg2_inc_r = 1'b1;
end else begin
stg2_ns = stg2_r - 9'b1;
if (stg2_r > 9'd0 && stg2_r <= 9'd63) ocd2stg2_dec_r = 1'b1;
end
end // else: !if(two_r == 2'b10)
if (ocd_ktap_left_ns && ~ocd_ktap_left_r) resume_wait_ns = 5'b1;
else if (oclk_center_write_resume_ns ^ oclk_center_write_resume_r) resume_wait_ns = 5'd15;
else if (cmplx_samples_done_ns & ~cmplx_samples_done_r ||
complex_oclkdelay_calib_start & reset_scan ||
poc_backup_r & ocd2stg3_inc_r) resume_wait_ns = 5'd31;
else if (|resume_wait_r) resume_wait_ns = resume_wait_r - 5'd1;
end // always @ begin
endmodule
|
module mig_7series_v2_3_ddr_phy_ocd_po_cntlr #
(parameter DQS_CNT_WIDTH = 3,
parameter DQS_WIDTH = 8,
parameter nCK_PER_CLK = 4,
parameter TCQ = 100)
(/*AUTOARG*/
// Outputs
scan_done, ocal_num_samples_done_r, oclkdelay_center_calib_start,
oclkdelay_center_calib_done, oclk_center_write_resume, ocd2stg2_inc,
ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec, stg3, simp_stg3_final,
cmplx_stg3_final, simp_stg3_final_sel, ninety_offsets,
scanning_right, ocd_ktap_left, ocd_ktap_right, ocd_edge_detect_rdy,
taps_set, use_noise_window, ocal_scan_win_not_found,
// Inputs
clk, rst, reset_scan, oclkdelay_init_val, lim2ocal_stg3_right_lim,
lim2ocal_stg3_left_lim, complex_oclkdelay_calib_start,
po_counter_read_val, oclkdelay_calib_cnt, mmcm_edge_detect_done,
mmcm_lbclk_edge_aligned, poc_backup, phy_rddata_en_3, zero2fuzz,
fuzz2zero, oneeighty2fuzz, fuzz2oneeighty, z2f, f2z, o2f, f2o,
scan_right, samp_done, wl_po_fine_cnt_sel, po_rdy
);
input clk;
input rst;
input reset_scan;
reg scan_done_r;
output scan_done;
assign scan_done = scan_done_r;
output [5:0] simp_stg3_final_sel;
reg cmplx_samples_done_ns, cmplx_samples_done_r;
always @(posedge clk) cmplx_samples_done_r <= #TCQ cmplx_samples_done_ns;
output ocal_num_samples_done_r;
assign ocal_num_samples_done_r = cmplx_samples_done_r;
// Write Level signals during OCLKDELAY calibration
input [5:0] oclkdelay_init_val;
input [5:0] lim2ocal_stg3_right_lim;
input [5:0] lim2ocal_stg3_left_lim;
input complex_oclkdelay_calib_start;
reg oclkdelay_center_calib_start_ns, oclkdelay_center_calib_start_r;
always @(posedge clk) oclkdelay_center_calib_start_r <= #TCQ oclkdelay_center_calib_start_ns;
output oclkdelay_center_calib_start;
assign oclkdelay_center_calib_start = oclkdelay_center_calib_start_r;
reg oclkdelay_center_calib_done_ns, oclkdelay_center_calib_done_r;
always @(posedge clk) oclkdelay_center_calib_done_r <= #TCQ oclkdelay_center_calib_done_ns;
output oclkdelay_center_calib_done;
assign oclkdelay_center_calib_done = oclkdelay_center_calib_done_r;
reg oclk_center_write_resume_ns, oclk_center_write_resume_r;
always @(posedge clk) oclk_center_write_resume_r <= #TCQ oclk_center_write_resume_ns;
output oclk_center_write_resume;
assign oclk_center_write_resume = oclk_center_write_resume_r;
reg ocd2stg2_inc_r, ocd2stg2_dec_r, ocd2stg3_inc_r, ocd2stg3_dec_r;
output ocd2stg2_inc, ocd2stg2_dec, ocd2stg3_inc, ocd2stg3_dec;
assign ocd2stg2_inc = ocd2stg2_inc_r;
assign ocd2stg2_dec = ocd2stg2_dec_r;
assign ocd2stg3_inc = ocd2stg3_inc_r;
assign ocd2stg3_dec = ocd2stg3_dec_r;
// Remember, two stage 2 steps for every stg 3 step. And we need a sign bit.
reg [8:0] stg2_ns, stg2_r;
always @(posedge clk) stg2_r <= #TCQ stg2_ns;
reg [5:0] stg3_ns, stg3_r;
always @(posedge clk) stg3_r <= #TCQ stg3_ns;
output [5:0] stg3;
assign stg3 = stg3_r;
input [5:0] wl_po_fine_cnt_sel;
input [8:0] po_counter_read_val;
reg [5:0] po_counter_read_val_r;
always @(posedge clk) po_counter_read_val_r <= #TCQ po_counter_read_val[5:0];
reg [DQS_WIDTH*6-1:0] simp_stg3_final_ns, simp_stg3_final_r, cmplx_stg3_final_ns, cmplx_stg3_final_r;
always @(posedge clk) simp_stg3_final_r <= #TCQ simp_stg3_final_ns;
always @(posedge clk) cmplx_stg3_final_r <= #TCQ cmplx_stg3_final_ns;
output [DQS_WIDTH*6-1:0] simp_stg3_final, cmplx_stg3_final;
assign simp_stg3_final = simp_stg3_final_r;
assign cmplx_stg3_final = cmplx_stg3_final_r;
input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt;
wire [DQS_WIDTH*6-1:0] simp_stg3_final_shft = simp_stg3_final_r >> oclkdelay_calib_cnt * 6;
assign simp_stg3_final_sel = simp_stg3_final_shft[5:0];
wire [5:0] stg3_init = complex_oclkdelay_calib_start ? simp_stg3_final_sel : oclkdelay_init_val;
wire signed [8:0] stg2_steps = stg3_r > stg3_init
? -9'sd2 * $signed({3'b0, (stg3_r - stg3_init)})
: 9'sd2 * $signed({3'b0, (stg3_init - stg3_r)});
wire signed [8:0] stg2_target_ns = $signed({3'b0, wl_po_fine_cnt_sel}) + stg2_steps;
reg signed [8:0] stg2_target_r;
always @ (posedge clk) stg2_target_r <= #TCQ stg2_target_ns;
reg [5:0] stg2_final_ns, stg2_final_r;
always @(posedge clk) stg2_final_r <= #TCQ stg2_final_ns;
always @(*) stg2_final_ns = stg2_target_r[8] == 1'b1
? 6'd0
: stg2_target_r > 9'd63
? 6'd63
: stg2_target_r[5:0];
wire final_stg2_inc = stg2_final_r > po_counter_read_val_r;
wire final_stg2_dec = stg2_final_r < po_counter_read_val_r;
wire left_lim = stg3_r == lim2ocal_stg3_left_lim;
wire right_lim = stg3_r == lim2ocal_stg3_right_lim;
reg [1:0] ninety_offsets_ns, ninety_offsets_r;
always @(posedge clk) ninety_offsets_r <= #TCQ ninety_offsets_ns;
output [1:0] ninety_offsets;
assign ninety_offsets = ninety_offsets_r;
reg scanning_right_ns, scanning_right_r;
always @(posedge clk) scanning_right_r <= #TCQ scanning_right_ns;
output scanning_right;
assign scanning_right = scanning_right_r;
reg ocd_ktap_left_ns, ocd_ktap_left_r, ocd_ktap_right_ns, ocd_ktap_right_r;
always @(posedge clk) ocd_ktap_left_r <= #TCQ ocd_ktap_left_ns;
always @(posedge clk) ocd_ktap_right_r <= #TCQ ocd_ktap_right_ns;
output ocd_ktap_left, ocd_ktap_right;
assign ocd_ktap_left = ocd_ktap_left_r;
assign ocd_ktap_right = ocd_ktap_right_r;
reg ocd_edge_detect_rdy_ns, ocd_edge_detect_rdy_r;
always @(posedge clk) ocd_edge_detect_rdy_r <= #TCQ ocd_edge_detect_rdy_ns;
output ocd_edge_detect_rdy;
assign ocd_edge_detect_rdy = ocd_edge_detect_rdy_r;
input mmcm_edge_detect_done;
input mmcm_lbclk_edge_aligned;
input poc_backup;
reg poc_backup_ns, poc_backup_r;
always @(posedge clk) poc_backup_r <= #TCQ poc_backup_ns;
reg taps_set_r;
output taps_set;
assign taps_set = taps_set_r;
input phy_rddata_en_3;
input [5:0] zero2fuzz, fuzz2zero, oneeighty2fuzz, fuzz2oneeighty;
input z2f, f2z, o2f, f2o;
wire zero = f2z && z2f;
wire noise = z2f && f2o;
wire oneeighty = f2o && o2f;
reg win_not_found;
reg [1:0] ninety_offsets_final;
reg [5:0] left, right, current_edge;
always @(*) begin
left = lim2ocal_stg3_left_lim;
right = lim2ocal_stg3_right_lim;
ninety_offsets_final = 2'd0;
win_not_found = 1'b0;
if (zero) begin
left = fuzz2zero;
right = zero2fuzz;
end
else if (noise) begin
left = zero2fuzz;
right = fuzz2oneeighty;
ninety_offsets_final = 2'd1;
end
else if (oneeighty) begin
left = fuzz2oneeighty;
right = oneeighty2fuzz;
ninety_offsets_final = 2'd2;
end
else if (z2f) begin
right = zero2fuzz;
end
else if (f2o) begin
left = fuzz2oneeighty;
ninety_offsets_final = 2'd2;
end
else if (f2z) begin
left = fuzz2zero;
end
else win_not_found = 1'b1;
current_edge = ocd_ktap_left_r ? left : right;
end // always @ begin
output use_noise_window;
assign use_noise_window = ninety_offsets == 2'd1;
reg ocal_scan_win_not_found_ns, ocal_scan_win_not_found_r;
always @(posedge clk) ocal_scan_win_not_found_r <= #TCQ ocal_scan_win_not_found_ns;
output ocal_scan_win_not_found;
assign ocal_scan_win_not_found = ocal_scan_win_not_found_r;
wire inc_po_ns = current_edge > stg3_r;
wire dec_po_ns = current_edge < stg3_r;
reg inc_po_r, dec_po_r;
always @(posedge clk) inc_po_r <= #TCQ inc_po_ns;
always @(posedge clk) dec_po_r <= #TCQ dec_po_ns;
input scan_right;
wire left_stop = left_lim || scan_right;
wire right_stop = right_lim || o2f;
reg [4:0] resume_wait_ns, resume_wait_r;
always @(posedge clk) resume_wait_r <= #TCQ resume_wait_ns;
wire resume_wait = |resume_wait_r;
reg po_done_ns, po_done_r;
always @(posedge clk) po_done_r <= #TCQ po_done_ns;
input samp_done;
input po_rdy;
reg up_ns, up_r;
always @(posedge clk) up_r <= #TCQ up_ns;
reg [1:0] two_ns, two_r;
always @(posedge clk) two_r <= #TCQ two_ns;
/* wire stg2_zero = ~|stg2_r;
wire [8:0] stg2_2_zero = stg2_r[8] ? 9'd0
: stg2_r > 9'd63
? 9'd63
: stg2_r; */
reg [3:0] sm_ns, sm_r;
always @(posedge clk) sm_r <= #TCQ sm_ns;
(* dont_touch = "true" *) reg phy_rddata_en_3_second_ns, phy_rddata_en_3_second_r;
always @(posedge clk) phy_rddata_en_3_second_r <= #TCQ phy_rddata_en_3_second_ns;
always @(*) phy_rddata_en_3_second_ns = ~reset_scan && (phy_rddata_en_3
? ~phy_rddata_en_3_second_r
: phy_rddata_en_3_second_r);
(* dont_touch = "true" *) wire use_samp_done = nCK_PER_CLK == 2 ? phy_rddata_en_3 && phy_rddata_en_3_second_r : phy_rddata_en_3;
reg po_center_wait;
reg po_slew;
reg po_finish_scan;
always @(*) begin
// Default next state assignments.
cmplx_samples_done_ns = cmplx_samples_done_r;
cmplx_stg3_final_ns = cmplx_stg3_final_r;
scanning_right_ns = scanning_right_r;
ninety_offsets_ns = ninety_offsets_r;
ocal_scan_win_not_found_ns = ocal_scan_win_not_found_r;
ocd_edge_detect_rdy_ns = ocd_edge_detect_rdy_r;
ocd_ktap_left_ns = ocd_ktap_left_r;
ocd_ktap_right_ns = ocd_ktap_right_r;
ocd2stg2_inc_r = 1'b0;
ocd2stg2_dec_r = 1'b0;
ocd2stg3_inc_r = 1'b0;
ocd2stg3_dec_r = 1'b0;
oclkdelay_center_calib_start_ns = oclkdelay_center_calib_start_r;
oclkdelay_center_calib_done_ns = 1'b0;
oclk_center_write_resume_ns = oclk_center_write_resume_r;
po_center_wait = 1'b0;
po_done_ns = po_done_r;
po_finish_scan = 1'b0;
po_slew = 1'b0;
poc_backup_ns = poc_backup_r;
scan_done_r = 1'b0;
simp_stg3_final_ns = simp_stg3_final_r;
sm_ns = sm_r;
taps_set_r = 1'b0;
up_ns = up_r;
stg2_ns = stg2_r;
stg3_ns = stg3_r;
two_ns = two_r;
resume_wait_ns = resume_wait_r;
if (rst == 1'b1) begin
// RESET next states
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b0;
ocd_edge_detect_rdy_ns = 1'b0;
oclk_center_write_resume_ns = 1'b0;
oclkdelay_center_calib_start_ns = 1'b0;
po_done_ns = 1'b1;
resume_wait_ns = 5'd0;
sm_ns = /*AK("READY")*/4'd0;
end else
// State based actions and next states.
case (sm_r)
/*AL("READY")*/4'd0:begin
poc_backup_ns = 1'b0;
stg2_ns = {3'b0, wl_po_fine_cnt_sel};
stg3_ns = stg3_init;
scanning_right_ns = 1'b0;
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
if (!reset_scan && ~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
ocal_scan_win_not_found_ns = 1'b0;
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
end
end
/*AL("SAMPLING")*/4'd1:begin
if (samp_done && use_samp_done) begin
if (complex_oclkdelay_calib_start) cmplx_samples_done_ns = 1'b1;
scanning_right_ns = scanning_right_r || left_stop;
if (right_stop && scanning_right_r) begin
oclkdelay_center_calib_start_ns = 1'b1;
ocd_ktap_left_ns = 1'b1;
ocal_scan_win_not_found_ns = win_not_found;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else begin
if (scanning_right_ns) ocd2stg3_inc_r = 1'b1;
else ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("PO_WAIT")*/4'd2;
end
end
end
/*AL("PO_WAIT")*/4'd2:begin
if (po_done_r && ~resume_wait) begin
taps_set_r = 1'b1;
sm_ns = /*AK("SAMPLING")*/4'd1;
cmplx_samples_done_ns = 1'b0;
end
end
/*AL("SLEW_PO")*/4'd3:begin
po_slew = 1'b1;
ninety_offsets_ns = |ninety_offsets_final ? 2'b01 : 2'b00;
if (~resume_wait) begin
if (po_done_r) begin
if (inc_po_r) ocd2stg3_inc_r = 1'b1;
else if (dec_po_r) ocd2stg3_dec_r = 1'b1;
else if (~resume_wait) begin
cmplx_samples_done_ns = 1'b0;
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end // if (po_done)
end
end // case: 3'd3
/*AL("ALIGN_EDGES")*/4'd4:
if (~resume_wait) begin
if (mmcm_edge_detect_done) begin
ocd_edge_detect_rdy_ns = 1'b0;
if (ocd_ktap_left_r) begin
ocd_ktap_left_ns = 1'b0;
ocd_ktap_right_ns = 1'b1;
oclk_center_write_resume_ns = 1'b0;
sm_ns = /*AK("SLEW_PO")*/4'd3;
end else if (ocd_ktap_right_r) begin
ocd_ktap_right_ns = 1'b0;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else if (~mmcm_lbclk_edge_aligned) begin
sm_ns = /*AK("DQS_STOP_WAIT")*/4'd6;
oclk_center_write_resume_ns = 1'b0;
end else begin
if (ninety_offsets_r != ninety_offsets_final && ocd_edge_detect_rdy_r) begin
ninety_offsets_ns = ninety_offsets_r + 2'b01;
sm_ns = /*AK("WAIT_ONE")*/4'd5;
end else begin
oclk_center_write_resume_ns = 1'b0;
poc_backup_ns = poc_backup;
// stg2_ns = stg2_2_zero;
sm_ns = /*AK("FINISH_SCAN")*/4'd8;
end
end // else: !if(~mmcm_lbclk_edge_aligned)
end else ocd_edge_detect_rdy_ns = 1'b1;
end // if (~resume_wait)
/*AL("WAIT_ONE")*/4'd5:
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
/*AL("DQS_STOP_WAIT")*/4'd6:
if (~resume_wait) begin
ocd2stg3_dec_r = 1'b1;
sm_ns = /*AK("CENTER_PO_WAIT")*/4'd7;
end
/*AL("CENTER_PO_WAIT")*/4'd7: begin
po_center_wait = 1'b1; // Kludge to get around limitation of the AUTOs symbols.
if (po_done_r) begin
sm_ns = /*AK("ALIGN_EDGES")*/4'd4;
oclk_center_write_resume_ns = 1'b1;
end
end
/*AL("FINISH_SCAN")*/4'd8: begin
po_finish_scan = 1'b1;
if (resume_wait_r == 5'd1) begin
if (~poc_backup_r) begin
oclkdelay_center_calib_done_ns = 1'b1;
oclkdelay_center_calib_start_ns = 1'b0;
end
end
if (~resume_wait) begin
if (po_rdy)
if (poc_backup_r) begin
ocd2stg3_inc_r = 1'b1;
poc_backup_ns = 1'b0;
end
else if (~final_stg2_inc && ~final_stg2_dec) begin
if (complex_oclkdelay_calib_start) cmplx_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
else simp_stg3_final_ns[oclkdelay_calib_cnt*6+:6] = stg3_r;
sm_ns = /*AK("READY")*/4'd0;
scan_done_r = 1'b1;
end else begin
ocd2stg2_inc_r = final_stg2_inc;
ocd2stg2_dec_r = final_stg2_dec;
end
end // if (~resume_wait)
end // case: 4'd8
endcase // case (sm_r)
if (ocd2stg3_inc_r) begin
stg3_ns = stg3_r + 6'h1;
up_ns = 1'b0;
end
if (ocd2stg3_dec_r) begin
stg3_ns = stg3_r - 6'h1;
up_ns = 1'b1;
end
if (ocd2stg3_inc_r || ocd2stg3_dec_r) begin
po_done_ns = 1'b0;
two_ns = 2'b00;
end
if (~po_done_r)
if (po_rdy)
if (two_r == 2'b10 || po_center_wait || po_slew || po_finish_scan) po_done_ns = 1'b1;
else begin
two_ns = two_r + 2'b1;
if (up_r) begin
stg2_ns = stg2_r + 9'b1;
if (stg2_r >= 9'd0 && stg2_r < 9'd63) ocd2stg2_inc_r = 1'b1;
end else begin
stg2_ns = stg2_r - 9'b1;
if (stg2_r > 9'd0 && stg2_r <= 9'd63) ocd2stg2_dec_r = 1'b1;
end
end // else: !if(two_r == 2'b10)
if (ocd_ktap_left_ns && ~ocd_ktap_left_r) resume_wait_ns = 5'b1;
else if (oclk_center_write_resume_ns ^ oclk_center_write_resume_r) resume_wait_ns = 5'd15;
else if (cmplx_samples_done_ns & ~cmplx_samples_done_r ||
complex_oclkdelay_calib_start & reset_scan ||
poc_backup_r & ocd2stg3_inc_r) resume_wait_ns = 5'd31;
else if (|resume_wait_r) resume_wait_ns = resume_wait_r - 5'd1;
end // always @ begin
endmodule
|
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
|
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
|
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
|
module axi_crossbar_v2_1_crossbar #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_THREAD_ID_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_CONNECTIVITY = {C_NUM_MASTER_SLOTS*32{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_SINGLE_THREAD = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_WRITE_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_READ_ACCEPTANCE = {C_NUM_SLAVE_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_WRITE_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_READ_ISSUING = {C_NUM_MASTER_SLOTS{32'h00000001}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_W_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [(C_NUM_MASTER_SLOTS+1)*32-1:0] C_R_ISSUE_WIDTH = {C_NUM_MASTER_SLOTS+1{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_W_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_R_ACCEPT_WIDTH = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_NUM_MASTER_SLOTS_LOG = f_ceil_log2(C_NUM_MASTER_SLOTS);
localparam integer P_NUM_SLAVE_SLOTS_LOG = f_ceil_log2((C_NUM_SLAVE_SLOTS>1) ? C_NUM_SLAVE_SLOTS : 2);
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_ST_AWMESG_WIDTH = 2+4+4 + C_AXI_AWUSER_WIDTH;
localparam integer P_AA_AWMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_AWMESG_WIDTH;
localparam integer P_ST_ARMESG_WIDTH = 2+4+4 + C_AXI_ARUSER_WIDTH;
localparam integer P_AA_ARMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+4 + P_ST_ARMESG_WIDTH;
localparam integer P_ST_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_ST_RMESG_WIDTH = 2 + C_AXI_RUSER_WIDTH + C_AXI_DATA_WIDTH;
localparam integer P_WR_WMESG_WIDTH = C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_BYPASS = 32'h00000000;
localparam [31:0] P_FWD_REV = 32'h00000001;
localparam [31:0] P_SIMPLE = 32'h00000007;
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_READ = {1'b1, C_M_AXI_SUPPORTS_READ[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)-1:0] P_M_AXI_SUPPORTS_WRITE = {1'b1, C_M_AXI_SUPPORTS_WRITE[0+:C_NUM_MASTER_SLOTS]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_WRITE_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_CONNECTIVITY = {{32{1'b1}}, C_M_AXI_READ_CONNECTIVITY[0+:C_NUM_MASTER_SLOTS*32]};
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_WRITE_CONNECTIVITY = f_si_write_connectivity(0);
localparam [C_NUM_SLAVE_SLOTS*32-1:0] P_S_AXI_READ_CONNECTIVITY = f_si_read_connectivity(0);
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_READ_ISSUING = {32'h00000001, C_M_AXI_READ_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam [(C_NUM_MASTER_SLOTS+1)*32-1:0] P_M_AXI_WRITE_ISSUING = {32'h00000001, C_M_AXI_WRITE_ISSUING[0+:C_NUM_MASTER_SLOTS*32]};
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Write connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_write_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_WRITE_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_write_connectivity = result;
end
endfunction
// Read connectivity array transposed
function [C_NUM_SLAVE_SLOTS*32-1:0] f_si_read_connectivity
(
input integer null_arg
);
integer si_slot;
integer mi_slot;
reg [C_NUM_SLAVE_SLOTS*32-1:0] result;
begin
result = {C_NUM_SLAVE_SLOTS*32{1'b1}};
for (si_slot=0; si_slot<C_NUM_SLAVE_SLOTS; si_slot=si_slot+1) begin
for (mi_slot=0; mi_slot<C_NUM_MASTER_SLOTS; mi_slot=mi_slot+1) begin
result[si_slot*32+mi_slot] = C_M_AXI_READ_CONNECTIVITY[mi_slot*32+si_slot];
end
end
f_si_read_connectivity = result;
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] si_st_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_AWMESG_WIDTH-1:0] st_tmp_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_AWMESG_WIDTH-1:0] tmp_aa_awmesg ;
wire [P_AA_AWMESG_WIDTH-1:0] aa_mi_awmesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_awid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_awaddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_awlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_awprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_awregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_awerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_awtarget_enc ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_wm_awgrant_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_awtarget_hot ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_awvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_ss_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_wr_awready ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] ss_aa_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] sa_wm_awready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awready ;
wire aa_sa_awvalid ;
wire aa_sa_awready ;
wire aa_mi_arready ;
wire mi_awvalid_en ;
wire sa_wm_awvalid_en ;
wire sa_wm_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] si_st_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_ST_ARMESG_WIDTH-1:0] st_tmp_armesg ;
wire [C_NUM_SLAVE_SLOTS*P_AA_ARMESG_WIDTH-1:0] tmp_aa_armesg ;
wire [P_AA_ARMESG_WIDTH-1:0] aa_mi_armesg ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] st_aa_arid ;
wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] st_aa_araddr ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arlen ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arsize ;
wire [C_NUM_SLAVE_SLOTS*2-1:0] st_aa_arlock ;
wire [C_NUM_SLAVE_SLOTS*3-1:0] st_aa_arprot ;
wire [C_NUM_SLAVE_SLOTS*4-1:0] st_aa_arregion ;
wire [C_NUM_SLAVE_SLOTS*8-1:0] st_aa_arerror ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_aa_artarget_hot ;
wire [C_NUM_SLAVE_SLOTS*(P_NUM_MASTER_SLOTS_LOG+1)-1:0] st_aa_artarget_enc ;
wire [(C_NUM_MASTER_SLOTS+1)-1:0] aa_mi_artarget_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG*1-1:0] aa_mi_argrant_enc ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid_qual ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arvalid ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] st_aa_arready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_arready ;
wire aa_mi_arvalid ;
wire mi_awready_mux ;
wire [C_NUM_SLAVE_SLOTS*P_ST_BMESG_WIDTH-1:0] st_si_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_BMESG_WIDTH-1:0] st_mr_bmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] st_mr_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_bid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_bid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] bid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_bid ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_bresp ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_bready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] bready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_ST_RMESG_WIDTH-1:0] st_si_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*P_ST_RMESG_WIDTH-1:0] st_mr_rmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] st_mr_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] st_mr_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] st_mr_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] st_mr_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] st_mr_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] st_tmp_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_mr_rid_target ;
wire [(C_NUM_MASTER_SLOTS+1)*P_NUM_SLAVE_SLOTS_LOG-1:0] debug_rid_target_i ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] rid_match ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_rid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rlast ;
wire [(C_NUM_MASTER_SLOTS+1)*2-1:0] mi_rresp ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_rready ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] rready_carry ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] si_wr_wmesg ;
wire [C_NUM_SLAVE_SLOTS*P_WR_WMESG_WIDTH-1:0] wr_wm_wmesg ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] wr_wm_wlast ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wvalid ;
wire [C_NUM_SLAVE_SLOTS*(C_NUM_MASTER_SLOTS+1)-1:0] wr_tmp_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_NUM_SLAVE_SLOTS-1:0] tmp_wm_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*P_WR_WMESG_WIDTH-1:0] wm_mr_wmesg ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] wm_mr_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] wm_mr_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] wm_mr_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] wm_mr_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] wm_mr_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [(C_NUM_MASTER_SLOTS+1)*C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wlast ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wvalid ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_wready ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] w_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_push ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] r_cmd_pop ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_awmaxissuing ;
wire [(C_NUM_MASTER_SLOTS+1)*1-1:0] mi_armaxissuing ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] w_issuing_cnt ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] r_issuing_cnt ;
reg [8-1:0] debug_aw_trans_seq_i ;
reg [8-1:0] debug_ar_trans_seq_i ;
wire [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_trans_seq_i ;
reg [(C_NUM_MASTER_SLOTS+1)*8-1:0] debug_w_beat_cnt_i ;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_slave_slots
if (C_S_AXI_SUPPORTS_READ[gen_si_slot]) begin : gen_si_read
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (read channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_READ),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_READ_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_R_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_ARMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_RMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_READ_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_ARLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_ARSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_ARBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_ARLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_ARPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_ARREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.S_AVALID (S_AXI_ARVALID[gen_si_slot]),
.S_AREADY (S_AXI_ARREADY[gen_si_slot]),
.M_AID (st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_arlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_arsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_arlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_arprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_arregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_artarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_arerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_arvalid_qual[gen_si_slot]),
.M_AVALID (st_aa_arvalid[gen_si_slot]),
.M_AREADY (st_aa_arready[gen_si_slot]),
.S_RID (S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH]),
.S_RLAST (S_AXI_RLAST[gen_si_slot]),
.S_RVALID (S_AXI_RVALID[gen_si_slot]),
.S_RREADY (S_AXI_RREADY[gen_si_slot]),
.M_RID (st_mr_rid),
.M_RLAST (st_mr_rlast),
.M_RMESG (st_mr_rmesg),
.M_RVALID (st_mr_rvalid),
.M_RREADY (st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_ar_trans_seq_i : 8'h0)
);
assign si_st_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH] = {
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH+:C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2]
};
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = {
st_tmp_armesg[gen_si_slot*P_ST_ARMESG_WIDTH+:P_ST_ARMESG_WIDTH],
st_aa_arregion[gen_si_slot*4+:4],
st_aa_arprot[gen_si_slot*3+:3],
st_aa_arlock[gen_si_slot*2+:2],
st_aa_arsize[gen_si_slot*3+:3],
st_aa_arlen[gen_si_slot*8+:8],
st_aa_araddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_arid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_RRESP[gen_si_slot*2+:2] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+:2];
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2 +: C_AXI_RUSER_WIDTH];
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = st_si_rmesg[gen_si_slot*P_ST_RMESG_WIDTH+2+C_AXI_RUSER_WIDTH +: C_AXI_DATA_WIDTH];
end else begin : gen_no_si_read
assign S_AXI_ARREADY[gen_si_slot] = 1'b0;
assign st_aa_arvalid[gen_si_slot] = 1'b0;
assign st_aa_arvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_armesg[gen_si_slot*P_AA_ARMESG_WIDTH+:P_AA_ARMESG_WIDTH] = 0;
assign S_AXI_RID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_RRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_RUSER[gen_si_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign S_AXI_RDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign S_AXI_RVALID[gen_si_slot] = 1'b0;
assign S_AXI_RLAST[gen_si_slot] = 1'b0;
assign st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_artarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_read
if (C_S_AXI_SUPPORTS_WRITE[gen_si_slot]) begin : gen_si_write
axi_crossbar_v2_1_si_transactor # // "ST": SI Transactor (write channel)
(
.C_FAMILY (C_FAMILY),
.C_SI (gen_si_slot),
.C_DIR (P_WRITE),
.C_NUM_ADDR_RANGES (C_NUM_ADDR_RANGES),
.C_NUM_M (C_NUM_MASTER_SLOTS),
.C_NUM_M_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_ACCEPTANCE (C_S_AXI_WRITE_ACCEPTANCE[gen_si_slot*32+:32]),
.C_ACCEPTANCE_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:32]),
.C_ID_WIDTH (C_AXI_ID_WIDTH),
.C_THREAD_ID_WIDTH (C_S_AXI_THREAD_ID_WIDTH[gen_si_slot*32+:32]),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AMESG_WIDTH (P_ST_AWMESG_WIDTH),
.C_RMESG_WIDTH (P_ST_BMESG_WIDTH),
.C_BASE_ID (C_S_AXI_BASE_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_HIGH_ID (C_S_AXI_HIGH_ID[gen_si_slot*64+:C_AXI_ID_WIDTH]),
.C_SINGLE_THREAD (C_S_AXI_SINGLE_THREAD[gen_si_slot*32+:32]),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL (P_S_AXI_WRITE_CONNECTIVITY[gen_si_slot*32+:C_NUM_MASTER_SLOTS]),
.C_M_AXI_SECURE (C_M_AXI_SECURE),
.C_RANGE_CHECK (C_RANGE_CHECK),
.C_ADDR_DECODE (C_ADDR_DECODE),
.C_ERR_MODE (C_M_AXI_ERR_MODE),
.C_DEBUG (C_DEBUG)
)
si_transactor_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_AID (f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)),
.S_AADDR (S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.S_ALEN (S_AXI_AWLEN[gen_si_slot*8+:8]),
.S_ASIZE (S_AXI_AWSIZE[gen_si_slot*3+:3]),
.S_ABURST (S_AXI_AWBURST[gen_si_slot*2+:2]),
.S_ALOCK (S_AXI_AWLOCK[gen_si_slot*2+:2]),
.S_APROT (S_AXI_AWPROT[gen_si_slot*3+:3]),
// .S_AREGION (S_AXI_AWREGION[gen_si_slot*4+:4]),
.S_AMESG (si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.S_AVALID (S_AXI_AWVALID[gen_si_slot]),
.S_AREADY (S_AXI_AWREADY[gen_si_slot]),
.M_AID (st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.M_AADDR (st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH]),
.M_ALEN (st_aa_awlen[gen_si_slot*8+:8]),
.M_ASIZE (st_aa_awsize[gen_si_slot*3+:3]),
.M_ALOCK (st_aa_awlock[gen_si_slot*2+:2]),
.M_APROT (st_aa_awprot[gen_si_slot*3+:3]),
.M_AREGION (st_aa_awregion[gen_si_slot*4+:4]),
.M_AMESG (st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH]),
.M_ATARGET_HOT (st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_ATARGET_ENC (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]),
.M_AERROR (st_aa_awerror[gen_si_slot*8+:8]),
.M_AVALID_QUAL (st_aa_awvalid_qual[gen_si_slot]),
.M_AVALID (st_ss_awvalid[gen_si_slot]),
.M_AREADY (st_ss_awready[gen_si_slot]),
.S_RID (S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_RMESG (st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH]),
.S_RLAST (),
.S_RVALID (S_AXI_BVALID[gen_si_slot]),
.S_RREADY (S_AXI_BREADY[gen_si_slot]),
.M_RID (st_mr_bid),
.M_RLAST ({(C_NUM_MASTER_SLOTS+1){1'b1}}),
.M_RMESG (st_mr_bmesg),
.M_RVALID (st_mr_bvalid),
.M_RREADY (st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_RTARGET (st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.DEBUG_A_TRANS_SEQ (C_DEBUG ? debug_aw_trans_seq_i : 8'h0)
);
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign si_st_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH] = {
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH+:C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2]
};
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = {
st_tmp_awmesg[gen_si_slot*P_ST_AWMESG_WIDTH+:P_ST_AWMESG_WIDTH],
st_aa_awregion[gen_si_slot*4+:4],
st_aa_awprot[gen_si_slot*3+:3],
st_aa_awlock[gen_si_slot*2+:2],
st_aa_awsize[gen_si_slot*3+:3],
st_aa_awlen[gen_si_slot*8+:8],
st_aa_awaddr[gen_si_slot*C_AXI_ADDR_WIDTH+:C_AXI_ADDR_WIDTH],
st_aa_awid[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]
};
assign S_AXI_BRESP[gen_si_slot*2+:2] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+:2];
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = st_si_bmesg[gen_si_slot*P_ST_BMESG_WIDTH+2 +: C_AXI_BUSER_WIDTH];
// AW SI-transactor transfer completes upon completion of both W-router address acceptance (command push) and AW arbitration
axi_crossbar_v2_1_splitter # // "SS": Splitter from SI-Transactor (write channel)
(
.C_NUM_M (2)
)
splitter_aw_si
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (st_ss_awvalid[gen_si_slot]),
.S_READY (st_ss_awready[gen_si_slot]),
.M_VALID ({ss_wr_awvalid[gen_si_slot], ss_aa_awvalid[gen_si_slot]}),
.M_READY ({ss_wr_awready[gen_si_slot], ss_aa_awready[gen_si_slot]})
);
axi_crossbar_v2_1_wdata_router # // "WR": Write data Router
(
.C_FAMILY (C_FAMILY),
.C_NUM_MASTER_SLOTS (C_NUM_MASTER_SLOTS+1),
.C_SELECT_WIDTH (P_NUM_MASTER_SLOTS_LOG+1),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ACCEPT_WIDTH[gen_si_slot*32+:6])
)
wdata_router_w
(
.ACLK (ACLK),
.ARESET (reset),
// Write transfer input from the current SI-slot
.S_WMESG (si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.S_WLAST (S_AXI_WLAST[gen_si_slot]),
.S_WVALID (S_AXI_WVALID[gen_si_slot]),
.S_WREADY (S_AXI_WREADY[gen_si_slot]),
// Vector of write transfer outputs to each MI-slot's W-mux
.M_WMESG (wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH]),
.M_WLAST (wr_wm_wlast[gen_si_slot]),
.M_WVALID (wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
.M_WREADY (wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)]),
// AW command push from local SI-slot
.S_ASELECT (st_aa_awtarget_enc[gen_si_slot*(P_NUM_MASTER_SLOTS_LOG+1)+:(P_NUM_MASTER_SLOTS_LOG+1)]), // Target MI-slot
.S_AVALID (ss_wr_awvalid[gen_si_slot]),
.S_AREADY (ss_wr_awready[gen_si_slot])
);
assign si_wr_wmesg[gen_si_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH] = {
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]
};
end else begin : gen_no_si_write
assign S_AXI_AWREADY[gen_si_slot] = 1'b0;
assign ss_aa_awvalid[gen_si_slot] = 1'b0;
assign st_aa_awvalid_qual[gen_si_slot] = 1'b1;
assign tmp_aa_awmesg[gen_si_slot*P_AA_AWMESG_WIDTH+:P_AA_AWMESG_WIDTH] = 0;
assign S_AXI_BID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign S_AXI_BRESP[gen_si_slot*2+:2] = 0;
assign S_AXI_BUSER[gen_si_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign S_AXI_BVALID[gen_si_slot] = 1'b0;
assign st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign S_AXI_WREADY[gen_si_slot] = 1'b0;
assign wr_wm_wmesg[gen_si_slot*(P_WR_WMESG_WIDTH)+:P_WR_WMESG_WIDTH] = 0;
assign wr_wm_wlast[gen_si_slot] = 1'b0;
assign wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
assign st_aa_awtarget_hot[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+:(C_NUM_MASTER_SLOTS+1)] = 0;
end // gen_si_write
end // gen_slave_slots
for (gen_mi_slot=0; gen_mi_slot<C_NUM_MASTER_SLOTS+1; gen_mi_slot=gen_mi_slot+1) begin : gen_master_slots
if (P_M_AXI_SUPPORTS_READ[gen_mi_slot]) begin : gen_mi_read
if (C_NUM_SLAVE_SLOTS>1) begin : gen_rid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_READ_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
rid_decoder_inst
(
.ADDR (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_rid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (rid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_rid_decoder
assign tmp_mr_rid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign rid_match[gen_mi_slot] = 1'b1;
end
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = {
st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
st_mr_rresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_read
assign tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign rid_match[gen_mi_slot] = 1'b0;
assign st_mr_rmesg[gen_mi_slot*P_ST_RMESG_WIDTH+:P_ST_RMESG_WIDTH] = 0;
end // gen_mi_read
if (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot]) begin : gen_mi_write
if (C_NUM_SLAVE_SLOTS>1) begin : gen_bid_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_SLAVE_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_NUM_RANGES (1),
.C_ADDR_WIDTH (C_AXI_ID_WIDTH),
.C_TARGET_ENC (C_DEBUG),
.C_TARGET_HOT (1),
.C_REGION_ENC (0),
.C_BASE_ADDR (C_S_AXI_BASE_ID),
.C_HIGH_ADDR (C_S_AXI_HIGH_ID),
.C_TARGET_QUAL (P_M_AXI_WRITE_CONNECTIVITY[gen_mi_slot*32+:C_NUM_SLAVE_SLOTS]),
.C_RESOLUTION (0)
)
bid_decoder_inst
(
.ADDR (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.TARGET_HOT (tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.TARGET_ENC (debug_bid_target_i[gen_mi_slot*P_NUM_SLAVE_SLOTS_LOG+:P_NUM_SLAVE_SLOTS_LOG]),
.MATCH (bid_match[gen_mi_slot]),
.REGION ()
);
end else begin : gen_no_bid_decoder
assign tmp_mr_bid_target[gen_mi_slot] = 1'b1; // All response transfers route to solo SI-slot.
assign bid_match[gen_mi_slot] = 1'b1;
end
axi_crossbar_v2_1_wdata_mux # // "WM": Write data Mux, per MI-slot (incl error-handler)
(
.C_FAMILY (C_FAMILY),
.C_NUM_SLAVE_SLOTS (C_NUM_SLAVE_SLOTS),
.C_SELECT_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_WMESG_WIDTH (P_WR_WMESG_WIDTH),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6])
)
wdata_mux_w
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of write transfer inputs from each SI-slot's W-router
.S_WMESG (wr_wm_wmesg),
.S_WLAST (wr_wm_wlast),
.S_WVALID (tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
.S_WREADY (tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS]),
// Write transfer output to the current MI-slot
.M_WMESG (wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+:P_WR_WMESG_WIDTH]),
.M_WLAST (wm_mr_wlast[gen_mi_slot]),
.M_WVALID (wm_mr_wvalid[gen_mi_slot]),
.M_WREADY (wm_mr_wready[gen_mi_slot]),
// AW command push from AW arbiter output
.S_ASELECT (aa_wm_awgrant_enc), // SI-slot selected by arbiter
.S_AVALID (sa_wm_awvalid[gen_mi_slot]),
.S_AREADY (sa_wm_awready[gen_mi_slot])
);
if (C_DEBUG) begin : gen_debug_w
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
if (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot]) begin
if (mi_wlast[gen_mi_slot]) begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= 0;
end else begin
debug_w_beat_cnt_i[gen_mi_slot*8+:8] <= debug_w_beat_cnt_i[gen_mi_slot*8+:8] + 1;
end
end
end
end // clocked process
// DEBUG W-CHANNEL TRANSACTION SEQUENCE QUEUE
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]),
.C_USE_FULL (0)
)
debug_w_seq_fifo
(
.ACLK (ACLK),
.ARESET (reset),
.S_MESG (debug_aw_trans_seq_i),
.S_VALID (sa_wm_awvalid[gen_mi_slot]),
.S_READY (),
.M_MESG (debug_w_trans_seq_i[gen_mi_slot*8+:8]),
.M_VALID (),
.M_READY (mi_wvalid[gen_mi_slot] & mi_wready[gen_mi_slot] & mi_wlast[gen_mi_slot])
);
end // gen_debug_w
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH +: C_AXI_DATA_WIDTH];
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = wm_mr_wmesg[gen_mi_slot*P_WR_WMESG_WIDTH+C_AXI_DATA_WIDTH+(C_AXI_DATA_WIDTH/8)+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = {
st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
st_mr_bresp[gen_mi_slot*2+:2]
};
end else begin : gen_no_mi_write
assign tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign bid_match[gen_mi_slot] = 1'b0;
assign wm_mr_wvalid[gen_mi_slot] = 0;
assign wm_mr_wlast[gen_mi_slot] = 0;
assign wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8] = 0;
assign wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH] = 0;
assign wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign st_mr_bmesg[gen_mi_slot*P_ST_BMESG_WIDTH+:P_ST_BMESG_WIDTH] = 0;
assign tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+:C_NUM_SLAVE_SLOTS] = 0;
assign sa_wm_awready[gen_mi_slot] = 0;
end // gen_mi_write
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_trans_si
// Transpose handshakes from W-router (SxM) to W-mux (MxS).
assign tmp_wm_wvalid[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot] = wr_tmp_wvalid[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot];
assign wr_tmp_wready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_wm_wready[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
// Transpose response enables from ID decoders (MxS) to si_transactors (SxM).
assign st_tmp_bid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_bid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
assign st_tmp_rid_target[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = tmp_mr_rid_target[gen_mi_slot*C_NUM_SLAVE_SLOTS+gen_si_slot];
end // gen_trans_si
assign bready_carry[gen_mi_slot] = st_tmp_bready[gen_mi_slot];
assign rready_carry[gen_mi_slot] = st_tmp_rready[gen_mi_slot];
for (gen_si_slot=1; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_resp_carry_si
assign bready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_BREADY if ...
bready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_bready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates BREADY for that MI-slot.
assign rready_carry[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] = // Generate M_RREADY if ...
rready_carry[(gen_si_slot-1)*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot] | // For any SI-slot (OR carry-chain across all SI-slots), ...
st_tmp_rready[gen_si_slot*(C_NUM_MASTER_SLOTS+1)+gen_mi_slot]; // The write SI transactor indicates RREADY for that MI-slot.
end // gen_resp_carry_si
assign w_cmd_push[gen_mi_slot] = mi_awvalid[gen_mi_slot] && mi_awready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_push[gen_mi_slot] = mi_arvalid[gen_mi_slot] && mi_arready[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
assign w_cmd_pop[gen_mi_slot] = st_mr_bvalid[gen_mi_slot] && st_mr_bready[gen_mi_slot] && P_M_AXI_SUPPORTS_WRITE[gen_mi_slot];
assign r_cmd_pop[gen_mi_slot] = st_mr_rvalid[gen_mi_slot] && st_mr_rready[gen_mi_slot] && st_mr_rlast[gen_mi_slot] && P_M_AXI_SUPPORTS_READ[gen_mi_slot];
// Disqualify arbitration of SI-slot if targeted MI-slot has reached its issuing limit.
assign mi_awmaxissuing[gen_mi_slot] = (w_issuing_cnt[gen_mi_slot*8 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_WRITE_ISSUING[gen_mi_slot*32 +: (C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~w_cmd_pop[gen_mi_slot];
assign mi_armaxissuing[gen_mi_slot] = (r_issuing_cnt[gen_mi_slot*8 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] ==
P_M_AXI_READ_ISSUING[gen_mi_slot*32 +: (C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)]) & ~r_cmd_pop[gen_mi_slot];
always @(posedge ACLK) begin
if (reset) begin
w_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
r_issuing_cnt[gen_mi_slot*8+:8] <= 0; // Some high-order bits remain constant 0
end else begin
if (w_cmd_push[gen_mi_slot] && ~w_cmd_pop[gen_mi_slot]) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (w_cmd_pop[gen_mi_slot] && ~w_cmd_push[gen_mi_slot] && (|w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= w_issuing_cnt[gen_mi_slot*8+:(C_W_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
if (r_cmd_push[gen_mi_slot] && ~r_cmd_pop[gen_mi_slot]) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] + 1;
end else if (r_cmd_pop[gen_mi_slot] && ~r_cmd_push[gen_mi_slot] && (|r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)])) begin
r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] <= r_issuing_cnt[gen_mi_slot*8+:(C_R_ISSUE_WIDTH[gen_mi_slot*32+:6]+1)] - 1;
end
end
end // Clocked process
// Reg-slice must break combinatorial path from M_BID and M_RID inputs to M_BREADY and M_RREADY outputs.
// (See m_rready_i and m_resp_en combinatorial assignments in si_transactor.)
// Reg-slice incurs +1 latency, but no bubble-cycles.
axi_register_slice_v2_1_axi_register_slice # // "MR": MI-side R/B-channel Reg-slice, per MI-slot (pass-through if only 1 SI-slot configured)
(
.C_FAMILY (C_FAMILY),
.C_AXI_PROTOCOL ((C_AXI_PROTOCOL == P_AXI3) ? P_AXI3 : P_AXI4),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (1),
.C_AXI_ARUSER_WIDTH (1),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_REG_CONFIG_AW (P_BYPASS),
.C_REG_CONFIG_AR (P_BYPASS),
.C_REG_CONFIG_W (P_BYPASS),
.C_REG_CONFIG_R (P_M_AXI_SUPPORTS_READ[gen_mi_slot] ? P_FWD_REV : P_BYPASS),
.C_REG_CONFIG_B (P_M_AXI_SUPPORTS_WRITE[gen_mi_slot] ? P_SIMPLE : P_BYPASS)
)
reg_slice_mi
(
.aresetn (ARESETN),
.aclk (ACLK),
.s_axi_awid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_awaddr ({1{1'b0}}),
.s_axi_awlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_awsize ({3{1'b0}}),
.s_axi_awburst ({2{1'b0}}),
.s_axi_awlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_awcache ({4{1'b0}}),
.s_axi_awprot ({3{1'b0}}),
.s_axi_awregion ({4{1'b0}}),
.s_axi_awqos ({4{1'b0}}),
.s_axi_awuser ({1{1'b0}}),
.s_axi_awvalid ({1{1'b0}}),
.s_axi_awready (),
.s_axi_wid (wm_mr_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.s_axi_wdata (wm_mr_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.s_axi_wstrb (wm_mr_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.s_axi_wlast (wm_mr_wlast[gen_mi_slot]),
.s_axi_wuser (wm_mr_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.s_axi_wvalid (wm_mr_wvalid[gen_mi_slot]),
.s_axi_wready (wm_mr_wready[gen_mi_slot]),
.s_axi_bid (st_mr_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_bresp (st_mr_bresp[gen_mi_slot*2+:2] ),
.s_axi_buser (st_mr_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.s_axi_bvalid (st_mr_bvalid[gen_mi_slot*1+:1] ),
.s_axi_bready (st_mr_bready[gen_mi_slot*1+:1] ),
.s_axi_arid ({C_AXI_ID_WIDTH{1'b0}}),
.s_axi_araddr ({1{1'b0}}),
.s_axi_arlen ({((C_AXI_PROTOCOL == P_AXI3) ? 4 : 8){1'b0}}),
.s_axi_arsize ({3{1'b0}}),
.s_axi_arburst ({2{1'b0}}),
.s_axi_arlock ({((C_AXI_PROTOCOL == P_AXI3) ? 2 : 1){1'b0}}),
.s_axi_arcache ({4{1'b0}}),
.s_axi_arprot ({3{1'b0}}),
.s_axi_arregion ({4{1'b0}}),
.s_axi_arqos ({4{1'b0}}),
.s_axi_aruser ({1{1'b0}}),
.s_axi_arvalid ({1{1'b0}}),
.s_axi_arready (),
.s_axi_rid (st_mr_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.s_axi_rdata (st_mr_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.s_axi_rresp (st_mr_rresp[gen_mi_slot*2+:2] ),
.s_axi_rlast (st_mr_rlast[gen_mi_slot*1+:1] ),
.s_axi_ruser (st_mr_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.s_axi_rvalid (st_mr_rvalid[gen_mi_slot*1+:1] ),
.s_axi_rready (st_mr_rready[gen_mi_slot*1+:1] ),
.m_axi_awid (),
.m_axi_awaddr (),
.m_axi_awlen (),
.m_axi_awsize (),
.m_axi_awburst (),
.m_axi_awlock (),
.m_axi_awcache (),
.m_axi_awprot (),
.m_axi_awregion (),
.m_axi_awqos (),
.m_axi_awuser (),
.m_axi_awvalid (),
.m_axi_awready ({1{1'b0}}),
.m_axi_wid (mi_wid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.m_axi_wdata (mi_wdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.m_axi_wstrb (mi_wstrb[gen_mi_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8]),
.m_axi_wlast (mi_wlast[gen_mi_slot]),
.m_axi_wuser (mi_wuser[gen_mi_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH]),
.m_axi_wvalid (mi_wvalid[gen_mi_slot]),
.m_axi_wready (mi_wready[gen_mi_slot]),
.m_axi_bid (mi_bid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_bresp (mi_bresp[gen_mi_slot*2+:2] ),
.m_axi_buser (mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] ),
.m_axi_bvalid (mi_bvalid[gen_mi_slot*1+:1] ),
.m_axi_bready (mi_bready[gen_mi_slot*1+:1] ),
.m_axi_arid (),
.m_axi_araddr (),
.m_axi_arlen (),
.m_axi_arsize (),
.m_axi_arburst (),
.m_axi_arlock (),
.m_axi_arcache (),
.m_axi_arprot (),
.m_axi_arregion (),
.m_axi_arqos (),
.m_axi_aruser (),
.m_axi_arvalid (),
.m_axi_arready ({1{1'b0}}),
.m_axi_rid (mi_rid[gen_mi_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] ),
.m_axi_rdata (mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] ),
.m_axi_rresp (mi_rresp[gen_mi_slot*2+:2] ),
.m_axi_rlast (mi_rlast[gen_mi_slot*1+:1] ),
.m_axi_ruser (mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] ),
.m_axi_rvalid (mi_rvalid[gen_mi_slot*1+:1] ),
.m_axi_rready (mi_rready[gen_mi_slot*1+:1] )
);
end // gen_master_slots (Next gen_mi_slot)
// Highest row of *ready_carry contains accumulated OR across all SI-slots, for each MI-slot.
assign st_mr_bready = bready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
assign st_mr_rready = rready_carry[(C_NUM_SLAVE_SLOTS-1)*(C_NUM_MASTER_SLOTS+1) +: C_NUM_MASTER_SLOTS+1];
// Assign MI-side B, R and W channel ports (exclude error handler signals).
assign mi_bid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_BID;
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
assign mi_rid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] = M_AXI_RID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WLAST = mi_wlast[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign M_AXI_WUSER = mi_wuser[0+:C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH];
assign M_AXI_WID = (C_AXI_PROTOCOL == P_AXI3) ? mi_wid[0+:C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH] : 0;
assign M_AXI_WDATA = mi_wdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH];
assign M_AXI_WSTRB = mi_wstrb[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AW channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_AWMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_aw
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_MESG (tmp_aa_awmesg),
.S_TARGET_HOT (st_aa_awtarget_hot),
.S_VALID (ss_aa_awvalid),
.S_VALID_QUAL (st_aa_awvalid_qual),
.S_READY (ss_aa_awready),
// Granted AW command output
.M_MESG (aa_mi_awmesg),
.M_TARGET_HOT (aa_mi_awtarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_wm_awgrant_enc), // SI-slot index of granted command
.M_VALID (aa_sa_awvalid),
.M_READY (aa_sa_awready),
.ISSUING_LIMIT (mi_awmaxissuing)
);
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{aa_mi_awmesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_AWUSER_WIDTH]}};
axi_crossbar_v2_1_addr_arbiter # // "AA": Addr Arbiter (AR channel)
(
.C_FAMILY (C_FAMILY),
.C_NUM_M (C_NUM_MASTER_SLOTS+1),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_MESG_WIDTH (P_AA_ARMESG_WIDTH),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_ar
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AR command request inputs
.S_MESG (tmp_aa_armesg),
.S_TARGET_HOT (st_aa_artarget_hot),
.S_VALID_QUAL (st_aa_arvalid_qual),
.S_VALID (st_aa_arvalid),
.S_READY (st_aa_arready),
// Granted AR command output
.M_MESG (aa_mi_armesg),
.M_TARGET_HOT (aa_mi_artarget_hot), // MI-slot targeted by granted command
.M_GRANT_ENC (aa_mi_argrant_enc),
.M_VALID (aa_mi_arvalid), // SI-slot index of granted command
.M_READY (aa_mi_arready),
.ISSUING_LIMIT (mi_armaxissuing)
);
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_sa_awvalid && aa_sa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_mi_arvalid && aa_mi_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
end // gen_debug_trans_seq
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{aa_mi_armesg[0+:C_AXI_ID_WIDTH]}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+:C_AXI_ADDR_WIDTH]}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]}};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +:3]}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +:2]}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +:3]}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +:4]}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4 +:2]}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2 +:4]}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4 +:4]}};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+4+2+4+4 +:C_AXI_ARUSER_WIDTH]}};
// AW arbiter command transfer completes upon completion of both M-side AW-channel transfer and W-mux address acceptance (command push).
axi_crossbar_v2_1_splitter # // "SA": Splitter for Write Addr Arbiter
(
.C_NUM_M (2)
)
splitter_aw_mi
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_sa_awvalid),
.S_READY (aa_sa_awready),
.M_VALID ({mi_awvalid_en, sa_wm_awvalid_en}),
.M_READY ({mi_awready_mux, sa_wm_awready_mux})
);
assign mi_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{mi_awvalid_en}};
assign mi_awready_mux = |(aa_mi_awtarget_hot & mi_awready);
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY;
assign sa_wm_awvalid = aa_mi_awtarget_hot & {C_NUM_MASTER_SLOTS+1{sa_wm_awvalid_en}};
assign sa_wm_awready_mux = |(aa_mi_awtarget_hot & sa_wm_awready);
assign mi_arvalid = aa_mi_artarget_hot & {C_NUM_MASTER_SLOTS+1{aa_mi_arvalid}};
assign aa_mi_arready = |(aa_mi_artarget_hot & mi_arready);
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Slot C_NUM_MASTER_SLOTS+1 is the error handler
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY;
// MI-slot # C_NUM_MASTER_SLOTS is the error handler
if (C_RANGE_CHECK) begin : gen_decerr_slave
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (aa_mi_awmesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast[C_NUM_MASTER_SLOTS]),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (aa_mi_armesg[0+:C_AXI_ID_WIDTH]),
.S_AXI_ARLEN (aa_mi_armesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +:8]),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH]),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end else begin : gen_no_decerr_slave
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_wready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_arready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_awready[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_bid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_bresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH] = 0;
assign mi_bvalid[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rid[C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH] = 0;
assign mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH] = 0;
assign mi_rresp[C_NUM_MASTER_SLOTS*2+:2] = 0;
assign mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH] = 0;
assign mi_rlast[C_NUM_MASTER_SLOTS] = 1'b0;
assign mi_rvalid[C_NUM_MASTER_SLOTS] = 1'b0;
end // gen_decerr_slave
endgenerate
endmodule
|
module Mux_Array
#(parameter SWR=26, parameter EWR=5)
(
input wire clk,
input wire rst,
input wire load_i,
input wire [SWR-1:0] Data_i,
input wire FSM_left_right_i,
input wire [EWR-1:0] Shift_Value_i,
input wire bit_shift_i,
output wire [SWR-1:0] Data_o
);
////
wire [SWR-1:0] Data_array[EWR+1:0];
//////////////////7
genvar k;//Level
///////////////////77777
Rotate_Mux_Array #(.SWR(SWR)) first_rotate(
.Data_i(Data_i),
.select_i(FSM_left_right_i),
.Data_o(Data_array [0][SWR-1:0])
);
generate for (k=0; k < 3; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+1])
);
end
endgenerate
RegisterAdd #(.W(SWR)) Mid_Reg(
.clk(clk),
.rst(rst),
.load(1'b1),
.D(Data_array[3]),
.Q(Data_array[4])
);
generate for (k=3; k < EWR; k=k+1) begin
shift_mux_array #(.SWR(SWR), .LEVEL(k)) shift_mux_array(
.Data_i(Data_array[k+1]),
.select_i(Shift_Value_i[k]),
.bit_shift_i(bit_shift_i),
.Data_o(Data_array[k+2])
);
end
endgenerate
Rotate_Mux_Array #(.SWR(SWR)) last_rotate(
.Data_i(Data_array[EWR+1]),
.select_i(FSM_left_right_i),
.Data_o(Data_o)
);
endmodule
|
module processing_system7_bfm_v2_0_5_intr_wr_mem(
sw_clk,
rstn,
full,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_QOS,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* local parameters for interconnect wr fifo model */
input sw_clk, rstn;
output full;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg [axi_qos_width-1:0] WR_QOS;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [wr_fifo_data_bits-1:0] wr_fifo [0:intr_max_outstanding-1];
wire empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
task automatic write_mem;
input [wr_fifo_data_bits-1:0] data;
begin
wr_fifo[wr_ptr[intr_cnt_width-2:0]] = data;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
end
endtask
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
WR_QOS = 0;
state = SEND_DATA;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
if(!empty) begin
WR_DATA = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case(decode_address(wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1) begin
rd_ptr[intr_cnt_width-2:0] = 0;
end else begin
rd_ptr = rd_ptr+1;
end
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_intr_wr_mem(
sw_clk,
rstn,
full,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_QOS,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* local parameters for interconnect wr fifo model */
input sw_clk, rstn;
output full;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg [axi_qos_width-1:0] WR_QOS;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [wr_fifo_data_bits-1:0] wr_fifo [0:intr_max_outstanding-1];
wire empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
task automatic write_mem;
input [wr_fifo_data_bits-1:0] data;
begin
wr_fifo[wr_ptr[intr_cnt_width-2:0]] = data;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
end
endtask
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
WR_QOS = 0;
state = SEND_DATA;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
if(!empty) begin
WR_DATA = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case(decode_address(wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1) begin
rd_ptr[intr_cnt_width-2:0] = 0;
end else begin
rd_ptr = rd_ptr+1;
end
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_intr_wr_mem(
sw_clk,
rstn,
full,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_QOS,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* local parameters for interconnect wr fifo model */
input sw_clk, rstn;
output full;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg [axi_qos_width-1:0] WR_QOS;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [wr_fifo_data_bits-1:0] wr_fifo [0:intr_max_outstanding-1];
wire empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
task automatic write_mem;
input [wr_fifo_data_bits-1:0] data;
begin
wr_fifo[wr_ptr[intr_cnt_width-2:0]] = data;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
end
endtask
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
WR_QOS = 0;
state = SEND_DATA;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
if(!empty) begin
WR_DATA = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case(decode_address(wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1) begin
rd_ptr[intr_cnt_width-2:0] = 0;
end else begin
rd_ptr = rd_ptr+1;
end
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_intr_wr_mem(
sw_clk,
rstn,
full,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_QOS,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* local parameters for interconnect wr fifo model */
input sw_clk, rstn;
output full;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg [axi_qos_width-1:0] WR_QOS;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [wr_fifo_data_bits-1:0] wr_fifo [0:intr_max_outstanding-1];
wire empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
task automatic write_mem;
input [wr_fifo_data_bits-1:0] data;
begin
wr_fifo[wr_ptr[intr_cnt_width-2:0]] = data;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
end
endtask
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
WR_QOS = 0;
state = SEND_DATA;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
if(!empty) begin
WR_DATA = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case(decode_address(wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1) begin
rd_ptr[intr_cnt_width-2:0] = 0;
end else begin
rd_ptr = rd_ptr+1;
end
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_intr_wr_mem(
sw_clk,
rstn,
full,
WR_DATA_ACK_OCM,
WR_DATA_ACK_DDR,
WR_ADDR,
WR_DATA,
WR_BYTES,
WR_QOS,
WR_DATA_VALID_OCM,
WR_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* local parameters for interconnect wr fifo model */
input sw_clk, rstn;
output full;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg [axi_qos_width-1:0] WR_QOS;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [wr_fifo_data_bits-1:0] wr_fifo [0:intr_max_outstanding-1];
wire empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
task automatic write_mem;
input [wr_fifo_data_bits-1:0] data;
begin
wr_fifo[wr_ptr[intr_cnt_width-2:0]] = data;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
end
endtask
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
WR_QOS = 0;
state = SEND_DATA;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
if(!empty) begin
WR_DATA = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case(decode_address(wr_fifo[rd_ptr[intr_cnt_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1) begin
rd_ptr[intr_cnt_width-2:0] = 0;
end else begin
rd_ptr = rd_ptr+1;
end
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
endmodule
|
module axi_crossbar_v2_1_addr_arbiter #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_NUM_M = 1,
parameter integer C_MESG_WIDTH = 1,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_MESG_WIDTH-1:0] S_MESG,
input wire [C_NUM_S*C_NUM_M-1:0] S_TARGET_HOT,
input wire [C_NUM_S-1:0] S_VALID,
input wire [C_NUM_S-1:0] S_VALID_QUAL,
output wire [C_NUM_S-1:0] S_READY,
// Master Ports
output wire [C_MESG_WIDTH-1:0] M_MESG,
output wire [C_NUM_M-1:0] M_TARGET_HOT,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire M_VALID,
input wire M_READY,
// Sideband input
input wire [C_NUM_M-1:0] ISSUING_LIMIT
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] qual_reg;
reg [C_NUM_S-1:0] grant_hot;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg found_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S-1:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg [4:0] current_highest;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
reg prio_stall;
integer i;
wire [C_NUM_S-1:0] valid_qual_i;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_M-1:0] m_target_hot_i;
wire [C_NUM_M-1:0] m_target_hot_mux;
reg [C_MESG_WIDTH-1:0] m_mesg_i;
wire [C_MESG_WIDTH-1:0] m_mesg_mux;
genvar gen_si;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
assign M_GRANT_ENC = m_grant_enc_i;
assign M_MESG = m_mesg_i;
assign M_TARGET_HOT = m_target_hot_i;
generate
if (C_NUM_S>1) begin : gen_arbiter
always @(posedge ACLK) begin
if (ARESET) begin
qual_reg <= 0;
end else begin
qual_reg <= valid_qual_i | ~S_VALID; // Don't disqualify when bus not VALID (valid_qual_i would be garbage)
end
end
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_req_qual
assign valid_qual_i[gen_si] = S_VALID_QUAL[gen_si] & (|(S_TARGET_HOT[gen_si*C_NUM_M+:C_NUM_M] & ~ISSUING_LIMIT));
end
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
grant_hot <= 0;
any_grant <= 1'b0;
m_grant_enc_i <= 0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
m_target_hot_i <= 0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (M_READY) begin // Master-side completion
m_valid_i <= 1'b0;
grant_hot <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= grant_hot; // Assert S_AW/READY for 1 cycle to complete SI address transfer (regardless of M_AREADY)
end else begin
if ((found_prio | found_rr) & ~prio_stall) begin
// Waste 1 cycle and re-arbitrate if target of highest prio hit issuing limit in previous cycle (valid_qual_i).
if (|(next_hot & valid_qual_i)) begin
grant_hot <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
m_target_hot_i <= m_target_hot_mux;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
prio_stall = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
// Disqualify slot if target hit issuing limit (pass to lower prio slot).
if (P_PRIO_MASK[ip] & S_VALID[ip] & qual_reg[ip]) begin
if ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
// Stall 1 cycle when highest prio is recovering from SI-side handshake.
// (Do not allow lower-prio slot to win arbitration.)
if (s_ready_i[ip]) begin
any_prio = 1'b0;
prio_stall = 1'b1;
which_prio_hot = 0;
which_prio_enc = 0;
end else begin
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
// Disqualify slot if target hit issuing limit 2 or more cycles earlier (pass to next RR slot).
// Disqualify for 1 cycle a slot that is recovering from SI-side handshake (s_ready_i),
// and allow arbitration to pass to any other RR requester.
assign valid_rr = ~P_PRIO_MASK & S_VALID & ~s_ready_i & qual_reg;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_MESG_WIDTH)
) mux_mesg
(
.S (m_grant_enc_i),
.A (S_MESG),
.O (m_mesg_mux),
.OE (1'b1)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_NUM_M)
) si_amesg_mux_inst
(
.S (next_enc),
.A (S_TARGET_HOT),
.O (m_target_hot_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= m_mesg_mux;
end
end
end else begin : gen_no_arbiter
assign valid_qual_i = S_VALID_QUAL & |(S_TARGET_HOT & ~ISSUING_LIMIT);
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (M_READY) begin
m_valid_i <= 1'b0;
end
end else if (S_VALID[0] & valid_qual_i[0] & ~s_ready_i) begin
m_valid_i <= 1'b1;
s_ready_i <= 1'b1;
m_target_hot_i <= S_TARGET_HOT;
end
end
end
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= S_MESG;
end
end
end // gen_arbiter
endgenerate
endmodule
|
module axi_crossbar_v2_1_addr_arbiter #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_NUM_M = 1,
parameter integer C_MESG_WIDTH = 1,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_MESG_WIDTH-1:0] S_MESG,
input wire [C_NUM_S*C_NUM_M-1:0] S_TARGET_HOT,
input wire [C_NUM_S-1:0] S_VALID,
input wire [C_NUM_S-1:0] S_VALID_QUAL,
output wire [C_NUM_S-1:0] S_READY,
// Master Ports
output wire [C_MESG_WIDTH-1:0] M_MESG,
output wire [C_NUM_M-1:0] M_TARGET_HOT,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire M_VALID,
input wire M_READY,
// Sideband input
input wire [C_NUM_M-1:0] ISSUING_LIMIT
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] qual_reg;
reg [C_NUM_S-1:0] grant_hot;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg found_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S-1:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg [4:0] current_highest;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
reg prio_stall;
integer i;
wire [C_NUM_S-1:0] valid_qual_i;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_M-1:0] m_target_hot_i;
wire [C_NUM_M-1:0] m_target_hot_mux;
reg [C_MESG_WIDTH-1:0] m_mesg_i;
wire [C_MESG_WIDTH-1:0] m_mesg_mux;
genvar gen_si;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
assign M_GRANT_ENC = m_grant_enc_i;
assign M_MESG = m_mesg_i;
assign M_TARGET_HOT = m_target_hot_i;
generate
if (C_NUM_S>1) begin : gen_arbiter
always @(posedge ACLK) begin
if (ARESET) begin
qual_reg <= 0;
end else begin
qual_reg <= valid_qual_i | ~S_VALID; // Don't disqualify when bus not VALID (valid_qual_i would be garbage)
end
end
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_req_qual
assign valid_qual_i[gen_si] = S_VALID_QUAL[gen_si] & (|(S_TARGET_HOT[gen_si*C_NUM_M+:C_NUM_M] & ~ISSUING_LIMIT));
end
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
grant_hot <= 0;
any_grant <= 1'b0;
m_grant_enc_i <= 0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
m_target_hot_i <= 0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (M_READY) begin // Master-side completion
m_valid_i <= 1'b0;
grant_hot <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= grant_hot; // Assert S_AW/READY for 1 cycle to complete SI address transfer (regardless of M_AREADY)
end else begin
if ((found_prio | found_rr) & ~prio_stall) begin
// Waste 1 cycle and re-arbitrate if target of highest prio hit issuing limit in previous cycle (valid_qual_i).
if (|(next_hot & valid_qual_i)) begin
grant_hot <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
m_target_hot_i <= m_target_hot_mux;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
prio_stall = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
// Disqualify slot if target hit issuing limit (pass to lower prio slot).
if (P_PRIO_MASK[ip] & S_VALID[ip] & qual_reg[ip]) begin
if ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
// Stall 1 cycle when highest prio is recovering from SI-side handshake.
// (Do not allow lower-prio slot to win arbitration.)
if (s_ready_i[ip]) begin
any_prio = 1'b0;
prio_stall = 1'b1;
which_prio_hot = 0;
which_prio_enc = 0;
end else begin
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
// Disqualify slot if target hit issuing limit 2 or more cycles earlier (pass to next RR slot).
// Disqualify for 1 cycle a slot that is recovering from SI-side handshake (s_ready_i),
// and allow arbitration to pass to any other RR requester.
assign valid_rr = ~P_PRIO_MASK & S_VALID & ~s_ready_i & qual_reg;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_MESG_WIDTH)
) mux_mesg
(
.S (m_grant_enc_i),
.A (S_MESG),
.O (m_mesg_mux),
.OE (1'b1)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_NUM_M)
) si_amesg_mux_inst
(
.S (next_enc),
.A (S_TARGET_HOT),
.O (m_target_hot_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= m_mesg_mux;
end
end
end else begin : gen_no_arbiter
assign valid_qual_i = S_VALID_QUAL & |(S_TARGET_HOT & ~ISSUING_LIMIT);
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (M_READY) begin
m_valid_i <= 1'b0;
end
end else if (S_VALID[0] & valid_qual_i[0] & ~s_ready_i) begin
m_valid_i <= 1'b1;
s_ready_i <= 1'b1;
m_target_hot_i <= S_TARGET_HOT;
end
end
end
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= S_MESG;
end
end
end // gen_arbiter
endgenerate
endmodule
|
module axi_crossbar_v2_1_addr_arbiter #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_NUM_M = 1,
parameter integer C_MESG_WIDTH = 1,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_MESG_WIDTH-1:0] S_MESG,
input wire [C_NUM_S*C_NUM_M-1:0] S_TARGET_HOT,
input wire [C_NUM_S-1:0] S_VALID,
input wire [C_NUM_S-1:0] S_VALID_QUAL,
output wire [C_NUM_S-1:0] S_READY,
// Master Ports
output wire [C_MESG_WIDTH-1:0] M_MESG,
output wire [C_NUM_M-1:0] M_TARGET_HOT,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire M_VALID,
input wire M_READY,
// Sideband input
input wire [C_NUM_M-1:0] ISSUING_LIMIT
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] qual_reg;
reg [C_NUM_S-1:0] grant_hot;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg found_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S-1:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg [4:0] current_highest;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
reg prio_stall;
integer i;
wire [C_NUM_S-1:0] valid_qual_i;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_M-1:0] m_target_hot_i;
wire [C_NUM_M-1:0] m_target_hot_mux;
reg [C_MESG_WIDTH-1:0] m_mesg_i;
wire [C_MESG_WIDTH-1:0] m_mesg_mux;
genvar gen_si;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
assign M_GRANT_ENC = m_grant_enc_i;
assign M_MESG = m_mesg_i;
assign M_TARGET_HOT = m_target_hot_i;
generate
if (C_NUM_S>1) begin : gen_arbiter
always @(posedge ACLK) begin
if (ARESET) begin
qual_reg <= 0;
end else begin
qual_reg <= valid_qual_i | ~S_VALID; // Don't disqualify when bus not VALID (valid_qual_i would be garbage)
end
end
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_req_qual
assign valid_qual_i[gen_si] = S_VALID_QUAL[gen_si] & (|(S_TARGET_HOT[gen_si*C_NUM_M+:C_NUM_M] & ~ISSUING_LIMIT));
end
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
grant_hot <= 0;
any_grant <= 1'b0;
m_grant_enc_i <= 0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
m_target_hot_i <= 0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (M_READY) begin // Master-side completion
m_valid_i <= 1'b0;
grant_hot <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= grant_hot; // Assert S_AW/READY for 1 cycle to complete SI address transfer (regardless of M_AREADY)
end else begin
if ((found_prio | found_rr) & ~prio_stall) begin
// Waste 1 cycle and re-arbitrate if target of highest prio hit issuing limit in previous cycle (valid_qual_i).
if (|(next_hot & valid_qual_i)) begin
grant_hot <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
m_target_hot_i <= m_target_hot_mux;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
prio_stall = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
// Disqualify slot if target hit issuing limit (pass to lower prio slot).
if (P_PRIO_MASK[ip] & S_VALID[ip] & qual_reg[ip]) begin
if ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
// Stall 1 cycle when highest prio is recovering from SI-side handshake.
// (Do not allow lower-prio slot to win arbitration.)
if (s_ready_i[ip]) begin
any_prio = 1'b0;
prio_stall = 1'b1;
which_prio_hot = 0;
which_prio_enc = 0;
end else begin
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
// Disqualify slot if target hit issuing limit 2 or more cycles earlier (pass to next RR slot).
// Disqualify for 1 cycle a slot that is recovering from SI-side handshake (s_ready_i),
// and allow arbitration to pass to any other RR requester.
assign valid_rr = ~P_PRIO_MASK & S_VALID & ~s_ready_i & qual_reg;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_MESG_WIDTH)
) mux_mesg
(
.S (m_grant_enc_i),
.A (S_MESG),
.O (m_mesg_mux),
.OE (1'b1)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_NUM_M)
) si_amesg_mux_inst
(
.S (next_enc),
.A (S_TARGET_HOT),
.O (m_target_hot_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= m_mesg_mux;
end
end
end else begin : gen_no_arbiter
assign valid_qual_i = S_VALID_QUAL & |(S_TARGET_HOT & ~ISSUING_LIMIT);
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (M_READY) begin
m_valid_i <= 1'b0;
end
end else if (S_VALID[0] & valid_qual_i[0] & ~s_ready_i) begin
m_valid_i <= 1'b1;
s_ready_i <= 1'b1;
m_target_hot_i <= S_TARGET_HOT;
end
end
end
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= S_MESG;
end
end
end // gen_arbiter
endgenerate
endmodule
|
module axi_crossbar_v2_1_addr_arbiter #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_NUM_M = 1,
parameter integer C_MESG_WIDTH = 1,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_MESG_WIDTH-1:0] S_MESG,
input wire [C_NUM_S*C_NUM_M-1:0] S_TARGET_HOT,
input wire [C_NUM_S-1:0] S_VALID,
input wire [C_NUM_S-1:0] S_VALID_QUAL,
output wire [C_NUM_S-1:0] S_READY,
// Master Ports
output wire [C_MESG_WIDTH-1:0] M_MESG,
output wire [C_NUM_M-1:0] M_TARGET_HOT,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire M_VALID,
input wire M_READY,
// Sideband input
input wire [C_NUM_M-1:0] ISSUING_LIMIT
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] qual_reg;
reg [C_NUM_S-1:0] grant_hot;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg found_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S-1:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg [4:0] current_highest;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
reg prio_stall;
integer i;
wire [C_NUM_S-1:0] valid_qual_i;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_M-1:0] m_target_hot_i;
wire [C_NUM_M-1:0] m_target_hot_mux;
reg [C_MESG_WIDTH-1:0] m_mesg_i;
wire [C_MESG_WIDTH-1:0] m_mesg_mux;
genvar gen_si;
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
assign M_GRANT_ENC = m_grant_enc_i;
assign M_MESG = m_mesg_i;
assign M_TARGET_HOT = m_target_hot_i;
generate
if (C_NUM_S>1) begin : gen_arbiter
always @(posedge ACLK) begin
if (ARESET) begin
qual_reg <= 0;
end else begin
qual_reg <= valid_qual_i | ~S_VALID; // Don't disqualify when bus not VALID (valid_qual_i would be garbage)
end
end
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_req_qual
assign valid_qual_i[gen_si] = S_VALID_QUAL[gen_si] & (|(S_TARGET_HOT[gen_si*C_NUM_M+:C_NUM_M] & ~ISSUING_LIMIT));
end
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
grant_hot <= 0;
any_grant <= 1'b0;
m_grant_enc_i <= 0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
m_target_hot_i <= 0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (M_READY) begin // Master-side completion
m_valid_i <= 1'b0;
grant_hot <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= grant_hot; // Assert S_AW/READY for 1 cycle to complete SI address transfer (regardless of M_AREADY)
end else begin
if ((found_prio | found_rr) & ~prio_stall) begin
// Waste 1 cycle and re-arbitrate if target of highest prio hit issuing limit in previous cycle (valid_qual_i).
if (|(next_hot & valid_qual_i)) begin
grant_hot <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
m_target_hot_i <= m_target_hot_mux;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
prio_stall = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
// Disqualify slot if target hit issuing limit (pass to lower prio slot).
if (P_PRIO_MASK[ip] & S_VALID[ip] & qual_reg[ip]) begin
if ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
// Stall 1 cycle when highest prio is recovering from SI-side handshake.
// (Do not allow lower-prio slot to win arbitration.)
if (s_ready_i[ip]) begin
any_prio = 1'b0;
prio_stall = 1'b1;
which_prio_hot = 0;
which_prio_enc = 0;
end else begin
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
// Disqualify slot if target hit issuing limit 2 or more cycles earlier (pass to next RR slot).
// Disqualify for 1 cycle a slot that is recovering from SI-side handshake (s_ready_i),
// and allow arbitration to pass to any other RR requester.
assign valid_rr = ~P_PRIO_MASK & S_VALID & ~s_ready_i & qual_reg;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_MESG_WIDTH)
) mux_mesg
(
.S (m_grant_enc_i),
.A (S_MESG),
.O (m_mesg_mux),
.OE (1'b1)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_NUM_M)
) si_amesg_mux_inst
(
.S (next_enc),
.A (S_TARGET_HOT),
.O (m_target_hot_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= m_mesg_mux;
end
end
end else begin : gen_no_arbiter
assign valid_qual_i = S_VALID_QUAL & |(S_TARGET_HOT & ~ISSUING_LIMIT);
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (M_READY) begin
m_valid_i <= 1'b0;
end
end else if (S_VALID[0] & valid_qual_i[0] & ~s_ready_i) begin
m_valid_i <= 1'b1;
s_ready_i <= 1'b1;
m_target_hot_i <= S_TARGET_HOT;
end
end
end
always @(posedge ACLK) begin
if (ARESET) begin
m_mesg_i <= 0;
end else if (~m_valid_i) begin
m_mesg_i <= S_MESG;
end
end
end // gen_arbiter
endgenerate
endmodule
|
module processing_system7_bfm_v2_0_5_intr_rd_mem(
sw_clk,
rstn,
full,
empty,
req,
invalid_rd_req,
rd_info,
RD_DATA_OCM,
RD_DATA_DDR,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk, rstn;
output full, empty;
input RD_DATA_VALID_DDR, RD_DATA_VALID_OCM;
input [max_burst_bits-1:0] RD_DATA_DDR, RD_DATA_OCM;
input req, invalid_rd_req;
input [rd_info_bits-1:0] rd_info;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [rd_afi_fifo_bits-1:0] rd_fifo [0:intr_max_outstanding-1]; // Data, addr, size, burst, len, RID, RRESP, valid bytes
wire full, empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
/* read from the fifo */
task read_mem;
output [rd_afi_fifo_bits-1:0] data;
begin
data = rd_fifo[rd_ptr[intr_cnt_width-1:0]];
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
rd_ptr[intr_cnt_width-2:0] = 0;
else
rd_ptr = rd_ptr + 1;
end
endtask
reg state;
reg invalid_rd;
/* write in the fifo */
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
state = 0;
invalid_rd = 0;
end else begin
case (state)
0 : begin
state = 0;
invalid_rd = 0;
if(req)begin
state = 1;
invalid_rd = invalid_rd_req;
end
end
1 : begin
state = 1;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd) begin
if(RD_DATA_VALID_DDR)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_DDR,rd_info};
else if(RD_DATA_VALID_OCM)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_OCM,rd_info};
else
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = rd_info;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
state = 0;
invalid_rd = 0;
end
end
endcase
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_intr_rd_mem(
sw_clk,
rstn,
full,
empty,
req,
invalid_rd_req,
rd_info,
RD_DATA_OCM,
RD_DATA_DDR,
RD_DATA_VALID_OCM,
RD_DATA_VALID_DDR
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk, rstn;
output full, empty;
input RD_DATA_VALID_DDR, RD_DATA_VALID_OCM;
input [max_burst_bits-1:0] RD_DATA_DDR, RD_DATA_OCM;
input req, invalid_rd_req;
input [rd_info_bits-1:0] rd_info;
reg [intr_cnt_width-1:0] wr_ptr = 0, rd_ptr = 0;
reg [rd_afi_fifo_bits-1:0] rd_fifo [0:intr_max_outstanding-1]; // Data, addr, size, burst, len, RID, RRESP, valid bytes
wire full, empty;
assign empty = (wr_ptr === rd_ptr)?1'b1: 1'b0;
assign full = ((wr_ptr[intr_cnt_width-1]!== rd_ptr[intr_cnt_width-1]) && (wr_ptr[intr_cnt_width-2:0] === rd_ptr[intr_cnt_width-2:0]))?1'b1 :1'b0;
/* read from the fifo */
task read_mem;
output [rd_afi_fifo_bits-1:0] data;
begin
data = rd_fifo[rd_ptr[intr_cnt_width-1:0]];
if(rd_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
rd_ptr[intr_cnt_width-2:0] = 0;
else
rd_ptr = rd_ptr + 1;
end
endtask
reg state;
reg invalid_rd;
/* write in the fifo */
always@(negedge rstn or posedge sw_clk)
begin
if(!rstn) begin
wr_ptr = 0;
rd_ptr = 0;
state = 0;
invalid_rd = 0;
end else begin
case (state)
0 : begin
state = 0;
invalid_rd = 0;
if(req)begin
state = 1;
invalid_rd = invalid_rd_req;
end
end
1 : begin
state = 1;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd) begin
if(RD_DATA_VALID_DDR)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_DDR,rd_info};
else if(RD_DATA_VALID_OCM)
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = {RD_DATA_OCM,rd_info};
else
rd_fifo[wr_ptr[intr_cnt_width-2:0]] = rd_info;
if(wr_ptr[intr_cnt_width-2:0] === intr_max_outstanding-1)
wr_ptr[intr_cnt_width-2:0] = 0;
else
wr_ptr = wr_ptr + 1;
state = 0;
invalid_rd = 0;
end
end
endcase
end
end
endmodule
|
module axi_crossbar_v2_1_crossbar_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_R_REGISTER = 0,
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID, // Unused
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID, // Unused
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_NUM_MASTER_SLOTS_DE = C_RANGE_CHECK ? C_NUM_MASTER_SLOTS+1 : C_NUM_MASTER_SLOTS;
localparam integer P_NUM_MASTER_SLOTS_LOG = (C_NUM_MASTER_SLOTS>1) ? f_ceil_log2(C_NUM_MASTER_SLOTS) : 1;
localparam integer P_NUM_MASTER_SLOTS_DE_LOG = (P_NUM_MASTER_SLOTS_DE>1) ? f_ceil_log2(P_NUM_MASTER_SLOTS_DE) : 1;
localparam integer P_NUM_SLAVE_SLOTS_LOG = (C_NUM_SLAVE_SLOTS>1) ? f_ceil_log2(C_NUM_SLAVE_SLOTS) : 1;
localparam integer P_AXI_AUSER_WIDTH = (C_AXI_AWUSER_WIDTH > C_AXI_ARUSER_WIDTH) ? C_AXI_AWUSER_WIDTH : C_AXI_ARUSER_WIDTH;
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_AMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+2+4+4 + P_AXI_AUSER_WIDTH + 4;
localparam integer P_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_RMESG_WIDTH = 1+2 + C_AXI_DATA_WIDTH + C_AXI_RUSER_WIDTH;
localparam integer P_WMESG_WIDTH = 1 + C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXILITE_MASK = f_m_axilite(0); // Mask of axilite rule-check MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_BYPASS = 0;
localparam integer P_LIGHTWT = 7;
localparam integer P_FULLY_REG = 1;
localparam integer P_R_REG_CONFIG = C_R_REGISTER == 8 ? // "Automatic" reg-slice
(C_RANGE_CHECK ? ((C_AXI_PROTOCOL == P_AXILITE) ? P_LIGHTWT : P_FULLY_REG) : P_BYPASS) : // Bypass if no R-channel mux
C_R_REGISTER;
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_MASTER_SLOTS-1:0] f_bit32to1_mi
(input [C_NUM_MASTER_SLOTS*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
// AxiLite error-checking mask (on MI)
function [C_NUM_MASTER_SLOTS-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_axilite[mi] = (C_M_AXI_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_armesg ;
wire [P_AMESG_WIDTH-1:0] aa_amesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_aid ;
wire [C_AXI_ADDR_WIDTH-1:0] mi_aaddr ;
wire [8-1:0] mi_alen ;
wire [3-1:0] mi_asize ;
wire [2-1:0] mi_alock ;
wire [3-1:0] mi_aprot ;
wire [2-1:0] mi_aburst ;
wire [4-1:0] mi_acache ;
wire [4-1:0] mi_aregion ;
wire [4-1:0] mi_aqos ;
wire [P_AXI_AUSER_WIDTH-1:0] mi_auser ;
wire [4-1:0] target_region ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] aa_grant_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG-1:0] aa_grant_enc ;
wire aa_grant_rnw ;
wire aa_grant_any ;
wire [C_NUM_MASTER_SLOTS-1:0] target_mi_hot ;
wire [P_NUM_MASTER_SLOTS_LOG-1:0] target_mi_enc ;
reg [P_NUM_MASTER_SLOTS_DE-1:0] m_atarget_hot ;
reg [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc ;
wire [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc_comb ;
wire match;
wire any_error ;
wire [7:0] m_aerror_i ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awready ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arready ;
wire aa_awvalid ;
wire aa_awready ;
wire aa_arvalid ;
wire aa_arready ;
wire mi_awvalid_en;
wire mi_awready_mux;
wire mi_arvalid_en;
wire mi_arready_mux;
wire w_transfer_en;
wire w_complete_mux;
wire b_transfer_en;
wire b_complete_mux;
wire r_transfer_en;
wire r_complete_mux;
wire target_secure;
wire target_write;
wire target_read;
wire target_axilite;
wire [P_BMESG_WIDTH-1:0] si_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_BMESG_WIDTH-1:0] mi_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_bresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [2-1:0] si_bresp ;
wire [C_AXI_BUSER_WIDTH-1:0] si_buser ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bready ;
wire aa_bvalid ;
wire aa_bready ;
wire si_bready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_bvalid;
wire [P_RMESG_WIDTH-1:0] aa_rmesg ;
wire [P_RMESG_WIDTH-1:0] sr_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_RMESG_WIDTH-1:0] mi_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_rresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [P_NUM_MASTER_SLOTS_DE*1-1:0] mi_rlast ;
wire [2-1:0] si_rresp ;
wire [C_AXI_RUSER_WIDTH-1:0] si_ruser ;
wire [C_AXI_DATA_WIDTH-1:0] si_rdata ;
wire si_rlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rready ;
wire aa_rvalid ;
wire aa_rready ;
wire sr_rvalid ;
wire si_rready ;
wire sr_rready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_rvalid;
wire [C_NUM_SLAVE_SLOTS*P_WMESG_WIDTH-1:0] si_wmesg ;
wire [P_WMESG_WIDTH-1:0] mi_wmesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [1-1:0] mi_wlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wready ;
wire aa_wvalid ;
wire aa_wready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_wready;
reg [7:0] debug_r_beat_cnt_i;
reg [7:0] debug_w_beat_cnt_i;
reg [7:0] debug_aw_trans_seq_i;
reg [7:0] debug_ar_trans_seq_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
axi_crossbar_v2_1_addr_arbiter_sasd #
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_AMESG_WIDTH (P_AMESG_WIDTH),
.C_GRANT_ENC (1),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_inst
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_AWMESG (si_awmesg),
.S_ARMESG (si_armesg),
.S_AWVALID (S_AXI_AWVALID),
.S_AWREADY (S_AXI_AWREADY),
.S_ARVALID (S_AXI_ARVALID),
.S_ARREADY (S_AXI_ARREADY),
.M_GRANT_ENC (aa_grant_enc),
.M_GRANT_HOT (aa_grant_hot), // SI-slot 1-hot mask of granted command
.M_GRANT_ANY (aa_grant_any),
.M_GRANT_RNW (aa_grant_rnw),
.M_AMESG (aa_amesg), // Either S_AWMESG or S_ARMESG, as indicated by M_AWVALID and M_ARVALID.
.M_AWVALID (aa_awvalid),
.M_AWREADY (aa_awready),
.M_ARVALID (aa_arvalid),
.M_ARREADY (aa_arready)
);
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_MASTER_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL ({C_NUM_MASTER_SLOTS{1'b1}}),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (mi_aaddr),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign match = 1'b1;
assign target_region = 4'b0000;
end // gen_addr_decoder
// AW-channel arbiter command transfer completes upon completion of both M-side AW-channel transfer and B channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (3)
)
splitter_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_awvalid),
.S_READY (aa_awready),
.M_VALID ({mi_awvalid_en, w_transfer_en, b_transfer_en}),
.M_READY ({mi_awready_mux, w_complete_mux, b_complete_mux})
);
// AR-channel arbiter command transfer completes upon completion of both M-side AR-channel transfer and R channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (2)
)
splitter_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_arvalid),
.S_READY (aa_arready),
.M_VALID ({mi_arvalid_en, r_transfer_en}),
.M_READY ({mi_arready_mux, r_complete_mux})
);
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_write = |(target_mi_hot & C_M_AXI_SUPPORTS_WRITE);
assign target_read = |(target_mi_hot & C_M_AXI_SUPPORTS_READ);
assign target_axilite = |(target_mi_hot & P_M_AXILITE_MASK);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && mi_aprot[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((mi_alen != 0) ||
(mi_asize[1:0] == 2'b11) || (mi_asize[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[3] = (~aa_grant_rnw && ~target_write) ||
(aa_grant_rnw && ~target_read); // R/W direction unsupported by target
assign m_aerror_i[7:4] = 4'b0000; // Reserved
assign m_atarget_enc_comb = any_error ? (P_NUM_MASTER_SLOTS_DE-1) : target_mi_enc; // Select MI slot or decerr_slave
always @(posedge ACLK) begin
if (reset) begin
m_atarget_hot <= 0;
m_atarget_enc <= 0;
end else begin
m_atarget_hot <= {P_NUM_MASTER_SLOTS_DE{aa_grant_any}} & (any_error ? {1'b1, {C_NUM_MASTER_SLOTS{1'b0}}} : {1'b0, target_mi_hot}); // Select MI slot or decerr_slave
m_atarget_enc <= m_atarget_enc_comb;
end
end
// Receive AWREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_awready_mux_inst
(
.S (m_atarget_enc),
.A (mi_awready),
.O (mi_awready_mux),
.OE (mi_awvalid_en)
);
// Receive ARREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_arready_mux_inst
(
.S (m_atarget_enc),
.A (mi_arready),
.O (mi_arready_mux),
.OE (mi_arvalid_en)
);
assign mi_awvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_awvalid_en}}; // Assert AWVALID on targeted MI.
assign mi_arvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_arvalid_en}}; // Assert ARVALID on targeted MI.
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY; // Copy from MI slots.
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY; // Copy from MI slots.
// Receive WREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_wready_mux_inst
(
.S (m_atarget_enc),
.A (mi_wready),
.O (aa_wready),
.OE (w_transfer_en)
);
assign mi_wvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_wvalid}}; // Assert WVALID on targeted MI.
assign si_wready = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_wready}}; // Assert WREADY on granted SI.
assign S_AXI_WREADY = si_wready;
assign w_complete_mux = aa_wready & aa_wvalid & mi_wlast; // W burst complete on on designated SI/MI.
// Receive RREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_rready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_RREADY),
.O (si_rready),
.OE (r_transfer_en)
);
assign sr_rready = si_rready & r_transfer_en;
assign mi_rready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_rready}}; // Assert RREADY on targeted MI.
assign si_rvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{sr_rvalid}}; // Assert RVALID on granted SI.
assign S_AXI_RVALID = si_rvalid;
assign r_complete_mux = sr_rready & sr_rvalid & si_rlast; // R burst complete on on designated SI/MI.
// Receive BREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_bready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_BREADY),
.O (si_bready),
.OE (b_transfer_en)
);
assign aa_bready = si_bready & b_transfer_en;
assign mi_bready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_bready}}; // Assert BREADY on targeted MI.
assign si_bvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_bvalid}}; // Assert BVALID on granted SI.
assign S_AXI_BVALID = si_bvalid;
assign b_complete_mux = aa_bready & aa_bvalid; // B transfer complete on on designated SI/MI.
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_si_amesg
assign si_armesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_ARREGION[gen_si_slot*4+:4],
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH +: C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2],
S_AXI_ARPROT[gen_si_slot*3+:3],
S_AXI_ARLOCK[gen_si_slot*2+:2],
S_AXI_ARSIZE[gen_si_slot*3+:3],
S_AXI_ARLEN[gen_si_slot*8+:8],
S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH +: C_AXI_ID_WIDTH], gen_si_slot)
};
assign si_awmesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_AWREGION[gen_si_slot*4+:4],
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH +: C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2],
S_AXI_AWPROT[gen_si_slot*3+:3],
S_AXI_AWLOCK[gen_si_slot*2+:2],
S_AXI_AWSIZE[gen_si_slot*3+:3],
S_AXI_AWLEN[gen_si_slot*8+:8],
S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)
};
end // gen_si_amesg
assign mi_aid = aa_amesg[0 +: C_AXI_ID_WIDTH];
assign mi_aaddr = aa_amesg[C_AXI_ID_WIDTH +: C_AXI_ADDR_WIDTH];
assign mi_alen = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +: 8];
assign mi_asize = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +: 3];
assign mi_alock = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +: 2];
assign mi_aprot = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +: 3];
assign mi_aburst = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +: 2];
assign mi_acache = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2 +: 4];
assign mi_aqos = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4 +: 4];
assign mi_auser = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4 +: P_AXI_AUSER_WIDTH];
assign mi_aregion = (C_ADDR_DECODE != 0) ? target_region : aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4+P_AXI_AUSER_WIDTH +: 4];
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_AWUSER_WIDTH] }};
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_ARUSER_WIDTH] }};
// W-channel MI handshakes
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
// Broadcast W transfer payload to all MI-slots
assign M_AXI_WLAST = {C_NUM_MASTER_SLOTS{mi_wlast}};
assign M_AXI_WUSER = {C_NUM_MASTER_SLOTS{mi_wuser}};
assign M_AXI_WDATA = {C_NUM_MASTER_SLOTS{mi_wdata}};
assign M_AXI_WSTRB = {C_NUM_MASTER_SLOTS{mi_wstrb}};
assign M_AXI_WID = {C_NUM_MASTER_SLOTS{mi_wid}};
// Broadcast R transfer payload to all SI-slots
assign S_AXI_RLAST = {C_NUM_SLAVE_SLOTS{si_rlast}};
assign S_AXI_RRESP = {C_NUM_SLAVE_SLOTS{si_rresp}};
assign S_AXI_RUSER = {C_NUM_SLAVE_SLOTS{si_ruser}};
assign S_AXI_RDATA = {C_NUM_SLAVE_SLOTS{si_rdata}};
assign S_AXI_RID = {C_NUM_SLAVE_SLOTS{mi_aid}};
// Broadcast B transfer payload to all SI-slots
assign S_AXI_BRESP = {C_NUM_SLAVE_SLOTS{si_bresp}};
assign S_AXI_BUSER = {C_NUM_SLAVE_SLOTS{si_buser}};
assign S_AXI_BID = {C_NUM_SLAVE_SLOTS{mi_aid}};
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI WVALID mux.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_w_valid_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_WVALID),
.O (aa_wvalid),
.OE (w_transfer_en)
);
// SI W-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (P_WMESG_WIDTH)
) si_w_payload_mux_inst
(
.S (aa_grant_enc),
.A (si_wmesg),
.O (mi_wmesg),
.OE (1'b1)
);
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_wmesg
assign si_wmesg[gen_si_slot*P_WMESG_WIDTH+:P_WMESG_WIDTH] = { // Concatenate from MSB to LSB
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
S_AXI_WLAST[gen_si_slot*1+:1]
};
end // gen_wmesg
assign mi_wlast = mi_wmesg[0];
assign mi_wdata = mi_wmesg[1 +: C_AXI_DATA_WIDTH];
assign mi_wstrb = mi_wmesg[1+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign mi_wuser = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign mi_wid = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
end else begin : gen_no_wmux
assign aa_wvalid = w_transfer_en & S_AXI_WVALID;
assign mi_wlast = S_AXI_WLAST;
assign mi_wdata = S_AXI_WDATA;
assign mi_wstrb = S_AXI_WSTRB;
assign mi_wuser = S_AXI_WUSER;
assign mi_wid = S_AXI_WID;
end // gen_wmux
// Receive RVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_rvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_rvalid),
.O (aa_rvalid),
.OE (r_transfer_en)
);
// MI R-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_RMESG_WIDTH)
) mi_rmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_rmesg),
.O (aa_rmesg),
.OE (1'b1)
);
axi_register_slice_v2_1_axic_register_slice #
(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (P_RMESG_WIDTH),
.C_REG_CONFIG (P_R_REG_CONFIG)
)
reg_slice_r
(
// System Signals
.ACLK(ACLK),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(aa_rmesg),
.S_VALID(aa_rvalid),
.S_READY(aa_rready),
// Master side
.M_PAYLOAD_DATA(sr_rmesg),
.M_VALID(sr_rvalid),
.M_READY(sr_rready)
);
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_rmesg
assign mi_rmesg[gen_mi_slot*P_RMESG_WIDTH+:P_RMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
mi_rresp[gen_mi_slot*2+:2],
mi_rlast[gen_mi_slot*1+:1]
};
end // gen_rmesg
assign si_rlast = sr_rmesg[0];
assign si_rresp = sr_rmesg[1 +: 2];
assign si_rdata = sr_rmesg[1+2 +: C_AXI_DATA_WIDTH];
assign si_ruser = sr_rmesg[1+2+C_AXI_DATA_WIDTH +: C_AXI_RUSER_WIDTH];
// Receive BVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_bvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_bvalid),
.O (aa_bvalid),
.OE (b_transfer_en)
);
// MI B-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_BMESG_WIDTH)
) mi_bmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_bmesg),
.O (si_bmesg),
.OE (1'b1)
);
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_bmesg
assign mi_bmesg[gen_mi_slot*P_BMESG_WIDTH+:P_BMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
mi_bresp[gen_mi_slot*2+:2]
};
end // gen_bmesg
assign si_bresp = si_bmesg[0 +: 2];
assign si_buser = si_bmesg[2 +: C_AXI_BUSER_WIDTH];
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_awvalid && aa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_arvalid && aa_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i <= 0;
end else if (aa_wready & aa_wvalid) begin
if (mi_wlast) begin
debug_w_beat_cnt_i <= 0;
end else begin
debug_w_beat_cnt_i <= debug_w_beat_cnt_i + 1;
end
end
end // Clocked process
// DEBUG READ BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_r_beat_cnt_i <= 0;
end else if (sr_rready & sr_rvalid) begin
if (si_rlast) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end // Clocked process
end // gen_debug_trans_seq
if (C_RANGE_CHECK) begin : gen_decerr
// Highest MI-slot (index C_NUM_MASTER_SLOTS) is the error handler
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (1'b0),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (1'b0),
.S_AXI_ARLEN (mi_alen),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end // gen_decerr
endgenerate
endmodule
|
module axi_crossbar_v2_1_crossbar_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_R_REGISTER = 0,
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID, // Unused
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID, // Unused
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_NUM_MASTER_SLOTS_DE = C_RANGE_CHECK ? C_NUM_MASTER_SLOTS+1 : C_NUM_MASTER_SLOTS;
localparam integer P_NUM_MASTER_SLOTS_LOG = (C_NUM_MASTER_SLOTS>1) ? f_ceil_log2(C_NUM_MASTER_SLOTS) : 1;
localparam integer P_NUM_MASTER_SLOTS_DE_LOG = (P_NUM_MASTER_SLOTS_DE>1) ? f_ceil_log2(P_NUM_MASTER_SLOTS_DE) : 1;
localparam integer P_NUM_SLAVE_SLOTS_LOG = (C_NUM_SLAVE_SLOTS>1) ? f_ceil_log2(C_NUM_SLAVE_SLOTS) : 1;
localparam integer P_AXI_AUSER_WIDTH = (C_AXI_AWUSER_WIDTH > C_AXI_ARUSER_WIDTH) ? C_AXI_AWUSER_WIDTH : C_AXI_ARUSER_WIDTH;
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_AMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+2+4+4 + P_AXI_AUSER_WIDTH + 4;
localparam integer P_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_RMESG_WIDTH = 1+2 + C_AXI_DATA_WIDTH + C_AXI_RUSER_WIDTH;
localparam integer P_WMESG_WIDTH = 1 + C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXILITE_MASK = f_m_axilite(0); // Mask of axilite rule-check MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_BYPASS = 0;
localparam integer P_LIGHTWT = 7;
localparam integer P_FULLY_REG = 1;
localparam integer P_R_REG_CONFIG = C_R_REGISTER == 8 ? // "Automatic" reg-slice
(C_RANGE_CHECK ? ((C_AXI_PROTOCOL == P_AXILITE) ? P_LIGHTWT : P_FULLY_REG) : P_BYPASS) : // Bypass if no R-channel mux
C_R_REGISTER;
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_MASTER_SLOTS-1:0] f_bit32to1_mi
(input [C_NUM_MASTER_SLOTS*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
// AxiLite error-checking mask (on MI)
function [C_NUM_MASTER_SLOTS-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_axilite[mi] = (C_M_AXI_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_armesg ;
wire [P_AMESG_WIDTH-1:0] aa_amesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_aid ;
wire [C_AXI_ADDR_WIDTH-1:0] mi_aaddr ;
wire [8-1:0] mi_alen ;
wire [3-1:0] mi_asize ;
wire [2-1:0] mi_alock ;
wire [3-1:0] mi_aprot ;
wire [2-1:0] mi_aburst ;
wire [4-1:0] mi_acache ;
wire [4-1:0] mi_aregion ;
wire [4-1:0] mi_aqos ;
wire [P_AXI_AUSER_WIDTH-1:0] mi_auser ;
wire [4-1:0] target_region ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] aa_grant_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG-1:0] aa_grant_enc ;
wire aa_grant_rnw ;
wire aa_grant_any ;
wire [C_NUM_MASTER_SLOTS-1:0] target_mi_hot ;
wire [P_NUM_MASTER_SLOTS_LOG-1:0] target_mi_enc ;
reg [P_NUM_MASTER_SLOTS_DE-1:0] m_atarget_hot ;
reg [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc ;
wire [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc_comb ;
wire match;
wire any_error ;
wire [7:0] m_aerror_i ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awready ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arready ;
wire aa_awvalid ;
wire aa_awready ;
wire aa_arvalid ;
wire aa_arready ;
wire mi_awvalid_en;
wire mi_awready_mux;
wire mi_arvalid_en;
wire mi_arready_mux;
wire w_transfer_en;
wire w_complete_mux;
wire b_transfer_en;
wire b_complete_mux;
wire r_transfer_en;
wire r_complete_mux;
wire target_secure;
wire target_write;
wire target_read;
wire target_axilite;
wire [P_BMESG_WIDTH-1:0] si_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_BMESG_WIDTH-1:0] mi_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_bresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [2-1:0] si_bresp ;
wire [C_AXI_BUSER_WIDTH-1:0] si_buser ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bready ;
wire aa_bvalid ;
wire aa_bready ;
wire si_bready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_bvalid;
wire [P_RMESG_WIDTH-1:0] aa_rmesg ;
wire [P_RMESG_WIDTH-1:0] sr_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_RMESG_WIDTH-1:0] mi_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_rresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [P_NUM_MASTER_SLOTS_DE*1-1:0] mi_rlast ;
wire [2-1:0] si_rresp ;
wire [C_AXI_RUSER_WIDTH-1:0] si_ruser ;
wire [C_AXI_DATA_WIDTH-1:0] si_rdata ;
wire si_rlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rready ;
wire aa_rvalid ;
wire aa_rready ;
wire sr_rvalid ;
wire si_rready ;
wire sr_rready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_rvalid;
wire [C_NUM_SLAVE_SLOTS*P_WMESG_WIDTH-1:0] si_wmesg ;
wire [P_WMESG_WIDTH-1:0] mi_wmesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [1-1:0] mi_wlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wready ;
wire aa_wvalid ;
wire aa_wready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_wready;
reg [7:0] debug_r_beat_cnt_i;
reg [7:0] debug_w_beat_cnt_i;
reg [7:0] debug_aw_trans_seq_i;
reg [7:0] debug_ar_trans_seq_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
axi_crossbar_v2_1_addr_arbiter_sasd #
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_AMESG_WIDTH (P_AMESG_WIDTH),
.C_GRANT_ENC (1),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_inst
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_AWMESG (si_awmesg),
.S_ARMESG (si_armesg),
.S_AWVALID (S_AXI_AWVALID),
.S_AWREADY (S_AXI_AWREADY),
.S_ARVALID (S_AXI_ARVALID),
.S_ARREADY (S_AXI_ARREADY),
.M_GRANT_ENC (aa_grant_enc),
.M_GRANT_HOT (aa_grant_hot), // SI-slot 1-hot mask of granted command
.M_GRANT_ANY (aa_grant_any),
.M_GRANT_RNW (aa_grant_rnw),
.M_AMESG (aa_amesg), // Either S_AWMESG or S_ARMESG, as indicated by M_AWVALID and M_ARVALID.
.M_AWVALID (aa_awvalid),
.M_AWREADY (aa_awready),
.M_ARVALID (aa_arvalid),
.M_ARREADY (aa_arready)
);
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_MASTER_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL ({C_NUM_MASTER_SLOTS{1'b1}}),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (mi_aaddr),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign match = 1'b1;
assign target_region = 4'b0000;
end // gen_addr_decoder
// AW-channel arbiter command transfer completes upon completion of both M-side AW-channel transfer and B channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (3)
)
splitter_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_awvalid),
.S_READY (aa_awready),
.M_VALID ({mi_awvalid_en, w_transfer_en, b_transfer_en}),
.M_READY ({mi_awready_mux, w_complete_mux, b_complete_mux})
);
// AR-channel arbiter command transfer completes upon completion of both M-side AR-channel transfer and R channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (2)
)
splitter_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_arvalid),
.S_READY (aa_arready),
.M_VALID ({mi_arvalid_en, r_transfer_en}),
.M_READY ({mi_arready_mux, r_complete_mux})
);
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_write = |(target_mi_hot & C_M_AXI_SUPPORTS_WRITE);
assign target_read = |(target_mi_hot & C_M_AXI_SUPPORTS_READ);
assign target_axilite = |(target_mi_hot & P_M_AXILITE_MASK);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && mi_aprot[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((mi_alen != 0) ||
(mi_asize[1:0] == 2'b11) || (mi_asize[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[3] = (~aa_grant_rnw && ~target_write) ||
(aa_grant_rnw && ~target_read); // R/W direction unsupported by target
assign m_aerror_i[7:4] = 4'b0000; // Reserved
assign m_atarget_enc_comb = any_error ? (P_NUM_MASTER_SLOTS_DE-1) : target_mi_enc; // Select MI slot or decerr_slave
always @(posedge ACLK) begin
if (reset) begin
m_atarget_hot <= 0;
m_atarget_enc <= 0;
end else begin
m_atarget_hot <= {P_NUM_MASTER_SLOTS_DE{aa_grant_any}} & (any_error ? {1'b1, {C_NUM_MASTER_SLOTS{1'b0}}} : {1'b0, target_mi_hot}); // Select MI slot or decerr_slave
m_atarget_enc <= m_atarget_enc_comb;
end
end
// Receive AWREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_awready_mux_inst
(
.S (m_atarget_enc),
.A (mi_awready),
.O (mi_awready_mux),
.OE (mi_awvalid_en)
);
// Receive ARREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_arready_mux_inst
(
.S (m_atarget_enc),
.A (mi_arready),
.O (mi_arready_mux),
.OE (mi_arvalid_en)
);
assign mi_awvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_awvalid_en}}; // Assert AWVALID on targeted MI.
assign mi_arvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_arvalid_en}}; // Assert ARVALID on targeted MI.
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY; // Copy from MI slots.
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY; // Copy from MI slots.
// Receive WREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_wready_mux_inst
(
.S (m_atarget_enc),
.A (mi_wready),
.O (aa_wready),
.OE (w_transfer_en)
);
assign mi_wvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_wvalid}}; // Assert WVALID on targeted MI.
assign si_wready = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_wready}}; // Assert WREADY on granted SI.
assign S_AXI_WREADY = si_wready;
assign w_complete_mux = aa_wready & aa_wvalid & mi_wlast; // W burst complete on on designated SI/MI.
// Receive RREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_rready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_RREADY),
.O (si_rready),
.OE (r_transfer_en)
);
assign sr_rready = si_rready & r_transfer_en;
assign mi_rready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_rready}}; // Assert RREADY on targeted MI.
assign si_rvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{sr_rvalid}}; // Assert RVALID on granted SI.
assign S_AXI_RVALID = si_rvalid;
assign r_complete_mux = sr_rready & sr_rvalid & si_rlast; // R burst complete on on designated SI/MI.
// Receive BREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_bready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_BREADY),
.O (si_bready),
.OE (b_transfer_en)
);
assign aa_bready = si_bready & b_transfer_en;
assign mi_bready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_bready}}; // Assert BREADY on targeted MI.
assign si_bvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_bvalid}}; // Assert BVALID on granted SI.
assign S_AXI_BVALID = si_bvalid;
assign b_complete_mux = aa_bready & aa_bvalid; // B transfer complete on on designated SI/MI.
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_si_amesg
assign si_armesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_ARREGION[gen_si_slot*4+:4],
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH +: C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2],
S_AXI_ARPROT[gen_si_slot*3+:3],
S_AXI_ARLOCK[gen_si_slot*2+:2],
S_AXI_ARSIZE[gen_si_slot*3+:3],
S_AXI_ARLEN[gen_si_slot*8+:8],
S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH +: C_AXI_ID_WIDTH], gen_si_slot)
};
assign si_awmesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_AWREGION[gen_si_slot*4+:4],
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH +: C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2],
S_AXI_AWPROT[gen_si_slot*3+:3],
S_AXI_AWLOCK[gen_si_slot*2+:2],
S_AXI_AWSIZE[gen_si_slot*3+:3],
S_AXI_AWLEN[gen_si_slot*8+:8],
S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)
};
end // gen_si_amesg
assign mi_aid = aa_amesg[0 +: C_AXI_ID_WIDTH];
assign mi_aaddr = aa_amesg[C_AXI_ID_WIDTH +: C_AXI_ADDR_WIDTH];
assign mi_alen = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +: 8];
assign mi_asize = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +: 3];
assign mi_alock = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +: 2];
assign mi_aprot = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +: 3];
assign mi_aburst = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +: 2];
assign mi_acache = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2 +: 4];
assign mi_aqos = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4 +: 4];
assign mi_auser = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4 +: P_AXI_AUSER_WIDTH];
assign mi_aregion = (C_ADDR_DECODE != 0) ? target_region : aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4+P_AXI_AUSER_WIDTH +: 4];
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_AWUSER_WIDTH] }};
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_ARUSER_WIDTH] }};
// W-channel MI handshakes
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
// Broadcast W transfer payload to all MI-slots
assign M_AXI_WLAST = {C_NUM_MASTER_SLOTS{mi_wlast}};
assign M_AXI_WUSER = {C_NUM_MASTER_SLOTS{mi_wuser}};
assign M_AXI_WDATA = {C_NUM_MASTER_SLOTS{mi_wdata}};
assign M_AXI_WSTRB = {C_NUM_MASTER_SLOTS{mi_wstrb}};
assign M_AXI_WID = {C_NUM_MASTER_SLOTS{mi_wid}};
// Broadcast R transfer payload to all SI-slots
assign S_AXI_RLAST = {C_NUM_SLAVE_SLOTS{si_rlast}};
assign S_AXI_RRESP = {C_NUM_SLAVE_SLOTS{si_rresp}};
assign S_AXI_RUSER = {C_NUM_SLAVE_SLOTS{si_ruser}};
assign S_AXI_RDATA = {C_NUM_SLAVE_SLOTS{si_rdata}};
assign S_AXI_RID = {C_NUM_SLAVE_SLOTS{mi_aid}};
// Broadcast B transfer payload to all SI-slots
assign S_AXI_BRESP = {C_NUM_SLAVE_SLOTS{si_bresp}};
assign S_AXI_BUSER = {C_NUM_SLAVE_SLOTS{si_buser}};
assign S_AXI_BID = {C_NUM_SLAVE_SLOTS{mi_aid}};
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI WVALID mux.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_w_valid_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_WVALID),
.O (aa_wvalid),
.OE (w_transfer_en)
);
// SI W-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (P_WMESG_WIDTH)
) si_w_payload_mux_inst
(
.S (aa_grant_enc),
.A (si_wmesg),
.O (mi_wmesg),
.OE (1'b1)
);
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_wmesg
assign si_wmesg[gen_si_slot*P_WMESG_WIDTH+:P_WMESG_WIDTH] = { // Concatenate from MSB to LSB
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
S_AXI_WLAST[gen_si_slot*1+:1]
};
end // gen_wmesg
assign mi_wlast = mi_wmesg[0];
assign mi_wdata = mi_wmesg[1 +: C_AXI_DATA_WIDTH];
assign mi_wstrb = mi_wmesg[1+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign mi_wuser = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign mi_wid = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
end else begin : gen_no_wmux
assign aa_wvalid = w_transfer_en & S_AXI_WVALID;
assign mi_wlast = S_AXI_WLAST;
assign mi_wdata = S_AXI_WDATA;
assign mi_wstrb = S_AXI_WSTRB;
assign mi_wuser = S_AXI_WUSER;
assign mi_wid = S_AXI_WID;
end // gen_wmux
// Receive RVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_rvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_rvalid),
.O (aa_rvalid),
.OE (r_transfer_en)
);
// MI R-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_RMESG_WIDTH)
) mi_rmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_rmesg),
.O (aa_rmesg),
.OE (1'b1)
);
axi_register_slice_v2_1_axic_register_slice #
(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (P_RMESG_WIDTH),
.C_REG_CONFIG (P_R_REG_CONFIG)
)
reg_slice_r
(
// System Signals
.ACLK(ACLK),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(aa_rmesg),
.S_VALID(aa_rvalid),
.S_READY(aa_rready),
// Master side
.M_PAYLOAD_DATA(sr_rmesg),
.M_VALID(sr_rvalid),
.M_READY(sr_rready)
);
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_rmesg
assign mi_rmesg[gen_mi_slot*P_RMESG_WIDTH+:P_RMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
mi_rresp[gen_mi_slot*2+:2],
mi_rlast[gen_mi_slot*1+:1]
};
end // gen_rmesg
assign si_rlast = sr_rmesg[0];
assign si_rresp = sr_rmesg[1 +: 2];
assign si_rdata = sr_rmesg[1+2 +: C_AXI_DATA_WIDTH];
assign si_ruser = sr_rmesg[1+2+C_AXI_DATA_WIDTH +: C_AXI_RUSER_WIDTH];
// Receive BVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_bvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_bvalid),
.O (aa_bvalid),
.OE (b_transfer_en)
);
// MI B-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_BMESG_WIDTH)
) mi_bmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_bmesg),
.O (si_bmesg),
.OE (1'b1)
);
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_bmesg
assign mi_bmesg[gen_mi_slot*P_BMESG_WIDTH+:P_BMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
mi_bresp[gen_mi_slot*2+:2]
};
end // gen_bmesg
assign si_bresp = si_bmesg[0 +: 2];
assign si_buser = si_bmesg[2 +: C_AXI_BUSER_WIDTH];
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_awvalid && aa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_arvalid && aa_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i <= 0;
end else if (aa_wready & aa_wvalid) begin
if (mi_wlast) begin
debug_w_beat_cnt_i <= 0;
end else begin
debug_w_beat_cnt_i <= debug_w_beat_cnt_i + 1;
end
end
end // Clocked process
// DEBUG READ BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_r_beat_cnt_i <= 0;
end else if (sr_rready & sr_rvalid) begin
if (si_rlast) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end // Clocked process
end // gen_debug_trans_seq
if (C_RANGE_CHECK) begin : gen_decerr
// Highest MI-slot (index C_NUM_MASTER_SLOTS) is the error handler
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (1'b0),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (1'b0),
.S_AXI_ARLEN (mi_alen),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end // gen_decerr
endgenerate
endmodule
|
module axi_crossbar_v2_1_crossbar_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_SLAVE_SLOTS = 1,
parameter integer C_NUM_MASTER_SLOTS = 1,
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_PROTOCOL = 0,
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_BASE_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64-1:0] C_M_AXI_HIGH_ADDR = {C_NUM_MASTER_SLOTS*C_NUM_ADDR_RANGES*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_BASE_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter [C_NUM_SLAVE_SLOTS*64-1:0] C_S_AXI_HIGH_ID = {C_NUM_SLAVE_SLOTS*64{1'b0}},
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_WRITE = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS-1:0] C_S_AXI_SUPPORTS_READ = {C_NUM_SLAVE_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_WRITE = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_MASTER_SLOTS-1:0] C_M_AXI_SUPPORTS_READ = {C_NUM_MASTER_SLOTS{1'b1}},
parameter [C_NUM_SLAVE_SLOTS*32-1:0] C_S_AXI_ARB_PRIORITY = {C_NUM_SLAVE_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_SECURE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter [C_NUM_MASTER_SLOTS*32-1:0] C_M_AXI_ERR_MODE = {C_NUM_MASTER_SLOTS{32'h00000000}},
parameter integer C_R_REGISTER = 0,
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE = 0,
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESETN,
// Slave Interface Write Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_AWID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_AWADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_AWLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_AWLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_AWPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_AWQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_AWUSER_WIDTH-1:0] S_AXI_AWUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_AWREADY,
// Slave Interface Write Data Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_WID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_WDATA,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH/8-1:0] S_AXI_WSTRB,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WLAST,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_WUSER_WIDTH-1:0] S_AXI_WUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_WREADY,
// Slave Interface Write Response Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_BID,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_BRESP,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_BREADY,
// Slave Interface Read Address Ports
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_ARID,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ADDR_WIDTH-1:0] S_AXI_ARADDR,
input wire [C_NUM_SLAVE_SLOTS*8-1:0] S_AXI_ARLEN,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARSIZE,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARBURST,
input wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_ARLOCK,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARCACHE,
input wire [C_NUM_SLAVE_SLOTS*3-1:0] S_AXI_ARPROT,
// input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARREGION,
input wire [C_NUM_SLAVE_SLOTS*4-1:0] S_AXI_ARQOS,
input wire [C_NUM_SLAVE_SLOTS*C_AXI_ARUSER_WIDTH-1:0] S_AXI_ARUSER,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARVALID,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_ARREADY,
// Slave Interface Read Data Ports
output wire [C_NUM_SLAVE_SLOTS*C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [C_NUM_SLAVE_SLOTS*2-1:0] S_AXI_RRESP,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RLAST,
output wire [C_NUM_SLAVE_SLOTS*C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RVALID,
input wire [C_NUM_SLAVE_SLOTS-1:0] S_AXI_RREADY,
// Master Interface Write Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_AWLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_AWLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_AWPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_AWQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_AWUSER_WIDTH-1:0] M_AXI_AWUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_AWREADY,
// Master Interface Write Data Ports
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_WID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WLAST,
output wire [C_NUM_MASTER_SLOTS*C_AXI_WUSER_WIDTH-1:0] M_AXI_WUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_WREADY,
// Master Interface Write Response Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_BID, // Unused
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_BRESP,
input wire [C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH-1:0] M_AXI_BUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_BREADY,
// Master Interface Read Address Port
output wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
output wire [C_NUM_MASTER_SLOTS*8-1:0] M_AXI_ARLEN,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARSIZE,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARBURST,
output wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_ARLOCK,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARCACHE,
output wire [C_NUM_MASTER_SLOTS*3-1:0] M_AXI_ARPROT,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARREGION,
output wire [C_NUM_MASTER_SLOTS*4-1:0] M_AXI_ARQOS,
output wire [C_NUM_MASTER_SLOTS*C_AXI_ARUSER_WIDTH-1:0] M_AXI_ARUSER,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARVALID,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_ARREADY,
// Master Interface Read Data Ports
input wire [C_NUM_MASTER_SLOTS*C_AXI_ID_WIDTH-1:0] M_AXI_RID, // Unused
input wire [C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [C_NUM_MASTER_SLOTS*2-1:0] M_AXI_RRESP,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RLAST,
input wire [C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RVALID,
output wire [C_NUM_MASTER_SLOTS-1:0] M_AXI_RREADY
);
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
localparam integer P_NUM_MASTER_SLOTS_DE = C_RANGE_CHECK ? C_NUM_MASTER_SLOTS+1 : C_NUM_MASTER_SLOTS;
localparam integer P_NUM_MASTER_SLOTS_LOG = (C_NUM_MASTER_SLOTS>1) ? f_ceil_log2(C_NUM_MASTER_SLOTS) : 1;
localparam integer P_NUM_MASTER_SLOTS_DE_LOG = (P_NUM_MASTER_SLOTS_DE>1) ? f_ceil_log2(P_NUM_MASTER_SLOTS_DE) : 1;
localparam integer P_NUM_SLAVE_SLOTS_LOG = (C_NUM_SLAVE_SLOTS>1) ? f_ceil_log2(C_NUM_SLAVE_SLOTS) : 1;
localparam integer P_AXI_AUSER_WIDTH = (C_AXI_AWUSER_WIDTH > C_AXI_ARUSER_WIDTH) ? C_AXI_AWUSER_WIDTH : C_AXI_ARUSER_WIDTH;
localparam integer P_AXI_WID_WIDTH = (C_AXI_PROTOCOL == P_AXI3) ? C_AXI_ID_WIDTH : 1;
localparam integer P_AMESG_WIDTH = C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + 8+3+2+3+2+4+4 + P_AXI_AUSER_WIDTH + 4;
localparam integer P_BMESG_WIDTH = 2 + C_AXI_BUSER_WIDTH;
localparam integer P_RMESG_WIDTH = 1+2 + C_AXI_DATA_WIDTH + C_AXI_RUSER_WIDTH;
localparam integer P_WMESG_WIDTH = 1 + C_AXI_DATA_WIDTH + C_AXI_DATA_WIDTH/8 + C_AXI_WUSER_WIDTH + P_AXI_WID_WIDTH;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
localparam [C_NUM_MASTER_SLOTS-1:0] P_M_AXILITE_MASK = f_m_axilite(0); // Mask of axilite rule-check MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_BYPASS = 0;
localparam integer P_LIGHTWT = 7;
localparam integer P_FULLY_REG = 1;
localparam integer P_R_REG_CONFIG = C_R_REGISTER == 8 ? // "Automatic" reg-slice
(C_RANGE_CHECK ? ((C_AXI_PROTOCOL == P_AXILITE) ? P_LIGHTWT : P_FULLY_REG) : P_BYPASS) : // Bypass if no R-channel mux
C_R_REGISTER;
localparam P_DECERR = 2'b11;
//---------------------------------------------------------------------------
// Functions
//---------------------------------------------------------------------------
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// Isolate thread bits of input S_ID and add to BASE_ID (RNG00) to form MI-side ID value
// only for end-point SI-slots
function [C_AXI_ID_WIDTH-1:0] f_extend_ID
(
input [C_AXI_ID_WIDTH-1:0] s_id,
input integer slot
);
begin
f_extend_ID = C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] | (s_id & (C_S_AXI_BASE_ID[slot*64+:C_AXI_ID_WIDTH] ^ C_S_AXI_HIGH_ID[slot*64+:C_AXI_ID_WIDTH]));
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_MASTER_SLOTS-1:0] f_bit32to1_mi
(input [C_NUM_MASTER_SLOTS*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
// AxiLite error-checking mask (on MI)
function [C_NUM_MASTER_SLOTS-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_MASTER_SLOTS; mi=mi+1) begin
f_m_axilite[mi] = (C_M_AXI_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
genvar gen_si_slot;
genvar gen_mi_slot;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_awmesg ;
wire [C_NUM_SLAVE_SLOTS*P_AMESG_WIDTH-1:0] si_armesg ;
wire [P_AMESG_WIDTH-1:0] aa_amesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_aid ;
wire [C_AXI_ADDR_WIDTH-1:0] mi_aaddr ;
wire [8-1:0] mi_alen ;
wire [3-1:0] mi_asize ;
wire [2-1:0] mi_alock ;
wire [3-1:0] mi_aprot ;
wire [2-1:0] mi_aburst ;
wire [4-1:0] mi_acache ;
wire [4-1:0] mi_aregion ;
wire [4-1:0] mi_aqos ;
wire [P_AXI_AUSER_WIDTH-1:0] mi_auser ;
wire [4-1:0] target_region ;
wire [C_NUM_SLAVE_SLOTS*1-1:0] aa_grant_hot ;
wire [P_NUM_SLAVE_SLOTS_LOG-1:0] aa_grant_enc ;
wire aa_grant_rnw ;
wire aa_grant_any ;
wire [C_NUM_MASTER_SLOTS-1:0] target_mi_hot ;
wire [P_NUM_MASTER_SLOTS_LOG-1:0] target_mi_enc ;
reg [P_NUM_MASTER_SLOTS_DE-1:0] m_atarget_hot ;
reg [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc ;
wire [P_NUM_MASTER_SLOTS_DE_LOG-1:0] m_atarget_enc_comb ;
wire match;
wire any_error ;
wire [7:0] m_aerror_i ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_awready ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_arready ;
wire aa_awvalid ;
wire aa_awready ;
wire aa_arvalid ;
wire aa_arready ;
wire mi_awvalid_en;
wire mi_awready_mux;
wire mi_arvalid_en;
wire mi_arready_mux;
wire w_transfer_en;
wire w_complete_mux;
wire b_transfer_en;
wire b_complete_mux;
wire r_transfer_en;
wire r_complete_mux;
wire target_secure;
wire target_write;
wire target_read;
wire target_axilite;
wire [P_BMESG_WIDTH-1:0] si_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_BMESG_WIDTH-1:0] mi_bmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_bresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_BUSER_WIDTH-1:0] mi_buser ;
wire [2-1:0] si_bresp ;
wire [C_AXI_BUSER_WIDTH-1:0] si_buser ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_bready ;
wire aa_bvalid ;
wire aa_bready ;
wire si_bready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_bvalid;
wire [P_RMESG_WIDTH-1:0] aa_rmesg ;
wire [P_RMESG_WIDTH-1:0] sr_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*P_RMESG_WIDTH-1:0] mi_rmesg ;
wire [P_NUM_MASTER_SLOTS_DE*2-1:0] mi_rresp ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_RUSER_WIDTH-1:0] mi_ruser ;
wire [P_NUM_MASTER_SLOTS_DE*C_AXI_DATA_WIDTH-1:0] mi_rdata ;
wire [P_NUM_MASTER_SLOTS_DE*1-1:0] mi_rlast ;
wire [2-1:0] si_rresp ;
wire [C_AXI_RUSER_WIDTH-1:0] si_ruser ;
wire [C_AXI_DATA_WIDTH-1:0] si_rdata ;
wire si_rlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_rready ;
wire aa_rvalid ;
wire aa_rready ;
wire sr_rvalid ;
wire si_rready ;
wire sr_rready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_rvalid;
wire [C_NUM_SLAVE_SLOTS*P_WMESG_WIDTH-1:0] si_wmesg ;
wire [P_WMESG_WIDTH-1:0] mi_wmesg ;
wire [C_AXI_ID_WIDTH-1:0] mi_wid ;
wire [C_AXI_DATA_WIDTH-1:0] mi_wdata ;
wire [C_AXI_DATA_WIDTH/8-1:0] mi_wstrb ;
wire [C_AXI_WUSER_WIDTH-1:0] mi_wuser ;
wire [1-1:0] mi_wlast ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wvalid ;
wire [P_NUM_MASTER_SLOTS_DE-1:0] mi_wready ;
wire aa_wvalid ;
wire aa_wready ;
wire [C_NUM_SLAVE_SLOTS-1:0] si_wready;
reg [7:0] debug_r_beat_cnt_i;
reg [7:0] debug_w_beat_cnt_i;
reg [7:0] debug_aw_trans_seq_i;
reg [7:0] debug_ar_trans_seq_i;
reg aresetn_d = 1'b0; // Reset delay register
always @(posedge ACLK) begin
if (~ARESETN) begin
aresetn_d <= 1'b0;
end else begin
aresetn_d <= ARESETN;
end
end
wire reset;
assign reset = ~aresetn_d;
generate
axi_crossbar_v2_1_addr_arbiter_sasd #
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_SLAVE_SLOTS),
.C_NUM_S_LOG (P_NUM_SLAVE_SLOTS_LOG),
.C_AMESG_WIDTH (P_AMESG_WIDTH),
.C_GRANT_ENC (1),
.C_ARB_PRIORITY (C_S_AXI_ARB_PRIORITY)
)
addr_arbiter_inst
(
.ACLK (ACLK),
.ARESET (reset),
// Vector of SI-side AW command request inputs
.S_AWMESG (si_awmesg),
.S_ARMESG (si_armesg),
.S_AWVALID (S_AXI_AWVALID),
.S_AWREADY (S_AXI_AWREADY),
.S_ARVALID (S_AXI_ARVALID),
.S_ARREADY (S_AXI_ARREADY),
.M_GRANT_ENC (aa_grant_enc),
.M_GRANT_HOT (aa_grant_hot), // SI-slot 1-hot mask of granted command
.M_GRANT_ANY (aa_grant_any),
.M_GRANT_RNW (aa_grant_rnw),
.M_AMESG (aa_amesg), // Either S_AWMESG or S_ARMESG, as indicated by M_AWVALID and M_ARVALID.
.M_AWVALID (aa_awvalid),
.M_AWREADY (aa_awready),
.M_ARVALID (aa_arvalid),
.M_ARREADY (aa_arready)
);
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_MASTER_SLOTS),
.C_NUM_TARGETS_LOG (P_NUM_MASTER_SLOTS_LOG),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_M_AXI_BASE_ADDR),
.C_HIGH_ADDR (C_M_AXI_HIGH_ADDR),
.C_TARGET_QUAL ({C_NUM_MASTER_SLOTS{1'b1}}),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (mi_aaddr),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign match = 1'b1;
assign target_region = 4'b0000;
end // gen_addr_decoder
// AW-channel arbiter command transfer completes upon completion of both M-side AW-channel transfer and B channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (3)
)
splitter_aw
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_awvalid),
.S_READY (aa_awready),
.M_VALID ({mi_awvalid_en, w_transfer_en, b_transfer_en}),
.M_READY ({mi_awready_mux, w_complete_mux, b_complete_mux})
);
// AR-channel arbiter command transfer completes upon completion of both M-side AR-channel transfer and R channel completion.
axi_crossbar_v2_1_splitter #
(
.C_NUM_M (2)
)
splitter_ar
(
.ACLK (ACLK),
.ARESET (reset),
.S_VALID (aa_arvalid),
.S_READY (aa_arready),
.M_VALID ({mi_arvalid_en, r_transfer_en}),
.M_READY ({mi_arready_mux, r_complete_mux})
);
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_write = |(target_mi_hot & C_M_AXI_SUPPORTS_WRITE);
assign target_read = |(target_mi_hot & C_M_AXI_SUPPORTS_READ);
assign target_axilite = |(target_mi_hot & P_M_AXILITE_MASK);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && mi_aprot[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((mi_alen != 0) ||
(mi_asize[1:0] == 2'b11) || (mi_asize[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[3] = (~aa_grant_rnw && ~target_write) ||
(aa_grant_rnw && ~target_read); // R/W direction unsupported by target
assign m_aerror_i[7:4] = 4'b0000; // Reserved
assign m_atarget_enc_comb = any_error ? (P_NUM_MASTER_SLOTS_DE-1) : target_mi_enc; // Select MI slot or decerr_slave
always @(posedge ACLK) begin
if (reset) begin
m_atarget_hot <= 0;
m_atarget_enc <= 0;
end else begin
m_atarget_hot <= {P_NUM_MASTER_SLOTS_DE{aa_grant_any}} & (any_error ? {1'b1, {C_NUM_MASTER_SLOTS{1'b0}}} : {1'b0, target_mi_hot}); // Select MI slot or decerr_slave
m_atarget_enc <= m_atarget_enc_comb;
end
end
// Receive AWREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_awready_mux_inst
(
.S (m_atarget_enc),
.A (mi_awready),
.O (mi_awready_mux),
.OE (mi_awvalid_en)
);
// Receive ARREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_arready_mux_inst
(
.S (m_atarget_enc),
.A (mi_arready),
.O (mi_arready_mux),
.OE (mi_arvalid_en)
);
assign mi_awvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_awvalid_en}}; // Assert AWVALID on targeted MI.
assign mi_arvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{mi_arvalid_en}}; // Assert ARVALID on targeted MI.
assign M_AXI_AWVALID = mi_awvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign M_AXI_ARVALID = mi_arvalid[0+:C_NUM_MASTER_SLOTS]; // Propagate to MI slots.
assign mi_awready[0+:C_NUM_MASTER_SLOTS] = M_AXI_AWREADY; // Copy from MI slots.
assign mi_arready[0+:C_NUM_MASTER_SLOTS] = M_AXI_ARREADY; // Copy from MI slots.
// Receive WREADY from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_wready_mux_inst
(
.S (m_atarget_enc),
.A (mi_wready),
.O (aa_wready),
.OE (w_transfer_en)
);
assign mi_wvalid = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_wvalid}}; // Assert WVALID on targeted MI.
assign si_wready = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_wready}}; // Assert WREADY on granted SI.
assign S_AXI_WREADY = si_wready;
assign w_complete_mux = aa_wready & aa_wvalid & mi_wlast; // W burst complete on on designated SI/MI.
// Receive RREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_rready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_RREADY),
.O (si_rready),
.OE (r_transfer_en)
);
assign sr_rready = si_rready & r_transfer_en;
assign mi_rready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_rready}}; // Assert RREADY on targeted MI.
assign si_rvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{sr_rvalid}}; // Assert RVALID on granted SI.
assign S_AXI_RVALID = si_rvalid;
assign r_complete_mux = sr_rready & sr_rvalid & si_rlast; // R burst complete on on designated SI/MI.
// Receive BREADY from granted SI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_bready_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_BREADY),
.O (si_bready),
.OE (b_transfer_en)
);
assign aa_bready = si_bready & b_transfer_en;
assign mi_bready = m_atarget_hot & {P_NUM_MASTER_SLOTS_DE{aa_bready}}; // Assert BREADY on targeted MI.
assign si_bvalid = aa_grant_hot & {C_NUM_SLAVE_SLOTS{aa_bvalid}}; // Assert BVALID on granted SI.
assign S_AXI_BVALID = si_bvalid;
assign b_complete_mux = aa_bready & aa_bvalid; // B transfer complete on on designated SI/MI.
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_si_amesg
assign si_armesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_ARREGION[gen_si_slot*4+:4],
S_AXI_ARUSER[gen_si_slot*C_AXI_ARUSER_WIDTH +: C_AXI_ARUSER_WIDTH],
S_AXI_ARQOS[gen_si_slot*4+:4],
S_AXI_ARCACHE[gen_si_slot*4+:4],
S_AXI_ARBURST[gen_si_slot*2+:2],
S_AXI_ARPROT[gen_si_slot*3+:3],
S_AXI_ARLOCK[gen_si_slot*2+:2],
S_AXI_ARSIZE[gen_si_slot*3+:3],
S_AXI_ARLEN[gen_si_slot*8+:8],
S_AXI_ARADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_ARID[gen_si_slot*C_AXI_ID_WIDTH +: C_AXI_ID_WIDTH], gen_si_slot)
};
assign si_awmesg[gen_si_slot*P_AMESG_WIDTH +: P_AMESG_WIDTH] = { // Concatenate from MSB to LSB
4'b0000,
// S_AXI_AWREGION[gen_si_slot*4+:4],
S_AXI_AWUSER[gen_si_slot*C_AXI_AWUSER_WIDTH +: C_AXI_AWUSER_WIDTH],
S_AXI_AWQOS[gen_si_slot*4+:4],
S_AXI_AWCACHE[gen_si_slot*4+:4],
S_AXI_AWBURST[gen_si_slot*2+:2],
S_AXI_AWPROT[gen_si_slot*3+:3],
S_AXI_AWLOCK[gen_si_slot*2+:2],
S_AXI_AWSIZE[gen_si_slot*3+:3],
S_AXI_AWLEN[gen_si_slot*8+:8],
S_AXI_AWADDR[gen_si_slot*C_AXI_ADDR_WIDTH +: C_AXI_ADDR_WIDTH],
f_extend_ID(S_AXI_AWID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot)
};
end // gen_si_amesg
assign mi_aid = aa_amesg[0 +: C_AXI_ID_WIDTH];
assign mi_aaddr = aa_amesg[C_AXI_ID_WIDTH +: C_AXI_ADDR_WIDTH];
assign mi_alen = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH +: 8];
assign mi_asize = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8 +: 3];
assign mi_alock = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3 +: 2];
assign mi_aprot = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2 +: 3];
assign mi_aburst = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3 +: 2];
assign mi_acache = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2 +: 4];
assign mi_aqos = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4 +: 4];
assign mi_auser = aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4 +: P_AXI_AUSER_WIDTH];
assign mi_aregion = (C_ADDR_DECODE != 0) ? target_region : aa_amesg[C_AXI_ID_WIDTH+C_AXI_ADDR_WIDTH+8+3+2+3+2+4+4+P_AXI_AUSER_WIDTH +: 4];
// Broadcast AW transfer payload to all MI-slots
assign M_AXI_AWID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_AWADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_AWLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_AWSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_AWLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_AWPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_AWREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_AWBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_AWCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_AWQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_AWUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_AWUSER_WIDTH] }};
// Broadcast AR transfer payload to all MI-slots
assign M_AXI_ARID = {C_NUM_MASTER_SLOTS{mi_aid}};
assign M_AXI_ARADDR = {C_NUM_MASTER_SLOTS{mi_aaddr}};
assign M_AXI_ARLEN = {C_NUM_MASTER_SLOTS{mi_alen }};
assign M_AXI_ARSIZE = {C_NUM_MASTER_SLOTS{mi_asize}};
assign M_AXI_ARLOCK = {C_NUM_MASTER_SLOTS{mi_alock}};
assign M_AXI_ARPROT = {C_NUM_MASTER_SLOTS{mi_aprot}};
assign M_AXI_ARREGION = {C_NUM_MASTER_SLOTS{mi_aregion}};
assign M_AXI_ARBURST = {C_NUM_MASTER_SLOTS{mi_aburst}};
assign M_AXI_ARCACHE = {C_NUM_MASTER_SLOTS{mi_acache}};
assign M_AXI_ARQOS = {C_NUM_MASTER_SLOTS{mi_aqos }};
assign M_AXI_ARUSER = {C_NUM_MASTER_SLOTS{mi_auser[0+:C_AXI_ARUSER_WIDTH] }};
// W-channel MI handshakes
assign M_AXI_WVALID = mi_wvalid[0+:C_NUM_MASTER_SLOTS];
assign mi_wready[0+:C_NUM_MASTER_SLOTS] = M_AXI_WREADY;
// Broadcast W transfer payload to all MI-slots
assign M_AXI_WLAST = {C_NUM_MASTER_SLOTS{mi_wlast}};
assign M_AXI_WUSER = {C_NUM_MASTER_SLOTS{mi_wuser}};
assign M_AXI_WDATA = {C_NUM_MASTER_SLOTS{mi_wdata}};
assign M_AXI_WSTRB = {C_NUM_MASTER_SLOTS{mi_wstrb}};
assign M_AXI_WID = {C_NUM_MASTER_SLOTS{mi_wid}};
// Broadcast R transfer payload to all SI-slots
assign S_AXI_RLAST = {C_NUM_SLAVE_SLOTS{si_rlast}};
assign S_AXI_RRESP = {C_NUM_SLAVE_SLOTS{si_rresp}};
assign S_AXI_RUSER = {C_NUM_SLAVE_SLOTS{si_ruser}};
assign S_AXI_RDATA = {C_NUM_SLAVE_SLOTS{si_rdata}};
assign S_AXI_RID = {C_NUM_SLAVE_SLOTS{mi_aid}};
// Broadcast B transfer payload to all SI-slots
assign S_AXI_BRESP = {C_NUM_SLAVE_SLOTS{si_bresp}};
assign S_AXI_BUSER = {C_NUM_SLAVE_SLOTS{si_buser}};
assign S_AXI_BID = {C_NUM_SLAVE_SLOTS{mi_aid}};
if (C_NUM_SLAVE_SLOTS>1) begin : gen_wmux
// SI WVALID mux.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (1)
) si_w_valid_mux_inst
(
.S (aa_grant_enc),
.A (S_AXI_WVALID),
.O (aa_wvalid),
.OE (w_transfer_en)
);
// SI W-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_SLAVE_SLOTS),
.C_SEL_WIDTH (P_NUM_SLAVE_SLOTS_LOG),
.C_DATA_WIDTH (P_WMESG_WIDTH)
) si_w_payload_mux_inst
(
.S (aa_grant_enc),
.A (si_wmesg),
.O (mi_wmesg),
.OE (1'b1)
);
for (gen_si_slot=0; gen_si_slot<C_NUM_SLAVE_SLOTS; gen_si_slot=gen_si_slot+1) begin : gen_wmesg
assign si_wmesg[gen_si_slot*P_WMESG_WIDTH+:P_WMESG_WIDTH] = { // Concatenate from MSB to LSB
((C_AXI_PROTOCOL == P_AXI3) ? f_extend_ID(S_AXI_WID[gen_si_slot*C_AXI_ID_WIDTH+:C_AXI_ID_WIDTH], gen_si_slot) : 1'b0),
S_AXI_WUSER[gen_si_slot*C_AXI_WUSER_WIDTH+:C_AXI_WUSER_WIDTH],
S_AXI_WSTRB[gen_si_slot*C_AXI_DATA_WIDTH/8+:C_AXI_DATA_WIDTH/8],
S_AXI_WDATA[gen_si_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
S_AXI_WLAST[gen_si_slot*1+:1]
};
end // gen_wmesg
assign mi_wlast = mi_wmesg[0];
assign mi_wdata = mi_wmesg[1 +: C_AXI_DATA_WIDTH];
assign mi_wstrb = mi_wmesg[1+C_AXI_DATA_WIDTH +: C_AXI_DATA_WIDTH/8];
assign mi_wuser = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8 +: C_AXI_WUSER_WIDTH];
assign mi_wid = mi_wmesg[1+C_AXI_DATA_WIDTH+C_AXI_DATA_WIDTH/8+C_AXI_WUSER_WIDTH +: P_AXI_WID_WIDTH];
end else begin : gen_no_wmux
assign aa_wvalid = w_transfer_en & S_AXI_WVALID;
assign mi_wlast = S_AXI_WLAST;
assign mi_wdata = S_AXI_WDATA;
assign mi_wstrb = S_AXI_WSTRB;
assign mi_wuser = S_AXI_WUSER;
assign mi_wid = S_AXI_WID;
end // gen_wmux
// Receive RVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_rvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_rvalid),
.O (aa_rvalid),
.OE (r_transfer_en)
);
// MI R-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_RMESG_WIDTH)
) mi_rmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_rmesg),
.O (aa_rmesg),
.OE (1'b1)
);
axi_register_slice_v2_1_axic_register_slice #
(
.C_FAMILY (C_FAMILY),
.C_DATA_WIDTH (P_RMESG_WIDTH),
.C_REG_CONFIG (P_R_REG_CONFIG)
)
reg_slice_r
(
// System Signals
.ACLK(ACLK),
.ARESET(reset),
// Slave side
.S_PAYLOAD_DATA(aa_rmesg),
.S_VALID(aa_rvalid),
.S_READY(aa_rready),
// Master side
.M_PAYLOAD_DATA(sr_rmesg),
.M_VALID(sr_rvalid),
.M_READY(sr_rready)
);
assign mi_rvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_RVALID;
assign mi_rlast[0+:C_NUM_MASTER_SLOTS] = M_AXI_RLAST;
assign mi_rresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_RRESP;
assign mi_ruser[0+:C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH] = M_AXI_RUSER;
assign mi_rdata[0+:C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH] = M_AXI_RDATA;
assign M_AXI_RREADY = mi_rready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_rmesg
assign mi_rmesg[gen_mi_slot*P_RMESG_WIDTH+:P_RMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_ruser[gen_mi_slot*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH],
mi_rdata[gen_mi_slot*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH],
mi_rresp[gen_mi_slot*2+:2],
mi_rlast[gen_mi_slot*1+:1]
};
end // gen_rmesg
assign si_rlast = sr_rmesg[0];
assign si_rresp = sr_rmesg[1 +: 2];
assign si_rdata = sr_rmesg[1+2 +: C_AXI_DATA_WIDTH];
assign si_ruser = sr_rmesg[1+2+C_AXI_DATA_WIDTH +: C_AXI_RUSER_WIDTH];
// Receive BVALID from targeted MI.
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (1)
) mi_bvalid_mux_inst
(
.S (m_atarget_enc),
.A (mi_bvalid),
.O (aa_bvalid),
.OE (b_transfer_en)
);
// MI B-channel payload mux
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (P_NUM_MASTER_SLOTS_DE),
.C_SEL_WIDTH (P_NUM_MASTER_SLOTS_DE_LOG),
.C_DATA_WIDTH (P_BMESG_WIDTH)
) mi_bmesg_mux_inst
(
.S (m_atarget_enc),
.A (mi_bmesg),
.O (si_bmesg),
.OE (1'b1)
);
assign mi_bvalid[0+:C_NUM_MASTER_SLOTS] = M_AXI_BVALID;
assign mi_bresp[0+:C_NUM_MASTER_SLOTS*2] = M_AXI_BRESP;
assign mi_buser[0+:C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH] = M_AXI_BUSER;
assign M_AXI_BREADY = mi_bready[0+:C_NUM_MASTER_SLOTS];
for (gen_mi_slot=0; gen_mi_slot<P_NUM_MASTER_SLOTS_DE; gen_mi_slot=gen_mi_slot+1) begin : gen_bmesg
assign mi_bmesg[gen_mi_slot*P_BMESG_WIDTH+:P_BMESG_WIDTH] = { // Concatenate from MSB to LSB
mi_buser[gen_mi_slot*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH],
mi_bresp[gen_mi_slot*2+:2]
};
end // gen_bmesg
assign si_bresp = si_bmesg[0 +: 2];
assign si_buser = si_bmesg[2 +: C_AXI_BUSER_WIDTH];
if (C_DEBUG) begin : gen_debug_trans_seq
// DEBUG WRITE TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_aw_trans_seq_i <= 1;
end else begin
if (aa_awvalid && aa_awready) begin
debug_aw_trans_seq_i <= debug_aw_trans_seq_i + 1;
end
end
end
// DEBUG READ TRANSACTION SEQUENCE COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_ar_trans_seq_i <= 1;
end else begin
if (aa_arvalid && aa_arready) begin
debug_ar_trans_seq_i <= debug_ar_trans_seq_i + 1;
end
end
end
// DEBUG WRITE BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_w_beat_cnt_i <= 0;
end else if (aa_wready & aa_wvalid) begin
if (mi_wlast) begin
debug_w_beat_cnt_i <= 0;
end else begin
debug_w_beat_cnt_i <= debug_w_beat_cnt_i + 1;
end
end
end // Clocked process
// DEBUG READ BEAT COUNTER
always @(posedge ACLK) begin
if (reset) begin
debug_r_beat_cnt_i <= 0;
end else if (sr_rready & sr_rvalid) begin
if (si_rlast) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end // Clocked process
end // gen_debug_trans_seq
if (C_RANGE_CHECK) begin : gen_decerr
// Highest MI-slot (index C_NUM_MASTER_SLOTS) is the error handler
axi_crossbar_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (1),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_AXI_PROTOCOL),
.C_RESP (P_DECERR)
)
decerr_slave_inst
(
.S_AXI_ACLK (ACLK),
.S_AXI_ARESET (reset),
.S_AXI_AWID (1'b0),
.S_AXI_AWVALID (mi_awvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_AWREADY (mi_awready[C_NUM_MASTER_SLOTS]),
.S_AXI_WLAST (mi_wlast),
.S_AXI_WVALID (mi_wvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_WREADY (mi_wready[C_NUM_MASTER_SLOTS]),
.S_AXI_BID (),
.S_AXI_BRESP (mi_bresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_BUSER (mi_buser[C_NUM_MASTER_SLOTS*C_AXI_BUSER_WIDTH+:C_AXI_BUSER_WIDTH]),
.S_AXI_BVALID (mi_bvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_BREADY (mi_bready[C_NUM_MASTER_SLOTS]),
.S_AXI_ARID (1'b0),
.S_AXI_ARLEN (mi_alen),
.S_AXI_ARVALID (mi_arvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_ARREADY (mi_arready[C_NUM_MASTER_SLOTS]),
.S_AXI_RID (),
.S_AXI_RDATA (mi_rdata[C_NUM_MASTER_SLOTS*C_AXI_DATA_WIDTH+:C_AXI_DATA_WIDTH]),
.S_AXI_RRESP (mi_rresp[C_NUM_MASTER_SLOTS*2+:2]),
.S_AXI_RUSER (mi_ruser[C_NUM_MASTER_SLOTS*C_AXI_RUSER_WIDTH+:C_AXI_RUSER_WIDTH]),
.S_AXI_RLAST (mi_rlast[C_NUM_MASTER_SLOTS]),
.S_AXI_RVALID (mi_rvalid[C_NUM_MASTER_SLOTS]),
.S_AXI_RREADY (mi_rready[C_NUM_MASTER_SLOTS])
);
end // gen_decerr
endgenerate
endmodule
|
module debounce_switch #(
parameter WIDTH=1, // width of the input and output signals
parameter N=3, // length of shift register
parameter RATE=125000 // clock division factor
)(
input wire clk,
input wire rst,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [23:0] cnt_reg = 24'd0;
reg [N-1:0] debounce_reg[WIDTH-1:0];
reg [WIDTH-1:0] state;
/*
* The synchronized output is the state register
*/
assign out = state;
integer k;
always @(posedge clk or posedge rst) begin
if (rst) begin
cnt_reg <= 0;
state <= 0;
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= 0;
end
end else begin
if (cnt_reg < RATE) begin
cnt_reg <= cnt_reg + 24'd1;
end else begin
cnt_reg <= 24'd0;
end
if (cnt_reg == 24'd0) begin
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]};
end
end
for (k = 0; k < WIDTH; k = k + 1) begin
if (|debounce_reg[k] == 0) begin
state[k] <= 0;
end else if (&debounce_reg[k] == 1) begin
state[k] <= 1;
end else begin
state[k] <= state[k];
end
end
end
end
endmodule
|
module debounce_switch #(
parameter WIDTH=1, // width of the input and output signals
parameter N=3, // length of shift register
parameter RATE=125000 // clock division factor
)(
input wire clk,
input wire rst,
input wire [WIDTH-1:0] in,
output wire [WIDTH-1:0] out
);
reg [23:0] cnt_reg = 24'd0;
reg [N-1:0] debounce_reg[WIDTH-1:0];
reg [WIDTH-1:0] state;
/*
* The synchronized output is the state register
*/
assign out = state;
integer k;
always @(posedge clk or posedge rst) begin
if (rst) begin
cnt_reg <= 0;
state <= 0;
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= 0;
end
end else begin
if (cnt_reg < RATE) begin
cnt_reg <= cnt_reg + 24'd1;
end else begin
cnt_reg <= 24'd0;
end
if (cnt_reg == 24'd0) begin
for (k = 0; k < WIDTH; k = k + 1) begin
debounce_reg[k] <= {debounce_reg[k][N-2:0], in[k]};
end
end
for (k = 0; k < WIDTH; k = k + 1) begin
if (|debounce_reg[k] == 0) begin
state[k] <= 0;
end else if (&debounce_reg[k] == 1) begin
state[k] <= 1;
end else begin
state[k] <= state[k];
end
end
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_arb_hp2_3(
sw_clk,
rstn,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_dv_ddr_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_hp3;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp2;
input [max_burst_bits-1:0] wr_data_hp2;
input [addr_width-1:0] wr_addr_hp2;
input [max_burst_bytes_width:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [addr_width-1:0] rd_addr_hp2;
input [max_burst_bytes_width:0] rd_bytes_hp2;
output [max_burst_bits-1:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [max_burst_bits-1:0] wr_data_hp3;
input [addr_width-1:0] wr_addr_hp3;
input [max_burst_bytes_width:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [addr_width-1:0] rd_addr_hp3;
input [max_burst_bytes_width:0] rd_bytes_hp3;
output [max_burst_bits-1:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp2),
.qos2(w_qos_hp3),
.prt_dv1(wr_dv_ddr_hp2),
.prt_dv2(wr_dv_ddr_hp3),
.prt_data1(wr_data_hp2),
.prt_data2(wr_data_hp3),
.prt_addr1(wr_addr_hp2),
.prt_addr2(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp2),
.prt_bytes2(wr_bytes_hp3),
.prt_ack1(wr_ack_ddr_hp2),
.prt_ack2(wr_ack_ddr_hp3),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp2),
.qos2(r_qos_hp3),
.prt_req1(rd_req_ddr_hp2),
.prt_req2(rd_req_ddr_hp3),
.prt_data1(rd_data_ddr_hp2),
.prt_data2(rd_data_ddr_hp3),
.prt_addr1(rd_addr_hp2),
.prt_addr2(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp2),
.prt_bytes2(rd_bytes_hp3),
.prt_dv1(rd_dv_ddr_hp2),
.prt_dv2(rd_dv_ddr_hp3),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
module processing_system7_bfm_v2_0_5_arb_hp2_3(
sw_clk,
rstn,
w_qos_hp2,
r_qos_hp2,
w_qos_hp3,
r_qos_hp3,
wr_ack_ddr_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
rd_req_ddr_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_dv_ddr_hp2,
wr_ack_ddr_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
rd_req_ddr_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_dv_ddr_hp3,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_hp3;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp2;
input [max_burst_bits-1:0] wr_data_hp2;
input [addr_width-1:0] wr_addr_hp2;
input [max_burst_bytes_width:0] wr_bytes_hp2;
output wr_dv_ddr_hp2;
input rd_req_ddr_hp2;
input [addr_width-1:0] rd_addr_hp2;
input [max_burst_bytes_width:0] rd_bytes_hp2;
output [max_burst_bits-1:0] rd_data_ddr_hp2;
output rd_dv_ddr_hp2;
output wr_ack_ddr_hp3;
input [max_burst_bits-1:0] wr_data_hp3;
input [addr_width-1:0] wr_addr_hp3;
input [max_burst_bytes_width:0] wr_bytes_hp3;
output wr_dv_ddr_hp3;
input rd_req_ddr_hp3;
input [addr_width-1:0] rd_addr_hp3;
input [max_burst_bytes_width:0] rd_bytes_hp3;
output [max_burst_bits-1:0] rd_data_ddr_hp3;
output rd_dv_ddr_hp3;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp2),
.qos2(w_qos_hp3),
.prt_dv1(wr_dv_ddr_hp2),
.prt_dv2(wr_dv_ddr_hp3),
.prt_data1(wr_data_hp2),
.prt_data2(wr_data_hp3),
.prt_addr1(wr_addr_hp2),
.prt_addr2(wr_addr_hp3),
.prt_bytes1(wr_bytes_hp2),
.prt_bytes2(wr_bytes_hp3),
.prt_ack1(wr_ack_ddr_hp2),
.prt_ack2(wr_ack_ddr_hp3),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp2),
.qos2(r_qos_hp3),
.prt_req1(rd_req_ddr_hp2),
.prt_req2(rd_req_ddr_hp3),
.prt_data1(rd_data_ddr_hp2),
.prt_data2(rd_data_ddr_hp3),
.prt_addr1(rd_addr_hp2),
.prt_addr2(rd_addr_hp3),
.prt_bytes1(rd_bytes_hp2),
.prt_bytes2(rd_bytes_hp3),
.prt_dv1(rd_dv_ddr_hp2),
.prt_dv2(rd_dv_ddr_hp3),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
module processing_system7_bfm_v2_0_5_gen_clock(
ps_clk,
sw_clk,
fclk_clk3,
fclk_clk2,
fclk_clk1,
fclk_clk0
);
input ps_clk;
output sw_clk;
output fclk_clk3;
output fclk_clk2;
output fclk_clk1;
output fclk_clk0;
parameter freq_clk3 = 50;
parameter freq_clk2 = 50;
parameter freq_clk1 = 50;
parameter freq_clk0 = 50;
reg clk0 = 1'b0;
reg clk1 = 1'b0;
reg clk2 = 1'b0;
reg clk3 = 1'b0;
reg sw_clk = 1'b0;
assign fclk_clk0 = clk0;
assign fclk_clk1 = clk1;
assign fclk_clk2 = clk2;
assign fclk_clk3 = clk3;
real clk3_p = (1000.00/freq_clk3)/2;
real clk2_p = (1000.00/freq_clk2)/2;
real clk1_p = (1000.00/freq_clk1)/2;
real clk0_p = (1000.00/freq_clk0)/2;
always #(clk3_p) clk3 = !clk3;
always #(clk2_p) clk2 = !clk2;
always #(clk1_p) clk1 = !clk1;
always #(clk0_p) clk0 = !clk0;
always #(0.5) sw_clk = !sw_clk;
endmodule
|
module processing_system7_bfm_v2_0_5_gen_clock(
ps_clk,
sw_clk,
fclk_clk3,
fclk_clk2,
fclk_clk1,
fclk_clk0
);
input ps_clk;
output sw_clk;
output fclk_clk3;
output fclk_clk2;
output fclk_clk1;
output fclk_clk0;
parameter freq_clk3 = 50;
parameter freq_clk2 = 50;
parameter freq_clk1 = 50;
parameter freq_clk0 = 50;
reg clk0 = 1'b0;
reg clk1 = 1'b0;
reg clk2 = 1'b0;
reg clk3 = 1'b0;
reg sw_clk = 1'b0;
assign fclk_clk0 = clk0;
assign fclk_clk1 = clk1;
assign fclk_clk2 = clk2;
assign fclk_clk3 = clk3;
real clk3_p = (1000.00/freq_clk3)/2;
real clk2_p = (1000.00/freq_clk2)/2;
real clk1_p = (1000.00/freq_clk1)/2;
real clk0_p = (1000.00/freq_clk0)/2;
always #(clk3_p) clk3 = !clk3;
always #(clk2_p) clk2 = !clk2;
always #(clk1_p) clk1 = !clk1;
always #(clk0_p) clk0 = !clk0;
always #(0.5) sw_clk = !sw_clk;
endmodule
|
module processing_system7_bfm_v2_0_5_gen_clock(
ps_clk,
sw_clk,
fclk_clk3,
fclk_clk2,
fclk_clk1,
fclk_clk0
);
input ps_clk;
output sw_clk;
output fclk_clk3;
output fclk_clk2;
output fclk_clk1;
output fclk_clk0;
parameter freq_clk3 = 50;
parameter freq_clk2 = 50;
parameter freq_clk1 = 50;
parameter freq_clk0 = 50;
reg clk0 = 1'b0;
reg clk1 = 1'b0;
reg clk2 = 1'b0;
reg clk3 = 1'b0;
reg sw_clk = 1'b0;
assign fclk_clk0 = clk0;
assign fclk_clk1 = clk1;
assign fclk_clk2 = clk2;
assign fclk_clk3 = clk3;
real clk3_p = (1000.00/freq_clk3)/2;
real clk2_p = (1000.00/freq_clk2)/2;
real clk1_p = (1000.00/freq_clk1)/2;
real clk0_p = (1000.00/freq_clk0)/2;
always #(clk3_p) clk3 = !clk3;
always #(clk2_p) clk2 = !clk2;
always #(clk1_p) clk1 = !clk1;
always #(clk0_p) clk0 = !clk0;
always #(0.5) sw_clk = !sw_clk;
endmodule
|
module processing_system7_bfm_v2_0_5_ocmc(
rstn,
sw_clk,
/* Goes to port 0 of OCM */
ocm_wr_ack_port0,
ocm_wr_dv_port0,
ocm_rd_req_port0,
ocm_rd_dv_port0,
ocm_wr_addr_port0,
ocm_wr_data_port0,
ocm_wr_bytes_port0,
ocm_rd_addr_port0,
ocm_rd_data_port0,
ocm_rd_bytes_port0,
ocm_wr_qos_port0,
ocm_rd_qos_port0,
/* Goes to port 1 of OCM */
ocm_wr_ack_port1,
ocm_wr_dv_port1,
ocm_rd_req_port1,
ocm_rd_dv_port1,
ocm_wr_addr_port1,
ocm_wr_data_port1,
ocm_wr_bytes_port1,
ocm_rd_addr_port1,
ocm_rd_data_port1,
ocm_rd_bytes_port1,
ocm_wr_qos_port1,
ocm_rd_qos_port1
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ocm_wr_ack_port0;
input ocm_wr_dv_port0;
input ocm_rd_req_port0;
output ocm_rd_dv_port0;
input[addr_width-1:0] ocm_wr_addr_port0;
input[max_burst_bits-1:0] ocm_wr_data_port0;
input[max_burst_bytes_width:0] ocm_wr_bytes_port0;
input[addr_width-1:0] ocm_rd_addr_port0;
output[max_burst_bits-1:0] ocm_rd_data_port0;
input[max_burst_bytes_width:0] ocm_rd_bytes_port0;
input [axi_qos_width-1:0] ocm_wr_qos_port0;
input [axi_qos_width-1:0] ocm_rd_qos_port0;
output ocm_wr_ack_port1;
input ocm_wr_dv_port1;
input ocm_rd_req_port1;
output ocm_rd_dv_port1;
input[addr_width-1:0] ocm_wr_addr_port1;
input[max_burst_bits-1:0] ocm_wr_data_port1;
input[max_burst_bytes_width:0] ocm_wr_bytes_port1;
input[addr_width-1:0] ocm_rd_addr_port1;
output[max_burst_bits-1:0] ocm_rd_data_port1;
input[max_burst_bytes_width:0] ocm_rd_bytes_port1;
input[axi_qos_width-1:0] ocm_wr_qos_port1;
input[axi_qos_width-1:0] ocm_rd_qos_port1;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr ocm_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_wr_qos_port0),
.qos2(ocm_wr_qos_port1),
.prt_dv1(ocm_wr_dv_port0),
.prt_dv2(ocm_wr_dv_port1),
.prt_data1(ocm_wr_data_port0),
.prt_data2(ocm_wr_data_port1),
.prt_addr1(ocm_wr_addr_port0),
.prt_addr2(ocm_wr_addr_port1),
.prt_bytes1(ocm_wr_bytes_port0),
.prt_bytes2(ocm_wr_bytes_port1),
.prt_ack1(ocm_wr_ack_port0),
.prt_ack2(ocm_wr_ack_port1),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_rd_qos_port0),
.qos2(ocm_rd_qos_port1),
.prt_req1(ocm_rd_req_port0),
.prt_req2(ocm_rd_req_port1),
.prt_data1(ocm_rd_data_port0),
.prt_data2(ocm_rd_data_port1),
.prt_addr1(ocm_rd_addr_port0),
.prt_addr2(ocm_rd_addr_port1),
.prt_bytes1(ocm_rd_bytes_port0),
.prt_bytes2(ocm_rd_bytes_port1),
.prt_dv1(ocm_rd_dv_port0),
.prt_dv2(ocm_rd_dv_port1),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_ocm_mem ocm();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ocm.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ocm.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_ocmc(
rstn,
sw_clk,
/* Goes to port 0 of OCM */
ocm_wr_ack_port0,
ocm_wr_dv_port0,
ocm_rd_req_port0,
ocm_rd_dv_port0,
ocm_wr_addr_port0,
ocm_wr_data_port0,
ocm_wr_bytes_port0,
ocm_rd_addr_port0,
ocm_rd_data_port0,
ocm_rd_bytes_port0,
ocm_wr_qos_port0,
ocm_rd_qos_port0,
/* Goes to port 1 of OCM */
ocm_wr_ack_port1,
ocm_wr_dv_port1,
ocm_rd_req_port1,
ocm_rd_dv_port1,
ocm_wr_addr_port1,
ocm_wr_data_port1,
ocm_wr_bytes_port1,
ocm_rd_addr_port1,
ocm_rd_data_port1,
ocm_rd_bytes_port1,
ocm_wr_qos_port1,
ocm_rd_qos_port1
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ocm_wr_ack_port0;
input ocm_wr_dv_port0;
input ocm_rd_req_port0;
output ocm_rd_dv_port0;
input[addr_width-1:0] ocm_wr_addr_port0;
input[max_burst_bits-1:0] ocm_wr_data_port0;
input[max_burst_bytes_width:0] ocm_wr_bytes_port0;
input[addr_width-1:0] ocm_rd_addr_port0;
output[max_burst_bits-1:0] ocm_rd_data_port0;
input[max_burst_bytes_width:0] ocm_rd_bytes_port0;
input [axi_qos_width-1:0] ocm_wr_qos_port0;
input [axi_qos_width-1:0] ocm_rd_qos_port0;
output ocm_wr_ack_port1;
input ocm_wr_dv_port1;
input ocm_rd_req_port1;
output ocm_rd_dv_port1;
input[addr_width-1:0] ocm_wr_addr_port1;
input[max_burst_bits-1:0] ocm_wr_data_port1;
input[max_burst_bytes_width:0] ocm_wr_bytes_port1;
input[addr_width-1:0] ocm_rd_addr_port1;
output[max_burst_bits-1:0] ocm_rd_data_port1;
input[max_burst_bytes_width:0] ocm_rd_bytes_port1;
input[axi_qos_width-1:0] ocm_wr_qos_port1;
input[axi_qos_width-1:0] ocm_rd_qos_port1;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr ocm_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_wr_qos_port0),
.qos2(ocm_wr_qos_port1),
.prt_dv1(ocm_wr_dv_port0),
.prt_dv2(ocm_wr_dv_port1),
.prt_data1(ocm_wr_data_port0),
.prt_data2(ocm_wr_data_port1),
.prt_addr1(ocm_wr_addr_port0),
.prt_addr2(ocm_wr_addr_port1),
.prt_bytes1(ocm_wr_bytes_port0),
.prt_bytes2(ocm_wr_bytes_port1),
.prt_ack1(ocm_wr_ack_port0),
.prt_ack2(ocm_wr_ack_port1),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_rd_qos_port0),
.qos2(ocm_rd_qos_port1),
.prt_req1(ocm_rd_req_port0),
.prt_req2(ocm_rd_req_port1),
.prt_data1(ocm_rd_data_port0),
.prt_data2(ocm_rd_data_port1),
.prt_addr1(ocm_rd_addr_port0),
.prt_addr2(ocm_rd_addr_port1),
.prt_bytes1(ocm_rd_bytes_port0),
.prt_bytes2(ocm_rd_bytes_port1),
.prt_dv1(ocm_rd_dv_port0),
.prt_dv2(ocm_rd_dv_port1),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_ocm_mem ocm();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ocm.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ocm.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_fmsw_gp(
sw_clk,
rstn,
w_qos_gp0,
r_qos_gp0,
wr_ack_ocm_gp0,
wr_ack_ddr_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ocm_gp0,
wr_dv_ddr_gp0,
rd_req_ocm_gp0,
rd_req_ddr_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ocm_gp0,
rd_data_ddr_gp0,
rd_data_reg_gp0,
rd_dv_ocm_gp0,
rd_dv_ddr_gp0,
rd_dv_reg_gp0,
w_qos_gp1,
r_qos_gp1,
wr_ack_ocm_gp1,
wr_ack_ddr_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ocm_gp1,
wr_dv_ddr_gp1,
rd_req_ocm_gp1,
rd_req_ddr_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ocm_gp1,
rd_data_ddr_gp1,
rd_data_reg_gp1,
rd_dv_ocm_gp1,
rd_dv_ddr_gp1,
rd_dv_reg_gp1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
reg_rd_req,
reg_rd_dv,
ocm_wr_qos,
ddr_wr_qos,
ocm_rd_qos,
ddr_rd_qos,
reg_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes,
reg_rd_addr,
reg_rd_data,
reg_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0]w_qos_gp0;
input [axi_qos_width-1:0]r_qos_gp0;
input [axi_qos_width-1:0]w_qos_gp1;
input [axi_qos_width-1:0]r_qos_gp1;
output [axi_qos_width-1:0]ocm_wr_qos;
output [axi_qos_width-1:0]ocm_rd_qos;
output [axi_qos_width-1:0]ddr_wr_qos;
output [axi_qos_width-1:0]ddr_rd_qos;
output [axi_qos_width-1:0]reg_rd_qos;
output wr_ack_ocm_gp0;
output wr_ack_ddr_gp0;
input [max_burst_bits-1:0] wr_data_gp0;
input [addr_width-1:0] wr_addr_gp0;
input [max_burst_bytes_width:0] wr_bytes_gp0;
output wr_dv_ocm_gp0;
output wr_dv_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_reg_gp0;
input [addr_width-1:0] rd_addr_gp0;
input [max_burst_bytes_width:0] rd_bytes_gp0;
output [max_burst_bits-1:0] rd_data_ocm_gp0;
output [max_burst_bits-1:0] rd_data_ddr_gp0;
output [max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ocm_gp0;
output rd_dv_ddr_gp0;
output rd_dv_reg_gp0;
output wr_ack_ocm_gp1;
output wr_ack_ddr_gp1;
input [max_burst_bits-1:0] wr_data_gp1;
input [addr_width-1:0] wr_addr_gp1;
input [max_burst_bytes_width:0] wr_bytes_gp1;
output wr_dv_ocm_gp1;
output wr_dv_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_reg_gp1;
input [addr_width-1:0] rd_addr_gp1;
input [max_burst_bytes_width:0] rd_bytes_gp1;
output [max_burst_bits-1:0] rd_data_ocm_gp1;
output [max_burst_bits-1:0] rd_data_ddr_gp1;
output [max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ocm_gp1;
output rd_dv_ddr_gp1;
output rd_dv_reg_gp1;
input ocm_wr_ack;
output ocm_wr_dv;
output [addr_width-1:0]ocm_wr_addr;
output [max_burst_bits-1:0]ocm_wr_data;
output [max_burst_bytes_width:0]ocm_wr_bytes;
input ocm_rd_dv;
input [max_burst_bits-1:0] ocm_rd_data;
output ocm_rd_req;
output [addr_width-1:0] ocm_rd_addr;
output [max_burst_bytes_width:0] ocm_rd_bytes;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
input reg_rd_dv;
input [max_burst_bits-1:0] reg_rd_data;
output reg_rd_req;
output [addr_width-1:0] reg_rd_addr;
output [max_burst_bytes_width:0] reg_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ocm_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ocm_gp0),
.prt_dv2(wr_dv_ocm_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ocm_gp0),
.prt_ack2(wr_ack_ocm_gp1),
.prt_req(ocm_wr_dv),
.prt_qos(ocm_wr_qos),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_wr ddr_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ddr_gp0),
.prt_dv2(wr_dv_ddr_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ddr_gp0),
.prt_ack2(wr_ack_ddr_gp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ocm_gp0),
.prt_req2(rd_req_ocm_gp1),
.prt_data1(rd_data_ocm_gp0),
.prt_data2(rd_data_ocm_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ocm_gp0),
.prt_dv2(rd_dv_ocm_gp1),
.prt_req(ocm_rd_req),
.prt_qos(ocm_rd_qos),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ddr_gp0),
.prt_req2(rd_req_ddr_gp1),
.prt_data1(rd_data_ddr_gp0),
.prt_data2(rd_data_ddr_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ddr_gp0),
.prt_dv2(rd_dv_ddr_gp1),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd reg_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_reg_gp0),
.prt_req2(rd_req_reg_gp1),
.prt_data1(rd_data_reg_gp0),
.prt_data2(rd_data_reg_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_reg_gp0),
.prt_dv2(rd_dv_reg_gp1),
.prt_req(reg_rd_req),
.prt_qos(reg_rd_qos),
.prt_data(reg_rd_data),
.prt_addr(reg_rd_addr),
.prt_bytes(reg_rd_bytes),
.prt_dv(reg_rd_dv)
);
endmodule
|
module processing_system7_bfm_v2_0_5_fmsw_gp(
sw_clk,
rstn,
w_qos_gp0,
r_qos_gp0,
wr_ack_ocm_gp0,
wr_ack_ddr_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ocm_gp0,
wr_dv_ddr_gp0,
rd_req_ocm_gp0,
rd_req_ddr_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ocm_gp0,
rd_data_ddr_gp0,
rd_data_reg_gp0,
rd_dv_ocm_gp0,
rd_dv_ddr_gp0,
rd_dv_reg_gp0,
w_qos_gp1,
r_qos_gp1,
wr_ack_ocm_gp1,
wr_ack_ddr_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ocm_gp1,
wr_dv_ddr_gp1,
rd_req_ocm_gp1,
rd_req_ddr_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ocm_gp1,
rd_data_ddr_gp1,
rd_data_reg_gp1,
rd_dv_ocm_gp1,
rd_dv_ddr_gp1,
rd_dv_reg_gp1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
reg_rd_req,
reg_rd_dv,
ocm_wr_qos,
ddr_wr_qos,
ocm_rd_qos,
ddr_rd_qos,
reg_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes,
reg_rd_addr,
reg_rd_data,
reg_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0]w_qos_gp0;
input [axi_qos_width-1:0]r_qos_gp0;
input [axi_qos_width-1:0]w_qos_gp1;
input [axi_qos_width-1:0]r_qos_gp1;
output [axi_qos_width-1:0]ocm_wr_qos;
output [axi_qos_width-1:0]ocm_rd_qos;
output [axi_qos_width-1:0]ddr_wr_qos;
output [axi_qos_width-1:0]ddr_rd_qos;
output [axi_qos_width-1:0]reg_rd_qos;
output wr_ack_ocm_gp0;
output wr_ack_ddr_gp0;
input [max_burst_bits-1:0] wr_data_gp0;
input [addr_width-1:0] wr_addr_gp0;
input [max_burst_bytes_width:0] wr_bytes_gp0;
output wr_dv_ocm_gp0;
output wr_dv_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_reg_gp0;
input [addr_width-1:0] rd_addr_gp0;
input [max_burst_bytes_width:0] rd_bytes_gp0;
output [max_burst_bits-1:0] rd_data_ocm_gp0;
output [max_burst_bits-1:0] rd_data_ddr_gp0;
output [max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ocm_gp0;
output rd_dv_ddr_gp0;
output rd_dv_reg_gp0;
output wr_ack_ocm_gp1;
output wr_ack_ddr_gp1;
input [max_burst_bits-1:0] wr_data_gp1;
input [addr_width-1:0] wr_addr_gp1;
input [max_burst_bytes_width:0] wr_bytes_gp1;
output wr_dv_ocm_gp1;
output wr_dv_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_reg_gp1;
input [addr_width-1:0] rd_addr_gp1;
input [max_burst_bytes_width:0] rd_bytes_gp1;
output [max_burst_bits-1:0] rd_data_ocm_gp1;
output [max_burst_bits-1:0] rd_data_ddr_gp1;
output [max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ocm_gp1;
output rd_dv_ddr_gp1;
output rd_dv_reg_gp1;
input ocm_wr_ack;
output ocm_wr_dv;
output [addr_width-1:0]ocm_wr_addr;
output [max_burst_bits-1:0]ocm_wr_data;
output [max_burst_bytes_width:0]ocm_wr_bytes;
input ocm_rd_dv;
input [max_burst_bits-1:0] ocm_rd_data;
output ocm_rd_req;
output [addr_width-1:0] ocm_rd_addr;
output [max_burst_bytes_width:0] ocm_rd_bytes;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
input reg_rd_dv;
input [max_burst_bits-1:0] reg_rd_data;
output reg_rd_req;
output [addr_width-1:0] reg_rd_addr;
output [max_burst_bytes_width:0] reg_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ocm_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ocm_gp0),
.prt_dv2(wr_dv_ocm_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ocm_gp0),
.prt_ack2(wr_ack_ocm_gp1),
.prt_req(ocm_wr_dv),
.prt_qos(ocm_wr_qos),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_wr ddr_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ddr_gp0),
.prt_dv2(wr_dv_ddr_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ddr_gp0),
.prt_ack2(wr_ack_ddr_gp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ocm_gp0),
.prt_req2(rd_req_ocm_gp1),
.prt_data1(rd_data_ocm_gp0),
.prt_data2(rd_data_ocm_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ocm_gp0),
.prt_dv2(rd_dv_ocm_gp1),
.prt_req(ocm_rd_req),
.prt_qos(ocm_rd_qos),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ddr_gp0),
.prt_req2(rd_req_ddr_gp1),
.prt_data1(rd_data_ddr_gp0),
.prt_data2(rd_data_ddr_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ddr_gp0),
.prt_dv2(rd_dv_ddr_gp1),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd reg_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_reg_gp0),
.prt_req2(rd_req_reg_gp1),
.prt_data1(rd_data_reg_gp0),
.prt_data2(rd_data_reg_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_reg_gp0),
.prt_dv2(rd_dv_reg_gp1),
.prt_req(reg_rd_req),
.prt_qos(reg_rd_qos),
.prt_data(reg_rd_data),
.prt_addr(reg_rd_addr),
.prt_bytes(reg_rd_bytes),
.prt_dv(reg_rd_dv)
);
endmodule
|
module processing_system7_bfm_v2_0_5_fmsw_gp(
sw_clk,
rstn,
w_qos_gp0,
r_qos_gp0,
wr_ack_ocm_gp0,
wr_ack_ddr_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ocm_gp0,
wr_dv_ddr_gp0,
rd_req_ocm_gp0,
rd_req_ddr_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ocm_gp0,
rd_data_ddr_gp0,
rd_data_reg_gp0,
rd_dv_ocm_gp0,
rd_dv_ddr_gp0,
rd_dv_reg_gp0,
w_qos_gp1,
r_qos_gp1,
wr_ack_ocm_gp1,
wr_ack_ddr_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ocm_gp1,
wr_dv_ddr_gp1,
rd_req_ocm_gp1,
rd_req_ddr_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ocm_gp1,
rd_data_ddr_gp1,
rd_data_reg_gp1,
rd_dv_ocm_gp1,
rd_dv_ddr_gp1,
rd_dv_reg_gp1,
ocm_wr_ack,
ocm_wr_dv,
ocm_rd_req,
ocm_rd_dv,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
reg_rd_req,
reg_rd_dv,
ocm_wr_qos,
ddr_wr_qos,
ocm_rd_qos,
ddr_rd_qos,
reg_rd_qos,
ocm_wr_addr,
ocm_wr_data,
ocm_wr_bytes,
ocm_rd_addr,
ocm_rd_data,
ocm_rd_bytes,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes,
reg_rd_addr,
reg_rd_data,
reg_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0]w_qos_gp0;
input [axi_qos_width-1:0]r_qos_gp0;
input [axi_qos_width-1:0]w_qos_gp1;
input [axi_qos_width-1:0]r_qos_gp1;
output [axi_qos_width-1:0]ocm_wr_qos;
output [axi_qos_width-1:0]ocm_rd_qos;
output [axi_qos_width-1:0]ddr_wr_qos;
output [axi_qos_width-1:0]ddr_rd_qos;
output [axi_qos_width-1:0]reg_rd_qos;
output wr_ack_ocm_gp0;
output wr_ack_ddr_gp0;
input [max_burst_bits-1:0] wr_data_gp0;
input [addr_width-1:0] wr_addr_gp0;
input [max_burst_bytes_width:0] wr_bytes_gp0;
output wr_dv_ocm_gp0;
output wr_dv_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_reg_gp0;
input [addr_width-1:0] rd_addr_gp0;
input [max_burst_bytes_width:0] rd_bytes_gp0;
output [max_burst_bits-1:0] rd_data_ocm_gp0;
output [max_burst_bits-1:0] rd_data_ddr_gp0;
output [max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ocm_gp0;
output rd_dv_ddr_gp0;
output rd_dv_reg_gp0;
output wr_ack_ocm_gp1;
output wr_ack_ddr_gp1;
input [max_burst_bits-1:0] wr_data_gp1;
input [addr_width-1:0] wr_addr_gp1;
input [max_burst_bytes_width:0] wr_bytes_gp1;
output wr_dv_ocm_gp1;
output wr_dv_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_reg_gp1;
input [addr_width-1:0] rd_addr_gp1;
input [max_burst_bytes_width:0] rd_bytes_gp1;
output [max_burst_bits-1:0] rd_data_ocm_gp1;
output [max_burst_bits-1:0] rd_data_ddr_gp1;
output [max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ocm_gp1;
output rd_dv_ddr_gp1;
output rd_dv_reg_gp1;
input ocm_wr_ack;
output ocm_wr_dv;
output [addr_width-1:0]ocm_wr_addr;
output [max_burst_bits-1:0]ocm_wr_data;
output [max_burst_bytes_width:0]ocm_wr_bytes;
input ocm_rd_dv;
input [max_burst_bits-1:0] ocm_rd_data;
output ocm_rd_req;
output [addr_width-1:0] ocm_rd_addr;
output [max_burst_bytes_width:0] ocm_rd_bytes;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
input reg_rd_dv;
input [max_burst_bits-1:0] reg_rd_data;
output reg_rd_req;
output [addr_width-1:0] reg_rd_addr;
output [max_burst_bytes_width:0] reg_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ocm_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ocm_gp0),
.prt_dv2(wr_dv_ocm_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ocm_gp0),
.prt_ack2(wr_ack_ocm_gp1),
.prt_req(ocm_wr_dv),
.prt_qos(ocm_wr_qos),
.prt_data(ocm_wr_data),
.prt_addr(ocm_wr_addr),
.prt_bytes(ocm_wr_bytes),
.prt_ack(ocm_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_wr ddr_gp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_gp0),
.qos2(w_qos_gp1),
.prt_dv1(wr_dv_ddr_gp0),
.prt_dv2(wr_dv_ddr_gp1),
.prt_data1(wr_data_gp0),
.prt_data2(wr_data_gp1),
.prt_addr1(wr_addr_gp0),
.prt_addr2(wr_addr_gp1),
.prt_bytes1(wr_bytes_gp0),
.prt_bytes2(wr_bytes_gp1),
.prt_ack1(wr_ack_ddr_gp0),
.prt_ack2(wr_ack_ddr_gp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ocm_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ocm_gp0),
.prt_req2(rd_req_ocm_gp1),
.prt_data1(rd_data_ocm_gp0),
.prt_data2(rd_data_ocm_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ocm_gp0),
.prt_dv2(rd_dv_ocm_gp1),
.prt_req(ocm_rd_req),
.prt_qos(ocm_rd_qos),
.prt_data(ocm_rd_data),
.prt_addr(ocm_rd_addr),
.prt_bytes(ocm_rd_bytes),
.prt_dv(ocm_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_ddr_gp0),
.prt_req2(rd_req_ddr_gp1),
.prt_data1(rd_data_ddr_gp0),
.prt_data2(rd_data_ddr_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_ddr_gp0),
.prt_dv2(rd_dv_ddr_gp1),
.prt_req(ddr_rd_req),
.prt_qos(ddr_rd_qos),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
processing_system7_bfm_v2_0_5_arb_rd reg_gp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_gp0),
.qos2(r_qos_gp1),
.prt_req1(rd_req_reg_gp0),
.prt_req2(rd_req_reg_gp1),
.prt_data1(rd_data_reg_gp0),
.prt_data2(rd_data_reg_gp1),
.prt_addr1(rd_addr_gp0),
.prt_addr2(rd_addr_gp1),
.prt_bytes1(rd_bytes_gp0),
.prt_bytes2(rd_bytes_gp1),
.prt_dv1(rd_dv_reg_gp0),
.prt_dv2(rd_dv_reg_gp1),
.prt_req(reg_rd_req),
.prt_qos(reg_rd_qos),
.prt_data(reg_rd_data),
.prt_addr(reg_rd_addr),
.prt_bytes(reg_rd_bytes),
.prt_dv(reg_rd_dv)
);
endmodule
|
module processing_system7_bfm_v2_0_5_arb_hp0_1(
sw_clk,
rstn,
w_qos_hp0,
r_qos_hp0,
w_qos_hp1,
r_qos_hp1,
wr_ack_ddr_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
rd_req_ddr_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_dv_ddr_hp0,
wr_ack_ddr_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
rd_req_ddr_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_dv_ddr_hp1,
ddr_wr_ack,
ddr_wr_dv,
ddr_rd_req,
ddr_rd_dv,
ddr_rd_qos,
ddr_wr_qos,
ddr_wr_addr,
ddr_wr_data,
ddr_wr_bytes,
ddr_rd_addr,
ddr_rd_data,
ddr_rd_bytes
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input sw_clk;
input rstn;
input [axi_qos_width-1:0] w_qos_hp0;
input [axi_qos_width-1:0] r_qos_hp0;
input [axi_qos_width-1:0] w_qos_hp1;
input [axi_qos_width-1:0] r_qos_hp1;
input [axi_qos_width-1:0] ddr_rd_qos;
input [axi_qos_width-1:0] ddr_wr_qos;
output wr_ack_ddr_hp0;
input [max_burst_bits-1:0] wr_data_hp0;
input [addr_width-1:0] wr_addr_hp0;
input [max_burst_bytes_width:0] wr_bytes_hp0;
output wr_dv_ddr_hp0;
input rd_req_ddr_hp0;
input [addr_width-1:0] rd_addr_hp0;
input [max_burst_bytes_width:0] rd_bytes_hp0;
output [max_burst_bits-1:0] rd_data_ddr_hp0;
output rd_dv_ddr_hp0;
output wr_ack_ddr_hp1;
input [max_burst_bits-1:0] wr_data_hp1;
input [addr_width-1:0] wr_addr_hp1;
input [max_burst_bytes_width:0] wr_bytes_hp1;
output wr_dv_ddr_hp1;
input rd_req_ddr_hp1;
input [addr_width-1:0] rd_addr_hp1;
input [max_burst_bytes_width:0] rd_bytes_hp1;
output [max_burst_bits-1:0] rd_data_ddr_hp1;
output rd_dv_ddr_hp1;
input ddr_wr_ack;
output ddr_wr_dv;
output [addr_width-1:0]ddr_wr_addr;
output [max_burst_bits-1:0]ddr_wr_data;
output [max_burst_bytes_width:0]ddr_wr_bytes;
input ddr_rd_dv;
input [max_burst_bits-1:0] ddr_rd_data;
output ddr_rd_req;
output [addr_width-1:0] ddr_rd_addr;
output [max_burst_bytes_width:0] ddr_rd_bytes;
processing_system7_bfm_v2_0_5_arb_wr ddr_hp_wr(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(w_qos_hp0),
.qos2(w_qos_hp1),
.prt_dv1(wr_dv_ddr_hp0),
.prt_dv2(wr_dv_ddr_hp1),
.prt_data1(wr_data_hp0),
.prt_data2(wr_data_hp1),
.prt_addr1(wr_addr_hp0),
.prt_addr2(wr_addr_hp1),
.prt_bytes1(wr_bytes_hp0),
.prt_bytes2(wr_bytes_hp1),
.prt_ack1(wr_ack_ddr_hp0),
.prt_ack2(wr_ack_ddr_hp1),
.prt_req(ddr_wr_dv),
.prt_qos(ddr_wr_qos),
.prt_data(ddr_wr_data),
.prt_addr(ddr_wr_addr),
.prt_bytes(ddr_wr_bytes),
.prt_ack(ddr_wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd ddr_hp_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(r_qos_hp0),
.qos2(r_qos_hp1),
.prt_req1(rd_req_ddr_hp0),
.prt_req2(rd_req_ddr_hp1),
.prt_data1(rd_data_ddr_hp0),
.prt_data2(rd_data_ddr_hp1),
.prt_addr1(rd_addr_hp0),
.prt_addr2(rd_addr_hp1),
.prt_bytes1(rd_bytes_hp0),
.prt_bytes2(rd_bytes_hp1),
.prt_dv1(rd_dv_ddr_hp0),
.prt_dv2(rd_dv_ddr_hp1),
.prt_qos(ddr_rd_qos),
.prt_req(ddr_rd_req),
.prt_data(ddr_rd_data),
.prt_addr(ddr_rd_addr),
.prt_bytes(ddr_rd_bytes),
.prt_dv(ddr_rd_dv)
);
endmodule
|
module axi_crossbar_v2_1_decerr_slave #
(
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_PROTOCOL = 0,
parameter integer C_RESP = 2'b11
)
(
input wire S_AXI_ACLK,
input wire S_AXI_ARESET,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_AWID,
input wire S_AXI_AWVALID,
output wire S_AXI_AWREADY,
input wire S_AXI_WLAST,
input wire S_AXI_WVALID,
output wire S_AXI_WREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_BID,
output wire [1:0] S_AXI_BRESP,
output wire [C_AXI_BUSER_WIDTH-1:0] S_AXI_BUSER,
output wire S_AXI_BVALID,
input wire S_AXI_BREADY,
input wire [(C_AXI_ID_WIDTH-1):0] S_AXI_ARID,
input wire [7:0] S_AXI_ARLEN,
input wire S_AXI_ARVALID,
output wire S_AXI_ARREADY,
output wire [(C_AXI_ID_WIDTH-1):0] S_AXI_RID,
output wire [(C_AXI_DATA_WIDTH-1):0] S_AXI_RDATA,
output wire [1:0] S_AXI_RRESP,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RLAST,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY
);
reg s_axi_awready_i;
reg s_axi_wready_i;
reg s_axi_bvalid_i;
reg s_axi_arready_i;
reg s_axi_rvalid_i;
localparam P_WRITE_IDLE = 2'b00;
localparam P_WRITE_DATA = 2'b01;
localparam P_WRITE_RESP = 2'b10;
localparam P_READ_IDLE = 1'b0;
localparam P_READ_DATA = 1'b1;
localparam integer P_AXI4 = 0;
localparam integer P_AXI3 = 1;
localparam integer P_AXILITE = 2;
assign S_AXI_BRESP = C_RESP;
assign S_AXI_RRESP = C_RESP;
assign S_AXI_RDATA = {C_AXI_DATA_WIDTH{1'b0}};
assign S_AXI_BUSER = {C_AXI_BUSER_WIDTH{1'b0}};
assign S_AXI_RUSER = {C_AXI_RUSER_WIDTH{1'b0}};
assign S_AXI_AWREADY = s_axi_awready_i;
assign S_AXI_WREADY = s_axi_wready_i;
assign S_AXI_BVALID = s_axi_bvalid_i;
assign S_AXI_ARREADY = s_axi_arready_i;
assign S_AXI_RVALID = s_axi_rvalid_i;
generate
if (C_AXI_PROTOCOL == P_AXILITE) begin : gen_axilite
assign S_AXI_RLAST = 1'b1;
assign S_AXI_BID = 0;
assign S_AXI_RID = 0;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
end else begin
if (s_axi_bvalid_i) begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
end
end else if (S_AXI_AWVALID & S_AXI_WVALID) begin
if (s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
end else begin
s_axi_awready_i <= 1'b1;
s_axi_wready_i <= 1'b1;
end
end
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
end else begin
if (s_axi_rvalid_i) begin
if (S_AXI_RREADY) begin
s_axi_rvalid_i <= 1'b0;
end
end else if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b1;
end else begin
s_axi_arready_i <= 1'b1;
end
end
end
end else begin : gen_axi
reg s_axi_rlast_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_bid_i;
reg [(C_AXI_ID_WIDTH-1):0] s_axi_rid_i;
reg [7:0] read_cnt;
reg [1:0] write_cs;
reg [0:0] read_cs;
assign S_AXI_RLAST = s_axi_rlast_i;
assign S_AXI_BID = s_axi_bid_i;
assign S_AXI_RID = s_axi_rid_i;
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
write_cs <= P_WRITE_IDLE;
s_axi_awready_i <= 1'b0;
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b0;
s_axi_bid_i <= 0;
end else begin
case (write_cs)
P_WRITE_IDLE:
begin
if (S_AXI_AWVALID & s_axi_awready_i) begin
s_axi_awready_i <= 1'b0;
s_axi_bid_i <= S_AXI_AWID;
s_axi_wready_i <= 1'b1;
write_cs <= P_WRITE_DATA;
end else begin
s_axi_awready_i <= 1'b1;
end
end
P_WRITE_DATA:
begin
if (S_AXI_WVALID & S_AXI_WLAST) begin
s_axi_wready_i <= 1'b0;
s_axi_bvalid_i <= 1'b1;
write_cs <= P_WRITE_RESP;
end
end
P_WRITE_RESP:
begin
if (S_AXI_BREADY) begin
s_axi_bvalid_i <= 1'b0;
s_axi_awready_i <= 1'b1;
write_cs <= P_WRITE_IDLE;
end
end
endcase
end
end
always @(posedge S_AXI_ACLK) begin
if (S_AXI_ARESET) begin
read_cs <= P_READ_IDLE;
s_axi_arready_i <= 1'b0;
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_rid_i <= 0;
read_cnt <= 0;
end else begin
case (read_cs)
P_READ_IDLE:
begin
if (S_AXI_ARVALID & s_axi_arready_i) begin
s_axi_arready_i <= 1'b0;
s_axi_rid_i <= S_AXI_ARID;
read_cnt <= S_AXI_ARLEN;
s_axi_rvalid_i <= 1'b1;
if (S_AXI_ARLEN == 0) begin
s_axi_rlast_i <= 1'b1;
end else begin
s_axi_rlast_i <= 1'b0;
end
read_cs <= P_READ_DATA;
end else begin
s_axi_arready_i <= 1'b1;
end
end
P_READ_DATA:
begin
if (S_AXI_RREADY) begin
if (read_cnt == 0) begin
s_axi_rvalid_i <= 1'b0;
s_axi_rlast_i <= 1'b0;
s_axi_arready_i <= 1'b1;
read_cs <= P_READ_IDLE;
end else begin
if (read_cnt == 1) begin
s_axi_rlast_i <= 1'b1;
end
read_cnt <= read_cnt - 1;
end
end
end
endcase
end
end
end
endgenerate
endmodule
|
module axi_crossbar_v2_1_si_transactor #
(
parameter C_FAMILY = "none",
parameter integer C_SI = 0, // SI-slot number of current instance.
parameter integer C_DIR = 0, // Direction: 0 = Write; 1 = Read.
parameter integer C_NUM_ADDR_RANGES = 1,
parameter integer C_NUM_M = 2,
parameter integer C_NUM_M_LOG = 1,
parameter integer C_ACCEPTANCE = 1, // Acceptance limit of this SI-slot.
parameter integer C_ACCEPTANCE_LOG = 0, // Width of acceptance counter for this SI-slot.
parameter integer C_ID_WIDTH = 1,
parameter integer C_THREAD_ID_WIDTH = 0,
parameter integer C_ADDR_WIDTH = 32,
parameter integer C_AMESG_WIDTH = 1, // Used for AW or AR channel payload, depending on instantiation.
parameter integer C_RMESG_WIDTH = 1, // Used for B or R channel payload, depending on instantiation.
parameter [C_ID_WIDTH-1:0] C_BASE_ID = {C_ID_WIDTH{1'b0}},
parameter [C_ID_WIDTH-1:0] C_HIGH_ID = {C_ID_WIDTH{1'b0}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_BASE_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b1}},
parameter [C_NUM_M*C_NUM_ADDR_RANGES*64-1:0] C_HIGH_ADDR = {C_NUM_M*C_NUM_ADDR_RANGES*64{1'b0}},
parameter integer C_SINGLE_THREAD = 0,
parameter [C_NUM_M-1:0] C_TARGET_QUAL = {C_NUM_M{1'b1}},
parameter [C_NUM_M*32-1:0] C_M_AXI_SECURE = {C_NUM_M{32'h00000000}},
parameter integer C_RANGE_CHECK = 0,
parameter integer C_ADDR_DECODE =0,
parameter [C_NUM_M*32-1:0] C_ERR_MODE = {C_NUM_M{32'h00000000}},
parameter integer C_DEBUG = 1
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Address Channel Interface Ports
input wire [C_ID_WIDTH-1:0] S_AID,
input wire [C_ADDR_WIDTH-1:0] S_AADDR,
input wire [8-1:0] S_ALEN,
input wire [3-1:0] S_ASIZE,
input wire [2-1:0] S_ABURST,
input wire [2-1:0] S_ALOCK,
input wire [3-1:0] S_APROT,
// input wire [4-1:0] S_AREGION,
input wire [C_AMESG_WIDTH-1:0] S_AMESG,
input wire S_AVALID,
output wire S_AREADY,
// Master Address Channel Interface Ports
output wire [C_ID_WIDTH-1:0] M_AID,
output wire [C_ADDR_WIDTH-1:0] M_AADDR,
output wire [8-1:0] M_ALEN,
output wire [3-1:0] M_ASIZE,
output wire [2-1:0] M_ALOCK,
output wire [3-1:0] M_APROT,
output wire [4-1:0] M_AREGION,
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [(C_NUM_M+1)-1:0] M_ATARGET_HOT,
output wire [(C_NUM_M_LOG+1)-1:0] M_ATARGET_ENC,
output wire [7:0] M_AERROR,
output wire M_AVALID_QUAL,
output wire M_AVALID,
input wire M_AREADY,
// Slave Response Channel Interface Ports
output wire [C_ID_WIDTH-1:0] S_RID,
output wire [C_RMESG_WIDTH-1:0] S_RMESG,
output wire S_RLAST,
output wire S_RVALID,
input wire S_RREADY,
// Master Response Channel Interface Ports
input wire [(C_NUM_M+1)*C_ID_WIDTH-1:0] M_RID,
input wire [(C_NUM_M+1)*C_RMESG_WIDTH-1:0] M_RMESG,
input wire [(C_NUM_M+1)-1:0] M_RLAST,
input wire [(C_NUM_M+1)-1:0] M_RVALID,
output wire [(C_NUM_M+1)-1:0] M_RREADY,
input wire [(C_NUM_M+1)-1:0] M_RTARGET, // Does response ID from each MI-slot target this SI slot?
input wire [8-1:0] DEBUG_A_TRANS_SEQ
);
localparam integer P_WRITE = 0;
localparam integer P_READ = 1;
localparam integer P_RMUX_MESG_WIDTH = C_ID_WIDTH + C_RMESG_WIDTH + 1;
localparam [31:0] P_AXILITE_ERRMODE = 32'h00000001;
localparam integer P_NONSECURE_BIT = 1;
localparam integer P_NUM_M_LOG_M1 = C_NUM_M_LOG ? C_NUM_M_LOG : 1;
localparam [C_NUM_M-1:0] P_M_AXILITE = f_m_axilite(0); // Mask of AxiLite MI-slots
localparam [1:0] P_FIXED = 2'b00;
localparam integer P_NUM_M_DE_LOG = f_ceil_log2(C_NUM_M+1);
localparam integer P_THREAD_ID_WIDTH_M1 = (C_THREAD_ID_WIDTH > 0) ? C_THREAD_ID_WIDTH : 1;
localparam integer P_NUM_ID_VAL = 2**C_THREAD_ID_WIDTH;
localparam integer P_NUM_THREADS = (P_NUM_ID_VAL < C_ACCEPTANCE) ? P_NUM_ID_VAL : C_ACCEPTANCE;
localparam [C_NUM_M-1:0] P_M_SECURE_MASK = f_bit32to1_mi(C_M_AXI_SECURE); // Mask of secure MI-slots
// Ceiling of log2(x)
function integer f_ceil_log2
(
input integer x
);
integer acc;
begin
acc=0;
while ((2**acc) < x)
acc = acc + 1;
f_ceil_log2 = acc;
end
endfunction
// AxiLite protocol flag vector
function [C_NUM_M-1:0] f_m_axilite
(
input integer null_arg
);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_m_axilite[mi] = (C_ERR_MODE[mi*32+:32] == P_AXILITE_ERRMODE);
end
end
endfunction
// Convert Bit32 vector of range [0,1] to Bit1 vector on MI
function [C_NUM_M-1:0] f_bit32to1_mi
(input [C_NUM_M*32-1:0] vec32);
integer mi;
begin
for (mi=0; mi<C_NUM_M; mi=mi+1) begin
f_bit32to1_mi[mi] = vec32[mi*32];
end
end
endfunction
wire [C_NUM_M-1:0] target_mi_hot;
wire [P_NUM_M_LOG_M1-1:0] target_mi_enc;
wire [(C_NUM_M+1)-1:0] m_atarget_hot_i;
wire [(P_NUM_M_DE_LOG)-1:0] m_atarget_enc_i;
wire match;
wire [3:0] target_region;
wire [3:0] m_aregion_i;
wire m_avalid_i;
wire s_aready_i;
wire any_error;
wire s_rvalid_i;
wire [C_ID_WIDTH-1:0] s_rid_i;
wire s_rlast_i;
wire [P_RMUX_MESG_WIDTH-1:0] si_rmux_mesg;
wire [(C_NUM_M+1)*P_RMUX_MESG_WIDTH-1:0] mi_rmux_mesg;
wire [(C_NUM_M+1)-1:0] m_rvalid_qual;
wire [(C_NUM_M+1)-1:0] m_rready_arb;
wire [(C_NUM_M+1)-1:0] m_rready_i;
wire target_secure;
wire target_axilite;
wire m_avalid_qual_i;
wire [7:0] m_aerror_i;
genvar gen_mi;
genvar gen_thread;
generate
if (C_ADDR_DECODE) begin : gen_addr_decoder
axi_crossbar_v2_1_addr_decoder #
(
.C_FAMILY (C_FAMILY),
.C_NUM_TARGETS (C_NUM_M),
.C_NUM_TARGETS_LOG (P_NUM_M_LOG_M1),
.C_NUM_RANGES (C_NUM_ADDR_RANGES),
.C_ADDR_WIDTH (C_ADDR_WIDTH),
.C_TARGET_ENC (1),
.C_TARGET_HOT (1),
.C_REGION_ENC (1),
.C_BASE_ADDR (C_BASE_ADDR),
.C_HIGH_ADDR (C_HIGH_ADDR),
.C_TARGET_QUAL (C_TARGET_QUAL),
.C_RESOLUTION (2)
)
addr_decoder_inst
(
.ADDR (S_AADDR),
.TARGET_HOT (target_mi_hot),
.TARGET_ENC (target_mi_enc),
.MATCH (match),
.REGION (target_region)
);
end else begin : gen_no_addr_decoder
assign target_mi_hot = 1;
assign target_mi_enc = 0;
assign match = 1'b1;
assign target_region = 4'b0000;
end
endgenerate
assign target_secure = |(target_mi_hot & P_M_SECURE_MASK);
assign target_axilite = |(target_mi_hot & P_M_AXILITE);
assign any_error = C_RANGE_CHECK && (m_aerror_i != 0); // DECERR if error-detection enabled and any error condition.
assign m_aerror_i[0] = ~match; // Invalid target address
assign m_aerror_i[1] = target_secure && S_APROT[P_NONSECURE_BIT]; // TrustZone violation
assign m_aerror_i[2] = target_axilite && ((S_ALEN != 0) ||
(S_ASIZE[1:0] == 2'b11) || (S_ASIZE[2] == 1'b1)); // AxiLite access violation
assign m_aerror_i[7:3] = 5'b00000; // Reserved
assign M_ATARGET_HOT = m_atarget_hot_i;
assign m_atarget_hot_i = (any_error ? {1'b1, {C_NUM_M{1'b0}}} : {1'b0, target_mi_hot});
assign m_atarget_enc_i = (any_error ? C_NUM_M : target_mi_enc);
assign M_AVALID = m_avalid_i;
assign m_avalid_i = S_AVALID;
assign M_AVALID_QUAL = m_avalid_qual_i;
assign S_AREADY = s_aready_i;
assign s_aready_i = M_AREADY;
assign M_AERROR = m_aerror_i;
assign M_ATARGET_ENC = m_atarget_enc_i;
assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : 4'b0000;
// assign m_aregion_i = any_error ? 4'b0000 : (C_ADDR_DECODE != 0) ? target_region : S_AREGION;
assign M_AREGION = m_aregion_i;
assign M_AID = S_AID;
assign M_AADDR = S_AADDR;
assign M_ALEN = S_ALEN;
assign M_ASIZE = S_ASIZE;
assign M_ALOCK = S_ALOCK;
assign M_APROT = S_APROT;
assign M_AMESG = S_AMESG;
assign S_RVALID = s_rvalid_i;
assign M_RREADY = m_rready_i;
assign s_rid_i = si_rmux_mesg[0+:C_ID_WIDTH];
assign S_RMESG = si_rmux_mesg[C_ID_WIDTH+:C_RMESG_WIDTH];
assign s_rlast_i = si_rmux_mesg[C_ID_WIDTH+C_RMESG_WIDTH+:1];
assign S_RID = s_rid_i;
assign S_RLAST = s_rlast_i;
assign m_rvalid_qual = M_RVALID & M_RTARGET;
assign m_rready_i = m_rready_arb & M_RTARGET;
generate
for (gen_mi=0; gen_mi<(C_NUM_M+1); gen_mi=gen_mi+1) begin : gen_rmesg_mi
// Note: Concatenation of mesg signals is from MSB to LSB; assignments that chop mesg signals appear in opposite order.
assign mi_rmux_mesg[gen_mi*P_RMUX_MESG_WIDTH+:P_RMUX_MESG_WIDTH] = {
M_RLAST[gen_mi],
M_RMESG[gen_mi*C_RMESG_WIDTH+:C_RMESG_WIDTH],
M_RID[gen_mi*C_ID_WIDTH+:C_ID_WIDTH]
};
end // gen_rmesg_mi
if (C_ACCEPTANCE == 1) begin : gen_single_issue
wire cmd_push;
wire cmd_pop;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign m_avalid_qual_i = ~accept_cnt | cmd_pop; // Ready for arbitration if no outstanding transaction or transaction being completed
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 1'b0;
active_target_enc <= 0;
active_target_hot <= 0;
end else begin
if (cmd_push) begin
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
accept_cnt <= 1'b1;
end else if (cmd_pop) begin
accept_cnt <= 1'b0;
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_issue
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_issue
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_issue
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else if (C_SINGLE_THREAD || (P_NUM_ID_VAL==1)) begin : gen_single_thread
wire s_avalid_en;
wire cmd_push;
wire cmd_pop;
reg [C_ID_WIDTH-1:0] active_id;
reg [(C_NUM_M+1)-1:0] active_target_hot;
reg [P_NUM_M_DE_LOG-1:0] active_target_enc;
reg [4-1:0] active_region;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
reg [8-1:0] debug_r_beat_cnt_i;
wire [8-1:0] debug_r_trans_seq_i;
wire accept_limit ;
// Implement single-region-per-ID cyclic dependency avoidance method.
assign s_avalid_en = // This transaction is qualified to request arbitration if ...
(accept_cnt == 0) || // Either there are no outstanding transactions, or ...
(((P_NUM_ID_VAL==1) || (S_AID[P_THREAD_ID_WIDTH_M1-1:0] == active_id[P_THREAD_ID_WIDTH_M1-1:0])) && // the current transaction ID matches the previous, and ...
(active_target_enc == m_atarget_enc_i) && // all outstanding transactions are to the same target MI ...
(active_region == m_aregion_i)); // and to the same REGION.
assign cmd_push = M_AREADY;
assign cmd_pop = s_rvalid_i && S_RREADY && s_rlast_i; // Pop command queue if end of read burst
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~cmd_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = s_avalid_en & ~accept_limit;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
active_id <= 0;
active_target_enc <= 0;
active_target_hot <= 0;
active_region <= 0;
end else begin
if (cmd_push) begin
active_id <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target_enc <= m_atarget_enc_i;
active_target_hot <= m_atarget_hot_i;
active_region <= m_aregion_i;
if (~cmd_pop) begin
accept_cnt <= accept_cnt + 1;
end
end else begin
if (cmd_pop & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end
end // Clocked process
assign m_rready_arb = active_target_hot & {(C_NUM_M+1){S_RREADY}};
assign s_rvalid_i = |(active_target_hot & m_rvalid_qual);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_single_thread
(
.S (active_target_enc),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
if (C_DEBUG) begin : gen_debug_r_single_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i && S_RREADY) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i <= 0;
end else begin
debug_r_beat_cnt_i <= debug_r_beat_cnt_i + 1;
end
end
end else begin
debug_r_beat_cnt_i <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_single_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push),
.S_READY (),
.M_MESG (debug_r_trans_seq_i),
.M_VALID (),
.M_READY (cmd_pop)
);
end // gen_debug_r
end else begin : gen_multi_thread
wire [(P_NUM_M_DE_LOG)-1:0] resp_select;
reg [(C_ACCEPTANCE_LOG+1)-1:0] accept_cnt;
wire [P_NUM_THREADS-1:0] s_avalid_en;
wire [P_NUM_THREADS-1:0] thread_valid;
wire [P_NUM_THREADS-1:0] aid_match;
wire [P_NUM_THREADS-1:0] rid_match;
wire [P_NUM_THREADS-1:0] cmd_push;
wire [P_NUM_THREADS-1:0] cmd_pop;
wire [P_NUM_THREADS:0] accum_push;
reg [P_NUM_THREADS*C_ID_WIDTH-1:0] active_id;
reg [P_NUM_THREADS*8-1:0] active_target;
reg [P_NUM_THREADS*8-1:0] active_region;
reg [P_NUM_THREADS*8-1:0] active_cnt;
reg [P_NUM_THREADS*8-1:0] debug_r_beat_cnt_i;
wire [P_NUM_THREADS*8-1:0] debug_r_trans_seq_i;
wire any_aid_match;
wire any_rid_match;
wire accept_limit;
wire any_push;
wire any_pop;
axi_crossbar_v2_1_arbiter_resp # // Multi-thread response arbiter
(
.C_FAMILY (C_FAMILY),
.C_NUM_S (C_NUM_M+1),
.C_NUM_S_LOG (P_NUM_M_DE_LOG),
.C_GRANT_ENC (1),
.C_GRANT_HOT (0)
)
arbiter_resp_inst
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_VALID (m_rvalid_qual),
.S_READY (m_rready_arb),
.M_GRANT_HOT (),
.M_GRANT_ENC (resp_select),
.M_VALID (s_rvalid_i),
.M_READY (S_RREADY)
);
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY (C_FAMILY),
.C_RATIO (C_NUM_M+1),
.C_SEL_WIDTH (P_NUM_M_DE_LOG),
.C_DATA_WIDTH (P_RMUX_MESG_WIDTH)
) mux_resp_multi_thread
(
.S (resp_select),
.A (mi_rmux_mesg),
.O (si_rmux_mesg),
.OE (1'b1)
);
assign any_push = M_AREADY;
assign any_pop = s_rvalid_i & S_RREADY & s_rlast_i;
assign accept_limit = (accept_cnt == C_ACCEPTANCE) & ~any_pop; // Allow next push if a transaction is currently being completed
assign m_avalid_qual_i = (&s_avalid_en) & ~accept_limit; // The current request is qualified for arbitration when it is qualified against all outstanding transaction threads.
assign any_aid_match = |aid_match;
assign any_rid_match = |rid_match;
assign accum_push[0] = 1'b0;
always @(posedge ACLK) begin
if (ARESET) begin
accept_cnt <= 0;
end else begin
if (any_push & ~any_pop) begin
accept_cnt <= accept_cnt + 1;
end else if (any_pop & ~any_push & (accept_cnt != 0)) begin
accept_cnt <= accept_cnt - 1;
end
end
end // Clocked process
for (gen_thread=0; gen_thread<P_NUM_THREADS; gen_thread=gen_thread+1) begin : gen_thread_loop
assign thread_valid[gen_thread] = (active_cnt[gen_thread*8 +: C_ACCEPTANCE_LOG+1] != 0);
assign aid_match[gen_thread] = // The currect thread is active for the requested transaction if
thread_valid[gen_thread] && // this thread slot is not vacant, and
((S_AID[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]); // the requested ID matches the active ID for this thread.
assign s_avalid_en[gen_thread] = // The current request is qualified against this thread slot if
(~aid_match[gen_thread]) || // This thread slot is not active for the requested ID, or
((m_atarget_enc_i == active_target[gen_thread*8+:P_NUM_M_DE_LOG]) && // this outstanding transaction was to the same target and
(m_aregion_i == active_region[gen_thread*8+:4])); // to the same region.
// cmd_push points to the position of either the active thread for the requested ID or the lowest vacant thread slot.
assign accum_push[gen_thread+1] = accum_push[gen_thread] | ~thread_valid[gen_thread];
assign cmd_push[gen_thread] = any_push & (aid_match[gen_thread] | ((~any_aid_match) & ~thread_valid[gen_thread] & ~accum_push[gen_thread]));
// cmd_pop points to the position of the active thread that matches the current RID.
assign rid_match[gen_thread] = thread_valid[gen_thread] & ((s_rid_i[P_THREAD_ID_WIDTH_M1-1:0]) == active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1]);
assign cmd_pop[gen_thread] = any_pop & rid_match[gen_thread];
always @(posedge ACLK) begin
if (ARESET) begin
active_id[gen_thread*C_ID_WIDTH+:C_ID_WIDTH] <= 0;
active_target[gen_thread*8+:8] <= 0;
active_region[gen_thread*8+:8] <= 0;
active_cnt[gen_thread*8+:8] <= 0;
end else begin
if (cmd_push[gen_thread]) begin
active_id[gen_thread*C_ID_WIDTH+:P_THREAD_ID_WIDTH_M1] <= S_AID[P_THREAD_ID_WIDTH_M1-1:0];
active_target[gen_thread*8+:P_NUM_M_DE_LOG] <= m_atarget_enc_i;
active_region[gen_thread*8+:4] <= m_aregion_i;
if (~cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] + 1;
end
end else if (cmd_pop[gen_thread]) begin
active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] <= active_cnt[gen_thread*8+:C_ACCEPTANCE_LOG+1] - 1;
end
end
end // Clocked process
if (C_DEBUG) begin : gen_debug_r_multi_thread
// DEBUG READ BEAT COUNTER (only meaningful for R-channel)
always @(posedge ACLK) begin
if (ARESET) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else if (C_DIR == P_READ) begin
if (s_rvalid_i & S_RREADY & rid_match[gen_thread]) begin
if (s_rlast_i) begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= debug_r_beat_cnt_i[gen_thread*8+:8] + 1;
end
end
end else begin
debug_r_beat_cnt_i[gen_thread*8+:8] <= 0;
end
end // Clocked process
// DEBUG R-CHANNEL TRANSACTION SEQUENCE FIFO
axi_data_fifo_v2_1_axic_srl_fifo #
(
.C_FAMILY (C_FAMILY),
.C_FIFO_WIDTH (8),
.C_FIFO_DEPTH_LOG (C_ACCEPTANCE_LOG+1),
.C_USE_FULL (0)
)
debug_r_seq_fifo_multi_thread
(
.ACLK (ACLK),
.ARESET (ARESET),
.S_MESG (DEBUG_A_TRANS_SEQ),
.S_VALID (cmd_push[gen_thread]),
.S_READY (),
.M_MESG (debug_r_trans_seq_i[gen_thread*8+:8]),
.M_VALID (),
.M_READY (cmd_pop[gen_thread])
);
end // gen_debug_r_multi_thread
end // Next gen_thread_loop
end // thread control
endgenerate
endmodule
|
module processing_system7_bfm_v2_0_5_interconnect_model (
rstn,
sw_clk,
w_qos_gp0,
w_qos_gp1,
w_qos_hp0,
w_qos_hp1,
w_qos_hp2,
w_qos_hp3,
r_qos_gp0,
r_qos_gp1,
r_qos_hp0,
r_qos_hp1,
r_qos_hp2,
r_qos_hp3,
wr_ack_ddr_gp0,
wr_ack_ocm_gp0,
wr_data_gp0,
wr_addr_gp0,
wr_bytes_gp0,
wr_dv_ddr_gp0,
wr_dv_ocm_gp0,
rd_req_ddr_gp0,
rd_req_ocm_gp0,
rd_req_reg_gp0,
rd_addr_gp0,
rd_bytes_gp0,
rd_data_ddr_gp0,
rd_data_ocm_gp0,
rd_data_reg_gp0,
rd_dv_ddr_gp0,
rd_dv_ocm_gp0,
rd_dv_reg_gp0,
wr_ack_ddr_gp1,
wr_ack_ocm_gp1,
wr_data_gp1,
wr_addr_gp1,
wr_bytes_gp1,
wr_dv_ddr_gp1,
wr_dv_ocm_gp1,
rd_req_ddr_gp1,
rd_req_ocm_gp1,
rd_req_reg_gp1,
rd_addr_gp1,
rd_bytes_gp1,
rd_data_ddr_gp1,
rd_data_ocm_gp1,
rd_data_reg_gp1,
rd_dv_ddr_gp1,
rd_dv_ocm_gp1,
rd_dv_reg_gp1,
wr_ack_ddr_hp0,
wr_ack_ocm_hp0,
wr_data_hp0,
wr_addr_hp0,
wr_bytes_hp0,
wr_dv_ddr_hp0,
wr_dv_ocm_hp0,
rd_req_ddr_hp0,
rd_req_ocm_hp0,
rd_addr_hp0,
rd_bytes_hp0,
rd_data_ddr_hp0,
rd_data_ocm_hp0,
rd_dv_ddr_hp0,
rd_dv_ocm_hp0,
wr_ack_ddr_hp1,
wr_ack_ocm_hp1,
wr_data_hp1,
wr_addr_hp1,
wr_bytes_hp1,
wr_dv_ddr_hp1,
wr_dv_ocm_hp1,
rd_req_ddr_hp1,
rd_req_ocm_hp1,
rd_addr_hp1,
rd_bytes_hp1,
rd_data_ddr_hp1,
rd_data_ocm_hp1,
rd_dv_ddr_hp1,
rd_dv_ocm_hp1,
wr_ack_ddr_hp2,
wr_ack_ocm_hp2,
wr_data_hp2,
wr_addr_hp2,
wr_bytes_hp2,
wr_dv_ddr_hp2,
wr_dv_ocm_hp2,
rd_req_ddr_hp2,
rd_req_ocm_hp2,
rd_addr_hp2,
rd_bytes_hp2,
rd_data_ddr_hp2,
rd_data_ocm_hp2,
rd_dv_ddr_hp2,
rd_dv_ocm_hp2,
wr_ack_ddr_hp3,
wr_ack_ocm_hp3,
wr_data_hp3,
wr_addr_hp3,
wr_bytes_hp3,
wr_dv_ddr_hp3,
wr_dv_ocm_hp3,
rd_req_ddr_hp3,
rd_req_ocm_hp3,
rd_addr_hp3,
rd_bytes_hp3,
rd_data_ddr_hp3,
rd_data_ocm_hp3,
rd_dv_ddr_hp3,
rd_dv_ocm_hp3,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3,
/* Goes to port1 of OCM */
ocm_wr_qos_port1,
ocm_rd_qos_port1,
ocm_wr_dv_port1,
ocm_wr_data_port1,
ocm_wr_addr_port1,
ocm_wr_bytes_port1,
ocm_wr_ack_port1,
ocm_rd_req_port1,
ocm_rd_data_port1,
ocm_rd_addr_port1,
ocm_rd_bytes_port1,
ocm_rd_dv_port1,
/* Goes to port1 for RegMap */
reg_rd_qos_port1,
reg_rd_req_port1,
reg_rd_data_port1,
reg_rd_addr_port1,
reg_rd_bytes_port1,
reg_rd_dv_port1
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
input [axi_qos_width-1:0] w_qos_gp0;
input [axi_qos_width-1:0] w_qos_gp1;
input [axi_qos_width-1:0] w_qos_hp0;
input [axi_qos_width-1:0] w_qos_hp1;
input [axi_qos_width-1:0] w_qos_hp2;
input [axi_qos_width-1:0] w_qos_hp3;
input [axi_qos_width-1:0] r_qos_gp0;
input [axi_qos_width-1:0] r_qos_gp1;
input [axi_qos_width-1:0] r_qos_hp0;
input [axi_qos_width-1:0] r_qos_hp1;
input [axi_qos_width-1:0] r_qos_hp2;
input [axi_qos_width-1:0] r_qos_hp3;
output [axi_qos_width-1:0] ocm_wr_qos_port1;
output [axi_qos_width-1:0] ocm_rd_qos_port1;
output wr_ack_ddr_gp0;
output wr_ack_ocm_gp0;
input[max_burst_bits-1:0] wr_data_gp0;
input[addr_width-1:0] wr_addr_gp0;
input[max_burst_bytes_width:0] wr_bytes_gp0;
input wr_dv_ddr_gp0;
input wr_dv_ocm_gp0;
input rd_req_ddr_gp0;
input rd_req_ocm_gp0;
input rd_req_reg_gp0;
input[addr_width-1:0] rd_addr_gp0;
input[max_burst_bytes_width:0] rd_bytes_gp0;
output[max_burst_bits-1:0] rd_data_ddr_gp0;
output[max_burst_bits-1:0] rd_data_ocm_gp0;
output[max_burst_bits-1:0] rd_data_reg_gp0;
output rd_dv_ddr_gp0;
output rd_dv_ocm_gp0;
output rd_dv_reg_gp0;
output wr_ack_ddr_gp1;
output wr_ack_ocm_gp1;
input[max_burst_bits-1:0] wr_data_gp1;
input[addr_width-1:0] wr_addr_gp1;
input[max_burst_bytes_width:0] wr_bytes_gp1;
input wr_dv_ddr_gp1;
input wr_dv_ocm_gp1;
input rd_req_ddr_gp1;
input rd_req_ocm_gp1;
input rd_req_reg_gp1;
input[addr_width-1:0] rd_addr_gp1;
input[max_burst_bytes_width:0] rd_bytes_gp1;
output[max_burst_bits-1:0] rd_data_ddr_gp1;
output[max_burst_bits-1:0] rd_data_ocm_gp1;
output[max_burst_bits-1:0] rd_data_reg_gp1;
output rd_dv_ddr_gp1;
output rd_dv_ocm_gp1;
output rd_dv_reg_gp1;
output wr_ack_ddr_hp0;
output wr_ack_ocm_hp0;
input[max_burst_bits-1:0] wr_data_hp0;
input[addr_width-1:0] wr_addr_hp0;
input[max_burst_bytes_width:0] wr_bytes_hp0;
input wr_dv_ddr_hp0;
input wr_dv_ocm_hp0;
input rd_req_ddr_hp0;
input rd_req_ocm_hp0;
input[addr_width-1:0] rd_addr_hp0;
input[max_burst_bytes_width:0] rd_bytes_hp0;
output[max_burst_bits-1:0] rd_data_ddr_hp0;
output[max_burst_bits-1:0] rd_data_ocm_hp0;
output rd_dv_ddr_hp0;
output rd_dv_ocm_hp0;
output wr_ack_ddr_hp1;
output wr_ack_ocm_hp1;
input[max_burst_bits-1:0] wr_data_hp1;
input[addr_width-1:0] wr_addr_hp1;
input[max_burst_bytes_width:0] wr_bytes_hp1;
input wr_dv_ddr_hp1;
input wr_dv_ocm_hp1;
input rd_req_ddr_hp1;
input rd_req_ocm_hp1;
input[addr_width-1:0] rd_addr_hp1;
input[max_burst_bytes_width:0] rd_bytes_hp1;
output[max_burst_bits-1:0] rd_data_ddr_hp1;
output[max_burst_bits-1:0] rd_data_ocm_hp1;
output rd_dv_ddr_hp1;
output rd_dv_ocm_hp1;
output wr_ack_ddr_hp2;
output wr_ack_ocm_hp2;
input[max_burst_bits-1:0] wr_data_hp2;
input[addr_width-1:0] wr_addr_hp2;
input[max_burst_bytes_width:0] wr_bytes_hp2;
input wr_dv_ddr_hp2;
input wr_dv_ocm_hp2;
input rd_req_ddr_hp2;
input rd_req_ocm_hp2;
input[addr_width-1:0] rd_addr_hp2;
input[max_burst_bytes_width:0] rd_bytes_hp2;
output[max_burst_bits-1:0] rd_data_ddr_hp2;
output[max_burst_bits-1:0] rd_data_ocm_hp2;
output rd_dv_ddr_hp2;
output rd_dv_ocm_hp2;
output wr_ack_ddr_hp3;
output wr_ack_ocm_hp3;
input[max_burst_bits-1:0] wr_data_hp3;
input[addr_width-1:0] wr_addr_hp3;
input[max_burst_bytes_width:0] wr_bytes_hp3;
input wr_dv_ddr_hp3;
input wr_dv_ocm_hp3;
input rd_req_ddr_hp3;
input rd_req_ocm_hp3;
input[addr_width-1:0] rd_addr_hp3;
input[max_burst_bytes_width:0] rd_bytes_hp3;
output[max_burst_bits-1:0] rd_data_ddr_hp3;
output[max_burst_bits-1:0] rd_data_ocm_hp3;
output rd_dv_ddr_hp3;
output rd_dv_ocm_hp3;
/* Goes to port 1 of DDR */
input ddr_wr_ack_port1;
output ddr_wr_dv_port1;
output ddr_rd_req_port1;
input ddr_rd_dv_port1;
output[addr_width-1:0] ddr_wr_addr_port1;
output[max_burst_bits-1:0] ddr_wr_data_port1;
output[max_burst_bytes_width:0] ddr_wr_bytes_port1;
output[addr_width-1:0] ddr_rd_addr_port1;
input[max_burst_bits-1:0] ddr_rd_data_port1;
output[max_burst_bytes_width:0] ddr_rd_bytes_port1;
output [axi_qos_width-1:0] ddr_wr_qos_port1;
output [axi_qos_width-1:0] ddr_rd_qos_port1;
/* Goes to port2 of DDR */
input ddr_wr_ack_port2;
output ddr_wr_dv_port2;
output ddr_rd_req_port2;
input ddr_rd_dv_port2;
output[addr_width-1:0] ddr_wr_addr_port2;
output[max_burst_bits-1:0] ddr_wr_data_port2;
output[max_burst_bytes_width:0] ddr_wr_bytes_port2;
output[addr_width-1:0] ddr_rd_addr_port2;
input[max_burst_bits-1:0] ddr_rd_data_port2;
output[max_burst_bytes_width:0] ddr_rd_bytes_port2;
output [axi_qos_width-1:0] ddr_wr_qos_port2;
output [axi_qos_width-1:0] ddr_rd_qos_port2;
/* Goes to port3 of DDR */
input ddr_wr_ack_port3;
output ddr_wr_dv_port3;
output ddr_rd_req_port3;
input ddr_rd_dv_port3;
output[addr_width-1:0] ddr_wr_addr_port3;
output[max_burst_bits-1:0] ddr_wr_data_port3;
output[max_burst_bytes_width:0] ddr_wr_bytes_port3;
output[addr_width-1:0] ddr_rd_addr_port3;
input[max_burst_bits-1:0] ddr_rd_data_port3;
output[max_burst_bytes_width:0] ddr_rd_bytes_port3;
output [axi_qos_width-1:0] ddr_wr_qos_port3;
output [axi_qos_width-1:0] ddr_rd_qos_port3;
/* Goes to port1 of OCM */
input ocm_wr_ack_port1;
output ocm_wr_dv_port1;
output ocm_rd_req_port1;
input ocm_rd_dv_port1;
output[max_burst_bits-1:0] ocm_wr_data_port1;
output[addr_width-1:0] ocm_wr_addr_port1;
output[max_burst_bytes_width:0] ocm_wr_bytes_port1;
input[max_burst_bits-1:0] ocm_rd_data_port1;
output[addr_width-1:0] ocm_rd_addr_port1;
output[max_burst_bytes_width:0] ocm_rd_bytes_port1;
/* Goes to port1 of REG */
output [axi_qos_width-1:0] reg_rd_qos_port1;
output reg_rd_req_port1;
input reg_rd_dv_port1;
input[max_burst_bits-1:0] reg_rd_data_port1;
output[addr_width-1:0] reg_rd_addr_port1;
output[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire ocm_wr_dv_osw0;
wire ocm_wr_dv_osw1;
wire[max_burst_bits-1:0] ocm_wr_data_osw0;
wire[max_burst_bits-1:0] ocm_wr_data_osw1;
wire[addr_width-1:0] ocm_wr_addr_osw0;
wire[addr_width-1:0] ocm_wr_addr_osw1;
wire[max_burst_bytes_width:0] ocm_wr_bytes_osw0;
wire[max_burst_bytes_width:0] ocm_wr_bytes_osw1;
wire ocm_wr_ack_osw0;
wire ocm_wr_ack_osw1;
wire ocm_rd_req_osw0;
wire ocm_rd_req_osw1;
wire[max_burst_bits-1:0] ocm_rd_data_osw0;
wire[max_burst_bits-1:0] ocm_rd_data_osw1;
wire[addr_width-1:0] ocm_rd_addr_osw0;
wire[addr_width-1:0] ocm_rd_addr_osw1;
wire[max_burst_bytes_width:0] ocm_rd_bytes_osw0;
wire[max_burst_bytes_width:0] ocm_rd_bytes_osw1;
wire ocm_rd_dv_osw0;
wire ocm_rd_dv_osw1;
wire [axi_qos_width-1:0] ocm_wr_qos_osw0;
wire [axi_qos_width-1:0] ocm_wr_qos_osw1;
wire [axi_qos_width-1:0] ocm_rd_qos_osw0;
wire [axi_qos_width-1:0] ocm_rd_qos_osw1;
processing_system7_bfm_v2_0_5_fmsw_gp fmsw (
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_gp0(w_qos_gp0),
.r_qos_gp0(r_qos_gp0),
.wr_ack_ocm_gp0(wr_ack_ocm_gp0),
.wr_ack_ddr_gp0(wr_ack_ddr_gp0),
.wr_data_gp0(wr_data_gp0),
.wr_addr_gp0(wr_addr_gp0),
.wr_bytes_gp0(wr_bytes_gp0),
.wr_dv_ocm_gp0(wr_dv_ocm_gp0),
.wr_dv_ddr_gp0(wr_dv_ddr_gp0),
.rd_req_ocm_gp0(rd_req_ocm_gp0),
.rd_req_ddr_gp0(rd_req_ddr_gp0),
.rd_req_reg_gp0(rd_req_reg_gp0),
.rd_addr_gp0(rd_addr_gp0),
.rd_bytes_gp0(rd_bytes_gp0),
.rd_data_ddr_gp0(rd_data_ddr_gp0),
.rd_data_ocm_gp0(rd_data_ocm_gp0),
.rd_data_reg_gp0(rd_data_reg_gp0),
.rd_dv_ocm_gp0(rd_dv_ocm_gp0),
.rd_dv_ddr_gp0(rd_dv_ddr_gp0),
.rd_dv_reg_gp0(rd_dv_reg_gp0),
.w_qos_gp1(w_qos_gp1),
.r_qos_gp1(r_qos_gp1),
.wr_ack_ocm_gp1(wr_ack_ocm_gp1),
.wr_ack_ddr_gp1(wr_ack_ddr_gp1),
.wr_data_gp1(wr_data_gp1),
.wr_addr_gp1(wr_addr_gp1),
.wr_bytes_gp1(wr_bytes_gp1),
.wr_dv_ocm_gp1(wr_dv_ocm_gp1),
.wr_dv_ddr_gp1(wr_dv_ddr_gp1),
.rd_req_ocm_gp1(rd_req_ocm_gp1),
.rd_req_ddr_gp1(rd_req_ddr_gp1),
.rd_req_reg_gp1(rd_req_reg_gp1),
.rd_addr_gp1(rd_addr_gp1),
.rd_bytes_gp1(rd_bytes_gp1),
.rd_data_ddr_gp1(rd_data_ddr_gp1),
.rd_data_ocm_gp1(rd_data_ocm_gp1),
.rd_data_reg_gp1(rd_data_reg_gp1),
.rd_dv_ocm_gp1(rd_dv_ocm_gp1),
.rd_dv_ddr_gp1(rd_dv_ddr_gp1),
.rd_dv_reg_gp1(rd_dv_reg_gp1),
.ocm_wr_ack (ocm_wr_ack_osw0),
.ocm_wr_dv (ocm_wr_dv_osw0),
.ocm_rd_req (ocm_rd_req_osw0),
.ocm_rd_dv (ocm_rd_dv_osw0),
.ocm_wr_addr(ocm_wr_addr_osw0),
.ocm_wr_data(ocm_wr_data_osw0),
.ocm_wr_bytes(ocm_wr_bytes_osw0),
.ocm_rd_addr(ocm_rd_addr_osw0),
.ocm_rd_data(ocm_rd_data_osw0),
.ocm_rd_bytes(ocm_rd_bytes_osw0),
.ocm_wr_qos(ocm_wr_qos_osw0),
.ocm_rd_qos(ocm_rd_qos_osw0),
.ddr_wr_qos(ddr_wr_qos_port1),
.ddr_rd_qos(ddr_rd_qos_port1),
.reg_rd_qos(reg_rd_qos_port1),
.ddr_wr_ack(ddr_wr_ack_port1),
.ddr_wr_dv(ddr_wr_dv_port1),
.ddr_rd_req(ddr_rd_req_port1),
.ddr_rd_dv(ddr_rd_dv_port1),
.ddr_wr_addr(ddr_wr_addr_port1),
.ddr_wr_data(ddr_wr_data_port1),
.ddr_wr_bytes(ddr_wr_bytes_port1),
.ddr_rd_addr(ddr_rd_addr_port1),
.ddr_rd_data(ddr_rd_data_port1),
.ddr_rd_bytes(ddr_rd_bytes_port1),
.reg_rd_req(reg_rd_req_port1),
.reg_rd_dv(reg_rd_dv_port1),
.reg_rd_addr(reg_rd_addr_port1),
.reg_rd_data(reg_rd_data_port1),
.reg_rd_bytes(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ssw_hp ssw(
.sw_clk(sw_clk),
.rstn(rstn),
.w_qos_hp0(w_qos_hp0),
.r_qos_hp0(r_qos_hp0),
.w_qos_hp1(w_qos_hp1),
.r_qos_hp1(r_qos_hp1),
.w_qos_hp2(w_qos_hp2),
.r_qos_hp2(r_qos_hp2),
.w_qos_hp3(w_qos_hp3),
.r_qos_hp3(r_qos_hp3),
.wr_ack_ddr_hp0(wr_ack_ddr_hp0),
.wr_data_hp0(wr_data_hp0),
.wr_addr_hp0(wr_addr_hp0),
.wr_bytes_hp0(wr_bytes_hp0),
.wr_dv_ddr_hp0(wr_dv_ddr_hp0),
.rd_req_ddr_hp0(rd_req_ddr_hp0),
.rd_addr_hp0(rd_addr_hp0),
.rd_bytes_hp0(rd_bytes_hp0),
.rd_data_ddr_hp0(rd_data_ddr_hp0),
.rd_data_ocm_hp0(rd_data_ocm_hp0),
.rd_dv_ddr_hp0(rd_dv_ddr_hp0),
.wr_ack_ocm_hp0(wr_ack_ocm_hp0),
.wr_dv_ocm_hp0(wr_dv_ocm_hp0),
.rd_req_ocm_hp0(rd_req_ocm_hp0),
.rd_dv_ocm_hp0(rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(wr_ack_ddr_hp1),
.wr_data_hp1(wr_data_hp1),
.wr_addr_hp1(wr_addr_hp1),
.wr_bytes_hp1(wr_bytes_hp1),
.wr_dv_ddr_hp1(wr_dv_ddr_hp1),
.rd_req_ddr_hp1(rd_req_ddr_hp1),
.rd_addr_hp1(rd_addr_hp1),
.rd_bytes_hp1(rd_bytes_hp1),
.rd_data_ddr_hp1(rd_data_ddr_hp1),
.rd_data_ocm_hp1(rd_data_ocm_hp1),
.rd_dv_ddr_hp1(rd_dv_ddr_hp1),
.wr_ack_ocm_hp1(wr_ack_ocm_hp1),
.wr_dv_ocm_hp1(wr_dv_ocm_hp1),
.rd_req_ocm_hp1(rd_req_ocm_hp1),
.rd_dv_ocm_hp1(rd_dv_ocm_hp1),
.wr_ack_ddr_hp2(wr_ack_ddr_hp2),
.wr_data_hp2(wr_data_hp2),
.wr_addr_hp2(wr_addr_hp2),
.wr_bytes_hp2(wr_bytes_hp2),
.wr_dv_ddr_hp2(wr_dv_ddr_hp2),
.rd_req_ddr_hp2(rd_req_ddr_hp2),
.rd_addr_hp2(rd_addr_hp2),
.rd_bytes_hp2(rd_bytes_hp2),
.rd_data_ddr_hp2(rd_data_ddr_hp2),
.rd_data_ocm_hp2(rd_data_ocm_hp2),
.rd_dv_ddr_hp2(rd_dv_ddr_hp2),
.wr_ack_ocm_hp2(wr_ack_ocm_hp2),
.wr_dv_ocm_hp2(wr_dv_ocm_hp2),
.rd_req_ocm_hp2(rd_req_ocm_hp2),
.rd_dv_ocm_hp2(rd_dv_ocm_hp2),
.wr_ack_ddr_hp3(wr_ack_ddr_hp3),
.wr_data_hp3(wr_data_hp3),
.wr_addr_hp3(wr_addr_hp3),
.wr_bytes_hp3(wr_bytes_hp3),
.wr_dv_ddr_hp3(wr_dv_ddr_hp3),
.rd_req_ddr_hp3(rd_req_ddr_hp3),
.rd_addr_hp3(rd_addr_hp3),
.rd_bytes_hp3(rd_bytes_hp3),
.rd_data_ddr_hp3(rd_data_ddr_hp3),
.rd_data_ocm_hp3(rd_data_ocm_hp3),
.rd_dv_ddr_hp3(rd_dv_ddr_hp3),
.wr_ack_ocm_hp3(wr_ack_ocm_hp3),
.wr_dv_ocm_hp3(wr_dv_ocm_hp3),
.rd_req_ocm_hp3(rd_req_ocm_hp3),
.rd_dv_ocm_hp3(rd_dv_ocm_hp3),
.ddr_wr_ack0(ddr_wr_ack_port2),
.ddr_wr_dv0(ddr_wr_dv_port2),
.ddr_rd_req0(ddr_rd_req_port2),
.ddr_rd_dv0(ddr_rd_dv_port2),
.ddr_wr_addr0(ddr_wr_addr_port2),
.ddr_wr_data0(ddr_wr_data_port2),
.ddr_wr_bytes0(ddr_wr_bytes_port2),
.ddr_rd_addr0(ddr_rd_addr_port2),
.ddr_rd_data0(ddr_rd_data_port2),
.ddr_rd_bytes0(ddr_rd_bytes_port2),
.ddr_wr_qos0(ddr_wr_qos_port2),
.ddr_rd_qos0(ddr_rd_qos_port2),
.ddr_wr_ack1(ddr_wr_ack_port3),
.ddr_wr_dv1(ddr_wr_dv_port3),
.ddr_rd_req1(ddr_rd_req_port3),
.ddr_rd_dv1(ddr_rd_dv_port3),
.ddr_wr_addr1(ddr_wr_addr_port3),
.ddr_wr_data1(ddr_wr_data_port3),
.ddr_wr_bytes1(ddr_wr_bytes_port3),
.ddr_rd_addr1(ddr_rd_addr_port3),
.ddr_rd_data1(ddr_rd_data_port3),
.ddr_rd_bytes1(ddr_rd_bytes_port3),
.ddr_wr_qos1(ddr_wr_qos_port3),
.ddr_rd_qos1(ddr_rd_qos_port3),
.ocm_wr_qos(ocm_wr_qos_osw1),
.ocm_rd_qos(ocm_rd_qos_osw1),
.ocm_wr_ack (ocm_wr_ack_osw1),
.ocm_wr_dv (ocm_wr_dv_osw1),
.ocm_rd_req (ocm_rd_req_osw1),
.ocm_rd_dv (ocm_rd_dv_osw1),
.ocm_wr_addr(ocm_wr_addr_osw1),
.ocm_wr_data(ocm_wr_data_osw1),
.ocm_wr_bytes(ocm_wr_bytes_osw1),
.ocm_rd_addr(ocm_rd_addr_osw1),
.ocm_rd_data(ocm_rd_data_osw1),
.ocm_rd_bytes(ocm_rd_bytes_osw1)
);
processing_system7_bfm_v2_0_5_arb_wr osw_wr (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_wr_qos_osw0), /// chk
.qos2(ocm_wr_qos_osw1), /// chk
.prt_dv1(ocm_wr_dv_osw0),
.prt_dv2(ocm_wr_dv_osw1),
.prt_data1(ocm_wr_data_osw0),
.prt_data2(ocm_wr_data_osw1),
.prt_addr1(ocm_wr_addr_osw0),
.prt_addr2(ocm_wr_addr_osw1),
.prt_bytes1(ocm_wr_bytes_osw0),
.prt_bytes2(ocm_wr_bytes_osw1),
.prt_ack1(ocm_wr_ack_osw0),
.prt_ack2(ocm_wr_ack_osw1),
.prt_req(ocm_wr_dv_port1),
.prt_qos(ocm_wr_qos_port1),
.prt_data(ocm_wr_data_port1),
.prt_addr(ocm_wr_addr_port1),
.prt_bytes(ocm_wr_bytes_port1),
.prt_ack(ocm_wr_ack_port1)
);
processing_system7_bfm_v2_0_5_arb_rd osw_rd(
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ocm_rd_qos_osw0), // chk
.qos2(ocm_rd_qos_osw1), // chk
.prt_req1(ocm_rd_req_osw0),
.prt_req2(ocm_rd_req_osw1),
.prt_data1(ocm_rd_data_osw0),
.prt_data2(ocm_rd_data_osw1),
.prt_addr1(ocm_rd_addr_osw0),
.prt_addr2(ocm_rd_addr_osw1),
.prt_bytes1(ocm_rd_bytes_osw0),
.prt_bytes2(ocm_rd_bytes_osw1),
.prt_dv1(ocm_rd_dv_osw0),
.prt_dv2(ocm_rd_dv_osw1),
.prt_req(ocm_rd_req_port1),
.prt_qos(ocm_rd_qos_port1),
.prt_data(ocm_rd_data_port1),
.prt_addr(ocm_rd_addr_port1),
.prt_bytes(ocm_rd_bytes_port1),
.prt_dv(ocm_rd_dv_port1)
);
endmodule
|
module processing_system7_bfm_v2_0_5_arb_wr_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_ack1,
prt_ack2,
prt_ack3,
prt_ack4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
input prt_dv1, prt_dv2,prt_dv3, prt_dv4, prt_ack;
output reg prt_ack1,prt_ack2,prt_ack3,prt_ack4,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 4'b100,wait_ack_low = 3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack1 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack2 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack3 = 1'b1;
// state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
if(prt_ack)begin
prt_ack4 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_ack_low:begin
state = wait_ack_low;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_wr_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_ack1,
prt_ack2,
prt_ack3,
prt_ack4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
input prt_dv1, prt_dv2,prt_dv3, prt_dv4, prt_ack;
output reg prt_ack1,prt_ack2,prt_ack3,prt_ack4,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 4'b100,wait_ack_low = 3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack1 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack2 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_dv4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack4 = 1'b0;
if(prt_ack)begin
prt_ack3 = 1'b1;
// state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_data = prt_data4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
if(prt_ack)begin
prt_ack4 = 1'b1;
//state = wait_req;
state = wait_ack_low;
prt_req = 0;
if(prt_dv1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv3) begin
prt_req = 1;
prt_qos = qos3;
prt_data = prt_data3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_ack_low:begin
state = wait_ack_low;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_ack3 = 1'b0;
prt_ack4 = 1'b0;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_gen_reset(
por_rst_n,
sys_rst_n,
rst_out_n,
m_axi_gp0_clk,
m_axi_gp1_clk,
s_axi_gp0_clk,
s_axi_gp1_clk,
s_axi_hp0_clk,
s_axi_hp1_clk,
s_axi_hp2_clk,
s_axi_hp3_clk,
s_axi_acp_clk,
m_axi_gp0_rstn,
m_axi_gp1_rstn,
s_axi_gp0_rstn,
s_axi_gp1_rstn,
s_axi_hp0_rstn,
s_axi_hp1_rstn,
s_axi_hp2_rstn,
s_axi_hp3_rstn,
s_axi_acp_rstn,
fclk_reset3_n,
fclk_reset2_n,
fclk_reset1_n,
fclk_reset0_n,
fpga_acp_reset_n,
fpga_gp_m0_reset_n,
fpga_gp_m1_reset_n,
fpga_gp_s0_reset_n,
fpga_gp_s1_reset_n,
fpga_hp_s0_reset_n,
fpga_hp_s1_reset_n,
fpga_hp_s2_reset_n,
fpga_hp_s3_reset_n
);
input por_rst_n;
input sys_rst_n;
input m_axi_gp0_clk;
input m_axi_gp1_clk;
input s_axi_gp0_clk;
input s_axi_gp1_clk;
input s_axi_hp0_clk;
input s_axi_hp1_clk;
input s_axi_hp2_clk;
input s_axi_hp3_clk;
input s_axi_acp_clk;
output reg m_axi_gp0_rstn;
output reg m_axi_gp1_rstn;
output reg s_axi_gp0_rstn;
output reg s_axi_gp1_rstn;
output reg s_axi_hp0_rstn;
output reg s_axi_hp1_rstn;
output reg s_axi_hp2_rstn;
output reg s_axi_hp3_rstn;
output reg s_axi_acp_rstn;
output rst_out_n;
output fclk_reset3_n;
output fclk_reset2_n;
output fclk_reset1_n;
output fclk_reset0_n;
output fpga_acp_reset_n;
output fpga_gp_m0_reset_n;
output fpga_gp_m1_reset_n;
output fpga_gp_s0_reset_n;
output fpga_gp_s1_reset_n;
output fpga_hp_s0_reset_n;
output fpga_hp_s1_reset_n;
output fpga_hp_s2_reset_n;
output fpga_hp_s3_reset_n;
reg [31:0] fabric_rst_n;
reg r_m_axi_gp0_rstn;
reg r_m_axi_gp1_rstn;
reg r_s_axi_gp0_rstn;
reg r_s_axi_gp1_rstn;
reg r_s_axi_hp0_rstn;
reg r_s_axi_hp1_rstn;
reg r_s_axi_hp2_rstn;
reg r_s_axi_hp3_rstn;
reg r_s_axi_acp_rstn;
assign rst_out_n = por_rst_n & sys_rst_n;
assign fclk_reset0_n = !fabric_rst_n[0];
assign fclk_reset1_n = !fabric_rst_n[1];
assign fclk_reset2_n = !fabric_rst_n[2];
assign fclk_reset3_n = !fabric_rst_n[3];
assign fpga_acp_reset_n = !fabric_rst_n[24];
assign fpga_hp_s3_reset_n = !fabric_rst_n[23];
assign fpga_hp_s2_reset_n = !fabric_rst_n[22];
assign fpga_hp_s1_reset_n = !fabric_rst_n[21];
assign fpga_hp_s0_reset_n = !fabric_rst_n[20];
assign fpga_gp_s1_reset_n = !fabric_rst_n[17];
assign fpga_gp_s0_reset_n = !fabric_rst_n[16];
assign fpga_gp_m1_reset_n = !fabric_rst_n[13];
assign fpga_gp_m0_reset_n = !fabric_rst_n[12];
task fpga_soft_reset;
input[31:0] reset_ctrl;
begin
fabric_rst_n[0] = reset_ctrl[0];
fabric_rst_n[1] = reset_ctrl[1];
fabric_rst_n[2] = reset_ctrl[2];
fabric_rst_n[3] = reset_ctrl[3];
fabric_rst_n[12] = reset_ctrl[12];
fabric_rst_n[13] = reset_ctrl[13];
fabric_rst_n[16] = reset_ctrl[16];
fabric_rst_n[17] = reset_ctrl[17];
fabric_rst_n[20] = reset_ctrl[20];
fabric_rst_n[21] = reset_ctrl[21];
fabric_rst_n[22] = reset_ctrl[22];
fabric_rst_n[23] = reset_ctrl[23];
fabric_rst_n[24] = reset_ctrl[24];
end
endtask
always@(negedge por_rst_n or negedge sys_rst_n) fabric_rst_n = 32'h01f3_300f;
always@(posedge m_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp0_rstn = 1'b0;
else
m_axi_gp0_rstn = 1'b1;
end
always@(posedge m_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp1_rstn = 1'b0;
else
m_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp0_rstn = 1'b0;
else
s_axi_gp0_rstn = 1'b1;
end
always@(posedge s_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp1_rstn = 1'b0;
else
s_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_hp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp0_rstn = 1'b0;
else
s_axi_hp0_rstn = 1'b1;
end
always@(posedge s_axi_hp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp1_rstn = 1'b0;
else
s_axi_hp1_rstn = 1'b1;
end
always@(posedge s_axi_hp2_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp2_rstn = 1'b0;
else
s_axi_hp2_rstn = 1'b1;
end
always@(posedge s_axi_hp3_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp3_rstn = 1'b0;
else
s_axi_hp3_rstn = 1'b1;
end
always@(posedge s_axi_acp_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_acp_rstn = 1'b0;
else
s_axi_acp_rstn = 1'b1;
end
always@(*) begin
if ((por_rst_n!= 1'b0) && (por_rst_n!= 1'b1) && (sys_rst_n != 1'b0) && (sys_rst_n != 1'b1)) begin
$display(" Error:processing_system7_bfm_v2_0_5_gen_reset. PS_PORB and PS_SRSTB must be driven to known state");
$finish();
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_gen_reset(
por_rst_n,
sys_rst_n,
rst_out_n,
m_axi_gp0_clk,
m_axi_gp1_clk,
s_axi_gp0_clk,
s_axi_gp1_clk,
s_axi_hp0_clk,
s_axi_hp1_clk,
s_axi_hp2_clk,
s_axi_hp3_clk,
s_axi_acp_clk,
m_axi_gp0_rstn,
m_axi_gp1_rstn,
s_axi_gp0_rstn,
s_axi_gp1_rstn,
s_axi_hp0_rstn,
s_axi_hp1_rstn,
s_axi_hp2_rstn,
s_axi_hp3_rstn,
s_axi_acp_rstn,
fclk_reset3_n,
fclk_reset2_n,
fclk_reset1_n,
fclk_reset0_n,
fpga_acp_reset_n,
fpga_gp_m0_reset_n,
fpga_gp_m1_reset_n,
fpga_gp_s0_reset_n,
fpga_gp_s1_reset_n,
fpga_hp_s0_reset_n,
fpga_hp_s1_reset_n,
fpga_hp_s2_reset_n,
fpga_hp_s3_reset_n
);
input por_rst_n;
input sys_rst_n;
input m_axi_gp0_clk;
input m_axi_gp1_clk;
input s_axi_gp0_clk;
input s_axi_gp1_clk;
input s_axi_hp0_clk;
input s_axi_hp1_clk;
input s_axi_hp2_clk;
input s_axi_hp3_clk;
input s_axi_acp_clk;
output reg m_axi_gp0_rstn;
output reg m_axi_gp1_rstn;
output reg s_axi_gp0_rstn;
output reg s_axi_gp1_rstn;
output reg s_axi_hp0_rstn;
output reg s_axi_hp1_rstn;
output reg s_axi_hp2_rstn;
output reg s_axi_hp3_rstn;
output reg s_axi_acp_rstn;
output rst_out_n;
output fclk_reset3_n;
output fclk_reset2_n;
output fclk_reset1_n;
output fclk_reset0_n;
output fpga_acp_reset_n;
output fpga_gp_m0_reset_n;
output fpga_gp_m1_reset_n;
output fpga_gp_s0_reset_n;
output fpga_gp_s1_reset_n;
output fpga_hp_s0_reset_n;
output fpga_hp_s1_reset_n;
output fpga_hp_s2_reset_n;
output fpga_hp_s3_reset_n;
reg [31:0] fabric_rst_n;
reg r_m_axi_gp0_rstn;
reg r_m_axi_gp1_rstn;
reg r_s_axi_gp0_rstn;
reg r_s_axi_gp1_rstn;
reg r_s_axi_hp0_rstn;
reg r_s_axi_hp1_rstn;
reg r_s_axi_hp2_rstn;
reg r_s_axi_hp3_rstn;
reg r_s_axi_acp_rstn;
assign rst_out_n = por_rst_n & sys_rst_n;
assign fclk_reset0_n = !fabric_rst_n[0];
assign fclk_reset1_n = !fabric_rst_n[1];
assign fclk_reset2_n = !fabric_rst_n[2];
assign fclk_reset3_n = !fabric_rst_n[3];
assign fpga_acp_reset_n = !fabric_rst_n[24];
assign fpga_hp_s3_reset_n = !fabric_rst_n[23];
assign fpga_hp_s2_reset_n = !fabric_rst_n[22];
assign fpga_hp_s1_reset_n = !fabric_rst_n[21];
assign fpga_hp_s0_reset_n = !fabric_rst_n[20];
assign fpga_gp_s1_reset_n = !fabric_rst_n[17];
assign fpga_gp_s0_reset_n = !fabric_rst_n[16];
assign fpga_gp_m1_reset_n = !fabric_rst_n[13];
assign fpga_gp_m0_reset_n = !fabric_rst_n[12];
task fpga_soft_reset;
input[31:0] reset_ctrl;
begin
fabric_rst_n[0] = reset_ctrl[0];
fabric_rst_n[1] = reset_ctrl[1];
fabric_rst_n[2] = reset_ctrl[2];
fabric_rst_n[3] = reset_ctrl[3];
fabric_rst_n[12] = reset_ctrl[12];
fabric_rst_n[13] = reset_ctrl[13];
fabric_rst_n[16] = reset_ctrl[16];
fabric_rst_n[17] = reset_ctrl[17];
fabric_rst_n[20] = reset_ctrl[20];
fabric_rst_n[21] = reset_ctrl[21];
fabric_rst_n[22] = reset_ctrl[22];
fabric_rst_n[23] = reset_ctrl[23];
fabric_rst_n[24] = reset_ctrl[24];
end
endtask
always@(negedge por_rst_n or negedge sys_rst_n) fabric_rst_n = 32'h01f3_300f;
always@(posedge m_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp0_rstn = 1'b0;
else
m_axi_gp0_rstn = 1'b1;
end
always@(posedge m_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp1_rstn = 1'b0;
else
m_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp0_rstn = 1'b0;
else
s_axi_gp0_rstn = 1'b1;
end
always@(posedge s_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp1_rstn = 1'b0;
else
s_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_hp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp0_rstn = 1'b0;
else
s_axi_hp0_rstn = 1'b1;
end
always@(posedge s_axi_hp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp1_rstn = 1'b0;
else
s_axi_hp1_rstn = 1'b1;
end
always@(posedge s_axi_hp2_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp2_rstn = 1'b0;
else
s_axi_hp2_rstn = 1'b1;
end
always@(posedge s_axi_hp3_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp3_rstn = 1'b0;
else
s_axi_hp3_rstn = 1'b1;
end
always@(posedge s_axi_acp_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_acp_rstn = 1'b0;
else
s_axi_acp_rstn = 1'b1;
end
always@(*) begin
if ((por_rst_n!= 1'b0) && (por_rst_n!= 1'b1) && (sys_rst_n != 1'b0) && (sys_rst_n != 1'b1)) begin
$display(" Error:processing_system7_bfm_v2_0_5_gen_reset. PS_PORB and PS_SRSTB must be driven to known state");
$finish();
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_gen_reset(
por_rst_n,
sys_rst_n,
rst_out_n,
m_axi_gp0_clk,
m_axi_gp1_clk,
s_axi_gp0_clk,
s_axi_gp1_clk,
s_axi_hp0_clk,
s_axi_hp1_clk,
s_axi_hp2_clk,
s_axi_hp3_clk,
s_axi_acp_clk,
m_axi_gp0_rstn,
m_axi_gp1_rstn,
s_axi_gp0_rstn,
s_axi_gp1_rstn,
s_axi_hp0_rstn,
s_axi_hp1_rstn,
s_axi_hp2_rstn,
s_axi_hp3_rstn,
s_axi_acp_rstn,
fclk_reset3_n,
fclk_reset2_n,
fclk_reset1_n,
fclk_reset0_n,
fpga_acp_reset_n,
fpga_gp_m0_reset_n,
fpga_gp_m1_reset_n,
fpga_gp_s0_reset_n,
fpga_gp_s1_reset_n,
fpga_hp_s0_reset_n,
fpga_hp_s1_reset_n,
fpga_hp_s2_reset_n,
fpga_hp_s3_reset_n
);
input por_rst_n;
input sys_rst_n;
input m_axi_gp0_clk;
input m_axi_gp1_clk;
input s_axi_gp0_clk;
input s_axi_gp1_clk;
input s_axi_hp0_clk;
input s_axi_hp1_clk;
input s_axi_hp2_clk;
input s_axi_hp3_clk;
input s_axi_acp_clk;
output reg m_axi_gp0_rstn;
output reg m_axi_gp1_rstn;
output reg s_axi_gp0_rstn;
output reg s_axi_gp1_rstn;
output reg s_axi_hp0_rstn;
output reg s_axi_hp1_rstn;
output reg s_axi_hp2_rstn;
output reg s_axi_hp3_rstn;
output reg s_axi_acp_rstn;
output rst_out_n;
output fclk_reset3_n;
output fclk_reset2_n;
output fclk_reset1_n;
output fclk_reset0_n;
output fpga_acp_reset_n;
output fpga_gp_m0_reset_n;
output fpga_gp_m1_reset_n;
output fpga_gp_s0_reset_n;
output fpga_gp_s1_reset_n;
output fpga_hp_s0_reset_n;
output fpga_hp_s1_reset_n;
output fpga_hp_s2_reset_n;
output fpga_hp_s3_reset_n;
reg [31:0] fabric_rst_n;
reg r_m_axi_gp0_rstn;
reg r_m_axi_gp1_rstn;
reg r_s_axi_gp0_rstn;
reg r_s_axi_gp1_rstn;
reg r_s_axi_hp0_rstn;
reg r_s_axi_hp1_rstn;
reg r_s_axi_hp2_rstn;
reg r_s_axi_hp3_rstn;
reg r_s_axi_acp_rstn;
assign rst_out_n = por_rst_n & sys_rst_n;
assign fclk_reset0_n = !fabric_rst_n[0];
assign fclk_reset1_n = !fabric_rst_n[1];
assign fclk_reset2_n = !fabric_rst_n[2];
assign fclk_reset3_n = !fabric_rst_n[3];
assign fpga_acp_reset_n = !fabric_rst_n[24];
assign fpga_hp_s3_reset_n = !fabric_rst_n[23];
assign fpga_hp_s2_reset_n = !fabric_rst_n[22];
assign fpga_hp_s1_reset_n = !fabric_rst_n[21];
assign fpga_hp_s0_reset_n = !fabric_rst_n[20];
assign fpga_gp_s1_reset_n = !fabric_rst_n[17];
assign fpga_gp_s0_reset_n = !fabric_rst_n[16];
assign fpga_gp_m1_reset_n = !fabric_rst_n[13];
assign fpga_gp_m0_reset_n = !fabric_rst_n[12];
task fpga_soft_reset;
input[31:0] reset_ctrl;
begin
fabric_rst_n[0] = reset_ctrl[0];
fabric_rst_n[1] = reset_ctrl[1];
fabric_rst_n[2] = reset_ctrl[2];
fabric_rst_n[3] = reset_ctrl[3];
fabric_rst_n[12] = reset_ctrl[12];
fabric_rst_n[13] = reset_ctrl[13];
fabric_rst_n[16] = reset_ctrl[16];
fabric_rst_n[17] = reset_ctrl[17];
fabric_rst_n[20] = reset_ctrl[20];
fabric_rst_n[21] = reset_ctrl[21];
fabric_rst_n[22] = reset_ctrl[22];
fabric_rst_n[23] = reset_ctrl[23];
fabric_rst_n[24] = reset_ctrl[24];
end
endtask
always@(negedge por_rst_n or negedge sys_rst_n) fabric_rst_n = 32'h01f3_300f;
always@(posedge m_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp0_rstn = 1'b0;
else
m_axi_gp0_rstn = 1'b1;
end
always@(posedge m_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
m_axi_gp1_rstn = 1'b0;
else
m_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_gp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp0_rstn = 1'b0;
else
s_axi_gp0_rstn = 1'b1;
end
always@(posedge s_axi_gp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_gp1_rstn = 1'b0;
else
s_axi_gp1_rstn = 1'b1;
end
always@(posedge s_axi_hp0_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp0_rstn = 1'b0;
else
s_axi_hp0_rstn = 1'b1;
end
always@(posedge s_axi_hp1_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp1_rstn = 1'b0;
else
s_axi_hp1_rstn = 1'b1;
end
always@(posedge s_axi_hp2_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp2_rstn = 1'b0;
else
s_axi_hp2_rstn = 1'b1;
end
always@(posedge s_axi_hp3_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_hp3_rstn = 1'b0;
else
s_axi_hp3_rstn = 1'b1;
end
always@(posedge s_axi_acp_clk or negedge (por_rst_n & sys_rst_n))
begin
if (!(por_rst_n & sys_rst_n))
s_axi_acp_rstn = 1'b0;
else
s_axi_acp_rstn = 1'b1;
end
always@(*) begin
if ((por_rst_n!= 1'b0) && (por_rst_n!= 1'b1) && (sys_rst_n != 1'b0) && (sys_rst_n != 1'b1)) begin
$display(" Error:processing_system7_bfm_v2_0_5_gen_reset. PS_PORB and PS_SRSTB must be driven to known state");
$finish();
end
end
endmodule
|
module axi_crossbar_v2_1_addr_arbiter_sasd #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 1,
parameter integer C_NUM_S_LOG = 1,
parameter integer C_AMESG_WIDTH = 1,
parameter C_GRANT_ENC = 0,
parameter [C_NUM_S*32-1:0] C_ARB_PRIORITY = {C_NUM_S{32'h00000000}}
// Arbitration priority among each SI slot.
// Higher values indicate higher priority.
// Format: C_NUM_SLAVE_SLOTS{Bit32};
// Range: 'h0-'hF.
)
(
// Global Signals
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_AWMESG,
input wire [C_NUM_S*C_AMESG_WIDTH-1:0] S_ARMESG,
input wire [C_NUM_S-1:0] S_AWVALID,
output wire [C_NUM_S-1:0] S_AWREADY,
input wire [C_NUM_S-1:0] S_ARVALID,
output wire [C_NUM_S-1:0] S_ARREADY,
// Master Ports
output wire [C_AMESG_WIDTH-1:0] M_AMESG,
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC,
output wire [C_NUM_S-1:0] M_GRANT_HOT,
output wire M_GRANT_RNW,
output wire M_GRANT_ANY,
output wire M_AWVALID,
input wire M_AWREADY,
output wire M_ARVALID,
input wire M_ARREADY
);
// Generates a mask for all input slots that are priority based
function [C_NUM_S-1:0] f_prio_mask
(
input integer null_arg
);
reg [C_NUM_S-1:0] mask;
integer i;
begin
mask = 0;
for (i=0; i < C_NUM_S; i=i+1) begin
mask[i] = (C_ARB_PRIORITY[i*32+:32] != 0);
end
f_prio_mask = mask;
end
endfunction
// Convert 16-bit one-hot to 4-bit binary
function [3:0] f_hot2enc
(
input [15:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 16'b1010101010101010);
f_hot2enc[1] = |(one_hot & 16'b1100110011001100);
f_hot2enc[2] = |(one_hot & 16'b1111000011110000);
f_hot2enc[3] = |(one_hot & 16'b1111111100000000);
end
endfunction
localparam [C_NUM_S-1:0] P_PRIO_MASK = f_prio_mask(0);
reg m_valid_i;
reg [C_NUM_S-1:0] s_ready_i;
reg [C_NUM_S-1:0] s_awvalid_reg;
reg [C_NUM_S-1:0] s_arvalid_reg;
wire [15:0] s_avalid;
wire m_aready;
wire [C_NUM_S-1:0] rnw;
reg grant_rnw;
reg [C_NUM_S_LOG-1:0] m_grant_enc_i;
reg [C_NUM_S-1:0] m_grant_hot_i;
reg [C_NUM_S-1:0] last_rr_hot;
reg any_grant;
reg any_prio;
reg [C_NUM_S-1:0] which_prio_hot;
reg [C_NUM_S_LOG-1:0] which_prio_enc;
reg [4:0] current_highest;
reg [15:0] next_prio_hot;
reg [C_NUM_S_LOG-1:0] next_prio_enc;
reg found_prio;
wire [C_NUM_S-1:0] valid_rr;
reg [15:0] next_rr_hot;
reg [C_NUM_S_LOG-1:0] next_rr_enc;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
reg found_rr;
wire [C_NUM_S-1:0] next_hot;
wire [C_NUM_S_LOG-1:0] next_enc;
integer i;
wire [C_AMESG_WIDTH-1:0] amesg_mux;
reg [C_AMESG_WIDTH-1:0] m_amesg_i;
wire [C_NUM_S*C_AMESG_WIDTH-1:0] s_amesg;
genvar gen_si;
always @(posedge ACLK) begin
if (ARESET) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else if (|s_ready_i) begin
s_awvalid_reg <= 0;
s_arvalid_reg <= 0;
end else begin
s_arvalid_reg <= S_ARVALID & ~s_awvalid_reg;
s_awvalid_reg <= S_AWVALID & ~s_arvalid_reg & (~S_ARVALID | s_awvalid_reg);
end
end
assign s_avalid = S_AWVALID | S_ARVALID;
assign M_AWVALID = m_valid_i & ~grant_rnw;
assign M_ARVALID = m_valid_i & grant_rnw;
assign S_AWREADY = s_ready_i & {C_NUM_S{~grant_rnw}};
assign S_ARREADY = s_ready_i & {C_NUM_S{grant_rnw}};
assign M_GRANT_ENC = C_GRANT_ENC ? m_grant_enc_i : 0;
assign M_GRANT_HOT = m_grant_hot_i;
assign M_GRANT_RNW = grant_rnw;
assign rnw = S_ARVALID & ~s_awvalid_reg;
assign M_AMESG = m_amesg_i;
assign m_aready = grant_rnw ? M_ARREADY : M_AWREADY;
generate
for (gen_si=0; gen_si<C_NUM_S; gen_si=gen_si+1) begin : gen_mesg_mux
assign s_amesg[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] = rnw[gen_si] ? S_ARMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH] : S_AWMESG[C_AMESG_WIDTH*gen_si +: C_AMESG_WIDTH];
end // gen_mesg_mux
if (C_NUM_S>1) begin : gen_arbiter
/////////////////////////////////////////////////////////////////////////////
// Grant a new request when there is none still pending.
// If no qualified requests found, de-assert M_VALID.
/////////////////////////////////////////////////////////////////////////////
assign M_GRANT_ANY = any_grant;
assign next_hot = found_prio ? next_prio_hot : next_rr_hot;
assign next_enc = found_prio ? next_prio_enc : next_rr_enc;
always @(posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 0;
s_ready_i <= 0;
m_grant_hot_i <= 0;
m_grant_enc_i <= 0;
any_grant <= 1'b0;
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 0;
if (m_valid_i) begin
// Stall 1 cycle after each master-side completion.
if (m_aready) begin // Master-side completion
m_valid_i <= 1'b0;
m_grant_hot_i <= 0;
any_grant <= 1'b0;
end
end else if (any_grant) begin
m_valid_i <= 1'b1;
s_ready_i <= m_grant_hot_i; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else begin
if (found_prio | found_rr) begin
m_grant_hot_i <= next_hot;
m_grant_enc_i <= next_enc;
any_grant <= 1'b1;
grant_rnw <= |(rnw & next_hot);
if (~found_prio) begin
last_rr_hot <= next_rr_hot;
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Fixed Priority arbiter
// Selects next request to grant from among inputs with PRIO > 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin : ALG_PRIO
integer ip;
any_prio = 1'b0;
which_prio_hot = 0;
which_prio_enc = 0;
current_highest = 0;
for (ip=0; ip < C_NUM_S; ip=ip+1) begin
if (P_PRIO_MASK[ip] & ({1'b0, C_ARB_PRIORITY[ip*32+:4]} > current_highest)) begin
if (s_avalid[ip]) begin
current_highest[0+:4] = C_ARB_PRIORITY[ip*32+:4];
any_prio = 1'b1;
which_prio_hot = 1'b1 << ip;
which_prio_enc = ip;
end
end
end
found_prio = any_prio;
next_prio_hot = which_prio_hot;
next_prio_enc = which_prio_enc;
end
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
assign valid_rr = ~P_PRIO_MASK & s_avalid;
always @ * begin : ALG_RR
integer ir, jr, nr;
next_rr_hot = 0;
for (ir=0;ir<C_NUM_S;ir=ir+1) begin
nr = (ir>0) ? (ir-1) : (C_NUM_S-1);
carry_rr[ir*C_NUM_S] = last_rr_hot[nr];
mask_rr[ir*C_NUM_S] = ~valid_rr[nr];
for (jr=1;jr<C_NUM_S;jr=jr+1) begin
nr = (ir-jr > 0) ? (ir-jr-1) : (C_NUM_S+ir-jr-1);
carry_rr[ir*C_NUM_S+jr] = carry_rr[ir*C_NUM_S+jr-1] | (last_rr_hot[nr] & mask_rr[ir*C_NUM_S+jr-1]);
if (jr < C_NUM_S-1) begin
mask_rr[ir*C_NUM_S+jr] = mask_rr[ir*C_NUM_S+jr-1] & ~valid_rr[nr];
end
end
next_rr_hot[ir] = valid_rr[ir] & carry_rr[(ir+1)*C_NUM_S-1];
end
next_rr_enc = f_hot2enc(next_rr_hot);
found_rr = |(next_rr_hot);
end
generic_baseblocks_v2_1_mux_enc #
(
.C_FAMILY ("rtl"),
.C_RATIO (C_NUM_S),
.C_SEL_WIDTH (C_NUM_S_LOG),
.C_DATA_WIDTH (C_AMESG_WIDTH)
) si_amesg_mux_inst
(
.S (next_enc),
.A (s_amesg),
.O (amesg_mux),
.OE (1'b1)
);
always @(posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~any_grant) begin
m_amesg_i <= amesg_mux;
end
end
end else begin : gen_no_arbiter
assign M_GRANT_ANY = m_grant_hot_i;
always @ (posedge ACLK) begin
if (ARESET) begin
m_valid_i <= 1'b0;
s_ready_i <= 1'b0;
m_grant_enc_i <= 0;
m_grant_hot_i <= 1'b0;
grant_rnw <= 1'b0;
end else begin
s_ready_i <= 1'b0;
if (m_valid_i) begin
if (m_aready) begin
m_valid_i <= 1'b0;
m_grant_hot_i <= 1'b0;
end
end else if (m_grant_hot_i) begin
m_valid_i <= 1'b1;
s_ready_i[0] <= 1'b1; // Assert S_AW/READY for 1 cycle to complete SI address transfer
end else if (s_avalid[0]) begin
m_grant_hot_i <= 1'b1;
grant_rnw <= rnw[0];
end
end
end
always @ (posedge ACLK) begin
if (ARESET) begin
m_amesg_i <= 0;
end else if (~m_grant_hot_i) begin
m_amesg_i <= s_amesg;
end
end
end // gen_arbiter
endgenerate
endmodule
|
module processing_system7_bfm_v2_0_5_arb_wr(
rstn,
sw_clk,
qos1,
qos2,
prt_dv1,
prt_dv2,
prt_data1,
prt_data2,
prt_addr1,
prt_addr2,
prt_bytes1,
prt_bytes2,
prt_ack1,
prt_ack2,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input [max_burst_bits-1:0] prt_data1,prt_data2;
input [addr_width-1:0] prt_addr1,prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2;
input prt_dv1, prt_dv2, prt_ack;
output reg prt_ack1,prt_ack2,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_ack_low = 2'b11;
reg [1:0] state,temp_state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_req = 1'b0;
if(prt_dv1 && !prt_dv2) begin
state = serv_req1;
prt_req = 1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
prt_qos = qos1;
end else if(!prt_dv1 && prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv1 && prt_dv2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
if(prt_ack) begin
prt_ack1 = 1'b1;
prt_req = 0;
if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
// state = wait_req;
state = wait_ack_low;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
if(prt_ack) begin
prt_ack2 = 1'b1;
prt_req = 0;
if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_ack_low;
// state = wait_req;
end
end
end
wait_ack_low:begin
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
state = wait_ack_low;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_wr(
rstn,
sw_clk,
qos1,
qos2,
prt_dv1,
prt_dv2,
prt_data1,
prt_data2,
prt_addr1,
prt_addr2,
prt_bytes1,
prt_bytes2,
prt_ack1,
prt_ack2,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_ack
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input [max_burst_bits-1:0] prt_data1,prt_data2;
input [addr_width-1:0] prt_addr1,prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2;
input prt_dv1, prt_dv2, prt_ack;
output reg prt_ack1,prt_ack2,prt_req;
output reg [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_ack_low = 2'b11;
reg [1:0] state,temp_state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
prt_req = 1'b0;
if(prt_dv1 && !prt_dv2) begin
state = serv_req1;
prt_req = 1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
prt_qos = qos1;
end else if(!prt_dv1 && prt_dv2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_dv1 && prt_dv2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_ack2 = 1'b0;
if(prt_ack) begin
prt_ack1 = 1'b1;
prt_req = 0;
if(prt_dv2) begin
prt_req = 1;
prt_qos = qos2;
prt_data = prt_data2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
// state = wait_req;
state = wait_ack_low;
end
end
end
serv_req2:begin
state = serv_req2;
prt_ack1 = 1'b0;
if(prt_ack) begin
prt_ack2 = 1'b1;
prt_req = 0;
if(prt_dv1) begin
prt_req = 1;
prt_qos = qos1;
prt_data = prt_data1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_ack_low;
// state = wait_req;
end
end
end
wait_ack_low:begin
prt_ack1 = 1'b0;
prt_ack2 = 1'b0;
state = wait_ack_low;
if(!prt_ack)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_cntr_width = clogb2(max_outstanding_transactions)+1;
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output [max_burst_bits-1:0] WR_DATA;
output [addr_width-1:0] WR_ADDR;
output [max_transfer_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM;
output reg[max_transfer_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR;
output [axi_qos_width-1:0] WR_QOS;
output reg [axi_qos_width-1:0] RD_QOS;
input S_RDISSUECAP1_EN;
input S_WRISSUECAP1_EN;
output [7:0] S_RCOUNT;
output [7:0] S_WCOUNT;
output [2:0] S_RACOUNT;
output [5:0] S_WACOUNT;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
wire wr_intr_fifo_full;
reg temp_wr_intr_fifo_full;
/* Interconnect WR_FIFO model instance */
processing_system7_bfm_v2_0_5_intr_wr_mem wr_intr_fifo(SW_CLK, S_RESETN, wr_intr_fifo_full, WR_DATA_ACK_OCM, WR_DATA_ACK_DDR, WR_ADDR, WR_DATA, WR_BYTES, WR_QOS, WR_DATA_VALID_OCM, WR_DATA_VALID_DDR);
/* Register the async 'full' signal to S_ACLK clock */
always@(posedge S_ACLK) temp_wr_intr_fifo_full = wr_intr_fifo_full;
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* Internal nets/regs for calling slave BFM API's*/
reg [wr_afi_fifo_data_bits-1:0] wr_fifo [0:max_outstanding_transactions-1];
reg [int_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
reg [7:0] aw_time_cnt = 0,bresp_time_cnt = 0;
real awvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_outstanding_transactions]; // store the time when a new awvalid is received
/* Address Write Channel handshake*/
reg[int_cntr_width-1:0] aw_cnt = 0;//
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_outstanding_transactions-1];
reg aw_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* keep track of count values */
reg[7:0] wcount;
reg[5:0] wacount;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
//if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_wr_lat_number = afi_wr_min;
AVG_CASE : get_wr_lat_number = afi_wr_avg;
WORST_CASE : get_wr_lat_number = afi_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_wr_lat_number = ($random()%10+ afi_wr_min);
2'b01 : get_wr_lat_number = ($random()%40+ afi_wr_avg);
default : get_wr_lat_number = ($random()%60+ afi_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_rd_lat_number = afi_rd_min;
AVG_CASE : get_rd_lat_number = afi_rd_avg;
WORST_CASE : get_rd_lat_number = afi_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_rd_lat_number = ($random()%10+ afi_rd_min);
2'b01 : get_rd_lat_number = ($random()%40+ afi_rd_avg);
default : get_rd_lat_number = ($random()%60+ afi_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
assign bresp_fifo_full = ((wr_bresp_cnt[int_cntr_width-1] !== rd_bresp_cnt[int_cntr_width-1]) && (wr_bresp_cnt[int_cntr_width-2:0] === rd_bresp_cnt[int_cntr_width-2:0]))?1'b1:1'b0;
assign S_WCOUNT = wcount;
assign S_WACOUNT = wacount;
// FIFO_STATUS (only if AFI port) 1- full
function automatic wrfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - wcount;
if(fifo_space_left < fifo_space_exp)
wrfifo_full = 1;
else
wrfifo_full = 0;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_cntr_width-2:0]] = S_AWQOS;
end
end
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
wacount = 0;
end else begin
if(S_AWVALID && !wrfifo_full(S_AWLEN+1)) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_cntr_width-2:0]],
awlen[aw_cnt[int_cntr_width-2:0]],
awsize[aw_cnt[int_cntr_width-2:0]],
awbrst[aw_cnt[int_cntr_width-2:0]],
awlock[aw_cnt[int_cntr_width-2:0]],
awcache[aw_cnt[int_cntr_width-2:0]],
awprot[aw_cnt[int_cntr_width-2:0]],
awid[aw_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_cntr_width-2:0]] = 1'b1;
aw_cnt = aw_cnt + 1;
wacount = wacount + 1;
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(aw_flag[wd_cnt[int_cntr_width-2:0]]) begin
if(S_WVALID && !wrfifo_full(awlen[wd_cnt[int_cntr_width-2:0]] + 1)) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end else begin
if(!wrfifo_full(axi_burst_len+1) && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
else if(decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Register Map(0x%0h) is not allowed through this port.",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
reg[max_burst_bits-1:0] temp_wr_data;
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_fifo_wr_ptr = 0;
wcount = 0;
end else begin
enable_write_bresp = aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] && wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
bresp = calculate_resp(awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], awprot[wr_fifo_wr_ptr[int_cntr_width-2:0]]);
/* Fill AFI_WR_data FIFO */
if(bresp === AXI_OK ) begin
if(awbrst[wr_fifo_wr_ptr[int_cntr_width-2:0]]=== AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data, aligned_wr_addr, awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]],burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]];
end else
valid_data_bytes = 0;
temp_wr_data = aligned_wr_data;
wr_fifo[wr_fifo_wr_ptr[int_cntr_width-2:0]] = {awqos[wr_fifo_wr_ptr[int_cntr_width-2:0]], awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]], awid[wr_fifo_wr_ptr[int_cntr_width-2:0]], bresp, temp_wr_data, aligned_wr_addr, valid_data_bytes};
wcount = wcount + awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]]+1;
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Write Response Channel handshake */
reg wr_int_state;
/* Reading from the wr_fifo and sending to Interconnect fifo*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_int_state = 1'b0;
wr_bresp_cnt = 0;
wr_fifo_rd_ptr = 0;
end else begin
case(wr_int_state)
1'b0 : begin
wr_int_state = 1'b0;
if(!temp_wr_intr_fifo_full && !bresp_fifo_full && !wr_fifo_empty) begin
wr_intr_fifo.write_mem({wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_qos_msb:wr_afi_qos_lsb], wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_data_msb:wr_afi_bytes_lsb]}); /// qos, data, address and valid_bytes
wr_int_state = 1'b1;
/* start filling the write response fifo at the same time */
fifo_bresp[wr_bresp_cnt[int_cntr_width-2:0]] = wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_id_msb:wr_afi_rsp_lsb]; // ID and Resp
wcount = wcount - (wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_ln_msb:wr_afi_ln_lsb] + 1); /// burst length
wacount = wacount - 1;
wr_fifo_rd_ptr = wr_fifo_rd_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
end
end
1'b1 : begin
wr_int_state = 0;
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_cntr_width-1:0] ar_cnt = 0;// counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_outstanding_transactions-1];
reg ar_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_rresp;
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [rd_afi_fifo_bits-1:0] read_fifo[0:max_outstanding_transactions-1]; /// Read Burst Data, addr, size, burst, len, RID, RRESP, valid_bytes
reg [int_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
reg [7:0] rcount;
reg [2:0] racount;
wire rd_intr_fifo_full, rd_intr_fifo_empty;
wire read_fifo_empty;
/* signals to communicate with interconnect RD_FIFO model */
reg rd_req, invalid_rd_req;
/* REad control Info
56:25 : Address (32)
24:22 : Size (3)
21:20 : BRST (2)
19:16 : LEN (4)
15:10 : RID (6)
9:8 : RRSP (2)
7:0 : byte cnt (8)
*/
reg [rd_info_bits-1:0] read_control_info;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_rd_data;
reg temp_rd_intr_fifo_empty;
processing_system7_bfm_v2_0_5_intr_rd_mem rd_intr_fifo(SW_CLK, S_RESETN, rd_intr_fifo_full, rd_intr_fifo_empty, rd_req, invalid_rd_req, read_control_info , RD_DATA_OCM, RD_DATA_DDR, RD_DATA_VALID_OCM, RD_DATA_VALID_DDR);
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign S_RCOUNT = rcount;
assign S_RACOUNT = racount;
/* Register the asynch signal empty coming from Interconnect READ FIFO */
always@(posedge S_ACLK) temp_rd_intr_fifo_empty = rd_intr_fifo_empty;
// FIFO_STATUS (only if AFI port) 1- full
function automatic rdfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - rcount;
if(fifo_space_left < fifo_space_exp)
rdfifo_full = 1;
else
rdfifo_full = 0;
end
endfunction
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_cntr_width-2:0]] = S_ARQOS;
end
end
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
racount = 0;
end else begin
if(S_ARVALID && !rdfifo_full(S_ARLEN+1)) begin /// if AFI read fifo is not full
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_cntr_width-2:0]],
arlen[ar_cnt[int_cntr_width-2:0]],
arsize[ar_cnt[int_cntr_width-2:0]],
arbrst[ar_cnt[int_cntr_width-2:0]],
arlock[ar_cnt[int_cntr_width-2:0]],
arcache[ar_cnt[int_cntr_width-2:0]],
arprot[ar_cnt[int_cntr_width-2:0]],
arid[ar_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
racount = racount + 1;
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg rd_fifo_state;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
rd_req = 0;
invalid_rd_req= 0;
RD_QOS = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
if(ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] && !rd_intr_fifo_full) begin /// check the rd_fifo_bytes, interconnect fifo full condition
ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] = 0;
rresp = calculate_resp(araddr[wr_rresp_cnt[int_cntr_width-2:0]],arprot[wr_rresp_cnt[int_cntr_width-2:0]]);
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
RD_QOS = arqos[wr_rresp_cnt[int_cntr_width-2:0]];
rd_fifo_state = WAIT_RD_VALID;
rd_req = 1;
racount = racount - 1;
read_control_info = {araddr[wr_rresp_cnt[int_cntr_width-2:0]], arsize[wr_rresp_cnt[int_cntr_width-2:0]], arbrst[wr_rresp_cnt[int_cntr_width-2:0]], arlen[wr_rresp_cnt[int_cntr_width-2:0]], arid[wr_rresp_cnt[int_cntr_width-2:0]], rresp, temp_rd_valid_bytes };
wr_rresp_cnt = wr_rresp_cnt + 1;
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
rd_req = 0;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd_req) begin ///temp_dec == 2'b11) begin
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* thread to fill in the AFI RD_FIFO */
reg[rd_afi_fifo_bits-1:0] temp_rd_data;//Read Burst Data, addr, size, burst, len, RID, RRESP, valid bytes
reg tmp_state;
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
rcount = 0;
tmp_state = 0;
end else begin
case(tmp_state)
0 : begin
tmp_state = 0;
if(!temp_rd_intr_fifo_empty) begin
rd_intr_fifo.read_mem(temp_rd_data);
tmp_state = 1;
end
end
1 : begin
tmp_state = 1;
if(!rdfifo_full(temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1)) begin
read_fifo[rd_fifo_wr_ptr[int_cntr_width-2:0]] = temp_rd_data;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
rcount = rcount + temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1; /// Burst length
tmp_state = 0;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg[rd_afi_fifo_bits-1:0] tmp_fifo_rd; /// Data, addr, size, burst, len, RID, RRESP,valid_bytes
reg[(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count)) begin
rd_delayed = 1;
end
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
tmp_fifo_rd = read_fifo[rd_fifo_rd_ptr[int_cntr_width-2:0]];
rd_v_b = (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+1)*(2**tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb]);
temp_read_data = tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb];
if(tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb] === AXI_WRAP) begin
get_wrap_aligned_rd_data(aligned_rd_data, tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb], tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb], rd_v_b);
temp_read_data = aligned_rd_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = tmp_fifo_rd[rd_afi_rsp_msb : rd_afi_rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(tmp_fifo_rd[rd_afi_id_msb : rd_afi_id_lsb],
tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb],
tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb],
tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb],
tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb],
temp_read_data,
temp_read_rsp);
rcount = rcount - (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+ 1) ;
rresp_time_cnt = rresp_time_cnt+1;
rd_latency_count = get_rd_lat_number(1);
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
end
end /// else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_cntr_width = clogb2(max_outstanding_transactions)+1;
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output [max_burst_bits-1:0] WR_DATA;
output [addr_width-1:0] WR_ADDR;
output [max_transfer_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM;
output reg[max_transfer_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR;
output [axi_qos_width-1:0] WR_QOS;
output reg [axi_qos_width-1:0] RD_QOS;
input S_RDISSUECAP1_EN;
input S_WRISSUECAP1_EN;
output [7:0] S_RCOUNT;
output [7:0] S_WCOUNT;
output [2:0] S_RACOUNT;
output [5:0] S_WACOUNT;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
wire wr_intr_fifo_full;
reg temp_wr_intr_fifo_full;
/* Interconnect WR_FIFO model instance */
processing_system7_bfm_v2_0_5_intr_wr_mem wr_intr_fifo(SW_CLK, S_RESETN, wr_intr_fifo_full, WR_DATA_ACK_OCM, WR_DATA_ACK_DDR, WR_ADDR, WR_DATA, WR_BYTES, WR_QOS, WR_DATA_VALID_OCM, WR_DATA_VALID_DDR);
/* Register the async 'full' signal to S_ACLK clock */
always@(posedge S_ACLK) temp_wr_intr_fifo_full = wr_intr_fifo_full;
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* Internal nets/regs for calling slave BFM API's*/
reg [wr_afi_fifo_data_bits-1:0] wr_fifo [0:max_outstanding_transactions-1];
reg [int_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
reg [7:0] aw_time_cnt = 0,bresp_time_cnt = 0;
real awvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_outstanding_transactions]; // store the time when a new awvalid is received
/* Address Write Channel handshake*/
reg[int_cntr_width-1:0] aw_cnt = 0;//
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_outstanding_transactions-1];
reg aw_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* keep track of count values */
reg[7:0] wcount;
reg[5:0] wacount;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
//if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_wr_lat_number = afi_wr_min;
AVG_CASE : get_wr_lat_number = afi_wr_avg;
WORST_CASE : get_wr_lat_number = afi_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_wr_lat_number = ($random()%10+ afi_wr_min);
2'b01 : get_wr_lat_number = ($random()%40+ afi_wr_avg);
default : get_wr_lat_number = ($random()%60+ afi_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_rd_lat_number = afi_rd_min;
AVG_CASE : get_rd_lat_number = afi_rd_avg;
WORST_CASE : get_rd_lat_number = afi_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_rd_lat_number = ($random()%10+ afi_rd_min);
2'b01 : get_rd_lat_number = ($random()%40+ afi_rd_avg);
default : get_rd_lat_number = ($random()%60+ afi_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
assign bresp_fifo_full = ((wr_bresp_cnt[int_cntr_width-1] !== rd_bresp_cnt[int_cntr_width-1]) && (wr_bresp_cnt[int_cntr_width-2:0] === rd_bresp_cnt[int_cntr_width-2:0]))?1'b1:1'b0;
assign S_WCOUNT = wcount;
assign S_WACOUNT = wacount;
// FIFO_STATUS (only if AFI port) 1- full
function automatic wrfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - wcount;
if(fifo_space_left < fifo_space_exp)
wrfifo_full = 1;
else
wrfifo_full = 0;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_cntr_width-2:0]] = S_AWQOS;
end
end
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
wacount = 0;
end else begin
if(S_AWVALID && !wrfifo_full(S_AWLEN+1)) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_cntr_width-2:0]],
awlen[aw_cnt[int_cntr_width-2:0]],
awsize[aw_cnt[int_cntr_width-2:0]],
awbrst[aw_cnt[int_cntr_width-2:0]],
awlock[aw_cnt[int_cntr_width-2:0]],
awcache[aw_cnt[int_cntr_width-2:0]],
awprot[aw_cnt[int_cntr_width-2:0]],
awid[aw_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_cntr_width-2:0]] = 1'b1;
aw_cnt = aw_cnt + 1;
wacount = wacount + 1;
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(aw_flag[wd_cnt[int_cntr_width-2:0]]) begin
if(S_WVALID && !wrfifo_full(awlen[wd_cnt[int_cntr_width-2:0]] + 1)) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end else begin
if(!wrfifo_full(axi_burst_len+1) && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
else if(decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Register Map(0x%0h) is not allowed through this port.",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
reg[max_burst_bits-1:0] temp_wr_data;
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_fifo_wr_ptr = 0;
wcount = 0;
end else begin
enable_write_bresp = aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] && wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
bresp = calculate_resp(awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], awprot[wr_fifo_wr_ptr[int_cntr_width-2:0]]);
/* Fill AFI_WR_data FIFO */
if(bresp === AXI_OK ) begin
if(awbrst[wr_fifo_wr_ptr[int_cntr_width-2:0]]=== AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data, aligned_wr_addr, awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]],burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]];
end else
valid_data_bytes = 0;
temp_wr_data = aligned_wr_data;
wr_fifo[wr_fifo_wr_ptr[int_cntr_width-2:0]] = {awqos[wr_fifo_wr_ptr[int_cntr_width-2:0]], awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]], awid[wr_fifo_wr_ptr[int_cntr_width-2:0]], bresp, temp_wr_data, aligned_wr_addr, valid_data_bytes};
wcount = wcount + awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]]+1;
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Write Response Channel handshake */
reg wr_int_state;
/* Reading from the wr_fifo and sending to Interconnect fifo*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_int_state = 1'b0;
wr_bresp_cnt = 0;
wr_fifo_rd_ptr = 0;
end else begin
case(wr_int_state)
1'b0 : begin
wr_int_state = 1'b0;
if(!temp_wr_intr_fifo_full && !bresp_fifo_full && !wr_fifo_empty) begin
wr_intr_fifo.write_mem({wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_qos_msb:wr_afi_qos_lsb], wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_data_msb:wr_afi_bytes_lsb]}); /// qos, data, address and valid_bytes
wr_int_state = 1'b1;
/* start filling the write response fifo at the same time */
fifo_bresp[wr_bresp_cnt[int_cntr_width-2:0]] = wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_id_msb:wr_afi_rsp_lsb]; // ID and Resp
wcount = wcount - (wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_ln_msb:wr_afi_ln_lsb] + 1); /// burst length
wacount = wacount - 1;
wr_fifo_rd_ptr = wr_fifo_rd_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
end
end
1'b1 : begin
wr_int_state = 0;
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_cntr_width-1:0] ar_cnt = 0;// counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_outstanding_transactions-1];
reg ar_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_rresp;
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [rd_afi_fifo_bits-1:0] read_fifo[0:max_outstanding_transactions-1]; /// Read Burst Data, addr, size, burst, len, RID, RRESP, valid_bytes
reg [int_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
reg [7:0] rcount;
reg [2:0] racount;
wire rd_intr_fifo_full, rd_intr_fifo_empty;
wire read_fifo_empty;
/* signals to communicate with interconnect RD_FIFO model */
reg rd_req, invalid_rd_req;
/* REad control Info
56:25 : Address (32)
24:22 : Size (3)
21:20 : BRST (2)
19:16 : LEN (4)
15:10 : RID (6)
9:8 : RRSP (2)
7:0 : byte cnt (8)
*/
reg [rd_info_bits-1:0] read_control_info;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_rd_data;
reg temp_rd_intr_fifo_empty;
processing_system7_bfm_v2_0_5_intr_rd_mem rd_intr_fifo(SW_CLK, S_RESETN, rd_intr_fifo_full, rd_intr_fifo_empty, rd_req, invalid_rd_req, read_control_info , RD_DATA_OCM, RD_DATA_DDR, RD_DATA_VALID_OCM, RD_DATA_VALID_DDR);
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign S_RCOUNT = rcount;
assign S_RACOUNT = racount;
/* Register the asynch signal empty coming from Interconnect READ FIFO */
always@(posedge S_ACLK) temp_rd_intr_fifo_empty = rd_intr_fifo_empty;
// FIFO_STATUS (only if AFI port) 1- full
function automatic rdfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - rcount;
if(fifo_space_left < fifo_space_exp)
rdfifo_full = 1;
else
rdfifo_full = 0;
end
endfunction
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_cntr_width-2:0]] = S_ARQOS;
end
end
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
racount = 0;
end else begin
if(S_ARVALID && !rdfifo_full(S_ARLEN+1)) begin /// if AFI read fifo is not full
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_cntr_width-2:0]],
arlen[ar_cnt[int_cntr_width-2:0]],
arsize[ar_cnt[int_cntr_width-2:0]],
arbrst[ar_cnt[int_cntr_width-2:0]],
arlock[ar_cnt[int_cntr_width-2:0]],
arcache[ar_cnt[int_cntr_width-2:0]],
arprot[ar_cnt[int_cntr_width-2:0]],
arid[ar_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
racount = racount + 1;
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg rd_fifo_state;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
rd_req = 0;
invalid_rd_req= 0;
RD_QOS = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
if(ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] && !rd_intr_fifo_full) begin /// check the rd_fifo_bytes, interconnect fifo full condition
ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] = 0;
rresp = calculate_resp(araddr[wr_rresp_cnt[int_cntr_width-2:0]],arprot[wr_rresp_cnt[int_cntr_width-2:0]]);
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
RD_QOS = arqos[wr_rresp_cnt[int_cntr_width-2:0]];
rd_fifo_state = WAIT_RD_VALID;
rd_req = 1;
racount = racount - 1;
read_control_info = {araddr[wr_rresp_cnt[int_cntr_width-2:0]], arsize[wr_rresp_cnt[int_cntr_width-2:0]], arbrst[wr_rresp_cnt[int_cntr_width-2:0]], arlen[wr_rresp_cnt[int_cntr_width-2:0]], arid[wr_rresp_cnt[int_cntr_width-2:0]], rresp, temp_rd_valid_bytes };
wr_rresp_cnt = wr_rresp_cnt + 1;
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
rd_req = 0;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd_req) begin ///temp_dec == 2'b11) begin
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* thread to fill in the AFI RD_FIFO */
reg[rd_afi_fifo_bits-1:0] temp_rd_data;//Read Burst Data, addr, size, burst, len, RID, RRESP, valid bytes
reg tmp_state;
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
rcount = 0;
tmp_state = 0;
end else begin
case(tmp_state)
0 : begin
tmp_state = 0;
if(!temp_rd_intr_fifo_empty) begin
rd_intr_fifo.read_mem(temp_rd_data);
tmp_state = 1;
end
end
1 : begin
tmp_state = 1;
if(!rdfifo_full(temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1)) begin
read_fifo[rd_fifo_wr_ptr[int_cntr_width-2:0]] = temp_rd_data;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
rcount = rcount + temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1; /// Burst length
tmp_state = 0;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg[rd_afi_fifo_bits-1:0] tmp_fifo_rd; /// Data, addr, size, burst, len, RID, RRESP,valid_bytes
reg[(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count)) begin
rd_delayed = 1;
end
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
tmp_fifo_rd = read_fifo[rd_fifo_rd_ptr[int_cntr_width-2:0]];
rd_v_b = (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+1)*(2**tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb]);
temp_read_data = tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb];
if(tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb] === AXI_WRAP) begin
get_wrap_aligned_rd_data(aligned_rd_data, tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb], tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb], rd_v_b);
temp_read_data = aligned_rd_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = tmp_fifo_rd[rd_afi_rsp_msb : rd_afi_rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(tmp_fifo_rd[rd_afi_id_msb : rd_afi_id_lsb],
tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb],
tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb],
tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb],
tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb],
temp_read_data,
temp_read_rsp);
rcount = rcount - (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+ 1) ;
rresp_time_cnt = rresp_time_cnt+1;
rd_latency_count = get_rd_lat_number(1);
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
end
end /// else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_cntr_width = clogb2(max_outstanding_transactions)+1;
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output [max_burst_bits-1:0] WR_DATA;
output [addr_width-1:0] WR_ADDR;
output [max_transfer_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM;
output reg[max_transfer_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR;
output [axi_qos_width-1:0] WR_QOS;
output reg [axi_qos_width-1:0] RD_QOS;
input S_RDISSUECAP1_EN;
input S_WRISSUECAP1_EN;
output [7:0] S_RCOUNT;
output [7:0] S_WCOUNT;
output [2:0] S_RACOUNT;
output [5:0] S_WACOUNT;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
wire wr_intr_fifo_full;
reg temp_wr_intr_fifo_full;
/* Interconnect WR_FIFO model instance */
processing_system7_bfm_v2_0_5_intr_wr_mem wr_intr_fifo(SW_CLK, S_RESETN, wr_intr_fifo_full, WR_DATA_ACK_OCM, WR_DATA_ACK_DDR, WR_ADDR, WR_DATA, WR_BYTES, WR_QOS, WR_DATA_VALID_OCM, WR_DATA_VALID_DDR);
/* Register the async 'full' signal to S_ACLK clock */
always@(posedge S_ACLK) temp_wr_intr_fifo_full = wr_intr_fifo_full;
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* Internal nets/regs for calling slave BFM API's*/
reg [wr_afi_fifo_data_bits-1:0] wr_fifo [0:max_outstanding_transactions-1];
reg [int_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
reg [7:0] aw_time_cnt = 0,bresp_time_cnt = 0;
real awvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_outstanding_transactions]; // store the time when a new awvalid is received
/* Address Write Channel handshake*/
reg[int_cntr_width-1:0] aw_cnt = 0;//
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_outstanding_transactions-1];
reg aw_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* keep track of count values */
reg[7:0] wcount;
reg[5:0] wacount;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
//if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_wr_lat_number = afi_wr_min;
AVG_CASE : get_wr_lat_number = afi_wr_avg;
WORST_CASE : get_wr_lat_number = afi_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_wr_lat_number = ($random()%10+ afi_wr_min);
2'b01 : get_wr_lat_number = ($random()%40+ afi_wr_avg);
default : get_wr_lat_number = ($random()%60+ afi_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : get_rd_lat_number = afi_rd_min;
AVG_CASE : get_rd_lat_number = afi_rd_avg;
WORST_CASE : get_rd_lat_number = afi_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : get_rd_lat_number = ($random()%10+ afi_rd_min);
2'b01 : get_rd_lat_number = ($random()%40+ afi_rd_avg);
default : get_rd_lat_number = ($random()%60+ afi_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
assign bresp_fifo_full = ((wr_bresp_cnt[int_cntr_width-1] !== rd_bresp_cnt[int_cntr_width-1]) && (wr_bresp_cnt[int_cntr_width-2:0] === rd_bresp_cnt[int_cntr_width-2:0]))?1'b1:1'b0;
assign S_WCOUNT = wcount;
assign S_WACOUNT = wacount;
// FIFO_STATUS (only if AFI port) 1- full
function automatic wrfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - wcount;
if(fifo_space_left < fifo_space_exp)
wrfifo_full = 1;
else
wrfifo_full = 0;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_cntr_width-2:0]] = S_AWQOS;
end
end
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
wacount = 0;
end else begin
if(S_AWVALID && !wrfifo_full(S_AWLEN+1)) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_cntr_width-2:0]],
awlen[aw_cnt[int_cntr_width-2:0]],
awsize[aw_cnt[int_cntr_width-2:0]],
awbrst[aw_cnt[int_cntr_width-2:0]],
awlock[aw_cnt[int_cntr_width-2:0]],
awcache[aw_cnt[int_cntr_width-2:0]],
awprot[aw_cnt[int_cntr_width-2:0]],
awid[aw_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_cntr_width-2:0]] = 1'b1;
aw_cnt = aw_cnt + 1;
wacount = wacount + 1;
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(aw_flag[wd_cnt[int_cntr_width-2:0]]) begin
if(S_WVALID && !wrfifo_full(awlen[wd_cnt[int_cntr_width-2:0]] + 1)) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end else begin
if(!wrfifo_full(axi_burst_len+1) && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID, burst_data[wd_cnt[int_cntr_width-2:0]], burst_valid_bytes[wd_cnt[int_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
else if(decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Register Map(0x%0h) is not allowed through this port.",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
reg[max_burst_bits-1:0] temp_wr_data;
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_fifo_wr_ptr = 0;
wcount = 0;
end else begin
enable_write_bresp = aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] && wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
wlast_flag[wr_fifo_wr_ptr[int_cntr_width-2:0]] = 0;
bresp = calculate_resp(awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], awprot[wr_fifo_wr_ptr[int_cntr_width-2:0]]);
/* Fill AFI_WR_data FIFO */
if(bresp === AXI_OK ) begin
if(awbrst[wr_fifo_wr_ptr[int_cntr_width-2:0]]=== AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data, aligned_wr_addr, awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]], burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]],burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_fifo_wr_ptr[int_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_fifo_wr_ptr[int_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_fifo_wr_ptr[int_cntr_width-2:0]];
end else
valid_data_bytes = 0;
temp_wr_data = aligned_wr_data;
wr_fifo[wr_fifo_wr_ptr[int_cntr_width-2:0]] = {awqos[wr_fifo_wr_ptr[int_cntr_width-2:0]], awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]], awid[wr_fifo_wr_ptr[int_cntr_width-2:0]], bresp, temp_wr_data, aligned_wr_addr, valid_data_bytes};
wcount = wcount + awlen[wr_fifo_wr_ptr[int_cntr_width-2:0]]+1;
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Write Response Channel handshake */
reg wr_int_state;
/* Reading from the wr_fifo and sending to Interconnect fifo*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_int_state = 1'b0;
wr_bresp_cnt = 0;
wr_fifo_rd_ptr = 0;
end else begin
case(wr_int_state)
1'b0 : begin
wr_int_state = 1'b0;
if(!temp_wr_intr_fifo_full && !bresp_fifo_full && !wr_fifo_empty) begin
wr_intr_fifo.write_mem({wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_qos_msb:wr_afi_qos_lsb], wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_data_msb:wr_afi_bytes_lsb]}); /// qos, data, address and valid_bytes
wr_int_state = 1'b1;
/* start filling the write response fifo at the same time */
fifo_bresp[wr_bresp_cnt[int_cntr_width-2:0]] = wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_id_msb:wr_afi_rsp_lsb]; // ID and Resp
wcount = wcount - (wr_fifo[wr_fifo_rd_ptr[int_cntr_width-2:0]][wr_afi_ln_msb:wr_afi_ln_lsb] + 1); /// burst length
wacount = wacount - 1;
wr_fifo_rd_ptr = wr_fifo_rd_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
end
end
1'b1 : begin
wr_int_state = 0;
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_cntr_width-1:0] ar_cnt = 0;// counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_outstanding_transactions-1];
reg ar_flag [0:max_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_rresp;
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [rd_afi_fifo_bits-1:0] read_fifo[0:max_outstanding_transactions-1]; /// Read Burst Data, addr, size, burst, len, RID, RRESP, valid_bytes
reg [int_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
reg [7:0] rcount;
reg [2:0] racount;
wire rd_intr_fifo_full, rd_intr_fifo_empty;
wire read_fifo_empty;
/* signals to communicate with interconnect RD_FIFO model */
reg rd_req, invalid_rd_req;
/* REad control Info
56:25 : Address (32)
24:22 : Size (3)
21:20 : BRST (2)
19:16 : LEN (4)
15:10 : RID (6)
9:8 : RRSP (2)
7:0 : byte cnt (8)
*/
reg [rd_info_bits-1:0] read_control_info;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_rd_data;
reg temp_rd_intr_fifo_empty;
processing_system7_bfm_v2_0_5_intr_rd_mem rd_intr_fifo(SW_CLK, S_RESETN, rd_intr_fifo_full, rd_intr_fifo_empty, rd_req, invalid_rd_req, read_control_info , RD_DATA_OCM, RD_DATA_DDR, RD_DATA_VALID_OCM, RD_DATA_VALID_DDR);
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign S_RCOUNT = rcount;
assign S_RACOUNT = racount;
/* Register the asynch signal empty coming from Interconnect READ FIFO */
always@(posedge S_ACLK) temp_rd_intr_fifo_empty = rd_intr_fifo_empty;
// FIFO_STATUS (only if AFI port) 1- full
function automatic rdfifo_full ;
input [axi_len_width:0] fifo_space_exp;
integer fifo_space_left;
begin
fifo_space_left = afi_fifo_locations - rcount;
if(fifo_space_left < fifo_space_exp)
rdfifo_full = 1;
else
rdfifo_full = 0;
end
endfunction
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_cntr_width-2:0]] = S_ARQOS;
end
end
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
racount = 0;
end else begin
if(S_ARVALID && !rdfifo_full(S_ARLEN+1)) begin /// if AFI read fifo is not full
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_cntr_width-2:0]],
arlen[ar_cnt[int_cntr_width-2:0]],
arsize[ar_cnt[int_cntr_width-2:0]],
arbrst[ar_cnt[int_cntr_width-2:0]],
arlock[ar_cnt[int_cntr_width-2:0]],
arcache[ar_cnt[int_cntr_width-2:0]],
arprot[ar_cnt[int_cntr_width-2:0]],
arid[ar_cnt[int_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
racount = racount + 1;
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg rd_fifo_state;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
rd_req = 0;
invalid_rd_req= 0;
RD_QOS = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
if(ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] && !rd_intr_fifo_full) begin /// check the rd_fifo_bytes, interconnect fifo full condition
ar_flag[wr_rresp_cnt[int_cntr_width-2:0]] = 0;
rresp = calculate_resp(araddr[wr_rresp_cnt[int_cntr_width-2:0]],arprot[wr_rresp_cnt[int_cntr_width-2:0]]);
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
RD_QOS = arqos[wr_rresp_cnt[int_cntr_width-2:0]];
rd_fifo_state = WAIT_RD_VALID;
rd_req = 1;
racount = racount - 1;
read_control_info = {araddr[wr_rresp_cnt[int_cntr_width-2:0]], arsize[wr_rresp_cnt[int_cntr_width-2:0]], arbrst[wr_rresp_cnt[int_cntr_width-2:0]], arlen[wr_rresp_cnt[int_cntr_width-2:0]], arid[wr_rresp_cnt[int_cntr_width-2:0]], rresp, temp_rd_valid_bytes };
wr_rresp_cnt = wr_rresp_cnt + 1;
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
rd_req = 0;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | invalid_rd_req) begin ///temp_dec == 2'b11) begin
RD_REQ_DDR = 1'b0;
RD_REQ_OCM = 1'b0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* thread to fill in the AFI RD_FIFO */
reg[rd_afi_fifo_bits-1:0] temp_rd_data;//Read Burst Data, addr, size, burst, len, RID, RRESP, valid bytes
reg tmp_state;
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
rcount = 0;
tmp_state = 0;
end else begin
case(tmp_state)
0 : begin
tmp_state = 0;
if(!temp_rd_intr_fifo_empty) begin
rd_intr_fifo.read_mem(temp_rd_data);
tmp_state = 1;
end
end
1 : begin
tmp_state = 1;
if(!rdfifo_full(temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1)) begin
read_fifo[rd_fifo_wr_ptr[int_cntr_width-2:0]] = temp_rd_data;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
rcount = rcount + temp_rd_data[rd_afi_ln_msb:rd_afi_ln_lsb]+1; /// Burst length
tmp_state = 0;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg[rd_afi_fifo_bits-1:0] tmp_fifo_rd; /// Data, addr, size, burst, len, RID, RRESP,valid_bytes
reg[(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count)) begin
rd_delayed = 1;
end
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
tmp_fifo_rd = read_fifo[rd_fifo_rd_ptr[int_cntr_width-2:0]];
rd_v_b = (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+1)*(2**tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb]);
temp_read_data = tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb];
if(tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb] === AXI_WRAP) begin
get_wrap_aligned_rd_data(aligned_rd_data, tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb], tmp_fifo_rd[rd_afi_data_msb : rd_afi_data_lsb], rd_v_b);
temp_read_data = aligned_rd_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = tmp_fifo_rd[rd_afi_rsp_msb : rd_afi_rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(tmp_fifo_rd[rd_afi_id_msb : rd_afi_id_lsb],
tmp_fifo_rd[rd_afi_addr_msb : rd_afi_addr_lsb],
tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb],
tmp_fifo_rd[rd_afi_siz_msb : rd_afi_siz_lsb],
tmp_fifo_rd[rd_afi_brst_msb : rd_afi_brst_lsb],
temp_read_data,
temp_read_rsp);
rcount = rcount - (tmp_fifo_rd[rd_afi_ln_msb : rd_afi_ln_lsb]+ 1) ;
rresp_time_cnt = rresp_time_cnt+1;
rd_latency_count = get_rd_lat_number(1);
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
end
end /// else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_regc(
rstn,
sw_clk,
/* Goes to port 0 of REG */
reg_rd_req_port0,
reg_rd_dv_port0,
reg_rd_addr_port0,
reg_rd_data_port0,
reg_rd_bytes_port0,
reg_rd_qos_port0,
/* Goes to port 1 of REG */
reg_rd_req_port1,
reg_rd_dv_port1,
reg_rd_addr_port1,
reg_rd_data_port1,
reg_rd_bytes_port1,
reg_rd_qos_port1
);
input rstn;
input sw_clk;
input reg_rd_req_port0;
output reg_rd_dv_port0;
input[31:0] reg_rd_addr_port0;
output[1023:0] reg_rd_data_port0;
input[7:0] reg_rd_bytes_port0;
input [3:0] reg_rd_qos_port0;
input reg_rd_req_port1;
output reg_rd_dv_port1;
input[31:0] reg_rd_addr_port1;
output[1023:0] reg_rd_data_port1;
input[7:0] reg_rd_bytes_port1;
input[3:0] reg_rd_qos_port1;
wire [3:0] rd_qos;
reg [1023:0] rd_data;
wire [31:0] rd_addr;
wire [7:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_rd reg_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(reg_rd_qos_port0),
.qos2(reg_rd_qos_port1),
.prt_req1(reg_rd_req_port0),
.prt_req2(reg_rd_req_port1),
.prt_data1(reg_rd_data_port0),
.prt_data2(reg_rd_data_port1),
.prt_addr1(reg_rd_addr_port0),
.prt_addr2(reg_rd_addr_port1),
.prt_bytes1(reg_rd_bytes_port0),
.prt_bytes2(reg_rd_bytes_port1),
.prt_dv1(reg_rd_dv_port0),
.prt_dv2(reg_rd_dv_port1),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_reg_map regm();
reg state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
rd_dv <= 0;
state <= 0;
end else begin
case(state)
0:begin
state <= 0;
rd_dv <= 0;
if(rd_req) begin
regm.read_reg_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_regc(
rstn,
sw_clk,
/* Goes to port 0 of REG */
reg_rd_req_port0,
reg_rd_dv_port0,
reg_rd_addr_port0,
reg_rd_data_port0,
reg_rd_bytes_port0,
reg_rd_qos_port0,
/* Goes to port 1 of REG */
reg_rd_req_port1,
reg_rd_dv_port1,
reg_rd_addr_port1,
reg_rd_data_port1,
reg_rd_bytes_port1,
reg_rd_qos_port1
);
input rstn;
input sw_clk;
input reg_rd_req_port0;
output reg_rd_dv_port0;
input[31:0] reg_rd_addr_port0;
output[1023:0] reg_rd_data_port0;
input[7:0] reg_rd_bytes_port0;
input [3:0] reg_rd_qos_port0;
input reg_rd_req_port1;
output reg_rd_dv_port1;
input[31:0] reg_rd_addr_port1;
output[1023:0] reg_rd_data_port1;
input[7:0] reg_rd_bytes_port1;
input[3:0] reg_rd_qos_port1;
wire [3:0] rd_qos;
reg [1023:0] rd_data;
wire [31:0] rd_addr;
wire [7:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_rd reg_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(reg_rd_qos_port0),
.qos2(reg_rd_qos_port1),
.prt_req1(reg_rd_req_port0),
.prt_req2(reg_rd_req_port1),
.prt_data1(reg_rd_data_port0),
.prt_data2(reg_rd_data_port1),
.prt_addr1(reg_rd_addr_port0),
.prt_addr2(reg_rd_addr_port1),
.prt_bytes1(reg_rd_bytes_port0),
.prt_bytes2(reg_rd_bytes_port1),
.prt_dv1(reg_rd_dv_port0),
.prt_dv2(reg_rd_dv_port1),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_reg_map regm();
reg state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
rd_dv <= 0;
state <= 0;
end else begin
case(state)
0:begin
state <= 0;
rd_dv <= 0;
if(rd_req) begin
regm.read_reg_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd_4(
rstn,
sw_clk,
qos1,
qos2,
qos3,
qos4,
prt_req1,
prt_req2,
prt_req3,
prt_req4,
prt_data1,
prt_data2,
prt_data3,
prt_data4,
prt_addr1,
prt_addr2,
prt_addr3,
prt_addr4,
prt_bytes1,
prt_bytes2,
prt_bytes3,
prt_bytes4,
prt_dv1,
prt_dv2,
prt_dv3,
prt_dv4,
prt_qos,
prt_req,
prt_data,
prt_addr,
prt_bytes,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2,qos3,qos4;
input prt_req1, prt_req2,prt_req3, prt_req4, prt_dv;
output reg [max_burst_bits-1:0] prt_data1,prt_data2,prt_data3,prt_data4;
input [addr_width-1:0] prt_addr1,prt_addr2,prt_addr3,prt_addr4;
input [max_burst_bytes_width:0] prt_bytes1,prt_bytes2,prt_bytes3,prt_bytes4;
output reg prt_dv1,prt_dv2,prt_dv3,prt_dv4,prt_req;
input [max_burst_bits-1:0] prt_data;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
output reg [axi_qos_width-1:0] prt_qos;
parameter wait_req = 3'b000, serv_req1 = 3'b001, serv_req2 = 3'b010, serv_req3 = 3'b011, serv_req4 = 3'b100, wait_dv_low=3'b101;
reg [2:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_addr = prt_addr4;
prt_qos = qos4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req2) begin
state = serv_req2;
prt_qos = qos2;
prt_req = 1;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
state = serv_req3;
prt_qos = qos3;
prt_req = 1;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
state = serv_req4;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req3) begin
state = serv_req3;
prt_req = 1;
prt_qos = qos3;
prt_addr = prt_addr3;
prt_bytes = prt_bytes3;
end else if(prt_req4) begin
state = serv_req4;
prt_req = 1;
prt_qos = qos4;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
prt_req = 1;
prt_addr = prt_addr1;
prt_qos = qos1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req3:begin
state = serv_req3;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv4 = 1'b0;
if(prt_dv)begin
prt_dv3 = 1'b1;
prt_data3 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req4) begin
state = serv_req4;
prt_qos = qos4;
prt_req = 1;
prt_addr = prt_addr4;
prt_bytes = prt_bytes4;
end else if(prt_req1) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end
end
end
serv_req4:begin
state = serv_req4;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
if(prt_dv)begin
prt_dv4 = 1'b1;
prt_data4 = prt_data;
//state = wait_req;
state = wait_dv_low;
prt_req = 1'b0;
if(prt_req1) begin
state = serv_req1;
prt_qos = qos1;
prt_req = 1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req3) begin
prt_req = 1;
prt_addr = prt_addr3;
prt_qos = qos3;
prt_bytes = prt_bytes3;
state = serv_req3;
end
end
end
wait_dv_low:begin
state = wait_dv_low;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_dv3 = 1'b0;
prt_dv4 = 1'b0;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_reg_map();
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* Register definitions */
`include "processing_system7_bfm_v2_0_5_reg_params.v"
parameter mem_size = 32'h2000_0000; ///as the memory is implemented 4 byte wide
parameter xsim_mem_size = 32'h1000_0000; ///as the memory is implemented 4 byte wide 256 MB
`ifdef XSIM_ISIM
reg [data_width-1:0] reg_mem0 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] reg_mem1 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
parameter addr_offset_bits = 26;
`else
reg /*sparse*/ [data_width-1:0] reg_mem [0:(mem_size/mem_width)-1]; // 512 MB needed for reg space
parameter addr_offset_bits = 27;
`endif
/* preload reset_values from file */
task automatic pre_load_rst_values;
input dummy;
begin
`include "processing_system7_bfm_v2_0_5_reg_init.v" /* This file has list of set_reset_data() calls to set the reset value for each register*/
end
endtask
/* writes the reset data into the reg memory */
task automatic set_reset_data;
input [addr_width-1:0] address;
input [data_width-1:0] data;
reg [addr_width-1:0] addr;
begin
addr = address >> 2;
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
14 : reg_mem0[addr[addr_offset_bits-1:0]] = data;
15 : reg_mem1[addr[addr_offset_bits-1:0]] = data;
endcase
`else
reg_mem[addr[addr_offset_bits-1:0]] = data;
`endif
end
endtask
/* writes the data into the reg memory */
task automatic set_data;
input [addr_width-1:0] addr;
input [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
6'h0E : reg_mem0[addr[addr_offset_bits-1:0]] = data;
6'h0F : reg_mem1[addr[addr_offset_bits-1:0]] = data;
endcase
`else
reg_mem[addr[addr_offset_bits-1:0]] = data;
`endif
end
endtask
/* get the read data from reg mem */
task automatic get_data;
input [addr_width-1:0] addr;
output [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
6'h0E : data = reg_mem0[addr[addr_offset_bits-1:0]];
6'h0F : data = reg_mem1[addr[addr_offset_bits-1:0]];
endcase
`else
data = reg_mem[addr[addr_offset_bits-1:0]];
`endif
end
endtask
/* read chunk of registers */
task read_reg_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading Register Map starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits- data_width]);
if(no_of_bytes < mem_width ) begin
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - mem_width;
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
get_data(addr,temp_rd_data);
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading Register Map starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
initial
begin
pre_load_rst_values(1);
end
endmodule
|
module processing_system7_bfm_v2_0_5_reg_map();
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* Register definitions */
`include "processing_system7_bfm_v2_0_5_reg_params.v"
parameter mem_size = 32'h2000_0000; ///as the memory is implemented 4 byte wide
parameter xsim_mem_size = 32'h1000_0000; ///as the memory is implemented 4 byte wide 256 MB
`ifdef XSIM_ISIM
reg [data_width-1:0] reg_mem0 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] reg_mem1 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
parameter addr_offset_bits = 26;
`else
reg /*sparse*/ [data_width-1:0] reg_mem [0:(mem_size/mem_width)-1]; // 512 MB needed for reg space
parameter addr_offset_bits = 27;
`endif
/* preload reset_values from file */
task automatic pre_load_rst_values;
input dummy;
begin
`include "processing_system7_bfm_v2_0_5_reg_init.v" /* This file has list of set_reset_data() calls to set the reset value for each register*/
end
endtask
/* writes the reset data into the reg memory */
task automatic set_reset_data;
input [addr_width-1:0] address;
input [data_width-1:0] data;
reg [addr_width-1:0] addr;
begin
addr = address >> 2;
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
14 : reg_mem0[addr[addr_offset_bits-1:0]] = data;
15 : reg_mem1[addr[addr_offset_bits-1:0]] = data;
endcase
`else
reg_mem[addr[addr_offset_bits-1:0]] = data;
`endif
end
endtask
/* writes the data into the reg memory */
task automatic set_data;
input [addr_width-1:0] addr;
input [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
6'h0E : reg_mem0[addr[addr_offset_bits-1:0]] = data;
6'h0F : reg_mem1[addr[addr_offset_bits-1:0]] = data;
endcase
`else
reg_mem[addr[addr_offset_bits-1:0]] = data;
`endif
end
endtask
/* get the read data from reg mem */
task automatic get_data;
input [addr_width-1:0] addr;
output [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
6'h0E : data = reg_mem0[addr[addr_offset_bits-1:0]];
6'h0F : data = reg_mem1[addr[addr_offset_bits-1:0]];
endcase
`else
data = reg_mem[addr[addr_offset_bits-1:0]];
`endif
end
endtask
/* read chunk of registers */
task read_reg_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading Register Map starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits- data_width]);
if(no_of_bytes < mem_width ) begin
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - mem_width;
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
get_data(addr,temp_rd_data);
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading Register Map starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
initial
begin
pre_load_rst_values(1);
end
endmodule
|
module processing_system7_bfm_v2_0_5_reg_map();
`include "processing_system7_bfm_v2_0_5_local_params.v"
/* Register definitions */
`include "processing_system7_bfm_v2_0_5_reg_params.v"
parameter mem_size = 32'h2000_0000; ///as the memory is implemented 4 byte wide
parameter xsim_mem_size = 32'h1000_0000; ///as the memory is implemented 4 byte wide 256 MB
`ifdef XSIM_ISIM
reg [data_width-1:0] reg_mem0 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] reg_mem1 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
parameter addr_offset_bits = 26;
`else
reg /*sparse*/ [data_width-1:0] reg_mem [0:(mem_size/mem_width)-1]; // 512 MB needed for reg space
parameter addr_offset_bits = 27;
`endif
/* preload reset_values from file */
task automatic pre_load_rst_values;
input dummy;
begin
`include "processing_system7_bfm_v2_0_5_reg_init.v" /* This file has list of set_reset_data() calls to set the reset value for each register*/
end
endtask
/* writes the reset data into the reg memory */
task automatic set_reset_data;
input [addr_width-1:0] address;
input [data_width-1:0] data;
reg [addr_width-1:0] addr;
begin
addr = address >> 2;
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
14 : reg_mem0[addr[addr_offset_bits-1:0]] = data;
15 : reg_mem1[addr[addr_offset_bits-1:0]] = data;
endcase
`else
reg_mem[addr[addr_offset_bits-1:0]] = data;
`endif
end
endtask
/* writes the data into the reg memory */
task automatic set_data;
input [addr_width-1:0] addr;
input [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
6'h0E : reg_mem0[addr[addr_offset_bits-1:0]] = data;
6'h0F : reg_mem1[addr[addr_offset_bits-1:0]] = data;
endcase
`else
reg_mem[addr[addr_offset_bits-1:0]] = data;
`endif
end
endtask
/* get the read data from reg mem */
task automatic get_data;
input [addr_width-1:0] addr;
output [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[addr_width-1:addr_offset_bits])
6'h0E : data = reg_mem0[addr[addr_offset_bits-1:0]];
6'h0F : data = reg_mem1[addr[addr_offset_bits-1:0]];
endcase
`else
data = reg_mem[addr[addr_offset_bits-1:0]];
`endif
end
endtask
/* read chunk of registers */
task read_reg_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading Register Map starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits- data_width]);
if(no_of_bytes < mem_width ) begin
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - mem_width;
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
get_data(addr,temp_rd_data);
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading Register Map starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
initial
begin
pre_load_rst_values(1);
end
endmodule
|
module processing_system7_bfm_v2_0_5_processing_system7_bfm
(
CAN0_PHY_TX,
CAN0_PHY_RX,
CAN1_PHY_TX,
CAN1_PHY_RX,
ENET0_GMII_TX_EN,
ENET0_GMII_TX_ER,
ENET0_MDIO_MDC,
ENET0_MDIO_O,
ENET0_MDIO_T,
ENET0_PTP_DELAY_REQ_RX,
ENET0_PTP_DELAY_REQ_TX,
ENET0_PTP_PDELAY_REQ_RX,
ENET0_PTP_PDELAY_REQ_TX,
ENET0_PTP_PDELAY_RESP_RX,
ENET0_PTP_PDELAY_RESP_TX,
ENET0_PTP_SYNC_FRAME_RX,
ENET0_PTP_SYNC_FRAME_TX,
ENET0_SOF_RX,
ENET0_SOF_TX,
ENET0_GMII_TXD,
ENET0_GMII_COL,
ENET0_GMII_CRS,
ENET0_EXT_INTIN,
ENET0_GMII_RX_CLK,
ENET0_GMII_RX_DV,
ENET0_GMII_RX_ER,
ENET0_GMII_TX_CLK,
ENET0_MDIO_I,
ENET0_GMII_RXD,
ENET1_GMII_TX_EN,
ENET1_GMII_TX_ER,
ENET1_MDIO_MDC,
ENET1_MDIO_O,
ENET1_MDIO_T,
ENET1_PTP_DELAY_REQ_RX,
ENET1_PTP_DELAY_REQ_TX,
ENET1_PTP_PDELAY_REQ_RX,
ENET1_PTP_PDELAY_REQ_TX,
ENET1_PTP_PDELAY_RESP_RX,
ENET1_PTP_PDELAY_RESP_TX,
ENET1_PTP_SYNC_FRAME_RX,
ENET1_PTP_SYNC_FRAME_TX,
ENET1_SOF_RX,
ENET1_SOF_TX,
ENET1_GMII_TXD,
ENET1_GMII_COL,
ENET1_GMII_CRS,
ENET1_EXT_INTIN,
ENET1_GMII_RX_CLK,
ENET1_GMII_RX_DV,
ENET1_GMII_RX_ER,
ENET1_GMII_TX_CLK,
ENET1_MDIO_I,
ENET1_GMII_RXD,
GPIO_I,
GPIO_O,
GPIO_T,
I2C0_SDA_I,
I2C0_SDA_O,
I2C0_SDA_T,
I2C0_SCL_I,
I2C0_SCL_O,
I2C0_SCL_T,
I2C1_SDA_I,
I2C1_SDA_O,
I2C1_SDA_T,
I2C1_SCL_I,
I2C1_SCL_O,
I2C1_SCL_T,
PJTAG_TCK,
PJTAG_TMS,
PJTAG_TD_I,
PJTAG_TD_T,
PJTAG_TD_O,
SDIO0_CLK,
SDIO0_CLK_FB,
SDIO0_CMD_O,
SDIO0_CMD_I,
SDIO0_CMD_T,
SDIO0_DATA_I,
SDIO0_DATA_O,
SDIO0_DATA_T,
SDIO0_LED,
SDIO0_CDN,
SDIO0_WP,
SDIO0_BUSPOW,
SDIO0_BUSVOLT,
SDIO1_CLK,
SDIO1_CLK_FB,
SDIO1_CMD_O,
SDIO1_CMD_I,
SDIO1_CMD_T,
SDIO1_DATA_I,
SDIO1_DATA_O,
SDIO1_DATA_T,
SDIO1_LED,
SDIO1_CDN,
SDIO1_WP,
SDIO1_BUSPOW,
SDIO1_BUSVOLT,
SPI0_SCLK_I,
SPI0_SCLK_O,
SPI0_SCLK_T,
SPI0_MOSI_I,
SPI0_MOSI_O,
SPI0_MOSI_T,
SPI0_MISO_I,
SPI0_MISO_O,
SPI0_MISO_T,
SPI0_SS_I,
SPI0_SS_O,
SPI0_SS1_O,
SPI0_SS2_O,
SPI0_SS_T,
SPI1_SCLK_I,
SPI1_SCLK_O,
SPI1_SCLK_T,
SPI1_MOSI_I,
SPI1_MOSI_O,
SPI1_MOSI_T,
SPI1_MISO_I,
SPI1_MISO_O,
SPI1_MISO_T,
SPI1_SS_I,
SPI1_SS_O,
SPI1_SS1_O,
SPI1_SS2_O,
SPI1_SS_T,
UART0_DTRN,
UART0_RTSN,
UART0_TX,
UART0_CTSN,
UART0_DCDN,
UART0_DSRN,
UART0_RIN,
UART0_RX,
UART1_DTRN,
UART1_RTSN,
UART1_TX,
UART1_CTSN,
UART1_DCDN,
UART1_DSRN,
UART1_RIN,
UART1_RX,
TTC0_WAVE0_OUT,
TTC0_WAVE1_OUT,
TTC0_WAVE2_OUT,
TTC0_CLK0_IN,
TTC0_CLK1_IN,
TTC0_CLK2_IN,
TTC1_WAVE0_OUT,
TTC1_WAVE1_OUT,
TTC1_WAVE2_OUT,
TTC1_CLK0_IN,
TTC1_CLK1_IN,
TTC1_CLK2_IN,
WDT_CLK_IN,
WDT_RST_OUT,
TRACE_CLK,
TRACE_CTL,
TRACE_DATA,
USB0_PORT_INDCTL,
USB1_PORT_INDCTL,
USB0_VBUS_PWRSELECT,
USB1_VBUS_PWRSELECT,
USB0_VBUS_PWRFAULT,
USB1_VBUS_PWRFAULT,
SRAM_INTIN,
M_AXI_GP0_ARVALID,
M_AXI_GP0_AWVALID,
M_AXI_GP0_BREADY,
M_AXI_GP0_RREADY,
M_AXI_GP0_WLAST,
M_AXI_GP0_WVALID,
M_AXI_GP0_ARID,
M_AXI_GP0_AWID,
M_AXI_GP0_WID,
M_AXI_GP0_ARBURST,
M_AXI_GP0_ARLOCK,
M_AXI_GP0_ARSIZE,
M_AXI_GP0_AWBURST,
M_AXI_GP0_AWLOCK,
M_AXI_GP0_AWSIZE,
M_AXI_GP0_ARPROT,
M_AXI_GP0_AWPROT,
M_AXI_GP0_ARADDR,
M_AXI_GP0_AWADDR,
M_AXI_GP0_WDATA,
M_AXI_GP0_ARCACHE,
M_AXI_GP0_ARLEN,
M_AXI_GP0_ARQOS,
M_AXI_GP0_AWCACHE,
M_AXI_GP0_AWLEN,
M_AXI_GP0_AWQOS,
M_AXI_GP0_WSTRB,
M_AXI_GP0_ACLK,
M_AXI_GP0_ARREADY,
M_AXI_GP0_AWREADY,
M_AXI_GP0_BVALID,
M_AXI_GP0_RLAST,
M_AXI_GP0_RVALID,
M_AXI_GP0_WREADY,
M_AXI_GP0_BID,
M_AXI_GP0_RID,
M_AXI_GP0_BRESP,
M_AXI_GP0_RRESP,
M_AXI_GP0_RDATA,
M_AXI_GP1_ARVALID,
M_AXI_GP1_AWVALID,
M_AXI_GP1_BREADY,
M_AXI_GP1_RREADY,
M_AXI_GP1_WLAST,
M_AXI_GP1_WVALID,
M_AXI_GP1_ARID,
M_AXI_GP1_AWID,
M_AXI_GP1_WID,
M_AXI_GP1_ARBURST,
M_AXI_GP1_ARLOCK,
M_AXI_GP1_ARSIZE,
M_AXI_GP1_AWBURST,
M_AXI_GP1_AWLOCK,
M_AXI_GP1_AWSIZE,
M_AXI_GP1_ARPROT,
M_AXI_GP1_AWPROT,
M_AXI_GP1_ARADDR,
M_AXI_GP1_AWADDR,
M_AXI_GP1_WDATA,
M_AXI_GP1_ARCACHE,
M_AXI_GP1_ARLEN,
M_AXI_GP1_ARQOS,
M_AXI_GP1_AWCACHE,
M_AXI_GP1_AWLEN,
M_AXI_GP1_AWQOS,
M_AXI_GP1_WSTRB,
M_AXI_GP1_ACLK,
M_AXI_GP1_ARREADY,
M_AXI_GP1_AWREADY,
M_AXI_GP1_BVALID,
M_AXI_GP1_RLAST,
M_AXI_GP1_RVALID,
M_AXI_GP1_WREADY,
M_AXI_GP1_BID,
M_AXI_GP1_RID,
M_AXI_GP1_BRESP,
M_AXI_GP1_RRESP,
M_AXI_GP1_RDATA,
S_AXI_GP0_ARREADY,
S_AXI_GP0_AWREADY,
S_AXI_GP0_BVALID,
S_AXI_GP0_RLAST,
S_AXI_GP0_RVALID,
S_AXI_GP0_WREADY,
S_AXI_GP0_BRESP,
S_AXI_GP0_RRESP,
S_AXI_GP0_RDATA,
S_AXI_GP0_BID,
S_AXI_GP0_RID,
S_AXI_GP0_ACLK,
S_AXI_GP0_ARVALID,
S_AXI_GP0_AWVALID,
S_AXI_GP0_BREADY,
S_AXI_GP0_RREADY,
S_AXI_GP0_WLAST,
S_AXI_GP0_WVALID,
S_AXI_GP0_ARBURST,
S_AXI_GP0_ARLOCK,
S_AXI_GP0_ARSIZE,
S_AXI_GP0_AWBURST,
S_AXI_GP0_AWLOCK,
S_AXI_GP0_AWSIZE,
S_AXI_GP0_ARPROT,
S_AXI_GP0_AWPROT,
S_AXI_GP0_ARADDR,
S_AXI_GP0_AWADDR,
S_AXI_GP0_WDATA,
S_AXI_GP0_ARCACHE,
S_AXI_GP0_ARLEN,
S_AXI_GP0_ARQOS,
S_AXI_GP0_AWCACHE,
S_AXI_GP0_AWLEN,
S_AXI_GP0_AWQOS,
S_AXI_GP0_WSTRB,
S_AXI_GP0_ARID,
S_AXI_GP0_AWID,
S_AXI_GP0_WID,
S_AXI_GP1_ARREADY,
S_AXI_GP1_AWREADY,
S_AXI_GP1_BVALID,
S_AXI_GP1_RLAST,
S_AXI_GP1_RVALID,
S_AXI_GP1_WREADY,
S_AXI_GP1_BRESP,
S_AXI_GP1_RRESP,
S_AXI_GP1_RDATA,
S_AXI_GP1_BID,
S_AXI_GP1_RID,
S_AXI_GP1_ACLK,
S_AXI_GP1_ARVALID,
S_AXI_GP1_AWVALID,
S_AXI_GP1_BREADY,
S_AXI_GP1_RREADY,
S_AXI_GP1_WLAST,
S_AXI_GP1_WVALID,
S_AXI_GP1_ARBURST,
S_AXI_GP1_ARLOCK,
S_AXI_GP1_ARSIZE,
S_AXI_GP1_AWBURST,
S_AXI_GP1_AWLOCK,
S_AXI_GP1_AWSIZE,
S_AXI_GP1_ARPROT,
S_AXI_GP1_AWPROT,
S_AXI_GP1_ARADDR,
S_AXI_GP1_AWADDR,
S_AXI_GP1_WDATA,
S_AXI_GP1_ARCACHE,
S_AXI_GP1_ARLEN,
S_AXI_GP1_ARQOS,
S_AXI_GP1_AWCACHE,
S_AXI_GP1_AWLEN,
S_AXI_GP1_AWQOS,
S_AXI_GP1_WSTRB,
S_AXI_GP1_ARID,
S_AXI_GP1_AWID,
S_AXI_GP1_WID,
S_AXI_ACP_AWREADY,
S_AXI_ACP_ARREADY,
S_AXI_ACP_BVALID,
S_AXI_ACP_RLAST,
S_AXI_ACP_RVALID,
S_AXI_ACP_WREADY,
S_AXI_ACP_BRESP,
S_AXI_ACP_RRESP,
S_AXI_ACP_BID,
S_AXI_ACP_RID,
S_AXI_ACP_RDATA,
S_AXI_ACP_ACLK,
S_AXI_ACP_ARVALID,
S_AXI_ACP_AWVALID,
S_AXI_ACP_BREADY,
S_AXI_ACP_RREADY,
S_AXI_ACP_WLAST,
S_AXI_ACP_WVALID,
S_AXI_ACP_ARID,
S_AXI_ACP_ARPROT,
S_AXI_ACP_AWID,
S_AXI_ACP_AWPROT,
S_AXI_ACP_WID,
S_AXI_ACP_ARADDR,
S_AXI_ACP_AWADDR,
S_AXI_ACP_ARCACHE,
S_AXI_ACP_ARLEN,
S_AXI_ACP_ARQOS,
S_AXI_ACP_AWCACHE,
S_AXI_ACP_AWLEN,
S_AXI_ACP_AWQOS,
S_AXI_ACP_ARBURST,
S_AXI_ACP_ARLOCK,
S_AXI_ACP_ARSIZE,
S_AXI_ACP_AWBURST,
S_AXI_ACP_AWLOCK,
S_AXI_ACP_AWSIZE,
S_AXI_ACP_ARUSER,
S_AXI_ACP_AWUSER,
S_AXI_ACP_WDATA,
S_AXI_ACP_WSTRB,
S_AXI_HP0_ARREADY,
S_AXI_HP0_AWREADY,
S_AXI_HP0_BVALID,
S_AXI_HP0_RLAST,
S_AXI_HP0_RVALID,
S_AXI_HP0_WREADY,
S_AXI_HP0_BRESP,
S_AXI_HP0_RRESP,
S_AXI_HP0_BID,
S_AXI_HP0_RID,
S_AXI_HP0_RDATA,
S_AXI_HP0_RCOUNT,
S_AXI_HP0_WCOUNT,
S_AXI_HP0_RACOUNT,
S_AXI_HP0_WACOUNT,
S_AXI_HP0_ACLK,
S_AXI_HP0_ARVALID,
S_AXI_HP0_AWVALID,
S_AXI_HP0_BREADY,
S_AXI_HP0_RDISSUECAP1_EN,
S_AXI_HP0_RREADY,
S_AXI_HP0_WLAST,
S_AXI_HP0_WRISSUECAP1_EN,
S_AXI_HP0_WVALID,
S_AXI_HP0_ARBURST,
S_AXI_HP0_ARLOCK,
S_AXI_HP0_ARSIZE,
S_AXI_HP0_AWBURST,
S_AXI_HP0_AWLOCK,
S_AXI_HP0_AWSIZE,
S_AXI_HP0_ARPROT,
S_AXI_HP0_AWPROT,
S_AXI_HP0_ARADDR,
S_AXI_HP0_AWADDR,
S_AXI_HP0_ARCACHE,
S_AXI_HP0_ARLEN,
S_AXI_HP0_ARQOS,
S_AXI_HP0_AWCACHE,
S_AXI_HP0_AWLEN,
S_AXI_HP0_AWQOS,
S_AXI_HP0_ARID,
S_AXI_HP0_AWID,
S_AXI_HP0_WID,
S_AXI_HP0_WDATA,
S_AXI_HP0_WSTRB,
S_AXI_HP1_ARREADY,
S_AXI_HP1_AWREADY,
S_AXI_HP1_BVALID,
S_AXI_HP1_RLAST,
S_AXI_HP1_RVALID,
S_AXI_HP1_WREADY,
S_AXI_HP1_BRESP,
S_AXI_HP1_RRESP,
S_AXI_HP1_BID,
S_AXI_HP1_RID,
S_AXI_HP1_RDATA,
S_AXI_HP1_RCOUNT,
S_AXI_HP1_WCOUNT,
S_AXI_HP1_RACOUNT,
S_AXI_HP1_WACOUNT,
S_AXI_HP1_ACLK,
S_AXI_HP1_ARVALID,
S_AXI_HP1_AWVALID,
S_AXI_HP1_BREADY,
S_AXI_HP1_RDISSUECAP1_EN,
S_AXI_HP1_RREADY,
S_AXI_HP1_WLAST,
S_AXI_HP1_WRISSUECAP1_EN,
S_AXI_HP1_WVALID,
S_AXI_HP1_ARBURST,
S_AXI_HP1_ARLOCK,
S_AXI_HP1_ARSIZE,
S_AXI_HP1_AWBURST,
S_AXI_HP1_AWLOCK,
S_AXI_HP1_AWSIZE,
S_AXI_HP1_ARPROT,
S_AXI_HP1_AWPROT,
S_AXI_HP1_ARADDR,
S_AXI_HP1_AWADDR,
S_AXI_HP1_ARCACHE,
S_AXI_HP1_ARLEN,
S_AXI_HP1_ARQOS,
S_AXI_HP1_AWCACHE,
S_AXI_HP1_AWLEN,
S_AXI_HP1_AWQOS,
S_AXI_HP1_ARID,
S_AXI_HP1_AWID,
S_AXI_HP1_WID,
S_AXI_HP1_WDATA,
S_AXI_HP1_WSTRB,
S_AXI_HP2_ARREADY,
S_AXI_HP2_AWREADY,
S_AXI_HP2_BVALID,
S_AXI_HP2_RLAST,
S_AXI_HP2_RVALID,
S_AXI_HP2_WREADY,
S_AXI_HP2_BRESP,
S_AXI_HP2_RRESP,
S_AXI_HP2_BID,
S_AXI_HP2_RID,
S_AXI_HP2_RDATA,
S_AXI_HP2_RCOUNT,
S_AXI_HP2_WCOUNT,
S_AXI_HP2_RACOUNT,
S_AXI_HP2_WACOUNT,
S_AXI_HP2_ACLK,
S_AXI_HP2_ARVALID,
S_AXI_HP2_AWVALID,
S_AXI_HP2_BREADY,
S_AXI_HP2_RDISSUECAP1_EN,
S_AXI_HP2_RREADY,
S_AXI_HP2_WLAST,
S_AXI_HP2_WRISSUECAP1_EN,
S_AXI_HP2_WVALID,
S_AXI_HP2_ARBURST,
S_AXI_HP2_ARLOCK,
S_AXI_HP2_ARSIZE,
S_AXI_HP2_AWBURST,
S_AXI_HP2_AWLOCK,
S_AXI_HP2_AWSIZE,
S_AXI_HP2_ARPROT,
S_AXI_HP2_AWPROT,
S_AXI_HP2_ARADDR,
S_AXI_HP2_AWADDR,
S_AXI_HP2_ARCACHE,
S_AXI_HP2_ARLEN,
S_AXI_HP2_ARQOS,
S_AXI_HP2_AWCACHE,
S_AXI_HP2_AWLEN,
S_AXI_HP2_AWQOS,
S_AXI_HP2_ARID,
S_AXI_HP2_AWID,
S_AXI_HP2_WID,
S_AXI_HP2_WDATA,
S_AXI_HP2_WSTRB,
S_AXI_HP3_ARREADY,
S_AXI_HP3_AWREADY,
S_AXI_HP3_BVALID,
S_AXI_HP3_RLAST,
S_AXI_HP3_RVALID,
S_AXI_HP3_WREADY,
S_AXI_HP3_BRESP,
S_AXI_HP3_RRESP,
S_AXI_HP3_BID,
S_AXI_HP3_RID,
S_AXI_HP3_RDATA,
S_AXI_HP3_RCOUNT,
S_AXI_HP3_WCOUNT,
S_AXI_HP3_RACOUNT,
S_AXI_HP3_WACOUNT,
S_AXI_HP3_ACLK,
S_AXI_HP3_ARVALID,
S_AXI_HP3_AWVALID,
S_AXI_HP3_BREADY,
S_AXI_HP3_RDISSUECAP1_EN,
S_AXI_HP3_RREADY,
S_AXI_HP3_WLAST,
S_AXI_HP3_WRISSUECAP1_EN,
S_AXI_HP3_WVALID,
S_AXI_HP3_ARBURST,
S_AXI_HP3_ARLOCK,
S_AXI_HP3_ARSIZE,
S_AXI_HP3_AWBURST,
S_AXI_HP3_AWLOCK,
S_AXI_HP3_AWSIZE,
S_AXI_HP3_ARPROT,
S_AXI_HP3_AWPROT,
S_AXI_HP3_ARADDR,
S_AXI_HP3_AWADDR,
S_AXI_HP3_ARCACHE,
S_AXI_HP3_ARLEN,
S_AXI_HP3_ARQOS,
S_AXI_HP3_AWCACHE,
S_AXI_HP3_AWLEN,
S_AXI_HP3_AWQOS,
S_AXI_HP3_ARID,
S_AXI_HP3_AWID,
S_AXI_HP3_WID,
S_AXI_HP3_WDATA,
S_AXI_HP3_WSTRB,
DMA0_DATYPE,
DMA0_DAVALID,
DMA0_DRREADY,
DMA0_ACLK,
DMA0_DAREADY,
DMA0_DRLAST,
DMA0_DRVALID,
DMA0_DRTYPE,
DMA1_DATYPE,
DMA1_DAVALID,
DMA1_DRREADY,
DMA1_ACLK,
DMA1_DAREADY,
DMA1_DRLAST,
DMA1_DRVALID,
DMA1_DRTYPE,
DMA2_DATYPE,
DMA2_DAVALID,
DMA2_DRREADY,
DMA2_ACLK,
DMA2_DAREADY,
DMA2_DRLAST,
DMA2_DRVALID,
DMA3_DRVALID,
DMA3_DATYPE,
DMA3_DAVALID,
DMA3_DRREADY,
DMA3_ACLK,
DMA3_DAREADY,
DMA3_DRLAST,
DMA2_DRTYPE,
DMA3_DRTYPE,
FTMD_TRACEIN_DATA,
FTMD_TRACEIN_VALID,
FTMD_TRACEIN_CLK,
FTMD_TRACEIN_ATID,
FTMT_F2P_TRIG,
FTMT_F2P_TRIGACK,
FTMT_F2P_DEBUG,
FTMT_P2F_TRIGACK,
FTMT_P2F_TRIG,
FTMT_P2F_DEBUG,
FCLK_CLK3,
FCLK_CLK2,
FCLK_CLK1,
FCLK_CLK0,
FCLK_CLKTRIG3_N,
FCLK_CLKTRIG2_N,
FCLK_CLKTRIG1_N,
FCLK_CLKTRIG0_N,
FCLK_RESET3_N,
FCLK_RESET2_N,
FCLK_RESET1_N,
FCLK_RESET0_N,
FPGA_IDLE_N,
DDR_ARB,
IRQ_F2P,
Core0_nFIQ,
Core0_nIRQ,
Core1_nFIQ,
Core1_nIRQ,
EVENT_EVENTO,
EVENT_STANDBYWFE,
EVENT_STANDBYWFI,
EVENT_EVENTI,
MIO,
DDR_Clk,
DDR_Clk_n,
DDR_CKE,
DDR_CS_n,
DDR_RAS_n,
DDR_CAS_n,
DDR_WEB,
DDR_BankAddr,
DDR_Addr,
DDR_ODT,
DDR_DRSTB,
DDR_DQ,
DDR_DM,
DDR_DQS,
DDR_DQS_n,
DDR_VRN,
DDR_VRP,
PS_SRSTB,
PS_CLK,
PS_PORB,
IRQ_P2F_DMAC_ABORT,
IRQ_P2F_DMAC0,
IRQ_P2F_DMAC1,
IRQ_P2F_DMAC2,
IRQ_P2F_DMAC3,
IRQ_P2F_DMAC4,
IRQ_P2F_DMAC5,
IRQ_P2F_DMAC6,
IRQ_P2F_DMAC7,
IRQ_P2F_SMC,
IRQ_P2F_QSPI,
IRQ_P2F_CTI,
IRQ_P2F_GPIO,
IRQ_P2F_USB0,
IRQ_P2F_ENET0,
IRQ_P2F_ENET_WAKE0,
IRQ_P2F_SDIO0,
IRQ_P2F_I2C0,
IRQ_P2F_SPI0,
IRQ_P2F_UART0,
IRQ_P2F_CAN0,
IRQ_P2F_USB1,
IRQ_P2F_ENET1,
IRQ_P2F_ENET_WAKE1,
IRQ_P2F_SDIO1,
IRQ_P2F_I2C1,
IRQ_P2F_SPI1,
IRQ_P2F_UART1,
IRQ_P2F_CAN1
);
/* parameters for gen_clk */
parameter C_FCLK_CLK0_FREQ = 50;
parameter C_FCLK_CLK1_FREQ = 50;
parameter C_FCLK_CLK3_FREQ = 50;
parameter C_FCLK_CLK2_FREQ = 50;
parameter C_HIGH_OCM_EN = 0;
/* parameters for HP ports */
parameter C_USE_S_AXI_HP0 = 0;
parameter C_USE_S_AXI_HP1 = 0;
parameter C_USE_S_AXI_HP2 = 0;
parameter C_USE_S_AXI_HP3 = 0;
parameter C_S_AXI_HP0_DATA_WIDTH = 32;
parameter C_S_AXI_HP1_DATA_WIDTH = 32;
parameter C_S_AXI_HP2_DATA_WIDTH = 32;
parameter C_S_AXI_HP3_DATA_WIDTH = 32;
parameter C_M_AXI_GP0_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP1_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP0_ENABLE_STATIC_REMAP = 0;
parameter C_M_AXI_GP1_ENABLE_STATIC_REMAP = 0;
/* Do we need these
parameter C_S_AXI_HP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP2_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP3_ENABLE_HIGHOCM = 0; */
parameter C_S_AXI_HP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP2_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP3_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP2_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP3_HIGHADDR = 32'hFFFF_FFFF;
/* parameters for GP and ACP ports */
parameter C_USE_M_AXI_GP0 = 0;
parameter C_USE_M_AXI_GP1 = 0;
parameter C_USE_S_AXI_GP0 = 1;
parameter C_USE_S_AXI_GP1 = 1;
/* Do we need this?
parameter C_M_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_M_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_ACP_ENABLE_HIGHOCM = 0;*/
parameter C_S_AXI_GP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_GP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_USE_S_AXI_ACP = 1;
parameter C_S_AXI_ACP_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_ACP_HIGHADDR = 32'hFFFF_FFFF;
`include "processing_system7_bfm_v2_0_5_local_params.v"
output CAN0_PHY_TX;
input CAN0_PHY_RX;
output CAN1_PHY_TX;
input CAN1_PHY_RX;
output ENET0_GMII_TX_EN;
output ENET0_GMII_TX_ER;
output ENET0_MDIO_MDC;
output ENET0_MDIO_O;
output ENET0_MDIO_T;
output ENET0_PTP_DELAY_REQ_RX;
output ENET0_PTP_DELAY_REQ_TX;
output ENET0_PTP_PDELAY_REQ_RX;
output ENET0_PTP_PDELAY_REQ_TX;
output ENET0_PTP_PDELAY_RESP_RX;
output ENET0_PTP_PDELAY_RESP_TX;
output ENET0_PTP_SYNC_FRAME_RX;
output ENET0_PTP_SYNC_FRAME_TX;
output ENET0_SOF_RX;
output ENET0_SOF_TX;
output [7:0] ENET0_GMII_TXD;
input ENET0_GMII_COL;
input ENET0_GMII_CRS;
input ENET0_EXT_INTIN;
input ENET0_GMII_RX_CLK;
input ENET0_GMII_RX_DV;
input ENET0_GMII_RX_ER;
input ENET0_GMII_TX_CLK;
input ENET0_MDIO_I;
input [7:0] ENET0_GMII_RXD;
output ENET1_GMII_TX_EN;
output ENET1_GMII_TX_ER;
output ENET1_MDIO_MDC;
output ENET1_MDIO_O;
output ENET1_MDIO_T;
output ENET1_PTP_DELAY_REQ_RX;
output ENET1_PTP_DELAY_REQ_TX;
output ENET1_PTP_PDELAY_REQ_RX;
output ENET1_PTP_PDELAY_REQ_TX;
output ENET1_PTP_PDELAY_RESP_RX;
output ENET1_PTP_PDELAY_RESP_TX;
output ENET1_PTP_SYNC_FRAME_RX;
output ENET1_PTP_SYNC_FRAME_TX;
output ENET1_SOF_RX;
output ENET1_SOF_TX;
output [7:0] ENET1_GMII_TXD;
input ENET1_GMII_COL;
input ENET1_GMII_CRS;
input ENET1_EXT_INTIN;
input ENET1_GMII_RX_CLK;
input ENET1_GMII_RX_DV;
input ENET1_GMII_RX_ER;
input ENET1_GMII_TX_CLK;
input ENET1_MDIO_I;
input [7:0] ENET1_GMII_RXD;
input [63:0] GPIO_I;
output [63:0] GPIO_O;
output [63:0] GPIO_T;
input I2C0_SDA_I;
output I2C0_SDA_O;
output I2C0_SDA_T;
input I2C0_SCL_I;
output I2C0_SCL_O;
output I2C0_SCL_T;
input I2C1_SDA_I;
output I2C1_SDA_O;
output I2C1_SDA_T;
input I2C1_SCL_I;
output I2C1_SCL_O;
output I2C1_SCL_T;
input PJTAG_TCK;
input PJTAG_TMS;
input PJTAG_TD_I;
output PJTAG_TD_T;
output PJTAG_TD_O;
output SDIO0_CLK;
input SDIO0_CLK_FB;
output SDIO0_CMD_O;
input SDIO0_CMD_I;
output SDIO0_CMD_T;
input [3:0] SDIO0_DATA_I;
output [3:0] SDIO0_DATA_O;
output [3:0] SDIO0_DATA_T;
output SDIO0_LED;
input SDIO0_CDN;
input SDIO0_WP;
output SDIO0_BUSPOW;
output [2:0] SDIO0_BUSVOLT;
output SDIO1_CLK;
input SDIO1_CLK_FB;
output SDIO1_CMD_O;
input SDIO1_CMD_I;
output SDIO1_CMD_T;
input [3:0] SDIO1_DATA_I;
output [3:0] SDIO1_DATA_O;
output [3:0] SDIO1_DATA_T;
output SDIO1_LED;
input SDIO1_CDN;
input SDIO1_WP;
output SDIO1_BUSPOW;
output [2:0] SDIO1_BUSVOLT;
input SPI0_SCLK_I;
output SPI0_SCLK_O;
output SPI0_SCLK_T;
input SPI0_MOSI_I;
output SPI0_MOSI_O;
output SPI0_MOSI_T;
input SPI0_MISO_I;
output SPI0_MISO_O;
output SPI0_MISO_T;
input SPI0_SS_I;
output SPI0_SS_O;
output SPI0_SS1_O;
output SPI0_SS2_O;
output SPI0_SS_T;
input SPI1_SCLK_I;
output SPI1_SCLK_O;
output SPI1_SCLK_T;
input SPI1_MOSI_I;
output SPI1_MOSI_O;
output SPI1_MOSI_T;
input SPI1_MISO_I;
output SPI1_MISO_O;
output SPI1_MISO_T;
input SPI1_SS_I;
output SPI1_SS_O;
output SPI1_SS1_O;
output SPI1_SS2_O;
output SPI1_SS_T;
output UART0_DTRN;
output UART0_RTSN;
output UART0_TX;
input UART0_CTSN;
input UART0_DCDN;
input UART0_DSRN;
input UART0_RIN;
input UART0_RX;
output UART1_DTRN;
output UART1_RTSN;
output UART1_TX;
input UART1_CTSN;
input UART1_DCDN;
input UART1_DSRN;
input UART1_RIN;
input UART1_RX;
output TTC0_WAVE0_OUT;
output TTC0_WAVE1_OUT;
output TTC0_WAVE2_OUT;
input TTC0_CLK0_IN;
input TTC0_CLK1_IN;
input TTC0_CLK2_IN;
output TTC1_WAVE0_OUT;
output TTC1_WAVE1_OUT;
output TTC1_WAVE2_OUT;
input TTC1_CLK0_IN;
input TTC1_CLK1_IN;
input TTC1_CLK2_IN;
input WDT_CLK_IN;
output WDT_RST_OUT;
input TRACE_CLK;
output TRACE_CTL;
output [31:0] TRACE_DATA;
output [1:0] USB0_PORT_INDCTL;
output [1:0] USB1_PORT_INDCTL;
output USB0_VBUS_PWRSELECT;
output USB1_VBUS_PWRSELECT;
input USB0_VBUS_PWRFAULT;
input USB1_VBUS_PWRFAULT;
input SRAM_INTIN;
output M_AXI_GP0_ARVALID;
output M_AXI_GP0_AWVALID;
output M_AXI_GP0_BREADY;
output M_AXI_GP0_RREADY;
output M_AXI_GP0_WLAST;
output M_AXI_GP0_WVALID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_ARID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_AWID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_WID;
output [1:0] M_AXI_GP0_ARBURST;
output [1:0] M_AXI_GP0_ARLOCK;
output [2:0] M_AXI_GP0_ARSIZE;
output [1:0] M_AXI_GP0_AWBURST;
output [1:0] M_AXI_GP0_AWLOCK;
output [2:0] M_AXI_GP0_AWSIZE;
output [2:0] M_AXI_GP0_ARPROT;
output [2:0] M_AXI_GP0_AWPROT;
output [31:0] M_AXI_GP0_ARADDR;
output [31:0] M_AXI_GP0_AWADDR;
output [31:0] M_AXI_GP0_WDATA;
output [3:0] M_AXI_GP0_ARCACHE;
output [3:0] M_AXI_GP0_ARLEN;
output [3:0] M_AXI_GP0_ARQOS;
output [3:0] M_AXI_GP0_AWCACHE;
output [3:0] M_AXI_GP0_AWLEN;
output [3:0] M_AXI_GP0_AWQOS;
output [3:0] M_AXI_GP0_WSTRB;
input M_AXI_GP0_ACLK;
input M_AXI_GP0_ARREADY;
input M_AXI_GP0_AWREADY;
input M_AXI_GP0_BVALID;
input M_AXI_GP0_RLAST;
input M_AXI_GP0_RVALID;
input M_AXI_GP0_WREADY;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_BID;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_RID;
input [1:0] M_AXI_GP0_BRESP;
input [1:0] M_AXI_GP0_RRESP;
input [31:0] M_AXI_GP0_RDATA;
output M_AXI_GP1_ARVALID;
output M_AXI_GP1_AWVALID;
output M_AXI_GP1_BREADY;
output M_AXI_GP1_RREADY;
output M_AXI_GP1_WLAST;
output M_AXI_GP1_WVALID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_ARID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_AWID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_WID;
output [1:0] M_AXI_GP1_ARBURST;
output [1:0] M_AXI_GP1_ARLOCK;
output [2:0] M_AXI_GP1_ARSIZE;
output [1:0] M_AXI_GP1_AWBURST;
output [1:0] M_AXI_GP1_AWLOCK;
output [2:0] M_AXI_GP1_AWSIZE;
output [2:0] M_AXI_GP1_ARPROT;
output [2:0] M_AXI_GP1_AWPROT;
output [31:0] M_AXI_GP1_ARADDR;
output [31:0] M_AXI_GP1_AWADDR;
output [31:0] M_AXI_GP1_WDATA;
output [3:0] M_AXI_GP1_ARCACHE;
output [3:0] M_AXI_GP1_ARLEN;
output [3:0] M_AXI_GP1_ARQOS;
output [3:0] M_AXI_GP1_AWCACHE;
output [3:0] M_AXI_GP1_AWLEN;
output [3:0] M_AXI_GP1_AWQOS;
output [3:0] M_AXI_GP1_WSTRB;
input M_AXI_GP1_ACLK;
input M_AXI_GP1_ARREADY;
input M_AXI_GP1_AWREADY;
input M_AXI_GP1_BVALID;
input M_AXI_GP1_RLAST;
input M_AXI_GP1_RVALID;
input M_AXI_GP1_WREADY;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_BID;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_RID;
input [1:0] M_AXI_GP1_BRESP;
input [1:0] M_AXI_GP1_RRESP;
input [31:0] M_AXI_GP1_RDATA;
output S_AXI_GP0_ARREADY;
output S_AXI_GP0_AWREADY;
output S_AXI_GP0_BVALID;
output S_AXI_GP0_RLAST;
output S_AXI_GP0_RVALID;
output S_AXI_GP0_WREADY;
output [1:0] S_AXI_GP0_BRESP;
output [1:0] S_AXI_GP0_RRESP;
output [31:0] S_AXI_GP0_RDATA;
output [5:0] S_AXI_GP0_BID;
output [5:0] S_AXI_GP0_RID;
input S_AXI_GP0_ACLK;
input S_AXI_GP0_ARVALID;
input S_AXI_GP0_AWVALID;
input S_AXI_GP0_BREADY;
input S_AXI_GP0_RREADY;
input S_AXI_GP0_WLAST;
input S_AXI_GP0_WVALID;
input [1:0] S_AXI_GP0_ARBURST;
input [1:0] S_AXI_GP0_ARLOCK;
input [2:0] S_AXI_GP0_ARSIZE;
input [1:0] S_AXI_GP0_AWBURST;
input [1:0] S_AXI_GP0_AWLOCK;
input [2:0] S_AXI_GP0_AWSIZE;
input [2:0] S_AXI_GP0_ARPROT;
input [2:0] S_AXI_GP0_AWPROT;
input [31:0] S_AXI_GP0_ARADDR;
input [31:0] S_AXI_GP0_AWADDR;
input [31:0] S_AXI_GP0_WDATA;
input [3:0] S_AXI_GP0_ARCACHE;
input [3:0] S_AXI_GP0_ARLEN;
input [3:0] S_AXI_GP0_ARQOS;
input [3:0] S_AXI_GP0_AWCACHE;
input [3:0] S_AXI_GP0_AWLEN;
input [3:0] S_AXI_GP0_AWQOS;
input [3:0] S_AXI_GP0_WSTRB;
input [5:0] S_AXI_GP0_ARID;
input [5:0] S_AXI_GP0_AWID;
input [5:0] S_AXI_GP0_WID;
output S_AXI_GP1_ARREADY;
output S_AXI_GP1_AWREADY;
output S_AXI_GP1_BVALID;
output S_AXI_GP1_RLAST;
output S_AXI_GP1_RVALID;
output S_AXI_GP1_WREADY;
output [1:0] S_AXI_GP1_BRESP;
output [1:0] S_AXI_GP1_RRESP;
output [31:0] S_AXI_GP1_RDATA;
output [5:0] S_AXI_GP1_BID;
output [5:0] S_AXI_GP1_RID;
input S_AXI_GP1_ACLK;
input S_AXI_GP1_ARVALID;
input S_AXI_GP1_AWVALID;
input S_AXI_GP1_BREADY;
input S_AXI_GP1_RREADY;
input S_AXI_GP1_WLAST;
input S_AXI_GP1_WVALID;
input [1:0] S_AXI_GP1_ARBURST;
input [1:0] S_AXI_GP1_ARLOCK;
input [2:0] S_AXI_GP1_ARSIZE;
input [1:0] S_AXI_GP1_AWBURST;
input [1:0] S_AXI_GP1_AWLOCK;
input [2:0] S_AXI_GP1_AWSIZE;
input [2:0] S_AXI_GP1_ARPROT;
input [2:0] S_AXI_GP1_AWPROT;
input [31:0] S_AXI_GP1_ARADDR;
input [31:0] S_AXI_GP1_AWADDR;
input [31:0] S_AXI_GP1_WDATA;
input [3:0] S_AXI_GP1_ARCACHE;
input [3:0] S_AXI_GP1_ARLEN;
input [3:0] S_AXI_GP1_ARQOS;
input [3:0] S_AXI_GP1_AWCACHE;
input [3:0] S_AXI_GP1_AWLEN;
input [3:0] S_AXI_GP1_AWQOS;
input [3:0] S_AXI_GP1_WSTRB;
input [5:0] S_AXI_GP1_ARID;
input [5:0] S_AXI_GP1_AWID;
input [5:0] S_AXI_GP1_WID;
output S_AXI_ACP_AWREADY;
output S_AXI_ACP_ARREADY;
output S_AXI_ACP_BVALID;
output S_AXI_ACP_RLAST;
output S_AXI_ACP_RVALID;
output S_AXI_ACP_WREADY;
output [1:0] S_AXI_ACP_BRESP;
output [1:0] S_AXI_ACP_RRESP;
output [2:0] S_AXI_ACP_BID;
output [2:0] S_AXI_ACP_RID;
output [63:0] S_AXI_ACP_RDATA;
input S_AXI_ACP_ACLK;
input S_AXI_ACP_ARVALID;
input S_AXI_ACP_AWVALID;
input S_AXI_ACP_BREADY;
input S_AXI_ACP_RREADY;
input S_AXI_ACP_WLAST;
input S_AXI_ACP_WVALID;
input [2:0] S_AXI_ACP_ARID;
input [2:0] S_AXI_ACP_ARPROT;
input [2:0] S_AXI_ACP_AWID;
input [2:0] S_AXI_ACP_AWPROT;
input [2:0] S_AXI_ACP_WID;
input [31:0] S_AXI_ACP_ARADDR;
input [31:0] S_AXI_ACP_AWADDR;
input [3:0] S_AXI_ACP_ARCACHE;
input [3:0] S_AXI_ACP_ARLEN;
input [3:0] S_AXI_ACP_ARQOS;
input [3:0] S_AXI_ACP_AWCACHE;
input [3:0] S_AXI_ACP_AWLEN;
input [3:0] S_AXI_ACP_AWQOS;
input [1:0] S_AXI_ACP_ARBURST;
input [1:0] S_AXI_ACP_ARLOCK;
input [2:0] S_AXI_ACP_ARSIZE;
input [1:0] S_AXI_ACP_AWBURST;
input [1:0] S_AXI_ACP_AWLOCK;
input [2:0] S_AXI_ACP_AWSIZE;
input [4:0] S_AXI_ACP_ARUSER;
input [4:0] S_AXI_ACP_AWUSER;
input [63:0] S_AXI_ACP_WDATA;
input [7:0] S_AXI_ACP_WSTRB;
output S_AXI_HP0_ARREADY;
output S_AXI_HP0_AWREADY;
output S_AXI_HP0_BVALID;
output S_AXI_HP0_RLAST;
output S_AXI_HP0_RVALID;
output S_AXI_HP0_WREADY;
output [1:0] S_AXI_HP0_BRESP;
output [1:0] S_AXI_HP0_RRESP;
output [5:0] S_AXI_HP0_BID;
output [5:0] S_AXI_HP0_RID;
output [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_RDATA;
output [7:0] S_AXI_HP0_RCOUNT;
output [7:0] S_AXI_HP0_WCOUNT;
output [2:0] S_AXI_HP0_RACOUNT;
output [5:0] S_AXI_HP0_WACOUNT;
input S_AXI_HP0_ACLK;
input S_AXI_HP0_ARVALID;
input S_AXI_HP0_AWVALID;
input S_AXI_HP0_BREADY;
input S_AXI_HP0_RDISSUECAP1_EN;
input S_AXI_HP0_RREADY;
input S_AXI_HP0_WLAST;
input S_AXI_HP0_WRISSUECAP1_EN;
input S_AXI_HP0_WVALID;
input [1:0] S_AXI_HP0_ARBURST;
input [1:0] S_AXI_HP0_ARLOCK;
input [2:0] S_AXI_HP0_ARSIZE;
input [1:0] S_AXI_HP0_AWBURST;
input [1:0] S_AXI_HP0_AWLOCK;
input [2:0] S_AXI_HP0_AWSIZE;
input [2:0] S_AXI_HP0_ARPROT;
input [2:0] S_AXI_HP0_AWPROT;
input [31:0] S_AXI_HP0_ARADDR;
input [31:0] S_AXI_HP0_AWADDR;
input [3:0] S_AXI_HP0_ARCACHE;
input [3:0] S_AXI_HP0_ARLEN;
input [3:0] S_AXI_HP0_ARQOS;
input [3:0] S_AXI_HP0_AWCACHE;
input [3:0] S_AXI_HP0_AWLEN;
input [3:0] S_AXI_HP0_AWQOS;
input [5:0] S_AXI_HP0_ARID;
input [5:0] S_AXI_HP0_AWID;
input [5:0] S_AXI_HP0_WID;
input [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_WDATA;
input [C_S_AXI_HP0_DATA_WIDTH/8-1:0] S_AXI_HP0_WSTRB;
output S_AXI_HP1_ARREADY;
output S_AXI_HP1_AWREADY;
output S_AXI_HP1_BVALID;
output S_AXI_HP1_RLAST;
output S_AXI_HP1_RVALID;
output S_AXI_HP1_WREADY;
output [1:0] S_AXI_HP1_BRESP;
output [1:0] S_AXI_HP1_RRESP;
output [5:0] S_AXI_HP1_BID;
output [5:0] S_AXI_HP1_RID;
output [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_RDATA;
output [7:0] S_AXI_HP1_RCOUNT;
output [7:0] S_AXI_HP1_WCOUNT;
output [2:0] S_AXI_HP1_RACOUNT;
output [5:0] S_AXI_HP1_WACOUNT;
input S_AXI_HP1_ACLK;
input S_AXI_HP1_ARVALID;
input S_AXI_HP1_AWVALID;
input S_AXI_HP1_BREADY;
input S_AXI_HP1_RDISSUECAP1_EN;
input S_AXI_HP1_RREADY;
input S_AXI_HP1_WLAST;
input S_AXI_HP1_WRISSUECAP1_EN;
input S_AXI_HP1_WVALID;
input [1:0] S_AXI_HP1_ARBURST;
input [1:0] S_AXI_HP1_ARLOCK;
input [2:0] S_AXI_HP1_ARSIZE;
input [1:0] S_AXI_HP1_AWBURST;
input [1:0] S_AXI_HP1_AWLOCK;
input [2:0] S_AXI_HP1_AWSIZE;
input [2:0] S_AXI_HP1_ARPROT;
input [2:0] S_AXI_HP1_AWPROT;
input [31:0] S_AXI_HP1_ARADDR;
input [31:0] S_AXI_HP1_AWADDR;
input [3:0] S_AXI_HP1_ARCACHE;
input [3:0] S_AXI_HP1_ARLEN;
input [3:0] S_AXI_HP1_ARQOS;
input [3:0] S_AXI_HP1_AWCACHE;
input [3:0] S_AXI_HP1_AWLEN;
input [3:0] S_AXI_HP1_AWQOS;
input [5:0] S_AXI_HP1_ARID;
input [5:0] S_AXI_HP1_AWID;
input [5:0] S_AXI_HP1_WID;
input [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_WDATA;
input [C_S_AXI_HP1_DATA_WIDTH/8-1:0] S_AXI_HP1_WSTRB;
output S_AXI_HP2_ARREADY;
output S_AXI_HP2_AWREADY;
output S_AXI_HP2_BVALID;
output S_AXI_HP2_RLAST;
output S_AXI_HP2_RVALID;
output S_AXI_HP2_WREADY;
output [1:0] S_AXI_HP2_BRESP;
output [1:0] S_AXI_HP2_RRESP;
output [5:0] S_AXI_HP2_BID;
output [5:0] S_AXI_HP2_RID;
output [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_RDATA;
output [7:0] S_AXI_HP2_RCOUNT;
output [7:0] S_AXI_HP2_WCOUNT;
output [2:0] S_AXI_HP2_RACOUNT;
output [5:0] S_AXI_HP2_WACOUNT;
input S_AXI_HP2_ACLK;
input S_AXI_HP2_ARVALID;
input S_AXI_HP2_AWVALID;
input S_AXI_HP2_BREADY;
input S_AXI_HP2_RDISSUECAP1_EN;
input S_AXI_HP2_RREADY;
input S_AXI_HP2_WLAST;
input S_AXI_HP2_WRISSUECAP1_EN;
input S_AXI_HP2_WVALID;
input [1:0] S_AXI_HP2_ARBURST;
input [1:0] S_AXI_HP2_ARLOCK;
input [2:0] S_AXI_HP2_ARSIZE;
input [1:0] S_AXI_HP2_AWBURST;
input [1:0] S_AXI_HP2_AWLOCK;
input [2:0] S_AXI_HP2_AWSIZE;
input [2:0] S_AXI_HP2_ARPROT;
input [2:0] S_AXI_HP2_AWPROT;
input [31:0] S_AXI_HP2_ARADDR;
input [31:0] S_AXI_HP2_AWADDR;
input [3:0] S_AXI_HP2_ARCACHE;
input [3:0] S_AXI_HP2_ARLEN;
input [3:0] S_AXI_HP2_ARQOS;
input [3:0] S_AXI_HP2_AWCACHE;
input [3:0] S_AXI_HP2_AWLEN;
input [3:0] S_AXI_HP2_AWQOS;
input [5:0] S_AXI_HP2_ARID;
input [5:0] S_AXI_HP2_AWID;
input [5:0] S_AXI_HP2_WID;
input [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_WDATA;
input [C_S_AXI_HP2_DATA_WIDTH/8-1:0] S_AXI_HP2_WSTRB;
output S_AXI_HP3_ARREADY;
output S_AXI_HP3_AWREADY;
output S_AXI_HP3_BVALID;
output S_AXI_HP3_RLAST;
output S_AXI_HP3_RVALID;
output S_AXI_HP3_WREADY;
output [1:0] S_AXI_HP3_BRESP;
output [1:0] S_AXI_HP3_RRESP;
output [5:0] S_AXI_HP3_BID;
output [5:0] S_AXI_HP3_RID;
output [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_RDATA;
output [7:0] S_AXI_HP3_RCOUNT;
output [7:0] S_AXI_HP3_WCOUNT;
output [2:0] S_AXI_HP3_RACOUNT;
output [5:0] S_AXI_HP3_WACOUNT;
input S_AXI_HP3_ACLK;
input S_AXI_HP3_ARVALID;
input S_AXI_HP3_AWVALID;
input S_AXI_HP3_BREADY;
input S_AXI_HP3_RDISSUECAP1_EN;
input S_AXI_HP3_RREADY;
input S_AXI_HP3_WLAST;
input S_AXI_HP3_WRISSUECAP1_EN;
input S_AXI_HP3_WVALID;
input [1:0] S_AXI_HP3_ARBURST;
input [1:0] S_AXI_HP3_ARLOCK;
input [2:0] S_AXI_HP3_ARSIZE;
input [1:0] S_AXI_HP3_AWBURST;
input [1:0] S_AXI_HP3_AWLOCK;
input [2:0] S_AXI_HP3_AWSIZE;
input [2:0] S_AXI_HP3_ARPROT;
input [2:0] S_AXI_HP3_AWPROT;
input [31:0] S_AXI_HP3_ARADDR;
input [31:0] S_AXI_HP3_AWADDR;
input [3:0] S_AXI_HP3_ARCACHE;
input [3:0] S_AXI_HP3_ARLEN;
input [3:0] S_AXI_HP3_ARQOS;
input [3:0] S_AXI_HP3_AWCACHE;
input [3:0] S_AXI_HP3_AWLEN;
input [3:0] S_AXI_HP3_AWQOS;
input [5:0] S_AXI_HP3_ARID;
input [5:0] S_AXI_HP3_AWID;
input [5:0] S_AXI_HP3_WID;
input [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_WDATA;
input [C_S_AXI_HP3_DATA_WIDTH/8-1:0] S_AXI_HP3_WSTRB;
output [1:0] DMA0_DATYPE;
output DMA0_DAVALID;
output DMA0_DRREADY;
input DMA0_ACLK;
input DMA0_DAREADY;
input DMA0_DRLAST;
input DMA0_DRVALID;
input [1:0] DMA0_DRTYPE;
output [1:0] DMA1_DATYPE;
output DMA1_DAVALID;
output DMA1_DRREADY;
input DMA1_ACLK;
input DMA1_DAREADY;
input DMA1_DRLAST;
input DMA1_DRVALID;
input [1:0] DMA1_DRTYPE;
output [1:0] DMA2_DATYPE;
output DMA2_DAVALID;
output DMA2_DRREADY;
input DMA2_ACLK;
input DMA2_DAREADY;
input DMA2_DRLAST;
input DMA2_DRVALID;
input DMA3_DRVALID;
output [1:0] DMA3_DATYPE;
output DMA3_DAVALID;
output DMA3_DRREADY;
input DMA3_ACLK;
input DMA3_DAREADY;
input DMA3_DRLAST;
input [1:0] DMA2_DRTYPE;
input [1:0] DMA3_DRTYPE;
input [31:0] FTMD_TRACEIN_DATA;
input FTMD_TRACEIN_VALID;
input FTMD_TRACEIN_CLK;
input [3:0] FTMD_TRACEIN_ATID;
input [3:0] FTMT_F2P_TRIG;
output [3:0] FTMT_F2P_TRIGACK;
input [31:0] FTMT_F2P_DEBUG;
input [3:0] FTMT_P2F_TRIGACK;
output [3:0] FTMT_P2F_TRIG;
output [31:0] FTMT_P2F_DEBUG;
output FCLK_CLK3;
output FCLK_CLK2;
output FCLK_CLK1;
output FCLK_CLK0;
input FCLK_CLKTRIG3_N;
input FCLK_CLKTRIG2_N;
input FCLK_CLKTRIG1_N;
input FCLK_CLKTRIG0_N;
output FCLK_RESET3_N;
output FCLK_RESET2_N;
output FCLK_RESET1_N;
output FCLK_RESET0_N;
input FPGA_IDLE_N;
input [3:0] DDR_ARB;
input [irq_width-1:0] IRQ_F2P;
input Core0_nFIQ;
input Core0_nIRQ;
input Core1_nFIQ;
input Core1_nIRQ;
output EVENT_EVENTO;
output [1:0] EVENT_STANDBYWFE;
output [1:0] EVENT_STANDBYWFI;
input EVENT_EVENTI;
inout [53:0] MIO;
inout DDR_Clk;
inout DDR_Clk_n;
inout DDR_CKE;
inout DDR_CS_n;
inout DDR_RAS_n;
inout DDR_CAS_n;
output DDR_WEB;
inout [2:0] DDR_BankAddr;
inout [14:0] DDR_Addr;
inout DDR_ODT;
inout DDR_DRSTB;
inout [31:0] DDR_DQ;
inout [3:0] DDR_DM;
inout [3:0] DDR_DQS;
inout [3:0] DDR_DQS_n;
inout DDR_VRN;
inout DDR_VRP;
/* Reset Input & Clock Input */
input PS_SRSTB;
input PS_CLK;
input PS_PORB;
output IRQ_P2F_DMAC_ABORT;
output IRQ_P2F_DMAC0;
output IRQ_P2F_DMAC1;
output IRQ_P2F_DMAC2;
output IRQ_P2F_DMAC3;
output IRQ_P2F_DMAC4;
output IRQ_P2F_DMAC5;
output IRQ_P2F_DMAC6;
output IRQ_P2F_DMAC7;
output IRQ_P2F_SMC;
output IRQ_P2F_QSPI;
output IRQ_P2F_CTI;
output IRQ_P2F_GPIO;
output IRQ_P2F_USB0;
output IRQ_P2F_ENET0;
output IRQ_P2F_ENET_WAKE0;
output IRQ_P2F_SDIO0;
output IRQ_P2F_I2C0;
output IRQ_P2F_SPI0;
output IRQ_P2F_UART0;
output IRQ_P2F_CAN0;
output IRQ_P2F_USB1;
output IRQ_P2F_ENET1;
output IRQ_P2F_ENET_WAKE1;
output IRQ_P2F_SDIO1;
output IRQ_P2F_I2C1;
output IRQ_P2F_SPI1;
output IRQ_P2F_UART1;
output IRQ_P2F_CAN1;
/* Internal wires/nets used for connectivity */
wire net_rstn;
wire net_sw_clk;
wire net_ocm_clk;
wire net_arbiter_clk;
wire net_axi_mgp0_rstn;
wire net_axi_mgp1_rstn;
wire net_axi_gp0_rstn;
wire net_axi_gp1_rstn;
wire net_axi_hp0_rstn;
wire net_axi_hp1_rstn;
wire net_axi_hp2_rstn;
wire net_axi_hp3_rstn;
wire net_axi_acp_rstn;
wire [4:0] net_axi_acp_awuser;
wire [4:0] net_axi_acp_aruser;
/* Dummy */
assign net_axi_acp_awuser = S_AXI_ACP_AWUSER;
assign net_axi_acp_aruser = S_AXI_ACP_ARUSER;
/* Global variables */
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1;
/* local variable acting as semaphore for wait_mem_update and wait_reg_update task */
reg mem_update_key = 1;
reg reg_update_key_0 = 1;
reg reg_update_key_1 = 1;
/* assignments and semantic checks for unused ports */
`include "processing_system7_bfm_v2_0_5_unused_ports.v"
/* include api definition */
`include "processing_system7_bfm_v2_0_5_apis.v"
/* Reset Generator */
processing_system7_bfm_v2_0_5_gen_reset gen_rst(.por_rst_n(PS_PORB),
.sys_rst_n(PS_SRSTB),
.rst_out_n(net_rstn),
.m_axi_gp0_clk(M_AXI_GP0_ACLK),
.m_axi_gp1_clk(M_AXI_GP1_ACLK),
.s_axi_gp0_clk(S_AXI_GP0_ACLK),
.s_axi_gp1_clk(S_AXI_GP1_ACLK),
.s_axi_hp0_clk(S_AXI_HP0_ACLK),
.s_axi_hp1_clk(S_AXI_HP1_ACLK),
.s_axi_hp2_clk(S_AXI_HP2_ACLK),
.s_axi_hp3_clk(S_AXI_HP3_ACLK),
.s_axi_acp_clk(S_AXI_ACP_ACLK),
.m_axi_gp0_rstn(net_axi_mgp0_rstn),
.m_axi_gp1_rstn(net_axi_mgp1_rstn),
.s_axi_gp0_rstn(net_axi_gp0_rstn),
.s_axi_gp1_rstn(net_axi_gp1_rstn),
.s_axi_hp0_rstn(net_axi_hp0_rstn),
.s_axi_hp1_rstn(net_axi_hp1_rstn),
.s_axi_hp2_rstn(net_axi_hp2_rstn),
.s_axi_hp3_rstn(net_axi_hp3_rstn),
.s_axi_acp_rstn(net_axi_acp_rstn),
.fclk_reset3_n(FCLK_RESET3_N),
.fclk_reset2_n(FCLK_RESET2_N),
.fclk_reset1_n(FCLK_RESET1_N),
.fclk_reset0_n(FCLK_RESET0_N),
.fpga_acp_reset_n(), ////S_AXI_ACP_ARESETN), (These are removed from Zynq IP)
.fpga_gp_m0_reset_n(), ////M_AXI_GP0_ARESETN),
.fpga_gp_m1_reset_n(), ////M_AXI_GP1_ARESETN),
.fpga_gp_s0_reset_n(), ////S_AXI_GP0_ARESETN),
.fpga_gp_s1_reset_n(), ////S_AXI_GP1_ARESETN),
.fpga_hp_s0_reset_n(), ////S_AXI_HP0_ARESETN),
.fpga_hp_s1_reset_n(), ////S_AXI_HP1_ARESETN),
.fpga_hp_s2_reset_n(), ////S_AXI_HP2_ARESETN),
.fpga_hp_s3_reset_n() ////S_AXI_HP3_ARESETN)
);
/* Clock Generator */
processing_system7_bfm_v2_0_5_gen_clock #(C_FCLK_CLK3_FREQ, C_FCLK_CLK2_FREQ, C_FCLK_CLK1_FREQ, C_FCLK_CLK0_FREQ)
gen_clk(.ps_clk(PS_CLK),
.sw_clk(net_sw_clk),
.fclk_clk3(FCLK_CLK3),
.fclk_clk2(FCLK_CLK2),
.fclk_clk1(FCLK_CLK1),
.fclk_clk0(FCLK_CLK0)
);
wire net_wr_ack_ocm_gp0, net_wr_ack_ddr_gp0, net_wr_ack_ocm_gp1, net_wr_ack_ddr_gp1;
wire net_wr_dv_ocm_gp0, net_wr_dv_ddr_gp0, net_wr_dv_ocm_gp1, net_wr_dv_ddr_gp1;
wire [max_burst_bits-1:0] net_wr_data_gp0, net_wr_data_gp1;
wire [addr_width-1:0] net_wr_addr_gp0, net_wr_addr_gp1;
wire [max_burst_bytes_width:0] net_wr_bytes_gp0, net_wr_bytes_gp1;
wire [axi_qos_width-1:0] net_wr_qos_gp0, net_wr_qos_gp1;
wire net_rd_req_ddr_gp0, net_rd_req_ddr_gp1;
wire net_rd_req_ocm_gp0, net_rd_req_ocm_gp1;
wire net_rd_req_reg_gp0, net_rd_req_reg_gp1;
wire [addr_width-1:0] net_rd_addr_gp0, net_rd_addr_gp1;
wire [max_burst_bytes_width:0] net_rd_bytes_gp0, net_rd_bytes_gp1;
wire [max_burst_bits-1:0] net_rd_data_ddr_gp0, net_rd_data_ddr_gp1;
wire [max_burst_bits-1:0] net_rd_data_ocm_gp0, net_rd_data_ocm_gp1;
wire [max_burst_bits-1:0] net_rd_data_reg_gp0, net_rd_data_reg_gp1;
wire net_rd_dv_ddr_gp0, net_rd_dv_ddr_gp1;
wire net_rd_dv_ocm_gp0, net_rd_dv_ocm_gp1;
wire net_rd_dv_reg_gp0, net_rd_dv_reg_gp1;
wire [axi_qos_width-1:0] net_rd_qos_gp0, net_rd_qos_gp1;
wire net_wr_ack_ddr_hp0, net_wr_ack_ddr_hp1, net_wr_ack_ddr_hp2, net_wr_ack_ddr_hp3;
wire net_wr_ack_ocm_hp0, net_wr_ack_ocm_hp1, net_wr_ack_ocm_hp2, net_wr_ack_ocm_hp3;
wire net_wr_dv_ddr_hp0, net_wr_dv_ddr_hp1, net_wr_dv_ddr_hp2, net_wr_dv_ddr_hp3;
wire net_wr_dv_ocm_hp0, net_wr_dv_ocm_hp1, net_wr_dv_ocm_hp2, net_wr_dv_ocm_hp3;
wire [max_burst_bits-1:0] net_wr_data_hp0, net_wr_data_hp1, net_wr_data_hp2, net_wr_data_hp3;
wire [addr_width-1:0] net_wr_addr_hp0, net_wr_addr_hp1, net_wr_addr_hp2, net_wr_addr_hp3;
wire [max_burst_bytes_width:0] net_wr_bytes_hp0, net_wr_bytes_hp1, net_wr_bytes_hp2, net_wr_bytes_hp3;
wire [axi_qos_width-1:0] net_wr_qos_hp0, net_wr_qos_hp1, net_wr_qos_hp2, net_wr_qos_hp3;
wire net_rd_req_ddr_hp0, net_rd_req_ddr_hp1, net_rd_req_ddr_hp2, net_rd_req_ddr_hp3;
wire net_rd_req_ocm_hp0, net_rd_req_ocm_hp1, net_rd_req_ocm_hp2, net_rd_req_ocm_hp3;
wire [addr_width-1:0] net_rd_addr_hp0, net_rd_addr_hp1, net_rd_addr_hp2, net_rd_addr_hp3;
wire [max_burst_bytes_width:0] net_rd_bytes_hp0, net_rd_bytes_hp1, net_rd_bytes_hp2, net_rd_bytes_hp3;
wire [max_burst_bits-1:0] net_rd_data_ddr_hp0, net_rd_data_ddr_hp1, net_rd_data_ddr_hp2, net_rd_data_ddr_hp3;
wire [max_burst_bits-1:0] net_rd_data_ocm_hp0, net_rd_data_ocm_hp1, net_rd_data_ocm_hp2, net_rd_data_ocm_hp3;
wire net_rd_dv_ddr_hp0, net_rd_dv_ddr_hp1, net_rd_dv_ddr_hp2, net_rd_dv_ddr_hp3;
wire net_rd_dv_ocm_hp0, net_rd_dv_ocm_hp1, net_rd_dv_ocm_hp2, net_rd_dv_ocm_hp3;
wire [axi_qos_width-1:0] net_rd_qos_hp0, net_rd_qos_hp1, net_rd_qos_hp2, net_rd_qos_hp3;
wire net_wr_ack_ddr_acp,net_wr_ack_ocm_acp;
wire net_wr_dv_ddr_acp,net_wr_dv_ocm_acp;
wire [max_burst_bits-1:0] net_wr_data_acp;
wire [addr_width-1:0] net_wr_addr_acp;
wire [max_burst_bytes_width:0] net_wr_bytes_acp;
wire [axi_qos_width-1:0] net_wr_qos_acp;
wire net_rd_req_ddr_acp, net_rd_req_ocm_acp;
wire [addr_width-1:0] net_rd_addr_acp;
wire [max_burst_bytes_width:0] net_rd_bytes_acp;
wire [max_burst_bits-1:0] net_rd_data_ddr_acp;
wire [max_burst_bits-1:0] net_rd_data_ocm_acp;
wire net_rd_dv_ddr_acp,net_rd_dv_ocm_acp;
wire [axi_qos_width-1:0] net_rd_qos_acp;
wire ocm_wr_ack_port0;
wire ocm_wr_dv_port0;
wire ocm_rd_req_port0;
wire ocm_rd_dv_port0;
wire [addr_width-1:0] ocm_wr_addr_port0;
wire [max_burst_bits-1:0] ocm_wr_data_port0;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port0;
wire [addr_width-1:0] ocm_rd_addr_port0;
wire [max_burst_bits-1:0] ocm_rd_data_port0;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port0;
wire [axi_qos_width-1:0] ocm_wr_qos_port0;
wire [axi_qos_width-1:0] ocm_rd_qos_port0;
wire ocm_wr_ack_port1;
wire ocm_wr_dv_port1;
wire ocm_rd_req_port1;
wire ocm_rd_dv_port1;
wire [addr_width-1:0] ocm_wr_addr_port1;
wire [max_burst_bits-1:0] ocm_wr_data_port1;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port1;
wire [addr_width-1:0] ocm_rd_addr_port1;
wire [max_burst_bits-1:0] ocm_rd_data_port1;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port1;
wire [axi_qos_width-1:0] ocm_wr_qos_port1;
wire [axi_qos_width-1:0] ocm_rd_qos_port1;
wire ddr_wr_ack_port0;
wire ddr_wr_dv_port0;
wire ddr_rd_req_port0;
wire ddr_rd_dv_port0;
wire[addr_width-1:0] ddr_wr_addr_port0;
wire[max_burst_bits-1:0] ddr_wr_data_port0;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port0;
wire[addr_width-1:0] ddr_rd_addr_port0;
wire[max_burst_bits-1:0] ddr_rd_data_port0;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port0;
wire [axi_qos_width-1:0] ddr_wr_qos_port0;
wire [axi_qos_width-1:0] ddr_rd_qos_port0;
wire ddr_wr_ack_port1;
wire ddr_wr_dv_port1;
wire ddr_rd_req_port1;
wire ddr_rd_dv_port1;
wire[addr_width-1:0] ddr_wr_addr_port1;
wire[max_burst_bits-1:0] ddr_wr_data_port1;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port1;
wire[addr_width-1:0] ddr_rd_addr_port1;
wire[max_burst_bits-1:0] ddr_rd_data_port1;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port1;
wire[axi_qos_width-1:0] ddr_wr_qos_port1;
wire[axi_qos_width-1:0] ddr_rd_qos_port1;
wire ddr_wr_ack_port2;
wire ddr_wr_dv_port2;
wire ddr_rd_req_port2;
wire ddr_rd_dv_port2;
wire[addr_width-1:0] ddr_wr_addr_port2;
wire[max_burst_bits-1:0] ddr_wr_data_port2;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port2;
wire[addr_width-1:0] ddr_rd_addr_port2;
wire[max_burst_bits-1:0] ddr_rd_data_port2;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port2;
wire[axi_qos_width-1:0] ddr_wr_qos_port2;
wire[axi_qos_width-1:0] ddr_rd_qos_port2;
wire ddr_wr_ack_port3;
wire ddr_wr_dv_port3;
wire ddr_rd_req_port3;
wire ddr_rd_dv_port3;
wire[addr_width-1:0] ddr_wr_addr_port3;
wire[max_burst_bits-1:0] ddr_wr_data_port3;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port3;
wire[addr_width-1:0] ddr_rd_addr_port3;
wire[max_burst_bits-1:0] ddr_rd_data_port3;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port3;
wire[axi_qos_width-1:0] ddr_wr_qos_port3;
wire[axi_qos_width-1:0] ddr_rd_qos_port3;
wire reg_rd_req_port0;
wire reg_rd_dv_port0;
wire[addr_width-1:0] reg_rd_addr_port0;
wire[max_burst_bits-1:0] reg_rd_data_port0;
wire[max_burst_bytes_width:0] reg_rd_bytes_port0;
wire [axi_qos_width-1:0] reg_rd_qos_port0;
wire reg_rd_req_port1;
wire reg_rd_dv_port1;
wire[addr_width-1:0] reg_rd_addr_port1;
wire[max_burst_bits-1:0] reg_rd_data_port1;
wire[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire [axi_qos_width-1:0] reg_rd_qos_port1;
wire [11:0] M_AXI_GP0_AWID_FULL;
wire [11:0] M_AXI_GP0_WID_FULL;
wire [11:0] M_AXI_GP0_ARID_FULL;
wire [11:0] M_AXI_GP0_BID_FULL;
wire [11:0] M_AXI_GP0_RID_FULL;
wire [11:0] M_AXI_GP1_AWID_FULL;
wire [11:0] M_AXI_GP1_WID_FULL;
wire [11:0] M_AXI_GP1_ARID_FULL;
wire [11:0] M_AXI_GP1_BID_FULL;
wire [11:0] M_AXI_GP1_RID_FULL;
function [5:0] compress_id;
input [11:0] id;
begin
compress_id = id[5:0];
end
endfunction
function [11:0] uncompress_id;
input [5:0] id;
begin
uncompress_id = {6'b110000, id[5:0]};
end
endfunction
assign M_AXI_GP0_AWID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_AWID_FULL) : M_AXI_GP0_AWID_FULL;
assign M_AXI_GP0_WID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_WID_FULL) : M_AXI_GP0_WID_FULL;
assign M_AXI_GP0_ARID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_ARID_FULL) : M_AXI_GP0_ARID_FULL;
assign M_AXI_GP0_BID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_BID) : M_AXI_GP0_BID;
assign M_AXI_GP0_RID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_RID) : M_AXI_GP0_RID;
assign M_AXI_GP1_AWID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_AWID_FULL) : M_AXI_GP1_AWID_FULL;
assign M_AXI_GP1_WID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_WID_FULL) : M_AXI_GP1_WID_FULL;
assign M_AXI_GP1_ARID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_ARID_FULL) : M_AXI_GP1_ARID_FULL;
assign M_AXI_GP1_BID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_BID) : M_AXI_GP1_BID;
assign M_AXI_GP1_RID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_RID) : M_AXI_GP1_RID;
processing_system7_bfm_v2_0_5_interconnect_model icm (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
.w_qos_gp0(net_wr_qos_gp0),
.w_qos_gp1(net_wr_qos_gp1),
.w_qos_hp0(net_wr_qos_hp0),
.w_qos_hp1(net_wr_qos_hp1),
.w_qos_hp2(net_wr_qos_hp2),
.w_qos_hp3(net_wr_qos_hp3),
.r_qos_gp0(net_rd_qos_gp0),
.r_qos_gp1(net_rd_qos_gp1),
.r_qos_hp0(net_rd_qos_hp0),
.r_qos_hp1(net_rd_qos_hp1),
.r_qos_hp2(net_rd_qos_hp2),
.r_qos_hp3(net_rd_qos_hp3),
/* GP Slave ports access */
.wr_ack_ddr_gp0(net_wr_ack_ddr_gp0),
.wr_ack_ocm_gp0(net_wr_ack_ocm_gp0),
.wr_data_gp0(net_wr_data_gp0),
.wr_addr_gp0(net_wr_addr_gp0),
.wr_bytes_gp0(net_wr_bytes_gp0),
.wr_dv_ddr_gp0(net_wr_dv_ddr_gp0),
.wr_dv_ocm_gp0(net_wr_dv_ocm_gp0),
.rd_req_ddr_gp0(net_rd_req_ddr_gp0),
.rd_req_ocm_gp0(net_rd_req_ocm_gp0),
.rd_req_reg_gp0(net_rd_req_reg_gp0),
.rd_addr_gp0(net_rd_addr_gp0),
.rd_bytes_gp0(net_rd_bytes_gp0),
.rd_data_ddr_gp0(net_rd_data_ddr_gp0),
.rd_data_ocm_gp0(net_rd_data_ocm_gp0),
.rd_data_reg_gp0(net_rd_data_reg_gp0),
.rd_dv_ddr_gp0(net_rd_dv_ddr_gp0),
.rd_dv_ocm_gp0(net_rd_dv_ocm_gp0),
.rd_dv_reg_gp0(net_rd_dv_reg_gp0),
.wr_ack_ddr_gp1(net_wr_ack_ddr_gp1),
.wr_ack_ocm_gp1(net_wr_ack_ocm_gp1),
.wr_data_gp1(net_wr_data_gp1),
.wr_addr_gp1(net_wr_addr_gp1),
.wr_bytes_gp1(net_wr_bytes_gp1),
.wr_dv_ddr_gp1(net_wr_dv_ddr_gp1),
.wr_dv_ocm_gp1(net_wr_dv_ocm_gp1),
.rd_req_ddr_gp1(net_rd_req_ddr_gp1),
.rd_req_ocm_gp1(net_rd_req_ocm_gp1),
.rd_req_reg_gp1(net_rd_req_reg_gp1),
.rd_addr_gp1(net_rd_addr_gp1),
.rd_bytes_gp1(net_rd_bytes_gp1),
.rd_data_ddr_gp1(net_rd_data_ddr_gp1),
.rd_data_ocm_gp1(net_rd_data_ocm_gp1),
.rd_data_reg_gp1(net_rd_data_reg_gp1),
.rd_dv_ddr_gp1(net_rd_dv_ddr_gp1),
.rd_dv_ocm_gp1(net_rd_dv_ocm_gp1),
.rd_dv_reg_gp1(net_rd_dv_reg_gp1),
/* HP Slave ports access */
.wr_ack_ddr_hp0(net_wr_ack_ddr_hp0),
.wr_ack_ocm_hp0(net_wr_ack_ocm_hp0),
.wr_data_hp0(net_wr_data_hp0),
.wr_addr_hp0(net_wr_addr_hp0),
.wr_bytes_hp0(net_wr_bytes_hp0),
.wr_dv_ddr_hp0(net_wr_dv_ddr_hp0),
.wr_dv_ocm_hp0(net_wr_dv_ocm_hp0),
.rd_req_ddr_hp0(net_rd_req_ddr_hp0),
.rd_req_ocm_hp0(net_rd_req_ocm_hp0),
.rd_addr_hp0(net_rd_addr_hp0),
.rd_bytes_hp0(net_rd_bytes_hp0),
.rd_data_ddr_hp0(net_rd_data_ddr_hp0),
.rd_data_ocm_hp0(net_rd_data_ocm_hp0),
.rd_dv_ddr_hp0(net_rd_dv_ddr_hp0),
.rd_dv_ocm_hp0(net_rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(net_wr_ack_ddr_hp1),
.wr_ack_ocm_hp1(net_wr_ack_ocm_hp1),
.wr_data_hp1(net_wr_data_hp1),
.wr_addr_hp1(net_wr_addr_hp1),
.wr_bytes_hp1(net_wr_bytes_hp1),
.wr_dv_ddr_hp1(net_wr_dv_ddr_hp1),
.wr_dv_ocm_hp1(net_wr_dv_ocm_hp1),
.rd_req_ddr_hp1(net_rd_req_ddr_hp1),
.rd_req_ocm_hp1(net_rd_req_ocm_hp1),
.rd_addr_hp1(net_rd_addr_hp1),
.rd_bytes_hp1(net_rd_bytes_hp1),
.rd_data_ddr_hp1(net_rd_data_ddr_hp1),
.rd_data_ocm_hp1(net_rd_data_ocm_hp1),
.rd_dv_ocm_hp1(net_rd_dv_ocm_hp1),
.rd_dv_ddr_hp1(net_rd_dv_ddr_hp1),
.wr_ack_ddr_hp2(net_wr_ack_ddr_hp2),
.wr_ack_ocm_hp2(net_wr_ack_ocm_hp2),
.wr_data_hp2(net_wr_data_hp2),
.wr_addr_hp2(net_wr_addr_hp2),
.wr_bytes_hp2(net_wr_bytes_hp2),
.wr_dv_ocm_hp2(net_wr_dv_ocm_hp2),
.wr_dv_ddr_hp2(net_wr_dv_ddr_hp2),
.rd_req_ddr_hp2(net_rd_req_ddr_hp2),
.rd_req_ocm_hp2(net_rd_req_ocm_hp2),
.rd_addr_hp2(net_rd_addr_hp2),
.rd_bytes_hp2(net_rd_bytes_hp2),
.rd_data_ddr_hp2(net_rd_data_ddr_hp2),
.rd_data_ocm_hp2(net_rd_data_ocm_hp2),
.rd_dv_ddr_hp2(net_rd_dv_ddr_hp2),
.rd_dv_ocm_hp2(net_rd_dv_ocm_hp2),
.wr_ack_ocm_hp3(net_wr_ack_ocm_hp3),
.wr_ack_ddr_hp3(net_wr_ack_ddr_hp3),
.wr_data_hp3(net_wr_data_hp3),
.wr_addr_hp3(net_wr_addr_hp3),
.wr_bytes_hp3(net_wr_bytes_hp3),
.wr_dv_ddr_hp3(net_wr_dv_ddr_hp3),
.wr_dv_ocm_hp3(net_wr_dv_ocm_hp3),
.rd_req_ddr_hp3(net_rd_req_ddr_hp3),
.rd_req_ocm_hp3(net_rd_req_ocm_hp3),
.rd_addr_hp3(net_rd_addr_hp3),
.rd_bytes_hp3(net_rd_bytes_hp3),
.rd_data_ddr_hp3(net_rd_data_ddr_hp3),
.rd_data_ocm_hp3(net_rd_data_ocm_hp3),
.rd_dv_ddr_hp3(net_rd_dv_ddr_hp3),
.rd_dv_ocm_hp3(net_rd_dv_ocm_hp3),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1(ddr_wr_ack_port1),
.ddr_wr_dv_port1(ddr_wr_dv_port1),
.ddr_rd_req_port1(ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1(ddr_wr_qos_port1),
.ddr_rd_qos_port1(ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1),
/* Goes to port 0 of REG */
.reg_rd_qos_port1 (reg_rd_qos_port1) ,
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ddrc ddrc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of DDR */
.ddr_wr_ack_port0 (ddr_wr_ack_port0),
.ddr_wr_dv_port0 (ddr_wr_dv_port0),
.ddr_rd_req_port0 (ddr_rd_req_port0),
.ddr_rd_dv_port0 (ddr_rd_dv_port0),
.ddr_wr_addr_port0(net_wr_addr_acp),
.ddr_wr_data_port0(net_wr_data_acp),
.ddr_wr_bytes_port0(net_wr_bytes_acp),
.ddr_rd_addr_port0(net_rd_addr_acp),
.ddr_rd_bytes_port0(net_rd_bytes_acp),
.ddr_rd_data_port0(ddr_rd_data_port0),
.ddr_wr_qos_port0 (net_wr_qos_acp),
.ddr_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1 (ddr_wr_ack_port1),
.ddr_wr_dv_port1 (ddr_wr_dv_port1),
.ddr_rd_req_port1 (ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1 (ddr_wr_qos_port1),
.ddr_rd_qos_port1 (ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3)
);
processing_system7_bfm_v2_0_5_ocmc ocmc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port0 (ocm_wr_ack_port0),
.ocm_wr_dv_port0 (ocm_wr_dv_port0),
.ocm_rd_req_port0 (ocm_rd_req_port0),
.ocm_rd_dv_port0 (ocm_rd_dv_port0),
.ocm_wr_addr_port0(net_wr_addr_acp),
.ocm_wr_data_port0(net_wr_data_acp),
.ocm_wr_bytes_port0(net_wr_bytes_acp),
.ocm_rd_addr_port0(net_rd_addr_acp),
.ocm_rd_bytes_port0(net_rd_bytes_acp),
.ocm_rd_data_port0(ocm_rd_data_port0),
.ocm_wr_qos_port0 (net_wr_qos_acp),
.ocm_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1)
);
processing_system7_bfm_v2_0_5_regc regc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of REG */
.reg_rd_req_port0 (reg_rd_req_port0),
.reg_rd_dv_port0 (reg_rd_dv_port0),
.reg_rd_addr_port0(net_rd_addr_acp),
.reg_rd_bytes_port0(net_rd_bytes_acp),
.reg_rd_data_port0(reg_rd_data_port0),
.reg_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of REG */
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1),
.reg_rd_qos_port1(reg_rd_qos_port1)
);
/* include axi_gp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_gp.v"
/* include axi_hp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_hp.v"
/* include axi_acp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_acp.v"
endmodule
|
module processing_system7_bfm_v2_0_5_processing_system7_bfm
(
CAN0_PHY_TX,
CAN0_PHY_RX,
CAN1_PHY_TX,
CAN1_PHY_RX,
ENET0_GMII_TX_EN,
ENET0_GMII_TX_ER,
ENET0_MDIO_MDC,
ENET0_MDIO_O,
ENET0_MDIO_T,
ENET0_PTP_DELAY_REQ_RX,
ENET0_PTP_DELAY_REQ_TX,
ENET0_PTP_PDELAY_REQ_RX,
ENET0_PTP_PDELAY_REQ_TX,
ENET0_PTP_PDELAY_RESP_RX,
ENET0_PTP_PDELAY_RESP_TX,
ENET0_PTP_SYNC_FRAME_RX,
ENET0_PTP_SYNC_FRAME_TX,
ENET0_SOF_RX,
ENET0_SOF_TX,
ENET0_GMII_TXD,
ENET0_GMII_COL,
ENET0_GMII_CRS,
ENET0_EXT_INTIN,
ENET0_GMII_RX_CLK,
ENET0_GMII_RX_DV,
ENET0_GMII_RX_ER,
ENET0_GMII_TX_CLK,
ENET0_MDIO_I,
ENET0_GMII_RXD,
ENET1_GMII_TX_EN,
ENET1_GMII_TX_ER,
ENET1_MDIO_MDC,
ENET1_MDIO_O,
ENET1_MDIO_T,
ENET1_PTP_DELAY_REQ_RX,
ENET1_PTP_DELAY_REQ_TX,
ENET1_PTP_PDELAY_REQ_RX,
ENET1_PTP_PDELAY_REQ_TX,
ENET1_PTP_PDELAY_RESP_RX,
ENET1_PTP_PDELAY_RESP_TX,
ENET1_PTP_SYNC_FRAME_RX,
ENET1_PTP_SYNC_FRAME_TX,
ENET1_SOF_RX,
ENET1_SOF_TX,
ENET1_GMII_TXD,
ENET1_GMII_COL,
ENET1_GMII_CRS,
ENET1_EXT_INTIN,
ENET1_GMII_RX_CLK,
ENET1_GMII_RX_DV,
ENET1_GMII_RX_ER,
ENET1_GMII_TX_CLK,
ENET1_MDIO_I,
ENET1_GMII_RXD,
GPIO_I,
GPIO_O,
GPIO_T,
I2C0_SDA_I,
I2C0_SDA_O,
I2C0_SDA_T,
I2C0_SCL_I,
I2C0_SCL_O,
I2C0_SCL_T,
I2C1_SDA_I,
I2C1_SDA_O,
I2C1_SDA_T,
I2C1_SCL_I,
I2C1_SCL_O,
I2C1_SCL_T,
PJTAG_TCK,
PJTAG_TMS,
PJTAG_TD_I,
PJTAG_TD_T,
PJTAG_TD_O,
SDIO0_CLK,
SDIO0_CLK_FB,
SDIO0_CMD_O,
SDIO0_CMD_I,
SDIO0_CMD_T,
SDIO0_DATA_I,
SDIO0_DATA_O,
SDIO0_DATA_T,
SDIO0_LED,
SDIO0_CDN,
SDIO0_WP,
SDIO0_BUSPOW,
SDIO0_BUSVOLT,
SDIO1_CLK,
SDIO1_CLK_FB,
SDIO1_CMD_O,
SDIO1_CMD_I,
SDIO1_CMD_T,
SDIO1_DATA_I,
SDIO1_DATA_O,
SDIO1_DATA_T,
SDIO1_LED,
SDIO1_CDN,
SDIO1_WP,
SDIO1_BUSPOW,
SDIO1_BUSVOLT,
SPI0_SCLK_I,
SPI0_SCLK_O,
SPI0_SCLK_T,
SPI0_MOSI_I,
SPI0_MOSI_O,
SPI0_MOSI_T,
SPI0_MISO_I,
SPI0_MISO_O,
SPI0_MISO_T,
SPI0_SS_I,
SPI0_SS_O,
SPI0_SS1_O,
SPI0_SS2_O,
SPI0_SS_T,
SPI1_SCLK_I,
SPI1_SCLK_O,
SPI1_SCLK_T,
SPI1_MOSI_I,
SPI1_MOSI_O,
SPI1_MOSI_T,
SPI1_MISO_I,
SPI1_MISO_O,
SPI1_MISO_T,
SPI1_SS_I,
SPI1_SS_O,
SPI1_SS1_O,
SPI1_SS2_O,
SPI1_SS_T,
UART0_DTRN,
UART0_RTSN,
UART0_TX,
UART0_CTSN,
UART0_DCDN,
UART0_DSRN,
UART0_RIN,
UART0_RX,
UART1_DTRN,
UART1_RTSN,
UART1_TX,
UART1_CTSN,
UART1_DCDN,
UART1_DSRN,
UART1_RIN,
UART1_RX,
TTC0_WAVE0_OUT,
TTC0_WAVE1_OUT,
TTC0_WAVE2_OUT,
TTC0_CLK0_IN,
TTC0_CLK1_IN,
TTC0_CLK2_IN,
TTC1_WAVE0_OUT,
TTC1_WAVE1_OUT,
TTC1_WAVE2_OUT,
TTC1_CLK0_IN,
TTC1_CLK1_IN,
TTC1_CLK2_IN,
WDT_CLK_IN,
WDT_RST_OUT,
TRACE_CLK,
TRACE_CTL,
TRACE_DATA,
USB0_PORT_INDCTL,
USB1_PORT_INDCTL,
USB0_VBUS_PWRSELECT,
USB1_VBUS_PWRSELECT,
USB0_VBUS_PWRFAULT,
USB1_VBUS_PWRFAULT,
SRAM_INTIN,
M_AXI_GP0_ARVALID,
M_AXI_GP0_AWVALID,
M_AXI_GP0_BREADY,
M_AXI_GP0_RREADY,
M_AXI_GP0_WLAST,
M_AXI_GP0_WVALID,
M_AXI_GP0_ARID,
M_AXI_GP0_AWID,
M_AXI_GP0_WID,
M_AXI_GP0_ARBURST,
M_AXI_GP0_ARLOCK,
M_AXI_GP0_ARSIZE,
M_AXI_GP0_AWBURST,
M_AXI_GP0_AWLOCK,
M_AXI_GP0_AWSIZE,
M_AXI_GP0_ARPROT,
M_AXI_GP0_AWPROT,
M_AXI_GP0_ARADDR,
M_AXI_GP0_AWADDR,
M_AXI_GP0_WDATA,
M_AXI_GP0_ARCACHE,
M_AXI_GP0_ARLEN,
M_AXI_GP0_ARQOS,
M_AXI_GP0_AWCACHE,
M_AXI_GP0_AWLEN,
M_AXI_GP0_AWQOS,
M_AXI_GP0_WSTRB,
M_AXI_GP0_ACLK,
M_AXI_GP0_ARREADY,
M_AXI_GP0_AWREADY,
M_AXI_GP0_BVALID,
M_AXI_GP0_RLAST,
M_AXI_GP0_RVALID,
M_AXI_GP0_WREADY,
M_AXI_GP0_BID,
M_AXI_GP0_RID,
M_AXI_GP0_BRESP,
M_AXI_GP0_RRESP,
M_AXI_GP0_RDATA,
M_AXI_GP1_ARVALID,
M_AXI_GP1_AWVALID,
M_AXI_GP1_BREADY,
M_AXI_GP1_RREADY,
M_AXI_GP1_WLAST,
M_AXI_GP1_WVALID,
M_AXI_GP1_ARID,
M_AXI_GP1_AWID,
M_AXI_GP1_WID,
M_AXI_GP1_ARBURST,
M_AXI_GP1_ARLOCK,
M_AXI_GP1_ARSIZE,
M_AXI_GP1_AWBURST,
M_AXI_GP1_AWLOCK,
M_AXI_GP1_AWSIZE,
M_AXI_GP1_ARPROT,
M_AXI_GP1_AWPROT,
M_AXI_GP1_ARADDR,
M_AXI_GP1_AWADDR,
M_AXI_GP1_WDATA,
M_AXI_GP1_ARCACHE,
M_AXI_GP1_ARLEN,
M_AXI_GP1_ARQOS,
M_AXI_GP1_AWCACHE,
M_AXI_GP1_AWLEN,
M_AXI_GP1_AWQOS,
M_AXI_GP1_WSTRB,
M_AXI_GP1_ACLK,
M_AXI_GP1_ARREADY,
M_AXI_GP1_AWREADY,
M_AXI_GP1_BVALID,
M_AXI_GP1_RLAST,
M_AXI_GP1_RVALID,
M_AXI_GP1_WREADY,
M_AXI_GP1_BID,
M_AXI_GP1_RID,
M_AXI_GP1_BRESP,
M_AXI_GP1_RRESP,
M_AXI_GP1_RDATA,
S_AXI_GP0_ARREADY,
S_AXI_GP0_AWREADY,
S_AXI_GP0_BVALID,
S_AXI_GP0_RLAST,
S_AXI_GP0_RVALID,
S_AXI_GP0_WREADY,
S_AXI_GP0_BRESP,
S_AXI_GP0_RRESP,
S_AXI_GP0_RDATA,
S_AXI_GP0_BID,
S_AXI_GP0_RID,
S_AXI_GP0_ACLK,
S_AXI_GP0_ARVALID,
S_AXI_GP0_AWVALID,
S_AXI_GP0_BREADY,
S_AXI_GP0_RREADY,
S_AXI_GP0_WLAST,
S_AXI_GP0_WVALID,
S_AXI_GP0_ARBURST,
S_AXI_GP0_ARLOCK,
S_AXI_GP0_ARSIZE,
S_AXI_GP0_AWBURST,
S_AXI_GP0_AWLOCK,
S_AXI_GP0_AWSIZE,
S_AXI_GP0_ARPROT,
S_AXI_GP0_AWPROT,
S_AXI_GP0_ARADDR,
S_AXI_GP0_AWADDR,
S_AXI_GP0_WDATA,
S_AXI_GP0_ARCACHE,
S_AXI_GP0_ARLEN,
S_AXI_GP0_ARQOS,
S_AXI_GP0_AWCACHE,
S_AXI_GP0_AWLEN,
S_AXI_GP0_AWQOS,
S_AXI_GP0_WSTRB,
S_AXI_GP0_ARID,
S_AXI_GP0_AWID,
S_AXI_GP0_WID,
S_AXI_GP1_ARREADY,
S_AXI_GP1_AWREADY,
S_AXI_GP1_BVALID,
S_AXI_GP1_RLAST,
S_AXI_GP1_RVALID,
S_AXI_GP1_WREADY,
S_AXI_GP1_BRESP,
S_AXI_GP1_RRESP,
S_AXI_GP1_RDATA,
S_AXI_GP1_BID,
S_AXI_GP1_RID,
S_AXI_GP1_ACLK,
S_AXI_GP1_ARVALID,
S_AXI_GP1_AWVALID,
S_AXI_GP1_BREADY,
S_AXI_GP1_RREADY,
S_AXI_GP1_WLAST,
S_AXI_GP1_WVALID,
S_AXI_GP1_ARBURST,
S_AXI_GP1_ARLOCK,
S_AXI_GP1_ARSIZE,
S_AXI_GP1_AWBURST,
S_AXI_GP1_AWLOCK,
S_AXI_GP1_AWSIZE,
S_AXI_GP1_ARPROT,
S_AXI_GP1_AWPROT,
S_AXI_GP1_ARADDR,
S_AXI_GP1_AWADDR,
S_AXI_GP1_WDATA,
S_AXI_GP1_ARCACHE,
S_AXI_GP1_ARLEN,
S_AXI_GP1_ARQOS,
S_AXI_GP1_AWCACHE,
S_AXI_GP1_AWLEN,
S_AXI_GP1_AWQOS,
S_AXI_GP1_WSTRB,
S_AXI_GP1_ARID,
S_AXI_GP1_AWID,
S_AXI_GP1_WID,
S_AXI_ACP_AWREADY,
S_AXI_ACP_ARREADY,
S_AXI_ACP_BVALID,
S_AXI_ACP_RLAST,
S_AXI_ACP_RVALID,
S_AXI_ACP_WREADY,
S_AXI_ACP_BRESP,
S_AXI_ACP_RRESP,
S_AXI_ACP_BID,
S_AXI_ACP_RID,
S_AXI_ACP_RDATA,
S_AXI_ACP_ACLK,
S_AXI_ACP_ARVALID,
S_AXI_ACP_AWVALID,
S_AXI_ACP_BREADY,
S_AXI_ACP_RREADY,
S_AXI_ACP_WLAST,
S_AXI_ACP_WVALID,
S_AXI_ACP_ARID,
S_AXI_ACP_ARPROT,
S_AXI_ACP_AWID,
S_AXI_ACP_AWPROT,
S_AXI_ACP_WID,
S_AXI_ACP_ARADDR,
S_AXI_ACP_AWADDR,
S_AXI_ACP_ARCACHE,
S_AXI_ACP_ARLEN,
S_AXI_ACP_ARQOS,
S_AXI_ACP_AWCACHE,
S_AXI_ACP_AWLEN,
S_AXI_ACP_AWQOS,
S_AXI_ACP_ARBURST,
S_AXI_ACP_ARLOCK,
S_AXI_ACP_ARSIZE,
S_AXI_ACP_AWBURST,
S_AXI_ACP_AWLOCK,
S_AXI_ACP_AWSIZE,
S_AXI_ACP_ARUSER,
S_AXI_ACP_AWUSER,
S_AXI_ACP_WDATA,
S_AXI_ACP_WSTRB,
S_AXI_HP0_ARREADY,
S_AXI_HP0_AWREADY,
S_AXI_HP0_BVALID,
S_AXI_HP0_RLAST,
S_AXI_HP0_RVALID,
S_AXI_HP0_WREADY,
S_AXI_HP0_BRESP,
S_AXI_HP0_RRESP,
S_AXI_HP0_BID,
S_AXI_HP0_RID,
S_AXI_HP0_RDATA,
S_AXI_HP0_RCOUNT,
S_AXI_HP0_WCOUNT,
S_AXI_HP0_RACOUNT,
S_AXI_HP0_WACOUNT,
S_AXI_HP0_ACLK,
S_AXI_HP0_ARVALID,
S_AXI_HP0_AWVALID,
S_AXI_HP0_BREADY,
S_AXI_HP0_RDISSUECAP1_EN,
S_AXI_HP0_RREADY,
S_AXI_HP0_WLAST,
S_AXI_HP0_WRISSUECAP1_EN,
S_AXI_HP0_WVALID,
S_AXI_HP0_ARBURST,
S_AXI_HP0_ARLOCK,
S_AXI_HP0_ARSIZE,
S_AXI_HP0_AWBURST,
S_AXI_HP0_AWLOCK,
S_AXI_HP0_AWSIZE,
S_AXI_HP0_ARPROT,
S_AXI_HP0_AWPROT,
S_AXI_HP0_ARADDR,
S_AXI_HP0_AWADDR,
S_AXI_HP0_ARCACHE,
S_AXI_HP0_ARLEN,
S_AXI_HP0_ARQOS,
S_AXI_HP0_AWCACHE,
S_AXI_HP0_AWLEN,
S_AXI_HP0_AWQOS,
S_AXI_HP0_ARID,
S_AXI_HP0_AWID,
S_AXI_HP0_WID,
S_AXI_HP0_WDATA,
S_AXI_HP0_WSTRB,
S_AXI_HP1_ARREADY,
S_AXI_HP1_AWREADY,
S_AXI_HP1_BVALID,
S_AXI_HP1_RLAST,
S_AXI_HP1_RVALID,
S_AXI_HP1_WREADY,
S_AXI_HP1_BRESP,
S_AXI_HP1_RRESP,
S_AXI_HP1_BID,
S_AXI_HP1_RID,
S_AXI_HP1_RDATA,
S_AXI_HP1_RCOUNT,
S_AXI_HP1_WCOUNT,
S_AXI_HP1_RACOUNT,
S_AXI_HP1_WACOUNT,
S_AXI_HP1_ACLK,
S_AXI_HP1_ARVALID,
S_AXI_HP1_AWVALID,
S_AXI_HP1_BREADY,
S_AXI_HP1_RDISSUECAP1_EN,
S_AXI_HP1_RREADY,
S_AXI_HP1_WLAST,
S_AXI_HP1_WRISSUECAP1_EN,
S_AXI_HP1_WVALID,
S_AXI_HP1_ARBURST,
S_AXI_HP1_ARLOCK,
S_AXI_HP1_ARSIZE,
S_AXI_HP1_AWBURST,
S_AXI_HP1_AWLOCK,
S_AXI_HP1_AWSIZE,
S_AXI_HP1_ARPROT,
S_AXI_HP1_AWPROT,
S_AXI_HP1_ARADDR,
S_AXI_HP1_AWADDR,
S_AXI_HP1_ARCACHE,
S_AXI_HP1_ARLEN,
S_AXI_HP1_ARQOS,
S_AXI_HP1_AWCACHE,
S_AXI_HP1_AWLEN,
S_AXI_HP1_AWQOS,
S_AXI_HP1_ARID,
S_AXI_HP1_AWID,
S_AXI_HP1_WID,
S_AXI_HP1_WDATA,
S_AXI_HP1_WSTRB,
S_AXI_HP2_ARREADY,
S_AXI_HP2_AWREADY,
S_AXI_HP2_BVALID,
S_AXI_HP2_RLAST,
S_AXI_HP2_RVALID,
S_AXI_HP2_WREADY,
S_AXI_HP2_BRESP,
S_AXI_HP2_RRESP,
S_AXI_HP2_BID,
S_AXI_HP2_RID,
S_AXI_HP2_RDATA,
S_AXI_HP2_RCOUNT,
S_AXI_HP2_WCOUNT,
S_AXI_HP2_RACOUNT,
S_AXI_HP2_WACOUNT,
S_AXI_HP2_ACLK,
S_AXI_HP2_ARVALID,
S_AXI_HP2_AWVALID,
S_AXI_HP2_BREADY,
S_AXI_HP2_RDISSUECAP1_EN,
S_AXI_HP2_RREADY,
S_AXI_HP2_WLAST,
S_AXI_HP2_WRISSUECAP1_EN,
S_AXI_HP2_WVALID,
S_AXI_HP2_ARBURST,
S_AXI_HP2_ARLOCK,
S_AXI_HP2_ARSIZE,
S_AXI_HP2_AWBURST,
S_AXI_HP2_AWLOCK,
S_AXI_HP2_AWSIZE,
S_AXI_HP2_ARPROT,
S_AXI_HP2_AWPROT,
S_AXI_HP2_ARADDR,
S_AXI_HP2_AWADDR,
S_AXI_HP2_ARCACHE,
S_AXI_HP2_ARLEN,
S_AXI_HP2_ARQOS,
S_AXI_HP2_AWCACHE,
S_AXI_HP2_AWLEN,
S_AXI_HP2_AWQOS,
S_AXI_HP2_ARID,
S_AXI_HP2_AWID,
S_AXI_HP2_WID,
S_AXI_HP2_WDATA,
S_AXI_HP2_WSTRB,
S_AXI_HP3_ARREADY,
S_AXI_HP3_AWREADY,
S_AXI_HP3_BVALID,
S_AXI_HP3_RLAST,
S_AXI_HP3_RVALID,
S_AXI_HP3_WREADY,
S_AXI_HP3_BRESP,
S_AXI_HP3_RRESP,
S_AXI_HP3_BID,
S_AXI_HP3_RID,
S_AXI_HP3_RDATA,
S_AXI_HP3_RCOUNT,
S_AXI_HP3_WCOUNT,
S_AXI_HP3_RACOUNT,
S_AXI_HP3_WACOUNT,
S_AXI_HP3_ACLK,
S_AXI_HP3_ARVALID,
S_AXI_HP3_AWVALID,
S_AXI_HP3_BREADY,
S_AXI_HP3_RDISSUECAP1_EN,
S_AXI_HP3_RREADY,
S_AXI_HP3_WLAST,
S_AXI_HP3_WRISSUECAP1_EN,
S_AXI_HP3_WVALID,
S_AXI_HP3_ARBURST,
S_AXI_HP3_ARLOCK,
S_AXI_HP3_ARSIZE,
S_AXI_HP3_AWBURST,
S_AXI_HP3_AWLOCK,
S_AXI_HP3_AWSIZE,
S_AXI_HP3_ARPROT,
S_AXI_HP3_AWPROT,
S_AXI_HP3_ARADDR,
S_AXI_HP3_AWADDR,
S_AXI_HP3_ARCACHE,
S_AXI_HP3_ARLEN,
S_AXI_HP3_ARQOS,
S_AXI_HP3_AWCACHE,
S_AXI_HP3_AWLEN,
S_AXI_HP3_AWQOS,
S_AXI_HP3_ARID,
S_AXI_HP3_AWID,
S_AXI_HP3_WID,
S_AXI_HP3_WDATA,
S_AXI_HP3_WSTRB,
DMA0_DATYPE,
DMA0_DAVALID,
DMA0_DRREADY,
DMA0_ACLK,
DMA0_DAREADY,
DMA0_DRLAST,
DMA0_DRVALID,
DMA0_DRTYPE,
DMA1_DATYPE,
DMA1_DAVALID,
DMA1_DRREADY,
DMA1_ACLK,
DMA1_DAREADY,
DMA1_DRLAST,
DMA1_DRVALID,
DMA1_DRTYPE,
DMA2_DATYPE,
DMA2_DAVALID,
DMA2_DRREADY,
DMA2_ACLK,
DMA2_DAREADY,
DMA2_DRLAST,
DMA2_DRVALID,
DMA3_DRVALID,
DMA3_DATYPE,
DMA3_DAVALID,
DMA3_DRREADY,
DMA3_ACLK,
DMA3_DAREADY,
DMA3_DRLAST,
DMA2_DRTYPE,
DMA3_DRTYPE,
FTMD_TRACEIN_DATA,
FTMD_TRACEIN_VALID,
FTMD_TRACEIN_CLK,
FTMD_TRACEIN_ATID,
FTMT_F2P_TRIG,
FTMT_F2P_TRIGACK,
FTMT_F2P_DEBUG,
FTMT_P2F_TRIGACK,
FTMT_P2F_TRIG,
FTMT_P2F_DEBUG,
FCLK_CLK3,
FCLK_CLK2,
FCLK_CLK1,
FCLK_CLK0,
FCLK_CLKTRIG3_N,
FCLK_CLKTRIG2_N,
FCLK_CLKTRIG1_N,
FCLK_CLKTRIG0_N,
FCLK_RESET3_N,
FCLK_RESET2_N,
FCLK_RESET1_N,
FCLK_RESET0_N,
FPGA_IDLE_N,
DDR_ARB,
IRQ_F2P,
Core0_nFIQ,
Core0_nIRQ,
Core1_nFIQ,
Core1_nIRQ,
EVENT_EVENTO,
EVENT_STANDBYWFE,
EVENT_STANDBYWFI,
EVENT_EVENTI,
MIO,
DDR_Clk,
DDR_Clk_n,
DDR_CKE,
DDR_CS_n,
DDR_RAS_n,
DDR_CAS_n,
DDR_WEB,
DDR_BankAddr,
DDR_Addr,
DDR_ODT,
DDR_DRSTB,
DDR_DQ,
DDR_DM,
DDR_DQS,
DDR_DQS_n,
DDR_VRN,
DDR_VRP,
PS_SRSTB,
PS_CLK,
PS_PORB,
IRQ_P2F_DMAC_ABORT,
IRQ_P2F_DMAC0,
IRQ_P2F_DMAC1,
IRQ_P2F_DMAC2,
IRQ_P2F_DMAC3,
IRQ_P2F_DMAC4,
IRQ_P2F_DMAC5,
IRQ_P2F_DMAC6,
IRQ_P2F_DMAC7,
IRQ_P2F_SMC,
IRQ_P2F_QSPI,
IRQ_P2F_CTI,
IRQ_P2F_GPIO,
IRQ_P2F_USB0,
IRQ_P2F_ENET0,
IRQ_P2F_ENET_WAKE0,
IRQ_P2F_SDIO0,
IRQ_P2F_I2C0,
IRQ_P2F_SPI0,
IRQ_P2F_UART0,
IRQ_P2F_CAN0,
IRQ_P2F_USB1,
IRQ_P2F_ENET1,
IRQ_P2F_ENET_WAKE1,
IRQ_P2F_SDIO1,
IRQ_P2F_I2C1,
IRQ_P2F_SPI1,
IRQ_P2F_UART1,
IRQ_P2F_CAN1
);
/* parameters for gen_clk */
parameter C_FCLK_CLK0_FREQ = 50;
parameter C_FCLK_CLK1_FREQ = 50;
parameter C_FCLK_CLK3_FREQ = 50;
parameter C_FCLK_CLK2_FREQ = 50;
parameter C_HIGH_OCM_EN = 0;
/* parameters for HP ports */
parameter C_USE_S_AXI_HP0 = 0;
parameter C_USE_S_AXI_HP1 = 0;
parameter C_USE_S_AXI_HP2 = 0;
parameter C_USE_S_AXI_HP3 = 0;
parameter C_S_AXI_HP0_DATA_WIDTH = 32;
parameter C_S_AXI_HP1_DATA_WIDTH = 32;
parameter C_S_AXI_HP2_DATA_WIDTH = 32;
parameter C_S_AXI_HP3_DATA_WIDTH = 32;
parameter C_M_AXI_GP0_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP1_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP0_ENABLE_STATIC_REMAP = 0;
parameter C_M_AXI_GP1_ENABLE_STATIC_REMAP = 0;
/* Do we need these
parameter C_S_AXI_HP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP2_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP3_ENABLE_HIGHOCM = 0; */
parameter C_S_AXI_HP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP2_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP3_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP2_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP3_HIGHADDR = 32'hFFFF_FFFF;
/* parameters for GP and ACP ports */
parameter C_USE_M_AXI_GP0 = 0;
parameter C_USE_M_AXI_GP1 = 0;
parameter C_USE_S_AXI_GP0 = 1;
parameter C_USE_S_AXI_GP1 = 1;
/* Do we need this?
parameter C_M_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_M_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_ACP_ENABLE_HIGHOCM = 0;*/
parameter C_S_AXI_GP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_GP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_USE_S_AXI_ACP = 1;
parameter C_S_AXI_ACP_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_ACP_HIGHADDR = 32'hFFFF_FFFF;
`include "processing_system7_bfm_v2_0_5_local_params.v"
output CAN0_PHY_TX;
input CAN0_PHY_RX;
output CAN1_PHY_TX;
input CAN1_PHY_RX;
output ENET0_GMII_TX_EN;
output ENET0_GMII_TX_ER;
output ENET0_MDIO_MDC;
output ENET0_MDIO_O;
output ENET0_MDIO_T;
output ENET0_PTP_DELAY_REQ_RX;
output ENET0_PTP_DELAY_REQ_TX;
output ENET0_PTP_PDELAY_REQ_RX;
output ENET0_PTP_PDELAY_REQ_TX;
output ENET0_PTP_PDELAY_RESP_RX;
output ENET0_PTP_PDELAY_RESP_TX;
output ENET0_PTP_SYNC_FRAME_RX;
output ENET0_PTP_SYNC_FRAME_TX;
output ENET0_SOF_RX;
output ENET0_SOF_TX;
output [7:0] ENET0_GMII_TXD;
input ENET0_GMII_COL;
input ENET0_GMII_CRS;
input ENET0_EXT_INTIN;
input ENET0_GMII_RX_CLK;
input ENET0_GMII_RX_DV;
input ENET0_GMII_RX_ER;
input ENET0_GMII_TX_CLK;
input ENET0_MDIO_I;
input [7:0] ENET0_GMII_RXD;
output ENET1_GMII_TX_EN;
output ENET1_GMII_TX_ER;
output ENET1_MDIO_MDC;
output ENET1_MDIO_O;
output ENET1_MDIO_T;
output ENET1_PTP_DELAY_REQ_RX;
output ENET1_PTP_DELAY_REQ_TX;
output ENET1_PTP_PDELAY_REQ_RX;
output ENET1_PTP_PDELAY_REQ_TX;
output ENET1_PTP_PDELAY_RESP_RX;
output ENET1_PTP_PDELAY_RESP_TX;
output ENET1_PTP_SYNC_FRAME_RX;
output ENET1_PTP_SYNC_FRAME_TX;
output ENET1_SOF_RX;
output ENET1_SOF_TX;
output [7:0] ENET1_GMII_TXD;
input ENET1_GMII_COL;
input ENET1_GMII_CRS;
input ENET1_EXT_INTIN;
input ENET1_GMII_RX_CLK;
input ENET1_GMII_RX_DV;
input ENET1_GMII_RX_ER;
input ENET1_GMII_TX_CLK;
input ENET1_MDIO_I;
input [7:0] ENET1_GMII_RXD;
input [63:0] GPIO_I;
output [63:0] GPIO_O;
output [63:0] GPIO_T;
input I2C0_SDA_I;
output I2C0_SDA_O;
output I2C0_SDA_T;
input I2C0_SCL_I;
output I2C0_SCL_O;
output I2C0_SCL_T;
input I2C1_SDA_I;
output I2C1_SDA_O;
output I2C1_SDA_T;
input I2C1_SCL_I;
output I2C1_SCL_O;
output I2C1_SCL_T;
input PJTAG_TCK;
input PJTAG_TMS;
input PJTAG_TD_I;
output PJTAG_TD_T;
output PJTAG_TD_O;
output SDIO0_CLK;
input SDIO0_CLK_FB;
output SDIO0_CMD_O;
input SDIO0_CMD_I;
output SDIO0_CMD_T;
input [3:0] SDIO0_DATA_I;
output [3:0] SDIO0_DATA_O;
output [3:0] SDIO0_DATA_T;
output SDIO0_LED;
input SDIO0_CDN;
input SDIO0_WP;
output SDIO0_BUSPOW;
output [2:0] SDIO0_BUSVOLT;
output SDIO1_CLK;
input SDIO1_CLK_FB;
output SDIO1_CMD_O;
input SDIO1_CMD_I;
output SDIO1_CMD_T;
input [3:0] SDIO1_DATA_I;
output [3:0] SDIO1_DATA_O;
output [3:0] SDIO1_DATA_T;
output SDIO1_LED;
input SDIO1_CDN;
input SDIO1_WP;
output SDIO1_BUSPOW;
output [2:0] SDIO1_BUSVOLT;
input SPI0_SCLK_I;
output SPI0_SCLK_O;
output SPI0_SCLK_T;
input SPI0_MOSI_I;
output SPI0_MOSI_O;
output SPI0_MOSI_T;
input SPI0_MISO_I;
output SPI0_MISO_O;
output SPI0_MISO_T;
input SPI0_SS_I;
output SPI0_SS_O;
output SPI0_SS1_O;
output SPI0_SS2_O;
output SPI0_SS_T;
input SPI1_SCLK_I;
output SPI1_SCLK_O;
output SPI1_SCLK_T;
input SPI1_MOSI_I;
output SPI1_MOSI_O;
output SPI1_MOSI_T;
input SPI1_MISO_I;
output SPI1_MISO_O;
output SPI1_MISO_T;
input SPI1_SS_I;
output SPI1_SS_O;
output SPI1_SS1_O;
output SPI1_SS2_O;
output SPI1_SS_T;
output UART0_DTRN;
output UART0_RTSN;
output UART0_TX;
input UART0_CTSN;
input UART0_DCDN;
input UART0_DSRN;
input UART0_RIN;
input UART0_RX;
output UART1_DTRN;
output UART1_RTSN;
output UART1_TX;
input UART1_CTSN;
input UART1_DCDN;
input UART1_DSRN;
input UART1_RIN;
input UART1_RX;
output TTC0_WAVE0_OUT;
output TTC0_WAVE1_OUT;
output TTC0_WAVE2_OUT;
input TTC0_CLK0_IN;
input TTC0_CLK1_IN;
input TTC0_CLK2_IN;
output TTC1_WAVE0_OUT;
output TTC1_WAVE1_OUT;
output TTC1_WAVE2_OUT;
input TTC1_CLK0_IN;
input TTC1_CLK1_IN;
input TTC1_CLK2_IN;
input WDT_CLK_IN;
output WDT_RST_OUT;
input TRACE_CLK;
output TRACE_CTL;
output [31:0] TRACE_DATA;
output [1:0] USB0_PORT_INDCTL;
output [1:0] USB1_PORT_INDCTL;
output USB0_VBUS_PWRSELECT;
output USB1_VBUS_PWRSELECT;
input USB0_VBUS_PWRFAULT;
input USB1_VBUS_PWRFAULT;
input SRAM_INTIN;
output M_AXI_GP0_ARVALID;
output M_AXI_GP0_AWVALID;
output M_AXI_GP0_BREADY;
output M_AXI_GP0_RREADY;
output M_AXI_GP0_WLAST;
output M_AXI_GP0_WVALID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_ARID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_AWID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_WID;
output [1:0] M_AXI_GP0_ARBURST;
output [1:0] M_AXI_GP0_ARLOCK;
output [2:0] M_AXI_GP0_ARSIZE;
output [1:0] M_AXI_GP0_AWBURST;
output [1:0] M_AXI_GP0_AWLOCK;
output [2:0] M_AXI_GP0_AWSIZE;
output [2:0] M_AXI_GP0_ARPROT;
output [2:0] M_AXI_GP0_AWPROT;
output [31:0] M_AXI_GP0_ARADDR;
output [31:0] M_AXI_GP0_AWADDR;
output [31:0] M_AXI_GP0_WDATA;
output [3:0] M_AXI_GP0_ARCACHE;
output [3:0] M_AXI_GP0_ARLEN;
output [3:0] M_AXI_GP0_ARQOS;
output [3:0] M_AXI_GP0_AWCACHE;
output [3:0] M_AXI_GP0_AWLEN;
output [3:0] M_AXI_GP0_AWQOS;
output [3:0] M_AXI_GP0_WSTRB;
input M_AXI_GP0_ACLK;
input M_AXI_GP0_ARREADY;
input M_AXI_GP0_AWREADY;
input M_AXI_GP0_BVALID;
input M_AXI_GP0_RLAST;
input M_AXI_GP0_RVALID;
input M_AXI_GP0_WREADY;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_BID;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_RID;
input [1:0] M_AXI_GP0_BRESP;
input [1:0] M_AXI_GP0_RRESP;
input [31:0] M_AXI_GP0_RDATA;
output M_AXI_GP1_ARVALID;
output M_AXI_GP1_AWVALID;
output M_AXI_GP1_BREADY;
output M_AXI_GP1_RREADY;
output M_AXI_GP1_WLAST;
output M_AXI_GP1_WVALID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_ARID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_AWID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_WID;
output [1:0] M_AXI_GP1_ARBURST;
output [1:0] M_AXI_GP1_ARLOCK;
output [2:0] M_AXI_GP1_ARSIZE;
output [1:0] M_AXI_GP1_AWBURST;
output [1:0] M_AXI_GP1_AWLOCK;
output [2:0] M_AXI_GP1_AWSIZE;
output [2:0] M_AXI_GP1_ARPROT;
output [2:0] M_AXI_GP1_AWPROT;
output [31:0] M_AXI_GP1_ARADDR;
output [31:0] M_AXI_GP1_AWADDR;
output [31:0] M_AXI_GP1_WDATA;
output [3:0] M_AXI_GP1_ARCACHE;
output [3:0] M_AXI_GP1_ARLEN;
output [3:0] M_AXI_GP1_ARQOS;
output [3:0] M_AXI_GP1_AWCACHE;
output [3:0] M_AXI_GP1_AWLEN;
output [3:0] M_AXI_GP1_AWQOS;
output [3:0] M_AXI_GP1_WSTRB;
input M_AXI_GP1_ACLK;
input M_AXI_GP1_ARREADY;
input M_AXI_GP1_AWREADY;
input M_AXI_GP1_BVALID;
input M_AXI_GP1_RLAST;
input M_AXI_GP1_RVALID;
input M_AXI_GP1_WREADY;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_BID;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_RID;
input [1:0] M_AXI_GP1_BRESP;
input [1:0] M_AXI_GP1_RRESP;
input [31:0] M_AXI_GP1_RDATA;
output S_AXI_GP0_ARREADY;
output S_AXI_GP0_AWREADY;
output S_AXI_GP0_BVALID;
output S_AXI_GP0_RLAST;
output S_AXI_GP0_RVALID;
output S_AXI_GP0_WREADY;
output [1:0] S_AXI_GP0_BRESP;
output [1:0] S_AXI_GP0_RRESP;
output [31:0] S_AXI_GP0_RDATA;
output [5:0] S_AXI_GP0_BID;
output [5:0] S_AXI_GP0_RID;
input S_AXI_GP0_ACLK;
input S_AXI_GP0_ARVALID;
input S_AXI_GP0_AWVALID;
input S_AXI_GP0_BREADY;
input S_AXI_GP0_RREADY;
input S_AXI_GP0_WLAST;
input S_AXI_GP0_WVALID;
input [1:0] S_AXI_GP0_ARBURST;
input [1:0] S_AXI_GP0_ARLOCK;
input [2:0] S_AXI_GP0_ARSIZE;
input [1:0] S_AXI_GP0_AWBURST;
input [1:0] S_AXI_GP0_AWLOCK;
input [2:0] S_AXI_GP0_AWSIZE;
input [2:0] S_AXI_GP0_ARPROT;
input [2:0] S_AXI_GP0_AWPROT;
input [31:0] S_AXI_GP0_ARADDR;
input [31:0] S_AXI_GP0_AWADDR;
input [31:0] S_AXI_GP0_WDATA;
input [3:0] S_AXI_GP0_ARCACHE;
input [3:0] S_AXI_GP0_ARLEN;
input [3:0] S_AXI_GP0_ARQOS;
input [3:0] S_AXI_GP0_AWCACHE;
input [3:0] S_AXI_GP0_AWLEN;
input [3:0] S_AXI_GP0_AWQOS;
input [3:0] S_AXI_GP0_WSTRB;
input [5:0] S_AXI_GP0_ARID;
input [5:0] S_AXI_GP0_AWID;
input [5:0] S_AXI_GP0_WID;
output S_AXI_GP1_ARREADY;
output S_AXI_GP1_AWREADY;
output S_AXI_GP1_BVALID;
output S_AXI_GP1_RLAST;
output S_AXI_GP1_RVALID;
output S_AXI_GP1_WREADY;
output [1:0] S_AXI_GP1_BRESP;
output [1:0] S_AXI_GP1_RRESP;
output [31:0] S_AXI_GP1_RDATA;
output [5:0] S_AXI_GP1_BID;
output [5:0] S_AXI_GP1_RID;
input S_AXI_GP1_ACLK;
input S_AXI_GP1_ARVALID;
input S_AXI_GP1_AWVALID;
input S_AXI_GP1_BREADY;
input S_AXI_GP1_RREADY;
input S_AXI_GP1_WLAST;
input S_AXI_GP1_WVALID;
input [1:0] S_AXI_GP1_ARBURST;
input [1:0] S_AXI_GP1_ARLOCK;
input [2:0] S_AXI_GP1_ARSIZE;
input [1:0] S_AXI_GP1_AWBURST;
input [1:0] S_AXI_GP1_AWLOCK;
input [2:0] S_AXI_GP1_AWSIZE;
input [2:0] S_AXI_GP1_ARPROT;
input [2:0] S_AXI_GP1_AWPROT;
input [31:0] S_AXI_GP1_ARADDR;
input [31:0] S_AXI_GP1_AWADDR;
input [31:0] S_AXI_GP1_WDATA;
input [3:0] S_AXI_GP1_ARCACHE;
input [3:0] S_AXI_GP1_ARLEN;
input [3:0] S_AXI_GP1_ARQOS;
input [3:0] S_AXI_GP1_AWCACHE;
input [3:0] S_AXI_GP1_AWLEN;
input [3:0] S_AXI_GP1_AWQOS;
input [3:0] S_AXI_GP1_WSTRB;
input [5:0] S_AXI_GP1_ARID;
input [5:0] S_AXI_GP1_AWID;
input [5:0] S_AXI_GP1_WID;
output S_AXI_ACP_AWREADY;
output S_AXI_ACP_ARREADY;
output S_AXI_ACP_BVALID;
output S_AXI_ACP_RLAST;
output S_AXI_ACP_RVALID;
output S_AXI_ACP_WREADY;
output [1:0] S_AXI_ACP_BRESP;
output [1:0] S_AXI_ACP_RRESP;
output [2:0] S_AXI_ACP_BID;
output [2:0] S_AXI_ACP_RID;
output [63:0] S_AXI_ACP_RDATA;
input S_AXI_ACP_ACLK;
input S_AXI_ACP_ARVALID;
input S_AXI_ACP_AWVALID;
input S_AXI_ACP_BREADY;
input S_AXI_ACP_RREADY;
input S_AXI_ACP_WLAST;
input S_AXI_ACP_WVALID;
input [2:0] S_AXI_ACP_ARID;
input [2:0] S_AXI_ACP_ARPROT;
input [2:0] S_AXI_ACP_AWID;
input [2:0] S_AXI_ACP_AWPROT;
input [2:0] S_AXI_ACP_WID;
input [31:0] S_AXI_ACP_ARADDR;
input [31:0] S_AXI_ACP_AWADDR;
input [3:0] S_AXI_ACP_ARCACHE;
input [3:0] S_AXI_ACP_ARLEN;
input [3:0] S_AXI_ACP_ARQOS;
input [3:0] S_AXI_ACP_AWCACHE;
input [3:0] S_AXI_ACP_AWLEN;
input [3:0] S_AXI_ACP_AWQOS;
input [1:0] S_AXI_ACP_ARBURST;
input [1:0] S_AXI_ACP_ARLOCK;
input [2:0] S_AXI_ACP_ARSIZE;
input [1:0] S_AXI_ACP_AWBURST;
input [1:0] S_AXI_ACP_AWLOCK;
input [2:0] S_AXI_ACP_AWSIZE;
input [4:0] S_AXI_ACP_ARUSER;
input [4:0] S_AXI_ACP_AWUSER;
input [63:0] S_AXI_ACP_WDATA;
input [7:0] S_AXI_ACP_WSTRB;
output S_AXI_HP0_ARREADY;
output S_AXI_HP0_AWREADY;
output S_AXI_HP0_BVALID;
output S_AXI_HP0_RLAST;
output S_AXI_HP0_RVALID;
output S_AXI_HP0_WREADY;
output [1:0] S_AXI_HP0_BRESP;
output [1:0] S_AXI_HP0_RRESP;
output [5:0] S_AXI_HP0_BID;
output [5:0] S_AXI_HP0_RID;
output [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_RDATA;
output [7:0] S_AXI_HP0_RCOUNT;
output [7:0] S_AXI_HP0_WCOUNT;
output [2:0] S_AXI_HP0_RACOUNT;
output [5:0] S_AXI_HP0_WACOUNT;
input S_AXI_HP0_ACLK;
input S_AXI_HP0_ARVALID;
input S_AXI_HP0_AWVALID;
input S_AXI_HP0_BREADY;
input S_AXI_HP0_RDISSUECAP1_EN;
input S_AXI_HP0_RREADY;
input S_AXI_HP0_WLAST;
input S_AXI_HP0_WRISSUECAP1_EN;
input S_AXI_HP0_WVALID;
input [1:0] S_AXI_HP0_ARBURST;
input [1:0] S_AXI_HP0_ARLOCK;
input [2:0] S_AXI_HP0_ARSIZE;
input [1:0] S_AXI_HP0_AWBURST;
input [1:0] S_AXI_HP0_AWLOCK;
input [2:0] S_AXI_HP0_AWSIZE;
input [2:0] S_AXI_HP0_ARPROT;
input [2:0] S_AXI_HP0_AWPROT;
input [31:0] S_AXI_HP0_ARADDR;
input [31:0] S_AXI_HP0_AWADDR;
input [3:0] S_AXI_HP0_ARCACHE;
input [3:0] S_AXI_HP0_ARLEN;
input [3:0] S_AXI_HP0_ARQOS;
input [3:0] S_AXI_HP0_AWCACHE;
input [3:0] S_AXI_HP0_AWLEN;
input [3:0] S_AXI_HP0_AWQOS;
input [5:0] S_AXI_HP0_ARID;
input [5:0] S_AXI_HP0_AWID;
input [5:0] S_AXI_HP0_WID;
input [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_WDATA;
input [C_S_AXI_HP0_DATA_WIDTH/8-1:0] S_AXI_HP0_WSTRB;
output S_AXI_HP1_ARREADY;
output S_AXI_HP1_AWREADY;
output S_AXI_HP1_BVALID;
output S_AXI_HP1_RLAST;
output S_AXI_HP1_RVALID;
output S_AXI_HP1_WREADY;
output [1:0] S_AXI_HP1_BRESP;
output [1:0] S_AXI_HP1_RRESP;
output [5:0] S_AXI_HP1_BID;
output [5:0] S_AXI_HP1_RID;
output [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_RDATA;
output [7:0] S_AXI_HP1_RCOUNT;
output [7:0] S_AXI_HP1_WCOUNT;
output [2:0] S_AXI_HP1_RACOUNT;
output [5:0] S_AXI_HP1_WACOUNT;
input S_AXI_HP1_ACLK;
input S_AXI_HP1_ARVALID;
input S_AXI_HP1_AWVALID;
input S_AXI_HP1_BREADY;
input S_AXI_HP1_RDISSUECAP1_EN;
input S_AXI_HP1_RREADY;
input S_AXI_HP1_WLAST;
input S_AXI_HP1_WRISSUECAP1_EN;
input S_AXI_HP1_WVALID;
input [1:0] S_AXI_HP1_ARBURST;
input [1:0] S_AXI_HP1_ARLOCK;
input [2:0] S_AXI_HP1_ARSIZE;
input [1:0] S_AXI_HP1_AWBURST;
input [1:0] S_AXI_HP1_AWLOCK;
input [2:0] S_AXI_HP1_AWSIZE;
input [2:0] S_AXI_HP1_ARPROT;
input [2:0] S_AXI_HP1_AWPROT;
input [31:0] S_AXI_HP1_ARADDR;
input [31:0] S_AXI_HP1_AWADDR;
input [3:0] S_AXI_HP1_ARCACHE;
input [3:0] S_AXI_HP1_ARLEN;
input [3:0] S_AXI_HP1_ARQOS;
input [3:0] S_AXI_HP1_AWCACHE;
input [3:0] S_AXI_HP1_AWLEN;
input [3:0] S_AXI_HP1_AWQOS;
input [5:0] S_AXI_HP1_ARID;
input [5:0] S_AXI_HP1_AWID;
input [5:0] S_AXI_HP1_WID;
input [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_WDATA;
input [C_S_AXI_HP1_DATA_WIDTH/8-1:0] S_AXI_HP1_WSTRB;
output S_AXI_HP2_ARREADY;
output S_AXI_HP2_AWREADY;
output S_AXI_HP2_BVALID;
output S_AXI_HP2_RLAST;
output S_AXI_HP2_RVALID;
output S_AXI_HP2_WREADY;
output [1:0] S_AXI_HP2_BRESP;
output [1:0] S_AXI_HP2_RRESP;
output [5:0] S_AXI_HP2_BID;
output [5:0] S_AXI_HP2_RID;
output [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_RDATA;
output [7:0] S_AXI_HP2_RCOUNT;
output [7:0] S_AXI_HP2_WCOUNT;
output [2:0] S_AXI_HP2_RACOUNT;
output [5:0] S_AXI_HP2_WACOUNT;
input S_AXI_HP2_ACLK;
input S_AXI_HP2_ARVALID;
input S_AXI_HP2_AWVALID;
input S_AXI_HP2_BREADY;
input S_AXI_HP2_RDISSUECAP1_EN;
input S_AXI_HP2_RREADY;
input S_AXI_HP2_WLAST;
input S_AXI_HP2_WRISSUECAP1_EN;
input S_AXI_HP2_WVALID;
input [1:0] S_AXI_HP2_ARBURST;
input [1:0] S_AXI_HP2_ARLOCK;
input [2:0] S_AXI_HP2_ARSIZE;
input [1:0] S_AXI_HP2_AWBURST;
input [1:0] S_AXI_HP2_AWLOCK;
input [2:0] S_AXI_HP2_AWSIZE;
input [2:0] S_AXI_HP2_ARPROT;
input [2:0] S_AXI_HP2_AWPROT;
input [31:0] S_AXI_HP2_ARADDR;
input [31:0] S_AXI_HP2_AWADDR;
input [3:0] S_AXI_HP2_ARCACHE;
input [3:0] S_AXI_HP2_ARLEN;
input [3:0] S_AXI_HP2_ARQOS;
input [3:0] S_AXI_HP2_AWCACHE;
input [3:0] S_AXI_HP2_AWLEN;
input [3:0] S_AXI_HP2_AWQOS;
input [5:0] S_AXI_HP2_ARID;
input [5:0] S_AXI_HP2_AWID;
input [5:0] S_AXI_HP2_WID;
input [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_WDATA;
input [C_S_AXI_HP2_DATA_WIDTH/8-1:0] S_AXI_HP2_WSTRB;
output S_AXI_HP3_ARREADY;
output S_AXI_HP3_AWREADY;
output S_AXI_HP3_BVALID;
output S_AXI_HP3_RLAST;
output S_AXI_HP3_RVALID;
output S_AXI_HP3_WREADY;
output [1:0] S_AXI_HP3_BRESP;
output [1:0] S_AXI_HP3_RRESP;
output [5:0] S_AXI_HP3_BID;
output [5:0] S_AXI_HP3_RID;
output [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_RDATA;
output [7:0] S_AXI_HP3_RCOUNT;
output [7:0] S_AXI_HP3_WCOUNT;
output [2:0] S_AXI_HP3_RACOUNT;
output [5:0] S_AXI_HP3_WACOUNT;
input S_AXI_HP3_ACLK;
input S_AXI_HP3_ARVALID;
input S_AXI_HP3_AWVALID;
input S_AXI_HP3_BREADY;
input S_AXI_HP3_RDISSUECAP1_EN;
input S_AXI_HP3_RREADY;
input S_AXI_HP3_WLAST;
input S_AXI_HP3_WRISSUECAP1_EN;
input S_AXI_HP3_WVALID;
input [1:0] S_AXI_HP3_ARBURST;
input [1:0] S_AXI_HP3_ARLOCK;
input [2:0] S_AXI_HP3_ARSIZE;
input [1:0] S_AXI_HP3_AWBURST;
input [1:0] S_AXI_HP3_AWLOCK;
input [2:0] S_AXI_HP3_AWSIZE;
input [2:0] S_AXI_HP3_ARPROT;
input [2:0] S_AXI_HP3_AWPROT;
input [31:0] S_AXI_HP3_ARADDR;
input [31:0] S_AXI_HP3_AWADDR;
input [3:0] S_AXI_HP3_ARCACHE;
input [3:0] S_AXI_HP3_ARLEN;
input [3:0] S_AXI_HP3_ARQOS;
input [3:0] S_AXI_HP3_AWCACHE;
input [3:0] S_AXI_HP3_AWLEN;
input [3:0] S_AXI_HP3_AWQOS;
input [5:0] S_AXI_HP3_ARID;
input [5:0] S_AXI_HP3_AWID;
input [5:0] S_AXI_HP3_WID;
input [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_WDATA;
input [C_S_AXI_HP3_DATA_WIDTH/8-1:0] S_AXI_HP3_WSTRB;
output [1:0] DMA0_DATYPE;
output DMA0_DAVALID;
output DMA0_DRREADY;
input DMA0_ACLK;
input DMA0_DAREADY;
input DMA0_DRLAST;
input DMA0_DRVALID;
input [1:0] DMA0_DRTYPE;
output [1:0] DMA1_DATYPE;
output DMA1_DAVALID;
output DMA1_DRREADY;
input DMA1_ACLK;
input DMA1_DAREADY;
input DMA1_DRLAST;
input DMA1_DRVALID;
input [1:0] DMA1_DRTYPE;
output [1:0] DMA2_DATYPE;
output DMA2_DAVALID;
output DMA2_DRREADY;
input DMA2_ACLK;
input DMA2_DAREADY;
input DMA2_DRLAST;
input DMA2_DRVALID;
input DMA3_DRVALID;
output [1:0] DMA3_DATYPE;
output DMA3_DAVALID;
output DMA3_DRREADY;
input DMA3_ACLK;
input DMA3_DAREADY;
input DMA3_DRLAST;
input [1:0] DMA2_DRTYPE;
input [1:0] DMA3_DRTYPE;
input [31:0] FTMD_TRACEIN_DATA;
input FTMD_TRACEIN_VALID;
input FTMD_TRACEIN_CLK;
input [3:0] FTMD_TRACEIN_ATID;
input [3:0] FTMT_F2P_TRIG;
output [3:0] FTMT_F2P_TRIGACK;
input [31:0] FTMT_F2P_DEBUG;
input [3:0] FTMT_P2F_TRIGACK;
output [3:0] FTMT_P2F_TRIG;
output [31:0] FTMT_P2F_DEBUG;
output FCLK_CLK3;
output FCLK_CLK2;
output FCLK_CLK1;
output FCLK_CLK0;
input FCLK_CLKTRIG3_N;
input FCLK_CLKTRIG2_N;
input FCLK_CLKTRIG1_N;
input FCLK_CLKTRIG0_N;
output FCLK_RESET3_N;
output FCLK_RESET2_N;
output FCLK_RESET1_N;
output FCLK_RESET0_N;
input FPGA_IDLE_N;
input [3:0] DDR_ARB;
input [irq_width-1:0] IRQ_F2P;
input Core0_nFIQ;
input Core0_nIRQ;
input Core1_nFIQ;
input Core1_nIRQ;
output EVENT_EVENTO;
output [1:0] EVENT_STANDBYWFE;
output [1:0] EVENT_STANDBYWFI;
input EVENT_EVENTI;
inout [53:0] MIO;
inout DDR_Clk;
inout DDR_Clk_n;
inout DDR_CKE;
inout DDR_CS_n;
inout DDR_RAS_n;
inout DDR_CAS_n;
output DDR_WEB;
inout [2:0] DDR_BankAddr;
inout [14:0] DDR_Addr;
inout DDR_ODT;
inout DDR_DRSTB;
inout [31:0] DDR_DQ;
inout [3:0] DDR_DM;
inout [3:0] DDR_DQS;
inout [3:0] DDR_DQS_n;
inout DDR_VRN;
inout DDR_VRP;
/* Reset Input & Clock Input */
input PS_SRSTB;
input PS_CLK;
input PS_PORB;
output IRQ_P2F_DMAC_ABORT;
output IRQ_P2F_DMAC0;
output IRQ_P2F_DMAC1;
output IRQ_P2F_DMAC2;
output IRQ_P2F_DMAC3;
output IRQ_P2F_DMAC4;
output IRQ_P2F_DMAC5;
output IRQ_P2F_DMAC6;
output IRQ_P2F_DMAC7;
output IRQ_P2F_SMC;
output IRQ_P2F_QSPI;
output IRQ_P2F_CTI;
output IRQ_P2F_GPIO;
output IRQ_P2F_USB0;
output IRQ_P2F_ENET0;
output IRQ_P2F_ENET_WAKE0;
output IRQ_P2F_SDIO0;
output IRQ_P2F_I2C0;
output IRQ_P2F_SPI0;
output IRQ_P2F_UART0;
output IRQ_P2F_CAN0;
output IRQ_P2F_USB1;
output IRQ_P2F_ENET1;
output IRQ_P2F_ENET_WAKE1;
output IRQ_P2F_SDIO1;
output IRQ_P2F_I2C1;
output IRQ_P2F_SPI1;
output IRQ_P2F_UART1;
output IRQ_P2F_CAN1;
/* Internal wires/nets used for connectivity */
wire net_rstn;
wire net_sw_clk;
wire net_ocm_clk;
wire net_arbiter_clk;
wire net_axi_mgp0_rstn;
wire net_axi_mgp1_rstn;
wire net_axi_gp0_rstn;
wire net_axi_gp1_rstn;
wire net_axi_hp0_rstn;
wire net_axi_hp1_rstn;
wire net_axi_hp2_rstn;
wire net_axi_hp3_rstn;
wire net_axi_acp_rstn;
wire [4:0] net_axi_acp_awuser;
wire [4:0] net_axi_acp_aruser;
/* Dummy */
assign net_axi_acp_awuser = S_AXI_ACP_AWUSER;
assign net_axi_acp_aruser = S_AXI_ACP_ARUSER;
/* Global variables */
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1;
/* local variable acting as semaphore for wait_mem_update and wait_reg_update task */
reg mem_update_key = 1;
reg reg_update_key_0 = 1;
reg reg_update_key_1 = 1;
/* assignments and semantic checks for unused ports */
`include "processing_system7_bfm_v2_0_5_unused_ports.v"
/* include api definition */
`include "processing_system7_bfm_v2_0_5_apis.v"
/* Reset Generator */
processing_system7_bfm_v2_0_5_gen_reset gen_rst(.por_rst_n(PS_PORB),
.sys_rst_n(PS_SRSTB),
.rst_out_n(net_rstn),
.m_axi_gp0_clk(M_AXI_GP0_ACLK),
.m_axi_gp1_clk(M_AXI_GP1_ACLK),
.s_axi_gp0_clk(S_AXI_GP0_ACLK),
.s_axi_gp1_clk(S_AXI_GP1_ACLK),
.s_axi_hp0_clk(S_AXI_HP0_ACLK),
.s_axi_hp1_clk(S_AXI_HP1_ACLK),
.s_axi_hp2_clk(S_AXI_HP2_ACLK),
.s_axi_hp3_clk(S_AXI_HP3_ACLK),
.s_axi_acp_clk(S_AXI_ACP_ACLK),
.m_axi_gp0_rstn(net_axi_mgp0_rstn),
.m_axi_gp1_rstn(net_axi_mgp1_rstn),
.s_axi_gp0_rstn(net_axi_gp0_rstn),
.s_axi_gp1_rstn(net_axi_gp1_rstn),
.s_axi_hp0_rstn(net_axi_hp0_rstn),
.s_axi_hp1_rstn(net_axi_hp1_rstn),
.s_axi_hp2_rstn(net_axi_hp2_rstn),
.s_axi_hp3_rstn(net_axi_hp3_rstn),
.s_axi_acp_rstn(net_axi_acp_rstn),
.fclk_reset3_n(FCLK_RESET3_N),
.fclk_reset2_n(FCLK_RESET2_N),
.fclk_reset1_n(FCLK_RESET1_N),
.fclk_reset0_n(FCLK_RESET0_N),
.fpga_acp_reset_n(), ////S_AXI_ACP_ARESETN), (These are removed from Zynq IP)
.fpga_gp_m0_reset_n(), ////M_AXI_GP0_ARESETN),
.fpga_gp_m1_reset_n(), ////M_AXI_GP1_ARESETN),
.fpga_gp_s0_reset_n(), ////S_AXI_GP0_ARESETN),
.fpga_gp_s1_reset_n(), ////S_AXI_GP1_ARESETN),
.fpga_hp_s0_reset_n(), ////S_AXI_HP0_ARESETN),
.fpga_hp_s1_reset_n(), ////S_AXI_HP1_ARESETN),
.fpga_hp_s2_reset_n(), ////S_AXI_HP2_ARESETN),
.fpga_hp_s3_reset_n() ////S_AXI_HP3_ARESETN)
);
/* Clock Generator */
processing_system7_bfm_v2_0_5_gen_clock #(C_FCLK_CLK3_FREQ, C_FCLK_CLK2_FREQ, C_FCLK_CLK1_FREQ, C_FCLK_CLK0_FREQ)
gen_clk(.ps_clk(PS_CLK),
.sw_clk(net_sw_clk),
.fclk_clk3(FCLK_CLK3),
.fclk_clk2(FCLK_CLK2),
.fclk_clk1(FCLK_CLK1),
.fclk_clk0(FCLK_CLK0)
);
wire net_wr_ack_ocm_gp0, net_wr_ack_ddr_gp0, net_wr_ack_ocm_gp1, net_wr_ack_ddr_gp1;
wire net_wr_dv_ocm_gp0, net_wr_dv_ddr_gp0, net_wr_dv_ocm_gp1, net_wr_dv_ddr_gp1;
wire [max_burst_bits-1:0] net_wr_data_gp0, net_wr_data_gp1;
wire [addr_width-1:0] net_wr_addr_gp0, net_wr_addr_gp1;
wire [max_burst_bytes_width:0] net_wr_bytes_gp0, net_wr_bytes_gp1;
wire [axi_qos_width-1:0] net_wr_qos_gp0, net_wr_qos_gp1;
wire net_rd_req_ddr_gp0, net_rd_req_ddr_gp1;
wire net_rd_req_ocm_gp0, net_rd_req_ocm_gp1;
wire net_rd_req_reg_gp0, net_rd_req_reg_gp1;
wire [addr_width-1:0] net_rd_addr_gp0, net_rd_addr_gp1;
wire [max_burst_bytes_width:0] net_rd_bytes_gp0, net_rd_bytes_gp1;
wire [max_burst_bits-1:0] net_rd_data_ddr_gp0, net_rd_data_ddr_gp1;
wire [max_burst_bits-1:0] net_rd_data_ocm_gp0, net_rd_data_ocm_gp1;
wire [max_burst_bits-1:0] net_rd_data_reg_gp0, net_rd_data_reg_gp1;
wire net_rd_dv_ddr_gp0, net_rd_dv_ddr_gp1;
wire net_rd_dv_ocm_gp0, net_rd_dv_ocm_gp1;
wire net_rd_dv_reg_gp0, net_rd_dv_reg_gp1;
wire [axi_qos_width-1:0] net_rd_qos_gp0, net_rd_qos_gp1;
wire net_wr_ack_ddr_hp0, net_wr_ack_ddr_hp1, net_wr_ack_ddr_hp2, net_wr_ack_ddr_hp3;
wire net_wr_ack_ocm_hp0, net_wr_ack_ocm_hp1, net_wr_ack_ocm_hp2, net_wr_ack_ocm_hp3;
wire net_wr_dv_ddr_hp0, net_wr_dv_ddr_hp1, net_wr_dv_ddr_hp2, net_wr_dv_ddr_hp3;
wire net_wr_dv_ocm_hp0, net_wr_dv_ocm_hp1, net_wr_dv_ocm_hp2, net_wr_dv_ocm_hp3;
wire [max_burst_bits-1:0] net_wr_data_hp0, net_wr_data_hp1, net_wr_data_hp2, net_wr_data_hp3;
wire [addr_width-1:0] net_wr_addr_hp0, net_wr_addr_hp1, net_wr_addr_hp2, net_wr_addr_hp3;
wire [max_burst_bytes_width:0] net_wr_bytes_hp0, net_wr_bytes_hp1, net_wr_bytes_hp2, net_wr_bytes_hp3;
wire [axi_qos_width-1:0] net_wr_qos_hp0, net_wr_qos_hp1, net_wr_qos_hp2, net_wr_qos_hp3;
wire net_rd_req_ddr_hp0, net_rd_req_ddr_hp1, net_rd_req_ddr_hp2, net_rd_req_ddr_hp3;
wire net_rd_req_ocm_hp0, net_rd_req_ocm_hp1, net_rd_req_ocm_hp2, net_rd_req_ocm_hp3;
wire [addr_width-1:0] net_rd_addr_hp0, net_rd_addr_hp1, net_rd_addr_hp2, net_rd_addr_hp3;
wire [max_burst_bytes_width:0] net_rd_bytes_hp0, net_rd_bytes_hp1, net_rd_bytes_hp2, net_rd_bytes_hp3;
wire [max_burst_bits-1:0] net_rd_data_ddr_hp0, net_rd_data_ddr_hp1, net_rd_data_ddr_hp2, net_rd_data_ddr_hp3;
wire [max_burst_bits-1:0] net_rd_data_ocm_hp0, net_rd_data_ocm_hp1, net_rd_data_ocm_hp2, net_rd_data_ocm_hp3;
wire net_rd_dv_ddr_hp0, net_rd_dv_ddr_hp1, net_rd_dv_ddr_hp2, net_rd_dv_ddr_hp3;
wire net_rd_dv_ocm_hp0, net_rd_dv_ocm_hp1, net_rd_dv_ocm_hp2, net_rd_dv_ocm_hp3;
wire [axi_qos_width-1:0] net_rd_qos_hp0, net_rd_qos_hp1, net_rd_qos_hp2, net_rd_qos_hp3;
wire net_wr_ack_ddr_acp,net_wr_ack_ocm_acp;
wire net_wr_dv_ddr_acp,net_wr_dv_ocm_acp;
wire [max_burst_bits-1:0] net_wr_data_acp;
wire [addr_width-1:0] net_wr_addr_acp;
wire [max_burst_bytes_width:0] net_wr_bytes_acp;
wire [axi_qos_width-1:0] net_wr_qos_acp;
wire net_rd_req_ddr_acp, net_rd_req_ocm_acp;
wire [addr_width-1:0] net_rd_addr_acp;
wire [max_burst_bytes_width:0] net_rd_bytes_acp;
wire [max_burst_bits-1:0] net_rd_data_ddr_acp;
wire [max_burst_bits-1:0] net_rd_data_ocm_acp;
wire net_rd_dv_ddr_acp,net_rd_dv_ocm_acp;
wire [axi_qos_width-1:0] net_rd_qos_acp;
wire ocm_wr_ack_port0;
wire ocm_wr_dv_port0;
wire ocm_rd_req_port0;
wire ocm_rd_dv_port0;
wire [addr_width-1:0] ocm_wr_addr_port0;
wire [max_burst_bits-1:0] ocm_wr_data_port0;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port0;
wire [addr_width-1:0] ocm_rd_addr_port0;
wire [max_burst_bits-1:0] ocm_rd_data_port0;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port0;
wire [axi_qos_width-1:0] ocm_wr_qos_port0;
wire [axi_qos_width-1:0] ocm_rd_qos_port0;
wire ocm_wr_ack_port1;
wire ocm_wr_dv_port1;
wire ocm_rd_req_port1;
wire ocm_rd_dv_port1;
wire [addr_width-1:0] ocm_wr_addr_port1;
wire [max_burst_bits-1:0] ocm_wr_data_port1;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port1;
wire [addr_width-1:0] ocm_rd_addr_port1;
wire [max_burst_bits-1:0] ocm_rd_data_port1;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port1;
wire [axi_qos_width-1:0] ocm_wr_qos_port1;
wire [axi_qos_width-1:0] ocm_rd_qos_port1;
wire ddr_wr_ack_port0;
wire ddr_wr_dv_port0;
wire ddr_rd_req_port0;
wire ddr_rd_dv_port0;
wire[addr_width-1:0] ddr_wr_addr_port0;
wire[max_burst_bits-1:0] ddr_wr_data_port0;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port0;
wire[addr_width-1:0] ddr_rd_addr_port0;
wire[max_burst_bits-1:0] ddr_rd_data_port0;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port0;
wire [axi_qos_width-1:0] ddr_wr_qos_port0;
wire [axi_qos_width-1:0] ddr_rd_qos_port0;
wire ddr_wr_ack_port1;
wire ddr_wr_dv_port1;
wire ddr_rd_req_port1;
wire ddr_rd_dv_port1;
wire[addr_width-1:0] ddr_wr_addr_port1;
wire[max_burst_bits-1:0] ddr_wr_data_port1;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port1;
wire[addr_width-1:0] ddr_rd_addr_port1;
wire[max_burst_bits-1:0] ddr_rd_data_port1;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port1;
wire[axi_qos_width-1:0] ddr_wr_qos_port1;
wire[axi_qos_width-1:0] ddr_rd_qos_port1;
wire ddr_wr_ack_port2;
wire ddr_wr_dv_port2;
wire ddr_rd_req_port2;
wire ddr_rd_dv_port2;
wire[addr_width-1:0] ddr_wr_addr_port2;
wire[max_burst_bits-1:0] ddr_wr_data_port2;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port2;
wire[addr_width-1:0] ddr_rd_addr_port2;
wire[max_burst_bits-1:0] ddr_rd_data_port2;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port2;
wire[axi_qos_width-1:0] ddr_wr_qos_port2;
wire[axi_qos_width-1:0] ddr_rd_qos_port2;
wire ddr_wr_ack_port3;
wire ddr_wr_dv_port3;
wire ddr_rd_req_port3;
wire ddr_rd_dv_port3;
wire[addr_width-1:0] ddr_wr_addr_port3;
wire[max_burst_bits-1:0] ddr_wr_data_port3;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port3;
wire[addr_width-1:0] ddr_rd_addr_port3;
wire[max_burst_bits-1:0] ddr_rd_data_port3;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port3;
wire[axi_qos_width-1:0] ddr_wr_qos_port3;
wire[axi_qos_width-1:0] ddr_rd_qos_port3;
wire reg_rd_req_port0;
wire reg_rd_dv_port0;
wire[addr_width-1:0] reg_rd_addr_port0;
wire[max_burst_bits-1:0] reg_rd_data_port0;
wire[max_burst_bytes_width:0] reg_rd_bytes_port0;
wire [axi_qos_width-1:0] reg_rd_qos_port0;
wire reg_rd_req_port1;
wire reg_rd_dv_port1;
wire[addr_width-1:0] reg_rd_addr_port1;
wire[max_burst_bits-1:0] reg_rd_data_port1;
wire[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire [axi_qos_width-1:0] reg_rd_qos_port1;
wire [11:0] M_AXI_GP0_AWID_FULL;
wire [11:0] M_AXI_GP0_WID_FULL;
wire [11:0] M_AXI_GP0_ARID_FULL;
wire [11:0] M_AXI_GP0_BID_FULL;
wire [11:0] M_AXI_GP0_RID_FULL;
wire [11:0] M_AXI_GP1_AWID_FULL;
wire [11:0] M_AXI_GP1_WID_FULL;
wire [11:0] M_AXI_GP1_ARID_FULL;
wire [11:0] M_AXI_GP1_BID_FULL;
wire [11:0] M_AXI_GP1_RID_FULL;
function [5:0] compress_id;
input [11:0] id;
begin
compress_id = id[5:0];
end
endfunction
function [11:0] uncompress_id;
input [5:0] id;
begin
uncompress_id = {6'b110000, id[5:0]};
end
endfunction
assign M_AXI_GP0_AWID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_AWID_FULL) : M_AXI_GP0_AWID_FULL;
assign M_AXI_GP0_WID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_WID_FULL) : M_AXI_GP0_WID_FULL;
assign M_AXI_GP0_ARID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_ARID_FULL) : M_AXI_GP0_ARID_FULL;
assign M_AXI_GP0_BID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_BID) : M_AXI_GP0_BID;
assign M_AXI_GP0_RID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_RID) : M_AXI_GP0_RID;
assign M_AXI_GP1_AWID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_AWID_FULL) : M_AXI_GP1_AWID_FULL;
assign M_AXI_GP1_WID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_WID_FULL) : M_AXI_GP1_WID_FULL;
assign M_AXI_GP1_ARID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_ARID_FULL) : M_AXI_GP1_ARID_FULL;
assign M_AXI_GP1_BID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_BID) : M_AXI_GP1_BID;
assign M_AXI_GP1_RID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_RID) : M_AXI_GP1_RID;
processing_system7_bfm_v2_0_5_interconnect_model icm (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
.w_qos_gp0(net_wr_qos_gp0),
.w_qos_gp1(net_wr_qos_gp1),
.w_qos_hp0(net_wr_qos_hp0),
.w_qos_hp1(net_wr_qos_hp1),
.w_qos_hp2(net_wr_qos_hp2),
.w_qos_hp3(net_wr_qos_hp3),
.r_qos_gp0(net_rd_qos_gp0),
.r_qos_gp1(net_rd_qos_gp1),
.r_qos_hp0(net_rd_qos_hp0),
.r_qos_hp1(net_rd_qos_hp1),
.r_qos_hp2(net_rd_qos_hp2),
.r_qos_hp3(net_rd_qos_hp3),
/* GP Slave ports access */
.wr_ack_ddr_gp0(net_wr_ack_ddr_gp0),
.wr_ack_ocm_gp0(net_wr_ack_ocm_gp0),
.wr_data_gp0(net_wr_data_gp0),
.wr_addr_gp0(net_wr_addr_gp0),
.wr_bytes_gp0(net_wr_bytes_gp0),
.wr_dv_ddr_gp0(net_wr_dv_ddr_gp0),
.wr_dv_ocm_gp0(net_wr_dv_ocm_gp0),
.rd_req_ddr_gp0(net_rd_req_ddr_gp0),
.rd_req_ocm_gp0(net_rd_req_ocm_gp0),
.rd_req_reg_gp0(net_rd_req_reg_gp0),
.rd_addr_gp0(net_rd_addr_gp0),
.rd_bytes_gp0(net_rd_bytes_gp0),
.rd_data_ddr_gp0(net_rd_data_ddr_gp0),
.rd_data_ocm_gp0(net_rd_data_ocm_gp0),
.rd_data_reg_gp0(net_rd_data_reg_gp0),
.rd_dv_ddr_gp0(net_rd_dv_ddr_gp0),
.rd_dv_ocm_gp0(net_rd_dv_ocm_gp0),
.rd_dv_reg_gp0(net_rd_dv_reg_gp0),
.wr_ack_ddr_gp1(net_wr_ack_ddr_gp1),
.wr_ack_ocm_gp1(net_wr_ack_ocm_gp1),
.wr_data_gp1(net_wr_data_gp1),
.wr_addr_gp1(net_wr_addr_gp1),
.wr_bytes_gp1(net_wr_bytes_gp1),
.wr_dv_ddr_gp1(net_wr_dv_ddr_gp1),
.wr_dv_ocm_gp1(net_wr_dv_ocm_gp1),
.rd_req_ddr_gp1(net_rd_req_ddr_gp1),
.rd_req_ocm_gp1(net_rd_req_ocm_gp1),
.rd_req_reg_gp1(net_rd_req_reg_gp1),
.rd_addr_gp1(net_rd_addr_gp1),
.rd_bytes_gp1(net_rd_bytes_gp1),
.rd_data_ddr_gp1(net_rd_data_ddr_gp1),
.rd_data_ocm_gp1(net_rd_data_ocm_gp1),
.rd_data_reg_gp1(net_rd_data_reg_gp1),
.rd_dv_ddr_gp1(net_rd_dv_ddr_gp1),
.rd_dv_ocm_gp1(net_rd_dv_ocm_gp1),
.rd_dv_reg_gp1(net_rd_dv_reg_gp1),
/* HP Slave ports access */
.wr_ack_ddr_hp0(net_wr_ack_ddr_hp0),
.wr_ack_ocm_hp0(net_wr_ack_ocm_hp0),
.wr_data_hp0(net_wr_data_hp0),
.wr_addr_hp0(net_wr_addr_hp0),
.wr_bytes_hp0(net_wr_bytes_hp0),
.wr_dv_ddr_hp0(net_wr_dv_ddr_hp0),
.wr_dv_ocm_hp0(net_wr_dv_ocm_hp0),
.rd_req_ddr_hp0(net_rd_req_ddr_hp0),
.rd_req_ocm_hp0(net_rd_req_ocm_hp0),
.rd_addr_hp0(net_rd_addr_hp0),
.rd_bytes_hp0(net_rd_bytes_hp0),
.rd_data_ddr_hp0(net_rd_data_ddr_hp0),
.rd_data_ocm_hp0(net_rd_data_ocm_hp0),
.rd_dv_ddr_hp0(net_rd_dv_ddr_hp0),
.rd_dv_ocm_hp0(net_rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(net_wr_ack_ddr_hp1),
.wr_ack_ocm_hp1(net_wr_ack_ocm_hp1),
.wr_data_hp1(net_wr_data_hp1),
.wr_addr_hp1(net_wr_addr_hp1),
.wr_bytes_hp1(net_wr_bytes_hp1),
.wr_dv_ddr_hp1(net_wr_dv_ddr_hp1),
.wr_dv_ocm_hp1(net_wr_dv_ocm_hp1),
.rd_req_ddr_hp1(net_rd_req_ddr_hp1),
.rd_req_ocm_hp1(net_rd_req_ocm_hp1),
.rd_addr_hp1(net_rd_addr_hp1),
.rd_bytes_hp1(net_rd_bytes_hp1),
.rd_data_ddr_hp1(net_rd_data_ddr_hp1),
.rd_data_ocm_hp1(net_rd_data_ocm_hp1),
.rd_dv_ocm_hp1(net_rd_dv_ocm_hp1),
.rd_dv_ddr_hp1(net_rd_dv_ddr_hp1),
.wr_ack_ddr_hp2(net_wr_ack_ddr_hp2),
.wr_ack_ocm_hp2(net_wr_ack_ocm_hp2),
.wr_data_hp2(net_wr_data_hp2),
.wr_addr_hp2(net_wr_addr_hp2),
.wr_bytes_hp2(net_wr_bytes_hp2),
.wr_dv_ocm_hp2(net_wr_dv_ocm_hp2),
.wr_dv_ddr_hp2(net_wr_dv_ddr_hp2),
.rd_req_ddr_hp2(net_rd_req_ddr_hp2),
.rd_req_ocm_hp2(net_rd_req_ocm_hp2),
.rd_addr_hp2(net_rd_addr_hp2),
.rd_bytes_hp2(net_rd_bytes_hp2),
.rd_data_ddr_hp2(net_rd_data_ddr_hp2),
.rd_data_ocm_hp2(net_rd_data_ocm_hp2),
.rd_dv_ddr_hp2(net_rd_dv_ddr_hp2),
.rd_dv_ocm_hp2(net_rd_dv_ocm_hp2),
.wr_ack_ocm_hp3(net_wr_ack_ocm_hp3),
.wr_ack_ddr_hp3(net_wr_ack_ddr_hp3),
.wr_data_hp3(net_wr_data_hp3),
.wr_addr_hp3(net_wr_addr_hp3),
.wr_bytes_hp3(net_wr_bytes_hp3),
.wr_dv_ddr_hp3(net_wr_dv_ddr_hp3),
.wr_dv_ocm_hp3(net_wr_dv_ocm_hp3),
.rd_req_ddr_hp3(net_rd_req_ddr_hp3),
.rd_req_ocm_hp3(net_rd_req_ocm_hp3),
.rd_addr_hp3(net_rd_addr_hp3),
.rd_bytes_hp3(net_rd_bytes_hp3),
.rd_data_ddr_hp3(net_rd_data_ddr_hp3),
.rd_data_ocm_hp3(net_rd_data_ocm_hp3),
.rd_dv_ddr_hp3(net_rd_dv_ddr_hp3),
.rd_dv_ocm_hp3(net_rd_dv_ocm_hp3),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1(ddr_wr_ack_port1),
.ddr_wr_dv_port1(ddr_wr_dv_port1),
.ddr_rd_req_port1(ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1(ddr_wr_qos_port1),
.ddr_rd_qos_port1(ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1),
/* Goes to port 0 of REG */
.reg_rd_qos_port1 (reg_rd_qos_port1) ,
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ddrc ddrc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of DDR */
.ddr_wr_ack_port0 (ddr_wr_ack_port0),
.ddr_wr_dv_port0 (ddr_wr_dv_port0),
.ddr_rd_req_port0 (ddr_rd_req_port0),
.ddr_rd_dv_port0 (ddr_rd_dv_port0),
.ddr_wr_addr_port0(net_wr_addr_acp),
.ddr_wr_data_port0(net_wr_data_acp),
.ddr_wr_bytes_port0(net_wr_bytes_acp),
.ddr_rd_addr_port0(net_rd_addr_acp),
.ddr_rd_bytes_port0(net_rd_bytes_acp),
.ddr_rd_data_port0(ddr_rd_data_port0),
.ddr_wr_qos_port0 (net_wr_qos_acp),
.ddr_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1 (ddr_wr_ack_port1),
.ddr_wr_dv_port1 (ddr_wr_dv_port1),
.ddr_rd_req_port1 (ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1 (ddr_wr_qos_port1),
.ddr_rd_qos_port1 (ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3)
);
processing_system7_bfm_v2_0_5_ocmc ocmc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port0 (ocm_wr_ack_port0),
.ocm_wr_dv_port0 (ocm_wr_dv_port0),
.ocm_rd_req_port0 (ocm_rd_req_port0),
.ocm_rd_dv_port0 (ocm_rd_dv_port0),
.ocm_wr_addr_port0(net_wr_addr_acp),
.ocm_wr_data_port0(net_wr_data_acp),
.ocm_wr_bytes_port0(net_wr_bytes_acp),
.ocm_rd_addr_port0(net_rd_addr_acp),
.ocm_rd_bytes_port0(net_rd_bytes_acp),
.ocm_rd_data_port0(ocm_rd_data_port0),
.ocm_wr_qos_port0 (net_wr_qos_acp),
.ocm_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1)
);
processing_system7_bfm_v2_0_5_regc regc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of REG */
.reg_rd_req_port0 (reg_rd_req_port0),
.reg_rd_dv_port0 (reg_rd_dv_port0),
.reg_rd_addr_port0(net_rd_addr_acp),
.reg_rd_bytes_port0(net_rd_bytes_acp),
.reg_rd_data_port0(reg_rd_data_port0),
.reg_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of REG */
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1),
.reg_rd_qos_port1(reg_rd_qos_port1)
);
/* include axi_gp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_gp.v"
/* include axi_hp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_hp.v"
/* include axi_acp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_acp.v"
endmodule
|
module processing_system7_bfm_v2_0_5_processing_system7_bfm
(
CAN0_PHY_TX,
CAN0_PHY_RX,
CAN1_PHY_TX,
CAN1_PHY_RX,
ENET0_GMII_TX_EN,
ENET0_GMII_TX_ER,
ENET0_MDIO_MDC,
ENET0_MDIO_O,
ENET0_MDIO_T,
ENET0_PTP_DELAY_REQ_RX,
ENET0_PTP_DELAY_REQ_TX,
ENET0_PTP_PDELAY_REQ_RX,
ENET0_PTP_PDELAY_REQ_TX,
ENET0_PTP_PDELAY_RESP_RX,
ENET0_PTP_PDELAY_RESP_TX,
ENET0_PTP_SYNC_FRAME_RX,
ENET0_PTP_SYNC_FRAME_TX,
ENET0_SOF_RX,
ENET0_SOF_TX,
ENET0_GMII_TXD,
ENET0_GMII_COL,
ENET0_GMII_CRS,
ENET0_EXT_INTIN,
ENET0_GMII_RX_CLK,
ENET0_GMII_RX_DV,
ENET0_GMII_RX_ER,
ENET0_GMII_TX_CLK,
ENET0_MDIO_I,
ENET0_GMII_RXD,
ENET1_GMII_TX_EN,
ENET1_GMII_TX_ER,
ENET1_MDIO_MDC,
ENET1_MDIO_O,
ENET1_MDIO_T,
ENET1_PTP_DELAY_REQ_RX,
ENET1_PTP_DELAY_REQ_TX,
ENET1_PTP_PDELAY_REQ_RX,
ENET1_PTP_PDELAY_REQ_TX,
ENET1_PTP_PDELAY_RESP_RX,
ENET1_PTP_PDELAY_RESP_TX,
ENET1_PTP_SYNC_FRAME_RX,
ENET1_PTP_SYNC_FRAME_TX,
ENET1_SOF_RX,
ENET1_SOF_TX,
ENET1_GMII_TXD,
ENET1_GMII_COL,
ENET1_GMII_CRS,
ENET1_EXT_INTIN,
ENET1_GMII_RX_CLK,
ENET1_GMII_RX_DV,
ENET1_GMII_RX_ER,
ENET1_GMII_TX_CLK,
ENET1_MDIO_I,
ENET1_GMII_RXD,
GPIO_I,
GPIO_O,
GPIO_T,
I2C0_SDA_I,
I2C0_SDA_O,
I2C0_SDA_T,
I2C0_SCL_I,
I2C0_SCL_O,
I2C0_SCL_T,
I2C1_SDA_I,
I2C1_SDA_O,
I2C1_SDA_T,
I2C1_SCL_I,
I2C1_SCL_O,
I2C1_SCL_T,
PJTAG_TCK,
PJTAG_TMS,
PJTAG_TD_I,
PJTAG_TD_T,
PJTAG_TD_O,
SDIO0_CLK,
SDIO0_CLK_FB,
SDIO0_CMD_O,
SDIO0_CMD_I,
SDIO0_CMD_T,
SDIO0_DATA_I,
SDIO0_DATA_O,
SDIO0_DATA_T,
SDIO0_LED,
SDIO0_CDN,
SDIO0_WP,
SDIO0_BUSPOW,
SDIO0_BUSVOLT,
SDIO1_CLK,
SDIO1_CLK_FB,
SDIO1_CMD_O,
SDIO1_CMD_I,
SDIO1_CMD_T,
SDIO1_DATA_I,
SDIO1_DATA_O,
SDIO1_DATA_T,
SDIO1_LED,
SDIO1_CDN,
SDIO1_WP,
SDIO1_BUSPOW,
SDIO1_BUSVOLT,
SPI0_SCLK_I,
SPI0_SCLK_O,
SPI0_SCLK_T,
SPI0_MOSI_I,
SPI0_MOSI_O,
SPI0_MOSI_T,
SPI0_MISO_I,
SPI0_MISO_O,
SPI0_MISO_T,
SPI0_SS_I,
SPI0_SS_O,
SPI0_SS1_O,
SPI0_SS2_O,
SPI0_SS_T,
SPI1_SCLK_I,
SPI1_SCLK_O,
SPI1_SCLK_T,
SPI1_MOSI_I,
SPI1_MOSI_O,
SPI1_MOSI_T,
SPI1_MISO_I,
SPI1_MISO_O,
SPI1_MISO_T,
SPI1_SS_I,
SPI1_SS_O,
SPI1_SS1_O,
SPI1_SS2_O,
SPI1_SS_T,
UART0_DTRN,
UART0_RTSN,
UART0_TX,
UART0_CTSN,
UART0_DCDN,
UART0_DSRN,
UART0_RIN,
UART0_RX,
UART1_DTRN,
UART1_RTSN,
UART1_TX,
UART1_CTSN,
UART1_DCDN,
UART1_DSRN,
UART1_RIN,
UART1_RX,
TTC0_WAVE0_OUT,
TTC0_WAVE1_OUT,
TTC0_WAVE2_OUT,
TTC0_CLK0_IN,
TTC0_CLK1_IN,
TTC0_CLK2_IN,
TTC1_WAVE0_OUT,
TTC1_WAVE1_OUT,
TTC1_WAVE2_OUT,
TTC1_CLK0_IN,
TTC1_CLK1_IN,
TTC1_CLK2_IN,
WDT_CLK_IN,
WDT_RST_OUT,
TRACE_CLK,
TRACE_CTL,
TRACE_DATA,
USB0_PORT_INDCTL,
USB1_PORT_INDCTL,
USB0_VBUS_PWRSELECT,
USB1_VBUS_PWRSELECT,
USB0_VBUS_PWRFAULT,
USB1_VBUS_PWRFAULT,
SRAM_INTIN,
M_AXI_GP0_ARVALID,
M_AXI_GP0_AWVALID,
M_AXI_GP0_BREADY,
M_AXI_GP0_RREADY,
M_AXI_GP0_WLAST,
M_AXI_GP0_WVALID,
M_AXI_GP0_ARID,
M_AXI_GP0_AWID,
M_AXI_GP0_WID,
M_AXI_GP0_ARBURST,
M_AXI_GP0_ARLOCK,
M_AXI_GP0_ARSIZE,
M_AXI_GP0_AWBURST,
M_AXI_GP0_AWLOCK,
M_AXI_GP0_AWSIZE,
M_AXI_GP0_ARPROT,
M_AXI_GP0_AWPROT,
M_AXI_GP0_ARADDR,
M_AXI_GP0_AWADDR,
M_AXI_GP0_WDATA,
M_AXI_GP0_ARCACHE,
M_AXI_GP0_ARLEN,
M_AXI_GP0_ARQOS,
M_AXI_GP0_AWCACHE,
M_AXI_GP0_AWLEN,
M_AXI_GP0_AWQOS,
M_AXI_GP0_WSTRB,
M_AXI_GP0_ACLK,
M_AXI_GP0_ARREADY,
M_AXI_GP0_AWREADY,
M_AXI_GP0_BVALID,
M_AXI_GP0_RLAST,
M_AXI_GP0_RVALID,
M_AXI_GP0_WREADY,
M_AXI_GP0_BID,
M_AXI_GP0_RID,
M_AXI_GP0_BRESP,
M_AXI_GP0_RRESP,
M_AXI_GP0_RDATA,
M_AXI_GP1_ARVALID,
M_AXI_GP1_AWVALID,
M_AXI_GP1_BREADY,
M_AXI_GP1_RREADY,
M_AXI_GP1_WLAST,
M_AXI_GP1_WVALID,
M_AXI_GP1_ARID,
M_AXI_GP1_AWID,
M_AXI_GP1_WID,
M_AXI_GP1_ARBURST,
M_AXI_GP1_ARLOCK,
M_AXI_GP1_ARSIZE,
M_AXI_GP1_AWBURST,
M_AXI_GP1_AWLOCK,
M_AXI_GP1_AWSIZE,
M_AXI_GP1_ARPROT,
M_AXI_GP1_AWPROT,
M_AXI_GP1_ARADDR,
M_AXI_GP1_AWADDR,
M_AXI_GP1_WDATA,
M_AXI_GP1_ARCACHE,
M_AXI_GP1_ARLEN,
M_AXI_GP1_ARQOS,
M_AXI_GP1_AWCACHE,
M_AXI_GP1_AWLEN,
M_AXI_GP1_AWQOS,
M_AXI_GP1_WSTRB,
M_AXI_GP1_ACLK,
M_AXI_GP1_ARREADY,
M_AXI_GP1_AWREADY,
M_AXI_GP1_BVALID,
M_AXI_GP1_RLAST,
M_AXI_GP1_RVALID,
M_AXI_GP1_WREADY,
M_AXI_GP1_BID,
M_AXI_GP1_RID,
M_AXI_GP1_BRESP,
M_AXI_GP1_RRESP,
M_AXI_GP1_RDATA,
S_AXI_GP0_ARREADY,
S_AXI_GP0_AWREADY,
S_AXI_GP0_BVALID,
S_AXI_GP0_RLAST,
S_AXI_GP0_RVALID,
S_AXI_GP0_WREADY,
S_AXI_GP0_BRESP,
S_AXI_GP0_RRESP,
S_AXI_GP0_RDATA,
S_AXI_GP0_BID,
S_AXI_GP0_RID,
S_AXI_GP0_ACLK,
S_AXI_GP0_ARVALID,
S_AXI_GP0_AWVALID,
S_AXI_GP0_BREADY,
S_AXI_GP0_RREADY,
S_AXI_GP0_WLAST,
S_AXI_GP0_WVALID,
S_AXI_GP0_ARBURST,
S_AXI_GP0_ARLOCK,
S_AXI_GP0_ARSIZE,
S_AXI_GP0_AWBURST,
S_AXI_GP0_AWLOCK,
S_AXI_GP0_AWSIZE,
S_AXI_GP0_ARPROT,
S_AXI_GP0_AWPROT,
S_AXI_GP0_ARADDR,
S_AXI_GP0_AWADDR,
S_AXI_GP0_WDATA,
S_AXI_GP0_ARCACHE,
S_AXI_GP0_ARLEN,
S_AXI_GP0_ARQOS,
S_AXI_GP0_AWCACHE,
S_AXI_GP0_AWLEN,
S_AXI_GP0_AWQOS,
S_AXI_GP0_WSTRB,
S_AXI_GP0_ARID,
S_AXI_GP0_AWID,
S_AXI_GP0_WID,
S_AXI_GP1_ARREADY,
S_AXI_GP1_AWREADY,
S_AXI_GP1_BVALID,
S_AXI_GP1_RLAST,
S_AXI_GP1_RVALID,
S_AXI_GP1_WREADY,
S_AXI_GP1_BRESP,
S_AXI_GP1_RRESP,
S_AXI_GP1_RDATA,
S_AXI_GP1_BID,
S_AXI_GP1_RID,
S_AXI_GP1_ACLK,
S_AXI_GP1_ARVALID,
S_AXI_GP1_AWVALID,
S_AXI_GP1_BREADY,
S_AXI_GP1_RREADY,
S_AXI_GP1_WLAST,
S_AXI_GP1_WVALID,
S_AXI_GP1_ARBURST,
S_AXI_GP1_ARLOCK,
S_AXI_GP1_ARSIZE,
S_AXI_GP1_AWBURST,
S_AXI_GP1_AWLOCK,
S_AXI_GP1_AWSIZE,
S_AXI_GP1_ARPROT,
S_AXI_GP1_AWPROT,
S_AXI_GP1_ARADDR,
S_AXI_GP1_AWADDR,
S_AXI_GP1_WDATA,
S_AXI_GP1_ARCACHE,
S_AXI_GP1_ARLEN,
S_AXI_GP1_ARQOS,
S_AXI_GP1_AWCACHE,
S_AXI_GP1_AWLEN,
S_AXI_GP1_AWQOS,
S_AXI_GP1_WSTRB,
S_AXI_GP1_ARID,
S_AXI_GP1_AWID,
S_AXI_GP1_WID,
S_AXI_ACP_AWREADY,
S_AXI_ACP_ARREADY,
S_AXI_ACP_BVALID,
S_AXI_ACP_RLAST,
S_AXI_ACP_RVALID,
S_AXI_ACP_WREADY,
S_AXI_ACP_BRESP,
S_AXI_ACP_RRESP,
S_AXI_ACP_BID,
S_AXI_ACP_RID,
S_AXI_ACP_RDATA,
S_AXI_ACP_ACLK,
S_AXI_ACP_ARVALID,
S_AXI_ACP_AWVALID,
S_AXI_ACP_BREADY,
S_AXI_ACP_RREADY,
S_AXI_ACP_WLAST,
S_AXI_ACP_WVALID,
S_AXI_ACP_ARID,
S_AXI_ACP_ARPROT,
S_AXI_ACP_AWID,
S_AXI_ACP_AWPROT,
S_AXI_ACP_WID,
S_AXI_ACP_ARADDR,
S_AXI_ACP_AWADDR,
S_AXI_ACP_ARCACHE,
S_AXI_ACP_ARLEN,
S_AXI_ACP_ARQOS,
S_AXI_ACP_AWCACHE,
S_AXI_ACP_AWLEN,
S_AXI_ACP_AWQOS,
S_AXI_ACP_ARBURST,
S_AXI_ACP_ARLOCK,
S_AXI_ACP_ARSIZE,
S_AXI_ACP_AWBURST,
S_AXI_ACP_AWLOCK,
S_AXI_ACP_AWSIZE,
S_AXI_ACP_ARUSER,
S_AXI_ACP_AWUSER,
S_AXI_ACP_WDATA,
S_AXI_ACP_WSTRB,
S_AXI_HP0_ARREADY,
S_AXI_HP0_AWREADY,
S_AXI_HP0_BVALID,
S_AXI_HP0_RLAST,
S_AXI_HP0_RVALID,
S_AXI_HP0_WREADY,
S_AXI_HP0_BRESP,
S_AXI_HP0_RRESP,
S_AXI_HP0_BID,
S_AXI_HP0_RID,
S_AXI_HP0_RDATA,
S_AXI_HP0_RCOUNT,
S_AXI_HP0_WCOUNT,
S_AXI_HP0_RACOUNT,
S_AXI_HP0_WACOUNT,
S_AXI_HP0_ACLK,
S_AXI_HP0_ARVALID,
S_AXI_HP0_AWVALID,
S_AXI_HP0_BREADY,
S_AXI_HP0_RDISSUECAP1_EN,
S_AXI_HP0_RREADY,
S_AXI_HP0_WLAST,
S_AXI_HP0_WRISSUECAP1_EN,
S_AXI_HP0_WVALID,
S_AXI_HP0_ARBURST,
S_AXI_HP0_ARLOCK,
S_AXI_HP0_ARSIZE,
S_AXI_HP0_AWBURST,
S_AXI_HP0_AWLOCK,
S_AXI_HP0_AWSIZE,
S_AXI_HP0_ARPROT,
S_AXI_HP0_AWPROT,
S_AXI_HP0_ARADDR,
S_AXI_HP0_AWADDR,
S_AXI_HP0_ARCACHE,
S_AXI_HP0_ARLEN,
S_AXI_HP0_ARQOS,
S_AXI_HP0_AWCACHE,
S_AXI_HP0_AWLEN,
S_AXI_HP0_AWQOS,
S_AXI_HP0_ARID,
S_AXI_HP0_AWID,
S_AXI_HP0_WID,
S_AXI_HP0_WDATA,
S_AXI_HP0_WSTRB,
S_AXI_HP1_ARREADY,
S_AXI_HP1_AWREADY,
S_AXI_HP1_BVALID,
S_AXI_HP1_RLAST,
S_AXI_HP1_RVALID,
S_AXI_HP1_WREADY,
S_AXI_HP1_BRESP,
S_AXI_HP1_RRESP,
S_AXI_HP1_BID,
S_AXI_HP1_RID,
S_AXI_HP1_RDATA,
S_AXI_HP1_RCOUNT,
S_AXI_HP1_WCOUNT,
S_AXI_HP1_RACOUNT,
S_AXI_HP1_WACOUNT,
S_AXI_HP1_ACLK,
S_AXI_HP1_ARVALID,
S_AXI_HP1_AWVALID,
S_AXI_HP1_BREADY,
S_AXI_HP1_RDISSUECAP1_EN,
S_AXI_HP1_RREADY,
S_AXI_HP1_WLAST,
S_AXI_HP1_WRISSUECAP1_EN,
S_AXI_HP1_WVALID,
S_AXI_HP1_ARBURST,
S_AXI_HP1_ARLOCK,
S_AXI_HP1_ARSIZE,
S_AXI_HP1_AWBURST,
S_AXI_HP1_AWLOCK,
S_AXI_HP1_AWSIZE,
S_AXI_HP1_ARPROT,
S_AXI_HP1_AWPROT,
S_AXI_HP1_ARADDR,
S_AXI_HP1_AWADDR,
S_AXI_HP1_ARCACHE,
S_AXI_HP1_ARLEN,
S_AXI_HP1_ARQOS,
S_AXI_HP1_AWCACHE,
S_AXI_HP1_AWLEN,
S_AXI_HP1_AWQOS,
S_AXI_HP1_ARID,
S_AXI_HP1_AWID,
S_AXI_HP1_WID,
S_AXI_HP1_WDATA,
S_AXI_HP1_WSTRB,
S_AXI_HP2_ARREADY,
S_AXI_HP2_AWREADY,
S_AXI_HP2_BVALID,
S_AXI_HP2_RLAST,
S_AXI_HP2_RVALID,
S_AXI_HP2_WREADY,
S_AXI_HP2_BRESP,
S_AXI_HP2_RRESP,
S_AXI_HP2_BID,
S_AXI_HP2_RID,
S_AXI_HP2_RDATA,
S_AXI_HP2_RCOUNT,
S_AXI_HP2_WCOUNT,
S_AXI_HP2_RACOUNT,
S_AXI_HP2_WACOUNT,
S_AXI_HP2_ACLK,
S_AXI_HP2_ARVALID,
S_AXI_HP2_AWVALID,
S_AXI_HP2_BREADY,
S_AXI_HP2_RDISSUECAP1_EN,
S_AXI_HP2_RREADY,
S_AXI_HP2_WLAST,
S_AXI_HP2_WRISSUECAP1_EN,
S_AXI_HP2_WVALID,
S_AXI_HP2_ARBURST,
S_AXI_HP2_ARLOCK,
S_AXI_HP2_ARSIZE,
S_AXI_HP2_AWBURST,
S_AXI_HP2_AWLOCK,
S_AXI_HP2_AWSIZE,
S_AXI_HP2_ARPROT,
S_AXI_HP2_AWPROT,
S_AXI_HP2_ARADDR,
S_AXI_HP2_AWADDR,
S_AXI_HP2_ARCACHE,
S_AXI_HP2_ARLEN,
S_AXI_HP2_ARQOS,
S_AXI_HP2_AWCACHE,
S_AXI_HP2_AWLEN,
S_AXI_HP2_AWQOS,
S_AXI_HP2_ARID,
S_AXI_HP2_AWID,
S_AXI_HP2_WID,
S_AXI_HP2_WDATA,
S_AXI_HP2_WSTRB,
S_AXI_HP3_ARREADY,
S_AXI_HP3_AWREADY,
S_AXI_HP3_BVALID,
S_AXI_HP3_RLAST,
S_AXI_HP3_RVALID,
S_AXI_HP3_WREADY,
S_AXI_HP3_BRESP,
S_AXI_HP3_RRESP,
S_AXI_HP3_BID,
S_AXI_HP3_RID,
S_AXI_HP3_RDATA,
S_AXI_HP3_RCOUNT,
S_AXI_HP3_WCOUNT,
S_AXI_HP3_RACOUNT,
S_AXI_HP3_WACOUNT,
S_AXI_HP3_ACLK,
S_AXI_HP3_ARVALID,
S_AXI_HP3_AWVALID,
S_AXI_HP3_BREADY,
S_AXI_HP3_RDISSUECAP1_EN,
S_AXI_HP3_RREADY,
S_AXI_HP3_WLAST,
S_AXI_HP3_WRISSUECAP1_EN,
S_AXI_HP3_WVALID,
S_AXI_HP3_ARBURST,
S_AXI_HP3_ARLOCK,
S_AXI_HP3_ARSIZE,
S_AXI_HP3_AWBURST,
S_AXI_HP3_AWLOCK,
S_AXI_HP3_AWSIZE,
S_AXI_HP3_ARPROT,
S_AXI_HP3_AWPROT,
S_AXI_HP3_ARADDR,
S_AXI_HP3_AWADDR,
S_AXI_HP3_ARCACHE,
S_AXI_HP3_ARLEN,
S_AXI_HP3_ARQOS,
S_AXI_HP3_AWCACHE,
S_AXI_HP3_AWLEN,
S_AXI_HP3_AWQOS,
S_AXI_HP3_ARID,
S_AXI_HP3_AWID,
S_AXI_HP3_WID,
S_AXI_HP3_WDATA,
S_AXI_HP3_WSTRB,
DMA0_DATYPE,
DMA0_DAVALID,
DMA0_DRREADY,
DMA0_ACLK,
DMA0_DAREADY,
DMA0_DRLAST,
DMA0_DRVALID,
DMA0_DRTYPE,
DMA1_DATYPE,
DMA1_DAVALID,
DMA1_DRREADY,
DMA1_ACLK,
DMA1_DAREADY,
DMA1_DRLAST,
DMA1_DRVALID,
DMA1_DRTYPE,
DMA2_DATYPE,
DMA2_DAVALID,
DMA2_DRREADY,
DMA2_ACLK,
DMA2_DAREADY,
DMA2_DRLAST,
DMA2_DRVALID,
DMA3_DRVALID,
DMA3_DATYPE,
DMA3_DAVALID,
DMA3_DRREADY,
DMA3_ACLK,
DMA3_DAREADY,
DMA3_DRLAST,
DMA2_DRTYPE,
DMA3_DRTYPE,
FTMD_TRACEIN_DATA,
FTMD_TRACEIN_VALID,
FTMD_TRACEIN_CLK,
FTMD_TRACEIN_ATID,
FTMT_F2P_TRIG,
FTMT_F2P_TRIGACK,
FTMT_F2P_DEBUG,
FTMT_P2F_TRIGACK,
FTMT_P2F_TRIG,
FTMT_P2F_DEBUG,
FCLK_CLK3,
FCLK_CLK2,
FCLK_CLK1,
FCLK_CLK0,
FCLK_CLKTRIG3_N,
FCLK_CLKTRIG2_N,
FCLK_CLKTRIG1_N,
FCLK_CLKTRIG0_N,
FCLK_RESET3_N,
FCLK_RESET2_N,
FCLK_RESET1_N,
FCLK_RESET0_N,
FPGA_IDLE_N,
DDR_ARB,
IRQ_F2P,
Core0_nFIQ,
Core0_nIRQ,
Core1_nFIQ,
Core1_nIRQ,
EVENT_EVENTO,
EVENT_STANDBYWFE,
EVENT_STANDBYWFI,
EVENT_EVENTI,
MIO,
DDR_Clk,
DDR_Clk_n,
DDR_CKE,
DDR_CS_n,
DDR_RAS_n,
DDR_CAS_n,
DDR_WEB,
DDR_BankAddr,
DDR_Addr,
DDR_ODT,
DDR_DRSTB,
DDR_DQ,
DDR_DM,
DDR_DQS,
DDR_DQS_n,
DDR_VRN,
DDR_VRP,
PS_SRSTB,
PS_CLK,
PS_PORB,
IRQ_P2F_DMAC_ABORT,
IRQ_P2F_DMAC0,
IRQ_P2F_DMAC1,
IRQ_P2F_DMAC2,
IRQ_P2F_DMAC3,
IRQ_P2F_DMAC4,
IRQ_P2F_DMAC5,
IRQ_P2F_DMAC6,
IRQ_P2F_DMAC7,
IRQ_P2F_SMC,
IRQ_P2F_QSPI,
IRQ_P2F_CTI,
IRQ_P2F_GPIO,
IRQ_P2F_USB0,
IRQ_P2F_ENET0,
IRQ_P2F_ENET_WAKE0,
IRQ_P2F_SDIO0,
IRQ_P2F_I2C0,
IRQ_P2F_SPI0,
IRQ_P2F_UART0,
IRQ_P2F_CAN0,
IRQ_P2F_USB1,
IRQ_P2F_ENET1,
IRQ_P2F_ENET_WAKE1,
IRQ_P2F_SDIO1,
IRQ_P2F_I2C1,
IRQ_P2F_SPI1,
IRQ_P2F_UART1,
IRQ_P2F_CAN1
);
/* parameters for gen_clk */
parameter C_FCLK_CLK0_FREQ = 50;
parameter C_FCLK_CLK1_FREQ = 50;
parameter C_FCLK_CLK3_FREQ = 50;
parameter C_FCLK_CLK2_FREQ = 50;
parameter C_HIGH_OCM_EN = 0;
/* parameters for HP ports */
parameter C_USE_S_AXI_HP0 = 0;
parameter C_USE_S_AXI_HP1 = 0;
parameter C_USE_S_AXI_HP2 = 0;
parameter C_USE_S_AXI_HP3 = 0;
parameter C_S_AXI_HP0_DATA_WIDTH = 32;
parameter C_S_AXI_HP1_DATA_WIDTH = 32;
parameter C_S_AXI_HP2_DATA_WIDTH = 32;
parameter C_S_AXI_HP3_DATA_WIDTH = 32;
parameter C_M_AXI_GP0_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP1_THREAD_ID_WIDTH = 12;
parameter C_M_AXI_GP0_ENABLE_STATIC_REMAP = 0;
parameter C_M_AXI_GP1_ENABLE_STATIC_REMAP = 0;
/* Do we need these
parameter C_S_AXI_HP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP2_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_HP3_ENABLE_HIGHOCM = 0; */
parameter C_S_AXI_HP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP2_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP3_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_HP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP2_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_HP3_HIGHADDR = 32'hFFFF_FFFF;
/* parameters for GP and ACP ports */
parameter C_USE_M_AXI_GP0 = 0;
parameter C_USE_M_AXI_GP1 = 0;
parameter C_USE_S_AXI_GP0 = 1;
parameter C_USE_S_AXI_GP1 = 1;
/* Do we need this?
parameter C_M_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_M_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP0_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_GP1_ENABLE_HIGHOCM = 0;
parameter C_S_AXI_ACP_ENABLE_HIGHOCM = 0;*/
parameter C_S_AXI_GP0_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP1_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_GP0_HIGHADDR = 32'hFFFF_FFFF;
parameter C_S_AXI_GP1_HIGHADDR = 32'hFFFF_FFFF;
parameter C_USE_S_AXI_ACP = 1;
parameter C_S_AXI_ACP_BASEADDR = 32'h0000_0000;
parameter C_S_AXI_ACP_HIGHADDR = 32'hFFFF_FFFF;
`include "processing_system7_bfm_v2_0_5_local_params.v"
output CAN0_PHY_TX;
input CAN0_PHY_RX;
output CAN1_PHY_TX;
input CAN1_PHY_RX;
output ENET0_GMII_TX_EN;
output ENET0_GMII_TX_ER;
output ENET0_MDIO_MDC;
output ENET0_MDIO_O;
output ENET0_MDIO_T;
output ENET0_PTP_DELAY_REQ_RX;
output ENET0_PTP_DELAY_REQ_TX;
output ENET0_PTP_PDELAY_REQ_RX;
output ENET0_PTP_PDELAY_REQ_TX;
output ENET0_PTP_PDELAY_RESP_RX;
output ENET0_PTP_PDELAY_RESP_TX;
output ENET0_PTP_SYNC_FRAME_RX;
output ENET0_PTP_SYNC_FRAME_TX;
output ENET0_SOF_RX;
output ENET0_SOF_TX;
output [7:0] ENET0_GMII_TXD;
input ENET0_GMII_COL;
input ENET0_GMII_CRS;
input ENET0_EXT_INTIN;
input ENET0_GMII_RX_CLK;
input ENET0_GMII_RX_DV;
input ENET0_GMII_RX_ER;
input ENET0_GMII_TX_CLK;
input ENET0_MDIO_I;
input [7:0] ENET0_GMII_RXD;
output ENET1_GMII_TX_EN;
output ENET1_GMII_TX_ER;
output ENET1_MDIO_MDC;
output ENET1_MDIO_O;
output ENET1_MDIO_T;
output ENET1_PTP_DELAY_REQ_RX;
output ENET1_PTP_DELAY_REQ_TX;
output ENET1_PTP_PDELAY_REQ_RX;
output ENET1_PTP_PDELAY_REQ_TX;
output ENET1_PTP_PDELAY_RESP_RX;
output ENET1_PTP_PDELAY_RESP_TX;
output ENET1_PTP_SYNC_FRAME_RX;
output ENET1_PTP_SYNC_FRAME_TX;
output ENET1_SOF_RX;
output ENET1_SOF_TX;
output [7:0] ENET1_GMII_TXD;
input ENET1_GMII_COL;
input ENET1_GMII_CRS;
input ENET1_EXT_INTIN;
input ENET1_GMII_RX_CLK;
input ENET1_GMII_RX_DV;
input ENET1_GMII_RX_ER;
input ENET1_GMII_TX_CLK;
input ENET1_MDIO_I;
input [7:0] ENET1_GMII_RXD;
input [63:0] GPIO_I;
output [63:0] GPIO_O;
output [63:0] GPIO_T;
input I2C0_SDA_I;
output I2C0_SDA_O;
output I2C0_SDA_T;
input I2C0_SCL_I;
output I2C0_SCL_O;
output I2C0_SCL_T;
input I2C1_SDA_I;
output I2C1_SDA_O;
output I2C1_SDA_T;
input I2C1_SCL_I;
output I2C1_SCL_O;
output I2C1_SCL_T;
input PJTAG_TCK;
input PJTAG_TMS;
input PJTAG_TD_I;
output PJTAG_TD_T;
output PJTAG_TD_O;
output SDIO0_CLK;
input SDIO0_CLK_FB;
output SDIO0_CMD_O;
input SDIO0_CMD_I;
output SDIO0_CMD_T;
input [3:0] SDIO0_DATA_I;
output [3:0] SDIO0_DATA_O;
output [3:0] SDIO0_DATA_T;
output SDIO0_LED;
input SDIO0_CDN;
input SDIO0_WP;
output SDIO0_BUSPOW;
output [2:0] SDIO0_BUSVOLT;
output SDIO1_CLK;
input SDIO1_CLK_FB;
output SDIO1_CMD_O;
input SDIO1_CMD_I;
output SDIO1_CMD_T;
input [3:0] SDIO1_DATA_I;
output [3:0] SDIO1_DATA_O;
output [3:0] SDIO1_DATA_T;
output SDIO1_LED;
input SDIO1_CDN;
input SDIO1_WP;
output SDIO1_BUSPOW;
output [2:0] SDIO1_BUSVOLT;
input SPI0_SCLK_I;
output SPI0_SCLK_O;
output SPI0_SCLK_T;
input SPI0_MOSI_I;
output SPI0_MOSI_O;
output SPI0_MOSI_T;
input SPI0_MISO_I;
output SPI0_MISO_O;
output SPI0_MISO_T;
input SPI0_SS_I;
output SPI0_SS_O;
output SPI0_SS1_O;
output SPI0_SS2_O;
output SPI0_SS_T;
input SPI1_SCLK_I;
output SPI1_SCLK_O;
output SPI1_SCLK_T;
input SPI1_MOSI_I;
output SPI1_MOSI_O;
output SPI1_MOSI_T;
input SPI1_MISO_I;
output SPI1_MISO_O;
output SPI1_MISO_T;
input SPI1_SS_I;
output SPI1_SS_O;
output SPI1_SS1_O;
output SPI1_SS2_O;
output SPI1_SS_T;
output UART0_DTRN;
output UART0_RTSN;
output UART0_TX;
input UART0_CTSN;
input UART0_DCDN;
input UART0_DSRN;
input UART0_RIN;
input UART0_RX;
output UART1_DTRN;
output UART1_RTSN;
output UART1_TX;
input UART1_CTSN;
input UART1_DCDN;
input UART1_DSRN;
input UART1_RIN;
input UART1_RX;
output TTC0_WAVE0_OUT;
output TTC0_WAVE1_OUT;
output TTC0_WAVE2_OUT;
input TTC0_CLK0_IN;
input TTC0_CLK1_IN;
input TTC0_CLK2_IN;
output TTC1_WAVE0_OUT;
output TTC1_WAVE1_OUT;
output TTC1_WAVE2_OUT;
input TTC1_CLK0_IN;
input TTC1_CLK1_IN;
input TTC1_CLK2_IN;
input WDT_CLK_IN;
output WDT_RST_OUT;
input TRACE_CLK;
output TRACE_CTL;
output [31:0] TRACE_DATA;
output [1:0] USB0_PORT_INDCTL;
output [1:0] USB1_PORT_INDCTL;
output USB0_VBUS_PWRSELECT;
output USB1_VBUS_PWRSELECT;
input USB0_VBUS_PWRFAULT;
input USB1_VBUS_PWRFAULT;
input SRAM_INTIN;
output M_AXI_GP0_ARVALID;
output M_AXI_GP0_AWVALID;
output M_AXI_GP0_BREADY;
output M_AXI_GP0_RREADY;
output M_AXI_GP0_WLAST;
output M_AXI_GP0_WVALID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_ARID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_AWID;
output [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_WID;
output [1:0] M_AXI_GP0_ARBURST;
output [1:0] M_AXI_GP0_ARLOCK;
output [2:0] M_AXI_GP0_ARSIZE;
output [1:0] M_AXI_GP0_AWBURST;
output [1:0] M_AXI_GP0_AWLOCK;
output [2:0] M_AXI_GP0_AWSIZE;
output [2:0] M_AXI_GP0_ARPROT;
output [2:0] M_AXI_GP0_AWPROT;
output [31:0] M_AXI_GP0_ARADDR;
output [31:0] M_AXI_GP0_AWADDR;
output [31:0] M_AXI_GP0_WDATA;
output [3:0] M_AXI_GP0_ARCACHE;
output [3:0] M_AXI_GP0_ARLEN;
output [3:0] M_AXI_GP0_ARQOS;
output [3:0] M_AXI_GP0_AWCACHE;
output [3:0] M_AXI_GP0_AWLEN;
output [3:0] M_AXI_GP0_AWQOS;
output [3:0] M_AXI_GP0_WSTRB;
input M_AXI_GP0_ACLK;
input M_AXI_GP0_ARREADY;
input M_AXI_GP0_AWREADY;
input M_AXI_GP0_BVALID;
input M_AXI_GP0_RLAST;
input M_AXI_GP0_RVALID;
input M_AXI_GP0_WREADY;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_BID;
input [C_M_AXI_GP0_THREAD_ID_WIDTH-1:0] M_AXI_GP0_RID;
input [1:0] M_AXI_GP0_BRESP;
input [1:0] M_AXI_GP0_RRESP;
input [31:0] M_AXI_GP0_RDATA;
output M_AXI_GP1_ARVALID;
output M_AXI_GP1_AWVALID;
output M_AXI_GP1_BREADY;
output M_AXI_GP1_RREADY;
output M_AXI_GP1_WLAST;
output M_AXI_GP1_WVALID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_ARID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_AWID;
output [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_WID;
output [1:0] M_AXI_GP1_ARBURST;
output [1:0] M_AXI_GP1_ARLOCK;
output [2:0] M_AXI_GP1_ARSIZE;
output [1:0] M_AXI_GP1_AWBURST;
output [1:0] M_AXI_GP1_AWLOCK;
output [2:0] M_AXI_GP1_AWSIZE;
output [2:0] M_AXI_GP1_ARPROT;
output [2:0] M_AXI_GP1_AWPROT;
output [31:0] M_AXI_GP1_ARADDR;
output [31:0] M_AXI_GP1_AWADDR;
output [31:0] M_AXI_GP1_WDATA;
output [3:0] M_AXI_GP1_ARCACHE;
output [3:0] M_AXI_GP1_ARLEN;
output [3:0] M_AXI_GP1_ARQOS;
output [3:0] M_AXI_GP1_AWCACHE;
output [3:0] M_AXI_GP1_AWLEN;
output [3:0] M_AXI_GP1_AWQOS;
output [3:0] M_AXI_GP1_WSTRB;
input M_AXI_GP1_ACLK;
input M_AXI_GP1_ARREADY;
input M_AXI_GP1_AWREADY;
input M_AXI_GP1_BVALID;
input M_AXI_GP1_RLAST;
input M_AXI_GP1_RVALID;
input M_AXI_GP1_WREADY;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_BID;
input [C_M_AXI_GP1_THREAD_ID_WIDTH-1:0] M_AXI_GP1_RID;
input [1:0] M_AXI_GP1_BRESP;
input [1:0] M_AXI_GP1_RRESP;
input [31:0] M_AXI_GP1_RDATA;
output S_AXI_GP0_ARREADY;
output S_AXI_GP0_AWREADY;
output S_AXI_GP0_BVALID;
output S_AXI_GP0_RLAST;
output S_AXI_GP0_RVALID;
output S_AXI_GP0_WREADY;
output [1:0] S_AXI_GP0_BRESP;
output [1:0] S_AXI_GP0_RRESP;
output [31:0] S_AXI_GP0_RDATA;
output [5:0] S_AXI_GP0_BID;
output [5:0] S_AXI_GP0_RID;
input S_AXI_GP0_ACLK;
input S_AXI_GP0_ARVALID;
input S_AXI_GP0_AWVALID;
input S_AXI_GP0_BREADY;
input S_AXI_GP0_RREADY;
input S_AXI_GP0_WLAST;
input S_AXI_GP0_WVALID;
input [1:0] S_AXI_GP0_ARBURST;
input [1:0] S_AXI_GP0_ARLOCK;
input [2:0] S_AXI_GP0_ARSIZE;
input [1:0] S_AXI_GP0_AWBURST;
input [1:0] S_AXI_GP0_AWLOCK;
input [2:0] S_AXI_GP0_AWSIZE;
input [2:0] S_AXI_GP0_ARPROT;
input [2:0] S_AXI_GP0_AWPROT;
input [31:0] S_AXI_GP0_ARADDR;
input [31:0] S_AXI_GP0_AWADDR;
input [31:0] S_AXI_GP0_WDATA;
input [3:0] S_AXI_GP0_ARCACHE;
input [3:0] S_AXI_GP0_ARLEN;
input [3:0] S_AXI_GP0_ARQOS;
input [3:0] S_AXI_GP0_AWCACHE;
input [3:0] S_AXI_GP0_AWLEN;
input [3:0] S_AXI_GP0_AWQOS;
input [3:0] S_AXI_GP0_WSTRB;
input [5:0] S_AXI_GP0_ARID;
input [5:0] S_AXI_GP0_AWID;
input [5:0] S_AXI_GP0_WID;
output S_AXI_GP1_ARREADY;
output S_AXI_GP1_AWREADY;
output S_AXI_GP1_BVALID;
output S_AXI_GP1_RLAST;
output S_AXI_GP1_RVALID;
output S_AXI_GP1_WREADY;
output [1:0] S_AXI_GP1_BRESP;
output [1:0] S_AXI_GP1_RRESP;
output [31:0] S_AXI_GP1_RDATA;
output [5:0] S_AXI_GP1_BID;
output [5:0] S_AXI_GP1_RID;
input S_AXI_GP1_ACLK;
input S_AXI_GP1_ARVALID;
input S_AXI_GP1_AWVALID;
input S_AXI_GP1_BREADY;
input S_AXI_GP1_RREADY;
input S_AXI_GP1_WLAST;
input S_AXI_GP1_WVALID;
input [1:0] S_AXI_GP1_ARBURST;
input [1:0] S_AXI_GP1_ARLOCK;
input [2:0] S_AXI_GP1_ARSIZE;
input [1:0] S_AXI_GP1_AWBURST;
input [1:0] S_AXI_GP1_AWLOCK;
input [2:0] S_AXI_GP1_AWSIZE;
input [2:0] S_AXI_GP1_ARPROT;
input [2:0] S_AXI_GP1_AWPROT;
input [31:0] S_AXI_GP1_ARADDR;
input [31:0] S_AXI_GP1_AWADDR;
input [31:0] S_AXI_GP1_WDATA;
input [3:0] S_AXI_GP1_ARCACHE;
input [3:0] S_AXI_GP1_ARLEN;
input [3:0] S_AXI_GP1_ARQOS;
input [3:0] S_AXI_GP1_AWCACHE;
input [3:0] S_AXI_GP1_AWLEN;
input [3:0] S_AXI_GP1_AWQOS;
input [3:0] S_AXI_GP1_WSTRB;
input [5:0] S_AXI_GP1_ARID;
input [5:0] S_AXI_GP1_AWID;
input [5:0] S_AXI_GP1_WID;
output S_AXI_ACP_AWREADY;
output S_AXI_ACP_ARREADY;
output S_AXI_ACP_BVALID;
output S_AXI_ACP_RLAST;
output S_AXI_ACP_RVALID;
output S_AXI_ACP_WREADY;
output [1:0] S_AXI_ACP_BRESP;
output [1:0] S_AXI_ACP_RRESP;
output [2:0] S_AXI_ACP_BID;
output [2:0] S_AXI_ACP_RID;
output [63:0] S_AXI_ACP_RDATA;
input S_AXI_ACP_ACLK;
input S_AXI_ACP_ARVALID;
input S_AXI_ACP_AWVALID;
input S_AXI_ACP_BREADY;
input S_AXI_ACP_RREADY;
input S_AXI_ACP_WLAST;
input S_AXI_ACP_WVALID;
input [2:0] S_AXI_ACP_ARID;
input [2:0] S_AXI_ACP_ARPROT;
input [2:0] S_AXI_ACP_AWID;
input [2:0] S_AXI_ACP_AWPROT;
input [2:0] S_AXI_ACP_WID;
input [31:0] S_AXI_ACP_ARADDR;
input [31:0] S_AXI_ACP_AWADDR;
input [3:0] S_AXI_ACP_ARCACHE;
input [3:0] S_AXI_ACP_ARLEN;
input [3:0] S_AXI_ACP_ARQOS;
input [3:0] S_AXI_ACP_AWCACHE;
input [3:0] S_AXI_ACP_AWLEN;
input [3:0] S_AXI_ACP_AWQOS;
input [1:0] S_AXI_ACP_ARBURST;
input [1:0] S_AXI_ACP_ARLOCK;
input [2:0] S_AXI_ACP_ARSIZE;
input [1:0] S_AXI_ACP_AWBURST;
input [1:0] S_AXI_ACP_AWLOCK;
input [2:0] S_AXI_ACP_AWSIZE;
input [4:0] S_AXI_ACP_ARUSER;
input [4:0] S_AXI_ACP_AWUSER;
input [63:0] S_AXI_ACP_WDATA;
input [7:0] S_AXI_ACP_WSTRB;
output S_AXI_HP0_ARREADY;
output S_AXI_HP0_AWREADY;
output S_AXI_HP0_BVALID;
output S_AXI_HP0_RLAST;
output S_AXI_HP0_RVALID;
output S_AXI_HP0_WREADY;
output [1:0] S_AXI_HP0_BRESP;
output [1:0] S_AXI_HP0_RRESP;
output [5:0] S_AXI_HP0_BID;
output [5:0] S_AXI_HP0_RID;
output [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_RDATA;
output [7:0] S_AXI_HP0_RCOUNT;
output [7:0] S_AXI_HP0_WCOUNT;
output [2:0] S_AXI_HP0_RACOUNT;
output [5:0] S_AXI_HP0_WACOUNT;
input S_AXI_HP0_ACLK;
input S_AXI_HP0_ARVALID;
input S_AXI_HP0_AWVALID;
input S_AXI_HP0_BREADY;
input S_AXI_HP0_RDISSUECAP1_EN;
input S_AXI_HP0_RREADY;
input S_AXI_HP0_WLAST;
input S_AXI_HP0_WRISSUECAP1_EN;
input S_AXI_HP0_WVALID;
input [1:0] S_AXI_HP0_ARBURST;
input [1:0] S_AXI_HP0_ARLOCK;
input [2:0] S_AXI_HP0_ARSIZE;
input [1:0] S_AXI_HP0_AWBURST;
input [1:0] S_AXI_HP0_AWLOCK;
input [2:0] S_AXI_HP0_AWSIZE;
input [2:0] S_AXI_HP0_ARPROT;
input [2:0] S_AXI_HP0_AWPROT;
input [31:0] S_AXI_HP0_ARADDR;
input [31:0] S_AXI_HP0_AWADDR;
input [3:0] S_AXI_HP0_ARCACHE;
input [3:0] S_AXI_HP0_ARLEN;
input [3:0] S_AXI_HP0_ARQOS;
input [3:0] S_AXI_HP0_AWCACHE;
input [3:0] S_AXI_HP0_AWLEN;
input [3:0] S_AXI_HP0_AWQOS;
input [5:0] S_AXI_HP0_ARID;
input [5:0] S_AXI_HP0_AWID;
input [5:0] S_AXI_HP0_WID;
input [C_S_AXI_HP0_DATA_WIDTH-1:0] S_AXI_HP0_WDATA;
input [C_S_AXI_HP0_DATA_WIDTH/8-1:0] S_AXI_HP0_WSTRB;
output S_AXI_HP1_ARREADY;
output S_AXI_HP1_AWREADY;
output S_AXI_HP1_BVALID;
output S_AXI_HP1_RLAST;
output S_AXI_HP1_RVALID;
output S_AXI_HP1_WREADY;
output [1:0] S_AXI_HP1_BRESP;
output [1:0] S_AXI_HP1_RRESP;
output [5:0] S_AXI_HP1_BID;
output [5:0] S_AXI_HP1_RID;
output [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_RDATA;
output [7:0] S_AXI_HP1_RCOUNT;
output [7:0] S_AXI_HP1_WCOUNT;
output [2:0] S_AXI_HP1_RACOUNT;
output [5:0] S_AXI_HP1_WACOUNT;
input S_AXI_HP1_ACLK;
input S_AXI_HP1_ARVALID;
input S_AXI_HP1_AWVALID;
input S_AXI_HP1_BREADY;
input S_AXI_HP1_RDISSUECAP1_EN;
input S_AXI_HP1_RREADY;
input S_AXI_HP1_WLAST;
input S_AXI_HP1_WRISSUECAP1_EN;
input S_AXI_HP1_WVALID;
input [1:0] S_AXI_HP1_ARBURST;
input [1:0] S_AXI_HP1_ARLOCK;
input [2:0] S_AXI_HP1_ARSIZE;
input [1:0] S_AXI_HP1_AWBURST;
input [1:0] S_AXI_HP1_AWLOCK;
input [2:0] S_AXI_HP1_AWSIZE;
input [2:0] S_AXI_HP1_ARPROT;
input [2:0] S_AXI_HP1_AWPROT;
input [31:0] S_AXI_HP1_ARADDR;
input [31:0] S_AXI_HP1_AWADDR;
input [3:0] S_AXI_HP1_ARCACHE;
input [3:0] S_AXI_HP1_ARLEN;
input [3:0] S_AXI_HP1_ARQOS;
input [3:0] S_AXI_HP1_AWCACHE;
input [3:0] S_AXI_HP1_AWLEN;
input [3:0] S_AXI_HP1_AWQOS;
input [5:0] S_AXI_HP1_ARID;
input [5:0] S_AXI_HP1_AWID;
input [5:0] S_AXI_HP1_WID;
input [C_S_AXI_HP1_DATA_WIDTH-1:0] S_AXI_HP1_WDATA;
input [C_S_AXI_HP1_DATA_WIDTH/8-1:0] S_AXI_HP1_WSTRB;
output S_AXI_HP2_ARREADY;
output S_AXI_HP2_AWREADY;
output S_AXI_HP2_BVALID;
output S_AXI_HP2_RLAST;
output S_AXI_HP2_RVALID;
output S_AXI_HP2_WREADY;
output [1:0] S_AXI_HP2_BRESP;
output [1:0] S_AXI_HP2_RRESP;
output [5:0] S_AXI_HP2_BID;
output [5:0] S_AXI_HP2_RID;
output [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_RDATA;
output [7:0] S_AXI_HP2_RCOUNT;
output [7:0] S_AXI_HP2_WCOUNT;
output [2:0] S_AXI_HP2_RACOUNT;
output [5:0] S_AXI_HP2_WACOUNT;
input S_AXI_HP2_ACLK;
input S_AXI_HP2_ARVALID;
input S_AXI_HP2_AWVALID;
input S_AXI_HP2_BREADY;
input S_AXI_HP2_RDISSUECAP1_EN;
input S_AXI_HP2_RREADY;
input S_AXI_HP2_WLAST;
input S_AXI_HP2_WRISSUECAP1_EN;
input S_AXI_HP2_WVALID;
input [1:0] S_AXI_HP2_ARBURST;
input [1:0] S_AXI_HP2_ARLOCK;
input [2:0] S_AXI_HP2_ARSIZE;
input [1:0] S_AXI_HP2_AWBURST;
input [1:0] S_AXI_HP2_AWLOCK;
input [2:0] S_AXI_HP2_AWSIZE;
input [2:0] S_AXI_HP2_ARPROT;
input [2:0] S_AXI_HP2_AWPROT;
input [31:0] S_AXI_HP2_ARADDR;
input [31:0] S_AXI_HP2_AWADDR;
input [3:0] S_AXI_HP2_ARCACHE;
input [3:0] S_AXI_HP2_ARLEN;
input [3:0] S_AXI_HP2_ARQOS;
input [3:0] S_AXI_HP2_AWCACHE;
input [3:0] S_AXI_HP2_AWLEN;
input [3:0] S_AXI_HP2_AWQOS;
input [5:0] S_AXI_HP2_ARID;
input [5:0] S_AXI_HP2_AWID;
input [5:0] S_AXI_HP2_WID;
input [C_S_AXI_HP2_DATA_WIDTH-1:0] S_AXI_HP2_WDATA;
input [C_S_AXI_HP2_DATA_WIDTH/8-1:0] S_AXI_HP2_WSTRB;
output S_AXI_HP3_ARREADY;
output S_AXI_HP3_AWREADY;
output S_AXI_HP3_BVALID;
output S_AXI_HP3_RLAST;
output S_AXI_HP3_RVALID;
output S_AXI_HP3_WREADY;
output [1:0] S_AXI_HP3_BRESP;
output [1:0] S_AXI_HP3_RRESP;
output [5:0] S_AXI_HP3_BID;
output [5:0] S_AXI_HP3_RID;
output [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_RDATA;
output [7:0] S_AXI_HP3_RCOUNT;
output [7:0] S_AXI_HP3_WCOUNT;
output [2:0] S_AXI_HP3_RACOUNT;
output [5:0] S_AXI_HP3_WACOUNT;
input S_AXI_HP3_ACLK;
input S_AXI_HP3_ARVALID;
input S_AXI_HP3_AWVALID;
input S_AXI_HP3_BREADY;
input S_AXI_HP3_RDISSUECAP1_EN;
input S_AXI_HP3_RREADY;
input S_AXI_HP3_WLAST;
input S_AXI_HP3_WRISSUECAP1_EN;
input S_AXI_HP3_WVALID;
input [1:0] S_AXI_HP3_ARBURST;
input [1:0] S_AXI_HP3_ARLOCK;
input [2:0] S_AXI_HP3_ARSIZE;
input [1:0] S_AXI_HP3_AWBURST;
input [1:0] S_AXI_HP3_AWLOCK;
input [2:0] S_AXI_HP3_AWSIZE;
input [2:0] S_AXI_HP3_ARPROT;
input [2:0] S_AXI_HP3_AWPROT;
input [31:0] S_AXI_HP3_ARADDR;
input [31:0] S_AXI_HP3_AWADDR;
input [3:0] S_AXI_HP3_ARCACHE;
input [3:0] S_AXI_HP3_ARLEN;
input [3:0] S_AXI_HP3_ARQOS;
input [3:0] S_AXI_HP3_AWCACHE;
input [3:0] S_AXI_HP3_AWLEN;
input [3:0] S_AXI_HP3_AWQOS;
input [5:0] S_AXI_HP3_ARID;
input [5:0] S_AXI_HP3_AWID;
input [5:0] S_AXI_HP3_WID;
input [C_S_AXI_HP3_DATA_WIDTH-1:0] S_AXI_HP3_WDATA;
input [C_S_AXI_HP3_DATA_WIDTH/8-1:0] S_AXI_HP3_WSTRB;
output [1:0] DMA0_DATYPE;
output DMA0_DAVALID;
output DMA0_DRREADY;
input DMA0_ACLK;
input DMA0_DAREADY;
input DMA0_DRLAST;
input DMA0_DRVALID;
input [1:0] DMA0_DRTYPE;
output [1:0] DMA1_DATYPE;
output DMA1_DAVALID;
output DMA1_DRREADY;
input DMA1_ACLK;
input DMA1_DAREADY;
input DMA1_DRLAST;
input DMA1_DRVALID;
input [1:0] DMA1_DRTYPE;
output [1:0] DMA2_DATYPE;
output DMA2_DAVALID;
output DMA2_DRREADY;
input DMA2_ACLK;
input DMA2_DAREADY;
input DMA2_DRLAST;
input DMA2_DRVALID;
input DMA3_DRVALID;
output [1:0] DMA3_DATYPE;
output DMA3_DAVALID;
output DMA3_DRREADY;
input DMA3_ACLK;
input DMA3_DAREADY;
input DMA3_DRLAST;
input [1:0] DMA2_DRTYPE;
input [1:0] DMA3_DRTYPE;
input [31:0] FTMD_TRACEIN_DATA;
input FTMD_TRACEIN_VALID;
input FTMD_TRACEIN_CLK;
input [3:0] FTMD_TRACEIN_ATID;
input [3:0] FTMT_F2P_TRIG;
output [3:0] FTMT_F2P_TRIGACK;
input [31:0] FTMT_F2P_DEBUG;
input [3:0] FTMT_P2F_TRIGACK;
output [3:0] FTMT_P2F_TRIG;
output [31:0] FTMT_P2F_DEBUG;
output FCLK_CLK3;
output FCLK_CLK2;
output FCLK_CLK1;
output FCLK_CLK0;
input FCLK_CLKTRIG3_N;
input FCLK_CLKTRIG2_N;
input FCLK_CLKTRIG1_N;
input FCLK_CLKTRIG0_N;
output FCLK_RESET3_N;
output FCLK_RESET2_N;
output FCLK_RESET1_N;
output FCLK_RESET0_N;
input FPGA_IDLE_N;
input [3:0] DDR_ARB;
input [irq_width-1:0] IRQ_F2P;
input Core0_nFIQ;
input Core0_nIRQ;
input Core1_nFIQ;
input Core1_nIRQ;
output EVENT_EVENTO;
output [1:0] EVENT_STANDBYWFE;
output [1:0] EVENT_STANDBYWFI;
input EVENT_EVENTI;
inout [53:0] MIO;
inout DDR_Clk;
inout DDR_Clk_n;
inout DDR_CKE;
inout DDR_CS_n;
inout DDR_RAS_n;
inout DDR_CAS_n;
output DDR_WEB;
inout [2:0] DDR_BankAddr;
inout [14:0] DDR_Addr;
inout DDR_ODT;
inout DDR_DRSTB;
inout [31:0] DDR_DQ;
inout [3:0] DDR_DM;
inout [3:0] DDR_DQS;
inout [3:0] DDR_DQS_n;
inout DDR_VRN;
inout DDR_VRP;
/* Reset Input & Clock Input */
input PS_SRSTB;
input PS_CLK;
input PS_PORB;
output IRQ_P2F_DMAC_ABORT;
output IRQ_P2F_DMAC0;
output IRQ_P2F_DMAC1;
output IRQ_P2F_DMAC2;
output IRQ_P2F_DMAC3;
output IRQ_P2F_DMAC4;
output IRQ_P2F_DMAC5;
output IRQ_P2F_DMAC6;
output IRQ_P2F_DMAC7;
output IRQ_P2F_SMC;
output IRQ_P2F_QSPI;
output IRQ_P2F_CTI;
output IRQ_P2F_GPIO;
output IRQ_P2F_USB0;
output IRQ_P2F_ENET0;
output IRQ_P2F_ENET_WAKE0;
output IRQ_P2F_SDIO0;
output IRQ_P2F_I2C0;
output IRQ_P2F_SPI0;
output IRQ_P2F_UART0;
output IRQ_P2F_CAN0;
output IRQ_P2F_USB1;
output IRQ_P2F_ENET1;
output IRQ_P2F_ENET_WAKE1;
output IRQ_P2F_SDIO1;
output IRQ_P2F_I2C1;
output IRQ_P2F_SPI1;
output IRQ_P2F_UART1;
output IRQ_P2F_CAN1;
/* Internal wires/nets used for connectivity */
wire net_rstn;
wire net_sw_clk;
wire net_ocm_clk;
wire net_arbiter_clk;
wire net_axi_mgp0_rstn;
wire net_axi_mgp1_rstn;
wire net_axi_gp0_rstn;
wire net_axi_gp1_rstn;
wire net_axi_hp0_rstn;
wire net_axi_hp1_rstn;
wire net_axi_hp2_rstn;
wire net_axi_hp3_rstn;
wire net_axi_acp_rstn;
wire [4:0] net_axi_acp_awuser;
wire [4:0] net_axi_acp_aruser;
/* Dummy */
assign net_axi_acp_awuser = S_AXI_ACP_AWUSER;
assign net_axi_acp_aruser = S_AXI_ACP_ARUSER;
/* Global variables */
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1;
/* local variable acting as semaphore for wait_mem_update and wait_reg_update task */
reg mem_update_key = 1;
reg reg_update_key_0 = 1;
reg reg_update_key_1 = 1;
/* assignments and semantic checks for unused ports */
`include "processing_system7_bfm_v2_0_5_unused_ports.v"
/* include api definition */
`include "processing_system7_bfm_v2_0_5_apis.v"
/* Reset Generator */
processing_system7_bfm_v2_0_5_gen_reset gen_rst(.por_rst_n(PS_PORB),
.sys_rst_n(PS_SRSTB),
.rst_out_n(net_rstn),
.m_axi_gp0_clk(M_AXI_GP0_ACLK),
.m_axi_gp1_clk(M_AXI_GP1_ACLK),
.s_axi_gp0_clk(S_AXI_GP0_ACLK),
.s_axi_gp1_clk(S_AXI_GP1_ACLK),
.s_axi_hp0_clk(S_AXI_HP0_ACLK),
.s_axi_hp1_clk(S_AXI_HP1_ACLK),
.s_axi_hp2_clk(S_AXI_HP2_ACLK),
.s_axi_hp3_clk(S_AXI_HP3_ACLK),
.s_axi_acp_clk(S_AXI_ACP_ACLK),
.m_axi_gp0_rstn(net_axi_mgp0_rstn),
.m_axi_gp1_rstn(net_axi_mgp1_rstn),
.s_axi_gp0_rstn(net_axi_gp0_rstn),
.s_axi_gp1_rstn(net_axi_gp1_rstn),
.s_axi_hp0_rstn(net_axi_hp0_rstn),
.s_axi_hp1_rstn(net_axi_hp1_rstn),
.s_axi_hp2_rstn(net_axi_hp2_rstn),
.s_axi_hp3_rstn(net_axi_hp3_rstn),
.s_axi_acp_rstn(net_axi_acp_rstn),
.fclk_reset3_n(FCLK_RESET3_N),
.fclk_reset2_n(FCLK_RESET2_N),
.fclk_reset1_n(FCLK_RESET1_N),
.fclk_reset0_n(FCLK_RESET0_N),
.fpga_acp_reset_n(), ////S_AXI_ACP_ARESETN), (These are removed from Zynq IP)
.fpga_gp_m0_reset_n(), ////M_AXI_GP0_ARESETN),
.fpga_gp_m1_reset_n(), ////M_AXI_GP1_ARESETN),
.fpga_gp_s0_reset_n(), ////S_AXI_GP0_ARESETN),
.fpga_gp_s1_reset_n(), ////S_AXI_GP1_ARESETN),
.fpga_hp_s0_reset_n(), ////S_AXI_HP0_ARESETN),
.fpga_hp_s1_reset_n(), ////S_AXI_HP1_ARESETN),
.fpga_hp_s2_reset_n(), ////S_AXI_HP2_ARESETN),
.fpga_hp_s3_reset_n() ////S_AXI_HP3_ARESETN)
);
/* Clock Generator */
processing_system7_bfm_v2_0_5_gen_clock #(C_FCLK_CLK3_FREQ, C_FCLK_CLK2_FREQ, C_FCLK_CLK1_FREQ, C_FCLK_CLK0_FREQ)
gen_clk(.ps_clk(PS_CLK),
.sw_clk(net_sw_clk),
.fclk_clk3(FCLK_CLK3),
.fclk_clk2(FCLK_CLK2),
.fclk_clk1(FCLK_CLK1),
.fclk_clk0(FCLK_CLK0)
);
wire net_wr_ack_ocm_gp0, net_wr_ack_ddr_gp0, net_wr_ack_ocm_gp1, net_wr_ack_ddr_gp1;
wire net_wr_dv_ocm_gp0, net_wr_dv_ddr_gp0, net_wr_dv_ocm_gp1, net_wr_dv_ddr_gp1;
wire [max_burst_bits-1:0] net_wr_data_gp0, net_wr_data_gp1;
wire [addr_width-1:0] net_wr_addr_gp0, net_wr_addr_gp1;
wire [max_burst_bytes_width:0] net_wr_bytes_gp0, net_wr_bytes_gp1;
wire [axi_qos_width-1:0] net_wr_qos_gp0, net_wr_qos_gp1;
wire net_rd_req_ddr_gp0, net_rd_req_ddr_gp1;
wire net_rd_req_ocm_gp0, net_rd_req_ocm_gp1;
wire net_rd_req_reg_gp0, net_rd_req_reg_gp1;
wire [addr_width-1:0] net_rd_addr_gp0, net_rd_addr_gp1;
wire [max_burst_bytes_width:0] net_rd_bytes_gp0, net_rd_bytes_gp1;
wire [max_burst_bits-1:0] net_rd_data_ddr_gp0, net_rd_data_ddr_gp1;
wire [max_burst_bits-1:0] net_rd_data_ocm_gp0, net_rd_data_ocm_gp1;
wire [max_burst_bits-1:0] net_rd_data_reg_gp0, net_rd_data_reg_gp1;
wire net_rd_dv_ddr_gp0, net_rd_dv_ddr_gp1;
wire net_rd_dv_ocm_gp0, net_rd_dv_ocm_gp1;
wire net_rd_dv_reg_gp0, net_rd_dv_reg_gp1;
wire [axi_qos_width-1:0] net_rd_qos_gp0, net_rd_qos_gp1;
wire net_wr_ack_ddr_hp0, net_wr_ack_ddr_hp1, net_wr_ack_ddr_hp2, net_wr_ack_ddr_hp3;
wire net_wr_ack_ocm_hp0, net_wr_ack_ocm_hp1, net_wr_ack_ocm_hp2, net_wr_ack_ocm_hp3;
wire net_wr_dv_ddr_hp0, net_wr_dv_ddr_hp1, net_wr_dv_ddr_hp2, net_wr_dv_ddr_hp3;
wire net_wr_dv_ocm_hp0, net_wr_dv_ocm_hp1, net_wr_dv_ocm_hp2, net_wr_dv_ocm_hp3;
wire [max_burst_bits-1:0] net_wr_data_hp0, net_wr_data_hp1, net_wr_data_hp2, net_wr_data_hp3;
wire [addr_width-1:0] net_wr_addr_hp0, net_wr_addr_hp1, net_wr_addr_hp2, net_wr_addr_hp3;
wire [max_burst_bytes_width:0] net_wr_bytes_hp0, net_wr_bytes_hp1, net_wr_bytes_hp2, net_wr_bytes_hp3;
wire [axi_qos_width-1:0] net_wr_qos_hp0, net_wr_qos_hp1, net_wr_qos_hp2, net_wr_qos_hp3;
wire net_rd_req_ddr_hp0, net_rd_req_ddr_hp1, net_rd_req_ddr_hp2, net_rd_req_ddr_hp3;
wire net_rd_req_ocm_hp0, net_rd_req_ocm_hp1, net_rd_req_ocm_hp2, net_rd_req_ocm_hp3;
wire [addr_width-1:0] net_rd_addr_hp0, net_rd_addr_hp1, net_rd_addr_hp2, net_rd_addr_hp3;
wire [max_burst_bytes_width:0] net_rd_bytes_hp0, net_rd_bytes_hp1, net_rd_bytes_hp2, net_rd_bytes_hp3;
wire [max_burst_bits-1:0] net_rd_data_ddr_hp0, net_rd_data_ddr_hp1, net_rd_data_ddr_hp2, net_rd_data_ddr_hp3;
wire [max_burst_bits-1:0] net_rd_data_ocm_hp0, net_rd_data_ocm_hp1, net_rd_data_ocm_hp2, net_rd_data_ocm_hp3;
wire net_rd_dv_ddr_hp0, net_rd_dv_ddr_hp1, net_rd_dv_ddr_hp2, net_rd_dv_ddr_hp3;
wire net_rd_dv_ocm_hp0, net_rd_dv_ocm_hp1, net_rd_dv_ocm_hp2, net_rd_dv_ocm_hp3;
wire [axi_qos_width-1:0] net_rd_qos_hp0, net_rd_qos_hp1, net_rd_qos_hp2, net_rd_qos_hp3;
wire net_wr_ack_ddr_acp,net_wr_ack_ocm_acp;
wire net_wr_dv_ddr_acp,net_wr_dv_ocm_acp;
wire [max_burst_bits-1:0] net_wr_data_acp;
wire [addr_width-1:0] net_wr_addr_acp;
wire [max_burst_bytes_width:0] net_wr_bytes_acp;
wire [axi_qos_width-1:0] net_wr_qos_acp;
wire net_rd_req_ddr_acp, net_rd_req_ocm_acp;
wire [addr_width-1:0] net_rd_addr_acp;
wire [max_burst_bytes_width:0] net_rd_bytes_acp;
wire [max_burst_bits-1:0] net_rd_data_ddr_acp;
wire [max_burst_bits-1:0] net_rd_data_ocm_acp;
wire net_rd_dv_ddr_acp,net_rd_dv_ocm_acp;
wire [axi_qos_width-1:0] net_rd_qos_acp;
wire ocm_wr_ack_port0;
wire ocm_wr_dv_port0;
wire ocm_rd_req_port0;
wire ocm_rd_dv_port0;
wire [addr_width-1:0] ocm_wr_addr_port0;
wire [max_burst_bits-1:0] ocm_wr_data_port0;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port0;
wire [addr_width-1:0] ocm_rd_addr_port0;
wire [max_burst_bits-1:0] ocm_rd_data_port0;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port0;
wire [axi_qos_width-1:0] ocm_wr_qos_port0;
wire [axi_qos_width-1:0] ocm_rd_qos_port0;
wire ocm_wr_ack_port1;
wire ocm_wr_dv_port1;
wire ocm_rd_req_port1;
wire ocm_rd_dv_port1;
wire [addr_width-1:0] ocm_wr_addr_port1;
wire [max_burst_bits-1:0] ocm_wr_data_port1;
wire [max_burst_bytes_width:0] ocm_wr_bytes_port1;
wire [addr_width-1:0] ocm_rd_addr_port1;
wire [max_burst_bits-1:0] ocm_rd_data_port1;
wire [max_burst_bytes_width:0] ocm_rd_bytes_port1;
wire [axi_qos_width-1:0] ocm_wr_qos_port1;
wire [axi_qos_width-1:0] ocm_rd_qos_port1;
wire ddr_wr_ack_port0;
wire ddr_wr_dv_port0;
wire ddr_rd_req_port0;
wire ddr_rd_dv_port0;
wire[addr_width-1:0] ddr_wr_addr_port0;
wire[max_burst_bits-1:0] ddr_wr_data_port0;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port0;
wire[addr_width-1:0] ddr_rd_addr_port0;
wire[max_burst_bits-1:0] ddr_rd_data_port0;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port0;
wire [axi_qos_width-1:0] ddr_wr_qos_port0;
wire [axi_qos_width-1:0] ddr_rd_qos_port0;
wire ddr_wr_ack_port1;
wire ddr_wr_dv_port1;
wire ddr_rd_req_port1;
wire ddr_rd_dv_port1;
wire[addr_width-1:0] ddr_wr_addr_port1;
wire[max_burst_bits-1:0] ddr_wr_data_port1;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port1;
wire[addr_width-1:0] ddr_rd_addr_port1;
wire[max_burst_bits-1:0] ddr_rd_data_port1;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port1;
wire[axi_qos_width-1:0] ddr_wr_qos_port1;
wire[axi_qos_width-1:0] ddr_rd_qos_port1;
wire ddr_wr_ack_port2;
wire ddr_wr_dv_port2;
wire ddr_rd_req_port2;
wire ddr_rd_dv_port2;
wire[addr_width-1:0] ddr_wr_addr_port2;
wire[max_burst_bits-1:0] ddr_wr_data_port2;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port2;
wire[addr_width-1:0] ddr_rd_addr_port2;
wire[max_burst_bits-1:0] ddr_rd_data_port2;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port2;
wire[axi_qos_width-1:0] ddr_wr_qos_port2;
wire[axi_qos_width-1:0] ddr_rd_qos_port2;
wire ddr_wr_ack_port3;
wire ddr_wr_dv_port3;
wire ddr_rd_req_port3;
wire ddr_rd_dv_port3;
wire[addr_width-1:0] ddr_wr_addr_port3;
wire[max_burst_bits-1:0] ddr_wr_data_port3;
wire[max_burst_bytes_width:0] ddr_wr_bytes_port3;
wire[addr_width-1:0] ddr_rd_addr_port3;
wire[max_burst_bits-1:0] ddr_rd_data_port3;
wire[max_burst_bytes_width:0] ddr_rd_bytes_port3;
wire[axi_qos_width-1:0] ddr_wr_qos_port3;
wire[axi_qos_width-1:0] ddr_rd_qos_port3;
wire reg_rd_req_port0;
wire reg_rd_dv_port0;
wire[addr_width-1:0] reg_rd_addr_port0;
wire[max_burst_bits-1:0] reg_rd_data_port0;
wire[max_burst_bytes_width:0] reg_rd_bytes_port0;
wire [axi_qos_width-1:0] reg_rd_qos_port0;
wire reg_rd_req_port1;
wire reg_rd_dv_port1;
wire[addr_width-1:0] reg_rd_addr_port1;
wire[max_burst_bits-1:0] reg_rd_data_port1;
wire[max_burst_bytes_width:0] reg_rd_bytes_port1;
wire [axi_qos_width-1:0] reg_rd_qos_port1;
wire [11:0] M_AXI_GP0_AWID_FULL;
wire [11:0] M_AXI_GP0_WID_FULL;
wire [11:0] M_AXI_GP0_ARID_FULL;
wire [11:0] M_AXI_GP0_BID_FULL;
wire [11:0] M_AXI_GP0_RID_FULL;
wire [11:0] M_AXI_GP1_AWID_FULL;
wire [11:0] M_AXI_GP1_WID_FULL;
wire [11:0] M_AXI_GP1_ARID_FULL;
wire [11:0] M_AXI_GP1_BID_FULL;
wire [11:0] M_AXI_GP1_RID_FULL;
function [5:0] compress_id;
input [11:0] id;
begin
compress_id = id[5:0];
end
endfunction
function [11:0] uncompress_id;
input [5:0] id;
begin
uncompress_id = {6'b110000, id[5:0]};
end
endfunction
assign M_AXI_GP0_AWID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_AWID_FULL) : M_AXI_GP0_AWID_FULL;
assign M_AXI_GP0_WID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_WID_FULL) : M_AXI_GP0_WID_FULL;
assign M_AXI_GP0_ARID = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP0_ARID_FULL) : M_AXI_GP0_ARID_FULL;
assign M_AXI_GP0_BID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_BID) : M_AXI_GP0_BID;
assign M_AXI_GP0_RID_FULL = (C_M_AXI_GP0_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP0_RID) : M_AXI_GP0_RID;
assign M_AXI_GP1_AWID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_AWID_FULL) : M_AXI_GP1_AWID_FULL;
assign M_AXI_GP1_WID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_WID_FULL) : M_AXI_GP1_WID_FULL;
assign M_AXI_GP1_ARID = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? compress_id(M_AXI_GP1_ARID_FULL) : M_AXI_GP1_ARID_FULL;
assign M_AXI_GP1_BID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_BID) : M_AXI_GP1_BID;
assign M_AXI_GP1_RID_FULL = (C_M_AXI_GP1_ENABLE_STATIC_REMAP == 1) ? uncompress_id(M_AXI_GP1_RID) : M_AXI_GP1_RID;
processing_system7_bfm_v2_0_5_interconnect_model icm (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
.w_qos_gp0(net_wr_qos_gp0),
.w_qos_gp1(net_wr_qos_gp1),
.w_qos_hp0(net_wr_qos_hp0),
.w_qos_hp1(net_wr_qos_hp1),
.w_qos_hp2(net_wr_qos_hp2),
.w_qos_hp3(net_wr_qos_hp3),
.r_qos_gp0(net_rd_qos_gp0),
.r_qos_gp1(net_rd_qos_gp1),
.r_qos_hp0(net_rd_qos_hp0),
.r_qos_hp1(net_rd_qos_hp1),
.r_qos_hp2(net_rd_qos_hp2),
.r_qos_hp3(net_rd_qos_hp3),
/* GP Slave ports access */
.wr_ack_ddr_gp0(net_wr_ack_ddr_gp0),
.wr_ack_ocm_gp0(net_wr_ack_ocm_gp0),
.wr_data_gp0(net_wr_data_gp0),
.wr_addr_gp0(net_wr_addr_gp0),
.wr_bytes_gp0(net_wr_bytes_gp0),
.wr_dv_ddr_gp0(net_wr_dv_ddr_gp0),
.wr_dv_ocm_gp0(net_wr_dv_ocm_gp0),
.rd_req_ddr_gp0(net_rd_req_ddr_gp0),
.rd_req_ocm_gp0(net_rd_req_ocm_gp0),
.rd_req_reg_gp0(net_rd_req_reg_gp0),
.rd_addr_gp0(net_rd_addr_gp0),
.rd_bytes_gp0(net_rd_bytes_gp0),
.rd_data_ddr_gp0(net_rd_data_ddr_gp0),
.rd_data_ocm_gp0(net_rd_data_ocm_gp0),
.rd_data_reg_gp0(net_rd_data_reg_gp0),
.rd_dv_ddr_gp0(net_rd_dv_ddr_gp0),
.rd_dv_ocm_gp0(net_rd_dv_ocm_gp0),
.rd_dv_reg_gp0(net_rd_dv_reg_gp0),
.wr_ack_ddr_gp1(net_wr_ack_ddr_gp1),
.wr_ack_ocm_gp1(net_wr_ack_ocm_gp1),
.wr_data_gp1(net_wr_data_gp1),
.wr_addr_gp1(net_wr_addr_gp1),
.wr_bytes_gp1(net_wr_bytes_gp1),
.wr_dv_ddr_gp1(net_wr_dv_ddr_gp1),
.wr_dv_ocm_gp1(net_wr_dv_ocm_gp1),
.rd_req_ddr_gp1(net_rd_req_ddr_gp1),
.rd_req_ocm_gp1(net_rd_req_ocm_gp1),
.rd_req_reg_gp1(net_rd_req_reg_gp1),
.rd_addr_gp1(net_rd_addr_gp1),
.rd_bytes_gp1(net_rd_bytes_gp1),
.rd_data_ddr_gp1(net_rd_data_ddr_gp1),
.rd_data_ocm_gp1(net_rd_data_ocm_gp1),
.rd_data_reg_gp1(net_rd_data_reg_gp1),
.rd_dv_ddr_gp1(net_rd_dv_ddr_gp1),
.rd_dv_ocm_gp1(net_rd_dv_ocm_gp1),
.rd_dv_reg_gp1(net_rd_dv_reg_gp1),
/* HP Slave ports access */
.wr_ack_ddr_hp0(net_wr_ack_ddr_hp0),
.wr_ack_ocm_hp0(net_wr_ack_ocm_hp0),
.wr_data_hp0(net_wr_data_hp0),
.wr_addr_hp0(net_wr_addr_hp0),
.wr_bytes_hp0(net_wr_bytes_hp0),
.wr_dv_ddr_hp0(net_wr_dv_ddr_hp0),
.wr_dv_ocm_hp0(net_wr_dv_ocm_hp0),
.rd_req_ddr_hp0(net_rd_req_ddr_hp0),
.rd_req_ocm_hp0(net_rd_req_ocm_hp0),
.rd_addr_hp0(net_rd_addr_hp0),
.rd_bytes_hp0(net_rd_bytes_hp0),
.rd_data_ddr_hp0(net_rd_data_ddr_hp0),
.rd_data_ocm_hp0(net_rd_data_ocm_hp0),
.rd_dv_ddr_hp0(net_rd_dv_ddr_hp0),
.rd_dv_ocm_hp0(net_rd_dv_ocm_hp0),
.wr_ack_ddr_hp1(net_wr_ack_ddr_hp1),
.wr_ack_ocm_hp1(net_wr_ack_ocm_hp1),
.wr_data_hp1(net_wr_data_hp1),
.wr_addr_hp1(net_wr_addr_hp1),
.wr_bytes_hp1(net_wr_bytes_hp1),
.wr_dv_ddr_hp1(net_wr_dv_ddr_hp1),
.wr_dv_ocm_hp1(net_wr_dv_ocm_hp1),
.rd_req_ddr_hp1(net_rd_req_ddr_hp1),
.rd_req_ocm_hp1(net_rd_req_ocm_hp1),
.rd_addr_hp1(net_rd_addr_hp1),
.rd_bytes_hp1(net_rd_bytes_hp1),
.rd_data_ddr_hp1(net_rd_data_ddr_hp1),
.rd_data_ocm_hp1(net_rd_data_ocm_hp1),
.rd_dv_ocm_hp1(net_rd_dv_ocm_hp1),
.rd_dv_ddr_hp1(net_rd_dv_ddr_hp1),
.wr_ack_ddr_hp2(net_wr_ack_ddr_hp2),
.wr_ack_ocm_hp2(net_wr_ack_ocm_hp2),
.wr_data_hp2(net_wr_data_hp2),
.wr_addr_hp2(net_wr_addr_hp2),
.wr_bytes_hp2(net_wr_bytes_hp2),
.wr_dv_ocm_hp2(net_wr_dv_ocm_hp2),
.wr_dv_ddr_hp2(net_wr_dv_ddr_hp2),
.rd_req_ddr_hp2(net_rd_req_ddr_hp2),
.rd_req_ocm_hp2(net_rd_req_ocm_hp2),
.rd_addr_hp2(net_rd_addr_hp2),
.rd_bytes_hp2(net_rd_bytes_hp2),
.rd_data_ddr_hp2(net_rd_data_ddr_hp2),
.rd_data_ocm_hp2(net_rd_data_ocm_hp2),
.rd_dv_ddr_hp2(net_rd_dv_ddr_hp2),
.rd_dv_ocm_hp2(net_rd_dv_ocm_hp2),
.wr_ack_ocm_hp3(net_wr_ack_ocm_hp3),
.wr_ack_ddr_hp3(net_wr_ack_ddr_hp3),
.wr_data_hp3(net_wr_data_hp3),
.wr_addr_hp3(net_wr_addr_hp3),
.wr_bytes_hp3(net_wr_bytes_hp3),
.wr_dv_ddr_hp3(net_wr_dv_ddr_hp3),
.wr_dv_ocm_hp3(net_wr_dv_ocm_hp3),
.rd_req_ddr_hp3(net_rd_req_ddr_hp3),
.rd_req_ocm_hp3(net_rd_req_ocm_hp3),
.rd_addr_hp3(net_rd_addr_hp3),
.rd_bytes_hp3(net_rd_bytes_hp3),
.rd_data_ddr_hp3(net_rd_data_ddr_hp3),
.rd_data_ocm_hp3(net_rd_data_ocm_hp3),
.rd_dv_ddr_hp3(net_rd_dv_ddr_hp3),
.rd_dv_ocm_hp3(net_rd_dv_ocm_hp3),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1(ddr_wr_ack_port1),
.ddr_wr_dv_port1(ddr_wr_dv_port1),
.ddr_rd_req_port1(ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1(ddr_wr_qos_port1),
.ddr_rd_qos_port1(ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1),
/* Goes to port 0 of REG */
.reg_rd_qos_port1 (reg_rd_qos_port1) ,
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1)
);
processing_system7_bfm_v2_0_5_ddrc ddrc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of DDR */
.ddr_wr_ack_port0 (ddr_wr_ack_port0),
.ddr_wr_dv_port0 (ddr_wr_dv_port0),
.ddr_rd_req_port0 (ddr_rd_req_port0),
.ddr_rd_dv_port0 (ddr_rd_dv_port0),
.ddr_wr_addr_port0(net_wr_addr_acp),
.ddr_wr_data_port0(net_wr_data_acp),
.ddr_wr_bytes_port0(net_wr_bytes_acp),
.ddr_rd_addr_port0(net_rd_addr_acp),
.ddr_rd_bytes_port0(net_rd_bytes_acp),
.ddr_rd_data_port0(ddr_rd_data_port0),
.ddr_wr_qos_port0 (net_wr_qos_acp),
.ddr_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of DDR */
.ddr_wr_ack_port1 (ddr_wr_ack_port1),
.ddr_wr_dv_port1 (ddr_wr_dv_port1),
.ddr_rd_req_port1 (ddr_rd_req_port1),
.ddr_rd_dv_port1 (ddr_rd_dv_port1),
.ddr_wr_addr_port1(ddr_wr_addr_port1),
.ddr_wr_data_port1(ddr_wr_data_port1),
.ddr_wr_bytes_port1(ddr_wr_bytes_port1),
.ddr_rd_addr_port1(ddr_rd_addr_port1),
.ddr_rd_data_port1(ddr_rd_data_port1),
.ddr_rd_bytes_port1(ddr_rd_bytes_port1),
.ddr_wr_qos_port1 (ddr_wr_qos_port1),
.ddr_rd_qos_port1 (ddr_rd_qos_port1),
/* Goes to port2 of DDR */
.ddr_wr_ack_port2 (ddr_wr_ack_port2),
.ddr_wr_dv_port2 (ddr_wr_dv_port2),
.ddr_rd_req_port2 (ddr_rd_req_port2),
.ddr_rd_dv_port2 (ddr_rd_dv_port2),
.ddr_wr_addr_port2(ddr_wr_addr_port2),
.ddr_wr_data_port2(ddr_wr_data_port2),
.ddr_wr_bytes_port2(ddr_wr_bytes_port2),
.ddr_rd_addr_port2(ddr_rd_addr_port2),
.ddr_rd_data_port2(ddr_rd_data_port2),
.ddr_rd_bytes_port2(ddr_rd_bytes_port2),
.ddr_wr_qos_port2 (ddr_wr_qos_port2),
.ddr_rd_qos_port2 (ddr_rd_qos_port2),
/* Goes to port3 of DDR */
.ddr_wr_ack_port3 (ddr_wr_ack_port3),
.ddr_wr_dv_port3 (ddr_wr_dv_port3),
.ddr_rd_req_port3 (ddr_rd_req_port3),
.ddr_rd_dv_port3 (ddr_rd_dv_port3),
.ddr_wr_addr_port3(ddr_wr_addr_port3),
.ddr_wr_data_port3(ddr_wr_data_port3),
.ddr_wr_bytes_port3(ddr_wr_bytes_port3),
.ddr_rd_addr_port3(ddr_rd_addr_port3),
.ddr_rd_data_port3(ddr_rd_data_port3),
.ddr_rd_bytes_port3(ddr_rd_bytes_port3),
.ddr_wr_qos_port3 (ddr_wr_qos_port3),
.ddr_rd_qos_port3 (ddr_rd_qos_port3)
);
processing_system7_bfm_v2_0_5_ocmc ocmc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of OCM */
.ocm_wr_ack_port0 (ocm_wr_ack_port0),
.ocm_wr_dv_port0 (ocm_wr_dv_port0),
.ocm_rd_req_port0 (ocm_rd_req_port0),
.ocm_rd_dv_port0 (ocm_rd_dv_port0),
.ocm_wr_addr_port0(net_wr_addr_acp),
.ocm_wr_data_port0(net_wr_data_acp),
.ocm_wr_bytes_port0(net_wr_bytes_acp),
.ocm_rd_addr_port0(net_rd_addr_acp),
.ocm_rd_bytes_port0(net_rd_bytes_acp),
.ocm_rd_data_port0(ocm_rd_data_port0),
.ocm_wr_qos_port0 (net_wr_qos_acp),
.ocm_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of OCM */
.ocm_wr_ack_port1 (ocm_wr_ack_port1),
.ocm_wr_dv_port1 (ocm_wr_dv_port1),
.ocm_rd_req_port1 (ocm_rd_req_port1),
.ocm_rd_dv_port1 (ocm_rd_dv_port1),
.ocm_wr_addr_port1(ocm_wr_addr_port1),
.ocm_wr_data_port1(ocm_wr_data_port1),
.ocm_wr_bytes_port1(ocm_wr_bytes_port1),
.ocm_rd_addr_port1(ocm_rd_addr_port1),
.ocm_rd_data_port1(ocm_rd_data_port1),
.ocm_rd_bytes_port1(ocm_rd_bytes_port1),
.ocm_wr_qos_port1(ocm_wr_qos_port1),
.ocm_rd_qos_port1(ocm_rd_qos_port1)
);
processing_system7_bfm_v2_0_5_regc regc (
.rstn(net_rstn),
.sw_clk(net_sw_clk),
/* Goes to port 0 of REG */
.reg_rd_req_port0 (reg_rd_req_port0),
.reg_rd_dv_port0 (reg_rd_dv_port0),
.reg_rd_addr_port0(net_rd_addr_acp),
.reg_rd_bytes_port0(net_rd_bytes_acp),
.reg_rd_data_port0(reg_rd_data_port0),
.reg_rd_qos_port0 (net_rd_qos_acp),
/* Goes to port 1 of REG */
.reg_rd_req_port1 (reg_rd_req_port1),
.reg_rd_dv_port1 (reg_rd_dv_port1),
.reg_rd_addr_port1(reg_rd_addr_port1),
.reg_rd_data_port1(reg_rd_data_port1),
.reg_rd_bytes_port1(reg_rd_bytes_port1),
.reg_rd_qos_port1(reg_rd_qos_port1)
);
/* include axi_gp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_gp.v"
/* include axi_hp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_hp.v"
/* include axi_acp port instantiations */
`include "processing_system7_bfm_v2_0_5_axi_acp.v"
endmodule
|
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_ddrc(
rstn,
sw_clk,
/* Goes to port 0 of DDR */
ddr_wr_ack_port0,
ddr_wr_dv_port0,
ddr_rd_req_port0,
ddr_rd_dv_port0,
ddr_wr_addr_port0,
ddr_wr_data_port0,
ddr_wr_bytes_port0,
ddr_rd_addr_port0,
ddr_rd_data_port0,
ddr_rd_bytes_port0,
ddr_wr_qos_port0,
ddr_rd_qos_port0,
/* Goes to port 1 of DDR */
ddr_wr_ack_port1,
ddr_wr_dv_port1,
ddr_rd_req_port1,
ddr_rd_dv_port1,
ddr_wr_addr_port1,
ddr_wr_data_port1,
ddr_wr_bytes_port1,
ddr_rd_addr_port1,
ddr_rd_data_port1,
ddr_rd_bytes_port1,
ddr_wr_qos_port1,
ddr_rd_qos_port1,
/* Goes to port2 of DDR */
ddr_wr_ack_port2,
ddr_wr_dv_port2,
ddr_rd_req_port2,
ddr_rd_dv_port2,
ddr_wr_addr_port2,
ddr_wr_data_port2,
ddr_wr_bytes_port2,
ddr_rd_addr_port2,
ddr_rd_data_port2,
ddr_rd_bytes_port2,
ddr_wr_qos_port2,
ddr_rd_qos_port2,
/* Goes to port3 of DDR */
ddr_wr_ack_port3,
ddr_wr_dv_port3,
ddr_rd_req_port3,
ddr_rd_dv_port3,
ddr_wr_addr_port3,
ddr_wr_data_port3,
ddr_wr_bytes_port3,
ddr_rd_addr_port3,
ddr_rd_data_port3,
ddr_rd_bytes_port3,
ddr_wr_qos_port3,
ddr_rd_qos_port3
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn;
input sw_clk;
output ddr_wr_ack_port0;
input ddr_wr_dv_port0;
input ddr_rd_req_port0;
output ddr_rd_dv_port0;
input[addr_width-1:0] ddr_wr_addr_port0;
input[max_burst_bits-1:0] ddr_wr_data_port0;
input[max_burst_bytes_width:0] ddr_wr_bytes_port0;
input[addr_width-1:0] ddr_rd_addr_port0;
output[max_burst_bits-1:0] ddr_rd_data_port0;
input[max_burst_bytes_width:0] ddr_rd_bytes_port0;
input [axi_qos_width-1:0] ddr_wr_qos_port0;
input [axi_qos_width-1:0] ddr_rd_qos_port0;
output ddr_wr_ack_port1;
input ddr_wr_dv_port1;
input ddr_rd_req_port1;
output ddr_rd_dv_port1;
input[addr_width-1:0] ddr_wr_addr_port1;
input[max_burst_bits-1:0] ddr_wr_data_port1;
input[max_burst_bytes_width:0] ddr_wr_bytes_port1;
input[addr_width-1:0] ddr_rd_addr_port1;
output[max_burst_bits-1:0] ddr_rd_data_port1;
input[max_burst_bytes_width:0] ddr_rd_bytes_port1;
input[axi_qos_width-1:0] ddr_wr_qos_port1;
input[axi_qos_width-1:0] ddr_rd_qos_port1;
output ddr_wr_ack_port2;
input ddr_wr_dv_port2;
input ddr_rd_req_port2;
output ddr_rd_dv_port2;
input[addr_width-1:0] ddr_wr_addr_port2;
input[max_burst_bits-1:0] ddr_wr_data_port2;
input[max_burst_bytes_width:0] ddr_wr_bytes_port2;
input[addr_width-1:0] ddr_rd_addr_port2;
output[max_burst_bits-1:0] ddr_rd_data_port2;
input[max_burst_bytes_width:0] ddr_rd_bytes_port2;
input[axi_qos_width-1:0] ddr_wr_qos_port2;
input[axi_qos_width-1:0] ddr_rd_qos_port2;
output ddr_wr_ack_port3;
input ddr_wr_dv_port3;
input ddr_rd_req_port3;
output ddr_rd_dv_port3;
input[addr_width-1:0] ddr_wr_addr_port3;
input[max_burst_bits-1:0] ddr_wr_data_port3;
input[max_burst_bytes_width:0] ddr_wr_bytes_port3;
input[addr_width-1:0] ddr_rd_addr_port3;
output[max_burst_bits-1:0] ddr_rd_data_port3;
input[max_burst_bytes_width:0] ddr_rd_bytes_port3;
input[axi_qos_width-1:0] ddr_wr_qos_port3;
input[axi_qos_width-1:0] ddr_rd_qos_port3;
wire [axi_qos_width-1:0] wr_qos;
wire wr_req;
wire [max_burst_bits-1:0] wr_data;
wire [addr_width-1:0] wr_addr;
wire [max_burst_bytes_width:0] wr_bytes;
reg wr_ack;
wire [axi_qos_width-1:0] rd_qos;
reg [max_burst_bits-1:0] rd_data;
wire [addr_width-1:0] rd_addr;
wire [max_burst_bytes_width:0] rd_bytes;
reg rd_dv;
wire rd_req;
processing_system7_bfm_v2_0_5_arb_wr_4 ddr_write_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_wr_qos_port0),
.qos2(ddr_wr_qos_port1),
.qos3(ddr_wr_qos_port2),
.qos4(ddr_wr_qos_port3),
.prt_dv1(ddr_wr_dv_port0),
.prt_dv2(ddr_wr_dv_port1),
.prt_dv3(ddr_wr_dv_port2),
.prt_dv4(ddr_wr_dv_port3),
.prt_data1(ddr_wr_data_port0),
.prt_data2(ddr_wr_data_port1),
.prt_data3(ddr_wr_data_port2),
.prt_data4(ddr_wr_data_port3),
.prt_addr1(ddr_wr_addr_port0),
.prt_addr2(ddr_wr_addr_port1),
.prt_addr3(ddr_wr_addr_port2),
.prt_addr4(ddr_wr_addr_port3),
.prt_bytes1(ddr_wr_bytes_port0),
.prt_bytes2(ddr_wr_bytes_port1),
.prt_bytes3(ddr_wr_bytes_port2),
.prt_bytes4(ddr_wr_bytes_port3),
.prt_ack1(ddr_wr_ack_port0),
.prt_ack2(ddr_wr_ack_port1),
.prt_ack3(ddr_wr_ack_port2),
.prt_ack4(ddr_wr_ack_port3),
.prt_qos(wr_qos),
.prt_req(wr_req),
.prt_data(wr_data),
.prt_addr(wr_addr),
.prt_bytes(wr_bytes),
.prt_ack(wr_ack)
);
processing_system7_bfm_v2_0_5_arb_rd_4 ddr_read_ports (
.rstn(rstn),
.sw_clk(sw_clk),
.qos1(ddr_rd_qos_port0),
.qos2(ddr_rd_qos_port1),
.qos3(ddr_rd_qos_port2),
.qos4(ddr_rd_qos_port3),
.prt_req1(ddr_rd_req_port0),
.prt_req2(ddr_rd_req_port1),
.prt_req3(ddr_rd_req_port2),
.prt_req4(ddr_rd_req_port3),
.prt_data1(ddr_rd_data_port0),
.prt_data2(ddr_rd_data_port1),
.prt_data3(ddr_rd_data_port2),
.prt_data4(ddr_rd_data_port3),
.prt_addr1(ddr_rd_addr_port0),
.prt_addr2(ddr_rd_addr_port1),
.prt_addr3(ddr_rd_addr_port2),
.prt_addr4(ddr_rd_addr_port3),
.prt_bytes1(ddr_rd_bytes_port0),
.prt_bytes2(ddr_rd_bytes_port1),
.prt_bytes3(ddr_rd_bytes_port2),
.prt_bytes4(ddr_rd_bytes_port3),
.prt_dv1(ddr_rd_dv_port0),
.prt_dv2(ddr_rd_dv_port1),
.prt_dv3(ddr_rd_dv_port2),
.prt_dv4(ddr_rd_dv_port3),
.prt_qos(rd_qos),
.prt_req(rd_req),
.prt_data(rd_data),
.prt_addr(rd_addr),
.prt_bytes(rd_bytes),
.prt_dv(rd_dv)
);
processing_system7_bfm_v2_0_5_sparse_mem ddr();
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
wr_ack <= 0;
rd_dv <= 0;
state <= 2'd0;
end else begin
case(state)
0:begin
state <= 0;
wr_ack <= 0;
rd_dv <= 0;
if(wr_req) begin
ddr.write_mem(wr_data , wr_addr, wr_bytes);
wr_ack <= 1;
state <= 1;
end
if(rd_req) begin
ddr.read_mem(rd_data,rd_addr, rd_bytes);
rd_dv <= 1;
state <= 1;
end
end
1:begin
wr_ack <= 0;
rd_dv <= 0;
state <= 0;
end
endcase
end /// if
end// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd(
rstn,
sw_clk,
qos1,
qos2,
prt_req1,
prt_req2,
prt_bytes1,
prt_bytes2,
prt_addr1,
prt_addr2,
prt_data1,
prt_data2,
prt_dv1,
prt_dv2,
prt_req,
prt_qos,
prt_addr,
prt_bytes,
prt_data,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input prt_req1, prt_req2;
input [addr_width-1:0] prt_addr1, prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1, prt_bytes2;
output reg prt_dv1, prt_dv2;
output reg [max_burst_bits-1:0] prt_data1,prt_data2;
output reg prt_req;
output reg [axi_qos_width-1:0] prt_qos;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
input [max_burst_bits-1:0] prt_data;
input prt_dv;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_dv_low = 2'b11;
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_req = 0;
if(prt_req1 && !prt_req2) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(!prt_req1 && prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req1 && prt_req2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_addr = prt_addr2;
prt_qos = qos2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
if(prt_dv) begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
prt_req = 0;
if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
if(prt_dv) begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
prt_req = 0;
if(prt_req1) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
wait_dv_low:begin
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
state = wait_dv_low;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd(
rstn,
sw_clk,
qos1,
qos2,
prt_req1,
prt_req2,
prt_bytes1,
prt_bytes2,
prt_addr1,
prt_addr2,
prt_data1,
prt_data2,
prt_dv1,
prt_dv2,
prt_req,
prt_qos,
prt_addr,
prt_bytes,
prt_data,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input prt_req1, prt_req2;
input [addr_width-1:0] prt_addr1, prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1, prt_bytes2;
output reg prt_dv1, prt_dv2;
output reg [max_burst_bits-1:0] prt_data1,prt_data2;
output reg prt_req;
output reg [axi_qos_width-1:0] prt_qos;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
input [max_burst_bits-1:0] prt_data;
input prt_dv;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_dv_low = 2'b11;
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_req = 0;
if(prt_req1 && !prt_req2) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(!prt_req1 && prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req1 && prt_req2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_addr = prt_addr2;
prt_qos = qos2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
if(prt_dv) begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
prt_req = 0;
if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
if(prt_dv) begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
prt_req = 0;
if(prt_req1) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
wait_dv_low:begin
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
state = wait_dv_low;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module processing_system7_bfm_v2_0_5_arb_rd(
rstn,
sw_clk,
qos1,
qos2,
prt_req1,
prt_req2,
prt_bytes1,
prt_bytes2,
prt_addr1,
prt_addr2,
prt_data1,
prt_data2,
prt_dv1,
prt_dv2,
prt_req,
prt_qos,
prt_addr,
prt_bytes,
prt_data,
prt_dv
);
`include "processing_system7_bfm_v2_0_5_local_params.v"
input rstn, sw_clk;
input [axi_qos_width-1:0] qos1,qos2;
input prt_req1, prt_req2;
input [addr_width-1:0] prt_addr1, prt_addr2;
input [max_burst_bytes_width:0] prt_bytes1, prt_bytes2;
output reg prt_dv1, prt_dv2;
output reg [max_burst_bits-1:0] prt_data1,prt_data2;
output reg prt_req;
output reg [axi_qos_width-1:0] prt_qos;
output reg [addr_width-1:0] prt_addr;
output reg [max_burst_bytes_width:0] prt_bytes;
input [max_burst_bits-1:0] prt_data;
input prt_dv;
parameter wait_req = 2'b00, serv_req1 = 2'b01, serv_req2 = 2'b10,wait_dv_low = 2'b11;
reg [1:0] state;
always@(posedge sw_clk or negedge rstn)
begin
if(!rstn) begin
state = wait_req;
prt_req = 1'b0;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_qos = 0;
end else begin
case(state)
wait_req:begin
state = wait_req;
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
prt_req = 0;
if(prt_req1 && !prt_req2) begin
state = serv_req1;
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
end else if(!prt_req1 && prt_req2) begin
state = serv_req2;
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
end else if(prt_req1 && prt_req2) begin
if(qos1 > qos2) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else if(qos1 < qos2) begin
prt_req = 1;
prt_addr = prt_addr2;
prt_qos = qos2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end
end
end
serv_req1:begin
state = serv_req1;
prt_dv2 = 1'b0;
if(prt_dv) begin
prt_dv1 = 1'b1;
prt_data1 = prt_data;
prt_req = 0;
if(prt_req2) begin
prt_req = 1;
prt_qos = qos2;
prt_addr = prt_addr2;
prt_bytes = prt_bytes2;
state = serv_req2;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
serv_req2:begin
state = serv_req2;
prt_dv1 = 1'b0;
if(prt_dv) begin
prt_dv2 = 1'b1;
prt_data2 = prt_data;
prt_req = 0;
if(prt_req1) begin
prt_req = 1;
prt_qos = qos1;
prt_addr = prt_addr1;
prt_bytes = prt_bytes1;
state = serv_req1;
end else begin
state = wait_dv_low;
//state = wait_req;
end
end
end
wait_dv_low:begin
prt_dv1 = 1'b0;
prt_dv2 = 1'b0;
state = wait_dv_low;
if(!prt_dv)
state = wait_req;
end
endcase
end /// if else
end /// always
endmodule
|
module axi_crossbar_v2_1_arbiter_resp #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 4, // Number of requesting Slave ports = [2:16]
parameter integer C_NUM_S_LOG = 2, // Log2(C_NUM_S)
parameter integer C_GRANT_ENC = 0, // Enable encoded grant output
parameter integer C_GRANT_HOT = 1 // Enable 1-hot grant output
)
(
// Global Inputs
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S-1:0] S_VALID, // Request from each slave
output wire [C_NUM_S-1:0] S_READY, // Grant response to each slave
// Master Ports
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC, // Granted slave index (encoded)
output wire [C_NUM_S-1:0] M_GRANT_HOT, // Granted slave index (1-hot)
output wire M_VALID, // Grant event
input wire M_READY
);
// Generates a binary coded from onehotone encoded
function [4:0] f_hot2enc
(
input [16:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 17'b01010101010101010);
f_hot2enc[1] = |(one_hot & 17'b01100110011001100);
f_hot2enc[2] = |(one_hot & 17'b01111000011110000);
f_hot2enc[3] = |(one_hot & 17'b01111111100000000);
f_hot2enc[4] = |(one_hot & 17'b10000000000000000);
end
endfunction
(* use_clock_enable = "yes" *)
reg [C_NUM_S-1:0] chosen;
wire [C_NUM_S-1:0] grant_hot;
wire master_selected;
wire active_master;
wire need_arbitration;
wire m_valid_i;
wire [C_NUM_S-1:0] s_ready_i;
wire access_done;
reg [C_NUM_S-1:0] last_rr_hot;
wire [C_NUM_S-1:0] valid_rr;
reg [C_NUM_S-1:0] next_rr_hot;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
integer i;
integer j;
integer n;
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of the arbiter outputs independant of arbitration
//
/////////////////////////////////////////////////////////////////////////////
// Mask the current requests with the chosen master
assign grant_hot = chosen & S_VALID;
// See if we have a selected master
assign master_selected = |grant_hot[0+:C_NUM_S];
// See if we have current requests
assign active_master = |S_VALID;
// Access is completed
assign access_done = m_valid_i & M_READY;
// Need to handle if we drive S_ready combinatorial and without an IDLE state
// Drive S_READY on the master who has been chosen when we get a M_READY
assign s_ready_i = {C_NUM_S{M_READY}} & grant_hot[0+:C_NUM_S];
// Drive M_VALID if we have a selected master
assign m_valid_i = master_selected;
// If we have request and not a selected master, we need to arbitrate a new chosen
assign need_arbitration = (active_master & ~master_selected) | access_done;
// need internal signals of the output signals
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
assign M_GRANT_HOT = (C_GRANT_HOT == 1) ? grant_hot[0+:C_NUM_S] : {C_NUM_S{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
assign M_GRANT_ENC = (C_GRANT_ENC == 1) ? f_hot2enc(grant_hot) : {C_NUM_S_LOG{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Select a new chosen when we need to arbitrate
// If we don't have a new chosen, keep the old one since it's a good chance
// that it will do another request
always @(posedge ACLK)
begin
if (ARESET) begin
chosen <= {C_NUM_S{1'b0}};
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
end else if (need_arbitration) begin
chosen <= next_rr_hot;
if (|next_rr_hot) last_rr_hot <= next_rr_hot;
end
end
assign valid_rr = S_VALID;
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin
next_rr_hot = 0;
for (i=0;i<C_NUM_S;i=i+1) begin
n = (i>0) ? (i-1) : (C_NUM_S-1);
carry_rr[i*C_NUM_S] = last_rr_hot[n];
mask_rr[i*C_NUM_S] = ~valid_rr[n];
for (j=1;j<C_NUM_S;j=j+1) begin
n = (i-j > 0) ? (i-j-1) : (C_NUM_S+i-j-1);
carry_rr[i*C_NUM_S+j] = carry_rr[i*C_NUM_S+j-1] | (last_rr_hot[n] & mask_rr[i*C_NUM_S+j-1]);
if (j < C_NUM_S-1) begin
mask_rr[i*C_NUM_S+j] = mask_rr[i*C_NUM_S+j-1] & ~valid_rr[n];
end
end
next_rr_hot[i] = valid_rr[i] & carry_rr[(i+1)*C_NUM_S-1];
end
end
endmodule
|
module axi_crossbar_v2_1_arbiter_resp #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 4, // Number of requesting Slave ports = [2:16]
parameter integer C_NUM_S_LOG = 2, // Log2(C_NUM_S)
parameter integer C_GRANT_ENC = 0, // Enable encoded grant output
parameter integer C_GRANT_HOT = 1 // Enable 1-hot grant output
)
(
// Global Inputs
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S-1:0] S_VALID, // Request from each slave
output wire [C_NUM_S-1:0] S_READY, // Grant response to each slave
// Master Ports
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC, // Granted slave index (encoded)
output wire [C_NUM_S-1:0] M_GRANT_HOT, // Granted slave index (1-hot)
output wire M_VALID, // Grant event
input wire M_READY
);
// Generates a binary coded from onehotone encoded
function [4:0] f_hot2enc
(
input [16:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 17'b01010101010101010);
f_hot2enc[1] = |(one_hot & 17'b01100110011001100);
f_hot2enc[2] = |(one_hot & 17'b01111000011110000);
f_hot2enc[3] = |(one_hot & 17'b01111111100000000);
f_hot2enc[4] = |(one_hot & 17'b10000000000000000);
end
endfunction
(* use_clock_enable = "yes" *)
reg [C_NUM_S-1:0] chosen;
wire [C_NUM_S-1:0] grant_hot;
wire master_selected;
wire active_master;
wire need_arbitration;
wire m_valid_i;
wire [C_NUM_S-1:0] s_ready_i;
wire access_done;
reg [C_NUM_S-1:0] last_rr_hot;
wire [C_NUM_S-1:0] valid_rr;
reg [C_NUM_S-1:0] next_rr_hot;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
integer i;
integer j;
integer n;
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of the arbiter outputs independant of arbitration
//
/////////////////////////////////////////////////////////////////////////////
// Mask the current requests with the chosen master
assign grant_hot = chosen & S_VALID;
// See if we have a selected master
assign master_selected = |grant_hot[0+:C_NUM_S];
// See if we have current requests
assign active_master = |S_VALID;
// Access is completed
assign access_done = m_valid_i & M_READY;
// Need to handle if we drive S_ready combinatorial and without an IDLE state
// Drive S_READY on the master who has been chosen when we get a M_READY
assign s_ready_i = {C_NUM_S{M_READY}} & grant_hot[0+:C_NUM_S];
// Drive M_VALID if we have a selected master
assign m_valid_i = master_selected;
// If we have request and not a selected master, we need to arbitrate a new chosen
assign need_arbitration = (active_master & ~master_selected) | access_done;
// need internal signals of the output signals
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
assign M_GRANT_HOT = (C_GRANT_HOT == 1) ? grant_hot[0+:C_NUM_S] : {C_NUM_S{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
assign M_GRANT_ENC = (C_GRANT_ENC == 1) ? f_hot2enc(grant_hot) : {C_NUM_S_LOG{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Select a new chosen when we need to arbitrate
// If we don't have a new chosen, keep the old one since it's a good chance
// that it will do another request
always @(posedge ACLK)
begin
if (ARESET) begin
chosen <= {C_NUM_S{1'b0}};
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
end else if (need_arbitration) begin
chosen <= next_rr_hot;
if (|next_rr_hot) last_rr_hot <= next_rr_hot;
end
end
assign valid_rr = S_VALID;
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin
next_rr_hot = 0;
for (i=0;i<C_NUM_S;i=i+1) begin
n = (i>0) ? (i-1) : (C_NUM_S-1);
carry_rr[i*C_NUM_S] = last_rr_hot[n];
mask_rr[i*C_NUM_S] = ~valid_rr[n];
for (j=1;j<C_NUM_S;j=j+1) begin
n = (i-j > 0) ? (i-j-1) : (C_NUM_S+i-j-1);
carry_rr[i*C_NUM_S+j] = carry_rr[i*C_NUM_S+j-1] | (last_rr_hot[n] & mask_rr[i*C_NUM_S+j-1]);
if (j < C_NUM_S-1) begin
mask_rr[i*C_NUM_S+j] = mask_rr[i*C_NUM_S+j-1] & ~valid_rr[n];
end
end
next_rr_hot[i] = valid_rr[i] & carry_rr[(i+1)*C_NUM_S-1];
end
end
endmodule
|
module axi_crossbar_v2_1_arbiter_resp #
(
parameter C_FAMILY = "none",
parameter integer C_NUM_S = 4, // Number of requesting Slave ports = [2:16]
parameter integer C_NUM_S_LOG = 2, // Log2(C_NUM_S)
parameter integer C_GRANT_ENC = 0, // Enable encoded grant output
parameter integer C_GRANT_HOT = 1 // Enable 1-hot grant output
)
(
// Global Inputs
input wire ACLK,
input wire ARESET,
// Slave Ports
input wire [C_NUM_S-1:0] S_VALID, // Request from each slave
output wire [C_NUM_S-1:0] S_READY, // Grant response to each slave
// Master Ports
output wire [C_NUM_S_LOG-1:0] M_GRANT_ENC, // Granted slave index (encoded)
output wire [C_NUM_S-1:0] M_GRANT_HOT, // Granted slave index (1-hot)
output wire M_VALID, // Grant event
input wire M_READY
);
// Generates a binary coded from onehotone encoded
function [4:0] f_hot2enc
(
input [16:0] one_hot
);
begin
f_hot2enc[0] = |(one_hot & 17'b01010101010101010);
f_hot2enc[1] = |(one_hot & 17'b01100110011001100);
f_hot2enc[2] = |(one_hot & 17'b01111000011110000);
f_hot2enc[3] = |(one_hot & 17'b01111111100000000);
f_hot2enc[4] = |(one_hot & 17'b10000000000000000);
end
endfunction
(* use_clock_enable = "yes" *)
reg [C_NUM_S-1:0] chosen;
wire [C_NUM_S-1:0] grant_hot;
wire master_selected;
wire active_master;
wire need_arbitration;
wire m_valid_i;
wire [C_NUM_S-1:0] s_ready_i;
wire access_done;
reg [C_NUM_S-1:0] last_rr_hot;
wire [C_NUM_S-1:0] valid_rr;
reg [C_NUM_S-1:0] next_rr_hot;
reg [C_NUM_S*C_NUM_S-1:0] carry_rr;
reg [C_NUM_S*C_NUM_S-1:0] mask_rr;
integer i;
integer j;
integer n;
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of the arbiter outputs independant of arbitration
//
/////////////////////////////////////////////////////////////////////////////
// Mask the current requests with the chosen master
assign grant_hot = chosen & S_VALID;
// See if we have a selected master
assign master_selected = |grant_hot[0+:C_NUM_S];
// See if we have current requests
assign active_master = |S_VALID;
// Access is completed
assign access_done = m_valid_i & M_READY;
// Need to handle if we drive S_ready combinatorial and without an IDLE state
// Drive S_READY on the master who has been chosen when we get a M_READY
assign s_ready_i = {C_NUM_S{M_READY}} & grant_hot[0+:C_NUM_S];
// Drive M_VALID if we have a selected master
assign m_valid_i = master_selected;
// If we have request and not a selected master, we need to arbitrate a new chosen
assign need_arbitration = (active_master & ~master_selected) | access_done;
// need internal signals of the output signals
assign M_VALID = m_valid_i;
assign S_READY = s_ready_i;
/////////////////////////////////////////////////////////////////////////////
// Assign conditional onehot target output signal.
assign M_GRANT_HOT = (C_GRANT_HOT == 1) ? grant_hot[0+:C_NUM_S] : {C_NUM_S{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Assign conditional encoded target output signal.
assign M_GRANT_ENC = (C_GRANT_ENC == 1) ? f_hot2enc(grant_hot) : {C_NUM_S_LOG{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Select a new chosen when we need to arbitrate
// If we don't have a new chosen, keep the old one since it's a good chance
// that it will do another request
always @(posedge ACLK)
begin
if (ARESET) begin
chosen <= {C_NUM_S{1'b0}};
last_rr_hot <= {1'b1, {C_NUM_S-1{1'b0}}};
end else if (need_arbitration) begin
chosen <= next_rr_hot;
if (|next_rr_hot) last_rr_hot <= next_rr_hot;
end
end
assign valid_rr = S_VALID;
/////////////////////////////////////////////////////////////////////////////
// Round-robin arbiter
// Selects next request to grant from among inputs with PRIO = 0, if any.
/////////////////////////////////////////////////////////////////////////////
always @ * begin
next_rr_hot = 0;
for (i=0;i<C_NUM_S;i=i+1) begin
n = (i>0) ? (i-1) : (C_NUM_S-1);
carry_rr[i*C_NUM_S] = last_rr_hot[n];
mask_rr[i*C_NUM_S] = ~valid_rr[n];
for (j=1;j<C_NUM_S;j=j+1) begin
n = (i-j > 0) ? (i-j-1) : (C_NUM_S+i-j-1);
carry_rr[i*C_NUM_S+j] = carry_rr[i*C_NUM_S+j-1] | (last_rr_hot[n] & mask_rr[i*C_NUM_S+j-1]);
if (j < C_NUM_S-1) begin
mask_rr[i*C_NUM_S+j] = mask_rr[i*C_NUM_S+j-1] & ~valid_rr[n];
end
end
next_rr_hot[i] = valid_rr[i] & carry_rr[(i+1)*C_NUM_S-1];
end
end
endmodule
|
module processing_system7_bfm_v2_0_5_ocm_mem();
`include "processing_system7_bfm_v2_0_5_local_params.v"
parameter mem_size = 32'h4_0000; /// 256 KB
parameter mem_addr_width = clogb2(mem_size/mem_width);
reg [data_width-1:0] ocm_memory [0:(mem_size/mem_width)-1]; /// 256 KB memory
/* preload memory from file */
task automatic pre_load_mem_from_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
$readmemh(file_name,ocm_memory,start_addr>>shft_addr_bits);
endtask
/* preload memory with some random data */
task automatic pre_load_mem;
input [1:0] data_type;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
begin
addr = start_addr >> shft_addr_bits;
for (i = 0; i < no_of_bytes; i = i + mem_width) begin
case(data_type)
ALL_RANDOM : ocm_memory[addr] = $random;
ALL_ZEROS : ocm_memory[addr] = 32'h0000_0000;
ALL_ONES : ocm_memory[addr] = 32'hFFFF_FFFF;
default : ocm_memory[addr] = $random;
endcase
addr = addr+1;
end
end
endtask
/* Write memory */
task write_mem;
input [max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
reg [mem_addr_width-1:0] addr;
reg [max_burst_bits-1 :0] wr_temp_data;
reg [data_width-1:0] pre_pad_data,post_pad_data,temp_data;
integer bytes_left;
integer pre_pad_bytes;
integer post_pad_bytes;
begin
addr = start_addr >> shft_addr_bits;
wr_temp_data = data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Writing OCM Memory starting address (0x%0h) with %0d bytes.\n Data (0x%0h)",$time, DISP_INT_INFO, start_addr, no_of_bytes, data);
`endif
temp_data = wr_temp_data[data_width-1:0];
bytes_left = no_of_bytes;
/* when the no. of bytes to be updated is less than mem_width */
if(bytes_left < mem_width) begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
end
bytes_left = bytes_left + pre_pad_bytes;
end
/* This is needed for post padding the data ...*/
post_pad_bytes = mem_width - bytes_left;
post_pad_data = ocm_memory[addr];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end else begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
bytes_left = bytes_left -1;
end
end else begin
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
/* first data word end */
ocm_memory[addr] = temp_data;
addr = addr + 1;
while(bytes_left > (mem_width-1) ) begin /// for unaliged address necessary to check for mem_wd-1 , accordingly we have to pad post bytes.
ocm_memory[addr] = wr_temp_data[data_width-1:0];
addr = addr+1;
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
post_pad_data = ocm_memory[addr];
post_pad_bytes = mem_width - bytes_left;
/* This is needed for last transfer in unaliged burst */
if(bytes_left > 0) begin
temp_data = wr_temp_data[data_width-1:0];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end
end
`ifdef XLNX_INT_DBG $display("[%0d] : %0s : DONE -> Writing OCM Memory starting address (0x%0h)",$time, DISP_INT_INFO, start_addr );
`endif
end
endtask
/* read_memory */
task read_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer pre_bytes;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
pre_bytes = start_addr[shft_addr_bits-1:0];
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading OCM Memory starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
if(no_of_bytes < mem_width ) begin
temp_data = temp_data >> (pre_bytes * 8);
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - (mem_width - pre_bytes);
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
temp_rd_data = ocm_memory[addr];
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading OCM Memory starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
/* backdoor read to memory */
task peek_mem_to_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer rd_fd;
integer bytes;
reg [addr_width-1:0] addr;
reg [data_width-1:0] rd_data;
begin
rd_fd = $fopen(file_name,"w");
bytes = no_of_bytes;
addr = start_addr >> shft_addr_bits;
while (bytes > 0) begin
rd_data = ocm_memory[addr];
$fdisplayh(rd_fd,rd_data);
bytes = bytes - 4;
addr = addr + 1;
end
end
endtask
endmodule
|
module processing_system7_bfm_v2_0_5_ocm_mem();
`include "processing_system7_bfm_v2_0_5_local_params.v"
parameter mem_size = 32'h4_0000; /// 256 KB
parameter mem_addr_width = clogb2(mem_size/mem_width);
reg [data_width-1:0] ocm_memory [0:(mem_size/mem_width)-1]; /// 256 KB memory
/* preload memory from file */
task automatic pre_load_mem_from_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
$readmemh(file_name,ocm_memory,start_addr>>shft_addr_bits);
endtask
/* preload memory with some random data */
task automatic pre_load_mem;
input [1:0] data_type;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
begin
addr = start_addr >> shft_addr_bits;
for (i = 0; i < no_of_bytes; i = i + mem_width) begin
case(data_type)
ALL_RANDOM : ocm_memory[addr] = $random;
ALL_ZEROS : ocm_memory[addr] = 32'h0000_0000;
ALL_ONES : ocm_memory[addr] = 32'hFFFF_FFFF;
default : ocm_memory[addr] = $random;
endcase
addr = addr+1;
end
end
endtask
/* Write memory */
task write_mem;
input [max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
reg [mem_addr_width-1:0] addr;
reg [max_burst_bits-1 :0] wr_temp_data;
reg [data_width-1:0] pre_pad_data,post_pad_data,temp_data;
integer bytes_left;
integer pre_pad_bytes;
integer post_pad_bytes;
begin
addr = start_addr >> shft_addr_bits;
wr_temp_data = data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Writing OCM Memory starting address (0x%0h) with %0d bytes.\n Data (0x%0h)",$time, DISP_INT_INFO, start_addr, no_of_bytes, data);
`endif
temp_data = wr_temp_data[data_width-1:0];
bytes_left = no_of_bytes;
/* when the no. of bytes to be updated is less than mem_width */
if(bytes_left < mem_width) begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
end
bytes_left = bytes_left + pre_pad_bytes;
end
/* This is needed for post padding the data ...*/
post_pad_bytes = mem_width - bytes_left;
post_pad_data = ocm_memory[addr];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end else begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
bytes_left = bytes_left -1;
end
end else begin
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
/* first data word end */
ocm_memory[addr] = temp_data;
addr = addr + 1;
while(bytes_left > (mem_width-1) ) begin /// for unaliged address necessary to check for mem_wd-1 , accordingly we have to pad post bytes.
ocm_memory[addr] = wr_temp_data[data_width-1:0];
addr = addr+1;
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
post_pad_data = ocm_memory[addr];
post_pad_bytes = mem_width - bytes_left;
/* This is needed for last transfer in unaliged burst */
if(bytes_left > 0) begin
temp_data = wr_temp_data[data_width-1:0];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end
end
`ifdef XLNX_INT_DBG $display("[%0d] : %0s : DONE -> Writing OCM Memory starting address (0x%0h)",$time, DISP_INT_INFO, start_addr );
`endif
end
endtask
/* read_memory */
task read_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer pre_bytes;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
pre_bytes = start_addr[shft_addr_bits-1:0];
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading OCM Memory starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
if(no_of_bytes < mem_width ) begin
temp_data = temp_data >> (pre_bytes * 8);
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - (mem_width - pre_bytes);
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
temp_rd_data = ocm_memory[addr];
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading OCM Memory starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
/* backdoor read to memory */
task peek_mem_to_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer rd_fd;
integer bytes;
reg [addr_width-1:0] addr;
reg [data_width-1:0] rd_data;
begin
rd_fd = $fopen(file_name,"w");
bytes = no_of_bytes;
addr = start_addr >> shft_addr_bits;
while (bytes > 0) begin
rd_data = ocm_memory[addr];
$fdisplayh(rd_fd,rd_data);
bytes = bytes - 4;
addr = addr + 1;
end
end
endtask
endmodule
|
module processing_system7_bfm_v2_0_5_ocm_mem();
`include "processing_system7_bfm_v2_0_5_local_params.v"
parameter mem_size = 32'h4_0000; /// 256 KB
parameter mem_addr_width = clogb2(mem_size/mem_width);
reg [data_width-1:0] ocm_memory [0:(mem_size/mem_width)-1]; /// 256 KB memory
/* preload memory from file */
task automatic pre_load_mem_from_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
$readmemh(file_name,ocm_memory,start_addr>>shft_addr_bits);
endtask
/* preload memory with some random data */
task automatic pre_load_mem;
input [1:0] data_type;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
begin
addr = start_addr >> shft_addr_bits;
for (i = 0; i < no_of_bytes; i = i + mem_width) begin
case(data_type)
ALL_RANDOM : ocm_memory[addr] = $random;
ALL_ZEROS : ocm_memory[addr] = 32'h0000_0000;
ALL_ONES : ocm_memory[addr] = 32'hFFFF_FFFF;
default : ocm_memory[addr] = $random;
endcase
addr = addr+1;
end
end
endtask
/* Write memory */
task write_mem;
input [max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
reg [mem_addr_width-1:0] addr;
reg [max_burst_bits-1 :0] wr_temp_data;
reg [data_width-1:0] pre_pad_data,post_pad_data,temp_data;
integer bytes_left;
integer pre_pad_bytes;
integer post_pad_bytes;
begin
addr = start_addr >> shft_addr_bits;
wr_temp_data = data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Writing OCM Memory starting address (0x%0h) with %0d bytes.\n Data (0x%0h)",$time, DISP_INT_INFO, start_addr, no_of_bytes, data);
`endif
temp_data = wr_temp_data[data_width-1:0];
bytes_left = no_of_bytes;
/* when the no. of bytes to be updated is less than mem_width */
if(bytes_left < mem_width) begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
end
bytes_left = bytes_left + pre_pad_bytes;
end
/* This is needed for post padding the data ...*/
post_pad_bytes = mem_width - bytes_left;
post_pad_data = ocm_memory[addr];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end else begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
bytes_left = bytes_left -1;
end
end else begin
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
/* first data word end */
ocm_memory[addr] = temp_data;
addr = addr + 1;
while(bytes_left > (mem_width-1) ) begin /// for unaliged address necessary to check for mem_wd-1 , accordingly we have to pad post bytes.
ocm_memory[addr] = wr_temp_data[data_width-1:0];
addr = addr+1;
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
post_pad_data = ocm_memory[addr];
post_pad_bytes = mem_width - bytes_left;
/* This is needed for last transfer in unaliged burst */
if(bytes_left > 0) begin
temp_data = wr_temp_data[data_width-1:0];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end
end
`ifdef XLNX_INT_DBG $display("[%0d] : %0s : DONE -> Writing OCM Memory starting address (0x%0h)",$time, DISP_INT_INFO, start_addr );
`endif
end
endtask
/* read_memory */
task read_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer pre_bytes;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
pre_bytes = start_addr[shft_addr_bits-1:0];
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading OCM Memory starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
if(no_of_bytes < mem_width ) begin
temp_data = temp_data >> (pre_bytes * 8);
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - (mem_width - pre_bytes);
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
temp_rd_data = ocm_memory[addr];
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading OCM Memory starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
/* backdoor read to memory */
task peek_mem_to_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer rd_fd;
integer bytes;
reg [addr_width-1:0] addr;
reg [data_width-1:0] rd_data;
begin
rd_fd = $fopen(file_name,"w");
bytes = no_of_bytes;
addr = start_addr >> shft_addr_bits;
while (bytes > 0) begin
rd_data = ocm_memory[addr];
$fdisplayh(rd_fd,rd_data);
bytes = bytes - 4;
addr = addr + 1;
end
end
endtask
endmodule
|
module processing_system7_bfm_v2_0_5_ocm_mem();
`include "processing_system7_bfm_v2_0_5_local_params.v"
parameter mem_size = 32'h4_0000; /// 256 KB
parameter mem_addr_width = clogb2(mem_size/mem_width);
reg [data_width-1:0] ocm_memory [0:(mem_size/mem_width)-1]; /// 256 KB memory
/* preload memory from file */
task automatic pre_load_mem_from_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
$readmemh(file_name,ocm_memory,start_addr>>shft_addr_bits);
endtask
/* preload memory with some random data */
task automatic pre_load_mem;
input [1:0] data_type;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
begin
addr = start_addr >> shft_addr_bits;
for (i = 0; i < no_of_bytes; i = i + mem_width) begin
case(data_type)
ALL_RANDOM : ocm_memory[addr] = $random;
ALL_ZEROS : ocm_memory[addr] = 32'h0000_0000;
ALL_ONES : ocm_memory[addr] = 32'hFFFF_FFFF;
default : ocm_memory[addr] = $random;
endcase
addr = addr+1;
end
end
endtask
/* Write memory */
task write_mem;
input [max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
reg [mem_addr_width-1:0] addr;
reg [max_burst_bits-1 :0] wr_temp_data;
reg [data_width-1:0] pre_pad_data,post_pad_data,temp_data;
integer bytes_left;
integer pre_pad_bytes;
integer post_pad_bytes;
begin
addr = start_addr >> shft_addr_bits;
wr_temp_data = data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Writing OCM Memory starting address (0x%0h) with %0d bytes.\n Data (0x%0h)",$time, DISP_INT_INFO, start_addr, no_of_bytes, data);
`endif
temp_data = wr_temp_data[data_width-1:0];
bytes_left = no_of_bytes;
/* when the no. of bytes to be updated is less than mem_width */
if(bytes_left < mem_width) begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
end
bytes_left = bytes_left + pre_pad_bytes;
end
/* This is needed for post padding the data ...*/
post_pad_bytes = mem_width - bytes_left;
post_pad_data = ocm_memory[addr];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end else begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
temp_data = ocm_memory[addr];
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
bytes_left = bytes_left -1;
end
end else begin
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
/* first data word end */
ocm_memory[addr] = temp_data;
addr = addr + 1;
while(bytes_left > (mem_width-1) ) begin /// for unaliged address necessary to check for mem_wd-1 , accordingly we have to pad post bytes.
ocm_memory[addr] = wr_temp_data[data_width-1:0];
addr = addr+1;
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
post_pad_data = ocm_memory[addr];
post_pad_bytes = mem_width - bytes_left;
/* This is needed for last transfer in unaliged burst */
if(bytes_left > 0) begin
temp_data = wr_temp_data[data_width-1:0];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
ocm_memory[addr] = temp_data;
end
end
`ifdef XLNX_INT_DBG $display("[%0d] : %0s : DONE -> Writing OCM Memory starting address (0x%0h)",$time, DISP_INT_INFO, start_addr );
`endif
end
endtask
/* read_memory */
task read_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
integer i;
reg [mem_addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer pre_bytes;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
pre_bytes = start_addr[shft_addr_bits-1:0];
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading OCM Memory starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
if(no_of_bytes < mem_width ) begin
temp_data = temp_data >> (pre_bytes * 8);
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - (mem_width - pre_bytes);
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
temp_data[max_burst_bits-1 : max_burst_bits-data_width] = ocm_memory[addr];
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
temp_rd_data = ocm_memory[addr];
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading OCM Memory starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
/* backdoor read to memory */
task peek_mem_to_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer rd_fd;
integer bytes;
reg [addr_width-1:0] addr;
reg [data_width-1:0] rd_data;
begin
rd_fd = $fopen(file_name,"w");
bytes = no_of_bytes;
addr = start_addr >> shft_addr_bits;
while (bytes > 0) begin
rd_data = ocm_memory[addr];
$fdisplayh(rd_fd,rd_data);
bytes = bytes - 4;
addr = addr + 1;
end
end
endtask
endmodule
|
module processing_system7_bfm_v2_0_5_sparse_mem();
`include "processing_system7_bfm_v2_0_5_local_params.v"
parameter mem_size = 32'h4000_0000; /// 1GB mem size
parameter xsim_mem_size = 32'h1000_0000; ///256 MB mem size (x4 for XSIM/ISIM)
`ifdef XSIM_ISIM
reg [data_width-1:0] ddr_mem0 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] ddr_mem1 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] ddr_mem2 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] ddr_mem3 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
`else
reg /*sparse*/ [data_width-1:0] ddr_mem [0:(mem_size/mem_width)-1]; // 'h10_0000 to 'h3FFF_FFFF - 1G mem
`endif
event mem_updated;
reg check_we;
reg [addr_width-1:0] check_up_add;
reg [data_width-1:0] updated_data;
/* preload memory from file */
task automatic pre_load_mem_from_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
`ifdef XSIM_ISIM
case(start_addr[31:28])
4'd0 : $readmemh(file_name,ddr_mem0,start_addr>>shft_addr_bits);
4'd1 : $readmemh(file_name,ddr_mem1,start_addr>>shft_addr_bits);
4'd2 : $readmemh(file_name,ddr_mem2,start_addr>>shft_addr_bits);
4'd3 : $readmemh(file_name,ddr_mem3,start_addr>>shft_addr_bits);
endcase
`else
$readmemh(file_name,ddr_mem,start_addr>>shft_addr_bits);
`endif
endtask
/* preload memory with some random data */
task automatic pre_load_mem;
input [1:0] data_type;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
begin
addr = start_addr >> shft_addr_bits;
for (i = 0; i < no_of_bytes; i = i + mem_width) begin
case(data_type)
ALL_RANDOM : set_data(addr , $random);
ALL_ZEROS : set_data(addr , 32'h0000_0000);
ALL_ONES : set_data(addr , 32'hFFFF_FFFF);
default : set_data(addr , $random);
endcase
addr = addr+1;
end
end
endtask
/* wait for memory update at certain location */
task automatic wait_mem_update;
input[addr_width-1:0] address;
output[data_width-1:0] dataout;
begin
check_up_add = address >> shft_addr_bits;
check_we = 1;
@(mem_updated);
dataout = updated_data;
check_we = 0;
end
endtask
/* internal task to write data in memory */
task automatic set_data;
input [addr_width-1:0] addr;
input [data_width-1:0] data;
begin
if(check_we && (addr === check_up_add)) begin
updated_data = data;
-> mem_updated;
end
`ifdef XSIM_ISIM
case(addr[31:26])
6'd0 : ddr_mem0[addr[25:0]] = data;
6'd1 : ddr_mem1[addr[25:0]] = data;
6'd2 : ddr_mem2[addr[25:0]] = data;
6'd3 : ddr_mem3[addr[25:0]] = data;
endcase
`else
ddr_mem[addr] = data;
`endif
end
endtask
/* internal task to read data from memory */
task automatic get_data;
input [addr_width-1:0] addr;
output [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[31:26])
6'd0 : data = ddr_mem0[addr[25:0]];
6'd1 : data = ddr_mem1[addr[25:0]];
6'd2 : data = ddr_mem2[addr[25:0]];
6'd3 : data = ddr_mem3[addr[25:0]];
endcase
`else
data = ddr_mem[addr];
`endif
end
endtask
/* Write memory */
task write_mem;
input [max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
reg [addr_width-1:0] addr;
reg [max_burst_bits-1 :0] wr_temp_data;
reg [data_width-1:0] pre_pad_data,post_pad_data,temp_data;
integer bytes_left;
integer pre_pad_bytes;
integer post_pad_bytes;
begin
addr = start_addr >> shft_addr_bits;
wr_temp_data = data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Writing DDR Memory starting address (0x%0h) with %0d bytes.\n Data (0x%0h)",$time, DISP_INT_INFO, start_addr, no_of_bytes, data);
`endif
temp_data = wr_temp_data[data_width-1:0];
bytes_left = no_of_bytes;
/* when the no. of bytes to be updated is less than mem_width */
if(bytes_left < mem_width) begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
//temp_data = ddr_mem[addr];
get_data(addr,temp_data);
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
end
bytes_left = bytes_left + pre_pad_bytes;
end
/* This is needed for post padding the data ...*/
post_pad_bytes = mem_width - bytes_left;
//post_pad_data = ddr_mem[addr];
get_data(addr,post_pad_data);
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
//ddr_mem[addr] = temp_data;
set_data(addr,temp_data);
end else begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
//temp_data = ddr_mem[addr];
get_data(addr,temp_data);
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
bytes_left = bytes_left -1;
end
end else begin
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
/* first data word end */
//ddr_mem[addr] = temp_data;
set_data(addr,temp_data);
addr = addr + 1;
while(bytes_left > (mem_width-1) ) begin /// for unaliged address necessary to check for mem_wd-1 , accordingly we have to pad post bytes.
//ddr_mem[addr] = wr_temp_data[data_width-1:0];
set_data(addr,wr_temp_data[data_width-1:0]);
addr = addr+1;
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
//post_pad_data = ddr_mem[addr];
get_data(addr,post_pad_data);
post_pad_bytes = mem_width - bytes_left;
/* This is needed for last transfer in unaliged burst */
if(bytes_left > 0) begin
temp_data = wr_temp_data[data_width-1:0];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
//ddr_mem[addr] = temp_data;
set_data(addr,temp_data);
end
end
`ifdef XLNX_INT_DBG $display("[%0d] : %0s : DONE -> Writing DDR Memory starting address (0x%0h)",$time, DISP_INT_INFO, start_addr );
`endif
end
endtask
/* read_memory */
task read_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width :0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer pre_bytes;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
pre_bytes = start_addr[shft_addr_bits-1:0];
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading DDR Memory starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
//temp_data[(max_burst * max_data_burst)-1 : (max_burst * max_data_burst)- data_width] = ddr_mem[addr];
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
if(no_of_bytes < mem_width ) begin
temp_data = temp_data >> (pre_bytes * 8);
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - (mem_width - pre_bytes);
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
//temp_data[(max_burst * max_data_burst)-1 : (max_burst * max_data_burst)- data_width] = ddr_mem[addr];
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
//temp_rd_data = ddr_mem[addr];
get_data(addr,temp_rd_data);
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading DDR Memory starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
/* backdoor read to memory */
task peek_mem_to_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer rd_fd;
integer bytes;
reg [addr_width-1:0] addr;
reg [data_width-1:0] rd_data;
begin
rd_fd = $fopen(file_name,"w");
bytes = no_of_bytes;
addr = start_addr >> shft_addr_bits;
while (bytes > 0) begin
get_data(addr,rd_data);
$fdisplayh(rd_fd,rd_data);
bytes = bytes - 4;
addr = addr + 1;
end
end
endtask
endmodule
|
module processing_system7_bfm_v2_0_5_sparse_mem();
`include "processing_system7_bfm_v2_0_5_local_params.v"
parameter mem_size = 32'h4000_0000; /// 1GB mem size
parameter xsim_mem_size = 32'h1000_0000; ///256 MB mem size (x4 for XSIM/ISIM)
`ifdef XSIM_ISIM
reg [data_width-1:0] ddr_mem0 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] ddr_mem1 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] ddr_mem2 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
reg [data_width-1:0] ddr_mem3 [0:(xsim_mem_size/mem_width)-1]; // 256MB mem
`else
reg /*sparse*/ [data_width-1:0] ddr_mem [0:(mem_size/mem_width)-1]; // 'h10_0000 to 'h3FFF_FFFF - 1G mem
`endif
event mem_updated;
reg check_we;
reg [addr_width-1:0] check_up_add;
reg [data_width-1:0] updated_data;
/* preload memory from file */
task automatic pre_load_mem_from_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
`ifdef XSIM_ISIM
case(start_addr[31:28])
4'd0 : $readmemh(file_name,ddr_mem0,start_addr>>shft_addr_bits);
4'd1 : $readmemh(file_name,ddr_mem1,start_addr>>shft_addr_bits);
4'd2 : $readmemh(file_name,ddr_mem2,start_addr>>shft_addr_bits);
4'd3 : $readmemh(file_name,ddr_mem3,start_addr>>shft_addr_bits);
endcase
`else
$readmemh(file_name,ddr_mem,start_addr>>shft_addr_bits);
`endif
endtask
/* preload memory with some random data */
task automatic pre_load_mem;
input [1:0] data_type;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
begin
addr = start_addr >> shft_addr_bits;
for (i = 0; i < no_of_bytes; i = i + mem_width) begin
case(data_type)
ALL_RANDOM : set_data(addr , $random);
ALL_ZEROS : set_data(addr , 32'h0000_0000);
ALL_ONES : set_data(addr , 32'hFFFF_FFFF);
default : set_data(addr , $random);
endcase
addr = addr+1;
end
end
endtask
/* wait for memory update at certain location */
task automatic wait_mem_update;
input[addr_width-1:0] address;
output[data_width-1:0] dataout;
begin
check_up_add = address >> shft_addr_bits;
check_we = 1;
@(mem_updated);
dataout = updated_data;
check_we = 0;
end
endtask
/* internal task to write data in memory */
task automatic set_data;
input [addr_width-1:0] addr;
input [data_width-1:0] data;
begin
if(check_we && (addr === check_up_add)) begin
updated_data = data;
-> mem_updated;
end
`ifdef XSIM_ISIM
case(addr[31:26])
6'd0 : ddr_mem0[addr[25:0]] = data;
6'd1 : ddr_mem1[addr[25:0]] = data;
6'd2 : ddr_mem2[addr[25:0]] = data;
6'd3 : ddr_mem3[addr[25:0]] = data;
endcase
`else
ddr_mem[addr] = data;
`endif
end
endtask
/* internal task to read data from memory */
task automatic get_data;
input [addr_width-1:0] addr;
output [data_width-1:0] data;
begin
`ifdef XSIM_ISIM
case(addr[31:26])
6'd0 : data = ddr_mem0[addr[25:0]];
6'd1 : data = ddr_mem1[addr[25:0]];
6'd2 : data = ddr_mem2[addr[25:0]];
6'd3 : data = ddr_mem3[addr[25:0]];
endcase
`else
data = ddr_mem[addr];
`endif
end
endtask
/* Write memory */
task write_mem;
input [max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width:0] no_of_bytes;
reg [addr_width-1:0] addr;
reg [max_burst_bits-1 :0] wr_temp_data;
reg [data_width-1:0] pre_pad_data,post_pad_data,temp_data;
integer bytes_left;
integer pre_pad_bytes;
integer post_pad_bytes;
begin
addr = start_addr >> shft_addr_bits;
wr_temp_data = data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Writing DDR Memory starting address (0x%0h) with %0d bytes.\n Data (0x%0h)",$time, DISP_INT_INFO, start_addr, no_of_bytes, data);
`endif
temp_data = wr_temp_data[data_width-1:0];
bytes_left = no_of_bytes;
/* when the no. of bytes to be updated is less than mem_width */
if(bytes_left < mem_width) begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
//temp_data = ddr_mem[addr];
get_data(addr,temp_data);
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
end
bytes_left = bytes_left + pre_pad_bytes;
end
/* This is needed for post padding the data ...*/
post_pad_bytes = mem_width - bytes_left;
//post_pad_data = ddr_mem[addr];
get_data(addr,post_pad_data);
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
//ddr_mem[addr] = temp_data;
set_data(addr,temp_data);
end else begin
/* first data word in the burst , if unaligned address, the adjust the wr_data accordingly for first write*/
if(start_addr[shft_addr_bits-1:0] > 0) begin
//temp_data = ddr_mem[addr];
get_data(addr,temp_data);
pre_pad_bytes = mem_width - start_addr[shft_addr_bits-1:0];
repeat(pre_pad_bytes) temp_data = temp_data << 8;
repeat(pre_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = wr_temp_data[7:0];
wr_temp_data = wr_temp_data >> 8;
bytes_left = bytes_left -1;
end
end else begin
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
/* first data word end */
//ddr_mem[addr] = temp_data;
set_data(addr,temp_data);
addr = addr + 1;
while(bytes_left > (mem_width-1) ) begin /// for unaliged address necessary to check for mem_wd-1 , accordingly we have to pad post bytes.
//ddr_mem[addr] = wr_temp_data[data_width-1:0];
set_data(addr,wr_temp_data[data_width-1:0]);
addr = addr+1;
wr_temp_data = wr_temp_data >> data_width;
bytes_left = bytes_left - mem_width;
end
//post_pad_data = ddr_mem[addr];
get_data(addr,post_pad_data);
post_pad_bytes = mem_width - bytes_left;
/* This is needed for last transfer in unaliged burst */
if(bytes_left > 0) begin
temp_data = wr_temp_data[data_width-1:0];
repeat(post_pad_bytes) temp_data = temp_data << 8;
repeat(bytes_left) post_pad_data = post_pad_data >> 8;
repeat(post_pad_bytes) begin
temp_data = temp_data >> 8;
temp_data[data_width-1:data_width-8] = post_pad_data[7:0];
post_pad_data = post_pad_data >> 8;
end
//ddr_mem[addr] = temp_data;
set_data(addr,temp_data);
end
end
`ifdef XLNX_INT_DBG $display("[%0d] : %0s : DONE -> Writing DDR Memory starting address (0x%0h)",$time, DISP_INT_INFO, start_addr );
`endif
end
endtask
/* read_memory */
task read_mem;
output[max_burst_bits-1 :0] data;
input [addr_width-1:0] start_addr;
input [max_burst_bytes_width :0] no_of_bytes;
integer i;
reg [addr_width-1:0] addr;
reg [data_width-1:0] temp_rd_data;
reg [max_burst_bits-1:0] temp_data;
integer pre_bytes;
integer bytes_left;
begin
addr = start_addr >> shft_addr_bits;
pre_bytes = start_addr[shft_addr_bits-1:0];
bytes_left = no_of_bytes;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : Reading DDR Memory starting address (0x%0h) -> %0d bytes",$time, DISP_INT_INFO, start_addr,no_of_bytes );
`endif
/* Get first data ... if unaligned address */
//temp_data[(max_burst * max_data_burst)-1 : (max_burst * max_data_burst)- data_width] = ddr_mem[addr];
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
if(no_of_bytes < mem_width ) begin
temp_data = temp_data >> (pre_bytes * 8);
repeat(max_burst_bytes - mem_width)
temp_data = temp_data >> 8;
end else begin
bytes_left = bytes_left - (mem_width - pre_bytes);
addr = addr+1;
/* Got first data */
while (bytes_left > (mem_width-1) ) begin
temp_data = temp_data >> data_width;
//temp_data[(max_burst * max_data_burst)-1 : (max_burst * max_data_burst)- data_width] = ddr_mem[addr];
get_data(addr,temp_data[max_burst_bits-1 : max_burst_bits-data_width]);
addr = addr+1;
bytes_left = bytes_left - mem_width;
end
/* Get last valid data in the burst*/
//temp_rd_data = ddr_mem[addr];
get_data(addr,temp_rd_data);
while(bytes_left > 0) begin
temp_data = temp_data >> 8;
temp_data[max_burst_bits-1 : max_burst_bits-8] = temp_rd_data[7:0];
temp_rd_data = temp_rd_data >> 8;
bytes_left = bytes_left - 1;
end
/* align to the brst_byte length */
repeat(max_burst_bytes - no_of_bytes)
temp_data = temp_data >> 8;
end
data = temp_data;
`ifdef XLNX_INT_DBG
$display("[%0d] : %0s : DONE -> Reading DDR Memory starting address (0x%0h), Data returned(0x%0h)",$time, DISP_INT_INFO, start_addr, data );
`endif
end
endtask
/* backdoor read to memory */
task peek_mem_to_file;
input [(max_chars*8)-1:0] file_name;
input [addr_width-1:0] start_addr;
input [int_width-1:0] no_of_bytes;
integer rd_fd;
integer bytes;
reg [addr_width-1:0] addr;
reg [data_width-1:0] rd_data;
begin
rd_fd = $fopen(file_name,"w");
bytes = no_of_bytes;
addr = start_addr >> shft_addr_bits;
while (bytes > 0) begin
get_data(addr,rd_data);
$fdisplayh(rd_fd,rd_data);
bytes = bytes - 4;
addr = addr + 1;
end
end
endtask
endmodule
|
module wishbone_mem_interconnect (
//Control Signals
input clk,
input rst,
//Master Signals
input i_m_we,
input i_m_stb,
input i_m_cyc,
input [3:0] i_m_sel,
input [31:0] i_m_adr,
input [31:0] i_m_dat,
output reg [31:0] o_m_dat,
output reg o_m_ack,
output reg o_m_int,
//Slave 0
output o_s0_we,
output o_s0_cyc,
output o_s0_stb,
output [3:0] o_s0_sel,
input i_s0_ack,
output [31:0] o_s0_dat,
input [31:0] i_s0_dat,
output [31:0] o_s0_adr,
input i_s0_int
);
parameter MEM_SEL_0 = 0;
parameter MEM_OFFSET_0 = 0;
parameter MEM_SIZE_0 = 8388607;
reg [31:0] mem_select;
always @(rst or i_m_adr or mem_select) begin
if (rst) begin
//nothing selected
mem_select <= 32'hFFFFFFFF;
end
else begin
if ((i_m_adr >= MEM_OFFSET_0) && (i_m_adr < (MEM_OFFSET_0 + MEM_SIZE_0))) begin
mem_select <= MEM_SEL_0;
end
else begin
mem_select <= 32'hFFFFFFFF;
end
end
end
//data in from slave
always @ (mem_select or i_s0_dat) begin
case (mem_select)
MEM_SEL_0: begin
o_m_dat <= i_s0_dat;
end
default: begin
o_m_dat <= 32'h0000;
end
endcase
end
//ack in from mem slave
always @ (mem_select or i_s0_ack) begin
case (mem_select)
MEM_SEL_0: begin
o_m_ack <= i_s0_ack;
end
default: begin
o_m_ack <= 1'h0;
end
endcase
end
//int in from slave
always @ (mem_select or i_s0_int) begin
case (mem_select)
MEM_SEL_0: begin
o_m_int <= i_s0_int;
end
default: begin
o_m_int <= 1'h0;
end
endcase
end
assign o_s0_we = (mem_select == MEM_SEL_0) ? i_m_we: 1'b0;
assign o_s0_stb = (mem_select == MEM_SEL_0) ? i_m_stb: 1'b0;
assign o_s0_sel = (mem_select == MEM_SEL_0) ? i_m_sel: 4'b0;
assign o_s0_cyc = (mem_select == MEM_SEL_0) ? i_m_cyc: 1'b0;
assign o_s0_adr = (mem_select == MEM_SEL_0) ? i_m_adr: 32'h0;
assign o_s0_dat = (mem_select == MEM_SEL_0) ? i_m_dat: 32'h0;
endmodule
|
module wishbone_mem_interconnect (
//Control Signals
input clk,
input rst,
//Master Signals
input i_m_we,
input i_m_stb,
input i_m_cyc,
input [3:0] i_m_sel,
input [31:0] i_m_adr,
input [31:0] i_m_dat,
output reg [31:0] o_m_dat,
output reg o_m_ack,
output reg o_m_int,
//Slave 0
output o_s0_we,
output o_s0_cyc,
output o_s0_stb,
output [3:0] o_s0_sel,
input i_s0_ack,
output [31:0] o_s0_dat,
input [31:0] i_s0_dat,
output [31:0] o_s0_adr,
input i_s0_int
);
parameter MEM_SEL_0 = 0;
parameter MEM_OFFSET_0 = 0;
parameter MEM_SIZE_0 = 8388607;
reg [31:0] mem_select;
always @(rst or i_m_adr or mem_select) begin
if (rst) begin
//nothing selected
mem_select <= 32'hFFFFFFFF;
end
else begin
if ((i_m_adr >= MEM_OFFSET_0) && (i_m_adr < (MEM_OFFSET_0 + MEM_SIZE_0))) begin
mem_select <= MEM_SEL_0;
end
else begin
mem_select <= 32'hFFFFFFFF;
end
end
end
//data in from slave
always @ (mem_select or i_s0_dat) begin
case (mem_select)
MEM_SEL_0: begin
o_m_dat <= i_s0_dat;
end
default: begin
o_m_dat <= 32'h0000;
end
endcase
end
//ack in from mem slave
always @ (mem_select or i_s0_ack) begin
case (mem_select)
MEM_SEL_0: begin
o_m_ack <= i_s0_ack;
end
default: begin
o_m_ack <= 1'h0;
end
endcase
end
//int in from slave
always @ (mem_select or i_s0_int) begin
case (mem_select)
MEM_SEL_0: begin
o_m_int <= i_s0_int;
end
default: begin
o_m_int <= 1'h0;
end
endcase
end
assign o_s0_we = (mem_select == MEM_SEL_0) ? i_m_we: 1'b0;
assign o_s0_stb = (mem_select == MEM_SEL_0) ? i_m_stb: 1'b0;
assign o_s0_sel = (mem_select == MEM_SEL_0) ? i_m_sel: 4'b0;
assign o_s0_cyc = (mem_select == MEM_SEL_0) ? i_m_cyc: 1'b0;
assign o_s0_adr = (mem_select == MEM_SEL_0) ? i_m_adr: 32'h0;
assign o_s0_dat = (mem_select == MEM_SEL_0) ? i_m_dat: 32'h0;
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_wr_cntr_width = clogb2(max_wr_outstanding_transactions+1);
parameter int_rd_cntr_width = clogb2(max_rd_outstanding_transactions+1);
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR, RD_REQ_REG;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM, RD_DATA_REG;
output reg[max_burst_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR, RD_DATA_VALID_REG;
output reg [axi_qos_width-1:0] WR_QOS, RD_QOS;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* WR_FIFO stores 32-bit address, valid data and valid bytes for each AXI Write burst transaction */
reg [wr_fifo_data_bits-1:0] wr_fifo [0:max_wr_outstanding_transactions-1];
reg [int_wr_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the latency in sending the bresp*/
reg [7:0] aw_time_cnt = 0, bresp_time_cnt = 0;
real awvalid_receive_time[0:max_wr_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_wr_outstanding_transactions]; // indicates awvalid is received
/* Address Write Channel handshake*/
reg[int_wr_cntr_width-1:0] aw_cnt = 0;// count of awvalid
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_wr_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_wr_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_wr_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_wr_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_wr_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_wr_outstanding_transactions-1];
reg aw_flag [0:max_wr_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_wr_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_wr_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_wr_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_wr_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_wr_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_wr_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_wr_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_wr_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_wr_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_wr_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* states for managing read/write to WR_FIFO */
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_min; else get_wr_lat_number = gp_wr_min;
AVG_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_avg; else get_wr_lat_number = gp_wr_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_max; else get_wr_lat_number = gp_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%10+ acp_wr_min); else get_wr_lat_number = ($random()%10+ gp_wr_min);
2'b01 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%40+ acp_wr_avg); else get_wr_lat_number = ($random()%40+ gp_wr_avg);
default : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%60+ acp_wr_max); else get_wr_lat_number = ($random()%60+ gp_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_min; else get_rd_lat_number = gp_rd_min;
AVG_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_avg; else get_rd_lat_number = gp_rd_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_max; else get_rd_lat_number = gp_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%10+ acp_rd_min); else get_rd_lat_number = ($random()%10+ gp_rd_min);
2'b01 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%40+ acp_rd_avg); else get_rd_lat_number = ($random()%40+ gp_rd_avg);
default : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%60+ acp_rd_max); else get_rd_lat_number = ($random()%60+ gp_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign aw_fifo_full = ((aw_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (aw_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign wd_fifo_full = ((wd_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (wd_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
if(aw_time_cnt === max_wr_outstanding_transactions) aw_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_wr_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_wr_cntr_width-2:0]] = S_AWQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(aw_fifo_full)
begin
if(aw_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Write transactions limit (%0d). Blocking all future Write transactions until at least 1 of the outstanding Write transaction has completed.",$time, DISP_INFO, slave_name,max_wr_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
end else begin
if(!aw_fifo_full) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_wr_cntr_width-2:0]],
awlen[aw_cnt[int_wr_cntr_width-2:0]],
awsize[aw_cnt[int_wr_cntr_width-2:0]],
awbrst[aw_cnt[int_wr_cntr_width-2:0]],
awlock[aw_cnt[int_wr_cntr_width-2:0]],
awcache[aw_cnt[int_wr_cntr_width-2:0]],
awprot[aw_cnt[int_wr_cntr_width-2:0]],
awid[aw_cnt[int_wr_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_wr_cntr_width-2:0]] = 1;
aw_cnt = aw_cnt + 1;
if(aw_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
aw_cnt[int_wr_cntr_width-1] = ~aw_cnt[int_wr_cntr_width-1];
aw_cnt[int_wr_cntr_width-2:0] = 0;
end
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(!wd_fifo_full && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID,
burst_data[wd_cnt[int_wr_cntr_width-2:0]],
burst_valid_bytes[wd_cnt[int_wr_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_wr_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
if(wd_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wd_cnt[int_wr_cntr_width-1] = ~wd_cnt[int_wr_cntr_width-1];
wd_cnt[int_wr_cntr_width-2:0] = 0;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input rd_wr; // indicates Read(1) or Write(0) transaction
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
if(!rd_wr && decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Write to Register Map(0x%0h) is not supported ",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_bresp_cnt = 0;
wr_fifo_wr_ptr = 0;
end else begin
enable_write_bresp = aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] && wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
bresp = calculate_resp(1'b0, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],awprot[wr_bresp_cnt[int_wr_cntr_width-2:0]]);
fifo_bresp[wr_bresp_cnt[int_wr_cntr_width-2:0]] = {awid[wr_bresp_cnt[int_wr_cntr_width-2:0]],bresp};
/* Fill WR data FIFO */
if(bresp === AXI_OK) begin
if(awbrst[wr_bresp_cnt[int_wr_cntr_width-2:0]] === AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data,aligned_wr_addr, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]];
end else
valid_data_bytes = 0;
wr_fifo[wr_fifo_wr_ptr[int_wr_cntr_width-2:0]] = {awqos[wr_bresp_cnt[int_wr_cntr_width-2:0]], aligned_wr_data, aligned_wr_addr, valid_data_bytes};
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
if(wr_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wr_bresp_cnt[int_wr_cntr_width-1] = ~ wr_bresp_cnt[int_wr_cntr_width-1];
wr_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
if(rd_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
rd_bresp_cnt[int_wr_cntr_width-1] = ~ rd_bresp_cnt[int_wr_cntr_width-1];
rd_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
if(bresp_time_cnt === max_wr_outstanding_transactions) begin
bresp_time_cnt = 0;
end
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Reading from the wr_fifo */
always@(negedge S_RESETN or posedge SW_CLK) begin
if(!S_RESETN) begin
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
wr_fifo_rd_ptr = 0;
state = SEND_DATA;
WR_QOS = 0;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 0;
WR_DATA_VALID_DDR = 0;
if(!wr_fifo_empty) begin
WR_DATA = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case (decode_address(wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
wr_fifo_rd_ptr = wr_fifo_rd_ptr+1;
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_rd_cntr_width-1:0] ar_cnt = 0; // counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_rd_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_rd_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_rd_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_rd_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_rd_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_rd_outstanding_transactions-1];
reg ar_flag [0:max_rd_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_rd_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_rd_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_rd_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_rd_cntr_width-1:0] rd_cnt = 0;
reg [int_rd_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_rd_outstanding_transactions-1]; // store the ID and its corresponding response
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [max_burst_bits-1:0] read_fifo [0:max_rd_outstanding_transactions-1]; /// Store only AXI Burst Data ..
reg [int_rd_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
assign read_fifo_full = (rd_fifo_wr_ptr[int_rd_cntr_width-1] !== rd_fifo_rd_ptr[int_rd_cntr_width-1] && rd_fifo_wr_ptr[int_rd_cntr_width-2:0] === rd_fifo_rd_ptr[int_rd_cntr_width-2:0])?1'b1: 1'b0;
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign ar_fifo_full = ((ar_cnt[int_rd_cntr_width-1] !== rd_cnt[int_rd_cntr_width-1]) && (ar_cnt[int_rd_cntr_width-2:0] === rd_cnt[int_rd_cntr_width-2:0]))?1'b1 :1'b0;
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
if(ar_time_cnt === max_rd_outstanding_transactions)
ar_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_rd_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_rd_cntr_width-2:0]] = S_ARQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(ar_fifo_full)
begin
if(ar_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Read transactions limit (%0d). Blocking all future Read transactions until at least 1 of the outstanding Read transaction has completed.",$time, DISP_INFO, slave_name,max_rd_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
end else begin
if(!ar_fifo_full) begin
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_rd_cntr_width-2:0]],
arlen[ar_cnt[int_rd_cntr_width-2:0]],
arsize[ar_cnt[int_rd_cntr_width-2:0]],
arbrst[ar_cnt[int_rd_cntr_width-2:0]],
arlock[ar_cnt[int_rd_cntr_width-2:0]],
arcache[ar_cnt[int_rd_cntr_width-2:0]],
arprot[ar_cnt[int_rd_cntr_width-2:0]],
arid[ar_cnt[int_rd_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_rd_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
if(ar_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
ar_cnt[int_rd_cntr_width-1] = ~ ar_cnt[int_rd_cntr_width-1];
ar_cnt[int_rd_cntr_width-2:0] = 0;
end
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
reg rd_fifo_state;
reg invalid_rd_req;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
if(ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] && !read_fifo_full) begin
ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] = 0;
rresp = calculate_resp(1'b1, araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]],arprot[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
fifo_rresp[wr_rresp_cnt[int_rd_cntr_width-2:0]] = {arid[wr_rresp_cnt[int_rd_cntr_width-2:0]],rresp};
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_rd_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_rd_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
REG_MEM : RD_REQ_REG = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_QOS = arqos[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
rd_fifo_state = WAIT_RD_VALID;
wr_rresp_cnt = wr_rresp_cnt + 1;
if(wr_rresp_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
wr_rresp_cnt[int_rd_cntr_width-1] = ~ wr_rresp_cnt[int_rd_cntr_width-1];
wr_rresp_cnt[int_rd_cntr_width-2:0] = 0;
end
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | RD_DATA_VALID_REG | invalid_rd_req) begin ///temp_dec == 2'b11) begin
if(RD_DATA_VALID_DDR)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_DDR;
else if(RD_DATA_VALID_OCM)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_OCM;
else if(RD_DATA_VALID_REG)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_REG;
else
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = 0;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg [(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg [(data_bus_width*axi_burst_len)-1:0] temp_wrap_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_cnt = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count))
rd_delayed = 1;
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
rd_v_b = ((arlen[rd_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[rd_cnt[int_rd_cntr_width-2:0]]));
temp_read_data = read_fifo[rd_fifo_rd_ptr[int_rd_cntr_width-2:0]];
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
if(arbrst[rd_cnt[int_rd_cntr_width-2:0]]=== AXI_WRAP) begin
get_wrap_aligned_rd_data(temp_wrap_data, araddr[rd_cnt[int_rd_cntr_width-2:0]], temp_read_data, rd_v_b);
temp_read_data = temp_wrap_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = fifo_rresp[rd_cnt[int_rd_cntr_width-2:0]][rsp_msb : rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(arid[rd_cnt[int_rd_cntr_width-2:0]],
araddr[rd_cnt[int_rd_cntr_width-2:0]],
arlen[rd_cnt[int_rd_cntr_width-2:0]],
arsize[rd_cnt[int_rd_cntr_width-2:0]],
arbrst[rd_cnt[int_rd_cntr_width-2:0]],
temp_read_data,
temp_read_rsp);
rd_cnt = rd_cnt + 1;
rresp_time_cnt = rresp_time_cnt+1;
if(rresp_time_cnt === max_rd_outstanding_transactions) rresp_time_cnt = 0;
if(rd_cnt[int_rd_cntr_width-2:0] === (max_rd_outstanding_transactions-1)) begin
rd_cnt[int_rd_cntr_width-1] = ~ rd_cnt[int_rd_cntr_width-1];
rd_cnt[int_rd_cntr_width-2:0] = 0;
end
rd_latency_count = get_rd_lat_number(1);
end
end /// else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_wr_cntr_width = clogb2(max_wr_outstanding_transactions+1);
parameter int_rd_cntr_width = clogb2(max_rd_outstanding_transactions+1);
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR, RD_REQ_REG;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM, RD_DATA_REG;
output reg[max_burst_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR, RD_DATA_VALID_REG;
output reg [axi_qos_width-1:0] WR_QOS, RD_QOS;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* WR_FIFO stores 32-bit address, valid data and valid bytes for each AXI Write burst transaction */
reg [wr_fifo_data_bits-1:0] wr_fifo [0:max_wr_outstanding_transactions-1];
reg [int_wr_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the latency in sending the bresp*/
reg [7:0] aw_time_cnt = 0, bresp_time_cnt = 0;
real awvalid_receive_time[0:max_wr_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_wr_outstanding_transactions]; // indicates awvalid is received
/* Address Write Channel handshake*/
reg[int_wr_cntr_width-1:0] aw_cnt = 0;// count of awvalid
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_wr_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_wr_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_wr_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_wr_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_wr_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_wr_outstanding_transactions-1];
reg aw_flag [0:max_wr_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_wr_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_wr_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_wr_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_wr_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_wr_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_wr_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_wr_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_wr_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_wr_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_wr_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* states for managing read/write to WR_FIFO */
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_min; else get_wr_lat_number = gp_wr_min;
AVG_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_avg; else get_wr_lat_number = gp_wr_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_max; else get_wr_lat_number = gp_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%10+ acp_wr_min); else get_wr_lat_number = ($random()%10+ gp_wr_min);
2'b01 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%40+ acp_wr_avg); else get_wr_lat_number = ($random()%40+ gp_wr_avg);
default : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%60+ acp_wr_max); else get_wr_lat_number = ($random()%60+ gp_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_min; else get_rd_lat_number = gp_rd_min;
AVG_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_avg; else get_rd_lat_number = gp_rd_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_max; else get_rd_lat_number = gp_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%10+ acp_rd_min); else get_rd_lat_number = ($random()%10+ gp_rd_min);
2'b01 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%40+ acp_rd_avg); else get_rd_lat_number = ($random()%40+ gp_rd_avg);
default : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%60+ acp_rd_max); else get_rd_lat_number = ($random()%60+ gp_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign aw_fifo_full = ((aw_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (aw_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign wd_fifo_full = ((wd_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (wd_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
if(aw_time_cnt === max_wr_outstanding_transactions) aw_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_wr_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_wr_cntr_width-2:0]] = S_AWQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(aw_fifo_full)
begin
if(aw_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Write transactions limit (%0d). Blocking all future Write transactions until at least 1 of the outstanding Write transaction has completed.",$time, DISP_INFO, slave_name,max_wr_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
end else begin
if(!aw_fifo_full) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_wr_cntr_width-2:0]],
awlen[aw_cnt[int_wr_cntr_width-2:0]],
awsize[aw_cnt[int_wr_cntr_width-2:0]],
awbrst[aw_cnt[int_wr_cntr_width-2:0]],
awlock[aw_cnt[int_wr_cntr_width-2:0]],
awcache[aw_cnt[int_wr_cntr_width-2:0]],
awprot[aw_cnt[int_wr_cntr_width-2:0]],
awid[aw_cnt[int_wr_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_wr_cntr_width-2:0]] = 1;
aw_cnt = aw_cnt + 1;
if(aw_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
aw_cnt[int_wr_cntr_width-1] = ~aw_cnt[int_wr_cntr_width-1];
aw_cnt[int_wr_cntr_width-2:0] = 0;
end
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(!wd_fifo_full && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID,
burst_data[wd_cnt[int_wr_cntr_width-2:0]],
burst_valid_bytes[wd_cnt[int_wr_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_wr_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
if(wd_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wd_cnt[int_wr_cntr_width-1] = ~wd_cnt[int_wr_cntr_width-1];
wd_cnt[int_wr_cntr_width-2:0] = 0;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input rd_wr; // indicates Read(1) or Write(0) transaction
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
if(!rd_wr && decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Write to Register Map(0x%0h) is not supported ",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_bresp_cnt = 0;
wr_fifo_wr_ptr = 0;
end else begin
enable_write_bresp = aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] && wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
bresp = calculate_resp(1'b0, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],awprot[wr_bresp_cnt[int_wr_cntr_width-2:0]]);
fifo_bresp[wr_bresp_cnt[int_wr_cntr_width-2:0]] = {awid[wr_bresp_cnt[int_wr_cntr_width-2:0]],bresp};
/* Fill WR data FIFO */
if(bresp === AXI_OK) begin
if(awbrst[wr_bresp_cnt[int_wr_cntr_width-2:0]] === AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data,aligned_wr_addr, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]];
end else
valid_data_bytes = 0;
wr_fifo[wr_fifo_wr_ptr[int_wr_cntr_width-2:0]] = {awqos[wr_bresp_cnt[int_wr_cntr_width-2:0]], aligned_wr_data, aligned_wr_addr, valid_data_bytes};
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
if(wr_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wr_bresp_cnt[int_wr_cntr_width-1] = ~ wr_bresp_cnt[int_wr_cntr_width-1];
wr_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
if(rd_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
rd_bresp_cnt[int_wr_cntr_width-1] = ~ rd_bresp_cnt[int_wr_cntr_width-1];
rd_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
if(bresp_time_cnt === max_wr_outstanding_transactions) begin
bresp_time_cnt = 0;
end
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Reading from the wr_fifo */
always@(negedge S_RESETN or posedge SW_CLK) begin
if(!S_RESETN) begin
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
wr_fifo_rd_ptr = 0;
state = SEND_DATA;
WR_QOS = 0;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 0;
WR_DATA_VALID_DDR = 0;
if(!wr_fifo_empty) begin
WR_DATA = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case (decode_address(wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
wr_fifo_rd_ptr = wr_fifo_rd_ptr+1;
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_rd_cntr_width-1:0] ar_cnt = 0; // counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_rd_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_rd_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_rd_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_rd_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_rd_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_rd_outstanding_transactions-1];
reg ar_flag [0:max_rd_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_rd_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_rd_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_rd_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_rd_cntr_width-1:0] rd_cnt = 0;
reg [int_rd_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_rd_outstanding_transactions-1]; // store the ID and its corresponding response
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [max_burst_bits-1:0] read_fifo [0:max_rd_outstanding_transactions-1]; /// Store only AXI Burst Data ..
reg [int_rd_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
assign read_fifo_full = (rd_fifo_wr_ptr[int_rd_cntr_width-1] !== rd_fifo_rd_ptr[int_rd_cntr_width-1] && rd_fifo_wr_ptr[int_rd_cntr_width-2:0] === rd_fifo_rd_ptr[int_rd_cntr_width-2:0])?1'b1: 1'b0;
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign ar_fifo_full = ((ar_cnt[int_rd_cntr_width-1] !== rd_cnt[int_rd_cntr_width-1]) && (ar_cnt[int_rd_cntr_width-2:0] === rd_cnt[int_rd_cntr_width-2:0]))?1'b1 :1'b0;
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
if(ar_time_cnt === max_rd_outstanding_transactions)
ar_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_rd_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_rd_cntr_width-2:0]] = S_ARQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(ar_fifo_full)
begin
if(ar_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Read transactions limit (%0d). Blocking all future Read transactions until at least 1 of the outstanding Read transaction has completed.",$time, DISP_INFO, slave_name,max_rd_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
end else begin
if(!ar_fifo_full) begin
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_rd_cntr_width-2:0]],
arlen[ar_cnt[int_rd_cntr_width-2:0]],
arsize[ar_cnt[int_rd_cntr_width-2:0]],
arbrst[ar_cnt[int_rd_cntr_width-2:0]],
arlock[ar_cnt[int_rd_cntr_width-2:0]],
arcache[ar_cnt[int_rd_cntr_width-2:0]],
arprot[ar_cnt[int_rd_cntr_width-2:0]],
arid[ar_cnt[int_rd_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_rd_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
if(ar_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
ar_cnt[int_rd_cntr_width-1] = ~ ar_cnt[int_rd_cntr_width-1];
ar_cnt[int_rd_cntr_width-2:0] = 0;
end
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
reg rd_fifo_state;
reg invalid_rd_req;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
if(ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] && !read_fifo_full) begin
ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] = 0;
rresp = calculate_resp(1'b1, araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]],arprot[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
fifo_rresp[wr_rresp_cnt[int_rd_cntr_width-2:0]] = {arid[wr_rresp_cnt[int_rd_cntr_width-2:0]],rresp};
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_rd_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_rd_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
REG_MEM : RD_REQ_REG = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_QOS = arqos[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
rd_fifo_state = WAIT_RD_VALID;
wr_rresp_cnt = wr_rresp_cnt + 1;
if(wr_rresp_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
wr_rresp_cnt[int_rd_cntr_width-1] = ~ wr_rresp_cnt[int_rd_cntr_width-1];
wr_rresp_cnt[int_rd_cntr_width-2:0] = 0;
end
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | RD_DATA_VALID_REG | invalid_rd_req) begin ///temp_dec == 2'b11) begin
if(RD_DATA_VALID_DDR)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_DDR;
else if(RD_DATA_VALID_OCM)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_OCM;
else if(RD_DATA_VALID_REG)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_REG;
else
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = 0;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg [(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg [(data_bus_width*axi_burst_len)-1:0] temp_wrap_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_cnt = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count))
rd_delayed = 1;
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
rd_v_b = ((arlen[rd_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[rd_cnt[int_rd_cntr_width-2:0]]));
temp_read_data = read_fifo[rd_fifo_rd_ptr[int_rd_cntr_width-2:0]];
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
if(arbrst[rd_cnt[int_rd_cntr_width-2:0]]=== AXI_WRAP) begin
get_wrap_aligned_rd_data(temp_wrap_data, araddr[rd_cnt[int_rd_cntr_width-2:0]], temp_read_data, rd_v_b);
temp_read_data = temp_wrap_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = fifo_rresp[rd_cnt[int_rd_cntr_width-2:0]][rsp_msb : rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(arid[rd_cnt[int_rd_cntr_width-2:0]],
araddr[rd_cnt[int_rd_cntr_width-2:0]],
arlen[rd_cnt[int_rd_cntr_width-2:0]],
arsize[rd_cnt[int_rd_cntr_width-2:0]],
arbrst[rd_cnt[int_rd_cntr_width-2:0]],
temp_read_data,
temp_read_rsp);
rd_cnt = rd_cnt + 1;
rresp_time_cnt = rresp_time_cnt+1;
if(rresp_time_cnt === max_rd_outstanding_transactions) rresp_time_cnt = 0;
if(rd_cnt[int_rd_cntr_width-2:0] === (max_rd_outstanding_transactions-1)) begin
rd_cnt[int_rd_cntr_width-1] = ~ rd_cnt[int_rd_cntr_width-1];
rd_cnt[int_rd_cntr_width-2:0] = 0;
end
rd_latency_count = get_rd_lat_number(1);
end
end /// else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_wr_cntr_width = clogb2(max_wr_outstanding_transactions+1);
parameter int_rd_cntr_width = clogb2(max_rd_outstanding_transactions+1);
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR, RD_REQ_REG;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM, RD_DATA_REG;
output reg[max_burst_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR, RD_DATA_VALID_REG;
output reg [axi_qos_width-1:0] WR_QOS, RD_QOS;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* WR_FIFO stores 32-bit address, valid data and valid bytes for each AXI Write burst transaction */
reg [wr_fifo_data_bits-1:0] wr_fifo [0:max_wr_outstanding_transactions-1];
reg [int_wr_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the latency in sending the bresp*/
reg [7:0] aw_time_cnt = 0, bresp_time_cnt = 0;
real awvalid_receive_time[0:max_wr_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_wr_outstanding_transactions]; // indicates awvalid is received
/* Address Write Channel handshake*/
reg[int_wr_cntr_width-1:0] aw_cnt = 0;// count of awvalid
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_wr_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_wr_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_wr_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_wr_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_wr_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_wr_outstanding_transactions-1];
reg aw_flag [0:max_wr_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_wr_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_wr_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_wr_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_wr_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_wr_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_wr_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_wr_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_wr_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_wr_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_wr_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* states for managing read/write to WR_FIFO */
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_min; else get_wr_lat_number = gp_wr_min;
AVG_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_avg; else get_wr_lat_number = gp_wr_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_max; else get_wr_lat_number = gp_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%10+ acp_wr_min); else get_wr_lat_number = ($random()%10+ gp_wr_min);
2'b01 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%40+ acp_wr_avg); else get_wr_lat_number = ($random()%40+ gp_wr_avg);
default : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%60+ acp_wr_max); else get_wr_lat_number = ($random()%60+ gp_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_min; else get_rd_lat_number = gp_rd_min;
AVG_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_avg; else get_rd_lat_number = gp_rd_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_max; else get_rd_lat_number = gp_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%10+ acp_rd_min); else get_rd_lat_number = ($random()%10+ gp_rd_min);
2'b01 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%40+ acp_rd_avg); else get_rd_lat_number = ($random()%40+ gp_rd_avg);
default : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%60+ acp_rd_max); else get_rd_lat_number = ($random()%60+ gp_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign aw_fifo_full = ((aw_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (aw_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign wd_fifo_full = ((wd_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (wd_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
if(aw_time_cnt === max_wr_outstanding_transactions) aw_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_wr_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_wr_cntr_width-2:0]] = S_AWQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(aw_fifo_full)
begin
if(aw_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Write transactions limit (%0d). Blocking all future Write transactions until at least 1 of the outstanding Write transaction has completed.",$time, DISP_INFO, slave_name,max_wr_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
end else begin
if(!aw_fifo_full) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_wr_cntr_width-2:0]],
awlen[aw_cnt[int_wr_cntr_width-2:0]],
awsize[aw_cnt[int_wr_cntr_width-2:0]],
awbrst[aw_cnt[int_wr_cntr_width-2:0]],
awlock[aw_cnt[int_wr_cntr_width-2:0]],
awcache[aw_cnt[int_wr_cntr_width-2:0]],
awprot[aw_cnt[int_wr_cntr_width-2:0]],
awid[aw_cnt[int_wr_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_wr_cntr_width-2:0]] = 1;
aw_cnt = aw_cnt + 1;
if(aw_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
aw_cnt[int_wr_cntr_width-1] = ~aw_cnt[int_wr_cntr_width-1];
aw_cnt[int_wr_cntr_width-2:0] = 0;
end
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(!wd_fifo_full && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID,
burst_data[wd_cnt[int_wr_cntr_width-2:0]],
burst_valid_bytes[wd_cnt[int_wr_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_wr_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
if(wd_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wd_cnt[int_wr_cntr_width-1] = ~wd_cnt[int_wr_cntr_width-1];
wd_cnt[int_wr_cntr_width-2:0] = 0;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input rd_wr; // indicates Read(1) or Write(0) transaction
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
if(!rd_wr && decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Write to Register Map(0x%0h) is not supported ",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_bresp_cnt = 0;
wr_fifo_wr_ptr = 0;
end else begin
enable_write_bresp = aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] && wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
bresp = calculate_resp(1'b0, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],awprot[wr_bresp_cnt[int_wr_cntr_width-2:0]]);
fifo_bresp[wr_bresp_cnt[int_wr_cntr_width-2:0]] = {awid[wr_bresp_cnt[int_wr_cntr_width-2:0]],bresp};
/* Fill WR data FIFO */
if(bresp === AXI_OK) begin
if(awbrst[wr_bresp_cnt[int_wr_cntr_width-2:0]] === AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data,aligned_wr_addr, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]];
end else
valid_data_bytes = 0;
wr_fifo[wr_fifo_wr_ptr[int_wr_cntr_width-2:0]] = {awqos[wr_bresp_cnt[int_wr_cntr_width-2:0]], aligned_wr_data, aligned_wr_addr, valid_data_bytes};
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
if(wr_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wr_bresp_cnt[int_wr_cntr_width-1] = ~ wr_bresp_cnt[int_wr_cntr_width-1];
wr_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
if(rd_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
rd_bresp_cnt[int_wr_cntr_width-1] = ~ rd_bresp_cnt[int_wr_cntr_width-1];
rd_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
if(bresp_time_cnt === max_wr_outstanding_transactions) begin
bresp_time_cnt = 0;
end
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Reading from the wr_fifo */
always@(negedge S_RESETN or posedge SW_CLK) begin
if(!S_RESETN) begin
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
wr_fifo_rd_ptr = 0;
state = SEND_DATA;
WR_QOS = 0;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 0;
WR_DATA_VALID_DDR = 0;
if(!wr_fifo_empty) begin
WR_DATA = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case (decode_address(wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
wr_fifo_rd_ptr = wr_fifo_rd_ptr+1;
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_rd_cntr_width-1:0] ar_cnt = 0; // counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_rd_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_rd_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_rd_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_rd_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_rd_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_rd_outstanding_transactions-1];
reg ar_flag [0:max_rd_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_rd_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_rd_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_rd_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_rd_cntr_width-1:0] rd_cnt = 0;
reg [int_rd_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_rd_outstanding_transactions-1]; // store the ID and its corresponding response
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [max_burst_bits-1:0] read_fifo [0:max_rd_outstanding_transactions-1]; /// Store only AXI Burst Data ..
reg [int_rd_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
assign read_fifo_full = (rd_fifo_wr_ptr[int_rd_cntr_width-1] !== rd_fifo_rd_ptr[int_rd_cntr_width-1] && rd_fifo_wr_ptr[int_rd_cntr_width-2:0] === rd_fifo_rd_ptr[int_rd_cntr_width-2:0])?1'b1: 1'b0;
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign ar_fifo_full = ((ar_cnt[int_rd_cntr_width-1] !== rd_cnt[int_rd_cntr_width-1]) && (ar_cnt[int_rd_cntr_width-2:0] === rd_cnt[int_rd_cntr_width-2:0]))?1'b1 :1'b0;
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
if(ar_time_cnt === max_rd_outstanding_transactions)
ar_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_rd_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_rd_cntr_width-2:0]] = S_ARQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(ar_fifo_full)
begin
if(ar_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Read transactions limit (%0d). Blocking all future Read transactions until at least 1 of the outstanding Read transaction has completed.",$time, DISP_INFO, slave_name,max_rd_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
end else begin
if(!ar_fifo_full) begin
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_rd_cntr_width-2:0]],
arlen[ar_cnt[int_rd_cntr_width-2:0]],
arsize[ar_cnt[int_rd_cntr_width-2:0]],
arbrst[ar_cnt[int_rd_cntr_width-2:0]],
arlock[ar_cnt[int_rd_cntr_width-2:0]],
arcache[ar_cnt[int_rd_cntr_width-2:0]],
arprot[ar_cnt[int_rd_cntr_width-2:0]],
arid[ar_cnt[int_rd_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_rd_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
if(ar_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
ar_cnt[int_rd_cntr_width-1] = ~ ar_cnt[int_rd_cntr_width-1];
ar_cnt[int_rd_cntr_width-2:0] = 0;
end
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
reg rd_fifo_state;
reg invalid_rd_req;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
if(ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] && !read_fifo_full) begin
ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] = 0;
rresp = calculate_resp(1'b1, araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]],arprot[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
fifo_rresp[wr_rresp_cnt[int_rd_cntr_width-2:0]] = {arid[wr_rresp_cnt[int_rd_cntr_width-2:0]],rresp};
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_rd_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_rd_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
REG_MEM : RD_REQ_REG = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_QOS = arqos[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
rd_fifo_state = WAIT_RD_VALID;
wr_rresp_cnt = wr_rresp_cnt + 1;
if(wr_rresp_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
wr_rresp_cnt[int_rd_cntr_width-1] = ~ wr_rresp_cnt[int_rd_cntr_width-1];
wr_rresp_cnt[int_rd_cntr_width-2:0] = 0;
end
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | RD_DATA_VALID_REG | invalid_rd_req) begin ///temp_dec == 2'b11) begin
if(RD_DATA_VALID_DDR)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_DDR;
else if(RD_DATA_VALID_OCM)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_OCM;
else if(RD_DATA_VALID_REG)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_REG;
else
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = 0;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg [(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg [(data_bus_width*axi_burst_len)-1:0] temp_wrap_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_cnt = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count))
rd_delayed = 1;
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
rd_v_b = ((arlen[rd_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[rd_cnt[int_rd_cntr_width-2:0]]));
temp_read_data = read_fifo[rd_fifo_rd_ptr[int_rd_cntr_width-2:0]];
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
if(arbrst[rd_cnt[int_rd_cntr_width-2:0]]=== AXI_WRAP) begin
get_wrap_aligned_rd_data(temp_wrap_data, araddr[rd_cnt[int_rd_cntr_width-2:0]], temp_read_data, rd_v_b);
temp_read_data = temp_wrap_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = fifo_rresp[rd_cnt[int_rd_cntr_width-2:0]][rsp_msb : rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(arid[rd_cnt[int_rd_cntr_width-2:0]],
araddr[rd_cnt[int_rd_cntr_width-2:0]],
arlen[rd_cnt[int_rd_cntr_width-2:0]],
arsize[rd_cnt[int_rd_cntr_width-2:0]],
arbrst[rd_cnt[int_rd_cntr_width-2:0]],
temp_read_data,
temp_read_rsp);
rd_cnt = rd_cnt + 1;
rresp_time_cnt = rresp_time_cnt+1;
if(rresp_time_cnt === max_rd_outstanding_transactions) rresp_time_cnt = 0;
if(rd_cnt[int_rd_cntr_width-2:0] === (max_rd_outstanding_transactions-1)) begin
rd_cnt[int_rd_cntr_width-1] = ~ rd_cnt[int_rd_cntr_width-1];
rd_cnt[int_rd_cntr_width-2:0] = 0;
end
rd_latency_count = get_rd_lat_number(1);
end
end /// else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_wr_cntr_width = clogb2(max_wr_outstanding_transactions+1);
parameter int_rd_cntr_width = clogb2(max_rd_outstanding_transactions+1);
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR, RD_REQ_REG;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM, RD_DATA_REG;
output reg[max_burst_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR, RD_DATA_VALID_REG;
output reg [axi_qos_width-1:0] WR_QOS, RD_QOS;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* WR_FIFO stores 32-bit address, valid data and valid bytes for each AXI Write burst transaction */
reg [wr_fifo_data_bits-1:0] wr_fifo [0:max_wr_outstanding_transactions-1];
reg [int_wr_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the latency in sending the bresp*/
reg [7:0] aw_time_cnt = 0, bresp_time_cnt = 0;
real awvalid_receive_time[0:max_wr_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_wr_outstanding_transactions]; // indicates awvalid is received
/* Address Write Channel handshake*/
reg[int_wr_cntr_width-1:0] aw_cnt = 0;// count of awvalid
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_wr_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_wr_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_wr_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_wr_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_wr_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_wr_outstanding_transactions-1];
reg aw_flag [0:max_wr_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_wr_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_wr_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_wr_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_wr_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_wr_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_wr_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_wr_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_wr_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_wr_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_wr_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* states for managing read/write to WR_FIFO */
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_min; else get_wr_lat_number = gp_wr_min;
AVG_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_avg; else get_wr_lat_number = gp_wr_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_max; else get_wr_lat_number = gp_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%10+ acp_wr_min); else get_wr_lat_number = ($random()%10+ gp_wr_min);
2'b01 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%40+ acp_wr_avg); else get_wr_lat_number = ($random()%40+ gp_wr_avg);
default : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%60+ acp_wr_max); else get_wr_lat_number = ($random()%60+ gp_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_min; else get_rd_lat_number = gp_rd_min;
AVG_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_avg; else get_rd_lat_number = gp_rd_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_max; else get_rd_lat_number = gp_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%10+ acp_rd_min); else get_rd_lat_number = ($random()%10+ gp_rd_min);
2'b01 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%40+ acp_rd_avg); else get_rd_lat_number = ($random()%40+ gp_rd_avg);
default : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%60+ acp_rd_max); else get_rd_lat_number = ($random()%60+ gp_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign aw_fifo_full = ((aw_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (aw_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign wd_fifo_full = ((wd_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (wd_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
if(aw_time_cnt === max_wr_outstanding_transactions) aw_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_wr_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_wr_cntr_width-2:0]] = S_AWQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(aw_fifo_full)
begin
if(aw_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Write transactions limit (%0d). Blocking all future Write transactions until at least 1 of the outstanding Write transaction has completed.",$time, DISP_INFO, slave_name,max_wr_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
end else begin
if(!aw_fifo_full) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_wr_cntr_width-2:0]],
awlen[aw_cnt[int_wr_cntr_width-2:0]],
awsize[aw_cnt[int_wr_cntr_width-2:0]],
awbrst[aw_cnt[int_wr_cntr_width-2:0]],
awlock[aw_cnt[int_wr_cntr_width-2:0]],
awcache[aw_cnt[int_wr_cntr_width-2:0]],
awprot[aw_cnt[int_wr_cntr_width-2:0]],
awid[aw_cnt[int_wr_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_wr_cntr_width-2:0]] = 1;
aw_cnt = aw_cnt + 1;
if(aw_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
aw_cnt[int_wr_cntr_width-1] = ~aw_cnt[int_wr_cntr_width-1];
aw_cnt[int_wr_cntr_width-2:0] = 0;
end
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(!wd_fifo_full && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID,
burst_data[wd_cnt[int_wr_cntr_width-2:0]],
burst_valid_bytes[wd_cnt[int_wr_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_wr_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
if(wd_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wd_cnt[int_wr_cntr_width-1] = ~wd_cnt[int_wr_cntr_width-1];
wd_cnt[int_wr_cntr_width-2:0] = 0;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input rd_wr; // indicates Read(1) or Write(0) transaction
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
if(!rd_wr && decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Write to Register Map(0x%0h) is not supported ",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_bresp_cnt = 0;
wr_fifo_wr_ptr = 0;
end else begin
enable_write_bresp = aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] && wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
bresp = calculate_resp(1'b0, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],awprot[wr_bresp_cnt[int_wr_cntr_width-2:0]]);
fifo_bresp[wr_bresp_cnt[int_wr_cntr_width-2:0]] = {awid[wr_bresp_cnt[int_wr_cntr_width-2:0]],bresp};
/* Fill WR data FIFO */
if(bresp === AXI_OK) begin
if(awbrst[wr_bresp_cnt[int_wr_cntr_width-2:0]] === AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data,aligned_wr_addr, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]];
end else
valid_data_bytes = 0;
wr_fifo[wr_fifo_wr_ptr[int_wr_cntr_width-2:0]] = {awqos[wr_bresp_cnt[int_wr_cntr_width-2:0]], aligned_wr_data, aligned_wr_addr, valid_data_bytes};
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
if(wr_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wr_bresp_cnt[int_wr_cntr_width-1] = ~ wr_bresp_cnt[int_wr_cntr_width-1];
wr_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
if(rd_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
rd_bresp_cnt[int_wr_cntr_width-1] = ~ rd_bresp_cnt[int_wr_cntr_width-1];
rd_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
if(bresp_time_cnt === max_wr_outstanding_transactions) begin
bresp_time_cnt = 0;
end
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Reading from the wr_fifo */
always@(negedge S_RESETN or posedge SW_CLK) begin
if(!S_RESETN) begin
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
wr_fifo_rd_ptr = 0;
state = SEND_DATA;
WR_QOS = 0;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 0;
WR_DATA_VALID_DDR = 0;
if(!wr_fifo_empty) begin
WR_DATA = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case (decode_address(wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
wr_fifo_rd_ptr = wr_fifo_rd_ptr+1;
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_rd_cntr_width-1:0] ar_cnt = 0; // counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_rd_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_rd_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_rd_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_rd_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_rd_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_rd_outstanding_transactions-1];
reg ar_flag [0:max_rd_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_rd_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_rd_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_rd_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_rd_cntr_width-1:0] rd_cnt = 0;
reg [int_rd_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_rd_outstanding_transactions-1]; // store the ID and its corresponding response
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [max_burst_bits-1:0] read_fifo [0:max_rd_outstanding_transactions-1]; /// Store only AXI Burst Data ..
reg [int_rd_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
assign read_fifo_full = (rd_fifo_wr_ptr[int_rd_cntr_width-1] !== rd_fifo_rd_ptr[int_rd_cntr_width-1] && rd_fifo_wr_ptr[int_rd_cntr_width-2:0] === rd_fifo_rd_ptr[int_rd_cntr_width-2:0])?1'b1: 1'b0;
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign ar_fifo_full = ((ar_cnt[int_rd_cntr_width-1] !== rd_cnt[int_rd_cntr_width-1]) && (ar_cnt[int_rd_cntr_width-2:0] === rd_cnt[int_rd_cntr_width-2:0]))?1'b1 :1'b0;
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
if(ar_time_cnt === max_rd_outstanding_transactions)
ar_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_rd_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_rd_cntr_width-2:0]] = S_ARQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(ar_fifo_full)
begin
if(ar_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Read transactions limit (%0d). Blocking all future Read transactions until at least 1 of the outstanding Read transaction has completed.",$time, DISP_INFO, slave_name,max_rd_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
end else begin
if(!ar_fifo_full) begin
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_rd_cntr_width-2:0]],
arlen[ar_cnt[int_rd_cntr_width-2:0]],
arsize[ar_cnt[int_rd_cntr_width-2:0]],
arbrst[ar_cnt[int_rd_cntr_width-2:0]],
arlock[ar_cnt[int_rd_cntr_width-2:0]],
arcache[ar_cnt[int_rd_cntr_width-2:0]],
arprot[ar_cnt[int_rd_cntr_width-2:0]],
arid[ar_cnt[int_rd_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_rd_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
if(ar_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
ar_cnt[int_rd_cntr_width-1] = ~ ar_cnt[int_rd_cntr_width-1];
ar_cnt[int_rd_cntr_width-2:0] = 0;
end
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
reg rd_fifo_state;
reg invalid_rd_req;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
if(ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] && !read_fifo_full) begin
ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] = 0;
rresp = calculate_resp(1'b1, araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]],arprot[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
fifo_rresp[wr_rresp_cnt[int_rd_cntr_width-2:0]] = {arid[wr_rresp_cnt[int_rd_cntr_width-2:0]],rresp};
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_rd_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_rd_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
REG_MEM : RD_REQ_REG = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_QOS = arqos[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
rd_fifo_state = WAIT_RD_VALID;
wr_rresp_cnt = wr_rresp_cnt + 1;
if(wr_rresp_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
wr_rresp_cnt[int_rd_cntr_width-1] = ~ wr_rresp_cnt[int_rd_cntr_width-1];
wr_rresp_cnt[int_rd_cntr_width-2:0] = 0;
end
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | RD_DATA_VALID_REG | invalid_rd_req) begin ///temp_dec == 2'b11) begin
if(RD_DATA_VALID_DDR)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_DDR;
else if(RD_DATA_VALID_OCM)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_OCM;
else if(RD_DATA_VALID_REG)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_REG;
else
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = 0;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg [(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg [(data_bus_width*axi_burst_len)-1:0] temp_wrap_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_cnt = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count))
rd_delayed = 1;
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
rd_v_b = ((arlen[rd_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[rd_cnt[int_rd_cntr_width-2:0]]));
temp_read_data = read_fifo[rd_fifo_rd_ptr[int_rd_cntr_width-2:0]];
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
if(arbrst[rd_cnt[int_rd_cntr_width-2:0]]=== AXI_WRAP) begin
get_wrap_aligned_rd_data(temp_wrap_data, araddr[rd_cnt[int_rd_cntr_width-2:0]], temp_read_data, rd_v_b);
temp_read_data = temp_wrap_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = fifo_rresp[rd_cnt[int_rd_cntr_width-2:0]][rsp_msb : rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(arid[rd_cnt[int_rd_cntr_width-2:0]],
araddr[rd_cnt[int_rd_cntr_width-2:0]],
arlen[rd_cnt[int_rd_cntr_width-2:0]],
arsize[rd_cnt[int_rd_cntr_width-2:0]],
arbrst[rd_cnt[int_rd_cntr_width-2:0]],
temp_read_data,
temp_read_rsp);
rd_cnt = rd_cnt + 1;
rresp_time_cnt = rresp_time_cnt+1;
if(rresp_time_cnt === max_rd_outstanding_transactions) rresp_time_cnt = 0;
if(rd_cnt[int_rd_cntr_width-2:0] === (max_rd_outstanding_transactions-1)) begin
rd_cnt[int_rd_cntr_width-1] = ~ rd_cnt[int_rd_cntr_width-1];
rd_cnt[int_rd_cntr_width-2:0] = 0;
end
rd_latency_count = get_rd_lat_number(1);
end
end /// else
end /// always
endmodule
|
module */
/* Internal counters that are used as Read/Write pointers to the fifo's that store all the transaction info on all channles.
This parameter is used to define the width of these pointers --> depending on Maximum outstanding transactions supported.
1-bit extra width than the no.of.bits needed to represent the outstanding transactions
Extra bit helps in generating the empty and full flags
*/
parameter int_wr_cntr_width = clogb2(max_wr_outstanding_transactions+1);
parameter int_rd_cntr_width = clogb2(max_rd_outstanding_transactions+1);
/* RESP data */
parameter rsp_fifo_bits = axi_rsp_width+id_bus_width;
parameter rsp_lsb = 0;
parameter rsp_msb = axi_rsp_width-1;
parameter rsp_id_lsb = rsp_msb + 1;
parameter rsp_id_msb = rsp_id_lsb + id_bus_width-1;
input S_RESETN;
output S_ARREADY;
output S_AWREADY;
output S_BVALID;
output S_RLAST;
output S_RVALID;
output S_WREADY;
output [axi_rsp_width-1:0] S_BRESP;
output [axi_rsp_width-1:0] S_RRESP;
output [data_bus_width-1:0] S_RDATA;
output [id_bus_width-1:0] S_BID;
output [id_bus_width-1:0] S_RID;
input S_ACLK;
input S_ARVALID;
input S_AWVALID;
input S_BREADY;
input S_RREADY;
input S_WLAST;
input S_WVALID;
input [axi_brst_type_width-1:0] S_ARBURST;
input [axi_lock_width-1:0] S_ARLOCK;
input [axi_size_width-1:0] S_ARSIZE;
input [axi_brst_type_width-1:0] S_AWBURST;
input [axi_lock_width-1:0] S_AWLOCK;
input [axi_size_width-1:0] S_AWSIZE;
input [axi_prot_width-1:0] S_ARPROT;
input [axi_prot_width-1:0] S_AWPROT;
input [address_bus_width-1:0] S_ARADDR;
input [address_bus_width-1:0] S_AWADDR;
input [data_bus_width-1:0] S_WDATA;
input [axi_cache_width-1:0] S_ARCACHE;
input [axi_cache_width-1:0] S_ARLEN;
input [axi_qos_width-1:0] S_ARQOS;
input [axi_cache_width-1:0] S_AWCACHE;
input [axi_len_width-1:0] S_AWLEN;
input [axi_qos_width-1:0] S_AWQOS;
input [(data_bus_width/8)-1:0] S_WSTRB;
input [id_bus_width-1:0] S_ARID;
input [id_bus_width-1:0] S_AWID;
input [id_bus_width-1:0] S_WID;
input SW_CLK;
input WR_DATA_ACK_DDR, WR_DATA_ACK_OCM;
output reg WR_DATA_VALID_DDR, WR_DATA_VALID_OCM;
output reg [max_burst_bits-1:0] WR_DATA;
output reg [addr_width-1:0] WR_ADDR;
output reg [max_burst_bytes_width:0] WR_BYTES;
output reg RD_REQ_OCM, RD_REQ_DDR, RD_REQ_REG;
output reg [addr_width-1:0] RD_ADDR;
input [max_burst_bits-1:0] RD_DATA_DDR,RD_DATA_OCM, RD_DATA_REG;
output reg[max_burst_bytes_width:0] RD_BYTES;
input RD_DATA_VALID_OCM,RD_DATA_VALID_DDR, RD_DATA_VALID_REG;
output reg [axi_qos_width-1:0] WR_QOS, RD_QOS;
wire net_ARVALID;
wire net_AWVALID;
wire net_WVALID;
real s_aclk_period;
cdn_axi3_slave_bfm #(slave_name,
data_bus_width,
address_bus_width,
id_bus_width,
slave_base_address,
(slave_high_address- slave_base_address),
max_outstanding_transactions,
0, ///MEMORY_MODEL_MODE,
exclusive_access_supported)
slave (.ACLK (S_ACLK),
.ARESETn (S_RESETN), /// confirm this
// Write Address Channel
.AWID (S_AWID),
.AWADDR (S_AWADDR),
.AWLEN (S_AWLEN),
.AWSIZE (S_AWSIZE),
.AWBURST (S_AWBURST),
.AWLOCK (S_AWLOCK),
.AWCACHE (S_AWCACHE),
.AWPROT (S_AWPROT),
.AWVALID (net_AWVALID),
.AWREADY (S_AWREADY),
// Write Data Channel Signals.
.WID (S_WID),
.WDATA (S_WDATA),
.WSTRB (S_WSTRB),
.WLAST (S_WLAST),
.WVALID (net_WVALID),
.WREADY (S_WREADY),
// Write Response Channel Signals.
.BID (S_BID),
.BRESP (S_BRESP),
.BVALID (S_BVALID),
.BREADY (S_BREADY),
// Read Address Channel Signals.
.ARID (S_ARID),
.ARADDR (S_ARADDR),
.ARLEN (S_ARLEN),
.ARSIZE (S_ARSIZE),
.ARBURST (S_ARBURST),
.ARLOCK (S_ARLOCK),
.ARCACHE (S_ARCACHE),
.ARPROT (S_ARPROT),
.ARVALID (net_ARVALID),
.ARREADY (S_ARREADY),
// Read Data Channel Signals.
.RID (S_RID),
.RDATA (S_RDATA),
.RRESP (S_RRESP),
.RLAST (S_RLAST),
.RVALID (S_RVALID),
.RREADY (S_RREADY));
/* Latency type and Debug/Error Control */
reg[1:0] latency_type = RANDOM_CASE;
reg DEBUG_INFO = 1;
reg STOP_ON_ERROR = 1'b1;
/* WR_FIFO stores 32-bit address, valid data and valid bytes for each AXI Write burst transaction */
reg [wr_fifo_data_bits-1:0] wr_fifo [0:max_wr_outstanding_transactions-1];
reg [int_wr_cntr_width-1:0] wr_fifo_wr_ptr = 0, wr_fifo_rd_ptr = 0;
wire wr_fifo_empty;
/* Store the awvalid receive time --- necessary for calculating the latency in sending the bresp*/
reg [7:0] aw_time_cnt = 0, bresp_time_cnt = 0;
real awvalid_receive_time[0:max_wr_outstanding_transactions]; // store the time when a new awvalid is received
reg awvalid_flag[0:max_wr_outstanding_transactions]; // indicates awvalid is received
/* Address Write Channel handshake*/
reg[int_wr_cntr_width-1:0] aw_cnt = 0;// count of awvalid
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] awsize [0:max_wr_outstanding_transactions-1];
reg [axi_prot_width-1:0] awprot [0:max_wr_outstanding_transactions-1];
reg [axi_lock_width-1:0] awlock [0:max_wr_outstanding_transactions-1];
reg [axi_cache_width-1:0] awcache [0:max_wr_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] awbrst [0:max_wr_outstanding_transactions-1];
reg [axi_len_width-1:0] awlen [0:max_wr_outstanding_transactions-1];
reg aw_flag [0:max_wr_outstanding_transactions-1];
reg [addr_width-1:0] awaddr [0:max_wr_outstanding_transactions-1];
reg [id_bus_width-1:0] awid [0:max_wr_outstanding_transactions-1];
reg [axi_qos_width-1:0] awqos [0:max_wr_outstanding_transactions-1];
wire aw_fifo_full; // indicates awvalid_fifo is full (max outstanding transactions reached)
/* internal fifos to store burst write data, ID & strobes*/
reg [(data_bus_width*axi_burst_len)-1:0] burst_data [0:max_wr_outstanding_transactions-1];
reg [max_burst_bytes_width:0] burst_valid_bytes [0:max_wr_outstanding_transactions-1]; /// total valid bytes received in a complete burst transfer
reg wlast_flag [0:max_wr_outstanding_transactions-1]; // flag to indicate WLAST received
wire wd_fifo_full;
/* Write Data Channel and Write Response handshake signals*/
reg [int_wr_cntr_width-1:0] wd_cnt = 0;
reg [(data_bus_width*axi_burst_len)-1:0] aligned_wr_data;
reg [addr_width-1:0] aligned_wr_addr;
reg [max_burst_bytes_width:0] valid_data_bytes;
reg [int_wr_cntr_width-1:0] wr_bresp_cnt = 0;
reg [axi_rsp_width-1:0] bresp;
reg [rsp_fifo_bits-1:0] fifo_bresp [0:max_wr_outstanding_transactions-1]; // store the ID and its corresponding response
reg enable_write_bresp;
reg [int_wr_cntr_width-1:0] rd_bresp_cnt = 0;
integer wr_latency_count;
reg wr_delayed;
wire bresp_fifo_empty;
/* states for managing read/write to WR_FIFO */
parameter SEND_DATA = 0, WAIT_ACK = 1;
reg state;
/* Qos*/
reg [axi_qos_width-1:0] ar_qos, aw_qos;
initial begin
if(DEBUG_INFO) begin
if(enable_this_port)
$display("[%0d] : %0s : %0s : Port is ENABLED.",$time, DISP_INFO, slave_name);
else
$display("[%0d] : %0s : %0s : Port is DISABLED.",$time, DISP_INFO, slave_name);
end
end
initial slave.set_disable_reset_value_checks(1);
initial begin
repeat(2) @(posedge S_ACLK);
if(!enable_this_port) begin
slave.set_channel_level_info(0);
slave.set_function_level_info(0);
end
slave.RESPONSE_TIMEOUT = 0;
end
/*--------------------------------------------------------------------------------*/
/* Set Latency type to be used */
task set_latency_type;
input[1:0] lat;
begin
if(enable_this_port)
latency_type = lat;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'Latency Profile' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set ARQoS to be used */
task set_arqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
ar_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'ARQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* Set AWQoS to be used */
task set_awqos;
input[axi_qos_width-1:0] qos;
begin
if(enable_this_port)
aw_qos = qos;
else begin
if(DEBUG_INFO)
$display("[%0d] : %0s : %0s : Port is disabled. 'AWQOS' will not be set...",$time, DISP_WARN, slave_name);
end
end
endtask
/*--------------------------------------------------------------------------------*/
/* get the wr latency number */
function [31:0] get_wr_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_min; else get_wr_lat_number = gp_wr_min;
AVG_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_avg; else get_wr_lat_number = gp_wr_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_wr_lat_number = acp_wr_max; else get_wr_lat_number = gp_wr_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%10+ acp_wr_min); else get_wr_lat_number = ($random()%10+ gp_wr_min);
2'b01 : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%40+ acp_wr_avg); else get_wr_lat_number = ($random()%40+ gp_wr_avg);
default : if(slave_name == axi_acp_name) get_wr_lat_number = ($random()%60+ acp_wr_max); else get_wr_lat_number = ($random()%60+ gp_wr_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* get the rd latency number */
function [31:0] get_rd_lat_number;
input dummy;
reg[1:0] temp;
begin
case(latency_type)
BEST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_min; else get_rd_lat_number = gp_rd_min;
AVG_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_avg; else get_rd_lat_number = gp_rd_avg;
WORST_CASE : if(slave_name == axi_acp_name) get_rd_lat_number = acp_rd_max; else get_rd_lat_number = gp_rd_max;
default : begin // RANDOM_CASE
temp = $random;
case(temp)
2'b00 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%10+ acp_rd_min); else get_rd_lat_number = ($random()%10+ gp_rd_min);
2'b01 : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%40+ acp_rd_avg); else get_rd_lat_number = ($random()%40+ gp_rd_avg);
default : if(slave_name == axi_acp_name) get_rd_lat_number = ($random()%60+ acp_rd_max); else get_rd_lat_number = ($random()%60+ gp_rd_max);
endcase
end
endcase
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Clock cycle time period */
always@(S_RESETN)
begin
if(S_RESETN) begin
@(posedge S_ACLK);
s_aclk_period = $time;
@(posedge S_ACLK);
s_aclk_period = $time - s_aclk_period;
end
end
/*--------------------------------------------------------------------------------*/
/* Check for any WRITE/READs when this port is disabled */
always@(S_AWVALID or S_WVALID or S_ARVALID)
begin
if((S_AWVALID | S_WVALID | S_ARVALID) && !enable_this_port) begin
$display("[%0d] : %0s : %0s : Port is disabled. AXI transaction is initiated on this port ...\nSimulation will halt ..",$time, DISP_ERR, slave_name);
$stop;
end
end
/*--------------------------------------------------------------------------------*/
assign net_ARVALID = enable_this_port ? S_ARVALID : 1'b0;
assign net_AWVALID = enable_this_port ? S_AWVALID : 1'b0;
assign net_WVALID = enable_this_port ? S_WVALID : 1'b0;
assign wr_fifo_empty = (wr_fifo_wr_ptr === wr_fifo_rd_ptr)?1'b1: 1'b0;
assign aw_fifo_full = ((aw_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (aw_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign wd_fifo_full = ((wd_cnt[int_wr_cntr_width-1] !== rd_bresp_cnt[int_wr_cntr_width-1]) && (wd_cnt[int_wr_cntr_width-2:0] === rd_bresp_cnt[int_wr_cntr_width-2:0]))?1'b1 :1'b0; /// complete this
assign bresp_fifo_empty = (wr_bresp_cnt === rd_bresp_cnt)?1'b1:1'b0;
/* Store the awvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_AWID or S_AWADDR or S_AWVALID )
begin
if(!S_RESETN)
aw_time_cnt = 0;
else begin
if(S_AWVALID) begin
awvalid_receive_time[aw_time_cnt] = $time;
awvalid_flag[aw_time_cnt] = 1'b1;
aw_time_cnt = aw_time_cnt + 1;
if(aw_time_cnt === max_wr_outstanding_transactions) aw_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_AWVALID && S_AWREADY) begin
if(S_AWQOS === 0) awqos[aw_cnt[int_wr_cntr_width-2:0]] = aw_qos;
else awqos[aw_cnt[int_wr_cntr_width-2:0]] = S_AWQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(aw_fifo_full)
begin
if(aw_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Write transactions limit (%0d). Blocking all future Write transactions until at least 1 of the outstanding Write transaction has completed.",$time, DISP_INFO, slave_name,max_wr_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Write Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
aw_cnt = 0;
end else begin
if(!aw_fifo_full) begin
slave.RECEIVE_WRITE_ADDRESS(0,
id_invalid,
awaddr[aw_cnt[int_wr_cntr_width-2:0]],
awlen[aw_cnt[int_wr_cntr_width-2:0]],
awsize[aw_cnt[int_wr_cntr_width-2:0]],
awbrst[aw_cnt[int_wr_cntr_width-2:0]],
awlock[aw_cnt[int_wr_cntr_width-2:0]],
awcache[aw_cnt[int_wr_cntr_width-2:0]],
awprot[aw_cnt[int_wr_cntr_width-2:0]],
awid[aw_cnt[int_wr_cntr_width-2:0]]); /// sampled valid ID.
aw_flag[aw_cnt[int_wr_cntr_width-2:0]] = 1;
aw_cnt = aw_cnt + 1;
if(aw_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
aw_cnt[int_wr_cntr_width-1] = ~aw_cnt[int_wr_cntr_width-1];
aw_cnt[int_wr_cntr_width-2:0] = 0;
end
end // if (!aw_fifo_full)
end /// if else
end /// always
/*--------------------------------------------------------------------------------*/
/* Write Data Channel Handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wd_cnt = 0;
end else begin
if(!wd_fifo_full && S_WVALID) begin
slave.RECEIVE_WRITE_BURST_NO_CHECKS(S_WID,
burst_data[wd_cnt[int_wr_cntr_width-2:0]],
burst_valid_bytes[wd_cnt[int_wr_cntr_width-2:0]]);
wlast_flag[wd_cnt[int_wr_cntr_width-2:0]] = 1'b1;
wd_cnt = wd_cnt + 1;
if(wd_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wd_cnt[int_wr_cntr_width-1] = ~wd_cnt[int_wr_cntr_width-1];
wd_cnt[int_wr_cntr_width-2:0] = 0;
end
end /// if
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
/* Align the wrap data for write transaction */
task automatic get_wrap_aligned_wr_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
output [addr_width-1:0] start_addr; /// aligned start address
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
wrp_data = wrp_data << ((data_bus_width*axi_burst_len) - (v_bytes*8));
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data << 8;
temp_data[7:0] = wrp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8];
wrp_data = wrp_data << 8;
wrp_bytes = wrp_bytes - 1;
end
wrp_bytes = addr - start_addr;
wrp_data = b_data << (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
/* Calculate the Response for each read/write transaction */
function [axi_rsp_width-1:0] calculate_resp;
input rd_wr; // indicates Read(1) or Write(0) transaction
input [addr_width-1:0] awaddr;
input [axi_prot_width-1:0] awprot;
reg [axi_rsp_width-1:0] rsp;
begin
rsp = AXI_OK;
/* Address Decode */
if(decode_address(awaddr) === INVALID_MEM_TYPE) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Access to Invalid location(0x%0h) ",$time, DISP_ERR, slave_name, awaddr);
end
if(!rd_wr && decode_address(awaddr) === REG_MEM) begin
rsp = AXI_SLV_ERR; //slave error
$display("[%0d] : %0s : %0s : AXI Write to Register Map(0x%0h) is not supported ",$time, DISP_ERR, slave_name, awaddr);
end
if(secure_access_enabled && awprot[1])
rsp = AXI_DEC_ERR; // decode error
calculate_resp = rsp;
end
endfunction
/*--------------------------------------------------------------------------------*/
/* Store the Write response for each write transaction */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
wr_bresp_cnt = 0;
wr_fifo_wr_ptr = 0;
end else begin
enable_write_bresp = aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] && wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]];
/* calculate bresp only when AWVALID && WLAST is received */
if(enable_write_bresp) begin
aw_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
wlast_flag[wr_bresp_cnt[int_wr_cntr_width-2:0]] = 0;
bresp = calculate_resp(1'b0, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],awprot[wr_bresp_cnt[int_wr_cntr_width-2:0]]);
fifo_bresp[wr_bresp_cnt[int_wr_cntr_width-2:0]] = {awid[wr_bresp_cnt[int_wr_cntr_width-2:0]],bresp};
/* Fill WR data FIFO */
if(bresp === AXI_OK) begin
if(awbrst[wr_bresp_cnt[int_wr_cntr_width-2:0]] === AXI_WRAP) begin /// wrap type? then align the data
get_wrap_aligned_wr_data(aligned_wr_data,aligned_wr_addr, awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]],burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]]); /// gives wrapped start address
end else begin
aligned_wr_data = burst_data[wr_bresp_cnt[int_wr_cntr_width-2:0]];
aligned_wr_addr = awaddr[wr_bresp_cnt[int_wr_cntr_width-2:0]] ;
end
valid_data_bytes = burst_valid_bytes[wr_bresp_cnt[int_wr_cntr_width-2:0]];
end else
valid_data_bytes = 0;
wr_fifo[wr_fifo_wr_ptr[int_wr_cntr_width-2:0]] = {awqos[wr_bresp_cnt[int_wr_cntr_width-2:0]], aligned_wr_data, aligned_wr_addr, valid_data_bytes};
wr_fifo_wr_ptr = wr_fifo_wr_ptr + 1;
wr_bresp_cnt = wr_bresp_cnt+1;
if(wr_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
wr_bresp_cnt[int_wr_cntr_width-1] = ~ wr_bresp_cnt[int_wr_cntr_width-1];
wr_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
end
end // else
end // always
/*--------------------------------------------------------------------------------*/
/* Send Write Response Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
rd_bresp_cnt = 0;
wr_latency_count = get_wr_lat_number(1);
wr_delayed = 0;
bresp_time_cnt = 0;
end else begin
wr_delayed = 1'b0;
if(awvalid_flag[bresp_time_cnt] && (($time - awvalid_receive_time[bresp_time_cnt])/s_aclk_period >= wr_latency_count))
wr_delayed = 1;
if(!bresp_fifo_empty && wr_delayed) begin
slave.SEND_WRITE_RESPONSE(fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_id_msb : rsp_id_lsb], // ID
fifo_bresp[rd_bresp_cnt[int_wr_cntr_width-2:0]][rsp_msb : rsp_lsb] // Response
);
wr_delayed = 0;
awvalid_flag[bresp_time_cnt] = 1'b0;
bresp_time_cnt = bresp_time_cnt+1;
rd_bresp_cnt = rd_bresp_cnt + 1;
if(rd_bresp_cnt[int_wr_cntr_width-2:0] === (max_wr_outstanding_transactions-1)) begin
rd_bresp_cnt[int_wr_cntr_width-1] = ~ rd_bresp_cnt[int_wr_cntr_width-1];
rd_bresp_cnt[int_wr_cntr_width-2:0] = 0;
end
if(bresp_time_cnt === max_wr_outstanding_transactions) begin
bresp_time_cnt = 0;
end
wr_latency_count = get_wr_lat_number(1);
end
end // else
end//always
/*--------------------------------------------------------------------------------*/
/* Reading from the wr_fifo */
always@(negedge S_RESETN or posedge SW_CLK) begin
if(!S_RESETN) begin
WR_DATA_VALID_DDR = 1'b0;
WR_DATA_VALID_OCM = 1'b0;
wr_fifo_rd_ptr = 0;
state = SEND_DATA;
WR_QOS = 0;
end else begin
case(state)
SEND_DATA :begin
state = SEND_DATA;
WR_DATA_VALID_OCM = 0;
WR_DATA_VALID_DDR = 0;
if(!wr_fifo_empty) begin
WR_DATA = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_data_msb : wr_data_lsb];
WR_ADDR = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb];
WR_BYTES = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_bytes_msb : wr_bytes_lsb];
WR_QOS = wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_qos_msb : wr_qos_lsb];
state = WAIT_ACK;
case (decode_address(wr_fifo[wr_fifo_rd_ptr[int_wr_cntr_width-2:0]][wr_addr_msb : wr_addr_lsb]))
OCM_MEM : WR_DATA_VALID_OCM = 1;
DDR_MEM : WR_DATA_VALID_DDR = 1;
default : state = SEND_DATA;
endcase
wr_fifo_rd_ptr = wr_fifo_rd_ptr+1;
end
end
WAIT_ACK :begin
state = WAIT_ACK;
if(WR_DATA_ACK_OCM | WR_DATA_ACK_DDR) begin
WR_DATA_VALID_OCM = 1'b0;
WR_DATA_VALID_DDR = 1'b0;
state = SEND_DATA;
end
end
endcase
end
end
/*--------------------------------------------------------------------------------*/
/*-------------------------------- WRITE HANDSHAKE END ----------------------------------------*/
/*-------------------------------- READ HANDSHAKE ---------------------------------------------*/
/* READ CHANNELS */
/* Store the arvalid receive time --- necessary for calculating latency in sending the rresp latency */
reg [7:0] ar_time_cnt = 0,rresp_time_cnt = 0;
real arvalid_receive_time[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg arvalid_flag[0:max_rd_outstanding_transactions]; // store the time when a new arvalid is received
reg [int_rd_cntr_width-1:0] ar_cnt = 0; // counter for arvalid info
/* various FIFOs for storing the ADDR channel info */
reg [axi_size_width-1:0] arsize [0:max_rd_outstanding_transactions-1];
reg [axi_prot_width-1:0] arprot [0:max_rd_outstanding_transactions-1];
reg [axi_brst_type_width-1:0] arbrst [0:max_rd_outstanding_transactions-1];
reg [axi_len_width-1:0] arlen [0:max_rd_outstanding_transactions-1];
reg [axi_cache_width-1:0] arcache [0:max_rd_outstanding_transactions-1];
reg [axi_lock_width-1:0] arlock [0:max_rd_outstanding_transactions-1];
reg ar_flag [0:max_rd_outstanding_transactions-1];
reg [addr_width-1:0] araddr [0:max_rd_outstanding_transactions-1];
reg [id_bus_width-1:0] arid [0:max_rd_outstanding_transactions-1];
reg [axi_qos_width-1:0] arqos [0:max_rd_outstanding_transactions-1];
wire ar_fifo_full; // indicates arvalid_fifo is full (max outstanding transactions reached)
reg [int_rd_cntr_width-1:0] rd_cnt = 0;
reg [int_rd_cntr_width-1:0] wr_rresp_cnt = 0;
reg [axi_rsp_width-1:0] rresp;
reg [rsp_fifo_bits-1:0] fifo_rresp [0:max_rd_outstanding_transactions-1]; // store the ID and its corresponding response
/* Send Read Response & Data Channel handshake */
integer rd_latency_count;
reg rd_delayed;
reg [max_burst_bits-1:0] read_fifo [0:max_rd_outstanding_transactions-1]; /// Store only AXI Burst Data ..
reg [int_rd_cntr_width-1:0] rd_fifo_wr_ptr = 0, rd_fifo_rd_ptr = 0;
wire read_fifo_full;
assign read_fifo_full = (rd_fifo_wr_ptr[int_rd_cntr_width-1] !== rd_fifo_rd_ptr[int_rd_cntr_width-1] && rd_fifo_wr_ptr[int_rd_cntr_width-2:0] === rd_fifo_rd_ptr[int_rd_cntr_width-2:0])?1'b1: 1'b0;
assign read_fifo_empty = (rd_fifo_wr_ptr === rd_fifo_rd_ptr)?1'b1: 1'b0;
assign ar_fifo_full = ((ar_cnt[int_rd_cntr_width-1] !== rd_cnt[int_rd_cntr_width-1]) && (ar_cnt[int_rd_cntr_width-2:0] === rd_cnt[int_rd_cntr_width-2:0]))?1'b1 :1'b0;
/* Store the arvalid receive time --- necessary for calculating the bresp latency */
always@(negedge S_RESETN or S_ARID or S_ARADDR or S_ARVALID )
begin
if(!S_RESETN)
ar_time_cnt = 0;
else begin
if(S_ARVALID) begin
arvalid_receive_time[ar_time_cnt] = $time;
arvalid_flag[ar_time_cnt] = 1'b1;
ar_time_cnt = ar_time_cnt + 1;
if(ar_time_cnt === max_rd_outstanding_transactions)
ar_time_cnt = 0;
end
end // else
end /// always
/*--------------------------------------------------------------------------------*/
always@(posedge S_ACLK)
begin
if(net_ARVALID && S_ARREADY) begin
if(S_ARQOS === 0) arqos[aw_cnt[int_rd_cntr_width-2:0]] = ar_qos;
else arqos[aw_cnt[int_rd_cntr_width-2:0]] = S_ARQOS;
end
end
/*--------------------------------------------------------------------------------*/
always@(ar_fifo_full)
begin
if(ar_fifo_full && DEBUG_INFO)
$display("[%0d] : %0s : %0s : Reached the maximum outstanding Read transactions limit (%0d). Blocking all future Read transactions until at least 1 of the outstanding Read transaction has completed.",$time, DISP_INFO, slave_name,max_rd_outstanding_transactions);
end
/*--------------------------------------------------------------------------------*/
/* Address Read Channel handshake*/
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN) begin
ar_cnt = 0;
end else begin
if(!ar_fifo_full) begin
slave.RECEIVE_READ_ADDRESS(0,
id_invalid,
araddr[ar_cnt[int_rd_cntr_width-2:0]],
arlen[ar_cnt[int_rd_cntr_width-2:0]],
arsize[ar_cnt[int_rd_cntr_width-2:0]],
arbrst[ar_cnt[int_rd_cntr_width-2:0]],
arlock[ar_cnt[int_rd_cntr_width-2:0]],
arcache[ar_cnt[int_rd_cntr_width-2:0]],
arprot[ar_cnt[int_rd_cntr_width-2:0]],
arid[ar_cnt[int_rd_cntr_width-2:0]]); /// sampled valid ID.
ar_flag[ar_cnt[int_rd_cntr_width-2:0]] = 1'b1;
ar_cnt = ar_cnt+1;
if(ar_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
ar_cnt[int_rd_cntr_width-1] = ~ ar_cnt[int_rd_cntr_width-1];
ar_cnt[int_rd_cntr_width-2:0] = 0;
end
end /// if(!ar_fifo_full)
end /// if else
end /// always*/
/*--------------------------------------------------------------------------------*/
/* Align Wrap data for read transaction*/
task automatic get_wrap_aligned_rd_data;
output [(data_bus_width*axi_burst_len)-1:0] aligned_data;
input [addr_width-1:0] addr;
input [(data_bus_width*axi_burst_len)-1:0] b_data;
input [max_burst_bytes_width:0] v_bytes;
reg [addr_width-1:0] start_addr;
reg [(data_bus_width*axi_burst_len)-1:0] temp_data, wrp_data;
integer wrp_bytes;
integer i;
begin
start_addr = (addr/v_bytes) * v_bytes;
wrp_bytes = addr - start_addr;
wrp_data = b_data;
temp_data = 0;
while(wrp_bytes > 0) begin /// get the data that is wrapped
temp_data = temp_data >> 8;
temp_data[(data_bus_width*axi_burst_len)-1 : (data_bus_width*axi_burst_len)-8] = wrp_data[7:0];
wrp_data = wrp_data >> 8;
wrp_bytes = wrp_bytes - 1;
end
temp_data = temp_data >> ((data_bus_width*axi_burst_len) - (v_bytes*8));
wrp_bytes = addr - start_addr;
wrp_data = b_data >> (wrp_bytes*8);
aligned_data = (temp_data | wrp_data);
end
endtask
/*--------------------------------------------------------------------------------*/
parameter RD_DATA_REQ = 1'b0, WAIT_RD_VALID = 1'b1;
reg [addr_width-1:0] temp_read_address;
reg [max_burst_bytes_width:0] temp_rd_valid_bytes;
reg rd_fifo_state;
reg invalid_rd_req;
/* get the data from memory && also calculate the rresp*/
always@(negedge S_RESETN or posedge SW_CLK)
begin
if(!S_RESETN)begin
rd_fifo_wr_ptr = 0;
wr_rresp_cnt =0;
rd_fifo_state = RD_DATA_REQ;
temp_rd_valid_bytes = 0;
temp_read_address = 0;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
end else begin
case(rd_fifo_state)
RD_DATA_REQ : begin
rd_fifo_state = RD_DATA_REQ;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
if(ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] && !read_fifo_full) begin
ar_flag[wr_rresp_cnt[int_rd_cntr_width-2:0]] = 0;
rresp = calculate_resp(1'b1, araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]],arprot[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
fifo_rresp[wr_rresp_cnt[int_rd_cntr_width-2:0]] = {arid[wr_rresp_cnt[int_rd_cntr_width-2:0]],rresp};
temp_rd_valid_bytes = (arlen[wr_rresp_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[wr_rresp_cnt[int_rd_cntr_width-2:0]]);//data_bus_width/8;
if(arbrst[wr_rresp_cnt[int_rd_cntr_width-2:0]] === AXI_WRAP) /// wrap begin
temp_read_address = (araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]/temp_rd_valid_bytes) * temp_rd_valid_bytes;
else
temp_read_address = araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
if(rresp === AXI_OK) begin
case(decode_address(temp_read_address))//decode_address(araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]]);
OCM_MEM : RD_REQ_OCM = 1;
DDR_MEM : RD_REQ_DDR = 1;
REG_MEM : RD_REQ_REG = 1;
default : invalid_rd_req = 1;
endcase
end else
invalid_rd_req = 1;
RD_QOS = arqos[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_ADDR = temp_read_address; ///araddr[wr_rresp_cnt[int_rd_cntr_width-2:0]];
RD_BYTES = temp_rd_valid_bytes;
rd_fifo_state = WAIT_RD_VALID;
wr_rresp_cnt = wr_rresp_cnt + 1;
if(wr_rresp_cnt[int_rd_cntr_width-2:0] === max_rd_outstanding_transactions-1) begin
wr_rresp_cnt[int_rd_cntr_width-1] = ~ wr_rresp_cnt[int_rd_cntr_width-1];
wr_rresp_cnt[int_rd_cntr_width-2:0] = 0;
end
end
end
WAIT_RD_VALID : begin
rd_fifo_state = WAIT_RD_VALID;
if(RD_DATA_VALID_OCM | RD_DATA_VALID_DDR | RD_DATA_VALID_REG | invalid_rd_req) begin ///temp_dec == 2'b11) begin
if(RD_DATA_VALID_DDR)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_DDR;
else if(RD_DATA_VALID_OCM)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_OCM;
else if(RD_DATA_VALID_REG)
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = RD_DATA_REG;
else
read_fifo[rd_fifo_wr_ptr[int_rd_cntr_width-2:0]] = 0;
rd_fifo_wr_ptr = rd_fifo_wr_ptr + 1;
RD_REQ_DDR = 0;
RD_REQ_OCM = 0;
RD_REQ_REG = 0;
RD_QOS = 0;
invalid_rd_req = 0;
rd_fifo_state = RD_DATA_REQ;
end
end
endcase
end /// else
end /// always
/*--------------------------------------------------------------------------------*/
reg[max_burst_bytes_width:0] rd_v_b;
reg [(data_bus_width*axi_burst_len)-1:0] temp_read_data;
reg [(data_bus_width*axi_burst_len)-1:0] temp_wrap_data;
reg[(axi_rsp_width*axi_burst_len)-1:0] temp_read_rsp;
/* Read Data Channel handshake */
always@(negedge S_RESETN or posedge S_ACLK)
begin
if(!S_RESETN)begin
rd_fifo_rd_ptr = 0;
rd_cnt = 0;
rd_latency_count = get_rd_lat_number(1);
rd_delayed = 0;
rresp_time_cnt = 0;
rd_v_b = 0;
end else begin
if(arvalid_flag[rresp_time_cnt] && ((($time - arvalid_receive_time[rresp_time_cnt])/s_aclk_period) >= rd_latency_count))
rd_delayed = 1;
if(!read_fifo_empty && rd_delayed)begin
rd_delayed = 0;
arvalid_flag[rresp_time_cnt] = 1'b0;
rd_v_b = ((arlen[rd_cnt[int_rd_cntr_width-2:0]]+1)*(2**arsize[rd_cnt[int_rd_cntr_width-2:0]]));
temp_read_data = read_fifo[rd_fifo_rd_ptr[int_rd_cntr_width-2:0]];
rd_fifo_rd_ptr = rd_fifo_rd_ptr+1;
if(arbrst[rd_cnt[int_rd_cntr_width-2:0]]=== AXI_WRAP) begin
get_wrap_aligned_rd_data(temp_wrap_data, araddr[rd_cnt[int_rd_cntr_width-2:0]], temp_read_data, rd_v_b);
temp_read_data = temp_wrap_data;
end
temp_read_rsp = 0;
repeat(axi_burst_len) begin
temp_read_rsp = temp_read_rsp >> axi_rsp_width;
temp_read_rsp[(axi_rsp_width*axi_burst_len)-1:(axi_rsp_width*axi_burst_len)-axi_rsp_width] = fifo_rresp[rd_cnt[int_rd_cntr_width-2:0]][rsp_msb : rsp_lsb];
end
slave.SEND_READ_BURST_RESP_CTRL(arid[rd_cnt[int_rd_cntr_width-2:0]],
araddr[rd_cnt[int_rd_cntr_width-2:0]],
arlen[rd_cnt[int_rd_cntr_width-2:0]],
arsize[rd_cnt[int_rd_cntr_width-2:0]],
arbrst[rd_cnt[int_rd_cntr_width-2:0]],
temp_read_data,
temp_read_rsp);
rd_cnt = rd_cnt + 1;
rresp_time_cnt = rresp_time_cnt+1;
if(rresp_time_cnt === max_rd_outstanding_transactions) rresp_time_cnt = 0;
if(rd_cnt[int_rd_cntr_width-2:0] === (max_rd_outstanding_transactions-1)) begin
rd_cnt[int_rd_cntr_width-1] = ~ rd_cnt[int_rd_cntr_width-1];
rd_cnt[int_rd_cntr_width-2:0] = 0;
end
rd_latency_count = get_rd_lat_number(1);
end
end /// else
end /// always
endmodule
|
module axi_protocol_converter_v2_1_b2s_simple_fifo #
(
parameter C_WIDTH = 8,
parameter C_AWIDTH = 4,
parameter C_DEPTH = 16
)
(
input wire clk, // Main System Clock (Sync FIFO)
input wire rst, // FIFO Counter Reset (Clk
input wire wr_en, // FIFO Write Enable (Clk)
input wire rd_en, // FIFO Read Enable (Clk)
input wire [C_WIDTH-1:0] din, // FIFO Data Input (Clk)
output wire [C_WIDTH-1:0] dout, // FIFO Data Output (Clk)
output wire a_full,
output wire full, // FIFO FULL Status (Clk)
output wire a_empty,
output wire empty // FIFO EMPTY Status (Clk)
);
///////////////////////////////////////
// FIFO Local Parameters
///////////////////////////////////////
localparam [C_AWIDTH-1:0] C_EMPTY = ~(0);
localparam [C_AWIDTH-1:0] C_EMPTY_PRE = (0);
localparam [C_AWIDTH-1:0] C_FULL = C_EMPTY-1;
localparam [C_AWIDTH-1:0] C_FULL_PRE = (C_DEPTH < 8) ? C_FULL-1 : C_FULL-(C_DEPTH/8);
///////////////////////////////////////
// FIFO Internal Signals
///////////////////////////////////////
reg [C_WIDTH-1:0] memory [C_DEPTH-1:0];
reg [C_AWIDTH-1:0] cnt_read;
// synthesis attribute MAX_FANOUT of cnt_read is 10;
///////////////////////////////////////
// Main simple FIFO Array
///////////////////////////////////////
always @(posedge clk) begin : BLKSRL
integer i;
if (wr_en) begin
for (i = 0; i < C_DEPTH-1; i = i + 1) begin
memory[i+1] <= memory[i];
end
memory[0] <= din;
end
end
///////////////////////////////////////
// Read Index Counter
// Up/Down Counter
// *** Notice that there is no ***
// *** OVERRUN protection. ***
///////////////////////////////////////
always @(posedge clk) begin
if (rst) cnt_read <= C_EMPTY;
else if ( wr_en & !rd_en) cnt_read <= cnt_read + 1'b1;
else if (!wr_en & rd_en) cnt_read <= cnt_read - 1'b1;
end
///////////////////////////////////////
// Status Flags / Outputs
// These could be registered, but would
// increase logic in order to pre-decode
// FULL/EMPTY status.
///////////////////////////////////////
assign full = (cnt_read == C_FULL);
assign empty = (cnt_read == C_EMPTY);
assign a_full = ((cnt_read >= C_FULL_PRE) && (cnt_read != C_EMPTY));
assign a_empty = (cnt_read == C_EMPTY_PRE);
assign dout = (C_DEPTH == 1) ? memory[0] : memory[cnt_read];
endmodule
|
module axi_protocol_converter_v2_1_b2s_simple_fifo #
(
parameter C_WIDTH = 8,
parameter C_AWIDTH = 4,
parameter C_DEPTH = 16
)
(
input wire clk, // Main System Clock (Sync FIFO)
input wire rst, // FIFO Counter Reset (Clk
input wire wr_en, // FIFO Write Enable (Clk)
input wire rd_en, // FIFO Read Enable (Clk)
input wire [C_WIDTH-1:0] din, // FIFO Data Input (Clk)
output wire [C_WIDTH-1:0] dout, // FIFO Data Output (Clk)
output wire a_full,
output wire full, // FIFO FULL Status (Clk)
output wire a_empty,
output wire empty // FIFO EMPTY Status (Clk)
);
///////////////////////////////////////
// FIFO Local Parameters
///////////////////////////////////////
localparam [C_AWIDTH-1:0] C_EMPTY = ~(0);
localparam [C_AWIDTH-1:0] C_EMPTY_PRE = (0);
localparam [C_AWIDTH-1:0] C_FULL = C_EMPTY-1;
localparam [C_AWIDTH-1:0] C_FULL_PRE = (C_DEPTH < 8) ? C_FULL-1 : C_FULL-(C_DEPTH/8);
///////////////////////////////////////
// FIFO Internal Signals
///////////////////////////////////////
reg [C_WIDTH-1:0] memory [C_DEPTH-1:0];
reg [C_AWIDTH-1:0] cnt_read;
// synthesis attribute MAX_FANOUT of cnt_read is 10;
///////////////////////////////////////
// Main simple FIFO Array
///////////////////////////////////////
always @(posedge clk) begin : BLKSRL
integer i;
if (wr_en) begin
for (i = 0; i < C_DEPTH-1; i = i + 1) begin
memory[i+1] <= memory[i];
end
memory[0] <= din;
end
end
///////////////////////////////////////
// Read Index Counter
// Up/Down Counter
// *** Notice that there is no ***
// *** OVERRUN protection. ***
///////////////////////////////////////
always @(posedge clk) begin
if (rst) cnt_read <= C_EMPTY;
else if ( wr_en & !rd_en) cnt_read <= cnt_read + 1'b1;
else if (!wr_en & rd_en) cnt_read <= cnt_read - 1'b1;
end
///////////////////////////////////////
// Status Flags / Outputs
// These could be registered, but would
// increase logic in order to pre-decode
// FULL/EMPTY status.
///////////////////////////////////////
assign full = (cnt_read == C_FULL);
assign empty = (cnt_read == C_EMPTY);
assign a_full = ((cnt_read >= C_FULL_PRE) && (cnt_read != C_EMPTY));
assign a_empty = (cnt_read == C_EMPTY_PRE);
assign dout = (C_DEPTH == 1) ? memory[0] : memory[cnt_read];
endmodule
|
module axi_protocol_converter_v2_1_r_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface
input wire cmd_valid,
input wire cmd_split,
output wire cmd_ready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Throttling help signals.
wire cmd_ready_i;
wire pop_si_data;
wire si_stalling;
// Internal MI-side control signals.
wire M_AXI_RREADY_I;
// Internal signals for SI-side.
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID_I;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA_I;
wire [2-1:0] S_AXI_RRESP_I;
wire S_AXI_RLAST_I;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER_I;
wire S_AXI_RVALID_I;
wire S_AXI_RREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// Forward data from MI-Side to SI-Side while a command is available. When
// the transaction has completed the command is popped from the Command FIFO.
//
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from SI-side.
assign M_AXI_RREADY_I = ~si_stalling & cmd_valid;
assign M_AXI_RREADY = M_AXI_RREADY_I;
// Indicate when there is data available @ SI-side.
assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid;
// Get SI-side data.
assign pop_si_data = S_AXI_RVALID_I & S_AXI_RREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_si_data & M_AXI_RLAST;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign si_stalling = S_AXI_RVALID_I & ~S_AXI_RREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Simple AXI signal forwarding:
//
// USER, ID, DATA and RRESP passes through untouched.
//
// LAST has to be filtered to remove any intermediate LAST (due to split
// trasactions). LAST is only removed for the first parts of a split
// transaction. When splitting is unsupported is the LAST filtering completely
// completely removed.
//
/////////////////////////////////////////////////////////////////////////////
// Calculate last, i.e. mask from split transactions.
assign S_AXI_RLAST_I = M_AXI_RLAST &
( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) );
// Data is passed through.
assign S_AXI_RID_I = M_AXI_RID;
assign S_AXI_RUSER_I = M_AXI_RUSER;
assign S_AXI_RDATA_I = M_AXI_RDATA;
assign S_AXI_RRESP_I = M_AXI_RRESP;
/////////////////////////////////////////////////////////////////////////////
// SI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign S_AXI_RREADY_I = S_AXI_RREADY;
assign S_AXI_RVALID = S_AXI_RVALID_I;
assign S_AXI_RID = S_AXI_RID_I;
assign S_AXI_RDATA = S_AXI_RDATA_I;
assign S_AXI_RRESP = S_AXI_RRESP_I;
assign S_AXI_RLAST = S_AXI_RLAST_I;
assign S_AXI_RUSER = S_AXI_RUSER_I;
endmodule
|
module axi_protocol_converter_v2_1_r_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface
input wire cmd_valid,
input wire cmd_split,
output wire cmd_ready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID,
output wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA,
output wire [2-1:0] S_AXI_RRESP,
output wire S_AXI_RLAST,
output wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER,
output wire S_AXI_RVALID,
input wire S_AXI_RREADY,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire [2-1:0] M_AXI_RRESP,
input wire M_AXI_RLAST,
input wire [C_AXI_RUSER_WIDTH-1:0] M_AXI_RUSER,
input wire M_AXI_RVALID,
output wire M_AXI_RREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for packing levels.
localparam [2-1:0] C_RESP_OKAY = 2'b00;
localparam [2-1:0] C_RESP_EXOKAY = 2'b01;
localparam [2-1:0] C_RESP_SLVERROR = 2'b10;
localparam [2-1:0] C_RESP_DECERR = 2'b11;
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Throttling help signals.
wire cmd_ready_i;
wire pop_si_data;
wire si_stalling;
// Internal MI-side control signals.
wire M_AXI_RREADY_I;
// Internal signals for SI-side.
wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID_I;
wire [C_AXI_DATA_WIDTH-1:0] S_AXI_RDATA_I;
wire [2-1:0] S_AXI_RRESP_I;
wire S_AXI_RLAST_I;
wire [C_AXI_RUSER_WIDTH-1:0] S_AXI_RUSER_I;
wire S_AXI_RVALID_I;
wire S_AXI_RREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Handle interface handshaking:
//
// Forward data from MI-Side to SI-Side while a command is available. When
// the transaction has completed the command is popped from the Command FIFO.
//
//
/////////////////////////////////////////////////////////////////////////////
// Pop word from SI-side.
assign M_AXI_RREADY_I = ~si_stalling & cmd_valid;
assign M_AXI_RREADY = M_AXI_RREADY_I;
// Indicate when there is data available @ SI-side.
assign S_AXI_RVALID_I = M_AXI_RVALID & cmd_valid;
// Get SI-side data.
assign pop_si_data = S_AXI_RVALID_I & S_AXI_RREADY_I;
// Signal that the command is done (so that it can be poped from command queue).
assign cmd_ready_i = cmd_valid & pop_si_data & M_AXI_RLAST;
assign cmd_ready = cmd_ready_i;
// Detect when MI-side is stalling.
assign si_stalling = S_AXI_RVALID_I & ~S_AXI_RREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Simple AXI signal forwarding:
//
// USER, ID, DATA and RRESP passes through untouched.
//
// LAST has to be filtered to remove any intermediate LAST (due to split
// trasactions). LAST is only removed for the first parts of a split
// transaction. When splitting is unsupported is the LAST filtering completely
// completely removed.
//
/////////////////////////////////////////////////////////////////////////////
// Calculate last, i.e. mask from split transactions.
assign S_AXI_RLAST_I = M_AXI_RLAST &
( ~cmd_split | ( C_SUPPORT_SPLITTING == 0 ) );
// Data is passed through.
assign S_AXI_RID_I = M_AXI_RID;
assign S_AXI_RUSER_I = M_AXI_RUSER;
assign S_AXI_RDATA_I = M_AXI_RDATA;
assign S_AXI_RRESP_I = M_AXI_RRESP;
/////////////////////////////////////////////////////////////////////////////
// SI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
// TODO: registered?
assign S_AXI_RREADY_I = S_AXI_RREADY;
assign S_AXI_RVALID = S_AXI_RVALID_I;
assign S_AXI_RID = S_AXI_RID_I;
assign S_AXI_RDATA = S_AXI_RDATA_I;
assign S_AXI_RRESP = S_AXI_RRESP_I;
assign S_AXI_RLAST = S_AXI_RLAST_I;
assign S_AXI_RUSER = S_AXI_RUSER_I;
endmodule
|
module axi_protocol_converter_v2_1_axi_protocol_converter #(
parameter C_FAMILY = "virtex6",
parameter integer C_M_AXI_PROTOCOL = 0,
parameter integer C_S_AXI_PROTOCOL = 0,
parameter integer C_IGNORE_ID = 0,
// 0 = RID/BID are stored by axilite_conv.
// 1 = RID/BID have already been stored in an upstream device, like SASD crossbar.
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_TRANSLATION_MODE = 1
// 0 (Unprotected) = Disable all error checking; master is well-behaved.
// 1 (Protection) = Detect SI transaction violations, but perform no splitting.
// AXI4 -> AXI3 must be <= 16 beats; AXI4/3 -> AXI4LITE must be single.
// 2 (Conversion) = Include transaction splitting logic
) (
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
localparam P_AXI4 = 32'h0;
localparam P_AXI3 = 32'h1;
localparam P_AXILITE = 32'h2;
localparam P_AXILITE_SIZE = (C_AXI_DATA_WIDTH == 32) ? 3'b010 : 3'b011;
localparam P_INCR = 2'b01;
localparam P_DECERR = 2'b11;
localparam P_SLVERR = 2'b10;
localparam integer P_PROTECTION = 1;
localparam integer P_CONVERSION = 2;
wire s_awvalid_i;
wire s_arvalid_i;
wire s_wvalid_i ;
wire s_bready_i ;
wire s_rready_i ;
wire s_awready_i;
wire s_wready_i;
wire s_bvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_bid_i;
wire [1:0] s_bresp_i;
wire [C_AXI_BUSER_WIDTH-1:0] s_buser_i;
wire s_arready_i;
wire s_rvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_rid_i;
wire [1:0] s_rresp_i;
wire [C_AXI_RUSER_WIDTH-1:0] s_ruser_i;
wire [C_AXI_DATA_WIDTH-1:0] s_rdata_i;
wire s_rlast_i;
generate
if ((C_M_AXI_PROTOCOL == P_AXILITE) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite
assign m_axi_awid = 0;
assign m_axi_awlen = 0;
assign m_axi_awsize = P_AXILITE_SIZE;
assign m_axi_awburst = P_INCR;
assign m_axi_awlock = 0;
assign m_axi_awcache = 0;
assign m_axi_awregion = 0;
assign m_axi_awqos = 0;
assign m_axi_awuser = 0;
assign m_axi_wid = 0;
assign m_axi_wlast = 1'b1;
assign m_axi_wuser = 0;
assign m_axi_arid = 0;
assign m_axi_arlen = 0;
assign m_axi_arsize = P_AXILITE_SIZE;
assign m_axi_arburst = P_INCR;
assign m_axi_arlock = 0;
assign m_axi_arcache = 0;
assign m_axi_arregion = 0;
assign m_axi_arqos = 0;
assign m_axi_aruser = 0;
if (((C_IGNORE_ID == 1) && (C_TRANSLATION_MODE != P_CONVERSION)) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite_passthru
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = 0;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = 0;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = 0;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = 1'b1;
assign s_ruser_i = 0;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else if (C_TRANSLATION_MODE == P_CONVERSION) begin : gen_b2s_conv
assign s_buser_i = {C_AXI_BUSER_WIDTH{1'b0}};
assign s_ruser_i = {C_AXI_RUSER_WIDTH{1'b0}};
axi_protocol_converter_v2_1_b2s #(
.C_S_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ)
) axilite_b2s (
.aresetn (aresetn),
.aclk (aclk),
.s_axi_awid (s_axi_awid),
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awlen (s_axi_awlen),
.s_axi_awsize (s_axi_awsize),
.s_axi_awburst (s_axi_awburst),
.s_axi_awprot (s_axi_awprot),
.s_axi_awvalid (s_awvalid_i),
.s_axi_awready (s_awready_i),
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wlast (s_axi_wlast),
.s_axi_wvalid (s_wvalid_i),
.s_axi_wready (s_wready_i),
.s_axi_bid (s_bid_i),
.s_axi_bresp (s_bresp_i),
.s_axi_bvalid (s_bvalid_i),
.s_axi_bready (s_bready_i),
.s_axi_arid (s_axi_arid),
.s_axi_araddr (s_axi_araddr),
.s_axi_arlen (s_axi_arlen),
.s_axi_arsize (s_axi_arsize),
.s_axi_arburst (s_axi_arburst),
.s_axi_arprot (s_axi_arprot),
.s_axi_arvalid (s_arvalid_i),
.s_axi_arready (s_arready_i),
.s_axi_rid (s_rid_i),
.s_axi_rdata (s_rdata_i),
.s_axi_rresp (s_rresp_i),
.s_axi_rlast (s_rlast_i),
.s_axi_rvalid (s_rvalid_i),
.s_axi_rready (s_rready_i),
.m_axi_awaddr (m_axi_awaddr),
.m_axi_awprot (m_axi_awprot),
.m_axi_awvalid (m_axi_awvalid),
.m_axi_awready (m_axi_awready),
.m_axi_wdata (m_axi_wdata),
.m_axi_wstrb (m_axi_wstrb),
.m_axi_wvalid (m_axi_wvalid),
.m_axi_wready (m_axi_wready),
.m_axi_bresp (m_axi_bresp),
.m_axi_bvalid (m_axi_bvalid),
.m_axi_bready (m_axi_bready),
.m_axi_araddr (m_axi_araddr),
.m_axi_arprot (m_axi_arprot),
.m_axi_arvalid (m_axi_arvalid),
.m_axi_arready (m_axi_arready),
.m_axi_rdata (m_axi_rdata),
.m_axi_rresp (m_axi_rresp),
.m_axi_rvalid (m_axi_rvalid),
.m_axi_rready (m_axi_rready)
);
end else begin : gen_axilite_conv
axi_protocol_converter_v2_1_axilite_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) axilite_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
end
end else if ((C_M_AXI_PROTOCOL == P_AXI3) && (C_S_AXI_PROTOCOL == P_AXI4)) begin : gen_axi4_axi3
axi_protocol_converter_v2_1_axi3_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_SUPPORT_SPLITTING ((C_TRANSLATION_MODE == P_CONVERSION) ? 1 : 0)
) axi3_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWLEN (s_axi_awlen),
.S_AXI_AWSIZE (s_axi_awsize),
.S_AXI_AWBURST (s_axi_awburst),
.S_AXI_AWLOCK (s_axi_awlock),
.S_AXI_AWCACHE (s_axi_awcache),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWQOS (s_axi_awqos),
.S_AXI_AWUSER (s_axi_awuser),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WUSER (s_axi_wuser),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARLEN (s_axi_arlen),
.S_AXI_ARSIZE (s_axi_arsize),
.S_AXI_ARBURST (s_axi_arburst),
.S_AXI_ARLOCK (s_axi_arlock),
.S_AXI_ARCACHE (s_axi_arcache),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARQOS (s_axi_arqos),
.S_AXI_ARUSER (s_axi_aruser),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWID (m_axi_awid),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWLEN (m_axi_awlen),
.M_AXI_AWSIZE (m_axi_awsize),
.M_AXI_AWBURST (m_axi_awburst),
.M_AXI_AWLOCK (m_axi_awlock),
.M_AXI_AWCACHE (m_axi_awcache),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWQOS (m_axi_awqos),
.M_AXI_AWUSER (m_axi_awuser),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WID (m_axi_wid),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WLAST (m_axi_wlast),
.M_AXI_WUSER (m_axi_wuser),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BID (m_axi_bid),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BUSER (m_axi_buser),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARID (m_axi_arid),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARLEN (m_axi_arlen),
.M_AXI_ARSIZE (m_axi_arsize),
.M_AXI_ARBURST (m_axi_arburst),
.M_AXI_ARLOCK (m_axi_arlock),
.M_AXI_ARCACHE (m_axi_arcache),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARQOS (m_axi_arqos),
.M_AXI_ARUSER (m_axi_aruser),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RID (m_axi_rid),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RLAST (m_axi_rlast),
.M_AXI_RUSER (m_axi_ruser),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
assign m_axi_awregion = 0;
assign m_axi_arregion = 0;
end else if ((C_S_AXI_PROTOCOL == P_AXI3) && (C_M_AXI_PROTOCOL == P_AXI4)) begin : gen_axi3_axi4
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = {4'h0, s_axi_awlen[3:0]};
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock[0];
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = 4'h0;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = {C_AXI_ID_WIDTH{1'b0}} ;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = {4'h0, s_axi_arlen[3:0]};
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock[0];
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = 4'h0;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else begin :gen_no_conv
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = s_axi_awlen;
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock;
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = s_axi_awregion;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = s_axi_wid;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = s_axi_arlen;
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock;
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = s_axi_arregion;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end
if ((C_TRANSLATION_MODE == P_PROTECTION) &&
(((C_S_AXI_PROTOCOL != P_AXILITE) && (C_M_AXI_PROTOCOL == P_AXILITE)) ||
((C_S_AXI_PROTOCOL == P_AXI4) && (C_M_AXI_PROTOCOL == P_AXI3)))) begin : gen_err_detect
wire e_awvalid;
reg e_awvalid_r;
wire e_arvalid;
reg e_arvalid_r;
wire e_wvalid;
wire e_bvalid;
wire e_rvalid;
reg e_awready;
reg e_arready;
wire e_wready;
reg [C_AXI_ID_WIDTH-1:0] e_awid;
reg [C_AXI_ID_WIDTH-1:0] e_arid;
reg [8-1:0] e_arlen;
wire [C_AXI_ID_WIDTH-1:0] e_bid;
wire [C_AXI_ID_WIDTH-1:0] e_rid;
wire e_rlast;
wire w_err;
wire r_err;
wire busy_aw;
wire busy_w;
wire busy_ar;
wire aw_push;
wire aw_pop;
wire w_pop;
wire ar_push;
wire ar_pop;
reg s_awvalid_pending;
reg s_awvalid_en;
reg s_arvalid_en;
reg s_awready_en;
reg s_arready_en;
reg [4:0] aw_cnt;
reg [4:0] ar_cnt;
reg [4:0] w_cnt;
reg w_borrow;
reg err_busy_w;
reg err_busy_r;
assign w_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_awlen != 0) : ((s_axi_awlen>>4) != 0);
assign r_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_arlen != 0) : ((s_axi_arlen>>4) != 0);
assign s_awvalid_i = s_axi_awvalid & s_awvalid_en & ~w_err;
assign e_awvalid = e_awvalid_r & ~busy_aw & ~busy_w;
assign s_arvalid_i = s_axi_arvalid & s_arvalid_en & ~r_err;
assign e_arvalid = e_arvalid_r & ~busy_ar ;
assign s_wvalid_i = s_axi_wvalid & (busy_w | (s_awvalid_pending & ~w_borrow));
assign e_wvalid = s_axi_wvalid & err_busy_w;
assign s_bready_i = s_axi_bready & busy_aw;
assign s_rready_i = s_axi_rready & busy_ar;
assign s_axi_awready = (s_awready_i & s_awready_en) | e_awready;
assign s_axi_wready = (s_wready_i & (busy_w | (s_awvalid_pending & ~w_borrow))) | e_wready;
assign s_axi_bvalid = (s_bvalid_i & busy_aw) | e_bvalid;
assign s_axi_bid = err_busy_w ? e_bid : s_bid_i;
assign s_axi_bresp = err_busy_w ? P_SLVERR : s_bresp_i;
assign s_axi_buser = err_busy_w ? {C_AXI_BUSER_WIDTH{1'b0}} : s_buser_i;
assign s_axi_arready = (s_arready_i & s_arready_en) | e_arready;
assign s_axi_rvalid = (s_rvalid_i & busy_ar) | e_rvalid;
assign s_axi_rid = err_busy_r ? e_rid : s_rid_i;
assign s_axi_rresp = err_busy_r ? P_SLVERR : s_rresp_i;
assign s_axi_ruser = err_busy_r ? {C_AXI_RUSER_WIDTH{1'b0}} : s_ruser_i;
assign s_axi_rdata = err_busy_r ? {C_AXI_DATA_WIDTH{1'b0}} : s_rdata_i;
assign s_axi_rlast = err_busy_r ? e_rlast : s_rlast_i;
assign busy_aw = (aw_cnt != 0);
assign busy_w = (w_cnt != 0);
assign busy_ar = (ar_cnt != 0);
assign aw_push = s_awvalid_i & s_awready_i & s_awready_en;
assign aw_pop = s_bvalid_i & s_bready_i;
assign w_pop = s_wvalid_i & s_wready_i & s_axi_wlast;
assign ar_push = s_arvalid_i & s_arready_i & s_arready_en;
assign ar_pop = s_rvalid_i & s_rready_i & s_rlast_i;
always @(posedge aclk) begin
if (~aresetn) begin
s_awvalid_en <= 1'b0;
s_arvalid_en <= 1'b0;
s_awready_en <= 1'b0;
s_arready_en <= 1'b0;
e_awvalid_r <= 1'b0;
e_arvalid_r <= 1'b0;
e_awready <= 1'b0;
e_arready <= 1'b0;
aw_cnt <= 0;
w_cnt <= 0;
ar_cnt <= 0;
err_busy_w <= 1'b0;
err_busy_r <= 1'b0;
w_borrow <= 1'b0;
s_awvalid_pending <= 1'b0;
end else begin
e_awready <= 1'b0; // One-cycle pulse
if (e_bvalid & s_axi_bready) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
err_busy_w <= 1'b0;
end else if (e_awvalid) begin
e_awvalid_r <= 1'b0;
err_busy_w <= 1'b1;
end else if (s_axi_awvalid & w_err & ~e_awvalid_r & ~err_busy_w) begin
e_awvalid_r <= 1'b1;
e_awready <= ~(s_awready_i & s_awvalid_en); // 1-cycle pulse if awready not already asserted
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if ((&aw_cnt) | (&w_cnt) | aw_push) begin
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if (~err_busy_w & ~e_awvalid_r & ~(s_axi_awvalid & w_err)) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
end
if (aw_push & ~aw_pop) begin
aw_cnt <= aw_cnt + 1;
end else if (~aw_push & aw_pop & (|aw_cnt)) begin
aw_cnt <= aw_cnt - 1;
end
if (aw_push) begin
if (~w_pop & ~w_borrow) begin
w_cnt <= w_cnt + 1;
end
w_borrow <= 1'b0;
end else if (~aw_push & w_pop) begin
if (|w_cnt) begin
w_cnt <= w_cnt - 1;
end else begin
w_borrow <= 1'b1;
end
end
s_awvalid_pending <= s_awvalid_i & ~s_awready_i;
e_arready <= 1'b0; // One-cycle pulse
if (e_rvalid & s_axi_rready & e_rlast) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
err_busy_r <= 1'b0;
end else if (e_arvalid) begin
e_arvalid_r <= 1'b0;
err_busy_r <= 1'b1;
end else if (s_axi_arvalid & r_err & ~e_arvalid_r & ~err_busy_r) begin
e_arvalid_r <= 1'b1;
e_arready <= ~(s_arready_i & s_arvalid_en); // 1-cycle pulse if arready not already asserted
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if ((&ar_cnt) | ar_push) begin
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if (~err_busy_r & ~e_arvalid_r & ~(s_axi_arvalid & r_err)) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
end
if (ar_push & ~ar_pop) begin
ar_cnt <= ar_cnt + 1;
end else if (~ar_push & ar_pop & (|ar_cnt)) begin
ar_cnt <= ar_cnt - 1;
end
end
end
always @(posedge aclk) begin
if (s_axi_awvalid & ~err_busy_w & ~e_awvalid_r ) begin
e_awid <= s_axi_awid;
end
if (s_axi_arvalid & ~err_busy_r & ~e_arvalid_r ) begin
e_arid <= s_axi_arid;
e_arlen <= s_axi_arlen;
end
end
axi_protocol_converter_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_RESP (P_SLVERR),
.C_IGNORE_ID (C_IGNORE_ID)
)
decerr_slave_inst
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (e_awid),
.S_AXI_AWVALID (e_awvalid),
.S_AXI_AWREADY (),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WVALID (e_wvalid),
.S_AXI_WREADY (e_wready),
.S_AXI_BID (e_bid),
.S_AXI_BRESP (),
.S_AXI_BUSER (),
.S_AXI_BVALID (e_bvalid),
.S_AXI_BREADY (s_axi_bready),
.S_AXI_ARID (e_arid),
.S_AXI_ARLEN (e_arlen),
.S_AXI_ARVALID (e_arvalid),
.S_AXI_ARREADY (),
.S_AXI_RID (e_rid),
.S_AXI_RDATA (),
.S_AXI_RRESP (),
.S_AXI_RUSER (),
.S_AXI_RLAST (e_rlast),
.S_AXI_RVALID (e_rvalid),
.S_AXI_RREADY (s_axi_rready)
);
end else begin : gen_no_err_detect
assign s_awvalid_i = s_axi_awvalid;
assign s_arvalid_i = s_axi_arvalid;
assign s_wvalid_i = s_axi_wvalid;
assign s_bready_i = s_axi_bready;
assign s_rready_i = s_axi_rready;
assign s_axi_awready = s_awready_i;
assign s_axi_wready = s_wready_i;
assign s_axi_bvalid = s_bvalid_i;
assign s_axi_bid = s_bid_i;
assign s_axi_bresp = s_bresp_i;
assign s_axi_buser = s_buser_i;
assign s_axi_arready = s_arready_i;
assign s_axi_rvalid = s_rvalid_i;
assign s_axi_rid = s_rid_i;
assign s_axi_rresp = s_rresp_i;
assign s_axi_ruser = s_ruser_i;
assign s_axi_rdata = s_rdata_i;
assign s_axi_rlast = s_rlast_i;
end // gen_err_detect
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_axi_protocol_converter #(
parameter C_FAMILY = "virtex6",
parameter integer C_M_AXI_PROTOCOL = 0,
parameter integer C_S_AXI_PROTOCOL = 0,
parameter integer C_IGNORE_ID = 0,
// 0 = RID/BID are stored by axilite_conv.
// 1 = RID/BID have already been stored in an upstream device, like SASD crossbar.
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_TRANSLATION_MODE = 1
// 0 (Unprotected) = Disable all error checking; master is well-behaved.
// 1 (Protection) = Detect SI transaction violations, but perform no splitting.
// AXI4 -> AXI3 must be <= 16 beats; AXI4/3 -> AXI4LITE must be single.
// 2 (Conversion) = Include transaction splitting logic
) (
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
localparam P_AXI4 = 32'h0;
localparam P_AXI3 = 32'h1;
localparam P_AXILITE = 32'h2;
localparam P_AXILITE_SIZE = (C_AXI_DATA_WIDTH == 32) ? 3'b010 : 3'b011;
localparam P_INCR = 2'b01;
localparam P_DECERR = 2'b11;
localparam P_SLVERR = 2'b10;
localparam integer P_PROTECTION = 1;
localparam integer P_CONVERSION = 2;
wire s_awvalid_i;
wire s_arvalid_i;
wire s_wvalid_i ;
wire s_bready_i ;
wire s_rready_i ;
wire s_awready_i;
wire s_wready_i;
wire s_bvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_bid_i;
wire [1:0] s_bresp_i;
wire [C_AXI_BUSER_WIDTH-1:0] s_buser_i;
wire s_arready_i;
wire s_rvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_rid_i;
wire [1:0] s_rresp_i;
wire [C_AXI_RUSER_WIDTH-1:0] s_ruser_i;
wire [C_AXI_DATA_WIDTH-1:0] s_rdata_i;
wire s_rlast_i;
generate
if ((C_M_AXI_PROTOCOL == P_AXILITE) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite
assign m_axi_awid = 0;
assign m_axi_awlen = 0;
assign m_axi_awsize = P_AXILITE_SIZE;
assign m_axi_awburst = P_INCR;
assign m_axi_awlock = 0;
assign m_axi_awcache = 0;
assign m_axi_awregion = 0;
assign m_axi_awqos = 0;
assign m_axi_awuser = 0;
assign m_axi_wid = 0;
assign m_axi_wlast = 1'b1;
assign m_axi_wuser = 0;
assign m_axi_arid = 0;
assign m_axi_arlen = 0;
assign m_axi_arsize = P_AXILITE_SIZE;
assign m_axi_arburst = P_INCR;
assign m_axi_arlock = 0;
assign m_axi_arcache = 0;
assign m_axi_arregion = 0;
assign m_axi_arqos = 0;
assign m_axi_aruser = 0;
if (((C_IGNORE_ID == 1) && (C_TRANSLATION_MODE != P_CONVERSION)) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite_passthru
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = 0;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = 0;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = 0;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = 1'b1;
assign s_ruser_i = 0;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else if (C_TRANSLATION_MODE == P_CONVERSION) begin : gen_b2s_conv
assign s_buser_i = {C_AXI_BUSER_WIDTH{1'b0}};
assign s_ruser_i = {C_AXI_RUSER_WIDTH{1'b0}};
axi_protocol_converter_v2_1_b2s #(
.C_S_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ)
) axilite_b2s (
.aresetn (aresetn),
.aclk (aclk),
.s_axi_awid (s_axi_awid),
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awlen (s_axi_awlen),
.s_axi_awsize (s_axi_awsize),
.s_axi_awburst (s_axi_awburst),
.s_axi_awprot (s_axi_awprot),
.s_axi_awvalid (s_awvalid_i),
.s_axi_awready (s_awready_i),
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wlast (s_axi_wlast),
.s_axi_wvalid (s_wvalid_i),
.s_axi_wready (s_wready_i),
.s_axi_bid (s_bid_i),
.s_axi_bresp (s_bresp_i),
.s_axi_bvalid (s_bvalid_i),
.s_axi_bready (s_bready_i),
.s_axi_arid (s_axi_arid),
.s_axi_araddr (s_axi_araddr),
.s_axi_arlen (s_axi_arlen),
.s_axi_arsize (s_axi_arsize),
.s_axi_arburst (s_axi_arburst),
.s_axi_arprot (s_axi_arprot),
.s_axi_arvalid (s_arvalid_i),
.s_axi_arready (s_arready_i),
.s_axi_rid (s_rid_i),
.s_axi_rdata (s_rdata_i),
.s_axi_rresp (s_rresp_i),
.s_axi_rlast (s_rlast_i),
.s_axi_rvalid (s_rvalid_i),
.s_axi_rready (s_rready_i),
.m_axi_awaddr (m_axi_awaddr),
.m_axi_awprot (m_axi_awprot),
.m_axi_awvalid (m_axi_awvalid),
.m_axi_awready (m_axi_awready),
.m_axi_wdata (m_axi_wdata),
.m_axi_wstrb (m_axi_wstrb),
.m_axi_wvalid (m_axi_wvalid),
.m_axi_wready (m_axi_wready),
.m_axi_bresp (m_axi_bresp),
.m_axi_bvalid (m_axi_bvalid),
.m_axi_bready (m_axi_bready),
.m_axi_araddr (m_axi_araddr),
.m_axi_arprot (m_axi_arprot),
.m_axi_arvalid (m_axi_arvalid),
.m_axi_arready (m_axi_arready),
.m_axi_rdata (m_axi_rdata),
.m_axi_rresp (m_axi_rresp),
.m_axi_rvalid (m_axi_rvalid),
.m_axi_rready (m_axi_rready)
);
end else begin : gen_axilite_conv
axi_protocol_converter_v2_1_axilite_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) axilite_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
end
end else if ((C_M_AXI_PROTOCOL == P_AXI3) && (C_S_AXI_PROTOCOL == P_AXI4)) begin : gen_axi4_axi3
axi_protocol_converter_v2_1_axi3_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_SUPPORT_SPLITTING ((C_TRANSLATION_MODE == P_CONVERSION) ? 1 : 0)
) axi3_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWLEN (s_axi_awlen),
.S_AXI_AWSIZE (s_axi_awsize),
.S_AXI_AWBURST (s_axi_awburst),
.S_AXI_AWLOCK (s_axi_awlock),
.S_AXI_AWCACHE (s_axi_awcache),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWQOS (s_axi_awqos),
.S_AXI_AWUSER (s_axi_awuser),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WUSER (s_axi_wuser),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARLEN (s_axi_arlen),
.S_AXI_ARSIZE (s_axi_arsize),
.S_AXI_ARBURST (s_axi_arburst),
.S_AXI_ARLOCK (s_axi_arlock),
.S_AXI_ARCACHE (s_axi_arcache),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARQOS (s_axi_arqos),
.S_AXI_ARUSER (s_axi_aruser),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWID (m_axi_awid),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWLEN (m_axi_awlen),
.M_AXI_AWSIZE (m_axi_awsize),
.M_AXI_AWBURST (m_axi_awburst),
.M_AXI_AWLOCK (m_axi_awlock),
.M_AXI_AWCACHE (m_axi_awcache),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWQOS (m_axi_awqos),
.M_AXI_AWUSER (m_axi_awuser),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WID (m_axi_wid),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WLAST (m_axi_wlast),
.M_AXI_WUSER (m_axi_wuser),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BID (m_axi_bid),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BUSER (m_axi_buser),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARID (m_axi_arid),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARLEN (m_axi_arlen),
.M_AXI_ARSIZE (m_axi_arsize),
.M_AXI_ARBURST (m_axi_arburst),
.M_AXI_ARLOCK (m_axi_arlock),
.M_AXI_ARCACHE (m_axi_arcache),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARQOS (m_axi_arqos),
.M_AXI_ARUSER (m_axi_aruser),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RID (m_axi_rid),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RLAST (m_axi_rlast),
.M_AXI_RUSER (m_axi_ruser),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
assign m_axi_awregion = 0;
assign m_axi_arregion = 0;
end else if ((C_S_AXI_PROTOCOL == P_AXI3) && (C_M_AXI_PROTOCOL == P_AXI4)) begin : gen_axi3_axi4
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = {4'h0, s_axi_awlen[3:0]};
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock[0];
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = 4'h0;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = {C_AXI_ID_WIDTH{1'b0}} ;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = {4'h0, s_axi_arlen[3:0]};
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock[0];
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = 4'h0;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else begin :gen_no_conv
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = s_axi_awlen;
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock;
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = s_axi_awregion;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = s_axi_wid;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = s_axi_arlen;
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock;
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = s_axi_arregion;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end
if ((C_TRANSLATION_MODE == P_PROTECTION) &&
(((C_S_AXI_PROTOCOL != P_AXILITE) && (C_M_AXI_PROTOCOL == P_AXILITE)) ||
((C_S_AXI_PROTOCOL == P_AXI4) && (C_M_AXI_PROTOCOL == P_AXI3)))) begin : gen_err_detect
wire e_awvalid;
reg e_awvalid_r;
wire e_arvalid;
reg e_arvalid_r;
wire e_wvalid;
wire e_bvalid;
wire e_rvalid;
reg e_awready;
reg e_arready;
wire e_wready;
reg [C_AXI_ID_WIDTH-1:0] e_awid;
reg [C_AXI_ID_WIDTH-1:0] e_arid;
reg [8-1:0] e_arlen;
wire [C_AXI_ID_WIDTH-1:0] e_bid;
wire [C_AXI_ID_WIDTH-1:0] e_rid;
wire e_rlast;
wire w_err;
wire r_err;
wire busy_aw;
wire busy_w;
wire busy_ar;
wire aw_push;
wire aw_pop;
wire w_pop;
wire ar_push;
wire ar_pop;
reg s_awvalid_pending;
reg s_awvalid_en;
reg s_arvalid_en;
reg s_awready_en;
reg s_arready_en;
reg [4:0] aw_cnt;
reg [4:0] ar_cnt;
reg [4:0] w_cnt;
reg w_borrow;
reg err_busy_w;
reg err_busy_r;
assign w_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_awlen != 0) : ((s_axi_awlen>>4) != 0);
assign r_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_arlen != 0) : ((s_axi_arlen>>4) != 0);
assign s_awvalid_i = s_axi_awvalid & s_awvalid_en & ~w_err;
assign e_awvalid = e_awvalid_r & ~busy_aw & ~busy_w;
assign s_arvalid_i = s_axi_arvalid & s_arvalid_en & ~r_err;
assign e_arvalid = e_arvalid_r & ~busy_ar ;
assign s_wvalid_i = s_axi_wvalid & (busy_w | (s_awvalid_pending & ~w_borrow));
assign e_wvalid = s_axi_wvalid & err_busy_w;
assign s_bready_i = s_axi_bready & busy_aw;
assign s_rready_i = s_axi_rready & busy_ar;
assign s_axi_awready = (s_awready_i & s_awready_en) | e_awready;
assign s_axi_wready = (s_wready_i & (busy_w | (s_awvalid_pending & ~w_borrow))) | e_wready;
assign s_axi_bvalid = (s_bvalid_i & busy_aw) | e_bvalid;
assign s_axi_bid = err_busy_w ? e_bid : s_bid_i;
assign s_axi_bresp = err_busy_w ? P_SLVERR : s_bresp_i;
assign s_axi_buser = err_busy_w ? {C_AXI_BUSER_WIDTH{1'b0}} : s_buser_i;
assign s_axi_arready = (s_arready_i & s_arready_en) | e_arready;
assign s_axi_rvalid = (s_rvalid_i & busy_ar) | e_rvalid;
assign s_axi_rid = err_busy_r ? e_rid : s_rid_i;
assign s_axi_rresp = err_busy_r ? P_SLVERR : s_rresp_i;
assign s_axi_ruser = err_busy_r ? {C_AXI_RUSER_WIDTH{1'b0}} : s_ruser_i;
assign s_axi_rdata = err_busy_r ? {C_AXI_DATA_WIDTH{1'b0}} : s_rdata_i;
assign s_axi_rlast = err_busy_r ? e_rlast : s_rlast_i;
assign busy_aw = (aw_cnt != 0);
assign busy_w = (w_cnt != 0);
assign busy_ar = (ar_cnt != 0);
assign aw_push = s_awvalid_i & s_awready_i & s_awready_en;
assign aw_pop = s_bvalid_i & s_bready_i;
assign w_pop = s_wvalid_i & s_wready_i & s_axi_wlast;
assign ar_push = s_arvalid_i & s_arready_i & s_arready_en;
assign ar_pop = s_rvalid_i & s_rready_i & s_rlast_i;
always @(posedge aclk) begin
if (~aresetn) begin
s_awvalid_en <= 1'b0;
s_arvalid_en <= 1'b0;
s_awready_en <= 1'b0;
s_arready_en <= 1'b0;
e_awvalid_r <= 1'b0;
e_arvalid_r <= 1'b0;
e_awready <= 1'b0;
e_arready <= 1'b0;
aw_cnt <= 0;
w_cnt <= 0;
ar_cnt <= 0;
err_busy_w <= 1'b0;
err_busy_r <= 1'b0;
w_borrow <= 1'b0;
s_awvalid_pending <= 1'b0;
end else begin
e_awready <= 1'b0; // One-cycle pulse
if (e_bvalid & s_axi_bready) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
err_busy_w <= 1'b0;
end else if (e_awvalid) begin
e_awvalid_r <= 1'b0;
err_busy_w <= 1'b1;
end else if (s_axi_awvalid & w_err & ~e_awvalid_r & ~err_busy_w) begin
e_awvalid_r <= 1'b1;
e_awready <= ~(s_awready_i & s_awvalid_en); // 1-cycle pulse if awready not already asserted
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if ((&aw_cnt) | (&w_cnt) | aw_push) begin
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if (~err_busy_w & ~e_awvalid_r & ~(s_axi_awvalid & w_err)) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
end
if (aw_push & ~aw_pop) begin
aw_cnt <= aw_cnt + 1;
end else if (~aw_push & aw_pop & (|aw_cnt)) begin
aw_cnt <= aw_cnt - 1;
end
if (aw_push) begin
if (~w_pop & ~w_borrow) begin
w_cnt <= w_cnt + 1;
end
w_borrow <= 1'b0;
end else if (~aw_push & w_pop) begin
if (|w_cnt) begin
w_cnt <= w_cnt - 1;
end else begin
w_borrow <= 1'b1;
end
end
s_awvalid_pending <= s_awvalid_i & ~s_awready_i;
e_arready <= 1'b0; // One-cycle pulse
if (e_rvalid & s_axi_rready & e_rlast) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
err_busy_r <= 1'b0;
end else if (e_arvalid) begin
e_arvalid_r <= 1'b0;
err_busy_r <= 1'b1;
end else if (s_axi_arvalid & r_err & ~e_arvalid_r & ~err_busy_r) begin
e_arvalid_r <= 1'b1;
e_arready <= ~(s_arready_i & s_arvalid_en); // 1-cycle pulse if arready not already asserted
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if ((&ar_cnt) | ar_push) begin
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if (~err_busy_r & ~e_arvalid_r & ~(s_axi_arvalid & r_err)) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
end
if (ar_push & ~ar_pop) begin
ar_cnt <= ar_cnt + 1;
end else if (~ar_push & ar_pop & (|ar_cnt)) begin
ar_cnt <= ar_cnt - 1;
end
end
end
always @(posedge aclk) begin
if (s_axi_awvalid & ~err_busy_w & ~e_awvalid_r ) begin
e_awid <= s_axi_awid;
end
if (s_axi_arvalid & ~err_busy_r & ~e_arvalid_r ) begin
e_arid <= s_axi_arid;
e_arlen <= s_axi_arlen;
end
end
axi_protocol_converter_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_RESP (P_SLVERR),
.C_IGNORE_ID (C_IGNORE_ID)
)
decerr_slave_inst
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (e_awid),
.S_AXI_AWVALID (e_awvalid),
.S_AXI_AWREADY (),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WVALID (e_wvalid),
.S_AXI_WREADY (e_wready),
.S_AXI_BID (e_bid),
.S_AXI_BRESP (),
.S_AXI_BUSER (),
.S_AXI_BVALID (e_bvalid),
.S_AXI_BREADY (s_axi_bready),
.S_AXI_ARID (e_arid),
.S_AXI_ARLEN (e_arlen),
.S_AXI_ARVALID (e_arvalid),
.S_AXI_ARREADY (),
.S_AXI_RID (e_rid),
.S_AXI_RDATA (),
.S_AXI_RRESP (),
.S_AXI_RUSER (),
.S_AXI_RLAST (e_rlast),
.S_AXI_RVALID (e_rvalid),
.S_AXI_RREADY (s_axi_rready)
);
end else begin : gen_no_err_detect
assign s_awvalid_i = s_axi_awvalid;
assign s_arvalid_i = s_axi_arvalid;
assign s_wvalid_i = s_axi_wvalid;
assign s_bready_i = s_axi_bready;
assign s_rready_i = s_axi_rready;
assign s_axi_awready = s_awready_i;
assign s_axi_wready = s_wready_i;
assign s_axi_bvalid = s_bvalid_i;
assign s_axi_bid = s_bid_i;
assign s_axi_bresp = s_bresp_i;
assign s_axi_buser = s_buser_i;
assign s_axi_arready = s_arready_i;
assign s_axi_rvalid = s_rvalid_i;
assign s_axi_rid = s_rid_i;
assign s_axi_rresp = s_rresp_i;
assign s_axi_ruser = s_ruser_i;
assign s_axi_rdata = s_rdata_i;
assign s_axi_rlast = s_rlast_i;
end // gen_err_detect
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_axi_protocol_converter #(
parameter C_FAMILY = "virtex6",
parameter integer C_M_AXI_PROTOCOL = 0,
parameter integer C_S_AXI_PROTOCOL = 0,
parameter integer C_IGNORE_ID = 0,
// 0 = RID/BID are stored by axilite_conv.
// 1 = RID/BID have already been stored in an upstream device, like SASD crossbar.
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_TRANSLATION_MODE = 1
// 0 (Unprotected) = Disable all error checking; master is well-behaved.
// 1 (Protection) = Detect SI transaction violations, but perform no splitting.
// AXI4 -> AXI3 must be <= 16 beats; AXI4/3 -> AXI4LITE must be single.
// 2 (Conversion) = Include transaction splitting logic
) (
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
localparam P_AXI4 = 32'h0;
localparam P_AXI3 = 32'h1;
localparam P_AXILITE = 32'h2;
localparam P_AXILITE_SIZE = (C_AXI_DATA_WIDTH == 32) ? 3'b010 : 3'b011;
localparam P_INCR = 2'b01;
localparam P_DECERR = 2'b11;
localparam P_SLVERR = 2'b10;
localparam integer P_PROTECTION = 1;
localparam integer P_CONVERSION = 2;
wire s_awvalid_i;
wire s_arvalid_i;
wire s_wvalid_i ;
wire s_bready_i ;
wire s_rready_i ;
wire s_awready_i;
wire s_wready_i;
wire s_bvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_bid_i;
wire [1:0] s_bresp_i;
wire [C_AXI_BUSER_WIDTH-1:0] s_buser_i;
wire s_arready_i;
wire s_rvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_rid_i;
wire [1:0] s_rresp_i;
wire [C_AXI_RUSER_WIDTH-1:0] s_ruser_i;
wire [C_AXI_DATA_WIDTH-1:0] s_rdata_i;
wire s_rlast_i;
generate
if ((C_M_AXI_PROTOCOL == P_AXILITE) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite
assign m_axi_awid = 0;
assign m_axi_awlen = 0;
assign m_axi_awsize = P_AXILITE_SIZE;
assign m_axi_awburst = P_INCR;
assign m_axi_awlock = 0;
assign m_axi_awcache = 0;
assign m_axi_awregion = 0;
assign m_axi_awqos = 0;
assign m_axi_awuser = 0;
assign m_axi_wid = 0;
assign m_axi_wlast = 1'b1;
assign m_axi_wuser = 0;
assign m_axi_arid = 0;
assign m_axi_arlen = 0;
assign m_axi_arsize = P_AXILITE_SIZE;
assign m_axi_arburst = P_INCR;
assign m_axi_arlock = 0;
assign m_axi_arcache = 0;
assign m_axi_arregion = 0;
assign m_axi_arqos = 0;
assign m_axi_aruser = 0;
if (((C_IGNORE_ID == 1) && (C_TRANSLATION_MODE != P_CONVERSION)) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite_passthru
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = 0;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = 0;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = 0;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = 1'b1;
assign s_ruser_i = 0;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else if (C_TRANSLATION_MODE == P_CONVERSION) begin : gen_b2s_conv
assign s_buser_i = {C_AXI_BUSER_WIDTH{1'b0}};
assign s_ruser_i = {C_AXI_RUSER_WIDTH{1'b0}};
axi_protocol_converter_v2_1_b2s #(
.C_S_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ)
) axilite_b2s (
.aresetn (aresetn),
.aclk (aclk),
.s_axi_awid (s_axi_awid),
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awlen (s_axi_awlen),
.s_axi_awsize (s_axi_awsize),
.s_axi_awburst (s_axi_awburst),
.s_axi_awprot (s_axi_awprot),
.s_axi_awvalid (s_awvalid_i),
.s_axi_awready (s_awready_i),
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wlast (s_axi_wlast),
.s_axi_wvalid (s_wvalid_i),
.s_axi_wready (s_wready_i),
.s_axi_bid (s_bid_i),
.s_axi_bresp (s_bresp_i),
.s_axi_bvalid (s_bvalid_i),
.s_axi_bready (s_bready_i),
.s_axi_arid (s_axi_arid),
.s_axi_araddr (s_axi_araddr),
.s_axi_arlen (s_axi_arlen),
.s_axi_arsize (s_axi_arsize),
.s_axi_arburst (s_axi_arburst),
.s_axi_arprot (s_axi_arprot),
.s_axi_arvalid (s_arvalid_i),
.s_axi_arready (s_arready_i),
.s_axi_rid (s_rid_i),
.s_axi_rdata (s_rdata_i),
.s_axi_rresp (s_rresp_i),
.s_axi_rlast (s_rlast_i),
.s_axi_rvalid (s_rvalid_i),
.s_axi_rready (s_rready_i),
.m_axi_awaddr (m_axi_awaddr),
.m_axi_awprot (m_axi_awprot),
.m_axi_awvalid (m_axi_awvalid),
.m_axi_awready (m_axi_awready),
.m_axi_wdata (m_axi_wdata),
.m_axi_wstrb (m_axi_wstrb),
.m_axi_wvalid (m_axi_wvalid),
.m_axi_wready (m_axi_wready),
.m_axi_bresp (m_axi_bresp),
.m_axi_bvalid (m_axi_bvalid),
.m_axi_bready (m_axi_bready),
.m_axi_araddr (m_axi_araddr),
.m_axi_arprot (m_axi_arprot),
.m_axi_arvalid (m_axi_arvalid),
.m_axi_arready (m_axi_arready),
.m_axi_rdata (m_axi_rdata),
.m_axi_rresp (m_axi_rresp),
.m_axi_rvalid (m_axi_rvalid),
.m_axi_rready (m_axi_rready)
);
end else begin : gen_axilite_conv
axi_protocol_converter_v2_1_axilite_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) axilite_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
end
end else if ((C_M_AXI_PROTOCOL == P_AXI3) && (C_S_AXI_PROTOCOL == P_AXI4)) begin : gen_axi4_axi3
axi_protocol_converter_v2_1_axi3_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_SUPPORT_SPLITTING ((C_TRANSLATION_MODE == P_CONVERSION) ? 1 : 0)
) axi3_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWLEN (s_axi_awlen),
.S_AXI_AWSIZE (s_axi_awsize),
.S_AXI_AWBURST (s_axi_awburst),
.S_AXI_AWLOCK (s_axi_awlock),
.S_AXI_AWCACHE (s_axi_awcache),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWQOS (s_axi_awqos),
.S_AXI_AWUSER (s_axi_awuser),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WUSER (s_axi_wuser),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARLEN (s_axi_arlen),
.S_AXI_ARSIZE (s_axi_arsize),
.S_AXI_ARBURST (s_axi_arburst),
.S_AXI_ARLOCK (s_axi_arlock),
.S_AXI_ARCACHE (s_axi_arcache),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARQOS (s_axi_arqos),
.S_AXI_ARUSER (s_axi_aruser),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWID (m_axi_awid),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWLEN (m_axi_awlen),
.M_AXI_AWSIZE (m_axi_awsize),
.M_AXI_AWBURST (m_axi_awburst),
.M_AXI_AWLOCK (m_axi_awlock),
.M_AXI_AWCACHE (m_axi_awcache),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWQOS (m_axi_awqos),
.M_AXI_AWUSER (m_axi_awuser),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WID (m_axi_wid),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WLAST (m_axi_wlast),
.M_AXI_WUSER (m_axi_wuser),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BID (m_axi_bid),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BUSER (m_axi_buser),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARID (m_axi_arid),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARLEN (m_axi_arlen),
.M_AXI_ARSIZE (m_axi_arsize),
.M_AXI_ARBURST (m_axi_arburst),
.M_AXI_ARLOCK (m_axi_arlock),
.M_AXI_ARCACHE (m_axi_arcache),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARQOS (m_axi_arqos),
.M_AXI_ARUSER (m_axi_aruser),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RID (m_axi_rid),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RLAST (m_axi_rlast),
.M_AXI_RUSER (m_axi_ruser),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
assign m_axi_awregion = 0;
assign m_axi_arregion = 0;
end else if ((C_S_AXI_PROTOCOL == P_AXI3) && (C_M_AXI_PROTOCOL == P_AXI4)) begin : gen_axi3_axi4
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = {4'h0, s_axi_awlen[3:0]};
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock[0];
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = 4'h0;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = {C_AXI_ID_WIDTH{1'b0}} ;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = {4'h0, s_axi_arlen[3:0]};
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock[0];
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = 4'h0;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else begin :gen_no_conv
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = s_axi_awlen;
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock;
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = s_axi_awregion;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = s_axi_wid;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = s_axi_arlen;
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock;
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = s_axi_arregion;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end
if ((C_TRANSLATION_MODE == P_PROTECTION) &&
(((C_S_AXI_PROTOCOL != P_AXILITE) && (C_M_AXI_PROTOCOL == P_AXILITE)) ||
((C_S_AXI_PROTOCOL == P_AXI4) && (C_M_AXI_PROTOCOL == P_AXI3)))) begin : gen_err_detect
wire e_awvalid;
reg e_awvalid_r;
wire e_arvalid;
reg e_arvalid_r;
wire e_wvalid;
wire e_bvalid;
wire e_rvalid;
reg e_awready;
reg e_arready;
wire e_wready;
reg [C_AXI_ID_WIDTH-1:0] e_awid;
reg [C_AXI_ID_WIDTH-1:0] e_arid;
reg [8-1:0] e_arlen;
wire [C_AXI_ID_WIDTH-1:0] e_bid;
wire [C_AXI_ID_WIDTH-1:0] e_rid;
wire e_rlast;
wire w_err;
wire r_err;
wire busy_aw;
wire busy_w;
wire busy_ar;
wire aw_push;
wire aw_pop;
wire w_pop;
wire ar_push;
wire ar_pop;
reg s_awvalid_pending;
reg s_awvalid_en;
reg s_arvalid_en;
reg s_awready_en;
reg s_arready_en;
reg [4:0] aw_cnt;
reg [4:0] ar_cnt;
reg [4:0] w_cnt;
reg w_borrow;
reg err_busy_w;
reg err_busy_r;
assign w_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_awlen != 0) : ((s_axi_awlen>>4) != 0);
assign r_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_arlen != 0) : ((s_axi_arlen>>4) != 0);
assign s_awvalid_i = s_axi_awvalid & s_awvalid_en & ~w_err;
assign e_awvalid = e_awvalid_r & ~busy_aw & ~busy_w;
assign s_arvalid_i = s_axi_arvalid & s_arvalid_en & ~r_err;
assign e_arvalid = e_arvalid_r & ~busy_ar ;
assign s_wvalid_i = s_axi_wvalid & (busy_w | (s_awvalid_pending & ~w_borrow));
assign e_wvalid = s_axi_wvalid & err_busy_w;
assign s_bready_i = s_axi_bready & busy_aw;
assign s_rready_i = s_axi_rready & busy_ar;
assign s_axi_awready = (s_awready_i & s_awready_en) | e_awready;
assign s_axi_wready = (s_wready_i & (busy_w | (s_awvalid_pending & ~w_borrow))) | e_wready;
assign s_axi_bvalid = (s_bvalid_i & busy_aw) | e_bvalid;
assign s_axi_bid = err_busy_w ? e_bid : s_bid_i;
assign s_axi_bresp = err_busy_w ? P_SLVERR : s_bresp_i;
assign s_axi_buser = err_busy_w ? {C_AXI_BUSER_WIDTH{1'b0}} : s_buser_i;
assign s_axi_arready = (s_arready_i & s_arready_en) | e_arready;
assign s_axi_rvalid = (s_rvalid_i & busy_ar) | e_rvalid;
assign s_axi_rid = err_busy_r ? e_rid : s_rid_i;
assign s_axi_rresp = err_busy_r ? P_SLVERR : s_rresp_i;
assign s_axi_ruser = err_busy_r ? {C_AXI_RUSER_WIDTH{1'b0}} : s_ruser_i;
assign s_axi_rdata = err_busy_r ? {C_AXI_DATA_WIDTH{1'b0}} : s_rdata_i;
assign s_axi_rlast = err_busy_r ? e_rlast : s_rlast_i;
assign busy_aw = (aw_cnt != 0);
assign busy_w = (w_cnt != 0);
assign busy_ar = (ar_cnt != 0);
assign aw_push = s_awvalid_i & s_awready_i & s_awready_en;
assign aw_pop = s_bvalid_i & s_bready_i;
assign w_pop = s_wvalid_i & s_wready_i & s_axi_wlast;
assign ar_push = s_arvalid_i & s_arready_i & s_arready_en;
assign ar_pop = s_rvalid_i & s_rready_i & s_rlast_i;
always @(posedge aclk) begin
if (~aresetn) begin
s_awvalid_en <= 1'b0;
s_arvalid_en <= 1'b0;
s_awready_en <= 1'b0;
s_arready_en <= 1'b0;
e_awvalid_r <= 1'b0;
e_arvalid_r <= 1'b0;
e_awready <= 1'b0;
e_arready <= 1'b0;
aw_cnt <= 0;
w_cnt <= 0;
ar_cnt <= 0;
err_busy_w <= 1'b0;
err_busy_r <= 1'b0;
w_borrow <= 1'b0;
s_awvalid_pending <= 1'b0;
end else begin
e_awready <= 1'b0; // One-cycle pulse
if (e_bvalid & s_axi_bready) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
err_busy_w <= 1'b0;
end else if (e_awvalid) begin
e_awvalid_r <= 1'b0;
err_busy_w <= 1'b1;
end else if (s_axi_awvalid & w_err & ~e_awvalid_r & ~err_busy_w) begin
e_awvalid_r <= 1'b1;
e_awready <= ~(s_awready_i & s_awvalid_en); // 1-cycle pulse if awready not already asserted
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if ((&aw_cnt) | (&w_cnt) | aw_push) begin
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if (~err_busy_w & ~e_awvalid_r & ~(s_axi_awvalid & w_err)) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
end
if (aw_push & ~aw_pop) begin
aw_cnt <= aw_cnt + 1;
end else if (~aw_push & aw_pop & (|aw_cnt)) begin
aw_cnt <= aw_cnt - 1;
end
if (aw_push) begin
if (~w_pop & ~w_borrow) begin
w_cnt <= w_cnt + 1;
end
w_borrow <= 1'b0;
end else if (~aw_push & w_pop) begin
if (|w_cnt) begin
w_cnt <= w_cnt - 1;
end else begin
w_borrow <= 1'b1;
end
end
s_awvalid_pending <= s_awvalid_i & ~s_awready_i;
e_arready <= 1'b0; // One-cycle pulse
if (e_rvalid & s_axi_rready & e_rlast) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
err_busy_r <= 1'b0;
end else if (e_arvalid) begin
e_arvalid_r <= 1'b0;
err_busy_r <= 1'b1;
end else if (s_axi_arvalid & r_err & ~e_arvalid_r & ~err_busy_r) begin
e_arvalid_r <= 1'b1;
e_arready <= ~(s_arready_i & s_arvalid_en); // 1-cycle pulse if arready not already asserted
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if ((&ar_cnt) | ar_push) begin
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if (~err_busy_r & ~e_arvalid_r & ~(s_axi_arvalid & r_err)) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
end
if (ar_push & ~ar_pop) begin
ar_cnt <= ar_cnt + 1;
end else if (~ar_push & ar_pop & (|ar_cnt)) begin
ar_cnt <= ar_cnt - 1;
end
end
end
always @(posedge aclk) begin
if (s_axi_awvalid & ~err_busy_w & ~e_awvalid_r ) begin
e_awid <= s_axi_awid;
end
if (s_axi_arvalid & ~err_busy_r & ~e_arvalid_r ) begin
e_arid <= s_axi_arid;
e_arlen <= s_axi_arlen;
end
end
axi_protocol_converter_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_RESP (P_SLVERR),
.C_IGNORE_ID (C_IGNORE_ID)
)
decerr_slave_inst
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (e_awid),
.S_AXI_AWVALID (e_awvalid),
.S_AXI_AWREADY (),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WVALID (e_wvalid),
.S_AXI_WREADY (e_wready),
.S_AXI_BID (e_bid),
.S_AXI_BRESP (),
.S_AXI_BUSER (),
.S_AXI_BVALID (e_bvalid),
.S_AXI_BREADY (s_axi_bready),
.S_AXI_ARID (e_arid),
.S_AXI_ARLEN (e_arlen),
.S_AXI_ARVALID (e_arvalid),
.S_AXI_ARREADY (),
.S_AXI_RID (e_rid),
.S_AXI_RDATA (),
.S_AXI_RRESP (),
.S_AXI_RUSER (),
.S_AXI_RLAST (e_rlast),
.S_AXI_RVALID (e_rvalid),
.S_AXI_RREADY (s_axi_rready)
);
end else begin : gen_no_err_detect
assign s_awvalid_i = s_axi_awvalid;
assign s_arvalid_i = s_axi_arvalid;
assign s_wvalid_i = s_axi_wvalid;
assign s_bready_i = s_axi_bready;
assign s_rready_i = s_axi_rready;
assign s_axi_awready = s_awready_i;
assign s_axi_wready = s_wready_i;
assign s_axi_bvalid = s_bvalid_i;
assign s_axi_bid = s_bid_i;
assign s_axi_bresp = s_bresp_i;
assign s_axi_buser = s_buser_i;
assign s_axi_arready = s_arready_i;
assign s_axi_rvalid = s_rvalid_i;
assign s_axi_rid = s_rid_i;
assign s_axi_rresp = s_rresp_i;
assign s_axi_ruser = s_ruser_i;
assign s_axi_rdata = s_rdata_i;
assign s_axi_rlast = s_rlast_i;
end // gen_err_detect
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_axi_protocol_converter #(
parameter C_FAMILY = "virtex6",
parameter integer C_M_AXI_PROTOCOL = 0,
parameter integer C_S_AXI_PROTOCOL = 0,
parameter integer C_IGNORE_ID = 0,
// 0 = RID/BID are stored by axilite_conv.
// 1 = RID/BID have already been stored in an upstream device, like SASD crossbar.
parameter integer C_AXI_ID_WIDTH = 4,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_WRITE = 1,
parameter integer C_AXI_SUPPORTS_READ = 1,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
// 1 = Propagate all USER signals, 0 = Dont propagate.
parameter integer C_AXI_AWUSER_WIDTH = 1,
parameter integer C_AXI_ARUSER_WIDTH = 1,
parameter integer C_AXI_WUSER_WIDTH = 1,
parameter integer C_AXI_RUSER_WIDTH = 1,
parameter integer C_AXI_BUSER_WIDTH = 1,
parameter integer C_TRANSLATION_MODE = 1
// 0 (Unprotected) = Disable all error checking; master is well-behaved.
// 1 (Protection) = Detect SI transaction violations, but perform no splitting.
// AXI4 -> AXI3 must be <= 16 beats; AXI4/3 -> AXI4LITE must be single.
// 2 (Conversion) = Include transaction splitting logic
) (
// Global Signals
input wire aclk,
input wire aresetn,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen,
input wire [3-1:0] s_axi_awsize,
input wire [2-1:0] s_axi_awburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock,
input wire [4-1:0] s_axi_awcache,
input wire [3-1:0] s_axi_awprot,
input wire [4-1:0] s_axi_awregion,
input wire [4-1:0] s_axi_awqos,
input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
// Slave Interface Write Data Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid,
input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata,
input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
// Slave Interface Write Response Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid,
output wire [2-1:0] s_axi_bresp,
output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
// Slave Interface Read Address Ports
input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid,
input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr,
input wire [((C_S_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen,
input wire [3-1:0] s_axi_arsize,
input wire [2-1:0] s_axi_arburst,
input wire [((C_S_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock,
input wire [4-1:0] s_axi_arcache,
input wire [3-1:0] s_axi_arprot,
input wire [4-1:0] s_axi_arregion,
input wire [4-1:0] s_axi_arqos,
input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
// Slave Interface Read Data Ports
output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid,
output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata,
output wire [2-1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen,
output wire [3-1:0] m_axi_awsize,
output wire [2-1:0] m_axi_awburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock,
output wire [4-1:0] m_axi_awcache,
output wire [3-1:0] m_axi_awprot,
output wire [4-1:0] m_axi_awregion,
output wire [4-1:0] m_axi_awqos,
output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
// Master Interface Write Data Ports
output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid,
output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
// Master Interface Write Response Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [2-1:0] m_axi_bresp,
input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready,
// Master Interface Read Address Port
output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [((C_M_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen,
output wire [3-1:0] m_axi_arsize,
output wire [2-1:0] m_axi_arburst,
output wire [((C_M_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock,
output wire [4-1:0] m_axi_arcache,
output wire [3-1:0] m_axi_arprot,
output wire [4-1:0] m_axi_arregion,
output wire [4-1:0] m_axi_arqos,
output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser,
output wire m_axi_arvalid,
input wire m_axi_arready,
// Master Interface Read Data Ports
input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [2-1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser,
input wire m_axi_rvalid,
output wire m_axi_rready
);
localparam P_AXI4 = 32'h0;
localparam P_AXI3 = 32'h1;
localparam P_AXILITE = 32'h2;
localparam P_AXILITE_SIZE = (C_AXI_DATA_WIDTH == 32) ? 3'b010 : 3'b011;
localparam P_INCR = 2'b01;
localparam P_DECERR = 2'b11;
localparam P_SLVERR = 2'b10;
localparam integer P_PROTECTION = 1;
localparam integer P_CONVERSION = 2;
wire s_awvalid_i;
wire s_arvalid_i;
wire s_wvalid_i ;
wire s_bready_i ;
wire s_rready_i ;
wire s_awready_i;
wire s_wready_i;
wire s_bvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_bid_i;
wire [1:0] s_bresp_i;
wire [C_AXI_BUSER_WIDTH-1:0] s_buser_i;
wire s_arready_i;
wire s_rvalid_i;
wire [C_AXI_ID_WIDTH-1:0] s_rid_i;
wire [1:0] s_rresp_i;
wire [C_AXI_RUSER_WIDTH-1:0] s_ruser_i;
wire [C_AXI_DATA_WIDTH-1:0] s_rdata_i;
wire s_rlast_i;
generate
if ((C_M_AXI_PROTOCOL == P_AXILITE) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite
assign m_axi_awid = 0;
assign m_axi_awlen = 0;
assign m_axi_awsize = P_AXILITE_SIZE;
assign m_axi_awburst = P_INCR;
assign m_axi_awlock = 0;
assign m_axi_awcache = 0;
assign m_axi_awregion = 0;
assign m_axi_awqos = 0;
assign m_axi_awuser = 0;
assign m_axi_wid = 0;
assign m_axi_wlast = 1'b1;
assign m_axi_wuser = 0;
assign m_axi_arid = 0;
assign m_axi_arlen = 0;
assign m_axi_arsize = P_AXILITE_SIZE;
assign m_axi_arburst = P_INCR;
assign m_axi_arlock = 0;
assign m_axi_arcache = 0;
assign m_axi_arregion = 0;
assign m_axi_arqos = 0;
assign m_axi_aruser = 0;
if (((C_IGNORE_ID == 1) && (C_TRANSLATION_MODE != P_CONVERSION)) || (C_S_AXI_PROTOCOL == P_AXILITE)) begin : gen_axilite_passthru
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = 0;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = 0;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = 0;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = 1'b1;
assign s_ruser_i = 0;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else if (C_TRANSLATION_MODE == P_CONVERSION) begin : gen_b2s_conv
assign s_buser_i = {C_AXI_BUSER_WIDTH{1'b0}};
assign s_ruser_i = {C_AXI_RUSER_WIDTH{1'b0}};
axi_protocol_converter_v2_1_b2s #(
.C_S_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ)
) axilite_b2s (
.aresetn (aresetn),
.aclk (aclk),
.s_axi_awid (s_axi_awid),
.s_axi_awaddr (s_axi_awaddr),
.s_axi_awlen (s_axi_awlen),
.s_axi_awsize (s_axi_awsize),
.s_axi_awburst (s_axi_awburst),
.s_axi_awprot (s_axi_awprot),
.s_axi_awvalid (s_awvalid_i),
.s_axi_awready (s_awready_i),
.s_axi_wdata (s_axi_wdata),
.s_axi_wstrb (s_axi_wstrb),
.s_axi_wlast (s_axi_wlast),
.s_axi_wvalid (s_wvalid_i),
.s_axi_wready (s_wready_i),
.s_axi_bid (s_bid_i),
.s_axi_bresp (s_bresp_i),
.s_axi_bvalid (s_bvalid_i),
.s_axi_bready (s_bready_i),
.s_axi_arid (s_axi_arid),
.s_axi_araddr (s_axi_araddr),
.s_axi_arlen (s_axi_arlen),
.s_axi_arsize (s_axi_arsize),
.s_axi_arburst (s_axi_arburst),
.s_axi_arprot (s_axi_arprot),
.s_axi_arvalid (s_arvalid_i),
.s_axi_arready (s_arready_i),
.s_axi_rid (s_rid_i),
.s_axi_rdata (s_rdata_i),
.s_axi_rresp (s_rresp_i),
.s_axi_rlast (s_rlast_i),
.s_axi_rvalid (s_rvalid_i),
.s_axi_rready (s_rready_i),
.m_axi_awaddr (m_axi_awaddr),
.m_axi_awprot (m_axi_awprot),
.m_axi_awvalid (m_axi_awvalid),
.m_axi_awready (m_axi_awready),
.m_axi_wdata (m_axi_wdata),
.m_axi_wstrb (m_axi_wstrb),
.m_axi_wvalid (m_axi_wvalid),
.m_axi_wready (m_axi_wready),
.m_axi_bresp (m_axi_bresp),
.m_axi_bvalid (m_axi_bvalid),
.m_axi_bready (m_axi_bready),
.m_axi_araddr (m_axi_araddr),
.m_axi_arprot (m_axi_arprot),
.m_axi_arvalid (m_axi_arvalid),
.m_axi_arready (m_axi_arready),
.m_axi_rdata (m_axi_rdata),
.m_axi_rresp (m_axi_rresp),
.m_axi_rvalid (m_axi_rvalid),
.m_axi_rready (m_axi_rready)
);
end else begin : gen_axilite_conv
axi_protocol_converter_v2_1_axilite_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH)
) axilite_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
end
end else if ((C_M_AXI_PROTOCOL == P_AXI3) && (C_S_AXI_PROTOCOL == P_AXI4)) begin : gen_axi4_axi3
axi_protocol_converter_v2_1_axi3_conv #(
.C_FAMILY (C_FAMILY),
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH (C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_SUPPORTS_USER_SIGNALS (C_AXI_SUPPORTS_USER_SIGNALS),
.C_AXI_AWUSER_WIDTH (C_AXI_AWUSER_WIDTH),
.C_AXI_ARUSER_WIDTH (C_AXI_ARUSER_WIDTH),
.C_AXI_WUSER_WIDTH (C_AXI_WUSER_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_SUPPORTS_WRITE (C_AXI_SUPPORTS_WRITE),
.C_AXI_SUPPORTS_READ (C_AXI_SUPPORTS_READ),
.C_SUPPORT_SPLITTING ((C_TRANSLATION_MODE == P_CONVERSION) ? 1 : 0)
) axi3_conv_inst (
.ARESETN (aresetn),
.ACLK (aclk),
.S_AXI_AWID (s_axi_awid),
.S_AXI_AWADDR (s_axi_awaddr),
.S_AXI_AWLEN (s_axi_awlen),
.S_AXI_AWSIZE (s_axi_awsize),
.S_AXI_AWBURST (s_axi_awburst),
.S_AXI_AWLOCK (s_axi_awlock),
.S_AXI_AWCACHE (s_axi_awcache),
.S_AXI_AWPROT (s_axi_awprot),
.S_AXI_AWQOS (s_axi_awqos),
.S_AXI_AWUSER (s_axi_awuser),
.S_AXI_AWVALID (s_awvalid_i),
.S_AXI_AWREADY (s_awready_i),
.S_AXI_WDATA (s_axi_wdata),
.S_AXI_WSTRB (s_axi_wstrb),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WUSER (s_axi_wuser),
.S_AXI_WVALID (s_wvalid_i),
.S_AXI_WREADY (s_wready_i),
.S_AXI_BID (s_bid_i),
.S_AXI_BRESP (s_bresp_i),
.S_AXI_BUSER (s_buser_i),
.S_AXI_BVALID (s_bvalid_i),
.S_AXI_BREADY (s_bready_i),
.S_AXI_ARID (s_axi_arid),
.S_AXI_ARADDR (s_axi_araddr),
.S_AXI_ARLEN (s_axi_arlen),
.S_AXI_ARSIZE (s_axi_arsize),
.S_AXI_ARBURST (s_axi_arburst),
.S_AXI_ARLOCK (s_axi_arlock),
.S_AXI_ARCACHE (s_axi_arcache),
.S_AXI_ARPROT (s_axi_arprot),
.S_AXI_ARQOS (s_axi_arqos),
.S_AXI_ARUSER (s_axi_aruser),
.S_AXI_ARVALID (s_arvalid_i),
.S_AXI_ARREADY (s_arready_i),
.S_AXI_RID (s_rid_i),
.S_AXI_RDATA (s_rdata_i),
.S_AXI_RRESP (s_rresp_i),
.S_AXI_RLAST (s_rlast_i),
.S_AXI_RUSER (s_ruser_i),
.S_AXI_RVALID (s_rvalid_i),
.S_AXI_RREADY (s_rready_i),
.M_AXI_AWID (m_axi_awid),
.M_AXI_AWADDR (m_axi_awaddr),
.M_AXI_AWLEN (m_axi_awlen),
.M_AXI_AWSIZE (m_axi_awsize),
.M_AXI_AWBURST (m_axi_awburst),
.M_AXI_AWLOCK (m_axi_awlock),
.M_AXI_AWCACHE (m_axi_awcache),
.M_AXI_AWPROT (m_axi_awprot),
.M_AXI_AWQOS (m_axi_awqos),
.M_AXI_AWUSER (m_axi_awuser),
.M_AXI_AWVALID (m_axi_awvalid),
.M_AXI_AWREADY (m_axi_awready),
.M_AXI_WID (m_axi_wid),
.M_AXI_WDATA (m_axi_wdata),
.M_AXI_WSTRB (m_axi_wstrb),
.M_AXI_WLAST (m_axi_wlast),
.M_AXI_WUSER (m_axi_wuser),
.M_AXI_WVALID (m_axi_wvalid),
.M_AXI_WREADY (m_axi_wready),
.M_AXI_BID (m_axi_bid),
.M_AXI_BRESP (m_axi_bresp),
.M_AXI_BUSER (m_axi_buser),
.M_AXI_BVALID (m_axi_bvalid),
.M_AXI_BREADY (m_axi_bready),
.M_AXI_ARID (m_axi_arid),
.M_AXI_ARADDR (m_axi_araddr),
.M_AXI_ARLEN (m_axi_arlen),
.M_AXI_ARSIZE (m_axi_arsize),
.M_AXI_ARBURST (m_axi_arburst),
.M_AXI_ARLOCK (m_axi_arlock),
.M_AXI_ARCACHE (m_axi_arcache),
.M_AXI_ARPROT (m_axi_arprot),
.M_AXI_ARQOS (m_axi_arqos),
.M_AXI_ARUSER (m_axi_aruser),
.M_AXI_ARVALID (m_axi_arvalid),
.M_AXI_ARREADY (m_axi_arready),
.M_AXI_RID (m_axi_rid),
.M_AXI_RDATA (m_axi_rdata),
.M_AXI_RRESP (m_axi_rresp),
.M_AXI_RLAST (m_axi_rlast),
.M_AXI_RUSER (m_axi_ruser),
.M_AXI_RVALID (m_axi_rvalid),
.M_AXI_RREADY (m_axi_rready)
);
assign m_axi_awregion = 0;
assign m_axi_arregion = 0;
end else if ((C_S_AXI_PROTOCOL == P_AXI3) && (C_M_AXI_PROTOCOL == P_AXI4)) begin : gen_axi3_axi4
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = {4'h0, s_axi_awlen[3:0]};
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock[0];
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = 4'h0;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = {C_AXI_ID_WIDTH{1'b0}} ;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = {4'h0, s_axi_arlen[3:0]};
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock[0];
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = 4'h0;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end else begin :gen_no_conv
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = s_axi_awlen;
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock;
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awregion = s_axi_awregion;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awuser = s_axi_awuser;
assign m_axi_awvalid = s_awvalid_i;
assign s_awready_i = m_axi_awready;
assign m_axi_wid = s_axi_wid;
assign m_axi_wdata = s_axi_wdata;
assign m_axi_wstrb = s_axi_wstrb;
assign m_axi_wlast = s_axi_wlast;
assign m_axi_wuser = s_axi_wuser;
assign m_axi_wvalid = s_wvalid_i;
assign s_wready_i = m_axi_wready;
assign s_bid_i = m_axi_bid;
assign s_bresp_i = m_axi_bresp;
assign s_buser_i = m_axi_buser;
assign s_bvalid_i = m_axi_bvalid;
assign m_axi_bready = s_bready_i;
assign m_axi_arid = s_axi_arid;
assign m_axi_araddr = s_axi_araddr;
assign m_axi_arlen = s_axi_arlen;
assign m_axi_arsize = s_axi_arsize;
assign m_axi_arburst = s_axi_arburst;
assign m_axi_arlock = s_axi_arlock;
assign m_axi_arcache = s_axi_arcache;
assign m_axi_arprot = s_axi_arprot;
assign m_axi_arregion = s_axi_arregion;
assign m_axi_arqos = s_axi_arqos;
assign m_axi_aruser = s_axi_aruser;
assign m_axi_arvalid = s_arvalid_i;
assign s_arready_i = m_axi_arready;
assign s_rid_i = m_axi_rid;
assign s_rdata_i = m_axi_rdata;
assign s_rresp_i = m_axi_rresp;
assign s_rlast_i = m_axi_rlast;
assign s_ruser_i = m_axi_ruser;
assign s_rvalid_i = m_axi_rvalid;
assign m_axi_rready = s_rready_i;
end
if ((C_TRANSLATION_MODE == P_PROTECTION) &&
(((C_S_AXI_PROTOCOL != P_AXILITE) && (C_M_AXI_PROTOCOL == P_AXILITE)) ||
((C_S_AXI_PROTOCOL == P_AXI4) && (C_M_AXI_PROTOCOL == P_AXI3)))) begin : gen_err_detect
wire e_awvalid;
reg e_awvalid_r;
wire e_arvalid;
reg e_arvalid_r;
wire e_wvalid;
wire e_bvalid;
wire e_rvalid;
reg e_awready;
reg e_arready;
wire e_wready;
reg [C_AXI_ID_WIDTH-1:0] e_awid;
reg [C_AXI_ID_WIDTH-1:0] e_arid;
reg [8-1:0] e_arlen;
wire [C_AXI_ID_WIDTH-1:0] e_bid;
wire [C_AXI_ID_WIDTH-1:0] e_rid;
wire e_rlast;
wire w_err;
wire r_err;
wire busy_aw;
wire busy_w;
wire busy_ar;
wire aw_push;
wire aw_pop;
wire w_pop;
wire ar_push;
wire ar_pop;
reg s_awvalid_pending;
reg s_awvalid_en;
reg s_arvalid_en;
reg s_awready_en;
reg s_arready_en;
reg [4:0] aw_cnt;
reg [4:0] ar_cnt;
reg [4:0] w_cnt;
reg w_borrow;
reg err_busy_w;
reg err_busy_r;
assign w_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_awlen != 0) : ((s_axi_awlen>>4) != 0);
assign r_err = (C_M_AXI_PROTOCOL == P_AXILITE) ? (s_axi_arlen != 0) : ((s_axi_arlen>>4) != 0);
assign s_awvalid_i = s_axi_awvalid & s_awvalid_en & ~w_err;
assign e_awvalid = e_awvalid_r & ~busy_aw & ~busy_w;
assign s_arvalid_i = s_axi_arvalid & s_arvalid_en & ~r_err;
assign e_arvalid = e_arvalid_r & ~busy_ar ;
assign s_wvalid_i = s_axi_wvalid & (busy_w | (s_awvalid_pending & ~w_borrow));
assign e_wvalid = s_axi_wvalid & err_busy_w;
assign s_bready_i = s_axi_bready & busy_aw;
assign s_rready_i = s_axi_rready & busy_ar;
assign s_axi_awready = (s_awready_i & s_awready_en) | e_awready;
assign s_axi_wready = (s_wready_i & (busy_w | (s_awvalid_pending & ~w_borrow))) | e_wready;
assign s_axi_bvalid = (s_bvalid_i & busy_aw) | e_bvalid;
assign s_axi_bid = err_busy_w ? e_bid : s_bid_i;
assign s_axi_bresp = err_busy_w ? P_SLVERR : s_bresp_i;
assign s_axi_buser = err_busy_w ? {C_AXI_BUSER_WIDTH{1'b0}} : s_buser_i;
assign s_axi_arready = (s_arready_i & s_arready_en) | e_arready;
assign s_axi_rvalid = (s_rvalid_i & busy_ar) | e_rvalid;
assign s_axi_rid = err_busy_r ? e_rid : s_rid_i;
assign s_axi_rresp = err_busy_r ? P_SLVERR : s_rresp_i;
assign s_axi_ruser = err_busy_r ? {C_AXI_RUSER_WIDTH{1'b0}} : s_ruser_i;
assign s_axi_rdata = err_busy_r ? {C_AXI_DATA_WIDTH{1'b0}} : s_rdata_i;
assign s_axi_rlast = err_busy_r ? e_rlast : s_rlast_i;
assign busy_aw = (aw_cnt != 0);
assign busy_w = (w_cnt != 0);
assign busy_ar = (ar_cnt != 0);
assign aw_push = s_awvalid_i & s_awready_i & s_awready_en;
assign aw_pop = s_bvalid_i & s_bready_i;
assign w_pop = s_wvalid_i & s_wready_i & s_axi_wlast;
assign ar_push = s_arvalid_i & s_arready_i & s_arready_en;
assign ar_pop = s_rvalid_i & s_rready_i & s_rlast_i;
always @(posedge aclk) begin
if (~aresetn) begin
s_awvalid_en <= 1'b0;
s_arvalid_en <= 1'b0;
s_awready_en <= 1'b0;
s_arready_en <= 1'b0;
e_awvalid_r <= 1'b0;
e_arvalid_r <= 1'b0;
e_awready <= 1'b0;
e_arready <= 1'b0;
aw_cnt <= 0;
w_cnt <= 0;
ar_cnt <= 0;
err_busy_w <= 1'b0;
err_busy_r <= 1'b0;
w_borrow <= 1'b0;
s_awvalid_pending <= 1'b0;
end else begin
e_awready <= 1'b0; // One-cycle pulse
if (e_bvalid & s_axi_bready) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
err_busy_w <= 1'b0;
end else if (e_awvalid) begin
e_awvalid_r <= 1'b0;
err_busy_w <= 1'b1;
end else if (s_axi_awvalid & w_err & ~e_awvalid_r & ~err_busy_w) begin
e_awvalid_r <= 1'b1;
e_awready <= ~(s_awready_i & s_awvalid_en); // 1-cycle pulse if awready not already asserted
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if ((&aw_cnt) | (&w_cnt) | aw_push) begin
s_awvalid_en <= 1'b0;
s_awready_en <= 1'b0;
end else if (~err_busy_w & ~e_awvalid_r & ~(s_axi_awvalid & w_err)) begin
s_awvalid_en <= 1'b1;
s_awready_en <= 1'b1;
end
if (aw_push & ~aw_pop) begin
aw_cnt <= aw_cnt + 1;
end else if (~aw_push & aw_pop & (|aw_cnt)) begin
aw_cnt <= aw_cnt - 1;
end
if (aw_push) begin
if (~w_pop & ~w_borrow) begin
w_cnt <= w_cnt + 1;
end
w_borrow <= 1'b0;
end else if (~aw_push & w_pop) begin
if (|w_cnt) begin
w_cnt <= w_cnt - 1;
end else begin
w_borrow <= 1'b1;
end
end
s_awvalid_pending <= s_awvalid_i & ~s_awready_i;
e_arready <= 1'b0; // One-cycle pulse
if (e_rvalid & s_axi_rready & e_rlast) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
err_busy_r <= 1'b0;
end else if (e_arvalid) begin
e_arvalid_r <= 1'b0;
err_busy_r <= 1'b1;
end else if (s_axi_arvalid & r_err & ~e_arvalid_r & ~err_busy_r) begin
e_arvalid_r <= 1'b1;
e_arready <= ~(s_arready_i & s_arvalid_en); // 1-cycle pulse if arready not already asserted
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if ((&ar_cnt) | ar_push) begin
s_arvalid_en <= 1'b0;
s_arready_en <= 1'b0;
end else if (~err_busy_r & ~e_arvalid_r & ~(s_axi_arvalid & r_err)) begin
s_arvalid_en <= 1'b1;
s_arready_en <= 1'b1;
end
if (ar_push & ~ar_pop) begin
ar_cnt <= ar_cnt + 1;
end else if (~ar_push & ar_pop & (|ar_cnt)) begin
ar_cnt <= ar_cnt - 1;
end
end
end
always @(posedge aclk) begin
if (s_axi_awvalid & ~err_busy_w & ~e_awvalid_r ) begin
e_awid <= s_axi_awid;
end
if (s_axi_arvalid & ~err_busy_r & ~e_arvalid_r ) begin
e_arid <= s_axi_arid;
e_arlen <= s_axi_arlen;
end
end
axi_protocol_converter_v2_1_decerr_slave #
(
.C_AXI_ID_WIDTH (C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH (C_AXI_DATA_WIDTH),
.C_AXI_RUSER_WIDTH (C_AXI_RUSER_WIDTH),
.C_AXI_BUSER_WIDTH (C_AXI_BUSER_WIDTH),
.C_AXI_PROTOCOL (C_S_AXI_PROTOCOL),
.C_RESP (P_SLVERR),
.C_IGNORE_ID (C_IGNORE_ID)
)
decerr_slave_inst
(
.ACLK (aclk),
.ARESETN (aresetn),
.S_AXI_AWID (e_awid),
.S_AXI_AWVALID (e_awvalid),
.S_AXI_AWREADY (),
.S_AXI_WLAST (s_axi_wlast),
.S_AXI_WVALID (e_wvalid),
.S_AXI_WREADY (e_wready),
.S_AXI_BID (e_bid),
.S_AXI_BRESP (),
.S_AXI_BUSER (),
.S_AXI_BVALID (e_bvalid),
.S_AXI_BREADY (s_axi_bready),
.S_AXI_ARID (e_arid),
.S_AXI_ARLEN (e_arlen),
.S_AXI_ARVALID (e_arvalid),
.S_AXI_ARREADY (),
.S_AXI_RID (e_rid),
.S_AXI_RDATA (),
.S_AXI_RRESP (),
.S_AXI_RUSER (),
.S_AXI_RLAST (e_rlast),
.S_AXI_RVALID (e_rvalid),
.S_AXI_RREADY (s_axi_rready)
);
end else begin : gen_no_err_detect
assign s_awvalid_i = s_axi_awvalid;
assign s_arvalid_i = s_axi_arvalid;
assign s_wvalid_i = s_axi_wvalid;
assign s_bready_i = s_axi_bready;
assign s_rready_i = s_axi_rready;
assign s_axi_awready = s_awready_i;
assign s_axi_wready = s_wready_i;
assign s_axi_bvalid = s_bvalid_i;
assign s_axi_bid = s_bid_i;
assign s_axi_bresp = s_bresp_i;
assign s_axi_buser = s_buser_i;
assign s_axi_arready = s_arready_i;
assign s_axi_rvalid = s_rvalid_i;
assign s_axi_rid = s_rid_i;
assign s_axi_rresp = s_rresp_i;
assign s_axi_ruser = s_ruser_i;
assign s_axi_rdata = s_rdata_i;
assign s_axi_rlast = s_rlast_i;
end // gen_err_detect
endgenerate
endmodule
|
module axi_protocol_converter_v2_1_b2s_rd_cmd_fsm (
///////////////////////////////////////////////////////////////////////////////
// Port Declarations
///////////////////////////////////////////////////////////////////////////////
input wire clk ,
input wire reset ,
output wire s_arready ,
input wire s_arvalid ,
input wire [7:0] s_arlen ,
output wire m_arvalid ,
input wire m_arready ,
// signal to increment to the next mc transaction
output wire next ,
// signal to the fsm there is another transaction required
input wire next_pending ,
// Write Data portion has completed or Read FIFO has a slot available (not
// full)
input wire data_ready ,
// status signal for w_channel when command is written.
output wire a_push ,
output wire r_push
);
////////////////////////////////////////////////////////////////////////////////
// Local parameters
////////////////////////////////////////////////////////////////////////////////
// States
localparam SM_IDLE = 2'b00;
localparam SM_CMD_EN = 2'b01;
localparam SM_CMD_ACCEPTED = 2'b10;
localparam SM_DONE = 2'b11;
////////////////////////////////////////////////////////////////////////////////
// Wires/Reg declarations
////////////////////////////////////////////////////////////////////////////////
reg [1:0] state;
// synthesis attribute MAX_FANOUT of state is 20;
reg [1:0] state_r1;
reg [1:0] next_state;
reg [7:0] s_arlen_r;
////////////////////////////////////////////////////////////////////////////////
// BEGIN RTL
///////////////////////////////////////////////////////////////////////////////
// register for timing
always @(posedge clk) begin
if (reset) begin
state <= SM_IDLE;
state_r1 <= SM_IDLE;
s_arlen_r <= 0;
end else begin
state <= next_state;
state_r1 <= state;
s_arlen_r <= s_arlen;
end
end
// Next state transitions.
always @( * ) begin
next_state = state;
case (state)
SM_IDLE:
if (s_arvalid & data_ready) begin
next_state = SM_CMD_EN;
end else begin
next_state = state;
end
SM_CMD_EN:
///////////////////////////////////////////////////////////////////
// Drive m_arvalid downstream in this state
///////////////////////////////////////////////////////////////////
//If there is no fifo space
if (~data_ready & m_arready & next_pending) begin
///////////////////////////////////////////////////////////////////
//There is more to do, wait until data space is available drop valid
next_state = SM_CMD_ACCEPTED;
end else if (m_arready & ~next_pending)begin
next_state = SM_DONE;
end else if (m_arready & next_pending) begin
next_state = SM_CMD_EN;
end else begin
next_state = state;
end
SM_CMD_ACCEPTED:
if (data_ready) begin
next_state = SM_CMD_EN;
end else begin
next_state = state;
end
SM_DONE:
next_state = SM_IDLE;
default:
next_state = SM_IDLE;
endcase
end
// Assign outputs based on current state.
assign m_arvalid = (state == SM_CMD_EN);
assign next = m_arready && (state == SM_CMD_EN);
assign r_push = next;
assign a_push = (state == SM_IDLE);
assign s_arready = ((state == SM_CMD_EN) || (state == SM_DONE)) && (next_state == SM_IDLE);
endmodule
|
module axi_protocol_converter_v2_1_a_axi3_conv #
(
parameter C_FAMILY = "none",
parameter integer C_AXI_ID_WIDTH = 1,
parameter integer C_AXI_ADDR_WIDTH = 32,
parameter integer C_AXI_DATA_WIDTH = 32,
parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0,
parameter integer C_AXI_AUSER_WIDTH = 1,
parameter integer C_AXI_CHANNEL = 0,
// 0 = AXI AW Channel.
// 1 = AXI AR Channel.
parameter integer C_SUPPORT_SPLITTING = 1,
// Implement transaction splitting logic.
// Disabled whan all connected masters are AXI3 and have same or narrower data width.
parameter integer C_SUPPORT_BURSTS = 1,
// Disabled when all connected masters are AxiLite,
// allowing logic to be simplified.
parameter integer C_SINGLE_THREAD = 1
// 0 = Ignore ID when propagating transactions (assume all responses are in order).
// 1 = Enforce single-threading (one ID at a time) when any outstanding or
// requested transaction requires splitting.
// While no split is ongoing any new non-split transaction will pass immediately regardless
// off ID.
// A split transaction will stall if there are multiple ID (non-split) transactions
// ongoing, once it has been forwarded only transactions with the same ID is allowed
// (split or not) until all ongoing split transactios has been completed.
)
(
// System Signals
input wire ACLK,
input wire ARESET,
// Command Interface (W/R)
output wire cmd_valid,
output wire cmd_split,
output wire [C_AXI_ID_WIDTH-1:0] cmd_id,
output wire [4-1:0] cmd_length,
input wire cmd_ready,
// Command Interface (B)
output wire cmd_b_valid,
output wire cmd_b_split,
output wire [4-1:0] cmd_b_repeat,
input wire cmd_b_ready,
// Slave Interface Write Address Ports
input wire [C_AXI_ID_WIDTH-1:0] S_AXI_AID,
input wire [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR,
input wire [8-1:0] S_AXI_ALEN,
input wire [3-1:0] S_AXI_ASIZE,
input wire [2-1:0] S_AXI_ABURST,
input wire [1-1:0] S_AXI_ALOCK,
input wire [4-1:0] S_AXI_ACACHE,
input wire [3-1:0] S_AXI_APROT,
input wire [4-1:0] S_AXI_AQOS,
input wire [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER,
input wire S_AXI_AVALID,
output wire S_AXI_AREADY,
// Master Interface Write Address Port
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR,
output wire [4-1:0] M_AXI_ALEN,
output wire [3-1:0] M_AXI_ASIZE,
output wire [2-1:0] M_AXI_ABURST,
output wire [2-1:0] M_AXI_ALOCK,
output wire [4-1:0] M_AXI_ACACHE,
output wire [3-1:0] M_AXI_APROT,
output wire [4-1:0] M_AXI_AQOS,
output wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER,
output wire M_AXI_AVALID,
input wire M_AXI_AREADY
);
/////////////////////////////////////////////////////////////////////////////
// Variables for generating parameter controlled instances.
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Local params
/////////////////////////////////////////////////////////////////////////////
// Constants for burst types.
localparam [2-1:0] C_FIX_BURST = 2'b00;
localparam [2-1:0] C_INCR_BURST = 2'b01;
localparam [2-1:0] C_WRAP_BURST = 2'b10;
// Depth for command FIFO.
localparam integer C_FIFO_DEPTH_LOG = 5;
// Constants used to generate size mask.
localparam [C_AXI_ADDR_WIDTH+8-1:0] C_SIZE_MASK = {{C_AXI_ADDR_WIDTH{1'b1}}, 8'b0000_0000};
/////////////////////////////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// Internal signals
/////////////////////////////////////////////////////////////////////////////
// Access decoding related signals.
wire access_is_incr;
wire [4-1:0] num_transactions;
wire incr_need_to_split;
reg [C_AXI_ADDR_WIDTH-1:0] next_mi_addr;
reg split_ongoing;
reg [4-1:0] pushed_commands;
reg [16-1:0] addr_step;
reg [16-1:0] first_step;
wire [8-1:0] first_beats;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask;
// Access decoding related signals for internal pipestage.
reg access_is_incr_q;
reg incr_need_to_split_q;
wire need_to_split_q;
reg [4-1:0] num_transactions_q;
reg [16-1:0] addr_step_q;
reg [16-1:0] first_step_q;
reg [C_AXI_ADDR_WIDTH-1:0] size_mask_q;
// Command buffer help signals.
reg [C_FIFO_DEPTH_LOG:0] cmd_depth;
reg cmd_empty;
reg [C_AXI_ID_WIDTH-1:0] queue_id;
wire id_match;
wire cmd_id_check;
wire s_ready;
wire cmd_full;
wire allow_this_cmd;
wire allow_new_cmd;
wire cmd_push;
reg cmd_push_block;
reg [C_FIFO_DEPTH_LOG:0] cmd_b_depth;
reg cmd_b_empty;
wire cmd_b_full;
wire cmd_b_push;
reg cmd_b_push_block;
wire pushed_new_cmd;
wire last_incr_split;
wire last_split;
wire first_split;
wire no_cmd;
wire allow_split_cmd;
wire almost_empty;
wire no_b_cmd;
wire allow_non_split_cmd;
wire almost_b_empty;
reg multiple_id_non_split;
reg split_in_progress;
// Internal Command Interface signals (W/R).
wire cmd_split_i;
wire [C_AXI_ID_WIDTH-1:0] cmd_id_i;
reg [4-1:0] cmd_length_i;
// Internal Command Interface signals (B).
wire cmd_b_split_i;
wire [4-1:0] cmd_b_repeat_i;
// Throttling help signals.
wire mi_stalling;
reg command_ongoing;
// Internal SI-side signals.
reg [C_AXI_ID_WIDTH-1:0] S_AXI_AID_Q;
reg [C_AXI_ADDR_WIDTH-1:0] S_AXI_AADDR_Q;
reg [8-1:0] S_AXI_ALEN_Q;
reg [3-1:0] S_AXI_ASIZE_Q;
reg [2-1:0] S_AXI_ABURST_Q;
reg [2-1:0] S_AXI_ALOCK_Q;
reg [4-1:0] S_AXI_ACACHE_Q;
reg [3-1:0] S_AXI_APROT_Q;
reg [4-1:0] S_AXI_AQOS_Q;
reg [C_AXI_AUSER_WIDTH-1:0] S_AXI_AUSER_Q;
reg S_AXI_AREADY_I;
// Internal MI-side signals.
wire [C_AXI_ID_WIDTH-1:0] M_AXI_AID_I;
reg [C_AXI_ADDR_WIDTH-1:0] M_AXI_AADDR_I;
reg [8-1:0] M_AXI_ALEN_I;
wire [3-1:0] M_AXI_ASIZE_I;
wire [2-1:0] M_AXI_ABURST_I;
reg [2-1:0] M_AXI_ALOCK_I;
wire [4-1:0] M_AXI_ACACHE_I;
wire [3-1:0] M_AXI_APROT_I;
wire [4-1:0] M_AXI_AQOS_I;
wire [C_AXI_AUSER_WIDTH-1:0] M_AXI_AUSER_I;
wire M_AXI_AVALID_I;
wire M_AXI_AREADY_I;
reg [1:0] areset_d; // Reset delay register
always @(posedge ACLK) begin
areset_d <= {areset_d[0], ARESET};
end
/////////////////////////////////////////////////////////////////////////////
// Capture SI-Side signals.
//
/////////////////////////////////////////////////////////////////////////////
// Register SI-Side signals.
always @ (posedge ACLK) begin
if ( ARESET ) begin
S_AXI_AID_Q <= {C_AXI_ID_WIDTH{1'b0}};
S_AXI_AADDR_Q <= {C_AXI_ADDR_WIDTH{1'b0}};
S_AXI_ALEN_Q <= 8'b0;
S_AXI_ASIZE_Q <= 3'b0;
S_AXI_ABURST_Q <= 2'b0;
S_AXI_ALOCK_Q <= 2'b0;
S_AXI_ACACHE_Q <= 4'b0;
S_AXI_APROT_Q <= 3'b0;
S_AXI_AQOS_Q <= 4'b0;
S_AXI_AUSER_Q <= {C_AXI_AUSER_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
S_AXI_AID_Q <= S_AXI_AID;
S_AXI_AADDR_Q <= S_AXI_AADDR;
S_AXI_ALEN_Q <= S_AXI_ALEN;
S_AXI_ASIZE_Q <= S_AXI_ASIZE;
S_AXI_ABURST_Q <= S_AXI_ABURST;
S_AXI_ALOCK_Q <= S_AXI_ALOCK;
S_AXI_ACACHE_Q <= S_AXI_ACACHE;
S_AXI_APROT_Q <= S_AXI_APROT;
S_AXI_AQOS_Q <= S_AXI_AQOS;
S_AXI_AUSER_Q <= S_AXI_AUSER;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Decode the Incoming Transaction.
//
// Extract transaction type and the number of splits that may be needed.
//
// Calculate the step size so that the address for each part of a split can
// can be calculated.
//
/////////////////////////////////////////////////////////////////////////////
// Transaction burst type.
assign access_is_incr = ( S_AXI_ABURST == C_INCR_BURST );
// Get number of transactions for split INCR.
assign num_transactions = S_AXI_ALEN[4 +: 4];
assign first_beats = {3'b0, S_AXI_ALEN[0 +: 4]} + 7'b01;
// Generate address increment of first split transaction.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: first_step = first_beats << 0;
3'b001: first_step = first_beats << 1;
3'b010: first_step = first_beats << 2;
3'b011: first_step = first_beats << 3;
3'b100: first_step = first_beats << 4;
3'b101: first_step = first_beats << 5;
3'b110: first_step = first_beats << 6;
3'b111: first_step = first_beats << 7;
endcase
end
// Generate address increment for remaining split transactions.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: addr_step = 16'h0010;
3'b001: addr_step = 16'h0020;
3'b010: addr_step = 16'h0040;
3'b011: addr_step = 16'h0080;
3'b100: addr_step = 16'h0100;
3'b101: addr_step = 16'h0200;
3'b110: addr_step = 16'h0400;
3'b111: addr_step = 16'h0800;
endcase
end
// Generate address mask bits to remove split transaction unalignment.
always @ *
begin
case (S_AXI_ASIZE)
3'b000: size_mask = C_SIZE_MASK[8 +: C_AXI_ADDR_WIDTH];
3'b001: size_mask = C_SIZE_MASK[7 +: C_AXI_ADDR_WIDTH];
3'b010: size_mask = C_SIZE_MASK[6 +: C_AXI_ADDR_WIDTH];
3'b011: size_mask = C_SIZE_MASK[5 +: C_AXI_ADDR_WIDTH];
3'b100: size_mask = C_SIZE_MASK[4 +: C_AXI_ADDR_WIDTH];
3'b101: size_mask = C_SIZE_MASK[3 +: C_AXI_ADDR_WIDTH];
3'b110: size_mask = C_SIZE_MASK[2 +: C_AXI_ADDR_WIDTH];
3'b111: size_mask = C_SIZE_MASK[1 +: C_AXI_ADDR_WIDTH];
endcase
end
/////////////////////////////////////////////////////////////////////////////
// Transfer SI-Side signals to internal Pipeline Stage.
//
/////////////////////////////////////////////////////////////////////////////
always @ (posedge ACLK) begin
if ( ARESET ) begin
access_is_incr_q <= 1'b0;
incr_need_to_split_q <= 1'b0;
num_transactions_q <= 4'b0;
addr_step_q <= 16'b0;
first_step_q <= 16'b0;
size_mask_q <= {C_AXI_ADDR_WIDTH{1'b0}};
end else begin
if ( S_AXI_AREADY_I ) begin
access_is_incr_q <= access_is_incr;
incr_need_to_split_q <= incr_need_to_split;
num_transactions_q <= num_transactions;
addr_step_q <= addr_step;
first_step_q <= first_step;
size_mask_q <= size_mask;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// Generate Command Information.
//
// Detect if current transation needs to be split, and keep track of all
// the generated split transactions.
//
//
/////////////////////////////////////////////////////////////////////////////
// Detect when INCR must be split.
assign incr_need_to_split = access_is_incr & ( num_transactions != 0 ) &
( C_SUPPORT_SPLITTING == 1 ) &
( C_SUPPORT_BURSTS == 1 );
// Detect when a command has to be split.
assign need_to_split_q = incr_need_to_split_q;
// Handle progress of split transactions.
always @ (posedge ACLK) begin
if ( ARESET ) begin
split_ongoing <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
split_ongoing <= need_to_split_q & ~last_split;
end
end
end
// Keep track of number of transactions generated.
always @ (posedge ACLK) begin
if ( ARESET ) begin
pushed_commands <= 4'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
pushed_commands <= 4'b0;
end else if ( pushed_new_cmd ) begin
pushed_commands <= pushed_commands + 4'b1;
end
end
end
// Detect last part of a command, split or not.
assign last_incr_split = access_is_incr_q & ( num_transactions_q == pushed_commands );
assign last_split = last_incr_split | ~access_is_incr_q |
( C_SUPPORT_SPLITTING == 0 ) |
( C_SUPPORT_BURSTS == 0 );
assign first_split = (pushed_commands == 4'b0);
// Calculate base for next address.
always @ (posedge ACLK) begin
if ( ARESET ) begin
next_mi_addr = {C_AXI_ADDR_WIDTH{1'b0}};
end else if ( pushed_new_cmd ) begin
next_mi_addr = M_AXI_AADDR_I + (first_split ? first_step_q : addr_step_q);
end
end
/////////////////////////////////////////////////////////////////////////////
// Translating Transaction.
//
// Set Split transaction information on all part except last for a transaction
// that needs splitting.
// The B Channel will only get one command for a Split transaction and in
// the Split bflag will be set in that case.
//
// The AWID is extracted and applied to all commands generated for the current
// incomming SI-Side transaction.
//
// The address is increased for each part of a Split transaction, the amount
// depends on the siSIZE for the transaction.
//
// The length has to be changed for Split transactions. All part except tha
// last one will have 0xF, the last one uses the 4 lsb bits from the SI-side
// transaction as length.
//
// Non-Split has untouched address and length information.
//
// Exclusive access are diasabled for a Split transaction because it is not
// possible to guarantee concistency between all the parts.
//
/////////////////////////////////////////////////////////////////////////////
// Assign Split signals.
assign cmd_split_i = need_to_split_q & ~last_split;
assign cmd_b_split_i = need_to_split_q & ~last_split;
// Copy AW ID to W.
assign cmd_id_i = S_AXI_AID_Q;
// Set B Responses to merge.
assign cmd_b_repeat_i = num_transactions_q;
// Select new size or remaining size.
always @ *
begin
if ( split_ongoing & access_is_incr_q ) begin
M_AXI_AADDR_I = next_mi_addr & size_mask_q;
end else begin
M_AXI_AADDR_I = S_AXI_AADDR_Q;
end
end
// Generate the base length for each transaction.
always @ *
begin
if ( first_split | ~need_to_split_q ) begin
M_AXI_ALEN_I = S_AXI_ALEN_Q[0 +: 4];
cmd_length_i = S_AXI_ALEN_Q[0 +: 4];
end else begin
M_AXI_ALEN_I = 4'hF;
cmd_length_i = 4'hF;
end
end
// Kill Exclusive for Split transactions.
always @ *
begin
if ( need_to_split_q ) begin
M_AXI_ALOCK_I = 2'b00;
end else begin
M_AXI_ALOCK_I = {1'b0, S_AXI_ALOCK_Q};
end
end
/////////////////////////////////////////////////////////////////////////////
// Forward the command to the MI-side interface.
//
// It is determined that this is an allowed command/access when there is
// room in the command queue (and it passes ID and Split checks as required).
//
/////////////////////////////////////////////////////////////////////////////
// Move SI-side transaction to internal pipe stage.
always @ (posedge ACLK) begin
if (ARESET) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b0;
end else begin
if (areset_d == 2'b10) begin
S_AXI_AREADY_I <= 1'b1;
end else begin
if ( S_AXI_AVALID & S_AXI_AREADY_I ) begin
command_ongoing <= 1'b1;
S_AXI_AREADY_I <= 1'b0;
end else if ( pushed_new_cmd & last_split ) begin
command_ongoing <= 1'b0;
S_AXI_AREADY_I <= 1'b1;
end
end
end
end
// Generate ready signal.
assign S_AXI_AREADY = S_AXI_AREADY_I;
// Only allowed to forward translated command when command queue is ok with it.
assign M_AXI_AVALID_I = allow_new_cmd & command_ongoing;
// Detect when MI-side is stalling.
assign mi_stalling = M_AXI_AVALID_I & ~M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Simple transfer of paramters that doesn't need to be adjusted.
//
// ID - Transaction still recognized with the same ID.
// CACHE - No need to change the chache features. Even if the modyfiable
// bit is overridden (forcefully) there is no need to let downstream
// component beleive it is ok to modify it further.
// PROT - Security level of access is not changed when upsizing.
// QOS - Quality of Service is static 0.
// USER - User bits remains the same.
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID_I = S_AXI_AID_Q;
assign M_AXI_ASIZE_I = S_AXI_ASIZE_Q;
assign M_AXI_ABURST_I = S_AXI_ABURST_Q;
assign M_AXI_ACACHE_I = S_AXI_ACACHE_Q;
assign M_AXI_APROT_I = S_AXI_APROT_Q;
assign M_AXI_AQOS_I = S_AXI_AQOS_Q;
assign M_AXI_AUSER_I = ( C_AXI_SUPPORTS_USER_SIGNALS ) ? S_AXI_AUSER_Q : {C_AXI_AUSER_WIDTH{1'b0}};
/////////////////////////////////////////////////////////////////////////////
// Control command queue to W/R channel.
//
// Commands can be pushed into the Cmd FIFO even if MI-side is stalling.
// A flag is set if MI-side is stalling when Command is pushed to the
// Cmd FIFO. This will prevent multiple push of the same Command as well as
// keeping the MI-side Valid signal if the Allow Cmd requirement has been
// updated to disable furter Commands (I.e. it is made sure that the SI-side
// Command has been forwarded to both Cmd FIFO and MI-side).
//
// It is allowed to continue pushing new commands as long as
// * There is room in the queue(s)
// * The ID is the same as previously queued. Since data is not reordered
// for the same ID it is always OK to let them proceed.
// Or, if no split transaction is ongoing any ID can be allowed.
//
/////////////////////////////////////////////////////////////////////////////
// Keep track of current ID in queue.
always @ (posedge ACLK) begin
if (ARESET) begin
queue_id <= {C_AXI_ID_WIDTH{1'b0}};
multiple_id_non_split <= 1'b0;
split_in_progress <= 1'b0;
end else begin
if ( cmd_push ) begin
// Store ID (it will be matching ID or a "new beginning").
queue_id <= S_AXI_AID_Q;
end
if ( no_cmd & no_b_cmd ) begin
multiple_id_non_split <= 1'b0;
end else if ( cmd_push & allow_non_split_cmd & ~id_match ) begin
multiple_id_non_split <= 1'b1;
end
if ( no_cmd & no_b_cmd ) begin
split_in_progress <= 1'b0;
end else if ( cmd_push & allow_split_cmd ) begin
split_in_progress <= 1'b1;
end
end
end
// Determine if the command FIFOs are empty.
assign no_cmd = almost_empty & cmd_ready | cmd_empty;
assign no_b_cmd = almost_b_empty & cmd_b_ready | cmd_b_empty;
// Check ID to make sure this command is allowed.
assign id_match = ( C_SINGLE_THREAD == 0 ) | ( queue_id == S_AXI_AID_Q);
assign cmd_id_check = (cmd_empty & cmd_b_empty) | ( id_match & (~cmd_empty | ~cmd_b_empty) );
// Command type affects possibility to push immediately or wait.
assign allow_split_cmd = need_to_split_q & cmd_id_check & ~multiple_id_non_split;
assign allow_non_split_cmd = ~need_to_split_q & (cmd_id_check | ~split_in_progress);
assign allow_this_cmd = allow_split_cmd | allow_non_split_cmd | ( C_SINGLE_THREAD == 0 );
// Check if it is allowed to push more commands.
assign allow_new_cmd = (~cmd_full & ~cmd_b_full & allow_this_cmd) |
cmd_push_block;
// Push new command when allowed and MI-side is able to receive the command.
assign cmd_push = M_AXI_AVALID_I & ~cmd_push_block;
assign cmd_b_push = M_AXI_AVALID_I & ~cmd_b_push_block & (C_AXI_CHANNEL == 0);
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_push_block <= 1'b0;
end else begin
if ( pushed_new_cmd ) begin
cmd_push_block <= 1'b0;
end else if ( cmd_push & mi_stalling ) begin
cmd_push_block <= 1'b1;
end
end
end
// Block furter push until command has been forwarded to MI-side.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_push_block <= 1'b0;
end else begin
if ( S_AXI_AREADY_I ) begin
cmd_b_push_block <= 1'b0;
end else if ( cmd_b_push ) begin
cmd_b_push_block <= 1'b1;
end
end
end
// Acknowledge command when we can push it into queue (and forward it).
assign pushed_new_cmd = M_AXI_AVALID_I & M_AXI_AREADY_I;
/////////////////////////////////////////////////////////////////////////////
// Command Queue (W/R):
//
// Instantiate a FIFO as the queue and adjust the control signals.
//
// The features from Command FIFO can be reduced depending on configuration:
// Read Channel only need the split information.
// Write Channel always require ID information. When bursts are supported
// Split and Length information is also used.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 1 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_R_CHANNEL
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_split_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_split}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_id = {C_AXI_ID_WIDTH{1'b0}};
assign cmd_length = 4'b0;
end else if (C_SUPPORT_BURSTS == 1) begin : USE_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH+4),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i, cmd_length_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id, cmd_length}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
end else begin : NO_BURSTS
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(C_AXI_ID_WIDTH),
.C_FIFO_TYPE("lut")
)
cmd_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_id_i}),
.S_VALID(cmd_push),
.S_READY(s_ready),
.M_MESG({cmd_id}),
.M_VALID(cmd_valid),
.M_READY(cmd_ready)
);
assign cmd_split = 1'b0;
assign cmd_length = 4'b0;
end
endgenerate
// Queue is concidered full when not ready.
assign cmd_full = ~s_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_empty <= 1'b1;
cmd_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_push & ~cmd_ready ) begin
// Push only => Increase depth.
cmd_depth <= cmd_depth + 1'b1;
cmd_empty <= 1'b0;
end else if ( ~cmd_push & cmd_ready ) begin
// Pop only => Decrease depth.
cmd_depth <= cmd_depth - 1'b1;
cmd_empty <= almost_empty;
end
end
end
assign almost_empty = ( cmd_depth == 1 );
/////////////////////////////////////////////////////////////////////////////
// Command Queue (B):
//
// Add command queue for B channel only when it is AW channel and both burst
// and splitting is supported.
//
// When turned off the command appears always empty.
//
/////////////////////////////////////////////////////////////////////////////
// Instantiated queue.
generate
if ( C_AXI_CHANNEL == 0 && C_SUPPORT_SPLITTING == 1 && C_SUPPORT_BURSTS == 1 ) begin : USE_B_CHANNEL
wire cmd_b_valid_i;
wire s_b_ready;
axi_data_fifo_v2_1_axic_fifo #
(
.C_FAMILY(C_FAMILY),
.C_FIFO_DEPTH_LOG(C_FIFO_DEPTH_LOG),
.C_FIFO_WIDTH(1+4),
.C_FIFO_TYPE("lut")
)
cmd_b_queue
(
.ACLK(ACLK),
.ARESET(ARESET),
.S_MESG({cmd_b_split_i, cmd_b_repeat_i}),
.S_VALID(cmd_b_push),
.S_READY(s_b_ready),
.M_MESG({cmd_b_split, cmd_b_repeat}),
.M_VALID(cmd_b_valid_i),
.M_READY(cmd_b_ready)
);
// Queue is concidered full when not ready.
assign cmd_b_full = ~s_b_ready;
// Queue is empty when no data at output port.
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
if ( cmd_b_push & ~cmd_b_ready ) begin
// Push only => Increase depth.
cmd_b_depth <= cmd_b_depth + 1'b1;
cmd_b_empty <= 1'b0;
end else if ( ~cmd_b_push & cmd_b_ready ) begin
// Pop only => Decrease depth.
cmd_b_depth <= cmd_b_depth - 1'b1;
cmd_b_empty <= ( cmd_b_depth == 1 );
end
end
end
assign almost_b_empty = ( cmd_b_depth == 1 );
// Assign external signal.
assign cmd_b_valid = cmd_b_valid_i;
end else begin : NO_B_CHANNEL
// Assign external command signals.
assign cmd_b_valid = 1'b0;
assign cmd_b_split = 1'b0;
assign cmd_b_repeat = 4'b0;
// Assign internal command FIFO signals.
assign cmd_b_full = 1'b0;
assign almost_b_empty = 1'b0;
always @ (posedge ACLK) begin
if (ARESET) begin
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end else begin
// Constant FF due to ModelSim behavior.
cmd_b_empty <= 1'b1;
cmd_b_depth <= {C_FIFO_DEPTH_LOG+1{1'b0}};
end
end
end
endgenerate
/////////////////////////////////////////////////////////////////////////////
// MI-side output handling
//
/////////////////////////////////////////////////////////////////////////////
assign M_AXI_AID = M_AXI_AID_I;
assign M_AXI_AADDR = M_AXI_AADDR_I;
assign M_AXI_ALEN = M_AXI_ALEN_I;
assign M_AXI_ASIZE = M_AXI_ASIZE_I;
assign M_AXI_ABURST = M_AXI_ABURST_I;
assign M_AXI_ALOCK = M_AXI_ALOCK_I;
assign M_AXI_ACACHE = M_AXI_ACACHE_I;
assign M_AXI_APROT = M_AXI_APROT_I;
assign M_AXI_AQOS = M_AXI_AQOS_I;
assign M_AXI_AUSER = M_AXI_AUSER_I;
assign M_AXI_AVALID = M_AXI_AVALID_I;
assign M_AXI_AREADY_I = M_AXI_AREADY;
endmodule
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.